]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched/fair.c
Merge branch 'for-chris' of git://git.jan-o-sch.net/btrfs-unstable into for-linus
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29
30 #include <trace/events/sched.h>
31
32 #include "sched.h"
33
34 /*
35 * Targeted preemption latency for CPU-bound tasks:
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 *
38 * NOTE: this latency value is not the same as the concept of
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
42 *
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
45 */
46 unsigned int sysctl_sched_latency = 6000000ULL;
47 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
48
49 /*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58 enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
61 /*
62 * Minimal preemption granularity for CPU-bound tasks:
63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
64 */
65 unsigned int sysctl_sched_min_granularity = 750000ULL;
66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
67
68 /*
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
71 static unsigned int sched_nr_latency = 8;
72
73 /*
74 * After fork, child runs first. If set to 0 (default) then
75 * parent will (try to) run first.
76 */
77 unsigned int sysctl_sched_child_runs_first __read_mostly;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 /*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111 #endif
112
113 /*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122 static int get_update_sysctl_factor(void)
123 {
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141 }
142
143 static void update_sysctl(void)
144 {
145 unsigned int factor = get_update_sysctl_factor();
146
147 #define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152 #undef SET_SYSCTL
153 }
154
155 void sched_init_granularity(void)
156 {
157 update_sysctl();
158 }
159
160 #if BITS_PER_LONG == 32
161 # define WMULT_CONST (~0UL)
162 #else
163 # define WMULT_CONST (1UL << 32)
164 #endif
165
166 #define WMULT_SHIFT 32
167
168 /*
169 * Shift right and round:
170 */
171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173 /*
174 * delta *= weight / lw
175 */
176 static unsigned long
177 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179 {
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213 }
214
215
216 const struct sched_class fair_sched_class;
217
218 /**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
222 #ifdef CONFIG_FAIR_GROUP_SCHED
223
224 /* cpu runqueue to which this cfs_rq is attached */
225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226 {
227 return cfs_rq->rq;
228 }
229
230 /* An entity is a task if it doesn't "own" a runqueue */
231 #define entity_is_task(se) (!se->my_q)
232
233 static inline struct task_struct *task_of(struct sched_entity *se)
234 {
235 #ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237 #endif
238 return container_of(se, struct task_struct, se);
239 }
240
241 /* Walk up scheduling entities hierarchy */
242 #define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246 {
247 return p->se.cfs_rq;
248 }
249
250 /* runqueue on which this entity is (to be) queued */
251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252 {
253 return se->cfs_rq;
254 }
255
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258 {
259 return grp->my_q;
260 }
261
262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263 {
264 if (!cfs_rq->on_list) {
265 /*
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
270 */
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
278 }
279
280 cfs_rq->on_list = 1;
281 }
282 }
283
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285 {
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
289 }
290 }
291
292 /* Iterate thr' all leaf cfs_rq's on a runqueue */
293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295
296 /* Do the two (enqueued) entities belong to the same group ? */
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
299 {
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
302
303 return 0;
304 }
305
306 static inline struct sched_entity *parent_entity(struct sched_entity *se)
307 {
308 return se->parent;
309 }
310
311 /* return depth at which a sched entity is present in the hierarchy */
312 static inline int depth_se(struct sched_entity *se)
313 {
314 int depth = 0;
315
316 for_each_sched_entity(se)
317 depth++;
318
319 return depth;
320 }
321
322 static void
323 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324 {
325 int se_depth, pse_depth;
326
327 /*
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
332 */
333
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
337
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
341 }
342
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
346 }
347
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
351 }
352 }
353
354 #else /* !CONFIG_FAIR_GROUP_SCHED */
355
356 static inline struct task_struct *task_of(struct sched_entity *se)
357 {
358 return container_of(se, struct task_struct, se);
359 }
360
361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362 {
363 return container_of(cfs_rq, struct rq, cfs);
364 }
365
366 #define entity_is_task(se) 1
367
368 #define for_each_sched_entity(se) \
369 for (; se; se = NULL)
370
371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
372 {
373 return &task_rq(p)->cfs;
374 }
375
376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377 {
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
380
381 return &rq->cfs;
382 }
383
384 /* runqueue "owned" by this group */
385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386 {
387 return NULL;
388 }
389
390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391 {
392 }
393
394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395 {
396 }
397
398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400
401 static inline int
402 is_same_group(struct sched_entity *se, struct sched_entity *pse)
403 {
404 return 1;
405 }
406
407 static inline struct sched_entity *parent_entity(struct sched_entity *se)
408 {
409 return NULL;
410 }
411
412 static inline void
413 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414 {
415 }
416
417 #endif /* CONFIG_FAIR_GROUP_SCHED */
418
419 static __always_inline
420 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
421
422 /**************************************************************
423 * Scheduling class tree data structure manipulation methods:
424 */
425
426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
427 {
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
430 min_vruntime = vruntime;
431
432 return min_vruntime;
433 }
434
435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
436 {
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
440
441 return min_vruntime;
442 }
443
444 static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
446 {
447 return (s64)(a->vruntime - b->vruntime) < 0;
448 }
449
450 static void update_min_vruntime(struct cfs_rq *cfs_rq)
451 {
452 u64 vruntime = cfs_rq->min_vruntime;
453
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
456
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
461
462 if (!cfs_rq->curr)
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
466 }
467
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
469 #ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472 #endif
473 }
474
475 /*
476 * Enqueue an entity into the rb-tree:
477 */
478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
479 {
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
483 int leftmost = 1;
484
485 /*
486 * Find the right place in the rbtree:
487 */
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
491 /*
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
494 */
495 if (entity_before(se, entry)) {
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
500 }
501 }
502
503 /*
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
506 */
507 if (leftmost)
508 cfs_rq->rb_leftmost = &se->run_node;
509
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
512 }
513
514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
515 {
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
518
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
521 }
522
523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525
526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
527 {
528 struct rb_node *left = cfs_rq->rb_leftmost;
529
530 if (!left)
531 return NULL;
532
533 return rb_entry(left, struct sched_entity, run_node);
534 }
535
536 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537 {
538 struct rb_node *next = rb_next(&se->run_node);
539
540 if (!next)
541 return NULL;
542
543 return rb_entry(next, struct sched_entity, run_node);
544 }
545
546 #ifdef CONFIG_SCHED_DEBUG
547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
548 {
549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
550
551 if (!last)
552 return NULL;
553
554 return rb_entry(last, struct sched_entity, run_node);
555 }
556
557 /**************************************************************
558 * Scheduling class statistics methods:
559 */
560
561 int sched_proc_update_handler(struct ctl_table *table, int write,
562 void __user *buffer, size_t *lenp,
563 loff_t *ppos)
564 {
565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
566 int factor = get_update_sysctl_factor();
567
568 if (ret || !write)
569 return ret;
570
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
573
574 #define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
579 #undef WRT_SYSCTL
580
581 return 0;
582 }
583 #endif
584
585 /*
586 * delta /= w
587 */
588 static inline unsigned long
589 calc_delta_fair(unsigned long delta, struct sched_entity *se)
590 {
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
593
594 return delta;
595 }
596
597 /*
598 * The idea is to set a period in which each task runs once.
599 *
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
602 *
603 * p = (nr <= nl) ? l : l*nr/nl
604 */
605 static u64 __sched_period(unsigned long nr_running)
606 {
607 u64 period = sysctl_sched_latency;
608 unsigned long nr_latency = sched_nr_latency;
609
610 if (unlikely(nr_running > nr_latency)) {
611 period = sysctl_sched_min_granularity;
612 period *= nr_running;
613 }
614
615 return period;
616 }
617
618 /*
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
621 *
622 * s = p*P[w/rw]
623 */
624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
627
628 for_each_sched_entity(se) {
629 struct load_weight *load;
630 struct load_weight lw;
631
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
634
635 if (unlikely(!se->on_rq)) {
636 lw = cfs_rq->load;
637
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
640 }
641 slice = calc_delta_mine(slice, se->load.weight, load);
642 }
643 return slice;
644 }
645
646 /*
647 * We calculate the vruntime slice of a to be inserted task
648 *
649 * vs = s/w
650 */
651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
654 }
655
656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
657 static void update_cfs_shares(struct cfs_rq *cfs_rq);
658
659 /*
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
662 */
663 static inline void
664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
666 {
667 unsigned long delta_exec_weighted;
668
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
671
672 curr->sum_exec_runtime += delta_exec;
673 schedstat_add(cfs_rq, exec_clock, delta_exec);
674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
675
676 curr->vruntime += delta_exec_weighted;
677 update_min_vruntime(cfs_rq);
678
679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 cfs_rq->load_unacc_exec_time += delta_exec;
681 #endif
682 }
683
684 static void update_curr(struct cfs_rq *cfs_rq)
685 {
686 struct sched_entity *curr = cfs_rq->curr;
687 u64 now = rq_of(cfs_rq)->clock_task;
688 unsigned long delta_exec;
689
690 if (unlikely(!curr))
691 return;
692
693 /*
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
697 */
698 delta_exec = (unsigned long)(now - curr->exec_start);
699 if (!delta_exec)
700 return;
701
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
704
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
707
708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
709 cpuacct_charge(curtask, delta_exec);
710 account_group_exec_runtime(curtask, delta_exec);
711 }
712
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
714 }
715
716 static inline void
717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
718 {
719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
720 }
721
722 /*
723 * Task is being enqueued - update stats:
724 */
725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 /*
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
730 */
731 if (se != cfs_rq->curr)
732 update_stats_wait_start(cfs_rq, se);
733 }
734
735 static void
736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
743 #ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
747 }
748 #endif
749 schedstat_set(se->statistics.wait_start, 0);
750 }
751
752 static inline void
753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 /*
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
758 */
759 if (se != cfs_rq->curr)
760 update_stats_wait_end(cfs_rq, se);
761 }
762
763 /*
764 * We are picking a new current task - update its stats:
765 */
766 static inline void
767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 /*
770 * We are starting a new run period:
771 */
772 se->exec_start = rq_of(cfs_rq)->clock_task;
773 }
774
775 /**************************************************
776 * Scheduling class queueing methods:
777 */
778
779 static void
780 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
781 {
782 update_load_add(&cfs_rq->load, se->load.weight);
783 if (!parent_entity(se))
784 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
785 #ifdef CONFIG_SMP
786 if (entity_is_task(se))
787 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
788 #endif
789 cfs_rq->nr_running++;
790 }
791
792 static void
793 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 update_load_sub(&cfs_rq->load, se->load.weight);
796 if (!parent_entity(se))
797 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
798 if (entity_is_task(se))
799 list_del_init(&se->group_node);
800 cfs_rq->nr_running--;
801 }
802
803 #ifdef CONFIG_FAIR_GROUP_SCHED
804 /* we need this in update_cfs_load and load-balance functions below */
805 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
806 # ifdef CONFIG_SMP
807 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
808 int global_update)
809 {
810 struct task_group *tg = cfs_rq->tg;
811 long load_avg;
812
813 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
814 load_avg -= cfs_rq->load_contribution;
815
816 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
817 atomic_add(load_avg, &tg->load_weight);
818 cfs_rq->load_contribution += load_avg;
819 }
820 }
821
822 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
823 {
824 u64 period = sysctl_sched_shares_window;
825 u64 now, delta;
826 unsigned long load = cfs_rq->load.weight;
827
828 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
829 return;
830
831 now = rq_of(cfs_rq)->clock_task;
832 delta = now - cfs_rq->load_stamp;
833
834 /* truncate load history at 4 idle periods */
835 if (cfs_rq->load_stamp > cfs_rq->load_last &&
836 now - cfs_rq->load_last > 4 * period) {
837 cfs_rq->load_period = 0;
838 cfs_rq->load_avg = 0;
839 delta = period - 1;
840 }
841
842 cfs_rq->load_stamp = now;
843 cfs_rq->load_unacc_exec_time = 0;
844 cfs_rq->load_period += delta;
845 if (load) {
846 cfs_rq->load_last = now;
847 cfs_rq->load_avg += delta * load;
848 }
849
850 /* consider updating load contribution on each fold or truncate */
851 if (global_update || cfs_rq->load_period > period
852 || !cfs_rq->load_period)
853 update_cfs_rq_load_contribution(cfs_rq, global_update);
854
855 while (cfs_rq->load_period > period) {
856 /*
857 * Inline assembly required to prevent the compiler
858 * optimising this loop into a divmod call.
859 * See __iter_div_u64_rem() for another example of this.
860 */
861 asm("" : "+rm" (cfs_rq->load_period));
862 cfs_rq->load_period /= 2;
863 cfs_rq->load_avg /= 2;
864 }
865
866 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
867 list_del_leaf_cfs_rq(cfs_rq);
868 }
869
870 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
871 {
872 long tg_weight;
873
874 /*
875 * Use this CPU's actual weight instead of the last load_contribution
876 * to gain a more accurate current total weight. See
877 * update_cfs_rq_load_contribution().
878 */
879 tg_weight = atomic_read(&tg->load_weight);
880 tg_weight -= cfs_rq->load_contribution;
881 tg_weight += cfs_rq->load.weight;
882
883 return tg_weight;
884 }
885
886 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
887 {
888 long tg_weight, load, shares;
889
890 tg_weight = calc_tg_weight(tg, cfs_rq);
891 load = cfs_rq->load.weight;
892
893 shares = (tg->shares * load);
894 if (tg_weight)
895 shares /= tg_weight;
896
897 if (shares < MIN_SHARES)
898 shares = MIN_SHARES;
899 if (shares > tg->shares)
900 shares = tg->shares;
901
902 return shares;
903 }
904
905 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
906 {
907 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
908 update_cfs_load(cfs_rq, 0);
909 update_cfs_shares(cfs_rq);
910 }
911 }
912 # else /* CONFIG_SMP */
913 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
914 {
915 }
916
917 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
918 {
919 return tg->shares;
920 }
921
922 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
923 {
924 }
925 # endif /* CONFIG_SMP */
926 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
927 unsigned long weight)
928 {
929 if (se->on_rq) {
930 /* commit outstanding execution time */
931 if (cfs_rq->curr == se)
932 update_curr(cfs_rq);
933 account_entity_dequeue(cfs_rq, se);
934 }
935
936 update_load_set(&se->load, weight);
937
938 if (se->on_rq)
939 account_entity_enqueue(cfs_rq, se);
940 }
941
942 static void update_cfs_shares(struct cfs_rq *cfs_rq)
943 {
944 struct task_group *tg;
945 struct sched_entity *se;
946 long shares;
947
948 tg = cfs_rq->tg;
949 se = tg->se[cpu_of(rq_of(cfs_rq))];
950 if (!se || throttled_hierarchy(cfs_rq))
951 return;
952 #ifndef CONFIG_SMP
953 if (likely(se->load.weight == tg->shares))
954 return;
955 #endif
956 shares = calc_cfs_shares(cfs_rq, tg);
957
958 reweight_entity(cfs_rq_of(se), se, shares);
959 }
960 #else /* CONFIG_FAIR_GROUP_SCHED */
961 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
962 {
963 }
964
965 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
966 {
967 }
968
969 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
970 {
971 }
972 #endif /* CONFIG_FAIR_GROUP_SCHED */
973
974 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
975 {
976 #ifdef CONFIG_SCHEDSTATS
977 struct task_struct *tsk = NULL;
978
979 if (entity_is_task(se))
980 tsk = task_of(se);
981
982 if (se->statistics.sleep_start) {
983 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
984
985 if ((s64)delta < 0)
986 delta = 0;
987
988 if (unlikely(delta > se->statistics.sleep_max))
989 se->statistics.sleep_max = delta;
990
991 se->statistics.sleep_start = 0;
992 se->statistics.sum_sleep_runtime += delta;
993
994 if (tsk) {
995 account_scheduler_latency(tsk, delta >> 10, 1);
996 trace_sched_stat_sleep(tsk, delta);
997 }
998 }
999 if (se->statistics.block_start) {
1000 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1001
1002 if ((s64)delta < 0)
1003 delta = 0;
1004
1005 if (unlikely(delta > se->statistics.block_max))
1006 se->statistics.block_max = delta;
1007
1008 se->statistics.block_start = 0;
1009 se->statistics.sum_sleep_runtime += delta;
1010
1011 if (tsk) {
1012 if (tsk->in_iowait) {
1013 se->statistics.iowait_sum += delta;
1014 se->statistics.iowait_count++;
1015 trace_sched_stat_iowait(tsk, delta);
1016 }
1017
1018 trace_sched_stat_blocked(tsk, delta);
1019
1020 /*
1021 * Blocking time is in units of nanosecs, so shift by
1022 * 20 to get a milliseconds-range estimation of the
1023 * amount of time that the task spent sleeping:
1024 */
1025 if (unlikely(prof_on == SLEEP_PROFILING)) {
1026 profile_hits(SLEEP_PROFILING,
1027 (void *)get_wchan(tsk),
1028 delta >> 20);
1029 }
1030 account_scheduler_latency(tsk, delta >> 10, 0);
1031 }
1032 }
1033 #endif
1034 }
1035
1036 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1037 {
1038 #ifdef CONFIG_SCHED_DEBUG
1039 s64 d = se->vruntime - cfs_rq->min_vruntime;
1040
1041 if (d < 0)
1042 d = -d;
1043
1044 if (d > 3*sysctl_sched_latency)
1045 schedstat_inc(cfs_rq, nr_spread_over);
1046 #endif
1047 }
1048
1049 static void
1050 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1051 {
1052 u64 vruntime = cfs_rq->min_vruntime;
1053
1054 /*
1055 * The 'current' period is already promised to the current tasks,
1056 * however the extra weight of the new task will slow them down a
1057 * little, place the new task so that it fits in the slot that
1058 * stays open at the end.
1059 */
1060 if (initial && sched_feat(START_DEBIT))
1061 vruntime += sched_vslice(cfs_rq, se);
1062
1063 /* sleeps up to a single latency don't count. */
1064 if (!initial) {
1065 unsigned long thresh = sysctl_sched_latency;
1066
1067 /*
1068 * Halve their sleep time's effect, to allow
1069 * for a gentler effect of sleepers:
1070 */
1071 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1072 thresh >>= 1;
1073
1074 vruntime -= thresh;
1075 }
1076
1077 /* ensure we never gain time by being placed backwards. */
1078 vruntime = max_vruntime(se->vruntime, vruntime);
1079
1080 se->vruntime = vruntime;
1081 }
1082
1083 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1084
1085 static void
1086 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1087 {
1088 /*
1089 * Update the normalized vruntime before updating min_vruntime
1090 * through callig update_curr().
1091 */
1092 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1093 se->vruntime += cfs_rq->min_vruntime;
1094
1095 /*
1096 * Update run-time statistics of the 'current'.
