]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/fair.c
sched/fair: Limit sched_cfs_period_timer() loop to avoid hard lockup
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24
25 #include <trace/events/sched.h>
26
27 /*
28 * Targeted preemption latency for CPU-bound tasks:
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39 */
40 unsigned int sysctl_sched_latency = 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42
43 /*
44 * The initial- and re-scaling of tunables is configurable
45 *
46 * Options are:
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53 */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55
56 /*
57 * Minimal preemption granularity for CPU-bound tasks:
58 *
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60 */
61 unsigned int sysctl_sched_min_granularity = 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
63
64 /*
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66 */
67 static unsigned int sched_nr_latency = 8;
68
69 /*
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
72 */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74
75 /*
76 * SCHED_OTHER wake-up granularity.
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 */
84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
86
87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
88
89 #ifdef CONFIG_SMP
90 /*
91 * For asym packing, by default the lower numbered CPU has higher priority.
92 */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 return -cpu;
96 }
97
98 /*
99 * The margin used when comparing utilization with CPU capacity:
100 * util * margin < capacity * 1024
101 *
102 * (default: ~20%)
103 */
104 static unsigned int capacity_margin = 1280;
105 #endif
106
107 #ifdef CONFIG_CFS_BANDWIDTH
108 /*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
116 * (default: 5 msec, units: microseconds)
117 */
118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
119 #endif
120
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 lw->weight += inc;
124 lw->inv_weight = 0;
125 }
126
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131 }
132
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 lw->weight = w;
136 lw->inv_weight = 0;
137 }
138
139 /*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167 }
168
169 static void update_sysctl(void)
170 {
171 unsigned int factor = get_update_sysctl_factor();
172
173 #define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180
181 void sched_init_granularity(void)
182 {
183 update_sysctl();
184 }
185
186 #define WMULT_CONST (~0U)
187 #define WMULT_SHIFT 32
188
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
217 */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
222
223 __update_inv_weight(lw);
224
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
230 }
231
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
234
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
239
240 return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242
243
244 const struct sched_class fair_sched_class;
245
246 /**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 static inline struct task_struct *task_of(struct sched_entity *se)
252 {
253 SCHED_WARN_ON(!entity_is_task(se));
254 return container_of(se, struct task_struct, se);
255 }
256
257 /* Walk up scheduling entities hierarchy */
258 #define for_each_sched_entity(se) \
259 for (; se; se = se->parent)
260
261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262 {
263 return p->se.cfs_rq;
264 }
265
266 /* runqueue on which this entity is (to be) queued */
267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268 {
269 return se->cfs_rq;
270 }
271
272 /* runqueue "owned" by this group */
273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274 {
275 return grp->my_q;
276 }
277
278 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
279 {
280 struct rq *rq = rq_of(cfs_rq);
281 int cpu = cpu_of(rq);
282
283 if (cfs_rq->on_list)
284 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
285
286 cfs_rq->on_list = 1;
287
288 /*
289 * Ensure we either appear before our parent (if already
290 * enqueued) or force our parent to appear after us when it is
291 * enqueued. The fact that we always enqueue bottom-up
292 * reduces this to two cases and a special case for the root
293 * cfs_rq. Furthermore, it also means that we will always reset
294 * tmp_alone_branch either when the branch is connected
295 * to a tree or when we reach the top of the tree
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
299 /*
300 * If parent is already on the list, we add the child
301 * just before. Thanks to circular linked property of
302 * the list, this means to put the child at the tail
303 * of the list that starts by parent.
304 */
305 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
306 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
307 /*
308 * The branch is now connected to its tree so we can
309 * reset tmp_alone_branch to the beginning of the
310 * list.
311 */
312 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
313 return true;
314 }
315
316 if (!cfs_rq->tg->parent) {
317 /*
318 * cfs rq without parent should be put
319 * at the tail of the list.
320 */
321 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
322 &rq->leaf_cfs_rq_list);
323 /*
324 * We have reach the top of a tree so we can reset
325 * tmp_alone_branch to the beginning of the list.
326 */
327 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
328 return true;
329 }
330
331 /*
332 * The parent has not already been added so we want to
333 * make sure that it will be put after us.
334 * tmp_alone_branch points to the begin of the branch
335 * where we will add parent.
336 */
337 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
338 /*
339 * update tmp_alone_branch to points to the new begin
340 * of the branch
341 */
342 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
343 return false;
344 }
345
346 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
347 {
348 if (cfs_rq->on_list) {
349 struct rq *rq = rq_of(cfs_rq);
350
351 /*
352 * With cfs_rq being unthrottled/throttled during an enqueue,
353 * it can happen the tmp_alone_branch points the a leaf that
354 * we finally want to del. In this case, tmp_alone_branch moves
355 * to the prev element but it will point to rq->leaf_cfs_rq_list
356 * at the end of the enqueue.
357 */
358 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
359 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
360
361 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
362 cfs_rq->on_list = 0;
363 }
364 }
365
366 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
367 {
368 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
369 }
370
371 /* Iterate thr' all leaf cfs_rq's on a runqueue */
372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
375
376 /* Do the two (enqueued) entities belong to the same group ? */
377 static inline struct cfs_rq *
378 is_same_group(struct sched_entity *se, struct sched_entity *pse)
379 {
380 if (se->cfs_rq == pse->cfs_rq)
381 return se->cfs_rq;
382
383 return NULL;
384 }
385
386 static inline struct sched_entity *parent_entity(struct sched_entity *se)
387 {
388 return se->parent;
389 }
390
391 static void
392 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393 {
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421 }
422
423 #else /* !CONFIG_FAIR_GROUP_SCHED */
424
425 static inline struct task_struct *task_of(struct sched_entity *se)
426 {
427 return container_of(se, struct task_struct, se);
428 }
429
430 #define for_each_sched_entity(se) \
431 for (; se; se = NULL)
432
433 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
434 {
435 return &task_rq(p)->cfs;
436 }
437
438 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
439 {
440 struct task_struct *p = task_of(se);
441 struct rq *rq = task_rq(p);
442
443 return &rq->cfs;
444 }
445
446 /* runqueue "owned" by this group */
447 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
448 {
449 return NULL;
450 }
451
452 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
453 {
454 return true;
455 }
456
457 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
458 {
459 }
460
461 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
462 {
463 }
464
465 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
466 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
467
468 static inline struct sched_entity *parent_entity(struct sched_entity *se)
469 {
470 return NULL;
471 }
472
473 static inline void
474 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
475 {
476 }
477
478 #endif /* CONFIG_FAIR_GROUP_SCHED */
479
480 static __always_inline
481 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
482
483 /**************************************************************
484 * Scheduling class tree data structure manipulation methods:
485 */
486
487 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
488 {
489 s64 delta = (s64)(vruntime - max_vruntime);
490 if (delta > 0)
491 max_vruntime = vruntime;
492
493 return max_vruntime;
494 }
495
496 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
497 {
498 s64 delta = (s64)(vruntime - min_vruntime);
499 if (delta < 0)
500 min_vruntime = vruntime;
501
502 return min_vruntime;
503 }
504
505 static inline int entity_before(struct sched_entity *a,
506 struct sched_entity *b)
507 {
508 return (s64)(a->vruntime - b->vruntime) < 0;
509 }
510
511 static void update_min_vruntime(struct cfs_rq *cfs_rq)
512 {
513 struct sched_entity *curr = cfs_rq->curr;
514 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
515
516 u64 vruntime = cfs_rq->min_vruntime;
517
518 if (curr) {
519 if (curr->on_rq)
520 vruntime = curr->vruntime;
521 else
522 curr = NULL;
523 }
524
525 if (leftmost) { /* non-empty tree */
526 struct sched_entity *se;
527 se = rb_entry(leftmost, struct sched_entity, run_node);
528
529 if (!curr)
530 vruntime = se->vruntime;
531 else
532 vruntime = min_vruntime(vruntime, se->vruntime);
533 }
534
535 /* ensure we never gain time by being placed backwards. */
536 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
537 #ifndef CONFIG_64BIT
538 smp_wmb();
539 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
540 #endif
541 }
542
543 /*
544 * Enqueue an entity into the rb-tree:
545 */
546 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
547 {
548 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
549 struct rb_node *parent = NULL;
550 struct sched_entity *entry;
551 bool leftmost = true;
552
553 /*
554 * Find the right place in the rbtree:
555 */
556 while (*link) {
557 parent = *link;
558 entry = rb_entry(parent, struct sched_entity, run_node);
559 /*
560 * We dont care about collisions. Nodes with
561 * the same key stay together.
562 */
563 if (entity_before(se, entry)) {
564 link = &parent->rb_left;
565 } else {
566 link = &parent->rb_right;
567 leftmost = false;
568 }
569 }
570
571 rb_link_node(&se->run_node, parent, link);
572 rb_insert_color_cached(&se->run_node,
573 &cfs_rq->tasks_timeline, leftmost);
574 }
575
576 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
577 {
578 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
579 }
580
581 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
582 {
583 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
584
585 if (!left)
586 return NULL;
587
588 return rb_entry(left, struct sched_entity, run_node);
589 }
590
591 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
592 {
593 struct rb_node *next = rb_next(&se->run_node);
594
595 if (!next)
596 return NULL;
597
598 return rb_entry(next, struct sched_entity, run_node);
599 }
600
601 #ifdef CONFIG_SCHED_DEBUG
602 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
603 {
604 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
605
606 if (!last)
607 return NULL;
608
609 return rb_entry(last, struct sched_entity, run_node);
610 }
611
612 /**************************************************************
613 * Scheduling class statistics methods:
614 */
615
616 int sched_proc_update_handler(struct ctl_table *table, int write,
617 void __user *buffer, size_t *lenp,
618 loff_t *ppos)
619 {
620 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
621 unsigned int factor = get_update_sysctl_factor();
622
623 if (ret || !write)
624 return ret;
625
626 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
627 sysctl_sched_min_granularity);
628
629 #define WRT_SYSCTL(name) \
630 (normalized_sysctl_##name = sysctl_##name / (factor))
631 WRT_SYSCTL(sched_min_granularity);
632 WRT_SYSCTL(sched_latency);
633 WRT_SYSCTL(sched_wakeup_granularity);
634 #undef WRT_SYSCTL
635
636 return 0;
637 }
638 #endif
639
640 /*
641 * delta /= w
642 */
643 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
644 {
645 if (unlikely(se->load.weight != NICE_0_LOAD))
646 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
647
648 return delta;
649 }
650
651 /*
652 * The idea is to set a period in which each task runs once.
653 *
654 * When there are too many tasks (sched_nr_latency) we have to stretch
655 * this period because otherwise the slices get too small.
656 *
657 * p = (nr <= nl) ? l : l*nr/nl
658 */
659 static u64 __sched_period(unsigned long nr_running)
660 {
661 if (unlikely(nr_running > sched_nr_latency))
662 return nr_running * sysctl_sched_min_granularity;
663 else
664 return sysctl_sched_latency;
665 }
666
667 /*
668 * We calculate the wall-time slice from the period by taking a part
669 * proportional to the weight.
670 *
671 * s = p*P[w/rw]
672 */
673 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
674 {
675 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
676
677 for_each_sched_entity(se) {
678 struct load_weight *load;
679 struct load_weight lw;
680
681 cfs_rq = cfs_rq_of(se);
682 load = &cfs_rq->load;
683
684 if (unlikely(!se->on_rq)) {
685 lw = cfs_rq->load;
686
687 update_load_add(&lw, se->load.weight);
688 load = &lw;
689 }
690 slice = __calc_delta(slice, se->load.weight, load);
691 }
692 return slice;
693 }
694
695 /*
696 * We calculate the vruntime slice of a to-be-inserted task.
697 *
698 * vs = s/w
699 */
700 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
701 {
702 return calc_delta_fair(sched_slice(cfs_rq, se), se);
703 }
704
705 #include "pelt.h"
706 #ifdef CONFIG_SMP
707
708 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
709 static unsigned long task_h_load(struct task_struct *p);
710 static unsigned long capacity_of(int cpu);
711
712 /* Give new sched_entity start runnable values to heavy its load in infant time */
713 void init_entity_runnable_average(struct sched_entity *se)
714 {
715 struct sched_avg *sa = &se->avg;
716
717 memset(sa, 0, sizeof(*sa));
718
719 /*
720 * Tasks are initialized with full load to be seen as heavy tasks until
721 * they get a chance to stabilize to their real load level.
722 * Group entities are initialized with zero load to reflect the fact that
723 * nothing has been attached to the task group yet.
724 */
725 if (entity_is_task(se))
726 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
727
728 se->runnable_weight = se->load.weight;
729
730 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
731 }
732
733 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
734 static void attach_entity_cfs_rq(struct sched_entity *se);
735
736 /*
737 * With new tasks being created, their initial util_avgs are extrapolated
738 * based on the cfs_rq's current util_avg:
739 *
740 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
741 *
742 * However, in many cases, the above util_avg does not give a desired
743 * value. Moreover, the sum of the util_avgs may be divergent, such
744 * as when the series is a harmonic series.
745 *
746 * To solve this problem, we also cap the util_avg of successive tasks to
747 * only 1/2 of the left utilization budget:
748 *
749 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
750 *
751 * where n denotes the nth task and cpu_scale the CPU capacity.
752 *
753 * For example, for a CPU with 1024 of capacity, a simplest series from
754 * the beginning would be like:
755 *
756 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
757 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
758 *
759 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
760 * if util_avg > util_avg_cap.
761 */
762 void post_init_entity_util_avg(struct task_struct *p)
763 {
764 struct sched_entity *se = &p->se;
765 struct cfs_rq *cfs_rq = cfs_rq_of(se);
766 struct sched_avg *sa = &se->avg;
767 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
768 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
769
770 if (cap > 0) {
771 if (cfs_rq->avg.util_avg != 0) {
772 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
773 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
774
775 if (sa->util_avg > cap)
776 sa->util_avg = cap;
777 } else {
778 sa->util_avg = cap;
779 }
780 }
781
782 if (p->sched_class != &fair_sched_class) {
783 /*
784 * For !fair tasks do:
785 *
786 update_cfs_rq_load_avg(now, cfs_rq);
787 attach_entity_load_avg(cfs_rq, se, 0);
788 switched_from_fair(rq, p);
789 *
790 * such that the next switched_to_fair() has the
791 * expected state.
792 */
793 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
794 return;
795 }
796
797 attach_entity_cfs_rq(se);
798 }
799
800 #else /* !CONFIG_SMP */
801 void init_entity_runnable_average(struct sched_entity *se)
802 {
803 }
804 void post_init_entity_util_avg(struct task_struct *p)
805 {
806 }
807 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
808 {
809 }
810 #endif /* CONFIG_SMP */
811
812 /*
813 * Update the current task's runtime statistics.
814 */
815 static void update_curr(struct cfs_rq *cfs_rq)
816 {
817 struct sched_entity *curr = cfs_rq->curr;
818 u64 now = rq_clock_task(rq_of(cfs_rq));
819 u64 delta_exec;
820
821 if (unlikely(!curr))
822 return;
823
824 delta_exec = now - curr->exec_start;
825 if (unlikely((s64)delta_exec <= 0))
826 return;
827
828 curr->exec_start = now;
829
830 schedstat_set(curr->statistics.exec_max,
831 max(delta_exec, curr->statistics.exec_max));
832
833 curr->sum_exec_runtime += delta_exec;
834 schedstat_add(cfs_rq->exec_clock, delta_exec);
835
836 curr->vruntime += calc_delta_fair(delta_exec, curr);
837 update_min_vruntime(cfs_rq);
838
839 if (entity_is_task(curr)) {
840 struct task_struct *curtask = task_of(curr);
841
842 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
843 cgroup_account_cputime(curtask, delta_exec);
844 account_group_exec_runtime(curtask, delta_exec);
845 }
846
847 account_cfs_rq_runtime(cfs_rq, delta_exec);
848 }
849
850 static void update_curr_fair(struct rq *rq)
851 {
852 update_curr(cfs_rq_of(&rq->curr->se));
853 }
854
855 static inline void
856 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
857 {
858 u64 wait_start, prev_wait_start;
859
860 if (!schedstat_enabled())
861 return;
862
863 wait_start = rq_clock(rq_of(cfs_rq));
864 prev_wait_start = schedstat_val(se->statistics.wait_start);
865
866 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
867 likely(wait_start > prev_wait_start))
868 wait_start -= prev_wait_start;
869
870 __schedstat_set(se->statistics.wait_start, wait_start);
871 }
872
873 static inline void
874 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
875 {
876 struct task_struct *p;
877 u64 delta;
878
879 if (!schedstat_enabled())
880 return;
881
882 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
883
884 if (entity_is_task(se)) {
885 p = task_of(se);
886 if (task_on_rq_migrating(p)) {
887 /*
888 * Preserve migrating task's wait time so wait_start
889 * time stamp can be adjusted to accumulate wait time
890 * prior to migration.
891 */
892 __schedstat_set(se->statistics.wait_start, delta);
893 return;
894 }
895 trace_sched_stat_wait(p, delta);
896 }
897
898 __schedstat_set(se->statistics.wait_max,
899 max(schedstat_val(se->statistics.wait_max), delta));
900 __schedstat_inc(se->statistics.wait_count);
901 __schedstat_add(se->statistics.wait_sum, delta);
902 __schedstat_set(se->statistics.wait_start, 0);
903 }
904
905 static inline void
906 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
907 {
908 struct task_struct *tsk = NULL;
909 u64 sleep_start, block_start;
910
911 if (!schedstat_enabled())
912 return;
913
914 sleep_start = schedstat_val(se->statistics.sleep_start);
915 block_start = schedstat_val(se->statistics.block_start);
916
917 if (entity_is_task(se))
918 tsk = task_of(se);
919
920 if (sleep_start) {
921 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
922
923 if ((s64)delta < 0)
924 delta = 0;
925
926 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
927 __schedstat_set(se->statistics.sleep_max, delta);
928
929 __schedstat_set(se->statistics.sleep_start, 0);
930 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
931
932 if (tsk) {
933 account_scheduler_latency(tsk, delta >> 10, 1);
934 trace_sched_stat_sleep(tsk, delta);
935 }
936 }
937 if (block_start) {
938 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
939
940 if ((s64)delta < 0)
941 delta = 0;
942
943 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
944 __schedstat_set(se->statistics.block_max, delta);
945
946 __schedstat_set(se->statistics.block_start, 0);
947 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
948
949 if (tsk) {
950 if (tsk->in_iowait) {
951 __schedstat_add(se->statistics.iowait_sum, delta);
952 __schedstat_inc(se->statistics.iowait_count);
953 trace_sched_stat_iowait(tsk, delta);
954 }
955
956 trace_sched_stat_blocked(tsk, delta);
957
958 /*
959 * Blocking time is in units of nanosecs, so shift by
960 * 20 to get a milliseconds-range estimation of the
961 * amount of time that the task spent sleeping:
962 */
963 if (unlikely(prof_on == SLEEP_PROFILING)) {
964 profile_hits(SLEEP_PROFILING,
965 (void *)get_wchan(tsk),
966 delta >> 20);
967 }
968 account_scheduler_latency(tsk, delta >> 10, 0);
969 }
970 }
971 }
972
973 /*
974 * Task is being enqueued - update stats:
975 */
976 static inline void
977 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
978 {
979 if (!schedstat_enabled())
980 return;
981
982 /*
983 * Are we enqueueing a waiting task? (for current tasks
984 * a dequeue/enqueue event is a NOP)
985 */
986 if (se != cfs_rq->curr)
987 update_stats_wait_start(cfs_rq, se);
988
989 if (flags & ENQUEUE_WAKEUP)
990 update_stats_enqueue_sleeper(cfs_rq, se);
991 }
992
993 static inline void
994 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
995 {
996
997 if (!schedstat_enabled())
998 return;
999
1000 /*
1001 * Mark the end of the wait period if dequeueing a
1002 * waiting task:
1003 */
1004 if (se != cfs_rq->curr)
1005 update_stats_wait_end(cfs_rq, se);
1006
1007 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1008 struct task_struct *tsk = task_of(se);
1009
1010 if (tsk->state & TASK_INTERRUPTIBLE)
1011 __schedstat_set(se->statistics.sleep_start,
1012 rq_clock(rq_of(cfs_rq)));
1013 if (tsk->state & TASK_UNINTERRUPTIBLE)
1014 __schedstat_set(se->statistics.block_start,
1015 rq_clock(rq_of(cfs_rq)));
1016 }
1017 }
1018
1019 /*
1020 * We are picking a new current task - update its stats:
1021 */
1022 static inline void
1023 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1024 {
1025 /*
1026 * We are starting a new run period:
1027 */
1028 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1029 }
1030
1031 /**************************************************
1032 * Scheduling class queueing methods:
1033 */
1034
1035 #ifdef CONFIG_NUMA_BALANCING
1036 /*
1037 * Approximate time to scan a full NUMA task in ms. The task scan period is
1038 * calculated based on the tasks virtual memory size and
1039 * numa_balancing_scan_size.
1040 */
1041 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1042 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1043
1044 /* Portion of address space to scan in MB */
1045 unsigned int sysctl_numa_balancing_scan_size = 256;
1046
1047 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1048 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1049
1050 struct numa_group {
1051 refcount_t refcount;
1052
1053 spinlock_t lock; /* nr_tasks, tasks */
1054 int nr_tasks;
1055 pid_t gid;
1056 int active_nodes;
1057
1058 struct rcu_head rcu;
1059 unsigned long total_faults;
1060 unsigned long max_faults_cpu;
1061 /*
1062 * Faults_cpu is used to decide whether memory should move
1063 * towards the CPU. As a consequence, these stats are weighted
1064 * more by CPU use than by memory faults.
1065 */
1066 unsigned long *faults_cpu;
1067 unsigned long faults[0];
1068 };
1069
1070 static inline unsigned long group_faults_priv(struct numa_group *ng);
1071 static inline unsigned long group_faults_shared(struct numa_group *ng);
1072
1073 static unsigned int task_nr_scan_windows(struct task_struct *p)
1074 {
1075 unsigned long rss = 0;
1076 unsigned long nr_scan_pages;
1077
1078 /*
1079 * Calculations based on RSS as non-present and empty pages are skipped
1080 * by the PTE scanner and NUMA hinting faults should be trapped based
1081 * on resident pages
1082 */
1083 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1084 rss = get_mm_rss(p->mm);
1085 if (!rss)
1086 rss = nr_scan_pages;
1087
1088 rss = round_up(rss, nr_scan_pages);
1089 return rss / nr_scan_pages;
1090 }
1091
1092 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1093 #define MAX_SCAN_WINDOW 2560
1094
1095 static unsigned int task_scan_min(struct task_struct *p)
1096 {
1097 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1098 unsigned int scan, floor;
1099 unsigned int windows = 1;
1100
1101 if (scan_size < MAX_SCAN_WINDOW)
1102 windows = MAX_SCAN_WINDOW / scan_size;
1103 floor = 1000 / windows;
1104
1105 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1106 return max_t(unsigned int, floor, scan);
1107 }
1108
1109 static unsigned int task_scan_start(struct task_struct *p)
1110 {
1111 unsigned long smin = task_scan_min(p);
1112 unsigned long period = smin;
1113
1114 /* Scale the maximum scan period with the amount of shared memory. */
1115 if (p->numa_group) {
1116 struct numa_group *ng = p->numa_group;
1117 unsigned long shared = group_faults_shared(ng);
1118 unsigned long private = group_faults_priv(ng);
1119
1120 period *= refcount_read(&ng->refcount);
1121 period *= shared + 1;
1122 period /= private + shared + 1;
1123 }
1124
1125 return max(smin, period);
1126 }
1127
1128 static unsigned int task_scan_max(struct task_struct *p)
1129 {
1130 unsigned long smin = task_scan_min(p);
1131 unsigned long smax;
1132
1133 /* Watch for min being lower than max due to floor calculations */
1134 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1135
1136 /* Scale the maximum scan period with the amount of shared memory. */
1137 if (p->numa_group) {
1138 struct numa_group *ng = p->numa_group;
1139 unsigned long shared = group_faults_shared(ng);
1140 unsigned long private = group_faults_priv(ng);
1141 unsigned long period = smax;
1142
1143 period *= refcount_read(&ng->refcount);
1144 period *= shared + 1;
1145 period /= private + shared + 1;
1146
1147 smax = max(smax, period);
1148 }
1149
1150 return max(smin, smax);
1151 }
1152
1153 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1154 {
1155 int mm_users = 0;
1156 struct mm_struct *mm = p->mm;
1157
1158 if (mm) {
1159 mm_users = atomic_read(&mm->mm_users);
1160 if (mm_users == 1) {
1161 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1162 mm->numa_scan_seq = 0;
1163 }
1164 }
1165 p->node_stamp = 0;
1166 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
1167 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1168 p->numa_work.next = &p->numa_work;
1169 p->numa_faults = NULL;
1170 p->numa_group = NULL;
1171 p->last_task_numa_placement = 0;
1172 p->last_sum_exec_runtime = 0;
1173
1174 /* New address space, reset the preferred nid */
1175 if (!(clone_flags & CLONE_VM)) {
1176 p->numa_preferred_nid = NUMA_NO_NODE;
1177 return;
1178 }
1179
1180 /*
1181 * New thread, keep existing numa_preferred_nid which should be copied
1182 * already by arch_dup_task_struct but stagger when scans start.
1183 */
1184 if (mm) {
1185 unsigned int delay;
1186
1187 delay = min_t(unsigned int, task_scan_max(current),
1188 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1189 delay += 2 * TICK_NSEC;
1190 p->node_stamp = delay;
1191 }
1192 }
1193
1194 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1195 {
1196 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1197 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1198 }
1199
1200 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1201 {
1202 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1203 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1204 }
1205
1206 /* Shared or private faults. */
1207 #define NR_NUMA_HINT_FAULT_TYPES 2
1208
1209 /* Memory and CPU locality */
1210 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1211
1212 /* Averaged statistics, and temporary buffers. */
1213 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1214
1215 pid_t task_numa_group_id(struct task_struct *p)
1216 {
1217 return p->numa_group ? p->numa_group->gid : 0;
1218 }
1219
1220 /*
1221 * The averaged statistics, shared & private, memory & CPU,
1222 * occupy the first half of the array. The second half of the
1223 * array is for current counters, which are averaged into the
1224 * first set by task_numa_placement.
1225 */
1226 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1227 {
1228 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1229 }
1230
1231 static inline unsigned long task_faults(struct task_struct *p, int nid)
1232 {
1233 if (!p->numa_faults)
1234 return 0;
1235
1236 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1237 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1238 }
1239
1240 static inline unsigned long group_faults(struct task_struct *p, int nid)
1241 {
1242 if (!p->numa_group)
1243 return 0;
1244
1245 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1246 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1247 }
1248
1249 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1250 {
1251 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1252 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1253 }
1254
1255 static inline unsigned long group_faults_priv(struct numa_group *ng)
1256 {
1257 unsigned long faults = 0;
1258 int node;
1259
1260 for_each_online_node(node) {
1261 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1262 }
1263
1264 return faults;
1265 }
1266
1267 static inline unsigned long group_faults_shared(struct numa_group *ng)
1268 {
1269 unsigned long faults = 0;
1270 int node;
1271
1272 for_each_online_node(node) {
1273 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1274 }
1275
1276 return faults;
1277 }
1278
1279 /*
1280 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1281 * considered part of a numa group's pseudo-interleaving set. Migrations
1282 * between these nodes are slowed down, to allow things to settle down.
1283 */
1284 #define ACTIVE_NODE_FRACTION 3
1285
1286 static bool numa_is_active_node(int nid, struct numa_group *ng)
1287 {
1288 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1289 }
1290
1291 /* Handle placement on systems where not all nodes are directly connected. */
1292 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1293 int maxdist, bool task)
1294 {
1295 unsigned long score = 0;
1296 int node;
1297
1298 /*
1299 * All nodes are directly connected, and the same distance
1300 * from each other. No need for fancy placement algorithms.
1301 */
1302 if (sched_numa_topology_type == NUMA_DIRECT)
1303 return 0;
1304
1305 /*
1306 * This code is called for each node, introducing N^2 complexity,
1307 * which should be ok given the number of nodes rarely exceeds 8.
1308 */
1309 for_each_online_node(node) {
1310 unsigned long faults;
1311 int dist = node_distance(nid, node);
1312
1313 /*
1314 * The furthest away nodes in the system are not interesting
1315 * for placement; nid was already counted.
1316 */
1317 if (dist == sched_max_numa_distance || node == nid)
1318 continue;
1319
1320 /*
1321 * On systems with a backplane NUMA topology, compare groups
1322 * of nodes, and move tasks towards the group with the most
1323 * memory accesses. When comparing two nodes at distance
1324 * "hoplimit", only nodes closer by than "hoplimit" are part
1325 * of each group. Skip other nodes.
1326 */
1327 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1328 dist >= maxdist)
1329 continue;
1330
1331 /* Add up the faults from nearby nodes. */
1332 if (task)
1333 faults = task_faults(p, node);
1334 else
1335 faults = group_faults(p, node);
1336
1337 /*
1338 * On systems with a glueless mesh NUMA topology, there are
1339 * no fixed "groups of nodes". Instead, nodes that are not
1340 * directly connected bounce traffic through intermediate
1341 * nodes; a numa_group can occupy any set of nodes.
1342 * The further away a node is, the less the faults count.
1343 * This seems to result in good task placement.
1344 */
1345 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1346 faults *= (sched_max_numa_distance - dist);
1347 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1348 }
1349
1350 score += faults;
1351 }
1352
1353 return score;
1354 }
1355
1356 /*
1357 * These return the fraction of accesses done by a particular task, or
1358 * task group, on a particular numa node. The group weight is given a
1359 * larger multiplier, in order to group tasks together that are almost
1360 * evenly spread out between numa nodes.
1361 */
1362 static inline unsigned long task_weight(struct task_struct *p, int nid,
1363 int dist)
1364 {
1365 unsigned long faults, total_faults;
1366
1367 if (!p->numa_faults)
1368 return 0;
1369
1370 total_faults = p->total_numa_faults;
1371
1372 if (!total_faults)
1373 return 0;
1374
1375 faults = task_faults(p, nid);
1376 faults += score_nearby_nodes(p, nid, dist, true);
1377
1378 return 1000 * faults / total_faults;
1379 }
1380
1381 static inline unsigned long group_weight(struct task_struct *p, int nid,
1382 int dist)
1383 {
1384 unsigned long faults, total_faults;
1385
1386 if (!p->numa_group)
1387 return 0;
1388
1389 total_faults = p->numa_group->total_faults;
1390
1391 if (!total_faults)
1392 return 0;
1393
1394 faults = group_faults(p, nid);
1395 faults += score_nearby_nodes(p, nid, dist, false);
1396
1397 return 1000 * faults / total_faults;
1398 }
1399
1400 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1401 int src_nid, int dst_cpu)
1402 {
1403 struct numa_group *ng = p->numa_group;
1404 int dst_nid = cpu_to_node(dst_cpu);
1405 int last_cpupid, this_cpupid;
1406
1407 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1408 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1409
1410 /*
1411 * Allow first faults or private faults to migrate immediately early in
1412 * the lifetime of a task. The magic number 4 is based on waiting for
1413 * two full passes of the "multi-stage node selection" test that is
1414 * executed below.
1415 */
1416 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1417 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1418 return true;
1419
1420 /*
1421 * Multi-stage node selection is used in conjunction with a periodic
1422 * migration fault to build a temporal task<->page relation. By using
1423 * a two-stage filter we remove short/unlikely relations.
1424 *
1425 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1426 * a task's usage of a particular page (n_p) per total usage of this
1427 * page (n_t) (in a given time-span) to a probability.
1428 *
1429 * Our periodic faults will sample this probability and getting the
1430 * same result twice in a row, given these samples are fully
1431 * independent, is then given by P(n)^2, provided our sample period
1432 * is sufficiently short compared to the usage pattern.
1433 *
1434 * This quadric squishes small probabilities, making it less likely we
1435 * act on an unlikely task<->page relation.
1436 */
1437 if (!cpupid_pid_unset(last_cpupid) &&
1438 cpupid_to_nid(last_cpupid) != dst_nid)
1439 return false;
1440
1441 /* Always allow migrate on private faults */
1442 if (cpupid_match_pid(p, last_cpupid))
1443 return true;
1444
1445 /* A shared fault, but p->numa_group has not been set up yet. */
1446 if (!ng)
1447 return true;
1448
1449 /*
1450 * Destination node is much more heavily used than the source
1451 * node? Allow migration.
1452 */
1453 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1454 ACTIVE_NODE_FRACTION)
1455 return true;
1456
1457 /*
1458 * Distribute memory according to CPU & memory use on each node,
1459 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1460 *
1461 * faults_cpu(dst) 3 faults_cpu(src)
1462 * --------------- * - > ---------------
1463 * faults_mem(dst) 4 faults_mem(src)
1464 */
1465 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1466 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1467 }
1468
1469 static unsigned long weighted_cpuload(struct rq *rq);
1470 static unsigned long source_load(int cpu, int type);
1471 static unsigned long target_load(int cpu, int type);
1472
1473 /* Cached statistics for all CPUs within a node */
1474 struct numa_stats {
1475 unsigned long load;
1476
1477 /* Total compute capacity of CPUs on a node */
1478 unsigned long compute_capacity;
1479 };
1480
1481 /*
1482 * XXX borrowed from update_sg_lb_stats
1483 */
1484 static void update_numa_stats(struct numa_stats *ns, int nid)
1485 {
1486 int cpu;
1487
1488 memset(ns, 0, sizeof(*ns));
1489 for_each_cpu(cpu, cpumask_of_node(nid)) {
1490 struct rq *rq = cpu_rq(cpu);
1491
1492 ns->load += weighted_cpuload(rq);
1493 ns->compute_capacity += capacity_of(cpu);
1494 }
1495
1496 }
1497
1498 struct task_numa_env {
1499 struct task_struct *p;
1500
1501 int src_cpu, src_nid;
1502 int dst_cpu, dst_nid;
1503
1504 struct numa_stats src_stats, dst_stats;
1505
1506 int imbalance_pct;
1507 int dist;
1508
1509 struct task_struct *best_task;
1510 long best_imp;
1511 int best_cpu;
1512 };
1513
1514 static void task_numa_assign(struct task_numa_env *env,
1515 struct task_struct *p, long imp)
1516 {
1517 struct rq *rq = cpu_rq(env->dst_cpu);
1518
1519 /* Bail out if run-queue part of active NUMA balance. */
1520 if (xchg(&rq->numa_migrate_on, 1))
1521 return;
1522
1523 /*
1524 * Clear previous best_cpu/rq numa-migrate flag, since task now
1525 * found a better CPU to move/swap.
1526 */
1527 if (env->best_cpu != -1) {
1528 rq = cpu_rq(env->best_cpu);
1529 WRITE_ONCE(rq->numa_migrate_on, 0);
1530 }
1531
1532 if (env->best_task)
1533 put_task_struct(env->best_task);
1534 if (p)
1535 get_task_struct(p);
1536
1537 env->best_task = p;
1538 env->best_imp = imp;
1539 env->best_cpu = env->dst_cpu;
1540 }
1541
1542 static bool load_too_imbalanced(long src_load, long dst_load,
1543 struct task_numa_env *env)
1544 {
1545 long imb, old_imb;
1546 long orig_src_load, orig_dst_load;
1547 long src_capacity, dst_capacity;
1548
1549 /*
1550 * The load is corrected for the CPU capacity available on each node.
1551 *
1552 * src_load dst_load
1553 * ------------ vs ---------
1554 * src_capacity dst_capacity
1555 */
1556 src_capacity = env->src_stats.compute_capacity;
1557 dst_capacity = env->dst_stats.compute_capacity;
1558
1559 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1560
1561 orig_src_load = env->src_stats.load;
1562 orig_dst_load = env->dst_stats.load;
1563
1564 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1565
1566 /* Would this change make things worse? */
1567 return (imb > old_imb);
1568 }
1569
1570 /*
1571 * Maximum NUMA importance can be 1998 (2*999);
1572 * SMALLIMP @ 30 would be close to 1998/64.
1573 * Used to deter task migration.
1574 */
1575 #define SMALLIMP 30
1576
1577 /*
1578 * This checks if the overall compute and NUMA accesses of the system would
1579 * be improved if the source tasks was migrated to the target dst_cpu taking
1580 * into account that it might be best if task running on the dst_cpu should
1581 * be exchanged with the source task
1582 */
1583 static void task_numa_compare(struct task_numa_env *env,
1584 long taskimp, long groupimp, bool maymove)
1585 {
1586 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1587 struct task_struct *cur;
1588 long src_load, dst_load;
1589 long load;
1590 long imp = env->p->numa_group ? groupimp : taskimp;
1591 long moveimp = imp;
1592 int dist = env->dist;
1593
1594 if (READ_ONCE(dst_rq->numa_migrate_on))
1595 return;
1596
1597 rcu_read_lock();
1598 cur = task_rcu_dereference(&dst_rq->curr);
1599 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1600 cur = NULL;
1601
1602 /*
1603 * Because we have preemption enabled we can get migrated around and
1604 * end try selecting ourselves (current == env->p) as a swap candidate.
1605 */
1606 if (cur == env->p)
1607 goto unlock;
1608
1609 if (!cur) {
1610 if (maymove && moveimp >= env->best_imp)
1611 goto assign;
1612 else
1613 goto unlock;
1614 }
1615
1616 /*
1617 * "imp" is the fault differential for the source task between the
1618 * source and destination node. Calculate the total differential for
1619 * the source task and potential destination task. The more negative
1620 * the value is, the more remote accesses that would be expected to
1621 * be incurred if the tasks were swapped.
1622 */
1623 /* Skip this swap candidate if cannot move to the source cpu */
1624 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1625 goto unlock;
1626
1627 /*
1628 * If dst and source tasks are in the same NUMA group, or not
1629 * in any group then look only at task weights.
1630 */
1631 if (cur->numa_group == env->p->numa_group) {
1632 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1633 task_weight(cur, env->dst_nid, dist);
1634 /*
1635 * Add some hysteresis to prevent swapping the
1636 * tasks within a group over tiny differences.
1637 */
1638 if (cur->numa_group)
1639 imp -= imp / 16;
1640 } else {
1641 /*
1642 * Compare the group weights. If a task is all by itself
1643 * (not part of a group), use the task weight instead.
