]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/fair.c
sched/numa, mm: Use active_nodes nodemask to limit numa migrations
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32
183
184 static void __update_inv_weight(struct load_weight *lw)
185 {
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199 }
200
201 /*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214 {
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
217
218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
225 }
226
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
229
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
236 }
237
238
239 const struct sched_class fair_sched_class;
240
241 /**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249 {
250 return cfs_rq->rq;
251 }
252
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q)
255
256 static inline struct task_struct *task_of(struct sched_entity *se)
257 {
258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260 #endif
261 return container_of(se, struct task_struct, se);
262 }
263
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 return p->se.cfs_rq;
271 }
272
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 return se->cfs_rq;
277 }
278
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 return grp->my_q;
283 }
284
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
287
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 if (!cfs_rq->on_list) {
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
305
306 cfs_rq->on_list = 1;
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
309 }
310 }
311
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318 }
319
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline int
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 if (se->cfs_rq == pse->cfs_rq)
329 return 1;
330
331 return 0;
332 }
333
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 return se->parent;
337 }
338
339 /* return depth at which a sched entity is present in the hierarchy */
340 static inline int depth_se(struct sched_entity *se)
341 {
342 int depth = 0;
343
344 for_each_sched_entity(se)
345 depth++;
346
347 return depth;
348 }
349
350 static void
351 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352 {
353 int se_depth, pse_depth;
354
355 /*
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
359 * parent.
360 */
361
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
365
366 while (se_depth > pse_depth) {
367 se_depth--;
368 *se = parent_entity(*se);
369 }
370
371 while (pse_depth > se_depth) {
372 pse_depth--;
373 *pse = parent_entity(*pse);
374 }
375
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
379 }
380 }
381
382 #else /* !CONFIG_FAIR_GROUP_SCHED */
383
384 static inline struct task_struct *task_of(struct sched_entity *se)
385 {
386 return container_of(se, struct task_struct, se);
387 }
388
389 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390 {
391 return container_of(cfs_rq, struct rq, cfs);
392 }
393
394 #define entity_is_task(se) 1
395
396 #define for_each_sched_entity(se) \
397 for (; se; se = NULL)
398
399 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
400 {
401 return &task_rq(p)->cfs;
402 }
403
404 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405 {
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
408
409 return &rq->cfs;
410 }
411
412 /* runqueue "owned" by this group */
413 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414 {
415 return NULL;
416 }
417
418 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419 {
420 }
421
422 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423 {
424 }
425
426 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428
429 static inline int
430 is_same_group(struct sched_entity *se, struct sched_entity *pse)
431 {
432 return 1;
433 }
434
435 static inline struct sched_entity *parent_entity(struct sched_entity *se)
436 {
437 return NULL;
438 }
439
440 static inline void
441 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442 {
443 }
444
445 #endif /* CONFIG_FAIR_GROUP_SCHED */
446
447 static __always_inline
448 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
449
450 /**************************************************************
451 * Scheduling class tree data structure manipulation methods:
452 */
453
454 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
455 {
456 s64 delta = (s64)(vruntime - max_vruntime);
457 if (delta > 0)
458 max_vruntime = vruntime;
459
460 return max_vruntime;
461 }
462
463 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
464 {
465 s64 delta = (s64)(vruntime - min_vruntime);
466 if (delta < 0)
467 min_vruntime = vruntime;
468
469 return min_vruntime;
470 }
471
472 static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
474 {
475 return (s64)(a->vruntime - b->vruntime) < 0;
476 }
477
478 static void update_min_vruntime(struct cfs_rq *cfs_rq)
479 {
480 u64 vruntime = cfs_rq->min_vruntime;
481
482 if (cfs_rq->curr)
483 vruntime = cfs_rq->curr->vruntime;
484
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 struct sched_entity,
488 run_node);
489
490 if (!cfs_rq->curr)
491 vruntime = se->vruntime;
492 else
493 vruntime = min_vruntime(vruntime, se->vruntime);
494 }
495
496 /* ensure we never gain time by being placed backwards. */
497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
498 #ifndef CONFIG_64BIT
499 smp_wmb();
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501 #endif
502 }
503
504 /*
505 * Enqueue an entity into the rb-tree:
506 */
507 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
508 {
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
512 int leftmost = 1;
513
514 /*
515 * Find the right place in the rbtree:
516 */
517 while (*link) {
518 parent = *link;
519 entry = rb_entry(parent, struct sched_entity, run_node);
520 /*
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
523 */
524 if (entity_before(se, entry)) {
525 link = &parent->rb_left;
526 } else {
527 link = &parent->rb_right;
528 leftmost = 0;
529 }
530 }
531
532 /*
533 * Maintain a cache of leftmost tree entries (it is frequently
534 * used):
535 */
536 if (leftmost)
537 cfs_rq->rb_leftmost = &se->run_node;
538
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
541 }
542
543 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
544 {
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
547
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
550 }
551
552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
553 }
554
555 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *left = cfs_rq->rb_leftmost;
558
559 if (!left)
560 return NULL;
561
562 return rb_entry(left, struct sched_entity, run_node);
563 }
564
565 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566 {
567 struct rb_node *next = rb_next(&se->run_node);
568
569 if (!next)
570 return NULL;
571
572 return rb_entry(next, struct sched_entity, run_node);
573 }
574
575 #ifdef CONFIG_SCHED_DEBUG
576 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
577 {
578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
579
580 if (!last)
581 return NULL;
582
583 return rb_entry(last, struct sched_entity, run_node);
584 }
585
586 /**************************************************************
587 * Scheduling class statistics methods:
588 */
589
590 int sched_proc_update_handler(struct ctl_table *table, int write,
591 void __user *buffer, size_t *lenp,
592 loff_t *ppos)
593 {
594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
595 int factor = get_update_sysctl_factor();
596
597 if (ret || !write)
598 return ret;
599
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
602
603 #define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
608 #undef WRT_SYSCTL
609
610 return 0;
611 }
612 #endif
613
614 /*
615 * delta /= w
616 */
617 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
618 {
619 if (unlikely(se->load.weight != NICE_0_LOAD))
620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
621
622 return delta;
623 }
624
625 /*
626 * The idea is to set a period in which each task runs once.
627 *
628 * When there are too many tasks (sched_nr_latency) we have to stretch
629 * this period because otherwise the slices get too small.
630 *
631 * p = (nr <= nl) ? l : l*nr/nl
632 */
633 static u64 __sched_period(unsigned long nr_running)
634 {
635 u64 period = sysctl_sched_latency;
636 unsigned long nr_latency = sched_nr_latency;
637
638 if (unlikely(nr_running > nr_latency)) {
639 period = sysctl_sched_min_granularity;
640 period *= nr_running;
641 }
642
643 return period;
644 }
645
646 /*
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
649 *
650 * s = p*P[w/rw]
651 */
652 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 {
654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
655
656 for_each_sched_entity(se) {
657 struct load_weight *load;
658 struct load_weight lw;
659
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
662
663 if (unlikely(!se->on_rq)) {
664 lw = cfs_rq->load;
665
666 update_load_add(&lw, se->load.weight);
667 load = &lw;
668 }
669 slice = __calc_delta(slice, se->load.weight, load);
670 }
671 return slice;
672 }
673
674 /*
675 * We calculate the vruntime slice of a to-be-inserted task.
676 *
677 * vs = s/w
678 */
679 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
680 {
681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
682 }
683
684 #ifdef CONFIG_SMP
685 static unsigned long task_h_load(struct task_struct *p);
686
687 static inline void __update_task_entity_contrib(struct sched_entity *se);
688
689 /* Give new task start runnable values to heavy its load in infant time */
690 void init_task_runnable_average(struct task_struct *p)
691 {
692 u32 slice;
693
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
699 }
700 #else
701 void init_task_runnable_average(struct task_struct *p)
702 {
703 }
704 #endif
705
706 /*
707 * Update the current task's runtime statistics.
708 */
709 static void update_curr(struct cfs_rq *cfs_rq)
710 {
711 struct sched_entity *curr = cfs_rq->curr;
712 u64 now = rq_clock_task(rq_of(cfs_rq));
713 u64 delta_exec;
714
715 if (unlikely(!curr))
716 return;
717
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
720 return;
721
722 curr->exec_start = now;
723
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
726
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
729
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
732
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
735
736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
737 cpuacct_charge(curtask, delta_exec);
738 account_group_exec_runtime(curtask, delta_exec);
739 }
740
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
742 }
743
744 static inline void
745 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
746 {
747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
748 }
749
750 /*
751 * Task is being enqueued - update stats:
752 */
753 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 /*
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
758 */
759 if (se != cfs_rq->curr)
760 update_stats_wait_start(cfs_rq, se);
761 }
762
763 static void
764 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 {
766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 #ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
775 }
776 #endif
777 schedstat_set(se->statistics.wait_start, 0);
778 }
779
780 static inline void
781 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
782 {
783 /*
784 * Mark the end of the wait period if dequeueing a
785 * waiting task:
786 */
787 if (se != cfs_rq->curr)
788 update_stats_wait_end(cfs_rq, se);
789 }
790
791 /*
792 * We are picking a new current task - update its stats:
793 */
794 static inline void
795 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 {
797 /*
798 * We are starting a new run period:
799 */
800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
801 }
802
803 /**************************************************
804 * Scheduling class queueing methods:
805 */
806
807 #ifdef CONFIG_NUMA_BALANCING
808 /*
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
812 */
813 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
815
816 /* Portion of address space to scan in MB */
817 unsigned int sysctl_numa_balancing_scan_size = 256;
818
819 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820 unsigned int sysctl_numa_balancing_scan_delay = 1000;
821
822 static unsigned int task_nr_scan_windows(struct task_struct *p)
823 {
824 unsigned long rss = 0;
825 unsigned long nr_scan_pages;
826
827 /*
828 * Calculations based on RSS as non-present and empty pages are skipped
829 * by the PTE scanner and NUMA hinting faults should be trapped based
830 * on resident pages
831 */
832 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
833 rss = get_mm_rss(p->mm);
834 if (!rss)
835 rss = nr_scan_pages;
836
837 rss = round_up(rss, nr_scan_pages);
838 return rss / nr_scan_pages;
839 }
840
841 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
842 #define MAX_SCAN_WINDOW 2560
843
844 static unsigned int task_scan_min(struct task_struct *p)
845 {
846 unsigned int scan, floor;
847 unsigned int windows = 1;
848
849 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
850 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
851 floor = 1000 / windows;
852
853 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
854 return max_t(unsigned int, floor, scan);
855 }
856
857 static unsigned int task_scan_max(struct task_struct *p)
858 {
859 unsigned int smin = task_scan_min(p);
860 unsigned int smax;
861
862 /* Watch for min being lower than max due to floor calculations */
863 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
864 return max(smin, smax);
865 }
866
867 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
868 {
869 rq->nr_numa_running += (p->numa_preferred_nid != -1);
870 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
871 }
872
873 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
874 {
875 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
876 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
877 }
878
879 struct numa_group {
880 atomic_t refcount;
881
882 spinlock_t lock; /* nr_tasks, tasks */
883 int nr_tasks;
884 pid_t gid;
885 struct list_head task_list;
886
887 struct rcu_head rcu;
888 nodemask_t active_nodes;
889 unsigned long total_faults;
890 unsigned long *faults_cpu;
891 unsigned long faults[0];
892 };
893
894 pid_t task_numa_group_id(struct task_struct *p)
895 {
896 return p->numa_group ? p->numa_group->gid : 0;
897 }
898
899 static inline int task_faults_idx(int nid, int priv)
900 {
901 return 2 * nid + priv;
902 }
903
904 static inline unsigned long task_faults(struct task_struct *p, int nid)
905 {
906 if (!p->numa_faults_memory)
907 return 0;
908
909 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
910 p->numa_faults_memory[task_faults_idx(nid, 1)];
911 }
912
913 static inline unsigned long group_faults(struct task_struct *p, int nid)
914 {
915 if (!p->numa_group)
916 return 0;
917
918 return p->numa_group->faults[task_faults_idx(nid, 0)] +
919 p->numa_group->faults[task_faults_idx(nid, 1)];
920 }
921
922 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
923 {
924 return group->faults_cpu[task_faults_idx(nid, 0)] +
925 group->faults_cpu[task_faults_idx(nid, 1)];
926 }
927
928 /*
929 * These return the fraction of accesses done by a particular task, or
930 * task group, on a particular numa node. The group weight is given a
931 * larger multiplier, in order to group tasks together that are almost
932 * evenly spread out between numa nodes.
933 */
934 static inline unsigned long task_weight(struct task_struct *p, int nid)
935 {
936 unsigned long total_faults;
937
938 if (!p->numa_faults_memory)
939 return 0;
940
941 total_faults = p->total_numa_faults;
942
943 if (!total_faults)
944 return 0;
945
946 return 1000 * task_faults(p, nid) / total_faults;
947 }
948
949 static inline unsigned long group_weight(struct task_struct *p, int nid)
950 {
951 if (!p->numa_group || !p->numa_group->total_faults)
952 return 0;
953
954 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
955 }
956
957 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
958 int src_nid, int dst_cpu)
959 {
960 struct numa_group *ng = p->numa_group;
961 int dst_nid = cpu_to_node(dst_cpu);
962 int last_cpupid, this_cpupid;
963
964 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
965
966 /*
967 * Multi-stage node selection is used in conjunction with a periodic
968 * migration fault to build a temporal task<->page relation. By using
969 * a two-stage filter we remove short/unlikely relations.
970 *
971 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
972 * a task's usage of a particular page (n_p) per total usage of this
973 * page (n_t) (in a given time-span) to a probability.
974 *
975 * Our periodic faults will sample this probability and getting the
976 * same result twice in a row, given these samples are fully
977 * independent, is then given by P(n)^2, provided our sample period
978 * is sufficiently short compared to the usage pattern.
979 *
980 * This quadric squishes small probabilities, making it less likely we
981 * act on an unlikely task<->page relation.
982 */
983 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
984 if (!cpupid_pid_unset(last_cpupid) &&
985 cpupid_to_nid(last_cpupid) != dst_nid)
986 return false;
987
988 /* Always allow migrate on private faults */
989 if (cpupid_match_pid(p, last_cpupid))
990 return true;
991
992 /* A shared fault, but p->numa_group has not been set up yet. */
993 if (!ng)
994 return true;
995
996 /*
997 * Do not migrate if the destination is not a node that
998 * is actively used by this numa group.
999 */
1000 if (!node_isset(dst_nid, ng->active_nodes))
1001 return false;
1002
1003 /*
1004 * Source is a node that is not actively used by this
1005 * numa group, while the destination is. Migrate.
1006 */
1007 if (!node_isset(src_nid, ng->active_nodes))
1008 return true;
1009
1010 /*
1011 * Both source and destination are nodes in active
1012 * use by this numa group. Maximize memory bandwidth
1013 * by migrating from more heavily used groups, to less
1014 * heavily used ones, spreading the load around.
1015 * Use a 1/4 hysteresis to avoid spurious page movement.
1016 */
1017 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1018 }
1019
1020 static unsigned long weighted_cpuload(const int cpu);
1021 static unsigned long source_load(int cpu, int type);
1022 static unsigned long target_load(int cpu, int type);
1023 static unsigned long power_of(int cpu);
1024 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1025
1026 /* Cached statistics for all CPUs within a node */
1027 struct numa_stats {
1028 unsigned long nr_running;
1029 unsigned long load;
1030
1031 /* Total compute capacity of CPUs on a node */
1032 unsigned long power;
1033
1034 /* Approximate capacity in terms of runnable tasks on a node */
1035 unsigned long capacity;
1036 int has_capacity;
1037 };
1038
1039 /*
1040 * XXX borrowed from update_sg_lb_stats
1041 */
1042 static void update_numa_stats(struct numa_stats *ns, int nid)
1043 {
1044 int cpu, cpus = 0;
1045
1046 memset(ns, 0, sizeof(*ns));
1047 for_each_cpu(cpu, cpumask_of_node(nid)) {
1048 struct rq *rq = cpu_rq(cpu);
1049
1050 ns->nr_running += rq->nr_running;
1051 ns->load += weighted_cpuload(cpu);
1052 ns->power += power_of(cpu);
1053
1054 cpus++;
1055 }
1056
1057 /*
1058 * If we raced with hotplug and there are no CPUs left in our mask
1059 * the @ns structure is NULL'ed and task_numa_compare() will
1060 * not find this node attractive.
1061 *
1062 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1063 * and bail there.
1064 */
1065 if (!cpus)
1066 return;
1067
1068 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1069 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1070 ns->has_capacity = (ns->nr_running < ns->capacity);
1071 }
1072
1073 struct task_numa_env {
1074 struct task_struct *p;
1075
1076 int src_cpu, src_nid;
1077 int dst_cpu, dst_nid;
1078
1079 struct numa_stats src_stats, dst_stats;
1080
1081 int imbalance_pct;
1082
1083 struct task_struct *best_task;
1084 long best_imp;
1085 int best_cpu;
1086 };
1087
1088 static void task_numa_assign(struct task_numa_env *env,
1089 struct task_struct *p, long imp)
1090 {
1091 if (env->best_task)
1092 put_task_struct(env->best_task);
1093 if (p)
1094 get_task_struct(p);
1095
1096 env->best_task = p;
1097 env->best_imp = imp;
1098 env->best_cpu = env->dst_cpu;
1099 }
1100
1101 /*
1102 * This checks if the overall compute and NUMA accesses of the system would
1103 * be improved if the source tasks was migrated to the target dst_cpu taking
1104 * into account that it might be best if task running on the dst_cpu should
1105 * be exchanged with the source task
1106 */
1107 static void task_numa_compare(struct task_numa_env *env,
1108 long taskimp, long groupimp)
1109 {
1110 struct rq *src_rq = cpu_rq(env->src_cpu);
1111 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1112 struct task_struct *cur;
1113 long dst_load, src_load;
1114 long load;
1115 long imp = (groupimp > 0) ? groupimp : taskimp;
1116
1117 rcu_read_lock();
1118 cur = ACCESS_ONCE(dst_rq->curr);
1119 if (cur->pid == 0) /* idle */
1120 cur = NULL;
1121
1122 /*
1123 * "imp" is the fault differential for the source task between the
1124 * source and destination node. Calculate the total differential for
1125 * the source task and potential destination task. The more negative
1126 * the value is, the more rmeote accesses that would be expected to
1127 * be incurred if the tasks were swapped.
1128 */
1129 if (cur) {
1130 /* Skip this swap candidate if cannot move to the source cpu */
1131 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1132 goto unlock;
1133
1134 /*
1135 * If dst and source tasks are in the same NUMA group, or not
1136 * in any group then look only at task weights.
1137 */
1138 if (cur->numa_group == env->p->numa_group) {
1139 imp = taskimp + task_weight(cur, env->src_nid) -
1140 task_weight(cur, env->dst_nid);
1141 /*
1142 * Add some hysteresis to prevent swapping the
1143 * tasks within a group over tiny differences.
1144 */
1145 if (cur->numa_group)
1146 imp -= imp/16;
1147 } else {
1148 /*
1149 * Compare the group weights. If a task is all by
1150 * itself (not part of a group), use the task weight
1151 * instead.
