]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/fair.c
Merge remote-tracking branches 'asoc/topic/msm8916', 'asoc/topic/mtk', 'asoc/topic...
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched/mm.h>
24 #include <linux/sched/topology.h>
25
26 #include <linux/latencytop.h>
27 #include <linux/cpumask.h>
28 #include <linux/cpuidle.h>
29 #include <linux/slab.h>
30 #include <linux/profile.h>
31 #include <linux/interrupt.h>
32 #include <linux/mempolicy.h>
33 #include <linux/migrate.h>
34 #include <linux/task_work.h>
35
36 #include <trace/events/sched.h>
37
38 #include "sched.h"
39
40 /*
41 * Targeted preemption latency for CPU-bound tasks:
42 *
43 * NOTE: this latency value is not the same as the concept of
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
47 *
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52 */
53 unsigned int sysctl_sched_latency = 6000000ULL;
54 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
55
56 /*
57 * The initial- and re-scaling of tunables is configurable
58 *
59 * Options are:
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66 */
67 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68
69 /*
70 * Minimal preemption granularity for CPU-bound tasks:
71 *
72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73 */
74 unsigned int sysctl_sched_min_granularity = 750000ULL;
75 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
76
77 /*
78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79 */
80 static unsigned int sched_nr_latency = 8;
81
82 /*
83 * After fork, child runs first. If set to 0 (default) then
84 * parent will (try to) run first.
85 */
86 unsigned int sysctl_sched_child_runs_first __read_mostly;
87
88 /*
89 * SCHED_OTHER wake-up granularity.
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96 */
97 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
99
100 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
101
102 #ifdef CONFIG_SMP
103 /*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 return -cpu;
109 }
110 #endif
111
112 #ifdef CONFIG_CFS_BANDWIDTH
113 /*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
121 * (default: 5 msec, units: microseconds)
122 */
123 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
124 #endif
125
126 /*
127 * The margin used when comparing utilization with CPU capacity:
128 * util * margin < capacity * 1024
129 *
130 * (default: ~20%)
131 */
132 unsigned int capacity_margin = 1280;
133
134 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135 {
136 lw->weight += inc;
137 lw->inv_weight = 0;
138 }
139
140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141 {
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144 }
145
146 static inline void update_load_set(struct load_weight *lw, unsigned long w)
147 {
148 lw->weight = w;
149 lw->inv_weight = 0;
150 }
151
152 /*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
161 static unsigned int get_update_sysctl_factor(void)
162 {
163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180 }
181
182 static void update_sysctl(void)
183 {
184 unsigned int factor = get_update_sysctl_factor();
185
186 #define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191 #undef SET_SYSCTL
192 }
193
194 void sched_init_granularity(void)
195 {
196 update_sysctl();
197 }
198
199 #define WMULT_CONST (~0U)
200 #define WMULT_SHIFT 32
201
202 static void __update_inv_weight(struct load_weight *lw)
203 {
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217 }
218
219 /*
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
230 */
231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232 {
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
235
236 __update_inv_weight(lw);
237
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
243 }
244
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
247
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
252
253 return mul_u64_u32_shr(delta_exec, fact, shift);
254 }
255
256
257 const struct sched_class fair_sched_class;
258
259 /**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
263 #ifdef CONFIG_FAIR_GROUP_SCHED
264
265 /* cpu runqueue to which this cfs_rq is attached */
266 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267 {
268 return cfs_rq->rq;
269 }
270
271 /* An entity is a task if it doesn't "own" a runqueue */
272 #define entity_is_task(se) (!se->my_q)
273
274 static inline struct task_struct *task_of(struct sched_entity *se)
275 {
276 SCHED_WARN_ON(!entity_is_task(se));
277 return container_of(se, struct task_struct, se);
278 }
279
280 /* Walk up scheduling entities hierarchy */
281 #define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285 {
286 return p->se.cfs_rq;
287 }
288
289 /* runqueue on which this entity is (to be) queued */
290 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291 {
292 return se->cfs_rq;
293 }
294
295 /* runqueue "owned" by this group */
296 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297 {
298 return grp->my_q;
299 }
300
301 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 if (!cfs_rq->on_list) {
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
314 */
315 if (cfs_rq->tg->parent &&
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357 }
358
359 cfs_rq->on_list = 1;
360 }
361 }
362
363 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364 {
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369 }
370
371 /* Iterate thr' all leaf cfs_rq's on a runqueue */
372 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
373 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
374
375 /* Do the two (enqueued) entities belong to the same group ? */
376 static inline struct cfs_rq *
377 is_same_group(struct sched_entity *se, struct sched_entity *pse)
378 {
379 if (se->cfs_rq == pse->cfs_rq)
380 return se->cfs_rq;
381
382 return NULL;
383 }
384
385 static inline struct sched_entity *parent_entity(struct sched_entity *se)
386 {
387 return se->parent;
388 }
389
390 static void
391 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
392 {
393 int se_depth, pse_depth;
394
395 /*
396 * preemption test can be made between sibling entities who are in the
397 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
398 * both tasks until we find their ancestors who are siblings of common
399 * parent.
400 */
401
402 /* First walk up until both entities are at same depth */
403 se_depth = (*se)->depth;
404 pse_depth = (*pse)->depth;
405
406 while (se_depth > pse_depth) {
407 se_depth--;
408 *se = parent_entity(*se);
409 }
410
411 while (pse_depth > se_depth) {
412 pse_depth--;
413 *pse = parent_entity(*pse);
414 }
415
416 while (!is_same_group(*se, *pse)) {
417 *se = parent_entity(*se);
418 *pse = parent_entity(*pse);
419 }
420 }
421
422 #else /* !CONFIG_FAIR_GROUP_SCHED */
423
424 static inline struct task_struct *task_of(struct sched_entity *se)
425 {
426 return container_of(se, struct task_struct, se);
427 }
428
429 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
430 {
431 return container_of(cfs_rq, struct rq, cfs);
432 }
433
434 #define entity_is_task(se) 1
435
436 #define for_each_sched_entity(se) \
437 for (; se; se = NULL)
438
439 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
440 {
441 return &task_rq(p)->cfs;
442 }
443
444 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
445 {
446 struct task_struct *p = task_of(se);
447 struct rq *rq = task_rq(p);
448
449 return &rq->cfs;
450 }
451
452 /* runqueue "owned" by this group */
453 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
454 {
455 return NULL;
456 }
457
458 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
459 {
460 }
461
462 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
463 {
464 }
465
466 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
467 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
468
469 static inline struct sched_entity *parent_entity(struct sched_entity *se)
470 {
471 return NULL;
472 }
473
474 static inline void
475 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
476 {
477 }
478
479 #endif /* CONFIG_FAIR_GROUP_SCHED */
480
481 static __always_inline
482 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
483
484 /**************************************************************
485 * Scheduling class tree data structure manipulation methods:
486 */
487
488 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
489 {
490 s64 delta = (s64)(vruntime - max_vruntime);
491 if (delta > 0)
492 max_vruntime = vruntime;
493
494 return max_vruntime;
495 }
496
497 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
498 {
499 s64 delta = (s64)(vruntime - min_vruntime);
500 if (delta < 0)
501 min_vruntime = vruntime;
502
503 return min_vruntime;
504 }
505
506 static inline int entity_before(struct sched_entity *a,
507 struct sched_entity *b)
508 {
509 return (s64)(a->vruntime - b->vruntime) < 0;
510 }
511
512 static void update_min_vruntime(struct cfs_rq *cfs_rq)
513 {
514 struct sched_entity *curr = cfs_rq->curr;
515
516 u64 vruntime = cfs_rq->min_vruntime;
517
518 if (curr) {
519 if (curr->on_rq)
520 vruntime = curr->vruntime;
521 else
522 curr = NULL;
523 }
524
525 if (cfs_rq->rb_leftmost) {
526 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
527 struct sched_entity,
528 run_node);
529
530 if (!curr)
531 vruntime = se->vruntime;
532 else
533 vruntime = min_vruntime(vruntime, se->vruntime);
534 }
535
536 /* ensure we never gain time by being placed backwards. */
537 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
538 #ifndef CONFIG_64BIT
539 smp_wmb();
540 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
541 #endif
542 }
543
544 /*
545 * Enqueue an entity into the rb-tree:
546 */
547 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
548 {
549 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
550 struct rb_node *parent = NULL;
551 struct sched_entity *entry;
552 int leftmost = 1;
553
554 /*
555 * Find the right place in the rbtree:
556 */
557 while (*link) {
558 parent = *link;
559 entry = rb_entry(parent, struct sched_entity, run_node);
560 /*
561 * We dont care about collisions. Nodes with
562 * the same key stay together.
563 */
564 if (entity_before(se, entry)) {
565 link = &parent->rb_left;
566 } else {
567 link = &parent->rb_right;
568 leftmost = 0;
569 }
570 }
571
572 /*
573 * Maintain a cache of leftmost tree entries (it is frequently
574 * used):
575 */
576 if (leftmost)
577 cfs_rq->rb_leftmost = &se->run_node;
578
579 rb_link_node(&se->run_node, parent, link);
580 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
581 }
582
583 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
584 {
585 if (cfs_rq->rb_leftmost == &se->run_node) {
586 struct rb_node *next_node;
587
588 next_node = rb_next(&se->run_node);
589 cfs_rq->rb_leftmost = next_node;
590 }
591
592 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
593 }
594
595 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
596 {
597 struct rb_node *left = cfs_rq->rb_leftmost;
598
599 if (!left)
600 return NULL;
601
602 return rb_entry(left, struct sched_entity, run_node);
603 }
604
605 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
606 {
607 struct rb_node *next = rb_next(&se->run_node);
608
609 if (!next)
610 return NULL;
611
612 return rb_entry(next, struct sched_entity, run_node);
613 }
614
615 #ifdef CONFIG_SCHED_DEBUG
616 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
617 {
618 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
619
620 if (!last)
621 return NULL;
622
623 return rb_entry(last, struct sched_entity, run_node);
624 }
625
626 /**************************************************************
627 * Scheduling class statistics methods:
628 */
629
630 int sched_proc_update_handler(struct ctl_table *table, int write,
631 void __user *buffer, size_t *lenp,
632 loff_t *ppos)
633 {
634 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
635 unsigned int factor = get_update_sysctl_factor();
636
637 if (ret || !write)
638 return ret;
639
640 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
641 sysctl_sched_min_granularity);
642
643 #define WRT_SYSCTL(name) \
644 (normalized_sysctl_##name = sysctl_##name / (factor))
645 WRT_SYSCTL(sched_min_granularity);
646 WRT_SYSCTL(sched_latency);
647 WRT_SYSCTL(sched_wakeup_granularity);
648 #undef WRT_SYSCTL
649
650 return 0;
651 }
652 #endif
653
654 /*
655 * delta /= w
656 */
657 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
658 {
659 if (unlikely(se->load.weight != NICE_0_LOAD))
660 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
661
662 return delta;
663 }
664
665 /*
666 * The idea is to set a period in which each task runs once.
667 *
668 * When there are too many tasks (sched_nr_latency) we have to stretch
669 * this period because otherwise the slices get too small.
670 *
671 * p = (nr <= nl) ? l : l*nr/nl
672 */
673 static u64 __sched_period(unsigned long nr_running)
674 {
675 if (unlikely(nr_running > sched_nr_latency))
676 return nr_running * sysctl_sched_min_granularity;
677 else
678 return sysctl_sched_latency;
679 }
680
681 /*
682 * We calculate the wall-time slice from the period by taking a part
683 * proportional to the weight.
684 *
685 * s = p*P[w/rw]
686 */
687 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
688 {
689 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
690
691 for_each_sched_entity(se) {
692 struct load_weight *load;
693 struct load_weight lw;
694
695 cfs_rq = cfs_rq_of(se);
696 load = &cfs_rq->load;
697
698 if (unlikely(!se->on_rq)) {
699 lw = cfs_rq->load;
700
701 update_load_add(&lw, se->load.weight);
702 load = &lw;
703 }
704 slice = __calc_delta(slice, se->load.weight, load);
705 }
706 return slice;
707 }
708
709 /*
710 * We calculate the vruntime slice of a to-be-inserted task.
711 *
712 * vs = s/w
713 */
714 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
715 {
716 return calc_delta_fair(sched_slice(cfs_rq, se), se);
717 }
718
719 #ifdef CONFIG_SMP
720
721 #include "sched-pelt.h"
722
723 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
724 static unsigned long task_h_load(struct task_struct *p);
725
726 /* Give new sched_entity start runnable values to heavy its load in infant time */
727 void init_entity_runnable_average(struct sched_entity *se)
728 {
729 struct sched_avg *sa = &se->avg;
730
731 sa->last_update_time = 0;
732 /*
733 * sched_avg's period_contrib should be strictly less then 1024, so
734 * we give it 1023 to make sure it is almost a period (1024us), and
735 * will definitely be update (after enqueue).
736 */
737 sa->period_contrib = 1023;
738 /*
739 * Tasks are intialized with full load to be seen as heavy tasks until
740 * they get a chance to stabilize to their real load level.
741 * Group entities are intialized with zero load to reflect the fact that
742 * nothing has been attached to the task group yet.
743 */
744 if (entity_is_task(se))
745 sa->load_avg = scale_load_down(se->load.weight);
746 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
747 /*
748 * At this point, util_avg won't be used in select_task_rq_fair anyway
749 */
750 sa->util_avg = 0;
751 sa->util_sum = 0;
752 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
753 }
754
755 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
756 static void attach_entity_cfs_rq(struct sched_entity *se);
757
758 /*
759 * With new tasks being created, their initial util_avgs are extrapolated
760 * based on the cfs_rq's current util_avg:
761 *
762 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
763 *
764 * However, in many cases, the above util_avg does not give a desired
765 * value. Moreover, the sum of the util_avgs may be divergent, such
766 * as when the series is a harmonic series.
767 *
768 * To solve this problem, we also cap the util_avg of successive tasks to
769 * only 1/2 of the left utilization budget:
770 *
771 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
772 *
773 * where n denotes the nth task.
774 *
775 * For example, a simplest series from the beginning would be like:
776 *
777 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
778 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
779 *
780 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
781 * if util_avg > util_avg_cap.
782 */
783 void post_init_entity_util_avg(struct sched_entity *se)
784 {
785 struct cfs_rq *cfs_rq = cfs_rq_of(se);
786 struct sched_avg *sa = &se->avg;
787 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
788
789 if (cap > 0) {
790 if (cfs_rq->avg.util_avg != 0) {
791 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
792 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
793
794 if (sa->util_avg > cap)
795 sa->util_avg = cap;
796 } else {
797 sa->util_avg = cap;
798 }
799 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
800 }
801
802 if (entity_is_task(se)) {
803 struct task_struct *p = task_of(se);
804 if (p->sched_class != &fair_sched_class) {
805 /*
806 * For !fair tasks do:
807 *
808 update_cfs_rq_load_avg(now, cfs_rq, false);
809 attach_entity_load_avg(cfs_rq, se);
810 switched_from_fair(rq, p);
811 *
812 * such that the next switched_to_fair() has the
813 * expected state.
814 */
815 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
816 return;
817 }
818 }
819
820 attach_entity_cfs_rq(se);
821 }
822
823 #else /* !CONFIG_SMP */
824 void init_entity_runnable_average(struct sched_entity *se)
825 {
826 }
827 void post_init_entity_util_avg(struct sched_entity *se)
828 {
829 }
830 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
831 {
832 }
833 #endif /* CONFIG_SMP */
834
835 /*
836 * Update the current task's runtime statistics.
837 */
838 static void update_curr(struct cfs_rq *cfs_rq)
839 {
840 struct sched_entity *curr = cfs_rq->curr;
841 u64 now = rq_clock_task(rq_of(cfs_rq));
842 u64 delta_exec;
843
844 if (unlikely(!curr))
845 return;
846
847 delta_exec = now - curr->exec_start;
848 if (unlikely((s64)delta_exec <= 0))
849 return;
850
851 curr->exec_start = now;
852
853 schedstat_set(curr->statistics.exec_max,
854 max(delta_exec, curr->statistics.exec_max));
855
856 curr->sum_exec_runtime += delta_exec;
857 schedstat_add(cfs_rq->exec_clock, delta_exec);
858
859 curr->vruntime += calc_delta_fair(delta_exec, curr);
860 update_min_vruntime(cfs_rq);
861
862 if (entity_is_task(curr)) {
863 struct task_struct *curtask = task_of(curr);
864
865 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
866 cpuacct_charge(curtask, delta_exec);
867 account_group_exec_runtime(curtask, delta_exec);
868 }
869
870 account_cfs_rq_runtime(cfs_rq, delta_exec);
871 }
872
873 static void update_curr_fair(struct rq *rq)
874 {
875 update_curr(cfs_rq_of(&rq->curr->se));
876 }
877
878 static inline void
879 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
880 {
881 u64 wait_start, prev_wait_start;
882
883 if (!schedstat_enabled())
884 return;
885
886 wait_start = rq_clock(rq_of(cfs_rq));
887 prev_wait_start = schedstat_val(se->statistics.wait_start);
888
889 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
890 likely(wait_start > prev_wait_start))
891 wait_start -= prev_wait_start;
892
893 schedstat_set(se->statistics.wait_start, wait_start);
894 }
895
896 static inline void
897 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
898 {
899 struct task_struct *p;
900 u64 delta;
901
902 if (!schedstat_enabled())
903 return;
904
905 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
906
907 if (entity_is_task(se)) {
908 p = task_of(se);
909 if (task_on_rq_migrating(p)) {
910 /*
911 * Preserve migrating task's wait time so wait_start
912 * time stamp can be adjusted to accumulate wait time
913 * prior to migration.
914 */
915 schedstat_set(se->statistics.wait_start, delta);
916 return;
917 }
918 trace_sched_stat_wait(p, delta);
919 }
920
921 schedstat_set(se->statistics.wait_max,
922 max(schedstat_val(se->statistics.wait_max), delta));
923 schedstat_inc(se->statistics.wait_count);
924 schedstat_add(se->statistics.wait_sum, delta);
925 schedstat_set(se->statistics.wait_start, 0);
926 }
927
928 static inline void
929 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
930 {
931 struct task_struct *tsk = NULL;
932 u64 sleep_start, block_start;
933
934 if (!schedstat_enabled())
935 return;
936
937 sleep_start = schedstat_val(se->statistics.sleep_start);
938 block_start = schedstat_val(se->statistics.block_start);
939
940 if (entity_is_task(se))
941 tsk = task_of(se);
942
943 if (sleep_start) {
944 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
945
946 if ((s64)delta < 0)
947 delta = 0;
948
949 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
950 schedstat_set(se->statistics.sleep_max, delta);
951
952 schedstat_set(se->statistics.sleep_start, 0);
953 schedstat_add(se->statistics.sum_sleep_runtime, delta);
954
955 if (tsk) {
956 account_scheduler_latency(tsk, delta >> 10, 1);
957 trace_sched_stat_sleep(tsk, delta);
958 }
959 }
960 if (block_start) {
961 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
962
963 if ((s64)delta < 0)
964 delta = 0;
965
966 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
967 schedstat_set(se->statistics.block_max, delta);
968
969 schedstat_set(se->statistics.block_start, 0);
970 schedstat_add(se->statistics.sum_sleep_runtime, delta);
971
972 if (tsk) {
973 if (tsk->in_iowait) {
974 schedstat_add(se->statistics.iowait_sum, delta);
975 schedstat_inc(se->statistics.iowait_count);
976 trace_sched_stat_iowait(tsk, delta);
977 }
978
979 trace_sched_stat_blocked(tsk, delta);
980
981 /*
982 * Blocking time is in units of nanosecs, so shift by
983 * 20 to get a milliseconds-range estimation of the
984 * amount of time that the task spent sleeping:
985 */
986 if (unlikely(prof_on == SLEEP_PROFILING)) {
987 profile_hits(SLEEP_PROFILING,
988 (void *)get_wchan(tsk),
989 delta >> 20);
990 }
991 account_scheduler_latency(tsk, delta >> 10, 0);
992 }
993 }
994 }
995
996 /*
997 * Task is being enqueued - update stats:
998 */
999 static inline void
1000 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1001 {
1002 if (!schedstat_enabled())
1003 return;
1004
1005 /*
1006 * Are we enqueueing a waiting task? (for current tasks
1007 * a dequeue/enqueue event is a NOP)
1008 */
1009 if (se != cfs_rq->curr)
1010 update_stats_wait_start(cfs_rq, se);
1011
1012 if (flags & ENQUEUE_WAKEUP)
1013 update_stats_enqueue_sleeper(cfs_rq, se);
1014 }
1015
1016 static inline void
1017 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1018 {
1019
1020 if (!schedstat_enabled())
1021 return;
1022
1023 /*
1024 * Mark the end of the wait period if dequeueing a
1025 * waiting task:
1026 */
1027 if (se != cfs_rq->curr)
1028 update_stats_wait_end(cfs_rq, se);
1029
1030 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1031 struct task_struct *tsk = task_of(se);
1032
1033 if (tsk->state & TASK_INTERRUPTIBLE)
1034 schedstat_set(se->statistics.sleep_start,
1035 rq_clock(rq_of(cfs_rq)));
1036 if (tsk->state & TASK_UNINTERRUPTIBLE)
1037 schedstat_set(se->statistics.block_start,
1038 rq_clock(rq_of(cfs_rq)));
1039 }
1040 }
1041
1042 /*
1043 * We are picking a new current task - update its stats:
1044 */
1045 static inline void
1046 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1047 {
1048 /*
1049 * We are starting a new run period:
1050 */
1051 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1052 }
1053
1054 /**************************************************
1055 * Scheduling class queueing methods:
1056 */
1057
1058 #ifdef CONFIG_NUMA_BALANCING
1059 /*
1060 * Approximate time to scan a full NUMA task in ms. The task scan period is
1061 * calculated based on the tasks virtual memory size and
1062 * numa_balancing_scan_size.
1063 */
1064 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1065 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1066
1067 /* Portion of address space to scan in MB */
1068 unsigned int sysctl_numa_balancing_scan_size = 256;
1069
1070 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1071 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1072
1073 static unsigned int task_nr_scan_windows(struct task_struct *p)
1074 {
1075 unsigned long rss = 0;
1076 unsigned long nr_scan_pages;
1077
1078 /*
1079 * Calculations based on RSS as non-present and empty pages are skipped
1080 * by the PTE scanner and NUMA hinting faults should be trapped based
1081 * on resident pages
1082 */
1083 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1084 rss = get_mm_rss(p->mm);
1085 if (!rss)
1086 rss = nr_scan_pages;
1087
1088 rss = round_up(rss, nr_scan_pages);
1089 return rss / nr_scan_pages;
1090 }
1091
1092 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1093 #define MAX_SCAN_WINDOW 2560
1094
1095 static unsigned int task_scan_min(struct task_struct *p)
1096 {
1097 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1098 unsigned int scan, floor;
1099 unsigned int windows = 1;
1100
1101 if (scan_size < MAX_SCAN_WINDOW)
1102 windows = MAX_SCAN_WINDOW / scan_size;
1103 floor = 1000 / windows;
1104
1105 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1106 return max_t(unsigned int, floor, scan);
1107 }
1108
1109 static unsigned int task_scan_max(struct task_struct *p)
1110 {
1111 unsigned int smin = task_scan_min(p);
1112 unsigned int smax;
1113
1114 /* Watch for min being lower than max due to floor calculations */
1115 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1116 return max(smin, smax);
1117 }
1118
1119 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1120 {
1121 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1122 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1123 }
1124
1125 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1126 {
1127 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1128 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1129 }
1130
1131 struct numa_group {
1132 atomic_t refcount;
1133
1134 spinlock_t lock; /* nr_tasks, tasks */
1135 int nr_tasks;
1136 pid_t gid;
1137 int active_nodes;
1138
1139 struct rcu_head rcu;
1140 unsigned long total_faults;
1141 unsigned long max_faults_cpu;
1142 /*
1143 * Faults_cpu is used to decide whether memory should move
1144 * towards the CPU. As a consequence, these stats are weighted
1145 * more by CPU use than by memory faults.
1146 */
1147 unsigned long *faults_cpu;
1148 unsigned long faults[0];
1149 };
1150
1151 /* Shared or private faults. */
1152 #define NR_NUMA_HINT_FAULT_TYPES 2
1153
1154 /* Memory and CPU locality */
1155 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1156
1157 /* Averaged statistics, and temporary buffers. */
1158 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1159
1160 pid_t task_numa_group_id(struct task_struct *p)
1161 {
1162 return p->numa_group ? p->numa_group->gid : 0;
1163 }
1164
1165 /*
1166 * The averaged statistics, shared & private, memory & cpu,
1167 * occupy the first half of the array. The second half of the
1168 * array is for current counters, which are averaged into the
1169 * first set by task_numa_placement.
1170 */
1171 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1172 {
1173 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1174 }
1175
1176 static inline unsigned long task_faults(struct task_struct *p, int nid)
1177 {
1178 if (!p->numa_faults)
1179 return 0;
1180
1181 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1182 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1183 }
1184
1185 static inline unsigned long group_faults(struct task_struct *p, int nid)
1186 {
1187 if (!p->numa_group)
1188 return 0;
1189
1190 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1191 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1192 }
1193
1194 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1195 {
1196 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1197 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1198 }
1199
1200 /*
1201 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1202 * considered part of a numa group's pseudo-interleaving set. Migrations
1203 * between these nodes are slowed down, to allow things to settle down.
1204 */
1205 #define ACTIVE_NODE_FRACTION 3
1206
1207 static bool numa_is_active_node(int nid, struct numa_group *ng)
1208 {
1209 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1210 }
1211
1212 /* Handle placement on systems where not all nodes are directly connected. */
1213 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1214 int maxdist, bool task)
1215 {
1216 unsigned long score = 0;
1217 int node;
1218
1219 /*
1220 * All nodes are directly connected, and the same distance
1221 * from each other. No need for fancy placement algorithms.
1222 */
1223 if (sched_numa_topology_type == NUMA_DIRECT)
1224 return 0;
1225
1226 /*
1227 * This code is called for each node, introducing N^2 complexity,
1228 * which should be ok given the number of nodes rarely exceeds 8.
1229 */
1230 for_each_online_node(node) {
1231 unsigned long faults;
1232 int dist = node_distance(nid, node);
1233
1234 /*
1235 * The furthest away nodes in the system are not interesting
1236 * for placement; nid was already counted.
1237 */
1238 if (dist == sched_max_numa_distance || node == nid)
1239 continue;
1240
1241 /*
1242 * On systems with a backplane NUMA topology, compare groups
1243 * of nodes, and move tasks towards the group with the most
1244 * memory accesses. When comparing two nodes at distance
1245 * "hoplimit", only nodes closer by than "hoplimit" are part
1246 * of each group. Skip other nodes.
1247 */
1248 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1249 dist > maxdist)
1250 continue;
1251
1252 /* Add up the faults from nearby nodes. */
1253 if (task)
1254 faults = task_faults(p, node);
1255 else
1256 faults = group_faults(p, node);
1257
1258 /*
1259 * On systems with a glueless mesh NUMA topology, there are
1260 * no fixed "groups of nodes". Instead, nodes that are not
1261 * directly connected bounce traffic through intermediate
1262 * nodes; a numa_group can occupy any set of nodes.
1263 * The further away a node is, the less the faults count.
1264 * This seems to result in good task placement.
1265 */
1266 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1267 faults *= (sched_max_numa_distance - dist);
1268 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1269 }
1270
1271 score += faults;
1272 }
1273
1274 return score;
1275 }
1276
1277 /*
1278 * These return the fraction of accesses done by a particular task, or
1279 * task group, on a particular numa node. The group weight is given a
1280 * larger multiplier, in order to group tasks together that are almost
1281 * evenly spread out between numa nodes.
1282 */
1283 static inline unsigned long task_weight(struct task_struct *p, int nid,
1284 int dist)
1285 {
1286 unsigned long faults, total_faults;
1287
1288 if (!p->numa_faults)
1289 return 0;
1290
1291 total_faults = p->total_numa_faults;
1292
1293 if (!total_faults)
1294 return 0;
1295
1296 faults = task_faults(p, nid);
1297 faults += score_nearby_nodes(p, nid, dist, true);
1298
1299 return 1000 * faults / total_faults;
1300 }
1301
1302 static inline unsigned long group_weight(struct task_struct *p, int nid,
1303 int dist)
1304 {
1305 unsigned long faults, total_faults;
1306
1307 if (!p->numa_group)
1308 return 0;
1309
1310 total_faults = p->numa_group->total_faults;
1311
1312 if (!total_faults)
1313 return 0;
1314
1315 faults = group_faults(p, nid);
1316 faults += score_nearby_nodes(p, nid, dist, false);
1317
1318 return 1000 * faults / total_faults;
1319 }
1320
1321 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1322 int src_nid, int dst_cpu)
1323 {
1324 struct numa_group *ng = p->numa_group;
1325 int dst_nid = cpu_to_node(dst_cpu);
1326 int last_cpupid, this_cpupid;
1327
1328 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1329
1330 /*
1331 * Multi-stage node selection is used in conjunction with a periodic
1332 * migration fault to build a temporal task<->page relation. By using
1333 * a two-stage filter we remove short/unlikely relations.
1334 *
1335 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1336 * a task's usage of a particular page (n_p) per total usage of this
1337 * page (n_t) (in a given time-span) to a probability.
1338 *
1339 * Our periodic faults will sample this probability and getting the
1340 * same result twice in a row, given these samples are fully
1341 * independent, is then given by P(n)^2, provided our sample period
1342 * is sufficiently short compared to the usage pattern.
1343 *
1344 * This quadric squishes small probabilities, making it less likely we
1345 * act on an unlikely task<->page relation.
1346 */
1347 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1348 if (!cpupid_pid_unset(last_cpupid) &&
1349 cpupid_to_nid(last_cpupid) != dst_nid)
1350 return false;
1351
1352 /* Always allow migrate on private faults */
1353 if (cpupid_match_pid(p, last_cpupid))
1354 return true;
1355
1356 /* A shared fault, but p->numa_group has not been set up yet. */
1357 if (!ng)
1358 return true;
1359
1360 /*
1361 * Destination node is much more heavily used than the source
1362 * node? Allow migration.
1363 */
1364 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1365 ACTIVE_NODE_FRACTION)
1366 return true;
1367
1368 /*
1369 * Distribute memory according to CPU & memory use on each node,
1370 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1371 *
1372 * faults_cpu(dst) 3 faults_cpu(src)
1373 * --------------- * - > ---------------
1374 * faults_mem(dst) 4 faults_mem(src)
1375 */
1376 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1377 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1378 }
1379
1380 static unsigned long weighted_cpuload(const int cpu);
1381 static unsigned long source_load(int cpu, int type);
1382 static unsigned long target_load(int cpu, int type);
1383 static unsigned long capacity_of(int cpu);
1384 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1385
1386 /* Cached statistics for all CPUs within a node */
1387 struct numa_stats {
1388 unsigned long nr_running;
1389 unsigned long load;
1390
1391 /* Total compute capacity of CPUs on a node */
1392 unsigned long compute_capacity;
1393
1394 /* Approximate capacity in terms of runnable tasks on a node */
1395 unsigned long task_capacity;
1396 int has_free_capacity;
1397 };
1398
1399 /*
1400 * XXX borrowed from update_sg_lb_stats
1401 */
1402 static void update_numa_stats(struct numa_stats *ns, int nid)
1403 {
1404 int smt, cpu, cpus = 0;
1405 unsigned long capacity;
1406
1407 memset(ns, 0, sizeof(*ns));
1408 for_each_cpu(cpu, cpumask_of_node(nid)) {
1409 struct rq *rq = cpu_rq(cpu);
1410
1411 ns->nr_running += rq->nr_running;
1412 ns->load += weighted_cpuload(cpu);
1413 ns->compute_capacity += capacity_of(cpu);
1414
1415 cpus++;
1416 }
1417
1418 /*
1419 * If we raced with hotplug and there are no CPUs left in our mask
1420 * the @ns structure is NULL'ed and task_numa_compare() will
1421 * not find this node attractive.
1422 *
1423 * We'll either bail at !has_free_capacity, or we'll detect a huge
1424 * imbalance and bail there.
1425 */
1426 if (!cpus)
1427 return;
1428
1429 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1430 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1431 capacity = cpus / smt; /* cores */
1432
1433 ns->task_capacity = min_t(unsigned, capacity,
1434 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1435 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1436 }
1437
1438 struct task_numa_env {
1439 struct task_struct *p;
1440
1441 int src_cpu, src_nid;
1442 int dst_cpu, dst_nid;
1443
1444 struct numa_stats src_stats, dst_stats;
1445
1446 int imbalance_pct;
1447 int dist;
1448
1449 struct task_struct *best_task;
1450 long best_imp;
1451 int best_cpu;
1452 };
1453
1454 static void task_numa_assign(struct task_numa_env *env,
1455 struct task_struct *p, long imp)
1456 {
1457 if (env->best_task)
1458 put_task_struct(env->best_task);
1459 if (p)
1460 get_task_struct(p);
1461
1462 env->best_task = p;
1463 env->best_imp = imp;
1464 env->best_cpu = env->dst_cpu;
1465 }
1466
1467 static bool load_too_imbalanced(long src_load, long dst_load,
1468 struct task_numa_env *env)
1469 {
1470 long imb, old_imb;
1471 long orig_src_load, orig_dst_load;
1472 long src_capacity, dst_capacity;
1473
1474 /*
1475 * The load is corrected for the CPU capacity available on each node.
1476 *
1477 * src_load dst_load
1478 * ------------ vs ---------
1479 * src_capacity dst_capacity
1480 */
1481 src_capacity = env->src_stats.compute_capacity;
1482 dst_capacity = env->dst_stats.compute_capacity;
1483
1484 /* We care about the slope of the imbalance, not the direction. */
1485 if (dst_load < src_load)
1486 swap(dst_load, src_load);
1487
1488 /* Is the difference below the threshold? */
1489 imb = dst_load * src_capacity * 100 -
1490 src_load * dst_capacity * env->imbalance_pct;
1491 if (imb <= 0)
1492 return false;
1493
1494 /*
1495 * The imbalance is above the allowed threshold.
