]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/fair.c
Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
183 #else
184 # define WMULT_CONST (1UL << 32)
185 #endif
186
187 #define WMULT_SHIFT 32
188
189 /*
190 * Shift right and round:
191 */
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194 /*
195 * delta *= weight / lw
196 */
197 static unsigned long
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200 {
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234 }
235
236
237 const struct sched_class fair_sched_class;
238
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 {
248 return cfs_rq->rq;
249 }
250
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
253
254 static inline struct task_struct *task_of(struct sched_entity *se)
255 {
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258 #endif
259 return container_of(se, struct task_struct, se);
260 }
261
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267 {
268 return p->se.cfs_rq;
269 }
270
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273 {
274 return se->cfs_rq;
275 }
276
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279 {
280 return grp->my_q;
281 }
282
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
307 }
308 }
309
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316 }
317
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322 /* Do the two (enqueued) entities belong to the same group ? */
323 static inline int
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
325 {
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330 }
331
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
333 {
334 return se->parent;
335 }
336
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
339 {
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346 }
347
348 static void
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350 {
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378 }
379
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
381
382 static inline struct task_struct *task_of(struct sched_entity *se)
383 {
384 return container_of(se, struct task_struct, se);
385 }
386
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388 {
389 return container_of(cfs_rq, struct rq, cfs);
390 }
391
392 #define entity_is_task(se) 1
393
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
396
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398 {
399 return &task_rq(p)->cfs;
400 }
401
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403 {
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408 }
409
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412 {
413 return NULL;
414 }
415
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 }
419
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421 {
422 }
423
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427 static inline int
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
429 {
430 return 1;
431 }
432
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
434 {
435 return NULL;
436 }
437
438 static inline void
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440 {
441 }
442
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
444
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453 {
454 s64 delta = (s64)(vruntime - max_vruntime);
455 if (delta > 0)
456 max_vruntime = vruntime;
457
458 return max_vruntime;
459 }
460
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
462 {
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468 }
469
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472 {
473 return (s64)(a->vruntime - b->vruntime) < 0;
474 }
475
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
477 {
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
488 if (!cfs_rq->curr)
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 #ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499 #endif
500 }
501
502 /*
503 * Enqueue an entity into the rb-tree:
504 */
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 {
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
534 if (leftmost)
535 cfs_rq->rb_leftmost = &se->run_node;
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
539 }
540
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
548 }
549
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
551 }
552
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554 {
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
561 }
562
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564 {
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571 }
572
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575 {
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577
578 if (!last)
579 return NULL;
580
581 return rb_entry(last, struct sched_entity, run_node);
582 }
583
584 /**************************************************************
585 * Scheduling class statistics methods:
586 */
587
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
590 loff_t *ppos)
591 {
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
606 #undef WRT_SYSCTL
607
608 return 0;
609 }
610 #endif
611
612 /*
613 * delta /= w
614 */
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
617 {
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620
621 return delta;
622 }
623
624 /*
625 * The idea is to set a period in which each task runs once.
626 *
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
632 static u64 __sched_period(unsigned long nr_running)
633 {
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
636
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
640 }
641
642 return period;
643 }
644
645 /*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
649 * s = p*P[w/rw]
650 */
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
661
662 if (unlikely(!se->on_rq)) {
663 lw = cfs_rq->load;
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
671 }
672
673 /*
674 * We calculate the vruntime slice of a to-be-inserted task.
675 *
676 * vs = s/w
677 */
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 {
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 }
682
683 #ifdef CONFIG_SMP
684 static unsigned long task_h_load(struct task_struct *p);
685
686 static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688 /* Give new task start runnable values to heavy its load in infant time */
689 void init_task_runnable_average(struct task_struct *p)
690 {
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698 }
699 #else
700 void init_task_runnable_average(struct task_struct *p)
701 {
702 }
703 #endif
704
705 /*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709 static inline void
710 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
712 {
713 unsigned long delta_exec_weighted;
714
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
721
722 curr->vruntime += delta_exec_weighted;
723 update_min_vruntime(cfs_rq);
724 }
725
726 static void update_curr(struct cfs_rq *cfs_rq)
727 {
728 struct sched_entity *curr = cfs_rq->curr;
729 u64 now = rq_clock_task(rq_of(cfs_rq));
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
740 delta_exec = (unsigned long)(now - curr->exec_start);
741 if (!delta_exec)
742 return;
743
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
751 cpuacct_charge(curtask, delta_exec);
752 account_group_exec_runtime(curtask, delta_exec);
753 }
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
756 }
757
758 static inline void
759 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
760 {
761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
762 }
763
764 /*
765 * Task is being enqueued - update stats:
766 */
767 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
773 if (se != cfs_rq->curr)
774 update_stats_wait_start(cfs_rq, se);
775 }
776
777 static void
778 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
785 #ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
789 }
790 #endif
791 schedstat_set(se->statistics.wait_start, 0);
792 }
793
794 static inline void
795 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 {
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
801 if (se != cfs_rq->curr)
802 update_stats_wait_end(cfs_rq, se);
803 }
804
805 /*
806 * We are picking a new current task - update its stats:
807 */
808 static inline void
809 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
810 {
811 /*
812 * We are starting a new run period:
813 */
814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
815 }
816
817 /**************************************************
818 * Scheduling class queueing methods:
819 */
820
821 #ifdef CONFIG_NUMA_BALANCING
822 /*
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
826 */
827 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829
830 /* Portion of address space to scan in MB */
831 unsigned int sysctl_numa_balancing_scan_size = 256;
832
833 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834 unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
836 /*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842 unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
844 static unsigned int task_nr_scan_windows(struct task_struct *p)
845 {
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861 }
862
863 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864 #define MAX_SCAN_WINDOW 2560
865
866 static unsigned int task_scan_min(struct task_struct *p)
867 {
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877 }
878
879 static unsigned int task_scan_max(struct task_struct *p)
880 {
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887 }
888
889 /*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
896 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
897
898 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899 {
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902 }
903
904 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905 {
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908 }
909
910 struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
915 pid_t gid;
916 struct list_head task_list;
917
918 struct rcu_head rcu;
919 unsigned long total_faults;
920 unsigned long faults[0];
921 };
922
923 pid_t task_numa_group_id(struct task_struct *p)
924 {
925 return p->numa_group ? p->numa_group->gid : 0;
926 }
927
928 static inline int task_faults_idx(int nid, int priv)
929 {
930 return 2 * nid + priv;
931 }
932
933 static inline unsigned long task_faults(struct task_struct *p, int nid)
934 {
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940 }
941
942 static inline unsigned long group_faults(struct task_struct *p, int nid)
943 {
944 if (!p->numa_group)
945 return 0;
946
947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
948 }
949
950 /*
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
955 */
956 static inline unsigned long task_weight(struct task_struct *p, int nid)
957 {
958 unsigned long total_faults;
959
960 if (!p->numa_faults)
961 return 0;
962
963 total_faults = p->total_numa_faults;
964
965 if (!total_faults)
966 return 0;
967
968 return 1000 * task_faults(p, nid) / total_faults;
969 }
970
971 static inline unsigned long group_weight(struct task_struct *p, int nid)
972 {
973 if (!p->numa_group || !p->numa_group->total_faults)
974 return 0;
975
976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
977 }
978
979 static unsigned long weighted_cpuload(const int cpu);
980 static unsigned long source_load(int cpu, int type);
981 static unsigned long target_load(int cpu, int type);
982 static unsigned long power_of(int cpu);
983 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
984
985 /* Cached statistics for all CPUs within a node */
986 struct numa_stats {
987 unsigned long nr_running;
988 unsigned long load;
989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
996 };
997
998 /*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001 static void update_numa_stats(struct numa_stats *ns, int nid)
1002 {
1003 int cpu, cpus = 0;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012
1013 cpus++;
1014 }
1015
1016 /*
1017 * If we raced with hotplug and there are no CPUs left in our mask
1018 * the @ns structure is NULL'ed and task_numa_compare() will
1019 * not find this node attractive.
1020 *
1021 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1022 * and bail there.
1023 */
1024 if (!cpus)
1025 return;
1026
1027 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1028 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1029 ns->has_capacity = (ns->nr_running < ns->capacity);
1030 }
1031
1032 struct task_numa_env {
1033 struct task_struct *p;
1034
1035 int src_cpu, src_nid;
1036 int dst_cpu, dst_nid;
1037
1038 struct numa_stats src_stats, dst_stats;
1039
1040 int imbalance_pct, idx;
1041
1042 struct task_struct *best_task;
1043 long best_imp;
1044 int best_cpu;
1045 };
1046
1047 static void task_numa_assign(struct task_numa_env *env,
1048 struct task_struct *p, long imp)
1049 {
1050 if (env->best_task)
1051 put_task_struct(env->best_task);
1052 if (p)
1053 get_task_struct(p);
1054
1055 env->best_task = p;
1056 env->best_imp = imp;
1057 env->best_cpu = env->dst_cpu;
1058 }
1059
1060 /*
1061 * This checks if the overall compute and NUMA accesses of the system would
1062 * be improved if the source tasks was migrated to the target dst_cpu taking
1063 * into account that it might be best if task running on the dst_cpu should
1064 * be exchanged with the source task
1065 */
1066 static void task_numa_compare(struct task_numa_env *env,
1067 long taskimp, long groupimp)
1068 {
1069 struct rq *src_rq = cpu_rq(env->src_cpu);
1070 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1071 struct task_struct *cur;
1072 long dst_load, src_load;
1073 long load;
1074 long imp = (groupimp > 0) ? groupimp : taskimp;
1075
1076 rcu_read_lock();
1077 cur = ACCESS_ONCE(dst_rq->curr);
1078 if (cur->pid == 0) /* idle */
1079 cur = NULL;
1080
1081 /*
1082 * "imp" is the fault differential for the source task between the
1083 * source and destination node. Calculate the total differential for
1084 * the source task and potential destination task. The more negative
1085 * the value is, the more rmeote accesses that would be expected to
1086 * be incurred if the tasks were swapped.
1087 */
1088 if (cur) {
1089 /* Skip this swap candidate if cannot move to the source cpu */
1090 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1091 goto unlock;
1092
1093 /*
1094 * If dst and source tasks are in the same NUMA group, or not
1095 * in any group then look only at task weights.
1096 */
1097 if (cur->numa_group == env->p->numa_group) {
1098 imp = taskimp + task_weight(cur, env->src_nid) -
1099 task_weight(cur, env->dst_nid);
1100 /*
1101 * Add some hysteresis to prevent swapping the
1102 * tasks within a group over tiny differences.
1103 */
1104 if (cur->numa_group)
1105 imp -= imp/16;
1106 } else {
1107 /*
1108 * Compare the group weights. If a task is all by
1109 * itself (not part of a group), use the task weight
1110 * instead.
1111 */
1112 if (env->p->numa_group)
1113 imp = groupimp;
1114 else
1115 imp = taskimp;
1116
1117 if (cur->numa_group)
1118 imp += group_weight(cur, env->src_nid) -
1119 group_weight(cur, env->dst_nid);
1120 else
1121 imp += task_weight(cur, env->src_nid) -
1122 task_weight(cur, env->dst_nid);
1123 }
1124 }
1125
1126 if (imp < env->best_imp)
1127 goto unlock;
1128
1129 if (!cur) {
1130 /* Is there capacity at our destination? */
1131 if (env->src_stats.has_capacity &&
1132 !env->dst_stats.has_capacity)
1133 goto unlock;
1134
1135 goto balance;
1136 }
1137
1138 /* Balance doesn't matter much if we're running a task per cpu */
1139 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1140 goto assign;
1141
1142 /*
1143 * In the overloaded case, try and keep the load balanced.
1144 */
1145 balance:
1146 dst_load = env->dst_stats.load;
1147 src_load = env->src_stats.load;
1148
1149 /* XXX missing power terms */
1150 load = task_h_load(env->p);
1151 dst_load += load;
1152 src_load -= load;
1153
1154 if (cur) {
1155 load = task_h_load(cur);
1156 dst_load -= load;
1157 src_load += load;
1158 }
1159
1160 /* make src_load the smaller */
1161 if (dst_load < src_load)
1162 swap(dst_load, src_load);
1163
1164 if (src_load * env->imbalance_pct < dst_load * 100)
1165 goto unlock;
1166
1167 assign:
1168 task_numa_assign(env, cur, imp);
1169 unlock:
1170 rcu_read_unlock();
1171 }
1172
1173 static void task_numa_find_cpu(struct task_numa_env *env,
1174 long taskimp, long groupimp)
1175 {
1176 int cpu;
1177
1178 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1179 /* Skip this CPU if the source task cannot migrate */
1180 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1181 continue;
1182
1183 env->dst_cpu = cpu;
1184 task_numa_compare(env, taskimp, groupimp);
1185 }
1186 }
1187
1188 static int task_numa_migrate(struct task_struct *p)
1189 {
1190 struct task_numa_env env = {
1191 .p = p,
1192
1193 .src_cpu = task_cpu(p),
1194 .src_nid = task_node(p),
1195
1196 .imbalance_pct = 112,
1197
1198 .best_task = NULL,
1199 .best_imp = 0,
1200 .best_cpu = -1
1201 };
1202 struct sched_domain *sd;
1203 unsigned long taskweight, groupweight;
1204 int nid, ret;
1205 long taskimp, groupimp;
1206
1207 /*
1208 * Pick the lowest SD_NUMA domain, as that would have the smallest
1209 * imbalance and would be the first to start moving tasks about.
1210 *
1211 * And we want to avoid any moving of tasks about, as that would create
1212 * random movement of tasks -- counter the numa conditions we're trying
1213 * to satisfy here.
1214 */
1215 rcu_read_lock();
1216 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1217 if (sd)
1218 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1219 rcu_read_unlock();
1220
1221 /*
1222 * Cpusets can break the scheduler domain tree into smaller
1223 * balance domains, some of which do not cross NUMA boundaries.
1224 * Tasks that are "trapped" in such domains cannot be migrated
1225 * elsewhere, so there is no point in (re)trying.
1226 */
1227 if (unlikely(!sd)) {
1228 p->numa_preferred_nid = cpu_to_node(task_cpu(p));
1229 return -EINVAL;
1230 }
1231
1232 taskweight = task_weight(p, env.src_nid);
1233 groupweight = group_weight(p, env.src_nid);
1234 update_numa_stats(&env.src_stats, env.src_nid);
1235 env.dst_nid = p->numa_preferred_nid;
1236 taskimp = task_weight(p, env.dst_nid) - taskweight;
1237 groupimp = group_weight(p, env.dst_nid) - groupweight;
1238 update_numa_stats(&env.dst_stats, env.dst_nid);
1239
1240 /* If the preferred nid has capacity, try to use it. */
1241 if (env.dst_stats.has_capacity)
1242 task_numa_find_cpu(&env, taskimp, groupimp);
1243
1244 /* No space available on the preferred nid. Look elsewhere. */
1245 if (env.best_cpu == -1) {
1246 for_each_online_node(nid) {
1247 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1248 continue;
1249
1250 /* Only consider nodes where both task and groups benefit */
1251 taskimp = task_weight(p, nid) - taskweight;
1252 groupimp = group_weight(p, nid) - groupweight;
1253 if (taskimp < 0 && groupimp < 0)
1254 continue;
1255
1256 env.dst_nid = nid;
1257 update_numa_stats(&env.dst_stats, env.dst_nid);
1258 task_numa_find_cpu(&env, taskimp, groupimp);
1259 }
1260 }
1261
1262 /* No better CPU than the current one was found. */
1263 if (env.best_cpu == -1)
1264 return -EAGAIN;
1265
1266 sched_setnuma(p, env.dst_nid);
1267
1268 /*
1269 * Reset the scan period if the task is being rescheduled on an
1270 * alternative node to recheck if the tasks is now properly placed.
1271 */
1272 p->numa_scan_period = task_scan_min(p);
1273
1274 if (env.best_task == NULL) {
1275 int ret = migrate_task_to(p, env.best_cpu);
1276 return ret;
1277 }
1278
1279 ret = migrate_swap(p, env.best_task);
1280 put_task_struct(env.best_task);
1281 return ret;
1282 }
1283
1284 /* Attempt to migrate a task to a CPU on the preferred node. */
1285 static void numa_migrate_preferred(struct task_struct *p)
1286 {
1287 /* This task has no NUMA fault statistics yet */
1288 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1289 return;
1290
1291 /* Periodically retry migrating the task to the preferred node */
1292 p->numa_migrate_retry = jiffies + HZ;
1293
1294 /* Success if task is already running on preferred CPU */
1295 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
1296 return;
1297
1298 /* Otherwise, try migrate to a CPU on the preferred node */
1299 task_numa_migrate(p);
1300 }
1301
1302 /*
1303 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1304 * increments. The more local the fault statistics are, the higher the scan
1305 * period will be for the next scan window. If local/remote ratio is below
1306 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1307 * scan period will decrease
1308 */
1309 #define NUMA_PERIOD_SLOTS 10
1310 #define NUMA_PERIOD_THRESHOLD 3
1311
1312 /*
1313 * Increase the scan period (slow down scanning) if the majority of
1314 * our memory is already on our local node, or if the majority of
1315 * the page accesses are shared with other processes.
1316 * Otherwise, decrease the scan period.
1317 */
1318 static void update_task_scan_period(struct task_struct *p,
1319 unsigned long shared, unsigned long private)
1320 {
1321 unsigned int period_slot;
1322 int ratio;
1323 int diff;
1324
1325 unsigned long remote = p->numa_faults_locality[0];
1326 unsigned long local = p->numa_faults_locality[1];
1327
1328 /*
1329 * If there were no record hinting faults then either the task is
1330 * completely idle or all activity is areas that are not of interest
1331 * to automatic numa balancing. Scan slower
1332 */
1333 if (local + shared == 0) {
1334 p->numa_scan_period = min(p->numa_scan_period_max,
1335 p->numa_scan_period << 1);
1336
1337 p->mm->numa_next_scan = jiffies +
1338 msecs_to_jiffies(p->numa_scan_period);
1339
1340 return;
1341 }
1342
1343 /*
1344 * Prepare to scale scan period relative to the current period.
1345 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1346 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1347 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1348 */
1349 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1350 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1351 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1352 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1353 if (!slot)
1354 slot = 1;
1355 diff = slot * period_slot;
1356 } else {
1357 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1358
1359 /*
1360 * Scale scan rate increases based on sharing. There is an
1361 * inverse relationship between the degree of sharing and
1362 * the adjustment made to the scanning period. Broadly
1363 * speaking the intent is that there is little point
1364 * scanning faster if shared accesses dominate as it may
1365 * simply bounce migrations uselessly
1366 */
1367 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1368 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1369 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1370 }
1371
1372 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1373 task_scan_min(p), task_scan_max(p));
1374 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1375 }
1376
1377 static void task_numa_placement(struct task_struct *p)
1378 {
1379 int seq, nid, max_nid = -1, max_group_nid = -1;
1380 unsigned long max_faults = 0, max_group_faults = 0;
1381 unsigned long fault_types[2] = { 0, 0 };
1382 spinlock_t *group_lock = NULL;
1383
1384 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1385 if (p->numa_scan_seq == seq)
1386 return;
1387 p->numa_scan_seq = seq;
1388 p->numa_scan_period_max = task_scan_max(p);
1389
1390 /* If the task is part of a group prevent parallel updates to group stats */
1391 if (p->numa_group) {
1392 group_lock = &p->numa_group->lock;
1393 spin_lock(group_lock);
1394 }
1395
1396 /* Find the node with the highest number of faults */
1397 for_each_online_node(nid) {
1398 unsigned long faults = 0, group_faults = 0;
1399 int priv, i;
1400
1401 for (priv = 0; priv < 2; priv++) {
1402 long diff;
1403
1404 i = task_faults_idx(nid, priv);
1405 diff = -p->numa_faults[i];
1406
1407 /* Decay existing window, copy faults since last scan */
1408 p->numa_faults[i] >>= 1;
1409 p->numa_faults[i] += p->numa_faults_buffer[i];
1410 fault_types[priv] += p->numa_faults_buffer[i];
1411 p->numa_faults_buffer[i] = 0;
1412
1413 faults += p->numa_faults[i];
1414 diff += p->numa_faults[i];
1415 p->total_numa_faults += diff;
1416 if (p->numa_group) {
1417 /* safe because we can only change our own group */
1418 p->numa_group->faults[i] += diff;
1419 p->numa_group->total_faults += diff;
1420 group_faults += p->numa_group->faults[i];
1421 }
1422 }
1423
1424 if (faults > max_faults) {
1425 max_faults = faults;
1426 max_nid = nid;
1427 }
1428
1429 if (group_faults > max_group_faults) {
1430 max_group_faults = group_faults;
1431 max_group_nid = nid;
1432 }
1433 }
1434
1435 update_task_scan_period(p, fault_types[0], fault_types[1]);
1436
1437 if (p->numa_group) {
1438 /*
1439 * If the preferred task and group nids are different,
1440 * iterate over the nodes again to find the best place.
1441 */
1442 if (max_nid != max_group_nid) {
1443 unsigned long weight, max_weight = 0;
1444
1445 for_each_online_node(nid) {
1446 weight = task_weight(p, nid) + group_weight(p, nid);
1447 if (weight > max_weight) {
1448 max_weight = weight;
1449 max_nid = nid;
1450 }
1451 }
1452 }
1453
1454 spin_unlock(group_lock);
1455 }
1456
1457 /* Preferred node as the node with the most faults */
1458 if (max_faults && max_nid != p->numa_preferred_nid) {
1459 /* Update the preferred nid and migrate task if possible */
1460 sched_setnuma(p, max_nid);
1461 numa_migrate_preferred(p);
1462 }
1463 }
1464
1465 static inline int get_numa_group(struct numa_group *grp)
1466 {
1467 return atomic_inc_not_zero(&grp->refcount);
1468 }
1469
1470 static inline void put_numa_group(struct numa_group *grp)
1471 {
1472 if (atomic_dec_and_test(&grp->refcount))
1473 kfree_rcu(grp, rcu);
1474 }
1475
1476 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1477 int *priv)
1478 {
1479 struct numa_group *grp, *my_grp;
1480 struct task_struct *tsk;
1481 bool join = false;
1482 int cpu = cpupid_to_cpu(cpupid);
1483 int i;
1484
1485 if (unlikely(!p->numa_group)) {
1486 unsigned int size = sizeof(struct numa_group) +
1487 2*nr_node_ids*sizeof(unsigned long);
1488
1489 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1490 if (!grp)
1491 return;
1492
1493 atomic_set(&grp->refcount, 1);
1494 spin_lock_init(&grp->lock);
1495 INIT_LIST_HEAD(&grp->task_list);
1496 grp->gid = p->pid;
1497
1498 for (i = 0; i < 2*nr_node_ids; i++)
1499 grp->faults[i] = p->numa_faults[i];
1500
1501 grp->total_faults = p->total_numa_faults;
1502
1503 list_add(&p->numa_entry, &grp->task_list);
1504 grp->nr_tasks++;
1505 rcu_assign_pointer(p->numa_group, grp);
1506 }
1507
1508 rcu_read_lock();
1509 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1510
1511 if (!cpupid_match_pid(tsk, cpupid))
1512 goto no_join;
1513
1514 grp = rcu_dereference(tsk->numa_group);
1515 if (!grp)
1516 goto no_join;
1517
1518 my_grp = p->numa_group;
1519 if (grp == my_grp)
1520 goto no_join;
1521
1522 /*
1523 * Only join the other group if its bigger; if we're the bigger group,
1524 * the other task will join us.
1525 */
1526 if (my_grp->nr_tasks > grp->nr_tasks)
1527 goto no_join;
1528
1529 /*
1530 * Tie-break on the grp address.