1152 */
1153 if (env->p->numa_group)
1154 imp = groupimp;
1155 else
1156 imp = taskimp;
1157
1158 if (cur->numa_group)
1159 imp += group_weight(cur, env->src_nid) -
1160 group_weight(cur, env->dst_nid);
1161 else
1162 imp += task_weight(cur, env->src_nid) -
1163 task_weight(cur, env->dst_nid);
1164 }
1165 }
1166
1167 if (imp < env->best_imp)
1168 goto unlock;
1169
1170 if (!cur) {
1171 /* Is there capacity at our destination? */
1172 if (env->src_stats.has_capacity &&
1173 !env->dst_stats.has_capacity)
1174 goto unlock;
1175
1176 goto balance;
1177 }
1178
1179 /* Balance doesn't matter much if we're running a task per cpu */
1180 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1181 goto assign;
1182
1183 /*
1184 * In the overloaded case, try and keep the load balanced.
1185 */
1186 balance:
1187 dst_load = env->dst_stats.load;
1188 src_load = env->src_stats.load;
1189
1190 /* XXX missing power terms */
1191 load = task_h_load(env->p);
1192 dst_load += load;
1193 src_load -= load;
1194
1195 if (cur) {
1196 load = task_h_load(cur);
1197 dst_load -= load;
1198 src_load += load;
1199 }
1200
1201 /* make src_load the smaller */
1202 if (dst_load < src_load)
1203 swap(dst_load, src_load);
1204
1205 if (src_load * env->imbalance_pct < dst_load * 100)
1206 goto unlock;
1207
1208 assign:
1209 task_numa_assign(env, cur, imp);
1210 unlock:
1211 rcu_read_unlock();
1212 }
1213
1214 static void task_numa_find_cpu(struct task_numa_env *env,
1215 long taskimp, long groupimp)
1216 {
1217 int cpu;
1218
1219 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1220 /* Skip this CPU if the source task cannot migrate */
1221 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1222 continue;
1223
1224 env->dst_cpu = cpu;
1225 task_numa_compare(env, taskimp, groupimp);
1226 }
1227 }
1228
1229 static int task_numa_migrate(struct task_struct *p)
1230 {
1231 struct task_numa_env env = {
1232 .p = p,
1233
1234 .src_cpu = task_cpu(p),
1235 .src_nid = task_node(p),
1236
1237 .imbalance_pct = 112,
1238
1239 .best_task = NULL,
1240 .best_imp = 0,
1241 .best_cpu = -1
1242 };
1243 struct sched_domain *sd;
1244 unsigned long taskweight, groupweight;
1245 int nid, ret;
1246 long taskimp, groupimp;
1247
1248 /*
1249 * Pick the lowest SD_NUMA domain, as that would have the smallest
1250 * imbalance and would be the first to start moving tasks about.
1251 *
1252 * And we want to avoid any moving of tasks about, as that would create
1253 * random movement of tasks -- counter the numa conditions we're trying
1254 * to satisfy here.
1255 */
1256 rcu_read_lock();
1257 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1258 if (sd)
1259 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1260 rcu_read_unlock();
1261
1262 /*
1263 * Cpusets can break the scheduler domain tree into smaller
1264 * balance domains, some of which do not cross NUMA boundaries.
1265 * Tasks that are "trapped" in such domains cannot be migrated
1266 * elsewhere, so there is no point in (re)trying.
1267 */
1268 if (unlikely(!sd)) {
1269 p->numa_preferred_nid = task_node(p);
1270 return -EINVAL;
1271 }
1272
1273 taskweight = task_weight(p, env.src_nid);
1274 groupweight = group_weight(p, env.src_nid);
1275 update_numa_stats(&env.src_stats, env.src_nid);
1276 env.dst_nid = p->numa_preferred_nid;
1277 taskimp = task_weight(p, env.dst_nid) - taskweight;
1278 groupimp = group_weight(p, env.dst_nid) - groupweight;
1279 update_numa_stats(&env.dst_stats, env.dst_nid);
1280
1281 /* If the preferred nid has capacity, try to use it. */
1282 if (env.dst_stats.has_capacity)
1283 task_numa_find_cpu(&env, taskimp, groupimp);
1284
1285 /* No space available on the preferred nid. Look elsewhere. */
1286 if (env.best_cpu == -1) {
1287 for_each_online_node(nid) {
1288 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1289 continue;
1290
1291 /* Only consider nodes where both task and groups benefit */
1292 taskimp = task_weight(p, nid) - taskweight;
1293 groupimp = group_weight(p, nid) - groupweight;
1294 if (taskimp < 0 && groupimp < 0)
1295 continue;
1296
1297 env.dst_nid = nid;
1298 update_numa_stats(&env.dst_stats, env.dst_nid);
1299 task_numa_find_cpu(&env, taskimp, groupimp);
1300 }
1301 }
1302
1303 /* No better CPU than the current one was found. */
1304 if (env.best_cpu == -1)
1305 return -EAGAIN;
1306
1307 sched_setnuma(p, env.dst_nid);
1308
1309 /*
1310 * Reset the scan period if the task is being rescheduled on an
1311 * alternative node to recheck if the tasks is now properly placed.
1312 */
1313 p->numa_scan_period = task_scan_min(p);
1314
1315 if (env.best_task == NULL) {
1316 int ret = migrate_task_to(p, env.best_cpu);
1317 return ret;
1318 }
1319
1320 ret = migrate_swap(p, env.best_task);
1321 put_task_struct(env.best_task);
1322 return ret;
1323 }
1324
1325 /* Attempt to migrate a task to a CPU on the preferred node. */
1326 static void numa_migrate_preferred(struct task_struct *p)
1327 {
1328 /* This task has no NUMA fault statistics yet */
1329 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1330 return;
1331
1332 /* Periodically retry migrating the task to the preferred node */
1333 p->numa_migrate_retry = jiffies + HZ;
1334
1335 /* Success if task is already running on preferred CPU */
1336 if (task_node(p) == p->numa_preferred_nid)
1337 return;
1338
1339 /* Otherwise, try migrate to a CPU on the preferred node */
1340 task_numa_migrate(p);
1341 }
1342
1343 /*
1344 * Find the nodes on which the workload is actively running. We do this by
1345 * tracking the nodes from which NUMA hinting faults are triggered. This can
1346 * be different from the set of nodes where the workload's memory is currently
1347 * located.
1348 *
1349 * The bitmask is used to make smarter decisions on when to do NUMA page
1350 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1351 * are added when they cause over 6/16 of the maximum number of faults, but
1352 * only removed when they drop below 3/16.
1353 */
1354 static void update_numa_active_node_mask(struct numa_group *numa_group)
1355 {
1356 unsigned long faults, max_faults = 0;
1357 int nid;
1358
1359 for_each_online_node(nid) {
1360 faults = group_faults_cpu(numa_group, nid);
1361 if (faults > max_faults)
1362 max_faults = faults;
1363 }
1364
1365 for_each_online_node(nid) {
1366 faults = group_faults_cpu(numa_group, nid);
1367 if (!node_isset(nid, numa_group->active_nodes)) {
1368 if (faults > max_faults * 6 / 16)
1369 node_set(nid, numa_group->active_nodes);
1370 } else if (faults < max_faults * 3 / 16)
1371 node_clear(nid, numa_group->active_nodes);
1372 }
1373 }
1374
1375 /*
1376 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1377 * increments. The more local the fault statistics are, the higher the scan
1378 * period will be for the next scan window. If local/remote ratio is below
1379 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1380 * scan period will decrease
1381 */
1382 #define NUMA_PERIOD_SLOTS 10
1383 #define NUMA_PERIOD_THRESHOLD 3
1384
1385 /*
1386 * Increase the scan period (slow down scanning) if the majority of
1387 * our memory is already on our local node, or if the majority of
1388 * the page accesses are shared with other processes.
1389 * Otherwise, decrease the scan period.
1390 */
1391 static void update_task_scan_period(struct task_struct *p,
1392 unsigned long shared, unsigned long private)
1393 {
1394 unsigned int period_slot;
1395 int ratio;
1396 int diff;
1397
1398 unsigned long remote = p->numa_faults_locality[0];
1399 unsigned long local = p->numa_faults_locality[1];
1400
1401 /*
1402 * If there were no record hinting faults then either the task is
1403 * completely idle or all activity is areas that are not of interest
1404 * to automatic numa balancing. Scan slower
1405 */
1406 if (local + shared == 0) {
1407 p->numa_scan_period = min(p->numa_scan_period_max,
1408 p->numa_scan_period << 1);
1409
1410 p->mm->numa_next_scan = jiffies +
1411 msecs_to_jiffies(p->numa_scan_period);
1412
1413 return;
1414 }
1415
1416 /*
1417 * Prepare to scale scan period relative to the current period.
1418 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1419 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1420 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1421 */
1422 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1423 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1424 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1425 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1426 if (!slot)
1427 slot = 1;
1428 diff = slot * period_slot;
1429 } else {
1430 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1431
1432 /*
1433 * Scale scan rate increases based on sharing. There is an
1434 * inverse relationship between the degree of sharing and
1435 * the adjustment made to the scanning period. Broadly
1436 * speaking the intent is that there is little point
1437 * scanning faster if shared accesses dominate as it may
1438 * simply bounce migrations uselessly
1439 */
1440 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1441 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1442 }
1443
1444 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1445 task_scan_min(p), task_scan_max(p));
1446 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1447 }
1448
1449 static void task_numa_placement(struct task_struct *p)
1450 {
1451 int seq, nid, max_nid = -1, max_group_nid = -1;
1452 unsigned long max_faults = 0, max_group_faults = 0;
1453 unsigned long fault_types[2] = { 0, 0 };
1454 spinlock_t *group_lock = NULL;
1455
1456 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1457 if (p->numa_scan_seq == seq)
1458 return;
1459 p->numa_scan_seq = seq;
1460 p->numa_scan_period_max = task_scan_max(p);
1461
1462 /* If the task is part of a group prevent parallel updates to group stats */
1463 if (p->numa_group) {
1464 group_lock = &p->numa_group->lock;
1465 spin_lock(group_lock);
1466 }
1467
1468 /* Find the node with the highest number of faults */
1469 for_each_online_node(nid) {
1470 unsigned long faults = 0, group_faults = 0;
1471 int priv, i;
1472
1473 for (priv = 0; priv < 2; priv++) {
1474 long diff, f_diff;
1475
1476 i = task_faults_idx(nid, priv);
1477 diff = -p->numa_faults_memory[i];
1478 f_diff = -p->numa_faults_cpu[i];
1479
1480 /* Decay existing window, copy faults since last scan */
1481 p->numa_faults_memory[i] >>= 1;
1482 p->numa_faults_memory[i] += p->numa_faults_buffer_memory[i];
1483 fault_types[priv] += p->numa_faults_buffer_memory[i];
1484 p->numa_faults_buffer_memory[i] = 0;
1485
1486 p->numa_faults_cpu[i] >>= 1;
1487 p->numa_faults_cpu[i] += p->numa_faults_buffer_cpu[i];
1488 p->numa_faults_buffer_cpu[i] = 0;
1489
1490 faults += p->numa_faults_memory[i];
1491 diff += p->numa_faults_memory[i];
1492 f_diff += p->numa_faults_cpu[i];
1493 p->total_numa_faults += diff;
1494 if (p->numa_group) {
1495 /* safe because we can only change our own group */
1496 p->numa_group->faults[i] += diff;
1497 p->numa_group->faults_cpu[i] += f_diff;
1498 p->numa_group->total_faults += diff;
1499 group_faults += p->numa_group->faults[i];
1500 }
1501 }
1502
1503 if (faults > max_faults) {
1504 max_faults = faults;
1505 max_nid = nid;
1506 }
1507
1508 if (group_faults > max_group_faults) {
1509 max_group_faults = group_faults;
1510 max_group_nid = nid;
1511 }
1512 }
1513
1514 update_task_scan_period(p, fault_types[0], fault_types[1]);
1515
1516 if (p->numa_group) {
1517 update_numa_active_node_mask(p->numa_group);
1518 /*
1519 * If the preferred task and group nids are different,
1520 * iterate over the nodes again to find the best place.
1521 */
1522 if (max_nid != max_group_nid) {
1523 unsigned long weight, max_weight = 0;
1524
1525 for_each_online_node(nid) {
1526 weight = task_weight(p, nid) + group_weight(p, nid);
1527 if (weight > max_weight) {
1528 max_weight = weight;
1529 max_nid = nid;
1530 }
1531 }
1532 }
1533
1534 spin_unlock(group_lock);
1535 }
1536
1537 /* Preferred node as the node with the most faults */
1538 if (max_faults && max_nid != p->numa_preferred_nid) {
1539 /* Update the preferred nid and migrate task if possible */
1540 sched_setnuma(p, max_nid);
1541 numa_migrate_preferred(p);
1542 }
1543 }
1544
1545 static inline int get_numa_group(struct numa_group *grp)
1546 {
1547 return atomic_inc_not_zero(&grp->refcount);
1548 }
1549
1550 static inline void put_numa_group(struct numa_group *grp)
1551 {
1552 if (atomic_dec_and_test(&grp->refcount))
1553 kfree_rcu(grp, rcu);
1554 }
1555
1556 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1557 int *priv)
1558 {
1559 struct numa_group *grp, *my_grp;
1560 struct task_struct *tsk;
1561 bool join = false;
1562 int cpu = cpupid_to_cpu(cpupid);
1563 int i;
1564
1565 if (unlikely(!p->numa_group)) {
1566 unsigned int size = sizeof(struct numa_group) +
1567 4*nr_node_ids*sizeof(unsigned long);
1568
1569 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1570 if (!grp)
1571 return;
1572
1573 atomic_set(&grp->refcount, 1);
1574 spin_lock_init(&grp->lock);
1575 INIT_LIST_HEAD(&grp->task_list);
1576 grp->gid = p->pid;
1577 /* Second half of the array tracks nids where faults happen */
1578 grp->faults_cpu = grp->faults + 2 * nr_node_ids;
1579
1580 node_set(task_node(current), grp->active_nodes);
1581
1582 for (i = 0; i < 4*nr_node_ids; i++)
1583 grp->faults[i] = p->numa_faults_memory[i];
1584
1585 grp->total_faults = p->total_numa_faults;
1586
1587 list_add(&p->numa_entry, &grp->task_list);
1588 grp->nr_tasks++;
1589 rcu_assign_pointer(p->numa_group, grp);
1590 }
1591
1592 rcu_read_lock();
1593 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1594
1595 if (!cpupid_match_pid(tsk, cpupid))
1596 goto no_join;
1597
1598 grp = rcu_dereference(tsk->numa_group);
1599 if (!grp)
1600 goto no_join;
1601
1602 my_grp = p->numa_group;
1603 if (grp == my_grp)
1604 goto no_join;
1605
1606 /*
1607 * Only join the other group if its bigger; if we're the bigger group,
1608 * the other task will join us.
1609 */
1610 if (my_grp->nr_tasks > grp->nr_tasks)
1611 goto no_join;
1612
1613 /*
1614 * Tie-break on the grp address.
1615 */
1616 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1617 goto no_join;
1618
1619 /* Always join threads in the same process. */
1620 if (tsk->mm == current->mm)
1621 join = true;
1622
1623 /* Simple filter to avoid false positives due to PID collisions */
1624 if (flags & TNF_SHARED)
1625 join = true;
1626
1627 /* Update priv based on whether false sharing was detected */
1628 *priv = !join;
1629
1630 if (join && !get_numa_group(grp))
1631 goto no_join;
1632
1633 rcu_read_unlock();
1634
1635 if (!join)
1636 return;
1637
1638 double_lock(&my_grp->lock, &grp->lock);
1639
1640 for (i = 0; i < 4*nr_node_ids; i++) {
1641 my_grp->faults[i] -= p->numa_faults_memory[i];
1642 grp->faults[i] += p->numa_faults_memory[i];
1643 }
1644 my_grp->total_faults -= p->total_numa_faults;
1645 grp->total_faults += p->total_numa_faults;
1646
1647 list_move(&p->numa_entry, &grp->task_list);
1648 my_grp->nr_tasks--;
1649 grp->nr_tasks++;
1650
1651 spin_unlock(&my_grp->lock);
1652 spin_unlock(&grp->lock);
1653
1654 rcu_assign_pointer(p->numa_group, grp);
1655
1656 put_numa_group(my_grp);
1657 return;
1658
1659 no_join:
1660 rcu_read_unlock();
1661 return;
1662 }
1663
1664 void task_numa_free(struct task_struct *p)
1665 {
1666 struct numa_group *grp = p->numa_group;
1667 int i;
1668 void *numa_faults = p->numa_faults_memory;
1669
1670 if (grp) {
1671 spin_lock(&grp->lock);
1672 for (i = 0; i < 4*nr_node_ids; i++)
1673 grp->faults[i] -= p->numa_faults_memory[i];
1674 grp->total_faults -= p->total_numa_faults;
1675
1676 list_del(&p->numa_entry);
1677 grp->nr_tasks--;
1678 spin_unlock(&grp->lock);
1679 rcu_assign_pointer(p->numa_group, NULL);
1680 put_numa_group(grp);
1681 }
1682
1683 p->numa_faults_memory = NULL;
1684 p->numa_faults_buffer_memory = NULL;
1685 p->numa_faults_cpu= NULL;
1686 p->numa_faults_buffer_cpu = NULL;
1687 kfree(numa_faults);
1688 }
1689
1690 /*
1691 * Got a PROT_NONE fault for a page on @node.
1692 */
1693 void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1694 {
1695 struct task_struct *p = current;
1696 bool migrated = flags & TNF_MIGRATED;
1697 int this_node = task_node(current);
1698 int priv;
1699
1700 if (!numabalancing_enabled)
1701 return;
1702
1703 /* for example, ksmd faulting in a user's mm */
1704 if (!p->mm)
1705 return;
1706
1707 /* Do not worry about placement if exiting */
1708 if (p->state == TASK_DEAD)
1709 return;
1710
1711 /* Allocate buffer to track faults on a per-node basis */
1712 if (unlikely(!p->numa_faults_memory)) {
1713 int size = sizeof(*p->numa_faults_memory) * 4 * nr_node_ids;
1714
1715 /* numa_faults and numa_faults_buffer share the allocation */
1716 p->numa_faults_memory = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1717 if (!p->numa_faults_memory)
1718 return;
1719
1720 BUG_ON(p->numa_faults_buffer_memory);
1721 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1722 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1723 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1724 p->total_numa_faults = 0;
1725 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1726 }
1727
1728 /*
1729 * First accesses are treated as private, otherwise consider accesses
1730 * to be private if the accessing pid has not changed
1731 */
1732 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1733 priv = 1;
1734 } else {
1735 priv = cpupid_match_pid(p, last_cpupid);
1736 if (!priv && !(flags & TNF_NO_GROUP))
1737 task_numa_group(p, last_cpupid, flags, &priv);
1738 }
1739
1740 task_numa_placement(p);
1741
1742 /*
1743 * Retry task to preferred node migration periodically, in case it
1744 * case it previously failed, or the scheduler moved us.
1745 */
1746 if (time_after(jiffies, p->numa_migrate_retry))
1747 numa_migrate_preferred(p);
1748
1749 if (migrated)
1750 p->numa_pages_migrated += pages;
1751
1752 p->numa_faults_buffer_memory[task_faults_idx(node, priv)] += pages;
1753 p->numa_faults_buffer_cpu[task_faults_idx(this_node, priv)] += pages;
1754 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1755 }
1756
1757 static void reset_ptenuma_scan(struct task_struct *p)
1758 {
1759 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1760 p->mm->numa_scan_offset = 0;
1761 }
1762
1763 /*
1764 * The expensive part of numa migration is done from task_work context.
1765 * Triggered from task_tick_numa().