1496 * Compare it with the old imbalance.
1497 */
1498 orig_src_load = env->src_stats.load;
1499 orig_dst_load = env->dst_stats.load;
1500
1501 if (orig_dst_load < orig_src_load)
1502 swap(orig_dst_load, orig_src_load);
1503
1504 old_imb = orig_dst_load * src_capacity * 100 -
1505 orig_src_load * dst_capacity * env->imbalance_pct;
1506
1507 /* Would this change make things worse? */
1508 return (imb > old_imb);
1509 }
1510
1511 /*
1512 * This checks if the overall compute and NUMA accesses of the system would
1513 * be improved if the source tasks was migrated to the target dst_cpu taking
1514 * into account that it might be best if task running on the dst_cpu should
1515 * be exchanged with the source task
1516 */
1517 static void task_numa_compare(struct task_numa_env *env,
1518 long taskimp, long groupimp)
1519 {
1520 struct rq *src_rq = cpu_rq(env->src_cpu);
1521 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1522 struct task_struct *cur;
1523 long src_load, dst_load;
1524 long load;
1525 long imp = env->p->numa_group ? groupimp : taskimp;
1526 long moveimp = imp;
1527 int dist = env->dist;
1528
1529 rcu_read_lock();
1530 cur = task_rcu_dereference(&dst_rq->curr);
1531 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1532 cur = NULL;
1533
1534 /*
1535 * Because we have preemption enabled we can get migrated around and
1536 * end try selecting ourselves (current == env->p) as a swap candidate.
1537 */
1538 if (cur == env->p)
1539 goto unlock;
1540
1541 /*
1542 * "imp" is the fault differential for the source task between the
1543 * source and destination node. Calculate the total differential for
1544 * the source task and potential destination task. The more negative
1545 * the value is, the more rmeote accesses that would be expected to
1546 * be incurred if the tasks were swapped.
1547 */
1548 if (cur) {
1549 /* Skip this swap candidate if cannot move to the source cpu */
1550 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1551 goto unlock;
1552
1553 /*
1554 * If dst and source tasks are in the same NUMA group, or not
1555 * in any group then look only at task weights.
1556 */
1557 if (cur->numa_group == env->p->numa_group) {
1558 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1559 task_weight(cur, env->dst_nid, dist);
1560 /*
1561 * Add some hysteresis to prevent swapping the
1562 * tasks within a group over tiny differences.
1563 */
1564 if (cur->numa_group)
1565 imp -= imp/16;
1566 } else {
1567 /*
1568 * Compare the group weights. If a task is all by
1569 * itself (not part of a group), use the task weight
1570 * instead.
1571 */
1572 if (cur->numa_group)
1573 imp += group_weight(cur, env->src_nid, dist) -
1574 group_weight(cur, env->dst_nid, dist);
1575 else
1576 imp += task_weight(cur, env->src_nid, dist) -
1577 task_weight(cur, env->dst_nid, dist);
1578 }
1579 }
1580
1581 if (imp <= env->best_imp && moveimp <= env->best_imp)
1582 goto unlock;
1583
1584 if (!cur) {
1585 /* Is there capacity at our destination? */
1586 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1587 !env->dst_stats.has_free_capacity)
1588 goto unlock;
1589
1590 goto balance;
1591 }
1592
1593 /* Balance doesn't matter much if we're running a task per cpu */
1594 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1595 dst_rq->nr_running == 1)
1596 goto assign;
1597
1598 /*
1599 * In the overloaded case, try and keep the load balanced.
1600 */
1601 balance:
1602 load = task_h_load(env->p);
1603 dst_load = env->dst_stats.load + load;
1604 src_load = env->src_stats.load - load;
1605
1606 if (moveimp > imp && moveimp > env->best_imp) {
1607 /*
1608 * If the improvement from just moving env->p direction is
1609 * better than swapping tasks around, check if a move is
1610 * possible. Store a slightly smaller score than moveimp,
1611 * so an actually idle CPU will win.
1612 */
1613 if (!load_too_imbalanced(src_load, dst_load, env)) {
1614 imp = moveimp - 1;
1615 cur = NULL;
1616 goto assign;
1617 }
1618 }
1619
1620 if (imp <= env->best_imp)
1621 goto unlock;
1622
1623 if (cur) {
1624 load = task_h_load(cur);
1625 dst_load -= load;
1626 src_load += load;
1627 }
1628
1629 if (load_too_imbalanced(src_load, dst_load, env))
1630 goto unlock;
1631
1632 /*
1633 * One idle CPU per node is evaluated for a task numa move.
1634 * Call select_idle_sibling to maybe find a better one.
1635 */
1636 if (!cur) {
1637 /*
1638 * select_idle_siblings() uses an per-cpu cpumask that
1639 * can be used from IRQ context.
1640 */
1641 local_irq_disable();
1642 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1643 env->dst_cpu);
1644 local_irq_enable();
1645 }
1646
1647 assign:
1648 task_numa_assign(env, cur, imp);
1649 unlock:
1650 rcu_read_unlock();
1651 }
1652
1653 static void task_numa_find_cpu(struct task_numa_env *env,
1654 long taskimp, long groupimp)
1655 {
1656 int cpu;
1657
1658 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1659 /* Skip this CPU if the source task cannot migrate */
1660 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1661 continue;
1662
1663 env->dst_cpu = cpu;
1664 task_numa_compare(env, taskimp, groupimp);
1665 }
1666 }
1667
1668 /* Only move tasks to a NUMA node less busy than the current node. */
1669 static bool numa_has_capacity(struct task_numa_env *env)
1670 {
1671 struct numa_stats *src = &env->src_stats;
1672 struct numa_stats *dst = &env->dst_stats;
1673
1674 if (src->has_free_capacity && !dst->has_free_capacity)
1675 return false;
1676
1677 /*
1678 * Only consider a task move if the source has a higher load
1679 * than the destination, corrected for CPU capacity on each node.
1680 *
1681 * src->load dst->load
1682 * --------------------- vs ---------------------
1683 * src->compute_capacity dst->compute_capacity
1684 */
1685 if (src->load * dst->compute_capacity * env->imbalance_pct >
1686
1687 dst->load * src->compute_capacity * 100)
1688 return true;
1689
1690 return false;
1691 }
1692
1693 static int task_numa_migrate(struct task_struct *p)
1694 {
1695 struct task_numa_env env = {
1696 .p = p,
1697
1698 .src_cpu = task_cpu(p),
1699 .src_nid = task_node(p),
1700
1701 .imbalance_pct = 112,
1702
1703 .best_task = NULL,
1704 .best_imp = 0,
1705 .best_cpu = -1,
1706 };
1707 struct sched_domain *sd;
1708 unsigned long taskweight, groupweight;
1709 int nid, ret, dist;
1710 long taskimp, groupimp;
1711
1712 /*
1713 * Pick the lowest SD_NUMA domain, as that would have the smallest
1714 * imbalance and would be the first to start moving tasks about.
1715 *
1716 * And we want to avoid any moving of tasks about, as that would create
1717 * random movement of tasks -- counter the numa conditions we're trying
1718 * to satisfy here.
1719 */
1720 rcu_read_lock();
1721 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1722 if (sd)
1723 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1724 rcu_read_unlock();
1725
1726 /*
1727 * Cpusets can break the scheduler domain tree into smaller
1728 * balance domains, some of which do not cross NUMA boundaries.
1729 * Tasks that are "trapped" in such domains cannot be migrated
1730 * elsewhere, so there is no point in (re)trying.
1731 */
1732 if (unlikely(!sd)) {
1733 p->numa_preferred_nid = task_node(p);
1734 return -EINVAL;
1735 }
1736
1737 env.dst_nid = p->numa_preferred_nid;
1738 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1739 taskweight = task_weight(p, env.src_nid, dist);
1740 groupweight = group_weight(p, env.src_nid, dist);
1741 update_numa_stats(&env.src_stats, env.src_nid);
1742 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1743 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1744 update_numa_stats(&env.dst_stats, env.dst_nid);
1745
1746 /* Try to find a spot on the preferred nid. */
1747 if (numa_has_capacity(&env))
1748 task_numa_find_cpu(&env, taskimp, groupimp);
1749
1750 /*
1751 * Look at other nodes in these cases:
1752 * - there is no space available on the preferred_nid
1753 * - the task is part of a numa_group that is interleaved across
1754 * multiple NUMA nodes; in order to better consolidate the group,
1755 * we need to check other locations.
1756 */
1757 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1758 for_each_online_node(nid) {
1759 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1760 continue;
1761
1762 dist = node_distance(env.src_nid, env.dst_nid);
1763 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1764 dist != env.dist) {
1765 taskweight = task_weight(p, env.src_nid, dist);
1766 groupweight = group_weight(p, env.src_nid, dist);
1767 }
1768
1769 /* Only consider nodes where both task and groups benefit */
1770 taskimp = task_weight(p, nid, dist) - taskweight;
1771 groupimp = group_weight(p, nid, dist) - groupweight;
1772 if (taskimp < 0 && groupimp < 0)
1773 continue;
1774
1775 env.dist = dist;
1776 env.dst_nid = nid;
1777 update_numa_stats(&env.dst_stats, env.dst_nid);
1778 if (numa_has_capacity(&env))
1779 task_numa_find_cpu(&env, taskimp, groupimp);
1780 }
1781 }
1782
1783 /*
1784 * If the task is part of a workload that spans multiple NUMA nodes,
1785 * and is migrating into one of the workload's active nodes, remember
1786 * this node as the task's preferred numa node, so the workload can
1787 * settle down.
1788 * A task that migrated to a second choice node will be better off
1789 * trying for a better one later. Do not set the preferred node here.
1790 */
1791 if (p->numa_group) {
1792 struct numa_group *ng = p->numa_group;
1793
1794 if (env.best_cpu == -1)
1795 nid = env.src_nid;
1796 else
1797 nid = env.dst_nid;
1798
1799 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1800 sched_setnuma(p, env.dst_nid);
1801 }
1802
1803 /* No better CPU than the current one was found. */
1804 if (env.best_cpu == -1)
1805 return -EAGAIN;
1806
1807 /*
1808 * Reset the scan period if the task is being rescheduled on an
1809 * alternative node to recheck if the tasks is now properly placed.
1810 */
1811 p->numa_scan_period = task_scan_min(p);
1812
1813 if (env.best_task == NULL) {
1814 ret = migrate_task_to(p, env.best_cpu);
1815 if (ret != 0)
1816 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1817 return ret;
1818 }
1819
1820 ret = migrate_swap(p, env.best_task);
1821 if (ret != 0)
1822 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1823 put_task_struct(env.best_task);
1824 return ret;
1825 }
1826
1827 /* Attempt to migrate a task to a CPU on the preferred node. */
1828 static void numa_migrate_preferred(struct task_struct *p)
1829 {
1830 unsigned long interval = HZ;
1831
1832 /* This task has no NUMA fault statistics yet */
1833 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1834 return;
1835
1836 /* Periodically retry migrating the task to the preferred node */
1837 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1838 p->numa_migrate_retry = jiffies + interval;
1839
1840 /* Success if task is already running on preferred CPU */
1841 if (task_node(p) == p->numa_preferred_nid)
1842 return;
1843
1844 /* Otherwise, try migrate to a CPU on the preferred node */
1845 task_numa_migrate(p);
1846 }
1847
1848 /*
1849 * Find out how many nodes on the workload is actively running on. Do this by
1850 * tracking the nodes from which NUMA hinting faults are triggered. This can
1851 * be different from the set of nodes where the workload's memory is currently
1852 * located.
1853 */
1854 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1855 {
1856 unsigned long faults, max_faults = 0;
1857 int nid, active_nodes = 0;
1858
1859 for_each_online_node(nid) {
1860 faults = group_faults_cpu(numa_group, nid);
1861 if (faults > max_faults)
1862 max_faults = faults;
1863 }
1864
1865 for_each_online_node(nid) {
1866 faults = group_faults_cpu(numa_group, nid);
1867 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1868 active_nodes++;
1869 }
1870
1871 numa_group->max_faults_cpu = max_faults;
1872 numa_group->active_nodes = active_nodes;
1873 }
1874
1875 /*
1876 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1877 * increments. The more local the fault statistics are, the higher the scan
1878 * period will be for the next scan window. If local/(local+remote) ratio is
1879 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1880 * the scan period will decrease. Aim for 70% local accesses.
1881 */
1882 #define NUMA_PERIOD_SLOTS 10
1883 #define NUMA_PERIOD_THRESHOLD 7
1884
1885 /*
1886 * Increase the scan period (slow down scanning) if the majority of
1887 * our memory is already on our local node, or if the majority of
1888 * the page accesses are shared with other processes.
1889 * Otherwise, decrease the scan period.
1890 */
1891 static void update_task_scan_period(struct task_struct *p,
1892 unsigned long shared, unsigned long private)
1893 {
1894 unsigned int period_slot;
1895 int ratio;
1896 int diff;
1897
1898 unsigned long remote = p->numa_faults_locality[0];
1899 unsigned long local = p->numa_faults_locality[1];
1900
1901 /*
1902 * If there were no record hinting faults then either the task is
1903 * completely idle or all activity is areas that are not of interest
1904 * to automatic numa balancing. Related to that, if there were failed
1905 * migration then it implies we are migrating too quickly or the local
1906 * node is overloaded. In either case, scan slower
1907 */
1908 if (local + shared == 0 || p->numa_faults_locality[2]) {
1909 p->numa_scan_period = min(p->numa_scan_period_max,
1910 p->numa_scan_period << 1);
1911
1912 p->mm->numa_next_scan = jiffies +
1913 msecs_to_jiffies(p->numa_scan_period);
1914
1915 return;
1916 }
1917
1918 /*
1919 * Prepare to scale scan period relative to the current period.
1920 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1921 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1922 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1923 */
1924 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1925 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1926 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1927 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1928 if (!slot)
1929 slot = 1;
1930 diff = slot * period_slot;
1931 } else {
1932 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1933
1934 /*
1935 * Scale scan rate increases based on sharing. There is an
1936 * inverse relationship between the degree of sharing and
1937 * the adjustment made to the scanning period. Broadly
1938 * speaking the intent is that there is little point
1939 * scanning faster if shared accesses dominate as it may
1940 * simply bounce migrations uselessly
1941 */
1942 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1943 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1944 }
1945
1946 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1947 task_scan_min(p), task_scan_max(p));
1948 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1949 }
1950
1951 /*
1952 * Get the fraction of time the task has been running since the last
1953 * NUMA placement cycle. The scheduler keeps similar statistics, but
1954 * decays those on a 32ms period, which is orders of magnitude off
1955 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1956 * stats only if the task is so new there are no NUMA statistics yet.
1957 */
1958 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1959 {
1960 u64 runtime, delta, now;
1961 /* Use the start of this time slice to avoid calculations. */
1962 now = p->se.exec_start;
1963 runtime = p->se.sum_exec_runtime;
1964
1965 if (p->last_task_numa_placement) {
1966 delta = runtime - p->last_sum_exec_runtime;
1967 *period = now - p->last_task_numa_placement;
1968 } else {
1969 delta = p->se.avg.load_sum / p->se.load.weight;
1970 *period = LOAD_AVG_MAX;
1971 }
1972
1973 p->last_sum_exec_runtime = runtime;
1974 p->last_task_numa_placement = now;
1975
1976 return delta;
1977 }
1978
1979 /*
1980 * Determine the preferred nid for a task in a numa_group. This needs to
1981 * be done in a way that produces consistent results with group_weight,
1982 * otherwise workloads might not converge.
1983 */
1984 static int preferred_group_nid(struct task_struct *p, int nid)
1985 {
1986 nodemask_t nodes;
1987 int dist;
1988
1989 /* Direct connections between all NUMA nodes. */
1990 if (sched_numa_topology_type == NUMA_DIRECT)
1991 return nid;
1992
1993 /*
1994 * On a system with glueless mesh NUMA topology, group_weight
1995 * scores nodes according to the number of NUMA hinting faults on
1996 * both the node itself, and on nearby nodes.
1997 */
1998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1999 unsigned long score, max_score = 0;
2000 int node, max_node = nid;
2001
2002 dist = sched_max_numa_distance;
2003
2004 for_each_online_node(node) {
2005 score = group_weight(p, node, dist);
2006 if (score > max_score) {
2007 max_score = score;
2008 max_node = node;
2009 }
2010 }
2011 return max_node;
2012 }
2013
2014 /*
2015 * Finding the preferred nid in a system with NUMA backplane
2016 * interconnect topology is more involved. The goal is to locate
2017 * tasks from numa_groups near each other in the system, and
2018 * untangle workloads from different sides of the system. This requires
2019 * searching down the hierarchy of node groups, recursively searching
2020 * inside the highest scoring group of nodes. The nodemask tricks
2021 * keep the complexity of the search down.
2022 */
2023 nodes = node_online_map;
2024 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2025 unsigned long max_faults = 0;
2026 nodemask_t max_group = NODE_MASK_NONE;
2027 int a, b;
2028
2029 /* Are there nodes at this distance from each other? */
2030 if (!find_numa_distance(dist))
2031 continue;
2032
2033 for_each_node_mask(a, nodes) {
2034 unsigned long faults = 0;
2035 nodemask_t this_group;
2036 nodes_clear(this_group);
2037
2038 /* Sum group's NUMA faults; includes a==b case. */
2039 for_each_node_mask(b, nodes) {
2040 if (node_distance(a, b) < dist) {
2041 faults += group_faults(p, b);
2042 node_set(b, this_group);
2043 node_clear(b, nodes);
2044 }
2045 }
2046
2047 /* Remember the top group. */
2048 if (faults > max_faults) {
2049 max_faults = faults;
2050 max_group = this_group;
2051 /*
2052 * subtle: at the smallest distance there is
2053 * just one node left in each "group", the
2054 * winner is the preferred nid.
2055 */
2056 nid = a;
2057 }
2058 }
2059 /* Next round, evaluate the nodes within max_group. */
2060 if (!max_faults)
2061 break;
2062 nodes = max_group;
2063 }
2064 return nid;
2065 }
2066
2067 static void task_numa_placement(struct task_struct *p)
2068 {
2069 int seq, nid, max_nid = -1, max_group_nid = -1;
2070 unsigned long max_faults = 0, max_group_faults = 0;
2071 unsigned long fault_types[2] = { 0, 0 };
2072 unsigned long total_faults;
2073 u64 runtime, period;
2074 spinlock_t *group_lock = NULL;
2075
2076 /*
2077 * The p->mm->numa_scan_seq field gets updated without
2078 * exclusive access. Use READ_ONCE() here to ensure
2079 * that the field is read in a single access:
2080 */
2081 seq = READ_ONCE(p->mm->numa_scan_seq);
2082 if (p->numa_scan_seq == seq)
2083 return;
2084 p->numa_scan_seq = seq;
2085 p->numa_scan_period_max = task_scan_max(p);
2086
2087 total_faults = p->numa_faults_locality[0] +
2088 p->numa_faults_locality[1];
2089 runtime = numa_get_avg_runtime(p, &period);
2090
2091 /* If the task is part of a group prevent parallel updates to group stats */
2092 if (p->numa_group) {
2093 group_lock = &p->numa_group->lock;
2094 spin_lock_irq(group_lock);
2095 }
2096
2097 /* Find the node with the highest number of faults */
2098 for_each_online_node(nid) {
2099 /* Keep track of the offsets in numa_faults array */
2100 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2101 unsigned long faults = 0, group_faults = 0;
2102 int priv;
2103
2104 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2105 long diff, f_diff, f_weight;
2106
2107 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2108 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2109 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2110 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2111
2112 /* Decay existing window, copy faults since last scan */
2113 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2114 fault_types[priv] += p->numa_faults[membuf_idx];
2115 p->numa_faults[membuf_idx] = 0;
2116
2117 /*
2118 * Normalize the faults_from, so all tasks in a group
2119 * count according to CPU use, instead of by the raw
2120 * number of faults. Tasks with little runtime have
2121 * little over-all impact on throughput, and thus their
2122 * faults are less important.
2123 */
2124 f_weight = div64_u64(runtime << 16, period + 1);
2125 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2126 (total_faults + 1);
2127 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2128 p->numa_faults[cpubuf_idx] = 0;
2129
2130 p->numa_faults[mem_idx] += diff;
2131 p->numa_faults[cpu_idx] += f_diff;
2132 faults += p->numa_faults[mem_idx];
2133 p->total_numa_faults += diff;
2134 if (p->numa_group) {
2135 /*
2136 * safe because we can only change our own group
2137 *
2138 * mem_idx represents the offset for a given
2139 * nid and priv in a specific region because it
2140 * is at the beginning of the numa_faults array.
2141 */
2142 p->numa_group->faults[mem_idx] += diff;
2143 p->numa_group->faults_cpu[mem_idx] += f_diff;
2144 p->numa_group->total_faults += diff;
2145 group_faults += p->numa_group->faults[mem_idx];
2146 }
2147 }
2148
2149 if (faults > max_faults) {
2150 max_faults = faults;
2151 max_nid = nid;
2152 }
2153
2154 if (group_faults > max_group_faults) {
2155 max_group_faults = group_faults;
2156 max_group_nid = nid;
2157 }
2158 }
2159
2160 update_task_scan_period(p, fault_types[0], fault_types[1]);
2161
2162 if (p->numa_group) {
2163 numa_group_count_active_nodes(p->numa_group);
2164 spin_unlock_irq(group_lock);
2165 max_nid = preferred_group_nid(p, max_group_nid);
2166 }
2167
2168 if (max_faults) {
2169 /* Set the new preferred node */
2170 if (max_nid != p->numa_preferred_nid)
2171 sched_setnuma(p, max_nid);
2172
2173 if (task_node(p) != p->numa_preferred_nid)
2174 numa_migrate_preferred(p);
2175 }
2176 }
2177
2178 static inline int get_numa_group(struct numa_group *grp)
2179 {
2180 return atomic_inc_not_zero(&grp->refcount);
2181 }
2182
2183 static inline void put_numa_group(struct numa_group *grp)
2184 {
2185 if (atomic_dec_and_test(&grp->refcount))
2186 kfree_rcu(grp, rcu);
2187 }
2188
2189 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2190 int *priv)
2191 {
2192 struct numa_group *grp, *my_grp;
2193 struct task_struct *tsk;
2194 bool join = false;
2195 int cpu = cpupid_to_cpu(cpupid);
2196 int i;
2197
2198 if (unlikely(!p->numa_group)) {
2199 unsigned int size = sizeof(struct numa_group) +
2200 4*nr_node_ids*sizeof(unsigned long);
2201
2202 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2203 if (!grp)
2204 return;
2205
2206 atomic_set(&grp->refcount, 1);
2207 grp->active_nodes = 1;
2208 grp->max_faults_cpu = 0;
2209 spin_lock_init(&grp->lock);
2210 grp->gid = p->pid;
2211 /* Second half of the array tracks nids where faults happen */
2212 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2213 nr_node_ids;
2214
2215 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2216 grp->faults[i] = p->numa_faults[i];
2217
2218 grp->total_faults = p->total_numa_faults;
2219
2220 grp->nr_tasks++;
2221 rcu_assign_pointer(p->numa_group, grp);
2222 }
2223
2224 rcu_read_lock();
2225 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2226
2227 if (!cpupid_match_pid(tsk, cpupid))
2228 goto no_join;
2229
2230 grp = rcu_dereference(tsk->numa_group);
2231 if (!grp)
2232 goto no_join;
2233
2234 my_grp = p->numa_group;
2235 if (grp == my_grp)
2236 goto no_join;
2237
2238 /*
2239 * Only join the other group if its bigger; if we're the bigger group,
2240 * the other task will join us.
2241 */
2242 if (my_grp->nr_tasks > grp->nr_tasks)
2243 goto no_join;
2244
2245 /*
2246 * Tie-break on the grp address.
2247 */
2248 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2249 goto no_join;
2250
2251 /* Always join threads in the same process. */
2252 if (tsk->mm == current->mm)
2253 join = true;
2254
2255 /* Simple filter to avoid false positives due to PID collisions */
2256 if (flags & TNF_SHARED)
2257 join = true;
2258
2259 /* Update priv based on whether false sharing was detected */
2260 *priv = !join;
2261
2262 if (join && !get_numa_group(grp))
2263 goto no_join;
2264
2265 rcu_read_unlock();
2266
2267 if (!join)
2268 return;
2269
2270 BUG_ON(irqs_disabled());
2271 double_lock_irq(&my_grp->lock, &grp->lock);
2272
2273 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2274 my_grp->faults[i] -= p->numa_faults[i];
2275 grp->faults[i] += p->numa_faults[i];
2276 }
2277 my_grp->total_faults -= p->total_numa_faults;
2278 grp->total_faults += p->total_numa_faults;
2279
2280 my_grp->nr_tasks--;
2281 grp->nr_tasks++;
2282
2283 spin_unlock(&my_grp->lock);
2284 spin_unlock_irq(&grp->lock);
2285
2286 rcu_assign_pointer(p->numa_group, grp);
2287
2288 put_numa_group(my_grp);
2289 return;
2290
2291 no_join:
2292 rcu_read_unlock();
2293 return;
2294 }
2295
2296 void task_numa_free(struct task_struct *p)
2297 {
2298 struct numa_group *grp = p->numa_group;
2299 void *numa_faults = p->numa_faults;
2300 unsigned long flags;
2301 int i;
2302
2303 if (grp) {
2304 spin_lock_irqsave(&grp->lock, flags);
2305 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2306 grp->faults[i] -= p->numa_faults[i];
2307 grp->total_faults -= p->total_numa_faults;
2308
2309 grp->nr_tasks--;
2310 spin_unlock_irqrestore(&grp->lock, flags);
2311 RCU_INIT_POINTER(p->numa_group, NULL);
2312 put_numa_group(grp);
2313 }
2314
2315 p->numa_faults = NULL;
2316 kfree(numa_faults);
2317 }
2318
2319 /*
2320 * Got a PROT_NONE fault for a page on @node.
2321 */
2322 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2323 {
2324 struct task_struct *p = current;
2325 bool migrated = flags & TNF_MIGRATED;
2326 int cpu_node = task_node(current);
2327 int local = !!(flags & TNF_FAULT_LOCAL);
2328 struct numa_group *ng;
2329 int priv;
2330
2331 if (!static_branch_likely(&sched_numa_balancing))
2332 return;
2333
2334 /* for example, ksmd faulting in a user's mm */
2335 if (!p->mm)
2336 return;
2337
2338 /* Allocate buffer to track faults on a per-node basis */
2339 if (unlikely(!p->numa_faults)) {
2340 int size = sizeof(*p->numa_faults) *
2341 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2342
2343 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2344 if (!p->numa_faults)
2345 return;
2346
2347 p->total_numa_faults = 0;
2348 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2349 }
2350
2351 /*
2352 * First accesses are treated as private, otherwise consider accesses
2353 * to be private if the accessing pid has not changed
2354 */
2355 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2356 priv = 1;
2357 } else {
2358 priv = cpupid_match_pid(p, last_cpupid);
2359 if (!priv && !(flags & TNF_NO_GROUP))
2360 task_numa_group(p, last_cpupid, flags, &priv);
2361 }
2362
2363 /*
2364 * If a workload spans multiple NUMA nodes, a shared fault that
2365 * occurs wholly within the set of nodes that the workload is
2366 * actively using should be counted as local. This allows the
2367 * scan rate to slow down when a workload has settled down.
2368 */
2369 ng = p->numa_group;
2370 if (!priv && !local && ng && ng->active_nodes > 1 &&
2371 numa_is_active_node(cpu_node, ng) &&
2372 numa_is_active_node(mem_node, ng))
2373 local = 1;
2374
2375 task_numa_placement(p);
2376
2377 /*
2378 * Retry task to preferred node migration periodically, in case it
2379 * case it previously failed, or the scheduler moved us.
2380 */
2381 if (time_after(jiffies, p->numa_migrate_retry))
2382 numa_migrate_preferred(p);
2383
2384 if (migrated)
2385 p->numa_pages_migrated += pages;
2386 if (flags & TNF_MIGRATE_FAIL)
2387 p->numa_faults_locality[2] += pages;
2388
2389 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2390 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2391 p->numa_faults_locality[local] += pages;
2392 }
2393
2394 static void reset_ptenuma_scan(struct task_struct *p)
2395 {
2396 /*
2397 * We only did a read acquisition of the mmap sem, so
2398 * p->mm->numa_scan_seq is written to without exclusive access
2399 * and the update is not guaranteed to be atomic. That's not
2400 * much of an issue though, since this is just used for
2401 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2402 * expensive, to avoid any form of compiler optimizations:
2403 */
2404 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2405 p->mm->numa_scan_offset = 0;
2406 }
2407
2408 /*
2409 * The expensive part of numa migration is done from task_work context.
2410 * Triggered from task_tick_numa().
2411 */
2412 void task_numa_work(struct callback_head *work)
2413 {
2414 unsigned long migrate, next_scan, now = jiffies;
2415 struct task_struct *p = current;
2416 struct mm_struct *mm = p->mm;
2417 u64 runtime = p->se.sum_exec_runtime;
2418 struct vm_area_struct *vma;
2419 unsigned long start, end;
2420 unsigned long nr_pte_updates = 0;
2421 long pages, virtpages;
2422
2423 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2424
2425 work->next = work; /* protect against double add */
2426 /*
2427 * Who cares about NUMA placement when they're dying.
2428 *
2429 * NOTE: make sure not to dereference p->mm before this check,
2430 * exit_task_work() happens _after_ exit_mm() so we could be called
2431 * without p->mm even though we still had it when we enqueued this
2432 * work.
2433 */
2434 if (p->flags & PF_EXITING)
2435 return;
2436
2437 if (!mm->numa_next_scan) {
2438 mm->numa_next_scan = now +
2439 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2440 }
2441
2442 /*
2443 * Enforce maximal scan/migration frequency..
2444 */
2445 migrate = mm->numa_next_scan;
2446 if (time_before(now, migrate))
2447 return;
2448
2449 if (p->numa_scan_period == 0) {
2450 p->numa_scan_period_max = task_scan_max(p);
2451 p->numa_scan_period = task_scan_min(p);
2452 }
2453
2454 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2455 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2456 return;
2457
2458 /*
2459 * Delay this task enough that another task of this mm will likely win
2460 * the next time around.
2461 */
2462 p->node_stamp += 2 * TICK_NSEC;
2463
2464 start = mm->numa_scan_offset;
2465 pages = sysctl_numa_balancing_scan_size;
2466 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2467 virtpages = pages * 8; /* Scan up to this much virtual space */
2468 if (!pages)
2469 return;
2470
2471
2472 down_read(&mm->mmap_sem);
2473 vma = find_vma(mm, start);
2474 if (!vma) {
2475 reset_ptenuma_scan(p);
2476 start = 0;
2477 vma = mm->mmap;
2478 }
2479 for (; vma; vma = vma->vm_next) {
2480 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2481 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2482 continue;
2483 }
2484
2485 /*
2486 * Shared library pages mapped by multiple processes are not
2487 * migrated as it is expected they are cache replicated. Avoid
2488 * hinting faults in read-only file-backed mappings or the vdso
2489 * as migrating the pages will be of marginal benefit.
2490 */
2491 if (!vma->vm_mm ||
2492 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2493 continue;
2494
2495 /*
2496 * Skip inaccessible VMAs to avoid any confusion between
2497 * PROT_NONE and NUMA hinting ptes
2498 */
2499 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2500 continue;
2501
2502 do {
2503 start = max(start, vma->vm_start);
2504 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2505 end = min(end, vma->vm_end);
2506 nr_pte_updates = change_prot_numa(vma, start, end);
2507
2508 /*
2509 * Try to scan sysctl_numa_balancing_size worth of
2510 * hpages that have at least one present PTE that
2511 * is not already pte-numa. If the VMA contains
2512 * areas that are unused or already full of prot_numa
2513 * PTEs, scan up to virtpages, to skip through those
2514 * areas faster.
2515 */
2516 if (nr_pte_updates)
2517 pages -= (end - start) >> PAGE_SHIFT;
2518 virtpages -= (end - start) >> PAGE_SHIFT;
2519
2520 start = end;
2521 if (pages <= 0 || virtpages <= 0)
2522 goto out;
2523
2524 cond_resched();
2525 } while (end != vma->vm_end);
2526 }
2527
2528 out:
2529 /*
2530 * It is possible to reach the end of the VMA list but the last few
2531 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2532 * would find the !migratable VMA on the next scan but not reset the
2533 * scanner to the start so check it now.
2534 */
2535 if (vma)
2536 mm->numa_scan_offset = start;
2537 else
2538 reset_ptenuma_scan(p);
2539 up_read(&mm->mmap_sem);
2540
2541 /*
2542 * Make sure tasks use at least 32x as much time to run other code
2543 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2544 * Usually update_task_scan_period slows down scanning enough; on an
2545 * overloaded system we need to limit overhead on a per task basis.
2546 */
2547 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2548 u64 diff = p->se.sum_exec_runtime - runtime;
2549 p->node_stamp += 32 * diff;
2550 }
2551 }
2552
2553 /*
2554 * Drive the periodic memory faults..
2555 */
2556 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2557 {
2558 struct callback_head *work = &curr->numa_work;
2559 u64 period, now;
2560
2561 /*
2562 * We don't care about NUMA placement if we don't have memory.
2563 */
2564 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2565 return;
2566
2567 /*
2568 * Using runtime rather than walltime has the dual advantage that
2569 * we (mostly) drive the selection from busy threads and that the
2570 * task needs to have done some actual work before we bother with
2571 * NUMA placement.