1531 */
1532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1533 goto no_join;
1534
1535 /* Always join threads in the same process. */
1536 if (tsk->mm == current->mm)
1537 join = true;
1538
1539 /* Simple filter to avoid false positives due to PID collisions */
1540 if (flags & TNF_SHARED)
1541 join = true;
1542
1543 /* Update priv based on whether false sharing was detected */
1544 *priv = !join;
1545
1546 if (join && !get_numa_group(grp))
1547 goto no_join;
1548
1549 rcu_read_unlock();
1550
1551 if (!join)
1552 return;
1553
1554 double_lock(&my_grp->lock, &grp->lock);
1555
1556 for (i = 0; i < 2*nr_node_ids; i++) {
1557 my_grp->faults[i] -= p->numa_faults[i];
1558 grp->faults[i] += p->numa_faults[i];
1559 }
1560 my_grp->total_faults -= p->total_numa_faults;
1561 grp->total_faults += p->total_numa_faults;
1562
1563 list_move(&p->numa_entry, &grp->task_list);
1564 my_grp->nr_tasks--;
1565 grp->nr_tasks++;
1566
1567 spin_unlock(&my_grp->lock);
1568 spin_unlock(&grp->lock);
1569
1570 rcu_assign_pointer(p->numa_group, grp);
1571
1572 put_numa_group(my_grp);
1573 return;
1574
1575 no_join:
1576 rcu_read_unlock();
1577 return;
1578 }
1579
1580 void task_numa_free(struct task_struct *p)
1581 {
1582 struct numa_group *grp = p->numa_group;
1583 int i;
1584 void *numa_faults = p->numa_faults;
1585
1586 if (grp) {
1587 spin_lock(&grp->lock);
1588 for (i = 0; i < 2*nr_node_ids; i++)
1589 grp->faults[i] -= p->numa_faults[i];
1590 grp->total_faults -= p->total_numa_faults;
1591
1592 list_del(&p->numa_entry);
1593 grp->nr_tasks--;
1594 spin_unlock(&grp->lock);
1595 rcu_assign_pointer(p->numa_group, NULL);
1596 put_numa_group(grp);
1597 }
1598
1599 p->numa_faults = NULL;
1600 p->numa_faults_buffer = NULL;
1601 kfree(numa_faults);
1602 }
1603
1604 /*
1605 * Got a PROT_NONE fault for a page on @node.
1606 */
1607 void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1608 {
1609 struct task_struct *p = current;
1610 bool migrated = flags & TNF_MIGRATED;
1611 int priv;
1612
1613 if (!numabalancing_enabled)
1614 return;
1615
1616 /* for example, ksmd faulting in a user's mm */
1617 if (!p->mm)
1618 return;
1619
1620 /* Do not worry about placement if exiting */
1621 if (p->state == TASK_DEAD)
1622 return;
1623
1624 /* Allocate buffer to track faults on a per-node basis */
1625 if (unlikely(!p->numa_faults)) {
1626 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1627
1628 /* numa_faults and numa_faults_buffer share the allocation */
1629 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1630 if (!p->numa_faults)
1631 return;
1632
1633 BUG_ON(p->numa_faults_buffer);
1634 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1635 p->total_numa_faults = 0;
1636 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1637 }
1638
1639 /*
1640 * First accesses are treated as private, otherwise consider accesses
1641 * to be private if the accessing pid has not changed
1642 */
1643 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1644 priv = 1;
1645 } else {
1646 priv = cpupid_match_pid(p, last_cpupid);
1647 if (!priv && !(flags & TNF_NO_GROUP))
1648 task_numa_group(p, last_cpupid, flags, &priv);
1649 }
1650
1651 task_numa_placement(p);
1652
1653 /*
1654 * Retry task to preferred node migration periodically, in case it
1655 * case it previously failed, or the scheduler moved us.
1656 */
1657 if (time_after(jiffies, p->numa_migrate_retry))
1658 numa_migrate_preferred(p);
1659
1660 if (migrated)
1661 p->numa_pages_migrated += pages;
1662
1663 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1664 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1665 }
1666
1667 static void reset_ptenuma_scan(struct task_struct *p)
1668 {
1669 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1670 p->mm->numa_scan_offset = 0;
1671 }
1672
1673 /*
1674 * The expensive part of numa migration is done from task_work context.
1675 * Triggered from task_tick_numa().
1676 */
1677 void task_numa_work(struct callback_head *work)
1678 {
1679 unsigned long migrate, next_scan, now = jiffies;
1680 struct task_struct *p = current;
1681 struct mm_struct *mm = p->mm;
1682 struct vm_area_struct *vma;
1683 unsigned long start, end;
1684 unsigned long nr_pte_updates = 0;
1685 long pages;
1686
1687 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1688
1689 work->next = work; /* protect against double add */
1690 /*
1691 * Who cares about NUMA placement when they're dying.
1692 *
1693 * NOTE: make sure not to dereference p->mm before this check,
1694 * exit_task_work() happens _after_ exit_mm() so we could be called
1695 * without p->mm even though we still had it when we enqueued this
1696 * work.
1697 */
1698 if (p->flags & PF_EXITING)
1699 return;
1700
1701 if (!mm->numa_next_scan) {
1702 mm->numa_next_scan = now +
1703 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1704 }
1705
1706 /*
1707 * Enforce maximal scan/migration frequency..
1708 */
1709 migrate = mm->numa_next_scan;
1710 if (time_before(now, migrate))
1711 return;
1712
1713 if (p->numa_scan_period == 0) {
1714 p->numa_scan_period_max = task_scan_max(p);
1715 p->numa_scan_period = task_scan_min(p);
1716 }
1717
1718 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1719 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1720 return;
1721
1722 /*
1723 * Delay this task enough that another task of this mm will likely win
1724 * the next time around.
1725 */
1726 p->node_stamp += 2 * TICK_NSEC;
1727
1728 start = mm->numa_scan_offset;
1729 pages = sysctl_numa_balancing_scan_size;
1730 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1731 if (!pages)
1732 return;
1733
1734 down_read(&mm->mmap_sem);
1735 vma = find_vma(mm, start);
1736 if (!vma) {
1737 reset_ptenuma_scan(p);
1738 start = 0;
1739 vma = mm->mmap;
1740 }
1741 for (; vma; vma = vma->vm_next) {
1742 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1743 continue;
1744
1745 /*
1746 * Shared library pages mapped by multiple processes are not
1747 * migrated as it is expected they are cache replicated. Avoid
1748 * hinting faults in read-only file-backed mappings or the vdso
1749 * as migrating the pages will be of marginal benefit.
1750 */
1751 if (!vma->vm_mm ||
1752 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1753 continue;
1754
1755 do {
1756 start = max(start, vma->vm_start);
1757 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1758 end = min(end, vma->vm_end);
1759 nr_pte_updates += change_prot_numa(vma, start, end);
1760
1761 /*
1762 * Scan sysctl_numa_balancing_scan_size but ensure that
1763 * at least one PTE is updated so that unused virtual
1764 * address space is quickly skipped.
1765 */
1766 if (nr_pte_updates)
1767 pages -= (end - start) >> PAGE_SHIFT;
1768
1769 start = end;
1770 if (pages <= 0)
1771 goto out;
1772 } while (end != vma->vm_end);
1773 }
1774
1775 out:
1776 /*
1777 * It is possible to reach the end of the VMA list but the last few
1778 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1779 * would find the !migratable VMA on the next scan but not reset the
1780 * scanner to the start so check it now.
1781 */
1782 if (vma)
1783 mm->numa_scan_offset = start;
1784 else
1785 reset_ptenuma_scan(p);
1786 up_read(&mm->mmap_sem);
1787 }
1788
1789 /*
1790 * Drive the periodic memory faults..
1791 */
1792 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1793 {
1794 struct callback_head *work = &curr->numa_work;
1795 u64 period, now;
1796
1797 /*
1798 * We don't care about NUMA placement if we don't have memory.
1799 */
1800 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1801 return;
1802
1803 /*
1804 * Using runtime rather than walltime has the dual advantage that
1805 * we (mostly) drive the selection from busy threads and that the
1806 * task needs to have done some actual work before we bother with
1807 * NUMA placement.
1808 */
1809 now = curr->se.sum_exec_runtime;
1810 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1811
1812 if (now - curr->node_stamp > period) {
1813 if (!curr->node_stamp)
1814 curr->numa_scan_period = task_scan_min(curr);
1815 curr->node_stamp += period;
1816
1817 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1818 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1819 task_work_add(curr, work, true);
1820 }
1821 }
1822 }
1823 #else
1824 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1825 {
1826 }
1827
1828 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1829 {
1830 }
1831
1832 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1833 {
1834 }
1835 #endif /* CONFIG_NUMA_BALANCING */
1836
1837 static void
1838 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1839 {
1840 update_load_add(&cfs_rq->load, se->load.weight);
1841 if (!parent_entity(se))
1842 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1843 #ifdef CONFIG_SMP
1844 if (entity_is_task(se)) {
1845 struct rq *rq = rq_of(cfs_rq);
1846
1847 account_numa_enqueue(rq, task_of(se));
1848 list_add(&se->group_node, &rq->cfs_tasks);
1849 }
1850 #endif
1851 cfs_rq->nr_running++;
1852 }
1853
1854 static void
1855 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1856 {
1857 update_load_sub(&cfs_rq->load, se->load.weight);
1858 if (!parent_entity(se))
1859 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1860 if (entity_is_task(se)) {
1861 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1862 list_del_init(&se->group_node);
1863 }
1864 cfs_rq->nr_running--;
1865 }
1866
1867 #ifdef CONFIG_FAIR_GROUP_SCHED
1868 # ifdef CONFIG_SMP
1869 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1870 {
1871 long tg_weight;
1872
1873 /*
1874 * Use this CPU's actual weight instead of the last load_contribution
1875 * to gain a more accurate current total weight. See
1876 * update_cfs_rq_load_contribution().
1877 */
1878 tg_weight = atomic_long_read(&tg->load_avg);
1879 tg_weight -= cfs_rq->tg_load_contrib;
1880 tg_weight += cfs_rq->load.weight;
1881
1882 return tg_weight;
1883 }
1884
1885 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1886 {
1887 long tg_weight, load, shares;
1888
1889 tg_weight = calc_tg_weight(tg, cfs_rq);
1890 load = cfs_rq->load.weight;
1891
1892 shares = (tg->shares * load);
1893 if (tg_weight)
1894 shares /= tg_weight;
1895
1896 if (shares < MIN_SHARES)
1897 shares = MIN_SHARES;
1898 if (shares > tg->shares)
1899 shares = tg->shares;
1900
1901 return shares;
1902 }
1903 # else /* CONFIG_SMP */
1904 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1905 {
1906 return tg->shares;
1907 }
1908 # endif /* CONFIG_SMP */
1909 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1910 unsigned long weight)
1911 {
1912 if (se->on_rq) {
1913 /* commit outstanding execution time */
1914 if (cfs_rq->curr == se)
1915 update_curr(cfs_rq);
1916 account_entity_dequeue(cfs_rq, se);
1917 }
1918
1919 update_load_set(&se->load, weight);
1920
1921 if (se->on_rq)
1922 account_entity_enqueue(cfs_rq, se);
1923 }
1924
1925 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1926
1927 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1928 {
1929 struct task_group *tg;
1930 struct sched_entity *se;
1931 long shares;
1932
1933 tg = cfs_rq->tg;
1934 se = tg->se[cpu_of(rq_of(cfs_rq))];
1935 if (!se || throttled_hierarchy(cfs_rq))
1936 return;
1937 #ifndef CONFIG_SMP
1938 if (likely(se->load.weight == tg->shares))
1939 return;
1940 #endif
1941 shares = calc_cfs_shares(cfs_rq, tg);
1942
1943 reweight_entity(cfs_rq_of(se), se, shares);
1944 }
1945 #else /* CONFIG_FAIR_GROUP_SCHED */
1946 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1947 {
1948 }
1949 #endif /* CONFIG_FAIR_GROUP_SCHED */
1950
1951 #ifdef CONFIG_SMP
1952 /*
1953 * We choose a half-life close to 1 scheduling period.
1954 * Note: The tables below are dependent on this value.
1955 */
1956 #define LOAD_AVG_PERIOD 32
1957 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1958 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1959
1960 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1961 static const u32 runnable_avg_yN_inv[] = {
1962 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1963 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1964 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1965 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1966 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1967 0x85aac367, 0x82cd8698,
1968 };
1969
1970 /*
1971 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1972 * over-estimates when re-combining.
1973 */
1974 static const u32 runnable_avg_yN_sum[] = {
1975 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1976 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1977 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1978 };
1979
1980 /*
1981 * Approximate:
1982 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1983 */
1984 static __always_inline u64 decay_load(u64 val, u64 n)
1985 {
1986 unsigned int local_n;
1987
1988 if (!n)
1989 return val;
1990 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1991 return 0;
1992
1993 /* after bounds checking we can collapse to 32-bit */
1994 local_n = n;
1995
1996 /*
1997 * As y^PERIOD = 1/2, we can combine
1998 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1999 * With a look-up table which covers k^n (n<PERIOD)
2000 *
2001 * To achieve constant time decay_load.
2002 */
2003 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2004 val >>= local_n / LOAD_AVG_PERIOD;
2005 local_n %= LOAD_AVG_PERIOD;
2006 }
2007
2008 val *= runnable_avg_yN_inv[local_n];
2009 /* We don't use SRR here since we always want to round down. */
2010 return val >> 32;
2011 }
2012
2013 /*
2014 * For updates fully spanning n periods, the contribution to runnable
2015 * average will be: \Sum 1024*y^n
2016 *
2017 * We can compute this reasonably efficiently by combining:
2018 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2019 */
2020 static u32 __compute_runnable_contrib(u64 n)
2021 {
2022 u32 contrib = 0;
2023
2024 if (likely(n <= LOAD_AVG_PERIOD))
2025 return runnable_avg_yN_sum[n];
2026 else if (unlikely(n >= LOAD_AVG_MAX_N))
2027 return LOAD_AVG_MAX;
2028
2029 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2030 do {
2031 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2032 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2033
2034 n -= LOAD_AVG_PERIOD;
2035 } while (n > LOAD_AVG_PERIOD);
2036
2037 contrib = decay_load(contrib, n);
2038 return contrib + runnable_avg_yN_sum[n];
2039 }
2040
2041 /*
2042 * We can represent the historical contribution to runnable average as the
2043 * coefficients of a geometric series. To do this we sub-divide our runnable
2044 * history into segments of approximately 1ms (1024us); label the segment that
2045 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2046 *
2047 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2048 * p0 p1 p2
2049 * (now) (~1ms ago) (~2ms ago)
2050 *
2051 * Let u_i denote the fraction of p_i that the entity was runnable.
2052 *
2053 * We then designate the fractions u_i as our co-efficients, yielding the
2054 * following representation of historical load:
2055 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2056 *
2057 * We choose y based on the with of a reasonably scheduling period, fixing:
2058 * y^32 = 0.5
2059 *
2060 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2061 * approximately half as much as the contribution to load within the last ms
2062 * (u_0).
2063 *
2064 * When a period "rolls over" and we have new u_0`, multiplying the previous
2065 * sum again by y is sufficient to update:
2066 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2067 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2068 */
2069 static __always_inline int __update_entity_runnable_avg(u64 now,
2070 struct sched_avg *sa,
2071 int runnable)
2072 {
2073 u64 delta, periods;
2074 u32 runnable_contrib;
2075 int delta_w, decayed = 0;
2076
2077 delta = now - sa->last_runnable_update;
2078 /*
2079 * This should only happen when time goes backwards, which it
2080 * unfortunately does during sched clock init when we swap over to TSC.
2081 */
2082 if ((s64)delta < 0) {
2083 sa->last_runnable_update = now;
2084 return 0;
2085 }
2086
2087 /*
2088 * Use 1024ns as the unit of measurement since it's a reasonable
2089 * approximation of 1us and fast to compute.
2090 */
2091 delta >>= 10;
2092 if (!delta)
2093 return 0;
2094 sa->last_runnable_update = now;
2095
2096 /* delta_w is the amount already accumulated against our next period */
2097 delta_w = sa->runnable_avg_period % 1024;
2098 if (delta + delta_w >= 1024) {
2099 /* period roll-over */
2100 decayed = 1;
2101
2102 /*
2103 * Now that we know we're crossing a period boundary, figure
2104 * out how much from delta we need to complete the current
2105 * period and accrue it.
2106 */
2107 delta_w = 1024 - delta_w;
2108 if (runnable)
2109 sa->runnable_avg_sum += delta_w;
2110 sa->runnable_avg_period += delta_w;
2111
2112 delta -= delta_w;
2113
2114 /* Figure out how many additional periods this update spans */
2115 periods = delta / 1024;
2116 delta %= 1024;
2117
2118 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2119 periods + 1);
2120 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2121 periods + 1);
2122
2123 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2124 runnable_contrib = __compute_runnable_contrib(periods);
2125 if (runnable)
2126 sa->runnable_avg_sum += runnable_contrib;
2127 sa->runnable_avg_period += runnable_contrib;
2128 }
2129
2130 /* Remainder of delta accrued against u_0` */
2131 if (runnable)
2132 sa->runnable_avg_sum += delta;
2133 sa->runnable_avg_period += delta;
2134
2135 return decayed;
2136 }
2137
2138 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2139 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2140 {
2141 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2142 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2143
2144 decays -= se->avg.decay_count;
2145 if (!decays)
2146 return 0;
2147
2148 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2149 se->avg.decay_count = 0;
2150
2151 return decays;
2152 }
2153
2154 #ifdef CONFIG_FAIR_GROUP_SCHED
2155 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2156 int force_update)
2157 {
2158 struct task_group *tg = cfs_rq->tg;
2159 long tg_contrib;
2160
2161 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2162 tg_contrib -= cfs_rq->tg_load_contrib;
2163
2164 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2165 atomic_long_add(tg_contrib, &tg->load_avg);
2166 cfs_rq->tg_load_contrib += tg_contrib;
2167 }
2168 }
2169
2170 /*
2171 * Aggregate cfs_rq runnable averages into an equivalent task_group
2172 * representation for computing load contributions.
2173 */
2174 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2175 struct cfs_rq *cfs_rq)
2176 {
2177 struct task_group *tg = cfs_rq->tg;
2178 long contrib;
2179
2180 /* The fraction of a cpu used by this cfs_rq */
2181 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2182 sa->runnable_avg_period + 1);
2183 contrib -= cfs_rq->tg_runnable_contrib;
2184
2185 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2186 atomic_add(contrib, &tg->runnable_avg);
2187 cfs_rq->tg_runnable_contrib += contrib;
2188 }
2189 }
2190
2191 static inline void __update_group_entity_contrib(struct sched_entity *se)
2192 {
2193 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2194 struct task_group *tg = cfs_rq->tg;
2195 int runnable_avg;
2196
2197 u64 contrib;
2198
2199 contrib = cfs_rq->tg_load_contrib * tg->shares;
2200 se->avg.load_avg_contrib = div_u64(contrib,
2201 atomic_long_read(&tg->load_avg) + 1);
2202
2203 /*
2204 * For group entities we need to compute a correction term in the case
2205 * that they are consuming <1 cpu so that we would contribute the same
2206 * load as a task of equal weight.
2207 *
2208 * Explicitly co-ordinating this measurement would be expensive, but
2209 * fortunately the sum of each cpus contribution forms a usable
2210 * lower-bound on the true value.
2211 *
2212 * Consider the aggregate of 2 contributions. Either they are disjoint
2213 * (and the sum represents true value) or they are disjoint and we are
2214 * understating by the aggregate of their overlap.
2215 *
2216 * Extending this to N cpus, for a given overlap, the maximum amount we
2217 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2218 * cpus that overlap for this interval and w_i is the interval width.
2219 *
2220 * On a small machine; the first term is well-bounded which bounds the
2221 * total error since w_i is a subset of the period. Whereas on a
2222 * larger machine, while this first term can be larger, if w_i is the
2223 * of consequential size guaranteed to see n_i*w_i quickly converge to
2224 * our upper bound of 1-cpu.
2225 */
2226 runnable_avg = atomic_read(&tg->runnable_avg);
2227 if (runnable_avg < NICE_0_LOAD) {
2228 se->avg.load_avg_contrib *= runnable_avg;
2229 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2230 }
2231 }
2232 #else
2233 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2234 int force_update) {}
2235 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2236 struct cfs_rq *cfs_rq) {}
2237 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2238 #endif
2239
2240 static inline void __update_task_entity_contrib(struct sched_entity *se)
2241 {
2242 u32 contrib;
2243
2244 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2245 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2246 contrib /= (se->avg.runnable_avg_period + 1);
2247 se->avg.load_avg_contrib = scale_load(contrib);
2248 }
2249
2250 /* Compute the current contribution to load_avg by se, return any delta */
2251 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2252 {
2253 long old_contrib = se->avg.load_avg_contrib;
2254
2255 if (entity_is_task(se)) {
2256 __update_task_entity_contrib(se);
2257 } else {
2258 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2259 __update_group_entity_contrib(se);
2260 }
2261
2262 return se->avg.load_avg_contrib - old_contrib;
2263 }
2264
2265 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2266 long load_contrib)
2267 {
2268 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2269 cfs_rq->blocked_load_avg -= load_contrib;
2270 else
2271 cfs_rq->blocked_load_avg = 0;
2272 }
2273
2274 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2275
2276 /* Update a sched_entity's runnable average */
2277 static inline void update_entity_load_avg(struct sched_entity *se,
2278 int update_cfs_rq)
2279 {
2280 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2281 long contrib_delta;
2282 u64 now;
2283
2284 /*
2285 * For a group entity we need to use their owned cfs_rq_clock_task() in
2286 * case they are the parent of a throttled hierarchy.
2287 */
2288 if (entity_is_task(se))
2289 now = cfs_rq_clock_task(cfs_rq);
2290 else
2291 now = cfs_rq_clock_task(group_cfs_rq(se));
2292
2293 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2294 return;
2295
2296 contrib_delta = __update_entity_load_avg_contrib(se);
2297
2298 if (!update_cfs_rq)
2299 return;
2300
2301 if (se->on_rq)
2302 cfs_rq->runnable_load_avg += contrib_delta;
2303 else
2304 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2305 }
2306
2307 /*
2308 * Decay the load contributed by all blocked children and account this so that
2309 * their contribution may appropriately discounted when they wake up.
2310 */
2311 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2312 {
2313 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2314 u64 decays;
2315
2316 decays = now - cfs_rq->last_decay;
2317 if (!decays && !force_update)
2318 return;
2319
2320 if (atomic_long_read(&cfs_rq->removed_load)) {
2321 unsigned long removed_load;
2322 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2323 subtract_blocked_load_contrib(cfs_rq, removed_load);
2324 }
2325
2326 if (decays) {
2327 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2328 decays);
2329 atomic64_add(decays, &cfs_rq->decay_counter);
2330 cfs_rq->last_decay = now;
2331 }
2332
2333 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2334 }
2335
2336 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2337 {
2338 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2339 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2340 }
2341
2342 /* Add the load generated by se into cfs_rq's child load-average */
2343 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2344 struct sched_entity *se,
2345 int wakeup)
2346 {
2347 /*
2348 * We track migrations using entity decay_count <= 0, on a wake-up
2349 * migration we use a negative decay count to track the remote decays
2350 * accumulated while sleeping.
2351 *
2352 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2353 * are seen by enqueue_entity_load_avg() as a migration with an already
2354 * constructed load_avg_contrib.
2355 */
2356 if (unlikely(se->avg.decay_count <= 0)) {
2357 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2358 if (se->avg.decay_count) {
2359 /*
2360 * In a wake-up migration we have to approximate the
2361 * time sleeping. This is because we can't synchronize
2362 * clock_task between the two cpus, and it is not
2363 * guaranteed to be read-safe. Instead, we can
2364 * approximate this using our carried decays, which are
2365 * explicitly atomically readable.
2366 */
2367 se->avg.last_runnable_update -= (-se->avg.decay_count)
2368 << 20;
2369 update_entity_load_avg(se, 0);
2370 /* Indicate that we're now synchronized and on-rq */
2371 se->avg.decay_count = 0;
2372 }
2373 wakeup = 0;
2374 } else {
2375 /*
2376 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2377 * would have made count negative); we must be careful to avoid
2378 * double-accounting blocked time after synchronizing decays.
2379 */
2380 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2381 << 20;
2382 }
2383
2384 /* migrated tasks did not contribute to our blocked load */
2385 if (wakeup) {
2386 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2387 update_entity_load_avg(se, 0);
2388 }
2389
2390 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2391 /* we force update consideration on load-balancer moves */
2392 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2393 }
2394
2395 /*
2396 * Remove se's load from this cfs_rq child load-average, if the entity is
2397 * transitioning to a blocked state we track its projected decay using
2398 * blocked_load_avg.
