]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched/fair.c
sched, nohz: Fix missing RCU read lock
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29
30 #include <trace/events/sched.h>
31
32 #include "sched.h"
33
34 /*
35 * Targeted preemption latency for CPU-bound tasks:
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 *
38 * NOTE: this latency value is not the same as the concept of
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
42 *
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
45 */
46 unsigned int sysctl_sched_latency = 6000000ULL;
47 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
48
49 /*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58 enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
61 /*
62 * Minimal preemption granularity for CPU-bound tasks:
63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
64 */
65 unsigned int sysctl_sched_min_granularity = 750000ULL;
66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
67
68 /*
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
71 static unsigned int sched_nr_latency = 8;
72
73 /*
74 * After fork, child runs first. If set to 0 (default) then
75 * parent will (try to) run first.
76 */
77 unsigned int sysctl_sched_child_runs_first __read_mostly;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 /*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111 #endif
112
113 /*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122 static int get_update_sysctl_factor(void)
123 {
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141 }
142
143 static void update_sysctl(void)
144 {
145 unsigned int factor = get_update_sysctl_factor();
146
147 #define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152 #undef SET_SYSCTL
153 }
154
155 void sched_init_granularity(void)
156 {
157 update_sysctl();
158 }
159
160 #if BITS_PER_LONG == 32
161 # define WMULT_CONST (~0UL)
162 #else
163 # define WMULT_CONST (1UL << 32)
164 #endif
165
166 #define WMULT_SHIFT 32
167
168 /*
169 * Shift right and round:
170 */
171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173 /*
174 * delta *= weight / lw
175 */
176 static unsigned long
177 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179 {
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213 }
214
215
216 const struct sched_class fair_sched_class;
217
218 /**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
222 #ifdef CONFIG_FAIR_GROUP_SCHED
223
224 /* cpu runqueue to which this cfs_rq is attached */
225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226 {
227 return cfs_rq->rq;
228 }
229
230 /* An entity is a task if it doesn't "own" a runqueue */
231 #define entity_is_task(se) (!se->my_q)
232
233 static inline struct task_struct *task_of(struct sched_entity *se)
234 {
235 #ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237 #endif
238 return container_of(se, struct task_struct, se);
239 }
240
241 /* Walk up scheduling entities hierarchy */
242 #define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246 {
247 return p->se.cfs_rq;
248 }
249
250 /* runqueue on which this entity is (to be) queued */
251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252 {
253 return se->cfs_rq;
254 }
255
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258 {
259 return grp->my_q;
260 }
261
262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263 {
264 if (!cfs_rq->on_list) {
265 /*
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
270 */
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
278 }
279
280 cfs_rq->on_list = 1;
281 }
282 }
283
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285 {
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
289 }
290 }
291
292 /* Iterate thr' all leaf cfs_rq's on a runqueue */
293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295
296 /* Do the two (enqueued) entities belong to the same group ? */
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
299 {
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
302
303 return 0;
304 }
305
306 static inline struct sched_entity *parent_entity(struct sched_entity *se)
307 {
308 return se->parent;
309 }
310
311 /* return depth at which a sched entity is present in the hierarchy */
312 static inline int depth_se(struct sched_entity *se)
313 {
314 int depth = 0;
315
316 for_each_sched_entity(se)
317 depth++;
318
319 return depth;
320 }
321
322 static void
323 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324 {
325 int se_depth, pse_depth;
326
327 /*
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
332 */
333
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
337
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
341 }
342
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
346 }
347
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
351 }
352 }
353
354 #else /* !CONFIG_FAIR_GROUP_SCHED */
355
356 static inline struct task_struct *task_of(struct sched_entity *se)
357 {
358 return container_of(se, struct task_struct, se);
359 }
360
361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362 {
363 return container_of(cfs_rq, struct rq, cfs);
364 }
365
366 #define entity_is_task(se) 1
367
368 #define for_each_sched_entity(se) \
369 for (; se; se = NULL)
370
371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
372 {
373 return &task_rq(p)->cfs;
374 }
375
376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377 {
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
380
381 return &rq->cfs;
382 }
383
384 /* runqueue "owned" by this group */
385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386 {
387 return NULL;
388 }
389
390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391 {
392 }
393
394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395 {
396 }
397
398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400
401 static inline int
402 is_same_group(struct sched_entity *se, struct sched_entity *pse)
403 {
404 return 1;
405 }
406
407 static inline struct sched_entity *parent_entity(struct sched_entity *se)
408 {
409 return NULL;
410 }
411
412 static inline void
413 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414 {
415 }
416
417 #endif /* CONFIG_FAIR_GROUP_SCHED */
418
419 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
420 unsigned long delta_exec);
421
422 /**************************************************************
423 * Scheduling class tree data structure manipulation methods:
424 */
425
426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
427 {
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
430 min_vruntime = vruntime;
431
432 return min_vruntime;
433 }
434
435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
436 {
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
440
441 return min_vruntime;
442 }
443
444 static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
446 {
447 return (s64)(a->vruntime - b->vruntime) < 0;
448 }
449
450 static void update_min_vruntime(struct cfs_rq *cfs_rq)
451 {
452 u64 vruntime = cfs_rq->min_vruntime;
453
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
456
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
461
462 if (!cfs_rq->curr)
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
466 }
467
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
469 #ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472 #endif
473 }
474
475 /*
476 * Enqueue an entity into the rb-tree:
477 */
478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
479 {
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
483 int leftmost = 1;
484
485 /*
486 * Find the right place in the rbtree:
487 */
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
491 /*
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
494 */
495 if (entity_before(se, entry)) {
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
500 }
501 }
502
503 /*
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
506 */
507 if (leftmost)
508 cfs_rq->rb_leftmost = &se->run_node;
509
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
512 }
513
514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
515 {
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
518
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
521 }
522
523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525
526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
527 {
528 struct rb_node *left = cfs_rq->rb_leftmost;
529
530 if (!left)
531 return NULL;
532
533 return rb_entry(left, struct sched_entity, run_node);
534 }
535
536 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537 {
538 struct rb_node *next = rb_next(&se->run_node);
539
540 if (!next)
541 return NULL;
542
543 return rb_entry(next, struct sched_entity, run_node);
544 }
545
546 #ifdef CONFIG_SCHED_DEBUG
547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
548 {
549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
550
551 if (!last)
552 return NULL;
553
554 return rb_entry(last, struct sched_entity, run_node);
555 }
556
557 /**************************************************************
558 * Scheduling class statistics methods:
559 */
560
561 int sched_proc_update_handler(struct ctl_table *table, int write,
562 void __user *buffer, size_t *lenp,
563 loff_t *ppos)
564 {
565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
566 int factor = get_update_sysctl_factor();
567
568 if (ret || !write)
569 return ret;
570
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
573
574 #define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
579 #undef WRT_SYSCTL
580
581 return 0;
582 }
583 #endif
584
585 /*
586 * delta /= w
587 */
588 static inline unsigned long
589 calc_delta_fair(unsigned long delta, struct sched_entity *se)
590 {
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
593
594 return delta;
595 }
596
597 /*
598 * The idea is to set a period in which each task runs once.
599 *
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
602 *
603 * p = (nr <= nl) ? l : l*nr/nl
604 */
605 static u64 __sched_period(unsigned long nr_running)
606 {
607 u64 period = sysctl_sched_latency;
608 unsigned long nr_latency = sched_nr_latency;
609
610 if (unlikely(nr_running > nr_latency)) {
611 period = sysctl_sched_min_granularity;
612 period *= nr_running;
613 }
614
615 return period;
616 }
617
618 /*
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
621 *
622 * s = p*P[w/rw]
623 */
624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
627
628 for_each_sched_entity(se) {
629 struct load_weight *load;
630 struct load_weight lw;
631
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
634
635 if (unlikely(!se->on_rq)) {
636 lw = cfs_rq->load;
637
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
640 }
641 slice = calc_delta_mine(slice, se->load.weight, load);
642 }
643 return slice;
644 }
645
646 /*
647 * We calculate the vruntime slice of a to be inserted task
648 *
649 * vs = s/w
650 */
651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
654 }
655
656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
657 static void update_cfs_shares(struct cfs_rq *cfs_rq);
658
659 /*
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
662 */
663 static inline void
664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
666 {
667 unsigned long delta_exec_weighted;
668
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
671
672 curr->sum_exec_runtime += delta_exec;
673 schedstat_add(cfs_rq, exec_clock, delta_exec);
674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
675
676 curr->vruntime += delta_exec_weighted;
677 update_min_vruntime(cfs_rq);
678
679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 cfs_rq->load_unacc_exec_time += delta_exec;
681 #endif
682 }
683
684 static void update_curr(struct cfs_rq *cfs_rq)
685 {
686 struct sched_entity *curr = cfs_rq->curr;
687 u64 now = rq_of(cfs_rq)->clock_task;
688 unsigned long delta_exec;
689
690 if (unlikely(!curr))
691 return;
692
693 /*
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
697 */
698 delta_exec = (unsigned long)(now - curr->exec_start);
699 if (!delta_exec)
700 return;
701
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
704
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
707
708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
709 cpuacct_charge(curtask, delta_exec);
710 account_group_exec_runtime(curtask, delta_exec);
711 }
712
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
714 }
715
716 static inline void
717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
718 {
719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
720 }
721
722 /*
723 * Task is being enqueued - update stats:
724 */
725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 /*
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
730 */
731 if (se != cfs_rq->curr)
732 update_stats_wait_start(cfs_rq, se);
733 }
734
735 static void
736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
743 #ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
747 }
748 #endif
749 schedstat_set(se->statistics.wait_start, 0);
750 }
751
752 static inline void
753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 /*
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
758 */
759 if (se != cfs_rq->curr)
760 update_stats_wait_end(cfs_rq, se);
761 }
762
763 /*
764 * We are picking a new current task - update its stats:
765 */
766 static inline void
767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 /*
770 * We are starting a new run period:
771 */
772 se->exec_start = rq_of(cfs_rq)->clock_task;
773 }
774
775 /**************************************************
776 * Scheduling class queueing methods:
777 */
778
779 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
780 static void
781 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
782 {
783 cfs_rq->task_weight += weight;
784 }
785 #else
786 static inline void
787 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
788 {
789 }
790 #endif
791
792 static void
793 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 update_load_add(&cfs_rq->load, se->load.weight);
796 if (!parent_entity(se))
797 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
798 if (entity_is_task(se)) {
799 add_cfs_task_weight(cfs_rq, se->load.weight);
800 list_add(&se->group_node, &cfs_rq->tasks);
801 }
802 cfs_rq->nr_running++;
803 }
804
805 static void
806 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
807 {
808 update_load_sub(&cfs_rq->load, se->load.weight);
809 if (!parent_entity(se))
810 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
811 if (entity_is_task(se)) {
812 add_cfs_task_weight(cfs_rq, -se->load.weight);
813 list_del_init(&se->group_node);
814 }
815 cfs_rq->nr_running--;
816 }
817
818 #ifdef CONFIG_FAIR_GROUP_SCHED
819 /* we need this in update_cfs_load and load-balance functions below */
820 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
821 # ifdef CONFIG_SMP
822 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
823 int global_update)
824 {
825 struct task_group *tg = cfs_rq->tg;
826 long load_avg;
827
828 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
829 load_avg -= cfs_rq->load_contribution;
830
831 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
832 atomic_add(load_avg, &tg->load_weight);
833 cfs_rq->load_contribution += load_avg;
834 }
835 }
836
837 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
838 {
839 u64 period = sysctl_sched_shares_window;
840 u64 now, delta;
841 unsigned long load = cfs_rq->load.weight;
842
843 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
844 return;
845
846 now = rq_of(cfs_rq)->clock_task;
847 delta = now - cfs_rq->load_stamp;
848
849 /* truncate load history at 4 idle periods */
850 if (cfs_rq->load_stamp > cfs_rq->load_last &&
851 now - cfs_rq->load_last > 4 * period) {
852 cfs_rq->load_period = 0;
853 cfs_rq->load_avg = 0;
854 delta = period - 1;
855 }
856
857 cfs_rq->load_stamp = now;
858 cfs_rq->load_unacc_exec_time = 0;
859 cfs_rq->load_period += delta;
860 if (load) {
861 cfs_rq->load_last = now;
862 cfs_rq->load_avg += delta * load;
863 }
864
865 /* consider updating load contribution on each fold or truncate */
866 if (global_update || cfs_rq->load_period > period
867 || !cfs_rq->load_period)
868 update_cfs_rq_load_contribution(cfs_rq, global_update);
869
870 while (cfs_rq->load_period > period) {
871 /*
872 * Inline assembly required to prevent the compiler
873 * optimising this loop into a divmod call.
874 * See __iter_div_u64_rem() for another example of this.
875 */
876 asm("" : "+rm" (cfs_rq->load_period));
877 cfs_rq->load_period /= 2;
878 cfs_rq->load_avg /= 2;
879 }
880
881 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
882 list_del_leaf_cfs_rq(cfs_rq);
883 }
884
885 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
886 {
887 long tg_weight;
888
889 /*
890 * Use this CPU's actual weight instead of the last load_contribution
891 * to gain a more accurate current total weight. See
892 * update_cfs_rq_load_contribution().
893 */
894 tg_weight = atomic_read(&tg->load_weight);
895 tg_weight -= cfs_rq->load_contribution;
896 tg_weight += cfs_rq->load.weight;
897
898 return tg_weight;
899 }
900
901 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
902 {
903 long tg_weight, load, shares;
904
905 tg_weight = calc_tg_weight(tg, cfs_rq);
906 load = cfs_rq->load.weight;
907
908 shares = (tg->shares * load);
909 if (tg_weight)
910 shares /= tg_weight;
911
912 if (shares < MIN_SHARES)
913 shares = MIN_SHARES;
914 if (shares > tg->shares)
915 shares = tg->shares;
916
917 return shares;
918 }
919
920 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
921 {
922 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
923 update_cfs_load(cfs_rq, 0);
924 update_cfs_shares(cfs_rq);
925 }
926 }
927 # else /* CONFIG_SMP */
928 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
929 {
930 }
931
932 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
933 {
934 return tg->shares;
935 }
936
937 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
938 {
939 }
940 # endif /* CONFIG_SMP */
941 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
942 unsigned long weight)
943 {
944 if (se->on_rq) {
945 /* commit outstanding execution time */
946 if (cfs_rq->curr == se)
947 update_curr(cfs_rq);
948 account_entity_dequeue(cfs_rq, se);
949 }
950
951 update_load_set(&se->load, weight);
952
953 if (se->on_rq)
954 account_entity_enqueue(cfs_rq, se);
955 }
956
957 static void update_cfs_shares(struct cfs_rq *cfs_rq)
958 {
959 struct task_group *tg;
960 struct sched_entity *se;
961 long shares;
962
963 tg = cfs_rq->tg;
964 se = tg->se[cpu_of(rq_of(cfs_rq))];
965 if (!se || throttled_hierarchy(cfs_rq))
966 return;
967 #ifndef CONFIG_SMP
968 if (likely(se->load.weight == tg->shares))
969 return;
970 #endif
971 shares = calc_cfs_shares(cfs_rq, tg);
972
973 reweight_entity(cfs_rq_of(se), se, shares);
974 }
975 #else /* CONFIG_FAIR_GROUP_SCHED */
976 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
977 {
978 }
979
980 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
981 {
982 }
983
984 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
985 {
986 }
987 #endif /* CONFIG_FAIR_GROUP_SCHED */
988
989 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
990 {
991 #ifdef CONFIG_SCHEDSTATS
992 struct task_struct *tsk = NULL;
993
994 if (entity_is_task(se))
995 tsk = task_of(se);
996
997 if (se->statistics.sleep_start) {
998 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
999
1000 if ((s64)delta < 0)
1001 delta = 0;
1002
1003 if (unlikely(delta > se->statistics.sleep_max))
1004 se->statistics.sleep_max = delta;
1005
1006 se->statistics.sleep_start = 0;
1007 se->statistics.sum_sleep_runtime += delta;
1008
1009 if (tsk) {
1010 account_scheduler_latency(tsk, delta >> 10, 1);
1011 trace_sched_stat_sleep(tsk, delta);
1012 }
1013 }
1014 if (se->statistics.block_start) {
1015 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1016
1017 if ((s64)delta < 0)
1018 delta = 0;
1019
1020 if (unlikely(delta > se->statistics.block_max))
1021 se->statistics.block_max = delta;
1022
1023 se->statistics.block_start = 0;
1024 se->statistics.sum_sleep_runtime += delta;
1025
1026 if (tsk) {
1027 if (tsk->in_iowait) {
1028 se->statistics.iowait_sum += delta;
1029 se->statistics.iowait_count++;
1030 trace_sched_stat_iowait(tsk, delta);
1031 }
1032
1033 trace_sched_stat_blocked(tsk, delta);
1034
1035 /*
1036 * Blocking time is in units of nanosecs, so shift by
1037 * 20 to get a milliseconds-range estimation of the
1038 * amount of time that the task spent sleeping:
1039 */
1040 if (unlikely(prof_on == SLEEP_PROFILING)) {
1041 profile_hits(SLEEP_PROFILING,
1042 (void *)get_wchan(tsk),
1043 delta >> 20);
1044 }
1045 account_scheduler_latency(tsk, delta >> 10, 0);
1046 }
1047 }
1048 #endif
1049 }
1050
1051 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1052 {
1053 #ifdef CONFIG_SCHED_DEBUG
1054 s64 d = se->vruntime - cfs_rq->min_vruntime;
1055
1056 if (d < 0)
1057 d = -d;
1058
1059 if (d > 3*sysctl_sched_latency)
1060 schedstat_inc(cfs_rq, nr_spread_over);
1061 #endif
1062 }
1063
1064 static void
1065 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1066 {
1067 u64 vruntime = cfs_rq->min_vruntime;
1068
1069 /*
1070 * The 'current' period is already promised to the current tasks,
1071 * however the extra weight of the new task will slow them down a
1072 * little, place the new task so that it fits in the slot that
1073 * stays open at the end.
1074 */
1075 if (initial && sched_feat(START_DEBIT))
1076 vruntime += sched_vslice(cfs_rq, se);
1077
1078 /* sleeps up to a single latency don't count. */
1079 if (!initial) {
1080 unsigned long thresh = sysctl_sched_latency;
1081
1082 /*
1083 * Halve their sleep time's effect, to allow
1084 * for a gentler effect of sleepers:
1085 */
1086 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1087 thresh >>= 1;
1088
1089 vruntime -= thresh;
1090 }
1091
1092 /* ensure we never gain time by being placed backwards. */
1093 vruntime = max_vruntime(se->vruntime, vruntime);
1094
1095 se->vruntime = vruntime;
1096 }
1097
1098 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1099
1100 static void
1101 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1102 {
1103 /*
1104 * Update the normalized vruntime before updating min_vruntime
1105 * through callig update_curr().
1106 */
1107 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1108 se->vruntime += cfs_rq->min_vruntime;
1109
1110 /*
1111 * Update run-time statistics of the 'current'.