2572 */
2573 now = curr->se.sum_exec_runtime;
2574 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2575
2576 if (now > curr->node_stamp + period) {
2577 if (!curr->node_stamp)
2578 curr->numa_scan_period = task_scan_min(curr);
2579 curr->node_stamp += period;
2580
2581 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2582 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2583 task_work_add(curr, work, true);
2584 }
2585 }
2586 }
2587 #else
2588 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2589 {
2590 }
2591
2592 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2593 {
2594 }
2595
2596 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2597 {
2598 }
2599 #endif /* CONFIG_NUMA_BALANCING */
2600
2601 static void
2602 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2603 {
2604 update_load_add(&cfs_rq->load, se->load.weight);
2605 if (!parent_entity(se))
2606 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2607 #ifdef CONFIG_SMP
2608 if (entity_is_task(se)) {
2609 struct rq *rq = rq_of(cfs_rq);
2610
2611 account_numa_enqueue(rq, task_of(se));
2612 list_add(&se->group_node, &rq->cfs_tasks);
2613 }
2614 #endif
2615 cfs_rq->nr_running++;
2616 }
2617
2618 static void
2619 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2620 {
2621 update_load_sub(&cfs_rq->load, se->load.weight);
2622 if (!parent_entity(se))
2623 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2624 #ifdef CONFIG_SMP
2625 if (entity_is_task(se)) {
2626 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2627 list_del_init(&se->group_node);
2628 }
2629 #endif
2630 cfs_rq->nr_running--;
2631 }
2632
2633 #ifdef CONFIG_FAIR_GROUP_SCHED
2634 # ifdef CONFIG_SMP
2635 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2636 {
2637 long tg_weight, load, shares;
2638
2639 /*
2640 * This really should be: cfs_rq->avg.load_avg, but instead we use
2641 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2642 * the shares for small weight interactive tasks.
2643 */
2644 load = scale_load_down(cfs_rq->load.weight);
2645
2646 tg_weight = atomic_long_read(&tg->load_avg);
2647
2648 /* Ensure tg_weight >= load */
2649 tg_weight -= cfs_rq->tg_load_avg_contrib;
2650 tg_weight += load;
2651
2652 shares = (tg->shares * load);
2653 if (tg_weight)
2654 shares /= tg_weight;
2655
2656 /*
2657 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2658 * of a group with small tg->shares value. It is a floor value which is
2659 * assigned as a minimum load.weight to the sched_entity representing
2660 * the group on a CPU.
2661 *
2662 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2663 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2664 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2665 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2666 * instead of 0.
2667 */
2668 if (shares < MIN_SHARES)
2669 shares = MIN_SHARES;
2670 if (shares > tg->shares)
2671 shares = tg->shares;
2672
2673 return shares;
2674 }
2675 # else /* CONFIG_SMP */
2676 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2677 {
2678 return tg->shares;
2679 }
2680 # endif /* CONFIG_SMP */
2681
2682 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2683 unsigned long weight)
2684 {
2685 if (se->on_rq) {
2686 /* commit outstanding execution time */
2687 if (cfs_rq->curr == se)
2688 update_curr(cfs_rq);
2689 account_entity_dequeue(cfs_rq, se);
2690 }
2691
2692 update_load_set(&se->load, weight);
2693
2694 if (se->on_rq)
2695 account_entity_enqueue(cfs_rq, se);
2696 }
2697
2698 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2699
2700 static void update_cfs_shares(struct sched_entity *se)
2701 {
2702 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2703 struct task_group *tg;
2704 long shares;
2705
2706 if (!cfs_rq)
2707 return;
2708
2709 if (throttled_hierarchy(cfs_rq))
2710 return;
2711
2712 tg = cfs_rq->tg;
2713
2714 #ifndef CONFIG_SMP
2715 if (likely(se->load.weight == tg->shares))
2716 return;
2717 #endif
2718 shares = calc_cfs_shares(cfs_rq, tg);
2719
2720 reweight_entity(cfs_rq_of(se), se, shares);
2721 }
2722
2723 #else /* CONFIG_FAIR_GROUP_SCHED */
2724 static inline void update_cfs_shares(struct sched_entity *se)
2725 {
2726 }
2727 #endif /* CONFIG_FAIR_GROUP_SCHED */
2728
2729 #ifdef CONFIG_SMP
2730 /*
2731 * Approximate:
2732 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2733 */
2734 static u64 decay_load(u64 val, u64 n)
2735 {
2736 unsigned int local_n;
2737
2738 if (unlikely(n > LOAD_AVG_PERIOD * 63))
2739 return 0;
2740
2741 /* after bounds checking we can collapse to 32-bit */
2742 local_n = n;
2743
2744 /*
2745 * As y^PERIOD = 1/2, we can combine
2746 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2747 * With a look-up table which covers y^n (n<PERIOD)
2748 *
2749 * To achieve constant time decay_load.
2750 */
2751 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2752 val >>= local_n / LOAD_AVG_PERIOD;
2753 local_n %= LOAD_AVG_PERIOD;
2754 }
2755
2756 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2757 return val;
2758 }
2759
2760 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2761 {
2762 u32 c1, c2, c3 = d3; /* y^0 == 1 */
2763
2764 /*
2765 * c1 = d1 y^p
2766 */
2767 c1 = decay_load((u64)d1, periods);
2768
2769 /*
2770 * p-1
2771 * c2 = 1024 \Sum y^n
2772 * n=1
2773 *
2774 * inf inf
2775 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
2776 * n=0 n=p
2777 */
2778 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2779
2780 return c1 + c2 + c3;
2781 }
2782
2783 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2784
2785 /*
2786 * Accumulate the three separate parts of the sum; d1 the remainder
2787 * of the last (incomplete) period, d2 the span of full periods and d3
2788 * the remainder of the (incomplete) current period.
2789 *
2790 * d1 d2 d3
2791 * ^ ^ ^
2792 * | | |
2793 * |<->|<----------------->|<--->|
2794 * ... |---x---|------| ... |------|-----x (now)
2795 *
2796 * p-1
2797 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2798 * n=1
2799 *
2800 * = u y^p + (Step 1)
2801 *
2802 * p-1
2803 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
2804 * n=1
2805 */
2806 static __always_inline u32
2807 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2808 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2809 {
2810 unsigned long scale_freq, scale_cpu;
2811 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2812 u64 periods;
2813
2814 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2815 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2816
2817 delta += sa->period_contrib;
2818 periods = delta / 1024; /* A period is 1024us (~1ms) */
2819
2820 /*
2821 * Step 1: decay old *_sum if we crossed period boundaries.
2822 */
2823 if (periods) {
2824 sa->load_sum = decay_load(sa->load_sum, periods);
2825 if (cfs_rq) {
2826 cfs_rq->runnable_load_sum =
2827 decay_load(cfs_rq->runnable_load_sum, periods);
2828 }
2829 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
2830
2831 /*
2832 * Step 2
2833 */
2834 delta %= 1024;
2835 contrib = __accumulate_pelt_segments(periods,
2836 1024 - sa->period_contrib, delta);
2837 }
2838 sa->period_contrib = delta;
2839
2840 contrib = cap_scale(contrib, scale_freq);
2841 if (weight) {
2842 sa->load_sum += weight * contrib;
2843 if (cfs_rq)
2844 cfs_rq->runnable_load_sum += weight * contrib;
2845 }
2846 if (running)
2847 sa->util_sum += contrib * scale_cpu;
2848
2849 return periods;
2850 }
2851
2852 /*
2853 * We can represent the historical contribution to runnable average as the
2854 * coefficients of a geometric series. To do this we sub-divide our runnable
2855 * history into segments of approximately 1ms (1024us); label the segment that
2856 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2857 *
2858 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2859 * p0 p1 p2
2860 * (now) (~1ms ago) (~2ms ago)
2861 *
2862 * Let u_i denote the fraction of p_i that the entity was runnable.
2863 *
2864 * We then designate the fractions u_i as our co-efficients, yielding the
2865 * following representation of historical load:
2866 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2867 *
2868 * We choose y based on the with of a reasonably scheduling period, fixing:
2869 * y^32 = 0.5
2870 *
2871 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2872 * approximately half as much as the contribution to load within the last ms
2873 * (u_0).
2874 *
2875 * When a period "rolls over" and we have new u_0`, multiplying the previous
2876 * sum again by y is sufficient to update:
2877 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2878 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2879 */
2880 static __always_inline int
2881 ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2882 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2883 {
2884 u64 delta;
2885
2886 delta = now - sa->last_update_time;
2887 /*
2888 * This should only happen when time goes backwards, which it
2889 * unfortunately does during sched clock init when we swap over to TSC.
2890 */
2891 if ((s64)delta < 0) {
2892 sa->last_update_time = now;
2893 return 0;
2894 }
2895
2896 /*
2897 * Use 1024ns as the unit of measurement since it's a reasonable
2898 * approximation of 1us and fast to compute.
2899 */
2900 delta >>= 10;
2901 if (!delta)
2902 return 0;
2903
2904 sa->last_update_time += delta << 10;
2905
2906 /*
2907 * Now we know we crossed measurement unit boundaries. The *_avg
2908 * accrues by two steps:
2909 *
2910 * Step 1: accumulate *_sum since last_update_time. If we haven't
2911 * crossed period boundaries, finish.
2912 */
2913 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
2914 return 0;
2915
2916 /*
2917 * Step 2: update *_avg.
2918 */
2919 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2920 if (cfs_rq) {
2921 cfs_rq->runnable_load_avg =
2922 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2923 }
2924 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2925
2926 return 1;
2927 }
2928
2929 static int
2930 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
2931 {
2932 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
2933 }
2934
2935 static int
2936 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
2937 {
2938 return ___update_load_avg(now, cpu, &se->avg,
2939 se->on_rq * scale_load_down(se->load.weight),
2940 cfs_rq->curr == se, NULL);
2941 }
2942
2943 static int
2944 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
2945 {
2946 return ___update_load_avg(now, cpu, &cfs_rq->avg,
2947 scale_load_down(cfs_rq->load.weight),
2948 cfs_rq->curr != NULL, cfs_rq);
2949 }
2950
2951 /*
2952 * Signed add and clamp on underflow.
2953 *
2954 * Explicitly do a load-store to ensure the intermediate value never hits
2955 * memory. This allows lockless observations without ever seeing the negative
2956 * values.
2957 */
2958 #define add_positive(_ptr, _val) do { \
2959 typeof(_ptr) ptr = (_ptr); \
2960 typeof(_val) val = (_val); \
2961 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2962 \
2963 res = var + val; \
2964 \
2965 if (val < 0 && res > var) \
2966 res = 0; \
2967 \
2968 WRITE_ONCE(*ptr, res); \
2969 } while (0)
2970
2971 #ifdef CONFIG_FAIR_GROUP_SCHED
2972 /**
2973 * update_tg_load_avg - update the tg's load avg
2974 * @cfs_rq: the cfs_rq whose avg changed
2975 * @force: update regardless of how small the difference
2976 *
2977 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2978 * However, because tg->load_avg is a global value there are performance
2979 * considerations.
2980 *
2981 * In order to avoid having to look at the other cfs_rq's, we use a
2982 * differential update where we store the last value we propagated. This in
2983 * turn allows skipping updates if the differential is 'small'.
2984 *
2985 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2986 * done) and effective_load() (which is not done because it is too costly).
2987 */
2988 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2989 {
2990 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2991
2992 /*
2993 * No need to update load_avg for root_task_group as it is not used.
2994 */
2995 if (cfs_rq->tg == &root_task_group)
2996 return;
2997
2998 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2999 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3000 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3001 }
3002 }
3003
3004 /*
3005 * Called within set_task_rq() right before setting a task's cpu. The
3006 * caller only guarantees p->pi_lock is held; no other assumptions,
3007 * including the state of rq->lock, should be made.
3008 */
3009 void set_task_rq_fair(struct sched_entity *se,
3010 struct cfs_rq *prev, struct cfs_rq *next)
3011 {
3012 u64 p_last_update_time;
3013 u64 n_last_update_time;
3014
3015 if (!sched_feat(ATTACH_AGE_LOAD))
3016 return;
3017
3018 /*
3019 * We are supposed to update the task to "current" time, then its up to
3020 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3021 * getting what current time is, so simply throw away the out-of-date
3022 * time. This will result in the wakee task is less decayed, but giving
3023 * the wakee more load sounds not bad.
3024 */
3025 if (!(se->avg.last_update_time && prev))
3026 return;
3027
3028 #ifndef CONFIG_64BIT
3029 {
3030 u64 p_last_update_time_copy;
3031 u64 n_last_update_time_copy;
3032
3033 do {
3034 p_last_update_time_copy = prev->load_last_update_time_copy;
3035 n_last_update_time_copy = next->load_last_update_time_copy;
3036
3037 smp_rmb();
3038
3039 p_last_update_time = prev->avg.last_update_time;
3040 n_last_update_time = next->avg.last_update_time;
3041
3042 } while (p_last_update_time != p_last_update_time_copy ||
3043 n_last_update_time != n_last_update_time_copy);
3044 }
3045 #else
3046 p_last_update_time = prev->avg.last_update_time;
3047 n_last_update_time = next->avg.last_update_time;
3048 #endif
3049 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3050 se->avg.last_update_time = n_last_update_time;
3051 }
3052
3053 /* Take into account change of utilization of a child task group */
3054 static inline void
3055 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3056 {
3057 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3058 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3059
3060 /* Nothing to update */
3061 if (!delta)
3062 return;
3063
3064 /* Set new sched_entity's utilization */
3065 se->avg.util_avg = gcfs_rq->avg.util_avg;
3066 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3067
3068 /* Update parent cfs_rq utilization */
3069 add_positive(&cfs_rq->avg.util_avg, delta);
3070 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3071 }
3072
3073 /* Take into account change of load of a child task group */
3074 static inline void
3075 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3076 {
3077 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3078 long delta, load = gcfs_rq->avg.load_avg;
3079
3080 /*
3081 * If the load of group cfs_rq is null, the load of the
3082 * sched_entity will also be null so we can skip the formula
3083 */
3084 if (load) {
3085 long tg_load;
3086
3087 /* Get tg's load and ensure tg_load > 0 */
3088 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3089
3090 /* Ensure tg_load >= load and updated with current load*/
3091 tg_load -= gcfs_rq->tg_load_avg_contrib;
3092 tg_load += load;
3093
3094 /*
3095 * We need to compute a correction term in the case that the
3096 * task group is consuming more CPU than a task of equal
3097 * weight. A task with a weight equals to tg->shares will have
3098 * a load less or equal to scale_load_down(tg->shares).
3099 * Similarly, the sched_entities that represent the task group
3100 * at parent level, can't have a load higher than
3101 * scale_load_down(tg->shares). And the Sum of sched_entities'
3102 * load must be <= scale_load_down(tg->shares).
3103 */
3104 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3105 /* scale gcfs_rq's load into tg's shares*/
3106 load *= scale_load_down(gcfs_rq->tg->shares);
3107 load /= tg_load;
3108 }
3109 }
3110
3111 delta = load - se->avg.load_avg;
3112
3113 /* Nothing to update */
3114 if (!delta)
3115 return;
3116
3117 /* Set new sched_entity's load */
3118 se->avg.load_avg = load;
3119 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3120
3121 /* Update parent cfs_rq load */
3122 add_positive(&cfs_rq->avg.load_avg, delta);
3123 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3124
3125 /*
3126 * If the sched_entity is already enqueued, we also have to update the
3127 * runnable load avg.
3128 */
3129 if (se->on_rq) {
3130 /* Update parent cfs_rq runnable_load_avg */
3131 add_positive(&cfs_rq->runnable_load_avg, delta);
3132 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3133 }
3134 }
3135
3136 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3137 {
3138 cfs_rq->propagate_avg = 1;
3139 }
3140
3141 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3142 {
3143 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3144
3145 if (!cfs_rq->propagate_avg)
3146 return 0;
3147
3148 cfs_rq->propagate_avg = 0;
3149 return 1;
3150 }
3151
3152 /* Update task and its cfs_rq load average */
3153 static inline int propagate_entity_load_avg(struct sched_entity *se)
3154 {
3155 struct cfs_rq *cfs_rq;
3156
3157 if (entity_is_task(se))
3158 return 0;
3159
3160 if (!test_and_clear_tg_cfs_propagate(se))
3161 return 0;
3162
3163 cfs_rq = cfs_rq_of(se);
3164
3165 set_tg_cfs_propagate(cfs_rq);
3166
3167 update_tg_cfs_util(cfs_rq, se);
3168 update_tg_cfs_load(cfs_rq, se);
3169
3170 return 1;
3171 }
3172
3173 /*
3174 * Check if we need to update the load and the utilization of a blocked
3175 * group_entity:
3176 */
3177 static inline bool skip_blocked_update(struct sched_entity *se)
3178 {
3179 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3180
3181 /*
3182 * If sched_entity still have not zero load or utilization, we have to
3183 * decay it:
3184 */
3185 if (se->avg.load_avg || se->avg.util_avg)
3186 return false;
3187
3188 /*
3189 * If there is a pending propagation, we have to update the load and
3190 * the utilization of the sched_entity:
3191 */
3192 if (gcfs_rq->propagate_avg)
3193 return false;
3194
3195 /*
3196 * Otherwise, the load and the utilization of the sched_entity is
3197 * already zero and there is no pending propagation, so it will be a
3198 * waste of time to try to decay it:
3199 */
3200 return true;
3201 }
3202
3203 #else /* CONFIG_FAIR_GROUP_SCHED */
3204
3205 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3206
3207 static inline int propagate_entity_load_avg(struct sched_entity *se)
3208 {
3209 return 0;
3210 }
3211
3212 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3213
3214 #endif /* CONFIG_FAIR_GROUP_SCHED */
3215
3216 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3217 {
3218 if (&this_rq()->cfs == cfs_rq) {
3219 /*
3220 * There are a few boundary cases this might miss but it should
3221 * get called often enough that that should (hopefully) not be
3222 * a real problem -- added to that it only calls on the local
3223 * CPU, so if we enqueue remotely we'll miss an update, but
3224 * the next tick/schedule should update.
3225 *
3226 * It will not get called when we go idle, because the idle
3227 * thread is a different class (!fair), nor will the utilization
3228 * number include things like RT tasks.
3229 *
3230 * As is, the util number is not freq-invariant (we'd have to
3231 * implement arch_scale_freq_capacity() for that).
3232 *
3233 * See cpu_util().
3234 */
3235 cpufreq_update_util(rq_of(cfs_rq), 0);
3236 }
3237 }
3238
3239 /*
3240 * Unsigned subtract and clamp on underflow.
3241 *
3242 * Explicitly do a load-store to ensure the intermediate value never hits
3243 * memory. This allows lockless observations without ever seeing the negative
3244 * values.
3245 */
3246 #define sub_positive(_ptr, _val) do { \
3247 typeof(_ptr) ptr = (_ptr); \
3248 typeof(*ptr) val = (_val); \
3249 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3250 res = var - val; \
3251 if (res > var) \
3252 res = 0; \
3253 WRITE_ONCE(*ptr, res); \
3254 } while (0)
3255
3256 /**
3257 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3258 * @now: current time, as per cfs_rq_clock_task()
3259 * @cfs_rq: cfs_rq to update
3260 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3261 *
3262 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3263 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3264 * post_init_entity_util_avg().
3265 *
3266 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3267 *
3268 * Returns true if the load decayed or we removed load.
3269 *
3270 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3271 * call update_tg_load_avg() when this function returns true.
3272 */
3273 static inline int
3274 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3275 {
3276 struct sched_avg *sa = &cfs_rq->avg;
3277 int decayed, removed_load = 0, removed_util = 0;
3278
3279 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3280 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3281 sub_positive(&sa->load_avg, r);
3282 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3283 removed_load = 1;
3284 set_tg_cfs_propagate(cfs_rq);
3285 }
3286
3287 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3288 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3289 sub_positive(&sa->util_avg, r);
3290 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3291 removed_util = 1;
3292 set_tg_cfs_propagate(cfs_rq);
3293 }
3294
3295 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3296
3297 #ifndef CONFIG_64BIT
3298 smp_wmb();
3299 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3300 #endif
3301
3302 if (update_freq && (decayed || removed_util))
3303 cfs_rq_util_change(cfs_rq);
3304
3305 return decayed || removed_load;
3306 }
3307
3308 /*
3309 * Optional action to be done while updating the load average
3310 */
3311 #define UPDATE_TG 0x1
3312 #define SKIP_AGE_LOAD 0x2
3313
3314 /* Update task and its cfs_rq load average */
3315 static inline void update_load_avg(struct sched_entity *se, int flags)
3316 {
3317 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3318 u64 now = cfs_rq_clock_task(cfs_rq);
3319 struct rq *rq = rq_of(cfs_rq);
3320 int cpu = cpu_of(rq);
3321 int decayed;
3322
3323 /*
3324 * Track task load average for carrying it to new CPU after migrated, and
3325 * track group sched_entity load average for task_h_load calc in migration
3326 */
3327 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3328 __update_load_avg_se(now, cpu, cfs_rq, se);
3329
3330 decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
3331 decayed |= propagate_entity_load_avg(se);
3332
3333 if (decayed && (flags & UPDATE_TG))
3334 update_tg_load_avg(cfs_rq, 0);
3335 }
3336
3337 /**
3338 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3339 * @cfs_rq: cfs_rq to attach to
3340 * @se: sched_entity to attach
3341 *
3342 * Must call update_cfs_rq_load_avg() before this, since we rely on
3343 * cfs_rq->avg.last_update_time being current.
3344 */
3345 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3346 {
3347 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3348 cfs_rq->avg.load_avg += se->avg.load_avg;
3349 cfs_rq->avg.load_sum += se->avg.load_sum;
3350 cfs_rq->avg.util_avg += se->avg.util_avg;
3351 cfs_rq->avg.util_sum += se->avg.util_sum;
3352 set_tg_cfs_propagate(cfs_rq);
3353
3354 cfs_rq_util_change(cfs_rq);
3355 }
3356
3357 /**
3358 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3359 * @cfs_rq: cfs_rq to detach from
3360 * @se: sched_entity to detach
3361 *
3362 * Must call update_cfs_rq_load_avg() before this, since we rely on
3363 * cfs_rq->avg.last_update_time being current.
3364 */
3365 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3366 {
3367
3368 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3369 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3370 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3371 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3372 set_tg_cfs_propagate(cfs_rq);
3373
3374 cfs_rq_util_change(cfs_rq);
3375 }
3376
3377 /* Add the load generated by se into cfs_rq's load average */
3378 static inline void
3379 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3380 {
3381 struct sched_avg *sa = &se->avg;
3382
3383 cfs_rq->runnable_load_avg += sa->load_avg;
3384 cfs_rq->runnable_load_sum += sa->load_sum;
3385
3386 if (!sa->last_update_time) {
3387 attach_entity_load_avg(cfs_rq, se);
3388 update_tg_load_avg(cfs_rq, 0);
3389 }
3390 }
3391
3392 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3393 static inline void
3394 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3395 {
3396 cfs_rq->runnable_load_avg =
3397 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3398 cfs_rq->runnable_load_sum =
3399 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3400 }
3401
3402 #ifndef CONFIG_64BIT
3403 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3404 {
3405 u64 last_update_time_copy;
3406 u64 last_update_time;
3407
3408 do {
3409 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3410 smp_rmb();
3411 last_update_time = cfs_rq->avg.last_update_time;
3412 } while (last_update_time != last_update_time_copy);
3413
3414 return last_update_time;
3415 }
3416 #else
3417 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3418 {
3419 return cfs_rq->avg.last_update_time;
3420 }
3421 #endif
3422
3423 /*
3424 * Synchronize entity load avg of dequeued entity without locking
3425 * the previous rq.
3426 */
3427 void sync_entity_load_avg(struct sched_entity *se)
3428 {
3429 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3430 u64 last_update_time;
3431
3432 last_update_time = cfs_rq_last_update_time(cfs_rq);
3433 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3434 }
3435
3436 /*
3437 * Task first catches up with cfs_rq, and then subtract
3438 * itself from the cfs_rq (task must be off the queue now).
3439 */
3440 void remove_entity_load_avg(struct sched_entity *se)
3441 {
3442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3443
3444 /*
3445 * tasks cannot exit without having gone through wake_up_new_task() ->
3446 * post_init_entity_util_avg() which will have added things to the
3447 * cfs_rq, so we can remove unconditionally.
3448 *
3449 * Similarly for groups, they will have passed through
3450 * post_init_entity_util_avg() before unregister_sched_fair_group()
3451 * calls this.
3452 */
3453
3454 sync_entity_load_avg(se);
3455 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3456 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3457 }
3458
3459 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3460 {
3461 return cfs_rq->runnable_load_avg;
3462 }
3463
3464 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3465 {
3466 return cfs_rq->avg.load_avg;
3467 }
3468
3469 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3470
3471 #else /* CONFIG_SMP */
3472
3473 static inline int
3474 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3475 {
3476 return 0;
3477 }
3478
3479 #define UPDATE_TG 0x0
3480 #define SKIP_AGE_LOAD 0x0
3481
3482 static inline void update_load_avg(struct sched_entity *se, int not_used1)
3483 {
3484 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3485 }
3486
3487 static inline void
3488 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3489 static inline void
3490 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3491 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3492
3493 static inline void
3494 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3495 static inline void
3496 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3497
3498 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3499 {
3500 return 0;
3501 }
3502
3503 #endif /* CONFIG_SMP */
3504
3505 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3506 {
3507 #ifdef CONFIG_SCHED_DEBUG
3508 s64 d = se->vruntime - cfs_rq->min_vruntime;
3509
3510 if (d < 0)
3511 d = -d;
3512
3513 if (d > 3*sysctl_sched_latency)
3514 schedstat_inc(cfs_rq->nr_spread_over);
3515 #endif
3516 }
3517
3518 static void
3519 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3520 {
3521 u64 vruntime = cfs_rq->min_vruntime;
3522
3523 /*
3524 * The 'current' period is already promised to the current tasks,
3525 * however the extra weight of the new task will slow them down a
3526 * little, place the new task so that it fits in the slot that
3527 * stays open at the end.
3528 */
3529 if (initial && sched_feat(START_DEBIT))
3530 vruntime += sched_vslice(cfs_rq, se);
3531
3532 /* sleeps up to a single latency don't count. */
3533 if (!initial) {
3534 unsigned long thresh = sysctl_sched_latency;
3535
3536 /*
3537 * Halve their sleep time's effect, to allow
3538 * for a gentler effect of sleepers:
3539 */
3540 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3541 thresh >>= 1;
3542
3543 vruntime -= thresh;
3544 }
3545
3546 /* ensure we never gain time by being placed backwards. */
3547 se->vruntime = max_vruntime(se->vruntime, vruntime);
3548 }
3549
3550 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3551
3552 static inline void check_schedstat_required(void)
3553 {
3554 #ifdef CONFIG_SCHEDSTATS
3555 if (schedstat_enabled())
3556 return;
3557
3558 /* Force schedstat enabled if a dependent tracepoint is active */
3559 if (trace_sched_stat_wait_enabled() ||
3560 trace_sched_stat_sleep_enabled() ||
3561 trace_sched_stat_iowait_enabled() ||
3562 trace_sched_stat_blocked_enabled() ||
3563 trace_sched_stat_runtime_enabled()) {
3564 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3565 "stat_blocked and stat_runtime require the "
3566 "kernel parameter schedstats=enable or "
3567 "kernel.sched_schedstats=1\n");
3568 }
3569 #endif
3570 }
3571
3572
3573 /*
3574 * MIGRATION
3575 *
3576 * dequeue
3577 * update_curr()
3578 * update_min_vruntime()
3579 * vruntime -= min_vruntime
3580 *
3581 * enqueue
3582 * update_curr()
3583 * update_min_vruntime()
3584 * vruntime += min_vruntime
3585 *
3586 * this way the vruntime transition between RQs is done when both
3587 * min_vruntime are up-to-date.
3588 *
3589 * WAKEUP (remote)
3590 *
3591 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3592 * vruntime -= min_vruntime
3593 *
3594 * enqueue
3595 * update_curr()
3596 * update_min_vruntime()
3597 * vruntime += min_vruntime
3598 *
3599 * this way we don't have the most up-to-date min_vruntime on the originating
3600 * CPU and an up-to-date min_vruntime on the destination CPU.
3601 */
3602
3603 static void
3604 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3605 {
3606 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3607 bool curr = cfs_rq->curr == se;
3608
3609 /*
3610 * If we're the current task, we must renormalise before calling
3611 * update_curr().
3612 */
3613 if (renorm && curr)
3614 se->vruntime += cfs_rq->min_vruntime;
3615
3616 update_curr(cfs_rq);
3617
3618 /*
3619 * Otherwise, renormalise after, such that we're placed at the current
3620 * moment in time, instead of some random moment in the past. Being
3621 * placed in the past could significantly boost this task to the
3622 * fairness detriment of existing tasks.
3623 */
3624 if (renorm && !curr)
3625 se->vruntime += cfs_rq->min_vruntime;
3626
3627 /*
3628 * When enqueuing a sched_entity, we must:
3629 * - Update loads to have both entity and cfs_rq synced with now.
3630 * - Add its load to cfs_rq->runnable_avg
3631 * - For group_entity, update its weight to reflect the new share of
3632 * its group cfs_rq
3633 * - Add its new weight to cfs_rq->load.weight
3634 */
3635 update_load_avg(se, UPDATE_TG);
3636 enqueue_entity_load_avg(cfs_rq, se);
3637 update_cfs_shares(se);
3638 account_entity_enqueue(cfs_rq, se);
3639
3640 if (flags & ENQUEUE_WAKEUP)
3641 place_entity(cfs_rq, se, 0);
3642
3643 check_schedstat_required();
3644 update_stats_enqueue(cfs_rq, se, flags);
3645 check_spread(cfs_rq, se);
3646 if (!curr)
3647 __enqueue_entity(cfs_rq, se);
3648 se->on_rq = 1;
3649
3650 if (cfs_rq->nr_running == 1) {
3651 list_add_leaf_cfs_rq(cfs_rq);
3652 check_enqueue_throttle(cfs_rq);
3653 }
3654 }
3655
3656 static void __clear_buddies_last(struct sched_entity *se)
3657 {
3658 for_each_sched_entity(se) {
3659 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3660 if (cfs_rq->last != se)
3661 break;
3662
3663 cfs_rq->last = NULL;
3664 }
3665 }
3666
3667 static void __clear_buddies_next(struct sched_entity *se)
3668 {
3669 for_each_sched_entity(se) {
3670 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3671 if (cfs_rq->next != se)
3672 break;
3673
3674 cfs_rq->next = NULL;
3675 }
3676 }
3677
3678 static void __clear_buddies_skip(struct sched_entity *se)
3679 {
3680 for_each_sched_entity(se) {
3681 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3682 if (cfs_rq->skip != se)
3683 break;
3684
3685 cfs_rq->skip = NULL;
3686 }
3687 }
3688
3689 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3690 {
3691 if (cfs_rq->last == se)
3692 __clear_buddies_last(se);
3693
3694 if (cfs_rq->next == se)
3695 __clear_buddies_next(se);
3696
3697 if (cfs_rq->skip == se)
3698 __clear_buddies_skip(se);
3699 }
3700
3701 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3702
3703 static void
3704 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3705 {
3706 /*
3707 * Update run-time statistics of the 'current'.
3708 */
3709 update_curr(cfs_rq);
3710
3711 /*
3712 * When dequeuing a sched_entity, we must:
3713 * - Update loads to have both entity and cfs_rq synced with now.
3714 * - Substract its load from the cfs_rq->runnable_avg.
3715 * - Substract its previous weight from cfs_rq->load.weight.
3716 * - For group entity, update its weight to reflect the new share
3717 * of its group cfs_rq.
3718 */
3719 update_load_avg(se, UPDATE_TG);
3720 dequeue_entity_load_avg(cfs_rq, se);
3721
3722 update_stats_dequeue(cfs_rq, se, flags);
3723
3724 clear_buddies(cfs_rq, se);
3725
3726 if (se != cfs_rq->curr)
3727 __dequeue_entity(cfs_rq, se);
3728 se->on_rq = 0;
3729 account_entity_dequeue(cfs_rq, se);
3730
3731 /*
3732 * Normalize after update_curr(); which will also have moved
3733 * min_vruntime if @se is the one holding it back. But before doing
3734 * update_min_vruntime() again, which will discount @se's position and
3735 * can move min_vruntime forward still more.
3736 */
3737 if (!(flags & DEQUEUE_SLEEP))
3738 se->vruntime -= cfs_rq->min_vruntime;
3739
3740 /* return excess runtime on last dequeue */
3741 return_cfs_rq_runtime(cfs_rq);
3742
3743 update_cfs_shares(se);
3744
3745 /*
3746 * Now advance min_vruntime if @se was the entity holding it back,
3747 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3748 * put back on, and if we advance min_vruntime, we'll be placed back
3749 * further than we started -- ie. we'll be penalized.
3750 */
3751 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3752 update_min_vruntime(cfs_rq);
3753 }
3754
3755 /*
3756 * Preempt the current task with a newly woken task if needed:
3757 */
3758 static void
3759 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3760 {
3761 unsigned long ideal_runtime, delta_exec;
3762 struct sched_entity *se;
3763 s64 delta;
3764
3765 ideal_runtime = sched_slice(cfs_rq, curr);
3766 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3767 if (delta_exec > ideal_runtime) {
3768 resched_curr(rq_of(cfs_rq));
3769 /*
3770 * The current task ran long enough, ensure it doesn't get
3771 * re-elected due to buddy favours.
3772 */
3773 clear_buddies(cfs_rq, curr);
3774 return;
3775 }
3776
3777 /*
3778 * Ensure that a task that missed wakeup preemption by a
3779 * narrow margin doesn't have to wait for a full slice.
3780 * This also mitigates buddy induced latencies under load.
3781 */
3782 if (delta_exec < sysctl_sched_min_granularity)
3783 return;
3784
3785 se = __pick_first_entity(cfs_rq);
3786 delta = curr->vruntime - se->vruntime;
3787
3788 if (delta < 0)
3789 return;
3790
3791 if (delta > ideal_runtime)
3792 resched_curr(rq_of(cfs_rq));
3793 }
3794
3795 static void
3796 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3797 {
3798 /* 'current' is not kept within the tree. */
3799 if (se->on_rq) {
3800 /*
3801 * Any task has to be enqueued before it get to execute on
3802 * a CPU. So account for the time it spent waiting on the
3803 * runqueue.