2399 */
2400 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2401 struct sched_entity *se,
2402 int sleep)
2403 {
2404 update_entity_load_avg(se, 1);
2405 /* we force update consideration on load-balancer moves */
2406 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2407
2408 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2409 if (sleep) {
2410 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2411 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2412 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2413 }
2414
2415 /*
2416 * Update the rq's load with the elapsed running time before entering
2417 * idle. if the last scheduled task is not a CFS task, idle_enter will
2418 * be the only way to update the runnable statistic.
2419 */
2420 void idle_enter_fair(struct rq *this_rq)
2421 {
2422 update_rq_runnable_avg(this_rq, 1);
2423 }
2424
2425 /*
2426 * Update the rq's load with the elapsed idle time before a task is
2427 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2428 * be the only way to update the runnable statistic.
2429 */
2430 void idle_exit_fair(struct rq *this_rq)
2431 {
2432 update_rq_runnable_avg(this_rq, 0);
2433 }
2434
2435 #else
2436 static inline void update_entity_load_avg(struct sched_entity *se,
2437 int update_cfs_rq) {}
2438 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2439 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2440 struct sched_entity *se,
2441 int wakeup) {}
2442 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2443 struct sched_entity *se,
2444 int sleep) {}
2445 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2446 int force_update) {}
2447 #endif
2448
2449 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2450 {
2451 #ifdef CONFIG_SCHEDSTATS
2452 struct task_struct *tsk = NULL;
2453
2454 if (entity_is_task(se))
2455 tsk = task_of(se);
2456
2457 if (se->statistics.sleep_start) {
2458 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2459
2460 if ((s64)delta < 0)
2461 delta = 0;
2462
2463 if (unlikely(delta > se->statistics.sleep_max))
2464 se->statistics.sleep_max = delta;
2465
2466 se->statistics.sleep_start = 0;
2467 se->statistics.sum_sleep_runtime += delta;
2468
2469 if (tsk) {
2470 account_scheduler_latency(tsk, delta >> 10, 1);
2471 trace_sched_stat_sleep(tsk, delta);
2472 }
2473 }
2474 if (se->statistics.block_start) {
2475 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2476
2477 if ((s64)delta < 0)
2478 delta = 0;
2479
2480 if (unlikely(delta > se->statistics.block_max))
2481 se->statistics.block_max = delta;
2482
2483 se->statistics.block_start = 0;
2484 se->statistics.sum_sleep_runtime += delta;
2485
2486 if (tsk) {
2487 if (tsk->in_iowait) {
2488 se->statistics.iowait_sum += delta;
2489 se->statistics.iowait_count++;
2490 trace_sched_stat_iowait(tsk, delta);
2491 }
2492
2493 trace_sched_stat_blocked(tsk, delta);
2494
2495 /*
2496 * Blocking time is in units of nanosecs, so shift by
2497 * 20 to get a milliseconds-range estimation of the
2498 * amount of time that the task spent sleeping:
2499 */
2500 if (unlikely(prof_on == SLEEP_PROFILING)) {
2501 profile_hits(SLEEP_PROFILING,
2502 (void *)get_wchan(tsk),
2503 delta >> 20);
2504 }
2505 account_scheduler_latency(tsk, delta >> 10, 0);
2506 }
2507 }
2508 #endif
2509 }
2510
2511 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2512 {
2513 #ifdef CONFIG_SCHED_DEBUG
2514 s64 d = se->vruntime - cfs_rq->min_vruntime;
2515
2516 if (d < 0)
2517 d = -d;
2518
2519 if (d > 3*sysctl_sched_latency)
2520 schedstat_inc(cfs_rq, nr_spread_over);
2521 #endif
2522 }
2523
2524 static void
2525 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2526 {
2527 u64 vruntime = cfs_rq->min_vruntime;
2528
2529 /*
2530 * The 'current' period is already promised to the current tasks,
2531 * however the extra weight of the new task will slow them down a
2532 * little, place the new task so that it fits in the slot that
2533 * stays open at the end.
2534 */
2535 if (initial && sched_feat(START_DEBIT))
2536 vruntime += sched_vslice(cfs_rq, se);
2537
2538 /* sleeps up to a single latency don't count. */
2539 if (!initial) {
2540 unsigned long thresh = sysctl_sched_latency;
2541
2542 /*
2543 * Halve their sleep time's effect, to allow
2544 * for a gentler effect of sleepers:
2545 */
2546 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2547 thresh >>= 1;
2548
2549 vruntime -= thresh;
2550 }
2551
2552 /* ensure we never gain time by being placed backwards. */
2553 se->vruntime = max_vruntime(se->vruntime, vruntime);
2554 }
2555
2556 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2557
2558 static void
2559 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2560 {
2561 /*
2562 * Update the normalized vruntime before updating min_vruntime
2563 * through calling update_curr().
2564 */
2565 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2566 se->vruntime += cfs_rq->min_vruntime;
2567
2568 /*
2569 * Update run-time statistics of the 'current'.
2570 */
2571 update_curr(cfs_rq);
2572 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2573 account_entity_enqueue(cfs_rq, se);
2574 update_cfs_shares(cfs_rq);
2575
2576 if (flags & ENQUEUE_WAKEUP) {
2577 place_entity(cfs_rq, se, 0);
2578 enqueue_sleeper(cfs_rq, se);
2579 }
2580
2581 update_stats_enqueue(cfs_rq, se);
2582 check_spread(cfs_rq, se);
2583 if (se != cfs_rq->curr)
2584 __enqueue_entity(cfs_rq, se);
2585 se->on_rq = 1;
2586
2587 if (cfs_rq->nr_running == 1) {
2588 list_add_leaf_cfs_rq(cfs_rq);
2589 check_enqueue_throttle(cfs_rq);
2590 }
2591 }
2592
2593 static void __clear_buddies_last(struct sched_entity *se)
2594 {
2595 for_each_sched_entity(se) {
2596 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2597 if (cfs_rq->last == se)
2598 cfs_rq->last = NULL;
2599 else
2600 break;
2601 }
2602 }
2603
2604 static void __clear_buddies_next(struct sched_entity *se)
2605 {
2606 for_each_sched_entity(se) {
2607 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2608 if (cfs_rq->next == se)
2609 cfs_rq->next = NULL;
2610 else
2611 break;
2612 }
2613 }
2614
2615 static void __clear_buddies_skip(struct sched_entity *se)
2616 {
2617 for_each_sched_entity(se) {
2618 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2619 if (cfs_rq->skip == se)
2620 cfs_rq->skip = NULL;
2621 else
2622 break;
2623 }
2624 }
2625
2626 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2627 {
2628 if (cfs_rq->last == se)
2629 __clear_buddies_last(se);
2630
2631 if (cfs_rq->next == se)
2632 __clear_buddies_next(se);
2633
2634 if (cfs_rq->skip == se)
2635 __clear_buddies_skip(se);
2636 }
2637
2638 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2639
2640 static void
2641 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2642 {
2643 /*
2644 * Update run-time statistics of the 'current'.
2645 */
2646 update_curr(cfs_rq);
2647 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2648
2649 update_stats_dequeue(cfs_rq, se);
2650 if (flags & DEQUEUE_SLEEP) {
2651 #ifdef CONFIG_SCHEDSTATS
2652 if (entity_is_task(se)) {
2653 struct task_struct *tsk = task_of(se);
2654
2655 if (tsk->state & TASK_INTERRUPTIBLE)
2656 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2657 if (tsk->state & TASK_UNINTERRUPTIBLE)
2658 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2659 }
2660 #endif
2661 }
2662
2663 clear_buddies(cfs_rq, se);
2664
2665 if (se != cfs_rq->curr)
2666 __dequeue_entity(cfs_rq, se);
2667 se->on_rq = 0;
2668 account_entity_dequeue(cfs_rq, se);
2669
2670 /*
2671 * Normalize the entity after updating the min_vruntime because the
2672 * update can refer to the ->curr item and we need to reflect this
2673 * movement in our normalized position.
2674 */
2675 if (!(flags & DEQUEUE_SLEEP))
2676 se->vruntime -= cfs_rq->min_vruntime;
2677
2678 /* return excess runtime on last dequeue */
2679 return_cfs_rq_runtime(cfs_rq);
2680
2681 update_min_vruntime(cfs_rq);
2682 update_cfs_shares(cfs_rq);
2683 }
2684
2685 /*
2686 * Preempt the current task with a newly woken task if needed:
2687 */
2688 static void
2689 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2690 {
2691 unsigned long ideal_runtime, delta_exec;
2692 struct sched_entity *se;
2693 s64 delta;
2694
2695 ideal_runtime = sched_slice(cfs_rq, curr);
2696 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2697 if (delta_exec > ideal_runtime) {
2698 resched_task(rq_of(cfs_rq)->curr);
2699 /*
2700 * The current task ran long enough, ensure it doesn't get
2701 * re-elected due to buddy favours.
2702 */
2703 clear_buddies(cfs_rq, curr);
2704 return;
2705 }
2706
2707 /*
2708 * Ensure that a task that missed wakeup preemption by a
2709 * narrow margin doesn't have to wait for a full slice.
2710 * This also mitigates buddy induced latencies under load.
2711 */
2712 if (delta_exec < sysctl_sched_min_granularity)
2713 return;
2714
2715 se = __pick_first_entity(cfs_rq);
2716 delta = curr->vruntime - se->vruntime;
2717
2718 if (delta < 0)
2719 return;
2720
2721 if (delta > ideal_runtime)
2722 resched_task(rq_of(cfs_rq)->curr);
2723 }
2724
2725 static void
2726 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2727 {
2728 /* 'current' is not kept within the tree. */
2729 if (se->on_rq) {
2730 /*
2731 * Any task has to be enqueued before it get to execute on
2732 * a CPU. So account for the time it spent waiting on the
2733 * runqueue.
2734 */
2735 update_stats_wait_end(cfs_rq, se);
2736 __dequeue_entity(cfs_rq, se);
2737 }
2738
2739 update_stats_curr_start(cfs_rq, se);
2740 cfs_rq->curr = se;
2741 #ifdef CONFIG_SCHEDSTATS
2742 /*
2743 * Track our maximum slice length, if the CPU's load is at
2744 * least twice that of our own weight (i.e. dont track it
2745 * when there are only lesser-weight tasks around):
2746 */
2747 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2748 se->statistics.slice_max = max(se->statistics.slice_max,
2749 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2750 }
2751 #endif
2752 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2753 }
2754
2755 static int
2756 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2757
2758 /*
2759 * Pick the next process, keeping these things in mind, in this order:
2760 * 1) keep things fair between processes/task groups
2761 * 2) pick the "next" process, since someone really wants that to run
2762 * 3) pick the "last" process, for cache locality
2763 * 4) do not run the "skip" process, if something else is available
2764 */
2765 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2766 {
2767 struct sched_entity *se = __pick_first_entity(cfs_rq);
2768 struct sched_entity *left = se;
2769
2770 /*
2771 * Avoid running the skip buddy, if running something else can
2772 * be done without getting too unfair.
2773 */
2774 if (cfs_rq->skip == se) {
2775 struct sched_entity *second = __pick_next_entity(se);
2776 if (second && wakeup_preempt_entity(second, left) < 1)
2777 se = second;
2778 }
2779
2780 /*
2781 * Prefer last buddy, try to return the CPU to a preempted task.
2782 */
2783 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2784 se = cfs_rq->last;
2785
2786 /*
2787 * Someone really wants this to run. If it's not unfair, run it.
2788 */
2789 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2790 se = cfs_rq->next;
2791
2792 clear_buddies(cfs_rq, se);
2793
2794 return se;
2795 }
2796
2797 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2798
2799 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2800 {
2801 /*
2802 * If still on the runqueue then deactivate_task()
2803 * was not called and update_curr() has to be done:
2804 */
2805 if (prev->on_rq)
2806 update_curr(cfs_rq);
2807
2808 /* throttle cfs_rqs exceeding runtime */
2809 check_cfs_rq_runtime(cfs_rq);
2810
2811 check_spread(cfs_rq, prev);
2812 if (prev->on_rq) {
2813 update_stats_wait_start(cfs_rq, prev);
2814 /* Put 'current' back into the tree. */
2815 __enqueue_entity(cfs_rq, prev);
2816 /* in !on_rq case, update occurred at dequeue */
2817 update_entity_load_avg(prev, 1);
2818 }
2819 cfs_rq->curr = NULL;
2820 }
2821
2822 static void
2823 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2824 {
2825 /*
2826 * Update run-time statistics of the 'current'.
2827 */
2828 update_curr(cfs_rq);
2829
2830 /*
2831 * Ensure that runnable average is periodically updated.
2832 */
2833 update_entity_load_avg(curr, 1);
2834 update_cfs_rq_blocked_load(cfs_rq, 1);
2835 update_cfs_shares(cfs_rq);
2836
2837 #ifdef CONFIG_SCHED_HRTICK
2838 /*
2839 * queued ticks are scheduled to match the slice, so don't bother
2840 * validating it and just reschedule.
2841 */
2842 if (queued) {
2843 resched_task(rq_of(cfs_rq)->curr);
2844 return;
2845 }
2846 /*
2847 * don't let the period tick interfere with the hrtick preemption
2848 */
2849 if (!sched_feat(DOUBLE_TICK) &&
2850 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2851 return;
2852 #endif
2853
2854 if (cfs_rq->nr_running > 1)
2855 check_preempt_tick(cfs_rq, curr);
2856 }
2857
2858
2859 /**************************************************
2860 * CFS bandwidth control machinery
2861 */
2862
2863 #ifdef CONFIG_CFS_BANDWIDTH
2864
2865 #ifdef HAVE_JUMP_LABEL
2866 static struct static_key __cfs_bandwidth_used;
2867
2868 static inline bool cfs_bandwidth_used(void)
2869 {
2870 return static_key_false(&__cfs_bandwidth_used);
2871 }
2872
2873 void cfs_bandwidth_usage_inc(void)
2874 {
2875 static_key_slow_inc(&__cfs_bandwidth_used);
2876 }
2877
2878 void cfs_bandwidth_usage_dec(void)
2879 {
2880 static_key_slow_dec(&__cfs_bandwidth_used);
2881 }
2882 #else /* HAVE_JUMP_LABEL */
2883 static bool cfs_bandwidth_used(void)
2884 {
2885 return true;
2886 }
2887
2888 void cfs_bandwidth_usage_inc(void) {}
2889 void cfs_bandwidth_usage_dec(void) {}
2890 #endif /* HAVE_JUMP_LABEL */
2891
2892 /*
2893 * default period for cfs group bandwidth.
2894 * default: 0.1s, units: nanoseconds
2895 */
2896 static inline u64 default_cfs_period(void)
2897 {
2898 return 100000000ULL;
2899 }
2900
2901 static inline u64 sched_cfs_bandwidth_slice(void)
2902 {
2903 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2904 }
2905
2906 /*
2907 * Replenish runtime according to assigned quota and update expiration time.
2908 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2909 * additional synchronization around rq->lock.
2910 *
2911 * requires cfs_b->lock
2912 */
2913 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2914 {
2915 u64 now;
2916
2917 if (cfs_b->quota == RUNTIME_INF)
2918 return;
2919
2920 now = sched_clock_cpu(smp_processor_id());
2921 cfs_b->runtime = cfs_b->quota;
2922 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2923 }
2924
2925 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2926 {
2927 return &tg->cfs_bandwidth;
2928 }
2929
2930 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2931 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2932 {
2933 if (unlikely(cfs_rq->throttle_count))
2934 return cfs_rq->throttled_clock_task;
2935
2936 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2937 }
2938
2939 /* returns 0 on failure to allocate runtime */
2940 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2941 {
2942 struct task_group *tg = cfs_rq->tg;
2943 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2944 u64 amount = 0, min_amount, expires;
2945
2946 /* note: this is a positive sum as runtime_remaining <= 0 */
2947 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2948
2949 raw_spin_lock(&cfs_b->lock);
2950 if (cfs_b->quota == RUNTIME_INF)
2951 amount = min_amount;
2952 else {
2953 /*
2954 * If the bandwidth pool has become inactive, then at least one
2955 * period must have elapsed since the last consumption.
2956 * Refresh the global state and ensure bandwidth timer becomes
2957 * active.
2958 */
2959 if (!cfs_b->timer_active) {
2960 __refill_cfs_bandwidth_runtime(cfs_b);
2961 __start_cfs_bandwidth(cfs_b);
2962 }
2963
2964 if (cfs_b->runtime > 0) {
2965 amount = min(cfs_b->runtime, min_amount);
2966 cfs_b->runtime -= amount;
2967 cfs_b->idle = 0;
2968 }
2969 }
2970 expires = cfs_b->runtime_expires;
2971 raw_spin_unlock(&cfs_b->lock);
2972
2973 cfs_rq->runtime_remaining += amount;
2974 /*
2975 * we may have advanced our local expiration to account for allowed
2976 * spread between our sched_clock and the one on which runtime was
2977 * issued.
2978 */
2979 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2980 cfs_rq->runtime_expires = expires;
2981
2982 return cfs_rq->runtime_remaining > 0;
2983 }
2984
2985 /*
2986 * Note: This depends on the synchronization provided by sched_clock and the
2987 * fact that rq->clock snapshots this value.
2988 */
2989 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2990 {
2991 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2992
2993 /* if the deadline is ahead of our clock, nothing to do */
2994 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2995 return;
2996
2997 if (cfs_rq->runtime_remaining < 0)
2998 return;
2999
3000 /*
3001 * If the local deadline has passed we have to consider the
3002 * possibility that our sched_clock is 'fast' and the global deadline
3003 * has not truly expired.
3004 *
3005 * Fortunately we can check determine whether this the case by checking
3006 * whether the global deadline has advanced.
3007 */
3008
3009 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3010 /* extend local deadline, drift is bounded above by 2 ticks */
3011 cfs_rq->runtime_expires += TICK_NSEC;
3012 } else {
3013 /* global deadline is ahead, expiration has passed */
3014 cfs_rq->runtime_remaining = 0;
3015 }
3016 }
3017
3018 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3019 unsigned long delta_exec)
3020 {
3021 /* dock delta_exec before expiring quota (as it could span periods) */
3022 cfs_rq->runtime_remaining -= delta_exec;
3023 expire_cfs_rq_runtime(cfs_rq);
3024
3025 if (likely(cfs_rq->runtime_remaining > 0))
3026 return;
3027
3028 /*
3029 * if we're unable to extend our runtime we resched so that the active
3030 * hierarchy can be throttled
3031 */
3032 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3033 resched_task(rq_of(cfs_rq)->curr);
3034 }
3035
3036 static __always_inline
3037 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
3038 {
3039 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3040 return;
3041
3042 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3043 }
3044
3045 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3046 {
3047 return cfs_bandwidth_used() && cfs_rq->throttled;
3048 }
3049
3050 /* check whether cfs_rq, or any parent, is throttled */
3051 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3052 {
3053 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3054 }
3055
3056 /*
3057 * Ensure that neither of the group entities corresponding to src_cpu or
3058 * dest_cpu are members of a throttled hierarchy when performing group
3059 * load-balance operations.
3060 */
3061 static inline int throttled_lb_pair(struct task_group *tg,
3062 int src_cpu, int dest_cpu)
3063 {
3064 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3065
3066 src_cfs_rq = tg->cfs_rq[src_cpu];
3067 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3068
3069 return throttled_hierarchy(src_cfs_rq) ||
3070 throttled_hierarchy(dest_cfs_rq);
3071 }
3072
3073 /* updated child weight may affect parent so we have to do this bottom up */
3074 static int tg_unthrottle_up(struct task_group *tg, void *data)
3075 {
3076 struct rq *rq = data;
3077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3078
3079 cfs_rq->throttle_count--;
3080 #ifdef CONFIG_SMP
3081 if (!cfs_rq->throttle_count) {
3082 /* adjust cfs_rq_clock_task() */
3083 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3084 cfs_rq->throttled_clock_task;
3085 }
3086 #endif
3087
3088 return 0;
3089 }
3090
3091 static int tg_throttle_down(struct task_group *tg, void *data)
3092 {
3093 struct rq *rq = data;
3094 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3095
3096 /* group is entering throttled state, stop time */
3097 if (!cfs_rq->throttle_count)
3098 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3099 cfs_rq->throttle_count++;
3100
3101 return 0;
3102 }
3103
3104 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3105 {
3106 struct rq *rq = rq_of(cfs_rq);
3107 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3108 struct sched_entity *se;
3109 long task_delta, dequeue = 1;
3110
3111 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3112
3113 /* freeze hierarchy runnable averages while throttled */
3114 rcu_read_lock();
3115 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3116 rcu_read_unlock();
3117
3118 task_delta = cfs_rq->h_nr_running;
3119 for_each_sched_entity(se) {
3120 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3121 /* throttled entity or throttle-on-deactivate */
3122 if (!se->on_rq)
3123 break;
3124
3125 if (dequeue)
3126 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3127 qcfs_rq->h_nr_running -= task_delta;
3128
3129 if (qcfs_rq->load.weight)
3130 dequeue = 0;
3131 }
3132
3133 if (!se)
3134 rq->nr_running -= task_delta;
3135
3136 cfs_rq->throttled = 1;
3137 cfs_rq->throttled_clock = rq_clock(rq);
3138 raw_spin_lock(&cfs_b->lock);
3139 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3140 if (!cfs_b->timer_active)
3141 __start_cfs_bandwidth(cfs_b);
3142 raw_spin_unlock(&cfs_b->lock);
3143 }
3144
3145 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3146 {
3147 struct rq *rq = rq_of(cfs_rq);
3148 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3149 struct sched_entity *se;
3150 int enqueue = 1;
3151 long task_delta;
3152
3153 se = cfs_rq->tg->se[cpu_of(rq)];
3154
3155 cfs_rq->throttled = 0;
3156
3157 update_rq_clock(rq);
3158
3159 raw_spin_lock(&cfs_b->lock);
3160 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3161 list_del_rcu(&cfs_rq->throttled_list);
3162 raw_spin_unlock(&cfs_b->lock);
3163
3164 /* update hierarchical throttle state */
3165 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3166
3167 if (!cfs_rq->load.weight)
3168 return;
3169
3170 task_delta = cfs_rq->h_nr_running;
3171 for_each_sched_entity(se) {
3172 if (se->on_rq)
3173 enqueue = 0;
3174
3175 cfs_rq = cfs_rq_of(se);
3176 if (enqueue)
3177 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3178 cfs_rq->h_nr_running += task_delta;
3179
3180 if (cfs_rq_throttled(cfs_rq))
3181 break;
3182 }
3183
3184 if (!se)
3185 rq->nr_running += task_delta;
3186
3187 /* determine whether we need to wake up potentially idle cpu */
3188 if (rq->curr == rq->idle && rq->cfs.nr_running)
3189 resched_task(rq->curr);
3190 }
3191
3192 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3193 u64 remaining, u64 expires)
3194 {
3195 struct cfs_rq *cfs_rq;
3196 u64 runtime = remaining;
3197
3198 rcu_read_lock();
3199 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3200 throttled_list) {
3201 struct rq *rq = rq_of(cfs_rq);
3202
3203 raw_spin_lock(&rq->lock);
3204 if (!cfs_rq_throttled(cfs_rq))
3205 goto next;
3206
3207 runtime = -cfs_rq->runtime_remaining + 1;
3208 if (runtime > remaining)
3209 runtime = remaining;
3210 remaining -= runtime;
3211
3212 cfs_rq->runtime_remaining += runtime;
3213 cfs_rq->runtime_expires = expires;
3214
3215 /* we check whether we're throttled above */
3216 if (cfs_rq->runtime_remaining > 0)
3217 unthrottle_cfs_rq(cfs_rq);
3218
3219 next:
3220 raw_spin_unlock(&rq->lock);
3221
3222 if (!remaining)
3223 break;
3224 }
3225 rcu_read_unlock();
3226
3227 return remaining;
3228 }
3229
3230 /*
3231 * Responsible for refilling a task_group's bandwidth and unthrottling its
3232 * cfs_rqs as appropriate. If there has been no activity within the last
3233 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3234 * used to track this state.