1644 */
1645 if (cur->numa_group && env->p->numa_group)
1646 imp += group_weight(cur, env->src_nid, dist) -
1647 group_weight(cur, env->dst_nid, dist);
1648 else
1649 imp += task_weight(cur, env->src_nid, dist) -
1650 task_weight(cur, env->dst_nid, dist);
1651 }
1652
1653 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1654 imp = moveimp;
1655 cur = NULL;
1656 goto assign;
1657 }
1658
1659 /*
1660 * If the NUMA importance is less than SMALLIMP,
1661 * task migration might only result in ping pong
1662 * of tasks and also hurt performance due to cache
1663 * misses.
1664 */
1665 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1666 goto unlock;
1667
1668 /*
1669 * In the overloaded case, try and keep the load balanced.
1670 */
1671 load = task_h_load(env->p) - task_h_load(cur);
1672 if (!load)
1673 goto assign;
1674
1675 dst_load = env->dst_stats.load + load;
1676 src_load = env->src_stats.load - load;
1677
1678 if (load_too_imbalanced(src_load, dst_load, env))
1679 goto unlock;
1680
1681 assign:
1682 /*
1683 * One idle CPU per node is evaluated for a task numa move.
1684 * Call select_idle_sibling to maybe find a better one.
1685 */
1686 if (!cur) {
1687 /*
1688 * select_idle_siblings() uses an per-CPU cpumask that
1689 * can be used from IRQ context.
1690 */
1691 local_irq_disable();
1692 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1693 env->dst_cpu);
1694 local_irq_enable();
1695 }
1696
1697 task_numa_assign(env, cur, imp);
1698 unlock:
1699 rcu_read_unlock();
1700 }
1701
1702 static void task_numa_find_cpu(struct task_numa_env *env,
1703 long taskimp, long groupimp)
1704 {
1705 long src_load, dst_load, load;
1706 bool maymove = false;
1707 int cpu;
1708
1709 load = task_h_load(env->p);
1710 dst_load = env->dst_stats.load + load;
1711 src_load = env->src_stats.load - load;
1712
1713 /*
1714 * If the improvement from just moving env->p direction is better
1715 * than swapping tasks around, check if a move is possible.
1716 */
1717 maymove = !load_too_imbalanced(src_load, dst_load, env);
1718
1719 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1720 /* Skip this CPU if the source task cannot migrate */
1721 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1722 continue;
1723
1724 env->dst_cpu = cpu;
1725 task_numa_compare(env, taskimp, groupimp, maymove);
1726 }
1727 }
1728
1729 static int task_numa_migrate(struct task_struct *p)
1730 {
1731 struct task_numa_env env = {
1732 .p = p,
1733
1734 .src_cpu = task_cpu(p),
1735 .src_nid = task_node(p),
1736
1737 .imbalance_pct = 112,
1738
1739 .best_task = NULL,
1740 .best_imp = 0,
1741 .best_cpu = -1,
1742 };
1743 struct sched_domain *sd;
1744 struct rq *best_rq;
1745 unsigned long taskweight, groupweight;
1746 int nid, ret, dist;
1747 long taskimp, groupimp;
1748
1749 /*
1750 * Pick the lowest SD_NUMA domain, as that would have the smallest
1751 * imbalance and would be the first to start moving tasks about.
1752 *
1753 * And we want to avoid any moving of tasks about, as that would create
1754 * random movement of tasks -- counter the numa conditions we're trying
1755 * to satisfy here.
1756 */
1757 rcu_read_lock();
1758 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1759 if (sd)
1760 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1761 rcu_read_unlock();
1762
1763 /*
1764 * Cpusets can break the scheduler domain tree into smaller
1765 * balance domains, some of which do not cross NUMA boundaries.
1766 * Tasks that are "trapped" in such domains cannot be migrated
1767 * elsewhere, so there is no point in (re)trying.
1768 */
1769 if (unlikely(!sd)) {
1770 sched_setnuma(p, task_node(p));
1771 return -EINVAL;
1772 }
1773
1774 env.dst_nid = p->numa_preferred_nid;
1775 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1776 taskweight = task_weight(p, env.src_nid, dist);
1777 groupweight = group_weight(p, env.src_nid, dist);
1778 update_numa_stats(&env.src_stats, env.src_nid);
1779 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1780 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1781 update_numa_stats(&env.dst_stats, env.dst_nid);
1782
1783 /* Try to find a spot on the preferred nid. */
1784 task_numa_find_cpu(&env, taskimp, groupimp);
1785
1786 /*
1787 * Look at other nodes in these cases:
1788 * - there is no space available on the preferred_nid
1789 * - the task is part of a numa_group that is interleaved across
1790 * multiple NUMA nodes; in order to better consolidate the group,
1791 * we need to check other locations.
1792 */
1793 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1794 for_each_online_node(nid) {
1795 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1796 continue;
1797
1798 dist = node_distance(env.src_nid, env.dst_nid);
1799 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1800 dist != env.dist) {
1801 taskweight = task_weight(p, env.src_nid, dist);
1802 groupweight = group_weight(p, env.src_nid, dist);
1803 }
1804
1805 /* Only consider nodes where both task and groups benefit */
1806 taskimp = task_weight(p, nid, dist) - taskweight;
1807 groupimp = group_weight(p, nid, dist) - groupweight;
1808 if (taskimp < 0 && groupimp < 0)
1809 continue;
1810
1811 env.dist = dist;
1812 env.dst_nid = nid;
1813 update_numa_stats(&env.dst_stats, env.dst_nid);
1814 task_numa_find_cpu(&env, taskimp, groupimp);
1815 }
1816 }
1817
1818 /*
1819 * If the task is part of a workload that spans multiple NUMA nodes,
1820 * and is migrating into one of the workload's active nodes, remember
1821 * this node as the task's preferred numa node, so the workload can
1822 * settle down.
1823 * A task that migrated to a second choice node will be better off
1824 * trying for a better one later. Do not set the preferred node here.
1825 */
1826 if (p->numa_group) {
1827 if (env.best_cpu == -1)
1828 nid = env.src_nid;
1829 else
1830 nid = cpu_to_node(env.best_cpu);
1831
1832 if (nid != p->numa_preferred_nid)
1833 sched_setnuma(p, nid);
1834 }
1835
1836 /* No better CPU than the current one was found. */
1837 if (env.best_cpu == -1)
1838 return -EAGAIN;
1839
1840 best_rq = cpu_rq(env.best_cpu);
1841 if (env.best_task == NULL) {
1842 ret = migrate_task_to(p, env.best_cpu);
1843 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1844 if (ret != 0)
1845 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1846 return ret;
1847 }
1848
1849 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1850 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1851
1852 if (ret != 0)
1853 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1854 put_task_struct(env.best_task);
1855 return ret;
1856 }
1857
1858 /* Attempt to migrate a task to a CPU on the preferred node. */
1859 static void numa_migrate_preferred(struct task_struct *p)
1860 {
1861 unsigned long interval = HZ;
1862
1863 /* This task has no NUMA fault statistics yet */
1864 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1865 return;
1866
1867 /* Periodically retry migrating the task to the preferred node */
1868 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1869 p->numa_migrate_retry = jiffies + interval;
1870
1871 /* Success if task is already running on preferred CPU */
1872 if (task_node(p) == p->numa_preferred_nid)
1873 return;
1874
1875 /* Otherwise, try migrate to a CPU on the preferred node */
1876 task_numa_migrate(p);
1877 }
1878
1879 /*
1880 * Find out how many nodes on the workload is actively running on. Do this by
1881 * tracking the nodes from which NUMA hinting faults are triggered. This can
1882 * be different from the set of nodes where the workload's memory is currently
1883 * located.
1884 */
1885 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1886 {
1887 unsigned long faults, max_faults = 0;
1888 int nid, active_nodes = 0;
1889
1890 for_each_online_node(nid) {
1891 faults = group_faults_cpu(numa_group, nid);
1892 if (faults > max_faults)
1893 max_faults = faults;
1894 }
1895
1896 for_each_online_node(nid) {
1897 faults = group_faults_cpu(numa_group, nid);
1898 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1899 active_nodes++;
1900 }
1901
1902 numa_group->max_faults_cpu = max_faults;
1903 numa_group->active_nodes = active_nodes;
1904 }
1905
1906 /*
1907 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1908 * increments. The more local the fault statistics are, the higher the scan
1909 * period will be for the next scan window. If local/(local+remote) ratio is
1910 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1911 * the scan period will decrease. Aim for 70% local accesses.
1912 */
1913 #define NUMA_PERIOD_SLOTS 10
1914 #define NUMA_PERIOD_THRESHOLD 7
1915
1916 /*
1917 * Increase the scan period (slow down scanning) if the majority of
1918 * our memory is already on our local node, or if the majority of
1919 * the page accesses are shared with other processes.
1920 * Otherwise, decrease the scan period.
1921 */
1922 static void update_task_scan_period(struct task_struct *p,
1923 unsigned long shared, unsigned long private)
1924 {
1925 unsigned int period_slot;
1926 int lr_ratio, ps_ratio;
1927 int diff;
1928
1929 unsigned long remote = p->numa_faults_locality[0];
1930 unsigned long local = p->numa_faults_locality[1];
1931
1932 /*
1933 * If there were no record hinting faults then either the task is
1934 * completely idle or all activity is areas that are not of interest
1935 * to automatic numa balancing. Related to that, if there were failed
1936 * migration then it implies we are migrating too quickly or the local
1937 * node is overloaded. In either case, scan slower
1938 */
1939 if (local + shared == 0 || p->numa_faults_locality[2]) {
1940 p->numa_scan_period = min(p->numa_scan_period_max,
1941 p->numa_scan_period << 1);
1942
1943 p->mm->numa_next_scan = jiffies +
1944 msecs_to_jiffies(p->numa_scan_period);
1945
1946 return;
1947 }
1948
1949 /*
1950 * Prepare to scale scan period relative to the current period.
1951 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1952 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1953 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1954 */
1955 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1956 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1957 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1958
1959 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1960 /*
1961 * Most memory accesses are local. There is no need to
1962 * do fast NUMA scanning, since memory is already local.
1963 */
1964 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1965 if (!slot)
1966 slot = 1;
1967 diff = slot * period_slot;
1968 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1969 /*
1970 * Most memory accesses are shared with other tasks.
1971 * There is no point in continuing fast NUMA scanning,
1972 * since other tasks may just move the memory elsewhere.
1973 */
1974 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1975 if (!slot)
1976 slot = 1;
1977 diff = slot * period_slot;
1978 } else {
1979 /*
1980 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1981 * yet they are not on the local NUMA node. Speed up
1982 * NUMA scanning to get the memory moved over.
1983 */
1984 int ratio = max(lr_ratio, ps_ratio);
1985 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1986 }
1987
1988 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1989 task_scan_min(p), task_scan_max(p));
1990 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1991 }
1992
1993 /*
1994 * Get the fraction of time the task has been running since the last
1995 * NUMA placement cycle. The scheduler keeps similar statistics, but
1996 * decays those on a 32ms period, which is orders of magnitude off
1997 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1998 * stats only if the task is so new there are no NUMA statistics yet.
1999 */
2000 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2001 {
2002 u64 runtime, delta, now;
2003 /* Use the start of this time slice to avoid calculations. */
2004 now = p->se.exec_start;
2005 runtime = p->se.sum_exec_runtime;
2006
2007 if (p->last_task_numa_placement) {
2008 delta = runtime - p->last_sum_exec_runtime;
2009 *period = now - p->last_task_numa_placement;
2010 } else {
2011 delta = p->se.avg.load_sum;
2012 *period = LOAD_AVG_MAX;
2013 }
2014
2015 p->last_sum_exec_runtime = runtime;
2016 p->last_task_numa_placement = now;
2017
2018 return delta;
2019 }
2020
2021 /*
2022 * Determine the preferred nid for a task in a numa_group. This needs to
2023 * be done in a way that produces consistent results with group_weight,
2024 * otherwise workloads might not converge.
2025 */
2026 static int preferred_group_nid(struct task_struct *p, int nid)
2027 {
2028 nodemask_t nodes;
2029 int dist;
2030
2031 /* Direct connections between all NUMA nodes. */
2032 if (sched_numa_topology_type == NUMA_DIRECT)
2033 return nid;
2034
2035 /*
2036 * On a system with glueless mesh NUMA topology, group_weight
2037 * scores nodes according to the number of NUMA hinting faults on
2038 * both the node itself, and on nearby nodes.
2039 */
2040 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2041 unsigned long score, max_score = 0;
2042 int node, max_node = nid;
2043
2044 dist = sched_max_numa_distance;
2045
2046 for_each_online_node(node) {
2047 score = group_weight(p, node, dist);
2048 if (score > max_score) {
2049 max_score = score;
2050 max_node = node;
2051 }
2052 }
2053 return max_node;
2054 }
2055
2056 /*
2057 * Finding the preferred nid in a system with NUMA backplane
2058 * interconnect topology is more involved. The goal is to locate
2059 * tasks from numa_groups near each other in the system, and
2060 * untangle workloads from different sides of the system. This requires
2061 * searching down the hierarchy of node groups, recursively searching
2062 * inside the highest scoring group of nodes. The nodemask tricks
2063 * keep the complexity of the search down.
2064 */
2065 nodes = node_online_map;
2066 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2067 unsigned long max_faults = 0;
2068 nodemask_t max_group = NODE_MASK_NONE;
2069 int a, b;
2070
2071 /* Are there nodes at this distance from each other? */
2072 if (!find_numa_distance(dist))
2073 continue;
2074
2075 for_each_node_mask(a, nodes) {
2076 unsigned long faults = 0;
2077 nodemask_t this_group;
2078 nodes_clear(this_group);
2079
2080 /* Sum group's NUMA faults; includes a==b case. */
2081 for_each_node_mask(b, nodes) {
2082 if (node_distance(a, b) < dist) {
2083 faults += group_faults(p, b);
2084 node_set(b, this_group);
2085 node_clear(b, nodes);
2086 }
2087 }
2088
2089 /* Remember the top group. */
2090 if (faults > max_faults) {
2091 max_faults = faults;
2092 max_group = this_group;
2093 /*
2094 * subtle: at the smallest distance there is
2095 * just one node left in each "group", the
2096 * winner is the preferred nid.
2097 */
2098 nid = a;
2099 }
2100 }
2101 /* Next round, evaluate the nodes within max_group. */
2102 if (!max_faults)
2103 break;
2104 nodes = max_group;
2105 }
2106 return nid;
2107 }
2108
2109 static void task_numa_placement(struct task_struct *p)
2110 {
2111 int seq, nid, max_nid = NUMA_NO_NODE;
2112 unsigned long max_faults = 0;
2113 unsigned long fault_types[2] = { 0, 0 };
2114 unsigned long total_faults;
2115 u64 runtime, period;
2116 spinlock_t *group_lock = NULL;
2117
2118 /*
2119 * The p->mm->numa_scan_seq field gets updated without
2120 * exclusive access. Use READ_ONCE() here to ensure
2121 * that the field is read in a single access:
2122 */
2123 seq = READ_ONCE(p->mm->numa_scan_seq);
2124 if (p->numa_scan_seq == seq)
2125 return;
2126 p->numa_scan_seq = seq;
2127 p->numa_scan_period_max = task_scan_max(p);
2128
2129 total_faults = p->numa_faults_locality[0] +
2130 p->numa_faults_locality[1];
2131 runtime = numa_get_avg_runtime(p, &period);
2132
2133 /* If the task is part of a group prevent parallel updates to group stats */
2134 if (p->numa_group) {
2135 group_lock = &p->numa_group->lock;
2136 spin_lock_irq(group_lock);
2137 }
2138
2139 /* Find the node with the highest number of faults */
2140 for_each_online_node(nid) {
2141 /* Keep track of the offsets in numa_faults array */
2142 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2143 unsigned long faults = 0, group_faults = 0;
2144 int priv;
2145
2146 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2147 long diff, f_diff, f_weight;
2148
2149 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2150 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2151 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2152 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2153
2154 /* Decay existing window, copy faults since last scan */
2155 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2156 fault_types[priv] += p->numa_faults[membuf_idx];
2157 p->numa_faults[membuf_idx] = 0;
2158
2159 /*
2160 * Normalize the faults_from, so all tasks in a group
2161 * count according to CPU use, instead of by the raw
2162 * number of faults. Tasks with little runtime have
2163 * little over-all impact on throughput, and thus their
2164 * faults are less important.
2165 */
2166 f_weight = div64_u64(runtime << 16, period + 1);
2167 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2168 (total_faults + 1);
2169 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2170 p->numa_faults[cpubuf_idx] = 0;
2171
2172 p->numa_faults[mem_idx] += diff;
2173 p->numa_faults[cpu_idx] += f_diff;
2174 faults += p->numa_faults[mem_idx];
2175 p->total_numa_faults += diff;
2176 if (p->numa_group) {
2177 /*
2178 * safe because we can only change our own group
2179 *
2180 * mem_idx represents the offset for a given
2181 * nid and priv in a specific region because it
2182 * is at the beginning of the numa_faults array.
2183 */
2184 p->numa_group->faults[mem_idx] += diff;
2185 p->numa_group->faults_cpu[mem_idx] += f_diff;
2186 p->numa_group->total_faults += diff;
2187 group_faults += p->numa_group->faults[mem_idx];
2188 }
2189 }
2190
2191 if (!p->numa_group) {
2192 if (faults > max_faults) {
2193 max_faults = faults;
2194 max_nid = nid;
2195 }
2196 } else if (group_faults > max_faults) {
2197 max_faults = group_faults;
2198 max_nid = nid;
2199 }
2200 }
2201
2202 if (p->numa_group) {
2203 numa_group_count_active_nodes(p->numa_group);
2204 spin_unlock_irq(group_lock);
2205 max_nid = preferred_group_nid(p, max_nid);
2206 }
2207
2208 if (max_faults) {
2209 /* Set the new preferred node */
2210 if (max_nid != p->numa_preferred_nid)
2211 sched_setnuma(p, max_nid);
2212 }
2213
2214 update_task_scan_period(p, fault_types[0], fault_types[1]);
2215 }
2216
2217 static inline int get_numa_group(struct numa_group *grp)
2218 {
2219 return refcount_inc_not_zero(&grp->refcount);
2220 }
2221
2222 static inline void put_numa_group(struct numa_group *grp)
2223 {
2224 if (refcount_dec_and_test(&grp->refcount))
2225 kfree_rcu(grp, rcu);
2226 }
2227
2228 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2229 int *priv)
2230 {
2231 struct numa_group *grp, *my_grp;
2232 struct task_struct *tsk;
2233 bool join = false;
2234 int cpu = cpupid_to_cpu(cpupid);
2235 int i;
2236
2237 if (unlikely(!p->numa_group)) {
2238 unsigned int size = sizeof(struct numa_group) +
2239 4*nr_node_ids*sizeof(unsigned long);
2240
2241 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2242 if (!grp)
2243 return;
2244
2245 refcount_set(&grp->refcount, 1);
2246 grp->active_nodes = 1;
2247 grp->max_faults_cpu = 0;
2248 spin_lock_init(&grp->lock);
2249 grp->gid = p->pid;
2250 /* Second half of the array tracks nids where faults happen */
2251 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2252 nr_node_ids;
2253
2254 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2255 grp->faults[i] = p->numa_faults[i];
2256
2257 grp->total_faults = p->total_numa_faults;
2258
2259 grp->nr_tasks++;
2260 rcu_assign_pointer(p->numa_group, grp);
2261 }
2262
2263 rcu_read_lock();
2264 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2265
2266 if (!cpupid_match_pid(tsk, cpupid))
2267 goto no_join;
2268
2269 grp = rcu_dereference(tsk->numa_group);
2270 if (!grp)
2271 goto no_join;
2272
2273 my_grp = p->numa_group;
2274 if (grp == my_grp)
2275 goto no_join;
2276
2277 /*
2278 * Only join the other group if its bigger; if we're the bigger group,
2279 * the other task will join us.
2280 */
2281 if (my_grp->nr_tasks > grp->nr_tasks)
2282 goto no_join;
2283
2284 /*
2285 * Tie-break on the grp address.
2286 */
2287 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2288 goto no_join;
2289
2290 /* Always join threads in the same process. */
2291 if (tsk->mm == current->mm)
2292 join = true;
2293
2294 /* Simple filter to avoid false positives due to PID collisions */
2295 if (flags & TNF_SHARED)
2296 join = true;
2297
2298 /* Update priv based on whether false sharing was detected */
2299 *priv = !join;
2300
2301 if (join && !get_numa_group(grp))
2302 goto no_join;
2303
2304 rcu_read_unlock();
2305
2306 if (!join)
2307 return;
2308
2309 BUG_ON(irqs_disabled());
2310 double_lock_irq(&my_grp->lock, &grp->lock);
2311
2312 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2313 my_grp->faults[i] -= p->numa_faults[i];
2314 grp->faults[i] += p->numa_faults[i];
2315 }
2316 my_grp->total_faults -= p->total_numa_faults;
2317 grp->total_faults += p->total_numa_faults;
2318
2319 my_grp->nr_tasks--;
2320 grp->nr_tasks++;
2321
2322 spin_unlock(&my_grp->lock);
2323 spin_unlock_irq(&grp->lock);
2324
2325 rcu_assign_pointer(p->numa_group, grp);
2326
2327 put_numa_group(my_grp);
2328 return;
2329
2330 no_join:
2331 rcu_read_unlock();
2332 return;
2333 }
2334
2335 void task_numa_free(struct task_struct *p)
2336 {
2337 struct numa_group *grp = p->numa_group;
2338 void *numa_faults = p->numa_faults;
2339 unsigned long flags;
2340 int i;
2341
2342 if (grp) {
2343 spin_lock_irqsave(&grp->lock, flags);
2344 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2345 grp->faults[i] -= p->numa_faults[i];
2346 grp->total_faults -= p->total_numa_faults;
2347
2348 grp->nr_tasks--;
2349 spin_unlock_irqrestore(&grp->lock, flags);
2350 RCU_INIT_POINTER(p->numa_group, NULL);
2351 put_numa_group(grp);
2352 }
2353
2354 p->numa_faults = NULL;
2355 kfree(numa_faults);
2356 }
2357
2358 /*
2359 * Got a PROT_NONE fault for a page on @node.
2360 */
2361 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2362 {
2363 struct task_struct *p = current;
2364 bool migrated = flags & TNF_MIGRATED;
2365 int cpu_node = task_node(current);
2366 int local = !!(flags & TNF_FAULT_LOCAL);
2367 struct numa_group *ng;
2368 int priv;
2369
2370 if (!static_branch_likely(&sched_numa_balancing))
2371 return;
2372
2373 /* for example, ksmd faulting in a user's mm */
2374 if (!p->mm)
2375 return;
2376
2377 /* Allocate buffer to track faults on a per-node basis */
2378 if (unlikely(!p->numa_faults)) {
2379 int size = sizeof(*p->numa_faults) *
2380 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2381
2382 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2383 if (!p->numa_faults)
2384 return;
2385
2386 p->total_numa_faults = 0;
2387 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2388 }
2389
2390 /*
2391 * First accesses are treated as private, otherwise consider accesses
2392 * to be private if the accessing pid has not changed
2393 */
2394 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2395 priv = 1;
2396 } else {
2397 priv = cpupid_match_pid(p, last_cpupid);
2398 if (!priv && !(flags & TNF_NO_GROUP))
2399 task_numa_group(p, last_cpupid, flags, &priv);
2400 }
2401
2402 /*
2403 * If a workload spans multiple NUMA nodes, a shared fault that
2404 * occurs wholly within the set of nodes that the workload is
2405 * actively using should be counted as local. This allows the
2406 * scan rate to slow down when a workload has settled down.
2407 */
2408 ng = p->numa_group;
2409 if (!priv && !local && ng && ng->active_nodes > 1 &&
2410 numa_is_active_node(cpu_node, ng) &&
2411 numa_is_active_node(mem_node, ng))
2412 local = 1;
2413
2414 /*
2415 * Retry to migrate task to preferred node periodically, in case it
2416 * previously failed, or the scheduler moved us.
2417 */
2418 if (time_after(jiffies, p->numa_migrate_retry)) {
2419 task_numa_placement(p);
2420 numa_migrate_preferred(p);
2421 }
2422
2423 if (migrated)
2424 p->numa_pages_migrated += pages;
2425 if (flags & TNF_MIGRATE_FAIL)
2426 p->numa_faults_locality[2] += pages;
2427
2428 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2429 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2430 p->numa_faults_locality[local] += pages;
2431 }
2432
2433 static void reset_ptenuma_scan(struct task_struct *p)
2434 {
2435 /*
2436 * We only did a read acquisition of the mmap sem, so
2437 * p->mm->numa_scan_seq is written to without exclusive access
2438 * and the update is not guaranteed to be atomic. That's not
2439 * much of an issue though, since this is just used for
2440 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2441 * expensive, to avoid any form of compiler optimizations:
2442 */
2443 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2444 p->mm->numa_scan_offset = 0;
2445 }
2446
2447 /*
2448 * The expensive part of numa migration is done from task_work context.
2449 * Triggered from task_tick_numa().
2450 */
2451 void task_numa_work(struct callback_head *work)
2452 {
2453 unsigned long migrate, next_scan, now = jiffies;
2454 struct task_struct *p = current;
2455 struct mm_struct *mm = p->mm;
2456 u64 runtime = p->se.sum_exec_runtime;
2457 struct vm_area_struct *vma;
2458 unsigned long start, end;
2459 unsigned long nr_pte_updates = 0;
2460 long pages, virtpages;
2461
2462 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2463
2464 work->next = work; /* protect against double add */
2465 /*
2466 * Who cares about NUMA placement when they're dying.
2467 *
2468 * NOTE: make sure not to dereference p->mm before this check,
2469 * exit_task_work() happens _after_ exit_mm() so we could be called
2470 * without p->mm even though we still had it when we enqueued this
2471 * work.
2472 */
2473 if (p->flags & PF_EXITING)
2474 return;
2475
2476 if (!mm->numa_next_scan) {
2477 mm->numa_next_scan = now +
2478 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2479 }
2480
2481 /*
2482 * Enforce maximal scan/migration frequency..
2483 */
2484 migrate = mm->numa_next_scan;
2485 if (time_before(now, migrate))
2486 return;
2487
2488 if (p->numa_scan_period == 0) {
2489 p->numa_scan_period_max = task_scan_max(p);
2490 p->numa_scan_period = task_scan_start(p);
2491 }
2492
2493 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2494 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2495 return;
2496
2497 /*
2498 * Delay this task enough that another task of this mm will likely win
2499 * the next time around.
2500 */
2501 p->node_stamp += 2 * TICK_NSEC;
2502
2503 start = mm->numa_scan_offset;
2504 pages = sysctl_numa_balancing_scan_size;
2505 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2506 virtpages = pages * 8; /* Scan up to this much virtual space */
2507 if (!pages)
2508 return;
2509
2510
2511 if (!down_read_trylock(&mm->mmap_sem))
2512 return;
2513 vma = find_vma(mm, start);
2514 if (!vma) {
2515 reset_ptenuma_scan(p);
2516 start = 0;
2517 vma = mm->mmap;
2518 }
2519 for (; vma; vma = vma->vm_next) {
2520 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2521 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2522 continue;
2523 }
2524
2525 /*
2526 * Shared library pages mapped by multiple processes are not
2527 * migrated as it is expected they are cache replicated. Avoid
2528 * hinting faults in read-only file-backed mappings or the vdso
2529 * as migrating the pages will be of marginal benefit.
2530 */
2531 if (!vma->vm_mm ||
2532 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2533 continue;
2534
2535 /*
2536 * Skip inaccessible VMAs to avoid any confusion between
2537 * PROT_NONE and NUMA hinting ptes
2538 */
2539 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2540 continue;
2541
2542 do {
2543 start = max(start, vma->vm_start);
2544 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2545 end = min(end, vma->vm_end);
2546 nr_pte_updates = change_prot_numa(vma, start, end);
2547
2548 /*
2549 * Try to scan sysctl_numa_balancing_size worth of
2550 * hpages that have at least one present PTE that
2551 * is not already pte-numa. If the VMA contains
2552 * areas that are unused or already full of prot_numa
2553 * PTEs, scan up to virtpages, to skip through those
2554 * areas faster.
2555 */
2556 if (nr_pte_updates)
2557 pages -= (end - start) >> PAGE_SHIFT;
2558 virtpages -= (end - start) >> PAGE_SHIFT;
2559
2560 start = end;
2561 if (pages <= 0 || virtpages <= 0)
2562 goto out;
2563
2564 cond_resched();
2565 } while (end != vma->vm_end);
2566 }
2567
2568 out:
2569 /*
2570 * It is possible to reach the end of the VMA list but the last few
2571 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2572 * would find the !migratable VMA on the next scan but not reset the
2573 * scanner to the start so check it now.
2574 */
2575 if (vma)
2576 mm->numa_scan_offset = start;
2577 else
2578 reset_ptenuma_scan(p);
2579 up_read(&mm->mmap_sem);
2580
2581 /*
2582 * Make sure tasks use at least 32x as much time to run other code
2583 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2584 * Usually update_task_scan_period slows down scanning enough; on an
2585 * overloaded system we need to limit overhead on a per task basis.
2586 */
2587 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2588 u64 diff = p->se.sum_exec_runtime - runtime;
2589 p->node_stamp += 32 * diff;
2590 }
2591 }
2592
2593 /*
2594 * Drive the periodic memory faults..
2595 */
2596 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2597 {
2598 struct callback_head *work = &curr->numa_work;
2599 u64 period, now;
2600
2601 /*
2602 * We don't care about NUMA placement if we don't have memory.
2603 */
2604 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2605 return;
2606
2607 /*
2608 * Using runtime rather than walltime has the dual advantage that
2609 * we (mostly) drive the selection from busy threads and that the
2610 * task needs to have done some actual work before we bother with
2611 * NUMA placement.
2612 */
2613 now = curr->se.sum_exec_runtime;
2614 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2615
2616 if (now > curr->node_stamp + period) {
2617 if (!curr->node_stamp)
2618 curr->numa_scan_period = task_scan_start(curr);
2619 curr->node_stamp += period;
2620
2621 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2622 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2623 task_work_add(curr, work, true);
2624 }
2625 }
2626 }
2627
2628 static void update_scan_period(struct task_struct *p, int new_cpu)
2629 {
2630 int src_nid = cpu_to_node(task_cpu(p));
2631 int dst_nid = cpu_to_node(new_cpu);
2632
2633 if (!static_branch_likely(&sched_numa_balancing))
2634 return;
2635
2636 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2637 return;
2638
2639 if (src_nid == dst_nid)
2640 return;
2641
2642 /*
2643 * Allow resets if faults have been trapped before one scan
2644 * has completed. This is most likely due to a new task that
2645 * is pulled cross-node due to wakeups or load balancing.
2646 */
2647 if (p->numa_scan_seq) {
2648 /*
2649 * Avoid scan adjustments if moving to the preferred
2650 * node or if the task was not previously running on
2651 * the preferred node.
2652 */
2653 if (dst_nid == p->numa_preferred_nid ||
2654 (p->numa_preferred_nid != NUMA_NO_NODE &&
2655 src_nid != p->numa_preferred_nid))
2656 return;
2657 }
2658
2659 p->numa_scan_period = task_scan_start(p);
2660 }
2661
2662 #else
2663 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2664 {
2665 }
2666
2667 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2668 {
2669 }
2670
2671 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2672 {
2673 }
2674
2675 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2676 {
2677 }
2678
2679 #endif /* CONFIG_NUMA_BALANCING */
2680
2681 static void
2682 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2683 {
2684 update_load_add(&cfs_rq->load, se->load.weight);
2685 if (!parent_entity(se))
2686 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2687 #ifdef CONFIG_SMP
2688 if (entity_is_task(se)) {
2689 struct rq *rq = rq_of(cfs_rq);
2690
2691 account_numa_enqueue(rq, task_of(se));
2692 list_add(&se->group_node, &rq->cfs_tasks);
2693 }
2694 #endif
2695 cfs_rq->nr_running++;
2696 }
2697
2698 static void
2699 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2700 {
2701 update_load_sub(&cfs_rq->load, se->load.weight);
2702 if (!parent_entity(se))
2703 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2704 #ifdef CONFIG_SMP
2705 if (entity_is_task(se)) {
2706 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2707 list_del_init(&se->group_node);
2708 }
2709 #endif
2710 cfs_rq->nr_running--;
2711 }
2712
2713 /*
2714 * Signed add and clamp on underflow.
2715 *
2716 * Explicitly do a load-store to ensure the intermediate value never hits
2717 * memory. This allows lockless observations without ever seeing the negative
2718 * values.
2719 */
2720 #define add_positive(_ptr, _val) do { \
2721 typeof(_ptr) ptr = (_ptr); \
2722 typeof(_val) val = (_val); \
2723 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2724 \
2725 res = var + val; \
2726 \
2727 if (val < 0 && res > var) \
2728 res = 0; \
2729 \
2730 WRITE_ONCE(*ptr, res); \
2731 } while (0)
2732
2733 /*
2734 * Unsigned subtract and clamp on underflow.
2735 *
2736 * Explicitly do a load-store to ensure the intermediate value never hits
2737 * memory. This allows lockless observations without ever seeing the negative
2738 * values.
2739 */
2740 #define sub_positive(_ptr, _val) do { \
2741 typeof(_ptr) ptr = (_ptr); \
2742 typeof(*ptr) val = (_val); \
2743 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2744 res = var - val; \
2745 if (res > var) \
2746 res = 0; \
2747 WRITE_ONCE(*ptr, res); \
2748 } while (0)
2749
2750 /*
2751 * Remove and clamp on negative, from a local variable.
2752 *
2753 * A variant of sub_positive(), which does not use explicit load-store
2754 * and is thus optimized for local variable updates.
2755 */
2756 #define lsub_positive(_ptr, _val) do { \
2757 typeof(_ptr) ptr = (_ptr); \
2758 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2759 } while (0)
2760
2761 #ifdef CONFIG_SMP
2762 static inline void
2763 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2764 {
2765 cfs_rq->runnable_weight += se->runnable_weight;
2766
2767 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2768 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2769 }
2770
2771 static inline void
2772 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2773 {
2774 cfs_rq->runnable_weight -= se->runnable_weight;
2775
2776 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2777 sub_positive(&cfs_rq->avg.runnable_load_sum,
2778 se_runnable(se) * se->avg.runnable_load_sum);
2779 }
2780
2781 static inline void
2782 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2783 {
2784 cfs_rq->avg.load_avg += se->avg.load_avg;
2785 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2786 }
2787
2788 static inline void
2789 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2790 {
2791 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2792 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2793 }
2794 #else
2795 static inline void
2796 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2797 static inline void
2798 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2799 static inline void
2800 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2801 static inline void
2802 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2803 #endif
2804
2805 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2806 unsigned long weight, unsigned long runnable)
2807 {
2808 if (se->on_rq) {
2809 /* commit outstanding execution time */
2810 if (cfs_rq->curr == se)
2811 update_curr(cfs_rq);
2812 account_entity_dequeue(cfs_rq, se);
2813 dequeue_runnable_load_avg(cfs_rq, se);
2814 }
2815 dequeue_load_avg(cfs_rq, se);
2816
2817 se->runnable_weight = runnable;
2818 update_load_set(&se->load, weight);
2819
2820 #ifdef CONFIG_SMP
2821 do {
2822 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2823
2824 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2825 se->avg.runnable_load_avg =
2826 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2827 } while (0);
2828 #endif
2829
2830 enqueue_load_avg(cfs_rq, se);
2831 if (se->on_rq) {
2832 account_entity_enqueue(cfs_rq, se);
2833 enqueue_runnable_load_avg(cfs_rq, se);
2834 }
2835 }
2836
2837 void reweight_task(struct task_struct *p, int prio)
2838 {
2839 struct sched_entity *se = &p->se;
2840 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2841 struct load_weight *load = &se->load;
2842 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2843
2844 reweight_entity(cfs_rq, se, weight, weight);
2845 load->inv_weight = sched_prio_to_wmult[prio];
2846 }
2847
2848 #ifdef CONFIG_FAIR_GROUP_SCHED
2849 #ifdef CONFIG_SMP
2850 /*
2851 * All this does is approximate the hierarchical proportion which includes that
2852 * global sum we all love to hate.
2853 *
2854 * That is, the weight of a group entity, is the proportional share of the
2855 * group weight based on the group runqueue weights. That is:
2856 *
2857 * tg->weight * grq->load.weight
2858 * ge->load.weight = ----------------------------- (1)
2859 * \Sum grq->load.weight
2860 *
2861 * Now, because computing that sum is prohibitively expensive to compute (been
2862 * there, done that) we approximate it with this average stuff. The average
2863 * moves slower and therefore the approximation is cheaper and more stable.
2864 *
2865 * So instead of the above, we substitute:
2866 *
2867 * grq->load.weight -> grq->avg.load_avg (2)
2868 *
2869 * which yields the following:
2870 *
2871 * tg->weight * grq->avg.load_avg
2872 * ge->load.weight = ------------------------------ (3)
2873 * tg->load_avg
2874 *
2875 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2876 *
2877 * That is shares_avg, and it is right (given the approximation (2)).
2878 *
2879 * The problem with it is that because the average is slow -- it was designed
2880 * to be exactly that of course -- this leads to transients in boundary
2881 * conditions. In specific, the case where the group was idle and we start the
2882 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2883 * yielding bad latency etc..
2884 *
2885 * Now, in that special case (1) reduces to:
2886 *
2887 * tg->weight * grq->load.weight
2888 * ge->load.weight = ----------------------------- = tg->weight (4)
2889 * grp->load.weight
2890 *
2891 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2892 *
2893 * So what we do is modify our approximation (3) to approach (4) in the (near)
2894 * UP case, like:
2895 *
2896 * ge->load.weight =
2897 *
2898 * tg->weight * grq->load.weight
2899 * --------------------------------------------------- (5)
2900 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2901 *
2902 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2903 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2904 *
2905 *
2906 * tg->weight * grq->load.weight
2907 * ge->load.weight = ----------------------------- (6)
2908 * tg_load_avg'
2909 *
2910 * Where:
2911 *
2912 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2913 * max(grq->load.weight, grq->avg.load_avg)
2914 *
2915 * And that is shares_weight and is icky. In the (near) UP case it approaches
2916 * (4) while in the normal case it approaches (3). It consistently
2917 * overestimates the ge->load.weight and therefore:
2918 *
2919 * \Sum ge->load.weight >= tg->weight
2920 *
2921 * hence icky!