3804 */
3805 update_stats_wait_end(cfs_rq, se);
3806 __dequeue_entity(cfs_rq, se);
3807 update_load_avg(se, UPDATE_TG);
3808 }
3809
3810 update_stats_curr_start(cfs_rq, se);
3811 cfs_rq->curr = se;
3812
3813 /*
3814 * Track our maximum slice length, if the CPU's load is at
3815 * least twice that of our own weight (i.e. dont track it
3816 * when there are only lesser-weight tasks around):
3817 */
3818 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3819 schedstat_set(se->statistics.slice_max,
3820 max((u64)schedstat_val(se->statistics.slice_max),
3821 se->sum_exec_runtime - se->prev_sum_exec_runtime));
3822 }
3823
3824 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3825 }
3826
3827 static int
3828 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3829
3830 /*
3831 * Pick the next process, keeping these things in mind, in this order:
3832 * 1) keep things fair between processes/task groups
3833 * 2) pick the "next" process, since someone really wants that to run
3834 * 3) pick the "last" process, for cache locality
3835 * 4) do not run the "skip" process, if something else is available
3836 */
3837 static struct sched_entity *
3838 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3839 {
3840 struct sched_entity *left = __pick_first_entity(cfs_rq);
3841 struct sched_entity *se;
3842
3843 /*
3844 * If curr is set we have to see if its left of the leftmost entity
3845 * still in the tree, provided there was anything in the tree at all.
3846 */
3847 if (!left || (curr && entity_before(curr, left)))
3848 left = curr;
3849
3850 se = left; /* ideally we run the leftmost entity */
3851
3852 /*
3853 * Avoid running the skip buddy, if running something else can
3854 * be done without getting too unfair.
3855 */
3856 if (cfs_rq->skip == se) {
3857 struct sched_entity *second;
3858
3859 if (se == curr) {
3860 second = __pick_first_entity(cfs_rq);
3861 } else {
3862 second = __pick_next_entity(se);
3863 if (!second || (curr && entity_before(curr, second)))
3864 second = curr;
3865 }
3866
3867 if (second && wakeup_preempt_entity(second, left) < 1)
3868 se = second;
3869 }
3870
3871 /*
3872 * Prefer last buddy, try to return the CPU to a preempted task.
3873 */
3874 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3875 se = cfs_rq->last;
3876
3877 /*
3878 * Someone really wants this to run. If it's not unfair, run it.
3879 */
3880 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3881 se = cfs_rq->next;
3882
3883 clear_buddies(cfs_rq, se);
3884
3885 return se;
3886 }
3887
3888 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3889
3890 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3891 {
3892 /*
3893 * If still on the runqueue then deactivate_task()
3894 * was not called and update_curr() has to be done:
3895 */
3896 if (prev->on_rq)
3897 update_curr(cfs_rq);
3898
3899 /* throttle cfs_rqs exceeding runtime */
3900 check_cfs_rq_runtime(cfs_rq);
3901
3902 check_spread(cfs_rq, prev);
3903
3904 if (prev->on_rq) {
3905 update_stats_wait_start(cfs_rq, prev);
3906 /* Put 'current' back into the tree. */
3907 __enqueue_entity(cfs_rq, prev);
3908 /* in !on_rq case, update occurred at dequeue */
3909 update_load_avg(prev, 0);
3910 }
3911 cfs_rq->curr = NULL;
3912 }
3913
3914 static void
3915 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3916 {
3917 /*
3918 * Update run-time statistics of the 'current'.
3919 */
3920 update_curr(cfs_rq);
3921
3922 /*
3923 * Ensure that runnable average is periodically updated.
3924 */
3925 update_load_avg(curr, UPDATE_TG);
3926 update_cfs_shares(curr);
3927
3928 #ifdef CONFIG_SCHED_HRTICK
3929 /*
3930 * queued ticks are scheduled to match the slice, so don't bother
3931 * validating it and just reschedule.
3932 */
3933 if (queued) {
3934 resched_curr(rq_of(cfs_rq));
3935 return;
3936 }
3937 /*
3938 * don't let the period tick interfere with the hrtick preemption
3939 */
3940 if (!sched_feat(DOUBLE_TICK) &&
3941 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3942 return;
3943 #endif
3944
3945 if (cfs_rq->nr_running > 1)
3946 check_preempt_tick(cfs_rq, curr);
3947 }
3948
3949
3950 /**************************************************
3951 * CFS bandwidth control machinery
3952 */
3953
3954 #ifdef CONFIG_CFS_BANDWIDTH
3955
3956 #ifdef HAVE_JUMP_LABEL
3957 static struct static_key __cfs_bandwidth_used;
3958
3959 static inline bool cfs_bandwidth_used(void)
3960 {
3961 return static_key_false(&__cfs_bandwidth_used);
3962 }
3963
3964 void cfs_bandwidth_usage_inc(void)
3965 {
3966 static_key_slow_inc(&__cfs_bandwidth_used);
3967 }
3968
3969 void cfs_bandwidth_usage_dec(void)
3970 {
3971 static_key_slow_dec(&__cfs_bandwidth_used);
3972 }
3973 #else /* HAVE_JUMP_LABEL */
3974 static bool cfs_bandwidth_used(void)
3975 {
3976 return true;
3977 }
3978
3979 void cfs_bandwidth_usage_inc(void) {}
3980 void cfs_bandwidth_usage_dec(void) {}
3981 #endif /* HAVE_JUMP_LABEL */
3982
3983 /*
3984 * default period for cfs group bandwidth.
3985 * default: 0.1s, units: nanoseconds
3986 */
3987 static inline u64 default_cfs_period(void)
3988 {
3989 return 100000000ULL;
3990 }
3991
3992 static inline u64 sched_cfs_bandwidth_slice(void)
3993 {
3994 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3995 }
3996
3997 /*
3998 * Replenish runtime according to assigned quota and update expiration time.
3999 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4000 * additional synchronization around rq->lock.
4001 *
4002 * requires cfs_b->lock
4003 */
4004 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4005 {
4006 u64 now;
4007
4008 if (cfs_b->quota == RUNTIME_INF)
4009 return;
4010
4011 now = sched_clock_cpu(smp_processor_id());
4012 cfs_b->runtime = cfs_b->quota;
4013 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4014 }
4015
4016 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4017 {
4018 return &tg->cfs_bandwidth;
4019 }
4020
4021 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4022 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4023 {
4024 if (unlikely(cfs_rq->throttle_count))
4025 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4026
4027 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4028 }
4029
4030 /* returns 0 on failure to allocate runtime */
4031 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4032 {
4033 struct task_group *tg = cfs_rq->tg;
4034 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4035 u64 amount = 0, min_amount, expires;
4036
4037 /* note: this is a positive sum as runtime_remaining <= 0 */
4038 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4039
4040 raw_spin_lock(&cfs_b->lock);
4041 if (cfs_b->quota == RUNTIME_INF)
4042 amount = min_amount;
4043 else {
4044 start_cfs_bandwidth(cfs_b);
4045
4046 if (cfs_b->runtime > 0) {
4047 amount = min(cfs_b->runtime, min_amount);
4048 cfs_b->runtime -= amount;
4049 cfs_b->idle = 0;
4050 }
4051 }
4052 expires = cfs_b->runtime_expires;
4053 raw_spin_unlock(&cfs_b->lock);
4054
4055 cfs_rq->runtime_remaining += amount;
4056 /*
4057 * we may have advanced our local expiration to account for allowed
4058 * spread between our sched_clock and the one on which runtime was
4059 * issued.
4060 */
4061 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4062 cfs_rq->runtime_expires = expires;
4063
4064 return cfs_rq->runtime_remaining > 0;
4065 }
4066
4067 /*
4068 * Note: This depends on the synchronization provided by sched_clock and the
4069 * fact that rq->clock snapshots this value.
4070 */
4071 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4072 {
4073 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4074
4075 /* if the deadline is ahead of our clock, nothing to do */
4076 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4077 return;
4078
4079 if (cfs_rq->runtime_remaining < 0)
4080 return;
4081
4082 /*
4083 * If the local deadline has passed we have to consider the
4084 * possibility that our sched_clock is 'fast' and the global deadline
4085 * has not truly expired.
4086 *
4087 * Fortunately we can check determine whether this the case by checking
4088 * whether the global deadline has advanced. It is valid to compare
4089 * cfs_b->runtime_expires without any locks since we only care about
4090 * exact equality, so a partial write will still work.
4091 */
4092
4093 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4094 /* extend local deadline, drift is bounded above by 2 ticks */
4095 cfs_rq->runtime_expires += TICK_NSEC;
4096 } else {
4097 /* global deadline is ahead, expiration has passed */
4098 cfs_rq->runtime_remaining = 0;
4099 }
4100 }
4101
4102 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4103 {
4104 /* dock delta_exec before expiring quota (as it could span periods) */
4105 cfs_rq->runtime_remaining -= delta_exec;
4106 expire_cfs_rq_runtime(cfs_rq);
4107
4108 if (likely(cfs_rq->runtime_remaining > 0))
4109 return;
4110
4111 /*
4112 * if we're unable to extend our runtime we resched so that the active
4113 * hierarchy can be throttled
4114 */
4115 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4116 resched_curr(rq_of(cfs_rq));
4117 }
4118
4119 static __always_inline
4120 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4121 {
4122 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4123 return;
4124
4125 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4126 }
4127
4128 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4129 {
4130 return cfs_bandwidth_used() && cfs_rq->throttled;
4131 }
4132
4133 /* check whether cfs_rq, or any parent, is throttled */
4134 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4135 {
4136 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4137 }
4138
4139 /*
4140 * Ensure that neither of the group entities corresponding to src_cpu or
4141 * dest_cpu are members of a throttled hierarchy when performing group
4142 * load-balance operations.
4143 */
4144 static inline int throttled_lb_pair(struct task_group *tg,
4145 int src_cpu, int dest_cpu)
4146 {
4147 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4148
4149 src_cfs_rq = tg->cfs_rq[src_cpu];
4150 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4151
4152 return throttled_hierarchy(src_cfs_rq) ||
4153 throttled_hierarchy(dest_cfs_rq);
4154 }
4155
4156 /* updated child weight may affect parent so we have to do this bottom up */
4157 static int tg_unthrottle_up(struct task_group *tg, void *data)
4158 {
4159 struct rq *rq = data;
4160 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4161
4162 cfs_rq->throttle_count--;
4163 if (!cfs_rq->throttle_count) {
4164 /* adjust cfs_rq_clock_task() */
4165 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4166 cfs_rq->throttled_clock_task;
4167 }
4168
4169 return 0;
4170 }
4171
4172 static int tg_throttle_down(struct task_group *tg, void *data)
4173 {
4174 struct rq *rq = data;
4175 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4176
4177 /* group is entering throttled state, stop time */
4178 if (!cfs_rq->throttle_count)
4179 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4180 cfs_rq->throttle_count++;
4181
4182 return 0;
4183 }
4184
4185 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4186 {
4187 struct rq *rq = rq_of(cfs_rq);
4188 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4189 struct sched_entity *se;
4190 long task_delta, dequeue = 1;
4191 bool empty;
4192
4193 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4194
4195 /* freeze hierarchy runnable averages while throttled */
4196 rcu_read_lock();
4197 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4198 rcu_read_unlock();
4199
4200 task_delta = cfs_rq->h_nr_running;
4201 for_each_sched_entity(se) {
4202 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4203 /* throttled entity or throttle-on-deactivate */
4204 if (!se->on_rq)
4205 break;
4206
4207 if (dequeue)
4208 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4209 qcfs_rq->h_nr_running -= task_delta;
4210
4211 if (qcfs_rq->load.weight)
4212 dequeue = 0;
4213 }
4214
4215 if (!se)
4216 sub_nr_running(rq, task_delta);
4217
4218 cfs_rq->throttled = 1;
4219 cfs_rq->throttled_clock = rq_clock(rq);
4220 raw_spin_lock(&cfs_b->lock);
4221 empty = list_empty(&cfs_b->throttled_cfs_rq);
4222
4223 /*
4224 * Add to the _head_ of the list, so that an already-started
4225 * distribute_cfs_runtime will not see us
4226 */
4227 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4228
4229 /*
4230 * If we're the first throttled task, make sure the bandwidth
4231 * timer is running.
4232 */
4233 if (empty)
4234 start_cfs_bandwidth(cfs_b);
4235
4236 raw_spin_unlock(&cfs_b->lock);
4237 }
4238
4239 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4240 {
4241 struct rq *rq = rq_of(cfs_rq);
4242 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4243 struct sched_entity *se;
4244 int enqueue = 1;
4245 long task_delta;
4246
4247 se = cfs_rq->tg->se[cpu_of(rq)];
4248
4249 cfs_rq->throttled = 0;
4250
4251 update_rq_clock(rq);
4252
4253 raw_spin_lock(&cfs_b->lock);
4254 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4255 list_del_rcu(&cfs_rq->throttled_list);
4256 raw_spin_unlock(&cfs_b->lock);
4257
4258 /* update hierarchical throttle state */
4259 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4260
4261 if (!cfs_rq->load.weight)
4262 return;
4263
4264 task_delta = cfs_rq->h_nr_running;
4265 for_each_sched_entity(se) {
4266 if (se->on_rq)
4267 enqueue = 0;
4268
4269 cfs_rq = cfs_rq_of(se);
4270 if (enqueue)
4271 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4272 cfs_rq->h_nr_running += task_delta;
4273
4274 if (cfs_rq_throttled(cfs_rq))
4275 break;
4276 }
4277
4278 if (!se)
4279 add_nr_running(rq, task_delta);
4280
4281 /* determine whether we need to wake up potentially idle cpu */
4282 if (rq->curr == rq->idle && rq->cfs.nr_running)
4283 resched_curr(rq);
4284 }
4285
4286 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4287 u64 remaining, u64 expires)
4288 {
4289 struct cfs_rq *cfs_rq;
4290 u64 runtime;
4291 u64 starting_runtime = remaining;
4292
4293 rcu_read_lock();
4294 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4295 throttled_list) {
4296 struct rq *rq = rq_of(cfs_rq);
4297 struct rq_flags rf;
4298
4299 rq_lock(rq, &rf);
4300 if (!cfs_rq_throttled(cfs_rq))
4301 goto next;
4302
4303 runtime = -cfs_rq->runtime_remaining + 1;
4304 if (runtime > remaining)
4305 runtime = remaining;
4306 remaining -= runtime;
4307
4308 cfs_rq->runtime_remaining += runtime;
4309 cfs_rq->runtime_expires = expires;
4310
4311 /* we check whether we're throttled above */
4312 if (cfs_rq->runtime_remaining > 0)
4313 unthrottle_cfs_rq(cfs_rq);
4314
4315 next:
4316 rq_unlock(rq, &rf);
4317
4318 if (!remaining)
4319 break;
4320 }
4321 rcu_read_unlock();
4322
4323 return starting_runtime - remaining;
4324 }
4325
4326 /*
4327 * Responsible for refilling a task_group's bandwidth and unthrottling its
4328 * cfs_rqs as appropriate. If there has been no activity within the last
4329 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4330 * used to track this state.
4331 */
4332 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4333 {
4334 u64 runtime, runtime_expires;
4335 int throttled;
4336
4337 /* no need to continue the timer with no bandwidth constraint */
4338 if (cfs_b->quota == RUNTIME_INF)
4339 goto out_deactivate;
4340
4341 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4342 cfs_b->nr_periods += overrun;
4343
4344 /*
4345 * idle depends on !throttled (for the case of a large deficit), and if
4346 * we're going inactive then everything else can be deferred
4347 */
4348 if (cfs_b->idle && !throttled)
4349 goto out_deactivate;
4350
4351 __refill_cfs_bandwidth_runtime(cfs_b);
4352
4353 if (!throttled) {
4354 /* mark as potentially idle for the upcoming period */
4355 cfs_b->idle = 1;
4356 return 0;
4357 }
4358
4359 /* account preceding periods in which throttling occurred */
4360 cfs_b->nr_throttled += overrun;
4361
4362 runtime_expires = cfs_b->runtime_expires;
4363
4364 /*
4365 * This check is repeated as we are holding onto the new bandwidth while
4366 * we unthrottle. This can potentially race with an unthrottled group
4367 * trying to acquire new bandwidth from the global pool. This can result
4368 * in us over-using our runtime if it is all used during this loop, but
4369 * only by limited amounts in that extreme case.
4370 */
4371 while (throttled && cfs_b->runtime > 0) {
4372 runtime = cfs_b->runtime;
4373 raw_spin_unlock(&cfs_b->lock);
4374 /* we can't nest cfs_b->lock while distributing bandwidth */
4375 runtime = distribute_cfs_runtime(cfs_b, runtime,
4376 runtime_expires);
4377 raw_spin_lock(&cfs_b->lock);
4378
4379 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4380
4381 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4382 }
4383
4384 /*
4385 * While we are ensured activity in the period following an
4386 * unthrottle, this also covers the case in which the new bandwidth is
4387 * insufficient to cover the existing bandwidth deficit. (Forcing the
4388 * timer to remain active while there are any throttled entities.)
4389 */
4390 cfs_b->idle = 0;
4391
4392 return 0;
4393
4394 out_deactivate:
4395 return 1;
4396 }
4397
4398 /* a cfs_rq won't donate quota below this amount */
4399 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4400 /* minimum remaining period time to redistribute slack quota */
4401 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4402 /* how long we wait to gather additional slack before distributing */
4403 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4404
4405 /*
4406 * Are we near the end of the current quota period?
4407 *
4408 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4409 * hrtimer base being cleared by hrtimer_start. In the case of
4410 * migrate_hrtimers, base is never cleared, so we are fine.
4411 */
4412 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4413 {
4414 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4415 u64 remaining;
4416
4417 /* if the call-back is running a quota refresh is already occurring */
4418 if (hrtimer_callback_running(refresh_timer))
4419 return 1;
4420
4421 /* is a quota refresh about to occur? */
4422 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4423 if (remaining < min_expire)
4424 return 1;
4425
4426 return 0;
4427 }
4428
4429 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4430 {
4431 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4432
4433 /* if there's a quota refresh soon don't bother with slack */
4434 if (runtime_refresh_within(cfs_b, min_left))
4435 return;
4436
4437 hrtimer_start(&cfs_b->slack_timer,
4438 ns_to_ktime(cfs_bandwidth_slack_period),
4439 HRTIMER_MODE_REL);
4440 }
4441
4442 /* we know any runtime found here is valid as update_curr() precedes return */
4443 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4444 {
4445 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4446 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4447
4448 if (slack_runtime <= 0)
4449 return;
4450
4451 raw_spin_lock(&cfs_b->lock);
4452 if (cfs_b->quota != RUNTIME_INF &&
4453 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4454 cfs_b->runtime += slack_runtime;
4455
4456 /* we are under rq->lock, defer unthrottling using a timer */
4457 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4458 !list_empty(&cfs_b->throttled_cfs_rq))
4459 start_cfs_slack_bandwidth(cfs_b);
4460 }
4461 raw_spin_unlock(&cfs_b->lock);
4462
4463 /* even if it's not valid for return we don't want to try again */
4464 cfs_rq->runtime_remaining -= slack_runtime;
4465 }
4466
4467 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4468 {
4469 if (!cfs_bandwidth_used())
4470 return;
4471
4472 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4473 return;
4474
4475 __return_cfs_rq_runtime(cfs_rq);
4476 }
4477
4478 /*
4479 * This is done with a timer (instead of inline with bandwidth return) since
4480 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4481 */
4482 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4483 {
4484 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4485 u64 expires;
4486
4487 /* confirm we're still not at a refresh boundary */
4488 raw_spin_lock(&cfs_b->lock);
4489 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4490 raw_spin_unlock(&cfs_b->lock);
4491 return;
4492 }
4493
4494 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4495 runtime = cfs_b->runtime;
4496
4497 expires = cfs_b->runtime_expires;
4498 raw_spin_unlock(&cfs_b->lock);
4499
4500 if (!runtime)
4501 return;
4502
4503 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4504
4505 raw_spin_lock(&cfs_b->lock);
4506 if (expires == cfs_b->runtime_expires)
4507 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4508 raw_spin_unlock(&cfs_b->lock);
4509 }
4510
4511 /*
4512 * When a group wakes up we want to make sure that its quota is not already
4513 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4514 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4515 */
4516 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4517 {
4518 if (!cfs_bandwidth_used())
4519 return;
4520
4521 /* an active group must be handled by the update_curr()->put() path */
4522 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4523 return;
4524
4525 /* ensure the group is not already throttled */
4526 if (cfs_rq_throttled(cfs_rq))
4527 return;
4528
4529 /* update runtime allocation */
4530 account_cfs_rq_runtime(cfs_rq, 0);
4531 if (cfs_rq->runtime_remaining <= 0)
4532 throttle_cfs_rq(cfs_rq);
4533 }
4534
4535 static void sync_throttle(struct task_group *tg, int cpu)
4536 {
4537 struct cfs_rq *pcfs_rq, *cfs_rq;
4538
4539 if (!cfs_bandwidth_used())
4540 return;
4541
4542 if (!tg->parent)
4543 return;
4544
4545 cfs_rq = tg->cfs_rq[cpu];
4546 pcfs_rq = tg->parent->cfs_rq[cpu];
4547
4548 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4549 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4550 }
4551
4552 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4553 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4554 {
4555 if (!cfs_bandwidth_used())
4556 return false;
4557
4558 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4559 return false;
4560
4561 /*
4562 * it's possible for a throttled entity to be forced into a running
4563 * state (e.g. set_curr_task), in this case we're finished.
4564 */
4565 if (cfs_rq_throttled(cfs_rq))
4566 return true;
4567
4568 throttle_cfs_rq(cfs_rq);
4569 return true;
4570 }
4571
4572 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4573 {
4574 struct cfs_bandwidth *cfs_b =
4575 container_of(timer, struct cfs_bandwidth, slack_timer);
4576
4577 do_sched_cfs_slack_timer(cfs_b);
4578
4579 return HRTIMER_NORESTART;
4580 }
4581
4582 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4583 {
4584 struct cfs_bandwidth *cfs_b =
4585 container_of(timer, struct cfs_bandwidth, period_timer);
4586 int overrun;
4587 int idle = 0;
4588
4589 raw_spin_lock(&cfs_b->lock);
4590 for (;;) {
4591 overrun = hrtimer_forward_now(timer, cfs_b->period);
4592 if (!overrun)
4593 break;
4594
4595 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4596 }
4597 if (idle)
4598 cfs_b->period_active = 0;
4599 raw_spin_unlock(&cfs_b->lock);
4600
4601 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4602 }
4603
4604 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4605 {
4606 raw_spin_lock_init(&cfs_b->lock);
4607 cfs_b->runtime = 0;
4608 cfs_b->quota = RUNTIME_INF;
4609 cfs_b->period = ns_to_ktime(default_cfs_period());
4610
4611 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4612 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4613 cfs_b->period_timer.function = sched_cfs_period_timer;
4614 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4615 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4616 }
4617
4618 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4619 {
4620 cfs_rq->runtime_enabled = 0;
4621 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4622 }
4623
4624 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4625 {
4626 lockdep_assert_held(&cfs_b->lock);
4627
4628 if (!cfs_b->period_active) {
4629 cfs_b->period_active = 1;
4630 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4631 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4632 }
4633 }
4634
4635 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4636 {
4637 /* init_cfs_bandwidth() was not called */
4638 if (!cfs_b->throttled_cfs_rq.next)
4639 return;
4640
4641 hrtimer_cancel(&cfs_b->period_timer);
4642 hrtimer_cancel(&cfs_b->slack_timer);
4643 }
4644
4645 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4646 {
4647 struct cfs_rq *cfs_rq;
4648
4649 for_each_leaf_cfs_rq(rq, cfs_rq) {
4650 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4651
4652 raw_spin_lock(&cfs_b->lock);
4653 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4654 raw_spin_unlock(&cfs_b->lock);
4655 }
4656 }
4657
4658 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4659 {
4660 struct cfs_rq *cfs_rq;
4661
4662 for_each_leaf_cfs_rq(rq, cfs_rq) {
4663 if (!cfs_rq->runtime_enabled)
4664 continue;
4665
4666 /*
4667 * clock_task is not advancing so we just need to make sure
4668 * there's some valid quota amount
4669 */
4670 cfs_rq->runtime_remaining = 1;
4671 /*
4672 * Offline rq is schedulable till cpu is completely disabled
4673 * in take_cpu_down(), so we prevent new cfs throttling here.
4674 */
4675 cfs_rq->runtime_enabled = 0;
4676
4677 if (cfs_rq_throttled(cfs_rq))
4678 unthrottle_cfs_rq(cfs_rq);
4679 }
4680 }
4681
4682 #else /* CONFIG_CFS_BANDWIDTH */
4683 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4684 {
4685 return rq_clock_task(rq_of(cfs_rq));
4686 }
4687
4688 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4689 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4690 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4691 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4692 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4693
4694 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4695 {
4696 return 0;
4697 }
4698
4699 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4700 {
4701 return 0;
4702 }
4703
4704 static inline int throttled_lb_pair(struct task_group *tg,
4705 int src_cpu, int dest_cpu)
4706 {
4707 return 0;
4708 }
4709
4710 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4711
4712 #ifdef CONFIG_FAIR_GROUP_SCHED
4713 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4714 #endif
4715
4716 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4717 {
4718 return NULL;
4719 }
4720 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4721 static inline void update_runtime_enabled(struct rq *rq) {}
4722 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4723
4724 #endif /* CONFIG_CFS_BANDWIDTH */
4725
4726 /**************************************************
4727 * CFS operations on tasks:
4728 */
4729
4730 #ifdef CONFIG_SCHED_HRTICK
4731 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4732 {
4733 struct sched_entity *se = &p->se;
4734 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4735
4736 SCHED_WARN_ON(task_rq(p) != rq);
4737
4738 if (rq->cfs.h_nr_running > 1) {
4739 u64 slice = sched_slice(cfs_rq, se);
4740 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4741 s64 delta = slice - ran;
4742
4743 if (delta < 0) {
4744 if (rq->curr == p)
4745 resched_curr(rq);
4746 return;
4747 }
4748 hrtick_start(rq, delta);
4749 }
4750 }
4751
4752 /*
4753 * called from enqueue/dequeue and updates the hrtick when the
4754 * current task is from our class and nr_running is low enough
4755 * to matter.
4756 */
4757 static void hrtick_update(struct rq *rq)
4758 {
4759 struct task_struct *curr = rq->curr;
4760
4761 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4762 return;
4763
4764 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4765 hrtick_start_fair(rq, curr);
4766 }
4767 #else /* !CONFIG_SCHED_HRTICK */
4768 static inline void
4769 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4770 {
4771 }
4772
4773 static inline void hrtick_update(struct rq *rq)
4774 {
4775 }
4776 #endif
4777
4778 /*
4779 * The enqueue_task method is called before nr_running is
4780 * increased. Here we update the fair scheduling stats and
4781 * then put the task into the rbtree:
4782 */
4783 static void
4784 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4785 {
4786 struct cfs_rq *cfs_rq;
4787 struct sched_entity *se = &p->se;
4788
4789 /*
4790 * If in_iowait is set, the code below may not trigger any cpufreq
4791 * utilization updates, so do it here explicitly with the IOWAIT flag
4792 * passed.
4793 */
4794 if (p->in_iowait)
4795 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4796
4797 for_each_sched_entity(se) {
4798 if (se->on_rq)
4799 break;
4800 cfs_rq = cfs_rq_of(se);
4801 enqueue_entity(cfs_rq, se, flags);
4802
4803 /*
4804 * end evaluation on encountering a throttled cfs_rq
4805 *
4806 * note: in the case of encountering a throttled cfs_rq we will
4807 * post the final h_nr_running increment below.
4808 */
4809 if (cfs_rq_throttled(cfs_rq))
4810 break;
4811 cfs_rq->h_nr_running++;
4812
4813 flags = ENQUEUE_WAKEUP;
4814 }
4815
4816 for_each_sched_entity(se) {
4817 cfs_rq = cfs_rq_of(se);
4818 cfs_rq->h_nr_running++;
4819
4820 if (cfs_rq_throttled(cfs_rq))
4821 break;
4822
4823 update_load_avg(se, UPDATE_TG);
4824 update_cfs_shares(se);
4825 }
4826
4827 if (!se)
4828 add_nr_running(rq, 1);
4829
4830 hrtick_update(rq);
4831 }
4832
4833 static void set_next_buddy(struct sched_entity *se);
4834
4835 /*
4836 * The dequeue_task method is called before nr_running is
4837 * decreased. We remove the task from the rbtree and
4838 * update the fair scheduling stats:
4839 */
4840 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4841 {
4842 struct cfs_rq *cfs_rq;
4843 struct sched_entity *se = &p->se;
4844 int task_sleep = flags & DEQUEUE_SLEEP;
4845
4846 for_each_sched_entity(se) {
4847 cfs_rq = cfs_rq_of(se);
4848 dequeue_entity(cfs_rq, se, flags);
4849
4850 /*
4851 * end evaluation on encountering a throttled cfs_rq
4852 *
4853 * note: in the case of encountering a throttled cfs_rq we will
4854 * post the final h_nr_running decrement below.
4855 */
4856 if (cfs_rq_throttled(cfs_rq))
4857 break;
4858 cfs_rq->h_nr_running--;
4859
4860 /* Don't dequeue parent if it has other entities besides us */
4861 if (cfs_rq->load.weight) {
4862 /* Avoid re-evaluating load for this entity: */
4863 se = parent_entity(se);
4864 /*
4865 * Bias pick_next to pick a task from this cfs_rq, as
4866 * p is sleeping when it is within its sched_slice.
4867 */
4868 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4869 set_next_buddy(se);
4870 break;
4871 }
4872 flags |= DEQUEUE_SLEEP;
4873 }
4874
4875 for_each_sched_entity(se) {
4876 cfs_rq = cfs_rq_of(se);
4877 cfs_rq->h_nr_running--;
4878
4879 if (cfs_rq_throttled(cfs_rq))
4880 break;
4881
4882 update_load_avg(se, UPDATE_TG);
4883 update_cfs_shares(se);
4884 }
4885
4886 if (!se)
4887 sub_nr_running(rq, 1);
4888
4889 hrtick_update(rq);
4890 }
4891
4892 #ifdef CONFIG_SMP
4893
4894 /* Working cpumask for: load_balance, load_balance_newidle. */
4895 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4896 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4897
4898 #ifdef CONFIG_NO_HZ_COMMON
4899 /*
4900 * per rq 'load' arrray crap; XXX kill this.
4901 */
4902
4903 /*
4904 * The exact cpuload calculated at every tick would be:
4905 *
4906 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4907 *
4908 * If a cpu misses updates for n ticks (as it was idle) and update gets
4909 * called on the n+1-th tick when cpu may be busy, then we have:
4910 *
4911 * load_n = (1 - 1/2^i)^n * load_0
4912 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4913 *
4914 * decay_load_missed() below does efficient calculation of
4915 *
4916 * load' = (1 - 1/2^i)^n * load
4917 *
4918 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4919 * This allows us to precompute the above in said factors, thereby allowing the
4920 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4921 * fixed_power_int())
4922 *
4923 * The calculation is approximated on a 128 point scale.
4924 */
4925 #define DEGRADE_SHIFT 7
4926
4927 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4928 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4929 { 0, 0, 0, 0, 0, 0, 0, 0 },
4930 { 64, 32, 8, 0, 0, 0, 0, 0 },
4931 { 96, 72, 40, 12, 1, 0, 0, 0 },
4932 { 112, 98, 75, 43, 15, 1, 0, 0 },
4933 { 120, 112, 98, 76, 45, 16, 2, 0 }
4934 };
4935
4936 /*
4937 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4938 * would be when CPU is idle and so we just decay the old load without
4939 * adding any new load.
4940 */
4941 static unsigned long
4942 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4943 {
4944 int j = 0;
4945
4946 if (!missed_updates)
4947 return load;
4948
4949 if (missed_updates >= degrade_zero_ticks[idx])
4950 return 0;
4951
4952 if (idx == 1)
4953 return load >> missed_updates;
4954
4955 while (missed_updates) {
4956 if (missed_updates % 2)
4957 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4958
4959 missed_updates >>= 1;
4960 j++;
4961 }
4962 return load;
4963 }
4964 #endif /* CONFIG_NO_HZ_COMMON */
4965
4966 /**
4967 * __cpu_load_update - update the rq->cpu_load[] statistics
4968 * @this_rq: The rq to update statistics for
4969 * @this_load: The current load
4970 * @pending_updates: The number of missed updates
4971 *
4972 * Update rq->cpu_load[] statistics. This function is usually called every
4973 * scheduler tick (TICK_NSEC).
4974 *
4975 * This function computes a decaying average:
4976 *
4977 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4978 *
4979 * Because of NOHZ it might not get called on every tick which gives need for
4980 * the @pending_updates argument.
4981 *
4982 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4983 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4984 * = A * (A * load[i]_n-2 + B) + B
4985 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4986 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4987 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4988 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4989 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4990 *
4991 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4992 * any change in load would have resulted in the tick being turned back on.
4993 *
4994 * For regular NOHZ, this reduces to:
4995 *
4996 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4997 *
4998 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4999 * term.
5000 */
5001 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5002 unsigned long pending_updates)
5003 {
5004 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5005 int i, scale;
5006
5007 this_rq->nr_load_updates++;
5008
5009 /* Update our load: */
5010 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5011 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5012 unsigned long old_load, new_load;
5013
5014 /* scale is effectively 1 << i now, and >> i divides by scale */
5015
5016 old_load = this_rq->cpu_load[i];
5017 #ifdef CONFIG_NO_HZ_COMMON
5018 old_load = decay_load_missed(old_load, pending_updates - 1, i);
5019 if (tickless_load) {
5020 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5021 /*
5022 * old_load can never be a negative value because a
5023 * decayed tickless_load cannot be greater than the
5024 * original tickless_load.