1112 */
1113 update_curr(cfs_rq);
1114 update_cfs_load(cfs_rq, 0);
1115 account_entity_enqueue(cfs_rq, se);
1116 update_cfs_shares(cfs_rq);
1117
1118 if (flags & ENQUEUE_WAKEUP) {
1119 place_entity(cfs_rq, se, 0);
1120 enqueue_sleeper(cfs_rq, se);
1121 }
1122
1123 update_stats_enqueue(cfs_rq, se);
1124 check_spread(cfs_rq, se);
1125 if (se != cfs_rq->curr)
1126 __enqueue_entity(cfs_rq, se);
1127 se->on_rq = 1;
1128
1129 if (cfs_rq->nr_running == 1) {
1130 list_add_leaf_cfs_rq(cfs_rq);
1131 check_enqueue_throttle(cfs_rq);
1132 }
1133 }
1134
1135 static void __clear_buddies_last(struct sched_entity *se)
1136 {
1137 for_each_sched_entity(se) {
1138 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1139 if (cfs_rq->last == se)
1140 cfs_rq->last = NULL;
1141 else
1142 break;
1143 }
1144 }
1145
1146 static void __clear_buddies_next(struct sched_entity *se)
1147 {
1148 for_each_sched_entity(se) {
1149 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1150 if (cfs_rq->next == se)
1151 cfs_rq->next = NULL;
1152 else
1153 break;
1154 }
1155 }
1156
1157 static void __clear_buddies_skip(struct sched_entity *se)
1158 {
1159 for_each_sched_entity(se) {
1160 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1161 if (cfs_rq->skip == se)
1162 cfs_rq->skip = NULL;
1163 else
1164 break;
1165 }
1166 }
1167
1168 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1169 {
1170 if (cfs_rq->last == se)
1171 __clear_buddies_last(se);
1172
1173 if (cfs_rq->next == se)
1174 __clear_buddies_next(se);
1175
1176 if (cfs_rq->skip == se)
1177 __clear_buddies_skip(se);
1178 }
1179
1180 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1181
1182 static void
1183 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1184 {
1185 /*
1186 * Update run-time statistics of the 'current'.
1187 */
1188 update_curr(cfs_rq);
1189
1190 update_stats_dequeue(cfs_rq, se);
1191 if (flags & DEQUEUE_SLEEP) {
1192 #ifdef CONFIG_SCHEDSTATS
1193 if (entity_is_task(se)) {
1194 struct task_struct *tsk = task_of(se);
1195
1196 if (tsk->state & TASK_INTERRUPTIBLE)
1197 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1198 if (tsk->state & TASK_UNINTERRUPTIBLE)
1199 se->statistics.block_start = rq_of(cfs_rq)->clock;
1200 }
1201 #endif
1202 }
1203
1204 clear_buddies(cfs_rq, se);
1205
1206 if (se != cfs_rq->curr)
1207 __dequeue_entity(cfs_rq, se);
1208 se->on_rq = 0;
1209 update_cfs_load(cfs_rq, 0);
1210 account_entity_dequeue(cfs_rq, se);
1211
1212 /*
1213 * Normalize the entity after updating the min_vruntime because the
1214 * update can refer to the ->curr item and we need to reflect this
1215 * movement in our normalized position.
1216 */
1217 if (!(flags & DEQUEUE_SLEEP))
1218 se->vruntime -= cfs_rq->min_vruntime;
1219
1220 /* return excess runtime on last dequeue */
1221 return_cfs_rq_runtime(cfs_rq);
1222
1223 update_min_vruntime(cfs_rq);
1224 update_cfs_shares(cfs_rq);
1225 }
1226
1227 /*
1228 * Preempt the current task with a newly woken task if needed:
1229 */
1230 static void
1231 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1232 {
1233 unsigned long ideal_runtime, delta_exec;
1234 struct sched_entity *se;
1235 s64 delta;
1236
1237 ideal_runtime = sched_slice(cfs_rq, curr);
1238 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1239 if (delta_exec > ideal_runtime) {
1240 resched_task(rq_of(cfs_rq)->curr);
1241 /*
1242 * The current task ran long enough, ensure it doesn't get
1243 * re-elected due to buddy favours.
1244 */
1245 clear_buddies(cfs_rq, curr);
1246 return;
1247 }
1248
1249 /*
1250 * Ensure that a task that missed wakeup preemption by a
1251 * narrow margin doesn't have to wait for a full slice.
1252 * This also mitigates buddy induced latencies under load.
1253 */
1254 if (delta_exec < sysctl_sched_min_granularity)
1255 return;
1256
1257 se = __pick_first_entity(cfs_rq);
1258 delta = curr->vruntime - se->vruntime;
1259
1260 if (delta < 0)
1261 return;
1262
1263 if (delta > ideal_runtime)
1264 resched_task(rq_of(cfs_rq)->curr);
1265 }
1266
1267 static void
1268 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1269 {
1270 /* 'current' is not kept within the tree. */
1271 if (se->on_rq) {
1272 /*
1273 * Any task has to be enqueued before it get to execute on
1274 * a CPU. So account for the time it spent waiting on the
1275 * runqueue.
1276 */
1277 update_stats_wait_end(cfs_rq, se);
1278 __dequeue_entity(cfs_rq, se);
1279 }
1280
1281 update_stats_curr_start(cfs_rq, se);
1282 cfs_rq->curr = se;
1283 #ifdef CONFIG_SCHEDSTATS
1284 /*
1285 * Track our maximum slice length, if the CPU's load is at
1286 * least twice that of our own weight (i.e. dont track it
1287 * when there are only lesser-weight tasks around):
1288 */
1289 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1290 se->statistics.slice_max = max(se->statistics.slice_max,
1291 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1292 }
1293 #endif
1294 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1295 }
1296
1297 static int
1298 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1299
1300 /*
1301 * Pick the next process, keeping these things in mind, in this order:
1302 * 1) keep things fair between processes/task groups
1303 * 2) pick the "next" process, since someone really wants that to run
1304 * 3) pick the "last" process, for cache locality
1305 * 4) do not run the "skip" process, if something else is available
1306 */
1307 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1308 {
1309 struct sched_entity *se = __pick_first_entity(cfs_rq);
1310 struct sched_entity *left = se;
1311
1312 /*
1313 * Avoid running the skip buddy, if running something else can
1314 * be done without getting too unfair.
1315 */
1316 if (cfs_rq->skip == se) {
1317 struct sched_entity *second = __pick_next_entity(se);
1318 if (second && wakeup_preempt_entity(second, left) < 1)
1319 se = second;
1320 }
1321
1322 /*
1323 * Prefer last buddy, try to return the CPU to a preempted task.
1324 */
1325 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1326 se = cfs_rq->last;
1327
1328 /*
1329 * Someone really wants this to run. If it's not unfair, run it.
1330 */
1331 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1332 se = cfs_rq->next;
1333
1334 clear_buddies(cfs_rq, se);
1335
1336 return se;
1337 }
1338
1339 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1340
1341 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1342 {
1343 /*
1344 * If still on the runqueue then deactivate_task()
1345 * was not called and update_curr() has to be done:
1346 */
1347 if (prev->on_rq)
1348 update_curr(cfs_rq);
1349
1350 /* throttle cfs_rqs exceeding runtime */
1351 check_cfs_rq_runtime(cfs_rq);
1352
1353 check_spread(cfs_rq, prev);
1354 if (prev->on_rq) {
1355 update_stats_wait_start(cfs_rq, prev);
1356 /* Put 'current' back into the tree. */
1357 __enqueue_entity(cfs_rq, prev);
1358 }
1359 cfs_rq->curr = NULL;
1360 }
1361
1362 static void
1363 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1364 {
1365 /*
1366 * Update run-time statistics of the 'current'.
1367 */
1368 update_curr(cfs_rq);
1369
1370 /*
1371 * Update share accounting for long-running entities.
1372 */
1373 update_entity_shares_tick(cfs_rq);
1374
1375 #ifdef CONFIG_SCHED_HRTICK
1376 /*
1377 * queued ticks are scheduled to match the slice, so don't bother
1378 * validating it and just reschedule.
1379 */
1380 if (queued) {
1381 resched_task(rq_of(cfs_rq)->curr);
1382 return;
1383 }
1384 /*
1385 * don't let the period tick interfere with the hrtick preemption
1386 */
1387 if (!sched_feat(DOUBLE_TICK) &&
1388 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1389 return;
1390 #endif
1391
1392 if (cfs_rq->nr_running > 1)
1393 check_preempt_tick(cfs_rq, curr);
1394 }
1395
1396
1397 /**************************************************
1398 * CFS bandwidth control machinery
1399 */
1400
1401 #ifdef CONFIG_CFS_BANDWIDTH
1402
1403 #ifdef HAVE_JUMP_LABEL
1404 static struct jump_label_key __cfs_bandwidth_used;
1405
1406 static inline bool cfs_bandwidth_used(void)
1407 {
1408 return static_branch(&__cfs_bandwidth_used);
1409 }
1410
1411 void account_cfs_bandwidth_used(int enabled, int was_enabled)
1412 {
1413 /* only need to count groups transitioning between enabled/!enabled */
1414 if (enabled && !was_enabled)
1415 jump_label_inc(&__cfs_bandwidth_used);
1416 else if (!enabled && was_enabled)
1417 jump_label_dec(&__cfs_bandwidth_used);
1418 }
1419 #else /* HAVE_JUMP_LABEL */
1420 static bool cfs_bandwidth_used(void)
1421 {
1422 return true;
1423 }
1424
1425 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1426 #endif /* HAVE_JUMP_LABEL */
1427
1428 /*
1429 * default period for cfs group bandwidth.
1430 * default: 0.1s, units: nanoseconds
1431 */
1432 static inline u64 default_cfs_period(void)
1433 {
1434 return 100000000ULL;
1435 }
1436
1437 static inline u64 sched_cfs_bandwidth_slice(void)
1438 {
1439 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1440 }
1441
1442 /*
1443 * Replenish runtime according to assigned quota and update expiration time.
1444 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1445 * additional synchronization around rq->lock.
1446 *
1447 * requires cfs_b->lock
1448 */
1449 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1450 {
1451 u64 now;
1452
1453 if (cfs_b->quota == RUNTIME_INF)
1454 return;
1455
1456 now = sched_clock_cpu(smp_processor_id());
1457 cfs_b->runtime = cfs_b->quota;
1458 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1459 }
1460
1461 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1462 {
1463 return &tg->cfs_bandwidth;
1464 }
1465
1466 /* returns 0 on failure to allocate runtime */
1467 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1468 {
1469 struct task_group *tg = cfs_rq->tg;
1470 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1471 u64 amount = 0, min_amount, expires;
1472
1473 /* note: this is a positive sum as runtime_remaining <= 0 */
1474 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1475
1476 raw_spin_lock(&cfs_b->lock);
1477 if (cfs_b->quota == RUNTIME_INF)
1478 amount = min_amount;
1479 else {
1480 /*
1481 * If the bandwidth pool has become inactive, then at least one
1482 * period must have elapsed since the last consumption.
1483 * Refresh the global state and ensure bandwidth timer becomes
1484 * active.
1485 */
1486 if (!cfs_b->timer_active) {
1487 __refill_cfs_bandwidth_runtime(cfs_b);
1488 __start_cfs_bandwidth(cfs_b);
1489 }
1490
1491 if (cfs_b->runtime > 0) {
1492 amount = min(cfs_b->runtime, min_amount);
1493 cfs_b->runtime -= amount;
1494 cfs_b->idle = 0;
1495 }
1496 }
1497 expires = cfs_b->runtime_expires;
1498 raw_spin_unlock(&cfs_b->lock);
1499
1500 cfs_rq->runtime_remaining += amount;
1501 /*
1502 * we may have advanced our local expiration to account for allowed
1503 * spread between our sched_clock and the one on which runtime was
1504 * issued.
1505 */
1506 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1507 cfs_rq->runtime_expires = expires;
1508
1509 return cfs_rq->runtime_remaining > 0;
1510 }
1511
1512 /*
1513 * Note: This depends on the synchronization provided by sched_clock and the
1514 * fact that rq->clock snapshots this value.
1515 */
1516 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1517 {
1518 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1519 struct rq *rq = rq_of(cfs_rq);
1520
1521 /* if the deadline is ahead of our clock, nothing to do */
1522 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1523 return;
1524
1525 if (cfs_rq->runtime_remaining < 0)
1526 return;
1527
1528 /*
1529 * If the local deadline has passed we have to consider the
1530 * possibility that our sched_clock is 'fast' and the global deadline
1531 * has not truly expired.
1532 *
1533 * Fortunately we can check determine whether this the case by checking
1534 * whether the global deadline has advanced.
1535 */
1536
1537 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1538 /* extend local deadline, drift is bounded above by 2 ticks */
1539 cfs_rq->runtime_expires += TICK_NSEC;
1540 } else {
1541 /* global deadline is ahead, expiration has passed */
1542 cfs_rq->runtime_remaining = 0;
1543 }
1544 }
1545
1546 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1547 unsigned long delta_exec)
1548 {
1549 /* dock delta_exec before expiring quota (as it could span periods) */
1550 cfs_rq->runtime_remaining -= delta_exec;
1551 expire_cfs_rq_runtime(cfs_rq);
1552
1553 if (likely(cfs_rq->runtime_remaining > 0))
1554 return;
1555
1556 /*
1557 * if we're unable to extend our runtime we resched so that the active
1558 * hierarchy can be throttled
1559 */
1560 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1561 resched_task(rq_of(cfs_rq)->curr);
1562 }
1563
1564 static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1565 unsigned long delta_exec)
1566 {
1567 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1568 return;
1569
1570 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1571 }
1572
1573 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1574 {
1575 return cfs_bandwidth_used() && cfs_rq->throttled;
1576 }
1577
1578 /* check whether cfs_rq, or any parent, is throttled */
1579 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1580 {
1581 return cfs_bandwidth_used() && cfs_rq->throttle_count;
1582 }
1583
1584 /*
1585 * Ensure that neither of the group entities corresponding to src_cpu or
1586 * dest_cpu are members of a throttled hierarchy when performing group
1587 * load-balance operations.
1588 */
1589 static inline int throttled_lb_pair(struct task_group *tg,
1590 int src_cpu, int dest_cpu)
1591 {
1592 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1593
1594 src_cfs_rq = tg->cfs_rq[src_cpu];
1595 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1596
1597 return throttled_hierarchy(src_cfs_rq) ||
1598 throttled_hierarchy(dest_cfs_rq);
1599 }
1600
1601 /* updated child weight may affect parent so we have to do this bottom up */
1602 static int tg_unthrottle_up(struct task_group *tg, void *data)
1603 {
1604 struct rq *rq = data;
1605 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1606
1607 cfs_rq->throttle_count--;
1608 #ifdef CONFIG_SMP
1609 if (!cfs_rq->throttle_count) {
1610 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1611
1612 /* leaving throttled state, advance shares averaging windows */
1613 cfs_rq->load_stamp += delta;
1614 cfs_rq->load_last += delta;
1615
1616 /* update entity weight now that we are on_rq again */
1617 update_cfs_shares(cfs_rq);
1618 }
1619 #endif
1620
1621 return 0;
1622 }
1623
1624 static int tg_throttle_down(struct task_group *tg, void *data)
1625 {
1626 struct rq *rq = data;
1627 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1628
1629 /* group is entering throttled state, record last load */
1630 if (!cfs_rq->throttle_count)
1631 update_cfs_load(cfs_rq, 0);
1632 cfs_rq->throttle_count++;
1633
1634 return 0;
1635 }
1636
1637 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1638 {
1639 struct rq *rq = rq_of(cfs_rq);
1640 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1641 struct sched_entity *se;
1642 long task_delta, dequeue = 1;
1643
1644 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1645
1646 /* account load preceding throttle */
1647 rcu_read_lock();
1648 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1649 rcu_read_unlock();
1650
1651 task_delta = cfs_rq->h_nr_running;
1652 for_each_sched_entity(se) {
1653 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1654 /* throttled entity or throttle-on-deactivate */
1655 if (!se->on_rq)
1656 break;
1657
1658 if (dequeue)
1659 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1660 qcfs_rq->h_nr_running -= task_delta;
1661
1662 if (qcfs_rq->load.weight)
1663 dequeue = 0;
1664 }
1665
1666 if (!se)
1667 rq->nr_running -= task_delta;
1668
1669 cfs_rq->throttled = 1;
1670 cfs_rq->throttled_timestamp = rq->clock;
1671 raw_spin_lock(&cfs_b->lock);
1672 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1673 raw_spin_unlock(&cfs_b->lock);
1674 }
1675
1676 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1677 {
1678 struct rq *rq = rq_of(cfs_rq);
1679 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1680 struct sched_entity *se;
1681 int enqueue = 1;
1682 long task_delta;
1683
1684 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1685
1686 cfs_rq->throttled = 0;
1687 raw_spin_lock(&cfs_b->lock);
1688 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1689 list_del_rcu(&cfs_rq->throttled_list);
1690 raw_spin_unlock(&cfs_b->lock);
1691 cfs_rq->throttled_timestamp = 0;
1692
1693 update_rq_clock(rq);
1694 /* update hierarchical throttle state */
1695 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1696
1697 if (!cfs_rq->load.weight)
1698 return;
1699
1700 task_delta = cfs_rq->h_nr_running;
1701 for_each_sched_entity(se) {
1702 if (se->on_rq)
1703 enqueue = 0;
1704
1705 cfs_rq = cfs_rq_of(se);
1706 if (enqueue)
1707 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1708 cfs_rq->h_nr_running += task_delta;
1709
1710 if (cfs_rq_throttled(cfs_rq))
1711 break;
1712 }
1713
1714 if (!se)
1715 rq->nr_running += task_delta;
1716
1717 /* determine whether we need to wake up potentially idle cpu */
1718 if (rq->curr == rq->idle && rq->cfs.nr_running)
1719 resched_task(rq->curr);
1720 }
1721
1722 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1723 u64 remaining, u64 expires)
1724 {
1725 struct cfs_rq *cfs_rq;
1726 u64 runtime = remaining;
1727
1728 rcu_read_lock();
1729 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1730 throttled_list) {
1731 struct rq *rq = rq_of(cfs_rq);
1732
1733 raw_spin_lock(&rq->lock);
1734 if (!cfs_rq_throttled(cfs_rq))
1735 goto next;
1736
1737 runtime = -cfs_rq->runtime_remaining + 1;
1738 if (runtime > remaining)
1739 runtime = remaining;
1740 remaining -= runtime;
1741
1742 cfs_rq->runtime_remaining += runtime;
1743 cfs_rq->runtime_expires = expires;
1744
1745 /* we check whether we're throttled above */
1746 if (cfs_rq->runtime_remaining > 0)
1747 unthrottle_cfs_rq(cfs_rq);
1748
1749 next:
1750 raw_spin_unlock(&rq->lock);
1751
1752 if (!remaining)
1753 break;
1754 }
1755 rcu_read_unlock();
1756
1757 return remaining;
1758 }
1759
1760 /*
1761 * Responsible for refilling a task_group's bandwidth and unthrottling its
1762 * cfs_rqs as appropriate. If there has been no activity within the last
1763 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1764 * used to track this state.
