]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched/fair.c
e1602a0fdbf8d32a8a4d1706c6741cd5c393e2ef
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
183 #else
184 # define WMULT_CONST (1UL << 32)
185 #endif
186
187 #define WMULT_SHIFT 32
188
189 /*
190 * Shift right and round:
191 */
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194 /*
195 * delta *= weight / lw
196 */
197 static unsigned long
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200 {
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234 }
235
236
237 const struct sched_class fair_sched_class;
238
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 {
248 return cfs_rq->rq;
249 }
250
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
253
254 static inline struct task_struct *task_of(struct sched_entity *se)
255 {
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258 #endif
259 return container_of(se, struct task_struct, se);
260 }
261
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267 {
268 return p->se.cfs_rq;
269 }
270
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273 {
274 return se->cfs_rq;
275 }
276
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279 {
280 return grp->my_q;
281 }
282
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
307 }
308 }
309
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316 }
317
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322 /* Do the two (enqueued) entities belong to the same group ? */
323 static inline int
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
325 {
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330 }
331
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
333 {
334 return se->parent;
335 }
336
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
339 {
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346 }
347
348 static void
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350 {
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378 }
379
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
381
382 static inline struct task_struct *task_of(struct sched_entity *se)
383 {
384 return container_of(se, struct task_struct, se);
385 }
386
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388 {
389 return container_of(cfs_rq, struct rq, cfs);
390 }
391
392 #define entity_is_task(se) 1
393
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
396
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398 {
399 return &task_rq(p)->cfs;
400 }
401
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403 {
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408 }
409
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412 {
413 return NULL;
414 }
415
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 }
419
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421 {
422 }
423
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427 static inline int
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
429 {
430 return 1;
431 }
432
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
434 {
435 return NULL;
436 }
437
438 static inline void
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440 {
441 }
442
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
444
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453 {
454 s64 delta = (s64)(vruntime - max_vruntime);
455 if (delta > 0)
456 max_vruntime = vruntime;
457
458 return max_vruntime;
459 }
460
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
462 {
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468 }
469
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472 {
473 return (s64)(a->vruntime - b->vruntime) < 0;
474 }
475
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
477 {
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
488 if (!cfs_rq->curr)
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 #ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499 #endif
500 }
501
502 /*
503 * Enqueue an entity into the rb-tree:
504 */
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 {
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
534 if (leftmost)
535 cfs_rq->rb_leftmost = &se->run_node;
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
539 }
540
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
548 }
549
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
551 }
552
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554 {
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
561 }
562
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564 {
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571 }
572
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575 {
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577
578 if (!last)
579 return NULL;
580
581 return rb_entry(last, struct sched_entity, run_node);
582 }
583
584 /**************************************************************
585 * Scheduling class statistics methods:
586 */
587
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
590 loff_t *ppos)
591 {
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
606 #undef WRT_SYSCTL
607
608 return 0;
609 }
610 #endif
611
612 /*
613 * delta /= w
614 */
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
617 {
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620
621 return delta;
622 }
623
624 /*
625 * The idea is to set a period in which each task runs once.
626 *
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
632 static u64 __sched_period(unsigned long nr_running)
633 {
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
636
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
640 }
641
642 return period;
643 }
644
645 /*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
649 * s = p*P[w/rw]
650 */
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
661
662 if (unlikely(!se->on_rq)) {
663 lw = cfs_rq->load;
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
671 }
672
673 /*
674 * We calculate the vruntime slice of a to-be-inserted task.
675 *
676 * vs = s/w
677 */
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 {
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 }
682
683 #ifdef CONFIG_SMP
684 static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686 /* Give new task start runnable values to heavy its load in infant time */
687 void init_task_runnable_average(struct task_struct *p)
688 {
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696 }
697 #else
698 void init_task_runnable_average(struct task_struct *p)
699 {
700 }
701 #endif
702
703 /*
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707 static inline void
708 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
710 {
711 unsigned long delta_exec_weighted;
712
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
715
716 curr->sum_exec_runtime += delta_exec;
717 schedstat_add(cfs_rq, exec_clock, delta_exec);
718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
719
720 curr->vruntime += delta_exec_weighted;
721 update_min_vruntime(cfs_rq);
722 }
723
724 static void update_curr(struct cfs_rq *cfs_rq)
725 {
726 struct sched_entity *curr = cfs_rq->curr;
727 u64 now = rq_clock_task(rq_of(cfs_rq));
728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
738 delta_exec = (unsigned long)(now - curr->exec_start);
739 if (!delta_exec)
740 return;
741
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
749 cpuacct_charge(curtask, delta_exec);
750 account_group_exec_runtime(curtask, delta_exec);
751 }
752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
754 }
755
756 static inline void
757 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
758 {
759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
760 }
761
762 /*
763 * Task is being enqueued - update stats:
764 */
765 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 {
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
771 if (se != cfs_rq->curr)
772 update_stats_wait_start(cfs_rq, se);
773 }
774
775 static void
776 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
777 {
778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
783 #ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
787 }
788 #endif
789 schedstat_set(se->statistics.wait_start, 0);
790 }
791
792 static inline void
793 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
799 if (se != cfs_rq->curr)
800 update_stats_wait_end(cfs_rq, se);
801 }
802
803 /*
804 * We are picking a new current task - update its stats:
805 */
806 static inline void
807 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
808 {
809 /*
810 * We are starting a new run period:
811 */
812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
813 }
814
815 /**************************************************
816 * Scheduling class queueing methods:
817 */
818
819 #ifdef CONFIG_NUMA_BALANCING
820 /*
821 * numa task sample period in ms
822 */
823 unsigned int sysctl_numa_balancing_scan_period_min = 100;
824 unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
825 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
826
827 /* Portion of address space to scan in MB */
828 unsigned int sysctl_numa_balancing_scan_size = 256;
829
830 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
831 unsigned int sysctl_numa_balancing_scan_delay = 1000;
832
833 static void task_numa_placement(struct task_struct *p)
834 {
835 int seq;
836
837 if (!p->mm) /* for example, ksmd faulting in a user's mm */
838 return;
839 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
840 if (p->numa_scan_seq == seq)
841 return;
842 p->numa_scan_seq = seq;
843
844 /* FIXME: Scheduling placement policy hints go here */
845 }
846
847 /*
848 * Got a PROT_NONE fault for a page on @node.
849 */
850 void task_numa_fault(int node, int pages, bool migrated)
851 {
852 struct task_struct *p = current;
853
854 if (!sched_feat_numa(NUMA))
855 return;
856
857 /* FIXME: Allocate task-specific structure for placement policy here */
858
859 /*
860 * If pages are properly placed (did not migrate) then scan slower.
861 * This is reset periodically in case of phase changes
862 */
863 if (!migrated)
864 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
865 p->numa_scan_period + jiffies_to_msecs(10));
866
867 task_numa_placement(p);
868 }
869
870 static void reset_ptenuma_scan(struct task_struct *p)
871 {
872 ACCESS_ONCE(p->mm->numa_scan_seq)++;
873 p->mm->numa_scan_offset = 0;
874 }
875
876 /*
877 * The expensive part of numa migration is done from task_work context.
878 * Triggered from task_tick_numa().
879 */
880 void task_numa_work(struct callback_head *work)
881 {
882 unsigned long migrate, next_scan, now = jiffies;
883 struct task_struct *p = current;
884 struct mm_struct *mm = p->mm;
885 struct vm_area_struct *vma;
886 unsigned long start, end;
887 long pages;
888
889 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
890
891 work->next = work; /* protect against double add */
892 /*
893 * Who cares about NUMA placement when they're dying.
894 *
895 * NOTE: make sure not to dereference p->mm before this check,
896 * exit_task_work() happens _after_ exit_mm() so we could be called
897 * without p->mm even though we still had it when we enqueued this
898 * work.
899 */
900 if (p->flags & PF_EXITING)
901 return;
902
903 /*
904 * We do not care about task placement until a task runs on a node
905 * other than the first one used by the address space. This is
906 * largely because migrations are driven by what CPU the task
907 * is running on. If it's never scheduled on another node, it'll
908 * not migrate so why bother trapping the fault.
909 */
910 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
911 mm->first_nid = numa_node_id();
912 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
913 /* Are we running on a new node yet? */
914 if (numa_node_id() == mm->first_nid &&
915 !sched_feat_numa(NUMA_FORCE))
916 return;
917
918 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
919 }
920
921 /*
922 * Reset the scan period if enough time has gone by. Objective is that
923 * scanning will be reduced if pages are properly placed. As tasks
924 * can enter different phases this needs to be re-examined. Lacking
925 * proper tracking of reference behaviour, this blunt hammer is used.
926 */
927 migrate = mm->numa_next_reset;
928 if (time_after(now, migrate)) {
929 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
930 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
931 xchg(&mm->numa_next_reset, next_scan);
932 }
933
934 /*
935 * Enforce maximal scan/migration frequency..
936 */
937 migrate = mm->numa_next_scan;
938 if (time_before(now, migrate))
939 return;
940
941 if (p->numa_scan_period == 0)
942 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
943
944 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
945 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
946 return;
947
948 /*
949 * Do not set pte_numa if the current running node is rate-limited.
950 * This loses statistics on the fault but if we are unwilling to
951 * migrate to this node, it is less likely we can do useful work
952 */
953 if (migrate_ratelimited(numa_node_id()))
954 return;
955
956 start = mm->numa_scan_offset;
957 pages = sysctl_numa_balancing_scan_size;
958 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
959 if (!pages)
960 return;
961
962 down_read(&mm->mmap_sem);
963 vma = find_vma(mm, start);
964 if (!vma) {
965 reset_ptenuma_scan(p);
966 start = 0;
967 vma = mm->mmap;
968 }
969 for (; vma; vma = vma->vm_next) {
970 if (!vma_migratable(vma))
971 continue;
972
973 /* Skip small VMAs. They are not likely to be of relevance */
974 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
975 continue;
976
977 do {
978 start = max(start, vma->vm_start);
979 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
980 end = min(end, vma->vm_end);
981 pages -= change_prot_numa(vma, start, end);
982
983 start = end;
984 if (pages <= 0)
985 goto out;
986 } while (end != vma->vm_end);
987 }
988
989 out:
990 /*
991 * It is possible to reach the end of the VMA list but the last few VMAs are
992 * not guaranteed to the vma_migratable. If they are not, we would find the
993 * !migratable VMA on the next scan but not reset the scanner to the start
994 * so check it now.
995 */
996 if (vma)
997 mm->numa_scan_offset = start;
998 else
999 reset_ptenuma_scan(p);
1000 up_read(&mm->mmap_sem);
1001 }
1002
1003 /*
1004 * Drive the periodic memory faults..
1005 */
1006 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1007 {
1008 struct callback_head *work = &curr->numa_work;
1009 u64 period, now;
1010
1011 /*
1012 * We don't care about NUMA placement if we don't have memory.
1013 */
1014 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1015 return;
1016
1017 /*
1018 * Using runtime rather than walltime has the dual advantage that
1019 * we (mostly) drive the selection from busy threads and that the
1020 * task needs to have done some actual work before we bother with
1021 * NUMA placement.
1022 */
1023 now = curr->se.sum_exec_runtime;
1024 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1025
1026 if (now - curr->node_stamp > period) {
1027 if (!curr->node_stamp)
1028 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
1029 curr->node_stamp = now;
1030
1031 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1032 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1033 task_work_add(curr, work, true);
1034 }
1035 }
1036 }
1037 #else
1038 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1039 {
1040 }
1041 #endif /* CONFIG_NUMA_BALANCING */
1042
1043 static void
1044 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1045 {
1046 update_load_add(&cfs_rq->load, se->load.weight);
1047 if (!parent_entity(se))
1048 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1049 #ifdef CONFIG_SMP
1050 if (entity_is_task(se))
1051 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1052 #endif
1053 cfs_rq->nr_running++;
1054 }
1055
1056 static void
1057 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1058 {
1059 update_load_sub(&cfs_rq->load, se->load.weight);
1060 if (!parent_entity(se))
1061 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1062 if (entity_is_task(se))
1063 list_del_init(&se->group_node);
1064 cfs_rq->nr_running--;
1065 }
1066
1067 #ifdef CONFIG_FAIR_GROUP_SCHED
1068 # ifdef CONFIG_SMP
1069 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1070 {
1071 long tg_weight;
1072
1073 /*
1074 * Use this CPU's actual weight instead of the last load_contribution
1075 * to gain a more accurate current total weight. See
1076 * update_cfs_rq_load_contribution().
1077 */
1078 tg_weight = atomic64_read(&tg->load_avg);
1079 tg_weight -= cfs_rq->tg_load_contrib;
1080 tg_weight += cfs_rq->load.weight;
1081
1082 return tg_weight;
1083 }
1084
1085 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1086 {
1087 long tg_weight, load, shares;
1088
1089 tg_weight = calc_tg_weight(tg, cfs_rq);
1090 load = cfs_rq->load.weight;
1091
1092 shares = (tg->shares * load);
1093 if (tg_weight)
1094 shares /= tg_weight;
1095
1096 if (shares < MIN_SHARES)
1097 shares = MIN_SHARES;
1098 if (shares > tg->shares)
1099 shares = tg->shares;
1100
1101 return shares;
1102 }
1103 # else /* CONFIG_SMP */
1104 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1105 {
1106 return tg->shares;
1107 }
1108 # endif /* CONFIG_SMP */
1109 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1110 unsigned long weight)
1111 {
1112 if (se->on_rq) {
1113 /* commit outstanding execution time */
1114 if (cfs_rq->curr == se)
1115 update_curr(cfs_rq);
1116 account_entity_dequeue(cfs_rq, se);
1117 }
1118
1119 update_load_set(&se->load, weight);
1120
1121 if (se->on_rq)
1122 account_entity_enqueue(cfs_rq, se);
1123 }
1124
1125 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1126
1127 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1128 {
1129 struct task_group *tg;
1130 struct sched_entity *se;
1131 long shares;
1132
1133 tg = cfs_rq->tg;
1134 se = tg->se[cpu_of(rq_of(cfs_rq))];
1135 if (!se || throttled_hierarchy(cfs_rq))
1136 return;
1137 #ifndef CONFIG_SMP
1138 if (likely(se->load.weight == tg->shares))
1139 return;
1140 #endif
1141 shares = calc_cfs_shares(cfs_rq, tg);
1142
1143 reweight_entity(cfs_rq_of(se), se, shares);
1144 }
1145 #else /* CONFIG_FAIR_GROUP_SCHED */
1146 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1147 {
1148 }
1149 #endif /* CONFIG_FAIR_GROUP_SCHED */
1150
1151 #ifdef CONFIG_SMP
1152 /*
1153 * We choose a half-life close to 1 scheduling period.
1154 * Note: The tables below are dependent on this value.
1155 */
1156 #define LOAD_AVG_PERIOD 32
1157 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1158 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1159
1160 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1161 static const u32 runnable_avg_yN_inv[] = {
1162 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1163 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1164 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1165 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1166 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1167 0x85aac367, 0x82cd8698,
1168 };
1169
1170 /*
1171 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1172 * over-estimates when re-combining.
1173 */
1174 static const u32 runnable_avg_yN_sum[] = {
1175 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1176 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1177 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1178 };
1179
1180 /*
1181 * Approximate:
1182 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1183 */
1184 static __always_inline u64 decay_load(u64 val, u64 n)
1185 {
1186 unsigned int local_n;
1187
1188 if (!n)
1189 return val;
1190 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1191 return 0;
1192
1193 /* after bounds checking we can collapse to 32-bit */
1194 local_n = n;
1195
1196 /*
1197 * As y^PERIOD = 1/2, we can combine
1198 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1199 * With a look-up table which covers k^n (n<PERIOD)
1200 *
1201 * To achieve constant time decay_load.
1202 */
1203 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1204 val >>= local_n / LOAD_AVG_PERIOD;
1205 local_n %= LOAD_AVG_PERIOD;
1206 }
1207
1208 val *= runnable_avg_yN_inv[local_n];
1209 /* We don't use SRR here since we always want to round down. */
1210 return val >> 32;
1211 }
1212
1213 /*
1214 * For updates fully spanning n periods, the contribution to runnable
1215 * average will be: \Sum 1024*y^n
1216 *
1217 * We can compute this reasonably efficiently by combining:
1218 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1219 */
1220 static u32 __compute_runnable_contrib(u64 n)
1221 {
1222 u32 contrib = 0;
1223
1224 if (likely(n <= LOAD_AVG_PERIOD))
1225 return runnable_avg_yN_sum[n];
1226 else if (unlikely(n >= LOAD_AVG_MAX_N))
1227 return LOAD_AVG_MAX;
1228
1229 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1230 do {
1231 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1232 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1233
1234 n -= LOAD_AVG_PERIOD;
1235 } while (n > LOAD_AVG_PERIOD);
1236
1237 contrib = decay_load(contrib, n);
1238 return contrib + runnable_avg_yN_sum[n];
1239 }
1240
1241 /*
1242 * We can represent the historical contribution to runnable average as the
1243 * coefficients of a geometric series. To do this we sub-divide our runnable
1244 * history into segments of approximately 1ms (1024us); label the segment that
1245 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1246 *
1247 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1248 * p0 p1 p2
1249 * (now) (~1ms ago) (~2ms ago)
1250 *
1251 * Let u_i denote the fraction of p_i that the entity was runnable.
1252 *
1253 * We then designate the fractions u_i as our co-efficients, yielding the
1254 * following representation of historical load:
1255 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1256 *
1257 * We choose y based on the with of a reasonably scheduling period, fixing:
1258 * y^32 = 0.5
1259 *
1260 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1261 * approximately half as much as the contribution to load within the last ms
1262 * (u_0).
1263 *
1264 * When a period "rolls over" and we have new u_0`, multiplying the previous
1265 * sum again by y is sufficient to update:
1266 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1267 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1268 */
1269 static __always_inline int __update_entity_runnable_avg(u64 now,
1270 struct sched_avg *sa,
1271 int runnable)
1272 {
1273 u64 delta, periods;
1274 u32 runnable_contrib;
1275 int delta_w, decayed = 0;
1276
1277 delta = now - sa->last_runnable_update;
1278 /*
1279 * This should only happen when time goes backwards, which it
1280 * unfortunately does during sched clock init when we swap over to TSC.
1281 */
1282 if ((s64)delta < 0) {
1283 sa->last_runnable_update = now;
1284 return 0;
1285 }
1286
1287 /*
1288 * Use 1024ns as the unit of measurement since it's a reasonable
1289 * approximation of 1us and fast to compute.
1290 */
1291 delta >>= 10;
1292 if (!delta)
1293 return 0;
1294 sa->last_runnable_update = now;
1295
1296 /* delta_w is the amount already accumulated against our next period */
1297 delta_w = sa->runnable_avg_period % 1024;
1298 if (delta + delta_w >= 1024) {
1299 /* period roll-over */
1300 decayed = 1;
1301
1302 /*
1303 * Now that we know we're crossing a period boundary, figure
1304 * out how much from delta we need to complete the current
1305 * period and accrue it.
1306 */
1307 delta_w = 1024 - delta_w;
1308 if (runnable)
1309 sa->runnable_avg_sum += delta_w;
1310 sa->runnable_avg_period += delta_w;
1311
1312 delta -= delta_w;
1313
1314 /* Figure out how many additional periods this update spans */
1315 periods = delta / 1024;
1316 delta %= 1024;
1317
1318 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1319 periods + 1);
1320 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1321 periods + 1);
1322
1323 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1324 runnable_contrib = __compute_runnable_contrib(periods);
1325 if (runnable)
1326 sa->runnable_avg_sum += runnable_contrib;
1327 sa->runnable_avg_period += runnable_contrib;
1328 }
1329
1330 /* Remainder of delta accrued against u_0` */
1331 if (runnable)
1332 sa->runnable_avg_sum += delta;
1333 sa->runnable_avg_period += delta;
1334
1335 return decayed;
1336 }
1337
1338 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1339 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1340 {
1341 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1342 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1343
1344 decays -= se->avg.decay_count;
1345 if (!decays)
1346 return 0;
1347
1348 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1349 se->avg.decay_count = 0;
1350
1351 return decays;
1352 }
1353
1354 #ifdef CONFIG_FAIR_GROUP_SCHED
1355 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1356 int force_update)
1357 {
1358 struct task_group *tg = cfs_rq->tg;
1359 s64 tg_contrib;
1360
1361 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1362 tg_contrib -= cfs_rq->tg_load_contrib;
1363
1364 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1365 atomic64_add(tg_contrib, &tg->load_avg);
1366 cfs_rq->tg_load_contrib += tg_contrib;
1367 }
1368 }
1369
1370 /*
1371 * Aggregate cfs_rq runnable averages into an equivalent task_group
1372 * representation for computing load contributions.