1766 */
1767 void task_numa_work(struct callback_head *work)
1768 {
1769 unsigned long migrate, next_scan, now = jiffies;
1770 struct task_struct *p = current;
1771 struct mm_struct *mm = p->mm;
1772 struct vm_area_struct *vma;
1773 unsigned long start, end;
1774 unsigned long nr_pte_updates = 0;
1775 long pages;
1776
1777 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1778
1779 work->next = work; /* protect against double add */
1780 /*
1781 * Who cares about NUMA placement when they're dying.
1782 *
1783 * NOTE: make sure not to dereference p->mm before this check,
1784 * exit_task_work() happens _after_ exit_mm() so we could be called
1785 * without p->mm even though we still had it when we enqueued this
1786 * work.
1787 */
1788 if (p->flags & PF_EXITING)
1789 return;
1790
1791 if (!mm->numa_next_scan) {
1792 mm->numa_next_scan = now +
1793 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1794 }
1795
1796 /*
1797 * Enforce maximal scan/migration frequency..
1798 */
1799 migrate = mm->numa_next_scan;
1800 if (time_before(now, migrate))
1801 return;
1802
1803 if (p->numa_scan_period == 0) {
1804 p->numa_scan_period_max = task_scan_max(p);
1805 p->numa_scan_period = task_scan_min(p);
1806 }
1807
1808 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1809 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1810 return;
1811
1812 /*
1813 * Delay this task enough that another task of this mm will likely win
1814 * the next time around.
1815 */
1816 p->node_stamp += 2 * TICK_NSEC;
1817
1818 start = mm->numa_scan_offset;
1819 pages = sysctl_numa_balancing_scan_size;
1820 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1821 if (!pages)
1822 return;
1823
1824 down_read(&mm->mmap_sem);
1825 vma = find_vma(mm, start);
1826 if (!vma) {
1827 reset_ptenuma_scan(p);
1828 start = 0;
1829 vma = mm->mmap;
1830 }
1831 for (; vma; vma = vma->vm_next) {
1832 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1833 continue;
1834
1835 /*
1836 * Shared library pages mapped by multiple processes are not
1837 * migrated as it is expected they are cache replicated. Avoid
1838 * hinting faults in read-only file-backed mappings or the vdso
1839 * as migrating the pages will be of marginal benefit.
1840 */
1841 if (!vma->vm_mm ||
1842 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1843 continue;
1844
1845 /*
1846 * Skip inaccessible VMAs to avoid any confusion between
1847 * PROT_NONE and NUMA hinting ptes
1848 */
1849 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1850 continue;
1851
1852 do {
1853 start = max(start, vma->vm_start);
1854 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1855 end = min(end, vma->vm_end);
1856 nr_pte_updates += change_prot_numa(vma, start, end);
1857
1858 /*
1859 * Scan sysctl_numa_balancing_scan_size but ensure that
1860 * at least one PTE is updated so that unused virtual
1861 * address space is quickly skipped.
1862 */
1863 if (nr_pte_updates)
1864 pages -= (end - start) >> PAGE_SHIFT;
1865
1866 start = end;
1867 if (pages <= 0)
1868 goto out;
1869 } while (end != vma->vm_end);
1870 }
1871
1872 out:
1873 /*
1874 * It is possible to reach the end of the VMA list but the last few
1875 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1876 * would find the !migratable VMA on the next scan but not reset the
1877 * scanner to the start so check it now.
1878 */
1879 if (vma)
1880 mm->numa_scan_offset = start;
1881 else
1882 reset_ptenuma_scan(p);
1883 up_read(&mm->mmap_sem);
1884 }
1885
1886 /*
1887 * Drive the periodic memory faults..
1888 */
1889 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1890 {
1891 struct callback_head *work = &curr->numa_work;
1892 u64 period, now;
1893
1894 /*
1895 * We don't care about NUMA placement if we don't have memory.
1896 */
1897 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1898 return;
1899
1900 /*
1901 * Using runtime rather than walltime has the dual advantage that
1902 * we (mostly) drive the selection from busy threads and that the
1903 * task needs to have done some actual work before we bother with
1904 * NUMA placement.
1905 */
1906 now = curr->se.sum_exec_runtime;
1907 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1908
1909 if (now - curr->node_stamp > period) {
1910 if (!curr->node_stamp)
1911 curr->numa_scan_period = task_scan_min(curr);
1912 curr->node_stamp += period;
1913
1914 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1915 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1916 task_work_add(curr, work, true);
1917 }
1918 }
1919 }
1920 #else
1921 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1922 {
1923 }
1924
1925 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1926 {
1927 }
1928
1929 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1930 {
1931 }
1932 #endif /* CONFIG_NUMA_BALANCING */
1933
1934 static void
1935 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1936 {
1937 update_load_add(&cfs_rq->load, se->load.weight);
1938 if (!parent_entity(se))
1939 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1940 #ifdef CONFIG_SMP
1941 if (entity_is_task(se)) {
1942 struct rq *rq = rq_of(cfs_rq);
1943
1944 account_numa_enqueue(rq, task_of(se));
1945 list_add(&se->group_node, &rq->cfs_tasks);
1946 }
1947 #endif
1948 cfs_rq->nr_running++;
1949 }
1950
1951 static void
1952 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1953 {
1954 update_load_sub(&cfs_rq->load, se->load.weight);
1955 if (!parent_entity(se))
1956 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1957 if (entity_is_task(se)) {
1958 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1959 list_del_init(&se->group_node);
1960 }
1961 cfs_rq->nr_running--;
1962 }
1963
1964 #ifdef CONFIG_FAIR_GROUP_SCHED
1965 # ifdef CONFIG_SMP
1966 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1967 {
1968 long tg_weight;
1969
1970 /*
1971 * Use this CPU's actual weight instead of the last load_contribution
1972 * to gain a more accurate current total weight. See
1973 * update_cfs_rq_load_contribution().
1974 */
1975 tg_weight = atomic_long_read(&tg->load_avg);
1976 tg_weight -= cfs_rq->tg_load_contrib;
1977 tg_weight += cfs_rq->load.weight;
1978
1979 return tg_weight;
1980 }
1981
1982 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1983 {
1984 long tg_weight, load, shares;
1985
1986 tg_weight = calc_tg_weight(tg, cfs_rq);
1987 load = cfs_rq->load.weight;
1988
1989 shares = (tg->shares * load);
1990 if (tg_weight)
1991 shares /= tg_weight;
1992
1993 if (shares < MIN_SHARES)
1994 shares = MIN_SHARES;
1995 if (shares > tg->shares)
1996 shares = tg->shares;
1997
1998 return shares;
1999 }
2000 # else /* CONFIG_SMP */
2001 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2002 {
2003 return tg->shares;
2004 }
2005 # endif /* CONFIG_SMP */
2006 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2007 unsigned long weight)
2008 {
2009 if (se->on_rq) {
2010 /* commit outstanding execution time */
2011 if (cfs_rq->curr == se)
2012 update_curr(cfs_rq);
2013 account_entity_dequeue(cfs_rq, se);
2014 }
2015
2016 update_load_set(&se->load, weight);
2017
2018 if (se->on_rq)
2019 account_entity_enqueue(cfs_rq, se);
2020 }
2021
2022 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2023
2024 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2025 {
2026 struct task_group *tg;
2027 struct sched_entity *se;
2028 long shares;
2029
2030 tg = cfs_rq->tg;
2031 se = tg->se[cpu_of(rq_of(cfs_rq))];
2032 if (!se || throttled_hierarchy(cfs_rq))
2033 return;
2034 #ifndef CONFIG_SMP
2035 if (likely(se->load.weight == tg->shares))
2036 return;
2037 #endif
2038 shares = calc_cfs_shares(cfs_rq, tg);
2039
2040 reweight_entity(cfs_rq_of(se), se, shares);
2041 }
2042 #else /* CONFIG_FAIR_GROUP_SCHED */
2043 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2044 {
2045 }
2046 #endif /* CONFIG_FAIR_GROUP_SCHED */
2047
2048 #ifdef CONFIG_SMP
2049 /*
2050 * We choose a half-life close to 1 scheduling period.
2051 * Note: The tables below are dependent on this value.
2052 */
2053 #define LOAD_AVG_PERIOD 32
2054 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2055 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2056
2057 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2058 static const u32 runnable_avg_yN_inv[] = {
2059 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2060 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2061 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2062 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2063 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2064 0x85aac367, 0x82cd8698,
2065 };
2066
2067 /*
2068 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2069 * over-estimates when re-combining.
2070 */
2071 static const u32 runnable_avg_yN_sum[] = {
2072 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2073 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2074 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2075 };
2076
2077 /*
2078 * Approximate:
2079 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2080 */
2081 static __always_inline u64 decay_load(u64 val, u64 n)
2082 {
2083 unsigned int local_n;
2084
2085 if (!n)
2086 return val;
2087 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2088 return 0;
2089
2090 /* after bounds checking we can collapse to 32-bit */
2091 local_n = n;
2092
2093 /*
2094 * As y^PERIOD = 1/2, we can combine
2095 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2096 * With a look-up table which covers k^n (n<PERIOD)
2097 *
2098 * To achieve constant time decay_load.
2099 */
2100 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2101 val >>= local_n / LOAD_AVG_PERIOD;
2102 local_n %= LOAD_AVG_PERIOD;
2103 }
2104
2105 val *= runnable_avg_yN_inv[local_n];
2106 /* We don't use SRR here since we always want to round down. */
2107 return val >> 32;
2108 }
2109
2110 /*
2111 * For updates fully spanning n periods, the contribution to runnable
2112 * average will be: \Sum 1024*y^n
2113 *
2114 * We can compute this reasonably efficiently by combining:
2115 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2116 */
2117 static u32 __compute_runnable_contrib(u64 n)
2118 {
2119 u32 contrib = 0;
2120
2121 if (likely(n <= LOAD_AVG_PERIOD))
2122 return runnable_avg_yN_sum[n];
2123 else if (unlikely(n >= LOAD_AVG_MAX_N))
2124 return LOAD_AVG_MAX;
2125
2126 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2127 do {
2128 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2129 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2130
2131 n -= LOAD_AVG_PERIOD;
2132 } while (n > LOAD_AVG_PERIOD);
2133
2134 contrib = decay_load(contrib, n);
2135 return contrib + runnable_avg_yN_sum[n];
2136 }
2137
2138 /*
2139 * We can represent the historical contribution to runnable average as the
2140 * coefficients of a geometric series. To do this we sub-divide our runnable
2141 * history into segments of approximately 1ms (1024us); label the segment that
2142 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2143 *
2144 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2145 * p0 p1 p2
2146 * (now) (~1ms ago) (~2ms ago)
2147 *
2148 * Let u_i denote the fraction of p_i that the entity was runnable.
2149 *
2150 * We then designate the fractions u_i as our co-efficients, yielding the
2151 * following representation of historical load:
2152 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2153 *
2154 * We choose y based on the with of a reasonably scheduling period, fixing:
2155 * y^32 = 0.5
2156 *
2157 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2158 * approximately half as much as the contribution to load within the last ms
2159 * (u_0).
2160 *
2161 * When a period "rolls over" and we have new u_0`, multiplying the previous
2162 * sum again by y is sufficient to update:
2163 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2164 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2165 */
2166 static __always_inline int __update_entity_runnable_avg(u64 now,
2167 struct sched_avg *sa,
2168 int runnable)
2169 {
2170 u64 delta, periods;
2171 u32 runnable_contrib;
2172 int delta_w, decayed = 0;
2173
2174 delta = now - sa->last_runnable_update;
2175 /*
2176 * This should only happen when time goes backwards, which it
2177 * unfortunately does during sched clock init when we swap over to TSC.
2178 */
2179 if ((s64)delta < 0) {
2180 sa->last_runnable_update = now;
2181 return 0;
2182 }
2183
2184 /*
2185 * Use 1024ns as the unit of measurement since it's a reasonable
2186 * approximation of 1us and fast to compute.
2187 */
2188 delta >>= 10;
2189 if (!delta)
2190 return 0;
2191 sa->last_runnable_update = now;
2192
2193 /* delta_w is the amount already accumulated against our next period */
2194 delta_w = sa->runnable_avg_period % 1024;
2195 if (delta + delta_w >= 1024) {
2196 /* period roll-over */
2197 decayed = 1;
2198
2199 /*
2200 * Now that we know we're crossing a period boundary, figure
2201 * out how much from delta we need to complete the current
2202 * period and accrue it.
2203 */
2204 delta_w = 1024 - delta_w;
2205 if (runnable)
2206 sa->runnable_avg_sum += delta_w;
2207 sa->runnable_avg_period += delta_w;
2208
2209 delta -= delta_w;
2210
2211 /* Figure out how many additional periods this update spans */
2212 periods = delta / 1024;
2213 delta %= 1024;
2214
2215 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2216 periods + 1);
2217 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2218 periods + 1);
2219
2220 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2221 runnable_contrib = __compute_runnable_contrib(periods);
2222 if (runnable)
2223 sa->runnable_avg_sum += runnable_contrib;
2224 sa->runnable_avg_period += runnable_contrib;
2225 }
2226
2227 /* Remainder of delta accrued against u_0` */
2228 if (runnable)
2229 sa->runnable_avg_sum += delta;
2230 sa->runnable_avg_period += delta;
2231
2232 return decayed;
2233 }
2234
2235 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2236 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2237 {
2238 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2239 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2240
2241 decays -= se->avg.decay_count;
2242 if (!decays)
2243 return 0;
2244
2245 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2246 se->avg.decay_count = 0;
2247
2248 return decays;
2249 }
2250
2251 #ifdef CONFIG_FAIR_GROUP_SCHED
2252 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2253 int force_update)
2254 {
2255 struct task_group *tg = cfs_rq->tg;
2256 long tg_contrib;
2257
2258 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2259 tg_contrib -= cfs_rq->tg_load_contrib;
2260
2261 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2262 atomic_long_add(tg_contrib, &tg->load_avg);
2263 cfs_rq->tg_load_contrib += tg_contrib;
2264 }
2265 }
2266
2267 /*
2268 * Aggregate cfs_rq runnable averages into an equivalent task_group
2269 * representation for computing load contributions.
2270 */
2271 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2272 struct cfs_rq *cfs_rq)
2273 {
2274 struct task_group *tg = cfs_rq->tg;
2275 long contrib;
2276
2277 /* The fraction of a cpu used by this cfs_rq */
2278 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2279 sa->runnable_avg_period + 1);
2280 contrib -= cfs_rq->tg_runnable_contrib;
2281
2282 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2283 atomic_add(contrib, &tg->runnable_avg);
2284 cfs_rq->tg_runnable_contrib += contrib;
2285 }
2286 }
2287
2288 static inline void __update_group_entity_contrib(struct sched_entity *se)
2289 {
2290 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2291 struct task_group *tg = cfs_rq->tg;
2292 int runnable_avg;
2293
2294 u64 contrib;
2295
2296 contrib = cfs_rq->tg_load_contrib * tg->shares;
2297 se->avg.load_avg_contrib = div_u64(contrib,
2298 atomic_long_read(&tg->load_avg) + 1);
2299
2300 /*
2301 * For group entities we need to compute a correction term in the case
2302 * that they are consuming <1 cpu so that we would contribute the same
2303 * load as a task of equal weight.
2304 *
2305 * Explicitly co-ordinating this measurement would be expensive, but
2306 * fortunately the sum of each cpus contribution forms a usable
2307 * lower-bound on the true value.
2308 *
2309 * Consider the aggregate of 2 contributions. Either they are disjoint
2310 * (and the sum represents true value) or they are disjoint and we are
2311 * understating by the aggregate of their overlap.
2312 *
2313 * Extending this to N cpus, for a given overlap, the maximum amount we
2314 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2315 * cpus that overlap for this interval and w_i is the interval width.
2316 *
2317 * On a small machine; the first term is well-bounded which bounds the
2318 * total error since w_i is a subset of the period. Whereas on a
2319 * larger machine, while this first term can be larger, if w_i is the
2320 * of consequential size guaranteed to see n_i*w_i quickly converge to
2321 * our upper bound of 1-cpu.
2322 */
2323 runnable_avg = atomic_read(&tg->runnable_avg);
2324 if (runnable_avg < NICE_0_LOAD) {
2325 se->avg.load_avg_contrib *= runnable_avg;
2326 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2327 }
2328 }
2329 #else
2330 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2331 int force_update) {}
2332 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2333 struct cfs_rq *cfs_rq) {}
2334 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2335 #endif
2336
2337 static inline void __update_task_entity_contrib(struct sched_entity *se)
2338 {
2339 u32 contrib;
2340
2341 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2342 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2343 contrib /= (se->avg.runnable_avg_period + 1);
2344 se->avg.load_avg_contrib = scale_load(contrib);
2345 }
2346
2347 /* Compute the current contribution to load_avg by se, return any delta */
2348 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2349 {
2350 long old_contrib = se->avg.load_avg_contrib;
2351
2352 if (entity_is_task(se)) {
2353 __update_task_entity_contrib(se);
2354 } else {
2355 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2356 __update_group_entity_contrib(se);
2357 }
2358
2359 return se->avg.load_avg_contrib - old_contrib;
2360 }
2361
2362 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2363 long load_contrib)
2364 {
2365 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2366 cfs_rq->blocked_load_avg -= load_contrib;
2367 else
2368 cfs_rq->blocked_load_avg = 0;
2369 }
2370
2371 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2372
2373 /* Update a sched_entity's runnable average */
2374 static inline void update_entity_load_avg(struct sched_entity *se,
2375 int update_cfs_rq)
2376 {
2377 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2378 long contrib_delta;
2379 u64 now;
2380
2381 /*
2382 * For a group entity we need to use their owned cfs_rq_clock_task() in
2383 * case they are the parent of a throttled hierarchy.
2384 */
2385 if (entity_is_task(se))
2386 now = cfs_rq_clock_task(cfs_rq);
2387 else
2388 now = cfs_rq_clock_task(group_cfs_rq(se));
2389
2390 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2391 return;
2392
2393 contrib_delta = __update_entity_load_avg_contrib(se);
2394
2395 if (!update_cfs_rq)
2396 return;
2397
2398 if (se->on_rq)
2399 cfs_rq->runnable_load_avg += contrib_delta;
2400 else
2401 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2402 }
2403
2404 /*
2405 * Decay the load contributed by all blocked children and account this so that
2406 * their contribution may appropriately discounted when they wake up.
2407 */
2408 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2409 {
2410 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2411 u64 decays;
2412
2413 decays = now - cfs_rq->last_decay;
2414 if (!decays && !force_update)
2415 return;
2416
2417 if (atomic_long_read(&cfs_rq->removed_load)) {
2418 unsigned long removed_load;
2419 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2420 subtract_blocked_load_contrib(cfs_rq, removed_load);
2421 }
2422
2423 if (decays) {
2424 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2425 decays);
2426 atomic64_add(decays, &cfs_rq->decay_counter);
2427 cfs_rq->last_decay = now;
2428 }
2429
2430 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2431 }
2432
2433 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2434 {
2435 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2436 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2437 }
2438
2439 /* Add the load generated by se into cfs_rq's child load-average */
2440 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2441 struct sched_entity *se,
2442 int wakeup)
2443 {
2444 /*
2445 * We track migrations using entity decay_count <= 0, on a wake-up
2446 * migration we use a negative decay count to track the remote decays
2447 * accumulated while sleeping.
2448 *
2449 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2450 * are seen by enqueue_entity_load_avg() as a migration with an already
2451 * constructed load_avg_contrib.
2452 */
2453 if (unlikely(se->avg.decay_count <= 0)) {
2454 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2455 if (se->avg.decay_count) {
2456 /*
2457 * In a wake-up migration we have to approximate the
2458 * time sleeping. This is because we can't synchronize
2459 * clock_task between the two cpus, and it is not
2460 * guaranteed to be read-safe. Instead, we can
2461 * approximate this using our carried decays, which are
2462 * explicitly atomically readable.