1765 */
1766 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1767 {
1768 u64 runtime, runtime_expires;
1769 int idle = 1, throttled;
1770
1771 raw_spin_lock(&cfs_b->lock);
1772 /* no need to continue the timer with no bandwidth constraint */
1773 if (cfs_b->quota == RUNTIME_INF)
1774 goto out_unlock;
1775
1776 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1777 /* idle depends on !throttled (for the case of a large deficit) */
1778 idle = cfs_b->idle && !throttled;
1779 cfs_b->nr_periods += overrun;
1780
1781 /* if we're going inactive then everything else can be deferred */
1782 if (idle)
1783 goto out_unlock;
1784
1785 __refill_cfs_bandwidth_runtime(cfs_b);
1786
1787 if (!throttled) {
1788 /* mark as potentially idle for the upcoming period */
1789 cfs_b->idle = 1;
1790 goto out_unlock;
1791 }
1792
1793 /* account preceding periods in which throttling occurred */
1794 cfs_b->nr_throttled += overrun;
1795
1796 /*
1797 * There are throttled entities so we must first use the new bandwidth
1798 * to unthrottle them before making it generally available. This
1799 * ensures that all existing debts will be paid before a new cfs_rq is
1800 * allowed to run.
1801 */
1802 runtime = cfs_b->runtime;
1803 runtime_expires = cfs_b->runtime_expires;
1804 cfs_b->runtime = 0;
1805
1806 /*
1807 * This check is repeated as we are holding onto the new bandwidth
1808 * while we unthrottle. This can potentially race with an unthrottled
1809 * group trying to acquire new bandwidth from the global pool.
1810 */
1811 while (throttled && runtime > 0) {
1812 raw_spin_unlock(&cfs_b->lock);
1813 /* we can't nest cfs_b->lock while distributing bandwidth */
1814 runtime = distribute_cfs_runtime(cfs_b, runtime,
1815 runtime_expires);
1816 raw_spin_lock(&cfs_b->lock);
1817
1818 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1819 }
1820
1821 /* return (any) remaining runtime */
1822 cfs_b->runtime = runtime;
1823 /*
1824 * While we are ensured activity in the period following an
1825 * unthrottle, this also covers the case in which the new bandwidth is
1826 * insufficient to cover the existing bandwidth deficit. (Forcing the
1827 * timer to remain active while there are any throttled entities.)
1828 */
1829 cfs_b->idle = 0;
1830 out_unlock:
1831 if (idle)
1832 cfs_b->timer_active = 0;
1833 raw_spin_unlock(&cfs_b->lock);
1834
1835 return idle;
1836 }
1837
1838 /* a cfs_rq won't donate quota below this amount */
1839 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1840 /* minimum remaining period time to redistribute slack quota */
1841 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1842 /* how long we wait to gather additional slack before distributing */
1843 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1844
1845 /* are we near the end of the current quota period? */
1846 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1847 {
1848 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1849 u64 remaining;
1850
1851 /* if the call-back is running a quota refresh is already occurring */
1852 if (hrtimer_callback_running(refresh_timer))
1853 return 1;
1854
1855 /* is a quota refresh about to occur? */
1856 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1857 if (remaining < min_expire)
1858 return 1;
1859
1860 return 0;
1861 }
1862
1863 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1864 {
1865 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1866
1867 /* if there's a quota refresh soon don't bother with slack */
1868 if (runtime_refresh_within(cfs_b, min_left))
1869 return;
1870
1871 start_bandwidth_timer(&cfs_b->slack_timer,
1872 ns_to_ktime(cfs_bandwidth_slack_period));
1873 }
1874
1875 /* we know any runtime found here is valid as update_curr() precedes return */
1876 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1877 {
1878 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1879 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1880
1881 if (slack_runtime <= 0)
1882 return;
1883
1884 raw_spin_lock(&cfs_b->lock);
1885 if (cfs_b->quota != RUNTIME_INF &&
1886 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1887 cfs_b->runtime += slack_runtime;
1888
1889 /* we are under rq->lock, defer unthrottling using a timer */
1890 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1891 !list_empty(&cfs_b->throttled_cfs_rq))
1892 start_cfs_slack_bandwidth(cfs_b);
1893 }
1894 raw_spin_unlock(&cfs_b->lock);
1895
1896 /* even if it's not valid for return we don't want to try again */
1897 cfs_rq->runtime_remaining -= slack_runtime;
1898 }
1899
1900 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1901 {
1902 if (!cfs_bandwidth_used())
1903 return;
1904
1905 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1906 return;
1907
1908 __return_cfs_rq_runtime(cfs_rq);
1909 }
1910
1911 /*
1912 * This is done with a timer (instead of inline with bandwidth return) since
1913 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1914 */
1915 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1916 {
1917 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1918 u64 expires;
1919
1920 /* confirm we're still not at a refresh boundary */
1921 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1922 return;
1923
1924 raw_spin_lock(&cfs_b->lock);
1925 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1926 runtime = cfs_b->runtime;
1927 cfs_b->runtime = 0;
1928 }
1929 expires = cfs_b->runtime_expires;
1930 raw_spin_unlock(&cfs_b->lock);
1931
1932 if (!runtime)
1933 return;
1934
1935 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1936
1937 raw_spin_lock(&cfs_b->lock);
1938 if (expires == cfs_b->runtime_expires)
1939 cfs_b->runtime = runtime;
1940 raw_spin_unlock(&cfs_b->lock);
1941 }
1942
1943 /*
1944 * When a group wakes up we want to make sure that its quota is not already
1945 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1946 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1947 */
1948 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1949 {
1950 if (!cfs_bandwidth_used())
1951 return;
1952
1953 /* an active group must be handled by the update_curr()->put() path */
1954 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1955 return;
1956
1957 /* ensure the group is not already throttled */
1958 if (cfs_rq_throttled(cfs_rq))
1959 return;
1960
1961 /* update runtime allocation */
1962 account_cfs_rq_runtime(cfs_rq, 0);
1963 if (cfs_rq->runtime_remaining <= 0)
1964 throttle_cfs_rq(cfs_rq);
1965 }
1966
1967 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1968 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1969 {
1970 if (!cfs_bandwidth_used())
1971 return;
1972
1973 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1974 return;
1975
1976 /*
1977 * it's possible for a throttled entity to be forced into a running
1978 * state (e.g. set_curr_task), in this case we're finished.
1979 */
1980 if (cfs_rq_throttled(cfs_rq))
1981 return;
1982
1983 throttle_cfs_rq(cfs_rq);
1984 }
1985
1986 static inline u64 default_cfs_period(void);
1987 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1988 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1989
1990 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1991 {
1992 struct cfs_bandwidth *cfs_b =
1993 container_of(timer, struct cfs_bandwidth, slack_timer);
1994 do_sched_cfs_slack_timer(cfs_b);
1995
1996 return HRTIMER_NORESTART;
1997 }
1998
1999 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2000 {
2001 struct cfs_bandwidth *cfs_b =
2002 container_of(timer, struct cfs_bandwidth, period_timer);
2003 ktime_t now;
2004 int overrun;
2005 int idle = 0;
2006
2007 for (;;) {
2008 now = hrtimer_cb_get_time(timer);
2009 overrun = hrtimer_forward(timer, now, cfs_b->period);
2010
2011 if (!overrun)
2012 break;
2013
2014 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2015 }
2016
2017 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2018 }
2019
2020 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2021 {
2022 raw_spin_lock_init(&cfs_b->lock);
2023 cfs_b->runtime = 0;
2024 cfs_b->quota = RUNTIME_INF;
2025 cfs_b->period = ns_to_ktime(default_cfs_period());
2026
2027 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2028 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2029 cfs_b->period_timer.function = sched_cfs_period_timer;
2030 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2031 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2032 }
2033
2034 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2035 {
2036 cfs_rq->runtime_enabled = 0;
2037 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2038 }
2039
2040 /* requires cfs_b->lock, may release to reprogram timer */
2041 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2042 {
2043 /*
2044 * The timer may be active because we're trying to set a new bandwidth
2045 * period or because we're racing with the tear-down path
2046 * (timer_active==0 becomes visible before the hrtimer call-back
2047 * terminates). In either case we ensure that it's re-programmed
2048 */
2049 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2050 raw_spin_unlock(&cfs_b->lock);
2051 /* ensure cfs_b->lock is available while we wait */
2052 hrtimer_cancel(&cfs_b->period_timer);
2053
2054 raw_spin_lock(&cfs_b->lock);
2055 /* if someone else restarted the timer then we're done */
2056 if (cfs_b->timer_active)
2057 return;
2058 }
2059
2060 cfs_b->timer_active = 1;
2061 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2062 }
2063
2064 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2065 {
2066 hrtimer_cancel(&cfs_b->period_timer);
2067 hrtimer_cancel(&cfs_b->slack_timer);
2068 }
2069
2070 void unthrottle_offline_cfs_rqs(struct rq *rq)
2071 {
2072 struct cfs_rq *cfs_rq;
2073
2074 for_each_leaf_cfs_rq(rq, cfs_rq) {
2075 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2076
2077 if (!cfs_rq->runtime_enabled)
2078 continue;
2079
2080 /*
2081 * clock_task is not advancing so we just need to make sure
2082 * there's some valid quota amount
2083 */
2084 cfs_rq->runtime_remaining = cfs_b->quota;
2085 if (cfs_rq_throttled(cfs_rq))
2086 unthrottle_cfs_rq(cfs_rq);
2087 }
2088 }
2089
2090 #else /* CONFIG_CFS_BANDWIDTH */
2091 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2092 unsigned long delta_exec) {}
2093 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2094 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2095 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2096
2097 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2098 {
2099 return 0;
2100 }
2101
2102 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2103 {
2104 return 0;
2105 }
2106
2107 static inline int throttled_lb_pair(struct task_group *tg,
2108 int src_cpu, int dest_cpu)
2109 {
2110 return 0;
2111 }
2112
2113 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2114
2115 #ifdef CONFIG_FAIR_GROUP_SCHED
2116 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2117 #endif
2118
2119 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2120 {
2121 return NULL;
2122 }
2123 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2124 void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2125
2126 #endif /* CONFIG_CFS_BANDWIDTH */
2127
2128 /**************************************************
2129 * CFS operations on tasks:
2130 */
2131
2132 #ifdef CONFIG_SCHED_HRTICK
2133 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2134 {
2135 struct sched_entity *se = &p->se;
2136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2137
2138 WARN_ON(task_rq(p) != rq);
2139
2140 if (cfs_rq->nr_running > 1) {
2141 u64 slice = sched_slice(cfs_rq, se);
2142 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2143 s64 delta = slice - ran;
2144
2145 if (delta < 0) {
2146 if (rq->curr == p)
2147 resched_task(p);
2148 return;
2149 }
2150
2151 /*
2152 * Don't schedule slices shorter than 10000ns, that just
2153 * doesn't make sense. Rely on vruntime for fairness.
2154 */
2155 if (rq->curr != p)
2156 delta = max_t(s64, 10000LL, delta);
2157
2158 hrtick_start(rq, delta);
2159 }
2160 }
2161
2162 /*
2163 * called from enqueue/dequeue and updates the hrtick when the
2164 * current task is from our class and nr_running is low enough
2165 * to matter.
2166 */
2167 static void hrtick_update(struct rq *rq)
2168 {
2169 struct task_struct *curr = rq->curr;
2170
2171 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2172 return;
2173
2174 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2175 hrtick_start_fair(rq, curr);
2176 }
2177 #else /* !CONFIG_SCHED_HRTICK */
2178 static inline void
2179 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2180 {
2181 }
2182
2183 static inline void hrtick_update(struct rq *rq)
2184 {
2185 }
2186 #endif
2187
2188 /*
2189 * The enqueue_task method is called before nr_running is
2190 * increased. Here we update the fair scheduling stats and
2191 * then put the task into the rbtree:
2192 */
2193 static void
2194 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2195 {
2196 struct cfs_rq *cfs_rq;
2197 struct sched_entity *se = &p->se;
2198
2199 for_each_sched_entity(se) {
2200 if (se->on_rq)
2201 break;
2202 cfs_rq = cfs_rq_of(se);
2203 enqueue_entity(cfs_rq, se, flags);
2204
2205 /*
2206 * end evaluation on encountering a throttled cfs_rq
2207 *
2208 * note: in the case of encountering a throttled cfs_rq we will
2209 * post the final h_nr_running increment below.
2210 */
2211 if (cfs_rq_throttled(cfs_rq))
2212 break;
2213 cfs_rq->h_nr_running++;
2214
2215 flags = ENQUEUE_WAKEUP;
2216 }
2217
2218 for_each_sched_entity(se) {
2219 cfs_rq = cfs_rq_of(se);
2220 cfs_rq->h_nr_running++;
2221
2222 if (cfs_rq_throttled(cfs_rq))
2223 break;
2224
2225 update_cfs_load(cfs_rq, 0);
2226 update_cfs_shares(cfs_rq);
2227 }
2228
2229 if (!se)
2230 inc_nr_running(rq);
2231 hrtick_update(rq);
2232 }
2233
2234 static void set_next_buddy(struct sched_entity *se);
2235
2236 /*
2237 * The dequeue_task method is called before nr_running is
2238 * decreased. We remove the task from the rbtree and
2239 * update the fair scheduling stats:
2240 */
2241 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2242 {
2243 struct cfs_rq *cfs_rq;
2244 struct sched_entity *se = &p->se;
2245 int task_sleep = flags & DEQUEUE_SLEEP;
2246
2247 for_each_sched_entity(se) {
2248 cfs_rq = cfs_rq_of(se);
2249 dequeue_entity(cfs_rq, se, flags);
2250
2251 /*
2252 * end evaluation on encountering a throttled cfs_rq
2253 *
2254 * note: in the case of encountering a throttled cfs_rq we will
2255 * post the final h_nr_running decrement below.
2256 */
2257 if (cfs_rq_throttled(cfs_rq))
2258 break;
2259 cfs_rq->h_nr_running--;
2260
2261 /* Don't dequeue parent if it has other entities besides us */
2262 if (cfs_rq->load.weight) {
2263 /*
2264 * Bias pick_next to pick a task from this cfs_rq, as
2265 * p is sleeping when it is within its sched_slice.
2266 */
2267 if (task_sleep && parent_entity(se))
2268 set_next_buddy(parent_entity(se));
2269
2270 /* avoid re-evaluating load for this entity */
2271 se = parent_entity(se);
2272 break;
2273 }
2274 flags |= DEQUEUE_SLEEP;
2275 }
2276
2277 for_each_sched_entity(se) {
2278 cfs_rq = cfs_rq_of(se);
2279 cfs_rq->h_nr_running--;
2280
2281 if (cfs_rq_throttled(cfs_rq))
2282 break;
2283
2284 update_cfs_load(cfs_rq, 0);
2285 update_cfs_shares(cfs_rq);
2286 }
2287
2288 if (!se)
2289 dec_nr_running(rq);
2290 hrtick_update(rq);
2291 }
2292
2293 #ifdef CONFIG_SMP
2294 /* Used instead of source_load when we know the type == 0 */
2295 static unsigned long weighted_cpuload(const int cpu)
2296 {
2297 return cpu_rq(cpu)->load.weight;
2298 }
2299
2300 /*
2301 * Return a low guess at the load of a migration-source cpu weighted
2302 * according to the scheduling class and "nice" value.
2303 *
2304 * We want to under-estimate the load of migration sources, to
2305 * balance conservatively.
2306 */
2307 static unsigned long source_load(int cpu, int type)
2308 {
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2311
2312 if (type == 0 || !sched_feat(LB_BIAS))
2313 return total;
2314
2315 return min(rq->cpu_load[type-1], total);
2316 }
2317
2318 /*
2319 * Return a high guess at the load of a migration-target cpu weighted
2320 * according to the scheduling class and "nice" value.
2321 */
2322 static unsigned long target_load(int cpu, int type)
2323 {
2324 struct rq *rq = cpu_rq(cpu);
2325 unsigned long total = weighted_cpuload(cpu);
2326
2327 if (type == 0 || !sched_feat(LB_BIAS))
2328 return total;
2329
2330 return max(rq->cpu_load[type-1], total);
2331 }
2332
2333 static unsigned long power_of(int cpu)
2334 {
2335 return cpu_rq(cpu)->cpu_power;
2336 }
2337
2338 static unsigned long cpu_avg_load_per_task(int cpu)
2339 {
2340 struct rq *rq = cpu_rq(cpu);
2341 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2342
2343 if (nr_running)
2344 return rq->load.weight / nr_running;
2345
2346 return 0;
2347 }
2348
2349
2350 static void task_waking_fair(struct task_struct *p)
2351 {
2352 struct sched_entity *se = &p->se;
2353 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2354 u64 min_vruntime;
2355
2356 #ifndef CONFIG_64BIT
2357 u64 min_vruntime_copy;
2358
2359 do {
2360 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2361 smp_rmb();
2362 min_vruntime = cfs_rq->min_vruntime;
2363 } while (min_vruntime != min_vruntime_copy);
2364 #else
2365 min_vruntime = cfs_rq->min_vruntime;
2366 #endif
2367
2368 se->vruntime -= min_vruntime;
2369 }
2370
2371 #ifdef CONFIG_FAIR_GROUP_SCHED
2372 /*
2373 * effective_load() calculates the load change as seen from the root_task_group
2374 *
2375 * Adding load to a group doesn't make a group heavier, but can cause movement
2376 * of group shares between cpus. Assuming the shares were perfectly aligned one
2377 * can calculate the shift in shares.
2378 *
2379 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2380 * on this @cpu and results in a total addition (subtraction) of @wg to the
2381 * total group weight.
2382 *
2383 * Given a runqueue weight distribution (rw_i) we can compute a shares
2384 * distribution (s_i) using:
2385 *
2386 * s_i = rw_i / \Sum rw_j (1)
2387 *
2388 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2389 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2390 * shares distribution (s_i):
2391 *
2392 * rw_i = { 2, 4, 1, 0 }
2393 * s_i = { 2/7, 4/7, 1/7, 0 }
2394 *
2395 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2396 * task used to run on and the CPU the waker is running on), we need to
2397 * compute the effect of waking a task on either CPU and, in case of a sync
2398 * wakeup, compute the effect of the current task going to sleep.
2399 *
2400 * So for a change of @wl to the local @cpu with an overall group weight change
2401 * of @wl we can compute the new shares distribution (s'_i) using:
2402 *
2403 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2404 *
2405 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2406 * differences in waking a task to CPU 0. The additional task changes the
2407 * weight and shares distributions like:
2408 *
2409 * rw'_i = { 3, 4, 1, 0 }
2410 * s'_i = { 3/8, 4/8, 1/8, 0 }
2411 *
2412 * We can then compute the difference in effective weight by using:
2413 *
2414 * dw_i = S * (s'_i - s_i) (3)
2415 *
2416 * Where 'S' is the group weight as seen by its parent.
2417 *
2418 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2419 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2420 * 4/7) times the weight of the group.