2922 */
2923 static long calc_group_shares(struct cfs_rq *cfs_rq)
2924 {
2925 long tg_weight, tg_shares, load, shares;
2926 struct task_group *tg = cfs_rq->tg;
2927
2928 tg_shares = READ_ONCE(tg->shares);
2929
2930 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2931
2932 tg_weight = atomic_long_read(&tg->load_avg);
2933
2934 /* Ensure tg_weight >= load */
2935 tg_weight -= cfs_rq->tg_load_avg_contrib;
2936 tg_weight += load;
2937
2938 shares = (tg_shares * load);
2939 if (tg_weight)
2940 shares /= tg_weight;
2941
2942 /*
2943 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2944 * of a group with small tg->shares value. It is a floor value which is
2945 * assigned as a minimum load.weight to the sched_entity representing
2946 * the group on a CPU.
2947 *
2948 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2949 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2950 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2951 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2952 * instead of 0.
2953 */
2954 return clamp_t(long, shares, MIN_SHARES, tg_shares);
2955 }
2956
2957 /*
2958 * This calculates the effective runnable weight for a group entity based on
2959 * the group entity weight calculated above.
2960 *
2961 * Because of the above approximation (2), our group entity weight is
2962 * an load_avg based ratio (3). This means that it includes blocked load and
2963 * does not represent the runnable weight.
2964 *
2965 * Approximate the group entity's runnable weight per ratio from the group
2966 * runqueue:
2967 *
2968 * grq->avg.runnable_load_avg
2969 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2970 * grq->avg.load_avg
2971 *
2972 * However, analogous to above, since the avg numbers are slow, this leads to
2973 * transients in the from-idle case. Instead we use:
2974 *
2975 * ge->runnable_weight = ge->load.weight *
2976 *
2977 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2978 * ----------------------------------------------------- (8)
2979 * max(grq->avg.load_avg, grq->load.weight)
2980 *
2981 * Where these max() serve both to use the 'instant' values to fix the slow
2982 * from-idle and avoid the /0 on to-idle, similar to (6).
2983 */
2984 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2985 {
2986 long runnable, load_avg;
2987
2988 load_avg = max(cfs_rq->avg.load_avg,
2989 scale_load_down(cfs_rq->load.weight));
2990
2991 runnable = max(cfs_rq->avg.runnable_load_avg,
2992 scale_load_down(cfs_rq->runnable_weight));
2993
2994 runnable *= shares;
2995 if (load_avg)
2996 runnable /= load_avg;
2997
2998 return clamp_t(long, runnable, MIN_SHARES, shares);
2999 }
3000 #endif /* CONFIG_SMP */
3001
3002 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3003
3004 /*
3005 * Recomputes the group entity based on the current state of its group
3006 * runqueue.
3007 */
3008 static void update_cfs_group(struct sched_entity *se)
3009 {
3010 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3011 long shares, runnable;
3012
3013 if (!gcfs_rq)
3014 return;
3015
3016 if (throttled_hierarchy(gcfs_rq))
3017 return;
3018
3019 #ifndef CONFIG_SMP
3020 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3021
3022 if (likely(se->load.weight == shares))
3023 return;
3024 #else
3025 shares = calc_group_shares(gcfs_rq);
3026 runnable = calc_group_runnable(gcfs_rq, shares);
3027 #endif
3028
3029 reweight_entity(cfs_rq_of(se), se, shares, runnable);
3030 }
3031
3032 #else /* CONFIG_FAIR_GROUP_SCHED */
3033 static inline void update_cfs_group(struct sched_entity *se)
3034 {
3035 }
3036 #endif /* CONFIG_FAIR_GROUP_SCHED */
3037
3038 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3039 {
3040 struct rq *rq = rq_of(cfs_rq);
3041
3042 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3043 /*
3044 * There are a few boundary cases this might miss but it should
3045 * get called often enough that that should (hopefully) not be
3046 * a real problem.
3047 *
3048 * It will not get called when we go idle, because the idle
3049 * thread is a different class (!fair), nor will the utilization
3050 * number include things like RT tasks.
3051 *
3052 * As is, the util number is not freq-invariant (we'd have to
3053 * implement arch_scale_freq_capacity() for that).
3054 *
3055 * See cpu_util().
3056 */
3057 cpufreq_update_util(rq, flags);
3058 }
3059 }
3060
3061 #ifdef CONFIG_SMP
3062 #ifdef CONFIG_FAIR_GROUP_SCHED
3063 /**
3064 * update_tg_load_avg - update the tg's load avg
3065 * @cfs_rq: the cfs_rq whose avg changed
3066 * @force: update regardless of how small the difference
3067 *
3068 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3069 * However, because tg->load_avg is a global value there are performance
3070 * considerations.
3071 *
3072 * In order to avoid having to look at the other cfs_rq's, we use a
3073 * differential update where we store the last value we propagated. This in
3074 * turn allows skipping updates if the differential is 'small'.
3075 *
3076 * Updating tg's load_avg is necessary before update_cfs_share().
3077 */
3078 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3079 {
3080 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3081
3082 /*
3083 * No need to update load_avg for root_task_group as it is not used.
3084 */
3085 if (cfs_rq->tg == &root_task_group)
3086 return;
3087
3088 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3089 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3090 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3091 }
3092 }
3093
3094 /*
3095 * Called within set_task_rq() right before setting a task's CPU. The
3096 * caller only guarantees p->pi_lock is held; no other assumptions,
3097 * including the state of rq->lock, should be made.
3098 */
3099 void set_task_rq_fair(struct sched_entity *se,
3100 struct cfs_rq *prev, struct cfs_rq *next)
3101 {
3102 u64 p_last_update_time;
3103 u64 n_last_update_time;
3104
3105 if (!sched_feat(ATTACH_AGE_LOAD))
3106 return;
3107
3108 /*
3109 * We are supposed to update the task to "current" time, then its up to
3110 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3111 * getting what current time is, so simply throw away the out-of-date
3112 * time. This will result in the wakee task is less decayed, but giving
3113 * the wakee more load sounds not bad.
3114 */
3115 if (!(se->avg.last_update_time && prev))
3116 return;
3117
3118 #ifndef CONFIG_64BIT
3119 {
3120 u64 p_last_update_time_copy;
3121 u64 n_last_update_time_copy;
3122
3123 do {
3124 p_last_update_time_copy = prev->load_last_update_time_copy;
3125 n_last_update_time_copy = next->load_last_update_time_copy;
3126
3127 smp_rmb();
3128
3129 p_last_update_time = prev->avg.last_update_time;
3130 n_last_update_time = next->avg.last_update_time;
3131
3132 } while (p_last_update_time != p_last_update_time_copy ||
3133 n_last_update_time != n_last_update_time_copy);
3134 }
3135 #else
3136 p_last_update_time = prev->avg.last_update_time;
3137 n_last_update_time = next->avg.last_update_time;
3138 #endif
3139 __update_load_avg_blocked_se(p_last_update_time, se);
3140 se->avg.last_update_time = n_last_update_time;
3141 }
3142
3143
3144 /*
3145 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3146 * propagate its contribution. The key to this propagation is the invariant
3147 * that for each group:
3148 *
3149 * ge->avg == grq->avg (1)
3150 *
3151 * _IFF_ we look at the pure running and runnable sums. Because they
3152 * represent the very same entity, just at different points in the hierarchy.
3153 *
3154 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3155 * sum over (but still wrong, because the group entity and group rq do not have
3156 * their PELT windows aligned).
3157 *
3158 * However, update_tg_cfs_runnable() is more complex. So we have:
3159 *
3160 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3161 *
3162 * And since, like util, the runnable part should be directly transferable,
3163 * the following would _appear_ to be the straight forward approach:
3164 *
3165 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3166 *
3167 * And per (1) we have:
3168 *
3169 * ge->avg.runnable_avg == grq->avg.runnable_avg
3170 *
3171 * Which gives:
3172 *
3173 * ge->load.weight * grq->avg.load_avg
3174 * ge->avg.load_avg = ----------------------------------- (4)
3175 * grq->load.weight
3176 *
3177 * Except that is wrong!
3178 *
3179 * Because while for entities historical weight is not important and we
3180 * really only care about our future and therefore can consider a pure
3181 * runnable sum, runqueues can NOT do this.
3182 *
3183 * We specifically want runqueues to have a load_avg that includes
3184 * historical weights. Those represent the blocked load, the load we expect
3185 * to (shortly) return to us. This only works by keeping the weights as
3186 * integral part of the sum. We therefore cannot decompose as per (3).
3187 *
3188 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3189 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3190 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3191 * runnable section of these tasks overlap (or not). If they were to perfectly
3192 * align the rq as a whole would be runnable 2/3 of the time. If however we
3193 * always have at least 1 runnable task, the rq as a whole is always runnable.
3194 *
3195 * So we'll have to approximate.. :/
3196 *
3197 * Given the constraint:
3198 *
3199 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3200 *
3201 * We can construct a rule that adds runnable to a rq by assuming minimal
3202 * overlap.
3203 *
3204 * On removal, we'll assume each task is equally runnable; which yields:
3205 *
3206 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3207 *
3208 * XXX: only do this for the part of runnable > running ?
3209 *
3210 */
3211
3212 static inline void
3213 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3214 {
3215 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3216
3217 /* Nothing to update */
3218 if (!delta)
3219 return;
3220
3221 /*
3222 * The relation between sum and avg is:
3223 *
3224 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3225 *
3226 * however, the PELT windows are not aligned between grq and gse.
3227 */
3228
3229 /* Set new sched_entity's utilization */
3230 se->avg.util_avg = gcfs_rq->avg.util_avg;
3231 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3232
3233 /* Update parent cfs_rq utilization */
3234 add_positive(&cfs_rq->avg.util_avg, delta);
3235 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3236 }
3237
3238 static inline void
3239 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3240 {
3241 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3242 unsigned long runnable_load_avg, load_avg;
3243 u64 runnable_load_sum, load_sum = 0;
3244 s64 delta_sum;
3245
3246 if (!runnable_sum)
3247 return;
3248
3249 gcfs_rq->prop_runnable_sum = 0;
3250
3251 if (runnable_sum >= 0) {
3252 /*
3253 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3254 * the CPU is saturated running == runnable.
3255 */
3256 runnable_sum += se->avg.load_sum;
3257 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3258 } else {
3259 /*
3260 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3261 * assuming all tasks are equally runnable.
3262 */
3263 if (scale_load_down(gcfs_rq->load.weight)) {
3264 load_sum = div_s64(gcfs_rq->avg.load_sum,
3265 scale_load_down(gcfs_rq->load.weight));
3266 }
3267
3268 /* But make sure to not inflate se's runnable */
3269 runnable_sum = min(se->avg.load_sum, load_sum);
3270 }
3271
3272 /*
3273 * runnable_sum can't be lower than running_sum
3274 * Rescale running sum to be in the same range as runnable sum
3275 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3276 * runnable_sum is in [0 : LOAD_AVG_MAX]
3277 */
3278 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3279 runnable_sum = max(runnable_sum, running_sum);
3280
3281 load_sum = (s64)se_weight(se) * runnable_sum;
3282 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3283
3284 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3285 delta_avg = load_avg - se->avg.load_avg;
3286
3287 se->avg.load_sum = runnable_sum;
3288 se->avg.load_avg = load_avg;
3289 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3290 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3291
3292 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3293 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3294 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3295 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3296
3297 se->avg.runnable_load_sum = runnable_sum;
3298 se->avg.runnable_load_avg = runnable_load_avg;
3299
3300 if (se->on_rq) {
3301 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3302 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3303 }
3304 }
3305
3306 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3307 {
3308 cfs_rq->propagate = 1;
3309 cfs_rq->prop_runnable_sum += runnable_sum;
3310 }
3311
3312 /* Update task and its cfs_rq load average */
3313 static inline int propagate_entity_load_avg(struct sched_entity *se)
3314 {
3315 struct cfs_rq *cfs_rq, *gcfs_rq;
3316
3317 if (entity_is_task(se))
3318 return 0;
3319
3320 gcfs_rq = group_cfs_rq(se);
3321 if (!gcfs_rq->propagate)
3322 return 0;
3323
3324 gcfs_rq->propagate = 0;
3325
3326 cfs_rq = cfs_rq_of(se);
3327
3328 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3329
3330 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3331 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3332
3333 return 1;
3334 }
3335
3336 /*
3337 * Check if we need to update the load and the utilization of a blocked
3338 * group_entity:
3339 */
3340 static inline bool skip_blocked_update(struct sched_entity *se)
3341 {
3342 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3343
3344 /*
3345 * If sched_entity still have not zero load or utilization, we have to
3346 * decay it:
3347 */
3348 if (se->avg.load_avg || se->avg.util_avg)
3349 return false;
3350
3351 /*
3352 * If there is a pending propagation, we have to update the load and
3353 * the utilization of the sched_entity:
3354 */
3355 if (gcfs_rq->propagate)
3356 return false;
3357
3358 /*
3359 * Otherwise, the load and the utilization of the sched_entity is
3360 * already zero and there is no pending propagation, so it will be a
3361 * waste of time to try to decay it:
3362 */
3363 return true;
3364 }
3365
3366 #else /* CONFIG_FAIR_GROUP_SCHED */
3367
3368 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3369
3370 static inline int propagate_entity_load_avg(struct sched_entity *se)
3371 {
3372 return 0;
3373 }
3374
3375 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3376
3377 #endif /* CONFIG_FAIR_GROUP_SCHED */
3378
3379 /**
3380 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3381 * @now: current time, as per cfs_rq_clock_pelt()
3382 * @cfs_rq: cfs_rq to update
3383 *
3384 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3385 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3386 * post_init_entity_util_avg().
3387 *
3388 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3389 *
3390 * Returns true if the load decayed or we removed load.
3391 *
3392 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3393 * call update_tg_load_avg() when this function returns true.
3394 */
3395 static inline int
3396 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3397 {
3398 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3399 struct sched_avg *sa = &cfs_rq->avg;
3400 int decayed = 0;
3401
3402 if (cfs_rq->removed.nr) {
3403 unsigned long r;
3404 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3405
3406 raw_spin_lock(&cfs_rq->removed.lock);
3407 swap(cfs_rq->removed.util_avg, removed_util);
3408 swap(cfs_rq->removed.load_avg, removed_load);
3409 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3410 cfs_rq->removed.nr = 0;
3411 raw_spin_unlock(&cfs_rq->removed.lock);
3412
3413 r = removed_load;
3414 sub_positive(&sa->load_avg, r);
3415 sub_positive(&sa->load_sum, r * divider);
3416
3417 r = removed_util;
3418 sub_positive(&sa->util_avg, r);
3419 sub_positive(&sa->util_sum, r * divider);
3420
3421 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3422
3423 decayed = 1;
3424 }
3425
3426 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3427
3428 #ifndef CONFIG_64BIT
3429 smp_wmb();
3430 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3431 #endif
3432
3433 if (decayed)
3434 cfs_rq_util_change(cfs_rq, 0);
3435
3436 return decayed;
3437 }
3438
3439 /**
3440 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3441 * @cfs_rq: cfs_rq to attach to
3442 * @se: sched_entity to attach
3443 * @flags: migration hints
3444 *
3445 * Must call update_cfs_rq_load_avg() before this, since we rely on
3446 * cfs_rq->avg.last_update_time being current.
3447 */
3448 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3449 {
3450 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3451
3452 /*
3453 * When we attach the @se to the @cfs_rq, we must align the decay
3454 * window because without that, really weird and wonderful things can
3455 * happen.
3456 *
3457 * XXX illustrate
3458 */
3459 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3460 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3461
3462 /*
3463 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3464 * period_contrib. This isn't strictly correct, but since we're
3465 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3466 * _sum a little.
3467 */
3468 se->avg.util_sum = se->avg.util_avg * divider;
3469
3470 se->avg.load_sum = divider;
3471 if (se_weight(se)) {
3472 se->avg.load_sum =
3473 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3474 }
3475
3476 se->avg.runnable_load_sum = se->avg.load_sum;
3477
3478 enqueue_load_avg(cfs_rq, se);
3479 cfs_rq->avg.util_avg += se->avg.util_avg;
3480 cfs_rq->avg.util_sum += se->avg.util_sum;
3481
3482 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3483
3484 cfs_rq_util_change(cfs_rq, flags);
3485 }
3486
3487 /**
3488 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3489 * @cfs_rq: cfs_rq to detach from
3490 * @se: sched_entity to detach
3491 *
3492 * Must call update_cfs_rq_load_avg() before this, since we rely on
3493 * cfs_rq->avg.last_update_time being current.
3494 */
3495 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3496 {
3497 dequeue_load_avg(cfs_rq, se);
3498 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3499 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3500
3501 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3502
3503 cfs_rq_util_change(cfs_rq, 0);
3504 }
3505
3506 /*
3507 * Optional action to be done while updating the load average
3508 */
3509 #define UPDATE_TG 0x1
3510 #define SKIP_AGE_LOAD 0x2
3511 #define DO_ATTACH 0x4
3512
3513 /* Update task and its cfs_rq load average */
3514 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3515 {
3516 u64 now = cfs_rq_clock_pelt(cfs_rq);
3517 int decayed;
3518
3519 /*
3520 * Track task load average for carrying it to new CPU after migrated, and
3521 * track group sched_entity load average for task_h_load calc in migration
3522 */
3523 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3524 __update_load_avg_se(now, cfs_rq, se);
3525
3526 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3527 decayed |= propagate_entity_load_avg(se);
3528
3529 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3530
3531 /*
3532 * DO_ATTACH means we're here from enqueue_entity().
3533 * !last_update_time means we've passed through
3534 * migrate_task_rq_fair() indicating we migrated.
3535 *
3536 * IOW we're enqueueing a task on a new CPU.
3537 */
3538 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3539 update_tg_load_avg(cfs_rq, 0);
3540
3541 } else if (decayed && (flags & UPDATE_TG))
3542 update_tg_load_avg(cfs_rq, 0);
3543 }
3544
3545 #ifndef CONFIG_64BIT
3546 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3547 {
3548 u64 last_update_time_copy;
3549 u64 last_update_time;
3550
3551 do {
3552 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3553 smp_rmb();
3554 last_update_time = cfs_rq->avg.last_update_time;
3555 } while (last_update_time != last_update_time_copy);
3556
3557 return last_update_time;
3558 }
3559 #else
3560 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3561 {
3562 return cfs_rq->avg.last_update_time;
3563 }
3564 #endif
3565
3566 /*
3567 * Synchronize entity load avg of dequeued entity without locking
3568 * the previous rq.
3569 */
3570 void sync_entity_load_avg(struct sched_entity *se)
3571 {
3572 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3573 u64 last_update_time;
3574
3575 last_update_time = cfs_rq_last_update_time(cfs_rq);
3576 __update_load_avg_blocked_se(last_update_time, se);
3577 }
3578
3579 /*
3580 * Task first catches up with cfs_rq, and then subtract
3581 * itself from the cfs_rq (task must be off the queue now).
3582 */
3583 void remove_entity_load_avg(struct sched_entity *se)
3584 {
3585 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3586 unsigned long flags;
3587
3588 /*
3589 * tasks cannot exit without having gone through wake_up_new_task() ->
3590 * post_init_entity_util_avg() which will have added things to the
3591 * cfs_rq, so we can remove unconditionally.
3592 */
3593
3594 sync_entity_load_avg(se);
3595
3596 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3597 ++cfs_rq->removed.nr;
3598 cfs_rq->removed.util_avg += se->avg.util_avg;
3599 cfs_rq->removed.load_avg += se->avg.load_avg;
3600 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
3601 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3602 }
3603
3604 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3605 {
3606 return cfs_rq->avg.runnable_load_avg;
3607 }
3608
3609 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3610 {
3611 return cfs_rq->avg.load_avg;
3612 }
3613
3614 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3615
3616 static inline unsigned long task_util(struct task_struct *p)
3617 {
3618 return READ_ONCE(p->se.avg.util_avg);
3619 }
3620
3621 static inline unsigned long _task_util_est(struct task_struct *p)
3622 {
3623 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3624
3625 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3626 }
3627
3628 static inline unsigned long task_util_est(struct task_struct *p)
3629 {
3630 return max(task_util(p), _task_util_est(p));
3631 }
3632
3633 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3634 struct task_struct *p)
3635 {
3636 unsigned int enqueued;
3637
3638 if (!sched_feat(UTIL_EST))
3639 return;
3640
3641 /* Update root cfs_rq's estimated utilization */
3642 enqueued = cfs_rq->avg.util_est.enqueued;
3643 enqueued += _task_util_est(p);
3644 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3645 }
3646
3647 /*
3648 * Check if a (signed) value is within a specified (unsigned) margin,
3649 * based on the observation that:
3650 *
3651 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3652 *
3653 * NOTE: this only works when value + maring < INT_MAX.
3654 */
3655 static inline bool within_margin(int value, int margin)
3656 {
3657 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3658 }
3659
3660 static void
3661 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3662 {
3663 long last_ewma_diff;
3664 struct util_est ue;
3665 int cpu;
3666
3667 if (!sched_feat(UTIL_EST))
3668 return;
3669
3670 /* Update root cfs_rq's estimated utilization */
3671 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3672 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3673 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3674
3675 /*
3676 * Skip update of task's estimated utilization when the task has not
3677 * yet completed an activation, e.g. being migrated.
3678 */
3679 if (!task_sleep)
3680 return;
3681
3682 /*
3683 * If the PELT values haven't changed since enqueue time,
3684 * skip the util_est update.
3685 */
3686 ue = p->se.avg.util_est;
3687 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3688 return;
3689
3690 /*
3691 * Skip update of task's estimated utilization when its EWMA is
3692 * already ~1% close to its last activation value.
3693 */
3694 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3695 last_ewma_diff = ue.enqueued - ue.ewma;
3696 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3697 return;
3698
3699 /*
3700 * To avoid overestimation of actual task utilization, skip updates if
3701 * we cannot grant there is idle time in this CPU.
3702 */
3703 cpu = cpu_of(rq_of(cfs_rq));
3704 if (task_util(p) > capacity_orig_of(cpu))
3705 return;
3706
3707 /*
3708 * Update Task's estimated utilization
3709 *
3710 * When *p completes an activation we can consolidate another sample
3711 * of the task size. This is done by storing the current PELT value
3712 * as ue.enqueued and by using this value to update the Exponential
3713 * Weighted Moving Average (EWMA):
3714 *
3715 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3716 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3717 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3718 * = w * ( last_ewma_diff ) + ewma(t-1)
3719 * = w * (last_ewma_diff + ewma(t-1) / w)
3720 *
3721 * Where 'w' is the weight of new samples, which is configured to be
3722 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3723 */
3724 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3725 ue.ewma += last_ewma_diff;
3726 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3727 WRITE_ONCE(p->se.avg.util_est, ue);
3728 }
3729
3730 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3731 {
3732 return capacity * 1024 > task_util_est(p) * capacity_margin;
3733 }
3734
3735 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3736 {
3737 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3738 return;
3739
3740 if (!p) {
3741 rq->misfit_task_load = 0;
3742 return;
3743 }
3744
3745 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3746 rq->misfit_task_load = 0;
3747 return;
3748 }
3749
3750 rq->misfit_task_load = task_h_load(p);
3751 }
3752
3753 #else /* CONFIG_SMP */
3754
3755 #define UPDATE_TG 0x0
3756 #define SKIP_AGE_LOAD 0x0
3757 #define DO_ATTACH 0x0
3758
3759 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3760 {
3761 cfs_rq_util_change(cfs_rq, 0);
3762 }
3763
3764 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3765
3766 static inline void
3767 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3768 static inline void
3769 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3770
3771 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3772 {
3773 return 0;
3774 }
3775
3776 static inline void
3777 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3778
3779 static inline void
3780 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3781 bool task_sleep) {}
3782 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3783
3784 #endif /* CONFIG_SMP */
3785
3786 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3787 {
3788 #ifdef CONFIG_SCHED_DEBUG
3789 s64 d = se->vruntime - cfs_rq->min_vruntime;
3790
3791 if (d < 0)
3792 d = -d;
3793
3794 if (d > 3*sysctl_sched_latency)
3795 schedstat_inc(cfs_rq->nr_spread_over);
3796 #endif
3797 }
3798
3799 static void
3800 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3801 {
3802 u64 vruntime = cfs_rq->min_vruntime;
3803
3804 /*
3805 * The 'current' period is already promised to the current tasks,
3806 * however the extra weight of the new task will slow them down a
3807 * little, place the new task so that it fits in the slot that
3808 * stays open at the end.
3809 */
3810 if (initial && sched_feat(START_DEBIT))
3811 vruntime += sched_vslice(cfs_rq, se);
3812
3813 /* sleeps up to a single latency don't count. */
3814 if (!initial) {
3815 unsigned long thresh = sysctl_sched_latency;
3816
3817 /*
3818 * Halve their sleep time's effect, to allow
3819 * for a gentler effect of sleepers:
3820 */
3821 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3822 thresh >>= 1;
3823
3824 vruntime -= thresh;
3825 }
3826
3827 /* ensure we never gain time by being placed backwards. */
3828 se->vruntime = max_vruntime(se->vruntime, vruntime);
3829 }
3830
3831 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3832
3833 static inline void check_schedstat_required(void)
3834 {
3835 #ifdef CONFIG_SCHEDSTATS
3836 if (schedstat_enabled())
3837 return;
3838
3839 /* Force schedstat enabled if a dependent tracepoint is active */
3840 if (trace_sched_stat_wait_enabled() ||
3841 trace_sched_stat_sleep_enabled() ||
3842 trace_sched_stat_iowait_enabled() ||
3843 trace_sched_stat_blocked_enabled() ||
3844 trace_sched_stat_runtime_enabled()) {
3845 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3846 "stat_blocked and stat_runtime require the "
3847 "kernel parameter schedstats=enable or "
3848 "kernel.sched_schedstats=1\n");
3849 }
3850 #endif
3851 }
3852
3853
3854 /*
3855 * MIGRATION
3856 *
3857 * dequeue
3858 * update_curr()
3859 * update_min_vruntime()
3860 * vruntime -= min_vruntime
3861 *
3862 * enqueue
3863 * update_curr()
3864 * update_min_vruntime()
3865 * vruntime += min_vruntime
3866 *
3867 * this way the vruntime transition between RQs is done when both
3868 * min_vruntime are up-to-date.
3869 *
3870 * WAKEUP (remote)
3871 *
3872 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3873 * vruntime -= min_vruntime
3874 *
3875 * enqueue
3876 * update_curr()
3877 * update_min_vruntime()
3878 * vruntime += min_vruntime
3879 *
3880 * this way we don't have the most up-to-date min_vruntime on the originating
3881 * CPU and an up-to-date min_vruntime on the destination CPU.
3882 */
3883
3884 static void
3885 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3886 {
3887 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3888 bool curr = cfs_rq->curr == se;
3889
3890 /*
3891 * If we're the current task, we must renormalise before calling
3892 * update_curr().
3893 */
3894 if (renorm && curr)
3895 se->vruntime += cfs_rq->min_vruntime;
3896
3897 update_curr(cfs_rq);
3898
3899 /*
3900 * Otherwise, renormalise after, such that we're placed at the current
3901 * moment in time, instead of some random moment in the past. Being
3902 * placed in the past could significantly boost this task to the
3903 * fairness detriment of existing tasks.
3904 */
3905 if (renorm && !curr)
3906 se->vruntime += cfs_rq->min_vruntime;
3907
3908 /*
3909 * When enqueuing a sched_entity, we must:
3910 * - Update loads to have both entity and cfs_rq synced with now.
3911 * - Add its load to cfs_rq->runnable_avg
3912 * - For group_entity, update its weight to reflect the new share of
3913 * its group cfs_rq
3914 * - Add its new weight to cfs_rq->load.weight
3915 */
3916 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3917 update_cfs_group(se);
3918 enqueue_runnable_load_avg(cfs_rq, se);
3919 account_entity_enqueue(cfs_rq, se);
3920
3921 if (flags & ENQUEUE_WAKEUP)
3922 place_entity(cfs_rq, se, 0);
3923
3924 check_schedstat_required();
3925 update_stats_enqueue(cfs_rq, se, flags);
3926 check_spread(cfs_rq, se);
3927 if (!curr)
3928 __enqueue_entity(cfs_rq, se);
3929 se->on_rq = 1;
3930
3931 if (cfs_rq->nr_running == 1) {
3932 list_add_leaf_cfs_rq(cfs_rq);
3933 check_enqueue_throttle(cfs_rq);
3934 }
3935 }
3936
3937 static void __clear_buddies_last(struct sched_entity *se)
3938 {
3939 for_each_sched_entity(se) {
3940 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3941 if (cfs_rq->last != se)
3942 break;
3943
3944 cfs_rq->last = NULL;
3945 }
3946 }
3947
3948 static void __clear_buddies_next(struct sched_entity *se)
3949 {
3950 for_each_sched_entity(se) {
3951 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3952 if (cfs_rq->next != se)
3953 break;
3954
3955 cfs_rq->next = NULL;
3956 }
3957 }
3958
3959 static void __clear_buddies_skip(struct sched_entity *se)
3960 {
3961 for_each_sched_entity(se) {
3962 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3963 if (cfs_rq->skip != se)
3964 break;
3965
3966 cfs_rq->skip = NULL;
3967 }
3968 }
3969
3970 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3971 {
3972 if (cfs_rq->last == se)
3973 __clear_buddies_last(se);
3974
3975 if (cfs_rq->next == se)
3976 __clear_buddies_next(se);
3977
3978 if (cfs_rq->skip == se)
3979 __clear_buddies_skip(se);
3980 }
3981
3982 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3983
3984 static void
3985 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3986 {
3987 /*
3988 * Update run-time statistics of the 'current'.
3989 */
3990 update_curr(cfs_rq);
3991
3992 /*
3993 * When dequeuing a sched_entity, we must:
3994 * - Update loads to have both entity and cfs_rq synced with now.
3995 * - Subtract its load from the cfs_rq->runnable_avg.
3996 * - Subtract its previous weight from cfs_rq->load.weight.
3997 * - For group entity, update its weight to reflect the new share
3998 * of its group cfs_rq.
3999 */
4000 update_load_avg(cfs_rq, se, UPDATE_TG);
4001 dequeue_runnable_load_avg(cfs_rq, se);
4002
4003 update_stats_dequeue(cfs_rq, se, flags);
4004
4005 clear_buddies(cfs_rq, se);
4006
4007 if (se != cfs_rq->curr)
4008 __dequeue_entity(cfs_rq, se);
4009 se->on_rq = 0;
4010 account_entity_dequeue(cfs_rq, se);
4011
4012 /*
4013 * Normalize after update_curr(); which will also have moved
4014 * min_vruntime if @se is the one holding it back. But before doing
4015 * update_min_vruntime() again, which will discount @se's position and
4016 * can move min_vruntime forward still more.
4017 */
4018 if (!(flags & DEQUEUE_SLEEP))
4019 se->vruntime -= cfs_rq->min_vruntime;
4020
4021 /* return excess runtime on last dequeue */
4022 return_cfs_rq_runtime(cfs_rq);
4023
4024 update_cfs_group(se);
4025
4026 /*
4027 * Now advance min_vruntime if @se was the entity holding it back,
4028 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4029 * put back on, and if we advance min_vruntime, we'll be placed back
4030 * further than we started -- ie. we'll be penalized.
4031 */
4032 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4033 update_min_vruntime(cfs_rq);
4034 }
4035
4036 /*
4037 * Preempt the current task with a newly woken task if needed:
4038 */
4039 static void
4040 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4041 {
4042 unsigned long ideal_runtime, delta_exec;
4043 struct sched_entity *se;
4044 s64 delta;
4045
4046 ideal_runtime = sched_slice(cfs_rq, curr);
4047 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4048 if (delta_exec > ideal_runtime) {
4049 resched_curr(rq_of(cfs_rq));
4050 /*
4051 * The current task ran long enough, ensure it doesn't get
4052 * re-elected due to buddy favours.
4053 */
4054 clear_buddies(cfs_rq, curr);
4055 return;
4056 }
4057
4058 /*
4059 * Ensure that a task that missed wakeup preemption by a
4060 * narrow margin doesn't have to wait for a full slice.
4061 * This also mitigates buddy induced latencies under load.
4062 */
4063 if (delta_exec < sysctl_sched_min_granularity)
4064 return;
4065
4066 se = __pick_first_entity(cfs_rq);
4067 delta = curr->vruntime - se->vruntime;
4068
4069 if (delta < 0)
4070 return;
4071
4072 if (delta > ideal_runtime)
4073 resched_curr(rq_of(cfs_rq));
4074 }
4075
4076 static void
4077 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4078 {
4079 /* 'current' is not kept within the tree. */
4080 if (se->on_rq) {
4081 /*
4082 * Any task has to be enqueued before it get to execute on
4083 * a CPU. So account for the time it spent waiting on the
4084 * runqueue.
4085 */
4086 update_stats_wait_end(cfs_rq, se);
4087 __dequeue_entity(cfs_rq, se);
4088 update_load_avg(cfs_rq, se, UPDATE_TG);
4089 }
4090
4091 update_stats_curr_start(cfs_rq, se);
4092 cfs_rq->curr = se;
4093
4094 /*
4095 * Track our maximum slice length, if the CPU's load is at
4096 * least twice that of our own weight (i.e. dont track it
4097 * when there are only lesser-weight tasks around):
4098 */
4099 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4100 schedstat_set(se->statistics.slice_max,
4101 max((u64)schedstat_val(se->statistics.slice_max),
4102 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4103 }
4104
4105 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4106 }
4107
4108 static int
4109 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4110
4111 /*
4112 * Pick the next process, keeping these things in mind, in this order:
4113 * 1) keep things fair between processes/task groups
4114 * 2) pick the "next" process, since someone really wants that to run
4115 * 3) pick the "last" process, for cache locality
4116 * 4) do not run the "skip" process, if something else is available
4117 */
4118 static struct sched_entity *
4119 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4120 {
4121 struct sched_entity *left = __pick_first_entity(cfs_rq);
4122 struct sched_entity *se;
4123
4124 /*
4125 * If curr is set we have to see if its left of the leftmost entity
4126 * still in the tree, provided there was anything in the tree at all.
4127 */
4128 if (!left || (curr && entity_before(curr, left)))
4129 left = curr;
4130
4131 se = left; /* ideally we run the leftmost entity */
4132
4133 /*
4134 * Avoid running the skip buddy, if running something else can
4135 * be done without getting too unfair.
4136 */
4137 if (cfs_rq->skip == se) {
4138 struct sched_entity *second;
4139
4140 if (se == curr) {
4141 second = __pick_first_entity(cfs_rq);
4142 } else {
4143 second = __pick_next_entity(se);
4144 if (!second || (curr && entity_before(curr, second)))
4145 second = curr;
4146 }
4147
4148 if (second && wakeup_preempt_entity(second, left) < 1)
4149 se = second;
4150 }
4151
4152 /*
4153 * Prefer last buddy, try to return the CPU to a preempted task.
4154 */
4155 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4156 se = cfs_rq->last;
4157
4158 /*
4159 * Someone really wants this to run. If it's not unfair, run it.
4160 */
4161 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4162 se = cfs_rq->next;
4163
4164 clear_buddies(cfs_rq, se);
4165
4166 return se;
4167 }
4168
4169 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4170
4171 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4172 {
4173 /*
4174 * If still on the runqueue then deactivate_task()
4175 * was not called and update_curr() has to be done:
4176 */
4177 if (prev->on_rq)
4178 update_curr(cfs_rq);
4179
4180 /* throttle cfs_rqs exceeding runtime */
4181 check_cfs_rq_runtime(cfs_rq);
4182
4183 check_spread(cfs_rq, prev);
4184
4185 if (prev->on_rq) {
4186 update_stats_wait_start(cfs_rq, prev);
4187 /* Put 'current' back into the tree. */
4188 __enqueue_entity(cfs_rq, prev);
4189 /* in !on_rq case, update occurred at dequeue */
4190 update_load_avg(cfs_rq, prev, 0);
4191 }
4192 cfs_rq->curr = NULL;
4193 }
4194
4195 static void
4196 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4197 {
4198 /*
4199 * Update run-time statistics of the 'current'.
4200 */
4201 update_curr(cfs_rq);
4202
4203 /*
4204 * Ensure that runnable average is periodically updated.
4205 */
4206 update_load_avg(cfs_rq, curr, UPDATE_TG);
4207 update_cfs_group(curr);
4208
4209 #ifdef CONFIG_SCHED_HRTICK
4210 /*
4211 * queued ticks are scheduled to match the slice, so don't bother
4212 * validating it and just reschedule.
4213 */
4214 if (queued) {
4215 resched_curr(rq_of(cfs_rq));
4216 return;
4217 }
4218 /*
4219 * don't let the period tick interfere with the hrtick preemption
4220 */
4221 if (!sched_feat(DOUBLE_TICK) &&
4222 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4223 return;
4224 #endif
4225
4226 if (cfs_rq->nr_running > 1)
4227 check_preempt_tick(cfs_rq, curr);
4228 }
4229
4230
4231 /**************************************************
4232 * CFS bandwidth control machinery
4233 */
4234
4235 #ifdef CONFIG_CFS_BANDWIDTH
4236
4237 #ifdef CONFIG_JUMP_LABEL
4238 static struct static_key __cfs_bandwidth_used;
4239
4240 static inline bool cfs_bandwidth_used(void)
4241 {
4242 return static_key_false(&__cfs_bandwidth_used);
4243 }
4244
4245 void cfs_bandwidth_usage_inc(void)
4246 {
4247 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4248 }
4249
4250 void cfs_bandwidth_usage_dec(void)
4251 {
4252 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4253 }
4254 #else /* CONFIG_JUMP_LABEL */
4255 static bool cfs_bandwidth_used(void)
4256 {
4257 return true;
4258 }
4259
4260 void cfs_bandwidth_usage_inc(void) {}
4261 void cfs_bandwidth_usage_dec(void) {}
4262 #endif /* CONFIG_JUMP_LABEL */
4263
4264 /*
4265 * default period for cfs group bandwidth.