5025 */
5026 old_load += tickless_load;
5027 }
5028 #endif
5029 new_load = this_load;
5030 /*
5031 * Round up the averaging division if load is increasing. This
5032 * prevents us from getting stuck on 9 if the load is 10, for
5033 * example.
5034 */
5035 if (new_load > old_load)
5036 new_load += scale - 1;
5037
5038 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5039 }
5040
5041 sched_avg_update(this_rq);
5042 }
5043
5044 /* Used instead of source_load when we know the type == 0 */
5045 static unsigned long weighted_cpuload(const int cpu)
5046 {
5047 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
5048 }
5049
5050 #ifdef CONFIG_NO_HZ_COMMON
5051 /*
5052 * There is no sane way to deal with nohz on smp when using jiffies because the
5053 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5054 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5055 *
5056 * Therefore we need to avoid the delta approach from the regular tick when
5057 * possible since that would seriously skew the load calculation. This is why we
5058 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5059 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5060 * loop exit, nohz_idle_balance, nohz full exit...)
5061 *
5062 * This means we might still be one tick off for nohz periods.
5063 */
5064
5065 static void cpu_load_update_nohz(struct rq *this_rq,
5066 unsigned long curr_jiffies,
5067 unsigned long load)
5068 {
5069 unsigned long pending_updates;
5070
5071 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5072 if (pending_updates) {
5073 this_rq->last_load_update_tick = curr_jiffies;
5074 /*
5075 * In the regular NOHZ case, we were idle, this means load 0.
5076 * In the NOHZ_FULL case, we were non-idle, we should consider
5077 * its weighted load.
5078 */
5079 cpu_load_update(this_rq, load, pending_updates);
5080 }
5081 }
5082
5083 /*
5084 * Called from nohz_idle_balance() to update the load ratings before doing the
5085 * idle balance.
5086 */
5087 static void cpu_load_update_idle(struct rq *this_rq)
5088 {
5089 /*
5090 * bail if there's load or we're actually up-to-date.
5091 */
5092 if (weighted_cpuload(cpu_of(this_rq)))
5093 return;
5094
5095 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5096 }
5097
5098 /*
5099 * Record CPU load on nohz entry so we know the tickless load to account
5100 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5101 * than other cpu_load[idx] but it should be fine as cpu_load readers
5102 * shouldn't rely into synchronized cpu_load[*] updates.
5103 */
5104 void cpu_load_update_nohz_start(void)
5105 {
5106 struct rq *this_rq = this_rq();
5107
5108 /*
5109 * This is all lockless but should be fine. If weighted_cpuload changes
5110 * concurrently we'll exit nohz. And cpu_load write can race with
5111 * cpu_load_update_idle() but both updater would be writing the same.
5112 */
5113 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5114 }
5115
5116 /*
5117 * Account the tickless load in the end of a nohz frame.
5118 */
5119 void cpu_load_update_nohz_stop(void)
5120 {
5121 unsigned long curr_jiffies = READ_ONCE(jiffies);
5122 struct rq *this_rq = this_rq();
5123 unsigned long load;
5124 struct rq_flags rf;
5125
5126 if (curr_jiffies == this_rq->last_load_update_tick)
5127 return;
5128
5129 load = weighted_cpuload(cpu_of(this_rq));
5130 rq_lock(this_rq, &rf);
5131 update_rq_clock(this_rq);
5132 cpu_load_update_nohz(this_rq, curr_jiffies, load);
5133 rq_unlock(this_rq, &rf);
5134 }
5135 #else /* !CONFIG_NO_HZ_COMMON */
5136 static inline void cpu_load_update_nohz(struct rq *this_rq,
5137 unsigned long curr_jiffies,
5138 unsigned long load) { }
5139 #endif /* CONFIG_NO_HZ_COMMON */
5140
5141 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5142 {
5143 #ifdef CONFIG_NO_HZ_COMMON
5144 /* See the mess around cpu_load_update_nohz(). */
5145 this_rq->last_load_update_tick = READ_ONCE(jiffies);
5146 #endif
5147 cpu_load_update(this_rq, load, 1);
5148 }
5149
5150 /*
5151 * Called from scheduler_tick()
5152 */
5153 void cpu_load_update_active(struct rq *this_rq)
5154 {
5155 unsigned long load = weighted_cpuload(cpu_of(this_rq));
5156
5157 if (tick_nohz_tick_stopped())
5158 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5159 else
5160 cpu_load_update_periodic(this_rq, load);
5161 }
5162
5163 /*
5164 * Return a low guess at the load of a migration-source cpu weighted
5165 * according to the scheduling class and "nice" value.
5166 *
5167 * We want to under-estimate the load of migration sources, to
5168 * balance conservatively.
5169 */
5170 static unsigned long source_load(int cpu, int type)
5171 {
5172 struct rq *rq = cpu_rq(cpu);
5173 unsigned long total = weighted_cpuload(cpu);
5174
5175 if (type == 0 || !sched_feat(LB_BIAS))
5176 return total;
5177
5178 return min(rq->cpu_load[type-1], total);
5179 }
5180
5181 /*
5182 * Return a high guess at the load of a migration-target cpu weighted
5183 * according to the scheduling class and "nice" value.
5184 */
5185 static unsigned long target_load(int cpu, int type)
5186 {
5187 struct rq *rq = cpu_rq(cpu);
5188 unsigned long total = weighted_cpuload(cpu);
5189
5190 if (type == 0 || !sched_feat(LB_BIAS))
5191 return total;
5192
5193 return max(rq->cpu_load[type-1], total);
5194 }
5195
5196 static unsigned long capacity_of(int cpu)
5197 {
5198 return cpu_rq(cpu)->cpu_capacity;
5199 }
5200
5201 static unsigned long capacity_orig_of(int cpu)
5202 {
5203 return cpu_rq(cpu)->cpu_capacity_orig;
5204 }
5205
5206 static unsigned long cpu_avg_load_per_task(int cpu)
5207 {
5208 struct rq *rq = cpu_rq(cpu);
5209 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5210 unsigned long load_avg = weighted_cpuload(cpu);
5211
5212 if (nr_running)
5213 return load_avg / nr_running;
5214
5215 return 0;
5216 }
5217
5218 #ifdef CONFIG_FAIR_GROUP_SCHED
5219 /*
5220 * effective_load() calculates the load change as seen from the root_task_group
5221 *
5222 * Adding load to a group doesn't make a group heavier, but can cause movement
5223 * of group shares between cpus. Assuming the shares were perfectly aligned one
5224 * can calculate the shift in shares.
5225 *
5226 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5227 * on this @cpu and results in a total addition (subtraction) of @wg to the
5228 * total group weight.
5229 *
5230 * Given a runqueue weight distribution (rw_i) we can compute a shares
5231 * distribution (s_i) using:
5232 *
5233 * s_i = rw_i / \Sum rw_j (1)
5234 *
5235 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5236 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5237 * shares distribution (s_i):
5238 *
5239 * rw_i = { 2, 4, 1, 0 }
5240 * s_i = { 2/7, 4/7, 1/7, 0 }
5241 *
5242 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5243 * task used to run on and the CPU the waker is running on), we need to
5244 * compute the effect of waking a task on either CPU and, in case of a sync
5245 * wakeup, compute the effect of the current task going to sleep.
5246 *
5247 * So for a change of @wl to the local @cpu with an overall group weight change
5248 * of @wl we can compute the new shares distribution (s'_i) using:
5249 *
5250 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5251 *
5252 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5253 * differences in waking a task to CPU 0. The additional task changes the
5254 * weight and shares distributions like:
5255 *
5256 * rw'_i = { 3, 4, 1, 0 }
5257 * s'_i = { 3/8, 4/8, 1/8, 0 }
5258 *
5259 * We can then compute the difference in effective weight by using:
5260 *
5261 * dw_i = S * (s'_i - s_i) (3)
5262 *
5263 * Where 'S' is the group weight as seen by its parent.
5264 *
5265 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5266 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5267 * 4/7) times the weight of the group.
5268 */
5269 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5270 {
5271 struct sched_entity *se = tg->se[cpu];
5272
5273 if (!tg->parent) /* the trivial, non-cgroup case */
5274 return wl;
5275
5276 for_each_sched_entity(se) {
5277 struct cfs_rq *cfs_rq = se->my_q;
5278 long W, w = cfs_rq_load_avg(cfs_rq);
5279
5280 tg = cfs_rq->tg;
5281
5282 /*
5283 * W = @wg + \Sum rw_j
5284 */
5285 W = wg + atomic_long_read(&tg->load_avg);
5286
5287 /* Ensure \Sum rw_j >= rw_i */
5288 W -= cfs_rq->tg_load_avg_contrib;
5289 W += w;
5290
5291 /*
5292 * w = rw_i + @wl
5293 */
5294 w += wl;
5295
5296 /*
5297 * wl = S * s'_i; see (2)
5298 */
5299 if (W > 0 && w < W)
5300 wl = (w * (long)scale_load_down(tg->shares)) / W;
5301 else
5302 wl = scale_load_down(tg->shares);
5303
5304 /*
5305 * Per the above, wl is the new se->load.weight value; since
5306 * those are clipped to [MIN_SHARES, ...) do so now. See
5307 * calc_cfs_shares().
5308 */
5309 if (wl < MIN_SHARES)
5310 wl = MIN_SHARES;
5311
5312 /*
5313 * wl = dw_i = S * (s'_i - s_i); see (3)
5314 */
5315 wl -= se->avg.load_avg;
5316
5317 /*
5318 * Recursively apply this logic to all parent groups to compute
5319 * the final effective load change on the root group. Since
5320 * only the @tg group gets extra weight, all parent groups can
5321 * only redistribute existing shares. @wl is the shift in shares
5322 * resulting from this level per the above.
5323 */
5324 wg = 0;
5325 }
5326
5327 return wl;
5328 }
5329 #else
5330
5331 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5332 {
5333 return wl;
5334 }
5335
5336 #endif
5337
5338 static void record_wakee(struct task_struct *p)
5339 {
5340 /*
5341 * Only decay a single time; tasks that have less then 1 wakeup per
5342 * jiffy will not have built up many flips.
5343 */
5344 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5345 current->wakee_flips >>= 1;
5346 current->wakee_flip_decay_ts = jiffies;
5347 }
5348
5349 if (current->last_wakee != p) {
5350 current->last_wakee = p;
5351 current->wakee_flips++;
5352 }
5353 }
5354
5355 /*
5356 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5357 *
5358 * A waker of many should wake a different task than the one last awakened
5359 * at a frequency roughly N times higher than one of its wakees.
5360 *
5361 * In order to determine whether we should let the load spread vs consolidating
5362 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5363 * partner, and a factor of lls_size higher frequency in the other.
5364 *
5365 * With both conditions met, we can be relatively sure that the relationship is
5366 * non-monogamous, with partner count exceeding socket size.
5367 *
5368 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5369 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5370 * socket size.
5371 */
5372 static int wake_wide(struct task_struct *p)
5373 {
5374 unsigned int master = current->wakee_flips;
5375 unsigned int slave = p->wakee_flips;
5376 int factor = this_cpu_read(sd_llc_size);
5377
5378 if (master < slave)
5379 swap(master, slave);
5380 if (slave < factor || master < slave * factor)
5381 return 0;
5382 return 1;
5383 }
5384
5385 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5386 int prev_cpu, int sync)
5387 {
5388 s64 this_load, load;
5389 s64 this_eff_load, prev_eff_load;
5390 int idx, this_cpu;
5391 struct task_group *tg;
5392 unsigned long weight;
5393 int balanced;
5394
5395 idx = sd->wake_idx;
5396 this_cpu = smp_processor_id();
5397 load = source_load(prev_cpu, idx);
5398 this_load = target_load(this_cpu, idx);
5399
5400 /*
5401 * If sync wakeup then subtract the (maximum possible)
5402 * effect of the currently running task from the load
5403 * of the current CPU:
5404 */
5405 if (sync) {
5406 tg = task_group(current);
5407 weight = current->se.avg.load_avg;
5408
5409 this_load += effective_load(tg, this_cpu, -weight, -weight);
5410 load += effective_load(tg, prev_cpu, 0, -weight);
5411 }
5412
5413 tg = task_group(p);
5414 weight = p->se.avg.load_avg;
5415
5416 /*
5417 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5418 * due to the sync cause above having dropped this_load to 0, we'll
5419 * always have an imbalance, but there's really nothing you can do
5420 * about that, so that's good too.
5421 *
5422 * Otherwise check if either cpus are near enough in load to allow this
5423 * task to be woken on this_cpu.
5424 */
5425 this_eff_load = 100;
5426 this_eff_load *= capacity_of(prev_cpu);
5427
5428 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5429 prev_eff_load *= capacity_of(this_cpu);
5430
5431 if (this_load > 0) {
5432 this_eff_load *= this_load +
5433 effective_load(tg, this_cpu, weight, weight);
5434
5435 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5436 }
5437
5438 balanced = this_eff_load <= prev_eff_load;
5439
5440 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5441
5442 if (!balanced)
5443 return 0;
5444
5445 schedstat_inc(sd->ttwu_move_affine);
5446 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5447
5448 return 1;
5449 }
5450
5451 static inline int task_util(struct task_struct *p);
5452 static int cpu_util_wake(int cpu, struct task_struct *p);
5453
5454 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5455 {
5456 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5457 }
5458
5459 /*
5460 * find_idlest_group finds and returns the least busy CPU group within the
5461 * domain.
5462 */
5463 static struct sched_group *
5464 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5465 int this_cpu, int sd_flag)
5466 {
5467 struct sched_group *idlest = NULL, *group = sd->groups;
5468 struct sched_group *most_spare_sg = NULL;
5469 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5470 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5471 unsigned long most_spare = 0, this_spare = 0;
5472 int load_idx = sd->forkexec_idx;
5473 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5474 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5475 (sd->imbalance_pct-100) / 100;
5476
5477 if (sd_flag & SD_BALANCE_WAKE)
5478 load_idx = sd->wake_idx;
5479
5480 do {
5481 unsigned long load, avg_load, runnable_load;
5482 unsigned long spare_cap, max_spare_cap;
5483 int local_group;
5484 int i;
5485
5486 /* Skip over this group if it has no CPUs allowed */
5487 if (!cpumask_intersects(sched_group_cpus(group),
5488 &p->cpus_allowed))
5489 continue;
5490
5491 local_group = cpumask_test_cpu(this_cpu,
5492 sched_group_cpus(group));
5493
5494 /*
5495 * Tally up the load of all CPUs in the group and find
5496 * the group containing the CPU with most spare capacity.
5497 */
5498 avg_load = 0;
5499 runnable_load = 0;
5500 max_spare_cap = 0;
5501
5502 for_each_cpu(i, sched_group_cpus(group)) {
5503 /* Bias balancing toward cpus of our domain */
5504 if (local_group)
5505 load = source_load(i, load_idx);
5506 else
5507 load = target_load(i, load_idx);
5508
5509 runnable_load += load;
5510
5511 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5512
5513 spare_cap = capacity_spare_wake(i, p);
5514
5515 if (spare_cap > max_spare_cap)
5516 max_spare_cap = spare_cap;
5517 }
5518
5519 /* Adjust by relative CPU capacity of the group */
5520 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5521 group->sgc->capacity;
5522 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5523 group->sgc->capacity;
5524
5525 if (local_group) {
5526 this_runnable_load = runnable_load;
5527 this_avg_load = avg_load;
5528 this_spare = max_spare_cap;
5529 } else {
5530 if (min_runnable_load > (runnable_load + imbalance)) {
5531 /*
5532 * The runnable load is significantly smaller
5533 * so we can pick this new cpu
5534 */
5535 min_runnable_load = runnable_load;
5536 min_avg_load = avg_load;
5537 idlest = group;
5538 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5539 (100*min_avg_load > imbalance_scale*avg_load)) {
5540 /*
5541 * The runnable loads are close so take the
5542 * blocked load into account through avg_load.
5543 */
5544 min_avg_load = avg_load;
5545 idlest = group;
5546 }
5547
5548 if (most_spare < max_spare_cap) {
5549 most_spare = max_spare_cap;
5550 most_spare_sg = group;
5551 }
5552 }
5553 } while (group = group->next, group != sd->groups);
5554
5555 /*
5556 * The cross-over point between using spare capacity or least load
5557 * is too conservative for high utilization tasks on partially
5558 * utilized systems if we require spare_capacity > task_util(p),
5559 * so we allow for some task stuffing by using
5560 * spare_capacity > task_util(p)/2.
5561 *
5562 * Spare capacity can't be used for fork because the utilization has
5563 * not been set yet, we must first select a rq to compute the initial
5564 * utilization.
5565 */
5566 if (sd_flag & SD_BALANCE_FORK)
5567 goto skip_spare;
5568
5569 if (this_spare > task_util(p) / 2 &&
5570 imbalance_scale*this_spare > 100*most_spare)
5571 return NULL;
5572
5573 if (most_spare > task_util(p) / 2)
5574 return most_spare_sg;
5575
5576 skip_spare:
5577 if (!idlest)
5578 return NULL;
5579
5580 if (min_runnable_load > (this_runnable_load + imbalance))
5581 return NULL;
5582
5583 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5584 (100*this_avg_load < imbalance_scale*min_avg_load))
5585 return NULL;
5586
5587 return idlest;
5588 }
5589
5590 /*
5591 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5592 */
5593 static int
5594 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5595 {
5596 unsigned long load, min_load = ULONG_MAX;
5597 unsigned int min_exit_latency = UINT_MAX;
5598 u64 latest_idle_timestamp = 0;
5599 int least_loaded_cpu = this_cpu;
5600 int shallowest_idle_cpu = -1;
5601 int i;
5602
5603 /* Check if we have any choice: */
5604 if (group->group_weight == 1)
5605 return cpumask_first(sched_group_cpus(group));
5606
5607 /* Traverse only the allowed CPUs */
5608 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
5609 if (idle_cpu(i)) {
5610 struct rq *rq = cpu_rq(i);
5611 struct cpuidle_state *idle = idle_get_state(rq);
5612 if (idle && idle->exit_latency < min_exit_latency) {
5613 /*
5614 * We give priority to a CPU whose idle state
5615 * has the smallest exit latency irrespective
5616 * of any idle timestamp.
5617 */
5618 min_exit_latency = idle->exit_latency;
5619 latest_idle_timestamp = rq->idle_stamp;
5620 shallowest_idle_cpu = i;
5621 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5622 rq->idle_stamp > latest_idle_timestamp) {
5623 /*
5624 * If equal or no active idle state, then
5625 * the most recently idled CPU might have
5626 * a warmer cache.
5627 */
5628 latest_idle_timestamp = rq->idle_stamp;
5629 shallowest_idle_cpu = i;
5630 }
5631 } else if (shallowest_idle_cpu == -1) {
5632 load = weighted_cpuload(i);
5633 if (load < min_load || (load == min_load && i == this_cpu)) {
5634 min_load = load;
5635 least_loaded_cpu = i;
5636 }
5637 }
5638 }
5639
5640 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5641 }
5642
5643 /*
5644 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5645 * (@start), and wraps around.
5646 *
5647 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5648 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5649 * through the LLC domain.
5650 *
5651 * Especially tbench is found sensitive to this.
5652 */
5653
5654 static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5655 {
5656 int next;
5657
5658 again:
5659 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5660
5661 if (*wrapped) {
5662 if (next >= start)
5663 return nr_cpumask_bits;
5664 } else {
5665 if (next >= nr_cpumask_bits) {
5666 *wrapped = 1;
5667 n = -1;
5668 goto again;
5669 }
5670 }
5671
5672 return next;
5673 }
5674
5675 #define for_each_cpu_wrap(cpu, mask, start, wrap) \
5676 for ((wrap) = 0, (cpu) = (start)-1; \
5677 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
5678 (cpu) < nr_cpumask_bits; )
5679
5680 #ifdef CONFIG_SCHED_SMT
5681
5682 static inline void set_idle_cores(int cpu, int val)
5683 {
5684 struct sched_domain_shared *sds;
5685
5686 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5687 if (sds)
5688 WRITE_ONCE(sds->has_idle_cores, val);
5689 }
5690
5691 static inline bool test_idle_cores(int cpu, bool def)
5692 {
5693 struct sched_domain_shared *sds;
5694
5695 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5696 if (sds)
5697 return READ_ONCE(sds->has_idle_cores);
5698
5699 return def;
5700 }
5701
5702 /*
5703 * Scans the local SMT mask to see if the entire core is idle, and records this
5704 * information in sd_llc_shared->has_idle_cores.
5705 *
5706 * Since SMT siblings share all cache levels, inspecting this limited remote
5707 * state should be fairly cheap.
5708 */
5709 void __update_idle_core(struct rq *rq)
5710 {
5711 int core = cpu_of(rq);
5712 int cpu;
5713
5714 rcu_read_lock();
5715 if (test_idle_cores(core, true))
5716 goto unlock;
5717
5718 for_each_cpu(cpu, cpu_smt_mask(core)) {
5719 if (cpu == core)
5720 continue;
5721
5722 if (!idle_cpu(cpu))
5723 goto unlock;
5724 }
5725
5726 set_idle_cores(core, 1);
5727 unlock:
5728 rcu_read_unlock();
5729 }
5730
5731 /*
5732 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5733 * there are no idle cores left in the system; tracked through
5734 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5735 */
5736 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5737 {
5738 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5739 int core, cpu, wrap;
5740
5741 if (!static_branch_likely(&sched_smt_present))
5742 return -1;
5743
5744 if (!test_idle_cores(target, false))
5745 return -1;
5746
5747 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5748
5749 for_each_cpu_wrap(core, cpus, target, wrap) {
5750 bool idle = true;
5751
5752 for_each_cpu(cpu, cpu_smt_mask(core)) {
5753 cpumask_clear_cpu(cpu, cpus);
5754 if (!idle_cpu(cpu))
5755 idle = false;
5756 }
5757
5758 if (idle)
5759 return core;
5760 }
5761
5762 /*
5763 * Failed to find an idle core; stop looking for one.
5764 */
5765 set_idle_cores(target, 0);
5766
5767 return -1;
5768 }
5769
5770 /*
5771 * Scan the local SMT mask for idle CPUs.
5772 */
5773 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5774 {
5775 int cpu;
5776
5777 if (!static_branch_likely(&sched_smt_present))
5778 return -1;
5779
5780 for_each_cpu(cpu, cpu_smt_mask(target)) {
5781 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5782 continue;
5783 if (idle_cpu(cpu))
5784 return cpu;
5785 }
5786
5787 return -1;
5788 }
5789
5790 #else /* CONFIG_SCHED_SMT */
5791
5792 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5793 {
5794 return -1;
5795 }
5796
5797 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5798 {
5799 return -1;
5800 }
5801
5802 #endif /* CONFIG_SCHED_SMT */
5803
5804 /*
5805 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5806 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5807 * average idle time for this rq (as found in rq->avg_idle).
5808 */
5809 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5810 {
5811 struct sched_domain *this_sd;
5812 u64 avg_cost, avg_idle = this_rq()->avg_idle;
5813 u64 time, cost;
5814 s64 delta;
5815 int cpu, wrap;
5816
5817 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5818 if (!this_sd)
5819 return -1;
5820
5821 avg_cost = this_sd->avg_scan_cost;
5822
5823 /*
5824 * Due to large variance we need a large fuzz factor; hackbench in
5825 * particularly is sensitive here.
5826 */
5827 if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
5828 return -1;
5829
5830 time = local_clock();
5831
5832 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5833 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5834 continue;
5835 if (idle_cpu(cpu))
5836 break;
5837 }
5838
5839 time = local_clock() - time;
5840 cost = this_sd->avg_scan_cost;
5841 delta = (s64)(time - cost) / 8;
5842 this_sd->avg_scan_cost += delta;
5843
5844 return cpu;
5845 }
5846
5847 /*
5848 * Try and locate an idle core/thread in the LLC cache domain.
5849 */
5850 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5851 {
5852 struct sched_domain *sd;
5853 int i;
5854
5855 if (idle_cpu(target))
5856 return target;
5857
5858 /*
5859 * If the previous cpu is cache affine and idle, don't be stupid.
5860 */
5861 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5862 return prev;
5863
5864 sd = rcu_dereference(per_cpu(sd_llc, target));
5865 if (!sd)
5866 return target;
5867
5868 i = select_idle_core(p, sd, target);
5869 if ((unsigned)i < nr_cpumask_bits)
5870 return i;
5871
5872 i = select_idle_cpu(p, sd, target);
5873 if ((unsigned)i < nr_cpumask_bits)
5874 return i;
5875
5876 i = select_idle_smt(p, sd, target);
5877 if ((unsigned)i < nr_cpumask_bits)
5878 return i;
5879
5880 return target;
5881 }
5882
5883 /*
5884 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5885 * tasks. The unit of the return value must be the one of capacity so we can
5886 * compare the utilization with the capacity of the CPU that is available for
5887 * CFS task (ie cpu_capacity).
5888 *
5889 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5890 * recent utilization of currently non-runnable tasks on a CPU. It represents
5891 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5892 * capacity_orig is the cpu_capacity available at the highest frequency
5893 * (arch_scale_freq_capacity()).
5894 * The utilization of a CPU converges towards a sum equal to or less than the
5895 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5896 * the running time on this CPU scaled by capacity_curr.
5897 *
5898 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5899 * higher than capacity_orig because of unfortunate rounding in
5900 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5901 * the average stabilizes with the new running time. We need to check that the
5902 * utilization stays within the range of [0..capacity_orig] and cap it if
5903 * necessary. Without utilization capping, a group could be seen as overloaded
5904 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5905 * available capacity. We allow utilization to overshoot capacity_curr (but not
5906 * capacity_orig) as it useful for predicting the capacity required after task
5907 * migrations (scheduler-driven DVFS).
5908 */
5909 static int cpu_util(int cpu)
5910 {
5911 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5912 unsigned long capacity = capacity_orig_of(cpu);
5913
5914 return (util >= capacity) ? capacity : util;
5915 }
5916
5917 static inline int task_util(struct task_struct *p)
5918 {
5919 return p->se.avg.util_avg;
5920 }
5921
5922 /*
5923 * cpu_util_wake: Compute cpu utilization with any contributions from
5924 * the waking task p removed.
5925 */
5926 static int cpu_util_wake(int cpu, struct task_struct *p)
5927 {
5928 unsigned long util, capacity;
5929
5930 /* Task has no contribution or is new */
5931 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5932 return cpu_util(cpu);
5933
5934 capacity = capacity_orig_of(cpu);
5935 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5936
5937 return (util >= capacity) ? capacity : util;
5938 }
5939
5940 /*
5941 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5942 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5943 *
5944 * In that case WAKE_AFFINE doesn't make sense and we'll let
5945 * BALANCE_WAKE sort things out.
5946 */
5947 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5948 {
5949 long min_cap, max_cap;
5950
5951 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5952 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5953
5954 /* Minimum capacity is close to max, no need to abort wake_affine */
5955 if (max_cap - min_cap < max_cap >> 3)
5956 return 0;
5957
5958 /* Bring task utilization in sync with prev_cpu */
5959 sync_entity_load_avg(&p->se);
5960
5961 return min_cap * 1024 < task_util(p) * capacity_margin;
5962 }
5963
5964 /*
5965 * select_task_rq_fair: Select target runqueue for the waking task in domains
5966 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5967 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5968 *
5969 * Balances load by selecting the idlest cpu in the idlest group, or under
5970 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5971 *
5972 * Returns the target cpu number.
5973 *
5974 * preempt must be disabled.
5975 */
5976 static int
5977 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5978 {
5979 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5980 int cpu = smp_processor_id();
5981 int new_cpu = prev_cpu;
5982 int want_affine = 0;
5983 int sync = wake_flags & WF_SYNC;
5984
5985 if (sd_flag & SD_BALANCE_WAKE) {
5986 record_wakee(p);
5987 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5988 && cpumask_test_cpu(cpu, &p->cpus_allowed);
5989 }
5990
5991 rcu_read_lock();
5992 for_each_domain(cpu, tmp) {
5993 if (!(tmp->flags & SD_LOAD_BALANCE))
5994 break;
5995
5996 /*
5997 * If both cpu and prev_cpu are part of this domain,
5998 * cpu is a valid SD_WAKE_AFFINE target.
5999 */
6000 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6001 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6002 affine_sd = tmp;
6003 break;
6004 }
6005
6006 if (tmp->flags & sd_flag)
6007 sd = tmp;
6008 else if (!want_affine)
6009 break;
6010 }
6011
6012 if (affine_sd) {
6013 sd = NULL; /* Prefer wake_affine over balance flags */
6014 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
6015 new_cpu = cpu;
6016 }
6017
6018 if (!sd) {
6019 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6020 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6021
6022 } else while (sd) {
6023 struct sched_group *group;
6024 int weight;
6025
6026 if (!(sd->flags & sd_flag)) {
6027 sd = sd->child;
6028 continue;
6029 }
6030
6031 group = find_idlest_group(sd, p, cpu, sd_flag);
6032 if (!group) {
6033 sd = sd->child;
6034 continue;
6035 }
6036
6037 new_cpu = find_idlest_cpu(group, p, cpu);
6038 if (new_cpu == -1 || new_cpu == cpu) {
6039 /* Now try balancing at a lower domain level of cpu */
6040 sd = sd->child;
6041 continue;
6042 }
6043
6044 /* Now try balancing at a lower domain level of new_cpu */
6045 cpu = new_cpu;
6046 weight = sd->span_weight;
6047 sd = NULL;
6048 for_each_domain(cpu, tmp) {
6049 if (weight <= tmp->span_weight)
6050 break;
6051 if (tmp->flags & sd_flag)
6052 sd = tmp;
6053 }
6054 /* while loop will break here if sd == NULL */
6055 }
6056 rcu_read_unlock();
6057
6058 return new_cpu;
6059 }
6060
6061 /*
6062 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6063 * cfs_rq_of(p) references at time of call are still valid and identify the
6064 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6065 */
6066 static void migrate_task_rq_fair(struct task_struct *p)
6067 {
6068 /*
6069 * As blocked tasks retain absolute vruntime the migration needs to
6070 * deal with this by subtracting the old and adding the new
6071 * min_vruntime -- the latter is done by enqueue_entity() when placing
6072 * the task on the new runqueue.
6073 */
6074 if (p->state == TASK_WAKING) {
6075 struct sched_entity *se = &p->se;
6076 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6077 u64 min_vruntime;
6078
6079 #ifndef CONFIG_64BIT
6080 u64 min_vruntime_copy;
6081
6082 do {
6083 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6084 smp_rmb();
6085 min_vruntime = cfs_rq->min_vruntime;
6086 } while (min_vruntime != min_vruntime_copy);
6087 #else
6088 min_vruntime = cfs_rq->min_vruntime;
6089 #endif
6090
6091 se->vruntime -= min_vruntime;
6092 }
6093
6094 /*
6095 * We are supposed to update the task to "current" time, then its up to date
6096 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6097 * what current time is, so simply throw away the out-of-date time. This
6098 * will result in the wakee task is less decayed, but giving the wakee more
6099 * load sounds not bad.
6100 */
6101 remove_entity_load_avg(&p->se);
6102
6103 /* Tell new CPU we are migrated */
6104 p->se.avg.last_update_time = 0;
6105
6106 /* We have migrated, no longer consider this task hot */
6107 p->se.exec_start = 0;
6108 }
6109
6110 static void task_dead_fair(struct task_struct *p)
6111 {
6112 remove_entity_load_avg(&p->se);
6113 }
6114 #endif /* CONFIG_SMP */
6115
6116 static unsigned long
6117 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6118 {
6119 unsigned long gran = sysctl_sched_wakeup_granularity;
6120
6121 /*
6122 * Since its curr running now, convert the gran from real-time
6123 * to virtual-time in his units.
6124 *
6125 * By using 'se' instead of 'curr' we penalize light tasks, so
6126 * they get preempted easier. That is, if 'se' < 'curr' then
6127 * the resulting gran will be larger, therefore penalizing the
6128 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6129 * be smaller, again penalizing the lighter task.
6130 *
6131 * This is especially important for buddies when the leftmost
6132 * task is higher priority than the buddy.
6133 */
6134 return calc_delta_fair(gran, se);
6135 }
6136
6137 /*
6138 * Should 'se' preempt 'curr'.
6139 *
6140 * |s1
6141 * |s2
6142 * |s3
6143 * g
6144 * |<--->|c
6145 *
6146 * w(c, s1) = -1
6147 * w(c, s2) = 0
6148 * w(c, s3) = 1
6149 *
6150 */
6151 static int
6152 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6153 {
6154 s64 gran, vdiff = curr->vruntime - se->vruntime;
6155
6156 if (vdiff <= 0)
6157 return -1;
6158
6159 gran = wakeup_gran(curr, se);
6160 if (vdiff > gran)
6161 return 1;
6162
6163 return 0;
6164 }
6165
6166 static void set_last_buddy(struct sched_entity *se)
6167 {
6168 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6169 return;
6170
6171 for_each_sched_entity(se)
6172 cfs_rq_of(se)->last = se;
6173 }
6174
6175 static void set_next_buddy(struct sched_entity *se)
6176 {
6177 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6178 return;
6179
6180 for_each_sched_entity(se)
6181 cfs_rq_of(se)->next = se;
6182 }
6183
6184 static void set_skip_buddy(struct sched_entity *se)
6185 {
6186 for_each_sched_entity(se)
6187 cfs_rq_of(se)->skip = se;
6188 }
6189
6190 /*
6191 * Preempt the current task with a newly woken task if needed:
6192 */
6193 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6194 {
6195 struct task_struct *curr = rq->curr;
6196 struct sched_entity *se = &curr->se, *pse = &p->se;
6197 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6198 int scale = cfs_rq->nr_running >= sched_nr_latency;
6199 int next_buddy_marked = 0;
6200
6201 if (unlikely(se == pse))
6202 return;
6203
6204 /*
6205 * This is possible from callers such as attach_tasks(), in which we
6206 * unconditionally check_prempt_curr() after an enqueue (which may have
6207 * lead to a throttle). This both saves work and prevents false
6208 * next-buddy nomination below.