2421 */
2422 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2423 {
2424 struct sched_entity *se = tg->se[cpu];
2425
2426 if (!tg->parent) /* the trivial, non-cgroup case */
2427 return wl;
2428
2429 for_each_sched_entity(se) {
2430 long w, W;
2431
2432 tg = se->my_q->tg;
2433
2434 /*
2435 * W = @wg + \Sum rw_j
2436 */
2437 W = wg + calc_tg_weight(tg, se->my_q);
2438
2439 /*
2440 * w = rw_i + @wl
2441 */
2442 w = se->my_q->load.weight + wl;
2443
2444 /*
2445 * wl = S * s'_i; see (2)
2446 */
2447 if (W > 0 && w < W)
2448 wl = (w * tg->shares) / W;
2449 else
2450 wl = tg->shares;
2451
2452 /*
2453 * Per the above, wl is the new se->load.weight value; since
2454 * those are clipped to [MIN_SHARES, ...) do so now. See
2455 * calc_cfs_shares().
2456 */
2457 if (wl < MIN_SHARES)
2458 wl = MIN_SHARES;
2459
2460 /*
2461 * wl = dw_i = S * (s'_i - s_i); see (3)
2462 */
2463 wl -= se->load.weight;
2464
2465 /*
2466 * Recursively apply this logic to all parent groups to compute
2467 * the final effective load change on the root group. Since
2468 * only the @tg group gets extra weight, all parent groups can
2469 * only redistribute existing shares. @wl is the shift in shares
2470 * resulting from this level per the above.
2471 */
2472 wg = 0;
2473 }
2474
2475 return wl;
2476 }
2477 #else
2478
2479 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2480 unsigned long wl, unsigned long wg)
2481 {
2482 return wl;
2483 }
2484
2485 #endif
2486
2487 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2488 {
2489 s64 this_load, load;
2490 int idx, this_cpu, prev_cpu;
2491 unsigned long tl_per_task;
2492 struct task_group *tg;
2493 unsigned long weight;
2494 int balanced;
2495
2496 idx = sd->wake_idx;
2497 this_cpu = smp_processor_id();
2498 prev_cpu = task_cpu(p);
2499 load = source_load(prev_cpu, idx);
2500 this_load = target_load(this_cpu, idx);
2501
2502 /*
2503 * If sync wakeup then subtract the (maximum possible)
2504 * effect of the currently running task from the load
2505 * of the current CPU:
2506 */
2507 if (sync) {
2508 tg = task_group(current);
2509 weight = current->se.load.weight;
2510
2511 this_load += effective_load(tg, this_cpu, -weight, -weight);
2512 load += effective_load(tg, prev_cpu, 0, -weight);
2513 }
2514
2515 tg = task_group(p);
2516 weight = p->se.load.weight;
2517
2518 /*
2519 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2520 * due to the sync cause above having dropped this_load to 0, we'll
2521 * always have an imbalance, but there's really nothing you can do
2522 * about that, so that's good too.
2523 *
2524 * Otherwise check if either cpus are near enough in load to allow this
2525 * task to be woken on this_cpu.
2526 */
2527 if (this_load > 0) {
2528 s64 this_eff_load, prev_eff_load;
2529
2530 this_eff_load = 100;
2531 this_eff_load *= power_of(prev_cpu);
2532 this_eff_load *= this_load +
2533 effective_load(tg, this_cpu, weight, weight);
2534
2535 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2536 prev_eff_load *= power_of(this_cpu);
2537 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2538
2539 balanced = this_eff_load <= prev_eff_load;
2540 } else
2541 balanced = true;
2542
2543 /*
2544 * If the currently running task will sleep within
2545 * a reasonable amount of time then attract this newly
2546 * woken task:
2547 */
2548 if (sync && balanced)
2549 return 1;
2550
2551 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2552 tl_per_task = cpu_avg_load_per_task(this_cpu);
2553
2554 if (balanced ||
2555 (this_load <= load &&
2556 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2557 /*
2558 * This domain has SD_WAKE_AFFINE and
2559 * p is cache cold in this domain, and
2560 * there is no bad imbalance.
2561 */
2562 schedstat_inc(sd, ttwu_move_affine);
2563 schedstat_inc(p, se.statistics.nr_wakeups_affine);
2564
2565 return 1;
2566 }
2567 return 0;
2568 }
2569
2570 /*
2571 * find_idlest_group finds and returns the least busy CPU group within the
2572 * domain.
2573 */
2574 static struct sched_group *
2575 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2576 int this_cpu, int load_idx)
2577 {
2578 struct sched_group *idlest = NULL, *group = sd->groups;
2579 unsigned long min_load = ULONG_MAX, this_load = 0;
2580 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2581
2582 do {
2583 unsigned long load, avg_load;
2584 int local_group;
2585 int i;
2586
2587 /* Skip over this group if it has no CPUs allowed */
2588 if (!cpumask_intersects(sched_group_cpus(group),
2589 tsk_cpus_allowed(p)))
2590 continue;
2591
2592 local_group = cpumask_test_cpu(this_cpu,
2593 sched_group_cpus(group));
2594
2595 /* Tally up the load of all CPUs in the group */
2596 avg_load = 0;
2597
2598 for_each_cpu(i, sched_group_cpus(group)) {
2599 /* Bias balancing toward cpus of our domain */
2600 if (local_group)
2601 load = source_load(i, load_idx);
2602 else
2603 load = target_load(i, load_idx);
2604
2605 avg_load += load;
2606 }
2607
2608 /* Adjust by relative CPU power of the group */
2609 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2610
2611 if (local_group) {
2612 this_load = avg_load;
2613 } else if (avg_load < min_load) {
2614 min_load = avg_load;
2615 idlest = group;
2616 }
2617 } while (group = group->next, group != sd->groups);
2618
2619 if (!idlest || 100*this_load < imbalance*min_load)
2620 return NULL;
2621 return idlest;
2622 }
2623
2624 /*
2625 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2626 */
2627 static int
2628 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2629 {
2630 unsigned long load, min_load = ULONG_MAX;
2631 int idlest = -1;
2632 int i;
2633
2634 /* Traverse only the allowed CPUs */
2635 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2636 load = weighted_cpuload(i);
2637
2638 if (load < min_load || (load == min_load && i == this_cpu)) {
2639 min_load = load;
2640 idlest = i;
2641 }
2642 }
2643
2644 return idlest;
2645 }
2646
2647 /**
2648 * highest_flag_domain - Return highest sched_domain containing flag.
2649 * @cpu: The cpu whose highest level of sched domain is to
2650 * be returned.
2651 * @flag: The flag to check for the highest sched_domain
2652 * for the given cpu.
2653 *
2654 * Returns the highest sched_domain of a cpu which contains the given flag.
2655 */
2656 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
2657 {
2658 struct sched_domain *sd, *hsd = NULL;
2659
2660 for_each_domain(cpu, sd) {
2661 if (!(sd->flags & flag))
2662 break;
2663 hsd = sd;
2664 }
2665
2666 return hsd;
2667 }
2668
2669 /*
2670 * Try and locate an idle CPU in the sched_domain.
2671 */
2672 static int select_idle_sibling(struct task_struct *p, int target)
2673 {
2674 int cpu = smp_processor_id();
2675 int prev_cpu = task_cpu(p);
2676 struct sched_domain *sd;
2677 struct sched_group *sg;
2678 int i;
2679
2680 /*
2681 * If the task is going to be woken-up on this cpu and if it is
2682 * already idle, then it is the right target.
2683 */
2684 if (target == cpu && idle_cpu(cpu))
2685 return cpu;
2686
2687 /*
2688 * If the task is going to be woken-up on the cpu where it previously
2689 * ran and if it is currently idle, then it the right target.
2690 */
2691 if (target == prev_cpu && idle_cpu(prev_cpu))
2692 return prev_cpu;
2693
2694 /*
2695 * Otherwise, iterate the domains and find an elegible idle cpu.
2696 */
2697 rcu_read_lock();
2698
2699 sd = highest_flag_domain(target, SD_SHARE_PKG_RESOURCES);
2700 for_each_lower_domain(sd) {
2701 sg = sd->groups;
2702 do {
2703 if (!cpumask_intersects(sched_group_cpus(sg),
2704 tsk_cpus_allowed(p)))
2705 goto next;
2706
2707 for_each_cpu(i, sched_group_cpus(sg)) {
2708 if (!idle_cpu(i))
2709 goto next;
2710 }
2711
2712 target = cpumask_first_and(sched_group_cpus(sg),
2713 tsk_cpus_allowed(p));
2714 goto done;
2715 next:
2716 sg = sg->next;
2717 } while (sg != sd->groups);
2718 }
2719 done:
2720 rcu_read_unlock();
2721
2722 return target;
2723 }
2724
2725 /*
2726 * sched_balance_self: balance the current task (running on cpu) in domains
2727 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2728 * SD_BALANCE_EXEC.
2729 *
2730 * Balance, ie. select the least loaded group.
2731 *
2732 * Returns the target CPU number, or the same CPU if no balancing is needed.
2733 *
2734 * preempt must be disabled.
2735 */
2736 static int
2737 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2738 {
2739 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2740 int cpu = smp_processor_id();
2741 int prev_cpu = task_cpu(p);
2742 int new_cpu = cpu;
2743 int want_affine = 0;
2744 int want_sd = 1;
2745 int sync = wake_flags & WF_SYNC;
2746
2747 if (p->rt.nr_cpus_allowed == 1)
2748 return prev_cpu;
2749
2750 if (sd_flag & SD_BALANCE_WAKE) {
2751 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2752 want_affine = 1;
2753 new_cpu = prev_cpu;
2754 }
2755
2756 rcu_read_lock();
2757 for_each_domain(cpu, tmp) {
2758 if (!(tmp->flags & SD_LOAD_BALANCE))
2759 continue;
2760
2761 /*
2762 * If power savings logic is enabled for a domain, see if we
2763 * are not overloaded, if so, don't balance wider.
2764 */
2765 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
2766 unsigned long power = 0;
2767 unsigned long nr_running = 0;
2768 unsigned long capacity;
2769 int i;
2770
2771 for_each_cpu(i, sched_domain_span(tmp)) {
2772 power += power_of(i);
2773 nr_running += cpu_rq(i)->cfs.nr_running;
2774 }
2775
2776 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2777
2778 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2779 nr_running /= 2;
2780
2781 if (nr_running < capacity)
2782 want_sd = 0;
2783 }
2784
2785 /*
2786 * If both cpu and prev_cpu are part of this domain,
2787 * cpu is a valid SD_WAKE_AFFINE target.
2788 */
2789 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2790 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2791 affine_sd = tmp;
2792 want_affine = 0;
2793 }
2794
2795 if (!want_sd && !want_affine)
2796 break;
2797
2798 if (!(tmp->flags & sd_flag))
2799 continue;
2800
2801 if (want_sd)
2802 sd = tmp;
2803 }
2804
2805 if (affine_sd) {
2806 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2807 prev_cpu = cpu;
2808
2809 new_cpu = select_idle_sibling(p, prev_cpu);
2810 goto unlock;
2811 }
2812
2813 while (sd) {
2814 int load_idx = sd->forkexec_idx;
2815 struct sched_group *group;
2816 int weight;
2817
2818 if (!(sd->flags & sd_flag)) {
2819 sd = sd->child;
2820 continue;
2821 }
2822
2823 if (sd_flag & SD_BALANCE_WAKE)
2824 load_idx = sd->wake_idx;
2825
2826 group = find_idlest_group(sd, p, cpu, load_idx);
2827 if (!group) {
2828 sd = sd->child;
2829 continue;
2830 }
2831
2832 new_cpu = find_idlest_cpu(group, p, cpu);
2833 if (new_cpu == -1 || new_cpu == cpu) {
2834 /* Now try balancing at a lower domain level of cpu */
2835 sd = sd->child;
2836 continue;
2837 }
2838
2839 /* Now try balancing at a lower domain level of new_cpu */
2840 cpu = new_cpu;
2841 weight = sd->span_weight;
2842 sd = NULL;
2843 for_each_domain(cpu, tmp) {
2844 if (weight <= tmp->span_weight)
2845 break;
2846 if (tmp->flags & sd_flag)
2847 sd = tmp;
2848 }
2849 /* while loop will break here if sd == NULL */
2850 }
2851 unlock:
2852 rcu_read_unlock();
2853
2854 return new_cpu;
2855 }
2856 #endif /* CONFIG_SMP */
2857
2858 static unsigned long
2859 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2860 {
2861 unsigned long gran = sysctl_sched_wakeup_granularity;
2862
2863 /*
2864 * Since its curr running now, convert the gran from real-time
2865 * to virtual-time in his units.
2866 *
2867 * By using 'se' instead of 'curr' we penalize light tasks, so
2868 * they get preempted easier. That is, if 'se' < 'curr' then
2869 * the resulting gran will be larger, therefore penalizing the
2870 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2871 * be smaller, again penalizing the lighter task.
2872 *
2873 * This is especially important for buddies when the leftmost
2874 * task is higher priority than the buddy.
2875 */
2876 return calc_delta_fair(gran, se);
2877 }
2878
2879 /*
2880 * Should 'se' preempt 'curr'.
2881 *
2882 * |s1
2883 * |s2
2884 * |s3
2885 * g
2886 * |<--->|c
2887 *
2888 * w(c, s1) = -1
2889 * w(c, s2) = 0
2890 * w(c, s3) = 1
2891 *
2892 */
2893 static int
2894 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2895 {
2896 s64 gran, vdiff = curr->vruntime - se->vruntime;
2897
2898 if (vdiff <= 0)
2899 return -1;
2900
2901 gran = wakeup_gran(curr, se);
2902 if (vdiff > gran)
2903 return 1;
2904
2905 return 0;
2906 }
2907
2908 static void set_last_buddy(struct sched_entity *se)
2909 {
2910 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2911 return;
2912
2913 for_each_sched_entity(se)
2914 cfs_rq_of(se)->last = se;
2915 }
2916
2917 static void set_next_buddy(struct sched_entity *se)
2918 {
2919 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2920 return;
2921
2922 for_each_sched_entity(se)
2923 cfs_rq_of(se)->next = se;
2924 }
2925
2926 static void set_skip_buddy(struct sched_entity *se)
2927 {
2928 for_each_sched_entity(se)
2929 cfs_rq_of(se)->skip = se;
2930 }
2931
2932 /*
2933 * Preempt the current task with a newly woken task if needed:
2934 */
2935 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2936 {
2937 struct task_struct *curr = rq->curr;
2938 struct sched_entity *se = &curr->se, *pse = &p->se;
2939 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2940 int scale = cfs_rq->nr_running >= sched_nr_latency;
2941 int next_buddy_marked = 0;
2942
2943 if (unlikely(se == pse))
2944 return;
2945
2946 /*
2947 * This is possible from callers such as pull_task(), in which we
2948 * unconditionally check_prempt_curr() after an enqueue (which may have
2949 * lead to a throttle). This both saves work and prevents false
2950 * next-buddy nomination below.
2951 */
2952 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2953 return;
2954
2955 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2956 set_next_buddy(pse);
2957 next_buddy_marked = 1;
2958 }
2959
2960 /*
2961 * We can come here with TIF_NEED_RESCHED already set from new task
2962 * wake up path.
2963 *
2964 * Note: this also catches the edge-case of curr being in a throttled
2965 * group (e.g. via set_curr_task), since update_curr() (in the
2966 * enqueue of curr) will have resulted in resched being set. This
2967 * prevents us from potentially nominating it as a false LAST_BUDDY
2968 * below.
2969 */
2970 if (test_tsk_need_resched(curr))
2971 return;
2972
2973 /* Idle tasks are by definition preempted by non-idle tasks. */
2974 if (unlikely(curr->policy == SCHED_IDLE) &&
2975 likely(p->policy != SCHED_IDLE))
2976 goto preempt;
2977
2978 /*
2979 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2980 * is driven by the tick):
2981 */
2982 if (unlikely(p->policy != SCHED_NORMAL))
2983 return;
2984
2985 find_matching_se(&se, &pse);
2986 update_curr(cfs_rq_of(se));
2987 BUG_ON(!pse);
2988 if (wakeup_preempt_entity(se, pse) == 1) {
2989 /*
2990 * Bias pick_next to pick the sched entity that is
2991 * triggering this preemption.
2992 */
2993 if (!next_buddy_marked)
2994 set_next_buddy(pse);
2995 goto preempt;
2996 }
2997
2998 return;
2999
3000 preempt:
3001 resched_task(curr);
3002 /*
3003 * Only set the backward buddy when the current task is still
3004 * on the rq. This can happen when a wakeup gets interleaved
3005 * with schedule on the ->pre_schedule() or idle_balance()
3006 * point, either of which can * drop the rq lock.
3007 *
3008 * Also, during early boot the idle thread is in the fair class,
3009 * for obvious reasons its a bad idea to schedule back to it.
3010 */
3011 if (unlikely(!se->on_rq || curr == rq->idle))
3012 return;
3013
3014 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3015 set_last_buddy(se);
3016 }
3017
3018 static struct task_struct *pick_next_task_fair(struct rq *rq)
3019 {
3020 struct task_struct *p;
3021 struct cfs_rq *cfs_rq = &rq->cfs;
3022 struct sched_entity *se;
3023
3024 if (!cfs_rq->nr_running)
3025 return NULL;
3026
3027 do {
3028 se = pick_next_entity(cfs_rq);
3029 set_next_entity(cfs_rq, se);
3030 cfs_rq = group_cfs_rq(se);
3031 } while (cfs_rq);
3032
3033 p = task_of(se);
3034 if (hrtick_enabled(rq))
3035 hrtick_start_fair(rq, p);
3036
3037 return p;
3038 }
3039
3040 /*
3041 * Account for a descheduled task:
3042 */
3043 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3044 {
3045 struct sched_entity *se = &prev->se;
3046 struct cfs_rq *cfs_rq;
3047
3048 for_each_sched_entity(se) {
3049 cfs_rq = cfs_rq_of(se);
3050 put_prev_entity(cfs_rq, se);
3051 }
3052 }
3053
3054 /*
3055 * sched_yield() is very simple
3056 *
3057 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3058 */
3059 static void yield_task_fair(struct rq *rq)
3060 {
3061 struct task_struct *curr = rq->curr;
3062 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3063 struct sched_entity *se = &curr->se;
3064
3065 /*
3066 * Are we the only task in the tree?
3067 */
3068 if (unlikely(rq->nr_running == 1))
3069 return;
3070
3071 clear_buddies(cfs_rq, se);
3072
3073 if (curr->policy != SCHED_BATCH) {
3074 update_rq_clock(rq);
3075 /*
3076 * Update run-time statistics of the 'current'.
3077 */
3078 update_curr(cfs_rq);
3079 /*
3080 * Tell update_rq_clock() that we've just updated,
3081 * so we don't do microscopic update in schedule()
3082 * and double the fastpath cost.