1373 */
1374 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1375 struct cfs_rq *cfs_rq)
1376 {
1377 struct task_group *tg = cfs_rq->tg;
1378 long contrib;
1379
1380 /* The fraction of a cpu used by this cfs_rq */
1381 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1382 sa->runnable_avg_period + 1);
1383 contrib -= cfs_rq->tg_runnable_contrib;
1384
1385 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1386 atomic_add(contrib, &tg->runnable_avg);
1387 cfs_rq->tg_runnable_contrib += contrib;
1388 }
1389 }
1390
1391 static inline void __update_group_entity_contrib(struct sched_entity *se)
1392 {
1393 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1394 struct task_group *tg = cfs_rq->tg;
1395 int runnable_avg;
1396
1397 u64 contrib;
1398
1399 contrib = cfs_rq->tg_load_contrib * tg->shares;
1400 se->avg.load_avg_contrib = div64_u64(contrib,
1401 atomic64_read(&tg->load_avg) + 1);
1402
1403 /*
1404 * For group entities we need to compute a correction term in the case
1405 * that they are consuming <1 cpu so that we would contribute the same
1406 * load as a task of equal weight.
1407 *
1408 * Explicitly co-ordinating this measurement would be expensive, but
1409 * fortunately the sum of each cpus contribution forms a usable
1410 * lower-bound on the true value.
1411 *
1412 * Consider the aggregate of 2 contributions. Either they are disjoint
1413 * (and the sum represents true value) or they are disjoint and we are
1414 * understating by the aggregate of their overlap.
1415 *
1416 * Extending this to N cpus, for a given overlap, the maximum amount we
1417 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1418 * cpus that overlap for this interval and w_i is the interval width.
1419 *
1420 * On a small machine; the first term is well-bounded which bounds the
1421 * total error since w_i is a subset of the period. Whereas on a
1422 * larger machine, while this first term can be larger, if w_i is the
1423 * of consequential size guaranteed to see n_i*w_i quickly converge to
1424 * our upper bound of 1-cpu.
1425 */
1426 runnable_avg = atomic_read(&tg->runnable_avg);
1427 if (runnable_avg < NICE_0_LOAD) {
1428 se->avg.load_avg_contrib *= runnable_avg;
1429 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1430 }
1431 }
1432 #else
1433 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1434 int force_update) {}
1435 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1436 struct cfs_rq *cfs_rq) {}
1437 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1438 #endif
1439
1440 static inline void __update_task_entity_contrib(struct sched_entity *se)
1441 {
1442 u32 contrib;
1443
1444 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1445 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1446 contrib /= (se->avg.runnable_avg_period + 1);
1447 se->avg.load_avg_contrib = scale_load(contrib);
1448 }
1449
1450 /* Compute the current contribution to load_avg by se, return any delta */
1451 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1452 {
1453 long old_contrib = se->avg.load_avg_contrib;
1454
1455 if (entity_is_task(se)) {
1456 __update_task_entity_contrib(se);
1457 } else {
1458 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1459 __update_group_entity_contrib(se);
1460 }
1461
1462 return se->avg.load_avg_contrib - old_contrib;
1463 }
1464
1465 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1466 long load_contrib)
1467 {
1468 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1469 cfs_rq->blocked_load_avg -= load_contrib;
1470 else
1471 cfs_rq->blocked_load_avg = 0;
1472 }
1473
1474 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1475
1476 /* Update a sched_entity's runnable average */
1477 static inline void update_entity_load_avg(struct sched_entity *se,
1478 int update_cfs_rq)
1479 {
1480 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1481 long contrib_delta;
1482 u64 now;
1483
1484 /*
1485 * For a group entity we need to use their owned cfs_rq_clock_task() in
1486 * case they are the parent of a throttled hierarchy.
1487 */
1488 if (entity_is_task(se))
1489 now = cfs_rq_clock_task(cfs_rq);
1490 else
1491 now = cfs_rq_clock_task(group_cfs_rq(se));
1492
1493 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1494 return;
1495
1496 contrib_delta = __update_entity_load_avg_contrib(se);
1497
1498 if (!update_cfs_rq)
1499 return;
1500
1501 if (se->on_rq)
1502 cfs_rq->runnable_load_avg += contrib_delta;
1503 else
1504 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1505 }
1506
1507 /*
1508 * Decay the load contributed by all blocked children and account this so that
1509 * their contribution may appropriately discounted when they wake up.
1510 */
1511 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1512 {
1513 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1514 u64 decays;
1515
1516 decays = now - cfs_rq->last_decay;
1517 if (!decays && !force_update)
1518 return;
1519
1520 if (atomic64_read(&cfs_rq->removed_load)) {
1521 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1522 subtract_blocked_load_contrib(cfs_rq, removed_load);
1523 }
1524
1525 if (decays) {
1526 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1527 decays);
1528 atomic64_add(decays, &cfs_rq->decay_counter);
1529 cfs_rq->last_decay = now;
1530 }
1531
1532 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1533 }
1534
1535 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1536 {
1537 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
1538 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1539 }
1540
1541 /* Add the load generated by se into cfs_rq's child load-average */
1542 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1543 struct sched_entity *se,
1544 int wakeup)
1545 {
1546 /*
1547 * We track migrations using entity decay_count <= 0, on a wake-up
1548 * migration we use a negative decay count to track the remote decays
1549 * accumulated while sleeping.
1550 *
1551 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1552 * are seen by enqueue_entity_load_avg() as a migration with an already
1553 * constructed load_avg_contrib.
1554 */
1555 if (unlikely(se->avg.decay_count <= 0)) {
1556 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
1557 if (se->avg.decay_count) {
1558 /*
1559 * In a wake-up migration we have to approximate the
1560 * time sleeping. This is because we can't synchronize
1561 * clock_task between the two cpus, and it is not
1562 * guaranteed to be read-safe. Instead, we can
1563 * approximate this using our carried decays, which are
1564 * explicitly atomically readable.
1565 */
1566 se->avg.last_runnable_update -= (-se->avg.decay_count)
1567 << 20;
1568 update_entity_load_avg(se, 0);
1569 /* Indicate that we're now synchronized and on-rq */
1570 se->avg.decay_count = 0;
1571 }
1572 wakeup = 0;
1573 } else {
1574 __synchronize_entity_decay(se);
1575 }
1576
1577 /* migrated tasks did not contribute to our blocked load */
1578 if (wakeup) {
1579 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1580 update_entity_load_avg(se, 0);
1581 }
1582
1583 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1584 /* we force update consideration on load-balancer moves */
1585 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1586 }
1587
1588 /*
1589 * Remove se's load from this cfs_rq child load-average, if the entity is
1590 * transitioning to a blocked state we track its projected decay using
1591 * blocked_load_avg.
1592 */
1593 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1594 struct sched_entity *se,
1595 int sleep)
1596 {
1597 update_entity_load_avg(se, 1);
1598 /* we force update consideration on load-balancer moves */
1599 update_cfs_rq_blocked_load(cfs_rq, !sleep);
1600
1601 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1602 if (sleep) {
1603 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1604 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1605 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1606 }
1607
1608 /*
1609 * Update the rq's load with the elapsed running time before entering
1610 * idle. if the last scheduled task is not a CFS task, idle_enter will
1611 * be the only way to update the runnable statistic.
1612 */
1613 void idle_enter_fair(struct rq *this_rq)
1614 {
1615 update_rq_runnable_avg(this_rq, 1);
1616 }
1617
1618 /*
1619 * Update the rq's load with the elapsed idle time before a task is
1620 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1621 * be the only way to update the runnable statistic.
1622 */
1623 void idle_exit_fair(struct rq *this_rq)
1624 {
1625 update_rq_runnable_avg(this_rq, 0);
1626 }
1627
1628 #else
1629 static inline void update_entity_load_avg(struct sched_entity *se,
1630 int update_cfs_rq) {}
1631 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1632 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1633 struct sched_entity *se,
1634 int wakeup) {}
1635 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1636 struct sched_entity *se,
1637 int sleep) {}
1638 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1639 int force_update) {}
1640 #endif
1641
1642 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1643 {
1644 #ifdef CONFIG_SCHEDSTATS
1645 struct task_struct *tsk = NULL;
1646
1647 if (entity_is_task(se))
1648 tsk = task_of(se);
1649
1650 if (se->statistics.sleep_start) {
1651 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
1652
1653 if ((s64)delta < 0)
1654 delta = 0;
1655
1656 if (unlikely(delta > se->statistics.sleep_max))
1657 se->statistics.sleep_max = delta;
1658
1659 se->statistics.sleep_start = 0;
1660 se->statistics.sum_sleep_runtime += delta;
1661
1662 if (tsk) {
1663 account_scheduler_latency(tsk, delta >> 10, 1);
1664 trace_sched_stat_sleep(tsk, delta);
1665 }
1666 }
1667 if (se->statistics.block_start) {
1668 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
1669
1670 if ((s64)delta < 0)
1671 delta = 0;
1672
1673 if (unlikely(delta > se->statistics.block_max))
1674 se->statistics.block_max = delta;
1675
1676 se->statistics.block_start = 0;
1677 se->statistics.sum_sleep_runtime += delta;
1678
1679 if (tsk) {
1680 if (tsk->in_iowait) {
1681 se->statistics.iowait_sum += delta;
1682 se->statistics.iowait_count++;
1683 trace_sched_stat_iowait(tsk, delta);
1684 }
1685
1686 trace_sched_stat_blocked(tsk, delta);
1687
1688 /*
1689 * Blocking time is in units of nanosecs, so shift by
1690 * 20 to get a milliseconds-range estimation of the
1691 * amount of time that the task spent sleeping:
1692 */
1693 if (unlikely(prof_on == SLEEP_PROFILING)) {
1694 profile_hits(SLEEP_PROFILING,
1695 (void *)get_wchan(tsk),
1696 delta >> 20);
1697 }
1698 account_scheduler_latency(tsk, delta >> 10, 0);
1699 }
1700 }
1701 #endif
1702 }
1703
1704 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1705 {
1706 #ifdef CONFIG_SCHED_DEBUG
1707 s64 d = se->vruntime - cfs_rq->min_vruntime;
1708
1709 if (d < 0)
1710 d = -d;
1711
1712 if (d > 3*sysctl_sched_latency)
1713 schedstat_inc(cfs_rq, nr_spread_over);
1714 #endif
1715 }
1716
1717 static void
1718 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1719 {
1720 u64 vruntime = cfs_rq->min_vruntime;
1721
1722 /*
1723 * The 'current' period is already promised to the current tasks,
1724 * however the extra weight of the new task will slow them down a
1725 * little, place the new task so that it fits in the slot that
1726 * stays open at the end.
1727 */
1728 if (initial && sched_feat(START_DEBIT))
1729 vruntime += sched_vslice(cfs_rq, se);
1730
1731 /* sleeps up to a single latency don't count. */
1732 if (!initial) {
1733 unsigned long thresh = sysctl_sched_latency;
1734
1735 /*
1736 * Halve their sleep time's effect, to allow
1737 * for a gentler effect of sleepers:
1738 */
1739 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1740 thresh >>= 1;
1741
1742 vruntime -= thresh;
1743 }
1744
1745 /* ensure we never gain time by being placed backwards. */
1746 se->vruntime = max_vruntime(se->vruntime, vruntime);
1747 }
1748
1749 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1750
1751 static void
1752 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1753 {
1754 /*
1755 * Update the normalized vruntime before updating min_vruntime
1756 * through callig update_curr().
1757 */
1758 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1759 se->vruntime += cfs_rq->min_vruntime;
1760
1761 /*
1762 * Update run-time statistics of the 'current'.
1763 */
1764 update_curr(cfs_rq);
1765 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1766 account_entity_enqueue(cfs_rq, se);
1767 update_cfs_shares(cfs_rq);
1768
1769 if (flags & ENQUEUE_WAKEUP) {
1770 place_entity(cfs_rq, se, 0);
1771 enqueue_sleeper(cfs_rq, se);
1772 }
1773
1774 update_stats_enqueue(cfs_rq, se);
1775 check_spread(cfs_rq, se);
1776 if (se != cfs_rq->curr)
1777 __enqueue_entity(cfs_rq, se);
1778 se->on_rq = 1;
1779
1780 if (cfs_rq->nr_running == 1) {
1781 list_add_leaf_cfs_rq(cfs_rq);
1782 check_enqueue_throttle(cfs_rq);
1783 }
1784 }
1785
1786 static void __clear_buddies_last(struct sched_entity *se)
1787 {
1788 for_each_sched_entity(se) {
1789 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1790 if (cfs_rq->last == se)
1791 cfs_rq->last = NULL;
1792 else
1793 break;
1794 }
1795 }
1796
1797 static void __clear_buddies_next(struct sched_entity *se)
1798 {
1799 for_each_sched_entity(se) {
1800 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1801 if (cfs_rq->next == se)
1802 cfs_rq->next = NULL;
1803 else
1804 break;
1805 }
1806 }
1807
1808 static void __clear_buddies_skip(struct sched_entity *se)
1809 {
1810 for_each_sched_entity(se) {
1811 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1812 if (cfs_rq->skip == se)
1813 cfs_rq->skip = NULL;
1814 else
1815 break;
1816 }
1817 }
1818
1819 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1820 {
1821 if (cfs_rq->last == se)
1822 __clear_buddies_last(se);
1823
1824 if (cfs_rq->next == se)
1825 __clear_buddies_next(se);
1826
1827 if (cfs_rq->skip == se)
1828 __clear_buddies_skip(se);
1829 }
1830
1831 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1832
1833 static void
1834 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1835 {
1836 /*
1837 * Update run-time statistics of the 'current'.
1838 */
1839 update_curr(cfs_rq);
1840 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1841
1842 update_stats_dequeue(cfs_rq, se);
1843 if (flags & DEQUEUE_SLEEP) {
1844 #ifdef CONFIG_SCHEDSTATS
1845 if (entity_is_task(se)) {
1846 struct task_struct *tsk = task_of(se);
1847
1848 if (tsk->state & TASK_INTERRUPTIBLE)
1849 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
1850 if (tsk->state & TASK_UNINTERRUPTIBLE)
1851 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
1852 }
1853 #endif
1854 }
1855
1856 clear_buddies(cfs_rq, se);
1857
1858 if (se != cfs_rq->curr)
1859 __dequeue_entity(cfs_rq, se);
1860 se->on_rq = 0;
1861 account_entity_dequeue(cfs_rq, se);
1862
1863 /*
1864 * Normalize the entity after updating the min_vruntime because the
1865 * update can refer to the ->curr item and we need to reflect this
1866 * movement in our normalized position.
1867 */
1868 if (!(flags & DEQUEUE_SLEEP))
1869 se->vruntime -= cfs_rq->min_vruntime;
1870
1871 /* return excess runtime on last dequeue */
1872 return_cfs_rq_runtime(cfs_rq);
1873
1874 update_min_vruntime(cfs_rq);
1875 update_cfs_shares(cfs_rq);
1876 }
1877
1878 /*
1879 * Preempt the current task with a newly woken task if needed:
1880 */
1881 static void
1882 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1883 {
1884 unsigned long ideal_runtime, delta_exec;
1885 struct sched_entity *se;
1886 s64 delta;
1887
1888 ideal_runtime = sched_slice(cfs_rq, curr);
1889 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1890 if (delta_exec > ideal_runtime) {
1891 resched_task(rq_of(cfs_rq)->curr);
1892 /*
1893 * The current task ran long enough, ensure it doesn't get
1894 * re-elected due to buddy favours.
1895 */
1896 clear_buddies(cfs_rq, curr);
1897 return;
1898 }
1899
1900 /*
1901 * Ensure that a task that missed wakeup preemption by a
1902 * narrow margin doesn't have to wait for a full slice.
1903 * This also mitigates buddy induced latencies under load.
1904 */
1905 if (delta_exec < sysctl_sched_min_granularity)
1906 return;
1907
1908 se = __pick_first_entity(cfs_rq);
1909 delta = curr->vruntime - se->vruntime;
1910
1911 if (delta < 0)
1912 return;
1913
1914 if (delta > ideal_runtime)
1915 resched_task(rq_of(cfs_rq)->curr);
1916 }
1917
1918 static void
1919 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1920 {
1921 /* 'current' is not kept within the tree. */
1922 if (se->on_rq) {
1923 /*
1924 * Any task has to be enqueued before it get to execute on
1925 * a CPU. So account for the time it spent waiting on the
1926 * runqueue.
1927 */
1928 update_stats_wait_end(cfs_rq, se);
1929 __dequeue_entity(cfs_rq, se);
1930 }
1931
1932 update_stats_curr_start(cfs_rq, se);
1933 cfs_rq->curr = se;
1934 #ifdef CONFIG_SCHEDSTATS
1935 /*
1936 * Track our maximum slice length, if the CPU's load is at
1937 * least twice that of our own weight (i.e. dont track it
1938 * when there are only lesser-weight tasks around):
1939 */
1940 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1941 se->statistics.slice_max = max(se->statistics.slice_max,
1942 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1943 }
1944 #endif
1945 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1946 }
1947
1948 static int
1949 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1950
1951 /*
1952 * Pick the next process, keeping these things in mind, in this order:
1953 * 1) keep things fair between processes/task groups
1954 * 2) pick the "next" process, since someone really wants that to run
1955 * 3) pick the "last" process, for cache locality
1956 * 4) do not run the "skip" process, if something else is available
1957 */
1958 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1959 {
1960 struct sched_entity *se = __pick_first_entity(cfs_rq);
1961 struct sched_entity *left = se;
1962
1963 /*
1964 * Avoid running the skip buddy, if running something else can
1965 * be done without getting too unfair.
1966 */
1967 if (cfs_rq->skip == se) {
1968 struct sched_entity *second = __pick_next_entity(se);
1969 if (second && wakeup_preempt_entity(second, left) < 1)
1970 se = second;
1971 }
1972
1973 /*
1974 * Prefer last buddy, try to return the CPU to a preempted task.
1975 */
1976 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1977 se = cfs_rq->last;
1978
1979 /*
1980 * Someone really wants this to run. If it's not unfair, run it.
1981 */
1982 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1983 se = cfs_rq->next;
1984
1985 clear_buddies(cfs_rq, se);
1986
1987 return se;
1988 }
1989
1990 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1991
1992 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1993 {
1994 /*
1995 * If still on the runqueue then deactivate_task()
1996 * was not called and update_curr() has to be done:
1997 */
1998 if (prev->on_rq)
1999 update_curr(cfs_rq);
2000
2001 /* throttle cfs_rqs exceeding runtime */
2002 check_cfs_rq_runtime(cfs_rq);
2003
2004 check_spread(cfs_rq, prev);
2005 if (prev->on_rq) {
2006 update_stats_wait_start(cfs_rq, prev);
2007 /* Put 'current' back into the tree. */
2008 __enqueue_entity(cfs_rq, prev);
2009 /* in !on_rq case, update occurred at dequeue */
2010 update_entity_load_avg(prev, 1);
2011 }
2012 cfs_rq->curr = NULL;
2013 }
2014
2015 static void
2016 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2017 {
2018 /*
2019 * Update run-time statistics of the 'current'.
2020 */
2021 update_curr(cfs_rq);
2022
2023 /*
2024 * Ensure that runnable average is periodically updated.
2025 */
2026 update_entity_load_avg(curr, 1);
2027 update_cfs_rq_blocked_load(cfs_rq, 1);
2028
2029 #ifdef CONFIG_SCHED_HRTICK
2030 /*
2031 * queued ticks are scheduled to match the slice, so don't bother
2032 * validating it and just reschedule.
2033 */
2034 if (queued) {
2035 resched_task(rq_of(cfs_rq)->curr);
2036 return;
2037 }
2038 /*
2039 * don't let the period tick interfere with the hrtick preemption
2040 */
2041 if (!sched_feat(DOUBLE_TICK) &&
2042 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2043 return;
2044 #endif
2045
2046 if (cfs_rq->nr_running > 1)
2047 check_preempt_tick(cfs_rq, curr);
2048 }
2049
2050
2051 /**************************************************
2052 * CFS bandwidth control machinery
2053 */
2054
2055 #ifdef CONFIG_CFS_BANDWIDTH
2056
2057 #ifdef HAVE_JUMP_LABEL
2058 static struct static_key __cfs_bandwidth_used;
2059
2060 static inline bool cfs_bandwidth_used(void)
2061 {
2062 return static_key_false(&__cfs_bandwidth_used);
2063 }
2064
2065 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2066 {
2067 /* only need to count groups transitioning between enabled/!enabled */
2068 if (enabled && !was_enabled)
2069 static_key_slow_inc(&__cfs_bandwidth_used);
2070 else if (!enabled && was_enabled)
2071 static_key_slow_dec(&__cfs_bandwidth_used);
2072 }
2073 #else /* HAVE_JUMP_LABEL */
2074 static bool cfs_bandwidth_used(void)
2075 {
2076 return true;
2077 }
2078
2079 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2080 #endif /* HAVE_JUMP_LABEL */
2081
2082 /*
2083 * default period for cfs group bandwidth.