6209 */
6210 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6211 return;
6212
6213 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6214 set_next_buddy(pse);
6215 next_buddy_marked = 1;
6216 }
6217
6218 /*
6219 * We can come here with TIF_NEED_RESCHED already set from new task
6220 * wake up path.
6221 *
6222 * Note: this also catches the edge-case of curr being in a throttled
6223 * group (e.g. via set_curr_task), since update_curr() (in the
6224 * enqueue of curr) will have resulted in resched being set. This
6225 * prevents us from potentially nominating it as a false LAST_BUDDY
6226 * below.
6227 */
6228 if (test_tsk_need_resched(curr))
6229 return;
6230
6231 /* Idle tasks are by definition preempted by non-idle tasks. */
6232 if (unlikely(curr->policy == SCHED_IDLE) &&
6233 likely(p->policy != SCHED_IDLE))
6234 goto preempt;
6235
6236 /*
6237 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6238 * is driven by the tick):
6239 */
6240 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6241 return;
6242
6243 find_matching_se(&se, &pse);
6244 update_curr(cfs_rq_of(se));
6245 BUG_ON(!pse);
6246 if (wakeup_preempt_entity(se, pse) == 1) {
6247 /*
6248 * Bias pick_next to pick the sched entity that is
6249 * triggering this preemption.
6250 */
6251 if (!next_buddy_marked)
6252 set_next_buddy(pse);
6253 goto preempt;
6254 }
6255
6256 return;
6257
6258 preempt:
6259 resched_curr(rq);
6260 /*
6261 * Only set the backward buddy when the current task is still
6262 * on the rq. This can happen when a wakeup gets interleaved
6263 * with schedule on the ->pre_schedule() or idle_balance()
6264 * point, either of which can * drop the rq lock.
6265 *
6266 * Also, during early boot the idle thread is in the fair class,
6267 * for obvious reasons its a bad idea to schedule back to it.
6268 */
6269 if (unlikely(!se->on_rq || curr == rq->idle))
6270 return;
6271
6272 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6273 set_last_buddy(se);
6274 }
6275
6276 static struct task_struct *
6277 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6278 {
6279 struct cfs_rq *cfs_rq = &rq->cfs;
6280 struct sched_entity *se;
6281 struct task_struct *p;
6282 int new_tasks;
6283
6284 again:
6285 #ifdef CONFIG_FAIR_GROUP_SCHED
6286 if (!cfs_rq->nr_running)
6287 goto idle;
6288
6289 if (prev->sched_class != &fair_sched_class)
6290 goto simple;
6291
6292 /*
6293 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6294 * likely that a next task is from the same cgroup as the current.
6295 *
6296 * Therefore attempt to avoid putting and setting the entire cgroup
6297 * hierarchy, only change the part that actually changes.
6298 */
6299
6300 do {
6301 struct sched_entity *curr = cfs_rq->curr;
6302
6303 /*
6304 * Since we got here without doing put_prev_entity() we also
6305 * have to consider cfs_rq->curr. If it is still a runnable
6306 * entity, update_curr() will update its vruntime, otherwise
6307 * forget we've ever seen it.
6308 */
6309 if (curr) {
6310 if (curr->on_rq)
6311 update_curr(cfs_rq);
6312 else
6313 curr = NULL;
6314
6315 /*
6316 * This call to check_cfs_rq_runtime() will do the
6317 * throttle and dequeue its entity in the parent(s).
6318 * Therefore the 'simple' nr_running test will indeed
6319 * be correct.
6320 */
6321 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6322 goto simple;
6323 }
6324
6325 se = pick_next_entity(cfs_rq, curr);
6326 cfs_rq = group_cfs_rq(se);
6327 } while (cfs_rq);
6328
6329 p = task_of(se);
6330
6331 /*
6332 * Since we haven't yet done put_prev_entity and if the selected task
6333 * is a different task than we started out with, try and touch the
6334 * least amount of cfs_rqs.
6335 */
6336 if (prev != p) {
6337 struct sched_entity *pse = &prev->se;
6338
6339 while (!(cfs_rq = is_same_group(se, pse))) {
6340 int se_depth = se->depth;
6341 int pse_depth = pse->depth;
6342
6343 if (se_depth <= pse_depth) {
6344 put_prev_entity(cfs_rq_of(pse), pse);
6345 pse = parent_entity(pse);
6346 }
6347 if (se_depth >= pse_depth) {
6348 set_next_entity(cfs_rq_of(se), se);
6349 se = parent_entity(se);
6350 }
6351 }
6352
6353 put_prev_entity(cfs_rq, pse);
6354 set_next_entity(cfs_rq, se);
6355 }
6356
6357 if (hrtick_enabled(rq))
6358 hrtick_start_fair(rq, p);
6359
6360 return p;
6361 simple:
6362 cfs_rq = &rq->cfs;
6363 #endif
6364
6365 if (!cfs_rq->nr_running)
6366 goto idle;
6367
6368 put_prev_task(rq, prev);
6369
6370 do {
6371 se = pick_next_entity(cfs_rq, NULL);
6372 set_next_entity(cfs_rq, se);
6373 cfs_rq = group_cfs_rq(se);
6374 } while (cfs_rq);
6375
6376 p = task_of(se);
6377
6378 if (hrtick_enabled(rq))
6379 hrtick_start_fair(rq, p);
6380
6381 return p;
6382
6383 idle:
6384 new_tasks = idle_balance(rq, rf);
6385
6386 /*
6387 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6388 * possible for any higher priority task to appear. In that case we
6389 * must re-start the pick_next_entity() loop.
6390 */
6391 if (new_tasks < 0)
6392 return RETRY_TASK;
6393
6394 if (new_tasks > 0)
6395 goto again;
6396
6397 return NULL;
6398 }
6399
6400 /*
6401 * Account for a descheduled task:
6402 */
6403 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6404 {
6405 struct sched_entity *se = &prev->se;
6406 struct cfs_rq *cfs_rq;
6407
6408 for_each_sched_entity(se) {
6409 cfs_rq = cfs_rq_of(se);
6410 put_prev_entity(cfs_rq, se);
6411 }
6412 }
6413
6414 /*
6415 * sched_yield() is very simple
6416 *
6417 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6418 */
6419 static void yield_task_fair(struct rq *rq)
6420 {
6421 struct task_struct *curr = rq->curr;
6422 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6423 struct sched_entity *se = &curr->se;
6424
6425 /*
6426 * Are we the only task in the tree?
6427 */
6428 if (unlikely(rq->nr_running == 1))
6429 return;
6430
6431 clear_buddies(cfs_rq, se);
6432
6433 if (curr->policy != SCHED_BATCH) {
6434 update_rq_clock(rq);
6435 /*
6436 * Update run-time statistics of the 'current'.
6437 */
6438 update_curr(cfs_rq);
6439 /*
6440 * Tell update_rq_clock() that we've just updated,
6441 * so we don't do microscopic update in schedule()
6442 * and double the fastpath cost.
6443 */
6444 rq_clock_skip_update(rq, true);
6445 }
6446
6447 set_skip_buddy(se);
6448 }
6449
6450 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6451 {
6452 struct sched_entity *se = &p->se;
6453
6454 /* throttled hierarchies are not runnable */
6455 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6456 return false;
6457
6458 /* Tell the scheduler that we'd really like pse to run next. */
6459 set_next_buddy(se);
6460
6461 yield_task_fair(rq);
6462
6463 return true;
6464 }
6465
6466 #ifdef CONFIG_SMP
6467 /**************************************************
6468 * Fair scheduling class load-balancing methods.
6469 *
6470 * BASICS
6471 *
6472 * The purpose of load-balancing is to achieve the same basic fairness the
6473 * per-cpu scheduler provides, namely provide a proportional amount of compute
6474 * time to each task. This is expressed in the following equation:
6475 *
6476 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6477 *
6478 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6479 * W_i,0 is defined as:
6480 *
6481 * W_i,0 = \Sum_j w_i,j (2)
6482 *
6483 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6484 * is derived from the nice value as per sched_prio_to_weight[].
6485 *
6486 * The weight average is an exponential decay average of the instantaneous
6487 * weight:
6488 *
6489 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6490 *
6491 * C_i is the compute capacity of cpu i, typically it is the
6492 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6493 * can also include other factors [XXX].
6494 *
6495 * To achieve this balance we define a measure of imbalance which follows
6496 * directly from (1):
6497 *
6498 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6499 *
6500 * We them move tasks around to minimize the imbalance. In the continuous
6501 * function space it is obvious this converges, in the discrete case we get
6502 * a few fun cases generally called infeasible weight scenarios.
6503 *
6504 * [XXX expand on:
6505 * - infeasible weights;
6506 * - local vs global optima in the discrete case. ]
6507 *
6508 *
6509 * SCHED DOMAINS
6510 *
6511 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6512 * for all i,j solution, we create a tree of cpus that follows the hardware
6513 * topology where each level pairs two lower groups (or better). This results
6514 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6515 * tree to only the first of the previous level and we decrease the frequency
6516 * of load-balance at each level inv. proportional to the number of cpus in
6517 * the groups.
6518 *
6519 * This yields:
6520 *
6521 * log_2 n 1 n
6522 * \Sum { --- * --- * 2^i } = O(n) (5)
6523 * i = 0 2^i 2^i
6524 * `- size of each group
6525 * | | `- number of cpus doing load-balance
6526 * | `- freq
6527 * `- sum over all levels
6528 *
6529 * Coupled with a limit on how many tasks we can migrate every balance pass,
6530 * this makes (5) the runtime complexity of the balancer.
6531 *
6532 * An important property here is that each CPU is still (indirectly) connected
6533 * to every other cpu in at most O(log n) steps:
6534 *
6535 * The adjacency matrix of the resulting graph is given by:
6536 *
6537 * log_2 n
6538 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6539 * k = 0
6540 *
6541 * And you'll find that:
6542 *
6543 * A^(log_2 n)_i,j != 0 for all i,j (7)
6544 *
6545 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6546 * The task movement gives a factor of O(m), giving a convergence complexity
6547 * of:
6548 *
6549 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6550 *
6551 *
6552 * WORK CONSERVING
6553 *
6554 * In order to avoid CPUs going idle while there's still work to do, new idle
6555 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6556 * tree itself instead of relying on other CPUs to bring it work.
6557 *
6558 * This adds some complexity to both (5) and (8) but it reduces the total idle
6559 * time.
6560 *
6561 * [XXX more?]
6562 *
6563 *
6564 * CGROUPS
6565 *
6566 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6567 *
6568 * s_k,i
6569 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6570 * S_k
6571 *
6572 * Where
6573 *
6574 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6575 *
6576 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6577 *
6578 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6579 * property.
6580 *
6581 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6582 * rewrite all of this once again.]
6583 */
6584
6585 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6586
6587 enum fbq_type { regular, remote, all };
6588
6589 #define LBF_ALL_PINNED 0x01
6590 #define LBF_NEED_BREAK 0x02
6591 #define LBF_DST_PINNED 0x04
6592 #define LBF_SOME_PINNED 0x08
6593
6594 struct lb_env {
6595 struct sched_domain *sd;
6596
6597 struct rq *src_rq;
6598 int src_cpu;
6599
6600 int dst_cpu;
6601 struct rq *dst_rq;
6602
6603 struct cpumask *dst_grpmask;
6604 int new_dst_cpu;
6605 enum cpu_idle_type idle;
6606 long imbalance;
6607 /* The set of CPUs under consideration for load-balancing */
6608 struct cpumask *cpus;
6609
6610 unsigned int flags;
6611
6612 unsigned int loop;
6613 unsigned int loop_break;
6614 unsigned int loop_max;
6615
6616 enum fbq_type fbq_type;
6617 struct list_head tasks;
6618 };
6619
6620 /*
6621 * Is this task likely cache-hot:
6622 */
6623 static int task_hot(struct task_struct *p, struct lb_env *env)
6624 {
6625 s64 delta;
6626
6627 lockdep_assert_held(&env->src_rq->lock);
6628
6629 if (p->sched_class != &fair_sched_class)
6630 return 0;
6631
6632 if (unlikely(p->policy == SCHED_IDLE))
6633 return 0;
6634
6635 /*
6636 * Buddy candidates are cache hot:
6637 */
6638 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6639 (&p->se == cfs_rq_of(&p->se)->next ||
6640 &p->se == cfs_rq_of(&p->se)->last))
6641 return 1;
6642
6643 if (sysctl_sched_migration_cost == -1)
6644 return 1;
6645 if (sysctl_sched_migration_cost == 0)
6646 return 0;
6647
6648 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6649
6650 return delta < (s64)sysctl_sched_migration_cost;
6651 }
6652
6653 #ifdef CONFIG_NUMA_BALANCING
6654 /*
6655 * Returns 1, if task migration degrades locality
6656 * Returns 0, if task migration improves locality i.e migration preferred.
6657 * Returns -1, if task migration is not affected by locality.
6658 */
6659 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6660 {
6661 struct numa_group *numa_group = rcu_dereference(p->numa_group);
6662 unsigned long src_faults, dst_faults;
6663 int src_nid, dst_nid;
6664
6665 if (!static_branch_likely(&sched_numa_balancing))
6666 return -1;
6667
6668 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6669 return -1;
6670
6671 src_nid = cpu_to_node(env->src_cpu);
6672 dst_nid = cpu_to_node(env->dst_cpu);
6673
6674 if (src_nid == dst_nid)
6675 return -1;
6676
6677 /* Migrating away from the preferred node is always bad. */
6678 if (src_nid == p->numa_preferred_nid) {
6679 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6680 return 1;
6681 else
6682 return -1;
6683 }
6684
6685 /* Encourage migration to the preferred node. */
6686 if (dst_nid == p->numa_preferred_nid)
6687 return 0;
6688
6689 if (numa_group) {
6690 src_faults = group_faults(p, src_nid);
6691 dst_faults = group_faults(p, dst_nid);
6692 } else {
6693 src_faults = task_faults(p, src_nid);
6694 dst_faults = task_faults(p, dst_nid);
6695 }
6696
6697 return dst_faults < src_faults;
6698 }
6699
6700 #else
6701 static inline int migrate_degrades_locality(struct task_struct *p,
6702 struct lb_env *env)
6703 {
6704 return -1;
6705 }
6706 #endif
6707
6708 /*
6709 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6710 */
6711 static
6712 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6713 {
6714 int tsk_cache_hot;
6715
6716 lockdep_assert_held(&env->src_rq->lock);
6717
6718 /*
6719 * We do not migrate tasks that are:
6720 * 1) throttled_lb_pair, or
6721 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6722 * 3) running (obviously), or
6723 * 4) are cache-hot on their current CPU.
6724 */
6725 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6726 return 0;
6727
6728 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6729 int cpu;
6730
6731 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6732
6733 env->flags |= LBF_SOME_PINNED;
6734
6735 /*
6736 * Remember if this task can be migrated to any other cpu in
6737 * our sched_group. We may want to revisit it if we couldn't
6738 * meet load balance goals by pulling other tasks on src_cpu.
6739 *
6740 * Also avoid computing new_dst_cpu if we have already computed
6741 * one in current iteration.
6742 */
6743 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6744 return 0;
6745
6746 /* Prevent to re-select dst_cpu via env's cpus */
6747 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6748 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6749 env->flags |= LBF_DST_PINNED;
6750 env->new_dst_cpu = cpu;
6751 break;
6752 }
6753 }
6754
6755 return 0;
6756 }
6757
6758 /* Record that we found atleast one task that could run on dst_cpu */
6759 env->flags &= ~LBF_ALL_PINNED;
6760
6761 if (task_running(env->src_rq, p)) {
6762 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6763 return 0;
6764 }
6765
6766 /*
6767 * Aggressive migration if:
6768 * 1) destination numa is preferred
6769 * 2) task is cache cold, or
6770 * 3) too many balance attempts have failed.
6771 */
6772 tsk_cache_hot = migrate_degrades_locality(p, env);
6773 if (tsk_cache_hot == -1)
6774 tsk_cache_hot = task_hot(p, env);
6775
6776 if (tsk_cache_hot <= 0 ||
6777 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6778 if (tsk_cache_hot == 1) {
6779 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6780 schedstat_inc(p->se.statistics.nr_forced_migrations);
6781 }
6782 return 1;
6783 }
6784
6785 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6786 return 0;
6787 }
6788
6789 /*
6790 * detach_task() -- detach the task for the migration specified in env
6791 */
6792 static void detach_task(struct task_struct *p, struct lb_env *env)
6793 {
6794 lockdep_assert_held(&env->src_rq->lock);
6795
6796 p->on_rq = TASK_ON_RQ_MIGRATING;
6797 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6798 set_task_cpu(p, env->dst_cpu);
6799 }
6800
6801 /*
6802 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6803 * part of active balancing operations within "domain".
6804 *
6805 * Returns a task if successful and NULL otherwise.
6806 */
6807 static struct task_struct *detach_one_task(struct lb_env *env)
6808 {
6809 struct task_struct *p, *n;
6810
6811 lockdep_assert_held(&env->src_rq->lock);
6812
6813 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6814 if (!can_migrate_task(p, env))
6815 continue;
6816
6817 detach_task(p, env);
6818
6819 /*
6820 * Right now, this is only the second place where
6821 * lb_gained[env->idle] is updated (other is detach_tasks)
6822 * so we can safely collect stats here rather than
6823 * inside detach_tasks().
6824 */
6825 schedstat_inc(env->sd->lb_gained[env->idle]);
6826 return p;
6827 }
6828 return NULL;
6829 }
6830
6831 static const unsigned int sched_nr_migrate_break = 32;
6832
6833 /*
6834 * detach_tasks() -- tries to detach up to imbalance weighted load from
6835 * busiest_rq, as part of a balancing operation within domain "sd".
6836 *
6837 * Returns number of detached tasks if successful and 0 otherwise.
6838 */
6839 static int detach_tasks(struct lb_env *env)
6840 {
6841 struct list_head *tasks = &env->src_rq->cfs_tasks;
6842 struct task_struct *p;
6843 unsigned long load;
6844 int detached = 0;
6845
6846 lockdep_assert_held(&env->src_rq->lock);
6847
6848 if (env->imbalance <= 0)
6849 return 0;
6850
6851 while (!list_empty(tasks)) {
6852 /*
6853 * We don't want to steal all, otherwise we may be treated likewise,
6854 * which could at worst lead to a livelock crash.
6855 */
6856 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6857 break;
6858
6859 p = list_first_entry(tasks, struct task_struct, se.group_node);
6860
6861 env->loop++;
6862 /* We've more or less seen every task there is, call it quits */
6863 if (env->loop > env->loop_max)
6864 break;
6865
6866 /* take a breather every nr_migrate tasks */
6867 if (env->loop > env->loop_break) {
6868 env->loop_break += sched_nr_migrate_break;
6869 env->flags |= LBF_NEED_BREAK;
6870 break;
6871 }
6872
6873 if (!can_migrate_task(p, env))
6874 goto next;
6875
6876 load = task_h_load(p);
6877
6878 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6879 goto next;
6880
6881 if ((load / 2) > env->imbalance)
6882 goto next;
6883
6884 detach_task(p, env);
6885 list_add(&p->se.group_node, &env->tasks);
6886
6887 detached++;
6888 env->imbalance -= load;
6889
6890 #ifdef CONFIG_PREEMPT
6891 /*
6892 * NEWIDLE balancing is a source of latency, so preemptible
6893 * kernels will stop after the first task is detached to minimize
6894 * the critical section.
6895 */
6896 if (env->idle == CPU_NEWLY_IDLE)
6897 break;
6898 #endif
6899
6900 /*
6901 * We only want to steal up to the prescribed amount of
6902 * weighted load.
6903 */
6904 if (env->imbalance <= 0)
6905 break;
6906
6907 continue;
6908 next:
6909 list_move_tail(&p->se.group_node, tasks);
6910 }
6911
6912 /*
6913 * Right now, this is one of only two places we collect this stat
6914 * so we can safely collect detach_one_task() stats here rather
6915 * than inside detach_one_task().
6916 */
6917 schedstat_add(env->sd->lb_gained[env->idle], detached);
6918
6919 return detached;
6920 }
6921
6922 /*
6923 * attach_task() -- attach the task detached by detach_task() to its new rq.
6924 */
6925 static void attach_task(struct rq *rq, struct task_struct *p)
6926 {
6927 lockdep_assert_held(&rq->lock);
6928
6929 BUG_ON(task_rq(p) != rq);
6930 activate_task(rq, p, ENQUEUE_NOCLOCK);
6931 p->on_rq = TASK_ON_RQ_QUEUED;
6932 check_preempt_curr(rq, p, 0);
6933 }
6934
6935 /*
6936 * attach_one_task() -- attaches the task returned from detach_one_task() to
6937 * its new rq.
6938 */
6939 static void attach_one_task(struct rq *rq, struct task_struct *p)
6940 {
6941 struct rq_flags rf;
6942
6943 rq_lock(rq, &rf);
6944 update_rq_clock(rq);
6945 attach_task(rq, p);
6946 rq_unlock(rq, &rf);
6947 }
6948
6949 /*
6950 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6951 * new rq.
6952 */
6953 static void attach_tasks(struct lb_env *env)
6954 {
6955 struct list_head *tasks = &env->tasks;
6956 struct task_struct *p;
6957 struct rq_flags rf;
6958
6959 rq_lock(env->dst_rq, &rf);
6960 update_rq_clock(env->dst_rq);
6961
6962 while (!list_empty(tasks)) {
6963 p = list_first_entry(tasks, struct task_struct, se.group_node);
6964 list_del_init(&p->se.group_node);
6965
6966 attach_task(env->dst_rq, p);
6967 }
6968
6969 rq_unlock(env->dst_rq, &rf);
6970 }
6971
6972 #ifdef CONFIG_FAIR_GROUP_SCHED
6973 static void update_blocked_averages(int cpu)
6974 {
6975 struct rq *rq = cpu_rq(cpu);
6976 struct cfs_rq *cfs_rq;
6977 struct rq_flags rf;
6978
6979 rq_lock_irqsave(rq, &rf);
6980 update_rq_clock(rq);
6981
6982 /*
6983 * Iterates the task_group tree in a bottom up fashion, see
6984 * list_add_leaf_cfs_rq() for details.
6985 */
6986 for_each_leaf_cfs_rq(rq, cfs_rq) {
6987 struct sched_entity *se;
6988
6989 /* throttled entities do not contribute to load */
6990 if (throttled_hierarchy(cfs_rq))
6991 continue;
6992
6993 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6994 update_tg_load_avg(cfs_rq, 0);
6995
6996 /* Propagate pending load changes to the parent, if any: */
6997 se = cfs_rq->tg->se[cpu];
6998 if (se && !skip_blocked_update(se))
6999 update_load_avg(se, 0);
7000 }
7001 rq_unlock_irqrestore(rq, &rf);
7002 }
7003
7004 /*
7005 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7006 * This needs to be done in a top-down fashion because the load of a child
7007 * group is a fraction of its parents load.
7008 */
7009 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7010 {
7011 struct rq *rq = rq_of(cfs_rq);
7012 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7013 unsigned long now = jiffies;
7014 unsigned long load;
7015
7016 if (cfs_rq->last_h_load_update == now)
7017 return;
7018
7019 cfs_rq->h_load_next = NULL;
7020 for_each_sched_entity(se) {
7021 cfs_rq = cfs_rq_of(se);
7022 cfs_rq->h_load_next = se;
7023 if (cfs_rq->last_h_load_update == now)
7024 break;
7025 }
7026
7027 if (!se) {
7028 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7029 cfs_rq->last_h_load_update = now;
7030 }
7031
7032 while ((se = cfs_rq->h_load_next) != NULL) {
7033 load = cfs_rq->h_load;
7034 load = div64_ul(load * se->avg.load_avg,
7035 cfs_rq_load_avg(cfs_rq) + 1);
7036 cfs_rq = group_cfs_rq(se);
7037 cfs_rq->h_load = load;
7038 cfs_rq->last_h_load_update = now;
7039 }
7040 }
7041
7042 static unsigned long task_h_load(struct task_struct *p)
7043 {
7044 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7045
7046 update_cfs_rq_h_load(cfs_rq);
7047 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7048 cfs_rq_load_avg(cfs_rq) + 1);
7049 }
7050 #else
7051 static inline void update_blocked_averages(int cpu)
7052 {
7053 struct rq *rq = cpu_rq(cpu);
7054 struct cfs_rq *cfs_rq = &rq->cfs;
7055 struct rq_flags rf;
7056
7057 rq_lock_irqsave(rq, &rf);
7058 update_rq_clock(rq);
7059 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
7060 rq_unlock_irqrestore(rq, &rf);
7061 }
7062
7063 static unsigned long task_h_load(struct task_struct *p)
7064 {
7065 return p->se.avg.load_avg;
7066 }
7067 #endif
7068
7069 /********** Helpers for find_busiest_group ************************/
7070
7071 enum group_type {
7072 group_other = 0,
7073 group_imbalanced,
7074 group_overloaded,
7075 };
7076
7077 /*
7078 * sg_lb_stats - stats of a sched_group required for load_balancing
7079 */
7080 struct sg_lb_stats {
7081 unsigned long avg_load; /*Avg load across the CPUs of the group */
7082 unsigned long group_load; /* Total load over the CPUs of the group */
7083 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7084 unsigned long load_per_task;
7085 unsigned long group_capacity;
7086 unsigned long group_util; /* Total utilization of the group */
7087 unsigned int sum_nr_running; /* Nr tasks running in the group */
7088 unsigned int idle_cpus;
7089 unsigned int group_weight;
7090 enum group_type group_type;
7091 int group_no_capacity;
7092 #ifdef CONFIG_NUMA_BALANCING
7093 unsigned int nr_numa_running;
7094 unsigned int nr_preferred_running;
7095 #endif
7096 };
7097
7098 /*
7099 * sd_lb_stats - Structure to store the statistics of a sched_domain
7100 * during load balancing.
7101 */
7102 struct sd_lb_stats {
7103 struct sched_group *busiest; /* Busiest group in this sd */
7104 struct sched_group *local; /* Local group in this sd */
7105 unsigned long total_load; /* Total load of all groups in sd */
7106 unsigned long total_capacity; /* Total capacity of all groups in sd */
7107 unsigned long avg_load; /* Average load across all groups in sd */
7108
7109 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7110 struct sg_lb_stats local_stat; /* Statistics of the local group */
7111 };
7112
7113 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7114 {
7115 /*
7116 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7117 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7118 * We must however clear busiest_stat::avg_load because
7119 * update_sd_pick_busiest() reads this before assignment.
7120 */
7121 *sds = (struct sd_lb_stats){
7122 .busiest = NULL,
7123 .local = NULL,
7124 .total_load = 0UL,
7125 .total_capacity = 0UL,
7126 .busiest_stat = {
7127 .avg_load = 0UL,
7128 .sum_nr_running = 0,
7129 .group_type = group_other,
7130 },
7131 };
7132 }
7133
7134 /**
7135 * get_sd_load_idx - Obtain the load index for a given sched domain.
7136 * @sd: The sched_domain whose load_idx is to be obtained.
7137 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7138 *
7139 * Return: The load index.
7140 */
7141 static inline int get_sd_load_idx(struct sched_domain *sd,
7142 enum cpu_idle_type idle)
7143 {
7144 int load_idx;
7145
7146 switch (idle) {
7147 case CPU_NOT_IDLE:
7148 load_idx = sd->busy_idx;
7149 break;
7150
7151 case CPU_NEWLY_IDLE:
7152 load_idx = sd->newidle_idx;
7153 break;
7154 default:
7155 load_idx = sd->idle_idx;
7156 break;
7157 }
7158
7159 return load_idx;
7160 }
7161
7162 static unsigned long scale_rt_capacity(int cpu)
7163 {
7164 struct rq *rq = cpu_rq(cpu);
7165 u64 total, used, age_stamp, avg;
7166 s64 delta;
7167
7168 /*
7169 * Since we're reading these variables without serialization make sure
7170 * we read them once before doing sanity checks on them.
7171 */
7172 age_stamp = READ_ONCE(rq->age_stamp);
7173 avg = READ_ONCE(rq->rt_avg);
7174 delta = __rq_clock_broken(rq) - age_stamp;
7175
7176 if (unlikely(delta < 0))
7177 delta = 0;
7178
7179 total = sched_avg_period() + delta;
7180
7181 used = div_u64(avg, total);
7182
7183 if (likely(used < SCHED_CAPACITY_SCALE))
7184 return SCHED_CAPACITY_SCALE - used;
7185
7186 return 1;
7187 }
7188
7189 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7190 {
7191 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7192 struct sched_group *sdg = sd->groups;
7193
7194 cpu_rq(cpu)->cpu_capacity_orig = capacity;
7195
7196 capacity *= scale_rt_capacity(cpu);
7197 capacity >>= SCHED_CAPACITY_SHIFT;
7198
7199 if (!capacity)
7200 capacity = 1;
7201
7202 cpu_rq(cpu)->cpu_capacity = capacity;
7203 sdg->sgc->capacity = capacity;
7204 sdg->sgc->min_capacity = capacity;
7205 }
7206
7207 void update_group_capacity(struct sched_domain *sd, int cpu)
7208 {
7209 struct sched_domain *child = sd->child;
7210 struct sched_group *group, *sdg = sd->groups;
7211 unsigned long capacity, min_capacity;
7212 unsigned long interval;
7213
7214 interval = msecs_to_jiffies(sd->balance_interval);
7215 interval = clamp(interval, 1UL, max_load_balance_interval);
7216 sdg->sgc->next_update = jiffies + interval;
7217
7218 if (!child) {
7219 update_cpu_capacity(sd, cpu);
7220 return;
7221 }
7222
7223 capacity = 0;
7224 min_capacity = ULONG_MAX;
7225
7226 if (child->flags & SD_OVERLAP) {
7227 /*
7228 * SD_OVERLAP domains cannot assume that child groups
7229 * span the current group.
7230 */
7231
7232 for_each_cpu(cpu, sched_group_cpus(sdg)) {
7233 struct sched_group_capacity *sgc;
7234 struct rq *rq = cpu_rq(cpu);
7235
7236 /*
7237 * build_sched_domains() -> init_sched_groups_capacity()
7238 * gets here before we've attached the domains to the
7239 * runqueues.
7240 *
7241 * Use capacity_of(), which is set irrespective of domains
7242 * in update_cpu_capacity().
7243 *
7244 * This avoids capacity from being 0 and
7245 * causing divide-by-zero issues on boot.
7246 */
7247 if (unlikely(!rq->sd)) {
7248 capacity += capacity_of(cpu);
7249 } else {
7250 sgc = rq->sd->groups->sgc;
7251 capacity += sgc->capacity;
7252 }
7253
7254 min_capacity = min(capacity, min_capacity);
7255 }
7256 } else {
7257 /*
7258 * !SD_OVERLAP domains can assume that child groups
7259 * span the current group.
7260 */
7261
7262 group = child->groups;
7263 do {
7264 struct sched_group_capacity *sgc = group->sgc;
7265
7266 capacity += sgc->capacity;
7267 min_capacity = min(sgc->min_capacity, min_capacity);
7268 group = group->next;
7269 } while (group != child->groups);
7270 }
7271
7272 sdg->sgc->capacity = capacity;
7273 sdg->sgc->min_capacity = min_capacity;
7274 }
7275
7276 /*
7277 * Check whether the capacity of the rq has been noticeably reduced by side
7278 * activity. The imbalance_pct is used for the threshold.
7279 * Return true is the capacity is reduced
7280 */
7281 static inline int
7282 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7283 {
7284 return ((rq->cpu_capacity * sd->imbalance_pct) <
7285 (rq->cpu_capacity_orig * 100));
7286 }
7287
7288 /*
7289 * Group imbalance indicates (and tries to solve) the problem where balancing
7290 * groups is inadequate due to ->cpus_allowed constraints.
7291 *
7292 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7293 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7294 * Something like:
7295 *
7296 * { 0 1 2 3 } { 4 5 6 7 }
7297 * * * * *
7298 *
7299 * If we were to balance group-wise we'd place two tasks in the first group and
7300 * two tasks in the second group. Clearly this is undesired as it will overload
7301 * cpu 3 and leave one of the cpus in the second group unused.
7302 *
7303 * The current solution to this issue is detecting the skew in the first group
7304 * by noticing the lower domain failed to reach balance and had difficulty
7305 * moving tasks due to affinity constraints.
7306 *
7307 * When this is so detected; this group becomes a candidate for busiest; see
7308 * update_sd_pick_busiest(). And calculate_imbalance() and
7309 * find_busiest_group() avoid some of the usual balance conditions to allow it
7310 * to create an effective group imbalance.
7311 *
7312 * This is a somewhat tricky proposition since the next run might not find the
7313 * group imbalance and decide the groups need to be balanced again. A most
7314 * subtle and fragile situation.
7315 */
7316
7317 static inline int sg_imbalanced(struct sched_group *group)
7318 {
7319 return group->sgc->imbalance;
7320 }
7321
7322 /*
7323 * group_has_capacity returns true if the group has spare capacity that could
7324 * be used by some tasks.
7325 * We consider that a group has spare capacity if the * number of task is
7326 * smaller than the number of CPUs or if the utilization is lower than the
7327 * available capacity for CFS tasks.
7328 * For the latter, we use a threshold to stabilize the state, to take into
7329 * account the variance of the tasks' load and to return true if the available
7330 * capacity in meaningful for the load balancer.
7331 * As an example, an available capacity of 1% can appear but it doesn't make
7332 * any benefit for the load balance.
7333 */
7334 static inline bool
7335 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7336 {
7337 if (sgs->sum_nr_running < sgs->group_weight)
7338 return true;
7339
7340 if ((sgs->group_capacity * 100) >
7341 (sgs->group_util * env->sd->imbalance_pct))
7342 return true;
7343
7344 return false;
7345 }
7346
7347 /*
7348 * group_is_overloaded returns true if the group has more tasks than it can
7349 * handle.