4266 * default: 0.1s, units: nanoseconds
4267 */
4268 static inline u64 default_cfs_period(void)
4269 {
4270 return 100000000ULL;
4271 }
4272
4273 static inline u64 sched_cfs_bandwidth_slice(void)
4274 {
4275 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4276 }
4277
4278 /*
4279 * Replenish runtime according to assigned quota and update expiration time.
4280 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4281 * additional synchronization around rq->lock.
4282 *
4283 * requires cfs_b->lock
4284 */
4285 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4286 {
4287 u64 now;
4288
4289 if (cfs_b->quota == RUNTIME_INF)
4290 return;
4291
4292 now = sched_clock_cpu(smp_processor_id());
4293 cfs_b->runtime = cfs_b->quota;
4294 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4295 cfs_b->expires_seq++;
4296 }
4297
4298 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4299 {
4300 return &tg->cfs_bandwidth;
4301 }
4302
4303 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4304 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4305 {
4306 if (unlikely(cfs_rq->throttle_count))
4307 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4308
4309 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4310 }
4311
4312 /* returns 0 on failure to allocate runtime */
4313 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4314 {
4315 struct task_group *tg = cfs_rq->tg;
4316 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4317 u64 amount = 0, min_amount, expires;
4318 int expires_seq;
4319
4320 /* note: this is a positive sum as runtime_remaining <= 0 */
4321 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4322
4323 raw_spin_lock(&cfs_b->lock);
4324 if (cfs_b->quota == RUNTIME_INF)
4325 amount = min_amount;
4326 else {
4327 start_cfs_bandwidth(cfs_b);
4328
4329 if (cfs_b->runtime > 0) {
4330 amount = min(cfs_b->runtime, min_amount);
4331 cfs_b->runtime -= amount;
4332 cfs_b->idle = 0;
4333 }
4334 }
4335 expires_seq = cfs_b->expires_seq;
4336 expires = cfs_b->runtime_expires;
4337 raw_spin_unlock(&cfs_b->lock);
4338
4339 cfs_rq->runtime_remaining += amount;
4340 /*
4341 * we may have advanced our local expiration to account for allowed
4342 * spread between our sched_clock and the one on which runtime was
4343 * issued.
4344 */
4345 if (cfs_rq->expires_seq != expires_seq) {
4346 cfs_rq->expires_seq = expires_seq;
4347 cfs_rq->runtime_expires = expires;
4348 }
4349
4350 return cfs_rq->runtime_remaining > 0;
4351 }
4352
4353 /*
4354 * Note: This depends on the synchronization provided by sched_clock and the
4355 * fact that rq->clock snapshots this value.
4356 */
4357 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4358 {
4359 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4360
4361 /* if the deadline is ahead of our clock, nothing to do */
4362 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4363 return;
4364
4365 if (cfs_rq->runtime_remaining < 0)
4366 return;
4367
4368 /*
4369 * If the local deadline has passed we have to consider the
4370 * possibility that our sched_clock is 'fast' and the global deadline
4371 * has not truly expired.
4372 *
4373 * Fortunately we can check determine whether this the case by checking
4374 * whether the global deadline(cfs_b->expires_seq) has advanced.
4375 */
4376 if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4377 /* extend local deadline, drift is bounded above by 2 ticks */
4378 cfs_rq->runtime_expires += TICK_NSEC;
4379 } else {
4380 /* global deadline is ahead, expiration has passed */
4381 cfs_rq->runtime_remaining = 0;
4382 }
4383 }
4384
4385 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4386 {
4387 /* dock delta_exec before expiring quota (as it could span periods) */
4388 cfs_rq->runtime_remaining -= delta_exec;
4389 expire_cfs_rq_runtime(cfs_rq);
4390
4391 if (likely(cfs_rq->runtime_remaining > 0))
4392 return;
4393
4394 /*
4395 * if we're unable to extend our runtime we resched so that the active
4396 * hierarchy can be throttled
4397 */
4398 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4399 resched_curr(rq_of(cfs_rq));
4400 }
4401
4402 static __always_inline
4403 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4404 {
4405 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4406 return;
4407
4408 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4409 }
4410
4411 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4412 {
4413 return cfs_bandwidth_used() && cfs_rq->throttled;
4414 }
4415
4416 /* check whether cfs_rq, or any parent, is throttled */
4417 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4418 {
4419 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4420 }
4421
4422 /*
4423 * Ensure that neither of the group entities corresponding to src_cpu or
4424 * dest_cpu are members of a throttled hierarchy when performing group
4425 * load-balance operations.
4426 */
4427 static inline int throttled_lb_pair(struct task_group *tg,
4428 int src_cpu, int dest_cpu)
4429 {
4430 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4431
4432 src_cfs_rq = tg->cfs_rq[src_cpu];
4433 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4434
4435 return throttled_hierarchy(src_cfs_rq) ||
4436 throttled_hierarchy(dest_cfs_rq);
4437 }
4438
4439 static int tg_unthrottle_up(struct task_group *tg, void *data)
4440 {
4441 struct rq *rq = data;
4442 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4443
4444 cfs_rq->throttle_count--;
4445 if (!cfs_rq->throttle_count) {
4446 /* adjust cfs_rq_clock_task() */
4447 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4448 cfs_rq->throttled_clock_task;
4449
4450 /* Add cfs_rq with already running entity in the list */
4451 if (cfs_rq->nr_running >= 1)
4452 list_add_leaf_cfs_rq(cfs_rq);
4453 }
4454
4455 return 0;
4456 }
4457
4458 static int tg_throttle_down(struct task_group *tg, void *data)
4459 {
4460 struct rq *rq = data;
4461 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4462
4463 /* group is entering throttled state, stop time */
4464 if (!cfs_rq->throttle_count) {
4465 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4466 list_del_leaf_cfs_rq(cfs_rq);
4467 }
4468 cfs_rq->throttle_count++;
4469
4470 return 0;
4471 }
4472
4473 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4474 {
4475 struct rq *rq = rq_of(cfs_rq);
4476 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4477 struct sched_entity *se;
4478 long task_delta, dequeue = 1;
4479 bool empty;
4480
4481 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4482
4483 /* freeze hierarchy runnable averages while throttled */
4484 rcu_read_lock();
4485 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4486 rcu_read_unlock();
4487
4488 task_delta = cfs_rq->h_nr_running;
4489 for_each_sched_entity(se) {
4490 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4491 /* throttled entity or throttle-on-deactivate */
4492 if (!se->on_rq)
4493 break;
4494
4495 if (dequeue)
4496 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4497 qcfs_rq->h_nr_running -= task_delta;
4498
4499 if (qcfs_rq->load.weight)
4500 dequeue = 0;
4501 }
4502
4503 if (!se)
4504 sub_nr_running(rq, task_delta);
4505
4506 cfs_rq->throttled = 1;
4507 cfs_rq->throttled_clock = rq_clock(rq);
4508 raw_spin_lock(&cfs_b->lock);
4509 empty = list_empty(&cfs_b->throttled_cfs_rq);
4510
4511 /*
4512 * Add to the _head_ of the list, so that an already-started
4513 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4514 * not running add to the tail so that later runqueues don't get starved.
4515 */
4516 if (cfs_b->distribute_running)
4517 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4518 else
4519 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4520
4521 /*
4522 * If we're the first throttled task, make sure the bandwidth
4523 * timer is running.
4524 */
4525 if (empty)
4526 start_cfs_bandwidth(cfs_b);
4527
4528 raw_spin_unlock(&cfs_b->lock);
4529 }
4530
4531 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4532 {
4533 struct rq *rq = rq_of(cfs_rq);
4534 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4535 struct sched_entity *se;
4536 int enqueue = 1;
4537 long task_delta;
4538
4539 se = cfs_rq->tg->se[cpu_of(rq)];
4540
4541 cfs_rq->throttled = 0;
4542
4543 update_rq_clock(rq);
4544
4545 raw_spin_lock(&cfs_b->lock);
4546 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4547 list_del_rcu(&cfs_rq->throttled_list);
4548 raw_spin_unlock(&cfs_b->lock);
4549
4550 /* update hierarchical throttle state */
4551 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4552
4553 if (!cfs_rq->load.weight)
4554 return;
4555
4556 task_delta = cfs_rq->h_nr_running;
4557 for_each_sched_entity(se) {
4558 if (se->on_rq)
4559 enqueue = 0;
4560
4561 cfs_rq = cfs_rq_of(se);
4562 if (enqueue)
4563 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4564 cfs_rq->h_nr_running += task_delta;
4565
4566 if (cfs_rq_throttled(cfs_rq))
4567 break;
4568 }
4569
4570 assert_list_leaf_cfs_rq(rq);
4571
4572 if (!se)
4573 add_nr_running(rq, task_delta);
4574
4575 /* Determine whether we need to wake up potentially idle CPU: */
4576 if (rq->curr == rq->idle && rq->cfs.nr_running)
4577 resched_curr(rq);
4578 }
4579
4580 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4581 u64 remaining, u64 expires)
4582 {
4583 struct cfs_rq *cfs_rq;
4584 u64 runtime;
4585 u64 starting_runtime = remaining;
4586
4587 rcu_read_lock();
4588 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4589 throttled_list) {
4590 struct rq *rq = rq_of(cfs_rq);
4591 struct rq_flags rf;
4592
4593 rq_lock_irqsave(rq, &rf);
4594 if (!cfs_rq_throttled(cfs_rq))
4595 goto next;
4596
4597 runtime = -cfs_rq->runtime_remaining + 1;
4598 if (runtime > remaining)
4599 runtime = remaining;
4600 remaining -= runtime;
4601
4602 cfs_rq->runtime_remaining += runtime;
4603 cfs_rq->runtime_expires = expires;
4604
4605 /* we check whether we're throttled above */
4606 if (cfs_rq->runtime_remaining > 0)
4607 unthrottle_cfs_rq(cfs_rq);
4608
4609 next:
4610 rq_unlock_irqrestore(rq, &rf);
4611
4612 if (!remaining)
4613 break;
4614 }
4615 rcu_read_unlock();
4616
4617 return starting_runtime - remaining;
4618 }
4619
4620 /*
4621 * Responsible for refilling a task_group's bandwidth and unthrottling its
4622 * cfs_rqs as appropriate. If there has been no activity within the last
4623 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4624 * used to track this state.
4625 */
4626 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4627 {
4628 u64 runtime, runtime_expires;
4629 int throttled;
4630
4631 /* no need to continue the timer with no bandwidth constraint */
4632 if (cfs_b->quota == RUNTIME_INF)
4633 goto out_deactivate;
4634
4635 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4636 cfs_b->nr_periods += overrun;
4637
4638 /*
4639 * idle depends on !throttled (for the case of a large deficit), and if
4640 * we're going inactive then everything else can be deferred
4641 */
4642 if (cfs_b->idle && !throttled)
4643 goto out_deactivate;
4644
4645 __refill_cfs_bandwidth_runtime(cfs_b);
4646
4647 if (!throttled) {
4648 /* mark as potentially idle for the upcoming period */
4649 cfs_b->idle = 1;
4650 return 0;
4651 }
4652
4653 /* account preceding periods in which throttling occurred */
4654 cfs_b->nr_throttled += overrun;
4655
4656 runtime_expires = cfs_b->runtime_expires;
4657
4658 /*
4659 * This check is repeated as we are holding onto the new bandwidth while
4660 * we unthrottle. This can potentially race with an unthrottled group
4661 * trying to acquire new bandwidth from the global pool. This can result
4662 * in us over-using our runtime if it is all used during this loop, but
4663 * only by limited amounts in that extreme case.
4664 */
4665 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4666 runtime = cfs_b->runtime;
4667 cfs_b->distribute_running = 1;
4668 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4669 /* we can't nest cfs_b->lock while distributing bandwidth */
4670 runtime = distribute_cfs_runtime(cfs_b, runtime,
4671 runtime_expires);
4672 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4673
4674 cfs_b->distribute_running = 0;
4675 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4676
4677 lsub_positive(&cfs_b->runtime, runtime);
4678 }
4679
4680 /*
4681 * While we are ensured activity in the period following an
4682 * unthrottle, this also covers the case in which the new bandwidth is
4683 * insufficient to cover the existing bandwidth deficit. (Forcing the
4684 * timer to remain active while there are any throttled entities.)
4685 */
4686 cfs_b->idle = 0;
4687
4688 return 0;
4689
4690 out_deactivate:
4691 return 1;
4692 }
4693
4694 /* a cfs_rq won't donate quota below this amount */
4695 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4696 /* minimum remaining period time to redistribute slack quota */
4697 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4698 /* how long we wait to gather additional slack before distributing */
4699 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4700
4701 /*
4702 * Are we near the end of the current quota period?
4703 *
4704 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4705 * hrtimer base being cleared by hrtimer_start. In the case of
4706 * migrate_hrtimers, base is never cleared, so we are fine.
4707 */
4708 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4709 {
4710 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4711 u64 remaining;
4712
4713 /* if the call-back is running a quota refresh is already occurring */
4714 if (hrtimer_callback_running(refresh_timer))
4715 return 1;
4716
4717 /* is a quota refresh about to occur? */
4718 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4719 if (remaining < min_expire)
4720 return 1;
4721
4722 return 0;
4723 }
4724
4725 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4726 {
4727 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4728
4729 /* if there's a quota refresh soon don't bother with slack */
4730 if (runtime_refresh_within(cfs_b, min_left))
4731 return;
4732
4733 hrtimer_start(&cfs_b->slack_timer,
4734 ns_to_ktime(cfs_bandwidth_slack_period),
4735 HRTIMER_MODE_REL);
4736 }
4737
4738 /* we know any runtime found here is valid as update_curr() precedes return */
4739 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4740 {
4741 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4742 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4743
4744 if (slack_runtime <= 0)
4745 return;
4746
4747 raw_spin_lock(&cfs_b->lock);
4748 if (cfs_b->quota != RUNTIME_INF &&
4749 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4750 cfs_b->runtime += slack_runtime;
4751
4752 /* we are under rq->lock, defer unthrottling using a timer */
4753 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4754 !list_empty(&cfs_b->throttled_cfs_rq))
4755 start_cfs_slack_bandwidth(cfs_b);
4756 }
4757 raw_spin_unlock(&cfs_b->lock);
4758
4759 /* even if it's not valid for return we don't want to try again */
4760 cfs_rq->runtime_remaining -= slack_runtime;
4761 }
4762
4763 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4764 {
4765 if (!cfs_bandwidth_used())
4766 return;
4767
4768 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4769 return;
4770
4771 __return_cfs_rq_runtime(cfs_rq);
4772 }
4773
4774 /*
4775 * This is done with a timer (instead of inline with bandwidth return) since
4776 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4777 */
4778 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4779 {
4780 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4781 unsigned long flags;
4782 u64 expires;
4783
4784 /* confirm we're still not at a refresh boundary */
4785 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4786 if (cfs_b->distribute_running) {
4787 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4788 return;
4789 }
4790
4791 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4792 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4793 return;
4794 }
4795
4796 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4797 runtime = cfs_b->runtime;
4798
4799 expires = cfs_b->runtime_expires;
4800 if (runtime)
4801 cfs_b->distribute_running = 1;
4802
4803 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4804
4805 if (!runtime)
4806 return;
4807
4808 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4809
4810 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4811 if (expires == cfs_b->runtime_expires)
4812 lsub_positive(&cfs_b->runtime, runtime);
4813 cfs_b->distribute_running = 0;
4814 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4815 }
4816
4817 /*
4818 * When a group wakes up we want to make sure that its quota is not already
4819 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4820 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4821 */
4822 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4823 {
4824 if (!cfs_bandwidth_used())
4825 return;
4826
4827 /* an active group must be handled by the update_curr()->put() path */
4828 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4829 return;
4830
4831 /* ensure the group is not already throttled */
4832 if (cfs_rq_throttled(cfs_rq))
4833 return;
4834
4835 /* update runtime allocation */
4836 account_cfs_rq_runtime(cfs_rq, 0);
4837 if (cfs_rq->runtime_remaining <= 0)
4838 throttle_cfs_rq(cfs_rq);
4839 }
4840
4841 static void sync_throttle(struct task_group *tg, int cpu)
4842 {
4843 struct cfs_rq *pcfs_rq, *cfs_rq;
4844
4845 if (!cfs_bandwidth_used())
4846 return;
4847
4848 if (!tg->parent)
4849 return;
4850
4851 cfs_rq = tg->cfs_rq[cpu];
4852 pcfs_rq = tg->parent->cfs_rq[cpu];
4853
4854 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4855 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4856 }
4857
4858 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4859 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4860 {
4861 if (!cfs_bandwidth_used())
4862 return false;
4863
4864 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4865 return false;
4866
4867 /*
4868 * it's possible for a throttled entity to be forced into a running
4869 * state (e.g. set_curr_task), in this case we're finished.
4870 */
4871 if (cfs_rq_throttled(cfs_rq))
4872 return true;
4873
4874 throttle_cfs_rq(cfs_rq);
4875 return true;
4876 }
4877
4878 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4879 {
4880 struct cfs_bandwidth *cfs_b =
4881 container_of(timer, struct cfs_bandwidth, slack_timer);
4882
4883 do_sched_cfs_slack_timer(cfs_b);
4884
4885 return HRTIMER_NORESTART;
4886 }
4887
4888 extern const u64 max_cfs_quota_period;
4889
4890 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4891 {
4892 struct cfs_bandwidth *cfs_b =
4893 container_of(timer, struct cfs_bandwidth, period_timer);
4894 unsigned long flags;
4895 int overrun;
4896 int idle = 0;
4897 int count = 0;
4898
4899 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4900 for (;;) {
4901 overrun = hrtimer_forward_now(timer, cfs_b->period);
4902 if (!overrun)
4903 break;
4904
4905 if (++count > 3) {
4906 u64 new, old = ktime_to_ns(cfs_b->period);
4907
4908 new = (old * 147) / 128; /* ~115% */
4909 new = min(new, max_cfs_quota_period);
4910
4911 cfs_b->period = ns_to_ktime(new);
4912
4913 /* since max is 1s, this is limited to 1e9^2, which fits in u64 */
4914 cfs_b->quota *= new;
4915 cfs_b->quota = div64_u64(cfs_b->quota, old);
4916
4917 pr_warn_ratelimited(
4918 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
4919 smp_processor_id(),
4920 div_u64(new, NSEC_PER_USEC),
4921 div_u64(cfs_b->quota, NSEC_PER_USEC));
4922
4923 /* reset count so we don't come right back in here */
4924 count = 0;
4925 }
4926
4927 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
4928 }
4929 if (idle)
4930 cfs_b->period_active = 0;
4931 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4932
4933 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4934 }
4935
4936 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4937 {
4938 raw_spin_lock_init(&cfs_b->lock);
4939 cfs_b->runtime = 0;
4940 cfs_b->quota = RUNTIME_INF;
4941 cfs_b->period = ns_to_ktime(default_cfs_period());
4942
4943 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4944 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4945 cfs_b->period_timer.function = sched_cfs_period_timer;
4946 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4947 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4948 cfs_b->distribute_running = 0;
4949 }
4950
4951 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4952 {
4953 cfs_rq->runtime_enabled = 0;
4954 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4955 }
4956
4957 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4958 {
4959 u64 overrun;
4960
4961 lockdep_assert_held(&cfs_b->lock);
4962
4963 if (cfs_b->period_active)
4964 return;
4965
4966 cfs_b->period_active = 1;
4967 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4968 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4969 cfs_b->expires_seq++;
4970 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4971 }
4972
4973 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4974 {
4975 /* init_cfs_bandwidth() was not called */
4976 if (!cfs_b->throttled_cfs_rq.next)
4977 return;
4978
4979 hrtimer_cancel(&cfs_b->period_timer);
4980 hrtimer_cancel(&cfs_b->slack_timer);
4981 }
4982
4983 /*
4984 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4985 *
4986 * The race is harmless, since modifying bandwidth settings of unhooked group
4987 * bits doesn't do much.
4988 */
4989
4990 /* cpu online calback */
4991 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4992 {
4993 struct task_group *tg;
4994
4995 lockdep_assert_held(&rq->lock);
4996
4997 rcu_read_lock();
4998 list_for_each_entry_rcu(tg, &task_groups, list) {
4999 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5000 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5001
5002 raw_spin_lock(&cfs_b->lock);
5003 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5004 raw_spin_unlock(&cfs_b->lock);
5005 }
5006 rcu_read_unlock();
5007 }
5008
5009 /* cpu offline callback */
5010 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5011 {
5012 struct task_group *tg;
5013
5014 lockdep_assert_held(&rq->lock);
5015
5016 rcu_read_lock();
5017 list_for_each_entry_rcu(tg, &task_groups, list) {
5018 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5019
5020 if (!cfs_rq->runtime_enabled)
5021 continue;
5022
5023 /*
5024 * clock_task is not advancing so we just need to make sure
5025 * there's some valid quota amount
5026 */
5027 cfs_rq->runtime_remaining = 1;
5028 /*
5029 * Offline rq is schedulable till CPU is completely disabled
5030 * in take_cpu_down(), so we prevent new cfs throttling here.
5031 */
5032 cfs_rq->runtime_enabled = 0;
5033
5034 if (cfs_rq_throttled(cfs_rq))
5035 unthrottle_cfs_rq(cfs_rq);
5036 }
5037 rcu_read_unlock();
5038 }
5039
5040 #else /* CONFIG_CFS_BANDWIDTH */
5041
5042 static inline bool cfs_bandwidth_used(void)
5043 {
5044 return false;
5045 }
5046
5047 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5048 {
5049 return rq_clock_task(rq_of(cfs_rq));
5050 }
5051
5052 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5053 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5054 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5055 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5056 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5057
5058 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5059 {
5060 return 0;
5061 }
5062
5063 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5064 {
5065 return 0;
5066 }
5067
5068 static inline int throttled_lb_pair(struct task_group *tg,
5069 int src_cpu, int dest_cpu)
5070 {
5071 return 0;
5072 }
5073
5074 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5075
5076 #ifdef CONFIG_FAIR_GROUP_SCHED
5077 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5078 #endif
5079
5080 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5081 {
5082 return NULL;
5083 }
5084 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5085 static inline void update_runtime_enabled(struct rq *rq) {}
5086 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5087
5088 #endif /* CONFIG_CFS_BANDWIDTH */
5089
5090 /**************************************************
5091 * CFS operations on tasks:
5092 */
5093
5094 #ifdef CONFIG_SCHED_HRTICK
5095 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5096 {
5097 struct sched_entity *se = &p->se;
5098 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5099
5100 SCHED_WARN_ON(task_rq(p) != rq);
5101
5102 if (rq->cfs.h_nr_running > 1) {
5103 u64 slice = sched_slice(cfs_rq, se);
5104 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5105 s64 delta = slice - ran;
5106
5107 if (delta < 0) {
5108 if (rq->curr == p)
5109 resched_curr(rq);
5110 return;
5111 }
5112 hrtick_start(rq, delta);
5113 }
5114 }
5115
5116 /*
5117 * called from enqueue/dequeue and updates the hrtick when the
5118 * current task is from our class and nr_running is low enough
5119 * to matter.
5120 */
5121 static void hrtick_update(struct rq *rq)
5122 {
5123 struct task_struct *curr = rq->curr;
5124
5125 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5126 return;
5127
5128 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5129 hrtick_start_fair(rq, curr);
5130 }
5131 #else /* !CONFIG_SCHED_HRTICK */
5132 static inline void
5133 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5134 {
5135 }
5136
5137 static inline void hrtick_update(struct rq *rq)
5138 {
5139 }
5140 #endif
5141
5142 #ifdef CONFIG_SMP
5143 static inline unsigned long cpu_util(int cpu);
5144 static unsigned long capacity_of(int cpu);
5145
5146 static inline bool cpu_overutilized(int cpu)
5147 {
5148 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5149 }
5150
5151 static inline void update_overutilized_status(struct rq *rq)
5152 {
5153 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
5154 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5155 }
5156 #else
5157 static inline void update_overutilized_status(struct rq *rq) { }
5158 #endif
5159
5160 /*
5161 * The enqueue_task method is called before nr_running is
5162 * increased. Here we update the fair scheduling stats and
5163 * then put the task into the rbtree:
5164 */
5165 static void
5166 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5167 {
5168 struct cfs_rq *cfs_rq;
5169 struct sched_entity *se = &p->se;
5170
5171 /*
5172 * The code below (indirectly) updates schedutil which looks at
5173 * the cfs_rq utilization to select a frequency.
5174 * Let's add the task's estimated utilization to the cfs_rq's
5175 * estimated utilization, before we update schedutil.
5176 */
5177 util_est_enqueue(&rq->cfs, p);
5178
5179 /*
5180 * If in_iowait is set, the code below may not trigger any cpufreq
5181 * utilization updates, so do it here explicitly with the IOWAIT flag
5182 * passed.
5183 */
5184 if (p->in_iowait)
5185 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5186
5187 for_each_sched_entity(se) {
5188 if (se->on_rq)
5189 break;
5190 cfs_rq = cfs_rq_of(se);
5191 enqueue_entity(cfs_rq, se, flags);
5192
5193 /*
5194 * end evaluation on encountering a throttled cfs_rq
5195 *
5196 * note: in the case of encountering a throttled cfs_rq we will
5197 * post the final h_nr_running increment below.
5198 */
5199 if (cfs_rq_throttled(cfs_rq))
5200 break;
5201 cfs_rq->h_nr_running++;
5202
5203 flags = ENQUEUE_WAKEUP;
5204 }
5205
5206 for_each_sched_entity(se) {
5207 cfs_rq = cfs_rq_of(se);
5208 cfs_rq->h_nr_running++;
5209
5210 if (cfs_rq_throttled(cfs_rq))
5211 break;
5212
5213 update_load_avg(cfs_rq, se, UPDATE_TG);
5214 update_cfs_group(se);
5215 }
5216
5217 if (!se) {
5218 add_nr_running(rq, 1);
5219 /*
5220 * Since new tasks are assigned an initial util_avg equal to
5221 * half of the spare capacity of their CPU, tiny tasks have the
5222 * ability to cross the overutilized threshold, which will
5223 * result in the load balancer ruining all the task placement
5224 * done by EAS. As a way to mitigate that effect, do not account
5225 * for the first enqueue operation of new tasks during the
5226 * overutilized flag detection.
5227 *
5228 * A better way of solving this problem would be to wait for
5229 * the PELT signals of tasks to converge before taking them
5230 * into account, but that is not straightforward to implement,
5231 * and the following generally works well enough in practice.
5232 */
5233 if (flags & ENQUEUE_WAKEUP)
5234 update_overutilized_status(rq);
5235
5236 }
5237
5238 if (cfs_bandwidth_used()) {
5239 /*
5240 * When bandwidth control is enabled; the cfs_rq_throttled()
5241 * breaks in the above iteration can result in incomplete
5242 * leaf list maintenance, resulting in triggering the assertion
5243 * below.
5244 */
5245 for_each_sched_entity(se) {
5246 cfs_rq = cfs_rq_of(se);
5247
5248 if (list_add_leaf_cfs_rq(cfs_rq))
5249 break;
5250 }
5251 }
5252
5253 assert_list_leaf_cfs_rq(rq);
5254
5255 hrtick_update(rq);
5256 }
5257
5258 static void set_next_buddy(struct sched_entity *se);
5259
5260 /*
5261 * The dequeue_task method is called before nr_running is
5262 * decreased. We remove the task from the rbtree and
5263 * update the fair scheduling stats:
5264 */
5265 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5266 {
5267 struct cfs_rq *cfs_rq;
5268 struct sched_entity *se = &p->se;
5269 int task_sleep = flags & DEQUEUE_SLEEP;
5270
5271 for_each_sched_entity(se) {
5272 cfs_rq = cfs_rq_of(se);
5273 dequeue_entity(cfs_rq, se, flags);
5274
5275 /*
5276 * end evaluation on encountering a throttled cfs_rq
5277 *
5278 * note: in the case of encountering a throttled cfs_rq we will
5279 * post the final h_nr_running decrement below.
5280 */
5281 if (cfs_rq_throttled(cfs_rq))
5282 break;
5283 cfs_rq->h_nr_running--;
5284
5285 /* Don't dequeue parent if it has other entities besides us */
5286 if (cfs_rq->load.weight) {
5287 /* Avoid re-evaluating load for this entity: */
5288 se = parent_entity(se);
5289 /*
5290 * Bias pick_next to pick a task from this cfs_rq, as
5291 * p is sleeping when it is within its sched_slice.
5292 */
5293 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5294 set_next_buddy(se);
5295 break;
5296 }
5297 flags |= DEQUEUE_SLEEP;
5298 }
5299
5300 for_each_sched_entity(se) {
5301 cfs_rq = cfs_rq_of(se);
5302 cfs_rq->h_nr_running--;
5303
5304 if (cfs_rq_throttled(cfs_rq))
5305 break;
5306
5307 update_load_avg(cfs_rq, se, UPDATE_TG);
5308 update_cfs_group(se);
5309 }
5310
5311 if (!se)
5312 sub_nr_running(rq, 1);
5313
5314 util_est_dequeue(&rq->cfs, p, task_sleep);
5315 hrtick_update(rq);
5316 }
5317
5318 #ifdef CONFIG_SMP
5319
5320 /* Working cpumask for: load_balance, load_balance_newidle. */
5321 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5322 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5323
5324 #ifdef CONFIG_NO_HZ_COMMON
5325 /*
5326 * per rq 'load' arrray crap; XXX kill this.
5327 */
5328
5329 /*
5330 * The exact cpuload calculated at every tick would be:
5331 *
5332 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5333 *
5334 * If a CPU misses updates for n ticks (as it was idle) and update gets
5335 * called on the n+1-th tick when CPU may be busy, then we have:
5336 *
5337 * load_n = (1 - 1/2^i)^n * load_0
5338 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
5339 *
5340 * decay_load_missed() below does efficient calculation of
5341 *
5342 * load' = (1 - 1/2^i)^n * load
5343 *
5344 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5345 * This allows us to precompute the above in said factors, thereby allowing the
5346 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5347 * fixed_power_int())
5348 *
5349 * The calculation is approximated on a 128 point scale.
5350 */
5351 #define DEGRADE_SHIFT 7
5352
5353 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5354 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5355 { 0, 0, 0, 0, 0, 0, 0, 0 },
5356 { 64, 32, 8, 0, 0, 0, 0, 0 },
5357 { 96, 72, 40, 12, 1, 0, 0, 0 },
5358 { 112, 98, 75, 43, 15, 1, 0, 0 },
5359 { 120, 112, 98, 76, 45, 16, 2, 0 }
5360 };
5361
5362 /*
5363 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5364 * would be when CPU is idle and so we just decay the old load without
5365 * adding any new load.
5366 */
5367 static unsigned long
5368 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5369 {
5370 int j = 0;
5371
5372 if (!missed_updates)
5373 return load;
5374
5375 if (missed_updates >= degrade_zero_ticks[idx])
5376 return 0;
5377
5378 if (idx == 1)
5379 return load >> missed_updates;
5380
5381 while (missed_updates) {
5382 if (missed_updates % 2)
5383 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5384
5385 missed_updates >>= 1;
5386 j++;
5387 }
5388 return load;
5389 }
5390
5391 static struct {
5392 cpumask_var_t idle_cpus_mask;
5393 atomic_t nr_cpus;
5394 int has_blocked; /* Idle CPUS has blocked load */
5395 unsigned long next_balance; /* in jiffy units */
5396 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5397 } nohz ____cacheline_aligned;
5398
5399 #endif /* CONFIG_NO_HZ_COMMON */
5400
5401 /**
5402 * __cpu_load_update - update the rq->cpu_load[] statistics
5403 * @this_rq: The rq to update statistics for
5404 * @this_load: The current load
5405 * @pending_updates: The number of missed updates
5406 *
5407 * Update rq->cpu_load[] statistics. This function is usually called every
5408 * scheduler tick (TICK_NSEC).
5409 *
5410 * This function computes a decaying average:
5411 *
5412 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5413 *
5414 * Because of NOHZ it might not get called on every tick which gives need for
5415 * the @pending_updates argument.
5416 *
5417 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5418 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5419 * = A * (A * load[i]_n-2 + B) + B
5420 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5421 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5422 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5423 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5424 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5425 *
5426 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5427 * any change in load would have resulted in the tick being turned back on.
5428 *
5429 * For regular NOHZ, this reduces to:
5430 *
5431 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5432 *
5433 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5434 * term.
5435 */
5436 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5437 unsigned long pending_updates)
5438 {
5439 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5440 int i, scale;
5441
5442 this_rq->nr_load_updates++;
5443
5444 /* Update our load: */
5445 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5446 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5447 unsigned long old_load, new_load;
5448
5449 /* scale is effectively 1 << i now, and >> i divides by scale */
5450
5451 old_load = this_rq->cpu_load[i];
5452 #ifdef CONFIG_NO_HZ_COMMON
5453 old_load = decay_load_missed(old_load, pending_updates - 1, i);
5454 if (tickless_load) {
5455 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5456 /*
5457 * old_load can never be a negative value because a
5458 * decayed tickless_load cannot be greater than the
5459 * original tickless_load.
5460 */
5461 old_load += tickless_load;
5462 }
5463 #endif
5464 new_load = this_load;
5465 /*
5466 * Round up the averaging division if load is increasing. This
5467 * prevents us from getting stuck on 9 if the load is 10, for
5468 * example.
5469 */
5470 if (new_load > old_load)
5471 new_load += scale - 1;
5472
5473 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5474 }
5475 }
5476
5477 /* Used instead of source_load when we know the type == 0 */
5478 static unsigned long weighted_cpuload(struct rq *rq)
5479 {
5480 return cfs_rq_runnable_load_avg(&rq->cfs);
5481 }
5482
5483 #ifdef CONFIG_NO_HZ_COMMON
5484 /*
5485 * There is no sane way to deal with nohz on smp when using jiffies because the
5486 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5487 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5488 *
5489 * Therefore we need to avoid the delta approach from the regular tick when
5490 * possible since that would seriously skew the load calculation. This is why we
5491 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5492 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5493 * loop exit, nohz_idle_balance, nohz full exit...)
5494 *
5495 * This means we might still be one tick off for nohz periods.
5496 */
5497
5498 static void cpu_load_update_nohz(struct rq *this_rq,
5499 unsigned long curr_jiffies,
5500 unsigned long load)
5501 {
5502 unsigned long pending_updates;
5503
5504 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5505 if (pending_updates) {
5506 this_rq->last_load_update_tick = curr_jiffies;
5507 /*
5508 * In the regular NOHZ case, we were idle, this means load 0.
5509 * In the NOHZ_FULL case, we were non-idle, we should consider
5510 * its weighted load.
5511 */
5512 cpu_load_update(this_rq, load, pending_updates);
5513 }
5514 }
5515
5516 /*
5517 * Called from nohz_idle_balance() to update the load ratings before doing the
5518 * idle balance.
5519 */
5520 static void cpu_load_update_idle(struct rq *this_rq)
5521 {
5522 /*
5523 * bail if there's load or we're actually up-to-date.
5524 */
5525 if (weighted_cpuload(this_rq))
5526 return;
5527
5528 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5529 }
5530
5531 /*
5532 * Record CPU load on nohz entry so we know the tickless load to account
5533 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5534 * than other cpu_load[idx] but it should be fine as cpu_load readers
5535 * shouldn't rely into synchronized cpu_load[*] updates.
5536 */
5537 void cpu_load_update_nohz_start(void)
5538 {
5539 struct rq *this_rq = this_rq();
5540
5541 /*
5542 * This is all lockless but should be fine. If weighted_cpuload changes
5543 * concurrently we'll exit nohz. And cpu_load write can race with
5544 * cpu_load_update_idle() but both updater would be writing the same.
5545 */
5546 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5547 }
5548
5549 /*
5550 * Account the tickless load in the end of a nohz frame.
5551 */
5552 void cpu_load_update_nohz_stop(void)
5553 {
5554 unsigned long curr_jiffies = READ_ONCE(jiffies);
5555 struct rq *this_rq = this_rq();
5556 unsigned long load;
5557 struct rq_flags rf;
5558
5559 if (curr_jiffies == this_rq->last_load_update_tick)
5560 return;
5561
5562 load = weighted_cpuload(this_rq);
5563 rq_lock(this_rq, &rf);
5564 update_rq_clock(this_rq);
5565 cpu_load_update_nohz(this_rq, curr_jiffies, load);
5566 rq_unlock(this_rq, &rf);
5567 }
5568 #else /* !CONFIG_NO_HZ_COMMON */
5569 static inline void cpu_load_update_nohz(struct rq *this_rq,
5570 unsigned long curr_jiffies,
5571 unsigned long load) { }
5572 #endif /* CONFIG_NO_HZ_COMMON */
5573
5574 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5575 {
5576 #ifdef CONFIG_NO_HZ_COMMON
5577 /* See the mess around cpu_load_update_nohz(). */
5578 this_rq->last_load_update_tick = READ_ONCE(jiffies);
5579 #endif
5580 cpu_load_update(this_rq, load, 1);
5581 }
5582
5583 /*
5584 * Called from scheduler_tick()
5585 */
5586 void cpu_load_update_active(struct rq *this_rq)
5587 {
5588 unsigned long load = weighted_cpuload(this_rq);
5589
5590 if (tick_nohz_tick_stopped())
5591 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5592 else
5593 cpu_load_update_periodic(this_rq, load);
5594 }
5595
5596 /*
5597 * Return a low guess at the load of a migration-source CPU weighted
5598 * according to the scheduling class and "nice" value.
5599 *
5600 * We want to under-estimate the load of migration sources, to
5601 * balance conservatively.
5602 */
5603 static unsigned long source_load(int cpu, int type)
5604 {
5605 struct rq *rq = cpu_rq(cpu);
5606 unsigned long total = weighted_cpuload(rq);
5607
5608 if (type == 0 || !sched_feat(LB_BIAS))
5609 return total;
5610
5611 return min(rq->cpu_load[type-1], total);
5612 }
5613
5614 /*
5615 * Return a high guess at the load of a migration-target CPU weighted
5616 * according to the scheduling class and "nice" value.