2084 * default: 0.1s, units: nanoseconds
2085 */
2086 static inline u64 default_cfs_period(void)
2087 {
2088 return 100000000ULL;
2089 }
2090
2091 static inline u64 sched_cfs_bandwidth_slice(void)
2092 {
2093 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2094 }
2095
2096 /*
2097 * Replenish runtime according to assigned quota and update expiration time.
2098 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2099 * additional synchronization around rq->lock.
2100 *
2101 * requires cfs_b->lock
2102 */
2103 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2104 {
2105 u64 now;
2106
2107 if (cfs_b->quota == RUNTIME_INF)
2108 return;
2109
2110 now = sched_clock_cpu(smp_processor_id());
2111 cfs_b->runtime = cfs_b->quota;
2112 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2113 }
2114
2115 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2116 {
2117 return &tg->cfs_bandwidth;
2118 }
2119
2120 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2121 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2122 {
2123 if (unlikely(cfs_rq->throttle_count))
2124 return cfs_rq->throttled_clock_task;
2125
2126 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2127 }
2128
2129 /* returns 0 on failure to allocate runtime */
2130 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2131 {
2132 struct task_group *tg = cfs_rq->tg;
2133 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2134 u64 amount = 0, min_amount, expires;
2135
2136 /* note: this is a positive sum as runtime_remaining <= 0 */
2137 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2138
2139 raw_spin_lock(&cfs_b->lock);
2140 if (cfs_b->quota == RUNTIME_INF)
2141 amount = min_amount;
2142 else {
2143 /*
2144 * If the bandwidth pool has become inactive, then at least one
2145 * period must have elapsed since the last consumption.
2146 * Refresh the global state and ensure bandwidth timer becomes
2147 * active.
2148 */
2149 if (!cfs_b->timer_active) {
2150 __refill_cfs_bandwidth_runtime(cfs_b);
2151 __start_cfs_bandwidth(cfs_b);
2152 }
2153
2154 if (cfs_b->runtime > 0) {
2155 amount = min(cfs_b->runtime, min_amount);
2156 cfs_b->runtime -= amount;
2157 cfs_b->idle = 0;
2158 }
2159 }
2160 expires = cfs_b->runtime_expires;
2161 raw_spin_unlock(&cfs_b->lock);
2162
2163 cfs_rq->runtime_remaining += amount;
2164 /*
2165 * we may have advanced our local expiration to account for allowed
2166 * spread between our sched_clock and the one on which runtime was
2167 * issued.
2168 */
2169 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2170 cfs_rq->runtime_expires = expires;
2171
2172 return cfs_rq->runtime_remaining > 0;
2173 }
2174
2175 /*
2176 * Note: This depends on the synchronization provided by sched_clock and the
2177 * fact that rq->clock snapshots this value.
2178 */
2179 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2180 {
2181 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2182
2183 /* if the deadline is ahead of our clock, nothing to do */
2184 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2185 return;
2186
2187 if (cfs_rq->runtime_remaining < 0)
2188 return;
2189
2190 /*
2191 * If the local deadline has passed we have to consider the
2192 * possibility that our sched_clock is 'fast' and the global deadline
2193 * has not truly expired.
2194 *
2195 * Fortunately we can check determine whether this the case by checking
2196 * whether the global deadline has advanced.
2197 */
2198
2199 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2200 /* extend local deadline, drift is bounded above by 2 ticks */
2201 cfs_rq->runtime_expires += TICK_NSEC;
2202 } else {
2203 /* global deadline is ahead, expiration has passed */
2204 cfs_rq->runtime_remaining = 0;
2205 }
2206 }
2207
2208 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2209 unsigned long delta_exec)
2210 {
2211 /* dock delta_exec before expiring quota (as it could span periods) */
2212 cfs_rq->runtime_remaining -= delta_exec;
2213 expire_cfs_rq_runtime(cfs_rq);
2214
2215 if (likely(cfs_rq->runtime_remaining > 0))
2216 return;
2217
2218 /*
2219 * if we're unable to extend our runtime we resched so that the active
2220 * hierarchy can be throttled
2221 */
2222 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2223 resched_task(rq_of(cfs_rq)->curr);
2224 }
2225
2226 static __always_inline
2227 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2228 {
2229 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2230 return;
2231
2232 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2233 }
2234
2235 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2236 {
2237 return cfs_bandwidth_used() && cfs_rq->throttled;
2238 }
2239
2240 /* check whether cfs_rq, or any parent, is throttled */
2241 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2242 {
2243 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2244 }
2245
2246 /*
2247 * Ensure that neither of the group entities corresponding to src_cpu or
2248 * dest_cpu are members of a throttled hierarchy when performing group
2249 * load-balance operations.
2250 */
2251 static inline int throttled_lb_pair(struct task_group *tg,
2252 int src_cpu, int dest_cpu)
2253 {
2254 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2255
2256 src_cfs_rq = tg->cfs_rq[src_cpu];
2257 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2258
2259 return throttled_hierarchy(src_cfs_rq) ||
2260 throttled_hierarchy(dest_cfs_rq);
2261 }
2262
2263 /* updated child weight may affect parent so we have to do this bottom up */
2264 static int tg_unthrottle_up(struct task_group *tg, void *data)
2265 {
2266 struct rq *rq = data;
2267 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2268
2269 cfs_rq->throttle_count--;
2270 #ifdef CONFIG_SMP
2271 if (!cfs_rq->throttle_count) {
2272 /* adjust cfs_rq_clock_task() */
2273 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2274 cfs_rq->throttled_clock_task;
2275 }
2276 #endif
2277
2278 return 0;
2279 }
2280
2281 static int tg_throttle_down(struct task_group *tg, void *data)
2282 {
2283 struct rq *rq = data;
2284 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2285
2286 /* group is entering throttled state, stop time */
2287 if (!cfs_rq->throttle_count)
2288 cfs_rq->throttled_clock_task = rq_clock_task(rq);
2289 cfs_rq->throttle_count++;
2290
2291 return 0;
2292 }
2293
2294 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2295 {
2296 struct rq *rq = rq_of(cfs_rq);
2297 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2298 struct sched_entity *se;
2299 long task_delta, dequeue = 1;
2300
2301 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2302
2303 /* freeze hierarchy runnable averages while throttled */
2304 rcu_read_lock();
2305 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2306 rcu_read_unlock();
2307
2308 task_delta = cfs_rq->h_nr_running;
2309 for_each_sched_entity(se) {
2310 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2311 /* throttled entity or throttle-on-deactivate */
2312 if (!se->on_rq)
2313 break;
2314
2315 if (dequeue)
2316 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2317 qcfs_rq->h_nr_running -= task_delta;
2318
2319 if (qcfs_rq->load.weight)
2320 dequeue = 0;
2321 }
2322
2323 if (!se)
2324 rq->nr_running -= task_delta;
2325
2326 cfs_rq->throttled = 1;
2327 cfs_rq->throttled_clock = rq_clock(rq);
2328 raw_spin_lock(&cfs_b->lock);
2329 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2330 raw_spin_unlock(&cfs_b->lock);
2331 }
2332
2333 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2334 {
2335 struct rq *rq = rq_of(cfs_rq);
2336 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2337 struct sched_entity *se;
2338 int enqueue = 1;
2339 long task_delta;
2340
2341 se = cfs_rq->tg->se[cpu_of(rq)];
2342
2343 cfs_rq->throttled = 0;
2344
2345 update_rq_clock(rq);
2346
2347 raw_spin_lock(&cfs_b->lock);
2348 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
2349 list_del_rcu(&cfs_rq->throttled_list);
2350 raw_spin_unlock(&cfs_b->lock);
2351
2352 /* update hierarchical throttle state */
2353 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2354
2355 if (!cfs_rq->load.weight)
2356 return;
2357
2358 task_delta = cfs_rq->h_nr_running;
2359 for_each_sched_entity(se) {
2360 if (se->on_rq)
2361 enqueue = 0;
2362
2363 cfs_rq = cfs_rq_of(se);
2364 if (enqueue)
2365 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2366 cfs_rq->h_nr_running += task_delta;
2367
2368 if (cfs_rq_throttled(cfs_rq))
2369 break;
2370 }
2371
2372 if (!se)
2373 rq->nr_running += task_delta;
2374
2375 /* determine whether we need to wake up potentially idle cpu */
2376 if (rq->curr == rq->idle && rq->cfs.nr_running)
2377 resched_task(rq->curr);
2378 }
2379
2380 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2381 u64 remaining, u64 expires)
2382 {
2383 struct cfs_rq *cfs_rq;
2384 u64 runtime = remaining;
2385
2386 rcu_read_lock();
2387 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2388 throttled_list) {
2389 struct rq *rq = rq_of(cfs_rq);
2390
2391 raw_spin_lock(&rq->lock);
2392 if (!cfs_rq_throttled(cfs_rq))
2393 goto next;
2394
2395 runtime = -cfs_rq->runtime_remaining + 1;
2396 if (runtime > remaining)
2397 runtime = remaining;
2398 remaining -= runtime;
2399
2400 cfs_rq->runtime_remaining += runtime;
2401 cfs_rq->runtime_expires = expires;
2402
2403 /* we check whether we're throttled above */
2404 if (cfs_rq->runtime_remaining > 0)
2405 unthrottle_cfs_rq(cfs_rq);
2406
2407 next:
2408 raw_spin_unlock(&rq->lock);
2409
2410 if (!remaining)
2411 break;
2412 }
2413 rcu_read_unlock();
2414
2415 return remaining;
2416 }
2417
2418 /*
2419 * Responsible for refilling a task_group's bandwidth and unthrottling its
2420 * cfs_rqs as appropriate. If there has been no activity within the last
2421 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2422 * used to track this state.
2423 */
2424 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2425 {
2426 u64 runtime, runtime_expires;
2427 int idle = 1, throttled;
2428
2429 raw_spin_lock(&cfs_b->lock);
2430 /* no need to continue the timer with no bandwidth constraint */
2431 if (cfs_b->quota == RUNTIME_INF)
2432 goto out_unlock;
2433
2434 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2435 /* idle depends on !throttled (for the case of a large deficit) */
2436 idle = cfs_b->idle && !throttled;
2437 cfs_b->nr_periods += overrun;
2438
2439 /* if we're going inactive then everything else can be deferred */
2440 if (idle)
2441 goto out_unlock;
2442
2443 __refill_cfs_bandwidth_runtime(cfs_b);
2444
2445 if (!throttled) {
2446 /* mark as potentially idle for the upcoming period */
2447 cfs_b->idle = 1;
2448 goto out_unlock;
2449 }
2450
2451 /* account preceding periods in which throttling occurred */
2452 cfs_b->nr_throttled += overrun;
2453
2454 /*
2455 * There are throttled entities so we must first use the new bandwidth
2456 * to unthrottle them before making it generally available. This
2457 * ensures that all existing debts will be paid before a new cfs_rq is
2458 * allowed to run.
2459 */
2460 runtime = cfs_b->runtime;
2461 runtime_expires = cfs_b->runtime_expires;
2462 cfs_b->runtime = 0;
2463
2464 /*
2465 * This check is repeated as we are holding onto the new bandwidth
2466 * while we unthrottle. This can potentially race with an unthrottled
2467 * group trying to acquire new bandwidth from the global pool.
2468 */
2469 while (throttled && runtime > 0) {
2470 raw_spin_unlock(&cfs_b->lock);
2471 /* we can't nest cfs_b->lock while distributing bandwidth */
2472 runtime = distribute_cfs_runtime(cfs_b, runtime,
2473 runtime_expires);
2474 raw_spin_lock(&cfs_b->lock);
2475
2476 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2477 }
2478
2479 /* return (any) remaining runtime */
2480 cfs_b->runtime = runtime;
2481 /*
2482 * While we are ensured activity in the period following an
2483 * unthrottle, this also covers the case in which the new bandwidth is
2484 * insufficient to cover the existing bandwidth deficit. (Forcing the
2485 * timer to remain active while there are any throttled entities.)
2486 */
2487 cfs_b->idle = 0;
2488 out_unlock:
2489 if (idle)
2490 cfs_b->timer_active = 0;
2491 raw_spin_unlock(&cfs_b->lock);
2492
2493 return idle;
2494 }
2495
2496 /* a cfs_rq won't donate quota below this amount */
2497 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2498 /* minimum remaining period time to redistribute slack quota */
2499 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2500 /* how long we wait to gather additional slack before distributing */
2501 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2502
2503 /* are we near the end of the current quota period? */
2504 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2505 {
2506 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2507 u64 remaining;
2508
2509 /* if the call-back is running a quota refresh is already occurring */
2510 if (hrtimer_callback_running(refresh_timer))
2511 return 1;
2512
2513 /* is a quota refresh about to occur? */
2514 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2515 if (remaining < min_expire)
2516 return 1;
2517
2518 return 0;
2519 }
2520
2521 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2522 {
2523 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2524
2525 /* if there's a quota refresh soon don't bother with slack */
2526 if (runtime_refresh_within(cfs_b, min_left))
2527 return;
2528
2529 start_bandwidth_timer(&cfs_b->slack_timer,
2530 ns_to_ktime(cfs_bandwidth_slack_period));
2531 }
2532
2533 /* we know any runtime found here is valid as update_curr() precedes return */
2534 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2535 {
2536 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2537 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2538
2539 if (slack_runtime <= 0)
2540 return;
2541
2542 raw_spin_lock(&cfs_b->lock);
2543 if (cfs_b->quota != RUNTIME_INF &&
2544 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2545 cfs_b->runtime += slack_runtime;
2546
2547 /* we are under rq->lock, defer unthrottling using a timer */
2548 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2549 !list_empty(&cfs_b->throttled_cfs_rq))
2550 start_cfs_slack_bandwidth(cfs_b);
2551 }
2552 raw_spin_unlock(&cfs_b->lock);
2553
2554 /* even if it's not valid for return we don't want to try again */
2555 cfs_rq->runtime_remaining -= slack_runtime;
2556 }
2557
2558 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2559 {
2560 if (!cfs_bandwidth_used())
2561 return;
2562
2563 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2564 return;
2565
2566 __return_cfs_rq_runtime(cfs_rq);
2567 }
2568
2569 /*
2570 * This is done with a timer (instead of inline with bandwidth return) since
2571 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2572 */
2573 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2574 {
2575 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2576 u64 expires;
2577
2578 /* confirm we're still not at a refresh boundary */
2579 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2580 return;
2581
2582 raw_spin_lock(&cfs_b->lock);
2583 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2584 runtime = cfs_b->runtime;
2585 cfs_b->runtime = 0;
2586 }
2587 expires = cfs_b->runtime_expires;
2588 raw_spin_unlock(&cfs_b->lock);
2589
2590 if (!runtime)
2591 return;
2592
2593 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2594
2595 raw_spin_lock(&cfs_b->lock);
2596 if (expires == cfs_b->runtime_expires)
2597 cfs_b->runtime = runtime;
2598 raw_spin_unlock(&cfs_b->lock);
2599 }
2600
2601 /*
2602 * When a group wakes up we want to make sure that its quota is not already
2603 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2604 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2605 */
2606 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2607 {
2608 if (!cfs_bandwidth_used())
2609 return;
2610
2611 /* an active group must be handled by the update_curr()->put() path */
2612 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2613 return;
2614
2615 /* ensure the group is not already throttled */
2616 if (cfs_rq_throttled(cfs_rq))
2617 return;
2618
2619 /* update runtime allocation */
2620 account_cfs_rq_runtime(cfs_rq, 0);
2621 if (cfs_rq->runtime_remaining <= 0)
2622 throttle_cfs_rq(cfs_rq);
2623 }
2624
2625 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2626 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2627 {
2628 if (!cfs_bandwidth_used())
2629 return;
2630
2631 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2632 return;
2633
2634 /*
2635 * it's possible for a throttled entity to be forced into a running
2636 * state (e.g. set_curr_task), in this case we're finished.
2637 */
2638 if (cfs_rq_throttled(cfs_rq))
2639 return;
2640
2641 throttle_cfs_rq(cfs_rq);
2642 }
2643
2644 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2645 {
2646 struct cfs_bandwidth *cfs_b =
2647 container_of(timer, struct cfs_bandwidth, slack_timer);
2648 do_sched_cfs_slack_timer(cfs_b);
2649
2650 return HRTIMER_NORESTART;
2651 }
2652
2653 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2654 {
2655 struct cfs_bandwidth *cfs_b =
2656 container_of(timer, struct cfs_bandwidth, period_timer);
2657 ktime_t now;
2658 int overrun;
2659 int idle = 0;
2660
2661 for (;;) {
2662 now = hrtimer_cb_get_time(timer);
2663 overrun = hrtimer_forward(timer, now, cfs_b->period);
2664
2665 if (!overrun)
2666 break;
2667
2668 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2669 }
2670
2671 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2672 }
2673
2674 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2675 {
2676 raw_spin_lock_init(&cfs_b->lock);
2677 cfs_b->runtime = 0;
2678 cfs_b->quota = RUNTIME_INF;
2679 cfs_b->period = ns_to_ktime(default_cfs_period());
2680
2681 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2682 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2683 cfs_b->period_timer.function = sched_cfs_period_timer;
2684 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2685 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2686 }
2687
2688 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2689 {
2690 cfs_rq->runtime_enabled = 0;
2691 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2692 }
2693
2694 /* requires cfs_b->lock, may release to reprogram timer */
2695 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2696 {
2697 /*
2698 * The timer may be active because we're trying to set a new bandwidth
2699 * period or because we're racing with the tear-down path
2700 * (timer_active==0 becomes visible before the hrtimer call-back
2701 * terminates). In either case we ensure that it's re-programmed
2702 */
2703 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2704 raw_spin_unlock(&cfs_b->lock);
2705 /* ensure cfs_b->lock is available while we wait */
2706 hrtimer_cancel(&cfs_b->period_timer);
2707
2708 raw_spin_lock(&cfs_b->lock);
2709 /* if someone else restarted the timer then we're done */
2710 if (cfs_b->timer_active)
2711 return;
2712 }
2713
2714 cfs_b->timer_active = 1;
2715 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2716 }
2717
2718 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2719 {
2720 hrtimer_cancel(&cfs_b->period_timer);
2721 hrtimer_cancel(&cfs_b->slack_timer);
2722 }
2723
2724 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2725 {
2726 struct cfs_rq *cfs_rq;
2727
2728 for_each_leaf_cfs_rq(rq, cfs_rq) {
2729 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2730
2731 if (!cfs_rq->runtime_enabled)
2732 continue;
2733
2734 /*
2735 * clock_task is not advancing so we just need to make sure
2736 * there's some valid quota amount
2737 */
2738 cfs_rq->runtime_remaining = cfs_b->quota;
2739 if (cfs_rq_throttled(cfs_rq))
2740 unthrottle_cfs_rq(cfs_rq);
2741 }
2742 }
2743
2744 #else /* CONFIG_CFS_BANDWIDTH */
2745 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2746 {
2747 return rq_clock_task(rq_of(cfs_rq));
2748 }
2749
2750 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2751 unsigned long delta_exec) {}
2752 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2753 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2754 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2755
2756 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2757 {
2758 return 0;
2759 }
2760
2761 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2762 {
2763 return 0;
2764 }
2765
2766 static inline int throttled_lb_pair(struct task_group *tg,
2767 int src_cpu, int dest_cpu)
2768 {
2769 return 0;
2770 }
2771
2772 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2773
2774 #ifdef CONFIG_FAIR_GROUP_SCHED
2775 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2776 #endif
2777
2778 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2779 {
2780 return NULL;
2781 }
2782 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2783 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2784
2785 #endif /* CONFIG_CFS_BANDWIDTH */
2786
2787 /**************************************************
2788 * CFS operations on tasks:
2789 */
2790
2791 #ifdef CONFIG_SCHED_HRTICK
2792 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2793 {
2794 struct sched_entity *se = &p->se;
2795 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2796
2797 WARN_ON(task_rq(p) != rq);
2798
2799 if (cfs_rq->nr_running > 1) {
2800 u64 slice = sched_slice(cfs_rq, se);
2801 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2802 s64 delta = slice - ran;
2803
2804 if (delta < 0) {
2805 if (rq->curr == p)
2806 resched_task(p);
2807 return;
2808 }
2809
2810 /*
2811 * Don't schedule slices shorter than 10000ns, that just
2812 * doesn't make sense. Rely on vruntime for fairness.