7350 * group_is_overloaded is not equals to !group_has_capacity because a group
7351 * with the exact right number of tasks, has no more spare capacity but is not
7352 * overloaded so both group_has_capacity and group_is_overloaded return
7353 * false.
7354 */
7355 static inline bool
7356 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7357 {
7358 if (sgs->sum_nr_running <= sgs->group_weight)
7359 return false;
7360
7361 if ((sgs->group_capacity * 100) <
7362 (sgs->group_util * env->sd->imbalance_pct))
7363 return true;
7364
7365 return false;
7366 }
7367
7368 /*
7369 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7370 * per-CPU capacity than sched_group ref.
7371 */
7372 static inline bool
7373 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7374 {
7375 return sg->sgc->min_capacity * capacity_margin <
7376 ref->sgc->min_capacity * 1024;
7377 }
7378
7379 static inline enum
7380 group_type group_classify(struct sched_group *group,
7381 struct sg_lb_stats *sgs)
7382 {
7383 if (sgs->group_no_capacity)
7384 return group_overloaded;
7385
7386 if (sg_imbalanced(group))
7387 return group_imbalanced;
7388
7389 return group_other;
7390 }
7391
7392 /**
7393 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7394 * @env: The load balancing environment.
7395 * @group: sched_group whose statistics are to be updated.
7396 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7397 * @local_group: Does group contain this_cpu.
7398 * @sgs: variable to hold the statistics for this group.
7399 * @overload: Indicate more than one runnable task for any CPU.
7400 */
7401 static inline void update_sg_lb_stats(struct lb_env *env,
7402 struct sched_group *group, int load_idx,
7403 int local_group, struct sg_lb_stats *sgs,
7404 bool *overload)
7405 {
7406 unsigned long load;
7407 int i, nr_running;
7408
7409 memset(sgs, 0, sizeof(*sgs));
7410
7411 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7412 struct rq *rq = cpu_rq(i);
7413
7414 /* Bias balancing toward cpus of our domain */
7415 if (local_group)
7416 load = target_load(i, load_idx);
7417 else
7418 load = source_load(i, load_idx);
7419
7420 sgs->group_load += load;
7421 sgs->group_util += cpu_util(i);
7422 sgs->sum_nr_running += rq->cfs.h_nr_running;
7423
7424 nr_running = rq->nr_running;
7425 if (nr_running > 1)
7426 *overload = true;
7427
7428 #ifdef CONFIG_NUMA_BALANCING
7429 sgs->nr_numa_running += rq->nr_numa_running;
7430 sgs->nr_preferred_running += rq->nr_preferred_running;
7431 #endif
7432 sgs->sum_weighted_load += weighted_cpuload(i);
7433 /*
7434 * No need to call idle_cpu() if nr_running is not 0
7435 */
7436 if (!nr_running && idle_cpu(i))
7437 sgs->idle_cpus++;
7438 }
7439
7440 /* Adjust by relative CPU capacity of the group */
7441 sgs->group_capacity = group->sgc->capacity;
7442 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7443
7444 if (sgs->sum_nr_running)
7445 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7446
7447 sgs->group_weight = group->group_weight;
7448
7449 sgs->group_no_capacity = group_is_overloaded(env, sgs);
7450 sgs->group_type = group_classify(group, sgs);
7451 }
7452
7453 /**
7454 * update_sd_pick_busiest - return 1 on busiest group
7455 * @env: The load balancing environment.
7456 * @sds: sched_domain statistics
7457 * @sg: sched_group candidate to be checked for being the busiest
7458 * @sgs: sched_group statistics
7459 *
7460 * Determine if @sg is a busier group than the previously selected
7461 * busiest group.
7462 *
7463 * Return: %true if @sg is a busier group than the previously selected
7464 * busiest group. %false otherwise.
7465 */
7466 static bool update_sd_pick_busiest(struct lb_env *env,
7467 struct sd_lb_stats *sds,
7468 struct sched_group *sg,
7469 struct sg_lb_stats *sgs)
7470 {
7471 struct sg_lb_stats *busiest = &sds->busiest_stat;
7472
7473 if (sgs->group_type > busiest->group_type)
7474 return true;
7475
7476 if (sgs->group_type < busiest->group_type)
7477 return false;
7478
7479 if (sgs->avg_load <= busiest->avg_load)
7480 return false;
7481
7482 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7483 goto asym_packing;
7484
7485 /*
7486 * Candidate sg has no more than one task per CPU and
7487 * has higher per-CPU capacity. Migrating tasks to less
7488 * capable CPUs may harm throughput. Maximize throughput,
7489 * power/energy consequences are not considered.
7490 */
7491 if (sgs->sum_nr_running <= sgs->group_weight &&
7492 group_smaller_cpu_capacity(sds->local, sg))
7493 return false;
7494
7495 asym_packing:
7496 /* This is the busiest node in its class. */
7497 if (!(env->sd->flags & SD_ASYM_PACKING))
7498 return true;
7499
7500 /* No ASYM_PACKING if target cpu is already busy */
7501 if (env->idle == CPU_NOT_IDLE)
7502 return true;
7503 /*
7504 * ASYM_PACKING needs to move all the work to the highest
7505 * prority CPUs in the group, therefore mark all groups
7506 * of lower priority than ourself as busy.
7507 */
7508 if (sgs->sum_nr_running &&
7509 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7510 if (!sds->busiest)
7511 return true;
7512
7513 /* Prefer to move from lowest priority cpu's work */
7514 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7515 sg->asym_prefer_cpu))
7516 return true;
7517 }
7518
7519 return false;
7520 }
7521
7522 #ifdef CONFIG_NUMA_BALANCING
7523 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7524 {
7525 if (sgs->sum_nr_running > sgs->nr_numa_running)
7526 return regular;
7527 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7528 return remote;
7529 return all;
7530 }
7531
7532 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7533 {
7534 if (rq->nr_running > rq->nr_numa_running)
7535 return regular;
7536 if (rq->nr_running > rq->nr_preferred_running)
7537 return remote;
7538 return all;
7539 }
7540 #else
7541 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7542 {
7543 return all;
7544 }
7545
7546 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7547 {
7548 return regular;
7549 }
7550 #endif /* CONFIG_NUMA_BALANCING */
7551
7552 /**
7553 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7554 * @env: The load balancing environment.
7555 * @sds: variable to hold the statistics for this sched_domain.
7556 */
7557 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7558 {
7559 struct sched_domain *child = env->sd->child;
7560 struct sched_group *sg = env->sd->groups;
7561 struct sg_lb_stats *local = &sds->local_stat;
7562 struct sg_lb_stats tmp_sgs;
7563 int load_idx, prefer_sibling = 0;
7564 bool overload = false;
7565
7566 if (child && child->flags & SD_PREFER_SIBLING)
7567 prefer_sibling = 1;
7568
7569 load_idx = get_sd_load_idx(env->sd, env->idle);
7570
7571 do {
7572 struct sg_lb_stats *sgs = &tmp_sgs;
7573 int local_group;
7574
7575 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
7576 if (local_group) {
7577 sds->local = sg;
7578 sgs = local;
7579
7580 if (env->idle != CPU_NEWLY_IDLE ||
7581 time_after_eq(jiffies, sg->sgc->next_update))
7582 update_group_capacity(env->sd, env->dst_cpu);
7583 }
7584
7585 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7586 &overload);
7587
7588 if (local_group)
7589 goto next_group;
7590
7591 /*
7592 * In case the child domain prefers tasks go to siblings
7593 * first, lower the sg capacity so that we'll try
7594 * and move all the excess tasks away. We lower the capacity
7595 * of a group only if the local group has the capacity to fit
7596 * these excess tasks. The extra check prevents the case where
7597 * you always pull from the heaviest group when it is already
7598 * under-utilized (possible with a large weight task outweighs
7599 * the tasks on the system).
7600 */
7601 if (prefer_sibling && sds->local &&
7602 group_has_capacity(env, local) &&
7603 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7604 sgs->group_no_capacity = 1;
7605 sgs->group_type = group_classify(sg, sgs);
7606 }
7607
7608 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7609 sds->busiest = sg;
7610 sds->busiest_stat = *sgs;
7611 }
7612
7613 next_group:
7614 /* Now, start updating sd_lb_stats */
7615 sds->total_load += sgs->group_load;
7616 sds->total_capacity += sgs->group_capacity;
7617
7618 sg = sg->next;
7619 } while (sg != env->sd->groups);
7620
7621 if (env->sd->flags & SD_NUMA)
7622 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7623
7624 if (!env->sd->parent) {
7625 /* update overload indicator if we are at root domain */
7626 if (env->dst_rq->rd->overload != overload)
7627 env->dst_rq->rd->overload = overload;
7628 }
7629
7630 }
7631
7632 /**
7633 * check_asym_packing - Check to see if the group is packed into the
7634 * sched domain.
7635 *
7636 * This is primarily intended to used at the sibling level. Some
7637 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7638 * case of POWER7, it can move to lower SMT modes only when higher
7639 * threads are idle. When in lower SMT modes, the threads will
7640 * perform better since they share less core resources. Hence when we
7641 * have idle threads, we want them to be the higher ones.
7642 *
7643 * This packing function is run on idle threads. It checks to see if
7644 * the busiest CPU in this domain (core in the P7 case) has a higher
7645 * CPU number than the packing function is being run on. Here we are
7646 * assuming lower CPU number will be equivalent to lower a SMT thread
7647 * number.
7648 *
7649 * Return: 1 when packing is required and a task should be moved to
7650 * this CPU. The amount of the imbalance is returned in *imbalance.
7651 *
7652 * @env: The load balancing environment.
7653 * @sds: Statistics of the sched_domain which is to be packed
7654 */
7655 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7656 {
7657 int busiest_cpu;
7658
7659 if (!(env->sd->flags & SD_ASYM_PACKING))
7660 return 0;
7661
7662 if (env->idle == CPU_NOT_IDLE)
7663 return 0;
7664
7665 if (!sds->busiest)
7666 return 0;
7667
7668 busiest_cpu = sds->busiest->asym_prefer_cpu;
7669 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7670 return 0;
7671
7672 env->imbalance = DIV_ROUND_CLOSEST(
7673 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7674 SCHED_CAPACITY_SCALE);
7675
7676 return 1;
7677 }
7678
7679 /**
7680 * fix_small_imbalance - Calculate the minor imbalance that exists
7681 * amongst the groups of a sched_domain, during
7682 * load balancing.
7683 * @env: The load balancing environment.
7684 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7685 */
7686 static inline
7687 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7688 {
7689 unsigned long tmp, capa_now = 0, capa_move = 0;
7690 unsigned int imbn = 2;
7691 unsigned long scaled_busy_load_per_task;
7692 struct sg_lb_stats *local, *busiest;
7693
7694 local = &sds->local_stat;
7695 busiest = &sds->busiest_stat;
7696
7697 if (!local->sum_nr_running)
7698 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7699 else if (busiest->load_per_task > local->load_per_task)
7700 imbn = 1;
7701
7702 scaled_busy_load_per_task =
7703 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7704 busiest->group_capacity;
7705
7706 if (busiest->avg_load + scaled_busy_load_per_task >=
7707 local->avg_load + (scaled_busy_load_per_task * imbn)) {
7708 env->imbalance = busiest->load_per_task;
7709 return;
7710 }
7711
7712 /*
7713 * OK, we don't have enough imbalance to justify moving tasks,
7714 * however we may be able to increase total CPU capacity used by
7715 * moving them.
7716 */
7717
7718 capa_now += busiest->group_capacity *
7719 min(busiest->load_per_task, busiest->avg_load);
7720 capa_now += local->group_capacity *
7721 min(local->load_per_task, local->avg_load);
7722 capa_now /= SCHED_CAPACITY_SCALE;
7723
7724 /* Amount of load we'd subtract */
7725 if (busiest->avg_load > scaled_busy_load_per_task) {
7726 capa_move += busiest->group_capacity *
7727 min(busiest->load_per_task,
7728 busiest->avg_load - scaled_busy_load_per_task);
7729 }
7730
7731 /* Amount of load we'd add */
7732 if (busiest->avg_load * busiest->group_capacity <
7733 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7734 tmp = (busiest->avg_load * busiest->group_capacity) /
7735 local->group_capacity;
7736 } else {
7737 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7738 local->group_capacity;
7739 }
7740 capa_move += local->group_capacity *
7741 min(local->load_per_task, local->avg_load + tmp);
7742 capa_move /= SCHED_CAPACITY_SCALE;
7743
7744 /* Move if we gain throughput */
7745 if (capa_move > capa_now)
7746 env->imbalance = busiest->load_per_task;
7747 }
7748
7749 /**
7750 * calculate_imbalance - Calculate the amount of imbalance present within the
7751 * groups of a given sched_domain during load balance.
7752 * @env: load balance environment
7753 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7754 */
7755 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7756 {
7757 unsigned long max_pull, load_above_capacity = ~0UL;
7758 struct sg_lb_stats *local, *busiest;
7759
7760 local = &sds->local_stat;
7761 busiest = &sds->busiest_stat;
7762
7763 if (busiest->group_type == group_imbalanced) {
7764 /*
7765 * In the group_imb case we cannot rely on group-wide averages
7766 * to ensure cpu-load equilibrium, look at wider averages. XXX
7767 */
7768 busiest->load_per_task =
7769 min(busiest->load_per_task, sds->avg_load);
7770 }
7771
7772 /*
7773 * Avg load of busiest sg can be less and avg load of local sg can
7774 * be greater than avg load across all sgs of sd because avg load
7775 * factors in sg capacity and sgs with smaller group_type are
7776 * skipped when updating the busiest sg:
7777 */
7778 if (busiest->avg_load <= sds->avg_load ||
7779 local->avg_load >= sds->avg_load) {
7780 env->imbalance = 0;
7781 return fix_small_imbalance(env, sds);
7782 }
7783
7784 /*
7785 * If there aren't any idle cpus, avoid creating some.
7786 */
7787 if (busiest->group_type == group_overloaded &&
7788 local->group_type == group_overloaded) {
7789 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7790 if (load_above_capacity > busiest->group_capacity) {
7791 load_above_capacity -= busiest->group_capacity;
7792 load_above_capacity *= scale_load_down(NICE_0_LOAD);
7793 load_above_capacity /= busiest->group_capacity;
7794 } else
7795 load_above_capacity = ~0UL;
7796 }
7797
7798 /*
7799 * We're trying to get all the cpus to the average_load, so we don't
7800 * want to push ourselves above the average load, nor do we wish to
7801 * reduce the max loaded cpu below the average load. At the same time,
7802 * we also don't want to reduce the group load below the group
7803 * capacity. Thus we look for the minimum possible imbalance.
7804 */
7805 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7806
7807 /* How much load to actually move to equalise the imbalance */
7808 env->imbalance = min(
7809 max_pull * busiest->group_capacity,
7810 (sds->avg_load - local->avg_load) * local->group_capacity
7811 ) / SCHED_CAPACITY_SCALE;
7812
7813 /*
7814 * if *imbalance is less than the average load per runnable task
7815 * there is no guarantee that any tasks will be moved so we'll have
7816 * a think about bumping its value to force at least one task to be
7817 * moved
7818 */
7819 if (env->imbalance < busiest->load_per_task)
7820 return fix_small_imbalance(env, sds);
7821 }
7822
7823 /******* find_busiest_group() helpers end here *********************/
7824
7825 /**
7826 * find_busiest_group - Returns the busiest group within the sched_domain
7827 * if there is an imbalance.
7828 *
7829 * Also calculates the amount of weighted load which should be moved
7830 * to restore balance.
7831 *
7832 * @env: The load balancing environment.
7833 *
7834 * Return: - The busiest group if imbalance exists.
7835 */
7836 static struct sched_group *find_busiest_group(struct lb_env *env)
7837 {
7838 struct sg_lb_stats *local, *busiest;
7839 struct sd_lb_stats sds;
7840
7841 init_sd_lb_stats(&sds);
7842
7843 /*
7844 * Compute the various statistics relavent for load balancing at
7845 * this level.
7846 */
7847 update_sd_lb_stats(env, &sds);
7848 local = &sds.local_stat;
7849 busiest = &sds.busiest_stat;
7850
7851 /* ASYM feature bypasses nice load balance check */
7852 if (check_asym_packing(env, &sds))
7853 return sds.busiest;
7854
7855 /* There is no busy sibling group to pull tasks from */
7856 if (!sds.busiest || busiest->sum_nr_running == 0)
7857 goto out_balanced;
7858
7859 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7860 / sds.total_capacity;
7861
7862 /*
7863 * If the busiest group is imbalanced the below checks don't
7864 * work because they assume all things are equal, which typically
7865 * isn't true due to cpus_allowed constraints and the like.
7866 */
7867 if (busiest->group_type == group_imbalanced)
7868 goto force_balance;
7869
7870 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7871 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7872 busiest->group_no_capacity)
7873 goto force_balance;
7874
7875 /*
7876 * If the local group is busier than the selected busiest group
7877 * don't try and pull any tasks.
7878 */
7879 if (local->avg_load >= busiest->avg_load)
7880 goto out_balanced;
7881
7882 /*
7883 * Don't pull any tasks if this group is already above the domain
7884 * average load.
7885 */
7886 if (local->avg_load >= sds.avg_load)
7887 goto out_balanced;
7888
7889 if (env->idle == CPU_IDLE) {
7890 /*
7891 * This cpu is idle. If the busiest group is not overloaded
7892 * and there is no imbalance between this and busiest group
7893 * wrt idle cpus, it is balanced. The imbalance becomes
7894 * significant if the diff is greater than 1 otherwise we
7895 * might end up to just move the imbalance on another group
7896 */
7897 if ((busiest->group_type != group_overloaded) &&
7898 (local->idle_cpus <= (busiest->idle_cpus + 1)))
7899 goto out_balanced;
7900 } else {
7901 /*
7902 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7903 * imbalance_pct to be conservative.
7904 */
7905 if (100 * busiest->avg_load <=
7906 env->sd->imbalance_pct * local->avg_load)
7907 goto out_balanced;
7908 }
7909
7910 force_balance:
7911 /* Looks like there is an imbalance. Compute it */
7912 calculate_imbalance(env, &sds);
7913 return sds.busiest;
7914
7915 out_balanced:
7916 env->imbalance = 0;
7917 return NULL;
7918 }
7919
7920 /*
7921 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7922 */
7923 static struct rq *find_busiest_queue(struct lb_env *env,
7924 struct sched_group *group)
7925 {
7926 struct rq *busiest = NULL, *rq;
7927 unsigned long busiest_load = 0, busiest_capacity = 1;
7928 int i;
7929
7930 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7931 unsigned long capacity, wl;
7932 enum fbq_type rt;
7933
7934 rq = cpu_rq(i);
7935 rt = fbq_classify_rq(rq);
7936
7937 /*
7938 * We classify groups/runqueues into three groups:
7939 * - regular: there are !numa tasks
7940 * - remote: there are numa tasks that run on the 'wrong' node
7941 * - all: there is no distinction
7942 *
7943 * In order to avoid migrating ideally placed numa tasks,
7944 * ignore those when there's better options.
7945 *
7946 * If we ignore the actual busiest queue to migrate another
7947 * task, the next balance pass can still reduce the busiest
7948 * queue by moving tasks around inside the node.
7949 *
7950 * If we cannot move enough load due to this classification
7951 * the next pass will adjust the group classification and
7952 * allow migration of more tasks.
7953 *
7954 * Both cases only affect the total convergence complexity.
7955 */
7956 if (rt > env->fbq_type)
7957 continue;
7958
7959 capacity = capacity_of(i);
7960
7961 wl = weighted_cpuload(i);
7962
7963 /*
7964 * When comparing with imbalance, use weighted_cpuload()
7965 * which is not scaled with the cpu capacity.
7966 */
7967
7968 if (rq->nr_running == 1 && wl > env->imbalance &&
7969 !check_cpu_capacity(rq, env->sd))
7970 continue;
7971
7972 /*
7973 * For the load comparisons with the other cpu's, consider
7974 * the weighted_cpuload() scaled with the cpu capacity, so
7975 * that the load can be moved away from the cpu that is
7976 * potentially running at a lower capacity.
7977 *
7978 * Thus we're looking for max(wl_i / capacity_i), crosswise
7979 * multiplication to rid ourselves of the division works out
7980 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7981 * our previous maximum.
7982 */
7983 if (wl * busiest_capacity > busiest_load * capacity) {
7984 busiest_load = wl;
7985 busiest_capacity = capacity;
7986 busiest = rq;
7987 }
7988 }
7989
7990 return busiest;
7991 }
7992
7993 /*
7994 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7995 * so long as it is large enough.
7996 */
7997 #define MAX_PINNED_INTERVAL 512
7998
7999 static int need_active_balance(struct lb_env *env)
8000 {
8001 struct sched_domain *sd = env->sd;
8002
8003 if (env->idle == CPU_NEWLY_IDLE) {
8004
8005 /*
8006 * ASYM_PACKING needs to force migrate tasks from busy but
8007 * lower priority CPUs in order to pack all tasks in the
8008 * highest priority CPUs.
8009 */
8010 if ((sd->flags & SD_ASYM_PACKING) &&
8011 sched_asym_prefer(env->dst_cpu, env->src_cpu))
8012 return 1;
8013 }
8014
8015 /*
8016 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8017 * It's worth migrating the task if the src_cpu's capacity is reduced
8018 * because of other sched_class or IRQs if more capacity stays
8019 * available on dst_cpu.
8020 */
8021 if ((env->idle != CPU_NOT_IDLE) &&
8022 (env->src_rq->cfs.h_nr_running == 1)) {
8023 if ((check_cpu_capacity(env->src_rq, sd)) &&
8024 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8025 return 1;
8026 }
8027
8028 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8029 }
8030
8031 static int active_load_balance_cpu_stop(void *data);
8032
8033 static int should_we_balance(struct lb_env *env)
8034 {
8035 struct sched_group *sg = env->sd->groups;
8036 struct cpumask *sg_cpus, *sg_mask;
8037 int cpu, balance_cpu = -1;
8038
8039 /*
8040 * In the newly idle case, we will allow all the cpu's
8041 * to do the newly idle load balance.
8042 */
8043 if (env->idle == CPU_NEWLY_IDLE)
8044 return 1;
8045
8046 sg_cpus = sched_group_cpus(sg);
8047 sg_mask = sched_group_mask(sg);
8048 /* Try to find first idle cpu */
8049 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
8050 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
8051 continue;
8052
8053 balance_cpu = cpu;
8054 break;
8055 }
8056
8057 if (balance_cpu == -1)
8058 balance_cpu = group_balance_cpu(sg);
8059
8060 /*
8061 * First idle cpu or the first cpu(busiest) in this sched group
8062 * is eligible for doing load balancing at this and above domains.
8063 */
8064 return balance_cpu == env->dst_cpu;
8065 }
8066
8067 /*
8068 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8069 * tasks if there is an imbalance.
8070 */
8071 static int load_balance(int this_cpu, struct rq *this_rq,
8072 struct sched_domain *sd, enum cpu_idle_type idle,
8073 int *continue_balancing)
8074 {
8075 int ld_moved, cur_ld_moved, active_balance = 0;
8076 struct sched_domain *sd_parent = sd->parent;
8077 struct sched_group *group;
8078 struct rq *busiest;
8079 struct rq_flags rf;
8080 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8081
8082 struct lb_env env = {
8083 .sd = sd,
8084 .dst_cpu = this_cpu,
8085 .dst_rq = this_rq,
8086 .dst_grpmask = sched_group_cpus(sd->groups),
8087 .idle = idle,
8088 .loop_break = sched_nr_migrate_break,
8089 .cpus = cpus,
8090 .fbq_type = all,
8091 .tasks = LIST_HEAD_INIT(env.tasks),
8092 };
8093
8094 /*
8095 * For NEWLY_IDLE load_balancing, we don't need to consider
8096 * other cpus in our group
8097 */
8098 if (idle == CPU_NEWLY_IDLE)
8099 env.dst_grpmask = NULL;
8100
8101 cpumask_copy(cpus, cpu_active_mask);
8102
8103 schedstat_inc(sd->lb_count[idle]);
8104
8105 redo:
8106 if (!should_we_balance(&env)) {
8107 *continue_balancing = 0;
8108 goto out_balanced;
8109 }
8110
8111 group = find_busiest_group(&env);
8112 if (!group) {
8113 schedstat_inc(sd->lb_nobusyg[idle]);
8114 goto out_balanced;
8115 }
8116
8117 busiest = find_busiest_queue(&env, group);
8118 if (!busiest) {
8119 schedstat_inc(sd->lb_nobusyq[idle]);
8120 goto out_balanced;
8121 }
8122
8123 BUG_ON(busiest == env.dst_rq);
8124
8125 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8126
8127 env.src_cpu = busiest->cpu;
8128 env.src_rq = busiest;
8129
8130 ld_moved = 0;
8131 if (busiest->nr_running > 1) {
8132 /*
8133 * Attempt to move tasks. If find_busiest_group has found
8134 * an imbalance but busiest->nr_running <= 1, the group is
8135 * still unbalanced. ld_moved simply stays zero, so it is
8136 * correctly treated as an imbalance.
8137 */
8138 env.flags |= LBF_ALL_PINNED;
8139 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8140
8141 more_balance:
8142 rq_lock_irqsave(busiest, &rf);
8143 update_rq_clock(busiest);
8144
8145 /*
8146 * cur_ld_moved - load moved in current iteration
8147 * ld_moved - cumulative load moved across iterations
8148 */
8149 cur_ld_moved = detach_tasks(&env);
8150
8151 /*
8152 * We've detached some tasks from busiest_rq. Every
8153 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8154 * unlock busiest->lock, and we are able to be sure
8155 * that nobody can manipulate the tasks in parallel.
8156 * See task_rq_lock() family for the details.
8157 */
8158
8159 rq_unlock(busiest, &rf);
8160
8161 if (cur_ld_moved) {
8162 attach_tasks(&env);
8163 ld_moved += cur_ld_moved;
8164 }
8165
8166 local_irq_restore(rf.flags);
8167
8168 if (env.flags & LBF_NEED_BREAK) {
8169 env.flags &= ~LBF_NEED_BREAK;
8170 goto more_balance;
8171 }
8172
8173 /*
8174 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8175 * us and move them to an alternate dst_cpu in our sched_group
8176 * where they can run. The upper limit on how many times we
8177 * iterate on same src_cpu is dependent on number of cpus in our
8178 * sched_group.
8179 *
8180 * This changes load balance semantics a bit on who can move
8181 * load to a given_cpu. In addition to the given_cpu itself
8182 * (or a ilb_cpu acting on its behalf where given_cpu is
8183 * nohz-idle), we now have balance_cpu in a position to move
8184 * load to given_cpu. In rare situations, this may cause
8185 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8186 * _independently_ and at _same_ time to move some load to
8187 * given_cpu) causing exceess load to be moved to given_cpu.
8188 * This however should not happen so much in practice and
8189 * moreover subsequent load balance cycles should correct the
8190 * excess load moved.
8191 */
8192 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8193
8194 /* Prevent to re-select dst_cpu via env's cpus */
8195 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8196
8197 env.dst_rq = cpu_rq(env.new_dst_cpu);
8198 env.dst_cpu = env.new_dst_cpu;
8199 env.flags &= ~LBF_DST_PINNED;
8200 env.loop = 0;
8201 env.loop_break = sched_nr_migrate_break;
8202
8203 /*
8204 * Go back to "more_balance" rather than "redo" since we
8205 * need to continue with same src_cpu.
8206 */
8207 goto more_balance;
8208 }
8209
8210 /*
8211 * We failed to reach balance because of affinity.
8212 */
8213 if (sd_parent) {
8214 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8215
8216 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8217 *group_imbalance = 1;
8218 }
8219
8220 /* All tasks on this runqueue were pinned by CPU affinity */
8221 if (unlikely(env.flags & LBF_ALL_PINNED)) {
8222 cpumask_clear_cpu(cpu_of(busiest), cpus);
8223 if (!cpumask_empty(cpus)) {
8224 env.loop = 0;
8225 env.loop_break = sched_nr_migrate_break;
8226 goto redo;
8227 }
8228 goto out_all_pinned;
8229 }
8230 }
8231
8232 if (!ld_moved) {
8233 schedstat_inc(sd->lb_failed[idle]);
8234 /*
8235 * Increment the failure counter only on periodic balance.
8236 * We do not want newidle balance, which can be very
8237 * frequent, pollute the failure counter causing
8238 * excessive cache_hot migrations and active balances.
8239 */
8240 if (idle != CPU_NEWLY_IDLE)
8241 sd->nr_balance_failed++;
8242
8243 if (need_active_balance(&env)) {
8244 unsigned long flags;
8245
8246 raw_spin_lock_irqsave(&busiest->lock, flags);
8247
8248 /* don't kick the active_load_balance_cpu_stop,
8249 * if the curr task on busiest cpu can't be
8250 * moved to this_cpu
8251 */
8252 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8253 raw_spin_unlock_irqrestore(&busiest->lock,
8254 flags);
8255 env.flags |= LBF_ALL_PINNED;
8256 goto out_one_pinned;
8257 }
8258
8259 /*
8260 * ->active_balance synchronizes accesses to
8261 * ->active_balance_work. Once set, it's cleared
8262 * only after active load balance is finished.
8263 */
8264 if (!busiest->active_balance) {
8265 busiest->active_balance = 1;
8266 busiest->push_cpu = this_cpu;
8267 active_balance = 1;
8268 }
8269 raw_spin_unlock_irqrestore(&busiest->lock, flags);
8270
8271 if (active_balance) {
8272 stop_one_cpu_nowait(cpu_of(busiest),
8273 active_load_balance_cpu_stop, busiest,
8274 &busiest->active_balance_work);
8275 }
8276
8277 /* We've kicked active balancing, force task migration. */
8278 sd->nr_balance_failed = sd->cache_nice_tries+1;
8279 }
8280 } else
8281 sd->nr_balance_failed = 0;
8282
8283 if (likely(!active_balance)) {
8284 /* We were unbalanced, so reset the balancing interval */
8285 sd->balance_interval = sd->min_interval;
8286 } else {
8287 /*
8288 * If we've begun active balancing, start to back off. This
8289 * case may not be covered by the all_pinned logic if there
8290 * is only 1 task on the busy runqueue (because we don't call
8291 * detach_tasks).
8292 */
8293 if (sd->balance_interval < sd->max_interval)
8294 sd->balance_interval *= 2;
8295 }
8296
8297 goto out;
8298
8299 out_balanced:
8300 /*
8301 * We reach balance although we may have faced some affinity
8302 * constraints. Clear the imbalance flag if it was set.
8303 */
8304 if (sd_parent) {
8305 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8306
8307 if (*group_imbalance)
8308 *group_imbalance = 0;
8309 }
8310
8311 out_all_pinned:
8312 /*
8313 * We reach balance because all tasks are pinned at this level so
8314 * we can't migrate them. Let the imbalance flag set so parent level
8315 * can try to migrate them.
8316 */
8317 schedstat_inc(sd->lb_balanced[idle]);
8318
8319 sd->nr_balance_failed = 0;
8320
8321 out_one_pinned:
8322 /* tune up the balancing interval */
8323 if (((env.flags & LBF_ALL_PINNED) &&
8324 sd->balance_interval < MAX_PINNED_INTERVAL) ||
8325 (sd->balance_interval < sd->max_interval))
8326 sd->balance_interval *= 2;
8327
8328 ld_moved = 0;
8329 out:
8330 return ld_moved;
8331 }
8332
8333 static inline unsigned long
8334 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8335 {
8336 unsigned long interval = sd->balance_interval;
8337
8338 if (cpu_busy)
8339 interval *= sd->busy_factor;
8340
8341 /* scale ms to jiffies */
8342 interval = msecs_to_jiffies(interval);
8343 interval = clamp(interval, 1UL, max_load_balance_interval);
8344
8345 return interval;
8346 }
8347
8348 static inline void
8349 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8350 {
8351 unsigned long interval, next;
8352
8353 /* used by idle balance, so cpu_busy = 0 */
8354 interval = get_sd_balance_interval(sd, 0);
8355 next = sd->last_balance + interval;
8356
8357 if (time_after(*next_balance, next))
8358 *next_balance = next;
8359 }
8360
8361 /*
8362 * idle_balance is called by schedule() if this_cpu is about to become
8363 * idle. Attempts to pull tasks from other CPUs.
8364 */
8365 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8366 {
8367 unsigned long next_balance = jiffies + HZ;
8368 int this_cpu = this_rq->cpu;
8369 struct sched_domain *sd;
8370 int pulled_task = 0;
8371 u64 curr_cost = 0;
8372
8373 /*
8374 * We must set idle_stamp _before_ calling idle_balance(), such that we
8375 * measure the duration of idle_balance() as idle time.
8376 */
8377 this_rq->idle_stamp = rq_clock(this_rq);
8378
8379 /*
8380 * This is OK, because current is on_cpu, which avoids it being picked
8381 * for load-balance and preemption/IRQs are still disabled avoiding
8382 * further scheduler activity on it and we're being very careful to
8383 * re-start the picking loop.
8384 */
8385 rq_unpin_lock(this_rq, rf);
8386
8387 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8388 !this_rq->rd->overload) {
8389 rcu_read_lock();
8390 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8391 if (sd)
8392 update_next_balance(sd, &next_balance);
8393 rcu_read_unlock();
8394
8395 goto out;
8396 }
8397
8398 raw_spin_unlock(&this_rq->lock);
8399
8400 update_blocked_averages(this_cpu);
8401 rcu_read_lock();
8402 for_each_domain(this_cpu, sd) {
8403 int continue_balancing = 1;
8404 u64 t0, domain_cost;
8405
8406 if (!(sd->flags & SD_LOAD_BALANCE))
8407 continue;
8408
8409 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8410 update_next_balance(sd, &next_balance);
8411 break;
8412 }
8413
8414 if (sd->flags & SD_BALANCE_NEWIDLE) {
8415 t0 = sched_clock_cpu(this_cpu);
8416
8417 pulled_task = load_balance(this_cpu, this_rq,
8418 sd, CPU_NEWLY_IDLE,
8419 &continue_balancing);
8420
8421 domain_cost = sched_clock_cpu(this_cpu) - t0;
8422 if (domain_cost > sd->max_newidle_lb_cost)
8423 sd->max_newidle_lb_cost = domain_cost;
8424
8425 curr_cost += domain_cost;
8426 }
8427
8428 update_next_balance(sd, &next_balance);
8429
8430 /*
8431 * Stop searching for tasks to pull if there are
8432 * now runnable tasks on this rq.