3235 */
3236 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3237 {
3238 u64 runtime, runtime_expires;
3239 int idle = 1, throttled;
3240
3241 raw_spin_lock(&cfs_b->lock);
3242 /* no need to continue the timer with no bandwidth constraint */
3243 if (cfs_b->quota == RUNTIME_INF)
3244 goto out_unlock;
3245
3246 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3247 /* idle depends on !throttled (for the case of a large deficit) */
3248 idle = cfs_b->idle && !throttled;
3249 cfs_b->nr_periods += overrun;
3250
3251 /* if we're going inactive then everything else can be deferred */
3252 if (idle)
3253 goto out_unlock;
3254
3255 /*
3256 * if we have relooped after returning idle once, we need to update our
3257 * status as actually running, so that other cpus doing
3258 * __start_cfs_bandwidth will stop trying to cancel us.
3259 */
3260 cfs_b->timer_active = 1;
3261
3262 __refill_cfs_bandwidth_runtime(cfs_b);
3263
3264 if (!throttled) {
3265 /* mark as potentially idle for the upcoming period */
3266 cfs_b->idle = 1;
3267 goto out_unlock;
3268 }
3269
3270 /* account preceding periods in which throttling occurred */
3271 cfs_b->nr_throttled += overrun;
3272
3273 /*
3274 * There are throttled entities so we must first use the new bandwidth
3275 * to unthrottle them before making it generally available. This
3276 * ensures that all existing debts will be paid before a new cfs_rq is
3277 * allowed to run.
3278 */
3279 runtime = cfs_b->runtime;
3280 runtime_expires = cfs_b->runtime_expires;
3281 cfs_b->runtime = 0;
3282
3283 /*
3284 * This check is repeated as we are holding onto the new bandwidth
3285 * while we unthrottle. This can potentially race with an unthrottled
3286 * group trying to acquire new bandwidth from the global pool.
3287 */
3288 while (throttled && runtime > 0) {
3289 raw_spin_unlock(&cfs_b->lock);
3290 /* we can't nest cfs_b->lock while distributing bandwidth */
3291 runtime = distribute_cfs_runtime(cfs_b, runtime,
3292 runtime_expires);
3293 raw_spin_lock(&cfs_b->lock);
3294
3295 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3296 }
3297
3298 /* return (any) remaining runtime */
3299 cfs_b->runtime = runtime;
3300 /*
3301 * While we are ensured activity in the period following an
3302 * unthrottle, this also covers the case in which the new bandwidth is
3303 * insufficient to cover the existing bandwidth deficit. (Forcing the
3304 * timer to remain active while there are any throttled entities.)
3305 */
3306 cfs_b->idle = 0;
3307 out_unlock:
3308 if (idle)
3309 cfs_b->timer_active = 0;
3310 raw_spin_unlock(&cfs_b->lock);
3311
3312 return idle;
3313 }
3314
3315 /* a cfs_rq won't donate quota below this amount */
3316 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3317 /* minimum remaining period time to redistribute slack quota */
3318 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3319 /* how long we wait to gather additional slack before distributing */
3320 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3321
3322 /*
3323 * Are we near the end of the current quota period?
3324 *
3325 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3326 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3327 * migrate_hrtimers, base is never cleared, so we are fine.
3328 */
3329 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3330 {
3331 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3332 u64 remaining;
3333
3334 /* if the call-back is running a quota refresh is already occurring */
3335 if (hrtimer_callback_running(refresh_timer))
3336 return 1;
3337
3338 /* is a quota refresh about to occur? */
3339 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3340 if (remaining < min_expire)
3341 return 1;
3342
3343 return 0;
3344 }
3345
3346 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3347 {
3348 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3349
3350 /* if there's a quota refresh soon don't bother with slack */
3351 if (runtime_refresh_within(cfs_b, min_left))
3352 return;
3353
3354 start_bandwidth_timer(&cfs_b->slack_timer,
3355 ns_to_ktime(cfs_bandwidth_slack_period));
3356 }
3357
3358 /* we know any runtime found here is valid as update_curr() precedes return */
3359 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3360 {
3361 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3362 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3363
3364 if (slack_runtime <= 0)
3365 return;
3366
3367 raw_spin_lock(&cfs_b->lock);
3368 if (cfs_b->quota != RUNTIME_INF &&
3369 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3370 cfs_b->runtime += slack_runtime;
3371
3372 /* we are under rq->lock, defer unthrottling using a timer */
3373 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3374 !list_empty(&cfs_b->throttled_cfs_rq))
3375 start_cfs_slack_bandwidth(cfs_b);
3376 }
3377 raw_spin_unlock(&cfs_b->lock);
3378
3379 /* even if it's not valid for return we don't want to try again */
3380 cfs_rq->runtime_remaining -= slack_runtime;
3381 }
3382
3383 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3384 {
3385 if (!cfs_bandwidth_used())
3386 return;
3387
3388 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3389 return;
3390
3391 __return_cfs_rq_runtime(cfs_rq);
3392 }
3393
3394 /*
3395 * This is done with a timer (instead of inline with bandwidth return) since
3396 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3397 */
3398 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3399 {
3400 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3401 u64 expires;
3402
3403 /* confirm we're still not at a refresh boundary */
3404 raw_spin_lock(&cfs_b->lock);
3405 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3406 raw_spin_unlock(&cfs_b->lock);
3407 return;
3408 }
3409
3410 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3411 runtime = cfs_b->runtime;
3412 cfs_b->runtime = 0;
3413 }
3414 expires = cfs_b->runtime_expires;
3415 raw_spin_unlock(&cfs_b->lock);
3416
3417 if (!runtime)
3418 return;
3419
3420 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3421
3422 raw_spin_lock(&cfs_b->lock);
3423 if (expires == cfs_b->runtime_expires)
3424 cfs_b->runtime = runtime;
3425 raw_spin_unlock(&cfs_b->lock);
3426 }
3427
3428 /*
3429 * When a group wakes up we want to make sure that its quota is not already
3430 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3431 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3432 */
3433 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3434 {
3435 if (!cfs_bandwidth_used())
3436 return;
3437
3438 /* an active group must be handled by the update_curr()->put() path */
3439 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3440 return;
3441
3442 /* ensure the group is not already throttled */
3443 if (cfs_rq_throttled(cfs_rq))
3444 return;
3445
3446 /* update runtime allocation */
3447 account_cfs_rq_runtime(cfs_rq, 0);
3448 if (cfs_rq->runtime_remaining <= 0)
3449 throttle_cfs_rq(cfs_rq);
3450 }
3451
3452 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3453 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3454 {
3455 if (!cfs_bandwidth_used())
3456 return;
3457
3458 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3459 return;
3460
3461 /*
3462 * it's possible for a throttled entity to be forced into a running
3463 * state (e.g. set_curr_task), in this case we're finished.
3464 */
3465 if (cfs_rq_throttled(cfs_rq))
3466 return;
3467
3468 throttle_cfs_rq(cfs_rq);
3469 }
3470
3471 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3472 {
3473 struct cfs_bandwidth *cfs_b =
3474 container_of(timer, struct cfs_bandwidth, slack_timer);
3475 do_sched_cfs_slack_timer(cfs_b);
3476
3477 return HRTIMER_NORESTART;
3478 }
3479
3480 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3481 {
3482 struct cfs_bandwidth *cfs_b =
3483 container_of(timer, struct cfs_bandwidth, period_timer);
3484 ktime_t now;
3485 int overrun;
3486 int idle = 0;
3487
3488 for (;;) {
3489 now = hrtimer_cb_get_time(timer);
3490 overrun = hrtimer_forward(timer, now, cfs_b->period);
3491
3492 if (!overrun)
3493 break;
3494
3495 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3496 }
3497
3498 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3499 }
3500
3501 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3502 {
3503 raw_spin_lock_init(&cfs_b->lock);
3504 cfs_b->runtime = 0;
3505 cfs_b->quota = RUNTIME_INF;
3506 cfs_b->period = ns_to_ktime(default_cfs_period());
3507
3508 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3509 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3510 cfs_b->period_timer.function = sched_cfs_period_timer;
3511 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3512 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3513 }
3514
3515 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3516 {
3517 cfs_rq->runtime_enabled = 0;
3518 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3519 }
3520
3521 /* requires cfs_b->lock, may release to reprogram timer */
3522 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3523 {
3524 /*
3525 * The timer may be active because we're trying to set a new bandwidth
3526 * period or because we're racing with the tear-down path
3527 * (timer_active==0 becomes visible before the hrtimer call-back
3528 * terminates). In either case we ensure that it's re-programmed
3529 */
3530 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3531 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3532 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3533 raw_spin_unlock(&cfs_b->lock);
3534 cpu_relax();
3535 raw_spin_lock(&cfs_b->lock);
3536 /* if someone else restarted the timer then we're done */
3537 if (cfs_b->timer_active)
3538 return;
3539 }
3540
3541 cfs_b->timer_active = 1;
3542 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3543 }
3544
3545 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3546 {
3547 hrtimer_cancel(&cfs_b->period_timer);
3548 hrtimer_cancel(&cfs_b->slack_timer);
3549 }
3550
3551 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3552 {
3553 struct cfs_rq *cfs_rq;
3554
3555 for_each_leaf_cfs_rq(rq, cfs_rq) {
3556 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3557
3558 if (!cfs_rq->runtime_enabled)
3559 continue;
3560
3561 /*
3562 * clock_task is not advancing so we just need to make sure
3563 * there's some valid quota amount
3564 */
3565 cfs_rq->runtime_remaining = cfs_b->quota;
3566 if (cfs_rq_throttled(cfs_rq))
3567 unthrottle_cfs_rq(cfs_rq);
3568 }
3569 }
3570
3571 #else /* CONFIG_CFS_BANDWIDTH */
3572 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3573 {
3574 return rq_clock_task(rq_of(cfs_rq));
3575 }
3576
3577 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3578 unsigned long delta_exec) {}
3579 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3580 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3581 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3582
3583 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3584 {
3585 return 0;
3586 }
3587
3588 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3589 {
3590 return 0;
3591 }
3592
3593 static inline int throttled_lb_pair(struct task_group *tg,
3594 int src_cpu, int dest_cpu)
3595 {
3596 return 0;
3597 }
3598
3599 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3600
3601 #ifdef CONFIG_FAIR_GROUP_SCHED
3602 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3603 #endif
3604
3605 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3606 {
3607 return NULL;
3608 }
3609 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3610 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3611
3612 #endif /* CONFIG_CFS_BANDWIDTH */
3613
3614 /**************************************************
3615 * CFS operations on tasks:
3616 */
3617
3618 #ifdef CONFIG_SCHED_HRTICK
3619 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3620 {
3621 struct sched_entity *se = &p->se;
3622 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3623
3624 WARN_ON(task_rq(p) != rq);
3625
3626 if (cfs_rq->nr_running > 1) {
3627 u64 slice = sched_slice(cfs_rq, se);
3628 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3629 s64 delta = slice - ran;
3630
3631 if (delta < 0) {
3632 if (rq->curr == p)
3633 resched_task(p);
3634 return;
3635 }
3636
3637 /*
3638 * Don't schedule slices shorter than 10000ns, that just
3639 * doesn't make sense. Rely on vruntime for fairness.
3640 */
3641 if (rq->curr != p)
3642 delta = max_t(s64, 10000LL, delta);
3643
3644 hrtick_start(rq, delta);
3645 }
3646 }
3647
3648 /*
3649 * called from enqueue/dequeue and updates the hrtick when the
3650 * current task is from our class and nr_running is low enough
3651 * to matter.
3652 */
3653 static void hrtick_update(struct rq *rq)
3654 {
3655 struct task_struct *curr = rq->curr;
3656
3657 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3658 return;
3659
3660 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3661 hrtick_start_fair(rq, curr);
3662 }
3663 #else /* !CONFIG_SCHED_HRTICK */
3664 static inline void
3665 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3666 {
3667 }
3668
3669 static inline void hrtick_update(struct rq *rq)
3670 {
3671 }
3672 #endif
3673
3674 /*
3675 * The enqueue_task method is called before nr_running is
3676 * increased. Here we update the fair scheduling stats and
3677 * then put the task into the rbtree:
3678 */
3679 static void
3680 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3681 {
3682 struct cfs_rq *cfs_rq;
3683 struct sched_entity *se = &p->se;
3684
3685 for_each_sched_entity(se) {
3686 if (se->on_rq)
3687 break;
3688 cfs_rq = cfs_rq_of(se);
3689 enqueue_entity(cfs_rq, se, flags);
3690
3691 /*
3692 * end evaluation on encountering a throttled cfs_rq
3693 *
3694 * note: in the case of encountering a throttled cfs_rq we will
3695 * post the final h_nr_running increment below.
3696 */
3697 if (cfs_rq_throttled(cfs_rq))
3698 break;
3699 cfs_rq->h_nr_running++;
3700
3701 flags = ENQUEUE_WAKEUP;
3702 }
3703
3704 for_each_sched_entity(se) {
3705 cfs_rq = cfs_rq_of(se);
3706 cfs_rq->h_nr_running++;
3707
3708 if (cfs_rq_throttled(cfs_rq))
3709 break;
3710
3711 update_cfs_shares(cfs_rq);
3712 update_entity_load_avg(se, 1);
3713 }
3714
3715 if (!se) {
3716 update_rq_runnable_avg(rq, rq->nr_running);
3717 inc_nr_running(rq);
3718 }
3719 hrtick_update(rq);
3720 }
3721
3722 static void set_next_buddy(struct sched_entity *se);
3723
3724 /*
3725 * The dequeue_task method is called before nr_running is
3726 * decreased. We remove the task from the rbtree and
3727 * update the fair scheduling stats:
3728 */
3729 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3730 {
3731 struct cfs_rq *cfs_rq;
3732 struct sched_entity *se = &p->se;
3733 int task_sleep = flags & DEQUEUE_SLEEP;
3734
3735 for_each_sched_entity(se) {
3736 cfs_rq = cfs_rq_of(se);
3737 dequeue_entity(cfs_rq, se, flags);
3738
3739 /*
3740 * end evaluation on encountering a throttled cfs_rq
3741 *
3742 * note: in the case of encountering a throttled cfs_rq we will
3743 * post the final h_nr_running decrement below.
3744 */
3745 if (cfs_rq_throttled(cfs_rq))
3746 break;
3747 cfs_rq->h_nr_running--;
3748
3749 /* Don't dequeue parent if it has other entities besides us */
3750 if (cfs_rq->load.weight) {
3751 /*
3752 * Bias pick_next to pick a task from this cfs_rq, as
3753 * p is sleeping when it is within its sched_slice.
3754 */
3755 if (task_sleep && parent_entity(se))
3756 set_next_buddy(parent_entity(se));
3757
3758 /* avoid re-evaluating load for this entity */
3759 se = parent_entity(se);
3760 break;
3761 }
3762 flags |= DEQUEUE_SLEEP;
3763 }
3764
3765 for_each_sched_entity(se) {
3766 cfs_rq = cfs_rq_of(se);
3767 cfs_rq->h_nr_running--;
3768
3769 if (cfs_rq_throttled(cfs_rq))
3770 break;
3771
3772 update_cfs_shares(cfs_rq);
3773 update_entity_load_avg(se, 1);
3774 }
3775
3776 if (!se) {
3777 dec_nr_running(rq);
3778 update_rq_runnable_avg(rq, 1);
3779 }
3780 hrtick_update(rq);
3781 }
3782
3783 #ifdef CONFIG_SMP
3784 /* Used instead of source_load when we know the type == 0 */
3785 static unsigned long weighted_cpuload(const int cpu)
3786 {
3787 return cpu_rq(cpu)->cfs.runnable_load_avg;
3788 }
3789
3790 /*
3791 * Return a low guess at the load of a migration-source cpu weighted
3792 * according to the scheduling class and "nice" value.
3793 *
3794 * We want to under-estimate the load of migration sources, to
3795 * balance conservatively.
3796 */
3797 static unsigned long source_load(int cpu, int type)
3798 {
3799 struct rq *rq = cpu_rq(cpu);
3800 unsigned long total = weighted_cpuload(cpu);
3801
3802 if (type == 0 || !sched_feat(LB_BIAS))
3803 return total;
3804
3805 return min(rq->cpu_load[type-1], total);
3806 }
3807
3808 /*
3809 * Return a high guess at the load of a migration-target cpu weighted
3810 * according to the scheduling class and "nice" value.
3811 */
3812 static unsigned long target_load(int cpu, int type)
3813 {
3814 struct rq *rq = cpu_rq(cpu);
3815 unsigned long total = weighted_cpuload(cpu);
3816
3817 if (type == 0 || !sched_feat(LB_BIAS))
3818 return total;
3819
3820 return max(rq->cpu_load[type-1], total);
3821 }
3822
3823 static unsigned long power_of(int cpu)
3824 {
3825 return cpu_rq(cpu)->cpu_power;
3826 }
3827
3828 static unsigned long cpu_avg_load_per_task(int cpu)
3829 {
3830 struct rq *rq = cpu_rq(cpu);
3831 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3832 unsigned long load_avg = rq->cfs.runnable_load_avg;
3833
3834 if (nr_running)
3835 return load_avg / nr_running;
3836
3837 return 0;
3838 }
3839
3840 static void record_wakee(struct task_struct *p)
3841 {
3842 /*
3843 * Rough decay (wiping) for cost saving, don't worry
3844 * about the boundary, really active task won't care
3845 * about the loss.
3846 */
3847 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3848 current->wakee_flips = 0;
3849 current->wakee_flip_decay_ts = jiffies;
3850 }
3851
3852 if (current->last_wakee != p) {
3853 current->last_wakee = p;
3854 current->wakee_flips++;
3855 }
3856 }
3857
3858 static void task_waking_fair(struct task_struct *p)
3859 {
3860 struct sched_entity *se = &p->se;
3861 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3862 u64 min_vruntime;
3863
3864 #ifndef CONFIG_64BIT
3865 u64 min_vruntime_copy;
3866
3867 do {
3868 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3869 smp_rmb();
3870 min_vruntime = cfs_rq->min_vruntime;
3871 } while (min_vruntime != min_vruntime_copy);
3872 #else
3873 min_vruntime = cfs_rq->min_vruntime;
3874 #endif
3875
3876 se->vruntime -= min_vruntime;
3877 record_wakee(p);
3878 }
3879
3880 #ifdef CONFIG_FAIR_GROUP_SCHED
3881 /*
3882 * effective_load() calculates the load change as seen from the root_task_group
3883 *
3884 * Adding load to a group doesn't make a group heavier, but can cause movement
3885 * of group shares between cpus. Assuming the shares were perfectly aligned one
3886 * can calculate the shift in shares.
3887 *
3888 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3889 * on this @cpu and results in a total addition (subtraction) of @wg to the
3890 * total group weight.
3891 *
3892 * Given a runqueue weight distribution (rw_i) we can compute a shares
3893 * distribution (s_i) using:
3894 *
3895 * s_i = rw_i / \Sum rw_j (1)
3896 *
3897 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3898 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3899 * shares distribution (s_i):
3900 *
3901 * rw_i = { 2, 4, 1, 0 }
3902 * s_i = { 2/7, 4/7, 1/7, 0 }
3903 *
3904 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3905 * task used to run on and the CPU the waker is running on), we need to
3906 * compute the effect of waking a task on either CPU and, in case of a sync
3907 * wakeup, compute the effect of the current task going to sleep.
3908 *
3909 * So for a change of @wl to the local @cpu with an overall group weight change
3910 * of @wl we can compute the new shares distribution (s'_i) using:
3911 *
3912 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3913 *
3914 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3915 * differences in waking a task to CPU 0. The additional task changes the
3916 * weight and shares distributions like:
3917 *
3918 * rw'_i = { 3, 4, 1, 0 }
3919 * s'_i = { 3/8, 4/8, 1/8, 0 }
3920 *
3921 * We can then compute the difference in effective weight by using:
3922 *
3923 * dw_i = S * (s'_i - s_i) (3)
3924 *
3925 * Where 'S' is the group weight as seen by its parent.
3926 *
3927 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3928 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3929 * 4/7) times the weight of the group.
3930 */
3931 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3932 {
3933 struct sched_entity *se = tg->se[cpu];
3934
3935 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
3936 return wl;
3937
3938 for_each_sched_entity(se) {
3939 long w, W;
3940
3941 tg = se->my_q->tg;
3942
3943 /*
3944 * W = @wg + \Sum rw_j
3945 */
3946 W = wg + calc_tg_weight(tg, se->my_q);
3947
3948 /*
3949 * w = rw_i + @wl
3950 */
3951 w = se->my_q->load.weight + wl;
3952
3953 /*
3954 * wl = S * s'_i; see (2)
3955 */
3956 if (W > 0 && w < W)
3957 wl = (w * tg->shares) / W;
3958 else
3959 wl = tg->shares;
3960
3961 /*
3962 * Per the above, wl is the new se->load.weight value; since
3963 * those are clipped to [MIN_SHARES, ...) do so now. See
3964 * calc_cfs_shares().
3965 */
3966 if (wl < MIN_SHARES)
3967 wl = MIN_SHARES;
3968
3969 /*
3970 * wl = dw_i = S * (s'_i - s_i); see (3)
3971 */
3972 wl -= se->load.weight;
3973
3974 /*
3975 * Recursively apply this logic to all parent groups to compute
3976 * the final effective load change on the root group. Since
3977 * only the @tg group gets extra weight, all parent groups can
3978 * only redistribute existing shares. @wl is the shift in shares
3979 * resulting from this level per the above.
3980 */
3981 wg = 0;
3982 }
3983
3984 return wl;
3985 }
3986 #else
3987
3988 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3989 {
3990 return wl;
3991 }
3992
3993 #endif
3994
3995 static int wake_wide(struct task_struct *p)
3996 {
3997 int factor = this_cpu_read(sd_llc_size);
3998
3999 /*
4000 * Yeah, it's the switching-frequency, could means many wakee or
4001 * rapidly switch, use factor here will just help to automatically
4002 * adjust the loose-degree, so bigger node will lead to more pull.
4003 */
4004 if (p->wakee_flips > factor) {
4005 /*
4006 * wakee is somewhat hot, it needs certain amount of cpu
4007 * resource, so if waker is far more hot, prefer to leave
4008 * it alone.
4009 */
4010 if (current->wakee_flips > (factor * p->wakee_flips))
4011 return 1;
4012 }
4013
4014 return 0;
4015 }
4016
4017 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4018 {
4019 s64 this_load, load;
4020 int idx, this_cpu, prev_cpu;
4021 unsigned long tl_per_task;
4022 struct task_group *tg;
4023 unsigned long weight;
4024 int balanced;
4025
4026 /*
4027 * If we wake multiple tasks be careful to not bounce
4028 * ourselves around too much.
4029 */
4030 if (wake_wide(p))
4031 return 0;
4032
4033 idx = sd->wake_idx;
4034 this_cpu = smp_processor_id();
4035 prev_cpu = task_cpu(p);
4036 load = source_load(prev_cpu, idx);
4037 this_load = target_load(this_cpu, idx);
4038
4039 /*
4040 * If sync wakeup then subtract the (maximum possible)
4041 * effect of the currently running task from the load
4042 * of the current CPU:
4043 */
4044 if (sync) {
4045 tg = task_group(current);
4046 weight = current->se.load.weight;
4047
4048 this_load += effective_load(tg, this_cpu, -weight, -weight);
4049 load += effective_load(tg, prev_cpu, 0, -weight);
4050 }
4051
4052 tg = task_group(p);
4053 weight = p->se.load.weight;
4054
4055 /*
4056 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4057 * due to the sync cause above having dropped this_load to 0, we'll
4058 * always have an imbalance, but there's really nothing you can do
4059 * about that, so that's good too.
4060 *
4061 * Otherwise check if either cpus are near enough in load to allow this
4062 * task to be woken on this_cpu.
4063 */
4064 if (this_load > 0) {
4065 s64 this_eff_load, prev_eff_load;
4066
4067 this_eff_load = 100;
4068 this_eff_load *= power_of(prev_cpu);
4069 this_eff_load *= this_load +
4070 effective_load(tg, this_cpu, weight, weight);
4071
4072 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4073 prev_eff_load *= power_of(this_cpu);
4074 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4075
4076 balanced = this_eff_load <= prev_eff_load;
4077 } else
4078 balanced = true;
4079
4080 /*
4081 * If the currently running task will sleep within
4082 * a reasonable amount of time then attract this newly
4083 * woken task:
4084 */
4085 if (sync && balanced)
4086 return 1;
4087
4088 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4089 tl_per_task = cpu_avg_load_per_task(this_cpu);
4090
4091 if (balanced ||
4092 (this_load <= load &&
4093 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4094 /*
4095 * This domain has SD_WAKE_AFFINE and
4096 * p is cache cold in this domain, and
4097 * there is no bad imbalance.