2463 */
2464 se->avg.last_runnable_update -= (-se->avg.decay_count)
2465 << 20;
2466 update_entity_load_avg(se, 0);
2467 /* Indicate that we're now synchronized and on-rq */
2468 se->avg.decay_count = 0;
2469 }
2470 wakeup = 0;
2471 } else {
2472 __synchronize_entity_decay(se);
2473 }
2474
2475 /* migrated tasks did not contribute to our blocked load */
2476 if (wakeup) {
2477 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2478 update_entity_load_avg(se, 0);
2479 }
2480
2481 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2482 /* we force update consideration on load-balancer moves */
2483 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2484 }
2485
2486 /*
2487 * Remove se's load from this cfs_rq child load-average, if the entity is
2488 * transitioning to a blocked state we track its projected decay using
2489 * blocked_load_avg.
2490 */
2491 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2492 struct sched_entity *se,
2493 int sleep)
2494 {
2495 update_entity_load_avg(se, 1);
2496 /* we force update consideration on load-balancer moves */
2497 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2498
2499 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2500 if (sleep) {
2501 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2502 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2503 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2504 }
2505
2506 /*
2507 * Update the rq's load with the elapsed running time before entering
2508 * idle. if the last scheduled task is not a CFS task, idle_enter will
2509 * be the only way to update the runnable statistic.
2510 */
2511 void idle_enter_fair(struct rq *this_rq)
2512 {
2513 update_rq_runnable_avg(this_rq, 1);
2514 }
2515
2516 /*
2517 * Update the rq's load with the elapsed idle time before a task is
2518 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2519 * be the only way to update the runnable statistic.
2520 */
2521 void idle_exit_fair(struct rq *this_rq)
2522 {
2523 update_rq_runnable_avg(this_rq, 0);
2524 }
2525
2526 #else
2527 static inline void update_entity_load_avg(struct sched_entity *se,
2528 int update_cfs_rq) {}
2529 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2530 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2531 struct sched_entity *se,
2532 int wakeup) {}
2533 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2534 struct sched_entity *se,
2535 int sleep) {}
2536 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2537 int force_update) {}
2538 #endif
2539
2540 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2541 {
2542 #ifdef CONFIG_SCHEDSTATS
2543 struct task_struct *tsk = NULL;
2544
2545 if (entity_is_task(se))
2546 tsk = task_of(se);
2547
2548 if (se->statistics.sleep_start) {
2549 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2550
2551 if ((s64)delta < 0)
2552 delta = 0;
2553
2554 if (unlikely(delta > se->statistics.sleep_max))
2555 se->statistics.sleep_max = delta;
2556
2557 se->statistics.sleep_start = 0;
2558 se->statistics.sum_sleep_runtime += delta;
2559
2560 if (tsk) {
2561 account_scheduler_latency(tsk, delta >> 10, 1);
2562 trace_sched_stat_sleep(tsk, delta);
2563 }
2564 }
2565 if (se->statistics.block_start) {
2566 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2567
2568 if ((s64)delta < 0)
2569 delta = 0;
2570
2571 if (unlikely(delta > se->statistics.block_max))
2572 se->statistics.block_max = delta;
2573
2574 se->statistics.block_start = 0;
2575 se->statistics.sum_sleep_runtime += delta;
2576
2577 if (tsk) {
2578 if (tsk->in_iowait) {
2579 se->statistics.iowait_sum += delta;
2580 se->statistics.iowait_count++;
2581 trace_sched_stat_iowait(tsk, delta);
2582 }
2583
2584 trace_sched_stat_blocked(tsk, delta);
2585
2586 /*
2587 * Blocking time is in units of nanosecs, so shift by
2588 * 20 to get a milliseconds-range estimation of the
2589 * amount of time that the task spent sleeping:
2590 */
2591 if (unlikely(prof_on == SLEEP_PROFILING)) {
2592 profile_hits(SLEEP_PROFILING,
2593 (void *)get_wchan(tsk),
2594 delta >> 20);
2595 }
2596 account_scheduler_latency(tsk, delta >> 10, 0);
2597 }
2598 }
2599 #endif
2600 }
2601
2602 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2603 {
2604 #ifdef CONFIG_SCHED_DEBUG
2605 s64 d = se->vruntime - cfs_rq->min_vruntime;
2606
2607 if (d < 0)
2608 d = -d;
2609
2610 if (d > 3*sysctl_sched_latency)
2611 schedstat_inc(cfs_rq, nr_spread_over);
2612 #endif
2613 }
2614
2615 static void
2616 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2617 {
2618 u64 vruntime = cfs_rq->min_vruntime;
2619
2620 /*
2621 * The 'current' period is already promised to the current tasks,
2622 * however the extra weight of the new task will slow them down a
2623 * little, place the new task so that it fits in the slot that
2624 * stays open at the end.
2625 */
2626 if (initial && sched_feat(START_DEBIT))
2627 vruntime += sched_vslice(cfs_rq, se);
2628
2629 /* sleeps up to a single latency don't count. */
2630 if (!initial) {
2631 unsigned long thresh = sysctl_sched_latency;
2632
2633 /*
2634 * Halve their sleep time's effect, to allow
2635 * for a gentler effect of sleepers:
2636 */
2637 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2638 thresh >>= 1;
2639
2640 vruntime -= thresh;
2641 }
2642
2643 /* ensure we never gain time by being placed backwards. */
2644 se->vruntime = max_vruntime(se->vruntime, vruntime);
2645 }
2646
2647 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2648
2649 static void
2650 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2651 {
2652 /*
2653 * Update the normalized vruntime before updating min_vruntime
2654 * through calling update_curr().
2655 */
2656 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2657 se->vruntime += cfs_rq->min_vruntime;
2658
2659 /*
2660 * Update run-time statistics of the 'current'.
2661 */
2662 update_curr(cfs_rq);
2663 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2664 account_entity_enqueue(cfs_rq, se);
2665 update_cfs_shares(cfs_rq);
2666
2667 if (flags & ENQUEUE_WAKEUP) {
2668 place_entity(cfs_rq, se, 0);
2669 enqueue_sleeper(cfs_rq, se);
2670 }
2671
2672 update_stats_enqueue(cfs_rq, se);
2673 check_spread(cfs_rq, se);
2674 if (se != cfs_rq->curr)
2675 __enqueue_entity(cfs_rq, se);
2676 se->on_rq = 1;
2677
2678 if (cfs_rq->nr_running == 1) {
2679 list_add_leaf_cfs_rq(cfs_rq);
2680 check_enqueue_throttle(cfs_rq);
2681 }
2682 }
2683
2684 static void __clear_buddies_last(struct sched_entity *se)
2685 {
2686 for_each_sched_entity(se) {
2687 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2688 if (cfs_rq->last == se)
2689 cfs_rq->last = NULL;
2690 else
2691 break;
2692 }
2693 }
2694
2695 static void __clear_buddies_next(struct sched_entity *se)
2696 {
2697 for_each_sched_entity(se) {
2698 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2699 if (cfs_rq->next == se)
2700 cfs_rq->next = NULL;
2701 else
2702 break;
2703 }
2704 }
2705
2706 static void __clear_buddies_skip(struct sched_entity *se)
2707 {
2708 for_each_sched_entity(se) {
2709 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2710 if (cfs_rq->skip == se)
2711 cfs_rq->skip = NULL;
2712 else
2713 break;
2714 }
2715 }
2716
2717 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2718 {
2719 if (cfs_rq->last == se)
2720 __clear_buddies_last(se);
2721
2722 if (cfs_rq->next == se)
2723 __clear_buddies_next(se);
2724
2725 if (cfs_rq->skip == se)
2726 __clear_buddies_skip(se);
2727 }
2728
2729 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2730
2731 static void
2732 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2733 {
2734 /*
2735 * Update run-time statistics of the 'current'.
2736 */
2737 update_curr(cfs_rq);
2738 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2739
2740 update_stats_dequeue(cfs_rq, se);
2741 if (flags & DEQUEUE_SLEEP) {
2742 #ifdef CONFIG_SCHEDSTATS
2743 if (entity_is_task(se)) {
2744 struct task_struct *tsk = task_of(se);
2745
2746 if (tsk->state & TASK_INTERRUPTIBLE)
2747 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2748 if (tsk->state & TASK_UNINTERRUPTIBLE)
2749 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2750 }
2751 #endif
2752 }
2753
2754 clear_buddies(cfs_rq, se);
2755
2756 if (se != cfs_rq->curr)
2757 __dequeue_entity(cfs_rq, se);
2758 se->on_rq = 0;
2759 account_entity_dequeue(cfs_rq, se);
2760
2761 /*
2762 * Normalize the entity after updating the min_vruntime because the
2763 * update can refer to the ->curr item and we need to reflect this
2764 * movement in our normalized position.
2765 */
2766 if (!(flags & DEQUEUE_SLEEP))
2767 se->vruntime -= cfs_rq->min_vruntime;
2768
2769 /* return excess runtime on last dequeue */
2770 return_cfs_rq_runtime(cfs_rq);
2771
2772 update_min_vruntime(cfs_rq);
2773 update_cfs_shares(cfs_rq);
2774 }
2775
2776 /*
2777 * Preempt the current task with a newly woken task if needed:
2778 */
2779 static void
2780 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2781 {
2782 unsigned long ideal_runtime, delta_exec;
2783 struct sched_entity *se;
2784 s64 delta;
2785
2786 ideal_runtime = sched_slice(cfs_rq, curr);
2787 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2788 if (delta_exec > ideal_runtime) {
2789 resched_task(rq_of(cfs_rq)->curr);
2790 /*
2791 * The current task ran long enough, ensure it doesn't get
2792 * re-elected due to buddy favours.
2793 */
2794 clear_buddies(cfs_rq, curr);
2795 return;
2796 }
2797
2798 /*
2799 * Ensure that a task that missed wakeup preemption by a
2800 * narrow margin doesn't have to wait for a full slice.
2801 * This also mitigates buddy induced latencies under load.
2802 */
2803 if (delta_exec < sysctl_sched_min_granularity)
2804 return;
2805
2806 se = __pick_first_entity(cfs_rq);
2807 delta = curr->vruntime - se->vruntime;
2808
2809 if (delta < 0)
2810 return;
2811
2812 if (delta > ideal_runtime)
2813 resched_task(rq_of(cfs_rq)->curr);
2814 }
2815
2816 static void
2817 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2818 {
2819 /* 'current' is not kept within the tree. */
2820 if (se->on_rq) {
2821 /*
2822 * Any task has to be enqueued before it get to execute on
2823 * a CPU. So account for the time it spent waiting on the
2824 * runqueue.
2825 */
2826 update_stats_wait_end(cfs_rq, se);
2827 __dequeue_entity(cfs_rq, se);
2828 }
2829
2830 update_stats_curr_start(cfs_rq, se);
2831 cfs_rq->curr = se;
2832 #ifdef CONFIG_SCHEDSTATS
2833 /*
2834 * Track our maximum slice length, if the CPU's load is at
2835 * least twice that of our own weight (i.e. dont track it
2836 * when there are only lesser-weight tasks around):
2837 */
2838 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2839 se->statistics.slice_max = max(se->statistics.slice_max,
2840 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2841 }
2842 #endif
2843 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2844 }
2845
2846 static int
2847 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2848
2849 /*
2850 * Pick the next process, keeping these things in mind, in this order:
2851 * 1) keep things fair between processes/task groups
2852 * 2) pick the "next" process, since someone really wants that to run
2853 * 3) pick the "last" process, for cache locality
2854 * 4) do not run the "skip" process, if something else is available
2855 */
2856 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2857 {
2858 struct sched_entity *se = __pick_first_entity(cfs_rq);
2859 struct sched_entity *left = se;
2860
2861 /*
2862 * Avoid running the skip buddy, if running something else can
2863 * be done without getting too unfair.
2864 */
2865 if (cfs_rq->skip == se) {
2866 struct sched_entity *second = __pick_next_entity(se);
2867 if (second && wakeup_preempt_entity(second, left) < 1)
2868 se = second;
2869 }
2870
2871 /*
2872 * Prefer last buddy, try to return the CPU to a preempted task.
2873 */
2874 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2875 se = cfs_rq->last;
2876
2877 /*
2878 * Someone really wants this to run. If it's not unfair, run it.
2879 */
2880 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2881 se = cfs_rq->next;
2882
2883 clear_buddies(cfs_rq, se);
2884
2885 return se;
2886 }
2887
2888 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2889
2890 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2891 {
2892 /*
2893 * If still on the runqueue then deactivate_task()
2894 * was not called and update_curr() has to be done:
2895 */
2896 if (prev->on_rq)
2897 update_curr(cfs_rq);
2898
2899 /* throttle cfs_rqs exceeding runtime */
2900 check_cfs_rq_runtime(cfs_rq);
2901
2902 check_spread(cfs_rq, prev);
2903 if (prev->on_rq) {
2904 update_stats_wait_start(cfs_rq, prev);
2905 /* Put 'current' back into the tree. */
2906 __enqueue_entity(cfs_rq, prev);
2907 /* in !on_rq case, update occurred at dequeue */
2908 update_entity_load_avg(prev, 1);
2909 }
2910 cfs_rq->curr = NULL;
2911 }
2912
2913 static void
2914 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2915 {
2916 /*
2917 * Update run-time statistics of the 'current'.
2918 */
2919 update_curr(cfs_rq);
2920
2921 /*
2922 * Ensure that runnable average is periodically updated.
2923 */
2924 update_entity_load_avg(curr, 1);
2925 update_cfs_rq_blocked_load(cfs_rq, 1);
2926 update_cfs_shares(cfs_rq);
2927
2928 #ifdef CONFIG_SCHED_HRTICK
2929 /*
2930 * queued ticks are scheduled to match the slice, so don't bother
2931 * validating it and just reschedule.
2932 */
2933 if (queued) {
2934 resched_task(rq_of(cfs_rq)->curr);
2935 return;
2936 }
2937 /*
2938 * don't let the period tick interfere with the hrtick preemption
2939 */
2940 if (!sched_feat(DOUBLE_TICK) &&
2941 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2942 return;
2943 #endif
2944
2945 if (cfs_rq->nr_running > 1)
2946 check_preempt_tick(cfs_rq, curr);
2947 }
2948
2949
2950 /**************************************************
2951 * CFS bandwidth control machinery
2952 */
2953
2954 #ifdef CONFIG_CFS_BANDWIDTH
2955
2956 #ifdef HAVE_JUMP_LABEL
2957 static struct static_key __cfs_bandwidth_used;
2958
2959 static inline bool cfs_bandwidth_used(void)
2960 {
2961 return static_key_false(&__cfs_bandwidth_used);
2962 }
2963
2964 void cfs_bandwidth_usage_inc(void)
2965 {
2966 static_key_slow_inc(&__cfs_bandwidth_used);
2967 }
2968
2969 void cfs_bandwidth_usage_dec(void)
2970 {
2971 static_key_slow_dec(&__cfs_bandwidth_used);
2972 }
2973 #else /* HAVE_JUMP_LABEL */
2974 static bool cfs_bandwidth_used(void)
2975 {
2976 return true;
2977 }
2978
2979 void cfs_bandwidth_usage_inc(void) {}
2980 void cfs_bandwidth_usage_dec(void) {}
2981 #endif /* HAVE_JUMP_LABEL */
2982
2983 /*
2984 * default period for cfs group bandwidth.
2985 * default: 0.1s, units: nanoseconds
2986 */
2987 static inline u64 default_cfs_period(void)
2988 {
2989 return 100000000ULL;
2990 }
2991
2992 static inline u64 sched_cfs_bandwidth_slice(void)
2993 {
2994 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2995 }
2996
2997 /*
2998 * Replenish runtime according to assigned quota and update expiration time.
2999 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3000 * additional synchronization around rq->lock.
3001 *
3002 * requires cfs_b->lock
3003 */
3004 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3005 {
3006 u64 now;
3007
3008 if (cfs_b->quota == RUNTIME_INF)
3009 return;
3010
3011 now = sched_clock_cpu(smp_processor_id());
3012 cfs_b->runtime = cfs_b->quota;
3013 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3014 }
3015
3016 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3017 {
3018 return &tg->cfs_bandwidth;
3019 }
3020
3021 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3022 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3023 {
3024 if (unlikely(cfs_rq->throttle_count))
3025 return cfs_rq->throttled_clock_task;
3026
3027 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3028 }
3029
3030 /* returns 0 on failure to allocate runtime */
3031 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3032 {
3033 struct task_group *tg = cfs_rq->tg;
3034 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3035 u64 amount = 0, min_amount, expires;
3036
3037 /* note: this is a positive sum as runtime_remaining <= 0 */
3038 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3039
3040 raw_spin_lock(&cfs_b->lock);
3041 if (cfs_b->quota == RUNTIME_INF)
3042 amount = min_amount;
3043 else {
3044 /*
3045 * If the bandwidth pool has become inactive, then at least one
3046 * period must have elapsed since the last consumption.
3047 * Refresh the global state and ensure bandwidth timer becomes
3048 * active.
3049 */
3050 if (!cfs_b->timer_active) {
3051 __refill_cfs_bandwidth_runtime(cfs_b);
3052 __start_cfs_bandwidth(cfs_b);
3053 }
3054
3055 if (cfs_b->runtime > 0) {
3056 amount = min(cfs_b->runtime, min_amount);
3057 cfs_b->runtime -= amount;
3058 cfs_b->idle = 0;
3059 }
3060 }
3061 expires = cfs_b->runtime_expires;
3062 raw_spin_unlock(&cfs_b->lock);
3063
3064 cfs_rq->runtime_remaining += amount;
3065 /*
3066 * we may have advanced our local expiration to account for allowed
3067 * spread between our sched_clock and the one on which runtime was
3068 * issued.
3069 */
3070 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3071 cfs_rq->runtime_expires = expires;
3072
3073 return cfs_rq->runtime_remaining > 0;
3074 }
3075
3076 /*
3077 * Note: This depends on the synchronization provided by sched_clock and the
3078 * fact that rq->clock snapshots this value.
3079 */
3080 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3081 {
3082 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3083
3084 /* if the deadline is ahead of our clock, nothing to do */
3085 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3086 return;
3087
3088 if (cfs_rq->runtime_remaining < 0)
3089 return;
3090
3091 /*
3092 * If the local deadline has passed we have to consider the
3093 * possibility that our sched_clock is 'fast' and the global deadline
3094 * has not truly expired.
3095 *
3096 * Fortunately we can check determine whether this the case by checking
3097 * whether the global deadline has advanced.
3098 */
3099
3100 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3101 /* extend local deadline, drift is bounded above by 2 ticks */
3102 cfs_rq->runtime_expires += TICK_NSEC;
3103 } else {
3104 /* global deadline is ahead, expiration has passed */
3105 cfs_rq->runtime_remaining = 0;
3106 }
3107 }
3108
3109 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3110 {
3111 /* dock delta_exec before expiring quota (as it could span periods) */
3112 cfs_rq->runtime_remaining -= delta_exec;
3113 expire_cfs_rq_runtime(cfs_rq);
3114
3115 if (likely(cfs_rq->runtime_remaining > 0))
3116 return;
3117
3118 /*
3119 * if we're unable to extend our runtime we resched so that the active
3120 * hierarchy can be throttled
3121 */
3122 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3123 resched_task(rq_of(cfs_rq)->curr);
3124 }
3125
3126 static __always_inline
3127 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3128 {
3129 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3130 return;
3131
3132 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3133 }
3134
3135 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3136 {
3137 return cfs_bandwidth_used() && cfs_rq->throttled;
3138 }
3139
3140 /* check whether cfs_rq, or any parent, is throttled */
3141 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3142 {
3143 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3144 }
3145
3146 /*
3147 * Ensure that neither of the group entities corresponding to src_cpu or
3148 * dest_cpu are members of a throttled hierarchy when performing group
3149 * load-balance operations.