3083 */
3084 rq->skip_clock_update = 1;
3085 }
3086
3087 set_skip_buddy(se);
3088 }
3089
3090 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3091 {
3092 struct sched_entity *se = &p->se;
3093
3094 /* throttled hierarchies are not runnable */
3095 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3096 return false;
3097
3098 /* Tell the scheduler that we'd really like pse to run next. */
3099 set_next_buddy(se);
3100
3101 yield_task_fair(rq);
3102
3103 return true;
3104 }
3105
3106 #ifdef CONFIG_SMP
3107 /**************************************************
3108 * Fair scheduling class load-balancing methods:
3109 */
3110
3111 /*
3112 * pull_task - move a task from a remote runqueue to the local runqueue.
3113 * Both runqueues must be locked.
3114 */
3115 static void pull_task(struct rq *src_rq, struct task_struct *p,
3116 struct rq *this_rq, int this_cpu)
3117 {
3118 deactivate_task(src_rq, p, 0);
3119 set_task_cpu(p, this_cpu);
3120 activate_task(this_rq, p, 0);
3121 check_preempt_curr(this_rq, p, 0);
3122 }
3123
3124 /*
3125 * Is this task likely cache-hot:
3126 */
3127 static int
3128 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3129 {
3130 s64 delta;
3131
3132 if (p->sched_class != &fair_sched_class)
3133 return 0;
3134
3135 if (unlikely(p->policy == SCHED_IDLE))
3136 return 0;
3137
3138 /*
3139 * Buddy candidates are cache hot:
3140 */
3141 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3142 (&p->se == cfs_rq_of(&p->se)->next ||
3143 &p->se == cfs_rq_of(&p->se)->last))
3144 return 1;
3145
3146 if (sysctl_sched_migration_cost == -1)
3147 return 1;
3148 if (sysctl_sched_migration_cost == 0)
3149 return 0;
3150
3151 delta = now - p->se.exec_start;
3152
3153 return delta < (s64)sysctl_sched_migration_cost;
3154 }
3155
3156 /*
3157 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3158 */
3159 static
3160 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3161 struct sched_domain *sd, enum cpu_idle_type idle,
3162 int *all_pinned)
3163 {
3164 int tsk_cache_hot = 0;
3165 /*
3166 * We do not migrate tasks that are:
3167 * 1) running (obviously), or
3168 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3169 * 3) are cache-hot on their current CPU.
3170 */
3171 if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
3172 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3173 return 0;
3174 }
3175 *all_pinned = 0;
3176
3177 if (task_running(rq, p)) {
3178 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3179 return 0;
3180 }
3181
3182 /*
3183 * Aggressive migration if:
3184 * 1) task is cache cold, or
3185 * 2) too many balance attempts have failed.
3186 */
3187
3188 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
3189 if (!tsk_cache_hot ||
3190 sd->nr_balance_failed > sd->cache_nice_tries) {
3191 #ifdef CONFIG_SCHEDSTATS
3192 if (tsk_cache_hot) {
3193 schedstat_inc(sd, lb_hot_gained[idle]);
3194 schedstat_inc(p, se.statistics.nr_forced_migrations);
3195 }
3196 #endif
3197 return 1;
3198 }
3199
3200 if (tsk_cache_hot) {
3201 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3202 return 0;
3203 }
3204 return 1;
3205 }
3206
3207 /*
3208 * move_one_task tries to move exactly one task from busiest to this_rq, as
3209 * part of active balancing operations within "domain".
3210 * Returns 1 if successful and 0 otherwise.
3211 *
3212 * Called with both runqueues locked.
3213 */
3214 static int
3215 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3216 struct sched_domain *sd, enum cpu_idle_type idle)
3217 {
3218 struct task_struct *p, *n;
3219 struct cfs_rq *cfs_rq;
3220 int pinned = 0;
3221
3222 for_each_leaf_cfs_rq(busiest, cfs_rq) {
3223 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
3224 if (throttled_lb_pair(task_group(p),
3225 busiest->cpu, this_cpu))
3226 break;
3227
3228 if (!can_migrate_task(p, busiest, this_cpu,
3229 sd, idle, &pinned))
3230 continue;
3231
3232 pull_task(busiest, p, this_rq, this_cpu);
3233 /*
3234 * Right now, this is only the second place pull_task()
3235 * is called, so we can safely collect pull_task()
3236 * stats here rather than inside pull_task().
3237 */
3238 schedstat_inc(sd, lb_gained[idle]);
3239 return 1;
3240 }
3241 }
3242
3243 return 0;
3244 }
3245
3246 static unsigned long
3247 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3248 unsigned long max_load_move, struct sched_domain *sd,
3249 enum cpu_idle_type idle, int *all_pinned,
3250 struct cfs_rq *busiest_cfs_rq)
3251 {
3252 int loops = 0, pulled = 0;
3253 long rem_load_move = max_load_move;
3254 struct task_struct *p, *n;
3255
3256 if (max_load_move == 0)
3257 goto out;
3258
3259 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
3260 if (loops++ > sysctl_sched_nr_migrate)
3261 break;
3262
3263 if ((p->se.load.weight >> 1) > rem_load_move ||
3264 !can_migrate_task(p, busiest, this_cpu, sd, idle,
3265 all_pinned))
3266 continue;
3267
3268 pull_task(busiest, p, this_rq, this_cpu);
3269 pulled++;
3270 rem_load_move -= p->se.load.weight;
3271
3272 #ifdef CONFIG_PREEMPT
3273 /*
3274 * NEWIDLE balancing is a source of latency, so preemptible
3275 * kernels will stop after the first task is pulled to minimize
3276 * the critical section.
3277 */
3278 if (idle == CPU_NEWLY_IDLE)
3279 break;
3280 #endif
3281
3282 /*
3283 * We only want to steal up to the prescribed amount of
3284 * weighted load.
3285 */
3286 if (rem_load_move <= 0)
3287 break;
3288 }
3289 out:
3290 /*
3291 * Right now, this is one of only two places pull_task() is called,
3292 * so we can safely collect pull_task() stats here rather than
3293 * inside pull_task().
3294 */
3295 schedstat_add(sd, lb_gained[idle], pulled);
3296
3297 return max_load_move - rem_load_move;
3298 }
3299
3300 #ifdef CONFIG_FAIR_GROUP_SCHED
3301 /*
3302 * update tg->load_weight by folding this cpu's load_avg
3303 */
3304 static int update_shares_cpu(struct task_group *tg, int cpu)
3305 {
3306 struct cfs_rq *cfs_rq;
3307 unsigned long flags;
3308 struct rq *rq;
3309
3310 if (!tg->se[cpu])
3311 return 0;
3312
3313 rq = cpu_rq(cpu);
3314 cfs_rq = tg->cfs_rq[cpu];
3315
3316 raw_spin_lock_irqsave(&rq->lock, flags);
3317
3318 update_rq_clock(rq);
3319 update_cfs_load(cfs_rq, 1);
3320
3321 /*
3322 * We need to update shares after updating tg->load_weight in
3323 * order to adjust the weight of groups with long running tasks.
3324 */
3325 update_cfs_shares(cfs_rq);
3326
3327 raw_spin_unlock_irqrestore(&rq->lock, flags);
3328
3329 return 0;
3330 }
3331
3332 static void update_shares(int cpu)
3333 {
3334 struct cfs_rq *cfs_rq;
3335 struct rq *rq = cpu_rq(cpu);
3336
3337 rcu_read_lock();
3338 /*
3339 * Iterates the task_group tree in a bottom up fashion, see
3340 * list_add_leaf_cfs_rq() for details.
3341 */
3342 for_each_leaf_cfs_rq(rq, cfs_rq) {
3343 /* throttled entities do not contribute to load */
3344 if (throttled_hierarchy(cfs_rq))
3345 continue;
3346
3347 update_shares_cpu(cfs_rq->tg, cpu);
3348 }
3349 rcu_read_unlock();
3350 }
3351
3352 /*
3353 * Compute the cpu's hierarchical load factor for each task group.
3354 * This needs to be done in a top-down fashion because the load of a child
3355 * group is a fraction of its parents load.
3356 */
3357 static int tg_load_down(struct task_group *tg, void *data)
3358 {
3359 unsigned long load;
3360 long cpu = (long)data;
3361
3362 if (!tg->parent) {
3363 load = cpu_rq(cpu)->load.weight;
3364 } else {
3365 load = tg->parent->cfs_rq[cpu]->h_load;
3366 load *= tg->se[cpu]->load.weight;
3367 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3368 }
3369
3370 tg->cfs_rq[cpu]->h_load = load;
3371
3372 return 0;
3373 }
3374
3375 static void update_h_load(long cpu)
3376 {
3377 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3378 }
3379
3380 static unsigned long
3381 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3382 unsigned long max_load_move,
3383 struct sched_domain *sd, enum cpu_idle_type idle,
3384 int *all_pinned)
3385 {
3386 long rem_load_move = max_load_move;
3387 struct cfs_rq *busiest_cfs_rq;
3388
3389 rcu_read_lock();
3390 update_h_load(cpu_of(busiest));
3391
3392 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
3393 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
3394 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
3395 u64 rem_load, moved_load;
3396
3397 /*
3398 * empty group or part of a throttled hierarchy
3399 */
3400 if (!busiest_cfs_rq->task_weight ||
3401 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
3402 continue;
3403
3404 rem_load = (u64)rem_load_move * busiest_weight;
3405 rem_load = div_u64(rem_load, busiest_h_load + 1);
3406
3407 moved_load = balance_tasks(this_rq, this_cpu, busiest,
3408 rem_load, sd, idle, all_pinned,
3409 busiest_cfs_rq);
3410
3411 if (!moved_load)
3412 continue;
3413
3414 moved_load *= busiest_h_load;
3415 moved_load = div_u64(moved_load, busiest_weight + 1);
3416
3417 rem_load_move -= moved_load;
3418 if (rem_load_move < 0)
3419 break;
3420 }
3421 rcu_read_unlock();
3422
3423 return max_load_move - rem_load_move;
3424 }
3425 #else
3426 static inline void update_shares(int cpu)
3427 {
3428 }
3429
3430 static unsigned long
3431 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3432 unsigned long max_load_move,
3433 struct sched_domain *sd, enum cpu_idle_type idle,
3434 int *all_pinned)
3435 {
3436 return balance_tasks(this_rq, this_cpu, busiest,
3437 max_load_move, sd, idle, all_pinned,
3438 &busiest->cfs);
3439 }
3440 #endif
3441
3442 /*
3443 * move_tasks tries to move up to max_load_move weighted load from busiest to
3444 * this_rq, as part of a balancing operation within domain "sd".
3445 * Returns 1 if successful and 0 otherwise.
3446 *
3447 * Called with both runqueues locked.
3448 */
3449 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3450 unsigned long max_load_move,
3451 struct sched_domain *sd, enum cpu_idle_type idle,
3452 int *all_pinned)
3453 {
3454 unsigned long total_load_moved = 0, load_moved;
3455
3456 do {
3457 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
3458 max_load_move - total_load_moved,
3459 sd, idle, all_pinned);
3460
3461 total_load_moved += load_moved;
3462
3463 #ifdef CONFIG_PREEMPT
3464 /*
3465 * NEWIDLE balancing is a source of latency, so preemptible
3466 * kernels will stop after the first task is pulled to minimize
3467 * the critical section.
3468 */
3469 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3470 break;
3471
3472 if (raw_spin_is_contended(&this_rq->lock) ||
3473 raw_spin_is_contended(&busiest->lock))
3474 break;
3475 #endif
3476 } while (load_moved && max_load_move > total_load_moved);
3477
3478 return total_load_moved > 0;
3479 }
3480
3481 /********** Helpers for find_busiest_group ************************/
3482 /*
3483 * sd_lb_stats - Structure to store the statistics of a sched_domain
3484 * during load balancing.
3485 */
3486 struct sd_lb_stats {
3487 struct sched_group *busiest; /* Busiest group in this sd */
3488 struct sched_group *this; /* Local group in this sd */
3489 unsigned long total_load; /* Total load of all groups in sd */
3490 unsigned long total_pwr; /* Total power of all groups in sd */
3491 unsigned long avg_load; /* Average load across all groups in sd */
3492
3493 /** Statistics of this group */
3494 unsigned long this_load;
3495 unsigned long this_load_per_task;
3496 unsigned long this_nr_running;
3497 unsigned long this_has_capacity;
3498 unsigned int this_idle_cpus;
3499
3500 /* Statistics of the busiest group */
3501 unsigned int busiest_idle_cpus;
3502 unsigned long max_load;
3503 unsigned long busiest_load_per_task;
3504 unsigned long busiest_nr_running;
3505 unsigned long busiest_group_capacity;
3506 unsigned long busiest_has_capacity;
3507 unsigned int busiest_group_weight;
3508
3509 int group_imb; /* Is there imbalance in this sd */
3510 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3511 int power_savings_balance; /* Is powersave balance needed for this sd */
3512 struct sched_group *group_min; /* Least loaded group in sd */
3513 struct sched_group *group_leader; /* Group which relieves group_min */
3514 unsigned long min_load_per_task; /* load_per_task in group_min */
3515 unsigned long leader_nr_running; /* Nr running of group_leader */
3516 unsigned long min_nr_running; /* Nr running of group_min */
3517 #endif
3518 };
3519
3520 /*
3521 * sg_lb_stats - stats of a sched_group required for load_balancing
3522 */
3523 struct sg_lb_stats {
3524 unsigned long avg_load; /*Avg load across the CPUs of the group */
3525 unsigned long group_load; /* Total load over the CPUs of the group */
3526 unsigned long sum_nr_running; /* Nr tasks running in the group */
3527 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3528 unsigned long group_capacity;
3529 unsigned long idle_cpus;
3530 unsigned long group_weight;
3531 int group_imb; /* Is there an imbalance in the group ? */
3532 int group_has_capacity; /* Is there extra capacity in the group? */
3533 };
3534
3535 /**
3536 * get_sd_load_idx - Obtain the load index for a given sched domain.
3537 * @sd: The sched_domain whose load_idx is to be obtained.
3538 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3539 */
3540 static inline int get_sd_load_idx(struct sched_domain *sd,
3541 enum cpu_idle_type idle)
3542 {
3543 int load_idx;
3544
3545 switch (idle) {
3546 case CPU_NOT_IDLE:
3547 load_idx = sd->busy_idx;
3548 break;
3549
3550 case CPU_NEWLY_IDLE:
3551 load_idx = sd->newidle_idx;
3552 break;
3553 default:
3554 load_idx = sd->idle_idx;
3555 break;
3556 }
3557
3558 return load_idx;
3559 }
3560
3561
3562 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3563 /**
3564 * init_sd_power_savings_stats - Initialize power savings statistics for
3565 * the given sched_domain, during load balancing.
3566 *
3567 * @sd: Sched domain whose power-savings statistics are to be initialized.
3568 * @sds: Variable containing the statistics for sd.
3569 * @idle: Idle status of the CPU at which we're performing load-balancing.
3570 */
3571 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3572 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3573 {
3574 /*
3575 * Busy processors will not participate in power savings
3576 * balance.
3577 */
3578 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3579 sds->power_savings_balance = 0;
3580 else {
3581 sds->power_savings_balance = 1;
3582 sds->min_nr_running = ULONG_MAX;
3583 sds->leader_nr_running = 0;
3584 }
3585 }
3586
3587 /**
3588 * update_sd_power_savings_stats - Update the power saving stats for a
3589 * sched_domain while performing load balancing.
3590 *
3591 * @group: sched_group belonging to the sched_domain under consideration.
3592 * @sds: Variable containing the statistics of the sched_domain
3593 * @local_group: Does group contain the CPU for which we're performing
3594 * load balancing ?
3595 * @sgs: Variable containing the statistics of the group.
3596 */
3597 static inline void update_sd_power_savings_stats(struct sched_group *group,
3598 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3599 {
3600
3601 if (!sds->power_savings_balance)
3602 return;
3603
3604 /*
3605 * If the local group is idle or completely loaded
3606 * no need to do power savings balance at this domain
3607 */
3608 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3609 !sds->this_nr_running))
3610 sds->power_savings_balance = 0;
3611
3612 /*
3613 * If a group is already running at full capacity or idle,
3614 * don't include that group in power savings calculations
3615 */
3616 if (!sds->power_savings_balance ||
3617 sgs->sum_nr_running >= sgs->group_capacity ||
3618 !sgs->sum_nr_running)
3619 return;
3620
3621 /*
3622 * Calculate the group which has the least non-idle load.
3623 * This is the group from where we need to pick up the load
3624 * for saving power
3625 */
3626 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3627 (sgs->sum_nr_running == sds->min_nr_running &&
3628 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3629 sds->group_min = group;
3630 sds->min_nr_running = sgs->sum_nr_running;
3631 sds->min_load_per_task = sgs->sum_weighted_load /
3632 sgs->sum_nr_running;
3633 }
3634
3635 /*
3636 * Calculate the group which is almost near its
3637 * capacity but still has some space to pick up some load
3638 * from other group and save more power
3639 */
3640 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3641 return;
3642
3643 if (sgs->sum_nr_running > sds->leader_nr_running ||
3644 (sgs->sum_nr_running == sds->leader_nr_running &&
3645 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3646 sds->group_leader = group;
3647 sds->leader_nr_running = sgs->sum_nr_running;
3648 }
3649 }
3650
3651 /**
3652 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3653 * @sds: Variable containing the statistics of the sched_domain
3654 * under consideration.
3655 * @this_cpu: Cpu at which we're currently performing load-balancing.
3656 * @imbalance: Variable to store the imbalance.
3657 *
3658 * Description:
3659 * Check if we have potential to perform some power-savings balance.
3660 * If yes, set the busiest group to be the least loaded group in the
3661 * sched_domain, so that it's CPUs can be put to idle.
3662 *
3663 * Returns 1 if there is potential to perform power-savings balance.
3664 * Else returns 0.