4098 */
4099 schedstat_inc(sd, ttwu_move_affine);
4100 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4101
4102 return 1;
4103 }
4104 return 0;
4105 }
4106
4107 /*
4108 * find_idlest_group finds and returns the least busy CPU group within the
4109 * domain.
4110 */
4111 static struct sched_group *
4112 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4113 int this_cpu, int load_idx)
4114 {
4115 struct sched_group *idlest = NULL, *group = sd->groups;
4116 unsigned long min_load = ULONG_MAX, this_load = 0;
4117 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4118
4119 do {
4120 unsigned long load, avg_load;
4121 int local_group;
4122 int i;
4123
4124 /* Skip over this group if it has no CPUs allowed */
4125 if (!cpumask_intersects(sched_group_cpus(group),
4126 tsk_cpus_allowed(p)))
4127 continue;
4128
4129 local_group = cpumask_test_cpu(this_cpu,
4130 sched_group_cpus(group));
4131
4132 /* Tally up the load of all CPUs in the group */
4133 avg_load = 0;
4134
4135 for_each_cpu(i, sched_group_cpus(group)) {
4136 /* Bias balancing toward cpus of our domain */
4137 if (local_group)
4138 load = source_load(i, load_idx);
4139 else
4140 load = target_load(i, load_idx);
4141
4142 avg_load += load;
4143 }
4144
4145 /* Adjust by relative CPU power of the group */
4146 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4147
4148 if (local_group) {
4149 this_load = avg_load;
4150 } else if (avg_load < min_load) {
4151 min_load = avg_load;
4152 idlest = group;
4153 }
4154 } while (group = group->next, group != sd->groups);
4155
4156 if (!idlest || 100*this_load < imbalance*min_load)
4157 return NULL;
4158 return idlest;
4159 }
4160
4161 /*
4162 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4163 */
4164 static int
4165 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4166 {
4167 unsigned long load, min_load = ULONG_MAX;
4168 int idlest = -1;
4169 int i;
4170
4171 /* Traverse only the allowed CPUs */
4172 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4173 load = weighted_cpuload(i);
4174
4175 if (load < min_load || (load == min_load && i == this_cpu)) {
4176 min_load = load;
4177 idlest = i;
4178 }
4179 }
4180
4181 return idlest;
4182 }
4183
4184 /*
4185 * Try and locate an idle CPU in the sched_domain.
4186 */
4187 static int select_idle_sibling(struct task_struct *p, int target)
4188 {
4189 struct sched_domain *sd;
4190 struct sched_group *sg;
4191 int i = task_cpu(p);
4192
4193 if (idle_cpu(target))
4194 return target;
4195
4196 /*
4197 * If the prevous cpu is cache affine and idle, don't be stupid.
4198 */
4199 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4200 return i;
4201
4202 /*
4203 * Otherwise, iterate the domains and find an elegible idle cpu.
4204 */
4205 sd = rcu_dereference(per_cpu(sd_llc, target));
4206 for_each_lower_domain(sd) {
4207 sg = sd->groups;
4208 do {
4209 if (!cpumask_intersects(sched_group_cpus(sg),
4210 tsk_cpus_allowed(p)))
4211 goto next;
4212
4213 for_each_cpu(i, sched_group_cpus(sg)) {
4214 if (i == target || !idle_cpu(i))
4215 goto next;
4216 }
4217
4218 target = cpumask_first_and(sched_group_cpus(sg),
4219 tsk_cpus_allowed(p));
4220 goto done;
4221 next:
4222 sg = sg->next;
4223 } while (sg != sd->groups);
4224 }
4225 done:
4226 return target;
4227 }
4228
4229 /*
4230 * sched_balance_self: balance the current task (running on cpu) in domains
4231 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4232 * SD_BALANCE_EXEC.
4233 *
4234 * Balance, ie. select the least loaded group.
4235 *
4236 * Returns the target CPU number, or the same CPU if no balancing is needed.
4237 *
4238 * preempt must be disabled.
4239 */
4240 static int
4241 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4242 {
4243 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4244 int cpu = smp_processor_id();
4245 int new_cpu = cpu;
4246 int want_affine = 0;
4247 int sync = wake_flags & WF_SYNC;
4248
4249 if (p->nr_cpus_allowed == 1)
4250 return prev_cpu;
4251
4252 if (sd_flag & SD_BALANCE_WAKE) {
4253 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4254 want_affine = 1;
4255 new_cpu = prev_cpu;
4256 }
4257
4258 rcu_read_lock();
4259 for_each_domain(cpu, tmp) {
4260 if (!(tmp->flags & SD_LOAD_BALANCE))
4261 continue;
4262
4263 /*
4264 * If both cpu and prev_cpu are part of this domain,
4265 * cpu is a valid SD_WAKE_AFFINE target.
4266 */
4267 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4268 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4269 affine_sd = tmp;
4270 break;
4271 }
4272
4273 if (tmp->flags & sd_flag)
4274 sd = tmp;
4275 }
4276
4277 if (affine_sd) {
4278 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4279 prev_cpu = cpu;
4280
4281 new_cpu = select_idle_sibling(p, prev_cpu);
4282 goto unlock;
4283 }
4284
4285 while (sd) {
4286 int load_idx = sd->forkexec_idx;
4287 struct sched_group *group;
4288 int weight;
4289
4290 if (!(sd->flags & sd_flag)) {
4291 sd = sd->child;
4292 continue;
4293 }
4294
4295 if (sd_flag & SD_BALANCE_WAKE)
4296 load_idx = sd->wake_idx;
4297
4298 group = find_idlest_group(sd, p, cpu, load_idx);
4299 if (!group) {
4300 sd = sd->child;
4301 continue;
4302 }
4303
4304 new_cpu = find_idlest_cpu(group, p, cpu);
4305 if (new_cpu == -1 || new_cpu == cpu) {
4306 /* Now try balancing at a lower domain level of cpu */
4307 sd = sd->child;
4308 continue;
4309 }
4310
4311 /* Now try balancing at a lower domain level of new_cpu */
4312 cpu = new_cpu;
4313 weight = sd->span_weight;
4314 sd = NULL;
4315 for_each_domain(cpu, tmp) {
4316 if (weight <= tmp->span_weight)
4317 break;
4318 if (tmp->flags & sd_flag)
4319 sd = tmp;
4320 }
4321 /* while loop will break here if sd == NULL */
4322 }
4323 unlock:
4324 rcu_read_unlock();
4325
4326 return new_cpu;
4327 }
4328
4329 /*
4330 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4331 * cfs_rq_of(p) references at time of call are still valid and identify the
4332 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4333 * other assumptions, including the state of rq->lock, should be made.
4334 */
4335 static void
4336 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4337 {
4338 struct sched_entity *se = &p->se;
4339 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4340
4341 /*
4342 * Load tracking: accumulate removed load so that it can be processed
4343 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4344 * to blocked load iff they have a positive decay-count. It can never
4345 * be negative here since on-rq tasks have decay-count == 0.
4346 */
4347 if (se->avg.decay_count) {
4348 se->avg.decay_count = -__synchronize_entity_decay(se);
4349 atomic_long_add(se->avg.load_avg_contrib,
4350 &cfs_rq->removed_load);
4351 }
4352 }
4353 #endif /* CONFIG_SMP */
4354
4355 static unsigned long
4356 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4357 {
4358 unsigned long gran = sysctl_sched_wakeup_granularity;
4359
4360 /*
4361 * Since its curr running now, convert the gran from real-time
4362 * to virtual-time in his units.
4363 *
4364 * By using 'se' instead of 'curr' we penalize light tasks, so
4365 * they get preempted easier. That is, if 'se' < 'curr' then
4366 * the resulting gran will be larger, therefore penalizing the
4367 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4368 * be smaller, again penalizing the lighter task.
4369 *
4370 * This is especially important for buddies when the leftmost
4371 * task is higher priority than the buddy.
4372 */
4373 return calc_delta_fair(gran, se);
4374 }
4375
4376 /*
4377 * Should 'se' preempt 'curr'.
4378 *
4379 * |s1
4380 * |s2
4381 * |s3
4382 * g
4383 * |<--->|c
4384 *
4385 * w(c, s1) = -1
4386 * w(c, s2) = 0
4387 * w(c, s3) = 1
4388 *
4389 */
4390 static int
4391 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4392 {
4393 s64 gran, vdiff = curr->vruntime - se->vruntime;
4394
4395 if (vdiff <= 0)
4396 return -1;
4397
4398 gran = wakeup_gran(curr, se);
4399 if (vdiff > gran)
4400 return 1;
4401
4402 return 0;
4403 }
4404
4405 static void set_last_buddy(struct sched_entity *se)
4406 {
4407 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4408 return;
4409
4410 for_each_sched_entity(se)
4411 cfs_rq_of(se)->last = se;
4412 }
4413
4414 static void set_next_buddy(struct sched_entity *se)
4415 {
4416 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4417 return;
4418
4419 for_each_sched_entity(se)
4420 cfs_rq_of(se)->next = se;
4421 }
4422
4423 static void set_skip_buddy(struct sched_entity *se)
4424 {
4425 for_each_sched_entity(se)
4426 cfs_rq_of(se)->skip = se;
4427 }
4428
4429 /*
4430 * Preempt the current task with a newly woken task if needed:
4431 */
4432 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4433 {
4434 struct task_struct *curr = rq->curr;
4435 struct sched_entity *se = &curr->se, *pse = &p->se;
4436 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4437 int scale = cfs_rq->nr_running >= sched_nr_latency;
4438 int next_buddy_marked = 0;
4439
4440 if (unlikely(se == pse))
4441 return;
4442
4443 /*
4444 * This is possible from callers such as move_task(), in which we
4445 * unconditionally check_prempt_curr() after an enqueue (which may have
4446 * lead to a throttle). This both saves work and prevents false
4447 * next-buddy nomination below.
4448 */
4449 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4450 return;
4451
4452 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4453 set_next_buddy(pse);
4454 next_buddy_marked = 1;
4455 }
4456
4457 /*
4458 * We can come here with TIF_NEED_RESCHED already set from new task
4459 * wake up path.
4460 *
4461 * Note: this also catches the edge-case of curr being in a throttled
4462 * group (e.g. via set_curr_task), since update_curr() (in the
4463 * enqueue of curr) will have resulted in resched being set. This
4464 * prevents us from potentially nominating it as a false LAST_BUDDY
4465 * below.
4466 */
4467 if (test_tsk_need_resched(curr))
4468 return;
4469
4470 /* Idle tasks are by definition preempted by non-idle tasks. */
4471 if (unlikely(curr->policy == SCHED_IDLE) &&
4472 likely(p->policy != SCHED_IDLE))
4473 goto preempt;
4474
4475 /*
4476 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4477 * is driven by the tick):
4478 */
4479 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4480 return;
4481
4482 find_matching_se(&se, &pse);
4483 update_curr(cfs_rq_of(se));
4484 BUG_ON(!pse);
4485 if (wakeup_preempt_entity(se, pse) == 1) {
4486 /*
4487 * Bias pick_next to pick the sched entity that is
4488 * triggering this preemption.
4489 */
4490 if (!next_buddy_marked)
4491 set_next_buddy(pse);
4492 goto preempt;
4493 }
4494
4495 return;
4496
4497 preempt:
4498 resched_task(curr);
4499 /*
4500 * Only set the backward buddy when the current task is still
4501 * on the rq. This can happen when a wakeup gets interleaved
4502 * with schedule on the ->pre_schedule() or idle_balance()
4503 * point, either of which can * drop the rq lock.
4504 *
4505 * Also, during early boot the idle thread is in the fair class,
4506 * for obvious reasons its a bad idea to schedule back to it.
4507 */
4508 if (unlikely(!se->on_rq || curr == rq->idle))
4509 return;
4510
4511 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4512 set_last_buddy(se);
4513 }
4514
4515 static struct task_struct *pick_next_task_fair(struct rq *rq)
4516 {
4517 struct task_struct *p;
4518 struct cfs_rq *cfs_rq = &rq->cfs;
4519 struct sched_entity *se;
4520
4521 if (!cfs_rq->nr_running)
4522 return NULL;
4523
4524 do {
4525 se = pick_next_entity(cfs_rq);
4526 set_next_entity(cfs_rq, se);
4527 cfs_rq = group_cfs_rq(se);
4528 } while (cfs_rq);
4529
4530 p = task_of(se);
4531 if (hrtick_enabled(rq))
4532 hrtick_start_fair(rq, p);
4533
4534 return p;
4535 }
4536
4537 /*
4538 * Account for a descheduled task:
4539 */
4540 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4541 {
4542 struct sched_entity *se = &prev->se;
4543 struct cfs_rq *cfs_rq;
4544
4545 for_each_sched_entity(se) {
4546 cfs_rq = cfs_rq_of(se);
4547 put_prev_entity(cfs_rq, se);
4548 }
4549 }
4550
4551 /*
4552 * sched_yield() is very simple
4553 *
4554 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4555 */
4556 static void yield_task_fair(struct rq *rq)
4557 {
4558 struct task_struct *curr = rq->curr;
4559 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4560 struct sched_entity *se = &curr->se;
4561
4562 /*
4563 * Are we the only task in the tree?
4564 */
4565 if (unlikely(rq->nr_running == 1))
4566 return;
4567
4568 clear_buddies(cfs_rq, se);
4569
4570 if (curr->policy != SCHED_BATCH) {
4571 update_rq_clock(rq);
4572 /*
4573 * Update run-time statistics of the 'current'.
4574 */
4575 update_curr(cfs_rq);
4576 /*
4577 * Tell update_rq_clock() that we've just updated,
4578 * so we don't do microscopic update in schedule()
4579 * and double the fastpath cost.
4580 */
4581 rq->skip_clock_update = 1;
4582 }
4583
4584 set_skip_buddy(se);
4585 }
4586
4587 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4588 {
4589 struct sched_entity *se = &p->se;
4590
4591 /* throttled hierarchies are not runnable */
4592 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4593 return false;
4594
4595 /* Tell the scheduler that we'd really like pse to run next. */
4596 set_next_buddy(se);
4597
4598 yield_task_fair(rq);
4599
4600 return true;
4601 }
4602
4603 #ifdef CONFIG_SMP
4604 /**************************************************
4605 * Fair scheduling class load-balancing methods.
4606 *
4607 * BASICS
4608 *
4609 * The purpose of load-balancing is to achieve the same basic fairness the
4610 * per-cpu scheduler provides, namely provide a proportional amount of compute
4611 * time to each task. This is expressed in the following equation:
4612 *
4613 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4614 *
4615 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4616 * W_i,0 is defined as:
4617 *
4618 * W_i,0 = \Sum_j w_i,j (2)
4619 *
4620 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4621 * is derived from the nice value as per prio_to_weight[].
4622 *
4623 * The weight average is an exponential decay average of the instantaneous
4624 * weight:
4625 *
4626 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4627 *
4628 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4629 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4630 * can also include other factors [XXX].
4631 *
4632 * To achieve this balance we define a measure of imbalance which follows
4633 * directly from (1):
4634 *
4635 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4636 *
4637 * We them move tasks around to minimize the imbalance. In the continuous
4638 * function space it is obvious this converges, in the discrete case we get
4639 * a few fun cases generally called infeasible weight scenarios.
4640 *
4641 * [XXX expand on:
4642 * - infeasible weights;
4643 * - local vs global optima in the discrete case. ]
4644 *
4645 *
4646 * SCHED DOMAINS
4647 *
4648 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4649 * for all i,j solution, we create a tree of cpus that follows the hardware
4650 * topology where each level pairs two lower groups (or better). This results
4651 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4652 * tree to only the first of the previous level and we decrease the frequency
4653 * of load-balance at each level inv. proportional to the number of cpus in
4654 * the groups.
4655 *
4656 * This yields:
4657 *
4658 * log_2 n 1 n
4659 * \Sum { --- * --- * 2^i } = O(n) (5)
4660 * i = 0 2^i 2^i
4661 * `- size of each group
4662 * | | `- number of cpus doing load-balance
4663 * | `- freq
4664 * `- sum over all levels
4665 *
4666 * Coupled with a limit on how many tasks we can migrate every balance pass,
4667 * this makes (5) the runtime complexity of the balancer.
4668 *
4669 * An important property here is that each CPU is still (indirectly) connected
4670 * to every other cpu in at most O(log n) steps:
4671 *
4672 * The adjacency matrix of the resulting graph is given by:
4673 *
4674 * log_2 n
4675 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4676 * k = 0
4677 *
4678 * And you'll find that:
4679 *
4680 * A^(log_2 n)_i,j != 0 for all i,j (7)
4681 *
4682 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4683 * The task movement gives a factor of O(m), giving a convergence complexity
4684 * of:
4685 *
4686 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4687 *
4688 *
4689 * WORK CONSERVING
4690 *
4691 * In order to avoid CPUs going idle while there's still work to do, new idle
4692 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4693 * tree itself instead of relying on other CPUs to bring it work.
4694 *
4695 * This adds some complexity to both (5) and (8) but it reduces the total idle
4696 * time.
4697 *
4698 * [XXX more?]
4699 *
4700 *
4701 * CGROUPS
4702 *
4703 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4704 *
4705 * s_k,i
4706 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4707 * S_k
4708 *
4709 * Where
4710 *
4711 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4712 *
4713 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4714 *
4715 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4716 * property.
4717 *
4718 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4719 * rewrite all of this once again.]
4720 */
4721
4722 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4723
4724 enum fbq_type { regular, remote, all };
4725
4726 #define LBF_ALL_PINNED 0x01
4727 #define LBF_NEED_BREAK 0x02
4728 #define LBF_DST_PINNED 0x04
4729 #define LBF_SOME_PINNED 0x08
4730
4731 struct lb_env {
4732 struct sched_domain *sd;
4733
4734 struct rq *src_rq;
4735 int src_cpu;
4736
4737 int dst_cpu;
4738 struct rq *dst_rq;
4739
4740 struct cpumask *dst_grpmask;
4741 int new_dst_cpu;
4742 enum cpu_idle_type idle;
4743 long imbalance;
4744 /* The set of CPUs under consideration for load-balancing */
4745 struct cpumask *cpus;
4746
4747 unsigned int flags;
4748
4749 unsigned int loop;
4750 unsigned int loop_break;
4751 unsigned int loop_max;
4752
4753 enum fbq_type fbq_type;
4754 };
4755
4756 /*
4757 * move_task - move a task from one runqueue to another runqueue.
4758 * Both runqueues must be locked.
4759 */
4760 static void move_task(struct task_struct *p, struct lb_env *env)
4761 {
4762 deactivate_task(env->src_rq, p, 0);
4763 set_task_cpu(p, env->dst_cpu);
4764 activate_task(env->dst_rq, p, 0);
4765 check_preempt_curr(env->dst_rq, p, 0);
4766 }
4767
4768 /*
4769 * Is this task likely cache-hot:
4770 */
4771 static int
4772 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4773 {
4774 s64 delta;
4775
4776 if (p->sched_class != &fair_sched_class)
4777 return 0;
4778
4779 if (unlikely(p->policy == SCHED_IDLE))
4780 return 0;
4781
4782 /*
4783 * Buddy candidates are cache hot:
4784 */
4785 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4786 (&p->se == cfs_rq_of(&p->se)->next ||
4787 &p->se == cfs_rq_of(&p->se)->last))
4788 return 1;
4789
4790 if (sysctl_sched_migration_cost == -1)
4791 return 1;
4792 if (sysctl_sched_migration_cost == 0)
4793 return 0;
4794
4795 delta = now - p->se.exec_start;
4796
4797 return delta < (s64)sysctl_sched_migration_cost;
4798 }
4799
4800 #ifdef CONFIG_NUMA_BALANCING
4801 /* Returns true if the destination node has incurred more faults */
4802 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4803 {
4804 int src_nid, dst_nid;
4805
4806 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4807 !(env->sd->flags & SD_NUMA)) {
4808 return false;
4809 }
4810
4811 src_nid = cpu_to_node(env->src_cpu);
4812 dst_nid = cpu_to_node(env->dst_cpu);
4813
4814 if (src_nid == dst_nid)
4815 return false;
4816
4817 /* Always encourage migration to the preferred node. */
4818 if (dst_nid == p->numa_preferred_nid)
4819 return true;
4820
4821 /* If both task and group weight improve, this move is a winner. */
4822 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4823 group_weight(p, dst_nid) > group_weight(p, src_nid))
4824 return true;
4825
4826 return false;
4827 }
4828
4829
4830 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4831 {
4832 int src_nid, dst_nid;
4833
4834 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4835 return false;
4836
4837 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4838 return false;
4839
4840 src_nid = cpu_to_node(env->src_cpu);
4841 dst_nid = cpu_to_node(env->dst_cpu);
4842
4843 if (src_nid == dst_nid)
4844 return false;
4845
4846 /* Migrating away from the preferred node is always bad. */
4847 if (src_nid == p->numa_preferred_nid)
4848 return true;
4849
4850 /* If either task or group weight get worse, don't do it. */
4851 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4852 group_weight(p, dst_nid) < group_weight(p, src_nid))
4853 return true;
4854
4855 return false;
4856 }
4857
4858 #else
4859 static inline bool migrate_improves_locality(struct task_struct *p,
4860 struct lb_env *env)
4861 {
4862 return false;
4863 }
4864
4865 static inline bool migrate_degrades_locality(struct task_struct *p,
4866 struct lb_env *env)
4867 {
4868 return false;
4869 }
4870 #endif
4871
4872 /*
4873 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4874 */
4875 static
4876 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4877 {
4878 int tsk_cache_hot = 0;
4879 /*
4880 * We do not migrate tasks that are:
4881 * 1) throttled_lb_pair, or
4882 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4883 * 3) running (obviously), or
4884 * 4) are cache-hot on their current CPU.
4885 */
4886 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4887 return 0;
4888
4889 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4890 int cpu;
4891
4892 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4893
4894 env->flags |= LBF_SOME_PINNED;
4895
4896 /*
4897 * Remember if this task can be migrated to any other cpu in
4898 * our sched_group. We may want to revisit it if we couldn't
4899 * meet load balance goals by pulling other tasks on src_cpu.
4900 *
4901 * Also avoid computing new_dst_cpu if we have already computed
4902 * one in current iteration.
4903 */
4904 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4905 return 0;
4906
4907 /* Prevent to re-select dst_cpu via env's cpus */
4908 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4909 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4910 env->flags |= LBF_DST_PINNED;
4911 env->new_dst_cpu = cpu;
4912 break;
4913 }
4914 }
4915
4916 return 0;
4917 }
4918
4919 /* Record that we found atleast one task that could run on dst_cpu */
4920 env->flags &= ~LBF_ALL_PINNED;
4921
4922 if (task_running(env->src_rq, p)) {
4923 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4924 return 0;
4925 }
4926
4927 /*
4928 * Aggressive migration if:
4929 * 1) destination numa is preferred
4930 * 2) task is cache cold, or
4931 * 3) too many balance attempts have failed.
4932 */
4933 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4934 if (!tsk_cache_hot)
4935 tsk_cache_hot = migrate_degrades_locality(p, env);
4936
4937 if (migrate_improves_locality(p, env)) {
4938 #ifdef CONFIG_SCHEDSTATS
4939 if (tsk_cache_hot) {
4940 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4941 schedstat_inc(p, se.statistics.nr_forced_migrations);
4942 }
4943 #endif
4944 return 1;
4945 }
4946
4947 if (!tsk_cache_hot ||
4948 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4949
4950 if (tsk_cache_hot) {
4951 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4952 schedstat_inc(p, se.statistics.nr_forced_migrations);
4953 }
4954
4955 return 1;
4956 }
4957
4958 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4959 return 0;
4960 }
4961
4962 /*
4963 * move_one_task tries to move exactly one task from busiest to this_rq, as
4964 * part of active balancing operations within "domain".
4965 * Returns 1 if successful and 0 otherwise.
4966 *
4967 * Called with both runqueues locked.
4968 */
4969 static int move_one_task(struct lb_env *env)
4970 {
4971 struct task_struct *p, *n;
4972
4973 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4974 if (!can_migrate_task(p, env))
4975 continue;
4976
4977 move_task(p, env);
4978 /*
4979 * Right now, this is only the second place move_task()
4980 * is called, so we can safely collect move_task()
4981 * stats here rather than inside move_task().