2813 */
2814 if (rq->curr != p)
2815 delta = max_t(s64, 10000LL, delta);
2816
2817 hrtick_start(rq, delta);
2818 }
2819 }
2820
2821 /*
2822 * called from enqueue/dequeue and updates the hrtick when the
2823 * current task is from our class and nr_running is low enough
2824 * to matter.
2825 */
2826 static void hrtick_update(struct rq *rq)
2827 {
2828 struct task_struct *curr = rq->curr;
2829
2830 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2831 return;
2832
2833 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2834 hrtick_start_fair(rq, curr);
2835 }
2836 #else /* !CONFIG_SCHED_HRTICK */
2837 static inline void
2838 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2839 {
2840 }
2841
2842 static inline void hrtick_update(struct rq *rq)
2843 {
2844 }
2845 #endif
2846
2847 /*
2848 * The enqueue_task method is called before nr_running is
2849 * increased. Here we update the fair scheduling stats and
2850 * then put the task into the rbtree:
2851 */
2852 static void
2853 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2854 {
2855 struct cfs_rq *cfs_rq;
2856 struct sched_entity *se = &p->se;
2857
2858 for_each_sched_entity(se) {
2859 if (se->on_rq)
2860 break;
2861 cfs_rq = cfs_rq_of(se);
2862 enqueue_entity(cfs_rq, se, flags);
2863
2864 /*
2865 * end evaluation on encountering a throttled cfs_rq
2866 *
2867 * note: in the case of encountering a throttled cfs_rq we will
2868 * post the final h_nr_running increment below.
2869 */
2870 if (cfs_rq_throttled(cfs_rq))
2871 break;
2872 cfs_rq->h_nr_running++;
2873
2874 flags = ENQUEUE_WAKEUP;
2875 }
2876
2877 for_each_sched_entity(se) {
2878 cfs_rq = cfs_rq_of(se);
2879 cfs_rq->h_nr_running++;
2880
2881 if (cfs_rq_throttled(cfs_rq))
2882 break;
2883
2884 update_cfs_shares(cfs_rq);
2885 update_entity_load_avg(se, 1);
2886 }
2887
2888 if (!se) {
2889 update_rq_runnable_avg(rq, rq->nr_running);
2890 inc_nr_running(rq);
2891 }
2892 hrtick_update(rq);
2893 }
2894
2895 static void set_next_buddy(struct sched_entity *se);
2896
2897 /*
2898 * The dequeue_task method is called before nr_running is
2899 * decreased. We remove the task from the rbtree and
2900 * update the fair scheduling stats:
2901 */
2902 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2903 {
2904 struct cfs_rq *cfs_rq;
2905 struct sched_entity *se = &p->se;
2906 int task_sleep = flags & DEQUEUE_SLEEP;
2907
2908 for_each_sched_entity(se) {
2909 cfs_rq = cfs_rq_of(se);
2910 dequeue_entity(cfs_rq, se, flags);
2911
2912 /*
2913 * end evaluation on encountering a throttled cfs_rq
2914 *
2915 * note: in the case of encountering a throttled cfs_rq we will
2916 * post the final h_nr_running decrement below.
2917 */
2918 if (cfs_rq_throttled(cfs_rq))
2919 break;
2920 cfs_rq->h_nr_running--;
2921
2922 /* Don't dequeue parent if it has other entities besides us */
2923 if (cfs_rq->load.weight) {
2924 /*
2925 * Bias pick_next to pick a task from this cfs_rq, as
2926 * p is sleeping when it is within its sched_slice.
2927 */
2928 if (task_sleep && parent_entity(se))
2929 set_next_buddy(parent_entity(se));
2930
2931 /* avoid re-evaluating load for this entity */
2932 se = parent_entity(se);
2933 break;
2934 }
2935 flags |= DEQUEUE_SLEEP;
2936 }
2937
2938 for_each_sched_entity(se) {
2939 cfs_rq = cfs_rq_of(se);
2940 cfs_rq->h_nr_running--;
2941
2942 if (cfs_rq_throttled(cfs_rq))
2943 break;
2944
2945 update_cfs_shares(cfs_rq);
2946 update_entity_load_avg(se, 1);
2947 }
2948
2949 if (!se) {
2950 dec_nr_running(rq);
2951 update_rq_runnable_avg(rq, 1);
2952 }
2953 hrtick_update(rq);
2954 }
2955
2956 #ifdef CONFIG_SMP
2957 /* Used instead of source_load when we know the type == 0 */
2958 static unsigned long weighted_cpuload(const int cpu)
2959 {
2960 return cpu_rq(cpu)->load.weight;
2961 }
2962
2963 /*
2964 * Return a low guess at the load of a migration-source cpu weighted
2965 * according to the scheduling class and "nice" value.
2966 *
2967 * We want to under-estimate the load of migration sources, to
2968 * balance conservatively.
2969 */
2970 static unsigned long source_load(int cpu, int type)
2971 {
2972 struct rq *rq = cpu_rq(cpu);
2973 unsigned long total = weighted_cpuload(cpu);
2974
2975 if (type == 0 || !sched_feat(LB_BIAS))
2976 return total;
2977
2978 return min(rq->cpu_load[type-1], total);
2979 }
2980
2981 /*
2982 * Return a high guess at the load of a migration-target cpu weighted
2983 * according to the scheduling class and "nice" value.
2984 */
2985 static unsigned long target_load(int cpu, int type)
2986 {
2987 struct rq *rq = cpu_rq(cpu);
2988 unsigned long total = weighted_cpuload(cpu);
2989
2990 if (type == 0 || !sched_feat(LB_BIAS))
2991 return total;
2992
2993 return max(rq->cpu_load[type-1], total);
2994 }
2995
2996 static unsigned long power_of(int cpu)
2997 {
2998 return cpu_rq(cpu)->cpu_power;
2999 }
3000
3001 static unsigned long cpu_avg_load_per_task(int cpu)
3002 {
3003 struct rq *rq = cpu_rq(cpu);
3004 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3005
3006 if (nr_running)
3007 return rq->load.weight / nr_running;
3008
3009 return 0;
3010 }
3011
3012
3013 static void task_waking_fair(struct task_struct *p)
3014 {
3015 struct sched_entity *se = &p->se;
3016 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3017 u64 min_vruntime;
3018
3019 #ifndef CONFIG_64BIT
3020 u64 min_vruntime_copy;
3021
3022 do {
3023 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3024 smp_rmb();
3025 min_vruntime = cfs_rq->min_vruntime;
3026 } while (min_vruntime != min_vruntime_copy);
3027 #else
3028 min_vruntime = cfs_rq->min_vruntime;
3029 #endif
3030
3031 se->vruntime -= min_vruntime;
3032 }
3033
3034 #ifdef CONFIG_FAIR_GROUP_SCHED
3035 /*
3036 * effective_load() calculates the load change as seen from the root_task_group
3037 *
3038 * Adding load to a group doesn't make a group heavier, but can cause movement
3039 * of group shares between cpus. Assuming the shares were perfectly aligned one
3040 * can calculate the shift in shares.
3041 *
3042 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3043 * on this @cpu and results in a total addition (subtraction) of @wg to the
3044 * total group weight.
3045 *
3046 * Given a runqueue weight distribution (rw_i) we can compute a shares
3047 * distribution (s_i) using:
3048 *
3049 * s_i = rw_i / \Sum rw_j (1)
3050 *
3051 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3052 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3053 * shares distribution (s_i):
3054 *
3055 * rw_i = { 2, 4, 1, 0 }
3056 * s_i = { 2/7, 4/7, 1/7, 0 }
3057 *
3058 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3059 * task used to run on and the CPU the waker is running on), we need to
3060 * compute the effect of waking a task on either CPU and, in case of a sync
3061 * wakeup, compute the effect of the current task going to sleep.
3062 *
3063 * So for a change of @wl to the local @cpu with an overall group weight change
3064 * of @wl we can compute the new shares distribution (s'_i) using:
3065 *
3066 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3067 *
3068 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3069 * differences in waking a task to CPU 0. The additional task changes the
3070 * weight and shares distributions like:
3071 *
3072 * rw'_i = { 3, 4, 1, 0 }
3073 * s'_i = { 3/8, 4/8, 1/8, 0 }
3074 *
3075 * We can then compute the difference in effective weight by using:
3076 *
3077 * dw_i = S * (s'_i - s_i) (3)
3078 *
3079 * Where 'S' is the group weight as seen by its parent.
3080 *
3081 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3082 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3083 * 4/7) times the weight of the group.
3084 */
3085 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3086 {
3087 struct sched_entity *se = tg->se[cpu];
3088
3089 if (!tg->parent) /* the trivial, non-cgroup case */
3090 return wl;
3091
3092 for_each_sched_entity(se) {
3093 long w, W;
3094
3095 tg = se->my_q->tg;
3096
3097 /*
3098 * W = @wg + \Sum rw_j
3099 */
3100 W = wg + calc_tg_weight(tg, se->my_q);
3101
3102 /*
3103 * w = rw_i + @wl
3104 */
3105 w = se->my_q->load.weight + wl;
3106
3107 /*
3108 * wl = S * s'_i; see (2)
3109 */
3110 if (W > 0 && w < W)
3111 wl = (w * tg->shares) / W;
3112 else
3113 wl = tg->shares;
3114
3115 /*
3116 * Per the above, wl is the new se->load.weight value; since
3117 * those are clipped to [MIN_SHARES, ...) do so now. See
3118 * calc_cfs_shares().
3119 */
3120 if (wl < MIN_SHARES)
3121 wl = MIN_SHARES;
3122
3123 /*
3124 * wl = dw_i = S * (s'_i - s_i); see (3)
3125 */
3126 wl -= se->load.weight;
3127
3128 /*
3129 * Recursively apply this logic to all parent groups to compute
3130 * the final effective load change on the root group. Since
3131 * only the @tg group gets extra weight, all parent groups can
3132 * only redistribute existing shares. @wl is the shift in shares
3133 * resulting from this level per the above.
3134 */
3135 wg = 0;
3136 }
3137
3138 return wl;
3139 }
3140 #else
3141
3142 static inline unsigned long effective_load(struct task_group *tg, int cpu,
3143 unsigned long wl, unsigned long wg)
3144 {
3145 return wl;
3146 }
3147
3148 #endif
3149
3150 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3151 {
3152 s64 this_load, load;
3153 int idx, this_cpu, prev_cpu;
3154 unsigned long tl_per_task;
3155 struct task_group *tg;
3156 unsigned long weight;
3157 int balanced;
3158
3159 idx = sd->wake_idx;
3160 this_cpu = smp_processor_id();
3161 prev_cpu = task_cpu(p);
3162 load = source_load(prev_cpu, idx);
3163 this_load = target_load(this_cpu, idx);
3164
3165 /*
3166 * If sync wakeup then subtract the (maximum possible)
3167 * effect of the currently running task from the load
3168 * of the current CPU:
3169 */
3170 if (sync) {
3171 tg = task_group(current);
3172 weight = current->se.load.weight;
3173
3174 this_load += effective_load(tg, this_cpu, -weight, -weight);
3175 load += effective_load(tg, prev_cpu, 0, -weight);
3176 }
3177
3178 tg = task_group(p);
3179 weight = p->se.load.weight;
3180
3181 /*
3182 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3183 * due to the sync cause above having dropped this_load to 0, we'll
3184 * always have an imbalance, but there's really nothing you can do
3185 * about that, so that's good too.
3186 *
3187 * Otherwise check if either cpus are near enough in load to allow this
3188 * task to be woken on this_cpu.
3189 */
3190 if (this_load > 0) {
3191 s64 this_eff_load, prev_eff_load;
3192
3193 this_eff_load = 100;
3194 this_eff_load *= power_of(prev_cpu);
3195 this_eff_load *= this_load +
3196 effective_load(tg, this_cpu, weight, weight);
3197
3198 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3199 prev_eff_load *= power_of(this_cpu);
3200 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3201
3202 balanced = this_eff_load <= prev_eff_load;
3203 } else
3204 balanced = true;
3205
3206 /*
3207 * If the currently running task will sleep within
3208 * a reasonable amount of time then attract this newly
3209 * woken task:
3210 */
3211 if (sync && balanced)
3212 return 1;
3213
3214 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3215 tl_per_task = cpu_avg_load_per_task(this_cpu);
3216
3217 if (balanced ||
3218 (this_load <= load &&
3219 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3220 /*
3221 * This domain has SD_WAKE_AFFINE and
3222 * p is cache cold in this domain, and
3223 * there is no bad imbalance.
3224 */
3225 schedstat_inc(sd, ttwu_move_affine);
3226 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3227
3228 return 1;
3229 }
3230 return 0;
3231 }
3232
3233 /*
3234 * find_idlest_group finds and returns the least busy CPU group within the
3235 * domain.
3236 */
3237 static struct sched_group *
3238 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3239 int this_cpu, int load_idx)
3240 {
3241 struct sched_group *idlest = NULL, *group = sd->groups;
3242 unsigned long min_load = ULONG_MAX, this_load = 0;
3243 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3244
3245 do {
3246 unsigned long load, avg_load;
3247 int local_group;
3248 int i;
3249
3250 /* Skip over this group if it has no CPUs allowed */
3251 if (!cpumask_intersects(sched_group_cpus(group),
3252 tsk_cpus_allowed(p)))
3253 continue;
3254
3255 local_group = cpumask_test_cpu(this_cpu,
3256 sched_group_cpus(group));
3257
3258 /* Tally up the load of all CPUs in the group */
3259 avg_load = 0;
3260
3261 for_each_cpu(i, sched_group_cpus(group)) {
3262 /* Bias balancing toward cpus of our domain */
3263 if (local_group)
3264 load = source_load(i, load_idx);
3265 else
3266 load = target_load(i, load_idx);
3267
3268 avg_load += load;
3269 }
3270
3271 /* Adjust by relative CPU power of the group */
3272 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3273
3274 if (local_group) {
3275 this_load = avg_load;
3276 } else if (avg_load < min_load) {
3277 min_load = avg_load;
3278 idlest = group;
3279 }
3280 } while (group = group->next, group != sd->groups);
3281
3282 if (!idlest || 100*this_load < imbalance*min_load)
3283 return NULL;
3284 return idlest;
3285 }
3286
3287 /*
3288 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3289 */
3290 static int
3291 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3292 {
3293 unsigned long load, min_load = ULONG_MAX;
3294 int idlest = -1;
3295 int i;
3296
3297 /* Traverse only the allowed CPUs */
3298 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3299 load = weighted_cpuload(i);
3300
3301 if (load < min_load || (load == min_load && i == this_cpu)) {
3302 min_load = load;
3303 idlest = i;
3304 }
3305 }
3306
3307 return idlest;
3308 }
3309
3310 /*
3311 * Try and locate an idle CPU in the sched_domain.
3312 */
3313 static int select_idle_sibling(struct task_struct *p, int target)
3314 {
3315 struct sched_domain *sd;
3316 struct sched_group *sg;
3317 int i = task_cpu(p);
3318
3319 if (idle_cpu(target))
3320 return target;
3321
3322 /*
3323 * If the prevous cpu is cache affine and idle, don't be stupid.
3324 */
3325 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3326 return i;
3327
3328 /*
3329 * Otherwise, iterate the domains and find an elegible idle cpu.
3330 */
3331 sd = rcu_dereference(per_cpu(sd_llc, target));
3332 for_each_lower_domain(sd) {
3333 sg = sd->groups;
3334 do {
3335 if (!cpumask_intersects(sched_group_cpus(sg),
3336 tsk_cpus_allowed(p)))
3337 goto next;
3338
3339 for_each_cpu(i, sched_group_cpus(sg)) {
3340 if (i == target || !idle_cpu(i))
3341 goto next;
3342 }
3343
3344 target = cpumask_first_and(sched_group_cpus(sg),
3345 tsk_cpus_allowed(p));
3346 goto done;
3347 next:
3348 sg = sg->next;
3349 } while (sg != sd->groups);
3350 }
3351 done:
3352 return target;
3353 }
3354
3355 /*
3356 * sched_balance_self: balance the current task (running on cpu) in domains
3357 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3358 * SD_BALANCE_EXEC.
3359 *
3360 * Balance, ie. select the least loaded group.
3361 *
3362 * Returns the target CPU number, or the same CPU if no balancing is needed.
3363 *
3364 * preempt must be disabled.
3365 */
3366 static int
3367 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3368 {
3369 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3370 int cpu = smp_processor_id();
3371 int prev_cpu = task_cpu(p);
3372 int new_cpu = cpu;
3373 int want_affine = 0;
3374 int sync = wake_flags & WF_SYNC;
3375
3376 if (p->nr_cpus_allowed == 1)
3377 return prev_cpu;
3378
3379 if (sd_flag & SD_BALANCE_WAKE) {
3380 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3381 want_affine = 1;
3382 new_cpu = prev_cpu;
3383 }
3384
3385 rcu_read_lock();
3386 for_each_domain(cpu, tmp) {
3387 if (!(tmp->flags & SD_LOAD_BALANCE))
3388 continue;
3389
3390 /*
3391 * If both cpu and prev_cpu are part of this domain,
3392 * cpu is a valid SD_WAKE_AFFINE target.
3393 */
3394 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3395 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3396 affine_sd = tmp;
3397 break;
3398 }
3399
3400 if (tmp->flags & sd_flag)
3401 sd = tmp;
3402 }
3403
3404 if (affine_sd) {
3405 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3406 prev_cpu = cpu;
3407
3408 new_cpu = select_idle_sibling(p, prev_cpu);
3409 goto unlock;
3410 }
3411
3412 while (sd) {
3413 int load_idx = sd->forkexec_idx;
3414 struct sched_group *group;
3415 int weight;
3416
3417 if (!(sd->flags & sd_flag)) {
3418 sd = sd->child;
3419 continue;
3420 }
3421
3422 if (sd_flag & SD_BALANCE_WAKE)
3423 load_idx = sd->wake_idx;
3424
3425 group = find_idlest_group(sd, p, cpu, load_idx);
3426 if (!group) {
3427 sd = sd->child;
3428 continue;
3429 }
3430
3431 new_cpu = find_idlest_cpu(group, p, cpu);
3432 if (new_cpu == -1 || new_cpu == cpu) {
3433 /* Now try balancing at a lower domain level of cpu */
3434 sd = sd->child;
3435 continue;
3436 }
3437
3438 /* Now try balancing at a lower domain level of new_cpu */
3439 cpu = new_cpu;
3440 weight = sd->span_weight;
3441 sd = NULL;
3442 for_each_domain(cpu, tmp) {
3443 if (weight <= tmp->span_weight)
3444 break;
3445 if (tmp->flags & sd_flag)
3446 sd = tmp;
3447 }
3448 /* while loop will break here if sd == NULL */
3449 }
3450 unlock:
3451 rcu_read_unlock();
3452
3453 return new_cpu;
3454 }
3455
3456 /*
3457 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3458 * cfs_rq_of(p) references at time of call are still valid and identify the
3459 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3460 * other assumptions, including the state of rq->lock, should be made.
3461 */
3462 static void
3463 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3464 {
3465 struct sched_entity *se = &p->se;
3466 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3467
3468 /*
3469 * Load tracking: accumulate removed load so that it can be processed
3470 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3471 * to blocked load iff they have a positive decay-count. It can never
3472 * be negative here since on-rq tasks have decay-count == 0.
3473 */
3474 if (se->avg.decay_count) {
3475 se->avg.decay_count = -__synchronize_entity_decay(se);
3476 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3477 }
3478 }
3479 #endif /* CONFIG_SMP */
3480
3481 static unsigned long
3482 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3483 {
3484 unsigned long gran = sysctl_sched_wakeup_granularity;
3485
3486 /*
3487 * Since its curr running now, convert the gran from real-time
3488 * to virtual-time in his units.
3489 *
3490 * By using 'se' instead of 'curr' we penalize light tasks, so
3491 * they get preempted easier. That is, if 'se' < 'curr' then
3492 * the resulting gran will be larger, therefore penalizing the
3493 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3494 * be smaller, again penalizing the lighter task.
3495 *
3496 * This is especially important for buddies when the leftmost
3497 * task is higher priority than the buddy.
3498 */
3499 return calc_delta_fair(gran, se);
3500 }
3501
3502 /*
3503 * Should 'se' preempt 'curr'.