3665 */
3666 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3667 int this_cpu, unsigned long *imbalance)
3668 {
3669 if (!sds->power_savings_balance)
3670 return 0;
3671
3672 if (sds->this != sds->group_leader ||
3673 sds->group_leader == sds->group_min)
3674 return 0;
3675
3676 *imbalance = sds->min_load_per_task;
3677 sds->busiest = sds->group_min;
3678
3679 return 1;
3680
3681 }
3682 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3683 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3684 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3685 {
3686 return;
3687 }
3688
3689 static inline void update_sd_power_savings_stats(struct sched_group *group,
3690 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3691 {
3692 return;
3693 }
3694
3695 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3696 int this_cpu, unsigned long *imbalance)
3697 {
3698 return 0;
3699 }
3700 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3701
3702
3703 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3704 {
3705 return SCHED_POWER_SCALE;
3706 }
3707
3708 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3709 {
3710 return default_scale_freq_power(sd, cpu);
3711 }
3712
3713 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3714 {
3715 unsigned long weight = sd->span_weight;
3716 unsigned long smt_gain = sd->smt_gain;
3717
3718 smt_gain /= weight;
3719
3720 return smt_gain;
3721 }
3722
3723 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3724 {
3725 return default_scale_smt_power(sd, cpu);
3726 }
3727
3728 unsigned long scale_rt_power(int cpu)
3729 {
3730 struct rq *rq = cpu_rq(cpu);
3731 u64 total, available;
3732
3733 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3734
3735 if (unlikely(total < rq->rt_avg)) {
3736 /* Ensures that power won't end up being negative */
3737 available = 0;
3738 } else {
3739 available = total - rq->rt_avg;
3740 }
3741
3742 if (unlikely((s64)total < SCHED_POWER_SCALE))
3743 total = SCHED_POWER_SCALE;
3744
3745 total >>= SCHED_POWER_SHIFT;
3746
3747 return div_u64(available, total);
3748 }
3749
3750 static void update_cpu_power(struct sched_domain *sd, int cpu)
3751 {
3752 unsigned long weight = sd->span_weight;
3753 unsigned long power = SCHED_POWER_SCALE;
3754 struct sched_group *sdg = sd->groups;
3755
3756 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3757 if (sched_feat(ARCH_POWER))
3758 power *= arch_scale_smt_power(sd, cpu);
3759 else
3760 power *= default_scale_smt_power(sd, cpu);
3761
3762 power >>= SCHED_POWER_SHIFT;
3763 }
3764
3765 sdg->sgp->power_orig = power;
3766
3767 if (sched_feat(ARCH_POWER))
3768 power *= arch_scale_freq_power(sd, cpu);
3769 else
3770 power *= default_scale_freq_power(sd, cpu);
3771
3772 power >>= SCHED_POWER_SHIFT;
3773
3774 power *= scale_rt_power(cpu);
3775 power >>= SCHED_POWER_SHIFT;
3776
3777 if (!power)
3778 power = 1;
3779
3780 cpu_rq(cpu)->cpu_power = power;
3781 sdg->sgp->power = power;
3782 }
3783
3784 void update_group_power(struct sched_domain *sd, int cpu)
3785 {
3786 struct sched_domain *child = sd->child;
3787 struct sched_group *group, *sdg = sd->groups;
3788 unsigned long power;
3789
3790 if (!child) {
3791 update_cpu_power(sd, cpu);
3792 return;
3793 }
3794
3795 power = 0;
3796
3797 group = child->groups;
3798 do {
3799 power += group->sgp->power;
3800 group = group->next;
3801 } while (group != child->groups);
3802
3803 sdg->sgp->power = power;
3804 }
3805
3806 /*
3807 * Try and fix up capacity for tiny siblings, this is needed when
3808 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3809 * which on its own isn't powerful enough.
3810 *
3811 * See update_sd_pick_busiest() and check_asym_packing().
3812 */
3813 static inline int
3814 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3815 {
3816 /*
3817 * Only siblings can have significantly less than SCHED_POWER_SCALE
3818 */
3819 if (!(sd->flags & SD_SHARE_CPUPOWER))
3820 return 0;
3821
3822 /*
3823 * If ~90% of the cpu_power is still there, we're good.
3824 */
3825 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3826 return 1;
3827
3828 return 0;
3829 }
3830
3831 /**
3832 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3833 * @sd: The sched_domain whose statistics are to be updated.
3834 * @group: sched_group whose statistics are to be updated.
3835 * @this_cpu: Cpu for which load balance is currently performed.
3836 * @idle: Idle status of this_cpu
3837 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3838 * @local_group: Does group contain this_cpu.
3839 * @cpus: Set of cpus considered for load balancing.
3840 * @balance: Should we balance.
3841 * @sgs: variable to hold the statistics for this group.
3842 */
3843 static inline void update_sg_lb_stats(struct sched_domain *sd,
3844 struct sched_group *group, int this_cpu,
3845 enum cpu_idle_type idle, int load_idx,
3846 int local_group, const struct cpumask *cpus,
3847 int *balance, struct sg_lb_stats *sgs)
3848 {
3849 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
3850 int i;
3851 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3852 unsigned long avg_load_per_task = 0;
3853
3854 if (local_group)
3855 balance_cpu = group_first_cpu(group);
3856
3857 /* Tally up the load of all CPUs in the group */
3858 max_cpu_load = 0;
3859 min_cpu_load = ~0UL;
3860 max_nr_running = 0;
3861
3862 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3863 struct rq *rq = cpu_rq(i);
3864
3865 /* Bias balancing toward cpus of our domain */
3866 if (local_group) {
3867 if (idle_cpu(i) && !first_idle_cpu) {
3868 first_idle_cpu = 1;
3869 balance_cpu = i;
3870 }
3871
3872 load = target_load(i, load_idx);
3873 } else {
3874 load = source_load(i, load_idx);
3875 if (load > max_cpu_load) {
3876 max_cpu_load = load;
3877 max_nr_running = rq->nr_running;
3878 }
3879 if (min_cpu_load > load)
3880 min_cpu_load = load;
3881 }
3882
3883 sgs->group_load += load;
3884 sgs->sum_nr_running += rq->nr_running;
3885 sgs->sum_weighted_load += weighted_cpuload(i);
3886 if (idle_cpu(i))
3887 sgs->idle_cpus++;
3888 }
3889
3890 /*
3891 * First idle cpu or the first cpu(busiest) in this sched group
3892 * is eligible for doing load balancing at this and above
3893 * domains. In the newly idle case, we will allow all the cpu's
3894 * to do the newly idle load balance.
3895 */
3896 if (idle != CPU_NEWLY_IDLE && local_group) {
3897 if (balance_cpu != this_cpu) {
3898 *balance = 0;
3899 return;
3900 }
3901 update_group_power(sd, this_cpu);
3902 }
3903
3904 /* Adjust by relative CPU power of the group */
3905 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3906
3907 /*
3908 * Consider the group unbalanced when the imbalance is larger
3909 * than the average weight of a task.
3910 *
3911 * APZ: with cgroup the avg task weight can vary wildly and
3912 * might not be a suitable number - should we keep a
3913 * normalized nr_running number somewhere that negates
3914 * the hierarchy?
3915 */
3916 if (sgs->sum_nr_running)
3917 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3918
3919 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
3920 sgs->group_imb = 1;
3921
3922 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3923 SCHED_POWER_SCALE);
3924 if (!sgs->group_capacity)
3925 sgs->group_capacity = fix_small_capacity(sd, group);
3926 sgs->group_weight = group->group_weight;
3927
3928 if (sgs->group_capacity > sgs->sum_nr_running)
3929 sgs->group_has_capacity = 1;
3930 }
3931
3932 /**
3933 * update_sd_pick_busiest - return 1 on busiest group
3934 * @sd: sched_domain whose statistics are to be checked
3935 * @sds: sched_domain statistics
3936 * @sg: sched_group candidate to be checked for being the busiest
3937 * @sgs: sched_group statistics
3938 * @this_cpu: the current cpu
3939 *
3940 * Determine if @sg is a busier group than the previously selected
3941 * busiest group.
3942 */
3943 static bool update_sd_pick_busiest(struct sched_domain *sd,
3944 struct sd_lb_stats *sds,
3945 struct sched_group *sg,
3946 struct sg_lb_stats *sgs,
3947 int this_cpu)
3948 {
3949 if (sgs->avg_load <= sds->max_load)
3950 return false;
3951
3952 if (sgs->sum_nr_running > sgs->group_capacity)
3953 return true;
3954
3955 if (sgs->group_imb)
3956 return true;
3957
3958 /*
3959 * ASYM_PACKING needs to move all the work to the lowest
3960 * numbered CPUs in the group, therefore mark all groups
3961 * higher than ourself as busy.
3962 */
3963 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3964 this_cpu < group_first_cpu(sg)) {
3965 if (!sds->busiest)
3966 return true;
3967
3968 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3969 return true;
3970 }
3971
3972 return false;
3973 }
3974
3975 /**
3976 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3977 * @sd: sched_domain whose statistics are to be updated.
3978 * @this_cpu: Cpu for which load balance is currently performed.
3979 * @idle: Idle status of this_cpu
3980 * @cpus: Set of cpus considered for load balancing.
3981 * @balance: Should we balance.
3982 * @sds: variable to hold the statistics for this sched_domain.
3983 */
3984 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3985 enum cpu_idle_type idle, const struct cpumask *cpus,
3986 int *balance, struct sd_lb_stats *sds)
3987 {
3988 struct sched_domain *child = sd->child;
3989 struct sched_group *sg = sd->groups;
3990 struct sg_lb_stats sgs;
3991 int load_idx, prefer_sibling = 0;
3992
3993 if (child && child->flags & SD_PREFER_SIBLING)
3994 prefer_sibling = 1;
3995
3996 init_sd_power_savings_stats(sd, sds, idle);
3997 load_idx = get_sd_load_idx(sd, idle);
3998
3999 do {
4000 int local_group;
4001
4002 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
4003 memset(&sgs, 0, sizeof(sgs));
4004 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
4005 local_group, cpus, balance, &sgs);
4006
4007 if (local_group && !(*balance))
4008 return;
4009
4010 sds->total_load += sgs.group_load;
4011 sds->total_pwr += sg->sgp->power;
4012
4013 /*
4014 * In case the child domain prefers tasks go to siblings
4015 * first, lower the sg capacity to one so that we'll try
4016 * and move all the excess tasks away. We lower the capacity
4017 * of a group only if the local group has the capacity to fit
4018 * these excess tasks, i.e. nr_running < group_capacity. The
4019 * extra check prevents the case where you always pull from the
4020 * heaviest group when it is already under-utilized (possible
4021 * with a large weight task outweighs the tasks on the system).
4022 */
4023 if (prefer_sibling && !local_group && sds->this_has_capacity)
4024 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4025
4026 if (local_group) {
4027 sds->this_load = sgs.avg_load;
4028 sds->this = sg;
4029 sds->this_nr_running = sgs.sum_nr_running;
4030 sds->this_load_per_task = sgs.sum_weighted_load;
4031 sds->this_has_capacity = sgs.group_has_capacity;
4032 sds->this_idle_cpus = sgs.idle_cpus;
4033 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
4034 sds->max_load = sgs.avg_load;
4035 sds->busiest = sg;
4036 sds->busiest_nr_running = sgs.sum_nr_running;
4037 sds->busiest_idle_cpus = sgs.idle_cpus;
4038 sds->busiest_group_capacity = sgs.group_capacity;
4039 sds->busiest_load_per_task = sgs.sum_weighted_load;
4040 sds->busiest_has_capacity = sgs.group_has_capacity;
4041 sds->busiest_group_weight = sgs.group_weight;
4042 sds->group_imb = sgs.group_imb;
4043 }
4044
4045 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
4046 sg = sg->next;
4047 } while (sg != sd->groups);
4048 }
4049
4050 /**
4051 * check_asym_packing - Check to see if the group is packed into the
4052 * sched doman.
4053 *
4054 * This is primarily intended to used at the sibling level. Some
4055 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4056 * case of POWER7, it can move to lower SMT modes only when higher
4057 * threads are idle. When in lower SMT modes, the threads will
4058 * perform better since they share less core resources. Hence when we
4059 * have idle threads, we want them to be the higher ones.
4060 *
4061 * This packing function is run on idle threads. It checks to see if
4062 * the busiest CPU in this domain (core in the P7 case) has a higher
4063 * CPU number than the packing function is being run on. Here we are
4064 * assuming lower CPU number will be equivalent to lower a SMT thread
4065 * number.
4066 *
4067 * Returns 1 when packing is required and a task should be moved to
4068 * this CPU. The amount of the imbalance is returned in *imbalance.
4069 *
4070 * @sd: The sched_domain whose packing is to be checked.
4071 * @sds: Statistics of the sched_domain which is to be packed
4072 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4073 * @imbalance: returns amount of imbalanced due to packing.
4074 */
4075 static int check_asym_packing(struct sched_domain *sd,
4076 struct sd_lb_stats *sds,
4077 int this_cpu, unsigned long *imbalance)
4078 {
4079 int busiest_cpu;
4080
4081 if (!(sd->flags & SD_ASYM_PACKING))
4082 return 0;
4083
4084 if (!sds->busiest)
4085 return 0;
4086
4087 busiest_cpu = group_first_cpu(sds->busiest);
4088 if (this_cpu > busiest_cpu)
4089 return 0;
4090
4091 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
4092 SCHED_POWER_SCALE);
4093 return 1;
4094 }
4095
4096 /**
4097 * fix_small_imbalance - Calculate the minor imbalance that exists
4098 * amongst the groups of a sched_domain, during
4099 * load balancing.
4100 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4101 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4102 * @imbalance: Variable to store the imbalance.
4103 */
4104 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4105 int this_cpu, unsigned long *imbalance)
4106 {
4107 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4108 unsigned int imbn = 2;
4109 unsigned long scaled_busy_load_per_task;
4110
4111 if (sds->this_nr_running) {
4112 sds->this_load_per_task /= sds->this_nr_running;
4113 if (sds->busiest_load_per_task >
4114 sds->this_load_per_task)
4115 imbn = 1;
4116 } else
4117 sds->this_load_per_task =
4118 cpu_avg_load_per_task(this_cpu);
4119
4120 scaled_busy_load_per_task = sds->busiest_load_per_task
4121 * SCHED_POWER_SCALE;
4122 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4123
4124 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4125 (scaled_busy_load_per_task * imbn)) {
4126 *imbalance = sds->busiest_load_per_task;
4127 return;
4128 }
4129
4130 /*
4131 * OK, we don't have enough imbalance to justify moving tasks,
4132 * however we may be able to increase total CPU power used by
4133 * moving them.
4134 */
4135
4136 pwr_now += sds->busiest->sgp->power *
4137 min(sds->busiest_load_per_task, sds->max_load);
4138 pwr_now += sds->this->sgp->power *
4139 min(sds->this_load_per_task, sds->this_load);
4140 pwr_now /= SCHED_POWER_SCALE;
4141
4142 /* Amount of load we'd subtract */
4143 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4144 sds->busiest->sgp->power;
4145 if (sds->max_load > tmp)
4146 pwr_move += sds->busiest->sgp->power *
4147 min(sds->busiest_load_per_task, sds->max_load - tmp);
4148
4149 /* Amount of load we'd add */
4150 if (sds->max_load * sds->busiest->sgp->power <
4151 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4152 tmp = (sds->max_load * sds->busiest->sgp->power) /
4153 sds->this->sgp->power;
4154 else
4155 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4156 sds->this->sgp->power;
4157 pwr_move += sds->this->sgp->power *
4158 min(sds->this_load_per_task, sds->this_load + tmp);
4159 pwr_move /= SCHED_POWER_SCALE;
4160
4161 /* Move if we gain throughput */
4162 if (pwr_move > pwr_now)
4163 *imbalance = sds->busiest_load_per_task;
4164 }
4165
4166 /**
4167 * calculate_imbalance - Calculate the amount of imbalance present within the
4168 * groups of a given sched_domain during load balance.
4169 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4170 * @this_cpu: Cpu for which currently load balance is being performed.
4171 * @imbalance: The variable to store the imbalance.
4172 */
4173 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4174 unsigned long *imbalance)
4175 {
4176 unsigned long max_pull, load_above_capacity = ~0UL;
4177
4178 sds->busiest_load_per_task /= sds->busiest_nr_running;
4179 if (sds->group_imb) {
4180 sds->busiest_load_per_task =
4181 min(sds->busiest_load_per_task, sds->avg_load);
4182 }
4183
4184 /*
4185 * In the presence of smp nice balancing, certain scenarios can have
4186 * max load less than avg load(as we skip the groups at or below
4187 * its cpu_power, while calculating max_load..)
4188 */
4189 if (sds->max_load < sds->avg_load) {
4190 *imbalance = 0;
4191 return fix_small_imbalance(sds, this_cpu, imbalance);
4192 }
4193
4194 if (!sds->group_imb) {
4195 /*
4196 * Don't want to pull so many tasks that a group would go idle.
4197 */
4198 load_above_capacity = (sds->busiest_nr_running -
4199 sds->busiest_group_capacity);
4200
4201 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4202
4203 load_above_capacity /= sds->busiest->sgp->power;
4204 }
4205
4206 /*
4207 * We're trying to get all the cpus to the average_load, so we don't
4208 * want to push ourselves above the average load, nor do we wish to
4209 * reduce the max loaded cpu below the average load. At the same time,
4210 * we also don't want to reduce the group load below the group capacity
4211 * (so that we can implement power-savings policies etc). Thus we look
4212 * for the minimum possible imbalance.
4213 * Be careful of negative numbers as they'll appear as very large values
4214 * with unsigned longs.
4215 */
4216 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4217
4218 /* How much load to actually move to equalise the imbalance */
4219 *imbalance = min(max_pull * sds->busiest->sgp->power,
4220 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4221 / SCHED_POWER_SCALE;
4222
4223 /*
4224 * if *imbalance is less than the average load per runnable task
4225 * there is no guarantee that any tasks will be moved so we'll have
4226 * a think about bumping its value to force at least one task to be
4227 * moved
4228 */
4229 if (*imbalance < sds->busiest_load_per_task)
4230 return fix_small_imbalance(sds, this_cpu, imbalance);
4231
4232 }
4233
4234 /******* find_busiest_group() helpers end here *********************/
4235
4236 /**
4237 * find_busiest_group - Returns the busiest group within the sched_domain
4238 * if there is an imbalance. If there isn't an imbalance, and
4239 * the user has opted for power-savings, it returns a group whose
4240 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4241 * such a group exists.
4242 *
4243 * Also calculates the amount of weighted load which should be moved
4244 * to restore balance.
4245 *
4246 * @sd: The sched_domain whose busiest group is to be returned.
4247 * @this_cpu: The cpu for which load balancing is currently being performed.
4248 * @imbalance: Variable which stores amount of weighted load which should
4249 * be moved to restore balance/put a group to idle.
4250 * @idle: The idle status of this_cpu.
4251 * @cpus: The set of CPUs under consideration for load-balancing.
4252 * @balance: Pointer to a variable indicating if this_cpu
4253 * is the appropriate cpu to perform load balancing at this_level.
4254 *
4255 * Returns: - the busiest group if imbalance exists.
4256 * - If no imbalance and user has opted for power-savings balance,
4257 * return the least loaded group whose CPUs can be
4258 * put to idle by rebalancing its tasks onto our group.
4259 */
4260 static struct sched_group *
4261 find_busiest_group(struct sched_domain *sd, int this_cpu,
4262 unsigned long *imbalance, enum cpu_idle_type idle,
4263 const struct cpumask *cpus, int *balance)
4264 {
4265 struct sd_lb_stats sds;
4266
4267 memset(&sds, 0, sizeof(sds));
4268
4269 /*
4270 * Compute the various statistics relavent for load balancing at
4271 * this level.
4272 */
4273 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
4274
4275 /*
4276 * this_cpu is not the appropriate cpu to perform load balancing at
4277 * this level.
4278 */
4279 if (!(*balance))
4280 goto ret;
4281
4282 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
4283 check_asym_packing(sd, &sds, this_cpu, imbalance))
4284 return sds.busiest;
4285
4286 /* There is no busy sibling group to pull tasks from */
4287 if (!sds.busiest || sds.busiest_nr_running == 0)
4288 goto out_balanced;
4289
4290 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4291
4292 /*
4293 * If the busiest group is imbalanced the below checks don't
4294 * work because they assumes all things are equal, which typically
4295 * isn't true due to cpus_allowed constraints and the like.