4982 */
4983 schedstat_inc(env->sd, lb_gained[env->idle]);
4984 return 1;
4985 }
4986 return 0;
4987 }
4988
4989 static const unsigned int sched_nr_migrate_break = 32;
4990
4991 /*
4992 * move_tasks tries to move up to imbalance weighted load from busiest to
4993 * this_rq, as part of a balancing operation within domain "sd".
4994 * Returns 1 if successful and 0 otherwise.
4995 *
4996 * Called with both runqueues locked.
4997 */
4998 static int move_tasks(struct lb_env *env)
4999 {
5000 struct list_head *tasks = &env->src_rq->cfs_tasks;
5001 struct task_struct *p;
5002 unsigned long load;
5003 int pulled = 0;
5004
5005 if (env->imbalance <= 0)
5006 return 0;
5007
5008 while (!list_empty(tasks)) {
5009 p = list_first_entry(tasks, struct task_struct, se.group_node);
5010
5011 env->loop++;
5012 /* We've more or less seen every task there is, call it quits */
5013 if (env->loop > env->loop_max)
5014 break;
5015
5016 /* take a breather every nr_migrate tasks */
5017 if (env->loop > env->loop_break) {
5018 env->loop_break += sched_nr_migrate_break;
5019 env->flags |= LBF_NEED_BREAK;
5020 break;
5021 }
5022
5023 if (!can_migrate_task(p, env))
5024 goto next;
5025
5026 load = task_h_load(p);
5027
5028 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5029 goto next;
5030
5031 if ((load / 2) > env->imbalance)
5032 goto next;
5033
5034 move_task(p, env);
5035 pulled++;
5036 env->imbalance -= load;
5037
5038 #ifdef CONFIG_PREEMPT
5039 /*
5040 * NEWIDLE balancing is a source of latency, so preemptible
5041 * kernels will stop after the first task is pulled to minimize
5042 * the critical section.
5043 */
5044 if (env->idle == CPU_NEWLY_IDLE)
5045 break;
5046 #endif
5047
5048 /*
5049 * We only want to steal up to the prescribed amount of
5050 * weighted load.
5051 */
5052 if (env->imbalance <= 0)
5053 break;
5054
5055 continue;
5056 next:
5057 list_move_tail(&p->se.group_node, tasks);
5058 }
5059
5060 /*
5061 * Right now, this is one of only two places move_task() is called,
5062 * so we can safely collect move_task() stats here rather than
5063 * inside move_task().
5064 */
5065 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5066
5067 return pulled;
5068 }
5069
5070 #ifdef CONFIG_FAIR_GROUP_SCHED
5071 /*
5072 * update tg->load_weight by folding this cpu's load_avg
5073 */
5074 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5075 {
5076 struct sched_entity *se = tg->se[cpu];
5077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5078
5079 /* throttled entities do not contribute to load */
5080 if (throttled_hierarchy(cfs_rq))
5081 return;
5082
5083 update_cfs_rq_blocked_load(cfs_rq, 1);
5084
5085 if (se) {
5086 update_entity_load_avg(se, 1);
5087 /*
5088 * We pivot on our runnable average having decayed to zero for
5089 * list removal. This generally implies that all our children
5090 * have also been removed (modulo rounding error or bandwidth
5091 * control); however, such cases are rare and we can fix these
5092 * at enqueue.
5093 *
5094 * TODO: fix up out-of-order children on enqueue.
5095 */
5096 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5097 list_del_leaf_cfs_rq(cfs_rq);
5098 } else {
5099 struct rq *rq = rq_of(cfs_rq);
5100 update_rq_runnable_avg(rq, rq->nr_running);
5101 }
5102 }
5103
5104 static void update_blocked_averages(int cpu)
5105 {
5106 struct rq *rq = cpu_rq(cpu);
5107 struct cfs_rq *cfs_rq;
5108 unsigned long flags;
5109
5110 raw_spin_lock_irqsave(&rq->lock, flags);
5111 update_rq_clock(rq);
5112 /*
5113 * Iterates the task_group tree in a bottom up fashion, see
5114 * list_add_leaf_cfs_rq() for details.
5115 */
5116 for_each_leaf_cfs_rq(rq, cfs_rq) {
5117 /*
5118 * Note: We may want to consider periodically releasing
5119 * rq->lock about these updates so that creating many task
5120 * groups does not result in continually extending hold time.
5121 */
5122 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5123 }
5124
5125 raw_spin_unlock_irqrestore(&rq->lock, flags);
5126 }
5127
5128 /*
5129 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5130 * This needs to be done in a top-down fashion because the load of a child
5131 * group is a fraction of its parents load.
5132 */
5133 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5134 {
5135 struct rq *rq = rq_of(cfs_rq);
5136 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5137 unsigned long now = jiffies;
5138 unsigned long load;
5139
5140 if (cfs_rq->last_h_load_update == now)
5141 return;
5142
5143 cfs_rq->h_load_next = NULL;
5144 for_each_sched_entity(se) {
5145 cfs_rq = cfs_rq_of(se);
5146 cfs_rq->h_load_next = se;
5147 if (cfs_rq->last_h_load_update == now)
5148 break;
5149 }
5150
5151 if (!se) {
5152 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5153 cfs_rq->last_h_load_update = now;
5154 }
5155
5156 while ((se = cfs_rq->h_load_next) != NULL) {
5157 load = cfs_rq->h_load;
5158 load = div64_ul(load * se->avg.load_avg_contrib,
5159 cfs_rq->runnable_load_avg + 1);
5160 cfs_rq = group_cfs_rq(se);
5161 cfs_rq->h_load = load;
5162 cfs_rq->last_h_load_update = now;
5163 }
5164 }
5165
5166 static unsigned long task_h_load(struct task_struct *p)
5167 {
5168 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5169
5170 update_cfs_rq_h_load(cfs_rq);
5171 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5172 cfs_rq->runnable_load_avg + 1);
5173 }
5174 #else
5175 static inline void update_blocked_averages(int cpu)
5176 {
5177 }
5178
5179 static unsigned long task_h_load(struct task_struct *p)
5180 {
5181 return p->se.avg.load_avg_contrib;
5182 }
5183 #endif
5184
5185 /********** Helpers for find_busiest_group ************************/
5186 /*
5187 * sg_lb_stats - stats of a sched_group required for load_balancing
5188 */
5189 struct sg_lb_stats {
5190 unsigned long avg_load; /*Avg load across the CPUs of the group */
5191 unsigned long group_load; /* Total load over the CPUs of the group */
5192 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5193 unsigned long load_per_task;
5194 unsigned long group_power;
5195 unsigned int sum_nr_running; /* Nr tasks running in the group */
5196 unsigned int group_capacity;
5197 unsigned int idle_cpus;
5198 unsigned int group_weight;
5199 int group_imb; /* Is there an imbalance in the group ? */
5200 int group_has_capacity; /* Is there extra capacity in the group? */
5201 #ifdef CONFIG_NUMA_BALANCING
5202 unsigned int nr_numa_running;
5203 unsigned int nr_preferred_running;
5204 #endif
5205 };
5206
5207 /*
5208 * sd_lb_stats - Structure to store the statistics of a sched_domain
5209 * during load balancing.
5210 */
5211 struct sd_lb_stats {
5212 struct sched_group *busiest; /* Busiest group in this sd */
5213 struct sched_group *local; /* Local group in this sd */
5214 unsigned long total_load; /* Total load of all groups in sd */
5215 unsigned long total_pwr; /* Total power of all groups in sd */
5216 unsigned long avg_load; /* Average load across all groups in sd */
5217
5218 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5219 struct sg_lb_stats local_stat; /* Statistics of the local group */
5220 };
5221
5222 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5223 {
5224 /*
5225 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5226 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5227 * We must however clear busiest_stat::avg_load because
5228 * update_sd_pick_busiest() reads this before assignment.
5229 */
5230 *sds = (struct sd_lb_stats){
5231 .busiest = NULL,
5232 .local = NULL,
5233 .total_load = 0UL,
5234 .total_pwr = 0UL,
5235 .busiest_stat = {
5236 .avg_load = 0UL,
5237 },
5238 };
5239 }
5240
5241 /**
5242 * get_sd_load_idx - Obtain the load index for a given sched domain.
5243 * @sd: The sched_domain whose load_idx is to be obtained.
5244 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5245 *
5246 * Return: The load index.
5247 */
5248 static inline int get_sd_load_idx(struct sched_domain *sd,
5249 enum cpu_idle_type idle)
5250 {
5251 int load_idx;
5252
5253 switch (idle) {
5254 case CPU_NOT_IDLE:
5255 load_idx = sd->busy_idx;
5256 break;
5257
5258 case CPU_NEWLY_IDLE:
5259 load_idx = sd->newidle_idx;
5260 break;
5261 default:
5262 load_idx = sd->idle_idx;
5263 break;
5264 }
5265
5266 return load_idx;
5267 }
5268
5269 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5270 {
5271 return SCHED_POWER_SCALE;
5272 }
5273
5274 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5275 {
5276 return default_scale_freq_power(sd, cpu);
5277 }
5278
5279 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5280 {
5281 unsigned long weight = sd->span_weight;
5282 unsigned long smt_gain = sd->smt_gain;
5283
5284 smt_gain /= weight;
5285
5286 return smt_gain;
5287 }
5288
5289 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5290 {
5291 return default_scale_smt_power(sd, cpu);
5292 }
5293
5294 static unsigned long scale_rt_power(int cpu)
5295 {
5296 struct rq *rq = cpu_rq(cpu);
5297 u64 total, available, age_stamp, avg;
5298
5299 /*
5300 * Since we're reading these variables without serialization make sure
5301 * we read them once before doing sanity checks on them.
5302 */
5303 age_stamp = ACCESS_ONCE(rq->age_stamp);
5304 avg = ACCESS_ONCE(rq->rt_avg);
5305
5306 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5307
5308 if (unlikely(total < avg)) {
5309 /* Ensures that power won't end up being negative */
5310 available = 0;
5311 } else {
5312 available = total - avg;
5313 }
5314
5315 if (unlikely((s64)total < SCHED_POWER_SCALE))
5316 total = SCHED_POWER_SCALE;
5317
5318 total >>= SCHED_POWER_SHIFT;
5319
5320 return div_u64(available, total);
5321 }
5322
5323 static void update_cpu_power(struct sched_domain *sd, int cpu)
5324 {
5325 unsigned long weight = sd->span_weight;
5326 unsigned long power = SCHED_POWER_SCALE;
5327 struct sched_group *sdg = sd->groups;
5328
5329 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5330 if (sched_feat(ARCH_POWER))
5331 power *= arch_scale_smt_power(sd, cpu);
5332 else
5333 power *= default_scale_smt_power(sd, cpu);
5334
5335 power >>= SCHED_POWER_SHIFT;
5336 }
5337
5338 sdg->sgp->power_orig = power;
5339
5340 if (sched_feat(ARCH_POWER))
5341 power *= arch_scale_freq_power(sd, cpu);
5342 else
5343 power *= default_scale_freq_power(sd, cpu);
5344
5345 power >>= SCHED_POWER_SHIFT;
5346
5347 power *= scale_rt_power(cpu);
5348 power >>= SCHED_POWER_SHIFT;
5349
5350 if (!power)
5351 power = 1;
5352
5353 cpu_rq(cpu)->cpu_power = power;
5354 sdg->sgp->power = power;
5355 }
5356
5357 void update_group_power(struct sched_domain *sd, int cpu)
5358 {
5359 struct sched_domain *child = sd->child;
5360 struct sched_group *group, *sdg = sd->groups;
5361 unsigned long power, power_orig;
5362 unsigned long interval;
5363
5364 interval = msecs_to_jiffies(sd->balance_interval);
5365 interval = clamp(interval, 1UL, max_load_balance_interval);
5366 sdg->sgp->next_update = jiffies + interval;
5367
5368 if (!child) {
5369 update_cpu_power(sd, cpu);
5370 return;
5371 }
5372
5373 power_orig = power = 0;
5374
5375 if (child->flags & SD_OVERLAP) {
5376 /*
5377 * SD_OVERLAP domains cannot assume that child groups
5378 * span the current group.
5379 */
5380
5381 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5382 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5383
5384 power_orig += sg->sgp->power_orig;
5385 power += sg->sgp->power;
5386 }
5387 } else {
5388 /*
5389 * !SD_OVERLAP domains can assume that child groups
5390 * span the current group.
5391 */
5392
5393 group = child->groups;
5394 do {
5395 power_orig += group->sgp->power_orig;
5396 power += group->sgp->power;
5397 group = group->next;
5398 } while (group != child->groups);
5399 }
5400
5401 sdg->sgp->power_orig = power_orig;
5402 sdg->sgp->power = power;
5403 }
5404
5405 /*
5406 * Try and fix up capacity for tiny siblings, this is needed when
5407 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5408 * which on its own isn't powerful enough.
5409 *
5410 * See update_sd_pick_busiest() and check_asym_packing().
5411 */
5412 static inline int
5413 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5414 {
5415 /*
5416 * Only siblings can have significantly less than SCHED_POWER_SCALE
5417 */
5418 if (!(sd->flags & SD_SHARE_CPUPOWER))
5419 return 0;
5420
5421 /*
5422 * If ~90% of the cpu_power is still there, we're good.
5423 */
5424 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5425 return 1;
5426
5427 return 0;
5428 }
5429
5430 /*
5431 * Group imbalance indicates (and tries to solve) the problem where balancing
5432 * groups is inadequate due to tsk_cpus_allowed() constraints.
5433 *
5434 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5435 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5436 * Something like:
5437 *
5438 * { 0 1 2 3 } { 4 5 6 7 }
5439 * * * * *
5440 *
5441 * If we were to balance group-wise we'd place two tasks in the first group and
5442 * two tasks in the second group. Clearly this is undesired as it will overload
5443 * cpu 3 and leave one of the cpus in the second group unused.
5444 *
5445 * The current solution to this issue is detecting the skew in the first group
5446 * by noticing the lower domain failed to reach balance and had difficulty
5447 * moving tasks due to affinity constraints.
5448 *
5449 * When this is so detected; this group becomes a candidate for busiest; see
5450 * update_sd_pick_busiest(). And calculate_imbalance() and
5451 * find_busiest_group() avoid some of the usual balance conditions to allow it
5452 * to create an effective group imbalance.
5453 *
5454 * This is a somewhat tricky proposition since the next run might not find the
5455 * group imbalance and decide the groups need to be balanced again. A most
5456 * subtle and fragile situation.
5457 */
5458
5459 static inline int sg_imbalanced(struct sched_group *group)
5460 {
5461 return group->sgp->imbalance;
5462 }
5463
5464 /*
5465 * Compute the group capacity.
5466 *
5467 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5468 * first dividing out the smt factor and computing the actual number of cores
5469 * and limit power unit capacity with that.
5470 */
5471 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5472 {
5473 unsigned int capacity, smt, cpus;
5474 unsigned int power, power_orig;
5475
5476 power = group->sgp->power;
5477 power_orig = group->sgp->power_orig;
5478 cpus = group->group_weight;
5479
5480 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5481 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5482 capacity = cpus / smt; /* cores */
5483
5484 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5485 if (!capacity)
5486 capacity = fix_small_capacity(env->sd, group);
5487
5488 return capacity;
5489 }
5490
5491 /**
5492 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5493 * @env: The load balancing environment.
5494 * @group: sched_group whose statistics are to be updated.
5495 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5496 * @local_group: Does group contain this_cpu.
5497 * @sgs: variable to hold the statistics for this group.
5498 */
5499 static inline void update_sg_lb_stats(struct lb_env *env,
5500 struct sched_group *group, int load_idx,
5501 int local_group, struct sg_lb_stats *sgs)
5502 {
5503 unsigned long nr_running;
5504 unsigned long load;
5505 int i;
5506
5507 memset(sgs, 0, sizeof(*sgs));
5508
5509 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5510 struct rq *rq = cpu_rq(i);
5511
5512 nr_running = rq->nr_running;
5513
5514 /* Bias balancing toward cpus of our domain */
5515 if (local_group)
5516 load = target_load(i, load_idx);
5517 else
5518 load = source_load(i, load_idx);
5519
5520 sgs->group_load += load;
5521 sgs->sum_nr_running += nr_running;
5522 #ifdef CONFIG_NUMA_BALANCING
5523 sgs->nr_numa_running += rq->nr_numa_running;
5524 sgs->nr_preferred_running += rq->nr_preferred_running;
5525 #endif
5526 sgs->sum_weighted_load += weighted_cpuload(i);
5527 if (idle_cpu(i))
5528 sgs->idle_cpus++;
5529 }
5530
5531 /* Adjust by relative CPU power of the group */
5532 sgs->group_power = group->sgp->power;
5533 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5534
5535 if (sgs->sum_nr_running)
5536 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5537
5538 sgs->group_weight = group->group_weight;
5539
5540 sgs->group_imb = sg_imbalanced(group);
5541 sgs->group_capacity = sg_capacity(env, group);
5542
5543 if (sgs->group_capacity > sgs->sum_nr_running)
5544 sgs->group_has_capacity = 1;
5545 }
5546
5547 /**
5548 * update_sd_pick_busiest - return 1 on busiest group
5549 * @env: The load balancing environment.
5550 * @sds: sched_domain statistics
5551 * @sg: sched_group candidate to be checked for being the busiest
5552 * @sgs: sched_group statistics
5553 *
5554 * Determine if @sg is a busier group than the previously selected
5555 * busiest group.
5556 *
5557 * Return: %true if @sg is a busier group than the previously selected
5558 * busiest group. %false otherwise.
5559 */
5560 static bool update_sd_pick_busiest(struct lb_env *env,
5561 struct sd_lb_stats *sds,
5562 struct sched_group *sg,
5563 struct sg_lb_stats *sgs)
5564 {
5565 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5566 return false;
5567
5568 if (sgs->sum_nr_running > sgs->group_capacity)
5569 return true;
5570
5571 if (sgs->group_imb)
5572 return true;
5573
5574 /*
5575 * ASYM_PACKING needs to move all the work to the lowest
5576 * numbered CPUs in the group, therefore mark all groups
5577 * higher than ourself as busy.
5578 */
5579 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5580 env->dst_cpu < group_first_cpu(sg)) {
5581 if (!sds->busiest)
5582 return true;
5583
5584 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5585 return true;
5586 }
5587
5588 return false;
5589 }
5590
5591 #ifdef CONFIG_NUMA_BALANCING
5592 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5593 {
5594 if (sgs->sum_nr_running > sgs->nr_numa_running)
5595 return regular;
5596 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5597 return remote;
5598 return all;
5599 }
5600
5601 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5602 {
5603 if (rq->nr_running > rq->nr_numa_running)
5604 return regular;
5605 if (rq->nr_running > rq->nr_preferred_running)
5606 return remote;
5607 return all;
5608 }
5609 #else
5610 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5611 {
5612 return all;
5613 }
5614
5615 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5616 {
5617 return regular;
5618 }
5619 #endif /* CONFIG_NUMA_BALANCING */
5620
5621 /**
5622 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5623 * @env: The load balancing environment.
5624 * @sds: variable to hold the statistics for this sched_domain.
5625 */
5626 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5627 {
5628 struct sched_domain *child = env->sd->child;
5629 struct sched_group *sg = env->sd->groups;
5630 struct sg_lb_stats tmp_sgs;
5631 int load_idx, prefer_sibling = 0;
5632
5633 if (child && child->flags & SD_PREFER_SIBLING)
5634 prefer_sibling = 1;
5635
5636 load_idx = get_sd_load_idx(env->sd, env->idle);
5637
5638 do {
5639 struct sg_lb_stats *sgs = &tmp_sgs;
5640 int local_group;
5641
5642 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5643 if (local_group) {
5644 sds->local = sg;
5645 sgs = &sds->local_stat;
5646
5647 if (env->idle != CPU_NEWLY_IDLE ||
5648 time_after_eq(jiffies, sg->sgp->next_update))
5649 update_group_power(env->sd, env->dst_cpu);
5650 }
5651
5652 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5653
5654 if (local_group)
5655 goto next_group;
5656
5657 /*
5658 * In case the child domain prefers tasks go to siblings
5659 * first, lower the sg capacity to one so that we'll try
5660 * and move all the excess tasks away. We lower the capacity
5661 * of a group only if the local group has the capacity to fit
5662 * these excess tasks, i.e. nr_running < group_capacity. The
5663 * extra check prevents the case where you always pull from the
5664 * heaviest group when it is already under-utilized (possible
5665 * with a large weight task outweighs the tasks on the system).
5666 */
5667 if (prefer_sibling && sds->local &&
5668 sds->local_stat.group_has_capacity)
5669 sgs->group_capacity = min(sgs->group_capacity, 1U);
5670
5671 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5672 sds->busiest = sg;
5673 sds->busiest_stat = *sgs;
5674 }
5675
5676 next_group:
5677 /* Now, start updating sd_lb_stats */
5678 sds->total_load += sgs->group_load;
5679 sds->total_pwr += sgs->group_power;
5680
5681 sg = sg->next;
5682 } while (sg != env->sd->groups);
5683
5684 if (env->sd->flags & SD_NUMA)
5685 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5686 }
5687
5688 /**
5689 * check_asym_packing - Check to see if the group is packed into the
5690 * sched doman.
5691 *
5692 * This is primarily intended to used at the sibling level. Some
5693 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5694 * case of POWER7, it can move to lower SMT modes only when higher
5695 * threads are idle. When in lower SMT modes, the threads will
5696 * perform better since they share less core resources. Hence when we
5697 * have idle threads, we want them to be the higher ones.
5698 *
5699 * This packing function is run on idle threads. It checks to see if
5700 * the busiest CPU in this domain (core in the P7 case) has a higher
5701 * CPU number than the packing function is being run on. Here we are
5702 * assuming lower CPU number will be equivalent to lower a SMT thread
5703 * number.
5704 *
5705 * Return: 1 when packing is required and a task should be moved to
5706 * this CPU. The amount of the imbalance is returned in *imbalance.
5707 *
5708 * @env: The load balancing environment.
5709 * @sds: Statistics of the sched_domain which is to be packed
5710 */
5711 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5712 {
5713 int busiest_cpu;
5714
5715 if (!(env->sd->flags & SD_ASYM_PACKING))
5716 return 0;
5717
5718 if (!sds->busiest)
5719 return 0;
5720
5721 busiest_cpu = group_first_cpu(sds->busiest);
5722 if (env->dst_cpu > busiest_cpu)
5723 return 0;
5724
5725 env->imbalance = DIV_ROUND_CLOSEST(
5726 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5727 SCHED_POWER_SCALE);
5728
5729 return 1;
5730 }
5731
5732 /**
5733 * fix_small_imbalance - Calculate the minor imbalance that exists
5734 * amongst the groups of a sched_domain, during
5735 * load balancing.
5736 * @env: The load balancing environment.
5737 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5738 */
5739 static inline
5740 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5741 {
5742 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5743 unsigned int imbn = 2;
5744 unsigned long scaled_busy_load_per_task;
5745 struct sg_lb_stats *local, *busiest;
5746
5747 local = &sds->local_stat;
5748 busiest = &sds->busiest_stat;
5749
5750 if (!local->sum_nr_running)
5751 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5752 else if (busiest->load_per_task > local->load_per_task)
5753 imbn = 1;
5754
5755 scaled_busy_load_per_task =
5756 (busiest->load_per_task * SCHED_POWER_SCALE) /
5757 busiest->group_power;
5758
5759 if (busiest->avg_load + scaled_busy_load_per_task >=
5760 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5761 env->imbalance = busiest->load_per_task;
5762 return;
5763 }
5764
5765 /*
5766 * OK, we don't have enough imbalance to justify moving tasks,
5767 * however we may be able to increase total CPU power used by
5768 * moving them.