3504 *
3505 * |s1
3506 * |s2
3507 * |s3
3508 * g
3509 * |<--->|c
3510 *
3511 * w(c, s1) = -1
3512 * w(c, s2) = 0
3513 * w(c, s3) = 1
3514 *
3515 */
3516 static int
3517 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3518 {
3519 s64 gran, vdiff = curr->vruntime - se->vruntime;
3520
3521 if (vdiff <= 0)
3522 return -1;
3523
3524 gran = wakeup_gran(curr, se);
3525 if (vdiff > gran)
3526 return 1;
3527
3528 return 0;
3529 }
3530
3531 static void set_last_buddy(struct sched_entity *se)
3532 {
3533 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3534 return;
3535
3536 for_each_sched_entity(se)
3537 cfs_rq_of(se)->last = se;
3538 }
3539
3540 static void set_next_buddy(struct sched_entity *se)
3541 {
3542 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3543 return;
3544
3545 for_each_sched_entity(se)
3546 cfs_rq_of(se)->next = se;
3547 }
3548
3549 static void set_skip_buddy(struct sched_entity *se)
3550 {
3551 for_each_sched_entity(se)
3552 cfs_rq_of(se)->skip = se;
3553 }
3554
3555 /*
3556 * Preempt the current task with a newly woken task if needed:
3557 */
3558 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3559 {
3560 struct task_struct *curr = rq->curr;
3561 struct sched_entity *se = &curr->se, *pse = &p->se;
3562 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3563 int scale = cfs_rq->nr_running >= sched_nr_latency;
3564 int next_buddy_marked = 0;
3565
3566 if (unlikely(se == pse))
3567 return;
3568
3569 /*
3570 * This is possible from callers such as move_task(), in which we
3571 * unconditionally check_prempt_curr() after an enqueue (which may have
3572 * lead to a throttle). This both saves work and prevents false
3573 * next-buddy nomination below.
3574 */
3575 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3576 return;
3577
3578 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3579 set_next_buddy(pse);
3580 next_buddy_marked = 1;
3581 }
3582
3583 /*
3584 * We can come here with TIF_NEED_RESCHED already set from new task
3585 * wake up path.
3586 *
3587 * Note: this also catches the edge-case of curr being in a throttled
3588 * group (e.g. via set_curr_task), since update_curr() (in the
3589 * enqueue of curr) will have resulted in resched being set. This
3590 * prevents us from potentially nominating it as a false LAST_BUDDY
3591 * below.
3592 */
3593 if (test_tsk_need_resched(curr))
3594 return;
3595
3596 /* Idle tasks are by definition preempted by non-idle tasks. */
3597 if (unlikely(curr->policy == SCHED_IDLE) &&
3598 likely(p->policy != SCHED_IDLE))
3599 goto preempt;
3600
3601 /*
3602 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3603 * is driven by the tick):
3604 */
3605 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3606 return;
3607
3608 find_matching_se(&se, &pse);
3609 update_curr(cfs_rq_of(se));
3610 BUG_ON(!pse);
3611 if (wakeup_preempt_entity(se, pse) == 1) {
3612 /*
3613 * Bias pick_next to pick the sched entity that is
3614 * triggering this preemption.
3615 */
3616 if (!next_buddy_marked)
3617 set_next_buddy(pse);
3618 goto preempt;
3619 }
3620
3621 return;
3622
3623 preempt:
3624 resched_task(curr);
3625 /*
3626 * Only set the backward buddy when the current task is still
3627 * on the rq. This can happen when a wakeup gets interleaved
3628 * with schedule on the ->pre_schedule() or idle_balance()
3629 * point, either of which can * drop the rq lock.
3630 *
3631 * Also, during early boot the idle thread is in the fair class,
3632 * for obvious reasons its a bad idea to schedule back to it.
3633 */
3634 if (unlikely(!se->on_rq || curr == rq->idle))
3635 return;
3636
3637 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3638 set_last_buddy(se);
3639 }
3640
3641 static struct task_struct *pick_next_task_fair(struct rq *rq)
3642 {
3643 struct task_struct *p;
3644 struct cfs_rq *cfs_rq = &rq->cfs;
3645 struct sched_entity *se;
3646
3647 if (!cfs_rq->nr_running)
3648 return NULL;
3649
3650 do {
3651 se = pick_next_entity(cfs_rq);
3652 set_next_entity(cfs_rq, se);
3653 cfs_rq = group_cfs_rq(se);
3654 } while (cfs_rq);
3655
3656 p = task_of(se);
3657 if (hrtick_enabled(rq))
3658 hrtick_start_fair(rq, p);
3659
3660 return p;
3661 }
3662
3663 /*
3664 * Account for a descheduled task:
3665 */
3666 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3667 {
3668 struct sched_entity *se = &prev->se;
3669 struct cfs_rq *cfs_rq;
3670
3671 for_each_sched_entity(se) {
3672 cfs_rq = cfs_rq_of(se);
3673 put_prev_entity(cfs_rq, se);
3674 }
3675 }
3676
3677 /*
3678 * sched_yield() is very simple
3679 *
3680 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3681 */
3682 static void yield_task_fair(struct rq *rq)
3683 {
3684 struct task_struct *curr = rq->curr;
3685 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3686 struct sched_entity *se = &curr->se;
3687
3688 /*
3689 * Are we the only task in the tree?
3690 */
3691 if (unlikely(rq->nr_running == 1))
3692 return;
3693
3694 clear_buddies(cfs_rq, se);
3695
3696 if (curr->policy != SCHED_BATCH) {
3697 update_rq_clock(rq);
3698 /*
3699 * Update run-time statistics of the 'current'.
3700 */
3701 update_curr(cfs_rq);
3702 /*
3703 * Tell update_rq_clock() that we've just updated,
3704 * so we don't do microscopic update in schedule()
3705 * and double the fastpath cost.
3706 */
3707 rq->skip_clock_update = 1;
3708 }
3709
3710 set_skip_buddy(se);
3711 }
3712
3713 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3714 {
3715 struct sched_entity *se = &p->se;
3716
3717 /* throttled hierarchies are not runnable */
3718 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3719 return false;
3720
3721 /* Tell the scheduler that we'd really like pse to run next. */
3722 set_next_buddy(se);
3723
3724 yield_task_fair(rq);
3725
3726 return true;
3727 }
3728
3729 #ifdef CONFIG_SMP
3730 /**************************************************
3731 * Fair scheduling class load-balancing methods.
3732 *
3733 * BASICS
3734 *
3735 * The purpose of load-balancing is to achieve the same basic fairness the
3736 * per-cpu scheduler provides, namely provide a proportional amount of compute
3737 * time to each task. This is expressed in the following equation:
3738 *
3739 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3740 *
3741 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3742 * W_i,0 is defined as:
3743 *
3744 * W_i,0 = \Sum_j w_i,j (2)
3745 *
3746 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3747 * is derived from the nice value as per prio_to_weight[].
3748 *
3749 * The weight average is an exponential decay average of the instantaneous
3750 * weight:
3751 *
3752 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3753 *
3754 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3755 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3756 * can also include other factors [XXX].
3757 *
3758 * To achieve this balance we define a measure of imbalance which follows
3759 * directly from (1):
3760 *
3761 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3762 *
3763 * We them move tasks around to minimize the imbalance. In the continuous
3764 * function space it is obvious this converges, in the discrete case we get
3765 * a few fun cases generally called infeasible weight scenarios.
3766 *
3767 * [XXX expand on:
3768 * - infeasible weights;
3769 * - local vs global optima in the discrete case. ]
3770 *
3771 *
3772 * SCHED DOMAINS
3773 *
3774 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3775 * for all i,j solution, we create a tree of cpus that follows the hardware
3776 * topology where each level pairs two lower groups (or better). This results
3777 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3778 * tree to only the first of the previous level and we decrease the frequency
3779 * of load-balance at each level inv. proportional to the number of cpus in
3780 * the groups.
3781 *
3782 * This yields:
3783 *
3784 * log_2 n 1 n
3785 * \Sum { --- * --- * 2^i } = O(n) (5)
3786 * i = 0 2^i 2^i
3787 * `- size of each group
3788 * | | `- number of cpus doing load-balance
3789 * | `- freq
3790 * `- sum over all levels
3791 *
3792 * Coupled with a limit on how many tasks we can migrate every balance pass,
3793 * this makes (5) the runtime complexity of the balancer.
3794 *
3795 * An important property here is that each CPU is still (indirectly) connected
3796 * to every other cpu in at most O(log n) steps:
3797 *
3798 * The adjacency matrix of the resulting graph is given by:
3799 *
3800 * log_2 n
3801 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3802 * k = 0
3803 *
3804 * And you'll find that:
3805 *
3806 * A^(log_2 n)_i,j != 0 for all i,j (7)
3807 *
3808 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3809 * The task movement gives a factor of O(m), giving a convergence complexity
3810 * of:
3811 *
3812 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3813 *
3814 *
3815 * WORK CONSERVING
3816 *
3817 * In order to avoid CPUs going idle while there's still work to do, new idle
3818 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3819 * tree itself instead of relying on other CPUs to bring it work.
3820 *
3821 * This adds some complexity to both (5) and (8) but it reduces the total idle
3822 * time.
3823 *
3824 * [XXX more?]
3825 *
3826 *
3827 * CGROUPS
3828 *
3829 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3830 *
3831 * s_k,i
3832 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3833 * S_k
3834 *
3835 * Where
3836 *
3837 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3838 *
3839 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3840 *
3841 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3842 * property.
3843 *
3844 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3845 * rewrite all of this once again.]
3846 */
3847
3848 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3849
3850 #define LBF_ALL_PINNED 0x01
3851 #define LBF_NEED_BREAK 0x02
3852 #define LBF_SOME_PINNED 0x04
3853
3854 struct lb_env {
3855 struct sched_domain *sd;
3856
3857 struct rq *src_rq;
3858 int src_cpu;
3859
3860 int dst_cpu;
3861 struct rq *dst_rq;
3862
3863 struct cpumask *dst_grpmask;
3864 int new_dst_cpu;
3865 enum cpu_idle_type idle;
3866 long imbalance;
3867 /* The set of CPUs under consideration for load-balancing */
3868 struct cpumask *cpus;
3869
3870 unsigned int flags;
3871
3872 unsigned int loop;
3873 unsigned int loop_break;
3874 unsigned int loop_max;
3875 };
3876
3877 /*
3878 * move_task - move a task from one runqueue to another runqueue.
3879 * Both runqueues must be locked.
3880 */
3881 static void move_task(struct task_struct *p, struct lb_env *env)
3882 {
3883 deactivate_task(env->src_rq, p, 0);
3884 set_task_cpu(p, env->dst_cpu);
3885 activate_task(env->dst_rq, p, 0);
3886 check_preempt_curr(env->dst_rq, p, 0);
3887 }
3888
3889 /*
3890 * Is this task likely cache-hot:
3891 */
3892 static int
3893 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3894 {
3895 s64 delta;
3896
3897 if (p->sched_class != &fair_sched_class)
3898 return 0;
3899
3900 if (unlikely(p->policy == SCHED_IDLE))
3901 return 0;
3902
3903 /*
3904 * Buddy candidates are cache hot:
3905 */
3906 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3907 (&p->se == cfs_rq_of(&p->se)->next ||
3908 &p->se == cfs_rq_of(&p->se)->last))
3909 return 1;
3910
3911 if (sysctl_sched_migration_cost == -1)
3912 return 1;
3913 if (sysctl_sched_migration_cost == 0)
3914 return 0;
3915
3916 delta = now - p->se.exec_start;
3917
3918 return delta < (s64)sysctl_sched_migration_cost;
3919 }
3920
3921 /*
3922 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3923 */
3924 static
3925 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3926 {
3927 int tsk_cache_hot = 0;
3928 /*
3929 * We do not migrate tasks that are:
3930 * 1) throttled_lb_pair, or
3931 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3932 * 3) running (obviously), or
3933 * 4) are cache-hot on their current CPU.
3934 */
3935 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3936 return 0;
3937
3938 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3939 int cpu;
3940
3941 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3942
3943 /*
3944 * Remember if this task can be migrated to any other cpu in
3945 * our sched_group. We may want to revisit it if we couldn't
3946 * meet load balance goals by pulling other tasks on src_cpu.
3947 *
3948 * Also avoid computing new_dst_cpu if we have already computed
3949 * one in current iteration.
3950 */
3951 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3952 return 0;
3953
3954 /* Prevent to re-select dst_cpu via env's cpus */
3955 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3956 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3957 env->flags |= LBF_SOME_PINNED;
3958 env->new_dst_cpu = cpu;
3959 break;
3960 }
3961 }
3962
3963 return 0;
3964 }
3965
3966 /* Record that we found atleast one task that could run on dst_cpu */
3967 env->flags &= ~LBF_ALL_PINNED;
3968
3969 if (task_running(env->src_rq, p)) {
3970 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3971 return 0;
3972 }
3973
3974 /*
3975 * Aggressive migration if:
3976 * 1) task is cache cold, or
3977 * 2) too many balance attempts have failed.
3978 */
3979
3980 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
3981 if (!tsk_cache_hot ||
3982 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3983
3984 if (tsk_cache_hot) {
3985 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3986 schedstat_inc(p, se.statistics.nr_forced_migrations);
3987 }
3988
3989 return 1;
3990 }
3991
3992 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3993 return 0;
3994 }
3995
3996 /*
3997 * move_one_task tries to move exactly one task from busiest to this_rq, as
3998 * part of active balancing operations within "domain".
3999 * Returns 1 if successful and 0 otherwise.
4000 *
4001 * Called with both runqueues locked.
4002 */
4003 static int move_one_task(struct lb_env *env)
4004 {
4005 struct task_struct *p, *n;
4006
4007 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4008 if (!can_migrate_task(p, env))
4009 continue;
4010
4011 move_task(p, env);
4012 /*
4013 * Right now, this is only the second place move_task()
4014 * is called, so we can safely collect move_task()
4015 * stats here rather than inside move_task().
4016 */
4017 schedstat_inc(env->sd, lb_gained[env->idle]);
4018 return 1;
4019 }
4020 return 0;
4021 }
4022
4023 static unsigned long task_h_load(struct task_struct *p);
4024
4025 static const unsigned int sched_nr_migrate_break = 32;
4026
4027 /*
4028 * move_tasks tries to move up to imbalance weighted load from busiest to
4029 * this_rq, as part of a balancing operation within domain "sd".
4030 * Returns 1 if successful and 0 otherwise.
4031 *
4032 * Called with both runqueues locked.
4033 */
4034 static int move_tasks(struct lb_env *env)
4035 {
4036 struct list_head *tasks = &env->src_rq->cfs_tasks;
4037 struct task_struct *p;
4038 unsigned long load;
4039 int pulled = 0;
4040
4041 if (env->imbalance <= 0)
4042 return 0;
4043
4044 while (!list_empty(tasks)) {
4045 p = list_first_entry(tasks, struct task_struct, se.group_node);
4046
4047 env->loop++;
4048 /* We've more or less seen every task there is, call it quits */
4049 if (env->loop > env->loop_max)
4050 break;
4051
4052 /* take a breather every nr_migrate tasks */
4053 if (env->loop > env->loop_break) {
4054 env->loop_break += sched_nr_migrate_break;
4055 env->flags |= LBF_NEED_BREAK;
4056 break;
4057 }
4058
4059 if (!can_migrate_task(p, env))
4060 goto next;
4061
4062 load = task_h_load(p);
4063
4064 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4065 goto next;
4066
4067 if ((load / 2) > env->imbalance)
4068 goto next;
4069
4070 move_task(p, env);
4071 pulled++;
4072 env->imbalance -= load;
4073
4074 #ifdef CONFIG_PREEMPT
4075 /*
4076 * NEWIDLE balancing is a source of latency, so preemptible
4077 * kernels will stop after the first task is pulled to minimize
4078 * the critical section.
4079 */
4080 if (env->idle == CPU_NEWLY_IDLE)
4081 break;
4082 #endif
4083
4084 /*
4085 * We only want to steal up to the prescribed amount of
4086 * weighted load.
4087 */
4088 if (env->imbalance <= 0)
4089 break;
4090
4091 continue;
4092 next:
4093 list_move_tail(&p->se.group_node, tasks);
4094 }
4095
4096 /*
4097 * Right now, this is one of only two places move_task() is called,
4098 * so we can safely collect move_task() stats here rather than
4099 * inside move_task().
4100 */
4101 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4102
4103 return pulled;
4104 }
4105
4106 #ifdef CONFIG_FAIR_GROUP_SCHED
4107 /*
4108 * update tg->load_weight by folding this cpu's load_avg
4109 */
4110 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4111 {
4112 struct sched_entity *se = tg->se[cpu];
4113 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4114
4115 /* throttled entities do not contribute to load */
4116 if (throttled_hierarchy(cfs_rq))
4117 return;
4118
4119 update_cfs_rq_blocked_load(cfs_rq, 1);
4120
4121 if (se) {
4122 update_entity_load_avg(se, 1);
4123 /*
4124 * We pivot on our runnable average having decayed to zero for
4125 * list removal. This generally implies that all our children
4126 * have also been removed (modulo rounding error or bandwidth
4127 * control); however, such cases are rare and we can fix these
4128 * at enqueue.
4129 *
4130 * TODO: fix up out-of-order children on enqueue.
4131 */
4132 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4133 list_del_leaf_cfs_rq(cfs_rq);
4134 } else {
4135 struct rq *rq = rq_of(cfs_rq);
4136 update_rq_runnable_avg(rq, rq->nr_running);
4137 }
4138 }
4139
4140 static void update_blocked_averages(int cpu)
4141 {
4142 struct rq *rq = cpu_rq(cpu);
4143 struct cfs_rq *cfs_rq;
4144 unsigned long flags;
4145
4146 raw_spin_lock_irqsave(&rq->lock, flags);
4147 update_rq_clock(rq);
4148 /*
4149 * Iterates the task_group tree in a bottom up fashion, see
4150 * list_add_leaf_cfs_rq() for details.
4151 */
4152 for_each_leaf_cfs_rq(rq, cfs_rq) {
4153 /*
4154 * Note: We may want to consider periodically releasing
4155 * rq->lock about these updates so that creating many task
4156 * groups does not result in continually extending hold time.
4157 */
4158 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4159 }
4160
4161 raw_spin_unlock_irqrestore(&rq->lock, flags);
4162 }
4163
4164 /*
4165 * Compute the cpu's hierarchical load factor for each task group.
4166 * This needs to be done in a top-down fashion because the load of a child
4167 * group is a fraction of its parents load.
4168 */
4169 static int tg_load_down(struct task_group *tg, void *data)
4170 {
4171 unsigned long load;
4172 long cpu = (long)data;
4173
4174 if (!tg->parent) {
4175 load = cpu_rq(cpu)->load.weight;
4176 } else {
4177 load = tg->parent->cfs_rq[cpu]->h_load;
4178 load *= tg->se[cpu]->load.weight;
4179 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4180 }
4181
4182 tg->cfs_rq[cpu]->h_load = load;
4183
4184 return 0;
4185 }
4186
4187 static void update_h_load(long cpu)
4188 {
4189 struct rq *rq = cpu_rq(cpu);
4190 unsigned long now = jiffies;
4191
4192 if (rq->h_load_throttle == now)
4193 return;
4194
4195 rq->h_load_throttle = now;
4196
4197 rcu_read_lock();
4198 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4199 rcu_read_unlock();
4200 }
4201
4202 static unsigned long task_h_load(struct task_struct *p)
4203 {
4204 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4205 unsigned long load;
4206
4207 load = p->se.load.weight;
4208 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
4209
4210 return load;
4211 }
4212 #else
4213 static inline void update_blocked_averages(int cpu)
4214 {
4215 }
4216
4217 static inline void update_h_load(long cpu)
4218 {
4219 }
4220
4221 static unsigned long task_h_load(struct task_struct *p)
4222 {
4223 return p->se.load.weight;
4224 }
4225 #endif
4226
4227 /********** Helpers for find_busiest_group ************************/
4228 /*
4229 * sd_lb_stats - Structure to store the statistics of a sched_domain
4230 * during load balancing.