5617 */
5618 static unsigned long target_load(int cpu, int type)
5619 {
5620 struct rq *rq = cpu_rq(cpu);
5621 unsigned long total = weighted_cpuload(rq);
5622
5623 if (type == 0 || !sched_feat(LB_BIAS))
5624 return total;
5625
5626 return max(rq->cpu_load[type-1], total);
5627 }
5628
5629 static unsigned long capacity_of(int cpu)
5630 {
5631 return cpu_rq(cpu)->cpu_capacity;
5632 }
5633
5634 static unsigned long cpu_avg_load_per_task(int cpu)
5635 {
5636 struct rq *rq = cpu_rq(cpu);
5637 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5638 unsigned long load_avg = weighted_cpuload(rq);
5639
5640 if (nr_running)
5641 return load_avg / nr_running;
5642
5643 return 0;
5644 }
5645
5646 static void record_wakee(struct task_struct *p)
5647 {
5648 /*
5649 * Only decay a single time; tasks that have less then 1 wakeup per
5650 * jiffy will not have built up many flips.
5651 */
5652 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5653 current->wakee_flips >>= 1;
5654 current->wakee_flip_decay_ts = jiffies;
5655 }
5656
5657 if (current->last_wakee != p) {
5658 current->last_wakee = p;
5659 current->wakee_flips++;
5660 }
5661 }
5662
5663 /*
5664 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5665 *
5666 * A waker of many should wake a different task than the one last awakened
5667 * at a frequency roughly N times higher than one of its wakees.
5668 *
5669 * In order to determine whether we should let the load spread vs consolidating
5670 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5671 * partner, and a factor of lls_size higher frequency in the other.
5672 *
5673 * With both conditions met, we can be relatively sure that the relationship is
5674 * non-monogamous, with partner count exceeding socket size.
5675 *
5676 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5677 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5678 * socket size.
5679 */
5680 static int wake_wide(struct task_struct *p)
5681 {
5682 unsigned int master = current->wakee_flips;
5683 unsigned int slave = p->wakee_flips;
5684 int factor = this_cpu_read(sd_llc_size);
5685
5686 if (master < slave)
5687 swap(master, slave);
5688 if (slave < factor || master < slave * factor)
5689 return 0;
5690 return 1;
5691 }
5692
5693 /*
5694 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5695 * soonest. For the purpose of speed we only consider the waking and previous
5696 * CPU.
5697 *
5698 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5699 * cache-affine and is (or will be) idle.
5700 *
5701 * wake_affine_weight() - considers the weight to reflect the average
5702 * scheduling latency of the CPUs. This seems to work
5703 * for the overloaded case.
5704 */
5705 static int
5706 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5707 {
5708 /*
5709 * If this_cpu is idle, it implies the wakeup is from interrupt
5710 * context. Only allow the move if cache is shared. Otherwise an
5711 * interrupt intensive workload could force all tasks onto one
5712 * node depending on the IO topology or IRQ affinity settings.
5713 *
5714 * If the prev_cpu is idle and cache affine then avoid a migration.
5715 * There is no guarantee that the cache hot data from an interrupt
5716 * is more important than cache hot data on the prev_cpu and from
5717 * a cpufreq perspective, it's better to have higher utilisation
5718 * on one CPU.
5719 */
5720 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5721 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5722
5723 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5724 return this_cpu;
5725
5726 return nr_cpumask_bits;
5727 }
5728
5729 static int
5730 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5731 int this_cpu, int prev_cpu, int sync)
5732 {
5733 s64 this_eff_load, prev_eff_load;
5734 unsigned long task_load;
5735
5736 this_eff_load = target_load(this_cpu, sd->wake_idx);
5737
5738 if (sync) {
5739 unsigned long current_load = task_h_load(current);
5740
5741 if (current_load > this_eff_load)
5742 return this_cpu;
5743
5744 this_eff_load -= current_load;
5745 }
5746
5747 task_load = task_h_load(p);
5748
5749 this_eff_load += task_load;
5750 if (sched_feat(WA_BIAS))
5751 this_eff_load *= 100;
5752 this_eff_load *= capacity_of(prev_cpu);
5753
5754 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5755 prev_eff_load -= task_load;
5756 if (sched_feat(WA_BIAS))
5757 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5758 prev_eff_load *= capacity_of(this_cpu);
5759
5760 /*
5761 * If sync, adjust the weight of prev_eff_load such that if
5762 * prev_eff == this_eff that select_idle_sibling() will consider
5763 * stacking the wakee on top of the waker if no other CPU is
5764 * idle.
5765 */
5766 if (sync)
5767 prev_eff_load += 1;
5768
5769 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5770 }
5771
5772 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5773 int this_cpu, int prev_cpu, int sync)
5774 {
5775 int target = nr_cpumask_bits;
5776
5777 if (sched_feat(WA_IDLE))
5778 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5779
5780 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5781 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5782
5783 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5784 if (target == nr_cpumask_bits)
5785 return prev_cpu;
5786
5787 schedstat_inc(sd->ttwu_move_affine);
5788 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5789 return target;
5790 }
5791
5792 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5793
5794 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5795 {
5796 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5797 }
5798
5799 /*
5800 * find_idlest_group finds and returns the least busy CPU group within the
5801 * domain.
5802 *
5803 * Assumes p is allowed on at least one CPU in sd.
5804 */
5805 static struct sched_group *
5806 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5807 int this_cpu, int sd_flag)
5808 {
5809 struct sched_group *idlest = NULL, *group = sd->groups;
5810 struct sched_group *most_spare_sg = NULL;
5811 unsigned long min_runnable_load = ULONG_MAX;
5812 unsigned long this_runnable_load = ULONG_MAX;
5813 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5814 unsigned long most_spare = 0, this_spare = 0;
5815 int load_idx = sd->forkexec_idx;
5816 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5817 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5818 (sd->imbalance_pct-100) / 100;
5819
5820 if (sd_flag & SD_BALANCE_WAKE)
5821 load_idx = sd->wake_idx;
5822
5823 do {
5824 unsigned long load, avg_load, runnable_load;
5825 unsigned long spare_cap, max_spare_cap;
5826 int local_group;
5827 int i;
5828
5829 /* Skip over this group if it has no CPUs allowed */
5830 if (!cpumask_intersects(sched_group_span(group),
5831 &p->cpus_allowed))
5832 continue;
5833
5834 local_group = cpumask_test_cpu(this_cpu,
5835 sched_group_span(group));
5836
5837 /*
5838 * Tally up the load of all CPUs in the group and find
5839 * the group containing the CPU with most spare capacity.
5840 */
5841 avg_load = 0;
5842 runnable_load = 0;
5843 max_spare_cap = 0;
5844
5845 for_each_cpu(i, sched_group_span(group)) {
5846 /* Bias balancing toward CPUs of our domain */
5847 if (local_group)
5848 load = source_load(i, load_idx);
5849 else
5850 load = target_load(i, load_idx);
5851
5852 runnable_load += load;
5853
5854 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5855
5856 spare_cap = capacity_spare_without(i, p);
5857
5858 if (spare_cap > max_spare_cap)
5859 max_spare_cap = spare_cap;
5860 }
5861
5862 /* Adjust by relative CPU capacity of the group */
5863 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5864 group->sgc->capacity;
5865 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5866 group->sgc->capacity;
5867
5868 if (local_group) {
5869 this_runnable_load = runnable_load;
5870 this_avg_load = avg_load;
5871 this_spare = max_spare_cap;
5872 } else {
5873 if (min_runnable_load > (runnable_load + imbalance)) {
5874 /*
5875 * The runnable load is significantly smaller
5876 * so we can pick this new CPU:
5877 */
5878 min_runnable_load = runnable_load;
5879 min_avg_load = avg_load;
5880 idlest = group;
5881 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5882 (100*min_avg_load > imbalance_scale*avg_load)) {
5883 /*
5884 * The runnable loads are close so take the
5885 * blocked load into account through avg_load:
5886 */
5887 min_avg_load = avg_load;
5888 idlest = group;
5889 }
5890
5891 if (most_spare < max_spare_cap) {
5892 most_spare = max_spare_cap;
5893 most_spare_sg = group;
5894 }
5895 }
5896 } while (group = group->next, group != sd->groups);
5897
5898 /*
5899 * The cross-over point between using spare capacity or least load
5900 * is too conservative for high utilization tasks on partially
5901 * utilized systems if we require spare_capacity > task_util(p),
5902 * so we allow for some task stuffing by using
5903 * spare_capacity > task_util(p)/2.
5904 *
5905 * Spare capacity can't be used for fork because the utilization has
5906 * not been set yet, we must first select a rq to compute the initial
5907 * utilization.
5908 */
5909 if (sd_flag & SD_BALANCE_FORK)
5910 goto skip_spare;
5911
5912 if (this_spare > task_util(p) / 2 &&
5913 imbalance_scale*this_spare > 100*most_spare)
5914 return NULL;
5915
5916 if (most_spare > task_util(p) / 2)
5917 return most_spare_sg;
5918
5919 skip_spare:
5920 if (!idlest)
5921 return NULL;
5922
5923 /*
5924 * When comparing groups across NUMA domains, it's possible for the
5925 * local domain to be very lightly loaded relative to the remote
5926 * domains but "imbalance" skews the comparison making remote CPUs
5927 * look much more favourable. When considering cross-domain, add
5928 * imbalance to the runnable load on the remote node and consider
5929 * staying local.
5930 */
5931 if ((sd->flags & SD_NUMA) &&
5932 min_runnable_load + imbalance >= this_runnable_load)
5933 return NULL;
5934
5935 if (min_runnable_load > (this_runnable_load + imbalance))
5936 return NULL;
5937
5938 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5939 (100*this_avg_load < imbalance_scale*min_avg_load))
5940 return NULL;
5941
5942 return idlest;
5943 }
5944
5945 /*
5946 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5947 */
5948 static int
5949 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5950 {
5951 unsigned long load, min_load = ULONG_MAX;
5952 unsigned int min_exit_latency = UINT_MAX;
5953 u64 latest_idle_timestamp = 0;
5954 int least_loaded_cpu = this_cpu;
5955 int shallowest_idle_cpu = -1;
5956 int i;
5957
5958 /* Check if we have any choice: */
5959 if (group->group_weight == 1)
5960 return cpumask_first(sched_group_span(group));
5961
5962 /* Traverse only the allowed CPUs */
5963 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5964 if (available_idle_cpu(i)) {
5965 struct rq *rq = cpu_rq(i);
5966 struct cpuidle_state *idle = idle_get_state(rq);
5967 if (idle && idle->exit_latency < min_exit_latency) {
5968 /*
5969 * We give priority to a CPU whose idle state
5970 * has the smallest exit latency irrespective
5971 * of any idle timestamp.
5972 */
5973 min_exit_latency = idle->exit_latency;
5974 latest_idle_timestamp = rq->idle_stamp;
5975 shallowest_idle_cpu = i;
5976 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5977 rq->idle_stamp > latest_idle_timestamp) {
5978 /*
5979 * If equal or no active idle state, then
5980 * the most recently idled CPU might have
5981 * a warmer cache.
5982 */
5983 latest_idle_timestamp = rq->idle_stamp;
5984 shallowest_idle_cpu = i;
5985 }
5986 } else if (shallowest_idle_cpu == -1) {
5987 load = weighted_cpuload(cpu_rq(i));
5988 if (load < min_load) {
5989 min_load = load;
5990 least_loaded_cpu = i;
5991 }
5992 }
5993 }
5994
5995 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5996 }
5997
5998 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5999 int cpu, int prev_cpu, int sd_flag)
6000 {
6001 int new_cpu = cpu;
6002
6003 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
6004 return prev_cpu;
6005
6006 /*
6007 * We need task's util for capacity_spare_without, sync it up to
6008 * prev_cpu's last_update_time.
6009 */
6010 if (!(sd_flag & SD_BALANCE_FORK))
6011 sync_entity_load_avg(&p->se);
6012
6013 while (sd) {
6014 struct sched_group *group;
6015 struct sched_domain *tmp;
6016 int weight;
6017
6018 if (!(sd->flags & sd_flag)) {
6019 sd = sd->child;
6020 continue;
6021 }
6022
6023 group = find_idlest_group(sd, p, cpu, sd_flag);
6024 if (!group) {
6025 sd = sd->child;
6026 continue;
6027 }
6028
6029 new_cpu = find_idlest_group_cpu(group, p, cpu);
6030 if (new_cpu == cpu) {
6031 /* Now try balancing at a lower domain level of 'cpu': */
6032 sd = sd->child;
6033 continue;
6034 }
6035
6036 /* Now try balancing at a lower domain level of 'new_cpu': */
6037 cpu = new_cpu;
6038 weight = sd->span_weight;
6039 sd = NULL;
6040 for_each_domain(cpu, tmp) {
6041 if (weight <= tmp->span_weight)
6042 break;
6043 if (tmp->flags & sd_flag)
6044 sd = tmp;
6045 }
6046 }
6047
6048 return new_cpu;
6049 }
6050
6051 #ifdef CONFIG_SCHED_SMT
6052 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6053 EXPORT_SYMBOL_GPL(sched_smt_present);
6054
6055 static inline void set_idle_cores(int cpu, int val)
6056 {
6057 struct sched_domain_shared *sds;
6058
6059 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6060 if (sds)
6061 WRITE_ONCE(sds->has_idle_cores, val);
6062 }
6063
6064 static inline bool test_idle_cores(int cpu, bool def)
6065 {
6066 struct sched_domain_shared *sds;
6067
6068 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6069 if (sds)
6070 return READ_ONCE(sds->has_idle_cores);
6071
6072 return def;
6073 }
6074
6075 /*
6076 * Scans the local SMT mask to see if the entire core is idle, and records this
6077 * information in sd_llc_shared->has_idle_cores.
6078 *
6079 * Since SMT siblings share all cache levels, inspecting this limited remote
6080 * state should be fairly cheap.
6081 */
6082 void __update_idle_core(struct rq *rq)
6083 {
6084 int core = cpu_of(rq);
6085 int cpu;
6086
6087 rcu_read_lock();
6088 if (test_idle_cores(core, true))
6089 goto unlock;
6090
6091 for_each_cpu(cpu, cpu_smt_mask(core)) {
6092 if (cpu == core)
6093 continue;
6094
6095 if (!available_idle_cpu(cpu))
6096 goto unlock;
6097 }
6098
6099 set_idle_cores(core, 1);
6100 unlock:
6101 rcu_read_unlock();
6102 }
6103
6104 /*
6105 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6106 * there are no idle cores left in the system; tracked through
6107 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6108 */
6109 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6110 {
6111 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6112 int core, cpu;
6113
6114 if (!static_branch_likely(&sched_smt_present))
6115 return -1;
6116
6117 if (!test_idle_cores(target, false))
6118 return -1;
6119
6120 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6121
6122 for_each_cpu_wrap(core, cpus, target) {
6123 bool idle = true;
6124
6125 for_each_cpu(cpu, cpu_smt_mask(core)) {
6126 __cpumask_clear_cpu(cpu, cpus);
6127 if (!available_idle_cpu(cpu))
6128 idle = false;
6129 }
6130
6131 if (idle)
6132 return core;
6133 }
6134
6135 /*
6136 * Failed to find an idle core; stop looking for one.
6137 */
6138 set_idle_cores(target, 0);
6139
6140 return -1;
6141 }
6142
6143 /*
6144 * Scan the local SMT mask for idle CPUs.
6145 */
6146 static int select_idle_smt(struct task_struct *p, int target)
6147 {
6148 int cpu;
6149
6150 if (!static_branch_likely(&sched_smt_present))
6151 return -1;
6152
6153 for_each_cpu(cpu, cpu_smt_mask(target)) {
6154 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6155 continue;
6156 if (available_idle_cpu(cpu))
6157 return cpu;
6158 }
6159
6160 return -1;
6161 }
6162
6163 #else /* CONFIG_SCHED_SMT */
6164
6165 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6166 {
6167 return -1;
6168 }
6169
6170 static inline int select_idle_smt(struct task_struct *p, int target)
6171 {
6172 return -1;
6173 }
6174
6175 #endif /* CONFIG_SCHED_SMT */
6176
6177 /*
6178 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6179 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6180 * average idle time for this rq (as found in rq->avg_idle).
6181 */
6182 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6183 {
6184 struct sched_domain *this_sd;
6185 u64 avg_cost, avg_idle;
6186 u64 time, cost;
6187 s64 delta;
6188 int cpu, nr = INT_MAX;
6189
6190 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6191 if (!this_sd)
6192 return -1;
6193
6194 /*
6195 * Due to large variance we need a large fuzz factor; hackbench in
6196 * particularly is sensitive here.
6197 */
6198 avg_idle = this_rq()->avg_idle / 512;
6199 avg_cost = this_sd->avg_scan_cost + 1;
6200
6201 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6202 return -1;
6203
6204 if (sched_feat(SIS_PROP)) {
6205 u64 span_avg = sd->span_weight * avg_idle;
6206 if (span_avg > 4*avg_cost)
6207 nr = div_u64(span_avg, avg_cost);
6208 else
6209 nr = 4;
6210 }
6211
6212 time = local_clock();
6213
6214 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6215 if (!--nr)
6216 return -1;
6217 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6218 continue;
6219 if (available_idle_cpu(cpu))
6220 break;
6221 }
6222
6223 time = local_clock() - time;
6224 cost = this_sd->avg_scan_cost;
6225 delta = (s64)(time - cost) / 8;
6226 this_sd->avg_scan_cost += delta;
6227
6228 return cpu;
6229 }
6230
6231 /*
6232 * Try and locate an idle core/thread in the LLC cache domain.
6233 */
6234 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6235 {
6236 struct sched_domain *sd;
6237 int i, recent_used_cpu;
6238
6239 if (available_idle_cpu(target))
6240 return target;
6241
6242 /*
6243 * If the previous CPU is cache affine and idle, don't be stupid:
6244 */
6245 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6246 return prev;
6247
6248 /* Check a recently used CPU as a potential idle candidate: */
6249 recent_used_cpu = p->recent_used_cpu;
6250 if (recent_used_cpu != prev &&
6251 recent_used_cpu != target &&
6252 cpus_share_cache(recent_used_cpu, target) &&
6253 available_idle_cpu(recent_used_cpu) &&
6254 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6255 /*
6256 * Replace recent_used_cpu with prev as it is a potential
6257 * candidate for the next wake:
6258 */
6259 p->recent_used_cpu = prev;
6260 return recent_used_cpu;
6261 }
6262
6263 sd = rcu_dereference(per_cpu(sd_llc, target));
6264 if (!sd)
6265 return target;
6266
6267 i = select_idle_core(p, sd, target);
6268 if ((unsigned)i < nr_cpumask_bits)
6269 return i;
6270
6271 i = select_idle_cpu(p, sd, target);
6272 if ((unsigned)i < nr_cpumask_bits)
6273 return i;
6274
6275 i = select_idle_smt(p, target);
6276 if ((unsigned)i < nr_cpumask_bits)
6277 return i;
6278
6279 return target;
6280 }
6281
6282 /**
6283 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6284 * @cpu: the CPU to get the utilization of
6285 *
6286 * The unit of the return value must be the one of capacity so we can compare
6287 * the utilization with the capacity of the CPU that is available for CFS task
6288 * (ie cpu_capacity).
6289 *
6290 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6291 * recent utilization of currently non-runnable tasks on a CPU. It represents
6292 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6293 * capacity_orig is the cpu_capacity available at the highest frequency
6294 * (arch_scale_freq_capacity()).
6295 * The utilization of a CPU converges towards a sum equal to or less than the
6296 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6297 * the running time on this CPU scaled by capacity_curr.
6298 *
6299 * The estimated utilization of a CPU is defined to be the maximum between its
6300 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6301 * currently RUNNABLE on that CPU.
6302 * This allows to properly represent the expected utilization of a CPU which
6303 * has just got a big task running since a long sleep period. At the same time
6304 * however it preserves the benefits of the "blocked utilization" in
6305 * describing the potential for other tasks waking up on the same CPU.
6306 *
6307 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6308 * higher than capacity_orig because of unfortunate rounding in
6309 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6310 * the average stabilizes with the new running time. We need to check that the
6311 * utilization stays within the range of [0..capacity_orig] and cap it if
6312 * necessary. Without utilization capping, a group could be seen as overloaded
6313 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6314 * available capacity. We allow utilization to overshoot capacity_curr (but not
6315 * capacity_orig) as it useful for predicting the capacity required after task
6316 * migrations (scheduler-driven DVFS).
6317 *
6318 * Return: the (estimated) utilization for the specified CPU
6319 */
6320 static inline unsigned long cpu_util(int cpu)
6321 {
6322 struct cfs_rq *cfs_rq;
6323 unsigned int util;
6324
6325 cfs_rq = &cpu_rq(cpu)->cfs;
6326 util = READ_ONCE(cfs_rq->avg.util_avg);
6327
6328 if (sched_feat(UTIL_EST))
6329 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6330
6331 return min_t(unsigned long, util, capacity_orig_of(cpu));
6332 }
6333
6334 /*
6335 * cpu_util_without: compute cpu utilization without any contributions from *p
6336 * @cpu: the CPU which utilization is requested
6337 * @p: the task which utilization should be discounted
6338 *
6339 * The utilization of a CPU is defined by the utilization of tasks currently
6340 * enqueued on that CPU as well as tasks which are currently sleeping after an
6341 * execution on that CPU.
6342 *
6343 * This method returns the utilization of the specified CPU by discounting the
6344 * utilization of the specified task, whenever the task is currently
6345 * contributing to the CPU utilization.
6346 */
6347 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6348 {
6349 struct cfs_rq *cfs_rq;
6350 unsigned int util;
6351
6352 /* Task has no contribution or is new */
6353 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6354 return cpu_util(cpu);
6355
6356 cfs_rq = &cpu_rq(cpu)->cfs;
6357 util = READ_ONCE(cfs_rq->avg.util_avg);
6358
6359 /* Discount task's util from CPU's util */
6360 lsub_positive(&util, task_util(p));
6361
6362 /*
6363 * Covered cases:
6364 *
6365 * a) if *p is the only task sleeping on this CPU, then:
6366 * cpu_util (== task_util) > util_est (== 0)
6367 * and thus we return:
6368 * cpu_util_without = (cpu_util - task_util) = 0
6369 *
6370 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6371 * IDLE, then:
6372 * cpu_util >= task_util
6373 * cpu_util > util_est (== 0)
6374 * and thus we discount *p's blocked utilization to return:
6375 * cpu_util_without = (cpu_util - task_util) >= 0
6376 *
6377 * c) if other tasks are RUNNABLE on that CPU and
6378 * util_est > cpu_util
6379 * then we use util_est since it returns a more restrictive
6380 * estimation of the spare capacity on that CPU, by just
6381 * considering the expected utilization of tasks already
6382 * runnable on that CPU.
6383 *
6384 * Cases a) and b) are covered by the above code, while case c) is
6385 * covered by the following code when estimated utilization is
6386 * enabled.
6387 */
6388 if (sched_feat(UTIL_EST)) {
6389 unsigned int estimated =
6390 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6391
6392 /*
6393 * Despite the following checks we still have a small window
6394 * for a possible race, when an execl's select_task_rq_fair()
6395 * races with LB's detach_task():
6396 *
6397 * detach_task()
6398 * p->on_rq = TASK_ON_RQ_MIGRATING;
6399 * ---------------------------------- A
6400 * deactivate_task() \
6401 * dequeue_task() + RaceTime
6402 * util_est_dequeue() /
6403 * ---------------------------------- B
6404 *
6405 * The additional check on "current == p" it's required to
6406 * properly fix the execl regression and it helps in further
6407 * reducing the chances for the above race.
6408 */
6409 if (unlikely(task_on_rq_queued(p) || current == p))
6410 lsub_positive(&estimated, _task_util_est(p));
6411
6412 util = max(util, estimated);
6413 }
6414
6415 /*
6416 * Utilization (estimated) can exceed the CPU capacity, thus let's
6417 * clamp to the maximum CPU capacity to ensure consistency with
6418 * the cpu_util call.
6419 */
6420 return min_t(unsigned long, util, capacity_orig_of(cpu));
6421 }
6422
6423 /*
6424 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6425 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6426 *
6427 * In that case WAKE_AFFINE doesn't make sense and we'll let
6428 * BALANCE_WAKE sort things out.
6429 */
6430 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6431 {
6432 long min_cap, max_cap;
6433
6434 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6435 return 0;
6436
6437 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6438 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6439
6440 /* Minimum capacity is close to max, no need to abort wake_affine */
6441 if (max_cap - min_cap < max_cap >> 3)
6442 return 0;
6443
6444 /* Bring task utilization in sync with prev_cpu */
6445 sync_entity_load_avg(&p->se);
6446
6447 return !task_fits_capacity(p, min_cap);
6448 }
6449
6450 /*
6451 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6452 * to @dst_cpu.
6453 */
6454 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6455 {
6456 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6457 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6458
6459 /*
6460 * If @p migrates from @cpu to another, remove its contribution. Or,
6461 * if @p migrates from another CPU to @cpu, add its contribution. In
6462 * the other cases, @cpu is not impacted by the migration, so the
6463 * util_avg should already be correct.
6464 */
6465 if (task_cpu(p) == cpu && dst_cpu != cpu)
6466 sub_positive(&util, task_util(p));
6467 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6468 util += task_util(p);
6469
6470 if (sched_feat(UTIL_EST)) {
6471 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6472
6473 /*
6474 * During wake-up, the task isn't enqueued yet and doesn't
6475 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6476 * so just add it (if needed) to "simulate" what will be
6477 * cpu_util() after the task has been enqueued.
6478 */
6479 if (dst_cpu == cpu)
6480 util_est += _task_util_est(p);
6481
6482 util = max(util, util_est);
6483 }
6484
6485 return min(util, capacity_orig_of(cpu));
6486 }
6487
6488 /*
6489 * compute_energy(): Estimates the energy that would be consumed if @p was
6490 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6491 * landscape of the * CPUs after the task migration, and uses the Energy Model
6492 * to compute what would be the energy if we decided to actually migrate that
6493 * task.
6494 */
6495 static long
6496 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6497 {
6498 long util, max_util, sum_util, energy = 0;
6499 int cpu;
6500
6501 for (; pd; pd = pd->next) {
6502 max_util = sum_util = 0;
6503 /*
6504 * The capacity state of CPUs of the current rd can be driven by
6505 * CPUs of another rd if they belong to the same performance
6506 * domain. So, account for the utilization of these CPUs too
6507 * by masking pd with cpu_online_mask instead of the rd span.
6508 *
6509 * If an entire performance domain is outside of the current rd,
6510 * it will not appear in its pd list and will not be accounted
6511 * by compute_energy().
6512 */
6513 for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) {
6514 util = cpu_util_next(cpu, p, dst_cpu);
6515 util = schedutil_energy_util(cpu, util);
6516 max_util = max(util, max_util);
6517 sum_util += util;
6518 }
6519
6520 energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6521 }
6522
6523 return energy;
6524 }
6525
6526 /*
6527 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6528 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6529 * spare capacity in each performance domain and uses it as a potential
6530 * candidate to execute the task. Then, it uses the Energy Model to figure
6531 * out which of the CPU candidates is the most energy-efficient.
6532 *
6533 * The rationale for this heuristic is as follows. In a performance domain,
6534 * all the most energy efficient CPU candidates (according to the Energy
6535 * Model) are those for which we'll request a low frequency. When there are
6536 * several CPUs for which the frequency request will be the same, we don't
6537 * have enough data to break the tie between them, because the Energy Model
6538 * only includes active power costs. With this model, if we assume that
6539 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6540 * the maximum spare capacity in a performance domain is guaranteed to be among
6541 * the best candidates of the performance domain.
6542 *
6543 * In practice, it could be preferable from an energy standpoint to pack
6544 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6545 * but that could also hurt our chances to go cluster idle, and we have no
6546 * ways to tell with the current Energy Model if this is actually a good
6547 * idea or not. So, find_energy_efficient_cpu() basically favors
6548 * cluster-packing, and spreading inside a cluster. That should at least be
6549 * a good thing for latency, and this is consistent with the idea that most
6550 * of the energy savings of EAS come from the asymmetry of the system, and
6551 * not so much from breaking the tie between identical CPUs. That's also the
6552 * reason why EAS is enabled in the topology code only for systems where
6553 * SD_ASYM_CPUCAPACITY is set.
6554 *
6555 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6556 * they don't have any useful utilization data yet and it's not possible to
6557 * forecast their impact on energy consumption. Consequently, they will be
6558 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6559 * to be energy-inefficient in some use-cases. The alternative would be to
6560 * bias new tasks towards specific types of CPUs first, or to try to infer
6561 * their util_avg from the parent task, but those heuristics could hurt
6562 * other use-cases too. So, until someone finds a better way to solve this,
6563 * let's keep things simple by re-using the existing slow path.
6564 */
6565
6566 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6567 {
6568 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6569 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6570 int cpu, best_energy_cpu = prev_cpu;
6571 struct perf_domain *head, *pd;
6572 unsigned long cpu_cap, util;
6573 struct sched_domain *sd;
6574
6575 rcu_read_lock();
6576 pd = rcu_dereference(rd->pd);
6577 if (!pd || READ_ONCE(rd->overutilized))
6578 goto fail;
6579 head = pd;
6580
6581 /*
6582 * Energy-aware wake-up happens on the lowest sched_domain starting
6583 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6584 */
6585 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6586 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6587 sd = sd->parent;
6588 if (!sd)
6589 goto fail;
6590
6591 sync_entity_load_avg(&p->se);
6592 if (!task_util_est(p))
6593 goto unlock;
6594
6595 for (; pd; pd = pd->next) {
6596 unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6597 int max_spare_cap_cpu = -1;
6598
6599 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6600 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6601 continue;
6602
6603 /* Skip CPUs that will be overutilized. */
6604 util = cpu_util_next(cpu, p, cpu);
6605 cpu_cap = capacity_of(cpu);
6606 if (cpu_cap * 1024 < util * capacity_margin)
6607 continue;
6608
6609 /* Always use prev_cpu as a candidate. */
6610 if (cpu == prev_cpu) {
6611 prev_energy = compute_energy(p, prev_cpu, head);
6612 best_energy = min(best_energy, prev_energy);
6613 continue;
6614 }
6615
6616 /*
6617 * Find the CPU with the maximum spare capacity in
6618 * the performance domain
6619 */
6620 spare_cap = cpu_cap - util;
6621 if (spare_cap > max_spare_cap) {
6622 max_spare_cap = spare_cap;
6623 max_spare_cap_cpu = cpu;
6624 }
6625 }
6626
6627 /* Evaluate the energy impact of using this CPU. */
6628 if (max_spare_cap_cpu >= 0) {
6629 cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6630 if (cur_energy < best_energy) {
6631 best_energy = cur_energy;
6632 best_energy_cpu = max_spare_cap_cpu;
6633 }
6634 }
6635 }
6636 unlock:
6637 rcu_read_unlock();
6638
6639 /*
6640 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6641 * least 6% of the energy used by prev_cpu.
6642 */
6643 if (prev_energy == ULONG_MAX)
6644 return best_energy_cpu;
6645
6646 if ((prev_energy - best_energy) > (prev_energy >> 4))
6647 return best_energy_cpu;
6648
6649 return prev_cpu;
6650
6651 fail:
6652 rcu_read_unlock();
6653
6654 return -1;
6655 }
6656
6657 /*
6658 * select_task_rq_fair: Select target runqueue for the waking task in domains
6659 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6660 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6661 *
6662 * Balances load by selecting the idlest CPU in the idlest group, or under
6663 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6664 *
6665 * Returns the target CPU number.
6666 *
6667 * preempt must be disabled.
6668 */
6669 static int
6670 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6671 {
6672 struct sched_domain *tmp, *sd = NULL;
6673 int cpu = smp_processor_id();
6674 int new_cpu = prev_cpu;
6675 int want_affine = 0;
6676 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6677
6678 if (sd_flag & SD_BALANCE_WAKE) {
6679 record_wakee(p);
6680
6681 if (sched_energy_enabled()) {
6682 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6683 if (new_cpu >= 0)
6684 return new_cpu;
6685 new_cpu = prev_cpu;
6686 }
6687
6688 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6689 cpumask_test_cpu(cpu, &p->cpus_allowed);
6690 }
6691
6692 rcu_read_lock();
6693 for_each_domain(cpu, tmp) {
6694 if (!(tmp->flags & SD_LOAD_BALANCE))
6695 break;
6696
6697 /*
6698 * If both 'cpu' and 'prev_cpu' are part of this domain,
6699 * cpu is a valid SD_WAKE_AFFINE target.
6700 */
6701 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6702 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6703 if (cpu != prev_cpu)
6704 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6705
6706 sd = NULL; /* Prefer wake_affine over balance flags */
6707 break;
6708 }
6709
6710 if (tmp->flags & sd_flag)
6711 sd = tmp;
6712 else if (!want_affine)
6713 break;
6714 }
6715
6716 if (unlikely(sd)) {
6717 /* Slow path */
6718 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6719 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6720 /* Fast path */
6721
6722 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6723
6724 if (want_affine)
6725 current->recent_used_cpu = cpu;
6726 }
6727 rcu_read_unlock();
6728
6729 return new_cpu;
6730 }
6731
6732 static void detach_entity_cfs_rq(struct sched_entity *se);
6733
6734 /*
6735 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6736 * cfs_rq_of(p) references at time of call are still valid and identify the
6737 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6738 */
6739 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6740 {
6741 /*
6742 * As blocked tasks retain absolute vruntime the migration needs to
6743 * deal with this by subtracting the old and adding the new
6744 * min_vruntime -- the latter is done by enqueue_entity() when placing
6745 * the task on the new runqueue.
6746 */
6747 if (p->state == TASK_WAKING) {
6748 struct sched_entity *se = &p->se;
6749 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6750 u64 min_vruntime;
6751
6752 #ifndef CONFIG_64BIT
6753 u64 min_vruntime_copy;
6754
6755 do {
6756 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6757 smp_rmb();
6758 min_vruntime = cfs_rq->min_vruntime;
6759 } while (min_vruntime != min_vruntime_copy);
6760 #else
6761 min_vruntime = cfs_rq->min_vruntime;
6762 #endif
6763
6764 se->vruntime -= min_vruntime;
6765 }
6766
6767 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6768 /*
6769 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6770 * rq->lock and can modify state directly.
6771 */
6772 lockdep_assert_held(&task_rq(p)->lock);
6773 detach_entity_cfs_rq(&p->se);
6774
6775 } else {
6776 /*
6777 * We are supposed to update the task to "current" time, then
6778 * its up to date and ready to go to new CPU/cfs_rq. But we
6779 * have difficulty in getting what current time is, so simply
6780 * throw away the out-of-date time. This will result in the
6781 * wakee task is less decayed, but giving the wakee more load
6782 * sounds not bad.
6783 */
6784 remove_entity_load_avg(&p->se);
6785 }
6786
6787 /* Tell new CPU we are migrated */
6788 p->se.avg.last_update_time = 0;
6789
6790 /* We have migrated, no longer consider this task hot */
6791 p->se.exec_start = 0;
6792
6793 update_scan_period(p, new_cpu);
6794 }
6795
6796 static void task_dead_fair(struct task_struct *p)
6797 {
6798 remove_entity_load_avg(&p->se);
6799 }
6800 #endif /* CONFIG_SMP */
6801
6802 static unsigned long wakeup_gran(struct sched_entity *se)
6803 {
6804 unsigned long gran = sysctl_sched_wakeup_granularity;
6805
6806 /*
6807 * Since its curr running now, convert the gran from real-time
6808 * to virtual-time in his units.
6809 *
6810 * By using 'se' instead of 'curr' we penalize light tasks, so
6811 * they get preempted easier. That is, if 'se' < 'curr' then
6812 * the resulting gran will be larger, therefore penalizing the
6813 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6814 * be smaller, again penalizing the lighter task.
6815 *
6816 * This is especially important for buddies when the leftmost
6817 * task is higher priority than the buddy.
6818 */
6819 return calc_delta_fair(gran, se);
6820 }
6821
6822 /*
6823 * Should 'se' preempt 'curr'.
6824 *
6825 * |s1
6826 * |s2
6827 * |s3
6828 * g
6829 * |<--->|c
6830 *
6831 * w(c, s1) = -1
6832 * w(c, s2) = 0
6833 * w(c, s3) = 1
6834 *
6835 */
6836 static int
6837 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6838 {
6839 s64 gran, vdiff = curr->vruntime - se->vruntime;
6840
6841 if (vdiff <= 0)
6842 return -1;
6843
6844 gran = wakeup_gran(se);
6845 if (vdiff > gran)
6846 return 1;
6847
6848 return 0;
6849 }
6850
6851 static void set_last_buddy(struct sched_entity *se)
6852 {
6853 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6854 return;
6855
6856 for_each_sched_entity(se) {
6857 if (SCHED_WARN_ON(!se->on_rq))
6858 return;
6859 cfs_rq_of(se)->last = se;
6860 }
6861 }
6862
6863 static void set_next_buddy(struct sched_entity *se)
6864 {
6865 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6866 return;
6867
6868 for_each_sched_entity(se) {
6869 if (SCHED_WARN_ON(!se->on_rq))
6870 return;
6871 cfs_rq_of(se)->next = se;
6872 }
6873 }
6874
6875 static void set_skip_buddy(struct sched_entity *se)
6876 {
6877 for_each_sched_entity(se)
6878 cfs_rq_of(se)->skip = se;
6879 }
6880
6881 /*
6882 * Preempt the current task with a newly woken task if needed:
6883 */
6884 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6885 {
6886 struct task_struct *curr = rq->curr;
6887 struct sched_entity *se = &curr->se, *pse = &p->se;
6888 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6889 int scale = cfs_rq->nr_running >= sched_nr_latency;
6890 int next_buddy_marked = 0;
6891
6892 if (unlikely(se == pse))
6893 return;
6894
6895 /*
6896 * This is possible from callers such as attach_tasks(), in which we
6897 * unconditionally check_prempt_curr() after an enqueue (which may have
6898 * lead to a throttle). This both saves work and prevents false
6899 * next-buddy nomination below.
6900 */
6901 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6902 return;
6903
6904 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6905 set_next_buddy(pse);
6906 next_buddy_marked = 1;
6907 }
6908
6909 /*
6910 * We can come here with TIF_NEED_RESCHED already set from new task
6911 * wake up path.
6912 *
6913 * Note: this also catches the edge-case of curr being in a throttled
6914 * group (e.g. via set_curr_task), since update_curr() (in the
6915 * enqueue of curr) will have resulted in resched being set. This
6916 * prevents us from potentially nominating it as a false LAST_BUDDY
6917 * below.