8433 */
8434 if (pulled_task || this_rq->nr_running > 0)
8435 break;
8436 }
8437 rcu_read_unlock();
8438
8439 raw_spin_lock(&this_rq->lock);
8440
8441 if (curr_cost > this_rq->max_idle_balance_cost)
8442 this_rq->max_idle_balance_cost = curr_cost;
8443
8444 /*
8445 * While browsing the domains, we released the rq lock, a task could
8446 * have been enqueued in the meantime. Since we're not going idle,
8447 * pretend we pulled a task.
8448 */
8449 if (this_rq->cfs.h_nr_running && !pulled_task)
8450 pulled_task = 1;
8451
8452 out:
8453 /* Move the next balance forward */
8454 if (time_after(this_rq->next_balance, next_balance))
8455 this_rq->next_balance = next_balance;
8456
8457 /* Is there a task of a high priority class? */
8458 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8459 pulled_task = -1;
8460
8461 if (pulled_task)
8462 this_rq->idle_stamp = 0;
8463
8464 rq_repin_lock(this_rq, rf);
8465
8466 return pulled_task;
8467 }
8468
8469 /*
8470 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8471 * running tasks off the busiest CPU onto idle CPUs. It requires at
8472 * least 1 task to be running on each physical CPU where possible, and
8473 * avoids physical / logical imbalances.
8474 */
8475 static int active_load_balance_cpu_stop(void *data)
8476 {
8477 struct rq *busiest_rq = data;
8478 int busiest_cpu = cpu_of(busiest_rq);
8479 int target_cpu = busiest_rq->push_cpu;
8480 struct rq *target_rq = cpu_rq(target_cpu);
8481 struct sched_domain *sd;
8482 struct task_struct *p = NULL;
8483 struct rq_flags rf;
8484
8485 rq_lock_irq(busiest_rq, &rf);
8486
8487 /* make sure the requested cpu hasn't gone down in the meantime */
8488 if (unlikely(busiest_cpu != smp_processor_id() ||
8489 !busiest_rq->active_balance))
8490 goto out_unlock;
8491
8492 /* Is there any task to move? */
8493 if (busiest_rq->nr_running <= 1)
8494 goto out_unlock;
8495
8496 /*
8497 * This condition is "impossible", if it occurs
8498 * we need to fix it. Originally reported by
8499 * Bjorn Helgaas on a 128-cpu setup.
8500 */
8501 BUG_ON(busiest_rq == target_rq);
8502
8503 /* Search for an sd spanning us and the target CPU. */
8504 rcu_read_lock();
8505 for_each_domain(target_cpu, sd) {
8506 if ((sd->flags & SD_LOAD_BALANCE) &&
8507 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8508 break;
8509 }
8510
8511 if (likely(sd)) {
8512 struct lb_env env = {
8513 .sd = sd,
8514 .dst_cpu = target_cpu,
8515 .dst_rq = target_rq,
8516 .src_cpu = busiest_rq->cpu,
8517 .src_rq = busiest_rq,
8518 .idle = CPU_IDLE,
8519 };
8520
8521 schedstat_inc(sd->alb_count);
8522 update_rq_clock(busiest_rq);
8523
8524 p = detach_one_task(&env);
8525 if (p) {
8526 schedstat_inc(sd->alb_pushed);
8527 /* Active balancing done, reset the failure counter. */
8528 sd->nr_balance_failed = 0;
8529 } else {
8530 schedstat_inc(sd->alb_failed);
8531 }
8532 }
8533 rcu_read_unlock();
8534 out_unlock:
8535 busiest_rq->active_balance = 0;
8536 rq_unlock(busiest_rq, &rf);
8537
8538 if (p)
8539 attach_one_task(target_rq, p);
8540
8541 local_irq_enable();
8542
8543 return 0;
8544 }
8545
8546 static inline int on_null_domain(struct rq *rq)
8547 {
8548 return unlikely(!rcu_dereference_sched(rq->sd));
8549 }
8550
8551 #ifdef CONFIG_NO_HZ_COMMON
8552 /*
8553 * idle load balancing details
8554 * - When one of the busy CPUs notice that there may be an idle rebalancing
8555 * needed, they will kick the idle load balancer, which then does idle
8556 * load balancing for all the idle CPUs.
8557 */
8558 static struct {
8559 cpumask_var_t idle_cpus_mask;
8560 atomic_t nr_cpus;
8561 unsigned long next_balance; /* in jiffy units */
8562 } nohz ____cacheline_aligned;
8563
8564 static inline int find_new_ilb(void)
8565 {
8566 int ilb = cpumask_first(nohz.idle_cpus_mask);
8567
8568 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8569 return ilb;
8570
8571 return nr_cpu_ids;
8572 }
8573
8574 /*
8575 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8576 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8577 * CPU (if there is one).
8578 */
8579 static void nohz_balancer_kick(void)
8580 {
8581 int ilb_cpu;
8582
8583 nohz.next_balance++;
8584
8585 ilb_cpu = find_new_ilb();
8586
8587 if (ilb_cpu >= nr_cpu_ids)
8588 return;
8589
8590 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8591 return;
8592 /*
8593 * Use smp_send_reschedule() instead of resched_cpu().
8594 * This way we generate a sched IPI on the target cpu which
8595 * is idle. And the softirq performing nohz idle load balance
8596 * will be run before returning from the IPI.
8597 */
8598 smp_send_reschedule(ilb_cpu);
8599 return;
8600 }
8601
8602 void nohz_balance_exit_idle(unsigned int cpu)
8603 {
8604 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8605 /*
8606 * Completely isolated CPUs don't ever set, so we must test.
8607 */
8608 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8609 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8610 atomic_dec(&nohz.nr_cpus);
8611 }
8612 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8613 }
8614 }
8615
8616 static inline void set_cpu_sd_state_busy(void)
8617 {
8618 struct sched_domain *sd;
8619 int cpu = smp_processor_id();
8620
8621 rcu_read_lock();
8622 sd = rcu_dereference(per_cpu(sd_llc, cpu));
8623
8624 if (!sd || !sd->nohz_idle)
8625 goto unlock;
8626 sd->nohz_idle = 0;
8627
8628 atomic_inc(&sd->shared->nr_busy_cpus);
8629 unlock:
8630 rcu_read_unlock();
8631 }
8632
8633 void set_cpu_sd_state_idle(void)
8634 {
8635 struct sched_domain *sd;
8636 int cpu = smp_processor_id();
8637
8638 rcu_read_lock();
8639 sd = rcu_dereference(per_cpu(sd_llc, cpu));
8640
8641 if (!sd || sd->nohz_idle)
8642 goto unlock;
8643 sd->nohz_idle = 1;
8644
8645 atomic_dec(&sd->shared->nr_busy_cpus);
8646 unlock:
8647 rcu_read_unlock();
8648 }
8649
8650 /*
8651 * This routine will record that the cpu is going idle with tick stopped.
8652 * This info will be used in performing idle load balancing in the future.
8653 */
8654 void nohz_balance_enter_idle(int cpu)
8655 {
8656 /*
8657 * If this cpu is going down, then nothing needs to be done.
8658 */
8659 if (!cpu_active(cpu))
8660 return;
8661
8662 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8663 return;
8664
8665 /*
8666 * If we're a completely isolated CPU, we don't play.
8667 */
8668 if (on_null_domain(cpu_rq(cpu)))
8669 return;
8670
8671 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8672 atomic_inc(&nohz.nr_cpus);
8673 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8674 }
8675 #endif
8676
8677 static DEFINE_SPINLOCK(balancing);
8678
8679 /*
8680 * Scale the max load_balance interval with the number of CPUs in the system.
8681 * This trades load-balance latency on larger machines for less cross talk.
8682 */
8683 void update_max_interval(void)
8684 {
8685 max_load_balance_interval = HZ*num_online_cpus()/10;
8686 }
8687
8688 /*
8689 * It checks each scheduling domain to see if it is due to be balanced,
8690 * and initiates a balancing operation if so.
8691 *
8692 * Balancing parameters are set up in init_sched_domains.
8693 */
8694 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8695 {
8696 int continue_balancing = 1;
8697 int cpu = rq->cpu;
8698 unsigned long interval;
8699 struct sched_domain *sd;
8700 /* Earliest time when we have to do rebalance again */
8701 unsigned long next_balance = jiffies + 60*HZ;
8702 int update_next_balance = 0;
8703 int need_serialize, need_decay = 0;
8704 u64 max_cost = 0;
8705
8706 update_blocked_averages(cpu);
8707
8708 rcu_read_lock();
8709 for_each_domain(cpu, sd) {
8710 /*
8711 * Decay the newidle max times here because this is a regular
8712 * visit to all the domains. Decay ~1% per second.
8713 */
8714 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8715 sd->max_newidle_lb_cost =
8716 (sd->max_newidle_lb_cost * 253) / 256;
8717 sd->next_decay_max_lb_cost = jiffies + HZ;
8718 need_decay = 1;
8719 }
8720 max_cost += sd->max_newidle_lb_cost;
8721
8722 if (!(sd->flags & SD_LOAD_BALANCE))
8723 continue;
8724
8725 /*
8726 * Stop the load balance at this level. There is another
8727 * CPU in our sched group which is doing load balancing more
8728 * actively.
8729 */
8730 if (!continue_balancing) {
8731 if (need_decay)
8732 continue;
8733 break;
8734 }
8735
8736 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8737
8738 need_serialize = sd->flags & SD_SERIALIZE;
8739 if (need_serialize) {
8740 if (!spin_trylock(&balancing))
8741 goto out;
8742 }
8743
8744 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8745 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8746 /*
8747 * The LBF_DST_PINNED logic could have changed
8748 * env->dst_cpu, so we can't know our idle
8749 * state even if we migrated tasks. Update it.
8750 */
8751 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8752 }
8753 sd->last_balance = jiffies;
8754 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8755 }
8756 if (need_serialize)
8757 spin_unlock(&balancing);
8758 out:
8759 if (time_after(next_balance, sd->last_balance + interval)) {
8760 next_balance = sd->last_balance + interval;
8761 update_next_balance = 1;
8762 }
8763 }
8764 if (need_decay) {
8765 /*
8766 * Ensure the rq-wide value also decays but keep it at a
8767 * reasonable floor to avoid funnies with rq->avg_idle.
8768 */
8769 rq->max_idle_balance_cost =
8770 max((u64)sysctl_sched_migration_cost, max_cost);
8771 }
8772 rcu_read_unlock();
8773
8774 /*
8775 * next_balance will be updated only when there is a need.
8776 * When the cpu is attached to null domain for ex, it will not be
8777 * updated.
8778 */
8779 if (likely(update_next_balance)) {
8780 rq->next_balance = next_balance;
8781
8782 #ifdef CONFIG_NO_HZ_COMMON
8783 /*
8784 * If this CPU has been elected to perform the nohz idle
8785 * balance. Other idle CPUs have already rebalanced with
8786 * nohz_idle_balance() and nohz.next_balance has been
8787 * updated accordingly. This CPU is now running the idle load
8788 * balance for itself and we need to update the
8789 * nohz.next_balance accordingly.
8790 */
8791 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8792 nohz.next_balance = rq->next_balance;
8793 #endif
8794 }
8795 }
8796
8797 #ifdef CONFIG_NO_HZ_COMMON
8798 /*
8799 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8800 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8801 */
8802 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8803 {
8804 int this_cpu = this_rq->cpu;
8805 struct rq *rq;
8806 int balance_cpu;
8807 /* Earliest time when we have to do rebalance again */
8808 unsigned long next_balance = jiffies + 60*HZ;
8809 int update_next_balance = 0;
8810
8811 if (idle != CPU_IDLE ||
8812 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8813 goto end;
8814
8815 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8816 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8817 continue;
8818
8819 /*
8820 * If this cpu gets work to do, stop the load balancing
8821 * work being done for other cpus. Next load
8822 * balancing owner will pick it up.
8823 */
8824 if (need_resched())
8825 break;
8826
8827 rq = cpu_rq(balance_cpu);
8828
8829 /*
8830 * If time for next balance is due,
8831 * do the balance.
8832 */
8833 if (time_after_eq(jiffies, rq->next_balance)) {
8834 struct rq_flags rf;
8835
8836 rq_lock_irq(rq, &rf);
8837 update_rq_clock(rq);
8838 cpu_load_update_idle(rq);
8839 rq_unlock_irq(rq, &rf);
8840
8841 rebalance_domains(rq, CPU_IDLE);
8842 }
8843
8844 if (time_after(next_balance, rq->next_balance)) {
8845 next_balance = rq->next_balance;
8846 update_next_balance = 1;
8847 }
8848 }
8849
8850 /*
8851 * next_balance will be updated only when there is a need.
8852 * When the CPU is attached to null domain for ex, it will not be
8853 * updated.
8854 */
8855 if (likely(update_next_balance))
8856 nohz.next_balance = next_balance;
8857 end:
8858 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8859 }
8860
8861 /*
8862 * Current heuristic for kicking the idle load balancer in the presence
8863 * of an idle cpu in the system.
8864 * - This rq has more than one task.
8865 * - This rq has at least one CFS task and the capacity of the CPU is
8866 * significantly reduced because of RT tasks or IRQs.
8867 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8868 * multiple busy cpu.
8869 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8870 * domain span are idle.
8871 */
8872 static inline bool nohz_kick_needed(struct rq *rq)
8873 {
8874 unsigned long now = jiffies;
8875 struct sched_domain_shared *sds;
8876 struct sched_domain *sd;
8877 int nr_busy, i, cpu = rq->cpu;
8878 bool kick = false;
8879
8880 if (unlikely(rq->idle_balance))
8881 return false;
8882
8883 /*
8884 * We may be recently in ticked or tickless idle mode. At the first
8885 * busy tick after returning from idle, we will update the busy stats.
8886 */
8887 set_cpu_sd_state_busy();
8888 nohz_balance_exit_idle(cpu);
8889
8890 /*
8891 * None are in tickless mode and hence no need for NOHZ idle load
8892 * balancing.
8893 */
8894 if (likely(!atomic_read(&nohz.nr_cpus)))
8895 return false;
8896
8897 if (time_before(now, nohz.next_balance))
8898 return false;
8899
8900 if (rq->nr_running >= 2)
8901 return true;
8902
8903 rcu_read_lock();
8904 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8905 if (sds) {
8906 /*
8907 * XXX: write a coherent comment on why we do this.
8908 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8909 */
8910 nr_busy = atomic_read(&sds->nr_busy_cpus);
8911 if (nr_busy > 1) {
8912 kick = true;
8913 goto unlock;
8914 }
8915
8916 }
8917
8918 sd = rcu_dereference(rq->sd);
8919 if (sd) {
8920 if ((rq->cfs.h_nr_running >= 1) &&
8921 check_cpu_capacity(rq, sd)) {
8922 kick = true;
8923 goto unlock;
8924 }
8925 }
8926
8927 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8928 if (sd) {
8929 for_each_cpu(i, sched_domain_span(sd)) {
8930 if (i == cpu ||
8931 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8932 continue;
8933
8934 if (sched_asym_prefer(i, cpu)) {
8935 kick = true;
8936 goto unlock;
8937 }
8938 }
8939 }
8940 unlock:
8941 rcu_read_unlock();
8942 return kick;
8943 }
8944 #else
8945 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8946 #endif
8947
8948 /*
8949 * run_rebalance_domains is triggered when needed from the scheduler tick.
8950 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8951 */
8952 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8953 {
8954 struct rq *this_rq = this_rq();
8955 enum cpu_idle_type idle = this_rq->idle_balance ?
8956 CPU_IDLE : CPU_NOT_IDLE;
8957
8958 /*
8959 * If this cpu has a pending nohz_balance_kick, then do the
8960 * balancing on behalf of the other idle cpus whose ticks are
8961 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8962 * give the idle cpus a chance to load balance. Else we may
8963 * load balance only within the local sched_domain hierarchy
8964 * and abort nohz_idle_balance altogether if we pull some load.
8965 */
8966 nohz_idle_balance(this_rq, idle);
8967 rebalance_domains(this_rq, idle);
8968 }
8969
8970 /*
8971 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8972 */
8973 void trigger_load_balance(struct rq *rq)
8974 {
8975 /* Don't need to rebalance while attached to NULL domain */
8976 if (unlikely(on_null_domain(rq)))
8977 return;
8978
8979 if (time_after_eq(jiffies, rq->next_balance))
8980 raise_softirq(SCHED_SOFTIRQ);
8981 #ifdef CONFIG_NO_HZ_COMMON
8982 if (nohz_kick_needed(rq))
8983 nohz_balancer_kick();
8984 #endif
8985 }
8986
8987 static void rq_online_fair(struct rq *rq)
8988 {
8989 update_sysctl();
8990
8991 update_runtime_enabled(rq);
8992 }
8993
8994 static void rq_offline_fair(struct rq *rq)
8995 {
8996 update_sysctl();
8997
8998 /* Ensure any throttled groups are reachable by pick_next_task */
8999 unthrottle_offline_cfs_rqs(rq);
9000 }
9001
9002 #endif /* CONFIG_SMP */
9003
9004 /*
9005 * scheduler tick hitting a task of our scheduling class:
9006 */
9007 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9008 {
9009 struct cfs_rq *cfs_rq;
9010 struct sched_entity *se = &curr->se;
9011
9012 for_each_sched_entity(se) {
9013 cfs_rq = cfs_rq_of(se);
9014 entity_tick(cfs_rq, se, queued);
9015 }
9016
9017 if (static_branch_unlikely(&sched_numa_balancing))
9018 task_tick_numa(rq, curr);
9019 }
9020
9021 /*
9022 * called on fork with the child task as argument from the parent's context
9023 * - child not yet on the tasklist
9024 * - preemption disabled
9025 */
9026 static void task_fork_fair(struct task_struct *p)
9027 {
9028 struct cfs_rq *cfs_rq;
9029 struct sched_entity *se = &p->se, *curr;
9030 struct rq *rq = this_rq();
9031 struct rq_flags rf;
9032
9033 rq_lock(rq, &rf);
9034 update_rq_clock(rq);
9035
9036 cfs_rq = task_cfs_rq(current);
9037 curr = cfs_rq->curr;
9038 if (curr) {
9039 update_curr(cfs_rq);
9040 se->vruntime = curr->vruntime;
9041 }
9042 place_entity(cfs_rq, se, 1);
9043
9044 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9045 /*
9046 * Upon rescheduling, sched_class::put_prev_task() will place
9047 * 'current' within the tree based on its new key value.
9048 */
9049 swap(curr->vruntime, se->vruntime);
9050 resched_curr(rq);
9051 }
9052
9053 se->vruntime -= cfs_rq->min_vruntime;
9054 rq_unlock(rq, &rf);
9055 }
9056
9057 /*
9058 * Priority of the task has changed. Check to see if we preempt
9059 * the current task.
9060 */
9061 static void
9062 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9063 {
9064 if (!task_on_rq_queued(p))
9065 return;
9066
9067 /*
9068 * Reschedule if we are currently running on this runqueue and
9069 * our priority decreased, or if we are not currently running on
9070 * this runqueue and our priority is higher than the current's
9071 */
9072 if (rq->curr == p) {
9073 if (p->prio > oldprio)
9074 resched_curr(rq);
9075 } else
9076 check_preempt_curr(rq, p, 0);
9077 }
9078
9079 static inline bool vruntime_normalized(struct task_struct *p)
9080 {
9081 struct sched_entity *se = &p->se;
9082
9083 /*
9084 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9085 * the dequeue_entity(.flags=0) will already have normalized the
9086 * vruntime.
9087 */
9088 if (p->on_rq)
9089 return true;
9090
9091 /*
9092 * When !on_rq, vruntime of the task has usually NOT been normalized.
9093 * But there are some cases where it has already been normalized:
9094 *
9095 * - A forked child which is waiting for being woken up by
9096 * wake_up_new_task().
9097 * - A task which has been woken up by try_to_wake_up() and
9098 * waiting for actually being woken up by sched_ttwu_pending().
9099 */
9100 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9101 return true;
9102
9103 return false;
9104 }
9105
9106 #ifdef CONFIG_FAIR_GROUP_SCHED
9107 /*
9108 * Propagate the changes of the sched_entity across the tg tree to make it
9109 * visible to the root
9110 */
9111 static void propagate_entity_cfs_rq(struct sched_entity *se)
9112 {
9113 struct cfs_rq *cfs_rq;
9114
9115 /* Start to propagate at parent */
9116 se = se->parent;
9117
9118 for_each_sched_entity(se) {
9119 cfs_rq = cfs_rq_of(se);
9120
9121 if (cfs_rq_throttled(cfs_rq))
9122 break;
9123
9124 update_load_avg(se, UPDATE_TG);
9125 }
9126 }
9127 #else
9128 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9129 #endif
9130
9131 static void detach_entity_cfs_rq(struct sched_entity *se)
9132 {
9133 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9134
9135 /* Catch up with the cfs_rq and remove our load when we leave */
9136 update_load_avg(se, 0);
9137 detach_entity_load_avg(cfs_rq, se);
9138 update_tg_load_avg(cfs_rq, false);
9139 propagate_entity_cfs_rq(se);
9140 }
9141
9142 static void attach_entity_cfs_rq(struct sched_entity *se)
9143 {
9144 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9145
9146 #ifdef CONFIG_FAIR_GROUP_SCHED
9147 /*
9148 * Since the real-depth could have been changed (only FAIR
9149 * class maintain depth value), reset depth properly.
9150 */
9151 se->depth = se->parent ? se->parent->depth + 1 : 0;
9152 #endif
9153
9154 /* Synchronize entity with its cfs_rq */
9155 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9156 attach_entity_load_avg(cfs_rq, se);
9157 update_tg_load_avg(cfs_rq, false);
9158 propagate_entity_cfs_rq(se);
9159 }
9160
9161 static void detach_task_cfs_rq(struct task_struct *p)
9162 {
9163 struct sched_entity *se = &p->se;
9164 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9165
9166 if (!vruntime_normalized(p)) {
9167 /*
9168 * Fix up our vruntime so that the current sleep doesn't
9169 * cause 'unlimited' sleep bonus.
9170 */
9171 place_entity(cfs_rq, se, 0);
9172 se->vruntime -= cfs_rq->min_vruntime;
9173 }
9174
9175 detach_entity_cfs_rq(se);
9176 }
9177
9178 static void attach_task_cfs_rq(struct task_struct *p)
9179 {
9180 struct sched_entity *se = &p->se;
9181 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9182
9183 attach_entity_cfs_rq(se);
9184
9185 if (!vruntime_normalized(p))
9186 se->vruntime += cfs_rq->min_vruntime;
9187 }
9188
9189 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9190 {
9191 detach_task_cfs_rq(p);
9192 }
9193
9194 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9195 {
9196 attach_task_cfs_rq(p);
9197
9198 if (task_on_rq_queued(p)) {
9199 /*
9200 * We were most likely switched from sched_rt, so
9201 * kick off the schedule if running, otherwise just see
9202 * if we can still preempt the current task.
9203 */
9204 if (rq->curr == p)
9205 resched_curr(rq);
9206 else
9207 check_preempt_curr(rq, p, 0);
9208 }
9209 }
9210
9211 /* Account for a task changing its policy or group.
9212 *
9213 * This routine is mostly called to set cfs_rq->curr field when a task
9214 * migrates between groups/classes.
9215 */
9216 static void set_curr_task_fair(struct rq *rq)
9217 {
9218 struct sched_entity *se = &rq->curr->se;
9219
9220 for_each_sched_entity(se) {
9221 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9222
9223 set_next_entity(cfs_rq, se);
9224 /* ensure bandwidth has been allocated on our new cfs_rq */
9225 account_cfs_rq_runtime(cfs_rq, 0);
9226 }
9227 }
9228
9229 void init_cfs_rq(struct cfs_rq *cfs_rq)
9230 {
9231 cfs_rq->tasks_timeline = RB_ROOT;
9232 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9233 #ifndef CONFIG_64BIT
9234 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9235 #endif
9236 #ifdef CONFIG_SMP
9237 #ifdef CONFIG_FAIR_GROUP_SCHED
9238 cfs_rq->propagate_avg = 0;
9239 #endif
9240 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9241 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9242 #endif
9243 }
9244
9245 #ifdef CONFIG_FAIR_GROUP_SCHED
9246 static void task_set_group_fair(struct task_struct *p)
9247 {
9248 struct sched_entity *se = &p->se;
9249
9250 set_task_rq(p, task_cpu(p));
9251 se->depth = se->parent ? se->parent->depth + 1 : 0;
9252 }
9253
9254 static void task_move_group_fair(struct task_struct *p)
9255 {
9256 detach_task_cfs_rq(p);
9257 set_task_rq(p, task_cpu(p));
9258
9259 #ifdef CONFIG_SMP
9260 /* Tell se's cfs_rq has been changed -- migrated */
9261 p->se.avg.last_update_time = 0;
9262 #endif
9263 attach_task_cfs_rq(p);
9264 }
9265
9266 static void task_change_group_fair(struct task_struct *p, int type)
9267 {
9268 switch (type) {
9269 case TASK_SET_GROUP:
9270 task_set_group_fair(p);
9271 break;
9272
9273 case TASK_MOVE_GROUP:
9274 task_move_group_fair(p);
9275 break;
9276 }
9277 }
9278
9279 void free_fair_sched_group(struct task_group *tg)
9280 {
9281 int i;
9282
9283 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9284
9285 for_each_possible_cpu(i) {
9286 if (tg->cfs_rq)
9287 kfree(tg->cfs_rq[i]);
9288 if (tg->se)
9289 kfree(tg->se[i]);
9290 }
9291
9292 kfree(tg->cfs_rq);
9293 kfree(tg->se);
9294 }
9295
9296 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9297 {
9298 struct sched_entity *se;
9299 struct cfs_rq *cfs_rq;
9300 int i;
9301
9302 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9303 if (!tg->cfs_rq)
9304 goto err;
9305 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9306 if (!tg->se)
9307 goto err;
9308
9309 tg->shares = NICE_0_LOAD;
9310
9311 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9312
9313 for_each_possible_cpu(i) {
9314 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9315 GFP_KERNEL, cpu_to_node(i));
9316 if (!cfs_rq)
9317 goto err;
9318
9319 se = kzalloc_node(sizeof(struct sched_entity),
9320 GFP_KERNEL, cpu_to_node(i));
9321 if (!se)
9322 goto err_free_rq;
9323
9324 init_cfs_rq(cfs_rq);
9325 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9326 init_entity_runnable_average(se);
9327 }
9328
9329 return 1;
9330
9331 err_free_rq:
9332 kfree(cfs_rq);
9333 err:
9334 return 0;
9335 }
9336
9337 void online_fair_sched_group(struct task_group *tg)
9338 {
9339 struct sched_entity *se;
9340 struct rq *rq;
9341 int i;
9342
9343 for_each_possible_cpu(i) {
9344 rq = cpu_rq(i);
9345 se = tg->se[i];
9346
9347 raw_spin_lock_irq(&rq->lock);
9348 update_rq_clock(rq);
9349 attach_entity_cfs_rq(se);
9350 sync_throttle(tg, i);
9351 raw_spin_unlock_irq(&rq->lock);
9352 }
9353 }
9354
9355 void unregister_fair_sched_group(struct task_group *tg)
9356 {
9357 unsigned long flags;
9358 struct rq *rq;
9359 int cpu;
9360
9361 for_each_possible_cpu(cpu) {
9362 if (tg->se[cpu])
9363 remove_entity_load_avg(tg->se[cpu]);
9364
9365 /*
9366 * Only empty task groups can be destroyed; so we can speculatively
9367 * check on_list without danger of it being re-added.
9368 */
9369 if (!tg->cfs_rq[cpu]->on_list)
9370 continue;
9371
9372 rq = cpu_rq(cpu);
9373
9374 raw_spin_lock_irqsave(&rq->lock, flags);
9375 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9376 raw_spin_unlock_irqrestore(&rq->lock, flags);
9377 }
9378 }
9379
9380 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9381 struct sched_entity *se, int cpu,
9382 struct sched_entity *parent)
9383 {
9384 struct rq *rq = cpu_rq(cpu);
9385
9386 cfs_rq->tg = tg;
9387 cfs_rq->rq = rq;
9388 init_cfs_rq_runtime(cfs_rq);
9389
9390 tg->cfs_rq[cpu] = cfs_rq;
9391 tg->se[cpu] = se;
9392
9393 /* se could be NULL for root_task_group */
9394 if (!se)
9395 return;
9396
9397 if (!parent) {
9398 se->cfs_rq = &rq->cfs;
9399 se->depth = 0;
9400 } else {
9401 se->cfs_rq = parent->my_q;
9402 se->depth = parent->depth + 1;
9403 }
9404
9405 se->my_q = cfs_rq;
9406 /* guarantee group entities always have weight */
9407 update_load_set(&se->load, NICE_0_LOAD);
9408 se->parent = parent;
9409 }
9410
9411 static DEFINE_MUTEX(shares_mutex);
9412
9413 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9414 {
9415 int i;
9416
9417 /*
9418 * We can't change the weight of the root cgroup.
9419 */
9420 if (!tg->se[0])
9421 return -EINVAL;
9422
9423 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9424
9425 mutex_lock(&shares_mutex);
9426 if (tg->shares == shares)
9427 goto done;
9428
9429 tg->shares = shares;
9430 for_each_possible_cpu(i) {
9431 struct rq *rq = cpu_rq(i);
9432 struct sched_entity *se = tg->se[i];
9433 struct rq_flags rf;
9434
9435 /* Propagate contribution to hierarchy */
9436 rq_lock_irqsave(rq, &rf);
9437 update_rq_clock(rq);
9438 for_each_sched_entity(se) {
9439 update_load_avg(se, UPDATE_TG);
9440 update_cfs_shares(se);
9441 }
9442 rq_unlock_irqrestore(rq, &rf);
9443 }
9444
9445 done:
9446 mutex_unlock(&shares_mutex);
9447 return 0;
9448 }
9449 #else /* CONFIG_FAIR_GROUP_SCHED */
9450
9451 void free_fair_sched_group(struct task_group *tg) { }
9452
9453 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9454 {
9455 return 1;
9456 }
9457
9458 void online_fair_sched_group(struct task_group *tg) { }
9459
9460 void unregister_fair_sched_group(struct task_group *tg) { }
9461
9462 #endif /* CONFIG_FAIR_GROUP_SCHED */
9463
9464
9465 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9466 {
9467 struct sched_entity *se = &task->se;
9468 unsigned int rr_interval = 0;
9469
9470 /*
9471 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9472 * idle runqueue:
9473 */
9474 if (rq->cfs.load.weight)
9475 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9476
9477 return rr_interval;
9478 }
9479
9480 /*
9481 * All the scheduling class methods:
9482 */
9483 const struct sched_class fair_sched_class = {
9484 .next = &idle_sched_class,
9485 .enqueue_task = enqueue_task_fair,
9486 .dequeue_task = dequeue_task_fair,
9487 .yield_task = yield_task_fair,
9488 .yield_to_task = yield_to_task_fair,
9489
9490 .check_preempt_curr = check_preempt_wakeup,
9491
9492 .pick_next_task = pick_next_task_fair,
9493 .put_prev_task = put_prev_task_fair,
9494
9495 #ifdef CONFIG_SMP
9496 .select_task_rq = select_task_rq_fair,
9497 .migrate_task_rq = migrate_task_rq_fair,
9498
9499 .rq_online = rq_online_fair,
9500 .rq_offline = rq_offline_fair,
9501
9502 .task_dead = task_dead_fair,
9503 .set_cpus_allowed = set_cpus_allowed_common,
9504 #endif
9505
9506 .set_curr_task = set_curr_task_fair,
9507 .task_tick = task_tick_fair,
9508 .task_fork = task_fork_fair,
9509
9510 .prio_changed = prio_changed_fair,
9511 .switched_from = switched_from_fair,
9512 .switched_to = switched_to_fair,
9513
9514 .get_rr_interval = get_rr_interval_fair,
9515
9516 .update_curr = update_curr_fair,
9517
9518 #ifdef CONFIG_FAIR_GROUP_SCHED
9519 .task_change_group = task_change_group_fair,
9520 #endif
9521 };
9522
9523 #ifdef CONFIG_SCHED_DEBUG
9524 void print_cfs_stats(struct seq_file *m, int cpu)
9525 {
9526 struct cfs_rq *cfs_rq;
9527
9528 rcu_read_lock();
9529 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9530 print_cfs_rq(m, cpu, cfs_rq);
9531 rcu_read_unlock();
9532 }
9533
9534 #ifdef CONFIG_NUMA_BALANCING
9535 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9536 {
9537 int node;
9538 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9539
9540 for_each_online_node(node) {
9541 if (p->numa_faults) {
9542 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9543 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9544 }
9545 if (p->numa_group) {
9546 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9547 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9548 }
9549 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9550 }
9551 }
9552 #endif /* CONFIG_NUMA_BALANCING */
9553 #endif /* CONFIG_SCHED_DEBUG */
9554
9555 __init void init_sched_fair_class(void)
9556 {
9557 #ifdef CONFIG_SMP
9558 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9559
9560 #ifdef CONFIG_NO_HZ_COMMON
9561 nohz.next_balance = jiffies;
9562 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9563 #endif
9564 #endif /* SMP */
9565
9566 }