5769 */
5770
5771 pwr_now += busiest->group_power *
5772 min(busiest->load_per_task, busiest->avg_load);
5773 pwr_now += local->group_power *
5774 min(local->load_per_task, local->avg_load);
5775 pwr_now /= SCHED_POWER_SCALE;
5776
5777 /* Amount of load we'd subtract */
5778 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5779 busiest->group_power;
5780 if (busiest->avg_load > tmp) {
5781 pwr_move += busiest->group_power *
5782 min(busiest->load_per_task,
5783 busiest->avg_load - tmp);
5784 }
5785
5786 /* Amount of load we'd add */
5787 if (busiest->avg_load * busiest->group_power <
5788 busiest->load_per_task * SCHED_POWER_SCALE) {
5789 tmp = (busiest->avg_load * busiest->group_power) /
5790 local->group_power;
5791 } else {
5792 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5793 local->group_power;
5794 }
5795 pwr_move += local->group_power *
5796 min(local->load_per_task, local->avg_load + tmp);
5797 pwr_move /= SCHED_POWER_SCALE;
5798
5799 /* Move if we gain throughput */
5800 if (pwr_move > pwr_now)
5801 env->imbalance = busiest->load_per_task;
5802 }
5803
5804 /**
5805 * calculate_imbalance - Calculate the amount of imbalance present within the
5806 * groups of a given sched_domain during load balance.
5807 * @env: load balance environment
5808 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5809 */
5810 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5811 {
5812 unsigned long max_pull, load_above_capacity = ~0UL;
5813 struct sg_lb_stats *local, *busiest;
5814
5815 local = &sds->local_stat;
5816 busiest = &sds->busiest_stat;
5817
5818 if (busiest->group_imb) {
5819 /*
5820 * In the group_imb case we cannot rely on group-wide averages
5821 * to ensure cpu-load equilibrium, look at wider averages. XXX
5822 */
5823 busiest->load_per_task =
5824 min(busiest->load_per_task, sds->avg_load);
5825 }
5826
5827 /*
5828 * In the presence of smp nice balancing, certain scenarios can have
5829 * max load less than avg load(as we skip the groups at or below
5830 * its cpu_power, while calculating max_load..)
5831 */
5832 if (busiest->avg_load <= sds->avg_load ||
5833 local->avg_load >= sds->avg_load) {
5834 env->imbalance = 0;
5835 return fix_small_imbalance(env, sds);
5836 }
5837
5838 if (!busiest->group_imb) {
5839 /*
5840 * Don't want to pull so many tasks that a group would go idle.
5841 * Except of course for the group_imb case, since then we might
5842 * have to drop below capacity to reach cpu-load equilibrium.
5843 */
5844 load_above_capacity =
5845 (busiest->sum_nr_running - busiest->group_capacity);
5846
5847 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5848 load_above_capacity /= busiest->group_power;
5849 }
5850
5851 /*
5852 * We're trying to get all the cpus to the average_load, so we don't
5853 * want to push ourselves above the average load, nor do we wish to
5854 * reduce the max loaded cpu below the average load. At the same time,
5855 * we also don't want to reduce the group load below the group capacity
5856 * (so that we can implement power-savings policies etc). Thus we look
5857 * for the minimum possible imbalance.
5858 */
5859 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5860
5861 /* How much load to actually move to equalise the imbalance */
5862 env->imbalance = min(
5863 max_pull * busiest->group_power,
5864 (sds->avg_load - local->avg_load) * local->group_power
5865 ) / SCHED_POWER_SCALE;
5866
5867 /*
5868 * if *imbalance is less than the average load per runnable task
5869 * there is no guarantee that any tasks will be moved so we'll have
5870 * a think about bumping its value to force at least one task to be
5871 * moved
5872 */
5873 if (env->imbalance < busiest->load_per_task)
5874 return fix_small_imbalance(env, sds);
5875 }
5876
5877 /******* find_busiest_group() helpers end here *********************/
5878
5879 /**
5880 * find_busiest_group - Returns the busiest group within the sched_domain
5881 * if there is an imbalance. If there isn't an imbalance, and
5882 * the user has opted for power-savings, it returns a group whose
5883 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5884 * such a group exists.
5885 *
5886 * Also calculates the amount of weighted load which should be moved
5887 * to restore balance.
5888 *
5889 * @env: The load balancing environment.
5890 *
5891 * Return: - The busiest group if imbalance exists.
5892 * - If no imbalance and user has opted for power-savings balance,
5893 * return the least loaded group whose CPUs can be
5894 * put to idle by rebalancing its tasks onto our group.
5895 */
5896 static struct sched_group *find_busiest_group(struct lb_env *env)
5897 {
5898 struct sg_lb_stats *local, *busiest;
5899 struct sd_lb_stats sds;
5900
5901 init_sd_lb_stats(&sds);
5902
5903 /*
5904 * Compute the various statistics relavent for load balancing at
5905 * this level.
5906 */
5907 update_sd_lb_stats(env, &sds);
5908 local = &sds.local_stat;
5909 busiest = &sds.busiest_stat;
5910
5911 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5912 check_asym_packing(env, &sds))
5913 return sds.busiest;
5914
5915 /* There is no busy sibling group to pull tasks from */
5916 if (!sds.busiest || busiest->sum_nr_running == 0)
5917 goto out_balanced;
5918
5919 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5920
5921 /*
5922 * If the busiest group is imbalanced the below checks don't
5923 * work because they assume all things are equal, which typically
5924 * isn't true due to cpus_allowed constraints and the like.
5925 */
5926 if (busiest->group_imb)
5927 goto force_balance;
5928
5929 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5930 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5931 !busiest->group_has_capacity)
5932 goto force_balance;
5933
5934 /*
5935 * If the local group is more busy than the selected busiest group
5936 * don't try and pull any tasks.
5937 */
5938 if (local->avg_load >= busiest->avg_load)
5939 goto out_balanced;
5940
5941 /*
5942 * Don't pull any tasks if this group is already above the domain
5943 * average load.
5944 */
5945 if (local->avg_load >= sds.avg_load)
5946 goto out_balanced;
5947
5948 if (env->idle == CPU_IDLE) {
5949 /*
5950 * This cpu is idle. If the busiest group load doesn't
5951 * have more tasks than the number of available cpu's and
5952 * there is no imbalance between this and busiest group
5953 * wrt to idle cpu's, it is balanced.
5954 */
5955 if ((local->idle_cpus < busiest->idle_cpus) &&
5956 busiest->sum_nr_running <= busiest->group_weight)
5957 goto out_balanced;
5958 } else {
5959 /*
5960 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5961 * imbalance_pct to be conservative.
5962 */
5963 if (100 * busiest->avg_load <=
5964 env->sd->imbalance_pct * local->avg_load)
5965 goto out_balanced;
5966 }
5967
5968 force_balance:
5969 /* Looks like there is an imbalance. Compute it */
5970 calculate_imbalance(env, &sds);
5971 return sds.busiest;
5972
5973 out_balanced:
5974 env->imbalance = 0;
5975 return NULL;
5976 }
5977
5978 /*
5979 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5980 */
5981 static struct rq *find_busiest_queue(struct lb_env *env,
5982 struct sched_group *group)
5983 {
5984 struct rq *busiest = NULL, *rq;
5985 unsigned long busiest_load = 0, busiest_power = 1;
5986 int i;
5987
5988 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5989 unsigned long power, capacity, wl;
5990 enum fbq_type rt;
5991
5992 rq = cpu_rq(i);
5993 rt = fbq_classify_rq(rq);
5994
5995 /*
5996 * We classify groups/runqueues into three groups:
5997 * - regular: there are !numa tasks
5998 * - remote: there are numa tasks that run on the 'wrong' node
5999 * - all: there is no distinction
6000 *
6001 * In order to avoid migrating ideally placed numa tasks,
6002 * ignore those when there's better options.
6003 *
6004 * If we ignore the actual busiest queue to migrate another
6005 * task, the next balance pass can still reduce the busiest
6006 * queue by moving tasks around inside the node.
6007 *
6008 * If we cannot move enough load due to this classification
6009 * the next pass will adjust the group classification and
6010 * allow migration of more tasks.
6011 *
6012 * Both cases only affect the total convergence complexity.
6013 */
6014 if (rt > env->fbq_type)
6015 continue;
6016
6017 power = power_of(i);
6018 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6019 if (!capacity)
6020 capacity = fix_small_capacity(env->sd, group);
6021
6022 wl = weighted_cpuload(i);
6023
6024 /*
6025 * When comparing with imbalance, use weighted_cpuload()
6026 * which is not scaled with the cpu power.
6027 */
6028 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6029 continue;
6030
6031 /*
6032 * For the load comparisons with the other cpu's, consider
6033 * the weighted_cpuload() scaled with the cpu power, so that
6034 * the load can be moved away from the cpu that is potentially
6035 * running at a lower capacity.
6036 *
6037 * Thus we're looking for max(wl_i / power_i), crosswise
6038 * multiplication to rid ourselves of the division works out
6039 * to: wl_i * power_j > wl_j * power_i; where j is our
6040 * previous maximum.
6041 */
6042 if (wl * busiest_power > busiest_load * power) {
6043 busiest_load = wl;
6044 busiest_power = power;
6045 busiest = rq;
6046 }
6047 }
6048
6049 return busiest;
6050 }
6051
6052 /*
6053 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6054 * so long as it is large enough.
6055 */
6056 #define MAX_PINNED_INTERVAL 512
6057
6058 /* Working cpumask for load_balance and load_balance_newidle. */
6059 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6060
6061 static int need_active_balance(struct lb_env *env)
6062 {
6063 struct sched_domain *sd = env->sd;
6064
6065 if (env->idle == CPU_NEWLY_IDLE) {
6066
6067 /*
6068 * ASYM_PACKING needs to force migrate tasks from busy but
6069 * higher numbered CPUs in order to pack all tasks in the
6070 * lowest numbered CPUs.
6071 */
6072 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6073 return 1;
6074 }
6075
6076 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6077 }
6078
6079 static int active_load_balance_cpu_stop(void *data);
6080
6081 static int should_we_balance(struct lb_env *env)
6082 {
6083 struct sched_group *sg = env->sd->groups;
6084 struct cpumask *sg_cpus, *sg_mask;
6085 int cpu, balance_cpu = -1;
6086
6087 /*
6088 * In the newly idle case, we will allow all the cpu's
6089 * to do the newly idle load balance.
6090 */
6091 if (env->idle == CPU_NEWLY_IDLE)
6092 return 1;
6093
6094 sg_cpus = sched_group_cpus(sg);
6095 sg_mask = sched_group_mask(sg);
6096 /* Try to find first idle cpu */
6097 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6098 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6099 continue;
6100
6101 balance_cpu = cpu;
6102 break;
6103 }
6104
6105 if (balance_cpu == -1)
6106 balance_cpu = group_balance_cpu(sg);
6107
6108 /*
6109 * First idle cpu or the first cpu(busiest) in this sched group
6110 * is eligible for doing load balancing at this and above domains.
6111 */
6112 return balance_cpu == env->dst_cpu;
6113 }
6114
6115 /*
6116 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6117 * tasks if there is an imbalance.
6118 */
6119 static int load_balance(int this_cpu, struct rq *this_rq,
6120 struct sched_domain *sd, enum cpu_idle_type idle,
6121 int *continue_balancing)
6122 {
6123 int ld_moved, cur_ld_moved, active_balance = 0;
6124 struct sched_domain *sd_parent = sd->parent;
6125 struct sched_group *group;
6126 struct rq *busiest;
6127 unsigned long flags;
6128 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6129
6130 struct lb_env env = {
6131 .sd = sd,
6132 .dst_cpu = this_cpu,
6133 .dst_rq = this_rq,
6134 .dst_grpmask = sched_group_cpus(sd->groups),
6135 .idle = idle,
6136 .loop_break = sched_nr_migrate_break,
6137 .cpus = cpus,
6138 .fbq_type = all,
6139 };
6140
6141 /*
6142 * For NEWLY_IDLE load_balancing, we don't need to consider
6143 * other cpus in our group
6144 */
6145 if (idle == CPU_NEWLY_IDLE)
6146 env.dst_grpmask = NULL;
6147
6148 cpumask_copy(cpus, cpu_active_mask);
6149
6150 schedstat_inc(sd, lb_count[idle]);
6151
6152 redo:
6153 if (!should_we_balance(&env)) {
6154 *continue_balancing = 0;
6155 goto out_balanced;
6156 }
6157
6158 group = find_busiest_group(&env);
6159 if (!group) {
6160 schedstat_inc(sd, lb_nobusyg[idle]);
6161 goto out_balanced;
6162 }
6163
6164 busiest = find_busiest_queue(&env, group);
6165 if (!busiest) {
6166 schedstat_inc(sd, lb_nobusyq[idle]);
6167 goto out_balanced;
6168 }
6169
6170 BUG_ON(busiest == env.dst_rq);
6171
6172 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6173
6174 ld_moved = 0;
6175 if (busiest->nr_running > 1) {
6176 /*
6177 * Attempt to move tasks. If find_busiest_group has found
6178 * an imbalance but busiest->nr_running <= 1, the group is
6179 * still unbalanced. ld_moved simply stays zero, so it is
6180 * correctly treated as an imbalance.
6181 */
6182 env.flags |= LBF_ALL_PINNED;
6183 env.src_cpu = busiest->cpu;
6184 env.src_rq = busiest;
6185 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6186
6187 more_balance:
6188 local_irq_save(flags);
6189 double_rq_lock(env.dst_rq, busiest);
6190
6191 /*
6192 * cur_ld_moved - load moved in current iteration
6193 * ld_moved - cumulative load moved across iterations
6194 */
6195 cur_ld_moved = move_tasks(&env);
6196 ld_moved += cur_ld_moved;
6197 double_rq_unlock(env.dst_rq, busiest);
6198 local_irq_restore(flags);
6199
6200 /*
6201 * some other cpu did the load balance for us.
6202 */
6203 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6204 resched_cpu(env.dst_cpu);
6205
6206 if (env.flags & LBF_NEED_BREAK) {
6207 env.flags &= ~LBF_NEED_BREAK;
6208 goto more_balance;
6209 }
6210
6211 /*
6212 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6213 * us and move them to an alternate dst_cpu in our sched_group
6214 * where they can run. The upper limit on how many times we
6215 * iterate on same src_cpu is dependent on number of cpus in our
6216 * sched_group.
6217 *
6218 * This changes load balance semantics a bit on who can move
6219 * load to a given_cpu. In addition to the given_cpu itself
6220 * (or a ilb_cpu acting on its behalf where given_cpu is
6221 * nohz-idle), we now have balance_cpu in a position to move
6222 * load to given_cpu. In rare situations, this may cause
6223 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6224 * _independently_ and at _same_ time to move some load to
6225 * given_cpu) causing exceess load to be moved to given_cpu.
6226 * This however should not happen so much in practice and
6227 * moreover subsequent load balance cycles should correct the
6228 * excess load moved.
6229 */
6230 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6231
6232 /* Prevent to re-select dst_cpu via env's cpus */
6233 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6234
6235 env.dst_rq = cpu_rq(env.new_dst_cpu);
6236 env.dst_cpu = env.new_dst_cpu;
6237 env.flags &= ~LBF_DST_PINNED;
6238 env.loop = 0;
6239 env.loop_break = sched_nr_migrate_break;
6240
6241 /*
6242 * Go back to "more_balance" rather than "redo" since we
6243 * need to continue with same src_cpu.
6244 */
6245 goto more_balance;
6246 }
6247
6248 /*
6249 * We failed to reach balance because of affinity.
6250 */
6251 if (sd_parent) {
6252 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6253
6254 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6255 *group_imbalance = 1;
6256 } else if (*group_imbalance)
6257 *group_imbalance = 0;
6258 }
6259
6260 /* All tasks on this runqueue were pinned by CPU affinity */
6261 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6262 cpumask_clear_cpu(cpu_of(busiest), cpus);
6263 if (!cpumask_empty(cpus)) {
6264 env.loop = 0;
6265 env.loop_break = sched_nr_migrate_break;
6266 goto redo;
6267 }
6268 goto out_balanced;
6269 }
6270 }
6271
6272 if (!ld_moved) {
6273 schedstat_inc(sd, lb_failed[idle]);
6274 /*
6275 * Increment the failure counter only on periodic balance.
6276 * We do not want newidle balance, which can be very
6277 * frequent, pollute the failure counter causing
6278 * excessive cache_hot migrations and active balances.
6279 */
6280 if (idle != CPU_NEWLY_IDLE)
6281 sd->nr_balance_failed++;
6282
6283 if (need_active_balance(&env)) {
6284 raw_spin_lock_irqsave(&busiest->lock, flags);
6285
6286 /* don't kick the active_load_balance_cpu_stop,
6287 * if the curr task on busiest cpu can't be
6288 * moved to this_cpu
6289 */
6290 if (!cpumask_test_cpu(this_cpu,
6291 tsk_cpus_allowed(busiest->curr))) {
6292 raw_spin_unlock_irqrestore(&busiest->lock,
6293 flags);
6294 env.flags |= LBF_ALL_PINNED;
6295 goto out_one_pinned;
6296 }
6297
6298 /*
6299 * ->active_balance synchronizes accesses to
6300 * ->active_balance_work. Once set, it's cleared
6301 * only after active load balance is finished.
6302 */
6303 if (!busiest->active_balance) {
6304 busiest->active_balance = 1;
6305 busiest->push_cpu = this_cpu;
6306 active_balance = 1;
6307 }
6308 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6309
6310 if (active_balance) {
6311 stop_one_cpu_nowait(cpu_of(busiest),
6312 active_load_balance_cpu_stop, busiest,
6313 &busiest->active_balance_work);
6314 }
6315
6316 /*
6317 * We've kicked active balancing, reset the failure
6318 * counter.
6319 */
6320 sd->nr_balance_failed = sd->cache_nice_tries+1;
6321 }
6322 } else
6323 sd->nr_balance_failed = 0;
6324
6325 if (likely(!active_balance)) {
6326 /* We were unbalanced, so reset the balancing interval */
6327 sd->balance_interval = sd->min_interval;
6328 } else {
6329 /*
6330 * If we've begun active balancing, start to back off. This
6331 * case may not be covered by the all_pinned logic if there
6332 * is only 1 task on the busy runqueue (because we don't call
6333 * move_tasks).
6334 */
6335 if (sd->balance_interval < sd->max_interval)
6336 sd->balance_interval *= 2;
6337 }
6338
6339 goto out;
6340
6341 out_balanced:
6342 schedstat_inc(sd, lb_balanced[idle]);
6343
6344 sd->nr_balance_failed = 0;
6345
6346 out_one_pinned:
6347 /* tune up the balancing interval */
6348 if (((env.flags & LBF_ALL_PINNED) &&
6349 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6350 (sd->balance_interval < sd->max_interval))
6351 sd->balance_interval *= 2;
6352
6353 ld_moved = 0;
6354 out:
6355 return ld_moved;
6356 }
6357
6358 /*
6359 * idle_balance is called by schedule() if this_cpu is about to become
6360 * idle. Attempts to pull tasks from other CPUs.
6361 */
6362 void idle_balance(int this_cpu, struct rq *this_rq)
6363 {
6364 struct sched_domain *sd;
6365 int pulled_task = 0;
6366 unsigned long next_balance = jiffies + HZ;
6367 u64 curr_cost = 0;
6368
6369 this_rq->idle_stamp = rq_clock(this_rq);
6370
6371 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6372 return;
6373
6374 /*
6375 * Drop the rq->lock, but keep IRQ/preempt disabled.
6376 */
6377 raw_spin_unlock(&this_rq->lock);
6378
6379 update_blocked_averages(this_cpu);
6380 rcu_read_lock();
6381 for_each_domain(this_cpu, sd) {
6382 unsigned long interval;
6383 int continue_balancing = 1;
6384 u64 t0, domain_cost;
6385
6386 if (!(sd->flags & SD_LOAD_BALANCE))
6387 continue;
6388
6389 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6390 break;
6391
6392 if (sd->flags & SD_BALANCE_NEWIDLE) {
6393 t0 = sched_clock_cpu(this_cpu);
6394
6395 /* If we've pulled tasks over stop searching: */
6396 pulled_task = load_balance(this_cpu, this_rq,
6397 sd, CPU_NEWLY_IDLE,
6398 &continue_balancing);
6399
6400 domain_cost = sched_clock_cpu(this_cpu) - t0;
6401 if (domain_cost > sd->max_newidle_lb_cost)
6402 sd->max_newidle_lb_cost = domain_cost;
6403
6404 curr_cost += domain_cost;
6405 }
6406
6407 interval = msecs_to_jiffies(sd->balance_interval);
6408 if (time_after(next_balance, sd->last_balance + interval))
6409 next_balance = sd->last_balance + interval;
6410 if (pulled_task) {
6411 this_rq->idle_stamp = 0;
6412 break;
6413 }
6414 }
6415 rcu_read_unlock();
6416
6417 raw_spin_lock(&this_rq->lock);
6418
6419 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6420 /*
6421 * We are going idle. next_balance may be set based on
6422 * a busy processor. So reset next_balance.
6423 */
6424 this_rq->next_balance = next_balance;
6425 }
6426
6427 if (curr_cost > this_rq->max_idle_balance_cost)
6428 this_rq->max_idle_balance_cost = curr_cost;
6429 }
6430
6431 /*
6432 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6433 * running tasks off the busiest CPU onto idle CPUs. It requires at
6434 * least 1 task to be running on each physical CPU where possible, and
6435 * avoids physical / logical imbalances.
6436 */
6437 static int active_load_balance_cpu_stop(void *data)
6438 {
6439 struct rq *busiest_rq = data;
6440 int busiest_cpu = cpu_of(busiest_rq);
6441 int target_cpu = busiest_rq->push_cpu;
6442 struct rq *target_rq = cpu_rq(target_cpu);
6443 struct sched_domain *sd;
6444
6445 raw_spin_lock_irq(&busiest_rq->lock);
6446
6447 /* make sure the requested cpu hasn't gone down in the meantime */
6448 if (unlikely(busiest_cpu != smp_processor_id() ||
6449 !busiest_rq->active_balance))
6450 goto out_unlock;
6451
6452 /* Is there any task to move? */
6453 if (busiest_rq->nr_running <= 1)
6454 goto out_unlock;
6455
6456 /*
6457 * This condition is "impossible", if it occurs
6458 * we need to fix it. Originally reported by
6459 * Bjorn Helgaas on a 128-cpu setup.
6460 */
6461 BUG_ON(busiest_rq == target_rq);
6462
6463 /* move a task from busiest_rq to target_rq */
6464 double_lock_balance(busiest_rq, target_rq);
6465
6466 /* Search for an sd spanning us and the target CPU. */
6467 rcu_read_lock();
6468 for_each_domain(target_cpu, sd) {
6469 if ((sd->flags & SD_LOAD_BALANCE) &&
6470 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6471 break;
6472 }
6473
6474 if (likely(sd)) {
6475 struct lb_env env = {
6476 .sd = sd,
6477 .dst_cpu = target_cpu,
6478 .dst_rq = target_rq,
6479 .src_cpu = busiest_rq->cpu,
6480 .src_rq = busiest_rq,
6481 .idle = CPU_IDLE,
6482 };
6483
6484 schedstat_inc(sd, alb_count);
6485
6486 if (move_one_task(&env))
6487 schedstat_inc(sd, alb_pushed);
6488 else
6489 schedstat_inc(sd, alb_failed);
6490 }
6491 rcu_read_unlock();
6492 double_unlock_balance(busiest_rq, target_rq);
6493 out_unlock:
6494 busiest_rq->active_balance = 0;
6495 raw_spin_unlock_irq(&busiest_rq->lock);
6496 return 0;
6497 }
6498
6499 #ifdef CONFIG_NO_HZ_COMMON
6500 /*
6501 * idle load balancing details
6502 * - When one of the busy CPUs notice that there may be an idle rebalancing
6503 * needed, they will kick the idle load balancer, which then does idle
6504 * load balancing for all the idle CPUs.
6505 */
6506 static struct {
6507 cpumask_var_t idle_cpus_mask;
6508 atomic_t nr_cpus;
6509 unsigned long next_balance; /* in jiffy units */
6510 } nohz ____cacheline_aligned;
6511
6512 static inline int find_new_ilb(int call_cpu)
6513 {
6514 int ilb = cpumask_first(nohz.idle_cpus_mask);
6515
6516 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6517 return ilb;
6518
6519 return nr_cpu_ids;
6520 }
6521
6522 /*
6523 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6524 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6525 * CPU (if there is one).
6526 */
6527 static void nohz_balancer_kick(int cpu)
6528 {
6529 int ilb_cpu;
6530
6531 nohz.next_balance++;
6532
6533 ilb_cpu = find_new_ilb(cpu);
6534
6535 if (ilb_cpu >= nr_cpu_ids)
6536 return;
6537
6538 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6539 return;
6540 /*
6541 * Use smp_send_reschedule() instead of resched_cpu().