4296 */
4297 if (sds.group_imb)
4298 goto force_balance;
4299
4300 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4301 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4302 !sds.busiest_has_capacity)
4303 goto force_balance;
4304
4305 /*
4306 * If the local group is more busy than the selected busiest group
4307 * don't try and pull any tasks.
4308 */
4309 if (sds.this_load >= sds.max_load)
4310 goto out_balanced;
4311
4312 /*
4313 * Don't pull any tasks if this group is already above the domain
4314 * average load.
4315 */
4316 if (sds.this_load >= sds.avg_load)
4317 goto out_balanced;
4318
4319 if (idle == CPU_IDLE) {
4320 /*
4321 * This cpu is idle. If the busiest group load doesn't
4322 * have more tasks than the number of available cpu's and
4323 * there is no imbalance between this and busiest group
4324 * wrt to idle cpu's, it is balanced.
4325 */
4326 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4327 sds.busiest_nr_running <= sds.busiest_group_weight)
4328 goto out_balanced;
4329 } else {
4330 /*
4331 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4332 * imbalance_pct to be conservative.
4333 */
4334 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4335 goto out_balanced;
4336 }
4337
4338 force_balance:
4339 /* Looks like there is an imbalance. Compute it */
4340 calculate_imbalance(&sds, this_cpu, imbalance);
4341 return sds.busiest;
4342
4343 out_balanced:
4344 /*
4345 * There is no obvious imbalance. But check if we can do some balancing
4346 * to save power.
4347 */
4348 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4349 return sds.busiest;
4350 ret:
4351 *imbalance = 0;
4352 return NULL;
4353 }
4354
4355 /*
4356 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4357 */
4358 static struct rq *
4359 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4360 enum cpu_idle_type idle, unsigned long imbalance,
4361 const struct cpumask *cpus)
4362 {
4363 struct rq *busiest = NULL, *rq;
4364 unsigned long max_load = 0;
4365 int i;
4366
4367 for_each_cpu(i, sched_group_cpus(group)) {
4368 unsigned long power = power_of(i);
4369 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4370 SCHED_POWER_SCALE);
4371 unsigned long wl;
4372
4373 if (!capacity)
4374 capacity = fix_small_capacity(sd, group);
4375
4376 if (!cpumask_test_cpu(i, cpus))
4377 continue;
4378
4379 rq = cpu_rq(i);
4380 wl = weighted_cpuload(i);
4381
4382 /*
4383 * When comparing with imbalance, use weighted_cpuload()
4384 * which is not scaled with the cpu power.
4385 */
4386 if (capacity && rq->nr_running == 1 && wl > imbalance)
4387 continue;
4388
4389 /*
4390 * For the load comparisons with the other cpu's, consider
4391 * the weighted_cpuload() scaled with the cpu power, so that
4392 * the load can be moved away from the cpu that is potentially
4393 * running at a lower capacity.
4394 */
4395 wl = (wl * SCHED_POWER_SCALE) / power;
4396
4397 if (wl > max_load) {
4398 max_load = wl;
4399 busiest = rq;
4400 }
4401 }
4402
4403 return busiest;
4404 }
4405
4406 /*
4407 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4408 * so long as it is large enough.
4409 */
4410 #define MAX_PINNED_INTERVAL 512
4411
4412 /* Working cpumask for load_balance and load_balance_newidle. */
4413 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4414
4415 static int need_active_balance(struct sched_domain *sd, int idle,
4416 int busiest_cpu, int this_cpu)
4417 {
4418 if (idle == CPU_NEWLY_IDLE) {
4419
4420 /*
4421 * ASYM_PACKING needs to force migrate tasks from busy but
4422 * higher numbered CPUs in order to pack all tasks in the
4423 * lowest numbered CPUs.
4424 */
4425 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4426 return 1;
4427
4428 /*
4429 * The only task running in a non-idle cpu can be moved to this
4430 * cpu in an attempt to completely freeup the other CPU
4431 * package.
4432 *
4433 * The package power saving logic comes from
4434 * find_busiest_group(). If there are no imbalance, then
4435 * f_b_g() will return NULL. However when sched_mc={1,2} then
4436 * f_b_g() will select a group from which a running task may be
4437 * pulled to this cpu in order to make the other package idle.
4438 * If there is no opportunity to make a package idle and if
4439 * there are no imbalance, then f_b_g() will return NULL and no
4440 * action will be taken in load_balance_newidle().
4441 *
4442 * Under normal task pull operation due to imbalance, there
4443 * will be more than one task in the source run queue and
4444 * move_tasks() will succeed. ld_moved will be true and this
4445 * active balance code will not be triggered.
4446 */
4447 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4448 return 0;
4449 }
4450
4451 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4452 }
4453
4454 static int active_load_balance_cpu_stop(void *data);
4455
4456 /*
4457 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4458 * tasks if there is an imbalance.
4459 */
4460 static int load_balance(int this_cpu, struct rq *this_rq,
4461 struct sched_domain *sd, enum cpu_idle_type idle,
4462 int *balance)
4463 {
4464 int ld_moved, all_pinned = 0, active_balance = 0;
4465 struct sched_group *group;
4466 unsigned long imbalance;
4467 struct rq *busiest;
4468 unsigned long flags;
4469 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4470
4471 cpumask_copy(cpus, cpu_active_mask);
4472
4473 schedstat_inc(sd, lb_count[idle]);
4474
4475 redo:
4476 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
4477 cpus, balance);
4478
4479 if (*balance == 0)
4480 goto out_balanced;
4481
4482 if (!group) {
4483 schedstat_inc(sd, lb_nobusyg[idle]);
4484 goto out_balanced;
4485 }
4486
4487 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
4488 if (!busiest) {
4489 schedstat_inc(sd, lb_nobusyq[idle]);
4490 goto out_balanced;
4491 }
4492
4493 BUG_ON(busiest == this_rq);
4494
4495 schedstat_add(sd, lb_imbalance[idle], imbalance);
4496
4497 ld_moved = 0;
4498 if (busiest->nr_running > 1) {
4499 /*
4500 * Attempt to move tasks. If find_busiest_group has found
4501 * an imbalance but busiest->nr_running <= 1, the group is
4502 * still unbalanced. ld_moved simply stays zero, so it is
4503 * correctly treated as an imbalance.
4504 */
4505 all_pinned = 1;
4506 local_irq_save(flags);
4507 double_rq_lock(this_rq, busiest);
4508 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4509 imbalance, sd, idle, &all_pinned);
4510 double_rq_unlock(this_rq, busiest);
4511 local_irq_restore(flags);
4512
4513 /*
4514 * some other cpu did the load balance for us.
4515 */
4516 if (ld_moved && this_cpu != smp_processor_id())
4517 resched_cpu(this_cpu);
4518
4519 /* All tasks on this runqueue were pinned by CPU affinity */
4520 if (unlikely(all_pinned)) {
4521 cpumask_clear_cpu(cpu_of(busiest), cpus);
4522 if (!cpumask_empty(cpus))
4523 goto redo;
4524 goto out_balanced;
4525 }
4526 }
4527
4528 if (!ld_moved) {
4529 schedstat_inc(sd, lb_failed[idle]);
4530 /*
4531 * Increment the failure counter only on periodic balance.
4532 * We do not want newidle balance, which can be very
4533 * frequent, pollute the failure counter causing
4534 * excessive cache_hot migrations and active balances.
4535 */
4536 if (idle != CPU_NEWLY_IDLE)
4537 sd->nr_balance_failed++;
4538
4539 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
4540 raw_spin_lock_irqsave(&busiest->lock, flags);
4541
4542 /* don't kick the active_load_balance_cpu_stop,
4543 * if the curr task on busiest cpu can't be
4544 * moved to this_cpu
4545 */
4546 if (!cpumask_test_cpu(this_cpu,
4547 tsk_cpus_allowed(busiest->curr))) {
4548 raw_spin_unlock_irqrestore(&busiest->lock,
4549 flags);
4550 all_pinned = 1;
4551 goto out_one_pinned;
4552 }
4553
4554 /*
4555 * ->active_balance synchronizes accesses to
4556 * ->active_balance_work. Once set, it's cleared
4557 * only after active load balance is finished.
4558 */
4559 if (!busiest->active_balance) {
4560 busiest->active_balance = 1;
4561 busiest->push_cpu = this_cpu;
4562 active_balance = 1;
4563 }
4564 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4565
4566 if (active_balance)
4567 stop_one_cpu_nowait(cpu_of(busiest),
4568 active_load_balance_cpu_stop, busiest,
4569 &busiest->active_balance_work);
4570
4571 /*
4572 * We've kicked active balancing, reset the failure
4573 * counter.
4574 */
4575 sd->nr_balance_failed = sd->cache_nice_tries+1;
4576 }
4577 } else
4578 sd->nr_balance_failed = 0;
4579
4580 if (likely(!active_balance)) {
4581 /* We were unbalanced, so reset the balancing interval */
4582 sd->balance_interval = sd->min_interval;
4583 } else {
4584 /*
4585 * If we've begun active balancing, start to back off. This
4586 * case may not be covered by the all_pinned logic if there
4587 * is only 1 task on the busy runqueue (because we don't call
4588 * move_tasks).
4589 */
4590 if (sd->balance_interval < sd->max_interval)
4591 sd->balance_interval *= 2;
4592 }
4593
4594 goto out;
4595
4596 out_balanced:
4597 schedstat_inc(sd, lb_balanced[idle]);
4598
4599 sd->nr_balance_failed = 0;
4600
4601 out_one_pinned:
4602 /* tune up the balancing interval */
4603 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4604 (sd->balance_interval < sd->max_interval))
4605 sd->balance_interval *= 2;
4606
4607 ld_moved = 0;
4608 out:
4609 return ld_moved;
4610 }
4611
4612 /*
4613 * idle_balance is called by schedule() if this_cpu is about to become
4614 * idle. Attempts to pull tasks from other CPUs.
4615 */
4616 void idle_balance(int this_cpu, struct rq *this_rq)
4617 {
4618 struct sched_domain *sd;
4619 int pulled_task = 0;
4620 unsigned long next_balance = jiffies + HZ;
4621
4622 this_rq->idle_stamp = this_rq->clock;
4623
4624 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4625 return;
4626
4627 /*
4628 * Drop the rq->lock, but keep IRQ/preempt disabled.
4629 */
4630 raw_spin_unlock(&this_rq->lock);
4631
4632 update_shares(this_cpu);
4633 rcu_read_lock();
4634 for_each_domain(this_cpu, sd) {
4635 unsigned long interval;
4636 int balance = 1;
4637
4638 if (!(sd->flags & SD_LOAD_BALANCE))
4639 continue;
4640
4641 if (sd->flags & SD_BALANCE_NEWIDLE) {
4642 /* If we've pulled tasks over stop searching: */
4643 pulled_task = load_balance(this_cpu, this_rq,
4644 sd, CPU_NEWLY_IDLE, &balance);
4645 }
4646
4647 interval = msecs_to_jiffies(sd->balance_interval);
4648 if (time_after(next_balance, sd->last_balance + interval))
4649 next_balance = sd->last_balance + interval;
4650 if (pulled_task) {
4651 this_rq->idle_stamp = 0;
4652 break;
4653 }
4654 }
4655 rcu_read_unlock();
4656
4657 raw_spin_lock(&this_rq->lock);
4658
4659 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4660 /*
4661 * We are going idle. next_balance may be set based on
4662 * a busy processor. So reset next_balance.
4663 */
4664 this_rq->next_balance = next_balance;
4665 }
4666 }
4667
4668 /*
4669 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4670 * running tasks off the busiest CPU onto idle CPUs. It requires at
4671 * least 1 task to be running on each physical CPU where possible, and
4672 * avoids physical / logical imbalances.
4673 */
4674 static int active_load_balance_cpu_stop(void *data)
4675 {
4676 struct rq *busiest_rq = data;
4677 int busiest_cpu = cpu_of(busiest_rq);
4678 int target_cpu = busiest_rq->push_cpu;
4679 struct rq *target_rq = cpu_rq(target_cpu);
4680 struct sched_domain *sd;
4681
4682 raw_spin_lock_irq(&busiest_rq->lock);
4683
4684 /* make sure the requested cpu hasn't gone down in the meantime */
4685 if (unlikely(busiest_cpu != smp_processor_id() ||
4686 !busiest_rq->active_balance))
4687 goto out_unlock;
4688
4689 /* Is there any task to move? */
4690 if (busiest_rq->nr_running <= 1)
4691 goto out_unlock;
4692
4693 /*
4694 * This condition is "impossible", if it occurs
4695 * we need to fix it. Originally reported by
4696 * Bjorn Helgaas on a 128-cpu setup.
4697 */
4698 BUG_ON(busiest_rq == target_rq);
4699
4700 /* move a task from busiest_rq to target_rq */
4701 double_lock_balance(busiest_rq, target_rq);
4702
4703 /* Search for an sd spanning us and the target CPU. */
4704 rcu_read_lock();
4705 for_each_domain(target_cpu, sd) {
4706 if ((sd->flags & SD_LOAD_BALANCE) &&
4707 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4708 break;
4709 }
4710
4711 if (likely(sd)) {
4712 schedstat_inc(sd, alb_count);
4713
4714 if (move_one_task(target_rq, target_cpu, busiest_rq,
4715 sd, CPU_IDLE))
4716 schedstat_inc(sd, alb_pushed);
4717 else
4718 schedstat_inc(sd, alb_failed);
4719 }
4720 rcu_read_unlock();
4721 double_unlock_balance(busiest_rq, target_rq);
4722 out_unlock:
4723 busiest_rq->active_balance = 0;
4724 raw_spin_unlock_irq(&busiest_rq->lock);
4725 return 0;
4726 }
4727
4728 #ifdef CONFIG_NO_HZ
4729 /*
4730 * idle load balancing details
4731 * - When one of the busy CPUs notice that there may be an idle rebalancing
4732 * needed, they will kick the idle load balancer, which then does idle
4733 * load balancing for all the idle CPUs.
4734 */
4735 static struct {
4736 cpumask_var_t idle_cpus_mask;
4737 atomic_t nr_cpus;
4738 unsigned long next_balance; /* in jiffy units */
4739 } nohz ____cacheline_aligned;
4740
4741 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4742 /**
4743 * lowest_flag_domain - Return lowest sched_domain containing flag.
4744 * @cpu: The cpu whose lowest level of sched domain is to
4745 * be returned.
4746 * @flag: The flag to check for the lowest sched_domain
4747 * for the given cpu.
4748 *
4749 * Returns the lowest sched_domain of a cpu which contains the given flag.
4750 */
4751 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4752 {
4753 struct sched_domain *sd;
4754
4755 for_each_domain(cpu, sd)
4756 if (sd->flags & flag)
4757 break;
4758
4759 return sd;
4760 }
4761
4762 /**
4763 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4764 * @cpu: The cpu whose domains we're iterating over.
4765 * @sd: variable holding the value of the power_savings_sd
4766 * for cpu.
4767 * @flag: The flag to filter the sched_domains to be iterated.
4768 *
4769 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4770 * set, starting from the lowest sched_domain to the highest.
4771 */
4772 #define for_each_flag_domain(cpu, sd, flag) \
4773 for (sd = lowest_flag_domain(cpu, flag); \
4774 (sd && (sd->flags & flag)); sd = sd->parent)
4775
4776 /**
4777 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4778 * @cpu: The cpu which is nominating a new idle_load_balancer.
4779 *
4780 * Returns: Returns the id of the idle load balancer if it exists,
4781 * Else, returns >= nr_cpu_ids.
4782 *
4783 * This algorithm picks the idle load balancer such that it belongs to a
4784 * semi-idle powersavings sched_domain. The idea is to try and avoid
4785 * completely idle packages/cores just for the purpose of idle load balancing
4786 * when there are other idle cpu's which are better suited for that job.
4787 */
4788 static int find_new_ilb(int cpu)
4789 {
4790 int ilb = cpumask_first(nohz.idle_cpus_mask);
4791 struct sched_group *ilbg;
4792 struct sched_domain *sd;
4793
4794 /*
4795 * Have idle load balancer selection from semi-idle packages only
4796 * when power-aware load balancing is enabled
4797 */
4798 if (!(sched_smt_power_savings || sched_mc_power_savings))
4799 goto out_done;
4800
4801 /*
4802 * Optimize for the case when we have no idle CPUs or only one
4803 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4804 */
4805 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
4806 goto out_done;
4807
4808 rcu_read_lock();
4809 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4810 ilbg = sd->groups;
4811
4812 do {
4813 if (ilbg->group_weight !=
4814 atomic_read(&ilbg->sgp->nr_busy_cpus)) {
4815 ilb = cpumask_first_and(nohz.idle_cpus_mask,
4816 sched_group_cpus(ilbg));
4817 goto unlock;
4818 }
4819
4820 ilbg = ilbg->next;
4821
4822 } while (ilbg != sd->groups);
4823 }
4824 unlock:
4825 rcu_read_unlock();
4826
4827 out_done:
4828 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4829 return ilb;
4830
4831 return nr_cpu_ids;
4832 }
4833 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4834 static inline int find_new_ilb(int call_cpu)
4835 {
4836 return nr_cpu_ids;
4837 }
4838 #endif
4839
4840 /*
4841 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4842 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4843 * CPU (if there is one).
4844 */
4845 static void nohz_balancer_kick(int cpu)
4846 {
4847 int ilb_cpu;
4848
4849 nohz.next_balance++;
4850
4851 ilb_cpu = find_new_ilb(cpu);
4852
4853 if (ilb_cpu >= nr_cpu_ids)
4854 return;
4855
4856 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4857 return;
4858 /*
4859 * Use smp_send_reschedule() instead of resched_cpu().
4860 * This way we generate a sched IPI on the target cpu which
4861 * is idle. And the softirq performing nohz idle load balance
4862 * will be run before returning from the IPI.
4863 */
4864 smp_send_reschedule(ilb_cpu);
4865 return;
4866 }
4867
4868 static inline void set_cpu_sd_state_busy(void)
4869 {
4870 struct sched_domain *sd;
4871 int cpu = smp_processor_id();
4872
4873 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4874 return;
4875 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4876
4877 rcu_read_lock();
4878 for_each_domain(cpu, sd)
4879 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4880 rcu_read_unlock();
4881 }
4882
4883 void set_cpu_sd_state_idle(void)
4884 {
4885 struct sched_domain *sd;
4886 int cpu = smp_processor_id();
4887
4888 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4889 return;
4890 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4891
4892 rcu_read_lock();
4893 for_each_domain(cpu, sd)
4894 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4895 rcu_read_unlock();
4896 }
4897
4898 /*
4899 * This routine will record that this cpu is going idle with tick stopped.
4900 * This info will be used in performing idle load balancing in the future.
4901 */
4902 void select_nohz_load_balancer(int stop_tick)
4903 {
4904 int cpu = smp_processor_id();
4905
4906 if (stop_tick) {
4907 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4908 return;
4909
4910 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4911 atomic_inc(&nohz.nr_cpus);
4912 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4913 }
4914 return;
4915 }
4916 #endif
4917
4918 static DEFINE_SPINLOCK(balancing);
4919
4920 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4921
4922 /*
4923 * Scale the max load_balance interval with the number of CPUs in the system.