4231 */
4232 struct sd_lb_stats {
4233 struct sched_group *busiest; /* Busiest group in this sd */
4234 struct sched_group *this; /* Local group in this sd */
4235 unsigned long total_load; /* Total load of all groups in sd */
4236 unsigned long total_pwr; /* Total power of all groups in sd */
4237 unsigned long avg_load; /* Average load across all groups in sd */
4238
4239 /** Statistics of this group */
4240 unsigned long this_load;
4241 unsigned long this_load_per_task;
4242 unsigned long this_nr_running;
4243 unsigned long this_has_capacity;
4244 unsigned int this_idle_cpus;
4245
4246 /* Statistics of the busiest group */
4247 unsigned int busiest_idle_cpus;
4248 unsigned long max_load;
4249 unsigned long busiest_load_per_task;
4250 unsigned long busiest_nr_running;
4251 unsigned long busiest_group_capacity;
4252 unsigned long busiest_has_capacity;
4253 unsigned int busiest_group_weight;
4254
4255 int group_imb; /* Is there imbalance in this sd */
4256 };
4257
4258 /*
4259 * sg_lb_stats - stats of a sched_group required for load_balancing
4260 */
4261 struct sg_lb_stats {
4262 unsigned long avg_load; /*Avg load across the CPUs of the group */
4263 unsigned long group_load; /* Total load over the CPUs of the group */
4264 unsigned long sum_nr_running; /* Nr tasks running in the group */
4265 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4266 unsigned long group_capacity;
4267 unsigned long idle_cpus;
4268 unsigned long group_weight;
4269 int group_imb; /* Is there an imbalance in the group ? */
4270 int group_has_capacity; /* Is there extra capacity in the group? */
4271 };
4272
4273 /**
4274 * get_sd_load_idx - Obtain the load index for a given sched domain.
4275 * @sd: The sched_domain whose load_idx is to be obtained.
4276 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4277 */
4278 static inline int get_sd_load_idx(struct sched_domain *sd,
4279 enum cpu_idle_type idle)
4280 {
4281 int load_idx;
4282
4283 switch (idle) {
4284 case CPU_NOT_IDLE:
4285 load_idx = sd->busy_idx;
4286 break;
4287
4288 case CPU_NEWLY_IDLE:
4289 load_idx = sd->newidle_idx;
4290 break;
4291 default:
4292 load_idx = sd->idle_idx;
4293 break;
4294 }
4295
4296 return load_idx;
4297 }
4298
4299 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4300 {
4301 return SCHED_POWER_SCALE;
4302 }
4303
4304 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4305 {
4306 return default_scale_freq_power(sd, cpu);
4307 }
4308
4309 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4310 {
4311 unsigned long weight = sd->span_weight;
4312 unsigned long smt_gain = sd->smt_gain;
4313
4314 smt_gain /= weight;
4315
4316 return smt_gain;
4317 }
4318
4319 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4320 {
4321 return default_scale_smt_power(sd, cpu);
4322 }
4323
4324 static unsigned long scale_rt_power(int cpu)
4325 {
4326 struct rq *rq = cpu_rq(cpu);
4327 u64 total, available, age_stamp, avg;
4328
4329 /*
4330 * Since we're reading these variables without serialization make sure
4331 * we read them once before doing sanity checks on them.
4332 */
4333 age_stamp = ACCESS_ONCE(rq->age_stamp);
4334 avg = ACCESS_ONCE(rq->rt_avg);
4335
4336 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
4337
4338 if (unlikely(total < avg)) {
4339 /* Ensures that power won't end up being negative */
4340 available = 0;
4341 } else {
4342 available = total - avg;
4343 }
4344
4345 if (unlikely((s64)total < SCHED_POWER_SCALE))
4346 total = SCHED_POWER_SCALE;
4347
4348 total >>= SCHED_POWER_SHIFT;
4349
4350 return div_u64(available, total);
4351 }
4352
4353 static void update_cpu_power(struct sched_domain *sd, int cpu)
4354 {
4355 unsigned long weight = sd->span_weight;
4356 unsigned long power = SCHED_POWER_SCALE;
4357 struct sched_group *sdg = sd->groups;
4358
4359 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4360 if (sched_feat(ARCH_POWER))
4361 power *= arch_scale_smt_power(sd, cpu);
4362 else
4363 power *= default_scale_smt_power(sd, cpu);
4364
4365 power >>= SCHED_POWER_SHIFT;
4366 }
4367
4368 sdg->sgp->power_orig = power;
4369
4370 if (sched_feat(ARCH_POWER))
4371 power *= arch_scale_freq_power(sd, cpu);
4372 else
4373 power *= default_scale_freq_power(sd, cpu);
4374
4375 power >>= SCHED_POWER_SHIFT;
4376
4377 power *= scale_rt_power(cpu);
4378 power >>= SCHED_POWER_SHIFT;
4379
4380 if (!power)
4381 power = 1;
4382
4383 cpu_rq(cpu)->cpu_power = power;
4384 sdg->sgp->power = power;
4385 }
4386
4387 void update_group_power(struct sched_domain *sd, int cpu)
4388 {
4389 struct sched_domain *child = sd->child;
4390 struct sched_group *group, *sdg = sd->groups;
4391 unsigned long power;
4392 unsigned long interval;
4393
4394 interval = msecs_to_jiffies(sd->balance_interval);
4395 interval = clamp(interval, 1UL, max_load_balance_interval);
4396 sdg->sgp->next_update = jiffies + interval;
4397
4398 if (!child) {
4399 update_cpu_power(sd, cpu);
4400 return;
4401 }
4402
4403 power = 0;
4404
4405 if (child->flags & SD_OVERLAP) {
4406 /*
4407 * SD_OVERLAP domains cannot assume that child groups
4408 * span the current group.
4409 */
4410
4411 for_each_cpu(cpu, sched_group_cpus(sdg))
4412 power += power_of(cpu);
4413 } else {
4414 /*
4415 * !SD_OVERLAP domains can assume that child groups
4416 * span the current group.
4417 */
4418
4419 group = child->groups;
4420 do {
4421 power += group->sgp->power;
4422 group = group->next;
4423 } while (group != child->groups);
4424 }
4425
4426 sdg->sgp->power_orig = sdg->sgp->power = power;
4427 }
4428
4429 /*
4430 * Try and fix up capacity for tiny siblings, this is needed when
4431 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4432 * which on its own isn't powerful enough.
4433 *
4434 * See update_sd_pick_busiest() and check_asym_packing().
4435 */
4436 static inline int
4437 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4438 {
4439 /*
4440 * Only siblings can have significantly less than SCHED_POWER_SCALE
4441 */
4442 if (!(sd->flags & SD_SHARE_CPUPOWER))
4443 return 0;
4444
4445 /*
4446 * If ~90% of the cpu_power is still there, we're good.
4447 */
4448 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4449 return 1;
4450
4451 return 0;
4452 }
4453
4454 /**
4455 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4456 * @env: The load balancing environment.
4457 * @group: sched_group whose statistics are to be updated.
4458 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4459 * @local_group: Does group contain this_cpu.
4460 * @balance: Should we balance.
4461 * @sgs: variable to hold the statistics for this group.
4462 */
4463 static inline void update_sg_lb_stats(struct lb_env *env,
4464 struct sched_group *group, int load_idx,
4465 int local_group, int *balance, struct sg_lb_stats *sgs)
4466 {
4467 unsigned long nr_running, max_nr_running, min_nr_running;
4468 unsigned long load, max_cpu_load, min_cpu_load;
4469 unsigned int balance_cpu = -1, first_idle_cpu = 0;
4470 unsigned long avg_load_per_task = 0;
4471 int i;
4472
4473 if (local_group)
4474 balance_cpu = group_balance_cpu(group);
4475
4476 /* Tally up the load of all CPUs in the group */
4477 max_cpu_load = 0;
4478 min_cpu_load = ~0UL;
4479 max_nr_running = 0;
4480 min_nr_running = ~0UL;
4481
4482 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4483 struct rq *rq = cpu_rq(i);
4484
4485 nr_running = rq->nr_running;
4486
4487 /* Bias balancing toward cpus of our domain */
4488 if (local_group) {
4489 if (idle_cpu(i) && !first_idle_cpu &&
4490 cpumask_test_cpu(i, sched_group_mask(group))) {
4491 first_idle_cpu = 1;
4492 balance_cpu = i;
4493 }
4494
4495 load = target_load(i, load_idx);
4496 } else {
4497 load = source_load(i, load_idx);
4498 if (load > max_cpu_load)
4499 max_cpu_load = load;
4500 if (min_cpu_load > load)
4501 min_cpu_load = load;
4502
4503 if (nr_running > max_nr_running)
4504 max_nr_running = nr_running;
4505 if (min_nr_running > nr_running)
4506 min_nr_running = nr_running;
4507 }
4508
4509 sgs->group_load += load;
4510 sgs->sum_nr_running += nr_running;
4511 sgs->sum_weighted_load += weighted_cpuload(i);
4512 if (idle_cpu(i))
4513 sgs->idle_cpus++;
4514 }
4515
4516 /*
4517 * First idle cpu or the first cpu(busiest) in this sched group
4518 * is eligible for doing load balancing at this and above
4519 * domains. In the newly idle case, we will allow all the cpu's
4520 * to do the newly idle load balance.
4521 */
4522 if (local_group) {
4523 if (env->idle != CPU_NEWLY_IDLE) {
4524 if (balance_cpu != env->dst_cpu) {
4525 *balance = 0;
4526 return;
4527 }
4528 update_group_power(env->sd, env->dst_cpu);
4529 } else if (time_after_eq(jiffies, group->sgp->next_update))
4530 update_group_power(env->sd, env->dst_cpu);
4531 }
4532
4533 /* Adjust by relative CPU power of the group */
4534 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4535
4536 /*
4537 * Consider the group unbalanced when the imbalance is larger
4538 * than the average weight of a task.
4539 *
4540 * APZ: with cgroup the avg task weight can vary wildly and
4541 * might not be a suitable number - should we keep a
4542 * normalized nr_running number somewhere that negates
4543 * the hierarchy?
4544 */
4545 if (sgs->sum_nr_running)
4546 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4547
4548 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4549 (max_nr_running - min_nr_running) > 1)
4550 sgs->group_imb = 1;
4551
4552 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4553 SCHED_POWER_SCALE);
4554 if (!sgs->group_capacity)
4555 sgs->group_capacity = fix_small_capacity(env->sd, group);
4556 sgs->group_weight = group->group_weight;
4557
4558 if (sgs->group_capacity > sgs->sum_nr_running)
4559 sgs->group_has_capacity = 1;
4560 }
4561
4562 /**
4563 * update_sd_pick_busiest - return 1 on busiest group
4564 * @env: The load balancing environment.
4565 * @sds: sched_domain statistics
4566 * @sg: sched_group candidate to be checked for being the busiest
4567 * @sgs: sched_group statistics
4568 *
4569 * Determine if @sg is a busier group than the previously selected
4570 * busiest group.
4571 */
4572 static bool update_sd_pick_busiest(struct lb_env *env,
4573 struct sd_lb_stats *sds,
4574 struct sched_group *sg,
4575 struct sg_lb_stats *sgs)
4576 {
4577 if (sgs->avg_load <= sds->max_load)
4578 return false;
4579
4580 if (sgs->sum_nr_running > sgs->group_capacity)
4581 return true;
4582
4583 if (sgs->group_imb)
4584 return true;
4585
4586 /*
4587 * ASYM_PACKING needs to move all the work to the lowest
4588 * numbered CPUs in the group, therefore mark all groups
4589 * higher than ourself as busy.
4590 */
4591 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4592 env->dst_cpu < group_first_cpu(sg)) {
4593 if (!sds->busiest)
4594 return true;
4595
4596 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4597 return true;
4598 }
4599
4600 return false;
4601 }
4602
4603 /**
4604 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4605 * @env: The load balancing environment.
4606 * @balance: Should we balance.
4607 * @sds: variable to hold the statistics for this sched_domain.
4608 */
4609 static inline void update_sd_lb_stats(struct lb_env *env,
4610 int *balance, struct sd_lb_stats *sds)
4611 {
4612 struct sched_domain *child = env->sd->child;
4613 struct sched_group *sg = env->sd->groups;
4614 struct sg_lb_stats sgs;
4615 int load_idx, prefer_sibling = 0;
4616
4617 if (child && child->flags & SD_PREFER_SIBLING)
4618 prefer_sibling = 1;
4619
4620 load_idx = get_sd_load_idx(env->sd, env->idle);
4621
4622 do {
4623 int local_group;
4624
4625 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4626 memset(&sgs, 0, sizeof(sgs));
4627 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4628
4629 if (local_group && !(*balance))
4630 return;
4631
4632 sds->total_load += sgs.group_load;
4633 sds->total_pwr += sg->sgp->power;
4634
4635 /*
4636 * In case the child domain prefers tasks go to siblings
4637 * first, lower the sg capacity to one so that we'll try
4638 * and move all the excess tasks away. We lower the capacity
4639 * of a group only if the local group has the capacity to fit
4640 * these excess tasks, i.e. nr_running < group_capacity. The
4641 * extra check prevents the case where you always pull from the
4642 * heaviest group when it is already under-utilized (possible
4643 * with a large weight task outweighs the tasks on the system).
4644 */
4645 if (prefer_sibling && !local_group && sds->this_has_capacity)
4646 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4647
4648 if (local_group) {
4649 sds->this_load = sgs.avg_load;
4650 sds->this = sg;
4651 sds->this_nr_running = sgs.sum_nr_running;
4652 sds->this_load_per_task = sgs.sum_weighted_load;
4653 sds->this_has_capacity = sgs.group_has_capacity;
4654 sds->this_idle_cpus = sgs.idle_cpus;
4655 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4656 sds->max_load = sgs.avg_load;
4657 sds->busiest = sg;
4658 sds->busiest_nr_running = sgs.sum_nr_running;
4659 sds->busiest_idle_cpus = sgs.idle_cpus;
4660 sds->busiest_group_capacity = sgs.group_capacity;
4661 sds->busiest_load_per_task = sgs.sum_weighted_load;
4662 sds->busiest_has_capacity = sgs.group_has_capacity;
4663 sds->busiest_group_weight = sgs.group_weight;
4664 sds->group_imb = sgs.group_imb;
4665 }
4666
4667 sg = sg->next;
4668 } while (sg != env->sd->groups);
4669 }
4670
4671 /**
4672 * check_asym_packing - Check to see if the group is packed into the
4673 * sched doman.
4674 *
4675 * This is primarily intended to used at the sibling level. Some
4676 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4677 * case of POWER7, it can move to lower SMT modes only when higher
4678 * threads are idle. When in lower SMT modes, the threads will
4679 * perform better since they share less core resources. Hence when we
4680 * have idle threads, we want them to be the higher ones.
4681 *
4682 * This packing function is run on idle threads. It checks to see if
4683 * the busiest CPU in this domain (core in the P7 case) has a higher
4684 * CPU number than the packing function is being run on. Here we are
4685 * assuming lower CPU number will be equivalent to lower a SMT thread
4686 * number.
4687 *
4688 * Returns 1 when packing is required and a task should be moved to
4689 * this CPU. The amount of the imbalance is returned in *imbalance.
4690 *
4691 * @env: The load balancing environment.
4692 * @sds: Statistics of the sched_domain which is to be packed
4693 */
4694 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4695 {
4696 int busiest_cpu;
4697
4698 if (!(env->sd->flags & SD_ASYM_PACKING))
4699 return 0;
4700
4701 if (!sds->busiest)
4702 return 0;
4703
4704 busiest_cpu = group_first_cpu(sds->busiest);
4705 if (env->dst_cpu > busiest_cpu)
4706 return 0;
4707
4708 env->imbalance = DIV_ROUND_CLOSEST(
4709 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4710
4711 return 1;
4712 }
4713
4714 /**
4715 * fix_small_imbalance - Calculate the minor imbalance that exists
4716 * amongst the groups of a sched_domain, during
4717 * load balancing.
4718 * @env: The load balancing environment.
4719 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4720 */
4721 static inline
4722 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4723 {
4724 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4725 unsigned int imbn = 2;
4726 unsigned long scaled_busy_load_per_task;
4727
4728 if (sds->this_nr_running) {
4729 sds->this_load_per_task /= sds->this_nr_running;
4730 if (sds->busiest_load_per_task >
4731 sds->this_load_per_task)
4732 imbn = 1;
4733 } else {
4734 sds->this_load_per_task =
4735 cpu_avg_load_per_task(env->dst_cpu);
4736 }
4737
4738 scaled_busy_load_per_task = sds->busiest_load_per_task
4739 * SCHED_POWER_SCALE;
4740 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4741
4742 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4743 (scaled_busy_load_per_task * imbn)) {
4744 env->imbalance = sds->busiest_load_per_task;
4745 return;
4746 }
4747
4748 /*
4749 * OK, we don't have enough imbalance to justify moving tasks,
4750 * however we may be able to increase total CPU power used by
4751 * moving them.
4752 */
4753
4754 pwr_now += sds->busiest->sgp->power *
4755 min(sds->busiest_load_per_task, sds->max_load);
4756 pwr_now += sds->this->sgp->power *
4757 min(sds->this_load_per_task, sds->this_load);
4758 pwr_now /= SCHED_POWER_SCALE;
4759
4760 /* Amount of load we'd subtract */
4761 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4762 sds->busiest->sgp->power;
4763 if (sds->max_load > tmp)
4764 pwr_move += sds->busiest->sgp->power *
4765 min(sds->busiest_load_per_task, sds->max_load - tmp);
4766
4767 /* Amount of load we'd add */
4768 if (sds->max_load * sds->busiest->sgp->power <
4769 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4770 tmp = (sds->max_load * sds->busiest->sgp->power) /
4771 sds->this->sgp->power;
4772 else
4773 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4774 sds->this->sgp->power;
4775 pwr_move += sds->this->sgp->power *
4776 min(sds->this_load_per_task, sds->this_load + tmp);
4777 pwr_move /= SCHED_POWER_SCALE;
4778
4779 /* Move if we gain throughput */
4780 if (pwr_move > pwr_now)
4781 env->imbalance = sds->busiest_load_per_task;
4782 }
4783
4784 /**
4785 * calculate_imbalance - Calculate the amount of imbalance present within the
4786 * groups of a given sched_domain during load balance.
4787 * @env: load balance environment
4788 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4789 */
4790 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4791 {
4792 unsigned long max_pull, load_above_capacity = ~0UL;
4793
4794 sds->busiest_load_per_task /= sds->busiest_nr_running;
4795 if (sds->group_imb) {
4796 sds->busiest_load_per_task =
4797 min(sds->busiest_load_per_task, sds->avg_load);
4798 }
4799
4800 /*
4801 * In the presence of smp nice balancing, certain scenarios can have
4802 * max load less than avg load(as we skip the groups at or below
4803 * its cpu_power, while calculating max_load..)
4804 */
4805 if (sds->max_load < sds->avg_load) {
4806 env->imbalance = 0;
4807 return fix_small_imbalance(env, sds);
4808 }
4809
4810 if (!sds->group_imb) {
4811 /*
4812 * Don't want to pull so many tasks that a group would go idle.
4813 */
4814 load_above_capacity = (sds->busiest_nr_running -
4815 sds->busiest_group_capacity);
4816
4817 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4818
4819 load_above_capacity /= sds->busiest->sgp->power;
4820 }
4821
4822 /*
4823 * We're trying to get all the cpus to the average_load, so we don't
4824 * want to push ourselves above the average load, nor do we wish to
4825 * reduce the max loaded cpu below the average load. At the same time,
4826 * we also don't want to reduce the group load below the group capacity
4827 * (so that we can implement power-savings policies etc). Thus we look
4828 * for the minimum possible imbalance.
4829 * Be careful of negative numbers as they'll appear as very large values
4830 * with unsigned longs.
4831 */
4832 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4833
4834 /* How much load to actually move to equalise the imbalance */
4835 env->imbalance = min(max_pull * sds->busiest->sgp->power,
4836 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4837 / SCHED_POWER_SCALE;
4838
4839 /*
4840 * if *imbalance is less than the average load per runnable task
4841 * there is no guarantee that any tasks will be moved so we'll have
4842 * a think about bumping its value to force at least one task to be
4843 * moved
4844 */
4845 if (env->imbalance < sds->busiest_load_per_task)
4846 return fix_small_imbalance(env, sds);
4847
4848 }
4849
4850 /******* find_busiest_group() helpers end here *********************/
4851
4852 /**
4853 * find_busiest_group - Returns the busiest group within the sched_domain
4854 * if there is an imbalance. If there isn't an imbalance, and
4855 * the user has opted for power-savings, it returns a group whose
4856 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4857 * such a group exists.
4858 *
4859 * Also calculates the amount of weighted load which should be moved
4860 * to restore balance.
4861 *
4862 * @env: The load balancing environment.
4863 * @balance: Pointer to a variable indicating if this_cpu
4864 * is the appropriate cpu to perform load balancing at this_level.