6918 */
6919 if (test_tsk_need_resched(curr))
6920 return;
6921
6922 /* Idle tasks are by definition preempted by non-idle tasks. */
6923 if (unlikely(task_has_idle_policy(curr)) &&
6924 likely(!task_has_idle_policy(p)))
6925 goto preempt;
6926
6927 /*
6928 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6929 * is driven by the tick):
6930 */
6931 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6932 return;
6933
6934 find_matching_se(&se, &pse);
6935 update_curr(cfs_rq_of(se));
6936 BUG_ON(!pse);
6937 if (wakeup_preempt_entity(se, pse) == 1) {
6938 /*
6939 * Bias pick_next to pick the sched entity that is
6940 * triggering this preemption.
6941 */
6942 if (!next_buddy_marked)
6943 set_next_buddy(pse);
6944 goto preempt;
6945 }
6946
6947 return;
6948
6949 preempt:
6950 resched_curr(rq);
6951 /*
6952 * Only set the backward buddy when the current task is still
6953 * on the rq. This can happen when a wakeup gets interleaved
6954 * with schedule on the ->pre_schedule() or idle_balance()
6955 * point, either of which can * drop the rq lock.
6956 *
6957 * Also, during early boot the idle thread is in the fair class,
6958 * for obvious reasons its a bad idea to schedule back to it.
6959 */
6960 if (unlikely(!se->on_rq || curr == rq->idle))
6961 return;
6962
6963 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6964 set_last_buddy(se);
6965 }
6966
6967 static struct task_struct *
6968 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6969 {
6970 struct cfs_rq *cfs_rq = &rq->cfs;
6971 struct sched_entity *se;
6972 struct task_struct *p;
6973 int new_tasks;
6974
6975 again:
6976 if (!cfs_rq->nr_running)
6977 goto idle;
6978
6979 #ifdef CONFIG_FAIR_GROUP_SCHED
6980 if (prev->sched_class != &fair_sched_class)
6981 goto simple;
6982
6983 /*
6984 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6985 * likely that a next task is from the same cgroup as the current.
6986 *
6987 * Therefore attempt to avoid putting and setting the entire cgroup
6988 * hierarchy, only change the part that actually changes.
6989 */
6990
6991 do {
6992 struct sched_entity *curr = cfs_rq->curr;
6993
6994 /*
6995 * Since we got here without doing put_prev_entity() we also
6996 * have to consider cfs_rq->curr. If it is still a runnable
6997 * entity, update_curr() will update its vruntime, otherwise
6998 * forget we've ever seen it.
6999 */
7000 if (curr) {
7001 if (curr->on_rq)
7002 update_curr(cfs_rq);
7003 else
7004 curr = NULL;
7005
7006 /*
7007 * This call to check_cfs_rq_runtime() will do the
7008 * throttle and dequeue its entity in the parent(s).
7009 * Therefore the nr_running test will indeed
7010 * be correct.
7011 */
7012 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7013 cfs_rq = &rq->cfs;
7014
7015 if (!cfs_rq->nr_running)
7016 goto idle;
7017
7018 goto simple;
7019 }
7020 }
7021
7022 se = pick_next_entity(cfs_rq, curr);
7023 cfs_rq = group_cfs_rq(se);
7024 } while (cfs_rq);
7025
7026 p = task_of(se);
7027
7028 /*
7029 * Since we haven't yet done put_prev_entity and if the selected task
7030 * is a different task than we started out with, try and touch the
7031 * least amount of cfs_rqs.
7032 */
7033 if (prev != p) {
7034 struct sched_entity *pse = &prev->se;
7035
7036 while (!(cfs_rq = is_same_group(se, pse))) {
7037 int se_depth = se->depth;
7038 int pse_depth = pse->depth;
7039
7040 if (se_depth <= pse_depth) {
7041 put_prev_entity(cfs_rq_of(pse), pse);
7042 pse = parent_entity(pse);
7043 }
7044 if (se_depth >= pse_depth) {
7045 set_next_entity(cfs_rq_of(se), se);
7046 se = parent_entity(se);
7047 }
7048 }
7049
7050 put_prev_entity(cfs_rq, pse);
7051 set_next_entity(cfs_rq, se);
7052 }
7053
7054 goto done;
7055 simple:
7056 #endif
7057
7058 put_prev_task(rq, prev);
7059
7060 do {
7061 se = pick_next_entity(cfs_rq, NULL);
7062 set_next_entity(cfs_rq, se);
7063 cfs_rq = group_cfs_rq(se);
7064 } while (cfs_rq);
7065
7066 p = task_of(se);
7067
7068 done: __maybe_unused;
7069 #ifdef CONFIG_SMP
7070 /*
7071 * Move the next running task to the front of
7072 * the list, so our cfs_tasks list becomes MRU
7073 * one.
7074 */
7075 list_move(&p->se.group_node, &rq->cfs_tasks);
7076 #endif
7077
7078 if (hrtick_enabled(rq))
7079 hrtick_start_fair(rq, p);
7080
7081 update_misfit_status(p, rq);
7082
7083 return p;
7084
7085 idle:
7086 update_misfit_status(NULL, rq);
7087 new_tasks = idle_balance(rq, rf);
7088
7089 /*
7090 * Because idle_balance() releases (and re-acquires) rq->lock, it is
7091 * possible for any higher priority task to appear. In that case we
7092 * must re-start the pick_next_entity() loop.
7093 */
7094 if (new_tasks < 0)
7095 return RETRY_TASK;
7096
7097 if (new_tasks > 0)
7098 goto again;
7099
7100 /*
7101 * rq is about to be idle, check if we need to update the
7102 * lost_idle_time of clock_pelt
7103 */
7104 update_idle_rq_clock_pelt(rq);
7105
7106 return NULL;
7107 }
7108
7109 /*
7110 * Account for a descheduled task:
7111 */
7112 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7113 {
7114 struct sched_entity *se = &prev->se;
7115 struct cfs_rq *cfs_rq;
7116
7117 for_each_sched_entity(se) {
7118 cfs_rq = cfs_rq_of(se);
7119 put_prev_entity(cfs_rq, se);
7120 }
7121 }
7122
7123 /*
7124 * sched_yield() is very simple
7125 *
7126 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7127 */
7128 static void yield_task_fair(struct rq *rq)
7129 {
7130 struct task_struct *curr = rq->curr;
7131 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7132 struct sched_entity *se = &curr->se;
7133
7134 /*
7135 * Are we the only task in the tree?
7136 */
7137 if (unlikely(rq->nr_running == 1))
7138 return;
7139
7140 clear_buddies(cfs_rq, se);
7141
7142 if (curr->policy != SCHED_BATCH) {
7143 update_rq_clock(rq);
7144 /*
7145 * Update run-time statistics of the 'current'.
7146 */
7147 update_curr(cfs_rq);
7148 /*
7149 * Tell update_rq_clock() that we've just updated,
7150 * so we don't do microscopic update in schedule()
7151 * and double the fastpath cost.
7152 */
7153 rq_clock_skip_update(rq);
7154 }
7155
7156 set_skip_buddy(se);
7157 }
7158
7159 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7160 {
7161 struct sched_entity *se = &p->se;
7162
7163 /* throttled hierarchies are not runnable */
7164 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7165 return false;
7166
7167 /* Tell the scheduler that we'd really like pse to run next. */
7168 set_next_buddy(se);
7169
7170 yield_task_fair(rq);
7171
7172 return true;
7173 }
7174
7175 #ifdef CONFIG_SMP
7176 /**************************************************
7177 * Fair scheduling class load-balancing methods.
7178 *
7179 * BASICS
7180 *
7181 * The purpose of load-balancing is to achieve the same basic fairness the
7182 * per-CPU scheduler provides, namely provide a proportional amount of compute
7183 * time to each task. This is expressed in the following equation:
7184 *
7185 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7186 *
7187 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7188 * W_i,0 is defined as:
7189 *
7190 * W_i,0 = \Sum_j w_i,j (2)
7191 *
7192 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7193 * is derived from the nice value as per sched_prio_to_weight[].
7194 *
7195 * The weight average is an exponential decay average of the instantaneous
7196 * weight:
7197 *
7198 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7199 *
7200 * C_i is the compute capacity of CPU i, typically it is the
7201 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7202 * can also include other factors [XXX].
7203 *
7204 * To achieve this balance we define a measure of imbalance which follows
7205 * directly from (1):
7206 *
7207 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7208 *
7209 * We them move tasks around to minimize the imbalance. In the continuous
7210 * function space it is obvious this converges, in the discrete case we get
7211 * a few fun cases generally called infeasible weight scenarios.
7212 *
7213 * [XXX expand on:
7214 * - infeasible weights;
7215 * - local vs global optima in the discrete case. ]
7216 *
7217 *
7218 * SCHED DOMAINS
7219 *
7220 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7221 * for all i,j solution, we create a tree of CPUs that follows the hardware
7222 * topology where each level pairs two lower groups (or better). This results
7223 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7224 * tree to only the first of the previous level and we decrease the frequency
7225 * of load-balance at each level inv. proportional to the number of CPUs in
7226 * the groups.
7227 *
7228 * This yields:
7229 *
7230 * log_2 n 1 n
7231 * \Sum { --- * --- * 2^i } = O(n) (5)
7232 * i = 0 2^i 2^i
7233 * `- size of each group
7234 * | | `- number of CPUs doing load-balance
7235 * | `- freq
7236 * `- sum over all levels
7237 *
7238 * Coupled with a limit on how many tasks we can migrate every balance pass,
7239 * this makes (5) the runtime complexity of the balancer.
7240 *
7241 * An important property here is that each CPU is still (indirectly) connected
7242 * to every other CPU in at most O(log n) steps:
7243 *
7244 * The adjacency matrix of the resulting graph is given by:
7245 *
7246 * log_2 n
7247 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7248 * k = 0
7249 *
7250 * And you'll find that:
7251 *
7252 * A^(log_2 n)_i,j != 0 for all i,j (7)
7253 *
7254 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7255 * The task movement gives a factor of O(m), giving a convergence complexity
7256 * of:
7257 *
7258 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7259 *
7260 *
7261 * WORK CONSERVING
7262 *
7263 * In order to avoid CPUs going idle while there's still work to do, new idle
7264 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7265 * tree itself instead of relying on other CPUs to bring it work.
7266 *
7267 * This adds some complexity to both (5) and (8) but it reduces the total idle
7268 * time.
7269 *
7270 * [XXX more?]
7271 *
7272 *
7273 * CGROUPS
7274 *
7275 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7276 *
7277 * s_k,i
7278 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7279 * S_k
7280 *
7281 * Where
7282 *
7283 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7284 *
7285 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7286 *
7287 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7288 * property.
7289 *
7290 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7291 * rewrite all of this once again.]
7292 */
7293
7294 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7295
7296 enum fbq_type { regular, remote, all };
7297
7298 enum group_type {
7299 group_other = 0,
7300 group_misfit_task,
7301 group_imbalanced,
7302 group_overloaded,
7303 };
7304
7305 #define LBF_ALL_PINNED 0x01
7306 #define LBF_NEED_BREAK 0x02
7307 #define LBF_DST_PINNED 0x04
7308 #define LBF_SOME_PINNED 0x08
7309 #define LBF_NOHZ_STATS 0x10
7310 #define LBF_NOHZ_AGAIN 0x20
7311
7312 struct lb_env {
7313 struct sched_domain *sd;
7314
7315 struct rq *src_rq;
7316 int src_cpu;
7317
7318 int dst_cpu;
7319 struct rq *dst_rq;
7320
7321 struct cpumask *dst_grpmask;
7322 int new_dst_cpu;
7323 enum cpu_idle_type idle;
7324 long imbalance;
7325 /* The set of CPUs under consideration for load-balancing */
7326 struct cpumask *cpus;
7327
7328 unsigned int flags;
7329
7330 unsigned int loop;
7331 unsigned int loop_break;
7332 unsigned int loop_max;
7333
7334 enum fbq_type fbq_type;
7335 enum group_type src_grp_type;
7336 struct list_head tasks;
7337 };
7338
7339 /*
7340 * Is this task likely cache-hot:
7341 */
7342 static int task_hot(struct task_struct *p, struct lb_env *env)
7343 {
7344 s64 delta;
7345
7346 lockdep_assert_held(&env->src_rq->lock);
7347
7348 if (p->sched_class != &fair_sched_class)
7349 return 0;
7350
7351 if (unlikely(task_has_idle_policy(p)))
7352 return 0;
7353
7354 /*
7355 * Buddy candidates are cache hot:
7356 */
7357 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7358 (&p->se == cfs_rq_of(&p->se)->next ||
7359 &p->se == cfs_rq_of(&p->se)->last))
7360 return 1;
7361
7362 if (sysctl_sched_migration_cost == -1)
7363 return 1;
7364 if (sysctl_sched_migration_cost == 0)
7365 return 0;
7366
7367 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7368
7369 return delta < (s64)sysctl_sched_migration_cost;
7370 }
7371
7372 #ifdef CONFIG_NUMA_BALANCING
7373 /*
7374 * Returns 1, if task migration degrades locality
7375 * Returns 0, if task migration improves locality i.e migration preferred.
7376 * Returns -1, if task migration is not affected by locality.
7377 */
7378 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7379 {
7380 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7381 unsigned long src_weight, dst_weight;
7382 int src_nid, dst_nid, dist;
7383
7384 if (!static_branch_likely(&sched_numa_balancing))
7385 return -1;
7386
7387 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7388 return -1;
7389
7390 src_nid = cpu_to_node(env->src_cpu);
7391 dst_nid = cpu_to_node(env->dst_cpu);
7392
7393 if (src_nid == dst_nid)
7394 return -1;
7395
7396 /* Migrating away from the preferred node is always bad. */
7397 if (src_nid == p->numa_preferred_nid) {
7398 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7399 return 1;
7400 else
7401 return -1;
7402 }
7403
7404 /* Encourage migration to the preferred node. */
7405 if (dst_nid == p->numa_preferred_nid)
7406 return 0;
7407
7408 /* Leaving a core idle is often worse than degrading locality. */
7409 if (env->idle == CPU_IDLE)
7410 return -1;
7411
7412 dist = node_distance(src_nid, dst_nid);
7413 if (numa_group) {
7414 src_weight = group_weight(p, src_nid, dist);
7415 dst_weight = group_weight(p, dst_nid, dist);
7416 } else {
7417 src_weight = task_weight(p, src_nid, dist);
7418 dst_weight = task_weight(p, dst_nid, dist);
7419 }
7420
7421 return dst_weight < src_weight;
7422 }
7423
7424 #else
7425 static inline int migrate_degrades_locality(struct task_struct *p,
7426 struct lb_env *env)
7427 {
7428 return -1;
7429 }
7430 #endif
7431
7432 /*
7433 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7434 */
7435 static
7436 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7437 {
7438 int tsk_cache_hot;
7439
7440 lockdep_assert_held(&env->src_rq->lock);
7441
7442 /*
7443 * We do not migrate tasks that are:
7444 * 1) throttled_lb_pair, or
7445 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7446 * 3) running (obviously), or
7447 * 4) are cache-hot on their current CPU.
7448 */
7449 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7450 return 0;
7451
7452 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7453 int cpu;
7454
7455 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7456
7457 env->flags |= LBF_SOME_PINNED;
7458
7459 /*
7460 * Remember if this task can be migrated to any other CPU in
7461 * our sched_group. We may want to revisit it if we couldn't
7462 * meet load balance goals by pulling other tasks on src_cpu.
7463 *
7464 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7465 * already computed one in current iteration.
7466 */
7467 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7468 return 0;
7469
7470 /* Prevent to re-select dst_cpu via env's CPUs: */
7471 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7472 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7473 env->flags |= LBF_DST_PINNED;
7474 env->new_dst_cpu = cpu;
7475 break;
7476 }
7477 }
7478
7479 return 0;
7480 }
7481
7482 /* Record that we found atleast one task that could run on dst_cpu */
7483 env->flags &= ~LBF_ALL_PINNED;
7484
7485 if (task_running(env->src_rq, p)) {
7486 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7487 return 0;
7488 }
7489
7490 /*
7491 * Aggressive migration if:
7492 * 1) destination numa is preferred
7493 * 2) task is cache cold, or
7494 * 3) too many balance attempts have failed.
7495 */
7496 tsk_cache_hot = migrate_degrades_locality(p, env);
7497 if (tsk_cache_hot == -1)
7498 tsk_cache_hot = task_hot(p, env);
7499
7500 if (tsk_cache_hot <= 0 ||
7501 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7502 if (tsk_cache_hot == 1) {
7503 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7504 schedstat_inc(p->se.statistics.nr_forced_migrations);
7505 }
7506 return 1;
7507 }
7508
7509 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7510 return 0;
7511 }
7512
7513 /*
7514 * detach_task() -- detach the task for the migration specified in env
7515 */
7516 static void detach_task(struct task_struct *p, struct lb_env *env)
7517 {
7518 lockdep_assert_held(&env->src_rq->lock);
7519
7520 p->on_rq = TASK_ON_RQ_MIGRATING;
7521 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7522 set_task_cpu(p, env->dst_cpu);
7523 }
7524
7525 /*
7526 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7527 * part of active balancing operations within "domain".
7528 *
7529 * Returns a task if successful and NULL otherwise.
7530 */
7531 static struct task_struct *detach_one_task(struct lb_env *env)
7532 {
7533 struct task_struct *p;
7534
7535 lockdep_assert_held(&env->src_rq->lock);
7536
7537 list_for_each_entry_reverse(p,
7538 &env->src_rq->cfs_tasks, se.group_node) {
7539 if (!can_migrate_task(p, env))
7540 continue;
7541
7542 detach_task(p, env);
7543
7544 /*
7545 * Right now, this is only the second place where
7546 * lb_gained[env->idle] is updated (other is detach_tasks)
7547 * so we can safely collect stats here rather than
7548 * inside detach_tasks().
7549 */
7550 schedstat_inc(env->sd->lb_gained[env->idle]);
7551 return p;
7552 }
7553 return NULL;
7554 }
7555
7556 static const unsigned int sched_nr_migrate_break = 32;
7557
7558 /*
7559 * detach_tasks() -- tries to detach up to imbalance weighted load from
7560 * busiest_rq, as part of a balancing operation within domain "sd".
7561 *
7562 * Returns number of detached tasks if successful and 0 otherwise.
7563 */
7564 static int detach_tasks(struct lb_env *env)
7565 {
7566 struct list_head *tasks = &env->src_rq->cfs_tasks;
7567 struct task_struct *p;
7568 unsigned long load;
7569 int detached = 0;
7570
7571 lockdep_assert_held(&env->src_rq->lock);
7572
7573 if (env->imbalance <= 0)
7574 return 0;
7575
7576 while (!list_empty(tasks)) {
7577 /*
7578 * We don't want to steal all, otherwise we may be treated likewise,
7579 * which could at worst lead to a livelock crash.
7580 */
7581 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7582 break;
7583
7584 p = list_last_entry(tasks, struct task_struct, se.group_node);
7585
7586 env->loop++;
7587 /* We've more or less seen every task there is, call it quits */
7588 if (env->loop > env->loop_max)
7589 break;
7590
7591 /* take a breather every nr_migrate tasks */
7592 if (env->loop > env->loop_break) {
7593 env->loop_break += sched_nr_migrate_break;
7594 env->flags |= LBF_NEED_BREAK;
7595 break;
7596 }
7597
7598 if (!can_migrate_task(p, env))
7599 goto next;
7600
7601 load = task_h_load(p);
7602
7603 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7604 goto next;
7605
7606 if ((load / 2) > env->imbalance)
7607 goto next;
7608
7609 detach_task(p, env);
7610 list_add(&p->se.group_node, &env->tasks);
7611
7612 detached++;
7613 env->imbalance -= load;
7614
7615 #ifdef CONFIG_PREEMPT
7616 /*
7617 * NEWIDLE balancing is a source of latency, so preemptible
7618 * kernels will stop after the first task is detached to minimize
7619 * the critical section.
7620 */
7621 if (env->idle == CPU_NEWLY_IDLE)
7622 break;
7623 #endif
7624
7625 /*
7626 * We only want to steal up to the prescribed amount of
7627 * weighted load.
7628 */
7629 if (env->imbalance <= 0)
7630 break;
7631
7632 continue;
7633 next:
7634 list_move(&p->se.group_node, tasks);
7635 }
7636
7637 /*
7638 * Right now, this is one of only two places we collect this stat
7639 * so we can safely collect detach_one_task() stats here rather
7640 * than inside detach_one_task().
7641 */
7642 schedstat_add(env->sd->lb_gained[env->idle], detached);
7643
7644 return detached;
7645 }
7646
7647 /*
7648 * attach_task() -- attach the task detached by detach_task() to its new rq.
7649 */
7650 static void attach_task(struct rq *rq, struct task_struct *p)
7651 {
7652 lockdep_assert_held(&rq->lock);
7653
7654 BUG_ON(task_rq(p) != rq);
7655 activate_task(rq, p, ENQUEUE_NOCLOCK);
7656 p->on_rq = TASK_ON_RQ_QUEUED;
7657 check_preempt_curr(rq, p, 0);
7658 }
7659
7660 /*
7661 * attach_one_task() -- attaches the task returned from detach_one_task() to
7662 * its new rq.
7663 */
7664 static void attach_one_task(struct rq *rq, struct task_struct *p)
7665 {
7666 struct rq_flags rf;
7667
7668 rq_lock(rq, &rf);
7669 update_rq_clock(rq);
7670 attach_task(rq, p);
7671 rq_unlock(rq, &rf);
7672 }
7673
7674 /*
7675 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7676 * new rq.
7677 */
7678 static void attach_tasks(struct lb_env *env)
7679 {
7680 struct list_head *tasks = &env->tasks;
7681 struct task_struct *p;
7682 struct rq_flags rf;
7683
7684 rq_lock(env->dst_rq, &rf);
7685 update_rq_clock(env->dst_rq);
7686
7687 while (!list_empty(tasks)) {
7688 p = list_first_entry(tasks, struct task_struct, se.group_node);
7689 list_del_init(&p->se.group_node);
7690
7691 attach_task(env->dst_rq, p);
7692 }
7693
7694 rq_unlock(env->dst_rq, &rf);
7695 }
7696
7697 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7698 {
7699 if (cfs_rq->avg.load_avg)
7700 return true;
7701
7702 if (cfs_rq->avg.util_avg)
7703 return true;
7704
7705 return false;
7706 }
7707
7708 static inline bool others_have_blocked(struct rq *rq)
7709 {
7710 if (READ_ONCE(rq->avg_rt.util_avg))
7711 return true;
7712
7713 if (READ_ONCE(rq->avg_dl.util_avg))
7714 return true;
7715
7716 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7717 if (READ_ONCE(rq->avg_irq.util_avg))
7718 return true;
7719 #endif
7720
7721 return false;
7722 }
7723
7724 #ifdef CONFIG_FAIR_GROUP_SCHED
7725
7726 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7727 {
7728 if (cfs_rq->load.weight)
7729 return false;
7730
7731 if (cfs_rq->avg.load_sum)
7732 return false;
7733
7734 if (cfs_rq->avg.util_sum)
7735 return false;
7736
7737 if (cfs_rq->avg.runnable_load_sum)
7738 return false;
7739
7740 return true;
7741 }
7742
7743 static void update_blocked_averages(int cpu)
7744 {
7745 struct rq *rq = cpu_rq(cpu);
7746 struct cfs_rq *cfs_rq, *pos;
7747 const struct sched_class *curr_class;
7748 struct rq_flags rf;
7749 bool done = true;
7750
7751 rq_lock_irqsave(rq, &rf);
7752 update_rq_clock(rq);
7753
7754 /*
7755 * Iterates the task_group tree in a bottom up fashion, see
7756 * list_add_leaf_cfs_rq() for details.
7757 */
7758 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7759 struct sched_entity *se;
7760
7761 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
7762 update_tg_load_avg(cfs_rq, 0);
7763
7764 /* Propagate pending load changes to the parent, if any: */
7765 se = cfs_rq->tg->se[cpu];
7766 if (se && !skip_blocked_update(se))
7767 update_load_avg(cfs_rq_of(se), se, 0);
7768
7769 /*
7770 * There can be a lot of idle CPU cgroups. Don't let fully
7771 * decayed cfs_rqs linger on the list.
7772 */
7773 if (cfs_rq_is_decayed(cfs_rq))
7774 list_del_leaf_cfs_rq(cfs_rq);
7775
7776 /* Don't need periodic decay once load/util_avg are null */
7777 if (cfs_rq_has_blocked(cfs_rq))
7778 done = false;
7779 }
7780
7781 curr_class = rq->curr->sched_class;
7782 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7783 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7784 update_irq_load_avg(rq, 0);
7785 /* Don't need periodic decay once load/util_avg are null */
7786 if (others_have_blocked(rq))
7787 done = false;
7788
7789 #ifdef CONFIG_NO_HZ_COMMON
7790 rq->last_blocked_load_update_tick = jiffies;
7791 if (done)
7792 rq->has_blocked_load = 0;
7793 #endif
7794 rq_unlock_irqrestore(rq, &rf);
7795 }
7796
7797 /*
7798 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7799 * This needs to be done in a top-down fashion because the load of a child
7800 * group is a fraction of its parents load.
7801 */
7802 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7803 {
7804 struct rq *rq = rq_of(cfs_rq);
7805 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7806 unsigned long now = jiffies;
7807 unsigned long load;
7808
7809 if (cfs_rq->last_h_load_update == now)
7810 return;
7811
7812 WRITE_ONCE(cfs_rq->h_load_next, NULL);
7813 for_each_sched_entity(se) {
7814 cfs_rq = cfs_rq_of(se);
7815 WRITE_ONCE(cfs_rq->h_load_next, se);
7816 if (cfs_rq->last_h_load_update == now)
7817 break;
7818 }
7819
7820 if (!se) {
7821 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7822 cfs_rq->last_h_load_update = now;
7823 }
7824
7825 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7826 load = cfs_rq->h_load;
7827 load = div64_ul(load * se->avg.load_avg,
7828 cfs_rq_load_avg(cfs_rq) + 1);
7829 cfs_rq = group_cfs_rq(se);
7830 cfs_rq->h_load = load;
7831 cfs_rq->last_h_load_update = now;
7832 }
7833 }
7834
7835 static unsigned long task_h_load(struct task_struct *p)
7836 {
7837 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7838
7839 update_cfs_rq_h_load(cfs_rq);
7840 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7841 cfs_rq_load_avg(cfs_rq) + 1);
7842 }
7843 #else
7844 static inline void update_blocked_averages(int cpu)
7845 {
7846 struct rq *rq = cpu_rq(cpu);
7847 struct cfs_rq *cfs_rq = &rq->cfs;
7848 const struct sched_class *curr_class;
7849 struct rq_flags rf;
7850
7851 rq_lock_irqsave(rq, &rf);
7852 update_rq_clock(rq);
7853 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7854
7855 curr_class = rq->curr->sched_class;
7856 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7857 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7858 update_irq_load_avg(rq, 0);
7859 #ifdef CONFIG_NO_HZ_COMMON
7860 rq->last_blocked_load_update_tick = jiffies;
7861 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7862 rq->has_blocked_load = 0;
7863 #endif
7864 rq_unlock_irqrestore(rq, &rf);
7865 }
7866
7867 static unsigned long task_h_load(struct task_struct *p)
7868 {
7869 return p->se.avg.load_avg;
7870 }
7871 #endif
7872
7873 /********** Helpers for find_busiest_group ************************/
7874
7875 /*
7876 * sg_lb_stats - stats of a sched_group required for load_balancing
7877 */
7878 struct sg_lb_stats {
7879 unsigned long avg_load; /*Avg load across the CPUs of the group */
7880 unsigned long group_load; /* Total load over the CPUs of the group */
7881 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7882 unsigned long load_per_task;
7883 unsigned long group_capacity;
7884 unsigned long group_util; /* Total utilization of the group */
7885 unsigned int sum_nr_running; /* Nr tasks running in the group */
7886 unsigned int idle_cpus;
7887 unsigned int group_weight;
7888 enum group_type group_type;
7889 int group_no_capacity;
7890 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7891 #ifdef CONFIG_NUMA_BALANCING
7892 unsigned int nr_numa_running;
7893 unsigned int nr_preferred_running;
7894 #endif
7895 };
7896
7897 /*
7898 * sd_lb_stats - Structure to store the statistics of a sched_domain
7899 * during load balancing.
7900 */
7901 struct sd_lb_stats {
7902 struct sched_group *busiest; /* Busiest group in this sd */
7903 struct sched_group *local; /* Local group in this sd */
7904 unsigned long total_running;
7905 unsigned long total_load; /* Total load of all groups in sd */
7906 unsigned long total_capacity; /* Total capacity of all groups in sd */
7907 unsigned long avg_load; /* Average load across all groups in sd */
7908
7909 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7910 struct sg_lb_stats local_stat; /* Statistics of the local group */
7911 };
7912
7913 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7914 {
7915 /*
7916 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7917 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7918 * We must however clear busiest_stat::avg_load because
7919 * update_sd_pick_busiest() reads this before assignment.
7920 */
7921 *sds = (struct sd_lb_stats){
7922 .busiest = NULL,
7923 .local = NULL,
7924 .total_running = 0UL,
7925 .total_load = 0UL,
7926 .total_capacity = 0UL,
7927 .busiest_stat = {
7928 .avg_load = 0UL,
7929 .sum_nr_running = 0,
7930 .group_type = group_other,
7931 },
7932 };
7933 }
7934
7935 /**
7936 * get_sd_load_idx - Obtain the load index for a given sched domain.
7937 * @sd: The sched_domain whose load_idx is to be obtained.
7938 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7939 *
7940 * Return: The load index.
7941 */
7942 static inline int get_sd_load_idx(struct sched_domain *sd,
7943 enum cpu_idle_type idle)
7944 {
7945 int load_idx;
7946
7947 switch (idle) {
7948 case CPU_NOT_IDLE:
7949 load_idx = sd->busy_idx;
7950 break;
7951
7952 case CPU_NEWLY_IDLE:
7953 load_idx = sd->newidle_idx;
7954 break;
7955 default:
7956 load_idx = sd->idle_idx;
7957 break;
7958 }
7959
7960 return load_idx;
7961 }
7962
7963 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7964 {
7965 struct rq *rq = cpu_rq(cpu);
7966 unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7967 unsigned long used, free;
7968 unsigned long irq;
7969
7970 irq = cpu_util_irq(rq);
7971
7972 if (unlikely(irq >= max))
7973 return 1;
7974
7975 used = READ_ONCE(rq->avg_rt.util_avg);
7976 used += READ_ONCE(rq->avg_dl.util_avg);
7977
7978 if (unlikely(used >= max))
7979 return 1;
7980
7981 free = max - used;
7982
7983 return scale_irq_capacity(free, irq, max);
7984 }
7985
7986 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7987 {
7988 unsigned long capacity = scale_rt_capacity(sd, cpu);
7989 struct sched_group *sdg = sd->groups;
7990
7991 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7992
7993 if (!capacity)
7994 capacity = 1;
7995
7996 cpu_rq(cpu)->cpu_capacity = capacity;
7997 sdg->sgc->capacity = capacity;
7998 sdg->sgc->min_capacity = capacity;
7999 sdg->sgc->max_capacity = capacity;
8000 }
8001
8002 void update_group_capacity(struct sched_domain *sd, int cpu)
8003 {
8004 struct sched_domain *child = sd->child;
8005 struct sched_group *group, *sdg = sd->groups;
8006 unsigned long capacity, min_capacity, max_capacity;
8007 unsigned long interval;
8008
8009 interval = msecs_to_jiffies(sd->balance_interval);
8010 interval = clamp(interval, 1UL, max_load_balance_interval);
8011 sdg->sgc->next_update = jiffies + interval;
8012
8013 if (!child) {
8014 update_cpu_capacity(sd, cpu);
8015 return;
8016 }
8017
8018 capacity = 0;
8019 min_capacity = ULONG_MAX;
8020 max_capacity = 0;
8021
8022 if (child->flags & SD_OVERLAP) {
8023 /*
8024 * SD_OVERLAP domains cannot assume that child groups
8025 * span the current group.
8026 */
8027
8028 for_each_cpu(cpu, sched_group_span(sdg)) {
8029 struct sched_group_capacity *sgc;
8030 struct rq *rq = cpu_rq(cpu);
8031
8032 /*
8033 * build_sched_domains() -> init_sched_groups_capacity()
8034 * gets here before we've attached the domains to the
8035 * runqueues.
8036 *
8037 * Use capacity_of(), which is set irrespective of domains
8038 * in update_cpu_capacity().
8039 *
8040 * This avoids capacity from being 0 and
8041 * causing divide-by-zero issues on boot.
8042 */
8043 if (unlikely(!rq->sd)) {
8044 capacity += capacity_of(cpu);
8045 } else {
8046 sgc = rq->sd->groups->sgc;
8047 capacity += sgc->capacity;
8048 }
8049
8050 min_capacity = min(capacity, min_capacity);
8051 max_capacity = max(capacity, max_capacity);
8052 }
8053 } else {
8054 /*
8055 * !SD_OVERLAP domains can assume that child groups
8056 * span the current group.
8057 */
8058
8059 group = child->groups;
8060 do {
8061 struct sched_group_capacity *sgc = group->sgc;
8062
8063 capacity += sgc->capacity;
8064 min_capacity = min(sgc->min_capacity, min_capacity);
8065 max_capacity = max(sgc->max_capacity, max_capacity);
8066 group = group->next;
8067 } while (group != child->groups);
8068 }
8069
8070 sdg->sgc->capacity = capacity;
8071 sdg->sgc->min_capacity = min_capacity;
8072 sdg->sgc->max_capacity = max_capacity;
8073 }
8074
8075 /*
8076 * Check whether the capacity of the rq has been noticeably reduced by side
8077 * activity. The imbalance_pct is used for the threshold.
8078 * Return true is the capacity is reduced
8079 */
8080 static inline int
8081 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8082 {
8083 return ((rq->cpu_capacity * sd->imbalance_pct) <
8084 (rq->cpu_capacity_orig * 100));
8085 }
8086
8087 /*
8088 * Check whether a rq has a misfit task and if it looks like we can actually
8089 * help that task: we can migrate the task to a CPU of higher capacity, or
8090 * the task's current CPU is heavily pressured.
8091 */
8092 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8093 {
8094 return rq->misfit_task_load &&
8095 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8096 check_cpu_capacity(rq, sd));
8097 }
8098
8099 /*
8100 * Group imbalance indicates (and tries to solve) the problem where balancing
8101 * groups is inadequate due to ->cpus_allowed constraints.
8102 *
8103 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8104 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8105 * Something like:
8106 *
8107 * { 0 1 2 3 } { 4 5 6 7 }
8108 * * * * *
8109 *
8110 * If we were to balance group-wise we'd place two tasks in the first group and
8111 * two tasks in the second group. Clearly this is undesired as it will overload
8112 * cpu 3 and leave one of the CPUs in the second group unused.
8113 *
8114 * The current solution to this issue is detecting the skew in the first group
8115 * by noticing the lower domain failed to reach balance and had difficulty
8116 * moving tasks due to affinity constraints.
8117 *
8118 * When this is so detected; this group becomes a candidate for busiest; see
8119 * update_sd_pick_busiest(). And calculate_imbalance() and
8120 * find_busiest_group() avoid some of the usual balance conditions to allow it
8121 * to create an effective group imbalance.
8122 *
8123 * This is a somewhat tricky proposition since the next run might not find the
8124 * group imbalance and decide the groups need to be balanced again. A most
8125 * subtle and fragile situation.
8126 */
8127
8128 static inline int sg_imbalanced(struct sched_group *group)
8129 {
8130 return group->sgc->imbalance;
8131 }
8132
8133 /*
8134 * group_has_capacity returns true if the group has spare capacity that could
8135 * be used by some tasks.
8136 * We consider that a group has spare capacity if the * number of task is
8137 * smaller than the number of CPUs or if the utilization is lower than the
8138 * available capacity for CFS tasks.
8139 * For the latter, we use a threshold to stabilize the state, to take into
8140 * account the variance of the tasks' load and to return true if the available
8141 * capacity in meaningful for the load balancer.
8142 * As an example, an available capacity of 1% can appear but it doesn't make
8143 * any benefit for the load balance.
8144 */
8145 static inline bool
8146 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8147 {
8148 if (sgs->sum_nr_running < sgs->group_weight)
8149 return true;
8150
8151 if ((sgs->group_capacity * 100) >
8152 (sgs->group_util * env->sd->imbalance_pct))
8153 return true;
8154
8155 return false;
8156 }
8157
8158 /*
8159 * group_is_overloaded returns true if the group has more tasks than it can
8160 * handle.
8161 * group_is_overloaded is not equals to !group_has_capacity because a group
8162 * with the exact right number of tasks, has no more spare capacity but is not
8163 * overloaded so both group_has_capacity and group_is_overloaded return
8164 * false.
8165 */
8166 static inline bool
8167 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8168 {
8169 if (sgs->sum_nr_running <= sgs->group_weight)
8170 return false;
8171
8172 if ((sgs->group_capacity * 100) <
8173 (sgs->group_util * env->sd->imbalance_pct))
8174 return true;
8175
8176 return false;
8177 }
8178
8179 /*
8180 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8181 * per-CPU capacity than sched_group ref.
8182 */
8183 static inline bool
8184 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8185 {
8186 return sg->sgc->min_capacity * capacity_margin <
8187 ref->sgc->min_capacity * 1024;
8188 }
8189
8190 /*
8191 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8192 * per-CPU capacity_orig than sched_group ref.
8193 */
8194 static inline bool
8195 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8196 {
8197 return sg->sgc->max_capacity * capacity_margin <
8198 ref->sgc->max_capacity * 1024;
8199 }
8200
8201 static inline enum
8202 group_type group_classify(struct sched_group *group,
8203 struct sg_lb_stats *sgs)
8204 {
8205 if (sgs->group_no_capacity)
8206 return group_overloaded;
8207
8208 if (sg_imbalanced(group))
8209 return group_imbalanced;
8210
8211 if (sgs->group_misfit_task_load)
8212 return group_misfit_task;
8213
8214 return group_other;
8215 }
8216
8217 static bool update_nohz_stats(struct rq *rq, bool force)
8218 {
8219 #ifdef CONFIG_NO_HZ_COMMON
8220 unsigned int cpu = rq->cpu;
8221
8222 if (!rq->has_blocked_load)
8223 return false;
8224
8225 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8226 return false;
8227
8228 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8229 return true;
8230
8231 update_blocked_averages(cpu);
8232
8233 return rq->has_blocked_load;
8234 #else
8235 return false;
8236 #endif
8237 }
8238
8239 /**
8240 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8241 * @env: The load balancing environment.