6542 * This way we generate a sched IPI on the target cpu which
6543 * is idle. And the softirq performing nohz idle load balance
6544 * will be run before returning from the IPI.
6545 */
6546 smp_send_reschedule(ilb_cpu);
6547 return;
6548 }
6549
6550 static inline void nohz_balance_exit_idle(int cpu)
6551 {
6552 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6553 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6554 atomic_dec(&nohz.nr_cpus);
6555 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6556 }
6557 }
6558
6559 static inline void set_cpu_sd_state_busy(void)
6560 {
6561 struct sched_domain *sd;
6562 int cpu = smp_processor_id();
6563
6564 rcu_read_lock();
6565 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6566
6567 if (!sd || !sd->nohz_idle)
6568 goto unlock;
6569 sd->nohz_idle = 0;
6570
6571 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6572 unlock:
6573 rcu_read_unlock();
6574 }
6575
6576 void set_cpu_sd_state_idle(void)
6577 {
6578 struct sched_domain *sd;
6579 int cpu = smp_processor_id();
6580
6581 rcu_read_lock();
6582 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6583
6584 if (!sd || sd->nohz_idle)
6585 goto unlock;
6586 sd->nohz_idle = 1;
6587
6588 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6589 unlock:
6590 rcu_read_unlock();
6591 }
6592
6593 /*
6594 * This routine will record that the cpu is going idle with tick stopped.
6595 * This info will be used in performing idle load balancing in the future.
6596 */
6597 void nohz_balance_enter_idle(int cpu)
6598 {
6599 /*
6600 * If this cpu is going down, then nothing needs to be done.
6601 */
6602 if (!cpu_active(cpu))
6603 return;
6604
6605 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6606 return;
6607
6608 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6609 atomic_inc(&nohz.nr_cpus);
6610 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6611 }
6612
6613 static int sched_ilb_notifier(struct notifier_block *nfb,
6614 unsigned long action, void *hcpu)
6615 {
6616 switch (action & ~CPU_TASKS_FROZEN) {
6617 case CPU_DYING:
6618 nohz_balance_exit_idle(smp_processor_id());
6619 return NOTIFY_OK;
6620 default:
6621 return NOTIFY_DONE;
6622 }
6623 }
6624 #endif
6625
6626 static DEFINE_SPINLOCK(balancing);
6627
6628 /*
6629 * Scale the max load_balance interval with the number of CPUs in the system.
6630 * This trades load-balance latency on larger machines for less cross talk.
6631 */
6632 void update_max_interval(void)
6633 {
6634 max_load_balance_interval = HZ*num_online_cpus()/10;
6635 }
6636
6637 /*
6638 * It checks each scheduling domain to see if it is due to be balanced,
6639 * and initiates a balancing operation if so.
6640 *
6641 * Balancing parameters are set up in init_sched_domains.
6642 */
6643 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6644 {
6645 int continue_balancing = 1;
6646 struct rq *rq = cpu_rq(cpu);
6647 unsigned long interval;
6648 struct sched_domain *sd;
6649 /* Earliest time when we have to do rebalance again */
6650 unsigned long next_balance = jiffies + 60*HZ;
6651 int update_next_balance = 0;
6652 int need_serialize, need_decay = 0;
6653 u64 max_cost = 0;
6654
6655 update_blocked_averages(cpu);
6656
6657 rcu_read_lock();
6658 for_each_domain(cpu, sd) {
6659 /*
6660 * Decay the newidle max times here because this is a regular
6661 * visit to all the domains. Decay ~1% per second.
6662 */
6663 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6664 sd->max_newidle_lb_cost =
6665 (sd->max_newidle_lb_cost * 253) / 256;
6666 sd->next_decay_max_lb_cost = jiffies + HZ;
6667 need_decay = 1;
6668 }
6669 max_cost += sd->max_newidle_lb_cost;
6670
6671 if (!(sd->flags & SD_LOAD_BALANCE))
6672 continue;
6673
6674 /*
6675 * Stop the load balance at this level. There is another
6676 * CPU in our sched group which is doing load balancing more
6677 * actively.
6678 */
6679 if (!continue_balancing) {
6680 if (need_decay)
6681 continue;
6682 break;
6683 }
6684
6685 interval = sd->balance_interval;
6686 if (idle != CPU_IDLE)
6687 interval *= sd->busy_factor;
6688
6689 /* scale ms to jiffies */
6690 interval = msecs_to_jiffies(interval);
6691 interval = clamp(interval, 1UL, max_load_balance_interval);
6692
6693 need_serialize = sd->flags & SD_SERIALIZE;
6694
6695 if (need_serialize) {
6696 if (!spin_trylock(&balancing))
6697 goto out;
6698 }
6699
6700 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6701 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6702 /*
6703 * The LBF_DST_PINNED logic could have changed
6704 * env->dst_cpu, so we can't know our idle
6705 * state even if we migrated tasks. Update it.
6706 */
6707 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6708 }
6709 sd->last_balance = jiffies;
6710 }
6711 if (need_serialize)
6712 spin_unlock(&balancing);
6713 out:
6714 if (time_after(next_balance, sd->last_balance + interval)) {
6715 next_balance = sd->last_balance + interval;
6716 update_next_balance = 1;
6717 }
6718 }
6719 if (need_decay) {
6720 /*
6721 * Ensure the rq-wide value also decays but keep it at a
6722 * reasonable floor to avoid funnies with rq->avg_idle.
6723 */
6724 rq->max_idle_balance_cost =
6725 max((u64)sysctl_sched_migration_cost, max_cost);
6726 }
6727 rcu_read_unlock();
6728
6729 /*
6730 * next_balance will be updated only when there is a need.
6731 * When the cpu is attached to null domain for ex, it will not be
6732 * updated.
6733 */
6734 if (likely(update_next_balance))
6735 rq->next_balance = next_balance;
6736 }
6737
6738 #ifdef CONFIG_NO_HZ_COMMON
6739 /*
6740 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6741 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6742 */
6743 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6744 {
6745 struct rq *this_rq = cpu_rq(this_cpu);
6746 struct rq *rq;
6747 int balance_cpu;
6748
6749 if (idle != CPU_IDLE ||
6750 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6751 goto end;
6752
6753 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6754 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6755 continue;
6756
6757 /*
6758 * If this cpu gets work to do, stop the load balancing
6759 * work being done for other cpus. Next load
6760 * balancing owner will pick it up.
6761 */
6762 if (need_resched())
6763 break;
6764
6765 rq = cpu_rq(balance_cpu);
6766
6767 raw_spin_lock_irq(&rq->lock);
6768 update_rq_clock(rq);
6769 update_idle_cpu_load(rq);
6770 raw_spin_unlock_irq(&rq->lock);
6771
6772 rebalance_domains(balance_cpu, CPU_IDLE);
6773
6774 if (time_after(this_rq->next_balance, rq->next_balance))
6775 this_rq->next_balance = rq->next_balance;
6776 }
6777 nohz.next_balance = this_rq->next_balance;
6778 end:
6779 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6780 }
6781
6782 /*
6783 * Current heuristic for kicking the idle load balancer in the presence
6784 * of an idle cpu is the system.
6785 * - This rq has more than one task.
6786 * - At any scheduler domain level, this cpu's scheduler group has multiple
6787 * busy cpu's exceeding the group's power.
6788 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6789 * domain span are idle.
6790 */
6791 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6792 {
6793 unsigned long now = jiffies;
6794 struct sched_domain *sd;
6795 struct sched_group_power *sgp;
6796 int nr_busy;
6797
6798 if (unlikely(idle_cpu(cpu)))
6799 return 0;
6800
6801 /*
6802 * We may be recently in ticked or tickless idle mode. At the first
6803 * busy tick after returning from idle, we will update the busy stats.
6804 */
6805 set_cpu_sd_state_busy();
6806 nohz_balance_exit_idle(cpu);
6807
6808 /*
6809 * None are in tickless mode and hence no need for NOHZ idle load
6810 * balancing.
6811 */
6812 if (likely(!atomic_read(&nohz.nr_cpus)))
6813 return 0;
6814
6815 if (time_before(now, nohz.next_balance))
6816 return 0;
6817
6818 if (rq->nr_running >= 2)
6819 goto need_kick;
6820
6821 rcu_read_lock();
6822 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6823
6824 if (sd) {
6825 sgp = sd->groups->sgp;
6826 nr_busy = atomic_read(&sgp->nr_busy_cpus);
6827
6828 if (nr_busy > 1)
6829 goto need_kick_unlock;
6830 }
6831
6832 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6833
6834 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6835 sched_domain_span(sd)) < cpu))
6836 goto need_kick_unlock;
6837
6838 rcu_read_unlock();
6839 return 0;
6840
6841 need_kick_unlock:
6842 rcu_read_unlock();
6843 need_kick:
6844 return 1;
6845 }
6846 #else
6847 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6848 #endif
6849
6850 /*
6851 * run_rebalance_domains is triggered when needed from the scheduler tick.
6852 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6853 */
6854 static void run_rebalance_domains(struct softirq_action *h)
6855 {
6856 int this_cpu = smp_processor_id();
6857 struct rq *this_rq = cpu_rq(this_cpu);
6858 enum cpu_idle_type idle = this_rq->idle_balance ?
6859 CPU_IDLE : CPU_NOT_IDLE;
6860
6861 rebalance_domains(this_cpu, idle);
6862
6863 /*
6864 * If this cpu has a pending nohz_balance_kick, then do the
6865 * balancing on behalf of the other idle cpus whose ticks are
6866 * stopped.
6867 */
6868 nohz_idle_balance(this_cpu, idle);
6869 }
6870
6871 static inline int on_null_domain(int cpu)
6872 {
6873 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6874 }
6875
6876 /*
6877 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6878 */
6879 void trigger_load_balance(struct rq *rq, int cpu)
6880 {
6881 /* Don't need to rebalance while attached to NULL domain */
6882 if (time_after_eq(jiffies, rq->next_balance) &&
6883 likely(!on_null_domain(cpu)))
6884 raise_softirq(SCHED_SOFTIRQ);
6885 #ifdef CONFIG_NO_HZ_COMMON
6886 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6887 nohz_balancer_kick(cpu);
6888 #endif
6889 }
6890
6891 static void rq_online_fair(struct rq *rq)
6892 {
6893 update_sysctl();
6894 }
6895
6896 static void rq_offline_fair(struct rq *rq)
6897 {
6898 update_sysctl();
6899
6900 /* Ensure any throttled groups are reachable by pick_next_task */
6901 unthrottle_offline_cfs_rqs(rq);
6902 }
6903
6904 #endif /* CONFIG_SMP */
6905
6906 /*
6907 * scheduler tick hitting a task of our scheduling class:
6908 */
6909 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6910 {
6911 struct cfs_rq *cfs_rq;
6912 struct sched_entity *se = &curr->se;
6913
6914 for_each_sched_entity(se) {
6915 cfs_rq = cfs_rq_of(se);
6916 entity_tick(cfs_rq, se, queued);
6917 }
6918
6919 if (numabalancing_enabled)
6920 task_tick_numa(rq, curr);
6921
6922 update_rq_runnable_avg(rq, 1);
6923 }
6924
6925 /*
6926 * called on fork with the child task as argument from the parent's context
6927 * - child not yet on the tasklist
6928 * - preemption disabled
6929 */
6930 static void task_fork_fair(struct task_struct *p)
6931 {
6932 struct cfs_rq *cfs_rq;
6933 struct sched_entity *se = &p->se, *curr;
6934 int this_cpu = smp_processor_id();
6935 struct rq *rq = this_rq();
6936 unsigned long flags;
6937
6938 raw_spin_lock_irqsave(&rq->lock, flags);
6939
6940 update_rq_clock(rq);
6941
6942 cfs_rq = task_cfs_rq(current);
6943 curr = cfs_rq->curr;
6944
6945 /*
6946 * Not only the cpu but also the task_group of the parent might have
6947 * been changed after parent->se.parent,cfs_rq were copied to
6948 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6949 * of child point to valid ones.
6950 */
6951 rcu_read_lock();
6952 __set_task_cpu(p, this_cpu);
6953 rcu_read_unlock();
6954
6955 update_curr(cfs_rq);
6956
6957 if (curr)
6958 se->vruntime = curr->vruntime;
6959 place_entity(cfs_rq, se, 1);
6960
6961 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6962 /*
6963 * Upon rescheduling, sched_class::put_prev_task() will place
6964 * 'current' within the tree based on its new key value.
6965 */
6966 swap(curr->vruntime, se->vruntime);
6967 resched_task(rq->curr);
6968 }
6969
6970 se->vruntime -= cfs_rq->min_vruntime;
6971
6972 raw_spin_unlock_irqrestore(&rq->lock, flags);
6973 }
6974
6975 /*
6976 * Priority of the task has changed. Check to see if we preempt
6977 * the current task.
6978 */
6979 static void
6980 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6981 {
6982 if (!p->se.on_rq)
6983 return;
6984
6985 /*
6986 * Reschedule if we are currently running on this runqueue and
6987 * our priority decreased, or if we are not currently running on
6988 * this runqueue and our priority is higher than the current's
6989 */
6990 if (rq->curr == p) {
6991 if (p->prio > oldprio)
6992 resched_task(rq->curr);
6993 } else
6994 check_preempt_curr(rq, p, 0);
6995 }
6996
6997 static void switched_from_fair(struct rq *rq, struct task_struct *p)
6998 {
6999 struct sched_entity *se = &p->se;
7000 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7001
7002 /*
7003 * Ensure the task's vruntime is normalized, so that when its
7004 * switched back to the fair class the enqueue_entity(.flags=0) will
7005 * do the right thing.
7006 *
7007 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7008 * have normalized the vruntime, if it was !on_rq, then only when
7009 * the task is sleeping will it still have non-normalized vruntime.
7010 */
7011 if (!se->on_rq && p->state != TASK_RUNNING) {
7012 /*
7013 * Fix up our vruntime so that the current sleep doesn't
7014 * cause 'unlimited' sleep bonus.
7015 */
7016 place_entity(cfs_rq, se, 0);
7017 se->vruntime -= cfs_rq->min_vruntime;
7018 }
7019
7020 #ifdef CONFIG_SMP
7021 /*
7022 * Remove our load from contribution when we leave sched_fair
7023 * and ensure we don't carry in an old decay_count if we
7024 * switch back.
7025 */
7026 if (se->avg.decay_count) {
7027 __synchronize_entity_decay(se);
7028 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7029 }
7030 #endif
7031 }
7032
7033 /*
7034 * We switched to the sched_fair class.
7035 */
7036 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7037 {
7038 if (!p->se.on_rq)
7039 return;
7040
7041 /*
7042 * We were most likely switched from sched_rt, so
7043 * kick off the schedule if running, otherwise just see
7044 * if we can still preempt the current task.
7045 */
7046 if (rq->curr == p)
7047 resched_task(rq->curr);
7048 else
7049 check_preempt_curr(rq, p, 0);
7050 }
7051
7052 /* Account for a task changing its policy or group.
7053 *
7054 * This routine is mostly called to set cfs_rq->curr field when a task
7055 * migrates between groups/classes.
7056 */
7057 static void set_curr_task_fair(struct rq *rq)
7058 {
7059 struct sched_entity *se = &rq->curr->se;
7060
7061 for_each_sched_entity(se) {
7062 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7063
7064 set_next_entity(cfs_rq, se);
7065 /* ensure bandwidth has been allocated on our new cfs_rq */
7066 account_cfs_rq_runtime(cfs_rq, 0);
7067 }
7068 }
7069
7070 void init_cfs_rq(struct cfs_rq *cfs_rq)
7071 {
7072 cfs_rq->tasks_timeline = RB_ROOT;
7073 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7074 #ifndef CONFIG_64BIT
7075 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7076 #endif
7077 #ifdef CONFIG_SMP
7078 atomic64_set(&cfs_rq->decay_counter, 1);
7079 atomic_long_set(&cfs_rq->removed_load, 0);
7080 #endif
7081 }
7082
7083 #ifdef CONFIG_FAIR_GROUP_SCHED
7084 static void task_move_group_fair(struct task_struct *p, int on_rq)
7085 {
7086 struct cfs_rq *cfs_rq;
7087 /*
7088 * If the task was not on the rq at the time of this cgroup movement
7089 * it must have been asleep, sleeping tasks keep their ->vruntime
7090 * absolute on their old rq until wakeup (needed for the fair sleeper
7091 * bonus in place_entity()).
7092 *
7093 * If it was on the rq, we've just 'preempted' it, which does convert
7094 * ->vruntime to a relative base.
7095 *
7096 * Make sure both cases convert their relative position when migrating
7097 * to another cgroup's rq. This does somewhat interfere with the
7098 * fair sleeper stuff for the first placement, but who cares.
7099 */
7100 /*
7101 * When !on_rq, vruntime of the task has usually NOT been normalized.
7102 * But there are some cases where it has already been normalized:
7103 *
7104 * - Moving a forked child which is waiting for being woken up by
7105 * wake_up_new_task().
7106 * - Moving a task which has been woken up by try_to_wake_up() and
7107 * waiting for actually being woken up by sched_ttwu_pending().
7108 *
7109 * To prevent boost or penalty in the new cfs_rq caused by delta
7110 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7111 */
7112 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7113 on_rq = 1;
7114
7115 if (!on_rq)
7116 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7117 set_task_rq(p, task_cpu(p));
7118 if (!on_rq) {
7119 cfs_rq = cfs_rq_of(&p->se);
7120 p->se.vruntime += cfs_rq->min_vruntime;
7121 #ifdef CONFIG_SMP
7122 /*
7123 * migrate_task_rq_fair() will have removed our previous
7124 * contribution, but we must synchronize for ongoing future
7125 * decay.
7126 */
7127 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7128 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7129 #endif
7130 }
7131 }
7132
7133 void free_fair_sched_group(struct task_group *tg)
7134 {
7135 int i;
7136
7137 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7138
7139 for_each_possible_cpu(i) {
7140 if (tg->cfs_rq)
7141 kfree(tg->cfs_rq[i]);
7142 if (tg->se)
7143 kfree(tg->se[i]);
7144 }
7145
7146 kfree(tg->cfs_rq);
7147 kfree(tg->se);
7148 }
7149
7150 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7151 {
7152 struct cfs_rq *cfs_rq;
7153 struct sched_entity *se;
7154 int i;
7155
7156 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7157 if (!tg->cfs_rq)
7158 goto err;
7159 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7160 if (!tg->se)
7161 goto err;
7162
7163 tg->shares = NICE_0_LOAD;
7164
7165 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7166
7167 for_each_possible_cpu(i) {
7168 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7169 GFP_KERNEL, cpu_to_node(i));
7170 if (!cfs_rq)
7171 goto err;
7172
7173 se = kzalloc_node(sizeof(struct sched_entity),
7174 GFP_KERNEL, cpu_to_node(i));
7175 if (!se)
7176 goto err_free_rq;
7177
7178 init_cfs_rq(cfs_rq);
7179 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7180 }
7181
7182 return 1;
7183
7184 err_free_rq:
7185 kfree(cfs_rq);
7186 err:
7187 return 0;
7188 }
7189
7190 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7191 {
7192 struct rq *rq = cpu_rq(cpu);
7193 unsigned long flags;
7194
7195 /*
7196 * Only empty task groups can be destroyed; so we can speculatively
7197 * check on_list without danger of it being re-added.
7198 */
7199 if (!tg->cfs_rq[cpu]->on_list)
7200 return;
7201
7202 raw_spin_lock_irqsave(&rq->lock, flags);
7203 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7204 raw_spin_unlock_irqrestore(&rq->lock, flags);
7205 }
7206
7207 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7208 struct sched_entity *se, int cpu,
7209 struct sched_entity *parent)
7210 {
7211 struct rq *rq = cpu_rq(cpu);
7212
7213 cfs_rq->tg = tg;
7214 cfs_rq->rq = rq;
7215 init_cfs_rq_runtime(cfs_rq);
7216
7217 tg->cfs_rq[cpu] = cfs_rq;
7218 tg->se[cpu] = se;
7219
7220 /* se could be NULL for root_task_group */
7221 if (!se)
7222 return;
7223
7224 if (!parent)
7225 se->cfs_rq = &rq->cfs;
7226 else
7227 se->cfs_rq = parent->my_q;
7228
7229 se->my_q = cfs_rq;
7230 /* guarantee group entities always have weight */
7231 update_load_set(&se->load, NICE_0_LOAD);
7232 se->parent = parent;
7233 }
7234
7235 static DEFINE_MUTEX(shares_mutex);
7236
7237 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7238 {
7239 int i;
7240 unsigned long flags;
7241
7242 /*
7243 * We can't change the weight of the root cgroup.
7244 */
7245 if (!tg->se[0])
7246 return -EINVAL;
7247
7248 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7249
7250 mutex_lock(&shares_mutex);
7251 if (tg->shares == shares)
7252 goto done;
7253
7254 tg->shares = shares;
7255 for_each_possible_cpu(i) {
7256 struct rq *rq = cpu_rq(i);
7257 struct sched_entity *se;
7258
7259 se = tg->se[i];
7260 /* Propagate contribution to hierarchy */
7261 raw_spin_lock_irqsave(&rq->lock, flags);
7262
7263 /* Possible calls to update_curr() need rq clock */
7264 update_rq_clock(rq);
7265 for_each_sched_entity(se)
7266 update_cfs_shares(group_cfs_rq(se));
7267 raw_spin_unlock_irqrestore(&rq->lock, flags);
7268 }
7269
7270 done:
7271 mutex_unlock(&shares_mutex);
7272 return 0;
7273 }
7274 #else /* CONFIG_FAIR_GROUP_SCHED */
7275
7276 void free_fair_sched_group(struct task_group *tg) { }
7277
7278 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7279 {
7280 return 1;
7281 }
7282
7283 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7284
7285 #endif /* CONFIG_FAIR_GROUP_SCHED */
7286
7287
7288 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7289 {
7290 struct sched_entity *se = &task->se;
7291 unsigned int rr_interval = 0;
7292
7293 /*
7294 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7295 * idle runqueue:
7296 */
7297 if (rq->cfs.load.weight)
7298 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7299
7300 return rr_interval;
7301 }
7302
7303 /*
7304 * All the scheduling class methods:
7305 */
7306 const struct sched_class fair_sched_class = {
7307 .next = &idle_sched_class,
7308 .enqueue_task = enqueue_task_fair,
7309 .dequeue_task = dequeue_task_fair,
7310 .yield_task = yield_task_fair,
7311 .yield_to_task = yield_to_task_fair,
7312
7313 .check_preempt_curr = check_preempt_wakeup,
7314
7315 .pick_next_task = pick_next_task_fair,
7316 .put_prev_task = put_prev_task_fair,
7317
7318 #ifdef CONFIG_SMP
7319 .select_task_rq = select_task_rq_fair,
7320 .migrate_task_rq = migrate_task_rq_fair,
7321
7322 .rq_online = rq_online_fair,
7323 .rq_offline = rq_offline_fair,
7324
7325 .task_waking = task_waking_fair,
7326 #endif
7327
7328 .set_curr_task = set_curr_task_fair,
7329 .task_tick = task_tick_fair,
7330 .task_fork = task_fork_fair,
7331
7332 .prio_changed = prio_changed_fair,
7333 .switched_from = switched_from_fair,
7334 .switched_to = switched_to_fair,
7335
7336 .get_rr_interval = get_rr_interval_fair,
7337
7338 #ifdef CONFIG_FAIR_GROUP_SCHED
7339 .task_move_group = task_move_group_fair,
7340 #endif
7341 };
7342
7343 #ifdef CONFIG_SCHED_DEBUG
7344 void print_cfs_stats(struct seq_file *m, int cpu)
7345 {
7346 struct cfs_rq *cfs_rq;
7347
7348 rcu_read_lock();
7349 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7350 print_cfs_rq(m, cpu, cfs_rq);
7351 rcu_read_unlock();
7352 }
7353 #endif
7354
7355 __init void init_sched_fair_class(void)
7356 {
7357 #ifdef CONFIG_SMP
7358 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7359
7360 #ifdef CONFIG_NO_HZ_COMMON
7361 nohz.next_balance = jiffies;
7362 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7363 cpu_notifier(sched_ilb_notifier, 0);
7364 #endif
7365 #endif /* SMP */
7366
7367 }