1097 */
1098 update_curr(cfs_rq);
1099 update_cfs_load(cfs_rq, 0);
1100 account_entity_enqueue(cfs_rq, se);
1101 update_cfs_shares(cfs_rq);
1102
1103 if (flags & ENQUEUE_WAKEUP) {
1104 place_entity(cfs_rq, se, 0);
1105 enqueue_sleeper(cfs_rq, se);
1106 }
1107
1108 update_stats_enqueue(cfs_rq, se);
1109 check_spread(cfs_rq, se);
1110 if (se != cfs_rq->curr)
1111 __enqueue_entity(cfs_rq, se);
1112 se->on_rq = 1;
1113
1114 if (cfs_rq->nr_running == 1) {
1115 list_add_leaf_cfs_rq(cfs_rq);
1116 check_enqueue_throttle(cfs_rq);
1117 }
1118 }
1119
1120 static void __clear_buddies_last(struct sched_entity *se)
1121 {
1122 for_each_sched_entity(se) {
1123 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1124 if (cfs_rq->last == se)
1125 cfs_rq->last = NULL;
1126 else
1127 break;
1128 }
1129 }
1130
1131 static void __clear_buddies_next(struct sched_entity *se)
1132 {
1133 for_each_sched_entity(se) {
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135 if (cfs_rq->next == se)
1136 cfs_rq->next = NULL;
1137 else
1138 break;
1139 }
1140 }
1141
1142 static void __clear_buddies_skip(struct sched_entity *se)
1143 {
1144 for_each_sched_entity(se) {
1145 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1146 if (cfs_rq->skip == se)
1147 cfs_rq->skip = NULL;
1148 else
1149 break;
1150 }
1151 }
1152
1153 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1154 {
1155 if (cfs_rq->last == se)
1156 __clear_buddies_last(se);
1157
1158 if (cfs_rq->next == se)
1159 __clear_buddies_next(se);
1160
1161 if (cfs_rq->skip == se)
1162 __clear_buddies_skip(se);
1163 }
1164
1165 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1166
1167 static void
1168 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1169 {
1170 /*
1171 * Update run-time statistics of the 'current'.
1172 */
1173 update_curr(cfs_rq);
1174
1175 update_stats_dequeue(cfs_rq, se);
1176 if (flags & DEQUEUE_SLEEP) {
1177 #ifdef CONFIG_SCHEDSTATS
1178 if (entity_is_task(se)) {
1179 struct task_struct *tsk = task_of(se);
1180
1181 if (tsk->state & TASK_INTERRUPTIBLE)
1182 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1183 if (tsk->state & TASK_UNINTERRUPTIBLE)
1184 se->statistics.block_start = rq_of(cfs_rq)->clock;
1185 }
1186 #endif
1187 }
1188
1189 clear_buddies(cfs_rq, se);
1190
1191 if (se != cfs_rq->curr)
1192 __dequeue_entity(cfs_rq, se);
1193 se->on_rq = 0;
1194 update_cfs_load(cfs_rq, 0);
1195 account_entity_dequeue(cfs_rq, se);
1196
1197 /*
1198 * Normalize the entity after updating the min_vruntime because the
1199 * update can refer to the ->curr item and we need to reflect this
1200 * movement in our normalized position.
1201 */
1202 if (!(flags & DEQUEUE_SLEEP))
1203 se->vruntime -= cfs_rq->min_vruntime;
1204
1205 /* return excess runtime on last dequeue */
1206 return_cfs_rq_runtime(cfs_rq);
1207
1208 update_min_vruntime(cfs_rq);
1209 update_cfs_shares(cfs_rq);
1210 }
1211
1212 /*
1213 * Preempt the current task with a newly woken task if needed:
1214 */
1215 static void
1216 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1217 {
1218 unsigned long ideal_runtime, delta_exec;
1219 struct sched_entity *se;
1220 s64 delta;
1221
1222 ideal_runtime = sched_slice(cfs_rq, curr);
1223 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1224 if (delta_exec > ideal_runtime) {
1225 resched_task(rq_of(cfs_rq)->curr);
1226 /*
1227 * The current task ran long enough, ensure it doesn't get
1228 * re-elected due to buddy favours.
1229 */
1230 clear_buddies(cfs_rq, curr);
1231 return;
1232 }
1233
1234 /*
1235 * Ensure that a task that missed wakeup preemption by a
1236 * narrow margin doesn't have to wait for a full slice.
1237 * This also mitigates buddy induced latencies under load.
1238 */
1239 if (delta_exec < sysctl_sched_min_granularity)
1240 return;
1241
1242 se = __pick_first_entity(cfs_rq);
1243 delta = curr->vruntime - se->vruntime;
1244
1245 if (delta < 0)
1246 return;
1247
1248 if (delta > ideal_runtime)
1249 resched_task(rq_of(cfs_rq)->curr);
1250 }
1251
1252 static void
1253 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1254 {
1255 /* 'current' is not kept within the tree. */
1256 if (se->on_rq) {
1257 /*
1258 * Any task has to be enqueued before it get to execute on
1259 * a CPU. So account for the time it spent waiting on the
1260 * runqueue.
1261 */
1262 update_stats_wait_end(cfs_rq, se);
1263 __dequeue_entity(cfs_rq, se);
1264 }
1265
1266 update_stats_curr_start(cfs_rq, se);
1267 cfs_rq->curr = se;
1268 #ifdef CONFIG_SCHEDSTATS
1269 /*
1270 * Track our maximum slice length, if the CPU's load is at
1271 * least twice that of our own weight (i.e. dont track it
1272 * when there are only lesser-weight tasks around):
1273 */
1274 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1275 se->statistics.slice_max = max(se->statistics.slice_max,
1276 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1277 }
1278 #endif
1279 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1280 }
1281
1282 static int
1283 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1284
1285 /*
1286 * Pick the next process, keeping these things in mind, in this order:
1287 * 1) keep things fair between processes/task groups
1288 * 2) pick the "next" process, since someone really wants that to run
1289 * 3) pick the "last" process, for cache locality
1290 * 4) do not run the "skip" process, if something else is available
1291 */
1292 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1293 {
1294 struct sched_entity *se = __pick_first_entity(cfs_rq);
1295 struct sched_entity *left = se;
1296
1297 /*
1298 * Avoid running the skip buddy, if running something else can
1299 * be done without getting too unfair.
1300 */
1301 if (cfs_rq->skip == se) {
1302 struct sched_entity *second = __pick_next_entity(se);
1303 if (second && wakeup_preempt_entity(second, left) < 1)
1304 se = second;
1305 }
1306
1307 /*
1308 * Prefer last buddy, try to return the CPU to a preempted task.
1309 */
1310 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1311 se = cfs_rq->last;
1312
1313 /*
1314 * Someone really wants this to run. If it's not unfair, run it.
1315 */
1316 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1317 se = cfs_rq->next;
1318
1319 clear_buddies(cfs_rq, se);
1320
1321 return se;
1322 }
1323
1324 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1325
1326 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1327 {
1328 /*
1329 * If still on the runqueue then deactivate_task()
1330 * was not called and update_curr() has to be done:
1331 */
1332 if (prev->on_rq)
1333 update_curr(cfs_rq);
1334
1335 /* throttle cfs_rqs exceeding runtime */
1336 check_cfs_rq_runtime(cfs_rq);
1337
1338 check_spread(cfs_rq, prev);
1339 if (prev->on_rq) {
1340 update_stats_wait_start(cfs_rq, prev);
1341 /* Put 'current' back into the tree. */
1342 __enqueue_entity(cfs_rq, prev);
1343 }
1344 cfs_rq->curr = NULL;
1345 }
1346
1347 static void
1348 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1349 {
1350 /*
1351 * Update run-time statistics of the 'current'.
1352 */
1353 update_curr(cfs_rq);
1354
1355 /*
1356 * Update share accounting for long-running entities.
1357 */
1358 update_entity_shares_tick(cfs_rq);
1359
1360 #ifdef CONFIG_SCHED_HRTICK
1361 /*
1362 * queued ticks are scheduled to match the slice, so don't bother
1363 * validating it and just reschedule.
1364 */
1365 if (queued) {
1366 resched_task(rq_of(cfs_rq)->curr);
1367 return;
1368 }
1369 /*
1370 * don't let the period tick interfere with the hrtick preemption
1371 */
1372 if (!sched_feat(DOUBLE_TICK) &&
1373 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1374 return;
1375 #endif
1376
1377 if (cfs_rq->nr_running > 1)
1378 check_preempt_tick(cfs_rq, curr);
1379 }
1380
1381
1382 /**************************************************
1383 * CFS bandwidth control machinery
1384 */
1385
1386 #ifdef CONFIG_CFS_BANDWIDTH
1387
1388 #ifdef HAVE_JUMP_LABEL
1389 static struct static_key __cfs_bandwidth_used;
1390
1391 static inline bool cfs_bandwidth_used(void)
1392 {
1393 return static_key_false(&__cfs_bandwidth_used);
1394 }
1395
1396 void account_cfs_bandwidth_used(int enabled, int was_enabled)
1397 {
1398 /* only need to count groups transitioning between enabled/!enabled */
1399 if (enabled && !was_enabled)
1400 static_key_slow_inc(&__cfs_bandwidth_used);
1401 else if (!enabled && was_enabled)
1402 static_key_slow_dec(&__cfs_bandwidth_used);
1403 }
1404 #else /* HAVE_JUMP_LABEL */
1405 static bool cfs_bandwidth_used(void)
1406 {
1407 return true;
1408 }
1409
1410 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1411 #endif /* HAVE_JUMP_LABEL */
1412
1413 /*
1414 * default period for cfs group bandwidth.
1415 * default: 0.1s, units: nanoseconds
1416 */
1417 static inline u64 default_cfs_period(void)
1418 {
1419 return 100000000ULL;
1420 }
1421
1422 static inline u64 sched_cfs_bandwidth_slice(void)
1423 {
1424 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1425 }
1426
1427 /*
1428 * Replenish runtime according to assigned quota and update expiration time.
1429 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1430 * additional synchronization around rq->lock.
1431 *
1432 * requires cfs_b->lock
1433 */
1434 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1435 {
1436 u64 now;
1437
1438 if (cfs_b->quota == RUNTIME_INF)
1439 return;
1440
1441 now = sched_clock_cpu(smp_processor_id());
1442 cfs_b->runtime = cfs_b->quota;
1443 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1444 }
1445
1446 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1447 {
1448 return &tg->cfs_bandwidth;
1449 }
1450
1451 /* returns 0 on failure to allocate runtime */
1452 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1453 {
1454 struct task_group *tg = cfs_rq->tg;
1455 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1456 u64 amount = 0, min_amount, expires;
1457
1458 /* note: this is a positive sum as runtime_remaining <= 0 */
1459 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1460
1461 raw_spin_lock(&cfs_b->lock);
1462 if (cfs_b->quota == RUNTIME_INF)
1463 amount = min_amount;
1464 else {
1465 /*
1466 * If the bandwidth pool has become inactive, then at least one
1467 * period must have elapsed since the last consumption.
1468 * Refresh the global state and ensure bandwidth timer becomes
1469 * active.
1470 */
1471 if (!cfs_b->timer_active) {
1472 __refill_cfs_bandwidth_runtime(cfs_b);
1473 __start_cfs_bandwidth(cfs_b);
1474 }
1475
1476 if (cfs_b->runtime > 0) {
1477 amount = min(cfs_b->runtime, min_amount);
1478 cfs_b->runtime -= amount;
1479 cfs_b->idle = 0;
1480 }
1481 }
1482 expires = cfs_b->runtime_expires;
1483 raw_spin_unlock(&cfs_b->lock);
1484
1485 cfs_rq->runtime_remaining += amount;
1486 /*
1487 * we may have advanced our local expiration to account for allowed
1488 * spread between our sched_clock and the one on which runtime was
1489 * issued.
1490 */
1491 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1492 cfs_rq->runtime_expires = expires;
1493
1494 return cfs_rq->runtime_remaining > 0;
1495 }
1496
1497 /*
1498 * Note: This depends on the synchronization provided by sched_clock and the
1499 * fact that rq->clock snapshots this value.
1500 */
1501 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1502 {
1503 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1504 struct rq *rq = rq_of(cfs_rq);
1505
1506 /* if the deadline is ahead of our clock, nothing to do */
1507 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1508 return;
1509
1510 if (cfs_rq->runtime_remaining < 0)
1511 return;
1512
1513 /*
1514 * If the local deadline has passed we have to consider the
1515 * possibility that our sched_clock is 'fast' and the global deadline
1516 * has not truly expired.
1517 *
1518 * Fortunately we can check determine whether this the case by checking
1519 * whether the global deadline has advanced.
1520 */
1521
1522 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1523 /* extend local deadline, drift is bounded above by 2 ticks */
1524 cfs_rq->runtime_expires += TICK_NSEC;
1525 } else {
1526 /* global deadline is ahead, expiration has passed */
1527 cfs_rq->runtime_remaining = 0;
1528 }
1529 }
1530
1531 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1532 unsigned long delta_exec)
1533 {
1534 /* dock delta_exec before expiring quota (as it could span periods) */
1535 cfs_rq->runtime_remaining -= delta_exec;
1536 expire_cfs_rq_runtime(cfs_rq);
1537
1538 if (likely(cfs_rq->runtime_remaining > 0))
1539 return;
1540
1541 /*
1542 * if we're unable to extend our runtime we resched so that the active
1543 * hierarchy can be throttled
1544 */
1545 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1546 resched_task(rq_of(cfs_rq)->curr);
1547 }
1548
1549 static __always_inline
1550 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1551 {
1552 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1553 return;
1554
1555 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1556 }
1557
1558 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1559 {
1560 return cfs_bandwidth_used() && cfs_rq->throttled;
1561 }
1562
1563 /* check whether cfs_rq, or any parent, is throttled */
1564 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1565 {
1566 return cfs_bandwidth_used() && cfs_rq->throttle_count;
1567 }
1568
1569 /*
1570 * Ensure that neither of the group entities corresponding to src_cpu or
1571 * dest_cpu are members of a throttled hierarchy when performing group
1572 * load-balance operations.
1573 */
1574 static inline int throttled_lb_pair(struct task_group *tg,
1575 int src_cpu, int dest_cpu)
1576 {
1577 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1578
1579 src_cfs_rq = tg->cfs_rq[src_cpu];
1580 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1581
1582 return throttled_hierarchy(src_cfs_rq) ||
1583 throttled_hierarchy(dest_cfs_rq);
1584 }
1585
1586 /* updated child weight may affect parent so we have to do this bottom up */
1587 static int tg_unthrottle_up(struct task_group *tg, void *data)
1588 {
1589 struct rq *rq = data;
1590 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1591
1592 cfs_rq->throttle_count--;
1593 #ifdef CONFIG_SMP
1594 if (!cfs_rq->throttle_count) {
1595 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1596
1597 /* leaving throttled state, advance shares averaging windows */
1598 cfs_rq->load_stamp += delta;
1599 cfs_rq->load_last += delta;
1600
1601 /* update entity weight now that we are on_rq again */
1602 update_cfs_shares(cfs_rq);
1603 }
1604 #endif
1605
1606 return 0;
1607 }
1608
1609 static int tg_throttle_down(struct task_group *tg, void *data)
1610 {
1611 struct rq *rq = data;
1612 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1613
1614 /* group is entering throttled state, record last load */
1615 if (!cfs_rq->throttle_count)
1616 update_cfs_load(cfs_rq, 0);
1617 cfs_rq->throttle_count++;
1618
1619 return 0;
1620 }
1621
1622 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1623 {
1624 struct rq *rq = rq_of(cfs_rq);
1625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1626 struct sched_entity *se;
1627 long task_delta, dequeue = 1;
1628
1629 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1630
1631 /* account load preceding throttle */
1632 rcu_read_lock();
1633 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1634 rcu_read_unlock();
1635
1636 task_delta = cfs_rq->h_nr_running;
1637 for_each_sched_entity(se) {
1638 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1639 /* throttled entity or throttle-on-deactivate */
1640 if (!se->on_rq)
1641 break;
1642
1643 if (dequeue)
1644 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1645 qcfs_rq->h_nr_running -= task_delta;
1646
1647 if (qcfs_rq->load.weight)
1648 dequeue = 0;
1649 }
1650
1651 if (!se)
1652 rq->nr_running -= task_delta;
1653
1654 cfs_rq->throttled = 1;
1655 cfs_rq->throttled_timestamp = rq->clock;
1656 raw_spin_lock(&cfs_b->lock);
1657 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1658 raw_spin_unlock(&cfs_b->lock);
1659 }
1660
1661 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1662 {
1663 struct rq *rq = rq_of(cfs_rq);
1664 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1665 struct sched_entity *se;
1666 int enqueue = 1;
1667 long task_delta;
1668
1669 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1670
1671 cfs_rq->throttled = 0;
1672 raw_spin_lock(&cfs_b->lock);
1673 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1674 list_del_rcu(&cfs_rq->throttled_list);
1675 raw_spin_unlock(&cfs_b->lock);
1676 cfs_rq->throttled_timestamp = 0;
1677
1678 update_rq_clock(rq);
1679 /* update hierarchical throttle state */
1680 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1681
1682 if (!cfs_rq->load.weight)
1683 return;
1684
1685 task_delta = cfs_rq->h_nr_running;
1686 for_each_sched_entity(se) {
1687 if (se->on_rq)
1688 enqueue = 0;
1689
1690 cfs_rq = cfs_rq_of(se);
1691 if (enqueue)
1692 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1693 cfs_rq->h_nr_running += task_delta;
1694
1695 if (cfs_rq_throttled(cfs_rq))
1696 break;
1697 }
1698
1699 if (!se)
1700 rq->nr_running += task_delta;
1701
1702 /* determine whether we need to wake up potentially idle cpu */
1703 if (rq->curr == rq->idle && rq->cfs.nr_running)
1704 resched_task(rq->curr);
1705 }
1706
1707 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1708 u64 remaining, u64 expires)
1709 {
1710 struct cfs_rq *cfs_rq;
1711 u64 runtime = remaining;
1712
1713 rcu_read_lock();
1714 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1715 throttled_list) {
1716 struct rq *rq = rq_of(cfs_rq);
1717
1718 raw_spin_lock(&rq->lock);
1719 if (!cfs_rq_throttled(cfs_rq))
1720 goto next;
1721
1722 runtime = -cfs_rq->runtime_remaining + 1;
1723 if (runtime > remaining)
1724 runtime = remaining;
1725 remaining -= runtime;
1726
1727 cfs_rq->runtime_remaining += runtime;
1728 cfs_rq->runtime_expires = expires;
1729
1730 /* we check whether we're throttled above */
1731 if (cfs_rq->runtime_remaining > 0)
1732 unthrottle_cfs_rq(cfs_rq);
1733
1734 next:
1735 raw_spin_unlock(&rq->lock);
1736
1737 if (!remaining)
1738 break;
1739 }
1740 rcu_read_unlock();
1741
1742 return remaining;
1743 }
1744
1745 /*
1746 * Responsible for refilling a task_group's bandwidth and unthrottling its
1747 * cfs_rqs as appropriate. If there has been no activity within the last
1748 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1749 * used to track this state.