4924 * This trades load-balance latency on larger machines for less cross talk.
4925 */
4926 void update_max_interval(void)
4927 {
4928 max_load_balance_interval = HZ*num_online_cpus()/10;
4929 }
4930
4931 /*
4932 * It checks each scheduling domain to see if it is due to be balanced,
4933 * and initiates a balancing operation if so.
4934 *
4935 * Balancing parameters are set up in arch_init_sched_domains.
4936 */
4937 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4938 {
4939 int balance = 1;
4940 struct rq *rq = cpu_rq(cpu);
4941 unsigned long interval;
4942 struct sched_domain *sd;
4943 /* Earliest time when we have to do rebalance again */
4944 unsigned long next_balance = jiffies + 60*HZ;
4945 int update_next_balance = 0;
4946 int need_serialize;
4947
4948 update_shares(cpu);
4949
4950 rcu_read_lock();
4951 for_each_domain(cpu, sd) {
4952 if (!(sd->flags & SD_LOAD_BALANCE))
4953 continue;
4954
4955 interval = sd->balance_interval;
4956 if (idle != CPU_IDLE)
4957 interval *= sd->busy_factor;
4958
4959 /* scale ms to jiffies */
4960 interval = msecs_to_jiffies(interval);
4961 interval = clamp(interval, 1UL, max_load_balance_interval);
4962
4963 need_serialize = sd->flags & SD_SERIALIZE;
4964
4965 if (need_serialize) {
4966 if (!spin_trylock(&balancing))
4967 goto out;
4968 }
4969
4970 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4971 if (load_balance(cpu, rq, sd, idle, &balance)) {
4972 /*
4973 * We've pulled tasks over so either we're no
4974 * longer idle.
4975 */
4976 idle = CPU_NOT_IDLE;
4977 }
4978 sd->last_balance = jiffies;
4979 }
4980 if (need_serialize)
4981 spin_unlock(&balancing);
4982 out:
4983 if (time_after(next_balance, sd->last_balance + interval)) {
4984 next_balance = sd->last_balance + interval;
4985 update_next_balance = 1;
4986 }
4987
4988 /*
4989 * Stop the load balance at this level. There is another
4990 * CPU in our sched group which is doing load balancing more
4991 * actively.
4992 */
4993 if (!balance)
4994 break;
4995 }
4996 rcu_read_unlock();
4997
4998 /*
4999 * next_balance will be updated only when there is a need.
5000 * When the cpu is attached to null domain for ex, it will not be
5001 * updated.
5002 */
5003 if (likely(update_next_balance))
5004 rq->next_balance = next_balance;
5005 }
5006
5007 #ifdef CONFIG_NO_HZ
5008 /*
5009 * In CONFIG_NO_HZ case, the idle balance kickee will do the
5010 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5011 */
5012 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5013 {
5014 struct rq *this_rq = cpu_rq(this_cpu);
5015 struct rq *rq;
5016 int balance_cpu;
5017
5018 if (idle != CPU_IDLE ||
5019 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5020 goto end;
5021
5022 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5023 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5024 continue;
5025
5026 /*
5027 * If this cpu gets work to do, stop the load balancing
5028 * work being done for other cpus. Next load
5029 * balancing owner will pick it up.
5030 */
5031 if (need_resched())
5032 break;
5033
5034 raw_spin_lock_irq(&this_rq->lock);
5035 update_rq_clock(this_rq);
5036 update_cpu_load(this_rq);
5037 raw_spin_unlock_irq(&this_rq->lock);
5038
5039 rebalance_domains(balance_cpu, CPU_IDLE);
5040
5041 rq = cpu_rq(balance_cpu);
5042 if (time_after(this_rq->next_balance, rq->next_balance))
5043 this_rq->next_balance = rq->next_balance;
5044 }
5045 nohz.next_balance = this_rq->next_balance;
5046 end:
5047 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5048 }
5049
5050 /*
5051 * Current heuristic for kicking the idle load balancer in the presence
5052 * of an idle cpu is the system.
5053 * - This rq has more than one task.
5054 * - At any scheduler domain level, this cpu's scheduler group has multiple
5055 * busy cpu's exceeding the group's power.
5056 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5057 * domain span are idle.
5058 */
5059 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5060 {
5061 unsigned long now = jiffies;
5062 struct sched_domain *sd;
5063
5064 if (unlikely(idle_cpu(cpu)))
5065 return 0;
5066
5067 /*
5068 * We may be recently in ticked or tickless idle mode. At the first
5069 * busy tick after returning from idle, we will update the busy stats.
5070 */
5071 set_cpu_sd_state_busy();
5072 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5073 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5074 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5075 atomic_dec(&nohz.nr_cpus);
5076 }
5077
5078 /*
5079 * None are in tickless mode and hence no need for NOHZ idle load
5080 * balancing.
5081 */
5082 if (likely(!atomic_read(&nohz.nr_cpus)))
5083 return 0;
5084
5085 if (time_before(now, nohz.next_balance))
5086 return 0;
5087
5088 if (rq->nr_running >= 2)
5089 goto need_kick;
5090
5091 rcu_read_lock();
5092 for_each_domain(cpu, sd) {
5093 struct sched_group *sg = sd->groups;
5094 struct sched_group_power *sgp = sg->sgp;
5095 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5096
5097 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5098 goto need_kick_unlock;
5099
5100 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5101 && (cpumask_first_and(nohz.idle_cpus_mask,
5102 sched_domain_span(sd)) < cpu))
5103 goto need_kick_unlock;
5104
5105 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5106 break;
5107 }
5108 rcu_read_unlock();
5109 return 0;
5110
5111 need_kick_unlock:
5112 rcu_read_unlock();
5113 need_kick:
5114 return 1;
5115 }
5116 #else
5117 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5118 #endif
5119
5120 /*
5121 * run_rebalance_domains is triggered when needed from the scheduler tick.
5122 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5123 */
5124 static void run_rebalance_domains(struct softirq_action *h)
5125 {
5126 int this_cpu = smp_processor_id();
5127 struct rq *this_rq = cpu_rq(this_cpu);
5128 enum cpu_idle_type idle = this_rq->idle_balance ?
5129 CPU_IDLE : CPU_NOT_IDLE;
5130
5131 rebalance_domains(this_cpu, idle);
5132
5133 /*
5134 * If this cpu has a pending nohz_balance_kick, then do the
5135 * balancing on behalf of the other idle cpus whose ticks are
5136 * stopped.
5137 */
5138 nohz_idle_balance(this_cpu, idle);
5139 }
5140
5141 static inline int on_null_domain(int cpu)
5142 {
5143 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5144 }
5145
5146 /*
5147 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5148 */
5149 void trigger_load_balance(struct rq *rq, int cpu)
5150 {
5151 /* Don't need to rebalance while attached to NULL domain */
5152 if (time_after_eq(jiffies, rq->next_balance) &&
5153 likely(!on_null_domain(cpu)))
5154 raise_softirq(SCHED_SOFTIRQ);
5155 #ifdef CONFIG_NO_HZ
5156 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5157 nohz_balancer_kick(cpu);
5158 #endif
5159 }
5160
5161 static void rq_online_fair(struct rq *rq)
5162 {
5163 update_sysctl();
5164 }
5165
5166 static void rq_offline_fair(struct rq *rq)
5167 {
5168 update_sysctl();
5169 }
5170
5171 #endif /* CONFIG_SMP */
5172
5173 /*
5174 * scheduler tick hitting a task of our scheduling class:
5175 */
5176 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5177 {
5178 struct cfs_rq *cfs_rq;
5179 struct sched_entity *se = &curr->se;
5180
5181 for_each_sched_entity(se) {
5182 cfs_rq = cfs_rq_of(se);
5183 entity_tick(cfs_rq, se, queued);
5184 }
5185 }
5186
5187 /*
5188 * called on fork with the child task as argument from the parent's context
5189 * - child not yet on the tasklist
5190 * - preemption disabled
5191 */
5192 static void task_fork_fair(struct task_struct *p)
5193 {
5194 struct cfs_rq *cfs_rq = task_cfs_rq(current);
5195 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
5196 int this_cpu = smp_processor_id();
5197 struct rq *rq = this_rq();
5198 unsigned long flags;
5199
5200 raw_spin_lock_irqsave(&rq->lock, flags);
5201
5202 update_rq_clock(rq);
5203
5204 if (unlikely(task_cpu(p) != this_cpu)) {
5205 rcu_read_lock();
5206 __set_task_cpu(p, this_cpu);
5207 rcu_read_unlock();
5208 }
5209
5210 update_curr(cfs_rq);
5211
5212 if (curr)
5213 se->vruntime = curr->vruntime;
5214 place_entity(cfs_rq, se, 1);
5215
5216 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5217 /*
5218 * Upon rescheduling, sched_class::put_prev_task() will place
5219 * 'current' within the tree based on its new key value.
5220 */
5221 swap(curr->vruntime, se->vruntime);
5222 resched_task(rq->curr);
5223 }
5224
5225 se->vruntime -= cfs_rq->min_vruntime;
5226
5227 raw_spin_unlock_irqrestore(&rq->lock, flags);
5228 }
5229
5230 /*
5231 * Priority of the task has changed. Check to see if we preempt
5232 * the current task.
5233 */
5234 static void
5235 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5236 {
5237 if (!p->se.on_rq)
5238 return;
5239
5240 /*
5241 * Reschedule if we are currently running on this runqueue and
5242 * our priority decreased, or if we are not currently running on
5243 * this runqueue and our priority is higher than the current's
5244 */
5245 if (rq->curr == p) {
5246 if (p->prio > oldprio)
5247 resched_task(rq->curr);
5248 } else
5249 check_preempt_curr(rq, p, 0);
5250 }
5251
5252 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5253 {
5254 struct sched_entity *se = &p->se;
5255 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5256
5257 /*
5258 * Ensure the task's vruntime is normalized, so that when its
5259 * switched back to the fair class the enqueue_entity(.flags=0) will
5260 * do the right thing.
5261 *
5262 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5263 * have normalized the vruntime, if it was !on_rq, then only when
5264 * the task is sleeping will it still have non-normalized vruntime.
5265 */
5266 if (!se->on_rq && p->state != TASK_RUNNING) {
5267 /*
5268 * Fix up our vruntime so that the current sleep doesn't
5269 * cause 'unlimited' sleep bonus.
5270 */
5271 place_entity(cfs_rq, se, 0);
5272 se->vruntime -= cfs_rq->min_vruntime;
5273 }
5274 }
5275
5276 /*
5277 * We switched to the sched_fair class.
5278 */
5279 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5280 {
5281 if (!p->se.on_rq)
5282 return;
5283
5284 /*
5285 * We were most likely switched from sched_rt, so
5286 * kick off the schedule if running, otherwise just see
5287 * if we can still preempt the current task.
5288 */
5289 if (rq->curr == p)
5290 resched_task(rq->curr);
5291 else
5292 check_preempt_curr(rq, p, 0);
5293 }
5294
5295 /* Account for a task changing its policy or group.
5296 *
5297 * This routine is mostly called to set cfs_rq->curr field when a task
5298 * migrates between groups/classes.
5299 */
5300 static void set_curr_task_fair(struct rq *rq)
5301 {
5302 struct sched_entity *se = &rq->curr->se;
5303
5304 for_each_sched_entity(se) {
5305 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5306
5307 set_next_entity(cfs_rq, se);
5308 /* ensure bandwidth has been allocated on our new cfs_rq */
5309 account_cfs_rq_runtime(cfs_rq, 0);
5310 }
5311 }
5312
5313 void init_cfs_rq(struct cfs_rq *cfs_rq)
5314 {
5315 cfs_rq->tasks_timeline = RB_ROOT;
5316 INIT_LIST_HEAD(&cfs_rq->tasks);
5317 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5318 #ifndef CONFIG_64BIT
5319 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5320 #endif
5321 }
5322
5323 #ifdef CONFIG_FAIR_GROUP_SCHED
5324 static void task_move_group_fair(struct task_struct *p, int on_rq)
5325 {
5326 /*
5327 * If the task was not on the rq at the time of this cgroup movement
5328 * it must have been asleep, sleeping tasks keep their ->vruntime
5329 * absolute on their old rq until wakeup (needed for the fair sleeper
5330 * bonus in place_entity()).
5331 *
5332 * If it was on the rq, we've just 'preempted' it, which does convert
5333 * ->vruntime to a relative base.
5334 *
5335 * Make sure both cases convert their relative position when migrating
5336 * to another cgroup's rq. This does somewhat interfere with the
5337 * fair sleeper stuff for the first placement, but who cares.
5338 */
5339 if (!on_rq)
5340 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5341 set_task_rq(p, task_cpu(p));
5342 if (!on_rq)
5343 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5344 }
5345
5346 void free_fair_sched_group(struct task_group *tg)
5347 {
5348 int i;
5349
5350 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5351
5352 for_each_possible_cpu(i) {
5353 if (tg->cfs_rq)
5354 kfree(tg->cfs_rq[i]);
5355 if (tg->se)
5356 kfree(tg->se[i]);
5357 }
5358
5359 kfree(tg->cfs_rq);
5360 kfree(tg->se);
5361 }
5362
5363 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5364 {
5365 struct cfs_rq *cfs_rq;
5366 struct sched_entity *se;
5367 int i;
5368
5369 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5370 if (!tg->cfs_rq)
5371 goto err;
5372 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5373 if (!tg->se)
5374 goto err;
5375
5376 tg->shares = NICE_0_LOAD;
5377
5378 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5379
5380 for_each_possible_cpu(i) {
5381 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5382 GFP_KERNEL, cpu_to_node(i));
5383 if (!cfs_rq)
5384 goto err;
5385
5386 se = kzalloc_node(sizeof(struct sched_entity),
5387 GFP_KERNEL, cpu_to_node(i));
5388 if (!se)
5389 goto err_free_rq;
5390
5391 init_cfs_rq(cfs_rq);
5392 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5393 }
5394
5395 return 1;
5396
5397 err_free_rq:
5398 kfree(cfs_rq);
5399 err:
5400 return 0;
5401 }
5402
5403 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5404 {
5405 struct rq *rq = cpu_rq(cpu);
5406 unsigned long flags;
5407
5408 /*
5409 * Only empty task groups can be destroyed; so we can speculatively
5410 * check on_list without danger of it being re-added.
5411 */
5412 if (!tg->cfs_rq[cpu]->on_list)
5413 return;
5414
5415 raw_spin_lock_irqsave(&rq->lock, flags);
5416 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5417 raw_spin_unlock_irqrestore(&rq->lock, flags);
5418 }
5419
5420 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5421 struct sched_entity *se, int cpu,
5422 struct sched_entity *parent)
5423 {
5424 struct rq *rq = cpu_rq(cpu);
5425
5426 cfs_rq->tg = tg;
5427 cfs_rq->rq = rq;
5428 #ifdef CONFIG_SMP
5429 /* allow initial update_cfs_load() to truncate */
5430 cfs_rq->load_stamp = 1;
5431 #endif
5432 init_cfs_rq_runtime(cfs_rq);
5433
5434 tg->cfs_rq[cpu] = cfs_rq;
5435 tg->se[cpu] = se;
5436
5437 /* se could be NULL for root_task_group */
5438 if (!se)
5439 return;
5440
5441 if (!parent)
5442 se->cfs_rq = &rq->cfs;
5443 else
5444 se->cfs_rq = parent->my_q;
5445
5446 se->my_q = cfs_rq;
5447 update_load_set(&se->load, 0);
5448 se->parent = parent;
5449 }
5450
5451 static DEFINE_MUTEX(shares_mutex);
5452
5453 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5454 {
5455 int i;
5456 unsigned long flags;
5457
5458 /*
5459 * We can't change the weight of the root cgroup.
5460 */
5461 if (!tg->se[0])
5462 return -EINVAL;
5463
5464 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5465
5466 mutex_lock(&shares_mutex);
5467 if (tg->shares == shares)
5468 goto done;
5469
5470 tg->shares = shares;
5471 for_each_possible_cpu(i) {
5472 struct rq *rq = cpu_rq(i);
5473 struct sched_entity *se;
5474
5475 se = tg->se[i];
5476 /* Propagate contribution to hierarchy */
5477 raw_spin_lock_irqsave(&rq->lock, flags);
5478 for_each_sched_entity(se)
5479 update_cfs_shares(group_cfs_rq(se));
5480 raw_spin_unlock_irqrestore(&rq->lock, flags);
5481 }
5482
5483 done:
5484 mutex_unlock(&shares_mutex);
5485 return 0;
5486 }
5487 #else /* CONFIG_FAIR_GROUP_SCHED */
5488
5489 void free_fair_sched_group(struct task_group *tg) { }
5490
5491 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5492 {
5493 return 1;
5494 }
5495
5496 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5497
5498 #endif /* CONFIG_FAIR_GROUP_SCHED */
5499
5500
5501 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5502 {
5503 struct sched_entity *se = &task->se;
5504 unsigned int rr_interval = 0;
5505
5506 /*
5507 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5508 * idle runqueue:
5509 */
5510 if (rq->cfs.load.weight)
5511 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5512
5513 return rr_interval;
5514 }
5515
5516 /*
5517 * All the scheduling class methods:
5518 */
5519 const struct sched_class fair_sched_class = {
5520 .next = &idle_sched_class,
5521 .enqueue_task = enqueue_task_fair,
5522 .dequeue_task = dequeue_task_fair,
5523 .yield_task = yield_task_fair,
5524 .yield_to_task = yield_to_task_fair,
5525
5526 .check_preempt_curr = check_preempt_wakeup,
5527
5528 .pick_next_task = pick_next_task_fair,
5529 .put_prev_task = put_prev_task_fair,
5530
5531 #ifdef CONFIG_SMP
5532 .select_task_rq = select_task_rq_fair,
5533
5534 .rq_online = rq_online_fair,
5535 .rq_offline = rq_offline_fair,
5536
5537 .task_waking = task_waking_fair,
5538 #endif
5539
5540 .set_curr_task = set_curr_task_fair,
5541 .task_tick = task_tick_fair,
5542 .task_fork = task_fork_fair,
5543
5544 .prio_changed = prio_changed_fair,
5545 .switched_from = switched_from_fair,
5546 .switched_to = switched_to_fair,
5547
5548 .get_rr_interval = get_rr_interval_fair,
5549
5550 #ifdef CONFIG_FAIR_GROUP_SCHED
5551 .task_move_group = task_move_group_fair,
5552 #endif
5553 };
5554
5555 #ifdef CONFIG_SCHED_DEBUG
5556 void print_cfs_stats(struct seq_file *m, int cpu)
5557 {
5558 struct cfs_rq *cfs_rq;
5559
5560 rcu_read_lock();
5561 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5562 print_cfs_rq(m, cpu, cfs_rq);
5563 rcu_read_unlock();
5564 }
5565 #endif
5566
5567 __init void init_sched_fair_class(void)
5568 {
5569 #ifdef CONFIG_SMP
5570 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5571
5572 #ifdef CONFIG_NO_HZ
5573 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5574 #endif
5575 #endif /* SMP */
5576
5577 }