4865 *
4866 * Returns: - the busiest group if imbalance exists.
4867 * - If no imbalance and user has opted for power-savings balance,
4868 * return the least loaded group whose CPUs can be
4869 * put to idle by rebalancing its tasks onto our group.
4870 */
4871 static struct sched_group *
4872 find_busiest_group(struct lb_env *env, int *balance)
4873 {
4874 struct sd_lb_stats sds;
4875
4876 memset(&sds, 0, sizeof(sds));
4877
4878 /*
4879 * Compute the various statistics relavent for load balancing at
4880 * this level.
4881 */
4882 update_sd_lb_stats(env, balance, &sds);
4883
4884 /*
4885 * this_cpu is not the appropriate cpu to perform load balancing at
4886 * this level.
4887 */
4888 if (!(*balance))
4889 goto ret;
4890
4891 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4892 check_asym_packing(env, &sds))
4893 return sds.busiest;
4894
4895 /* There is no busy sibling group to pull tasks from */
4896 if (!sds.busiest || sds.busiest_nr_running == 0)
4897 goto out_balanced;
4898
4899 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4900
4901 /*
4902 * If the busiest group is imbalanced the below checks don't
4903 * work because they assumes all things are equal, which typically
4904 * isn't true due to cpus_allowed constraints and the like.
4905 */
4906 if (sds.group_imb)
4907 goto force_balance;
4908
4909 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4910 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4911 !sds.busiest_has_capacity)
4912 goto force_balance;
4913
4914 /*
4915 * If the local group is more busy than the selected busiest group
4916 * don't try and pull any tasks.
4917 */
4918 if (sds.this_load >= sds.max_load)
4919 goto out_balanced;
4920
4921 /*
4922 * Don't pull any tasks if this group is already above the domain
4923 * average load.
4924 */
4925 if (sds.this_load >= sds.avg_load)
4926 goto out_balanced;
4927
4928 if (env->idle == CPU_IDLE) {
4929 /*
4930 * This cpu is idle. If the busiest group load doesn't
4931 * have more tasks than the number of available cpu's and
4932 * there is no imbalance between this and busiest group
4933 * wrt to idle cpu's, it is balanced.
4934 */
4935 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4936 sds.busiest_nr_running <= sds.busiest_group_weight)
4937 goto out_balanced;
4938 } else {
4939 /*
4940 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4941 * imbalance_pct to be conservative.
4942 */
4943 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4944 goto out_balanced;
4945 }
4946
4947 force_balance:
4948 /* Looks like there is an imbalance. Compute it */
4949 calculate_imbalance(env, &sds);
4950 return sds.busiest;
4951
4952 out_balanced:
4953 ret:
4954 env->imbalance = 0;
4955 return NULL;
4956 }
4957
4958 /*
4959 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4960 */
4961 static struct rq *find_busiest_queue(struct lb_env *env,
4962 struct sched_group *group)
4963 {
4964 struct rq *busiest = NULL, *rq;
4965 unsigned long max_load = 0;
4966 int i;
4967
4968 for_each_cpu(i, sched_group_cpus(group)) {
4969 unsigned long power = power_of(i);
4970 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4971 SCHED_POWER_SCALE);
4972 unsigned long wl;
4973
4974 if (!capacity)
4975 capacity = fix_small_capacity(env->sd, group);
4976
4977 if (!cpumask_test_cpu(i, env->cpus))
4978 continue;
4979
4980 rq = cpu_rq(i);
4981 wl = weighted_cpuload(i);
4982
4983 /*
4984 * When comparing with imbalance, use weighted_cpuload()
4985 * which is not scaled with the cpu power.
4986 */
4987 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4988 continue;
4989
4990 /*
4991 * For the load comparisons with the other cpu's, consider
4992 * the weighted_cpuload() scaled with the cpu power, so that
4993 * the load can be moved away from the cpu that is potentially
4994 * running at a lower capacity.
4995 */
4996 wl = (wl * SCHED_POWER_SCALE) / power;
4997
4998 if (wl > max_load) {
4999 max_load = wl;
5000 busiest = rq;
5001 }
5002 }
5003
5004 return busiest;
5005 }
5006
5007 /*
5008 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5009 * so long as it is large enough.
5010 */
5011 #define MAX_PINNED_INTERVAL 512
5012
5013 /* Working cpumask for load_balance and load_balance_newidle. */
5014 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5015
5016 static int need_active_balance(struct lb_env *env)
5017 {
5018 struct sched_domain *sd = env->sd;
5019
5020 if (env->idle == CPU_NEWLY_IDLE) {
5021
5022 /*
5023 * ASYM_PACKING needs to force migrate tasks from busy but
5024 * higher numbered CPUs in order to pack all tasks in the
5025 * lowest numbered CPUs.
5026 */
5027 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5028 return 1;
5029 }
5030
5031 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5032 }
5033
5034 static int active_load_balance_cpu_stop(void *data);
5035
5036 /*
5037 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5038 * tasks if there is an imbalance.
5039 */
5040 static int load_balance(int this_cpu, struct rq *this_rq,
5041 struct sched_domain *sd, enum cpu_idle_type idle,
5042 int *balance)
5043 {
5044 int ld_moved, cur_ld_moved, active_balance = 0;
5045 struct sched_group *group;
5046 struct rq *busiest;
5047 unsigned long flags;
5048 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5049
5050 struct lb_env env = {
5051 .sd = sd,
5052 .dst_cpu = this_cpu,
5053 .dst_rq = this_rq,
5054 .dst_grpmask = sched_group_cpus(sd->groups),
5055 .idle = idle,
5056 .loop_break = sched_nr_migrate_break,
5057 .cpus = cpus,
5058 };
5059
5060 /*
5061 * For NEWLY_IDLE load_balancing, we don't need to consider
5062 * other cpus in our group
5063 */
5064 if (idle == CPU_NEWLY_IDLE)
5065 env.dst_grpmask = NULL;
5066
5067 cpumask_copy(cpus, cpu_active_mask);
5068
5069 schedstat_inc(sd, lb_count[idle]);
5070
5071 redo:
5072 group = find_busiest_group(&env, balance);
5073
5074 if (*balance == 0)
5075 goto out_balanced;
5076
5077 if (!group) {
5078 schedstat_inc(sd, lb_nobusyg[idle]);
5079 goto out_balanced;
5080 }
5081
5082 busiest = find_busiest_queue(&env, group);
5083 if (!busiest) {
5084 schedstat_inc(sd, lb_nobusyq[idle]);
5085 goto out_balanced;
5086 }
5087
5088 BUG_ON(busiest == env.dst_rq);
5089
5090 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5091
5092 ld_moved = 0;
5093 if (busiest->nr_running > 1) {
5094 /*
5095 * Attempt to move tasks. If find_busiest_group has found
5096 * an imbalance but busiest->nr_running <= 1, the group is
5097 * still unbalanced. ld_moved simply stays zero, so it is
5098 * correctly treated as an imbalance.
5099 */
5100 env.flags |= LBF_ALL_PINNED;
5101 env.src_cpu = busiest->cpu;
5102 env.src_rq = busiest;
5103 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5104
5105 update_h_load(env.src_cpu);
5106 more_balance:
5107 local_irq_save(flags);
5108 double_rq_lock(env.dst_rq, busiest);
5109
5110 /*
5111 * cur_ld_moved - load moved in current iteration
5112 * ld_moved - cumulative load moved across iterations
5113 */
5114 cur_ld_moved = move_tasks(&env);
5115 ld_moved += cur_ld_moved;
5116 double_rq_unlock(env.dst_rq, busiest);
5117 local_irq_restore(flags);
5118
5119 /*
5120 * some other cpu did the load balance for us.
5121 */
5122 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5123 resched_cpu(env.dst_cpu);
5124
5125 if (env.flags & LBF_NEED_BREAK) {
5126 env.flags &= ~LBF_NEED_BREAK;
5127 goto more_balance;
5128 }
5129
5130 /*
5131 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5132 * us and move them to an alternate dst_cpu in our sched_group
5133 * where they can run. The upper limit on how many times we
5134 * iterate on same src_cpu is dependent on number of cpus in our
5135 * sched_group.
5136 *
5137 * This changes load balance semantics a bit on who can move
5138 * load to a given_cpu. In addition to the given_cpu itself
5139 * (or a ilb_cpu acting on its behalf where given_cpu is
5140 * nohz-idle), we now have balance_cpu in a position to move
5141 * load to given_cpu. In rare situations, this may cause
5142 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5143 * _independently_ and at _same_ time to move some load to
5144 * given_cpu) causing exceess load to be moved to given_cpu.
5145 * This however should not happen so much in practice and
5146 * moreover subsequent load balance cycles should correct the
5147 * excess load moved.
5148 */
5149 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5150
5151 env.dst_rq = cpu_rq(env.new_dst_cpu);
5152 env.dst_cpu = env.new_dst_cpu;
5153 env.flags &= ~LBF_SOME_PINNED;
5154 env.loop = 0;
5155 env.loop_break = sched_nr_migrate_break;
5156
5157 /* Prevent to re-select dst_cpu via env's cpus */
5158 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5159
5160 /*
5161 * Go back to "more_balance" rather than "redo" since we
5162 * need to continue with same src_cpu.
5163 */
5164 goto more_balance;
5165 }
5166
5167 /* All tasks on this runqueue were pinned by CPU affinity */
5168 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5169 cpumask_clear_cpu(cpu_of(busiest), cpus);
5170 if (!cpumask_empty(cpus)) {
5171 env.loop = 0;
5172 env.loop_break = sched_nr_migrate_break;
5173 goto redo;
5174 }
5175 goto out_balanced;
5176 }
5177 }
5178
5179 if (!ld_moved) {
5180 schedstat_inc(sd, lb_failed[idle]);
5181 /*
5182 * Increment the failure counter only on periodic balance.
5183 * We do not want newidle balance, which can be very
5184 * frequent, pollute the failure counter causing
5185 * excessive cache_hot migrations and active balances.
5186 */
5187 if (idle != CPU_NEWLY_IDLE)
5188 sd->nr_balance_failed++;
5189
5190 if (need_active_balance(&env)) {
5191 raw_spin_lock_irqsave(&busiest->lock, flags);
5192
5193 /* don't kick the active_load_balance_cpu_stop,
5194 * if the curr task on busiest cpu can't be
5195 * moved to this_cpu
5196 */
5197 if (!cpumask_test_cpu(this_cpu,
5198 tsk_cpus_allowed(busiest->curr))) {
5199 raw_spin_unlock_irqrestore(&busiest->lock,
5200 flags);
5201 env.flags |= LBF_ALL_PINNED;
5202 goto out_one_pinned;
5203 }
5204
5205 /*
5206 * ->active_balance synchronizes accesses to
5207 * ->active_balance_work. Once set, it's cleared
5208 * only after active load balance is finished.
5209 */
5210 if (!busiest->active_balance) {
5211 busiest->active_balance = 1;
5212 busiest->push_cpu = this_cpu;
5213 active_balance = 1;
5214 }
5215 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5216
5217 if (active_balance) {
5218 stop_one_cpu_nowait(cpu_of(busiest),
5219 active_load_balance_cpu_stop, busiest,
5220 &busiest->active_balance_work);
5221 }
5222
5223 /*
5224 * We've kicked active balancing, reset the failure
5225 * counter.
5226 */
5227 sd->nr_balance_failed = sd->cache_nice_tries+1;
5228 }
5229 } else
5230 sd->nr_balance_failed = 0;
5231
5232 if (likely(!active_balance)) {
5233 /* We were unbalanced, so reset the balancing interval */
5234 sd->balance_interval = sd->min_interval;
5235 } else {
5236 /*
5237 * If we've begun active balancing, start to back off. This
5238 * case may not be covered by the all_pinned logic if there
5239 * is only 1 task on the busy runqueue (because we don't call
5240 * move_tasks).
5241 */
5242 if (sd->balance_interval < sd->max_interval)
5243 sd->balance_interval *= 2;
5244 }
5245
5246 goto out;
5247
5248 out_balanced:
5249 schedstat_inc(sd, lb_balanced[idle]);
5250
5251 sd->nr_balance_failed = 0;
5252
5253 out_one_pinned:
5254 /* tune up the balancing interval */
5255 if (((env.flags & LBF_ALL_PINNED) &&
5256 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5257 (sd->balance_interval < sd->max_interval))
5258 sd->balance_interval *= 2;
5259
5260 ld_moved = 0;
5261 out:
5262 return ld_moved;
5263 }
5264
5265 /*
5266 * idle_balance is called by schedule() if this_cpu is about to become
5267 * idle. Attempts to pull tasks from other CPUs.
5268 */
5269 void idle_balance(int this_cpu, struct rq *this_rq)
5270 {
5271 struct sched_domain *sd;
5272 int pulled_task = 0;
5273 unsigned long next_balance = jiffies + HZ;
5274
5275 this_rq->idle_stamp = rq_clock(this_rq);
5276
5277 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5278 return;
5279
5280 /*
5281 * Drop the rq->lock, but keep IRQ/preempt disabled.
5282 */
5283 raw_spin_unlock(&this_rq->lock);
5284
5285 update_blocked_averages(this_cpu);
5286 rcu_read_lock();
5287 for_each_domain(this_cpu, sd) {
5288 unsigned long interval;
5289 int balance = 1;
5290
5291 if (!(sd->flags & SD_LOAD_BALANCE))
5292 continue;
5293
5294 if (sd->flags & SD_BALANCE_NEWIDLE) {
5295 /* If we've pulled tasks over stop searching: */
5296 pulled_task = load_balance(this_cpu, this_rq,
5297 sd, CPU_NEWLY_IDLE, &balance);
5298 }
5299
5300 interval = msecs_to_jiffies(sd->balance_interval);
5301 if (time_after(next_balance, sd->last_balance + interval))
5302 next_balance = sd->last_balance + interval;
5303 if (pulled_task) {
5304 this_rq->idle_stamp = 0;
5305 break;
5306 }
5307 }
5308 rcu_read_unlock();
5309
5310 raw_spin_lock(&this_rq->lock);
5311
5312 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5313 /*
5314 * We are going idle. next_balance may be set based on
5315 * a busy processor. So reset next_balance.
5316 */
5317 this_rq->next_balance = next_balance;
5318 }
5319 }
5320
5321 /*
5322 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5323 * running tasks off the busiest CPU onto idle CPUs. It requires at
5324 * least 1 task to be running on each physical CPU where possible, and
5325 * avoids physical / logical imbalances.
5326 */
5327 static int active_load_balance_cpu_stop(void *data)
5328 {
5329 struct rq *busiest_rq = data;
5330 int busiest_cpu = cpu_of(busiest_rq);
5331 int target_cpu = busiest_rq->push_cpu;
5332 struct rq *target_rq = cpu_rq(target_cpu);
5333 struct sched_domain *sd;
5334
5335 raw_spin_lock_irq(&busiest_rq->lock);
5336
5337 /* make sure the requested cpu hasn't gone down in the meantime */
5338 if (unlikely(busiest_cpu != smp_processor_id() ||
5339 !busiest_rq->active_balance))
5340 goto out_unlock;
5341
5342 /* Is there any task to move? */
5343 if (busiest_rq->nr_running <= 1)
5344 goto out_unlock;
5345
5346 /*
5347 * This condition is "impossible", if it occurs
5348 * we need to fix it. Originally reported by
5349 * Bjorn Helgaas on a 128-cpu setup.
5350 */
5351 BUG_ON(busiest_rq == target_rq);
5352
5353 /* move a task from busiest_rq to target_rq */
5354 double_lock_balance(busiest_rq, target_rq);
5355
5356 /* Search for an sd spanning us and the target CPU. */
5357 rcu_read_lock();
5358 for_each_domain(target_cpu, sd) {
5359 if ((sd->flags & SD_LOAD_BALANCE) &&
5360 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5361 break;
5362 }
5363
5364 if (likely(sd)) {
5365 struct lb_env env = {
5366 .sd = sd,
5367 .dst_cpu = target_cpu,
5368 .dst_rq = target_rq,
5369 .src_cpu = busiest_rq->cpu,
5370 .src_rq = busiest_rq,
5371 .idle = CPU_IDLE,
5372 };
5373
5374 schedstat_inc(sd, alb_count);
5375
5376 if (move_one_task(&env))
5377 schedstat_inc(sd, alb_pushed);
5378 else
5379 schedstat_inc(sd, alb_failed);
5380 }
5381 rcu_read_unlock();
5382 double_unlock_balance(busiest_rq, target_rq);
5383 out_unlock:
5384 busiest_rq->active_balance = 0;
5385 raw_spin_unlock_irq(&busiest_rq->lock);
5386 return 0;
5387 }
5388
5389 #ifdef CONFIG_NO_HZ_COMMON
5390 /*
5391 * idle load balancing details
5392 * - When one of the busy CPUs notice that there may be an idle rebalancing
5393 * needed, they will kick the idle load balancer, which then does idle
5394 * load balancing for all the idle CPUs.
5395 */
5396 static struct {
5397 cpumask_var_t idle_cpus_mask;
5398 atomic_t nr_cpus;
5399 unsigned long next_balance; /* in jiffy units */
5400 } nohz ____cacheline_aligned;
5401
5402 static inline int find_new_ilb(int call_cpu)
5403 {
5404 int ilb = cpumask_first(nohz.idle_cpus_mask);
5405
5406 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5407 return ilb;
5408
5409 return nr_cpu_ids;
5410 }
5411
5412 /*
5413 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5414 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5415 * CPU (if there is one).
5416 */
5417 static void nohz_balancer_kick(int cpu)
5418 {
5419 int ilb_cpu;
5420
5421 nohz.next_balance++;
5422
5423 ilb_cpu = find_new_ilb(cpu);
5424
5425 if (ilb_cpu >= nr_cpu_ids)
5426 return;
5427
5428 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5429 return;
5430 /*
5431 * Use smp_send_reschedule() instead of resched_cpu().
5432 * This way we generate a sched IPI on the target cpu which
5433 * is idle. And the softirq performing nohz idle load balance
5434 * will be run before returning from the IPI.
5435 */
5436 smp_send_reschedule(ilb_cpu);
5437 return;
5438 }
5439
5440 static inline void nohz_balance_exit_idle(int cpu)
5441 {
5442 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5443 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5444 atomic_dec(&nohz.nr_cpus);
5445 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5446 }
5447 }
5448
5449 static inline void set_cpu_sd_state_busy(void)
5450 {
5451 struct sched_domain *sd;
5452
5453 rcu_read_lock();
5454 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5455
5456 if (!sd || !sd->nohz_idle)
5457 goto unlock;
5458 sd->nohz_idle = 0;
5459
5460 for (; sd; sd = sd->parent)
5461 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5462 unlock:
5463 rcu_read_unlock();
5464 }
5465
5466 void set_cpu_sd_state_idle(void)
5467 {
5468 struct sched_domain *sd;
5469
5470 rcu_read_lock();
5471 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5472
5473 if (!sd || sd->nohz_idle)
5474 goto unlock;
5475 sd->nohz_idle = 1;
5476
5477 for (; sd; sd = sd->parent)
5478 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5479 unlock:
5480 rcu_read_unlock();
5481 }
5482
5483 /*
5484 * This routine will record that the cpu is going idle with tick stopped.
5485 * This info will be used in performing idle load balancing in the future.
5486 */
5487 void nohz_balance_enter_idle(int cpu)
5488 {
5489 /*
5490 * If this cpu is going down, then nothing needs to be done.
5491 */
5492 if (!cpu_active(cpu))
5493 return;
5494
5495 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5496 return;
5497
5498 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5499 atomic_inc(&nohz.nr_cpus);
5500 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5501 }
5502
5503 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5504 unsigned long action, void *hcpu)
5505 {
5506 switch (action & ~CPU_TASKS_FROZEN) {
5507 case CPU_DYING:
5508 nohz_balance_exit_idle(smp_processor_id());
5509 return NOTIFY_OK;
5510 default:
5511 return NOTIFY_DONE;
5512 }
5513 }
5514 #endif
5515
5516 static DEFINE_SPINLOCK(balancing);
5517
5518 /*
5519 * Scale the max load_balance interval with the number of CPUs in the system.
5520 * This trades load-balance latency on larger machines for less cross talk.
5521 */
5522 void update_max_interval(void)
5523 {
5524 max_load_balance_interval = HZ*num_online_cpus()/10;
5525 }
5526
5527 /*
5528 * It checks each scheduling domain to see if it is due to be balanced,
5529 * and initiates a balancing operation if so.
5530 *
5531 * Balancing parameters are set up in init_sched_domains.