1750 */
1751 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1752 {
1753 u64 runtime, runtime_expires;
1754 int idle = 1, throttled;
1755
1756 raw_spin_lock(&cfs_b->lock);
1757 /* no need to continue the timer with no bandwidth constraint */
1758 if (cfs_b->quota == RUNTIME_INF)
1759 goto out_unlock;
1760
1761 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1762 /* idle depends on !throttled (for the case of a large deficit) */
1763 idle = cfs_b->idle && !throttled;
1764 cfs_b->nr_periods += overrun;
1765
1766 /* if we're going inactive then everything else can be deferred */
1767 if (idle)
1768 goto out_unlock;
1769
1770 __refill_cfs_bandwidth_runtime(cfs_b);
1771
1772 if (!throttled) {
1773 /* mark as potentially idle for the upcoming period */
1774 cfs_b->idle = 1;
1775 goto out_unlock;
1776 }
1777
1778 /* account preceding periods in which throttling occurred */
1779 cfs_b->nr_throttled += overrun;
1780
1781 /*
1782 * There are throttled entities so we must first use the new bandwidth
1783 * to unthrottle them before making it generally available. This
1784 * ensures that all existing debts will be paid before a new cfs_rq is
1785 * allowed to run.
1786 */
1787 runtime = cfs_b->runtime;
1788 runtime_expires = cfs_b->runtime_expires;
1789 cfs_b->runtime = 0;
1790
1791 /*
1792 * This check is repeated as we are holding onto the new bandwidth
1793 * while we unthrottle. This can potentially race with an unthrottled
1794 * group trying to acquire new bandwidth from the global pool.
1795 */
1796 while (throttled && runtime > 0) {
1797 raw_spin_unlock(&cfs_b->lock);
1798 /* we can't nest cfs_b->lock while distributing bandwidth */
1799 runtime = distribute_cfs_runtime(cfs_b, runtime,
1800 runtime_expires);
1801 raw_spin_lock(&cfs_b->lock);
1802
1803 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1804 }
1805
1806 /* return (any) remaining runtime */
1807 cfs_b->runtime = runtime;
1808 /*
1809 * While we are ensured activity in the period following an
1810 * unthrottle, this also covers the case in which the new bandwidth is
1811 * insufficient to cover the existing bandwidth deficit. (Forcing the
1812 * timer to remain active while there are any throttled entities.)
1813 */
1814 cfs_b->idle = 0;
1815 out_unlock:
1816 if (idle)
1817 cfs_b->timer_active = 0;
1818 raw_spin_unlock(&cfs_b->lock);
1819
1820 return idle;
1821 }
1822
1823 /* a cfs_rq won't donate quota below this amount */
1824 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1825 /* minimum remaining period time to redistribute slack quota */
1826 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1827 /* how long we wait to gather additional slack before distributing */
1828 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1829
1830 /* are we near the end of the current quota period? */
1831 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1832 {
1833 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1834 u64 remaining;
1835
1836 /* if the call-back is running a quota refresh is already occurring */
1837 if (hrtimer_callback_running(refresh_timer))
1838 return 1;
1839
1840 /* is a quota refresh about to occur? */
1841 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1842 if (remaining < min_expire)
1843 return 1;
1844
1845 return 0;
1846 }
1847
1848 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1849 {
1850 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1851
1852 /* if there's a quota refresh soon don't bother with slack */
1853 if (runtime_refresh_within(cfs_b, min_left))
1854 return;
1855
1856 start_bandwidth_timer(&cfs_b->slack_timer,
1857 ns_to_ktime(cfs_bandwidth_slack_period));
1858 }
1859
1860 /* we know any runtime found here is valid as update_curr() precedes return */
1861 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1862 {
1863 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1864 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1865
1866 if (slack_runtime <= 0)
1867 return;
1868
1869 raw_spin_lock(&cfs_b->lock);
1870 if (cfs_b->quota != RUNTIME_INF &&
1871 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1872 cfs_b->runtime += slack_runtime;
1873
1874 /* we are under rq->lock, defer unthrottling using a timer */
1875 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1876 !list_empty(&cfs_b->throttled_cfs_rq))
1877 start_cfs_slack_bandwidth(cfs_b);
1878 }
1879 raw_spin_unlock(&cfs_b->lock);
1880
1881 /* even if it's not valid for return we don't want to try again */
1882 cfs_rq->runtime_remaining -= slack_runtime;
1883 }
1884
1885 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1886 {
1887 if (!cfs_bandwidth_used())
1888 return;
1889
1890 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1891 return;
1892
1893 __return_cfs_rq_runtime(cfs_rq);
1894 }
1895
1896 /*
1897 * This is done with a timer (instead of inline with bandwidth return) since
1898 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1899 */
1900 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1901 {
1902 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1903 u64 expires;
1904
1905 /* confirm we're still not at a refresh boundary */
1906 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1907 return;
1908
1909 raw_spin_lock(&cfs_b->lock);
1910 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1911 runtime = cfs_b->runtime;
1912 cfs_b->runtime = 0;
1913 }
1914 expires = cfs_b->runtime_expires;
1915 raw_spin_unlock(&cfs_b->lock);
1916
1917 if (!runtime)
1918 return;
1919
1920 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1921
1922 raw_spin_lock(&cfs_b->lock);
1923 if (expires == cfs_b->runtime_expires)
1924 cfs_b->runtime = runtime;
1925 raw_spin_unlock(&cfs_b->lock);
1926 }
1927
1928 /*
1929 * When a group wakes up we want to make sure that its quota is not already
1930 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1931 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1932 */
1933 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1934 {
1935 if (!cfs_bandwidth_used())
1936 return;
1937
1938 /* an active group must be handled by the update_curr()->put() path */
1939 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1940 return;
1941
1942 /* ensure the group is not already throttled */
1943 if (cfs_rq_throttled(cfs_rq))
1944 return;
1945
1946 /* update runtime allocation */
1947 account_cfs_rq_runtime(cfs_rq, 0);
1948 if (cfs_rq->runtime_remaining <= 0)
1949 throttle_cfs_rq(cfs_rq);
1950 }
1951
1952 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1953 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1954 {
1955 if (!cfs_bandwidth_used())
1956 return;
1957
1958 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1959 return;
1960
1961 /*
1962 * it's possible for a throttled entity to be forced into a running
1963 * state (e.g. set_curr_task), in this case we're finished.
1964 */
1965 if (cfs_rq_throttled(cfs_rq))
1966 return;
1967
1968 throttle_cfs_rq(cfs_rq);
1969 }
1970
1971 static inline u64 default_cfs_period(void);
1972 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1973 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1974
1975 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1976 {
1977 struct cfs_bandwidth *cfs_b =
1978 container_of(timer, struct cfs_bandwidth, slack_timer);
1979 do_sched_cfs_slack_timer(cfs_b);
1980
1981 return HRTIMER_NORESTART;
1982 }
1983
1984 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1985 {
1986 struct cfs_bandwidth *cfs_b =
1987 container_of(timer, struct cfs_bandwidth, period_timer);
1988 ktime_t now;
1989 int overrun;
1990 int idle = 0;
1991
1992 for (;;) {
1993 now = hrtimer_cb_get_time(timer);
1994 overrun = hrtimer_forward(timer, now, cfs_b->period);
1995
1996 if (!overrun)
1997 break;
1998
1999 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2000 }
2001
2002 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2003 }
2004
2005 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2006 {
2007 raw_spin_lock_init(&cfs_b->lock);
2008 cfs_b->runtime = 0;
2009 cfs_b->quota = RUNTIME_INF;
2010 cfs_b->period = ns_to_ktime(default_cfs_period());
2011
2012 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2013 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2014 cfs_b->period_timer.function = sched_cfs_period_timer;
2015 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2016 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2017 }
2018
2019 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2020 {
2021 cfs_rq->runtime_enabled = 0;
2022 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2023 }
2024
2025 /* requires cfs_b->lock, may release to reprogram timer */
2026 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2027 {
2028 /*
2029 * The timer may be active because we're trying to set a new bandwidth
2030 * period or because we're racing with the tear-down path
2031 * (timer_active==0 becomes visible before the hrtimer call-back
2032 * terminates). In either case we ensure that it's re-programmed
2033 */
2034 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2035 raw_spin_unlock(&cfs_b->lock);
2036 /* ensure cfs_b->lock is available while we wait */
2037 hrtimer_cancel(&cfs_b->period_timer);
2038
2039 raw_spin_lock(&cfs_b->lock);
2040 /* if someone else restarted the timer then we're done */
2041 if (cfs_b->timer_active)
2042 return;
2043 }
2044
2045 cfs_b->timer_active = 1;
2046 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2047 }
2048
2049 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2050 {
2051 hrtimer_cancel(&cfs_b->period_timer);
2052 hrtimer_cancel(&cfs_b->slack_timer);
2053 }
2054
2055 void unthrottle_offline_cfs_rqs(struct rq *rq)
2056 {
2057 struct cfs_rq *cfs_rq;
2058
2059 for_each_leaf_cfs_rq(rq, cfs_rq) {
2060 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2061
2062 if (!cfs_rq->runtime_enabled)
2063 continue;
2064
2065 /*
2066 * clock_task is not advancing so we just need to make sure
2067 * there's some valid quota amount
2068 */
2069 cfs_rq->runtime_remaining = cfs_b->quota;
2070 if (cfs_rq_throttled(cfs_rq))
2071 unthrottle_cfs_rq(cfs_rq);
2072 }
2073 }
2074
2075 #else /* CONFIG_CFS_BANDWIDTH */
2076 static __always_inline
2077 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2078 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2079 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2080 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2081
2082 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2083 {
2084 return 0;
2085 }
2086
2087 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2088 {
2089 return 0;
2090 }
2091
2092 static inline int throttled_lb_pair(struct task_group *tg,
2093 int src_cpu, int dest_cpu)
2094 {
2095 return 0;
2096 }
2097
2098 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2099
2100 #ifdef CONFIG_FAIR_GROUP_SCHED
2101 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2102 #endif
2103
2104 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2105 {
2106 return NULL;
2107 }
2108 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2109 void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2110
2111 #endif /* CONFIG_CFS_BANDWIDTH */
2112
2113 /**************************************************
2114 * CFS operations on tasks:
2115 */
2116
2117 #ifdef CONFIG_SCHED_HRTICK
2118 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2119 {
2120 struct sched_entity *se = &p->se;
2121 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2122
2123 WARN_ON(task_rq(p) != rq);
2124
2125 if (cfs_rq->nr_running > 1) {
2126 u64 slice = sched_slice(cfs_rq, se);
2127 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2128 s64 delta = slice - ran;
2129
2130 if (delta < 0) {
2131 if (rq->curr == p)
2132 resched_task(p);
2133 return;
2134 }
2135
2136 /*
2137 * Don't schedule slices shorter than 10000ns, that just
2138 * doesn't make sense. Rely on vruntime for fairness.
2139 */
2140 if (rq->curr != p)
2141 delta = max_t(s64, 10000LL, delta);
2142
2143 hrtick_start(rq, delta);
2144 }
2145 }
2146
2147 /*
2148 * called from enqueue/dequeue and updates the hrtick when the
2149 * current task is from our class and nr_running is low enough
2150 * to matter.
2151 */
2152 static void hrtick_update(struct rq *rq)
2153 {
2154 struct task_struct *curr = rq->curr;
2155
2156 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2157 return;
2158
2159 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2160 hrtick_start_fair(rq, curr);
2161 }
2162 #else /* !CONFIG_SCHED_HRTICK */
2163 static inline void
2164 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2165 {
2166 }
2167
2168 static inline void hrtick_update(struct rq *rq)
2169 {
2170 }
2171 #endif
2172
2173 /*
2174 * The enqueue_task method is called before nr_running is
2175 * increased. Here we update the fair scheduling stats and
2176 * then put the task into the rbtree:
2177 */
2178 static void
2179 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2180 {
2181 struct cfs_rq *cfs_rq;
2182 struct sched_entity *se = &p->se;
2183
2184 for_each_sched_entity(se) {
2185 if (se->on_rq)
2186 break;
2187 cfs_rq = cfs_rq_of(se);
2188 enqueue_entity(cfs_rq, se, flags);
2189
2190 /*
2191 * end evaluation on encountering a throttled cfs_rq
2192 *
2193 * note: in the case of encountering a throttled cfs_rq we will
2194 * post the final h_nr_running increment below.
2195 */
2196 if (cfs_rq_throttled(cfs_rq))
2197 break;
2198 cfs_rq->h_nr_running++;
2199
2200 flags = ENQUEUE_WAKEUP;
2201 }
2202
2203 for_each_sched_entity(se) {
2204 cfs_rq = cfs_rq_of(se);
2205 cfs_rq->h_nr_running++;
2206
2207 if (cfs_rq_throttled(cfs_rq))
2208 break;
2209
2210 update_cfs_load(cfs_rq, 0);
2211 update_cfs_shares(cfs_rq);
2212 }
2213
2214 if (!se)
2215 inc_nr_running(rq);
2216 hrtick_update(rq);
2217 }
2218
2219 static void set_next_buddy(struct sched_entity *se);
2220
2221 /*
2222 * The dequeue_task method is called before nr_running is
2223 * decreased. We remove the task from the rbtree and
2224 * update the fair scheduling stats:
2225 */
2226 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2227 {
2228 struct cfs_rq *cfs_rq;
2229 struct sched_entity *se = &p->se;
2230 int task_sleep = flags & DEQUEUE_SLEEP;
2231
2232 for_each_sched_entity(se) {
2233 cfs_rq = cfs_rq_of(se);
2234 dequeue_entity(cfs_rq, se, flags);
2235
2236 /*
2237 * end evaluation on encountering a throttled cfs_rq
2238 *
2239 * note: in the case of encountering a throttled cfs_rq we will
2240 * post the final h_nr_running decrement below.
2241 */
2242 if (cfs_rq_throttled(cfs_rq))
2243 break;
2244 cfs_rq->h_nr_running--;
2245
2246 /* Don't dequeue parent if it has other entities besides us */
2247 if (cfs_rq->load.weight) {
2248 /*
2249 * Bias pick_next to pick a task from this cfs_rq, as
2250 * p is sleeping when it is within its sched_slice.
2251 */
2252 if (task_sleep && parent_entity(se))
2253 set_next_buddy(parent_entity(se));
2254
2255 /* avoid re-evaluating load for this entity */
2256 se = parent_entity(se);
2257 break;
2258 }
2259 flags |= DEQUEUE_SLEEP;
2260 }
2261
2262 for_each_sched_entity(se) {
2263 cfs_rq = cfs_rq_of(se);
2264 cfs_rq->h_nr_running--;
2265
2266 if (cfs_rq_throttled(cfs_rq))
2267 break;
2268
2269 update_cfs_load(cfs_rq, 0);
2270 update_cfs_shares(cfs_rq);
2271 }
2272
2273 if (!se)
2274 dec_nr_running(rq);
2275 hrtick_update(rq);
2276 }
2277
2278 #ifdef CONFIG_SMP
2279 /* Used instead of source_load when we know the type == 0 */
2280 static unsigned long weighted_cpuload(const int cpu)
2281 {
2282 return cpu_rq(cpu)->load.weight;
2283 }
2284
2285 /*
2286 * Return a low guess at the load of a migration-source cpu weighted
2287 * according to the scheduling class and "nice" value.
2288 *
2289 * We want to under-estimate the load of migration sources, to
2290 * balance conservatively.
2291 */
2292 static unsigned long source_load(int cpu, int type)
2293 {
2294 struct rq *rq = cpu_rq(cpu);
2295 unsigned long total = weighted_cpuload(cpu);
2296
2297 if (type == 0 || !sched_feat(LB_BIAS))
2298 return total;
2299
2300 return min(rq->cpu_load[type-1], total);
2301 }
2302
2303 /*
2304 * Return a high guess at the load of a migration-target cpu weighted
2305 * according to the scheduling class and "nice" value.
2306 */
2307 static unsigned long target_load(int cpu, int type)
2308 {
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2311
2312 if (type == 0 || !sched_feat(LB_BIAS))
2313 return total;
2314
2315 return max(rq->cpu_load[type-1], total);
2316 }
2317
2318 static unsigned long power_of(int cpu)
2319 {
2320 return cpu_rq(cpu)->cpu_power;
2321 }
2322
2323 static unsigned long cpu_avg_load_per_task(int cpu)
2324 {
2325 struct rq *rq = cpu_rq(cpu);
2326 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2327
2328 if (nr_running)
2329 return rq->load.weight / nr_running;
2330
2331 return 0;
2332 }
2333
2334
2335 static void task_waking_fair(struct task_struct *p)
2336 {
2337 struct sched_entity *se = &p->se;
2338 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2339 u64 min_vruntime;
2340
2341 #ifndef CONFIG_64BIT
2342 u64 min_vruntime_copy;
2343
2344 do {
2345 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2346 smp_rmb();
2347 min_vruntime = cfs_rq->min_vruntime;
2348 } while (min_vruntime != min_vruntime_copy);
2349 #else
2350 min_vruntime = cfs_rq->min_vruntime;
2351 #endif
2352
2353 se->vruntime -= min_vruntime;
2354 }
2355
2356 #ifdef CONFIG_FAIR_GROUP_SCHED
2357 /*
2358 * effective_load() calculates the load change as seen from the root_task_group
2359 *
2360 * Adding load to a group doesn't make a group heavier, but can cause movement
2361 * of group shares between cpus. Assuming the shares were perfectly aligned one
2362 * can calculate the shift in shares.
2363 *
2364 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2365 * on this @cpu and results in a total addition (subtraction) of @wg to the
2366 * total group weight.
2367 *
2368 * Given a runqueue weight distribution (rw_i) we can compute a shares
2369 * distribution (s_i) using:
2370 *
2371 * s_i = rw_i / \Sum rw_j (1)
2372 *
2373 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2374 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2375 * shares distribution (s_i):
2376 *
2377 * rw_i = { 2, 4, 1, 0 }
2378 * s_i = { 2/7, 4/7, 1/7, 0 }
2379 *
2380 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2381 * task used to run on and the CPU the waker is running on), we need to
2382 * compute the effect of waking a task on either CPU and, in case of a sync
2383 * wakeup, compute the effect of the current task going to sleep.
2384 *
2385 * So for a change of @wl to the local @cpu with an overall group weight change
2386 * of @wl we can compute the new shares distribution (s'_i) using:
2387 *
2388 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2389 *
2390 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2391 * differences in waking a task to CPU 0. The additional task changes the
2392 * weight and shares distributions like:
2393 *
2394 * rw'_i = { 3, 4, 1, 0 }
2395 * s'_i = { 3/8, 4/8, 1/8, 0 }
2396 *
2397 * We can then compute the difference in effective weight by using:
2398 *
2399 * dw_i = S * (s'_i - s_i) (3)
2400 *
2401 * Where 'S' is the group weight as seen by its parent.
2402 *
2403 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2404 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2405 * 4/7) times the weight of the group.
2406 */
2407 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2408 {
2409 struct sched_entity *se = tg->se[cpu];
2410
2411 if (!tg->parent) /* the trivial, non-cgroup case */
2412 return wl;
2413
2414 for_each_sched_entity(se) {
2415 long w, W;
2416
2417 tg = se->my_q->tg;
2418
2419 /*
2420 * W = @wg + \Sum rw_j
2421 */
2422 W = wg + calc_tg_weight(tg, se->my_q);
2423
2424 /*
2425 * w = rw_i + @wl
2426 */
2427 w = se->my_q->load.weight + wl;
2428
2429 /*
2430 * wl = S * s'_i; see (2)
2431 */
2432 if (W > 0 && w < W)
2433 wl = (w * tg->shares) / W;
2434 else
2435 wl = tg->shares;
2436
2437 /*
2438 * Per the above, wl is the new se->load.weight value; since
2439 * those are clipped to [MIN_SHARES, ...) do so now. See
2440 * calc_cfs_shares().