3150 */
3151 static inline int throttled_lb_pair(struct task_group *tg,
3152 int src_cpu, int dest_cpu)
3153 {
3154 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3155
3156 src_cfs_rq = tg->cfs_rq[src_cpu];
3157 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3158
3159 return throttled_hierarchy(src_cfs_rq) ||
3160 throttled_hierarchy(dest_cfs_rq);
3161 }
3162
3163 /* updated child weight may affect parent so we have to do this bottom up */
3164 static int tg_unthrottle_up(struct task_group *tg, void *data)
3165 {
3166 struct rq *rq = data;
3167 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3168
3169 cfs_rq->throttle_count--;
3170 #ifdef CONFIG_SMP
3171 if (!cfs_rq->throttle_count) {
3172 /* adjust cfs_rq_clock_task() */
3173 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3174 cfs_rq->throttled_clock_task;
3175 }
3176 #endif
3177
3178 return 0;
3179 }
3180
3181 static int tg_throttle_down(struct task_group *tg, void *data)
3182 {
3183 struct rq *rq = data;
3184 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3185
3186 /* group is entering throttled state, stop time */
3187 if (!cfs_rq->throttle_count)
3188 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3189 cfs_rq->throttle_count++;
3190
3191 return 0;
3192 }
3193
3194 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3195 {
3196 struct rq *rq = rq_of(cfs_rq);
3197 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3198 struct sched_entity *se;
3199 long task_delta, dequeue = 1;
3200
3201 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3202
3203 /* freeze hierarchy runnable averages while throttled */
3204 rcu_read_lock();
3205 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3206 rcu_read_unlock();
3207
3208 task_delta = cfs_rq->h_nr_running;
3209 for_each_sched_entity(se) {
3210 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3211 /* throttled entity or throttle-on-deactivate */
3212 if (!se->on_rq)
3213 break;
3214
3215 if (dequeue)
3216 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3217 qcfs_rq->h_nr_running -= task_delta;
3218
3219 if (qcfs_rq->load.weight)
3220 dequeue = 0;
3221 }
3222
3223 if (!se)
3224 rq->nr_running -= task_delta;
3225
3226 cfs_rq->throttled = 1;
3227 cfs_rq->throttled_clock = rq_clock(rq);
3228 raw_spin_lock(&cfs_b->lock);
3229 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3230 if (!cfs_b->timer_active)
3231 __start_cfs_bandwidth(cfs_b);
3232 raw_spin_unlock(&cfs_b->lock);
3233 }
3234
3235 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3236 {
3237 struct rq *rq = rq_of(cfs_rq);
3238 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3239 struct sched_entity *se;
3240 int enqueue = 1;
3241 long task_delta;
3242
3243 se = cfs_rq->tg->se[cpu_of(rq)];
3244
3245 cfs_rq->throttled = 0;
3246
3247 update_rq_clock(rq);
3248
3249 raw_spin_lock(&cfs_b->lock);
3250 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3251 list_del_rcu(&cfs_rq->throttled_list);
3252 raw_spin_unlock(&cfs_b->lock);
3253
3254 /* update hierarchical throttle state */
3255 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3256
3257 if (!cfs_rq->load.weight)
3258 return;
3259
3260 task_delta = cfs_rq->h_nr_running;
3261 for_each_sched_entity(se) {
3262 if (se->on_rq)
3263 enqueue = 0;
3264
3265 cfs_rq = cfs_rq_of(se);
3266 if (enqueue)
3267 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3268 cfs_rq->h_nr_running += task_delta;
3269
3270 if (cfs_rq_throttled(cfs_rq))
3271 break;
3272 }
3273
3274 if (!se)
3275 rq->nr_running += task_delta;
3276
3277 /* determine whether we need to wake up potentially idle cpu */
3278 if (rq->curr == rq->idle && rq->cfs.nr_running)
3279 resched_task(rq->curr);
3280 }
3281
3282 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3283 u64 remaining, u64 expires)
3284 {
3285 struct cfs_rq *cfs_rq;
3286 u64 runtime = remaining;
3287
3288 rcu_read_lock();
3289 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3290 throttled_list) {
3291 struct rq *rq = rq_of(cfs_rq);
3292
3293 raw_spin_lock(&rq->lock);
3294 if (!cfs_rq_throttled(cfs_rq))
3295 goto next;
3296
3297 runtime = -cfs_rq->runtime_remaining + 1;
3298 if (runtime > remaining)
3299 runtime = remaining;
3300 remaining -= runtime;
3301
3302 cfs_rq->runtime_remaining += runtime;
3303 cfs_rq->runtime_expires = expires;
3304
3305 /* we check whether we're throttled above */
3306 if (cfs_rq->runtime_remaining > 0)
3307 unthrottle_cfs_rq(cfs_rq);
3308
3309 next:
3310 raw_spin_unlock(&rq->lock);
3311
3312 if (!remaining)
3313 break;
3314 }
3315 rcu_read_unlock();
3316
3317 return remaining;
3318 }
3319
3320 /*
3321 * Responsible for refilling a task_group's bandwidth and unthrottling its
3322 * cfs_rqs as appropriate. If there has been no activity within the last
3323 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3324 * used to track this state.
3325 */
3326 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3327 {
3328 u64 runtime, runtime_expires;
3329 int idle = 1, throttled;
3330
3331 raw_spin_lock(&cfs_b->lock);
3332 /* no need to continue the timer with no bandwidth constraint */
3333 if (cfs_b->quota == RUNTIME_INF)
3334 goto out_unlock;
3335
3336 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3337 /* idle depends on !throttled (for the case of a large deficit) */
3338 idle = cfs_b->idle && !throttled;
3339 cfs_b->nr_periods += overrun;
3340
3341 /* if we're going inactive then everything else can be deferred */
3342 if (idle)
3343 goto out_unlock;
3344
3345 /*
3346 * if we have relooped after returning idle once, we need to update our
3347 * status as actually running, so that other cpus doing
3348 * __start_cfs_bandwidth will stop trying to cancel us.
3349 */
3350 cfs_b->timer_active = 1;
3351
3352 __refill_cfs_bandwidth_runtime(cfs_b);
3353
3354 if (!throttled) {
3355 /* mark as potentially idle for the upcoming period */
3356 cfs_b->idle = 1;
3357 goto out_unlock;
3358 }
3359
3360 /* account preceding periods in which throttling occurred */
3361 cfs_b->nr_throttled += overrun;
3362
3363 /*
3364 * There are throttled entities so we must first use the new bandwidth
3365 * to unthrottle them before making it generally available. This
3366 * ensures that all existing debts will be paid before a new cfs_rq is
3367 * allowed to run.
3368 */
3369 runtime = cfs_b->runtime;
3370 runtime_expires = cfs_b->runtime_expires;
3371 cfs_b->runtime = 0;
3372
3373 /*
3374 * This check is repeated as we are holding onto the new bandwidth
3375 * while we unthrottle. This can potentially race with an unthrottled
3376 * group trying to acquire new bandwidth from the global pool.
3377 */
3378 while (throttled && runtime > 0) {
3379 raw_spin_unlock(&cfs_b->lock);
3380 /* we can't nest cfs_b->lock while distributing bandwidth */
3381 runtime = distribute_cfs_runtime(cfs_b, runtime,
3382 runtime_expires);
3383 raw_spin_lock(&cfs_b->lock);
3384
3385 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3386 }
3387
3388 /* return (any) remaining runtime */
3389 cfs_b->runtime = runtime;
3390 /*
3391 * While we are ensured activity in the period following an
3392 * unthrottle, this also covers the case in which the new bandwidth is
3393 * insufficient to cover the existing bandwidth deficit. (Forcing the
3394 * timer to remain active while there are any throttled entities.)
3395 */
3396 cfs_b->idle = 0;
3397 out_unlock:
3398 if (idle)
3399 cfs_b->timer_active = 0;
3400 raw_spin_unlock(&cfs_b->lock);
3401
3402 return idle;
3403 }
3404
3405 /* a cfs_rq won't donate quota below this amount */
3406 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3407 /* minimum remaining period time to redistribute slack quota */
3408 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3409 /* how long we wait to gather additional slack before distributing */
3410 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3411
3412 /*
3413 * Are we near the end of the current quota period?
3414 *
3415 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3416 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3417 * migrate_hrtimers, base is never cleared, so we are fine.
3418 */
3419 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3420 {
3421 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3422 u64 remaining;
3423
3424 /* if the call-back is running a quota refresh is already occurring */
3425 if (hrtimer_callback_running(refresh_timer))
3426 return 1;
3427
3428 /* is a quota refresh about to occur? */
3429 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3430 if (remaining < min_expire)
3431 return 1;
3432
3433 return 0;
3434 }
3435
3436 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3437 {
3438 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3439
3440 /* if there's a quota refresh soon don't bother with slack */
3441 if (runtime_refresh_within(cfs_b, min_left))
3442 return;
3443
3444 start_bandwidth_timer(&cfs_b->slack_timer,
3445 ns_to_ktime(cfs_bandwidth_slack_period));
3446 }
3447
3448 /* we know any runtime found here is valid as update_curr() precedes return */
3449 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3450 {
3451 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3452 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3453
3454 if (slack_runtime <= 0)
3455 return;
3456
3457 raw_spin_lock(&cfs_b->lock);
3458 if (cfs_b->quota != RUNTIME_INF &&
3459 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3460 cfs_b->runtime += slack_runtime;
3461
3462 /* we are under rq->lock, defer unthrottling using a timer */
3463 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3464 !list_empty(&cfs_b->throttled_cfs_rq))
3465 start_cfs_slack_bandwidth(cfs_b);
3466 }
3467 raw_spin_unlock(&cfs_b->lock);
3468
3469 /* even if it's not valid for return we don't want to try again */
3470 cfs_rq->runtime_remaining -= slack_runtime;
3471 }
3472
3473 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3474 {
3475 if (!cfs_bandwidth_used())
3476 return;
3477
3478 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3479 return;
3480
3481 __return_cfs_rq_runtime(cfs_rq);
3482 }
3483
3484 /*
3485 * This is done with a timer (instead of inline with bandwidth return) since
3486 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3487 */
3488 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3489 {
3490 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3491 u64 expires;
3492
3493 /* confirm we're still not at a refresh boundary */
3494 raw_spin_lock(&cfs_b->lock);
3495 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3496 raw_spin_unlock(&cfs_b->lock);
3497 return;
3498 }
3499
3500 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3501 runtime = cfs_b->runtime;
3502 cfs_b->runtime = 0;
3503 }
3504 expires = cfs_b->runtime_expires;
3505 raw_spin_unlock(&cfs_b->lock);
3506
3507 if (!runtime)
3508 return;
3509
3510 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3511
3512 raw_spin_lock(&cfs_b->lock);
3513 if (expires == cfs_b->runtime_expires)
3514 cfs_b->runtime = runtime;
3515 raw_spin_unlock(&cfs_b->lock);
3516 }
3517
3518 /*
3519 * When a group wakes up we want to make sure that its quota is not already
3520 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3521 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3522 */
3523 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3524 {
3525 if (!cfs_bandwidth_used())
3526 return;
3527
3528 /* an active group must be handled by the update_curr()->put() path */
3529 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3530 return;
3531
3532 /* ensure the group is not already throttled */
3533 if (cfs_rq_throttled(cfs_rq))
3534 return;
3535
3536 /* update runtime allocation */
3537 account_cfs_rq_runtime(cfs_rq, 0);
3538 if (cfs_rq->runtime_remaining <= 0)
3539 throttle_cfs_rq(cfs_rq);
3540 }
3541
3542 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3543 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3544 {
3545 if (!cfs_bandwidth_used())
3546 return;
3547
3548 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3549 return;
3550
3551 /*
3552 * it's possible for a throttled entity to be forced into a running
3553 * state (e.g. set_curr_task), in this case we're finished.
3554 */
3555 if (cfs_rq_throttled(cfs_rq))
3556 return;
3557
3558 throttle_cfs_rq(cfs_rq);
3559 }
3560
3561 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3562 {
3563 struct cfs_bandwidth *cfs_b =
3564 container_of(timer, struct cfs_bandwidth, slack_timer);
3565 do_sched_cfs_slack_timer(cfs_b);
3566
3567 return HRTIMER_NORESTART;
3568 }
3569
3570 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3571 {
3572 struct cfs_bandwidth *cfs_b =
3573 container_of(timer, struct cfs_bandwidth, period_timer);
3574 ktime_t now;
3575 int overrun;
3576 int idle = 0;
3577
3578 for (;;) {
3579 now = hrtimer_cb_get_time(timer);
3580 overrun = hrtimer_forward(timer, now, cfs_b->period);
3581
3582 if (!overrun)
3583 break;
3584
3585 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3586 }
3587
3588 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3589 }
3590
3591 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3592 {
3593 raw_spin_lock_init(&cfs_b->lock);
3594 cfs_b->runtime = 0;
3595 cfs_b->quota = RUNTIME_INF;
3596 cfs_b->period = ns_to_ktime(default_cfs_period());
3597
3598 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3599 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3600 cfs_b->period_timer.function = sched_cfs_period_timer;
3601 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3602 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3603 }
3604
3605 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3606 {
3607 cfs_rq->runtime_enabled = 0;
3608 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3609 }
3610
3611 /* requires cfs_b->lock, may release to reprogram timer */
3612 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3613 {
3614 /*
3615 * The timer may be active because we're trying to set a new bandwidth
3616 * period or because we're racing with the tear-down path
3617 * (timer_active==0 becomes visible before the hrtimer call-back
3618 * terminates). In either case we ensure that it's re-programmed
3619 */
3620 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3621 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3622 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3623 raw_spin_unlock(&cfs_b->lock);
3624 cpu_relax();
3625 raw_spin_lock(&cfs_b->lock);
3626 /* if someone else restarted the timer then we're done */
3627 if (cfs_b->timer_active)
3628 return;
3629 }
3630
3631 cfs_b->timer_active = 1;
3632 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3633 }
3634
3635 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3636 {
3637 hrtimer_cancel(&cfs_b->period_timer);
3638 hrtimer_cancel(&cfs_b->slack_timer);
3639 }
3640
3641 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3642 {
3643 struct cfs_rq *cfs_rq;
3644
3645 for_each_leaf_cfs_rq(rq, cfs_rq) {
3646 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3647
3648 if (!cfs_rq->runtime_enabled)
3649 continue;
3650
3651 /*
3652 * clock_task is not advancing so we just need to make sure
3653 * there's some valid quota amount
3654 */
3655 cfs_rq->runtime_remaining = cfs_b->quota;
3656 if (cfs_rq_throttled(cfs_rq))
3657 unthrottle_cfs_rq(cfs_rq);
3658 }
3659 }
3660
3661 #else /* CONFIG_CFS_BANDWIDTH */
3662 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3663 {
3664 return rq_clock_task(rq_of(cfs_rq));
3665 }
3666
3667 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3668 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3669 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3670 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3671
3672 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3673 {
3674 return 0;
3675 }
3676
3677 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3678 {
3679 return 0;
3680 }
3681
3682 static inline int throttled_lb_pair(struct task_group *tg,
3683 int src_cpu, int dest_cpu)
3684 {
3685 return 0;
3686 }
3687
3688 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3689
3690 #ifdef CONFIG_FAIR_GROUP_SCHED
3691 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3692 #endif
3693
3694 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3695 {
3696 return NULL;
3697 }
3698 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3699 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3700
3701 #endif /* CONFIG_CFS_BANDWIDTH */
3702
3703 /**************************************************
3704 * CFS operations on tasks:
3705 */
3706
3707 #ifdef CONFIG_SCHED_HRTICK
3708 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3709 {
3710 struct sched_entity *se = &p->se;
3711 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3712
3713 WARN_ON(task_rq(p) != rq);
3714
3715 if (cfs_rq->nr_running > 1) {
3716 u64 slice = sched_slice(cfs_rq, se);
3717 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3718 s64 delta = slice - ran;
3719
3720 if (delta < 0) {
3721 if (rq->curr == p)
3722 resched_task(p);
3723 return;
3724 }
3725
3726 /*
3727 * Don't schedule slices shorter than 10000ns, that just
3728 * doesn't make sense. Rely on vruntime for fairness.
3729 */
3730 if (rq->curr != p)
3731 delta = max_t(s64, 10000LL, delta);
3732
3733 hrtick_start(rq, delta);
3734 }
3735 }
3736
3737 /*
3738 * called from enqueue/dequeue and updates the hrtick when the
3739 * current task is from our class and nr_running is low enough
3740 * to matter.
3741 */
3742 static void hrtick_update(struct rq *rq)
3743 {
3744 struct task_struct *curr = rq->curr;
3745
3746 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3747 return;
3748
3749 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3750 hrtick_start_fair(rq, curr);
3751 }
3752 #else /* !CONFIG_SCHED_HRTICK */
3753 static inline void
3754 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3755 {
3756 }
3757
3758 static inline void hrtick_update(struct rq *rq)
3759 {
3760 }
3761 #endif
3762
3763 /*
3764 * The enqueue_task method is called before nr_running is
3765 * increased. Here we update the fair scheduling stats and
3766 * then put the task into the rbtree:
3767 */
3768 static void
3769 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3770 {
3771 struct cfs_rq *cfs_rq;
3772 struct sched_entity *se = &p->se;
3773
3774 for_each_sched_entity(se) {
3775 if (se->on_rq)
3776 break;
3777 cfs_rq = cfs_rq_of(se);
3778 enqueue_entity(cfs_rq, se, flags);
3779
3780 /*
3781 * end evaluation on encountering a throttled cfs_rq
3782 *
3783 * note: in the case of encountering a throttled cfs_rq we will
3784 * post the final h_nr_running increment below.
3785 */
3786 if (cfs_rq_throttled(cfs_rq))
3787 break;
3788 cfs_rq->h_nr_running++;
3789
3790 flags = ENQUEUE_WAKEUP;
3791 }
3792
3793 for_each_sched_entity(se) {
3794 cfs_rq = cfs_rq_of(se);
3795 cfs_rq->h_nr_running++;
3796
3797 if (cfs_rq_throttled(cfs_rq))
3798 break;
3799
3800 update_cfs_shares(cfs_rq);
3801 update_entity_load_avg(se, 1);
3802 }
3803
3804 if (!se) {
3805 update_rq_runnable_avg(rq, rq->nr_running);
3806 inc_nr_running(rq);
3807 }
3808 hrtick_update(rq);
3809 }
3810
3811 static void set_next_buddy(struct sched_entity *se);
3812
3813 /*
3814 * The dequeue_task method is called before nr_running is
3815 * decreased. We remove the task from the rbtree and
3816 * update the fair scheduling stats:
3817 */
3818 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3819 {
3820 struct cfs_rq *cfs_rq;
3821 struct sched_entity *se = &p->se;
3822 int task_sleep = flags & DEQUEUE_SLEEP;
3823
3824 for_each_sched_entity(se) {
3825 cfs_rq = cfs_rq_of(se);
3826 dequeue_entity(cfs_rq, se, flags);
3827
3828 /*
3829 * end evaluation on encountering a throttled cfs_rq
3830 *
3831 * note: in the case of encountering a throttled cfs_rq we will
3832 * post the final h_nr_running decrement below.