5532 */
5533 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5534 {
5535 int balance = 1;
5536 struct rq *rq = cpu_rq(cpu);
5537 unsigned long interval;
5538 struct sched_domain *sd;
5539 /* Earliest time when we have to do rebalance again */
5540 unsigned long next_balance = jiffies + 60*HZ;
5541 int update_next_balance = 0;
5542 int need_serialize;
5543
5544 update_blocked_averages(cpu);
5545
5546 rcu_read_lock();
5547 for_each_domain(cpu, sd) {
5548 if (!(sd->flags & SD_LOAD_BALANCE))
5549 continue;
5550
5551 interval = sd->balance_interval;
5552 if (idle != CPU_IDLE)
5553 interval *= sd->busy_factor;
5554
5555 /* scale ms to jiffies */
5556 interval = msecs_to_jiffies(interval);
5557 interval = clamp(interval, 1UL, max_load_balance_interval);
5558
5559 need_serialize = sd->flags & SD_SERIALIZE;
5560
5561 if (need_serialize) {
5562 if (!spin_trylock(&balancing))
5563 goto out;
5564 }
5565
5566 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5567 if (load_balance(cpu, rq, sd, idle, &balance)) {
5568 /*
5569 * The LBF_SOME_PINNED logic could have changed
5570 * env->dst_cpu, so we can't know our idle
5571 * state even if we migrated tasks. Update it.
5572 */
5573 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
5574 }
5575 sd->last_balance = jiffies;
5576 }
5577 if (need_serialize)
5578 spin_unlock(&balancing);
5579 out:
5580 if (time_after(next_balance, sd->last_balance + interval)) {
5581 next_balance = sd->last_balance + interval;
5582 update_next_balance = 1;
5583 }
5584
5585 /*
5586 * Stop the load balance at this level. There is another
5587 * CPU in our sched group which is doing load balancing more
5588 * actively.
5589 */
5590 if (!balance)
5591 break;
5592 }
5593 rcu_read_unlock();
5594
5595 /*
5596 * next_balance will be updated only when there is a need.
5597 * When the cpu is attached to null domain for ex, it will not be
5598 * updated.
5599 */
5600 if (likely(update_next_balance))
5601 rq->next_balance = next_balance;
5602 }
5603
5604 #ifdef CONFIG_NO_HZ_COMMON
5605 /*
5606 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5607 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5608 */
5609 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5610 {
5611 struct rq *this_rq = cpu_rq(this_cpu);
5612 struct rq *rq;
5613 int balance_cpu;
5614
5615 if (idle != CPU_IDLE ||
5616 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5617 goto end;
5618
5619 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5620 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5621 continue;
5622
5623 /*
5624 * If this cpu gets work to do, stop the load balancing
5625 * work being done for other cpus. Next load
5626 * balancing owner will pick it up.
5627 */
5628 if (need_resched())
5629 break;
5630
5631 rq = cpu_rq(balance_cpu);
5632
5633 raw_spin_lock_irq(&rq->lock);
5634 update_rq_clock(rq);
5635 update_idle_cpu_load(rq);
5636 raw_spin_unlock_irq(&rq->lock);
5637
5638 rebalance_domains(balance_cpu, CPU_IDLE);
5639
5640 if (time_after(this_rq->next_balance, rq->next_balance))
5641 this_rq->next_balance = rq->next_balance;
5642 }
5643 nohz.next_balance = this_rq->next_balance;
5644 end:
5645 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5646 }
5647
5648 /*
5649 * Current heuristic for kicking the idle load balancer in the presence
5650 * of an idle cpu is the system.
5651 * - This rq has more than one task.
5652 * - At any scheduler domain level, this cpu's scheduler group has multiple
5653 * busy cpu's exceeding the group's power.
5654 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5655 * domain span are idle.
5656 */
5657 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5658 {
5659 unsigned long now = jiffies;
5660 struct sched_domain *sd;
5661
5662 if (unlikely(idle_cpu(cpu)))
5663 return 0;
5664
5665 /*
5666 * We may be recently in ticked or tickless idle mode. At the first
5667 * busy tick after returning from idle, we will update the busy stats.
5668 */
5669 set_cpu_sd_state_busy();
5670 nohz_balance_exit_idle(cpu);
5671
5672 /*
5673 * None are in tickless mode and hence no need for NOHZ idle load
5674 * balancing.
5675 */
5676 if (likely(!atomic_read(&nohz.nr_cpus)))
5677 return 0;
5678
5679 if (time_before(now, nohz.next_balance))
5680 return 0;
5681
5682 if (rq->nr_running >= 2)
5683 goto need_kick;
5684
5685 rcu_read_lock();
5686 for_each_domain(cpu, sd) {
5687 struct sched_group *sg = sd->groups;
5688 struct sched_group_power *sgp = sg->sgp;
5689 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5690
5691 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5692 goto need_kick_unlock;
5693
5694 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5695 && (cpumask_first_and(nohz.idle_cpus_mask,
5696 sched_domain_span(sd)) < cpu))
5697 goto need_kick_unlock;
5698
5699 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5700 break;
5701 }
5702 rcu_read_unlock();
5703 return 0;
5704
5705 need_kick_unlock:
5706 rcu_read_unlock();
5707 need_kick:
5708 return 1;
5709 }
5710 #else
5711 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5712 #endif
5713
5714 /*
5715 * run_rebalance_domains is triggered when needed from the scheduler tick.
5716 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5717 */
5718 static void run_rebalance_domains(struct softirq_action *h)
5719 {
5720 int this_cpu = smp_processor_id();
5721 struct rq *this_rq = cpu_rq(this_cpu);
5722 enum cpu_idle_type idle = this_rq->idle_balance ?
5723 CPU_IDLE : CPU_NOT_IDLE;
5724
5725 rebalance_domains(this_cpu, idle);
5726
5727 /*
5728 * If this cpu has a pending nohz_balance_kick, then do the
5729 * balancing on behalf of the other idle cpus whose ticks are
5730 * stopped.
5731 */
5732 nohz_idle_balance(this_cpu, idle);
5733 }
5734
5735 static inline int on_null_domain(int cpu)
5736 {
5737 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5738 }
5739
5740 /*
5741 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5742 */
5743 void trigger_load_balance(struct rq *rq, int cpu)
5744 {
5745 /* Don't need to rebalance while attached to NULL domain */
5746 if (time_after_eq(jiffies, rq->next_balance) &&
5747 likely(!on_null_domain(cpu)))
5748 raise_softirq(SCHED_SOFTIRQ);
5749 #ifdef CONFIG_NO_HZ_COMMON
5750 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5751 nohz_balancer_kick(cpu);
5752 #endif
5753 }
5754
5755 static void rq_online_fair(struct rq *rq)
5756 {
5757 update_sysctl();
5758 }
5759
5760 static void rq_offline_fair(struct rq *rq)
5761 {
5762 update_sysctl();
5763
5764 /* Ensure any throttled groups are reachable by pick_next_task */
5765 unthrottle_offline_cfs_rqs(rq);
5766 }
5767
5768 #endif /* CONFIG_SMP */
5769
5770 /*
5771 * scheduler tick hitting a task of our scheduling class:
5772 */
5773 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5774 {
5775 struct cfs_rq *cfs_rq;
5776 struct sched_entity *se = &curr->se;
5777
5778 for_each_sched_entity(se) {
5779 cfs_rq = cfs_rq_of(se);
5780 entity_tick(cfs_rq, se, queued);
5781 }
5782
5783 if (sched_feat_numa(NUMA))
5784 task_tick_numa(rq, curr);
5785
5786 update_rq_runnable_avg(rq, 1);
5787 }
5788
5789 /*
5790 * called on fork with the child task as argument from the parent's context
5791 * - child not yet on the tasklist
5792 * - preemption disabled
5793 */
5794 static void task_fork_fair(struct task_struct *p)
5795 {
5796 struct cfs_rq *cfs_rq;
5797 struct sched_entity *se = &p->se, *curr;
5798 int this_cpu = smp_processor_id();
5799 struct rq *rq = this_rq();
5800 unsigned long flags;
5801
5802 raw_spin_lock_irqsave(&rq->lock, flags);
5803
5804 update_rq_clock(rq);
5805
5806 cfs_rq = task_cfs_rq(current);
5807 curr = cfs_rq->curr;
5808
5809 if (unlikely(task_cpu(p) != this_cpu)) {
5810 rcu_read_lock();
5811 __set_task_cpu(p, this_cpu);
5812 rcu_read_unlock();
5813 }
5814
5815 update_curr(cfs_rq);
5816
5817 if (curr)
5818 se->vruntime = curr->vruntime;
5819 place_entity(cfs_rq, se, 1);
5820
5821 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5822 /*
5823 * Upon rescheduling, sched_class::put_prev_task() will place
5824 * 'current' within the tree based on its new key value.
5825 */
5826 swap(curr->vruntime, se->vruntime);
5827 resched_task(rq->curr);
5828 }
5829
5830 se->vruntime -= cfs_rq->min_vruntime;
5831
5832 raw_spin_unlock_irqrestore(&rq->lock, flags);
5833 }
5834
5835 /*
5836 * Priority of the task has changed. Check to see if we preempt
5837 * the current task.
5838 */
5839 static void
5840 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5841 {
5842 if (!p->se.on_rq)
5843 return;
5844
5845 /*
5846 * Reschedule if we are currently running on this runqueue and
5847 * our priority decreased, or if we are not currently running on
5848 * this runqueue and our priority is higher than the current's
5849 */
5850 if (rq->curr == p) {
5851 if (p->prio > oldprio)
5852 resched_task(rq->curr);
5853 } else
5854 check_preempt_curr(rq, p, 0);
5855 }
5856
5857 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5858 {
5859 struct sched_entity *se = &p->se;
5860 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5861
5862 /*
5863 * Ensure the task's vruntime is normalized, so that when its
5864 * switched back to the fair class the enqueue_entity(.flags=0) will
5865 * do the right thing.
5866 *
5867 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5868 * have normalized the vruntime, if it was !on_rq, then only when
5869 * the task is sleeping will it still have non-normalized vruntime.
5870 */
5871 if (!se->on_rq && p->state != TASK_RUNNING) {
5872 /*
5873 * Fix up our vruntime so that the current sleep doesn't
5874 * cause 'unlimited' sleep bonus.
5875 */
5876 place_entity(cfs_rq, se, 0);
5877 se->vruntime -= cfs_rq->min_vruntime;
5878 }
5879
5880 #ifdef CONFIG_SMP
5881 /*
5882 * Remove our load from contribution when we leave sched_fair
5883 * and ensure we don't carry in an old decay_count if we
5884 * switch back.
5885 */
5886 if (p->se.avg.decay_count) {
5887 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5888 __synchronize_entity_decay(&p->se);
5889 subtract_blocked_load_contrib(cfs_rq,
5890 p->se.avg.load_avg_contrib);
5891 }
5892 #endif
5893 }
5894
5895 /*
5896 * We switched to the sched_fair class.
5897 */
5898 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5899 {
5900 if (!p->se.on_rq)
5901 return;
5902
5903 /*
5904 * We were most likely switched from sched_rt, so
5905 * kick off the schedule if running, otherwise just see
5906 * if we can still preempt the current task.
5907 */
5908 if (rq->curr == p)
5909 resched_task(rq->curr);
5910 else
5911 check_preempt_curr(rq, p, 0);
5912 }
5913
5914 /* Account for a task changing its policy or group.
5915 *
5916 * This routine is mostly called to set cfs_rq->curr field when a task
5917 * migrates between groups/classes.
5918 */
5919 static void set_curr_task_fair(struct rq *rq)
5920 {
5921 struct sched_entity *se = &rq->curr->se;
5922
5923 for_each_sched_entity(se) {
5924 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5925
5926 set_next_entity(cfs_rq, se);
5927 /* ensure bandwidth has been allocated on our new cfs_rq */
5928 account_cfs_rq_runtime(cfs_rq, 0);
5929 }
5930 }
5931
5932 void init_cfs_rq(struct cfs_rq *cfs_rq)
5933 {
5934 cfs_rq->tasks_timeline = RB_ROOT;
5935 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5936 #ifndef CONFIG_64BIT
5937 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5938 #endif
5939 #ifdef CONFIG_SMP
5940 atomic64_set(&cfs_rq->decay_counter, 1);
5941 atomic64_set(&cfs_rq->removed_load, 0);
5942 #endif
5943 }
5944
5945 #ifdef CONFIG_FAIR_GROUP_SCHED
5946 static void task_move_group_fair(struct task_struct *p, int on_rq)
5947 {
5948 struct cfs_rq *cfs_rq;
5949 /*
5950 * If the task was not on the rq at the time of this cgroup movement
5951 * it must have been asleep, sleeping tasks keep their ->vruntime
5952 * absolute on their old rq until wakeup (needed for the fair sleeper
5953 * bonus in place_entity()).
5954 *
5955 * If it was on the rq, we've just 'preempted' it, which does convert
5956 * ->vruntime to a relative base.
5957 *
5958 * Make sure both cases convert their relative position when migrating
5959 * to another cgroup's rq. This does somewhat interfere with the
5960 * fair sleeper stuff for the first placement, but who cares.
5961 */
5962 /*
5963 * When !on_rq, vruntime of the task has usually NOT been normalized.
5964 * But there are some cases where it has already been normalized:
5965 *
5966 * - Moving a forked child which is waiting for being woken up by
5967 * wake_up_new_task().
5968 * - Moving a task which has been woken up by try_to_wake_up() and
5969 * waiting for actually being woken up by sched_ttwu_pending().
5970 *
5971 * To prevent boost or penalty in the new cfs_rq caused by delta
5972 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5973 */
5974 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5975 on_rq = 1;
5976
5977 if (!on_rq)
5978 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5979 set_task_rq(p, task_cpu(p));
5980 if (!on_rq) {
5981 cfs_rq = cfs_rq_of(&p->se);
5982 p->se.vruntime += cfs_rq->min_vruntime;
5983 #ifdef CONFIG_SMP
5984 /*
5985 * migrate_task_rq_fair() will have removed our previous
5986 * contribution, but we must synchronize for ongoing future
5987 * decay.
5988 */
5989 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5990 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5991 #endif
5992 }
5993 }
5994
5995 void free_fair_sched_group(struct task_group *tg)
5996 {
5997 int i;
5998
5999 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6000
6001 for_each_possible_cpu(i) {
6002 if (tg->cfs_rq)
6003 kfree(tg->cfs_rq[i]);
6004 if (tg->se)
6005 kfree(tg->se[i]);
6006 }
6007
6008 kfree(tg->cfs_rq);
6009 kfree(tg->se);
6010 }
6011
6012 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6013 {
6014 struct cfs_rq *cfs_rq;
6015 struct sched_entity *se;
6016 int i;
6017
6018 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6019 if (!tg->cfs_rq)
6020 goto err;
6021 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6022 if (!tg->se)
6023 goto err;
6024
6025 tg->shares = NICE_0_LOAD;
6026
6027 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6028
6029 for_each_possible_cpu(i) {
6030 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6031 GFP_KERNEL, cpu_to_node(i));
6032 if (!cfs_rq)
6033 goto err;
6034
6035 se = kzalloc_node(sizeof(struct sched_entity),
6036 GFP_KERNEL, cpu_to_node(i));
6037 if (!se)
6038 goto err_free_rq;
6039
6040 init_cfs_rq(cfs_rq);
6041 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6042 }
6043
6044 return 1;
6045
6046 err_free_rq:
6047 kfree(cfs_rq);
6048 err:
6049 return 0;
6050 }
6051
6052 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6053 {
6054 struct rq *rq = cpu_rq(cpu);
6055 unsigned long flags;
6056
6057 /*
6058 * Only empty task groups can be destroyed; so we can speculatively
6059 * check on_list without danger of it being re-added.
6060 */
6061 if (!tg->cfs_rq[cpu]->on_list)
6062 return;
6063
6064 raw_spin_lock_irqsave(&rq->lock, flags);
6065 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6066 raw_spin_unlock_irqrestore(&rq->lock, flags);
6067 }
6068
6069 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6070 struct sched_entity *se, int cpu,
6071 struct sched_entity *parent)
6072 {
6073 struct rq *rq = cpu_rq(cpu);
6074
6075 cfs_rq->tg = tg;
6076 cfs_rq->rq = rq;
6077 init_cfs_rq_runtime(cfs_rq);
6078
6079 tg->cfs_rq[cpu] = cfs_rq;
6080 tg->se[cpu] = se;
6081
6082 /* se could be NULL for root_task_group */
6083 if (!se)
6084 return;
6085
6086 if (!parent)
6087 se->cfs_rq = &rq->cfs;
6088 else
6089 se->cfs_rq = parent->my_q;
6090
6091 se->my_q = cfs_rq;
6092 update_load_set(&se->load, 0);
6093 se->parent = parent;
6094 }
6095
6096 static DEFINE_MUTEX(shares_mutex);
6097
6098 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6099 {
6100 int i;
6101 unsigned long flags;
6102
6103 /*
6104 * We can't change the weight of the root cgroup.
6105 */
6106 if (!tg->se[0])
6107 return -EINVAL;
6108
6109 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6110
6111 mutex_lock(&shares_mutex);
6112 if (tg->shares == shares)
6113 goto done;
6114
6115 tg->shares = shares;
6116 for_each_possible_cpu(i) {
6117 struct rq *rq = cpu_rq(i);
6118 struct sched_entity *se;
6119
6120 se = tg->se[i];
6121 /* Propagate contribution to hierarchy */
6122 raw_spin_lock_irqsave(&rq->lock, flags);
6123
6124 /* Possible calls to update_curr() need rq clock */
6125 update_rq_clock(rq);
6126 for_each_sched_entity(se)
6127 update_cfs_shares(group_cfs_rq(se));
6128 raw_spin_unlock_irqrestore(&rq->lock, flags);
6129 }
6130
6131 done:
6132 mutex_unlock(&shares_mutex);
6133 return 0;
6134 }
6135 #else /* CONFIG_FAIR_GROUP_SCHED */
6136
6137 void free_fair_sched_group(struct task_group *tg) { }
6138
6139 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6140 {
6141 return 1;
6142 }
6143
6144 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6145
6146 #endif /* CONFIG_FAIR_GROUP_SCHED */
6147
6148
6149 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6150 {
6151 struct sched_entity *se = &task->se;
6152 unsigned int rr_interval = 0;
6153
6154 /*
6155 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6156 * idle runqueue:
6157 */
6158 if (rq->cfs.load.weight)
6159 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6160
6161 return rr_interval;
6162 }
6163
6164 /*
6165 * All the scheduling class methods:
6166 */
6167 const struct sched_class fair_sched_class = {
6168 .next = &idle_sched_class,
6169 .enqueue_task = enqueue_task_fair,
6170 .dequeue_task = dequeue_task_fair,
6171 .yield_task = yield_task_fair,
6172 .yield_to_task = yield_to_task_fair,
6173
6174 .check_preempt_curr = check_preempt_wakeup,
6175
6176 .pick_next_task = pick_next_task_fair,
6177 .put_prev_task = put_prev_task_fair,
6178
6179 #ifdef CONFIG_SMP
6180 .select_task_rq = select_task_rq_fair,
6181 .migrate_task_rq = migrate_task_rq_fair,
6182
6183 .rq_online = rq_online_fair,
6184 .rq_offline = rq_offline_fair,
6185
6186 .task_waking = task_waking_fair,
6187 #endif
6188
6189 .set_curr_task = set_curr_task_fair,
6190 .task_tick = task_tick_fair,
6191 .task_fork = task_fork_fair,
6192
6193 .prio_changed = prio_changed_fair,
6194 .switched_from = switched_from_fair,
6195 .switched_to = switched_to_fair,
6196
6197 .get_rr_interval = get_rr_interval_fair,
6198
6199 #ifdef CONFIG_FAIR_GROUP_SCHED
6200 .task_move_group = task_move_group_fair,
6201 #endif
6202 };
6203
6204 #ifdef CONFIG_SCHED_DEBUG
6205 void print_cfs_stats(struct seq_file *m, int cpu)
6206 {
6207 struct cfs_rq *cfs_rq;
6208
6209 rcu_read_lock();
6210 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6211 print_cfs_rq(m, cpu, cfs_rq);
6212 rcu_read_unlock();
6213 }
6214 #endif
6215
6216 __init void init_sched_fair_class(void)
6217 {
6218 #ifdef CONFIG_SMP
6219 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6220
6221 #ifdef CONFIG_NO_HZ_COMMON
6222 nohz.next_balance = jiffies;
6223 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6224 cpu_notifier(sched_ilb_notifier, 0);
6225 #endif
6226 #endif /* SMP */
6227
6228 }