2441 */
2442 if (wl < MIN_SHARES)
2443 wl = MIN_SHARES;
2444
2445 /*
2446 * wl = dw_i = S * (s'_i - s_i); see (3)
2447 */
2448 wl -= se->load.weight;
2449
2450 /*
2451 * Recursively apply this logic to all parent groups to compute
2452 * the final effective load change on the root group. Since
2453 * only the @tg group gets extra weight, all parent groups can
2454 * only redistribute existing shares. @wl is the shift in shares
2455 * resulting from this level per the above.
2456 */
2457 wg = 0;
2458 }
2459
2460 return wl;
2461 }
2462 #else
2463
2464 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2465 unsigned long wl, unsigned long wg)
2466 {
2467 return wl;
2468 }
2469
2470 #endif
2471
2472 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2473 {
2474 s64 this_load, load;
2475 int idx, this_cpu, prev_cpu;
2476 unsigned long tl_per_task;
2477 struct task_group *tg;
2478 unsigned long weight;
2479 int balanced;
2480
2481 idx = sd->wake_idx;
2482 this_cpu = smp_processor_id();
2483 prev_cpu = task_cpu(p);
2484 load = source_load(prev_cpu, idx);
2485 this_load = target_load(this_cpu, idx);
2486
2487 /*
2488 * If sync wakeup then subtract the (maximum possible)
2489 * effect of the currently running task from the load
2490 * of the current CPU:
2491 */
2492 if (sync) {
2493 tg = task_group(current);
2494 weight = current->se.load.weight;
2495
2496 this_load += effective_load(tg, this_cpu, -weight, -weight);
2497 load += effective_load(tg, prev_cpu, 0, -weight);
2498 }
2499
2500 tg = task_group(p);
2501 weight = p->se.load.weight;
2502
2503 /*
2504 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2505 * due to the sync cause above having dropped this_load to 0, we'll
2506 * always have an imbalance, but there's really nothing you can do
2507 * about that, so that's good too.
2508 *
2509 * Otherwise check if either cpus are near enough in load to allow this
2510 * task to be woken on this_cpu.
2511 */
2512 if (this_load > 0) {
2513 s64 this_eff_load, prev_eff_load;
2514
2515 this_eff_load = 100;
2516 this_eff_load *= power_of(prev_cpu);
2517 this_eff_load *= this_load +
2518 effective_load(tg, this_cpu, weight, weight);
2519
2520 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2521 prev_eff_load *= power_of(this_cpu);
2522 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2523
2524 balanced = this_eff_load <= prev_eff_load;
2525 } else
2526 balanced = true;
2527
2528 /*
2529 * If the currently running task will sleep within
2530 * a reasonable amount of time then attract this newly
2531 * woken task:
2532 */
2533 if (sync && balanced)
2534 return 1;
2535
2536 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2537 tl_per_task = cpu_avg_load_per_task(this_cpu);
2538
2539 if (balanced ||
2540 (this_load <= load &&
2541 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2542 /*
2543 * This domain has SD_WAKE_AFFINE and
2544 * p is cache cold in this domain, and
2545 * there is no bad imbalance.
2546 */
2547 schedstat_inc(sd, ttwu_move_affine);
2548 schedstat_inc(p, se.statistics.nr_wakeups_affine);
2549
2550 return 1;
2551 }
2552 return 0;
2553 }
2554
2555 /*
2556 * find_idlest_group finds and returns the least busy CPU group within the
2557 * domain.
2558 */
2559 static struct sched_group *
2560 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2561 int this_cpu, int load_idx)
2562 {
2563 struct sched_group *idlest = NULL, *group = sd->groups;
2564 unsigned long min_load = ULONG_MAX, this_load = 0;
2565 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2566
2567 do {
2568 unsigned long load, avg_load;
2569 int local_group;
2570 int i;
2571
2572 /* Skip over this group if it has no CPUs allowed */
2573 if (!cpumask_intersects(sched_group_cpus(group),
2574 tsk_cpus_allowed(p)))
2575 continue;
2576
2577 local_group = cpumask_test_cpu(this_cpu,
2578 sched_group_cpus(group));
2579
2580 /* Tally up the load of all CPUs in the group */
2581 avg_load = 0;
2582
2583 for_each_cpu(i, sched_group_cpus(group)) {
2584 /* Bias balancing toward cpus of our domain */
2585 if (local_group)
2586 load = source_load(i, load_idx);
2587 else
2588 load = target_load(i, load_idx);
2589
2590 avg_load += load;
2591 }
2592
2593 /* Adjust by relative CPU power of the group */
2594 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2595
2596 if (local_group) {
2597 this_load = avg_load;
2598 } else if (avg_load < min_load) {
2599 min_load = avg_load;
2600 idlest = group;
2601 }
2602 } while (group = group->next, group != sd->groups);
2603
2604 if (!idlest || 100*this_load < imbalance*min_load)
2605 return NULL;
2606 return idlest;
2607 }
2608
2609 /*
2610 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2611 */
2612 static int
2613 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2614 {
2615 unsigned long load, min_load = ULONG_MAX;
2616 int idlest = -1;
2617 int i;
2618
2619 /* Traverse only the allowed CPUs */
2620 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2621 load = weighted_cpuload(i);
2622
2623 if (load < min_load || (load == min_load && i == this_cpu)) {
2624 min_load = load;
2625 idlest = i;
2626 }
2627 }
2628
2629 return idlest;
2630 }
2631
2632 /*
2633 * Try and locate an idle CPU in the sched_domain.
2634 */
2635 static int select_idle_sibling(struct task_struct *p, int target)
2636 {
2637 int cpu = smp_processor_id();
2638 int prev_cpu = task_cpu(p);
2639 struct sched_domain *sd;
2640 struct sched_group *sg;
2641 int i;
2642
2643 /*
2644 * If the task is going to be woken-up on this cpu and if it is
2645 * already idle, then it is the right target.
2646 */
2647 if (target == cpu && idle_cpu(cpu))
2648 return cpu;
2649
2650 /*
2651 * If the task is going to be woken-up on the cpu where it previously
2652 * ran and if it is currently idle, then it the right target.
2653 */
2654 if (target == prev_cpu && idle_cpu(prev_cpu))
2655 return prev_cpu;
2656
2657 /*
2658 * Otherwise, iterate the domains and find an elegible idle cpu.
2659 */
2660 sd = rcu_dereference(per_cpu(sd_llc, target));
2661 for_each_lower_domain(sd) {
2662 sg = sd->groups;
2663 do {
2664 if (!cpumask_intersects(sched_group_cpus(sg),
2665 tsk_cpus_allowed(p)))
2666 goto next;
2667
2668 for_each_cpu(i, sched_group_cpus(sg)) {
2669 if (!idle_cpu(i))
2670 goto next;
2671 }
2672
2673 target = cpumask_first_and(sched_group_cpus(sg),
2674 tsk_cpus_allowed(p));
2675 goto done;
2676 next:
2677 sg = sg->next;
2678 } while (sg != sd->groups);
2679 }
2680 done:
2681 return target;
2682 }
2683
2684 /*
2685 * sched_balance_self: balance the current task (running on cpu) in domains
2686 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2687 * SD_BALANCE_EXEC.
2688 *
2689 * Balance, ie. select the least loaded group.
2690 *
2691 * Returns the target CPU number, or the same CPU if no balancing is needed.
2692 *
2693 * preempt must be disabled.
2694 */
2695 static int
2696 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2697 {
2698 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2699 int cpu = smp_processor_id();
2700 int prev_cpu = task_cpu(p);
2701 int new_cpu = cpu;
2702 int want_affine = 0;
2703 int want_sd = 1;
2704 int sync = wake_flags & WF_SYNC;
2705
2706 if (p->rt.nr_cpus_allowed == 1)
2707 return prev_cpu;
2708
2709 if (sd_flag & SD_BALANCE_WAKE) {
2710 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2711 want_affine = 1;
2712 new_cpu = prev_cpu;
2713 }
2714
2715 rcu_read_lock();
2716 for_each_domain(cpu, tmp) {
2717 if (!(tmp->flags & SD_LOAD_BALANCE))
2718 continue;
2719
2720 /*
2721 * If power savings logic is enabled for a domain, see if we
2722 * are not overloaded, if so, don't balance wider.
2723 */
2724 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
2725 unsigned long power = 0;
2726 unsigned long nr_running = 0;
2727 unsigned long capacity;
2728 int i;
2729
2730 for_each_cpu(i, sched_domain_span(tmp)) {
2731 power += power_of(i);
2732 nr_running += cpu_rq(i)->cfs.nr_running;
2733 }
2734
2735 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2736
2737 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2738 nr_running /= 2;
2739
2740 if (nr_running < capacity)
2741 want_sd = 0;
2742 }
2743
2744 /*
2745 * If both cpu and prev_cpu are part of this domain,
2746 * cpu is a valid SD_WAKE_AFFINE target.
2747 */
2748 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2749 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2750 affine_sd = tmp;
2751 want_affine = 0;
2752 }
2753
2754 if (!want_sd && !want_affine)
2755 break;
2756
2757 if (!(tmp->flags & sd_flag))
2758 continue;
2759
2760 if (want_sd)
2761 sd = tmp;
2762 }
2763
2764 if (affine_sd) {
2765 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2766 prev_cpu = cpu;
2767
2768 new_cpu = select_idle_sibling(p, prev_cpu);
2769 goto unlock;
2770 }
2771
2772 while (sd) {
2773 int load_idx = sd->forkexec_idx;
2774 struct sched_group *group;
2775 int weight;
2776
2777 if (!(sd->flags & sd_flag)) {
2778 sd = sd->child;
2779 continue;
2780 }
2781
2782 if (sd_flag & SD_BALANCE_WAKE)
2783 load_idx = sd->wake_idx;
2784
2785 group = find_idlest_group(sd, p, cpu, load_idx);
2786 if (!group) {
2787 sd = sd->child;
2788 continue;
2789 }
2790
2791 new_cpu = find_idlest_cpu(group, p, cpu);
2792 if (new_cpu == -1 || new_cpu == cpu) {
2793 /* Now try balancing at a lower domain level of cpu */
2794 sd = sd->child;
2795 continue;
2796 }
2797
2798 /* Now try balancing at a lower domain level of new_cpu */
2799 cpu = new_cpu;
2800 weight = sd->span_weight;
2801 sd = NULL;
2802 for_each_domain(cpu, tmp) {
2803 if (weight <= tmp->span_weight)
2804 break;
2805 if (tmp->flags & sd_flag)
2806 sd = tmp;
2807 }
2808 /* while loop will break here if sd == NULL */
2809 }
2810 unlock:
2811 rcu_read_unlock();
2812
2813 return new_cpu;
2814 }
2815 #endif /* CONFIG_SMP */
2816
2817 static unsigned long
2818 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2819 {
2820 unsigned long gran = sysctl_sched_wakeup_granularity;
2821
2822 /*
2823 * Since its curr running now, convert the gran from real-time
2824 * to virtual-time in his units.
2825 *
2826 * By using 'se' instead of 'curr' we penalize light tasks, so
2827 * they get preempted easier. That is, if 'se' < 'curr' then
2828 * the resulting gran will be larger, therefore penalizing the
2829 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2830 * be smaller, again penalizing the lighter task.
2831 *
2832 * This is especially important for buddies when the leftmost
2833 * task is higher priority than the buddy.
2834 */
2835 return calc_delta_fair(gran, se);
2836 }
2837
2838 /*
2839 * Should 'se' preempt 'curr'.
2840 *
2841 * |s1
2842 * |s2
2843 * |s3
2844 * g
2845 * |<--->|c
2846 *
2847 * w(c, s1) = -1
2848 * w(c, s2) = 0
2849 * w(c, s3) = 1
2850 *
2851 */
2852 static int
2853 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2854 {
2855 s64 gran, vdiff = curr->vruntime - se->vruntime;
2856
2857 if (vdiff <= 0)
2858 return -1;
2859
2860 gran = wakeup_gran(curr, se);
2861 if (vdiff > gran)
2862 return 1;
2863
2864 return 0;
2865 }
2866
2867 static void set_last_buddy(struct sched_entity *se)
2868 {
2869 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2870 return;
2871
2872 for_each_sched_entity(se)
2873 cfs_rq_of(se)->last = se;
2874 }
2875
2876 static void set_next_buddy(struct sched_entity *se)
2877 {
2878 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2879 return;
2880
2881 for_each_sched_entity(se)
2882 cfs_rq_of(se)->next = se;
2883 }
2884
2885 static void set_skip_buddy(struct sched_entity *se)
2886 {
2887 for_each_sched_entity(se)
2888 cfs_rq_of(se)->skip = se;
2889 }
2890
2891 /*
2892 * Preempt the current task with a newly woken task if needed:
2893 */
2894 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2895 {
2896 struct task_struct *curr = rq->curr;
2897 struct sched_entity *se = &curr->se, *pse = &p->se;
2898 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2899 int scale = cfs_rq->nr_running >= sched_nr_latency;
2900 int next_buddy_marked = 0;
2901
2902 if (unlikely(se == pse))
2903 return;
2904
2905 /*
2906 * This is possible from callers such as move_task(), in which we
2907 * unconditionally check_prempt_curr() after an enqueue (which may have
2908 * lead to a throttle). This both saves work and prevents false
2909 * next-buddy nomination below.
2910 */
2911 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2912 return;
2913
2914 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2915 set_next_buddy(pse);
2916 next_buddy_marked = 1;
2917 }
2918
2919 /*
2920 * We can come here with TIF_NEED_RESCHED already set from new task
2921 * wake up path.
2922 *
2923 * Note: this also catches the edge-case of curr being in a throttled
2924 * group (e.g. via set_curr_task), since update_curr() (in the
2925 * enqueue of curr) will have resulted in resched being set. This
2926 * prevents us from potentially nominating it as a false LAST_BUDDY
2927 * below.
2928 */
2929 if (test_tsk_need_resched(curr))
2930 return;
2931
2932 /* Idle tasks are by definition preempted by non-idle tasks. */
2933 if (unlikely(curr->policy == SCHED_IDLE) &&
2934 likely(p->policy != SCHED_IDLE))
2935 goto preempt;
2936
2937 /*
2938 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2939 * is driven by the tick):
2940 */
2941 if (unlikely(p->policy != SCHED_NORMAL))
2942 return;
2943
2944 find_matching_se(&se, &pse);
2945 update_curr(cfs_rq_of(se));
2946 BUG_ON(!pse);
2947 if (wakeup_preempt_entity(se, pse) == 1) {
2948 /*
2949 * Bias pick_next to pick the sched entity that is
2950 * triggering this preemption.
2951 */
2952 if (!next_buddy_marked)
2953 set_next_buddy(pse);
2954 goto preempt;
2955 }
2956
2957 return;
2958
2959 preempt:
2960 resched_task(curr);
2961 /*
2962 * Only set the backward buddy when the current task is still
2963 * on the rq. This can happen when a wakeup gets interleaved
2964 * with schedule on the ->pre_schedule() or idle_balance()
2965 * point, either of which can * drop the rq lock.
2966 *
2967 * Also, during early boot the idle thread is in the fair class,
2968 * for obvious reasons its a bad idea to schedule back to it.
2969 */
2970 if (unlikely(!se->on_rq || curr == rq->idle))
2971 return;
2972
2973 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2974 set_last_buddy(se);
2975 }
2976
2977 static struct task_struct *pick_next_task_fair(struct rq *rq)
2978 {
2979 struct task_struct *p;
2980 struct cfs_rq *cfs_rq = &rq->cfs;
2981 struct sched_entity *se;
2982
2983 if (!cfs_rq->nr_running)
2984 return NULL;
2985
2986 do {
2987 se = pick_next_entity(cfs_rq);
2988 set_next_entity(cfs_rq, se);
2989 cfs_rq = group_cfs_rq(se);
2990 } while (cfs_rq);
2991
2992 p = task_of(se);
2993 if (hrtick_enabled(rq))
2994 hrtick_start_fair(rq, p);
2995
2996 return p;
2997 }
2998
2999 /*
3000 * Account for a descheduled task:
3001 */
3002 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3003 {
3004 struct sched_entity *se = &prev->se;
3005 struct cfs_rq *cfs_rq;
3006
3007 for_each_sched_entity(se) {
3008 cfs_rq = cfs_rq_of(se);
3009 put_prev_entity(cfs_rq, se);
3010 }
3011 }
3012
3013 /*
3014 * sched_yield() is very simple
3015 *
3016 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3017 */
3018 static void yield_task_fair(struct rq *rq)
3019 {
3020 struct task_struct *curr = rq->curr;
3021 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3022 struct sched_entity *se = &curr->se;
3023
3024 /*
3025 * Are we the only task in the tree?
3026 */
3027 if (unlikely(rq->nr_running == 1))
3028 return;
3029
3030 clear_buddies(cfs_rq, se);
3031
3032 if (curr->policy != SCHED_BATCH) {
3033 update_rq_clock(rq);
3034 /*
3035 * Update run-time statistics of the 'current'.
3036 */
3037 update_curr(cfs_rq);
3038 /*
3039 * Tell update_rq_clock() that we've just updated,
3040 * so we don't do microscopic update in schedule()
3041 * and double the fastpath cost.
3042 */
3043 rq->skip_clock_update = 1;
3044 }
3045
3046 set_skip_buddy(se);
3047 }
3048
3049 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3050 {
3051 struct sched_entity *se = &p->se;
3052
3053 /* throttled hierarchies are not runnable */
3054 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3055 return false;
3056
3057 /* Tell the scheduler that we'd really like pse to run next. */
3058 set_next_buddy(se);
3059
3060 yield_task_fair(rq);
3061
3062 return true;
3063 }
3064
3065 #ifdef CONFIG_SMP
3066 /**************************************************
3067 * Fair scheduling class load-balancing methods:
3068 */
3069
3070 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3071
3072 #define LBF_ALL_PINNED 0x01
3073 #define LBF_NEED_BREAK 0x02
3074
3075 struct lb_env {
3076 struct sched_domain *sd;
3077
3078 int src_cpu;
3079 struct rq *src_rq;
3080
3081 int dst_cpu;
3082 struct rq *dst_rq;
3083
3084 enum cpu_idle_type idle;
3085 long load_move;
3086 unsigned int flags;
3087
3088 unsigned int loop;
3089 unsigned int loop_break;
3090 unsigned int loop_max;
3091 };
3092
3093 /*
3094 * move_task - move a task from one runqueue to another runqueue.
3095 * Both runqueues must be locked.