8242 * @group: sched_group whose statistics are to be updated.
8243 * @sgs: variable to hold the statistics for this group.
8244 * @sg_status: Holds flag indicating the status of the sched_group
8245 */
8246 static inline void update_sg_lb_stats(struct lb_env *env,
8247 struct sched_group *group,
8248 struct sg_lb_stats *sgs,
8249 int *sg_status)
8250 {
8251 int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8252 int load_idx = get_sd_load_idx(env->sd, env->idle);
8253 unsigned long load;
8254 int i, nr_running;
8255
8256 memset(sgs, 0, sizeof(*sgs));
8257
8258 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8259 struct rq *rq = cpu_rq(i);
8260
8261 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8262 env->flags |= LBF_NOHZ_AGAIN;
8263
8264 /* Bias balancing toward CPUs of our domain: */
8265 if (local_group)
8266 load = target_load(i, load_idx);
8267 else
8268 load = source_load(i, load_idx);
8269
8270 sgs->group_load += load;
8271 sgs->group_util += cpu_util(i);
8272 sgs->sum_nr_running += rq->cfs.h_nr_running;
8273
8274 nr_running = rq->nr_running;
8275 if (nr_running > 1)
8276 *sg_status |= SG_OVERLOAD;
8277
8278 if (cpu_overutilized(i))
8279 *sg_status |= SG_OVERUTILIZED;
8280
8281 #ifdef CONFIG_NUMA_BALANCING
8282 sgs->nr_numa_running += rq->nr_numa_running;
8283 sgs->nr_preferred_running += rq->nr_preferred_running;
8284 #endif
8285 sgs->sum_weighted_load += weighted_cpuload(rq);
8286 /*
8287 * No need to call idle_cpu() if nr_running is not 0
8288 */
8289 if (!nr_running && idle_cpu(i))
8290 sgs->idle_cpus++;
8291
8292 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8293 sgs->group_misfit_task_load < rq->misfit_task_load) {
8294 sgs->group_misfit_task_load = rq->misfit_task_load;
8295 *sg_status |= SG_OVERLOAD;
8296 }
8297 }
8298
8299 /* Adjust by relative CPU capacity of the group */
8300 sgs->group_capacity = group->sgc->capacity;
8301 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8302
8303 if (sgs->sum_nr_running)
8304 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
8305
8306 sgs->group_weight = group->group_weight;
8307
8308 sgs->group_no_capacity = group_is_overloaded(env, sgs);
8309 sgs->group_type = group_classify(group, sgs);
8310 }
8311
8312 /**
8313 * update_sd_pick_busiest - return 1 on busiest group
8314 * @env: The load balancing environment.
8315 * @sds: sched_domain statistics
8316 * @sg: sched_group candidate to be checked for being the busiest
8317 * @sgs: sched_group statistics
8318 *
8319 * Determine if @sg is a busier group than the previously selected
8320 * busiest group.
8321 *
8322 * Return: %true if @sg is a busier group than the previously selected
8323 * busiest group. %false otherwise.
8324 */
8325 static bool update_sd_pick_busiest(struct lb_env *env,
8326 struct sd_lb_stats *sds,
8327 struct sched_group *sg,
8328 struct sg_lb_stats *sgs)
8329 {
8330 struct sg_lb_stats *busiest = &sds->busiest_stat;
8331
8332 /*
8333 * Don't try to pull misfit tasks we can't help.
8334 * We can use max_capacity here as reduction in capacity on some
8335 * CPUs in the group should either be possible to resolve
8336 * internally or be covered by avg_load imbalance (eventually).
8337 */
8338 if (sgs->group_type == group_misfit_task &&
8339 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8340 !group_has_capacity(env, &sds->local_stat)))
8341 return false;
8342
8343 if (sgs->group_type > busiest->group_type)
8344 return true;
8345
8346 if (sgs->group_type < busiest->group_type)
8347 return false;
8348
8349 if (sgs->avg_load <= busiest->avg_load)
8350 return false;
8351
8352 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8353 goto asym_packing;
8354
8355 /*
8356 * Candidate sg has no more than one task per CPU and
8357 * has higher per-CPU capacity. Migrating tasks to less
8358 * capable CPUs may harm throughput. Maximize throughput,
8359 * power/energy consequences are not considered.
8360 */
8361 if (sgs->sum_nr_running <= sgs->group_weight &&
8362 group_smaller_min_cpu_capacity(sds->local, sg))
8363 return false;
8364
8365 /*
8366 * If we have more than one misfit sg go with the biggest misfit.
8367 */
8368 if (sgs->group_type == group_misfit_task &&
8369 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8370 return false;
8371
8372 asym_packing:
8373 /* This is the busiest node in its class. */
8374 if (!(env->sd->flags & SD_ASYM_PACKING))
8375 return true;
8376
8377 /* No ASYM_PACKING if target CPU is already busy */
8378 if (env->idle == CPU_NOT_IDLE)
8379 return true;
8380 /*
8381 * ASYM_PACKING needs to move all the work to the highest
8382 * prority CPUs in the group, therefore mark all groups
8383 * of lower priority than ourself as busy.
8384 */
8385 if (sgs->sum_nr_running &&
8386 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8387 if (!sds->busiest)
8388 return true;
8389
8390 /* Prefer to move from lowest priority CPU's work */
8391 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8392 sg->asym_prefer_cpu))
8393 return true;
8394 }
8395
8396 return false;
8397 }
8398
8399 #ifdef CONFIG_NUMA_BALANCING
8400 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8401 {
8402 if (sgs->sum_nr_running > sgs->nr_numa_running)
8403 return regular;
8404 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8405 return remote;
8406 return all;
8407 }
8408
8409 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8410 {
8411 if (rq->nr_running > rq->nr_numa_running)
8412 return regular;
8413 if (rq->nr_running > rq->nr_preferred_running)
8414 return remote;
8415 return all;
8416 }
8417 #else
8418 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8419 {
8420 return all;
8421 }
8422
8423 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8424 {
8425 return regular;
8426 }
8427 #endif /* CONFIG_NUMA_BALANCING */
8428
8429 /**
8430 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8431 * @env: The load balancing environment.
8432 * @sds: variable to hold the statistics for this sched_domain.
8433 */
8434 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8435 {
8436 struct sched_domain *child = env->sd->child;
8437 struct sched_group *sg = env->sd->groups;
8438 struct sg_lb_stats *local = &sds->local_stat;
8439 struct sg_lb_stats tmp_sgs;
8440 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8441 int sg_status = 0;
8442
8443 #ifdef CONFIG_NO_HZ_COMMON
8444 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8445 env->flags |= LBF_NOHZ_STATS;
8446 #endif
8447
8448 do {
8449 struct sg_lb_stats *sgs = &tmp_sgs;
8450 int local_group;
8451
8452 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8453 if (local_group) {
8454 sds->local = sg;
8455 sgs = local;
8456
8457 if (env->idle != CPU_NEWLY_IDLE ||
8458 time_after_eq(jiffies, sg->sgc->next_update))
8459 update_group_capacity(env->sd, env->dst_cpu);
8460 }
8461
8462 update_sg_lb_stats(env, sg, sgs, &sg_status);
8463
8464 if (local_group)
8465 goto next_group;
8466
8467 /*
8468 * In case the child domain prefers tasks go to siblings
8469 * first, lower the sg capacity so that we'll try
8470 * and move all the excess tasks away. We lower the capacity
8471 * of a group only if the local group has the capacity to fit
8472 * these excess tasks. The extra check prevents the case where
8473 * you always pull from the heaviest group when it is already
8474 * under-utilized (possible with a large weight task outweighs
8475 * the tasks on the system).
8476 */
8477 if (prefer_sibling && sds->local &&
8478 group_has_capacity(env, local) &&
8479 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8480 sgs->group_no_capacity = 1;
8481 sgs->group_type = group_classify(sg, sgs);
8482 }
8483
8484 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8485 sds->busiest = sg;
8486 sds->busiest_stat = *sgs;
8487 }
8488
8489 next_group:
8490 /* Now, start updating sd_lb_stats */
8491 sds->total_running += sgs->sum_nr_running;
8492 sds->total_load += sgs->group_load;
8493 sds->total_capacity += sgs->group_capacity;
8494
8495 sg = sg->next;
8496 } while (sg != env->sd->groups);
8497
8498 #ifdef CONFIG_NO_HZ_COMMON
8499 if ((env->flags & LBF_NOHZ_AGAIN) &&
8500 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8501
8502 WRITE_ONCE(nohz.next_blocked,
8503 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8504 }
8505 #endif
8506
8507 if (env->sd->flags & SD_NUMA)
8508 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8509
8510 if (!env->sd->parent) {
8511 struct root_domain *rd = env->dst_rq->rd;
8512
8513 /* update overload indicator if we are at root domain */
8514 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8515
8516 /* Update over-utilization (tipping point, U >= 0) indicator */
8517 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8518 } else if (sg_status & SG_OVERUTILIZED) {
8519 WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED);
8520 }
8521 }
8522
8523 /**
8524 * check_asym_packing - Check to see if the group is packed into the
8525 * sched domain.
8526 *
8527 * This is primarily intended to used at the sibling level. Some
8528 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8529 * case of POWER7, it can move to lower SMT modes only when higher
8530 * threads are idle. When in lower SMT modes, the threads will
8531 * perform better since they share less core resources. Hence when we
8532 * have idle threads, we want them to be the higher ones.
8533 *
8534 * This packing function is run on idle threads. It checks to see if
8535 * the busiest CPU in this domain (core in the P7 case) has a higher
8536 * CPU number than the packing function is being run on. Here we are
8537 * assuming lower CPU number will be equivalent to lower a SMT thread
8538 * number.
8539 *
8540 * Return: 1 when packing is required and a task should be moved to
8541 * this CPU. The amount of the imbalance is returned in env->imbalance.
8542 *
8543 * @env: The load balancing environment.
8544 * @sds: Statistics of the sched_domain which is to be packed
8545 */
8546 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8547 {
8548 int busiest_cpu;
8549
8550 if (!(env->sd->flags & SD_ASYM_PACKING))
8551 return 0;
8552
8553 if (env->idle == CPU_NOT_IDLE)
8554 return 0;
8555
8556 if (!sds->busiest)
8557 return 0;
8558
8559 busiest_cpu = sds->busiest->asym_prefer_cpu;
8560 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8561 return 0;
8562
8563 env->imbalance = sds->busiest_stat.group_load;
8564
8565 return 1;
8566 }
8567
8568 /**
8569 * fix_small_imbalance - Calculate the minor imbalance that exists
8570 * amongst the groups of a sched_domain, during
8571 * load balancing.
8572 * @env: The load balancing environment.
8573 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8574 */
8575 static inline
8576 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8577 {
8578 unsigned long tmp, capa_now = 0, capa_move = 0;
8579 unsigned int imbn = 2;
8580 unsigned long scaled_busy_load_per_task;
8581 struct sg_lb_stats *local, *busiest;
8582
8583 local = &sds->local_stat;
8584 busiest = &sds->busiest_stat;
8585
8586 if (!local->sum_nr_running)
8587 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8588 else if (busiest->load_per_task > local->load_per_task)
8589 imbn = 1;
8590
8591 scaled_busy_load_per_task =
8592 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8593 busiest->group_capacity;
8594
8595 if (busiest->avg_load + scaled_busy_load_per_task >=
8596 local->avg_load + (scaled_busy_load_per_task * imbn)) {
8597 env->imbalance = busiest->load_per_task;
8598 return;
8599 }
8600
8601 /*
8602 * OK, we don't have enough imbalance to justify moving tasks,
8603 * however we may be able to increase total CPU capacity used by
8604 * moving them.
8605 */
8606
8607 capa_now += busiest->group_capacity *
8608 min(busiest->load_per_task, busiest->avg_load);
8609 capa_now += local->group_capacity *
8610 min(local->load_per_task, local->avg_load);
8611 capa_now /= SCHED_CAPACITY_SCALE;
8612
8613 /* Amount of load we'd subtract */
8614 if (busiest->avg_load > scaled_busy_load_per_task) {
8615 capa_move += busiest->group_capacity *
8616 min(busiest->load_per_task,
8617 busiest->avg_load - scaled_busy_load_per_task);
8618 }
8619
8620 /* Amount of load we'd add */
8621 if (busiest->avg_load * busiest->group_capacity <
8622 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8623 tmp = (busiest->avg_load * busiest->group_capacity) /
8624 local->group_capacity;
8625 } else {
8626 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8627 local->group_capacity;
8628 }
8629 capa_move += local->group_capacity *
8630 min(local->load_per_task, local->avg_load + tmp);
8631 capa_move /= SCHED_CAPACITY_SCALE;
8632
8633 /* Move if we gain throughput */
8634 if (capa_move > capa_now)
8635 env->imbalance = busiest->load_per_task;
8636 }
8637
8638 /**
8639 * calculate_imbalance - Calculate the amount of imbalance present within the
8640 * groups of a given sched_domain during load balance.
8641 * @env: load balance environment
8642 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8643 */
8644 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8645 {
8646 unsigned long max_pull, load_above_capacity = ~0UL;
8647 struct sg_lb_stats *local, *busiest;
8648
8649 local = &sds->local_stat;
8650 busiest = &sds->busiest_stat;
8651
8652 if (busiest->group_type == group_imbalanced) {
8653 /*
8654 * In the group_imb case we cannot rely on group-wide averages
8655 * to ensure CPU-load equilibrium, look at wider averages. XXX
8656 */
8657 busiest->load_per_task =
8658 min(busiest->load_per_task, sds->avg_load);
8659 }
8660
8661 /*
8662 * Avg load of busiest sg can be less and avg load of local sg can
8663 * be greater than avg load across all sgs of sd because avg load
8664 * factors in sg capacity and sgs with smaller group_type are
8665 * skipped when updating the busiest sg:
8666 */
8667 if (busiest->group_type != group_misfit_task &&
8668 (busiest->avg_load <= sds->avg_load ||
8669 local->avg_load >= sds->avg_load)) {
8670 env->imbalance = 0;
8671 return fix_small_imbalance(env, sds);
8672 }
8673
8674 /*
8675 * If there aren't any idle CPUs, avoid creating some.
8676 */
8677 if (busiest->group_type == group_overloaded &&
8678 local->group_type == group_overloaded) {
8679 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8680 if (load_above_capacity > busiest->group_capacity) {
8681 load_above_capacity -= busiest->group_capacity;
8682 load_above_capacity *= scale_load_down(NICE_0_LOAD);
8683 load_above_capacity /= busiest->group_capacity;
8684 } else
8685 load_above_capacity = ~0UL;
8686 }
8687
8688 /*
8689 * We're trying to get all the CPUs to the average_load, so we don't
8690 * want to push ourselves above the average load, nor do we wish to
8691 * reduce the max loaded CPU below the average load. At the same time,
8692 * we also don't want to reduce the group load below the group
8693 * capacity. Thus we look for the minimum possible imbalance.
8694 */
8695 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8696
8697 /* How much load to actually move to equalise the imbalance */
8698 env->imbalance = min(
8699 max_pull * busiest->group_capacity,
8700 (sds->avg_load - local->avg_load) * local->group_capacity
8701 ) / SCHED_CAPACITY_SCALE;
8702
8703 /* Boost imbalance to allow misfit task to be balanced. */
8704 if (busiest->group_type == group_misfit_task) {
8705 env->imbalance = max_t(long, env->imbalance,
8706 busiest->group_misfit_task_load);
8707 }
8708
8709 /*
8710 * if *imbalance is less than the average load per runnable task
8711 * there is no guarantee that any tasks will be moved so we'll have
8712 * a think about bumping its value to force at least one task to be
8713 * moved
8714 */
8715 if (env->imbalance < busiest->load_per_task)
8716 return fix_small_imbalance(env, sds);
8717 }
8718
8719 /******* find_busiest_group() helpers end here *********************/
8720
8721 /**
8722 * find_busiest_group - Returns the busiest group within the sched_domain
8723 * if there is an imbalance.
8724 *
8725 * Also calculates the amount of weighted load which should be moved
8726 * to restore balance.
8727 *
8728 * @env: The load balancing environment.
8729 *
8730 * Return: - The busiest group if imbalance exists.
8731 */
8732 static struct sched_group *find_busiest_group(struct lb_env *env)
8733 {
8734 struct sg_lb_stats *local, *busiest;
8735 struct sd_lb_stats sds;
8736
8737 init_sd_lb_stats(&sds);
8738
8739 /*
8740 * Compute the various statistics relavent for load balancing at
8741 * this level.
8742 */
8743 update_sd_lb_stats(env, &sds);
8744
8745 if (sched_energy_enabled()) {
8746 struct root_domain *rd = env->dst_rq->rd;
8747
8748 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8749 goto out_balanced;
8750 }
8751
8752 local = &sds.local_stat;
8753 busiest = &sds.busiest_stat;
8754
8755 /* ASYM feature bypasses nice load balance check */
8756 if (check_asym_packing(env, &sds))
8757 return sds.busiest;
8758
8759 /* There is no busy sibling group to pull tasks from */
8760 if (!sds.busiest || busiest->sum_nr_running == 0)
8761 goto out_balanced;
8762
8763 /* XXX broken for overlapping NUMA groups */
8764 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8765 / sds.total_capacity;
8766
8767 /*
8768 * If the busiest group is imbalanced the below checks don't
8769 * work because they assume all things are equal, which typically
8770 * isn't true due to cpus_allowed constraints and the like.
8771 */
8772 if (busiest->group_type == group_imbalanced)
8773 goto force_balance;
8774
8775 /*
8776 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8777 * capacities from resulting in underutilization due to avg_load.
8778 */
8779 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8780 busiest->group_no_capacity)
8781 goto force_balance;
8782
8783 /* Misfit tasks should be dealt with regardless of the avg load */
8784 if (busiest->group_type == group_misfit_task)
8785 goto force_balance;
8786
8787 /*
8788 * If the local group is busier than the selected busiest group
8789 * don't try and pull any tasks.
8790 */
8791 if (local->avg_load >= busiest->avg_load)
8792 goto out_balanced;
8793
8794 /*
8795 * Don't pull any tasks if this group is already above the domain
8796 * average load.
8797 */
8798 if (local->avg_load >= sds.avg_load)
8799 goto out_balanced;
8800
8801 if (env->idle == CPU_IDLE) {
8802 /*
8803 * This CPU is idle. If the busiest group is not overloaded
8804 * and there is no imbalance between this and busiest group
8805 * wrt idle CPUs, it is balanced. The imbalance becomes
8806 * significant if the diff is greater than 1 otherwise we
8807 * might end up to just move the imbalance on another group
8808 */
8809 if ((busiest->group_type != group_overloaded) &&
8810 (local->idle_cpus <= (busiest->idle_cpus + 1)))
8811 goto out_balanced;
8812 } else {
8813 /*
8814 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8815 * imbalance_pct to be conservative.
8816 */
8817 if (100 * busiest->avg_load <=
8818 env->sd->imbalance_pct * local->avg_load)
8819 goto out_balanced;
8820 }
8821
8822 force_balance:
8823 /* Looks like there is an imbalance. Compute it */
8824 env->src_grp_type = busiest->group_type;
8825 calculate_imbalance(env, &sds);
8826 return env->imbalance ? sds.busiest : NULL;
8827
8828 out_balanced:
8829 env->imbalance = 0;
8830 return NULL;
8831 }
8832
8833 /*
8834 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8835 */
8836 static struct rq *find_busiest_queue(struct lb_env *env,
8837 struct sched_group *group)
8838 {
8839 struct rq *busiest = NULL, *rq;
8840 unsigned long busiest_load = 0, busiest_capacity = 1;
8841 int i;
8842
8843 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8844 unsigned long capacity, wl;
8845 enum fbq_type rt;
8846
8847 rq = cpu_rq(i);
8848 rt = fbq_classify_rq(rq);
8849
8850 /*
8851 * We classify groups/runqueues into three groups:
8852 * - regular: there are !numa tasks
8853 * - remote: there are numa tasks that run on the 'wrong' node
8854 * - all: there is no distinction
8855 *
8856 * In order to avoid migrating ideally placed numa tasks,
8857 * ignore those when there's better options.
8858 *
8859 * If we ignore the actual busiest queue to migrate another
8860 * task, the next balance pass can still reduce the busiest
8861 * queue by moving tasks around inside the node.
8862 *
8863 * If we cannot move enough load due to this classification
8864 * the next pass will adjust the group classification and
8865 * allow migration of more tasks.
8866 *
8867 * Both cases only affect the total convergence complexity.
8868 */
8869 if (rt > env->fbq_type)
8870 continue;
8871
8872 /*
8873 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8874 * seek the "biggest" misfit task.
8875 */
8876 if (env->src_grp_type == group_misfit_task) {
8877 if (rq->misfit_task_load > busiest_load) {
8878 busiest_load = rq->misfit_task_load;
8879 busiest = rq;
8880 }
8881
8882 continue;
8883 }
8884
8885 capacity = capacity_of(i);
8886
8887 /*
8888 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8889 * eventually lead to active_balancing high->low capacity.
8890 * Higher per-CPU capacity is considered better than balancing
8891 * average load.
8892 */
8893 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8894 capacity_of(env->dst_cpu) < capacity &&
8895 rq->nr_running == 1)
8896 continue;
8897
8898 wl = weighted_cpuload(rq);
8899
8900 /*
8901 * When comparing with imbalance, use weighted_cpuload()
8902 * which is not scaled with the CPU capacity.
8903 */
8904
8905 if (rq->nr_running == 1 && wl > env->imbalance &&
8906 !check_cpu_capacity(rq, env->sd))
8907 continue;
8908
8909 /*
8910 * For the load comparisons with the other CPU's, consider
8911 * the weighted_cpuload() scaled with the CPU capacity, so
8912 * that the load can be moved away from the CPU that is
8913 * potentially running at a lower capacity.
8914 *
8915 * Thus we're looking for max(wl_i / capacity_i), crosswise
8916 * multiplication to rid ourselves of the division works out
8917 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8918 * our previous maximum.
8919 */
8920 if (wl * busiest_capacity > busiest_load * capacity) {
8921 busiest_load = wl;
8922 busiest_capacity = capacity;
8923 busiest = rq;
8924 }
8925 }
8926
8927 return busiest;
8928 }
8929
8930 /*
8931 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8932 * so long as it is large enough.
8933 */
8934 #define MAX_PINNED_INTERVAL 512
8935
8936 static inline bool
8937 asym_active_balance(struct lb_env *env)
8938 {
8939 /*
8940 * ASYM_PACKING needs to force migrate tasks from busy but
8941 * lower priority CPUs in order to pack all tasks in the
8942 * highest priority CPUs.
8943 */
8944 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8945 sched_asym_prefer(env->dst_cpu, env->src_cpu);
8946 }
8947
8948 static inline bool
8949 voluntary_active_balance(struct lb_env *env)
8950 {
8951 struct sched_domain *sd = env->sd;
8952
8953 if (asym_active_balance(env))
8954 return 1;
8955
8956 /*
8957 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8958 * It's worth migrating the task if the src_cpu's capacity is reduced
8959 * because of other sched_class or IRQs if more capacity stays
8960 * available on dst_cpu.
8961 */
8962 if ((env->idle != CPU_NOT_IDLE) &&
8963 (env->src_rq->cfs.h_nr_running == 1)) {
8964 if ((check_cpu_capacity(env->src_rq, sd)) &&
8965 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8966 return 1;
8967 }
8968
8969 if (env->src_grp_type == group_misfit_task)
8970 return 1;
8971
8972 return 0;
8973 }
8974
8975 static int need_active_balance(struct lb_env *env)
8976 {
8977 struct sched_domain *sd = env->sd;
8978
8979 if (voluntary_active_balance(env))
8980 return 1;
8981
8982 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8983 }
8984
8985 static int active_load_balance_cpu_stop(void *data);
8986
8987 static int should_we_balance(struct lb_env *env)
8988 {
8989 struct sched_group *sg = env->sd->groups;
8990 int cpu, balance_cpu = -1;
8991
8992 /*
8993 * Ensure the balancing environment is consistent; can happen
8994 * when the softirq triggers 'during' hotplug.
8995 */
8996 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8997 return 0;
8998
8999 /*
9000 * In the newly idle case, we will allow all the CPUs
9001 * to do the newly idle load balance.
9002 */
9003 if (env->idle == CPU_NEWLY_IDLE)
9004 return 1;
9005
9006 /* Try to find first idle CPU */
9007 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9008 if (!idle_cpu(cpu))
9009 continue;
9010
9011 balance_cpu = cpu;
9012 break;
9013 }
9014
9015 if (balance_cpu == -1)
9016 balance_cpu = group_balance_cpu(sg);
9017
9018 /*
9019 * First idle CPU or the first CPU(busiest) in this sched group
9020 * is eligible for doing load balancing at this and above domains.
9021 */
9022 return balance_cpu == env->dst_cpu;
9023 }
9024
9025 /*
9026 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9027 * tasks if there is an imbalance.
9028 */
9029 static int load_balance(int this_cpu, struct rq *this_rq,
9030 struct sched_domain *sd, enum cpu_idle_type idle,
9031 int *continue_balancing)
9032 {
9033 int ld_moved, cur_ld_moved, active_balance = 0;
9034 struct sched_domain *sd_parent = sd->parent;
9035 struct sched_group *group;
9036 struct rq *busiest;
9037 struct rq_flags rf;
9038 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9039
9040 struct lb_env env = {
9041 .sd = sd,
9042 .dst_cpu = this_cpu,
9043 .dst_rq = this_rq,
9044 .dst_grpmask = sched_group_span(sd->groups),
9045 .idle = idle,
9046 .loop_break = sched_nr_migrate_break,
9047 .cpus = cpus,
9048 .fbq_type = all,
9049 .tasks = LIST_HEAD_INIT(env.tasks),
9050 };
9051
9052 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9053
9054 schedstat_inc(sd->lb_count[idle]);
9055
9056 redo:
9057 if (!should_we_balance(&env)) {
9058 *continue_balancing = 0;
9059 goto out_balanced;
9060 }
9061
9062 group = find_busiest_group(&env);
9063 if (!group) {
9064 schedstat_inc(sd->lb_nobusyg[idle]);
9065 goto out_balanced;
9066 }
9067
9068 busiest = find_busiest_queue(&env, group);
9069 if (!busiest) {
9070 schedstat_inc(sd->lb_nobusyq[idle]);
9071 goto out_balanced;
9072 }
9073
9074 BUG_ON(busiest == env.dst_rq);
9075
9076 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9077
9078 env.src_cpu = busiest->cpu;
9079 env.src_rq = busiest;
9080
9081 ld_moved = 0;
9082 if (busiest->nr_running > 1) {
9083 /*
9084 * Attempt to move tasks. If find_busiest_group has found
9085 * an imbalance but busiest->nr_running <= 1, the group is
9086 * still unbalanced. ld_moved simply stays zero, so it is
9087 * correctly treated as an imbalance.
9088 */
9089 env.flags |= LBF_ALL_PINNED;
9090 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9091
9092 more_balance:
9093 rq_lock_irqsave(busiest, &rf);
9094 update_rq_clock(busiest);
9095
9096 /*
9097 * cur_ld_moved - load moved in current iteration
9098 * ld_moved - cumulative load moved across iterations
9099 */
9100 cur_ld_moved = detach_tasks(&env);
9101
9102 /*
9103 * We've detached some tasks from busiest_rq. Every
9104 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9105 * unlock busiest->lock, and we are able to be sure
9106 * that nobody can manipulate the tasks in parallel.
9107 * See task_rq_lock() family for the details.
9108 */
9109
9110 rq_unlock(busiest, &rf);
9111
9112 if (cur_ld_moved) {
9113 attach_tasks(&env);
9114 ld_moved += cur_ld_moved;
9115 }
9116
9117 local_irq_restore(rf.flags);
9118
9119 if (env.flags & LBF_NEED_BREAK) {
9120 env.flags &= ~LBF_NEED_BREAK;
9121 goto more_balance;
9122 }
9123
9124 /*
9125 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9126 * us and move them to an alternate dst_cpu in our sched_group
9127 * where they can run. The upper limit on how many times we
9128 * iterate on same src_cpu is dependent on number of CPUs in our
9129 * sched_group.
9130 *
9131 * This changes load balance semantics a bit on who can move
9132 * load to a given_cpu. In addition to the given_cpu itself
9133 * (or a ilb_cpu acting on its behalf where given_cpu is
9134 * nohz-idle), we now have balance_cpu in a position to move
9135 * load to given_cpu. In rare situations, this may cause
9136 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9137 * _independently_ and at _same_ time to move some load to
9138 * given_cpu) causing exceess load to be moved to given_cpu.
9139 * This however should not happen so much in practice and
9140 * moreover subsequent load balance cycles should correct the
9141 * excess load moved.
9142 */
9143 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9144
9145 /* Prevent to re-select dst_cpu via env's CPUs */
9146 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9147
9148 env.dst_rq = cpu_rq(env.new_dst_cpu);
9149 env.dst_cpu = env.new_dst_cpu;
9150 env.flags &= ~LBF_DST_PINNED;
9151 env.loop = 0;
9152 env.loop_break = sched_nr_migrate_break;
9153
9154 /*
9155 * Go back to "more_balance" rather than "redo" since we
9156 * need to continue with same src_cpu.
9157 */
9158 goto more_balance;
9159 }
9160
9161 /*
9162 * We failed to reach balance because of affinity.
9163 */
9164 if (sd_parent) {
9165 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9166
9167 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9168 *group_imbalance = 1;
9169 }
9170
9171 /* All tasks on this runqueue were pinned by CPU affinity */
9172 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9173 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9174 /*
9175 * Attempting to continue load balancing at the current
9176 * sched_domain level only makes sense if there are
9177 * active CPUs remaining as possible busiest CPUs to
9178 * pull load from which are not contained within the
9179 * destination group that is receiving any migrated
9180 * load.
9181 */
9182 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9183 env.loop = 0;
9184 env.loop_break = sched_nr_migrate_break;
9185 goto redo;
9186 }
9187 goto out_all_pinned;
9188 }
9189 }
9190
9191 if (!ld_moved) {
9192 schedstat_inc(sd->lb_failed[idle]);
9193 /*
9194 * Increment the failure counter only on periodic balance.
9195 * We do not want newidle balance, which can be very
9196 * frequent, pollute the failure counter causing
9197 * excessive cache_hot migrations and active balances.
9198 */
9199 if (idle != CPU_NEWLY_IDLE)
9200 sd->nr_balance_failed++;
9201
9202 if (need_active_balance(&env)) {
9203 unsigned long flags;
9204
9205 raw_spin_lock_irqsave(&busiest->lock, flags);
9206
9207 /*
9208 * Don't kick the active_load_balance_cpu_stop,
9209 * if the curr task on busiest CPU can't be
9210 * moved to this_cpu:
9211 */
9212 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
9213 raw_spin_unlock_irqrestore(&busiest->lock,
9214 flags);
9215 env.flags |= LBF_ALL_PINNED;
9216 goto out_one_pinned;
9217 }
9218
9219 /*
9220 * ->active_balance synchronizes accesses to
9221 * ->active_balance_work. Once set, it's cleared
9222 * only after active load balance is finished.
9223 */
9224 if (!busiest->active_balance) {
9225 busiest->active_balance = 1;
9226 busiest->push_cpu = this_cpu;
9227 active_balance = 1;
9228 }
9229 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9230
9231 if (active_balance) {
9232 stop_one_cpu_nowait(cpu_of(busiest),
9233 active_load_balance_cpu_stop, busiest,
9234 &busiest->active_balance_work);
9235 }
9236
9237 /* We've kicked active balancing, force task migration. */
9238 sd->nr_balance_failed = sd->cache_nice_tries+1;
9239 }
9240 } else
9241 sd->nr_balance_failed = 0;
9242
9243 if (likely(!active_balance) || voluntary_active_balance(&env)) {
9244 /* We were unbalanced, so reset the balancing interval */
9245 sd->balance_interval = sd->min_interval;
9246 } else {
9247 /*
9248 * If we've begun active balancing, start to back off. This
9249 * case may not be covered by the all_pinned logic if there
9250 * is only 1 task on the busy runqueue (because we don't call
9251 * detach_tasks).
9252 */
9253 if (sd->balance_interval < sd->max_interval)
9254 sd->balance_interval *= 2;
9255 }
9256
9257 goto out;
9258
9259 out_balanced:
9260 /*
9261 * We reach balance although we may have faced some affinity
9262 * constraints. Clear the imbalance flag if it was set.
9263 */
9264 if (sd_parent) {
9265 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9266
9267 if (*group_imbalance)
9268 *group_imbalance = 0;
9269 }
9270
9271 out_all_pinned:
9272 /*
9273 * We reach balance because all tasks are pinned at this level so
9274 * we can't migrate them. Let the imbalance flag set so parent level
9275 * can try to migrate them.
9276 */
9277 schedstat_inc(sd->lb_balanced[idle]);
9278
9279 sd->nr_balance_failed = 0;
9280
9281 out_one_pinned:
9282 ld_moved = 0;
9283
9284 /*
9285 * idle_balance() disregards balance intervals, so we could repeatedly
9286 * reach this code, which would lead to balance_interval skyrocketting
9287 * in a short amount of time. Skip the balance_interval increase logic
9288 * to avoid that.
9289 */
9290 if (env.idle == CPU_NEWLY_IDLE)
9291 goto out;
9292
9293 /* tune up the balancing interval */
9294 if ((env.flags & LBF_ALL_PINNED &&
9295 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9296 sd->balance_interval < sd->max_interval)
9297 sd->balance_interval *= 2;
9298 out:
9299 return ld_moved;
9300 }
9301
9302 static inline unsigned long
9303 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9304 {
9305 unsigned long interval = sd->balance_interval;
9306
9307 if (cpu_busy)
9308 interval *= sd->busy_factor;
9309
9310 /* scale ms to jiffies */
9311 interval = msecs_to_jiffies(interval);
9312 interval = clamp(interval, 1UL, max_load_balance_interval);
9313
9314 return interval;
9315 }
9316
9317 static inline void
9318 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9319 {
9320 unsigned long interval, next;
9321
9322 /* used by idle balance, so cpu_busy = 0 */
9323 interval = get_sd_balance_interval(sd, 0);
9324 next = sd->last_balance + interval;
9325
9326 if (time_after(*next_balance, next))
9327 *next_balance = next;
9328 }
9329
9330 /*
9331 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9332 * running tasks off the busiest CPU onto idle CPUs. It requires at
9333 * least 1 task to be running on each physical CPU where possible, and
9334 * avoids physical / logical imbalances.
9335 */
9336 static int active_load_balance_cpu_stop(void *data)
9337 {
9338 struct rq *busiest_rq = data;
9339 int busiest_cpu = cpu_of(busiest_rq);
9340 int target_cpu = busiest_rq->push_cpu;
9341 struct rq *target_rq = cpu_rq(target_cpu);
9342 struct sched_domain *sd;
9343 struct task_struct *p = NULL;
9344 struct rq_flags rf;
9345
9346 rq_lock_irq(busiest_rq, &rf);
9347 /*
9348 * Between queueing the stop-work and running it is a hole in which
9349 * CPUs can become inactive. We should not move tasks from or to
9350 * inactive CPUs.
9351 */
9352 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9353 goto out_unlock;
9354
9355 /* Make sure the requested CPU hasn't gone down in the meantime: */
9356 if (unlikely(busiest_cpu != smp_processor_id() ||
9357 !busiest_rq->active_balance))
9358 goto out_unlock;
9359
9360 /* Is there any task to move? */
9361 if (busiest_rq->nr_running <= 1)
9362 goto out_unlock;
9363
9364 /*
9365 * This condition is "impossible", if it occurs
9366 * we need to fix it. Originally reported by
9367 * Bjorn Helgaas on a 128-CPU setup.
9368 */
9369 BUG_ON(busiest_rq == target_rq);
9370
9371 /* Search for an sd spanning us and the target CPU. */
9372 rcu_read_lock();
9373 for_each_domain(target_cpu, sd) {
9374 if ((sd->flags & SD_LOAD_BALANCE) &&
9375 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9376 break;
9377 }
9378
9379 if (likely(sd)) {
9380 struct lb_env env = {
9381 .sd = sd,
9382 .dst_cpu = target_cpu,
9383 .dst_rq = target_rq,
9384 .src_cpu = busiest_rq->cpu,
9385 .src_rq = busiest_rq,
9386 .idle = CPU_IDLE,
9387 /*
9388 * can_migrate_task() doesn't need to compute new_dst_cpu
9389 * for active balancing. Since we have CPU_IDLE, but no
9390 * @dst_grpmask we need to make that test go away with lying
9391 * about DST_PINNED.
9392 */
9393 .flags = LBF_DST_PINNED,
9394 };
9395
9396 schedstat_inc(sd->alb_count);
9397 update_rq_clock(busiest_rq);
9398
9399 p = detach_one_task(&env);
9400 if (p) {
9401 schedstat_inc(sd->alb_pushed);
9402 /* Active balancing done, reset the failure counter. */
9403 sd->nr_balance_failed = 0;
9404 } else {
9405 schedstat_inc(sd->alb_failed);
9406 }
9407 }
9408 rcu_read_unlock();
9409 out_unlock:
9410 busiest_rq->active_balance = 0;
9411 rq_unlock(busiest_rq, &rf);
9412
9413 if (p)
9414 attach_one_task(target_rq, p);
9415
9416 local_irq_enable();
9417
9418 return 0;
9419 }
9420
9421 static DEFINE_SPINLOCK(balancing);
9422
9423 /*
9424 * Scale the max load_balance interval with the number of CPUs in the system.
9425 * This trades load-balance latency on larger machines for less cross talk.
9426 */
9427 void update_max_interval(void)
9428 {
9429 max_load_balance_interval = HZ*num_online_cpus()/10;
9430 }
9431
9432 /*
9433 * It checks each scheduling domain to see if it is due to be balanced,
9434 * and initiates a balancing operation if so.
9435 *
9436 * Balancing parameters are set up in init_sched_domains.