3833 */
3834 if (cfs_rq_throttled(cfs_rq))
3835 break;
3836 cfs_rq->h_nr_running--;
3837
3838 /* Don't dequeue parent if it has other entities besides us */
3839 if (cfs_rq->load.weight) {
3840 /*
3841 * Bias pick_next to pick a task from this cfs_rq, as
3842 * p is sleeping when it is within its sched_slice.
3843 */
3844 if (task_sleep && parent_entity(se))
3845 set_next_buddy(parent_entity(se));
3846
3847 /* avoid re-evaluating load for this entity */
3848 se = parent_entity(se);
3849 break;
3850 }
3851 flags |= DEQUEUE_SLEEP;
3852 }
3853
3854 for_each_sched_entity(se) {
3855 cfs_rq = cfs_rq_of(se);
3856 cfs_rq->h_nr_running--;
3857
3858 if (cfs_rq_throttled(cfs_rq))
3859 break;
3860
3861 update_cfs_shares(cfs_rq);
3862 update_entity_load_avg(se, 1);
3863 }
3864
3865 if (!se) {
3866 dec_nr_running(rq);
3867 update_rq_runnable_avg(rq, 1);
3868 }
3869 hrtick_update(rq);
3870 }
3871
3872 #ifdef CONFIG_SMP
3873 /* Used instead of source_load when we know the type == 0 */
3874 static unsigned long weighted_cpuload(const int cpu)
3875 {
3876 return cpu_rq(cpu)->cfs.runnable_load_avg;
3877 }
3878
3879 /*
3880 * Return a low guess at the load of a migration-source cpu weighted
3881 * according to the scheduling class and "nice" value.
3882 *
3883 * We want to under-estimate the load of migration sources, to
3884 * balance conservatively.
3885 */
3886 static unsigned long source_load(int cpu, int type)
3887 {
3888 struct rq *rq = cpu_rq(cpu);
3889 unsigned long total = weighted_cpuload(cpu);
3890
3891 if (type == 0 || !sched_feat(LB_BIAS))
3892 return total;
3893
3894 return min(rq->cpu_load[type-1], total);
3895 }
3896
3897 /*
3898 * Return a high guess at the load of a migration-target cpu weighted
3899 * according to the scheduling class and "nice" value.
3900 */
3901 static unsigned long target_load(int cpu, int type)
3902 {
3903 struct rq *rq = cpu_rq(cpu);
3904 unsigned long total = weighted_cpuload(cpu);
3905
3906 if (type == 0 || !sched_feat(LB_BIAS))
3907 return total;
3908
3909 return max(rq->cpu_load[type-1], total);
3910 }
3911
3912 static unsigned long power_of(int cpu)
3913 {
3914 return cpu_rq(cpu)->cpu_power;
3915 }
3916
3917 static unsigned long cpu_avg_load_per_task(int cpu)
3918 {
3919 struct rq *rq = cpu_rq(cpu);
3920 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3921 unsigned long load_avg = rq->cfs.runnable_load_avg;
3922
3923 if (nr_running)
3924 return load_avg / nr_running;
3925
3926 return 0;
3927 }
3928
3929 static void record_wakee(struct task_struct *p)
3930 {
3931 /*
3932 * Rough decay (wiping) for cost saving, don't worry
3933 * about the boundary, really active task won't care
3934 * about the loss.
3935 */
3936 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3937 current->wakee_flips = 0;
3938 current->wakee_flip_decay_ts = jiffies;
3939 }
3940
3941 if (current->last_wakee != p) {
3942 current->last_wakee = p;
3943 current->wakee_flips++;
3944 }
3945 }
3946
3947 static void task_waking_fair(struct task_struct *p)
3948 {
3949 struct sched_entity *se = &p->se;
3950 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3951 u64 min_vruntime;
3952
3953 #ifndef CONFIG_64BIT
3954 u64 min_vruntime_copy;
3955
3956 do {
3957 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3958 smp_rmb();
3959 min_vruntime = cfs_rq->min_vruntime;
3960 } while (min_vruntime != min_vruntime_copy);
3961 #else
3962 min_vruntime = cfs_rq->min_vruntime;
3963 #endif
3964
3965 se->vruntime -= min_vruntime;
3966 record_wakee(p);
3967 }
3968
3969 #ifdef CONFIG_FAIR_GROUP_SCHED
3970 /*
3971 * effective_load() calculates the load change as seen from the root_task_group
3972 *
3973 * Adding load to a group doesn't make a group heavier, but can cause movement
3974 * of group shares between cpus. Assuming the shares were perfectly aligned one
3975 * can calculate the shift in shares.
3976 *
3977 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3978 * on this @cpu and results in a total addition (subtraction) of @wg to the
3979 * total group weight.
3980 *
3981 * Given a runqueue weight distribution (rw_i) we can compute a shares
3982 * distribution (s_i) using:
3983 *
3984 * s_i = rw_i / \Sum rw_j (1)
3985 *
3986 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3987 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3988 * shares distribution (s_i):
3989 *
3990 * rw_i = { 2, 4, 1, 0 }
3991 * s_i = { 2/7, 4/7, 1/7, 0 }
3992 *
3993 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3994 * task used to run on and the CPU the waker is running on), we need to
3995 * compute the effect of waking a task on either CPU and, in case of a sync
3996 * wakeup, compute the effect of the current task going to sleep.
3997 *
3998 * So for a change of @wl to the local @cpu with an overall group weight change
3999 * of @wl we can compute the new shares distribution (s'_i) using:
4000 *
4001 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4002 *
4003 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4004 * differences in waking a task to CPU 0. The additional task changes the
4005 * weight and shares distributions like:
4006 *
4007 * rw'_i = { 3, 4, 1, 0 }
4008 * s'_i = { 3/8, 4/8, 1/8, 0 }
4009 *
4010 * We can then compute the difference in effective weight by using:
4011 *
4012 * dw_i = S * (s'_i - s_i) (3)
4013 *
4014 * Where 'S' is the group weight as seen by its parent.
4015 *
4016 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4017 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4018 * 4/7) times the weight of the group.
4019 */
4020 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4021 {
4022 struct sched_entity *se = tg->se[cpu];
4023
4024 if (!tg->parent) /* the trivial, non-cgroup case */
4025 return wl;
4026
4027 for_each_sched_entity(se) {
4028 long w, W;
4029
4030 tg = se->my_q->tg;
4031
4032 /*
4033 * W = @wg + \Sum rw_j
4034 */
4035 W = wg + calc_tg_weight(tg, se->my_q);
4036
4037 /*
4038 * w = rw_i + @wl
4039 */
4040 w = se->my_q->load.weight + wl;
4041
4042 /*
4043 * wl = S * s'_i; see (2)
4044 */
4045 if (W > 0 && w < W)
4046 wl = (w * tg->shares) / W;
4047 else
4048 wl = tg->shares;
4049
4050 /*
4051 * Per the above, wl is the new se->load.weight value; since
4052 * those are clipped to [MIN_SHARES, ...) do so now. See
4053 * calc_cfs_shares().
4054 */
4055 if (wl < MIN_SHARES)
4056 wl = MIN_SHARES;
4057
4058 /*
4059 * wl = dw_i = S * (s'_i - s_i); see (3)
4060 */
4061 wl -= se->load.weight;
4062
4063 /*
4064 * Recursively apply this logic to all parent groups to compute
4065 * the final effective load change on the root group. Since
4066 * only the @tg group gets extra weight, all parent groups can
4067 * only redistribute existing shares. @wl is the shift in shares
4068 * resulting from this level per the above.
4069 */
4070 wg = 0;
4071 }
4072
4073 return wl;
4074 }
4075 #else
4076
4077 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4078 {
4079 return wl;
4080 }
4081
4082 #endif
4083
4084 static int wake_wide(struct task_struct *p)
4085 {
4086 int factor = this_cpu_read(sd_llc_size);
4087
4088 /*
4089 * Yeah, it's the switching-frequency, could means many wakee or
4090 * rapidly switch, use factor here will just help to automatically
4091 * adjust the loose-degree, so bigger node will lead to more pull.
4092 */
4093 if (p->wakee_flips > factor) {
4094 /*
4095 * wakee is somewhat hot, it needs certain amount of cpu
4096 * resource, so if waker is far more hot, prefer to leave
4097 * it alone.
4098 */
4099 if (current->wakee_flips > (factor * p->wakee_flips))
4100 return 1;
4101 }
4102
4103 return 0;
4104 }
4105
4106 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4107 {
4108 s64 this_load, load;
4109 int idx, this_cpu, prev_cpu;
4110 unsigned long tl_per_task;
4111 struct task_group *tg;
4112 unsigned long weight;
4113 int balanced;
4114
4115 /*
4116 * If we wake multiple tasks be careful to not bounce
4117 * ourselves around too much.
4118 */
4119 if (wake_wide(p))
4120 return 0;
4121
4122 idx = sd->wake_idx;
4123 this_cpu = smp_processor_id();
4124 prev_cpu = task_cpu(p);
4125 load = source_load(prev_cpu, idx);
4126 this_load = target_load(this_cpu, idx);
4127
4128 /*
4129 * If sync wakeup then subtract the (maximum possible)
4130 * effect of the currently running task from the load
4131 * of the current CPU:
4132 */
4133 if (sync) {
4134 tg = task_group(current);
4135 weight = current->se.load.weight;
4136
4137 this_load += effective_load(tg, this_cpu, -weight, -weight);
4138 load += effective_load(tg, prev_cpu, 0, -weight);
4139 }
4140
4141 tg = task_group(p);
4142 weight = p->se.load.weight;
4143
4144 /*
4145 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4146 * due to the sync cause above having dropped this_load to 0, we'll
4147 * always have an imbalance, but there's really nothing you can do
4148 * about that, so that's good too.
4149 *
4150 * Otherwise check if either cpus are near enough in load to allow this
4151 * task to be woken on this_cpu.
4152 */
4153 if (this_load > 0) {
4154 s64 this_eff_load, prev_eff_load;
4155
4156 this_eff_load = 100;
4157 this_eff_load *= power_of(prev_cpu);
4158 this_eff_load *= this_load +
4159 effective_load(tg, this_cpu, weight, weight);
4160
4161 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4162 prev_eff_load *= power_of(this_cpu);
4163 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4164
4165 balanced = this_eff_load <= prev_eff_load;
4166 } else
4167 balanced = true;
4168
4169 /*
4170 * If the currently running task will sleep within
4171 * a reasonable amount of time then attract this newly
4172 * woken task:
4173 */
4174 if (sync && balanced)
4175 return 1;
4176
4177 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4178 tl_per_task = cpu_avg_load_per_task(this_cpu);
4179
4180 if (balanced ||
4181 (this_load <= load &&
4182 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4183 /*
4184 * This domain has SD_WAKE_AFFINE and
4185 * p is cache cold in this domain, and
4186 * there is no bad imbalance.
4187 */
4188 schedstat_inc(sd, ttwu_move_affine);
4189 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4190
4191 return 1;
4192 }
4193 return 0;
4194 }
4195
4196 /*
4197 * find_idlest_group finds and returns the least busy CPU group within the
4198 * domain.
4199 */
4200 static struct sched_group *
4201 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4202 int this_cpu, int sd_flag)
4203 {
4204 struct sched_group *idlest = NULL, *group = sd->groups;
4205 unsigned long min_load = ULONG_MAX, this_load = 0;
4206 int load_idx = sd->forkexec_idx;
4207 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4208
4209 if (sd_flag & SD_BALANCE_WAKE)
4210 load_idx = sd->wake_idx;
4211
4212 do {
4213 unsigned long load, avg_load;
4214 int local_group;
4215 int i;
4216
4217 /* Skip over this group if it has no CPUs allowed */
4218 if (!cpumask_intersects(sched_group_cpus(group),
4219 tsk_cpus_allowed(p)))
4220 continue;
4221
4222 local_group = cpumask_test_cpu(this_cpu,
4223 sched_group_cpus(group));
4224
4225 /* Tally up the load of all CPUs in the group */
4226 avg_load = 0;
4227
4228 for_each_cpu(i, sched_group_cpus(group)) {
4229 /* Bias balancing toward cpus of our domain */
4230 if (local_group)
4231 load = source_load(i, load_idx);
4232 else
4233 load = target_load(i, load_idx);
4234
4235 avg_load += load;
4236 }
4237
4238 /* Adjust by relative CPU power of the group */
4239 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4240
4241 if (local_group) {
4242 this_load = avg_load;
4243 } else if (avg_load < min_load) {
4244 min_load = avg_load;
4245 idlest = group;
4246 }
4247 } while (group = group->next, group != sd->groups);
4248
4249 if (!idlest || 100*this_load < imbalance*min_load)
4250 return NULL;
4251 return idlest;
4252 }
4253
4254 /*
4255 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4256 */
4257 static int
4258 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4259 {
4260 unsigned long load, min_load = ULONG_MAX;
4261 int idlest = -1;
4262 int i;
4263
4264 /* Traverse only the allowed CPUs */
4265 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4266 load = weighted_cpuload(i);
4267
4268 if (load < min_load || (load == min_load && i == this_cpu)) {
4269 min_load = load;
4270 idlest = i;
4271 }
4272 }
4273
4274 return idlest;
4275 }
4276
4277 /*
4278 * Try and locate an idle CPU in the sched_domain.
4279 */
4280 static int select_idle_sibling(struct task_struct *p, int target)
4281 {
4282 struct sched_domain *sd;
4283 struct sched_group *sg;
4284 int i = task_cpu(p);
4285
4286 if (idle_cpu(target))
4287 return target;
4288
4289 /*
4290 * If the prevous cpu is cache affine and idle, don't be stupid.
4291 */
4292 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4293 return i;
4294
4295 /*
4296 * Otherwise, iterate the domains and find an elegible idle cpu.
4297 */
4298 sd = rcu_dereference(per_cpu(sd_llc, target));
4299 for_each_lower_domain(sd) {
4300 sg = sd->groups;
4301 do {
4302 if (!cpumask_intersects(sched_group_cpus(sg),
4303 tsk_cpus_allowed(p)))
4304 goto next;
4305
4306 for_each_cpu(i, sched_group_cpus(sg)) {
4307 if (i == target || !idle_cpu(i))
4308 goto next;
4309 }
4310
4311 target = cpumask_first_and(sched_group_cpus(sg),
4312 tsk_cpus_allowed(p));
4313 goto done;
4314 next:
4315 sg = sg->next;
4316 } while (sg != sd->groups);
4317 }
4318 done:
4319 return target;
4320 }
4321
4322 /*
4323 * sched_balance_self: balance the current task (running on cpu) in domains
4324 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4325 * SD_BALANCE_EXEC.
4326 *
4327 * Balance, ie. select the least loaded group.
4328 *
4329 * Returns the target CPU number, or the same CPU if no balancing is needed.
4330 *
4331 * preempt must be disabled.
4332 */
4333 static int
4334 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4335 {
4336 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4337 int cpu = smp_processor_id();
4338 int new_cpu = cpu;
4339 int want_affine = 0;
4340 int sync = wake_flags & WF_SYNC;
4341
4342 if (p->nr_cpus_allowed == 1)
4343 return prev_cpu;
4344
4345 if (sd_flag & SD_BALANCE_WAKE) {
4346 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4347 want_affine = 1;
4348 new_cpu = prev_cpu;
4349 }
4350
4351 rcu_read_lock();
4352 for_each_domain(cpu, tmp) {
4353 if (!(tmp->flags & SD_LOAD_BALANCE))
4354 continue;
4355
4356 /*
4357 * If both cpu and prev_cpu are part of this domain,
4358 * cpu is a valid SD_WAKE_AFFINE target.
4359 */
4360 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4361 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4362 affine_sd = tmp;
4363 break;
4364 }
4365
4366 if (tmp->flags & sd_flag)
4367 sd = tmp;
4368 }
4369
4370 if (affine_sd) {
4371 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4372 prev_cpu = cpu;
4373
4374 new_cpu = select_idle_sibling(p, prev_cpu);
4375 goto unlock;
4376 }
4377
4378 while (sd) {
4379 struct sched_group *group;
4380 int weight;
4381
4382 if (!(sd->flags & sd_flag)) {
4383 sd = sd->child;
4384 continue;
4385 }
4386
4387 group = find_idlest_group(sd, p, cpu, sd_flag);
4388 if (!group) {
4389 sd = sd->child;
4390 continue;
4391 }
4392
4393 new_cpu = find_idlest_cpu(group, p, cpu);
4394 if (new_cpu == -1 || new_cpu == cpu) {
4395 /* Now try balancing at a lower domain level of cpu */
4396 sd = sd->child;
4397 continue;
4398 }
4399
4400 /* Now try balancing at a lower domain level of new_cpu */
4401 cpu = new_cpu;
4402 weight = sd->span_weight;
4403 sd = NULL;
4404 for_each_domain(cpu, tmp) {
4405 if (weight <= tmp->span_weight)
4406 break;
4407 if (tmp->flags & sd_flag)
4408 sd = tmp;
4409 }
4410 /* while loop will break here if sd == NULL */
4411 }
4412 unlock:
4413 rcu_read_unlock();
4414
4415 return new_cpu;
4416 }
4417
4418 /*
4419 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4420 * cfs_rq_of(p) references at time of call are still valid and identify the
4421 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4422 * other assumptions, including the state of rq->lock, should be made.
4423 */
4424 static void
4425 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4426 {
4427 struct sched_entity *se = &p->se;
4428 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4429
4430 /*
4431 * Load tracking: accumulate removed load so that it can be processed
4432 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4433 * to blocked load iff they have a positive decay-count. It can never
4434 * be negative here since on-rq tasks have decay-count == 0.
4435 */
4436 if (se->avg.decay_count) {
4437 se->avg.decay_count = -__synchronize_entity_decay(se);
4438 atomic_long_add(se->avg.load_avg_contrib,
4439 &cfs_rq->removed_load);
4440 }
4441 }
4442 #endif /* CONFIG_SMP */
4443
4444 static unsigned long
4445 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4446 {
4447 unsigned long gran = sysctl_sched_wakeup_granularity;
4448
4449 /*
4450 * Since its curr running now, convert the gran from real-time
4451 * to virtual-time in his units.
4452 *
4453 * By using 'se' instead of 'curr' we penalize light tasks, so
4454 * they get preempted easier. That is, if 'se' < 'curr' then
4455 * the resulting gran will be larger, therefore penalizing the
4456 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4457 * be smaller, again penalizing the lighter task.
4458 *
4459 * This is especially important for buddies when the leftmost
4460 * task is higher priority than the buddy.
4461 */
4462 return calc_delta_fair(gran, se);
4463 }
4464
4465 /*
4466 * Should 'se' preempt 'curr'.