3096 */
3097 static void move_task(struct task_struct *p, struct lb_env *env)
3098 {
3099 deactivate_task(env->src_rq, p, 0);
3100 set_task_cpu(p, env->dst_cpu);
3101 activate_task(env->dst_rq, p, 0);
3102 check_preempt_curr(env->dst_rq, p, 0);
3103 }
3104
3105 /*
3106 * Is this task likely cache-hot:
3107 */
3108 static int
3109 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3110 {
3111 s64 delta;
3112
3113 if (p->sched_class != &fair_sched_class)
3114 return 0;
3115
3116 if (unlikely(p->policy == SCHED_IDLE))
3117 return 0;
3118
3119 /*
3120 * Buddy candidates are cache hot:
3121 */
3122 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3123 (&p->se == cfs_rq_of(&p->se)->next ||
3124 &p->se == cfs_rq_of(&p->se)->last))
3125 return 1;
3126
3127 if (sysctl_sched_migration_cost == -1)
3128 return 1;
3129 if (sysctl_sched_migration_cost == 0)
3130 return 0;
3131
3132 delta = now - p->se.exec_start;
3133
3134 return delta < (s64)sysctl_sched_migration_cost;
3135 }
3136
3137 /*
3138 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3139 */
3140 static
3141 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3142 {
3143 int tsk_cache_hot = 0;
3144 /*
3145 * We do not migrate tasks that are:
3146 * 1) running (obviously), or
3147 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3148 * 3) are cache-hot on their current CPU.
3149 */
3150 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3151 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3152 return 0;
3153 }
3154 env->flags &= ~LBF_ALL_PINNED;
3155
3156 if (task_running(env->src_rq, p)) {
3157 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3158 return 0;
3159 }
3160
3161 /*
3162 * Aggressive migration if:
3163 * 1) task is cache cold, or
3164 * 2) too many balance attempts have failed.
3165 */
3166
3167 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3168 if (!tsk_cache_hot ||
3169 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3170 #ifdef CONFIG_SCHEDSTATS
3171 if (tsk_cache_hot) {
3172 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3173 schedstat_inc(p, se.statistics.nr_forced_migrations);
3174 }
3175 #endif
3176 return 1;
3177 }
3178
3179 if (tsk_cache_hot) {
3180 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3181 return 0;
3182 }
3183 return 1;
3184 }
3185
3186 /*
3187 * move_one_task tries to move exactly one task from busiest to this_rq, as
3188 * part of active balancing operations within "domain".
3189 * Returns 1 if successful and 0 otherwise.
3190 *
3191 * Called with both runqueues locked.
3192 */
3193 static int move_one_task(struct lb_env *env)
3194 {
3195 struct task_struct *p, *n;
3196
3197 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3198 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3199 continue;
3200
3201 if (!can_migrate_task(p, env))
3202 continue;
3203
3204 move_task(p, env);
3205 /*
3206 * Right now, this is only the second place move_task()
3207 * is called, so we can safely collect move_task()
3208 * stats here rather than inside move_task().
3209 */
3210 schedstat_inc(env->sd, lb_gained[env->idle]);
3211 return 1;
3212 }
3213 return 0;
3214 }
3215
3216 static unsigned long task_h_load(struct task_struct *p);
3217
3218 static const unsigned int sched_nr_migrate_break = 32;
3219
3220 /*
3221 * move_tasks tries to move up to load_move weighted load from busiest to
3222 * this_rq, as part of a balancing operation within domain "sd".
3223 * Returns 1 if successful and 0 otherwise.
3224 *
3225 * Called with both runqueues locked.
3226 */
3227 static int move_tasks(struct lb_env *env)
3228 {
3229 struct list_head *tasks = &env->src_rq->cfs_tasks;
3230 struct task_struct *p;
3231 unsigned long load;
3232 int pulled = 0;
3233
3234 if (env->load_move <= 0)
3235 return 0;
3236
3237 while (!list_empty(tasks)) {
3238 p = list_first_entry(tasks, struct task_struct, se.group_node);
3239
3240 env->loop++;
3241 /* We've more or less seen every task there is, call it quits */
3242 if (env->loop > env->loop_max)
3243 break;
3244
3245 /* take a breather every nr_migrate tasks */
3246 if (env->loop > env->loop_break) {
3247 env->loop_break += sched_nr_migrate_break;
3248 env->flags |= LBF_NEED_BREAK;
3249 break;
3250 }
3251
3252 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3253 goto next;
3254
3255 load = task_h_load(p);
3256
3257 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3258 goto next;
3259
3260 if ((load / 2) > env->load_move)
3261 goto next;
3262
3263 if (!can_migrate_task(p, env))
3264 goto next;
3265
3266 move_task(p, env);
3267 pulled++;
3268 env->load_move -= load;
3269
3270 #ifdef CONFIG_PREEMPT
3271 /*
3272 * NEWIDLE balancing is a source of latency, so preemptible
3273 * kernels will stop after the first task is pulled to minimize
3274 * the critical section.
3275 */
3276 if (env->idle == CPU_NEWLY_IDLE)
3277 break;
3278 #endif
3279
3280 /*
3281 * We only want to steal up to the prescribed amount of
3282 * weighted load.
3283 */
3284 if (env->load_move <= 0)
3285 break;
3286
3287 continue;
3288 next:
3289 list_move_tail(&p->se.group_node, tasks);
3290 }
3291
3292 /*
3293 * Right now, this is one of only two places move_task() is called,
3294 * so we can safely collect move_task() stats here rather than
3295 * inside move_task().
3296 */
3297 schedstat_add(env->sd, lb_gained[env->idle], pulled);
3298
3299 return pulled;
3300 }
3301
3302 #ifdef CONFIG_FAIR_GROUP_SCHED
3303 /*
3304 * update tg->load_weight by folding this cpu's load_avg
3305 */
3306 static int update_shares_cpu(struct task_group *tg, int cpu)
3307 {
3308 struct cfs_rq *cfs_rq;
3309 unsigned long flags;
3310 struct rq *rq;
3311
3312 if (!tg->se[cpu])
3313 return 0;
3314
3315 rq = cpu_rq(cpu);
3316 cfs_rq = tg->cfs_rq[cpu];
3317
3318 raw_spin_lock_irqsave(&rq->lock, flags);
3319
3320 update_rq_clock(rq);
3321 update_cfs_load(cfs_rq, 1);
3322
3323 /*
3324 * We need to update shares after updating tg->load_weight in
3325 * order to adjust the weight of groups with long running tasks.
3326 */
3327 update_cfs_shares(cfs_rq);
3328
3329 raw_spin_unlock_irqrestore(&rq->lock, flags);
3330
3331 return 0;
3332 }
3333
3334 static void update_shares(int cpu)
3335 {
3336 struct cfs_rq *cfs_rq;
3337 struct rq *rq = cpu_rq(cpu);
3338
3339 rcu_read_lock();
3340 /*
3341 * Iterates the task_group tree in a bottom up fashion, see
3342 * list_add_leaf_cfs_rq() for details.
3343 */
3344 for_each_leaf_cfs_rq(rq, cfs_rq) {
3345 /* throttled entities do not contribute to load */
3346 if (throttled_hierarchy(cfs_rq))
3347 continue;
3348
3349 update_shares_cpu(cfs_rq->tg, cpu);
3350 }
3351 rcu_read_unlock();
3352 }
3353
3354 /*
3355 * Compute the cpu's hierarchical load factor for each task group.
3356 * This needs to be done in a top-down fashion because the load of a child
3357 * group is a fraction of its parents load.
3358 */
3359 static int tg_load_down(struct task_group *tg, void *data)
3360 {
3361 unsigned long load;
3362 long cpu = (long)data;
3363
3364 if (!tg->parent) {
3365 load = cpu_rq(cpu)->load.weight;
3366 } else {
3367 load = tg->parent->cfs_rq[cpu]->h_load;
3368 load *= tg->se[cpu]->load.weight;
3369 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3370 }
3371
3372 tg->cfs_rq[cpu]->h_load = load;
3373
3374 return 0;
3375 }
3376
3377 static void update_h_load(long cpu)
3378 {
3379 rcu_read_lock();
3380 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3381 rcu_read_unlock();
3382 }
3383
3384 static unsigned long task_h_load(struct task_struct *p)
3385 {
3386 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3387 unsigned long load;
3388
3389 load = p->se.load.weight;
3390 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
3391
3392 return load;
3393 }
3394 #else
3395 static inline void update_shares(int cpu)
3396 {
3397 }
3398
3399 static inline void update_h_load(long cpu)
3400 {
3401 }
3402
3403 static unsigned long task_h_load(struct task_struct *p)
3404 {
3405 return p->se.load.weight;
3406 }
3407 #endif
3408
3409 /********** Helpers for find_busiest_group ************************/
3410 /*
3411 * sd_lb_stats - Structure to store the statistics of a sched_domain
3412 * during load balancing.
3413 */
3414 struct sd_lb_stats {
3415 struct sched_group *busiest; /* Busiest group in this sd */
3416 struct sched_group *this; /* Local group in this sd */
3417 unsigned long total_load; /* Total load of all groups in sd */
3418 unsigned long total_pwr; /* Total power of all groups in sd */
3419 unsigned long avg_load; /* Average load across all groups in sd */
3420
3421 /** Statistics of this group */
3422 unsigned long this_load;
3423 unsigned long this_load_per_task;
3424 unsigned long this_nr_running;
3425 unsigned long this_has_capacity;
3426 unsigned int this_idle_cpus;
3427
3428 /* Statistics of the busiest group */
3429 unsigned int busiest_idle_cpus;
3430 unsigned long max_load;
3431 unsigned long busiest_load_per_task;
3432 unsigned long busiest_nr_running;
3433 unsigned long busiest_group_capacity;
3434 unsigned long busiest_has_capacity;
3435 unsigned int busiest_group_weight;
3436
3437 int group_imb; /* Is there imbalance in this sd */
3438 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3439 int power_savings_balance; /* Is powersave balance needed for this sd */
3440 struct sched_group *group_min; /* Least loaded group in sd */
3441 struct sched_group *group_leader; /* Group which relieves group_min */
3442 unsigned long min_load_per_task; /* load_per_task in group_min */
3443 unsigned long leader_nr_running; /* Nr running of group_leader */
3444 unsigned long min_nr_running; /* Nr running of group_min */
3445 #endif
3446 };
3447
3448 /*
3449 * sg_lb_stats - stats of a sched_group required for load_balancing
3450 */
3451 struct sg_lb_stats {
3452 unsigned long avg_load; /*Avg load across the CPUs of the group */
3453 unsigned long group_load; /* Total load over the CPUs of the group */
3454 unsigned long sum_nr_running; /* Nr tasks running in the group */
3455 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3456 unsigned long group_capacity;
3457 unsigned long idle_cpus;
3458 unsigned long group_weight;
3459 int group_imb; /* Is there an imbalance in the group ? */
3460 int group_has_capacity; /* Is there extra capacity in the group? */
3461 };
3462
3463 /**
3464 * get_sd_load_idx - Obtain the load index for a given sched domain.
3465 * @sd: The sched_domain whose load_idx is to be obtained.
3466 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3467 */
3468 static inline int get_sd_load_idx(struct sched_domain *sd,
3469 enum cpu_idle_type idle)
3470 {
3471 int load_idx;
3472
3473 switch (idle) {
3474 case CPU_NOT_IDLE:
3475 load_idx = sd->busy_idx;
3476 break;
3477
3478 case CPU_NEWLY_IDLE:
3479 load_idx = sd->newidle_idx;
3480 break;
3481 default:
3482 load_idx = sd->idle_idx;
3483 break;
3484 }
3485
3486 return load_idx;
3487 }
3488
3489
3490 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3491 /**
3492 * init_sd_power_savings_stats - Initialize power savings statistics for
3493 * the given sched_domain, during load balancing.
3494 *
3495 * @sd: Sched domain whose power-savings statistics are to be initialized.
3496 * @sds: Variable containing the statistics for sd.
3497 * @idle: Idle status of the CPU at which we're performing load-balancing.
3498 */
3499 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3500 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3501 {
3502 /*
3503 * Busy processors will not participate in power savings
3504 * balance.
3505 */
3506 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3507 sds->power_savings_balance = 0;
3508 else {
3509 sds->power_savings_balance = 1;
3510 sds->min_nr_running = ULONG_MAX;
3511 sds->leader_nr_running = 0;
3512 }
3513 }
3514
3515 /**
3516 * update_sd_power_savings_stats - Update the power saving stats for a
3517 * sched_domain while performing load balancing.
3518 *
3519 * @group: sched_group belonging to the sched_domain under consideration.
3520 * @sds: Variable containing the statistics of the sched_domain
3521 * @local_group: Does group contain the CPU for which we're performing
3522 * load balancing ?
3523 * @sgs: Variable containing the statistics of the group.
3524 */
3525 static inline void update_sd_power_savings_stats(struct sched_group *group,
3526 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3527 {
3528
3529 if (!sds->power_savings_balance)
3530 return;
3531
3532 /*
3533 * If the local group is idle or completely loaded
3534 * no need to do power savings balance at this domain
3535 */
3536 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3537 !sds->this_nr_running))
3538 sds->power_savings_balance = 0;
3539
3540 /*
3541 * If a group is already running at full capacity or idle,
3542 * don't include that group in power savings calculations
3543 */
3544 if (!sds->power_savings_balance ||
3545 sgs->sum_nr_running >= sgs->group_capacity ||
3546 !sgs->sum_nr_running)
3547 return;
3548
3549 /*
3550 * Calculate the group which has the least non-idle load.
3551 * This is the group from where we need to pick up the load
3552 * for saving power
3553 */
3554 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3555 (sgs->sum_nr_running == sds->min_nr_running &&
3556 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3557 sds->group_min = group;
3558 sds->min_nr_running = sgs->sum_nr_running;
3559 sds->min_load_per_task = sgs->sum_weighted_load /
3560 sgs->sum_nr_running;
3561 }
3562
3563 /*
3564 * Calculate the group which is almost near its
3565 * capacity but still has some space to pick up some load
3566 * from other group and save more power
3567 */
3568 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3569 return;
3570
3571 if (sgs->sum_nr_running > sds->leader_nr_running ||
3572 (sgs->sum_nr_running == sds->leader_nr_running &&
3573 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3574 sds->group_leader = group;
3575 sds->leader_nr_running = sgs->sum_nr_running;
3576 }
3577 }
3578
3579 /**
3580 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3581 * @sds: Variable containing the statistics of the sched_domain
3582 * under consideration.
3583 * @this_cpu: Cpu at which we're currently performing load-balancing.
3584 * @imbalance: Variable to store the imbalance.
3585 *
3586 * Description:
3587 * Check if we have potential to perform some power-savings balance.
3588 * If yes, set the busiest group to be the least loaded group in the
3589 * sched_domain, so that it's CPUs can be put to idle.
3590 *
3591 * Returns 1 if there is potential to perform power-savings balance.
3592 * Else returns 0.
3593 */
3594 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3595 int this_cpu, unsigned long *imbalance)
3596 {
3597 if (!sds->power_savings_balance)
3598 return 0;
3599
3600 if (sds->this != sds->group_leader ||
3601 sds->group_leader == sds->group_min)
3602 return 0;
3603
3604 *imbalance = sds->min_load_per_task;
3605 sds->busiest = sds->group_min;
3606
3607 return 1;
3608
3609 }
3610 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3611 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3612 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3613 {
3614 return;
3615 }
3616
3617 static inline void update_sd_power_savings_stats(struct sched_group *group,
3618 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3619 {
3620 return;
3621 }
3622
3623 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3624 int this_cpu, unsigned long *imbalance)
3625 {
3626 return 0;
3627 }
3628 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3629
3630
3631 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3632 {
3633 return SCHED_POWER_SCALE;
3634 }
3635
3636 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3637 {
3638 return default_scale_freq_power(sd, cpu);
3639 }
3640
3641 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3642 {
3643 unsigned long weight = sd->span_weight;
3644 unsigned long smt_gain = sd->smt_gain;
3645
3646 smt_gain /= weight;
3647
3648 return smt_gain;
3649 }
3650
3651 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3652 {
3653 return default_scale_smt_power(sd, cpu);
3654 }
3655
3656 unsigned long scale_rt_power(int cpu)
3657 {
3658 struct rq *rq = cpu_rq(cpu);
3659 u64 total, available;
3660
3661 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3662
3663 if (unlikely(total < rq->rt_avg)) {
3664 /* Ensures that power won't end up being negative */
3665 available = 0;
3666 } else {
3667 available = total - rq->rt_avg;
3668 }
3669
3670 if (unlikely((s64)total < SCHED_POWER_SCALE))
3671 total = SCHED_POWER_SCALE;
3672
3673 total >>= SCHED_POWER_SHIFT;
3674
3675 return div_u64(available, total);
3676 }
3677
3678 static void update_cpu_power(struct sched_domain *sd, int cpu)
3679 {
3680 unsigned long weight = sd->span_weight;
3681 unsigned long power = SCHED_POWER_SCALE;
3682 struct sched_group *sdg = sd->groups;
3683
3684 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3685 if (sched_feat(ARCH_POWER))
3686 power *= arch_scale_smt_power(sd, cpu);
3687 else
3688 power *= default_scale_smt_power(sd, cpu);
3689
3690 power >>= SCHED_POWER_SHIFT;
3691 }
3692
3693 sdg->sgp->power_orig = power;
3694
3695 if (sched_feat(ARCH_POWER))
3696 power *= arch_scale_freq_power(sd, cpu);
3697 else
3698 power *= default_scale_freq_power(sd, cpu);
3699
3700 power >>= SCHED_POWER_SHIFT;
3701
3702 power *= scale_rt_power(cpu);
3703 power >>= SCHED_POWER_SHIFT;
3704
3705 if (!power)
3706 power = 1;
3707
3708 cpu_rq(cpu)->cpu_power = power;
3709 sdg->sgp->power = power;
3710 }
3711
3712 void update_group_power(struct sched_domain *sd, int cpu)
3713 {
3714 struct sched_domain *child = sd->child;
3715 struct sched_group *group, *sdg = sd->groups;
3716 unsigned long power;
3717 unsigned long interval;
3718
3719 interval = msecs_to_jiffies(sd->balance_interval);
3720 interval = clamp(interval, 1UL, max_load_balance_interval);
3721 sdg->sgp->next_update = jiffies + interval;
3722
3723 if (!child) {
3724 update_cpu_power(sd, cpu);
3725 return;
3726 }
3727
3728 power = 0;
3729
3730 group = child->groups;
3731 do {
3732 power += group->sgp->power;
3733 group = group->next;
3734 } while (group != child->groups);
3735
3736 sdg->sgp->power = power;
3737 }
3738
3739 /*
3740 * Try and fix up capacity for tiny siblings, this is needed when
3741 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3742 * which on its own isn't powerful enough.
3743 *
3744 * See update_sd_pick_busiest() and check_asym_packing().
3745 */
3746 static inline int
3747 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3748 {
3749 /*
3750 * Only siblings can have significantly less than SCHED_POWER_SCALE
3751 */
3752 if (!(sd->flags & SD_SHARE_CPUPOWER))
3753 return 0;
3754
3755 /*
3756 * If ~90% of the cpu_power is still there, we're good.