9437 */
9438 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9439 {
9440 int continue_balancing = 1;
9441 int cpu = rq->cpu;
9442 unsigned long interval;
9443 struct sched_domain *sd;
9444 /* Earliest time when we have to do rebalance again */
9445 unsigned long next_balance = jiffies + 60*HZ;
9446 int update_next_balance = 0;
9447 int need_serialize, need_decay = 0;
9448 u64 max_cost = 0;
9449
9450 rcu_read_lock();
9451 for_each_domain(cpu, sd) {
9452 /*
9453 * Decay the newidle max times here because this is a regular
9454 * visit to all the domains. Decay ~1% per second.
9455 */
9456 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9457 sd->max_newidle_lb_cost =
9458 (sd->max_newidle_lb_cost * 253) / 256;
9459 sd->next_decay_max_lb_cost = jiffies + HZ;
9460 need_decay = 1;
9461 }
9462 max_cost += sd->max_newidle_lb_cost;
9463
9464 if (!(sd->flags & SD_LOAD_BALANCE))
9465 continue;
9466
9467 /*
9468 * Stop the load balance at this level. There is another
9469 * CPU in our sched group which is doing load balancing more
9470 * actively.
9471 */
9472 if (!continue_balancing) {
9473 if (need_decay)
9474 continue;
9475 break;
9476 }
9477
9478 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9479
9480 need_serialize = sd->flags & SD_SERIALIZE;
9481 if (need_serialize) {
9482 if (!spin_trylock(&balancing))
9483 goto out;
9484 }
9485
9486 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9487 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9488 /*
9489 * The LBF_DST_PINNED logic could have changed
9490 * env->dst_cpu, so we can't know our idle
9491 * state even if we migrated tasks. Update it.
9492 */
9493 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9494 }
9495 sd->last_balance = jiffies;
9496 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9497 }
9498 if (need_serialize)
9499 spin_unlock(&balancing);
9500 out:
9501 if (time_after(next_balance, sd->last_balance + interval)) {
9502 next_balance = sd->last_balance + interval;
9503 update_next_balance = 1;
9504 }
9505 }
9506 if (need_decay) {
9507 /*
9508 * Ensure the rq-wide value also decays but keep it at a
9509 * reasonable floor to avoid funnies with rq->avg_idle.
9510 */
9511 rq->max_idle_balance_cost =
9512 max((u64)sysctl_sched_migration_cost, max_cost);
9513 }
9514 rcu_read_unlock();
9515
9516 /*
9517 * next_balance will be updated only when there is a need.
9518 * When the cpu is attached to null domain for ex, it will not be
9519 * updated.
9520 */
9521 if (likely(update_next_balance)) {
9522 rq->next_balance = next_balance;
9523
9524 #ifdef CONFIG_NO_HZ_COMMON
9525 /*
9526 * If this CPU has been elected to perform the nohz idle
9527 * balance. Other idle CPUs have already rebalanced with
9528 * nohz_idle_balance() and nohz.next_balance has been
9529 * updated accordingly. This CPU is now running the idle load
9530 * balance for itself and we need to update the
9531 * nohz.next_balance accordingly.
9532 */
9533 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9534 nohz.next_balance = rq->next_balance;
9535 #endif
9536 }
9537 }
9538
9539 static inline int on_null_domain(struct rq *rq)
9540 {
9541 return unlikely(!rcu_dereference_sched(rq->sd));
9542 }
9543
9544 #ifdef CONFIG_NO_HZ_COMMON
9545 /*
9546 * idle load balancing details
9547 * - When one of the busy CPUs notice that there may be an idle rebalancing
9548 * needed, they will kick the idle load balancer, which then does idle
9549 * load balancing for all the idle CPUs.
9550 */
9551
9552 static inline int find_new_ilb(void)
9553 {
9554 int ilb = cpumask_first(nohz.idle_cpus_mask);
9555
9556 if (ilb < nr_cpu_ids && idle_cpu(ilb))
9557 return ilb;
9558
9559 return nr_cpu_ids;
9560 }
9561
9562 /*
9563 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9564 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9565 * CPU (if there is one).
9566 */
9567 static void kick_ilb(unsigned int flags)
9568 {
9569 int ilb_cpu;
9570
9571 nohz.next_balance++;
9572
9573 ilb_cpu = find_new_ilb();
9574
9575 if (ilb_cpu >= nr_cpu_ids)
9576 return;
9577
9578 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9579 if (flags & NOHZ_KICK_MASK)
9580 return;
9581
9582 /*
9583 * Use smp_send_reschedule() instead of resched_cpu().
9584 * This way we generate a sched IPI on the target CPU which
9585 * is idle. And the softirq performing nohz idle load balance
9586 * will be run before returning from the IPI.
9587 */
9588 smp_send_reschedule(ilb_cpu);
9589 }
9590
9591 /*
9592 * Current decision point for kicking the idle load balancer in the presence
9593 * of idle CPUs in the system.
9594 */
9595 static void nohz_balancer_kick(struct rq *rq)
9596 {
9597 unsigned long now = jiffies;
9598 struct sched_domain_shared *sds;
9599 struct sched_domain *sd;
9600 int nr_busy, i, cpu = rq->cpu;
9601 unsigned int flags = 0;
9602
9603 if (unlikely(rq->idle_balance))
9604 return;
9605
9606 /*
9607 * We may be recently in ticked or tickless idle mode. At the first
9608 * busy tick after returning from idle, we will update the busy stats.
9609 */
9610 nohz_balance_exit_idle(rq);
9611
9612 /*
9613 * None are in tickless mode and hence no need for NOHZ idle load
9614 * balancing.
9615 */
9616 if (likely(!atomic_read(&nohz.nr_cpus)))
9617 return;
9618
9619 if (READ_ONCE(nohz.has_blocked) &&
9620 time_after(now, READ_ONCE(nohz.next_blocked)))
9621 flags = NOHZ_STATS_KICK;
9622
9623 if (time_before(now, nohz.next_balance))
9624 goto out;
9625
9626 if (rq->nr_running >= 2) {
9627 flags = NOHZ_KICK_MASK;
9628 goto out;
9629 }
9630
9631 rcu_read_lock();
9632
9633 sd = rcu_dereference(rq->sd);
9634 if (sd) {
9635 /*
9636 * If there's a CFS task and the current CPU has reduced
9637 * capacity; kick the ILB to see if there's a better CPU to run
9638 * on.
9639 */
9640 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9641 flags = NOHZ_KICK_MASK;
9642 goto unlock;
9643 }
9644 }
9645
9646 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9647 if (sd) {
9648 /*
9649 * When ASYM_PACKING; see if there's a more preferred CPU
9650 * currently idle; in which case, kick the ILB to move tasks
9651 * around.
9652 */
9653 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9654 if (sched_asym_prefer(i, cpu)) {
9655 flags = NOHZ_KICK_MASK;
9656 goto unlock;
9657 }
9658 }
9659 }
9660
9661 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9662 if (sd) {
9663 /*
9664 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9665 * to run the misfit task on.
9666 */
9667 if (check_misfit_status(rq, sd)) {
9668 flags = NOHZ_KICK_MASK;
9669 goto unlock;
9670 }
9671
9672 /*
9673 * For asymmetric systems, we do not want to nicely balance
9674 * cache use, instead we want to embrace asymmetry and only
9675 * ensure tasks have enough CPU capacity.
9676 *
9677 * Skip the LLC logic because it's not relevant in that case.
9678 */
9679 goto unlock;
9680 }
9681
9682 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9683 if (sds) {
9684 /*
9685 * If there is an imbalance between LLC domains (IOW we could
9686 * increase the overall cache use), we need some less-loaded LLC
9687 * domain to pull some load. Likewise, we may need to spread
9688 * load within the current LLC domain (e.g. packed SMT cores but
9689 * other CPUs are idle). We can't really know from here how busy
9690 * the others are - so just get a nohz balance going if it looks
9691 * like this LLC domain has tasks we could move.
9692 */
9693 nr_busy = atomic_read(&sds->nr_busy_cpus);
9694 if (nr_busy > 1) {
9695 flags = NOHZ_KICK_MASK;
9696 goto unlock;
9697 }
9698 }
9699 unlock:
9700 rcu_read_unlock();
9701 out:
9702 if (flags)
9703 kick_ilb(flags);
9704 }
9705
9706 static void set_cpu_sd_state_busy(int cpu)
9707 {
9708 struct sched_domain *sd;
9709
9710 rcu_read_lock();
9711 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9712
9713 if (!sd || !sd->nohz_idle)
9714 goto unlock;
9715 sd->nohz_idle = 0;
9716
9717 atomic_inc(&sd->shared->nr_busy_cpus);
9718 unlock:
9719 rcu_read_unlock();
9720 }
9721
9722 void nohz_balance_exit_idle(struct rq *rq)
9723 {
9724 SCHED_WARN_ON(rq != this_rq());
9725
9726 if (likely(!rq->nohz_tick_stopped))
9727 return;
9728
9729 rq->nohz_tick_stopped = 0;
9730 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9731 atomic_dec(&nohz.nr_cpus);
9732
9733 set_cpu_sd_state_busy(rq->cpu);
9734 }
9735
9736 static void set_cpu_sd_state_idle(int cpu)
9737 {
9738 struct sched_domain *sd;
9739
9740 rcu_read_lock();
9741 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9742
9743 if (!sd || sd->nohz_idle)
9744 goto unlock;
9745 sd->nohz_idle = 1;
9746
9747 atomic_dec(&sd->shared->nr_busy_cpus);
9748 unlock:
9749 rcu_read_unlock();
9750 }
9751
9752 /*
9753 * This routine will record that the CPU is going idle with tick stopped.
9754 * This info will be used in performing idle load balancing in the future.
9755 */
9756 void nohz_balance_enter_idle(int cpu)
9757 {
9758 struct rq *rq = cpu_rq(cpu);
9759
9760 SCHED_WARN_ON(cpu != smp_processor_id());
9761
9762 /* If this CPU is going down, then nothing needs to be done: */
9763 if (!cpu_active(cpu))
9764 return;
9765
9766 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9767 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9768 return;
9769
9770 /*
9771 * Can be set safely without rq->lock held
9772 * If a clear happens, it will have evaluated last additions because
9773 * rq->lock is held during the check and the clear
9774 */
9775 rq->has_blocked_load = 1;
9776
9777 /*
9778 * The tick is still stopped but load could have been added in the
9779 * meantime. We set the nohz.has_blocked flag to trig a check of the
9780 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9781 * of nohz.has_blocked can only happen after checking the new load
9782 */
9783 if (rq->nohz_tick_stopped)
9784 goto out;
9785
9786 /* If we're a completely isolated CPU, we don't play: */
9787 if (on_null_domain(rq))
9788 return;
9789
9790 rq->nohz_tick_stopped = 1;
9791
9792 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9793 atomic_inc(&nohz.nr_cpus);
9794
9795 /*
9796 * Ensures that if nohz_idle_balance() fails to observe our
9797 * @idle_cpus_mask store, it must observe the @has_blocked
9798 * store.
9799 */
9800 smp_mb__after_atomic();
9801
9802 set_cpu_sd_state_idle(cpu);
9803
9804 out:
9805 /*
9806 * Each time a cpu enter idle, we assume that it has blocked load and
9807 * enable the periodic update of the load of idle cpus
9808 */
9809 WRITE_ONCE(nohz.has_blocked, 1);
9810 }
9811
9812 /*
9813 * Internal function that runs load balance for all idle cpus. The load balance
9814 * can be a simple update of blocked load or a complete load balance with
9815 * tasks movement depending of flags.
9816 * The function returns false if the loop has stopped before running
9817 * through all idle CPUs.
9818 */
9819 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9820 enum cpu_idle_type idle)
9821 {
9822 /* Earliest time when we have to do rebalance again */
9823 unsigned long now = jiffies;
9824 unsigned long next_balance = now + 60*HZ;
9825 bool has_blocked_load = false;
9826 int update_next_balance = 0;
9827 int this_cpu = this_rq->cpu;
9828 int balance_cpu;
9829 int ret = false;
9830 struct rq *rq;
9831
9832 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9833
9834 /*
9835 * We assume there will be no idle load after this update and clear
9836 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9837 * set the has_blocked flag and trig another update of idle load.
9838 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9839 * setting the flag, we are sure to not clear the state and not
9840 * check the load of an idle cpu.
9841 */
9842 WRITE_ONCE(nohz.has_blocked, 0);
9843
9844 /*
9845 * Ensures that if we miss the CPU, we must see the has_blocked
9846 * store from nohz_balance_enter_idle().
9847 */
9848 smp_mb();
9849
9850 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9851 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9852 continue;
9853
9854 /*
9855 * If this CPU gets work to do, stop the load balancing
9856 * work being done for other CPUs. Next load
9857 * balancing owner will pick it up.
9858 */
9859 if (need_resched()) {
9860 has_blocked_load = true;
9861 goto abort;
9862 }
9863
9864 rq = cpu_rq(balance_cpu);
9865
9866 has_blocked_load |= update_nohz_stats(rq, true);
9867
9868 /*
9869 * If time for next balance is due,
9870 * do the balance.
9871 */
9872 if (time_after_eq(jiffies, rq->next_balance)) {
9873 struct rq_flags rf;
9874
9875 rq_lock_irqsave(rq, &rf);
9876 update_rq_clock(rq);
9877 cpu_load_update_idle(rq);
9878 rq_unlock_irqrestore(rq, &rf);
9879
9880 if (flags & NOHZ_BALANCE_KICK)
9881 rebalance_domains(rq, CPU_IDLE);
9882 }
9883
9884 if (time_after(next_balance, rq->next_balance)) {
9885 next_balance = rq->next_balance;
9886 update_next_balance = 1;
9887 }
9888 }
9889
9890 /* Newly idle CPU doesn't need an update */
9891 if (idle != CPU_NEWLY_IDLE) {
9892 update_blocked_averages(this_cpu);
9893 has_blocked_load |= this_rq->has_blocked_load;
9894 }
9895
9896 if (flags & NOHZ_BALANCE_KICK)
9897 rebalance_domains(this_rq, CPU_IDLE);
9898
9899 WRITE_ONCE(nohz.next_blocked,
9900 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9901
9902 /* The full idle balance loop has been done */
9903 ret = true;
9904
9905 abort:
9906 /* There is still blocked load, enable periodic update */
9907 if (has_blocked_load)
9908 WRITE_ONCE(nohz.has_blocked, 1);
9909
9910 /*
9911 * next_balance will be updated only when there is a need.
9912 * When the CPU is attached to null domain for ex, it will not be
9913 * updated.
9914 */
9915 if (likely(update_next_balance))
9916 nohz.next_balance = next_balance;
9917
9918 return ret;
9919 }
9920
9921 /*
9922 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9923 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9924 */
9925 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9926 {
9927 int this_cpu = this_rq->cpu;
9928 unsigned int flags;
9929
9930 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9931 return false;
9932
9933 if (idle != CPU_IDLE) {
9934 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9935 return false;
9936 }
9937
9938 /* could be _relaxed() */
9939 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9940 if (!(flags & NOHZ_KICK_MASK))
9941 return false;
9942
9943 _nohz_idle_balance(this_rq, flags, idle);
9944
9945 return true;
9946 }
9947
9948 static void nohz_newidle_balance(struct rq *this_rq)
9949 {
9950 int this_cpu = this_rq->cpu;
9951
9952 /*
9953 * This CPU doesn't want to be disturbed by scheduler
9954 * housekeeping
9955 */
9956 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9957 return;
9958
9959 /* Will wake up very soon. No time for doing anything else*/
9960 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9961 return;
9962
9963 /* Don't need to update blocked load of idle CPUs*/
9964 if (!READ_ONCE(nohz.has_blocked) ||
9965 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9966 return;
9967
9968 raw_spin_unlock(&this_rq->lock);
9969 /*
9970 * This CPU is going to be idle and blocked load of idle CPUs
9971 * need to be updated. Run the ilb locally as it is a good
9972 * candidate for ilb instead of waking up another idle CPU.
9973 * Kick an normal ilb if we failed to do the update.
9974 */
9975 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9976 kick_ilb(NOHZ_STATS_KICK);
9977 raw_spin_lock(&this_rq->lock);
9978 }
9979
9980 #else /* !CONFIG_NO_HZ_COMMON */
9981 static inline void nohz_balancer_kick(struct rq *rq) { }
9982
9983 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9984 {
9985 return false;
9986 }
9987
9988 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9989 #endif /* CONFIG_NO_HZ_COMMON */
9990
9991 /*
9992 * idle_balance is called by schedule() if this_cpu is about to become
9993 * idle. Attempts to pull tasks from other CPUs.
9994 */
9995 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9996 {
9997 unsigned long next_balance = jiffies + HZ;
9998 int this_cpu = this_rq->cpu;
9999 struct sched_domain *sd;
10000 int pulled_task = 0;
10001 u64 curr_cost = 0;
10002
10003 /*
10004 * We must set idle_stamp _before_ calling idle_balance(), such that we
10005 * measure the duration of idle_balance() as idle time.
10006 */
10007 this_rq->idle_stamp = rq_clock(this_rq);
10008
10009 /*
10010 * Do not pull tasks towards !active CPUs...
10011 */
10012 if (!cpu_active(this_cpu))
10013 return 0;
10014
10015 /*
10016 * This is OK, because current is on_cpu, which avoids it being picked
10017 * for load-balance and preemption/IRQs are still disabled avoiding
10018 * further scheduler activity on it and we're being very careful to
10019 * re-start the picking loop.
10020 */
10021 rq_unpin_lock(this_rq, rf);
10022
10023 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10024 !READ_ONCE(this_rq->rd->overload)) {
10025
10026 rcu_read_lock();
10027 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10028 if (sd)
10029 update_next_balance(sd, &next_balance);
10030 rcu_read_unlock();
10031
10032 nohz_newidle_balance(this_rq);
10033
10034 goto out;
10035 }
10036
10037 raw_spin_unlock(&this_rq->lock);
10038
10039 update_blocked_averages(this_cpu);
10040 rcu_read_lock();
10041 for_each_domain(this_cpu, sd) {
10042 int continue_balancing = 1;
10043 u64 t0, domain_cost;
10044
10045 if (!(sd->flags & SD_LOAD_BALANCE))
10046 continue;
10047
10048 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10049 update_next_balance(sd, &next_balance);
10050 break;
10051 }
10052
10053 if (sd->flags & SD_BALANCE_NEWIDLE) {
10054 t0 = sched_clock_cpu(this_cpu);
10055
10056 pulled_task = load_balance(this_cpu, this_rq,
10057 sd, CPU_NEWLY_IDLE,
10058 &continue_balancing);
10059
10060 domain_cost = sched_clock_cpu(this_cpu) - t0;
10061 if (domain_cost > sd->max_newidle_lb_cost)
10062 sd->max_newidle_lb_cost = domain_cost;
10063
10064 curr_cost += domain_cost;
10065 }
10066
10067 update_next_balance(sd, &next_balance);
10068
10069 /*
10070 * Stop searching for tasks to pull if there are
10071 * now runnable tasks on this rq.
10072 */
10073 if (pulled_task || this_rq->nr_running > 0)
10074 break;
10075 }
10076 rcu_read_unlock();
10077
10078 raw_spin_lock(&this_rq->lock);
10079
10080 if (curr_cost > this_rq->max_idle_balance_cost)
10081 this_rq->max_idle_balance_cost = curr_cost;
10082
10083 out:
10084 /*
10085 * While browsing the domains, we released the rq lock, a task could
10086 * have been enqueued in the meantime. Since we're not going idle,
10087 * pretend we pulled a task.
10088 */
10089 if (this_rq->cfs.h_nr_running && !pulled_task)
10090 pulled_task = 1;
10091
10092 /* Move the next balance forward */
10093 if (time_after(this_rq->next_balance, next_balance))
10094 this_rq->next_balance = next_balance;
10095
10096 /* Is there a task of a high priority class? */
10097 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10098 pulled_task = -1;
10099
10100 if (pulled_task)
10101 this_rq->idle_stamp = 0;
10102
10103 rq_repin_lock(this_rq, rf);
10104
10105 return pulled_task;
10106 }
10107
10108 /*
10109 * run_rebalance_domains is triggered when needed from the scheduler tick.
10110 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10111 */
10112 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10113 {
10114 struct rq *this_rq = this_rq();
10115 enum cpu_idle_type idle = this_rq->idle_balance ?
10116 CPU_IDLE : CPU_NOT_IDLE;
10117
10118 /*
10119 * If this CPU has a pending nohz_balance_kick, then do the
10120 * balancing on behalf of the other idle CPUs whose ticks are
10121 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10122 * give the idle CPUs a chance to load balance. Else we may
10123 * load balance only within the local sched_domain hierarchy
10124 * and abort nohz_idle_balance altogether if we pull some load.
10125 */
10126 if (nohz_idle_balance(this_rq, idle))
10127 return;
10128
10129 /* normal load balance */
10130 update_blocked_averages(this_rq->cpu);
10131 rebalance_domains(this_rq, idle);
10132 }
10133
10134 /*
10135 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10136 */
10137 void trigger_load_balance(struct rq *rq)
10138 {
10139 /* Don't need to rebalance while attached to NULL domain */
10140 if (unlikely(on_null_domain(rq)))
10141 return;
10142
10143 if (time_after_eq(jiffies, rq->next_balance))
10144 raise_softirq(SCHED_SOFTIRQ);
10145
10146 nohz_balancer_kick(rq);
10147 }
10148
10149 static void rq_online_fair(struct rq *rq)
10150 {
10151 update_sysctl();
10152
10153 update_runtime_enabled(rq);
10154 }
10155
10156 static void rq_offline_fair(struct rq *rq)
10157 {
10158 update_sysctl();
10159
10160 /* Ensure any throttled groups are reachable by pick_next_task */
10161 unthrottle_offline_cfs_rqs(rq);
10162 }
10163
10164 #endif /* CONFIG_SMP */
10165
10166 /*
10167 * scheduler tick hitting a task of our scheduling class.
10168 *
10169 * NOTE: This function can be called remotely by the tick offload that
10170 * goes along full dynticks. Therefore no local assumption can be made
10171 * and everything must be accessed through the @rq and @curr passed in
10172 * parameters.
10173 */
10174 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10175 {
10176 struct cfs_rq *cfs_rq;
10177 struct sched_entity *se = &curr->se;
10178
10179 for_each_sched_entity(se) {
10180 cfs_rq = cfs_rq_of(se);
10181 entity_tick(cfs_rq, se, queued);
10182 }
10183
10184 if (static_branch_unlikely(&sched_numa_balancing))
10185 task_tick_numa(rq, curr);
10186
10187 update_misfit_status(curr, rq);
10188 update_overutilized_status(task_rq(curr));
10189 }
10190
10191 /*
10192 * called on fork with the child task as argument from the parent's context
10193 * - child not yet on the tasklist
10194 * - preemption disabled
10195 */
10196 static void task_fork_fair(struct task_struct *p)
10197 {
10198 struct cfs_rq *cfs_rq;
10199 struct sched_entity *se = &p->se, *curr;
10200 struct rq *rq = this_rq();
10201 struct rq_flags rf;
10202
10203 rq_lock(rq, &rf);
10204 update_rq_clock(rq);
10205
10206 cfs_rq = task_cfs_rq(current);
10207 curr = cfs_rq->curr;
10208 if (curr) {
10209 update_curr(cfs_rq);
10210 se->vruntime = curr->vruntime;
10211 }
10212 place_entity(cfs_rq, se, 1);
10213
10214 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10215 /*
10216 * Upon rescheduling, sched_class::put_prev_task() will place
10217 * 'current' within the tree based on its new key value.
10218 */
10219 swap(curr->vruntime, se->vruntime);
10220 resched_curr(rq);
10221 }
10222
10223 se->vruntime -= cfs_rq->min_vruntime;
10224 rq_unlock(rq, &rf);
10225 }
10226
10227 /*
10228 * Priority of the task has changed. Check to see if we preempt
10229 * the current task.
10230 */
10231 static void
10232 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10233 {
10234 if (!task_on_rq_queued(p))
10235 return;
10236
10237 /*
10238 * Reschedule if we are currently running on this runqueue and
10239 * our priority decreased, or if we are not currently running on
10240 * this runqueue and our priority is higher than the current's
10241 */
10242 if (rq->curr == p) {
10243 if (p->prio > oldprio)
10244 resched_curr(rq);
10245 } else
10246 check_preempt_curr(rq, p, 0);
10247 }
10248
10249 static inline bool vruntime_normalized(struct task_struct *p)
10250 {
10251 struct sched_entity *se = &p->se;
10252
10253 /*
10254 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10255 * the dequeue_entity(.flags=0) will already have normalized the
10256 * vruntime.
10257 */
10258 if (p->on_rq)
10259 return true;
10260
10261 /*
10262 * When !on_rq, vruntime of the task has usually NOT been normalized.
10263 * But there are some cases where it has already been normalized:
10264 *
10265 * - A forked child which is waiting for being woken up by
10266 * wake_up_new_task().
10267 * - A task which has been woken up by try_to_wake_up() and
10268 * waiting for actually being woken up by sched_ttwu_pending().
10269 */
10270 if (!se->sum_exec_runtime ||
10271 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10272 return true;
10273
10274 return false;
10275 }
10276
10277 #ifdef CONFIG_FAIR_GROUP_SCHED
10278 /*
10279 * Propagate the changes of the sched_entity across the tg tree to make it
10280 * visible to the root
10281 */
10282 static void propagate_entity_cfs_rq(struct sched_entity *se)
10283 {
10284 struct cfs_rq *cfs_rq;
10285
10286 /* Start to propagate at parent */
10287 se = se->parent;
10288
10289 for_each_sched_entity(se) {
10290 cfs_rq = cfs_rq_of(se);
10291
10292 if (cfs_rq_throttled(cfs_rq))
10293 break;
10294
10295 update_load_avg(cfs_rq, se, UPDATE_TG);
10296 }
10297 }
10298 #else
10299 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10300 #endif
10301
10302 static void detach_entity_cfs_rq(struct sched_entity *se)
10303 {
10304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10305
10306 /* Catch up with the cfs_rq and remove our load when we leave */
10307 update_load_avg(cfs_rq, se, 0);
10308 detach_entity_load_avg(cfs_rq, se);
10309 update_tg_load_avg(cfs_rq, false);
10310 propagate_entity_cfs_rq(se);
10311 }
10312
10313 static void attach_entity_cfs_rq(struct sched_entity *se)
10314 {
10315 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10316
10317 #ifdef CONFIG_FAIR_GROUP_SCHED
10318 /*
10319 * Since the real-depth could have been changed (only FAIR
10320 * class maintain depth value), reset depth properly.
10321 */
10322 se->depth = se->parent ? se->parent->depth + 1 : 0;
10323 #endif
10324
10325 /* Synchronize entity with its cfs_rq */
10326 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10327 attach_entity_load_avg(cfs_rq, se, 0);
10328 update_tg_load_avg(cfs_rq, false);
10329 propagate_entity_cfs_rq(se);
10330 }
10331
10332 static void detach_task_cfs_rq(struct task_struct *p)
10333 {
10334 struct sched_entity *se = &p->se;
10335 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10336
10337 if (!vruntime_normalized(p)) {
10338 /*
10339 * Fix up our vruntime so that the current sleep doesn't
10340 * cause 'unlimited' sleep bonus.
10341 */
10342 place_entity(cfs_rq, se, 0);
10343 se->vruntime -= cfs_rq->min_vruntime;
10344 }
10345
10346 detach_entity_cfs_rq(se);
10347 }
10348
10349 static void attach_task_cfs_rq(struct task_struct *p)
10350 {
10351 struct sched_entity *se = &p->se;
10352 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10353
10354 attach_entity_cfs_rq(se);
10355
10356 if (!vruntime_normalized(p))
10357 se->vruntime += cfs_rq->min_vruntime;
10358 }
10359
10360 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10361 {
10362 detach_task_cfs_rq(p);
10363 }
10364
10365 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10366 {
10367 attach_task_cfs_rq(p);
10368
10369 if (task_on_rq_queued(p)) {
10370 /*
10371 * We were most likely switched from sched_rt, so
10372 * kick off the schedule if running, otherwise just see
10373 * if we can still preempt the current task.
10374 */
10375 if (rq->curr == p)
10376 resched_curr(rq);
10377 else
10378 check_preempt_curr(rq, p, 0);
10379 }
10380 }
10381
10382 /* Account for a task changing its policy or group.
10383 *
10384 * This routine is mostly called to set cfs_rq->curr field when a task
10385 * migrates between groups/classes.
10386 */
10387 static void set_curr_task_fair(struct rq *rq)
10388 {
10389 struct sched_entity *se = &rq->curr->se;
10390
10391 for_each_sched_entity(se) {
10392 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10393
10394 set_next_entity(cfs_rq, se);
10395 /* ensure bandwidth has been allocated on our new cfs_rq */
10396 account_cfs_rq_runtime(cfs_rq, 0);
10397 }
10398 }
10399
10400 void init_cfs_rq(struct cfs_rq *cfs_rq)
10401 {
10402 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10403 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10404 #ifndef CONFIG_64BIT
10405 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10406 #endif
10407 #ifdef CONFIG_SMP
10408 raw_spin_lock_init(&cfs_rq->removed.lock);
10409 #endif
10410 }
10411
10412 #ifdef CONFIG_FAIR_GROUP_SCHED
10413 static void task_set_group_fair(struct task_struct *p)
10414 {
10415 struct sched_entity *se = &p->se;
10416
10417 set_task_rq(p, task_cpu(p));
10418 se->depth = se->parent ? se->parent->depth + 1 : 0;
10419 }
10420
10421 static void task_move_group_fair(struct task_struct *p)
10422 {
10423 detach_task_cfs_rq(p);
10424 set_task_rq(p, task_cpu(p));
10425
10426 #ifdef CONFIG_SMP
10427 /* Tell se's cfs_rq has been changed -- migrated */
10428 p->se.avg.last_update_time = 0;
10429 #endif
10430 attach_task_cfs_rq(p);
10431 }
10432
10433 static void task_change_group_fair(struct task_struct *p, int type)
10434 {
10435 switch (type) {
10436 case TASK_SET_GROUP:
10437 task_set_group_fair(p);
10438 break;
10439
10440 case TASK_MOVE_GROUP:
10441 task_move_group_fair(p);
10442 break;
10443 }
10444 }
10445
10446 void free_fair_sched_group(struct task_group *tg)
10447 {
10448 int i;
10449
10450 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10451
10452 for_each_possible_cpu(i) {
10453 if (tg->cfs_rq)
10454 kfree(tg->cfs_rq[i]);
10455 if (tg->se)
10456 kfree(tg->se[i]);
10457 }
10458
10459 kfree(tg->cfs_rq);
10460 kfree(tg->se);
10461 }
10462
10463 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10464 {
10465 struct sched_entity *se;
10466 struct cfs_rq *cfs_rq;
10467 int i;
10468
10469 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10470 if (!tg->cfs_rq)
10471 goto err;
10472 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10473 if (!tg->se)
10474 goto err;
10475
10476 tg->shares = NICE_0_LOAD;
10477
10478 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10479
10480 for_each_possible_cpu(i) {
10481 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10482 GFP_KERNEL, cpu_to_node(i));
10483 if (!cfs_rq)
10484 goto err;
10485
10486 se = kzalloc_node(sizeof(struct sched_entity),
10487 GFP_KERNEL, cpu_to_node(i));
10488 if (!se)
10489 goto err_free_rq;
10490
10491 init_cfs_rq(cfs_rq);
10492 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10493 init_entity_runnable_average(se);
10494 }
10495
10496 return 1;
10497
10498 err_free_rq:
10499 kfree(cfs_rq);
10500 err:
10501 return 0;
10502 }
10503
10504 void online_fair_sched_group(struct task_group *tg)
10505 {
10506 struct sched_entity *se;
10507 struct rq *rq;
10508 int i;
10509
10510 for_each_possible_cpu(i) {
10511 rq = cpu_rq(i);
10512 se = tg->se[i];
10513
10514 raw_spin_lock_irq(&rq->lock);
10515 update_rq_clock(rq);
10516 attach_entity_cfs_rq(se);
10517 sync_throttle(tg, i);
10518 raw_spin_unlock_irq(&rq->lock);
10519 }
10520 }
10521
10522 void unregister_fair_sched_group(struct task_group *tg)
10523 {
10524 unsigned long flags;
10525 struct rq *rq;
10526 int cpu;
10527
10528 for_each_possible_cpu(cpu) {
10529 if (tg->se[cpu])
10530 remove_entity_load_avg(tg->se[cpu]);
10531
10532 /*
10533 * Only empty task groups can be destroyed; so we can speculatively
10534 * check on_list without danger of it being re-added.
10535 */
10536 if (!tg->cfs_rq[cpu]->on_list)
10537 continue;
10538
10539 rq = cpu_rq(cpu);
10540
10541 raw_spin_lock_irqsave(&rq->lock, flags);
10542 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10543 raw_spin_unlock_irqrestore(&rq->lock, flags);
10544 }
10545 }
10546
10547 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10548 struct sched_entity *se, int cpu,
10549 struct sched_entity *parent)
10550 {
10551 struct rq *rq = cpu_rq(cpu);
10552
10553 cfs_rq->tg = tg;
10554 cfs_rq->rq = rq;
10555 init_cfs_rq_runtime(cfs_rq);
10556
10557 tg->cfs_rq[cpu] = cfs_rq;
10558 tg->se[cpu] = se;
10559
10560 /* se could be NULL for root_task_group */
10561 if (!se)
10562 return;
10563
10564 if (!parent) {
10565 se->cfs_rq = &rq->cfs;
10566 se->depth = 0;
10567 } else {
10568 se->cfs_rq = parent->my_q;
10569 se->depth = parent->depth + 1;
10570 }
10571
10572 se->my_q = cfs_rq;
10573 /* guarantee group entities always have weight */
10574 update_load_set(&se->load, NICE_0_LOAD);
10575 se->parent = parent;
10576 }
10577
10578 static DEFINE_MUTEX(shares_mutex);
10579
10580 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10581 {
10582 int i;
10583
10584 /*
10585 * We can't change the weight of the root cgroup.
10586 */
10587 if (!tg->se[0])
10588 return -EINVAL;
10589
10590 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10591
10592 mutex_lock(&shares_mutex);
10593 if (tg->shares == shares)
10594 goto done;
10595
10596 tg->shares = shares;
10597 for_each_possible_cpu(i) {
10598 struct rq *rq = cpu_rq(i);
10599 struct sched_entity *se = tg->se[i];
10600 struct rq_flags rf;
10601
10602 /* Propagate contribution to hierarchy */
10603 rq_lock_irqsave(rq, &rf);
10604 update_rq_clock(rq);
10605 for_each_sched_entity(se) {
10606 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10607 update_cfs_group(se);
10608 }
10609 rq_unlock_irqrestore(rq, &rf);
10610 }
10611
10612 done:
10613 mutex_unlock(&shares_mutex);
10614 return 0;
10615 }
10616 #else /* CONFIG_FAIR_GROUP_SCHED */
10617
10618 void free_fair_sched_group(struct task_group *tg) { }
10619
10620 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10621 {
10622 return 1;
10623 }
10624
10625 void online_fair_sched_group(struct task_group *tg) { }
10626
10627 void unregister_fair_sched_group(struct task_group *tg) { }
10628
10629 #endif /* CONFIG_FAIR_GROUP_SCHED */
10630
10631
10632 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10633 {
10634 struct sched_entity *se = &task->se;
10635 unsigned int rr_interval = 0;
10636
10637 /*
10638 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10639 * idle runqueue:
10640 */
10641 if (rq->cfs.load.weight)
10642 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10643
10644 return rr_interval;
10645 }
10646
10647 /*
10648 * All the scheduling class methods:
10649 */
10650 const struct sched_class fair_sched_class = {
10651 .next = &idle_sched_class,
10652 .enqueue_task = enqueue_task_fair,
10653 .dequeue_task = dequeue_task_fair,
10654 .yield_task = yield_task_fair,
10655 .yield_to_task = yield_to_task_fair,
10656
10657 .check_preempt_curr = check_preempt_wakeup,
10658
10659 .pick_next_task = pick_next_task_fair,
10660 .put_prev_task = put_prev_task_fair,
10661
10662 #ifdef CONFIG_SMP
10663 .select_task_rq = select_task_rq_fair,
10664 .migrate_task_rq = migrate_task_rq_fair,
10665
10666 .rq_online = rq_online_fair,
10667 .rq_offline = rq_offline_fair,
10668
10669 .task_dead = task_dead_fair,
10670 .set_cpus_allowed = set_cpus_allowed_common,
10671 #endif
10672
10673 .set_curr_task = set_curr_task_fair,
10674 .task_tick = task_tick_fair,
10675 .task_fork = task_fork_fair,
10676
10677 .prio_changed = prio_changed_fair,
10678 .switched_from = switched_from_fair,
10679 .switched_to = switched_to_fair,
10680
10681 .get_rr_interval = get_rr_interval_fair,
10682
10683 .update_curr = update_curr_fair,
10684
10685 #ifdef CONFIG_FAIR_GROUP_SCHED
10686 .task_change_group = task_change_group_fair,
10687 #endif
10688 };
10689
10690 #ifdef CONFIG_SCHED_DEBUG
10691 void print_cfs_stats(struct seq_file *m, int cpu)
10692 {
10693 struct cfs_rq *cfs_rq, *pos;
10694
10695 rcu_read_lock();
10696 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10697 print_cfs_rq(m, cpu, cfs_rq);
10698 rcu_read_unlock();
10699 }
10700
10701 #ifdef CONFIG_NUMA_BALANCING
10702 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10703 {
10704 int node;
10705 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10706
10707 for_each_online_node(node) {
10708 if (p->numa_faults) {
10709 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10710 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10711 }
10712 if (p->numa_group) {
10713 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10714 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10715 }
10716 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10717 }
10718 }
10719 #endif /* CONFIG_NUMA_BALANCING */
10720 #endif /* CONFIG_SCHED_DEBUG */
10721
10722 __init void init_sched_fair_class(void)
10723 {
10724 #ifdef CONFIG_SMP
10725 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10726
10727 #ifdef CONFIG_NO_HZ_COMMON
10728 nohz.next_balance = jiffies;
10729 nohz.next_blocked = jiffies;
10730 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10731 #endif
10732 #endif /* SMP */
10733
10734 }