4467 *
4468 * |s1
4469 * |s2
4470 * |s3
4471 * g
4472 * |<--->|c
4473 *
4474 * w(c, s1) = -1
4475 * w(c, s2) = 0
4476 * w(c, s3) = 1
4477 *
4478 */
4479 static int
4480 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4481 {
4482 s64 gran, vdiff = curr->vruntime - se->vruntime;
4483
4484 if (vdiff <= 0)
4485 return -1;
4486
4487 gran = wakeup_gran(curr, se);
4488 if (vdiff > gran)
4489 return 1;
4490
4491 return 0;
4492 }
4493
4494 static void set_last_buddy(struct sched_entity *se)
4495 {
4496 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4497 return;
4498
4499 for_each_sched_entity(se)
4500 cfs_rq_of(se)->last = se;
4501 }
4502
4503 static void set_next_buddy(struct sched_entity *se)
4504 {
4505 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4506 return;
4507
4508 for_each_sched_entity(se)
4509 cfs_rq_of(se)->next = se;
4510 }
4511
4512 static void set_skip_buddy(struct sched_entity *se)
4513 {
4514 for_each_sched_entity(se)
4515 cfs_rq_of(se)->skip = se;
4516 }
4517
4518 /*
4519 * Preempt the current task with a newly woken task if needed:
4520 */
4521 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4522 {
4523 struct task_struct *curr = rq->curr;
4524 struct sched_entity *se = &curr->se, *pse = &p->se;
4525 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4526 int scale = cfs_rq->nr_running >= sched_nr_latency;
4527 int next_buddy_marked = 0;
4528
4529 if (unlikely(se == pse))
4530 return;
4531
4532 /*
4533 * This is possible from callers such as move_task(), in which we
4534 * unconditionally check_prempt_curr() after an enqueue (which may have
4535 * lead to a throttle). This both saves work and prevents false
4536 * next-buddy nomination below.
4537 */
4538 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4539 return;
4540
4541 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4542 set_next_buddy(pse);
4543 next_buddy_marked = 1;
4544 }
4545
4546 /*
4547 * We can come here with TIF_NEED_RESCHED already set from new task
4548 * wake up path.
4549 *
4550 * Note: this also catches the edge-case of curr being in a throttled
4551 * group (e.g. via set_curr_task), since update_curr() (in the
4552 * enqueue of curr) will have resulted in resched being set. This
4553 * prevents us from potentially nominating it as a false LAST_BUDDY
4554 * below.
4555 */
4556 if (test_tsk_need_resched(curr))
4557 return;
4558
4559 /* Idle tasks are by definition preempted by non-idle tasks. */
4560 if (unlikely(curr->policy == SCHED_IDLE) &&
4561 likely(p->policy != SCHED_IDLE))
4562 goto preempt;
4563
4564 /*
4565 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4566 * is driven by the tick):
4567 */
4568 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4569 return;
4570
4571 find_matching_se(&se, &pse);
4572 update_curr(cfs_rq_of(se));
4573 BUG_ON(!pse);
4574 if (wakeup_preempt_entity(se, pse) == 1) {
4575 /*
4576 * Bias pick_next to pick the sched entity that is
4577 * triggering this preemption.
4578 */
4579 if (!next_buddy_marked)
4580 set_next_buddy(pse);
4581 goto preempt;
4582 }
4583
4584 return;
4585
4586 preempt:
4587 resched_task(curr);
4588 /*
4589 * Only set the backward buddy when the current task is still
4590 * on the rq. This can happen when a wakeup gets interleaved
4591 * with schedule on the ->pre_schedule() or idle_balance()
4592 * point, either of which can * drop the rq lock.
4593 *
4594 * Also, during early boot the idle thread is in the fair class,
4595 * for obvious reasons its a bad idea to schedule back to it.
4596 */
4597 if (unlikely(!se->on_rq || curr == rq->idle))
4598 return;
4599
4600 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4601 set_last_buddy(se);
4602 }
4603
4604 static struct task_struct *pick_next_task_fair(struct rq *rq)
4605 {
4606 struct task_struct *p;
4607 struct cfs_rq *cfs_rq = &rq->cfs;
4608 struct sched_entity *se;
4609
4610 if (!cfs_rq->nr_running)
4611 return NULL;
4612
4613 do {
4614 se = pick_next_entity(cfs_rq);
4615 set_next_entity(cfs_rq, se);
4616 cfs_rq = group_cfs_rq(se);
4617 } while (cfs_rq);
4618
4619 p = task_of(se);
4620 if (hrtick_enabled(rq))
4621 hrtick_start_fair(rq, p);
4622
4623 return p;
4624 }
4625
4626 /*
4627 * Account for a descheduled task:
4628 */
4629 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4630 {
4631 struct sched_entity *se = &prev->se;
4632 struct cfs_rq *cfs_rq;
4633
4634 for_each_sched_entity(se) {
4635 cfs_rq = cfs_rq_of(se);
4636 put_prev_entity(cfs_rq, se);
4637 }
4638 }
4639
4640 /*
4641 * sched_yield() is very simple
4642 *
4643 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4644 */
4645 static void yield_task_fair(struct rq *rq)
4646 {
4647 struct task_struct *curr = rq->curr;
4648 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4649 struct sched_entity *se = &curr->se;
4650
4651 /*
4652 * Are we the only task in the tree?
4653 */
4654 if (unlikely(rq->nr_running == 1))
4655 return;
4656
4657 clear_buddies(cfs_rq, se);
4658
4659 if (curr->policy != SCHED_BATCH) {
4660 update_rq_clock(rq);
4661 /*
4662 * Update run-time statistics of the 'current'.
4663 */
4664 update_curr(cfs_rq);
4665 /*
4666 * Tell update_rq_clock() that we've just updated,
4667 * so we don't do microscopic update in schedule()
4668 * and double the fastpath cost.
4669 */
4670 rq->skip_clock_update = 1;
4671 }
4672
4673 set_skip_buddy(se);
4674 }
4675
4676 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4677 {
4678 struct sched_entity *se = &p->se;
4679
4680 /* throttled hierarchies are not runnable */
4681 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4682 return false;
4683
4684 /* Tell the scheduler that we'd really like pse to run next. */
4685 set_next_buddy(se);
4686
4687 yield_task_fair(rq);
4688
4689 return true;
4690 }
4691
4692 #ifdef CONFIG_SMP
4693 /**************************************************
4694 * Fair scheduling class load-balancing methods.
4695 *
4696 * BASICS
4697 *
4698 * The purpose of load-balancing is to achieve the same basic fairness the
4699 * per-cpu scheduler provides, namely provide a proportional amount of compute
4700 * time to each task. This is expressed in the following equation:
4701 *
4702 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4703 *
4704 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4705 * W_i,0 is defined as:
4706 *
4707 * W_i,0 = \Sum_j w_i,j (2)
4708 *
4709 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4710 * is derived from the nice value as per prio_to_weight[].
4711 *
4712 * The weight average is an exponential decay average of the instantaneous
4713 * weight:
4714 *
4715 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4716 *
4717 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4718 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4719 * can also include other factors [XXX].
4720 *
4721 * To achieve this balance we define a measure of imbalance which follows
4722 * directly from (1):
4723 *
4724 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4725 *
4726 * We them move tasks around to minimize the imbalance. In the continuous
4727 * function space it is obvious this converges, in the discrete case we get
4728 * a few fun cases generally called infeasible weight scenarios.
4729 *
4730 * [XXX expand on:
4731 * - infeasible weights;
4732 * - local vs global optima in the discrete case. ]
4733 *
4734 *
4735 * SCHED DOMAINS
4736 *
4737 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4738 * for all i,j solution, we create a tree of cpus that follows the hardware
4739 * topology where each level pairs two lower groups (or better). This results
4740 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4741 * tree to only the first of the previous level and we decrease the frequency
4742 * of load-balance at each level inv. proportional to the number of cpus in
4743 * the groups.
4744 *
4745 * This yields:
4746 *
4747 * log_2 n 1 n
4748 * \Sum { --- * --- * 2^i } = O(n) (5)
4749 * i = 0 2^i 2^i
4750 * `- size of each group
4751 * | | `- number of cpus doing load-balance
4752 * | `- freq
4753 * `- sum over all levels
4754 *
4755 * Coupled with a limit on how many tasks we can migrate every balance pass,
4756 * this makes (5) the runtime complexity of the balancer.
4757 *
4758 * An important property here is that each CPU is still (indirectly) connected
4759 * to every other cpu in at most O(log n) steps:
4760 *
4761 * The adjacency matrix of the resulting graph is given by:
4762 *
4763 * log_2 n
4764 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4765 * k = 0
4766 *
4767 * And you'll find that:
4768 *
4769 * A^(log_2 n)_i,j != 0 for all i,j (7)
4770 *
4771 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4772 * The task movement gives a factor of O(m), giving a convergence complexity
4773 * of:
4774 *
4775 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4776 *
4777 *
4778 * WORK CONSERVING
4779 *
4780 * In order to avoid CPUs going idle while there's still work to do, new idle
4781 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4782 * tree itself instead of relying on other CPUs to bring it work.
4783 *
4784 * This adds some complexity to both (5) and (8) but it reduces the total idle
4785 * time.
4786 *
4787 * [XXX more?]
4788 *
4789 *
4790 * CGROUPS
4791 *
4792 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4793 *
4794 * s_k,i
4795 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4796 * S_k
4797 *
4798 * Where
4799 *
4800 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4801 *
4802 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4803 *
4804 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4805 * property.
4806 *
4807 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4808 * rewrite all of this once again.]
4809 */
4810
4811 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4812
4813 enum fbq_type { regular, remote, all };
4814
4815 #define LBF_ALL_PINNED 0x01
4816 #define LBF_NEED_BREAK 0x02
4817 #define LBF_DST_PINNED 0x04
4818 #define LBF_SOME_PINNED 0x08
4819
4820 struct lb_env {
4821 struct sched_domain *sd;
4822
4823 struct rq *src_rq;
4824 int src_cpu;
4825
4826 int dst_cpu;
4827 struct rq *dst_rq;
4828
4829 struct cpumask *dst_grpmask;
4830 int new_dst_cpu;
4831 enum cpu_idle_type idle;
4832 long imbalance;
4833 /* The set of CPUs under consideration for load-balancing */
4834 struct cpumask *cpus;
4835
4836 unsigned int flags;
4837
4838 unsigned int loop;
4839 unsigned int loop_break;
4840 unsigned int loop_max;
4841
4842 enum fbq_type fbq_type;
4843 };
4844
4845 /*
4846 * move_task - move a task from one runqueue to another runqueue.
4847 * Both runqueues must be locked.
4848 */
4849 static void move_task(struct task_struct *p, struct lb_env *env)
4850 {
4851 deactivate_task(env->src_rq, p, 0);
4852 set_task_cpu(p, env->dst_cpu);
4853 activate_task(env->dst_rq, p, 0);
4854 check_preempt_curr(env->dst_rq, p, 0);
4855 }
4856
4857 /*
4858 * Is this task likely cache-hot:
4859 */
4860 static int
4861 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4862 {
4863 s64 delta;
4864
4865 if (p->sched_class != &fair_sched_class)
4866 return 0;
4867
4868 if (unlikely(p->policy == SCHED_IDLE))
4869 return 0;
4870
4871 /*
4872 * Buddy candidates are cache hot:
4873 */
4874 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4875 (&p->se == cfs_rq_of(&p->se)->next ||
4876 &p->se == cfs_rq_of(&p->se)->last))
4877 return 1;
4878
4879 if (sysctl_sched_migration_cost == -1)
4880 return 1;
4881 if (sysctl_sched_migration_cost == 0)
4882 return 0;
4883
4884 delta = now - p->se.exec_start;
4885
4886 return delta < (s64)sysctl_sched_migration_cost;
4887 }
4888
4889 #ifdef CONFIG_NUMA_BALANCING
4890 /* Returns true if the destination node has incurred more faults */
4891 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4892 {
4893 int src_nid, dst_nid;
4894
4895 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
4896 !(env->sd->flags & SD_NUMA)) {
4897 return false;
4898 }
4899
4900 src_nid = cpu_to_node(env->src_cpu);
4901 dst_nid = cpu_to_node(env->dst_cpu);
4902
4903 if (src_nid == dst_nid)
4904 return false;
4905
4906 /* Always encourage migration to the preferred node. */
4907 if (dst_nid == p->numa_preferred_nid)
4908 return true;
4909
4910 /* If both task and group weight improve, this move is a winner. */
4911 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4912 group_weight(p, dst_nid) > group_weight(p, src_nid))
4913 return true;
4914
4915 return false;
4916 }
4917
4918
4919 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4920 {
4921 int src_nid, dst_nid;
4922
4923 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4924 return false;
4925
4926 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
4927 return false;
4928
4929 src_nid = cpu_to_node(env->src_cpu);
4930 dst_nid = cpu_to_node(env->dst_cpu);
4931
4932 if (src_nid == dst_nid)
4933 return false;
4934
4935 /* Migrating away from the preferred node is always bad. */
4936 if (src_nid == p->numa_preferred_nid)
4937 return true;
4938
4939 /* If either task or group weight get worse, don't do it. */
4940 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4941 group_weight(p, dst_nid) < group_weight(p, src_nid))
4942 return true;
4943
4944 return false;
4945 }
4946
4947 #else
4948 static inline bool migrate_improves_locality(struct task_struct *p,
4949 struct lb_env *env)
4950 {
4951 return false;
4952 }
4953
4954 static inline bool migrate_degrades_locality(struct task_struct *p,
4955 struct lb_env *env)
4956 {
4957 return false;
4958 }
4959 #endif
4960
4961 /*
4962 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4963 */
4964 static
4965 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4966 {
4967 int tsk_cache_hot = 0;
4968 /*
4969 * We do not migrate tasks that are:
4970 * 1) throttled_lb_pair, or
4971 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4972 * 3) running (obviously), or
4973 * 4) are cache-hot on their current CPU.
4974 */
4975 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4976 return 0;
4977
4978 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4979 int cpu;
4980
4981 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4982
4983 env->flags |= LBF_SOME_PINNED;
4984
4985 /*
4986 * Remember if this task can be migrated to any other cpu in
4987 * our sched_group. We may want to revisit it if we couldn't
4988 * meet load balance goals by pulling other tasks on src_cpu.
4989 *
4990 * Also avoid computing new_dst_cpu if we have already computed
4991 * one in current iteration.
4992 */
4993 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4994 return 0;
4995
4996 /* Prevent to re-select dst_cpu via env's cpus */
4997 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4998 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4999 env->flags |= LBF_DST_PINNED;
5000 env->new_dst_cpu = cpu;
5001 break;
5002 }
5003 }
5004
5005 return 0;
5006 }
5007
5008 /* Record that we found atleast one task that could run on dst_cpu */
5009 env->flags &= ~LBF_ALL_PINNED;
5010
5011 if (task_running(env->src_rq, p)) {
5012 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5013 return 0;
5014 }
5015
5016 /*
5017 * Aggressive migration if:
5018 * 1) destination numa is preferred
5019 * 2) task is cache cold, or
5020 * 3) too many balance attempts have failed.
5021 */
5022 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
5023 if (!tsk_cache_hot)
5024 tsk_cache_hot = migrate_degrades_locality(p, env);
5025
5026 if (migrate_improves_locality(p, env)) {
5027 #ifdef CONFIG_SCHEDSTATS
5028 if (tsk_cache_hot) {
5029 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5030 schedstat_inc(p, se.statistics.nr_forced_migrations);
5031 }
5032 #endif
5033 return 1;
5034 }
5035
5036 if (!tsk_cache_hot ||
5037 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5038
5039 if (tsk_cache_hot) {
5040 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5041 schedstat_inc(p, se.statistics.nr_forced_migrations);
5042 }
5043
5044 return 1;
5045 }
5046
5047 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5048 return 0;
5049 }
5050
5051 /*
5052 * move_one_task tries to move exactly one task from busiest to this_rq, as
5053 * part of active balancing operations within "domain".
5054 * Returns 1 if successful and 0 otherwise.
5055 *
5056 * Called with both runqueues locked.
5057 */
5058 static int move_one_task(struct lb_env *env)
5059 {
5060 struct task_struct *p, *n;
5061
5062 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5063 if (!can_migrate_task(p, env))
5064 continue;
5065
5066 move_task(p, env);
5067 /*
5068 * Right now, this is only the second place move_task()
5069 * is called, so we can safely collect move_task()
5070 * stats here rather than inside move_task().
5071 */
5072 schedstat_inc(env->sd, lb_gained[env->idle]);
5073 return 1;
5074 }
5075 return 0;
5076 }
5077
5078 static const unsigned int sched_nr_migrate_break = 32;
5079
5080 /*
5081 * move_tasks tries to move up to imbalance weighted load from busiest to
5082 * this_rq, as part of a balancing operation within domain "sd".
5083 * Returns 1 if successful and 0 otherwise.
5084 *
5085 * Called with both runqueues locked.
5086 */
5087 static int move_tasks(struct lb_env *env)
5088 {
5089 struct list_head *tasks = &env->src_rq->cfs_tasks;
5090 struct task_struct *p;
5091 unsigned long load;
5092 int pulled = 0;
5093
5094 if (env->imbalance <= 0)
5095 return 0;
5096
5097 while (!list_empty(tasks)) {
5098 p = list_first_entry(tasks, struct task_struct, se.group_node);
5099
5100 env->loop++;
5101 /* We've more or less seen every task there is, call it quits */
5102 if (env->loop > env->loop_max)
5103 break;
5104
5105 /* take a breather every nr_migrate tasks */
5106 if (env->loop > env->loop_break) {
5107 env->loop_break += sched_nr_migrate_break;
5108 env->flags |= LBF_NEED_BREAK;
5109 break;
5110 }
5111
5112 if (!can_migrate_task(p, env))
5113 goto next;
5114
5115 load = task_h_load(p);
5116
5117 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5118 goto next;
5119
5120 if ((load / 2) > env->imbalance)
5121 goto next;
5122
5123 move_task(p, env);
5124 pulled++;
5125 env->imbalance -= load;
5126
5127 #ifdef CONFIG_PREEMPT
5128 /*
5129 * NEWIDLE balancing is a source of latency, so preemptible
5130 * kernels will stop after the first task is pulled to minimize
5131 * the critical section.
5132 */
5133 if (env->idle == CPU_NEWLY_IDLE)
5134 break;
5135 #endif
5136
5137 /*
5138 * We only want to steal up to the prescribed amount of
5139 * weighted load.
5140 */
5141 if (env->imbalance <= 0)
5142 break;
5143
5144 continue;
5145 next:
5146 list_move_tail(&p->se.group_node, tasks);
5147 }
5148
5149 /*
5150 * Right now, this is one of only two places move_task() is called,
5151 * so we can safely collect move_task() stats here rather than
5152 * inside move_task().
5153 */
5154 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5155
5156 return pulled;
5157 }
5158
5159 #ifdef CONFIG_FAIR_GROUP_SCHED
5160 /*
5161 * update tg->load_weight by folding this cpu's load_avg
5162 */
5163 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5164 {
5165 struct sched_entity *se = tg->se[cpu];
5166 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5167
5168 /* throttled entities do not contribute to load */
5169 if (throttled_hierarchy(cfs_rq))
5170 return;
5171
5172 update_cfs_rq_blocked_load(cfs_rq, 1);
5173
5174 if (se) {
5175 update_entity_load_avg(se, 1);
5176 /*
5177 * We pivot on our runnable average having decayed to zero for
5178 * list removal. This generally implies that all our children
5179 * have also been removed (modulo rounding error or bandwidth
5180 * control); however, such cases are rare and we can fix these
5181 * at enqueue.
5182 *
5183 * TODO: fix up out-of-order children on enqueue.
5184 */
5185 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5186 list_del_leaf_cfs_rq(cfs_rq);
5187 } else {
5188 struct rq *rq = rq_of(cfs_rq);
5189 update_rq_runnable_avg(rq, rq->nr_running);
5190 }
5191 }
5192
5193 static void update_blocked_averages(int cpu)
5194 {
5195 struct rq *rq = cpu_rq(cpu);
5196 struct cfs_rq *cfs_rq;
5197 unsigned long flags;
5198
5199 raw_spin_lock_irqsave(&rq->lock, flags);
5200 update_rq_clock(rq);
5201 /*
5202 * Iterates the task_group tree in a bottom up fashion, see
5203 * list_add_leaf_cfs_rq() for details.