3757 */
3758 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3759 return 1;
3760
3761 return 0;
3762 }
3763
3764 /**
3765 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3766 * @sd: The sched_domain whose statistics are to be updated.
3767 * @group: sched_group whose statistics are to be updated.
3768 * @this_cpu: Cpu for which load balance is currently performed.
3769 * @idle: Idle status of this_cpu
3770 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3771 * @local_group: Does group contain this_cpu.
3772 * @cpus: Set of cpus considered for load balancing.
3773 * @balance: Should we balance.
3774 * @sgs: variable to hold the statistics for this group.
3775 */
3776 static inline void update_sg_lb_stats(struct sched_domain *sd,
3777 struct sched_group *group, int this_cpu,
3778 enum cpu_idle_type idle, int load_idx,
3779 int local_group, const struct cpumask *cpus,
3780 int *balance, struct sg_lb_stats *sgs)
3781 {
3782 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
3783 int i;
3784 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3785 unsigned long avg_load_per_task = 0;
3786
3787 if (local_group)
3788 balance_cpu = group_first_cpu(group);
3789
3790 /* Tally up the load of all CPUs in the group */
3791 max_cpu_load = 0;
3792 min_cpu_load = ~0UL;
3793 max_nr_running = 0;
3794
3795 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3796 struct rq *rq = cpu_rq(i);
3797
3798 /* Bias balancing toward cpus of our domain */
3799 if (local_group) {
3800 if (idle_cpu(i) && !first_idle_cpu) {
3801 first_idle_cpu = 1;
3802 balance_cpu = i;
3803 }
3804
3805 load = target_load(i, load_idx);
3806 } else {
3807 load = source_load(i, load_idx);
3808 if (load > max_cpu_load) {
3809 max_cpu_load = load;
3810 max_nr_running = rq->nr_running;
3811 }
3812 if (min_cpu_load > load)
3813 min_cpu_load = load;
3814 }
3815
3816 sgs->group_load += load;
3817 sgs->sum_nr_running += rq->nr_running;
3818 sgs->sum_weighted_load += weighted_cpuload(i);
3819 if (idle_cpu(i))
3820 sgs->idle_cpus++;
3821 }
3822
3823 /*
3824 * First idle cpu or the first cpu(busiest) in this sched group
3825 * is eligible for doing load balancing at this and above
3826 * domains. In the newly idle case, we will allow all the cpu's
3827 * to do the newly idle load balance.
3828 */
3829 if (local_group) {
3830 if (idle != CPU_NEWLY_IDLE) {
3831 if (balance_cpu != this_cpu) {
3832 *balance = 0;
3833 return;
3834 }
3835 update_group_power(sd, this_cpu);
3836 } else if (time_after_eq(jiffies, group->sgp->next_update))
3837 update_group_power(sd, this_cpu);
3838 }
3839
3840 /* Adjust by relative CPU power of the group */
3841 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3842
3843 /*
3844 * Consider the group unbalanced when the imbalance is larger
3845 * than the average weight of a task.
3846 *
3847 * APZ: with cgroup the avg task weight can vary wildly and
3848 * might not be a suitable number - should we keep a
3849 * normalized nr_running number somewhere that negates
3850 * the hierarchy?
3851 */
3852 if (sgs->sum_nr_running)
3853 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3854
3855 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
3856 sgs->group_imb = 1;
3857
3858 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3859 SCHED_POWER_SCALE);
3860 if (!sgs->group_capacity)
3861 sgs->group_capacity = fix_small_capacity(sd, group);
3862 sgs->group_weight = group->group_weight;
3863
3864 if (sgs->group_capacity > sgs->sum_nr_running)
3865 sgs->group_has_capacity = 1;
3866 }
3867
3868 /**
3869 * update_sd_pick_busiest - return 1 on busiest group
3870 * @sd: sched_domain whose statistics are to be checked
3871 * @sds: sched_domain statistics
3872 * @sg: sched_group candidate to be checked for being the busiest
3873 * @sgs: sched_group statistics
3874 * @this_cpu: the current cpu
3875 *
3876 * Determine if @sg is a busier group than the previously selected
3877 * busiest group.
3878 */
3879 static bool update_sd_pick_busiest(struct sched_domain *sd,
3880 struct sd_lb_stats *sds,
3881 struct sched_group *sg,
3882 struct sg_lb_stats *sgs,
3883 int this_cpu)
3884 {
3885 if (sgs->avg_load <= sds->max_load)
3886 return false;
3887
3888 if (sgs->sum_nr_running > sgs->group_capacity)
3889 return true;
3890
3891 if (sgs->group_imb)
3892 return true;
3893
3894 /*
3895 * ASYM_PACKING needs to move all the work to the lowest
3896 * numbered CPUs in the group, therefore mark all groups
3897 * higher than ourself as busy.
3898 */
3899 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3900 this_cpu < group_first_cpu(sg)) {
3901 if (!sds->busiest)
3902 return true;
3903
3904 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3905 return true;
3906 }
3907
3908 return false;
3909 }
3910
3911 /**
3912 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3913 * @sd: sched_domain whose statistics are to be updated.
3914 * @this_cpu: Cpu for which load balance is currently performed.
3915 * @idle: Idle status of this_cpu
3916 * @cpus: Set of cpus considered for load balancing.
3917 * @balance: Should we balance.
3918 * @sds: variable to hold the statistics for this sched_domain.
3919 */
3920 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3921 enum cpu_idle_type idle, const struct cpumask *cpus,
3922 int *balance, struct sd_lb_stats *sds)
3923 {
3924 struct sched_domain *child = sd->child;
3925 struct sched_group *sg = sd->groups;
3926 struct sg_lb_stats sgs;
3927 int load_idx, prefer_sibling = 0;
3928
3929 if (child && child->flags & SD_PREFER_SIBLING)
3930 prefer_sibling = 1;
3931
3932 init_sd_power_savings_stats(sd, sds, idle);
3933 load_idx = get_sd_load_idx(sd, idle);
3934
3935 do {
3936 int local_group;
3937
3938 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
3939 memset(&sgs, 0, sizeof(sgs));
3940 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
3941 local_group, cpus, balance, &sgs);
3942
3943 if (local_group && !(*balance))
3944 return;
3945
3946 sds->total_load += sgs.group_load;
3947 sds->total_pwr += sg->sgp->power;
3948
3949 /*
3950 * In case the child domain prefers tasks go to siblings
3951 * first, lower the sg capacity to one so that we'll try
3952 * and move all the excess tasks away. We lower the capacity
3953 * of a group only if the local group has the capacity to fit
3954 * these excess tasks, i.e. nr_running < group_capacity. The
3955 * extra check prevents the case where you always pull from the
3956 * heaviest group when it is already under-utilized (possible
3957 * with a large weight task outweighs the tasks on the system).
3958 */
3959 if (prefer_sibling && !local_group && sds->this_has_capacity)
3960 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3961
3962 if (local_group) {
3963 sds->this_load = sgs.avg_load;
3964 sds->this = sg;
3965 sds->this_nr_running = sgs.sum_nr_running;
3966 sds->this_load_per_task = sgs.sum_weighted_load;
3967 sds->this_has_capacity = sgs.group_has_capacity;
3968 sds->this_idle_cpus = sgs.idle_cpus;
3969 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
3970 sds->max_load = sgs.avg_load;
3971 sds->busiest = sg;
3972 sds->busiest_nr_running = sgs.sum_nr_running;
3973 sds->busiest_idle_cpus = sgs.idle_cpus;
3974 sds->busiest_group_capacity = sgs.group_capacity;
3975 sds->busiest_load_per_task = sgs.sum_weighted_load;
3976 sds->busiest_has_capacity = sgs.group_has_capacity;
3977 sds->busiest_group_weight = sgs.group_weight;
3978 sds->group_imb = sgs.group_imb;
3979 }
3980
3981 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3982 sg = sg->next;
3983 } while (sg != sd->groups);
3984 }
3985
3986 /**
3987 * check_asym_packing - Check to see if the group is packed into the
3988 * sched doman.
3989 *
3990 * This is primarily intended to used at the sibling level. Some
3991 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3992 * case of POWER7, it can move to lower SMT modes only when higher
3993 * threads are idle. When in lower SMT modes, the threads will
3994 * perform better since they share less core resources. Hence when we
3995 * have idle threads, we want them to be the higher ones.
3996 *
3997 * This packing function is run on idle threads. It checks to see if
3998 * the busiest CPU in this domain (core in the P7 case) has a higher
3999 * CPU number than the packing function is being run on. Here we are
4000 * assuming lower CPU number will be equivalent to lower a SMT thread
4001 * number.
4002 *
4003 * Returns 1 when packing is required and a task should be moved to
4004 * this CPU. The amount of the imbalance is returned in *imbalance.
4005 *
4006 * @sd: The sched_domain whose packing is to be checked.
4007 * @sds: Statistics of the sched_domain which is to be packed
4008 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4009 * @imbalance: returns amount of imbalanced due to packing.
4010 */
4011 static int check_asym_packing(struct sched_domain *sd,
4012 struct sd_lb_stats *sds,
4013 int this_cpu, unsigned long *imbalance)
4014 {
4015 int busiest_cpu;
4016
4017 if (!(sd->flags & SD_ASYM_PACKING))
4018 return 0;
4019
4020 if (!sds->busiest)
4021 return 0;
4022
4023 busiest_cpu = group_first_cpu(sds->busiest);
4024 if (this_cpu > busiest_cpu)
4025 return 0;
4026
4027 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
4028 SCHED_POWER_SCALE);
4029 return 1;
4030 }
4031
4032 /**
4033 * fix_small_imbalance - Calculate the minor imbalance that exists
4034 * amongst the groups of a sched_domain, during
4035 * load balancing.
4036 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4037 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4038 * @imbalance: Variable to store the imbalance.
4039 */
4040 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4041 int this_cpu, unsigned long *imbalance)
4042 {
4043 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4044 unsigned int imbn = 2;
4045 unsigned long scaled_busy_load_per_task;
4046
4047 if (sds->this_nr_running) {
4048 sds->this_load_per_task /= sds->this_nr_running;
4049 if (sds->busiest_load_per_task >
4050 sds->this_load_per_task)
4051 imbn = 1;
4052 } else
4053 sds->this_load_per_task =
4054 cpu_avg_load_per_task(this_cpu);
4055
4056 scaled_busy_load_per_task = sds->busiest_load_per_task
4057 * SCHED_POWER_SCALE;
4058 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4059
4060 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4061 (scaled_busy_load_per_task * imbn)) {
4062 *imbalance = sds->busiest_load_per_task;
4063 return;
4064 }
4065
4066 /*
4067 * OK, we don't have enough imbalance to justify moving tasks,
4068 * however we may be able to increase total CPU power used by
4069 * moving them.
4070 */
4071
4072 pwr_now += sds->busiest->sgp->power *
4073 min(sds->busiest_load_per_task, sds->max_load);
4074 pwr_now += sds->this->sgp->power *
4075 min(sds->this_load_per_task, sds->this_load);
4076 pwr_now /= SCHED_POWER_SCALE;
4077
4078 /* Amount of load we'd subtract */
4079 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4080 sds->busiest->sgp->power;
4081 if (sds->max_load > tmp)
4082 pwr_move += sds->busiest->sgp->power *
4083 min(sds->busiest_load_per_task, sds->max_load - tmp);
4084
4085 /* Amount of load we'd add */
4086 if (sds->max_load * sds->busiest->sgp->power <
4087 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4088 tmp = (sds->max_load * sds->busiest->sgp->power) /
4089 sds->this->sgp->power;
4090 else
4091 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4092 sds->this->sgp->power;
4093 pwr_move += sds->this->sgp->power *
4094 min(sds->this_load_per_task, sds->this_load + tmp);
4095 pwr_move /= SCHED_POWER_SCALE;
4096
4097 /* Move if we gain throughput */
4098 if (pwr_move > pwr_now)
4099 *imbalance = sds->busiest_load_per_task;
4100 }
4101
4102 /**
4103 * calculate_imbalance - Calculate the amount of imbalance present within the
4104 * groups of a given sched_domain during load balance.
4105 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4106 * @this_cpu: Cpu for which currently load balance is being performed.
4107 * @imbalance: The variable to store the imbalance.
4108 */
4109 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4110 unsigned long *imbalance)
4111 {
4112 unsigned long max_pull, load_above_capacity = ~0UL;
4113
4114 sds->busiest_load_per_task /= sds->busiest_nr_running;
4115 if (sds->group_imb) {
4116 sds->busiest_load_per_task =
4117 min(sds->busiest_load_per_task, sds->avg_load);
4118 }
4119
4120 /*
4121 * In the presence of smp nice balancing, certain scenarios can have
4122 * max load less than avg load(as we skip the groups at or below
4123 * its cpu_power, while calculating max_load..)
4124 */
4125 if (sds->max_load < sds->avg_load) {
4126 *imbalance = 0;
4127 return fix_small_imbalance(sds, this_cpu, imbalance);
4128 }
4129
4130 if (!sds->group_imb) {
4131 /*
4132 * Don't want to pull so many tasks that a group would go idle.
4133 */
4134 load_above_capacity = (sds->busiest_nr_running -
4135 sds->busiest_group_capacity);
4136
4137 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4138
4139 load_above_capacity /= sds->busiest->sgp->power;
4140 }
4141
4142 /*
4143 * We're trying to get all the cpus to the average_load, so we don't
4144 * want to push ourselves above the average load, nor do we wish to
4145 * reduce the max loaded cpu below the average load. At the same time,
4146 * we also don't want to reduce the group load below the group capacity
4147 * (so that we can implement power-savings policies etc). Thus we look
4148 * for the minimum possible imbalance.
4149 * Be careful of negative numbers as they'll appear as very large values
4150 * with unsigned longs.
4151 */
4152 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4153
4154 /* How much load to actually move to equalise the imbalance */
4155 *imbalance = min(max_pull * sds->busiest->sgp->power,
4156 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4157 / SCHED_POWER_SCALE;
4158
4159 /*
4160 * if *imbalance is less than the average load per runnable task
4161 * there is no guarantee that any tasks will be moved so we'll have
4162 * a think about bumping its value to force at least one task to be
4163 * moved
4164 */
4165 if (*imbalance < sds->busiest_load_per_task)
4166 return fix_small_imbalance(sds, this_cpu, imbalance);
4167
4168 }
4169
4170 /******* find_busiest_group() helpers end here *********************/
4171
4172 /**
4173 * find_busiest_group - Returns the busiest group within the sched_domain
4174 * if there is an imbalance. If there isn't an imbalance, and
4175 * the user has opted for power-savings, it returns a group whose
4176 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4177 * such a group exists.
4178 *
4179 * Also calculates the amount of weighted load which should be moved
4180 * to restore balance.
4181 *
4182 * @sd: The sched_domain whose busiest group is to be returned.
4183 * @this_cpu: The cpu for which load balancing is currently being performed.
4184 * @imbalance: Variable which stores amount of weighted load which should
4185 * be moved to restore balance/put a group to idle.
4186 * @idle: The idle status of this_cpu.
4187 * @cpus: The set of CPUs under consideration for load-balancing.
4188 * @balance: Pointer to a variable indicating if this_cpu
4189 * is the appropriate cpu to perform load balancing at this_level.
4190 *
4191 * Returns: - the busiest group if imbalance exists.
4192 * - If no imbalance and user has opted for power-savings balance,
4193 * return the least loaded group whose CPUs can be
4194 * put to idle by rebalancing its tasks onto our group.
4195 */
4196 static struct sched_group *
4197 find_busiest_group(struct sched_domain *sd, int this_cpu,
4198 unsigned long *imbalance, enum cpu_idle_type idle,
4199 const struct cpumask *cpus, int *balance)
4200 {
4201 struct sd_lb_stats sds;
4202
4203 memset(&sds, 0, sizeof(sds));
4204
4205 /*
4206 * Compute the various statistics relavent for load balancing at
4207 * this level.
4208 */
4209 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
4210
4211 /*
4212 * this_cpu is not the appropriate cpu to perform load balancing at
4213 * this level.
4214 */
4215 if (!(*balance))
4216 goto ret;
4217
4218 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
4219 check_asym_packing(sd, &sds, this_cpu, imbalance))
4220 return sds.busiest;
4221
4222 /* There is no busy sibling group to pull tasks from */
4223 if (!sds.busiest || sds.busiest_nr_running == 0)
4224 goto out_balanced;
4225
4226 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4227
4228 /*
4229 * If the busiest group is imbalanced the below checks don't
4230 * work because they assumes all things are equal, which typically
4231 * isn't true due to cpus_allowed constraints and the like.
4232 */
4233 if (sds.group_imb)
4234 goto force_balance;
4235
4236 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4237 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4238 !sds.busiest_has_capacity)
4239 goto force_balance;
4240
4241 /*
4242 * If the local group is more busy than the selected busiest group
4243 * don't try and pull any tasks.
4244 */
4245 if (sds.this_load >= sds.max_load)
4246 goto out_balanced;
4247
4248 /*
4249 * Don't pull any tasks if this group is already above the domain
4250 * average load.
4251 */
4252 if (sds.this_load >= sds.avg_load)
4253 goto out_balanced;
4254
4255 if (idle == CPU_IDLE) {
4256 /*
4257 * This cpu is idle. If the busiest group load doesn't
4258 * have more tasks than the number of available cpu's and
4259 * there is no imbalance between this and busiest group
4260 * wrt to idle cpu's, it is balanced.
4261 */
4262 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4263 sds.busiest_nr_running <= sds.busiest_group_weight)
4264 goto out_balanced;
4265 } else {
4266 /*
4267 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4268 * imbalance_pct to be conservative.
4269 */
4270 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4271 goto out_balanced;
4272 }
4273
4274 force_balance:
4275 /* Looks like there is an imbalance. Compute it */
4276 calculate_imbalance(&sds, this_cpu, imbalance);
4277 return sds.busiest;
4278
4279 out_balanced:
4280 /*
4281 * There is no obvious imbalance. But check if we can do some balancing
4282 * to save power.
4283 */
4284 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4285 return sds.busiest;
4286 ret:
4287 *imbalance = 0;
4288 return NULL;
4289 }
4290
4291 /*
4292 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4293 */
4294 static struct rq *
4295 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4296 enum cpu_idle_type idle, unsigned long imbalance,
4297 const struct cpumask *cpus)
4298 {
4299 struct rq *busiest = NULL, *rq;
4300 unsigned long max_load = 0;
4301 int i;
4302
4303 for_each_cpu(i, sched_group_cpus(group)) {
4304 unsigned long power = power_of(i);
4305 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4306 SCHED_POWER_SCALE);
4307 unsigned long wl;
4308
4309 if (!capacity)
4310 capacity = fix_small_capacity(sd, group);
4311
4312 if (!cpumask_test_cpu(i, cpus))
4313 continue;
4314
4315 rq = cpu_rq(i);
4316 wl = weighted_cpuload(i);
4317
4318 /*
4319 * When comparing with imbalance, use weighted_cpuload()
4320 * which is not scaled with the cpu power.
4321 */
4322 if (capacity && rq->nr_running == 1 && wl > imbalance)
4323 continue;
4324
4325 /*
4326 * For the load comparisons with the other cpu's, consider
4327 * the weighted_cpuload() scaled with the cpu power, so that
4328 * the load can be moved away from the cpu that is potentially
4329 * running at a lower capacity.
4330 */
4331 wl = (wl * SCHED_POWER_SCALE) / power;
4332
4333 if (wl > max_load) {
4334 max_load = wl;
4335 busiest = rq;
4336 }
4337 }
4338
4339 return busiest;
4340 }
4341
4342 /*
4343 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4344 * so long as it is large enough.
4345 */
4346 #define MAX_PINNED_INTERVAL 512
4347
4348 /* Working cpumask for load_balance and load_balance_newidle. */
4349 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4350
4351 static int need_active_balance(struct sched_domain *sd, int idle,
4352 int busiest_cpu, int this_cpu)
4353 {
4354 if (idle == CPU_NEWLY_IDLE) {
4355
4356 /*
4357 * ASYM_PACKING needs to force migrate tasks from busy but
4358 * higher numbered CPUs in order to pack all tasks in the
4359 * lowest numbered CPUs.
4360 */
4361 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4362 return 1;
4363
4364 /*
4365 * The only task running in a non-idle cpu can be moved to this
4366 * cpu in an attempt to completely freeup the other CPU
4367 * package.
4368 *
4369 * The package power saving logic comes from
4370 * find_busiest_group(). If there are no imbalance, then
4371 * f_b_g() will return NULL. However when sched_mc={1,2} then
4372 * f_b_g() will select a group from which a running task may be
4373 * pulled to this cpu in order to make the other package idle.
4374 * If there is no opportunity to make a package idle and if
4375 * there are no imbalance, then f_b_g() will return NULL and no
4376 * action will be taken in load_balance_newidle().
4377 *
4378 * Under normal task pull operation due to imbalance, there
4379 * will be more than one task in the source run queue and
4380 * move_tasks() will succeed. ld_moved will be true and this
4381 * active balance code will not be triggered.
4382 */
4383 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4384 return 0;
4385 }
4386
4387 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4388 }
4389
4390 static int active_load_balance_cpu_stop(void *data);
4391
4392 /*
4393 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4394 * tasks if there is an imbalance.
4395 */
4396 static int load_balance(int this_cpu, struct rq *this_rq,
4397 struct sched_domain *sd, enum cpu_idle_type idle,
4398 int *balance)
4399 {
4400 int ld_moved, active_balance = 0;
4401 struct sched_group *group;
4402 unsigned long imbalance;
4403 struct rq *busiest;
4404 unsigned long flags;
4405 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4406
4407 struct lb_env env = {
4408 .sd = sd,
4409 .dst_cpu = this_cpu,
4410 .dst_rq = this_rq,
4411 .idle = idle,
4412 .loop_break = sched_nr_migrate_break,
4413 };
4414
4415 cpumask_copy(cpus, cpu_active_mask);
4416
4417 schedstat_inc(sd, lb_count[idle]);
4418
4419 redo:
4420 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
4421 cpus, balance);
4422
4423 if (*balance == 0)
4424 goto out_balanced;
4425
4426 if (!group) {
4427 schedstat_inc(sd, lb_nobusyg[idle]);
4428 goto out_balanced;
4429 }
4430
4431 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
4432 if (!busiest) {
4433 schedstat_inc(sd, lb_nobusyq[idle]);
4434 goto out_balanced;
4435 }
4436
4437 BUG_ON(busiest == this_rq);
4438
4439 schedstat_add(sd, lb_imbalance[idle], imbalance);
4440
4441 ld_moved = 0;
4442 if (busiest->nr_running > 1) {
4443 /*
4444 * Attempt to move tasks. If find_busiest_group has found
4445 * an imbalance but busiest->nr_running <= 1, the group is
4446 * still unbalanced. ld_moved simply stays zero, so it is
4447 * correctly treated as an imbalance.
4448 */
4449 env.flags |= LBF_ALL_PINNED;
4450 env.load_move = imbalance;
4451 env.src_cpu = busiest->cpu;
4452 env.src_rq = busiest;
4453 env.loop_max = min_t(unsigned long, sysctl_sched_nr_migrate, busiest->nr_running);
4454
4455 more_balance:
4456 local_irq_save(flags);
4457 double_rq_lock(this_rq, busiest);
4458 if (!env.loop)
4459 update_h_load(env.src_cpu);
4460 ld_moved += move_tasks(&env);
4461 double_rq_unlock(this_rq, busiest);
4462 local_irq_restore(flags);
4463
4464 if (env.flags & LBF_NEED_BREAK) {
4465 env.flags &= ~LBF_NEED_BREAK;
4466 goto more_balance;
4467 }
4468
4469 /*
4470 * some other cpu did the load balance for us.
4471 */
4472 if (ld_moved && this_cpu != smp_processor_id())
4473 resched_cpu(this_cpu);
4474
4475 /* All tasks on this runqueue were pinned by CPU affinity */
4476 if (unlikely(env.flags & LBF_ALL_PINNED)) {
4477 cpumask_clear_cpu(cpu_of(busiest), cpus);
4478 if (!cpumask_empty(cpus))
4479 goto redo;
4480 goto out_balanced;
4481 }
4482 }
4483
4484 if (!ld_moved) {
4485 schedstat_inc(sd, lb_failed[idle]);
4486 /*
4487 * Increment the failure counter only on periodic balance.
4488 * We do not want newidle balance, which can be very
4489 * frequent, pollute the failure counter causing
4490 * excessive cache_hot migrations and active balances.
4491 */
4492 if (idle != CPU_NEWLY_IDLE)
4493 sd->nr_balance_failed++;
4494
4495 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
4496 raw_spin_lock_irqsave(&busiest->lock, flags);
4497
4498 /* don't kick the active_load_balance_cpu_stop,
4499 * if the curr task on busiest cpu can't be
4500 * moved to this_cpu
4501 */
4502 if (!cpumask_test_cpu(this_cpu,
4503 tsk_cpus_allowed(busiest->curr))) {
4504 raw_spin_unlock_irqrestore(&busiest->lock,
4505 flags);
4506 env.flags |= LBF_ALL_PINNED;
4507 goto out_one_pinned;
4508 }
4509
4510 /*
4511 * ->active_balance synchronizes accesses to
4512 * ->active_balance_work. Once set, it's cleared
4513 * only after active load balance is finished.
4514 */
4515 if (!busiest->active_balance) {
4516 busiest->active_balance = 1;
4517 busiest->push_cpu = this_cpu;
4518 active_balance = 1;
4519 }
4520 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4521
4522 if (active_balance)
4523 stop_one_cpu_nowait(cpu_of(busiest),
4524 active_load_balance_cpu_stop, busiest,
4525 &busiest->active_balance_work);
4526
4527 /*
4528 * We've kicked active balancing, reset the failure
4529 * counter.
4530 */
4531 sd->nr_balance_failed = sd->cache_nice_tries+1;
4532 }
4533 } else
4534 sd->nr_balance_failed = 0;
4535
4536 if (likely(!active_balance)) {
4537 /* We were unbalanced, so reset the balancing interval */
4538 sd->balance_interval = sd->min_interval;
4539 } else {
4540 /*
4541 * If we've begun active balancing, start to back off. This
4542 * case may not be covered by the all_pinned logic if there
4543 * is only 1 task on the busy runqueue (because we don't call
4544 * move_tasks).
4545 */
4546 if (sd->balance_interval < sd->max_interval)
4547 sd->balance_interval *= 2;
4548 }
4549
4550 goto out;
4551
4552 out_balanced:
4553 schedstat_inc(sd, lb_balanced[idle]);
4554
4555 sd->nr_balance_failed = 0;
4556
4557 out_one_pinned:
4558 /* tune up the balancing interval */
4559 if (((env.flags & LBF_ALL_PINNED) &&
4560 sd->balance_interval < MAX_PINNED_INTERVAL) ||
4561 (sd->balance_interval < sd->max_interval))
4562 sd->balance_interval *= 2;
4563
4564 ld_moved = 0;
4565 out:
4566 return ld_moved;
4567 }
4568
4569 /*
4570 * idle_balance is called by schedule() if this_cpu is about to become
4571 * idle. Attempts to pull tasks from other CPUs.
4572 */
4573 void idle_balance(int this_cpu, struct rq *this_rq)
4574 {
4575 struct sched_domain *sd;
4576 int pulled_task = 0;
4577 unsigned long next_balance = jiffies + HZ;
4578
4579 this_rq->idle_stamp = this_rq->clock;
4580
4581 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4582 return;
4583
4584 /*
4585 * Drop the rq->lock, but keep IRQ/preempt disabled.
4586 */
4587 raw_spin_unlock(&this_rq->lock);
4588
4589 update_shares(this_cpu);
4590 rcu_read_lock();
4591 for_each_domain(this_cpu, sd) {
4592 unsigned long interval;
4593 int balance = 1;
4594
4595 if (!(sd->flags & SD_LOAD_BALANCE))
4596 continue;
4597
4598 if (sd->flags & SD_BALANCE_NEWIDLE) {
4599 /* If we've pulled tasks over stop searching: */
4600 pulled_task = load_balance(this_cpu, this_rq,
4601 sd, CPU_NEWLY_IDLE, &balance);
4602 }
4603
4604 interval = msecs_to_jiffies(sd->balance_interval);
4605 if (time_after(next_balance, sd->last_balance + interval))
4606 next_balance = sd->last_balance + interval;
4607 if (pulled_task) {
4608 this_rq->idle_stamp = 0;
4609 break;
4610 }
4611 }
4612 rcu_read_unlock();
4613
4614 raw_spin_lock(&this_rq->lock);
4615
4616 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4617 /*
4618 * We are going idle. next_balance may be set based on
4619 * a busy processor. So reset next_balance.
4620 */
4621 this_rq->next_balance = next_balance;
4622 }
4623 }
4624
4625 /*
4626 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4627 * running tasks off the busiest CPU onto idle CPUs. It requires at
4628 * least 1 task to be running on each physical CPU where possible, and
4629 * avoids physical / logical imbalances.
4630 */
4631 static int active_load_balance_cpu_stop(void *data)
4632 {
4633 struct rq *busiest_rq = data;
4634 int busiest_cpu = cpu_of(busiest_rq);
4635 int target_cpu = busiest_rq->push_cpu;
4636 struct rq *target_rq = cpu_rq(target_cpu);
4637 struct sched_domain *sd;
4638
4639 raw_spin_lock_irq(&busiest_rq->lock);
4640
4641 /* make sure the requested cpu hasn't gone down in the meantime */
4642 if (unlikely(busiest_cpu != smp_processor_id() ||
4643 !busiest_rq->active_balance))
4644 goto out_unlock;
4645
4646 /* Is there any task to move? */
4647 if (busiest_rq->nr_running <= 1)
4648 goto out_unlock;
4649
4650 /*
4651 * This condition is "impossible", if it occurs
4652 * we need to fix it. Originally reported by
4653 * Bjorn Helgaas on a 128-cpu setup.
4654 */
4655 BUG_ON(busiest_rq == target_rq);
4656
4657 /* move a task from busiest_rq to target_rq */
4658 double_lock_balance(busiest_rq, target_rq);
4659
4660 /* Search for an sd spanning us and the target CPU. */
4661 rcu_read_lock();
4662 for_each_domain(target_cpu, sd) {
4663 if ((sd->flags & SD_LOAD_BALANCE) &&
4664 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4665 break;
4666 }
4667
4668 if (likely(sd)) {
4669 struct lb_env env = {
4670 .sd = sd,
4671 .dst_cpu = target_cpu,
4672 .dst_rq = target_rq,
4673 .src_cpu = busiest_rq->cpu,
4674 .src_rq = busiest_rq,
4675 .idle = CPU_IDLE,
4676 };
4677
4678 schedstat_inc(sd, alb_count);
4679
4680 if (move_one_task(&env))
4681 schedstat_inc(sd, alb_pushed);
4682 else
4683 schedstat_inc(sd, alb_failed);
4684 }
4685 rcu_read_unlock();
4686 double_unlock_balance(busiest_rq, target_rq);
4687 out_unlock:
4688 busiest_rq->active_balance = 0;
4689 raw_spin_unlock_irq(&busiest_rq->lock);
4690 return 0;
4691 }
4692
4693 #ifdef CONFIG_NO_HZ
4694 /*
4695 * idle load balancing details
4696 * - When one of the busy CPUs notice that there may be an idle rebalancing
4697 * needed, they will kick the idle load balancer, which then does idle
4698 * load balancing for all the idle CPUs.
4699 */
4700 static struct {
4701 cpumask_var_t idle_cpus_mask;
4702 atomic_t nr_cpus;
4703 unsigned long next_balance; /* in jiffy units */
4704 } nohz ____cacheline_aligned;
4705
4706 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4707 /**
4708 * lowest_flag_domain - Return lowest sched_domain containing flag.
4709 * @cpu: The cpu whose lowest level of sched domain is to
4710 * be returned.
4711 * @flag: The flag to check for the lowest sched_domain
4712 * for the given cpu.
4713 *
4714 * Returns the lowest sched_domain of a cpu which contains the given flag.
4715 */
4716 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4717 {
4718 struct sched_domain *sd;
4719
4720 for_each_domain(cpu, sd)
4721 if (sd->flags & flag)
4722 break;
4723
4724 return sd;
4725 }
4726
4727 /**
4728 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4729 * @cpu: The cpu whose domains we're iterating over.
4730 * @sd: variable holding the value of the power_savings_sd
4731 * for cpu.
4732 * @flag: The flag to filter the sched_domains to be iterated.
4733 *
4734 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4735 * set, starting from the lowest sched_domain to the highest.
4736 */
4737 #define for_each_flag_domain(cpu, sd, flag) \
4738 for (sd = lowest_flag_domain(cpu, flag); \
4739 (sd && (sd->flags & flag)); sd = sd->parent)
4740
4741 /**
4742 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4743 * @cpu: The cpu which is nominating a new idle_load_balancer.
4744 *
4745 * Returns: Returns the id of the idle load balancer if it exists,
4746 * Else, returns >= nr_cpu_ids.
4747 *
4748 * This algorithm picks the idle load balancer such that it belongs to a
4749 * semi-idle powersavings sched_domain. The idea is to try and avoid
4750 * completely idle packages/cores just for the purpose of idle load balancing
4751 * when there are other idle cpu's which are better suited for that job.
4752 */
4753 static int find_new_ilb(int cpu)
4754 {
4755 int ilb = cpumask_first(nohz.idle_cpus_mask);
4756 struct sched_group *ilbg;
4757 struct sched_domain *sd;
4758
4759 /*
4760 * Have idle load balancer selection from semi-idle packages only
4761 * when power-aware load balancing is enabled
4762 */
4763 if (!(sched_smt_power_savings || sched_mc_power_savings))
4764 goto out_done;
4765
4766 /*
4767 * Optimize for the case when we have no idle CPUs or only one
4768 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4769 */
4770 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
4771 goto out_done;
4772
4773 rcu_read_lock();
4774 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4775 ilbg = sd->groups;
4776
4777 do {
4778 if (ilbg->group_weight !=
4779 atomic_read(&ilbg->sgp->nr_busy_cpus)) {
4780 ilb = cpumask_first_and(nohz.idle_cpus_mask,
4781 sched_group_cpus(ilbg));
4782 goto unlock;
4783 }
4784
4785 ilbg = ilbg->next;
4786
4787 } while (ilbg != sd->groups);
4788 }
4789 unlock:
4790 rcu_read_unlock();
4791
4792 out_done:
4793 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4794 return ilb;
4795
4796 return nr_cpu_ids;
4797 }
4798 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4799 static inline int find_new_ilb(int call_cpu)
4800 {
4801 return nr_cpu_ids;
4802 }
4803 #endif
4804
4805 /*
4806 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4807 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4808 * CPU (if there is one).
4809 */
4810 static void nohz_balancer_kick(int cpu)
4811 {
4812 int ilb_cpu;
4813
4814 nohz.next_balance++;
4815
4816 ilb_cpu = find_new_ilb(cpu);
4817
4818 if (ilb_cpu >= nr_cpu_ids)
4819 return;
4820
4821 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4822 return;
4823 /*
4824 * Use smp_send_reschedule() instead of resched_cpu().
4825 * This way we generate a sched IPI on the target cpu which
4826 * is idle. And the softirq performing nohz idle load balance
4827 * will be run before returning from the IPI.
4828 */
4829 smp_send_reschedule(ilb_cpu);
4830 return;
4831 }
4832
4833 static inline void clear_nohz_tick_stopped(int cpu)
4834 {
4835 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4836 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4837 atomic_dec(&nohz.nr_cpus);
4838 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4839 }
4840 }
4841
4842 static inline void set_cpu_sd_state_busy(void)
4843 {
4844 struct sched_domain *sd;
4845 int cpu = smp_processor_id();
4846
4847 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4848 return;
4849 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4850
4851 rcu_read_lock();
4852 for_each_domain(cpu, sd)
4853 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4854 rcu_read_unlock();
4855 }
4856
4857 void set_cpu_sd_state_idle(void)
4858 {
4859 struct sched_domain *sd;
4860 int cpu = smp_processor_id();
4861
4862 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4863 return;
4864 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4865
4866 rcu_read_lock();
4867 for_each_domain(cpu, sd)
4868 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4869 rcu_read_unlock();
4870 }
4871
4872 /*
4873 * This routine will record that this cpu is going idle with tick stopped.
4874 * This info will be used in performing idle load balancing in the future.
4875 */
4876 void select_nohz_load_balancer(int stop_tick)
4877 {
4878 int cpu = smp_processor_id();
4879
4880 /*
4881 * If this cpu is going down, then nothing needs to be done.
4882 */
4883 if (!cpu_active(cpu))
4884 return;
4885
4886 if (stop_tick) {
4887 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4888 return;
4889
4890 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4891 atomic_inc(&nohz.nr_cpus);
4892 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4893 }
4894 return;
4895 }
4896
4897 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4898 unsigned long action, void *hcpu)
4899 {
4900 switch (action & ~CPU_TASKS_FROZEN) {
4901 case CPU_DYING:
4902 clear_nohz_tick_stopped(smp_processor_id());
4903 return NOTIFY_OK;
4904 default:
4905 return NOTIFY_DONE;
4906 }
4907 }
4908 #endif
4909
4910 static DEFINE_SPINLOCK(balancing);
4911
4912 /*
4913 * Scale the max load_balance interval with the number of CPUs in the system.
4914 * This trades load-balance latency on larger machines for less cross talk.
4915 */
4916 void update_max_interval(void)
4917 {
4918 max_load_balance_interval = HZ*num_online_cpus()/10;
4919 }
4920
4921 /*
4922 * It checks each scheduling domain to see if it is due to be balanced,
4923 * and initiates a balancing operation if so.
4924 *
4925 * Balancing parameters are set up in arch_init_sched_domains.
4926 */
4927 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4928 {
4929 int balance = 1;
4930 struct rq *rq = cpu_rq(cpu);
4931 unsigned long interval;
4932 struct sched_domain *sd;
4933 /* Earliest time when we have to do rebalance again */
4934 unsigned long next_balance = jiffies + 60*HZ;
4935 int update_next_balance = 0;
4936 int need_serialize;
4937
4938 update_shares(cpu);
4939
4940 rcu_read_lock();
4941 for_each_domain(cpu, sd) {
4942 if (!(sd->flags & SD_LOAD_BALANCE))
4943 continue;
4944
4945 interval = sd->balance_interval;
4946 if (idle != CPU_IDLE)
4947 interval *= sd->busy_factor;
4948
4949 /* scale ms to jiffies */
4950 interval = msecs_to_jiffies(interval);
4951 interval = clamp(interval, 1UL, max_load_balance_interval);
4952
4953 need_serialize = sd->flags & SD_SERIALIZE;
4954
4955 if (need_serialize) {
4956 if (!spin_trylock(&balancing))
4957 goto out;
4958 }
4959
4960 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4961 if (load_balance(cpu, rq, sd, idle, &balance)) {
4962 /*
4963 * We've pulled tasks over so either we're no
4964 * longer idle.
4965 */
4966 idle = CPU_NOT_IDLE;
4967 }
4968 sd->last_balance = jiffies;
4969 }
4970 if (need_serialize)
4971 spin_unlock(&balancing);
4972 out:
4973 if (time_after(next_balance, sd->last_balance + interval)) {
4974 next_balance = sd->last_balance + interval;
4975 update_next_balance = 1;
4976 }
4977
4978 /*
4979 * Stop the load balance at this level. There is another
4980 * CPU in our sched group which is doing load balancing more
4981 * actively.
4982 */
4983 if (!balance)
4984 break;
4985 }
4986 rcu_read_unlock();
4987
4988 /*
4989 * next_balance will be updated only when there is a need.
4990 * When the cpu is attached to null domain for ex, it will not be
4991 * updated.
4992 */
4993 if (likely(update_next_balance))
4994 rq->next_balance = next_balance;
4995 }
4996
4997 #ifdef CONFIG_NO_HZ
4998 /*
4999 * In CONFIG_NO_HZ case, the idle balance kickee will do the
5000 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5001 */
5002 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5003 {
5004 struct rq *this_rq = cpu_rq(this_cpu);
5005 struct rq *rq;
5006 int balance_cpu;
5007
5008 if (idle != CPU_IDLE ||
5009 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5010 goto end;
5011
5012 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5013 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5014 continue;
5015
5016 /*
5017 * If this cpu gets work to do, stop the load balancing
5018 * work being done for other cpus. Next load
5019 * balancing owner will pick it up.
5020 */
5021 if (need_resched())
5022 break;
5023
5024 raw_spin_lock_irq(&this_rq->lock);
5025 update_rq_clock(this_rq);
5026 update_cpu_load(this_rq);
5027 raw_spin_unlock_irq(&this_rq->lock);
5028
5029 rebalance_domains(balance_cpu, CPU_IDLE);
5030
5031 rq = cpu_rq(balance_cpu);
5032 if (time_after(this_rq->next_balance, rq->next_balance))
5033 this_rq->next_balance = rq->next_balance;
5034 }
5035 nohz.next_balance = this_rq->next_balance;
5036 end:
5037 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5038 }
5039
5040 /*
5041 * Current heuristic for kicking the idle load balancer in the presence
5042 * of an idle cpu is the system.
5043 * - This rq has more than one task.
5044 * - At any scheduler domain level, this cpu's scheduler group has multiple
5045 * busy cpu's exceeding the group's power.
5046 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5047 * domain span are idle.
5048 */
5049 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5050 {
5051 unsigned long now = jiffies;
5052 struct sched_domain *sd;
5053
5054 if (unlikely(idle_cpu(cpu)))
5055 return 0;
5056
5057 /*
5058 * We may be recently in ticked or tickless idle mode. At the first
5059 * busy tick after returning from idle, we will update the busy stats.
5060 */
5061 set_cpu_sd_state_busy();
5062 clear_nohz_tick_stopped(cpu);
5063
5064 /*
5065 * None are in tickless mode and hence no need for NOHZ idle load
5066 * balancing.
5067 */
5068 if (likely(!atomic_read(&nohz.nr_cpus)))
5069 return 0;
5070
5071 if (time_before(now, nohz.next_balance))
5072 return 0;
5073
5074 if (rq->nr_running >= 2)
5075 goto need_kick;
5076
5077 rcu_read_lock();
5078 for_each_domain(cpu, sd) {
5079 struct sched_group *sg = sd->groups;
5080 struct sched_group_power *sgp = sg->sgp;
5081 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5082
5083 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5084 goto need_kick_unlock;
5085
5086 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5087 && (cpumask_first_and(nohz.idle_cpus_mask,
5088 sched_domain_span(sd)) < cpu))
5089 goto need_kick_unlock;
5090
5091 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5092 break;
5093 }
5094 rcu_read_unlock();
5095 return 0;
5096
5097 need_kick_unlock:
5098 rcu_read_unlock();
5099 need_kick:
5100 return 1;
5101 }
5102 #else
5103 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5104 #endif
5105
5106 /*
5107 * run_rebalance_domains is triggered when needed from the scheduler tick.
5108 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5109 */
5110 static void run_rebalance_domains(struct softirq_action *h)
5111 {
5112 int this_cpu = smp_processor_id();
5113 struct rq *this_rq = cpu_rq(this_cpu);
5114 enum cpu_idle_type idle = this_rq->idle_balance ?
5115 CPU_IDLE : CPU_NOT_IDLE;
5116
5117 rebalance_domains(this_cpu, idle);
5118
5119 /*
5120 * If this cpu has a pending nohz_balance_kick, then do the
5121 * balancing on behalf of the other idle cpus whose ticks are
5122 * stopped.
5123 */
5124 nohz_idle_balance(this_cpu, idle);
5125 }
5126
5127 static inline int on_null_domain(int cpu)
5128 {
5129 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5130 }
5131
5132 /*
5133 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5134 */
5135 void trigger_load_balance(struct rq *rq, int cpu)
5136 {
5137 /* Don't need to rebalance while attached to NULL domain */
5138 if (time_after_eq(jiffies, rq->next_balance) &&
5139 likely(!on_null_domain(cpu)))
5140 raise_softirq(SCHED_SOFTIRQ);
5141 #ifdef CONFIG_NO_HZ
5142 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5143 nohz_balancer_kick(cpu);
5144 #endif
5145 }
5146
5147 static void rq_online_fair(struct rq *rq)
5148 {
5149 update_sysctl();
5150 }
5151
5152 static void rq_offline_fair(struct rq *rq)
5153 {
5154 update_sysctl();
5155 }
5156
5157 #endif /* CONFIG_SMP */
5158
5159 /*
5160 * scheduler tick hitting a task of our scheduling class:
5161 */
5162 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5163 {
5164 struct cfs_rq *cfs_rq;
5165 struct sched_entity *se = &curr->se;
5166
5167 for_each_sched_entity(se) {
5168 cfs_rq = cfs_rq_of(se);
5169 entity_tick(cfs_rq, se, queued);
5170 }
5171 }
5172
5173 /*
5174 * called on fork with the child task as argument from the parent's context
5175 * - child not yet on the tasklist
5176 * - preemption disabled
5177 */
5178 static void task_fork_fair(struct task_struct *p)
5179 {
5180 struct cfs_rq *cfs_rq;
5181 struct sched_entity *se = &p->se, *curr;
5182 int this_cpu = smp_processor_id();
5183 struct rq *rq = this_rq();
5184 unsigned long flags;
5185
5186 raw_spin_lock_irqsave(&rq->lock, flags);
5187
5188 update_rq_clock(rq);
5189
5190 cfs_rq = task_cfs_rq(current);
5191 curr = cfs_rq->curr;
5192
5193 if (unlikely(task_cpu(p) != this_cpu)) {
5194 rcu_read_lock();
5195 __set_task_cpu(p, this_cpu);
5196 rcu_read_unlock();
5197 }
5198
5199 update_curr(cfs_rq);
5200
5201 if (curr)
5202 se->vruntime = curr->vruntime;
5203 place_entity(cfs_rq, se, 1);
5204
5205 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5206 /*
5207 * Upon rescheduling, sched_class::put_prev_task() will place
5208 * 'current' within the tree based on its new key value.
5209 */
5210 swap(curr->vruntime, se->vruntime);
5211 resched_task(rq->curr);
5212 }
5213
5214 se->vruntime -= cfs_rq->min_vruntime;
5215
5216 raw_spin_unlock_irqrestore(&rq->lock, flags);
5217 }
5218
5219 /*
5220 * Priority of the task has changed. Check to see if we preempt
5221 * the current task.
5222 */
5223 static void
5224 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5225 {
5226 if (!p->se.on_rq)
5227 return;
5228
5229 /*
5230 * Reschedule if we are currently running on this runqueue and
5231 * our priority decreased, or if we are not currently running on
5232 * this runqueue and our priority is higher than the current's
5233 */
5234 if (rq->curr == p) {
5235 if (p->prio > oldprio)
5236 resched_task(rq->curr);
5237 } else
5238 check_preempt_curr(rq, p, 0);
5239 }
5240
5241 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5242 {
5243 struct sched_entity *se = &p->se;
5244 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5245
5246 /*
5247 * Ensure the task's vruntime is normalized, so that when its
5248 * switched back to the fair class the enqueue_entity(.flags=0) will
5249 * do the right thing.
5250 *
5251 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5252 * have normalized the vruntime, if it was !on_rq, then only when
5253 * the task is sleeping will it still have non-normalized vruntime.
5254 */
5255 if (!se->on_rq && p->state != TASK_RUNNING) {
5256 /*
5257 * Fix up our vruntime so that the current sleep doesn't
5258 * cause 'unlimited' sleep bonus.
5259 */
5260 place_entity(cfs_rq, se, 0);
5261 se->vruntime -= cfs_rq->min_vruntime;
5262 }
5263 }
5264
5265 /*
5266 * We switched to the sched_fair class.
5267 */
5268 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5269 {
5270 if (!p->se.on_rq)
5271 return;
5272
5273 /*
5274 * We were most likely switched from sched_rt, so
5275 * kick off the schedule if running, otherwise just see
5276 * if we can still preempt the current task.
5277 */
5278 if (rq->curr == p)
5279 resched_task(rq->curr);
5280 else
5281 check_preempt_curr(rq, p, 0);
5282 }
5283
5284 /* Account for a task changing its policy or group.
5285 *
5286 * This routine is mostly called to set cfs_rq->curr field when a task
5287 * migrates between groups/classes.
5288 */
5289 static void set_curr_task_fair(struct rq *rq)
5290 {
5291 struct sched_entity *se = &rq->curr->se;
5292
5293 for_each_sched_entity(se) {
5294 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5295
5296 set_next_entity(cfs_rq, se);
5297 /* ensure bandwidth has been allocated on our new cfs_rq */
5298 account_cfs_rq_runtime(cfs_rq, 0);
5299 }
5300 }
5301
5302 void init_cfs_rq(struct cfs_rq *cfs_rq)
5303 {
5304 cfs_rq->tasks_timeline = RB_ROOT;
5305 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5306 #ifndef CONFIG_64BIT
5307 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5308 #endif
5309 }
5310
5311 #ifdef CONFIG_FAIR_GROUP_SCHED
5312 static void task_move_group_fair(struct task_struct *p, int on_rq)
5313 {
5314 /*
5315 * If the task was not on the rq at the time of this cgroup movement
5316 * it must have been asleep, sleeping tasks keep their ->vruntime
5317 * absolute on their old rq until wakeup (needed for the fair sleeper
5318 * bonus in place_entity()).
5319 *
5320 * If it was on the rq, we've just 'preempted' it, which does convert
5321 * ->vruntime to a relative base.
5322 *
5323 * Make sure both cases convert their relative position when migrating
5324 * to another cgroup's rq. This does somewhat interfere with the
5325 * fair sleeper stuff for the first placement, but who cares.
5326 */
5327 /*
5328 * When !on_rq, vruntime of the task has usually NOT been normalized.
5329 * But there are some cases where it has already been normalized:
5330 *
5331 * - Moving a forked child which is waiting for being woken up by
5332 * wake_up_new_task().
5333 * - Moving a task which has been woken up by try_to_wake_up() and
5334 * waiting for actually being woken up by sched_ttwu_pending().
5335 *
5336 * To prevent boost or penalty in the new cfs_rq caused by delta
5337 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5338 */
5339 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5340 on_rq = 1;
5341
5342 if (!on_rq)
5343 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5344 set_task_rq(p, task_cpu(p));
5345 if (!on_rq)
5346 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5347 }
5348
5349 void free_fair_sched_group(struct task_group *tg)
5350 {
5351 int i;
5352
5353 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5354
5355 for_each_possible_cpu(i) {
5356 if (tg->cfs_rq)
5357 kfree(tg->cfs_rq[i]);
5358 if (tg->se)
5359 kfree(tg->se[i]);
5360 }
5361
5362 kfree(tg->cfs_rq);
5363 kfree(tg->se);
5364 }
5365
5366 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5367 {
5368 struct cfs_rq *cfs_rq;
5369 struct sched_entity *se;
5370 int i;
5371
5372 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5373 if (!tg->cfs_rq)
5374 goto err;
5375 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5376 if (!tg->se)
5377 goto err;
5378
5379 tg->shares = NICE_0_LOAD;
5380
5381 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5382
5383 for_each_possible_cpu(i) {
5384 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5385 GFP_KERNEL, cpu_to_node(i));
5386 if (!cfs_rq)
5387 goto err;
5388
5389 se = kzalloc_node(sizeof(struct sched_entity),
5390 GFP_KERNEL, cpu_to_node(i));
5391 if (!se)
5392 goto err_free_rq;
5393
5394 init_cfs_rq(cfs_rq);
5395 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5396 }
5397
5398 return 1;
5399
5400 err_free_rq:
5401 kfree(cfs_rq);
5402 err:
5403 return 0;
5404 }
5405
5406 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5407 {
5408 struct rq *rq = cpu_rq(cpu);
5409 unsigned long flags;
5410
5411 /*
5412 * Only empty task groups can be destroyed; so we can speculatively
5413 * check on_list without danger of it being re-added.
5414 */
5415 if (!tg->cfs_rq[cpu]->on_list)
5416 return;
5417
5418 raw_spin_lock_irqsave(&rq->lock, flags);
5419 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5420 raw_spin_unlock_irqrestore(&rq->lock, flags);
5421 }
5422
5423 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5424 struct sched_entity *se, int cpu,
5425 struct sched_entity *parent)
5426 {
5427 struct rq *rq = cpu_rq(cpu);
5428
5429 cfs_rq->tg = tg;
5430 cfs_rq->rq = rq;
5431 #ifdef CONFIG_SMP
5432 /* allow initial update_cfs_load() to truncate */
5433 cfs_rq->load_stamp = 1;
5434 #endif
5435 init_cfs_rq_runtime(cfs_rq);
5436
5437 tg->cfs_rq[cpu] = cfs_rq;
5438 tg->se[cpu] = se;
5439
5440 /* se could be NULL for root_task_group */
5441 if (!se)
5442 return;
5443
5444 if (!parent)
5445 se->cfs_rq = &rq->cfs;
5446 else
5447 se->cfs_rq = parent->my_q;
5448
5449 se->my_q = cfs_rq;
5450 update_load_set(&se->load, 0);
5451 se->parent = parent;
5452 }
5453
5454 static DEFINE_MUTEX(shares_mutex);
5455
5456 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5457 {
5458 int i;
5459 unsigned long flags;
5460
5461 /*
5462 * We can't change the weight of the root cgroup.
5463 */
5464 if (!tg->se[0])
5465 return -EINVAL;
5466
5467 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5468
5469 mutex_lock(&shares_mutex);
5470 if (tg->shares == shares)
5471 goto done;
5472
5473 tg->shares = shares;
5474 for_each_possible_cpu(i) {
5475 struct rq *rq = cpu_rq(i);
5476 struct sched_entity *se;
5477
5478 se = tg->se[i];
5479 /* Propagate contribution to hierarchy */
5480 raw_spin_lock_irqsave(&rq->lock, flags);
5481 for_each_sched_entity(se)
5482 update_cfs_shares(group_cfs_rq(se));
5483 raw_spin_unlock_irqrestore(&rq->lock, flags);
5484 }
5485
5486 done:
5487 mutex_unlock(&shares_mutex);
5488 return 0;
5489 }
5490 #else /* CONFIG_FAIR_GROUP_SCHED */
5491
5492 void free_fair_sched_group(struct task_group *tg) { }
5493
5494 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5495 {
5496 return 1;
5497 }
5498
5499 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5500
5501 #endif /* CONFIG_FAIR_GROUP_SCHED */
5502
5503
5504 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5505 {
5506 struct sched_entity *se = &task->se;
5507 unsigned int rr_interval = 0;
5508
5509 /*
5510 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5511 * idle runqueue:
5512 */
5513 if (rq->cfs.load.weight)
5514 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5515
5516 return rr_interval;
5517 }
5518
5519 /*
5520 * All the scheduling class methods:
5521 */
5522 const struct sched_class fair_sched_class = {
5523 .next = &idle_sched_class,
5524 .enqueue_task = enqueue_task_fair,
5525 .dequeue_task = dequeue_task_fair,
5526 .yield_task = yield_task_fair,
5527 .yield_to_task = yield_to_task_fair,
5528
5529 .check_preempt_curr = check_preempt_wakeup,
5530
5531 .pick_next_task = pick_next_task_fair,
5532 .put_prev_task = put_prev_task_fair,
5533
5534 #ifdef CONFIG_SMP
5535 .select_task_rq = select_task_rq_fair,
5536
5537 .rq_online = rq_online_fair,
5538 .rq_offline = rq_offline_fair,
5539
5540 .task_waking = task_waking_fair,
5541 #endif
5542
5543 .set_curr_task = set_curr_task_fair,
5544 .task_tick = task_tick_fair,
5545 .task_fork = task_fork_fair,
5546
5547 .prio_changed = prio_changed_fair,
5548 .switched_from = switched_from_fair,
5549 .switched_to = switched_to_fair,
5550
5551 .get_rr_interval = get_rr_interval_fair,
5552
5553 #ifdef CONFIG_FAIR_GROUP_SCHED
5554 .task_move_group = task_move_group_fair,
5555 #endif
5556 };
5557
5558 #ifdef CONFIG_SCHED_DEBUG
5559 void print_cfs_stats(struct seq_file *m, int cpu)
5560 {
5561 struct cfs_rq *cfs_rq;
5562
5563 rcu_read_lock();
5564 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5565 print_cfs_rq(m, cpu, cfs_rq);
5566 rcu_read_unlock();
5567 }
5568 #endif
5569
5570 __init void init_sched_fair_class(void)
5571 {
5572 #ifdef CONFIG_SMP
5573 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5574
5575 #ifdef CONFIG_NO_HZ
5576 nohz.next_balance = jiffies;
5577 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5578 cpu_notifier(sched_ilb_notifier, 0);
5579 #endif
5580 #endif /* SMP */
5581
5582 }