5204 */
5205 for_each_leaf_cfs_rq(rq, cfs_rq) {
5206 /*
5207 * Note: We may want to consider periodically releasing
5208 * rq->lock about these updates so that creating many task
5209 * groups does not result in continually extending hold time.
5210 */
5211 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5212 }
5213
5214 raw_spin_unlock_irqrestore(&rq->lock, flags);
5215 }
5216
5217 /*
5218 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5219 * This needs to be done in a top-down fashion because the load of a child
5220 * group is a fraction of its parents load.
5221 */
5222 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5223 {
5224 struct rq *rq = rq_of(cfs_rq);
5225 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5226 unsigned long now = jiffies;
5227 unsigned long load;
5228
5229 if (cfs_rq->last_h_load_update == now)
5230 return;
5231
5232 cfs_rq->h_load_next = NULL;
5233 for_each_sched_entity(se) {
5234 cfs_rq = cfs_rq_of(se);
5235 cfs_rq->h_load_next = se;
5236 if (cfs_rq->last_h_load_update == now)
5237 break;
5238 }
5239
5240 if (!se) {
5241 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5242 cfs_rq->last_h_load_update = now;
5243 }
5244
5245 while ((se = cfs_rq->h_load_next) != NULL) {
5246 load = cfs_rq->h_load;
5247 load = div64_ul(load * se->avg.load_avg_contrib,
5248 cfs_rq->runnable_load_avg + 1);
5249 cfs_rq = group_cfs_rq(se);
5250 cfs_rq->h_load = load;
5251 cfs_rq->last_h_load_update = now;
5252 }
5253 }
5254
5255 static unsigned long task_h_load(struct task_struct *p)
5256 {
5257 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5258
5259 update_cfs_rq_h_load(cfs_rq);
5260 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5261 cfs_rq->runnable_load_avg + 1);
5262 }
5263 #else
5264 static inline void update_blocked_averages(int cpu)
5265 {
5266 }
5267
5268 static unsigned long task_h_load(struct task_struct *p)
5269 {
5270 return p->se.avg.load_avg_contrib;
5271 }
5272 #endif
5273
5274 /********** Helpers for find_busiest_group ************************/
5275 /*
5276 * sg_lb_stats - stats of a sched_group required for load_balancing
5277 */
5278 struct sg_lb_stats {
5279 unsigned long avg_load; /*Avg load across the CPUs of the group */
5280 unsigned long group_load; /* Total load over the CPUs of the group */
5281 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5282 unsigned long load_per_task;
5283 unsigned long group_power;
5284 unsigned int sum_nr_running; /* Nr tasks running in the group */
5285 unsigned int group_capacity;
5286 unsigned int idle_cpus;
5287 unsigned int group_weight;
5288 int group_imb; /* Is there an imbalance in the group ? */
5289 int group_has_capacity; /* Is there extra capacity in the group? */
5290 #ifdef CONFIG_NUMA_BALANCING
5291 unsigned int nr_numa_running;
5292 unsigned int nr_preferred_running;
5293 #endif
5294 };
5295
5296 /*
5297 * sd_lb_stats - Structure to store the statistics of a sched_domain
5298 * during load balancing.
5299 */
5300 struct sd_lb_stats {
5301 struct sched_group *busiest; /* Busiest group in this sd */
5302 struct sched_group *local; /* Local group in this sd */
5303 unsigned long total_load; /* Total load of all groups in sd */
5304 unsigned long total_pwr; /* Total power of all groups in sd */
5305 unsigned long avg_load; /* Average load across all groups in sd */
5306
5307 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5308 struct sg_lb_stats local_stat; /* Statistics of the local group */
5309 };
5310
5311 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5312 {
5313 /*
5314 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5315 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5316 * We must however clear busiest_stat::avg_load because
5317 * update_sd_pick_busiest() reads this before assignment.
5318 */
5319 *sds = (struct sd_lb_stats){
5320 .busiest = NULL,
5321 .local = NULL,
5322 .total_load = 0UL,
5323 .total_pwr = 0UL,
5324 .busiest_stat = {
5325 .avg_load = 0UL,
5326 },
5327 };
5328 }
5329
5330 /**
5331 * get_sd_load_idx - Obtain the load index for a given sched domain.
5332 * @sd: The sched_domain whose load_idx is to be obtained.
5333 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5334 *
5335 * Return: The load index.
5336 */
5337 static inline int get_sd_load_idx(struct sched_domain *sd,
5338 enum cpu_idle_type idle)
5339 {
5340 int load_idx;
5341
5342 switch (idle) {
5343 case CPU_NOT_IDLE:
5344 load_idx = sd->busy_idx;
5345 break;
5346
5347 case CPU_NEWLY_IDLE:
5348 load_idx = sd->newidle_idx;
5349 break;
5350 default:
5351 load_idx = sd->idle_idx;
5352 break;
5353 }
5354
5355 return load_idx;
5356 }
5357
5358 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5359 {
5360 return SCHED_POWER_SCALE;
5361 }
5362
5363 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5364 {
5365 return default_scale_freq_power(sd, cpu);
5366 }
5367
5368 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5369 {
5370 unsigned long weight = sd->span_weight;
5371 unsigned long smt_gain = sd->smt_gain;
5372
5373 smt_gain /= weight;
5374
5375 return smt_gain;
5376 }
5377
5378 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5379 {
5380 return default_scale_smt_power(sd, cpu);
5381 }
5382
5383 static unsigned long scale_rt_power(int cpu)
5384 {
5385 struct rq *rq = cpu_rq(cpu);
5386 u64 total, available, age_stamp, avg;
5387
5388 /*
5389 * Since we're reading these variables without serialization make sure
5390 * we read them once before doing sanity checks on them.
5391 */
5392 age_stamp = ACCESS_ONCE(rq->age_stamp);
5393 avg = ACCESS_ONCE(rq->rt_avg);
5394
5395 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5396
5397 if (unlikely(total < avg)) {
5398 /* Ensures that power won't end up being negative */
5399 available = 0;
5400 } else {
5401 available = total - avg;
5402 }
5403
5404 if (unlikely((s64)total < SCHED_POWER_SCALE))
5405 total = SCHED_POWER_SCALE;
5406
5407 total >>= SCHED_POWER_SHIFT;
5408
5409 return div_u64(available, total);
5410 }
5411
5412 static void update_cpu_power(struct sched_domain *sd, int cpu)
5413 {
5414 unsigned long weight = sd->span_weight;
5415 unsigned long power = SCHED_POWER_SCALE;
5416 struct sched_group *sdg = sd->groups;
5417
5418 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5419 if (sched_feat(ARCH_POWER))
5420 power *= arch_scale_smt_power(sd, cpu);
5421 else
5422 power *= default_scale_smt_power(sd, cpu);
5423
5424 power >>= SCHED_POWER_SHIFT;
5425 }
5426
5427 sdg->sgp->power_orig = power;
5428
5429 if (sched_feat(ARCH_POWER))
5430 power *= arch_scale_freq_power(sd, cpu);
5431 else
5432 power *= default_scale_freq_power(sd, cpu);
5433
5434 power >>= SCHED_POWER_SHIFT;
5435
5436 power *= scale_rt_power(cpu);
5437 power >>= SCHED_POWER_SHIFT;
5438
5439 if (!power)
5440 power = 1;
5441
5442 cpu_rq(cpu)->cpu_power = power;
5443 sdg->sgp->power = power;
5444 }
5445
5446 void update_group_power(struct sched_domain *sd, int cpu)
5447 {
5448 struct sched_domain *child = sd->child;
5449 struct sched_group *group, *sdg = sd->groups;
5450 unsigned long power, power_orig;
5451 unsigned long interval;
5452
5453 interval = msecs_to_jiffies(sd->balance_interval);
5454 interval = clamp(interval, 1UL, max_load_balance_interval);
5455 sdg->sgp->next_update = jiffies + interval;
5456
5457 if (!child) {
5458 update_cpu_power(sd, cpu);
5459 return;
5460 }
5461
5462 power_orig = power = 0;
5463
5464 if (child->flags & SD_OVERLAP) {
5465 /*
5466 * SD_OVERLAP domains cannot assume that child groups
5467 * span the current group.
5468 */
5469
5470 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5471 struct sched_group_power *sgp;
5472 struct rq *rq = cpu_rq(cpu);
5473
5474 /*
5475 * build_sched_domains() -> init_sched_groups_power()
5476 * gets here before we've attached the domains to the
5477 * runqueues.
5478 *
5479 * Use power_of(), which is set irrespective of domains
5480 * in update_cpu_power().
5481 *
5482 * This avoids power/power_orig from being 0 and
5483 * causing divide-by-zero issues on boot.
5484 *
5485 * Runtime updates will correct power_orig.
5486 */
5487 if (unlikely(!rq->sd)) {
5488 power_orig += power_of(cpu);
5489 power += power_of(cpu);
5490 continue;
5491 }
5492
5493 sgp = rq->sd->groups->sgp;
5494 power_orig += sgp->power_orig;
5495 power += sgp->power;
5496 }
5497 } else {
5498 /*
5499 * !SD_OVERLAP domains can assume that child groups
5500 * span the current group.
5501 */
5502
5503 group = child->groups;
5504 do {
5505 power_orig += group->sgp->power_orig;
5506 power += group->sgp->power;
5507 group = group->next;
5508 } while (group != child->groups);
5509 }
5510
5511 sdg->sgp->power_orig = power_orig;
5512 sdg->sgp->power = power;
5513 }
5514
5515 /*
5516 * Try and fix up capacity for tiny siblings, this is needed when
5517 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5518 * which on its own isn't powerful enough.
5519 *
5520 * See update_sd_pick_busiest() and check_asym_packing().
5521 */
5522 static inline int
5523 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5524 {
5525 /*
5526 * Only siblings can have significantly less than SCHED_POWER_SCALE
5527 */
5528 if (!(sd->flags & SD_SHARE_CPUPOWER))
5529 return 0;
5530
5531 /*
5532 * If ~90% of the cpu_power is still there, we're good.
5533 */
5534 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5535 return 1;
5536
5537 return 0;
5538 }
5539
5540 /*
5541 * Group imbalance indicates (and tries to solve) the problem where balancing
5542 * groups is inadequate due to tsk_cpus_allowed() constraints.
5543 *
5544 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5545 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5546 * Something like:
5547 *
5548 * { 0 1 2 3 } { 4 5 6 7 }
5549 * * * * *
5550 *
5551 * If we were to balance group-wise we'd place two tasks in the first group and
5552 * two tasks in the second group. Clearly this is undesired as it will overload
5553 * cpu 3 and leave one of the cpus in the second group unused.
5554 *
5555 * The current solution to this issue is detecting the skew in the first group
5556 * by noticing the lower domain failed to reach balance and had difficulty
5557 * moving tasks due to affinity constraints.
5558 *
5559 * When this is so detected; this group becomes a candidate for busiest; see
5560 * update_sd_pick_busiest(). And calculate_imbalance() and
5561 * find_busiest_group() avoid some of the usual balance conditions to allow it
5562 * to create an effective group imbalance.
5563 *
5564 * This is a somewhat tricky proposition since the next run might not find the
5565 * group imbalance and decide the groups need to be balanced again. A most
5566 * subtle and fragile situation.
5567 */
5568
5569 static inline int sg_imbalanced(struct sched_group *group)
5570 {
5571 return group->sgp->imbalance;
5572 }
5573
5574 /*
5575 * Compute the group capacity.
5576 *
5577 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5578 * first dividing out the smt factor and computing the actual number of cores
5579 * and limit power unit capacity with that.
5580 */
5581 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5582 {
5583 unsigned int capacity, smt, cpus;
5584 unsigned int power, power_orig;
5585
5586 power = group->sgp->power;
5587 power_orig = group->sgp->power_orig;
5588 cpus = group->group_weight;
5589
5590 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5591 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5592 capacity = cpus / smt; /* cores */
5593
5594 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5595 if (!capacity)
5596 capacity = fix_small_capacity(env->sd, group);
5597
5598 return capacity;
5599 }
5600
5601 /**
5602 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5603 * @env: The load balancing environment.
5604 * @group: sched_group whose statistics are to be updated.
5605 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5606 * @local_group: Does group contain this_cpu.
5607 * @sgs: variable to hold the statistics for this group.
5608 */
5609 static inline void update_sg_lb_stats(struct lb_env *env,
5610 struct sched_group *group, int load_idx,
5611 int local_group, struct sg_lb_stats *sgs)
5612 {
5613 unsigned long load;
5614 int i;
5615
5616 memset(sgs, 0, sizeof(*sgs));
5617
5618 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5619 struct rq *rq = cpu_rq(i);
5620
5621 /* Bias balancing toward cpus of our domain */
5622 if (local_group)
5623 load = target_load(i, load_idx);
5624 else
5625 load = source_load(i, load_idx);
5626
5627 sgs->group_load += load;
5628 sgs->sum_nr_running += rq->nr_running;
5629 #ifdef CONFIG_NUMA_BALANCING
5630 sgs->nr_numa_running += rq->nr_numa_running;
5631 sgs->nr_preferred_running += rq->nr_preferred_running;
5632 #endif
5633 sgs->sum_weighted_load += weighted_cpuload(i);
5634 if (idle_cpu(i))
5635 sgs->idle_cpus++;
5636 }
5637
5638 /* Adjust by relative CPU power of the group */
5639 sgs->group_power = group->sgp->power;
5640 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5641
5642 if (sgs->sum_nr_running)
5643 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5644
5645 sgs->group_weight = group->group_weight;
5646
5647 sgs->group_imb = sg_imbalanced(group);
5648 sgs->group_capacity = sg_capacity(env, group);
5649
5650 if (sgs->group_capacity > sgs->sum_nr_running)
5651 sgs->group_has_capacity = 1;
5652 }
5653
5654 /**
5655 * update_sd_pick_busiest - return 1 on busiest group
5656 * @env: The load balancing environment.
5657 * @sds: sched_domain statistics
5658 * @sg: sched_group candidate to be checked for being the busiest
5659 * @sgs: sched_group statistics
5660 *
5661 * Determine if @sg is a busier group than the previously selected
5662 * busiest group.
5663 *
5664 * Return: %true if @sg is a busier group than the previously selected
5665 * busiest group. %false otherwise.
5666 */
5667 static bool update_sd_pick_busiest(struct lb_env *env,
5668 struct sd_lb_stats *sds,
5669 struct sched_group *sg,
5670 struct sg_lb_stats *sgs)
5671 {
5672 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5673 return false;
5674
5675 if (sgs->sum_nr_running > sgs->group_capacity)
5676 return true;
5677
5678 if (sgs->group_imb)
5679 return true;
5680
5681 /*
5682 * ASYM_PACKING needs to move all the work to the lowest
5683 * numbered CPUs in the group, therefore mark all groups
5684 * higher than ourself as busy.
5685 */
5686 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5687 env->dst_cpu < group_first_cpu(sg)) {
5688 if (!sds->busiest)
5689 return true;
5690
5691 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5692 return true;
5693 }
5694
5695 return false;
5696 }
5697
5698 #ifdef CONFIG_NUMA_BALANCING
5699 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5700 {
5701 if (sgs->sum_nr_running > sgs->nr_numa_running)
5702 return regular;
5703 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5704 return remote;
5705 return all;
5706 }
5707
5708 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5709 {
5710 if (rq->nr_running > rq->nr_numa_running)
5711 return regular;
5712 if (rq->nr_running > rq->nr_preferred_running)
5713 return remote;
5714 return all;
5715 }
5716 #else
5717 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5718 {
5719 return all;
5720 }
5721
5722 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5723 {
5724 return regular;
5725 }
5726 #endif /* CONFIG_NUMA_BALANCING */
5727
5728 /**
5729 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5730 * @env: The load balancing environment.
5731 * @sds: variable to hold the statistics for this sched_domain.
5732 */
5733 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5734 {
5735 struct sched_domain *child = env->sd->child;
5736 struct sched_group *sg = env->sd->groups;
5737 struct sg_lb_stats tmp_sgs;
5738 int load_idx, prefer_sibling = 0;
5739
5740 if (child && child->flags & SD_PREFER_SIBLING)
5741 prefer_sibling = 1;
5742
5743 load_idx = get_sd_load_idx(env->sd, env->idle);
5744
5745 do {
5746 struct sg_lb_stats *sgs = &tmp_sgs;
5747 int local_group;
5748
5749 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5750 if (local_group) {
5751 sds->local = sg;
5752 sgs = &sds->local_stat;
5753
5754 if (env->idle != CPU_NEWLY_IDLE ||
5755 time_after_eq(jiffies, sg->sgp->next_update))
5756 update_group_power(env->sd, env->dst_cpu);
5757 }
5758
5759 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5760
5761 if (local_group)
5762 goto next_group;
5763
5764 /*
5765 * In case the child domain prefers tasks go to siblings
5766 * first, lower the sg capacity to one so that we'll try
5767 * and move all the excess tasks away. We lower the capacity
5768 * of a group only if the local group has the capacity to fit
5769 * these excess tasks, i.e. nr_running < group_capacity. The
5770 * extra check prevents the case where you always pull from the
5771 * heaviest group when it is already under-utilized (possible
5772 * with a large weight task outweighs the tasks on the system).
5773 */
5774 if (prefer_sibling && sds->local &&
5775 sds->local_stat.group_has_capacity)
5776 sgs->group_capacity = min(sgs->group_capacity, 1U);
5777
5778 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5779 sds->busiest = sg;
5780 sds->busiest_stat = *sgs;
5781 }
5782
5783 next_group:
5784 /* Now, start updating sd_lb_stats */
5785 sds->total_load += sgs->group_load;
5786 sds->total_pwr += sgs->group_power;
5787
5788 sg = sg->next;
5789 } while (sg != env->sd->groups);
5790
5791 if (env->sd->flags & SD_NUMA)
5792 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5793 }
5794
5795 /**
5796 * check_asym_packing - Check to see if the group is packed into the
5797 * sched doman.
5798 *
5799 * This is primarily intended to used at the sibling level. Some
5800 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5801 * case of POWER7, it can move to lower SMT modes only when higher
5802 * threads are idle. When in lower SMT modes, the threads will
5803 * perform better since they share less core resources. Hence when we
5804 * have idle threads, we want them to be the higher ones.
5805 *
5806 * This packing function is run on idle threads. It checks to see if
5807 * the busiest CPU in this domain (core in the P7 case) has a higher
5808 * CPU number than the packing function is being run on. Here we are
5809 * assuming lower CPU number will be equivalent to lower a SMT thread
5810 * number.
5811 *
5812 * Return: 1 when packing is required and a task should be moved to
5813 * this CPU. The amount of the imbalance is returned in *imbalance.
5814 *
5815 * @env: The load balancing environment.
5816 * @sds: Statistics of the sched_domain which is to be packed
5817 */
5818 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5819 {
5820 int busiest_cpu;
5821
5822 if (!(env->sd->flags & SD_ASYM_PACKING))
5823 return 0;
5824
5825 if (!sds->busiest)
5826 return 0;
5827
5828 busiest_cpu = group_first_cpu(sds->busiest);
5829 if (env->dst_cpu > busiest_cpu)
5830 return 0;
5831
5832 env->imbalance = DIV_ROUND_CLOSEST(
5833 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5834 SCHED_POWER_SCALE);
5835
5836 return 1;
5837 }
5838
5839 /**
5840 * fix_small_imbalance - Calculate the minor imbalance that exists
5841 * amongst the groups of a sched_domain, during
5842 * load balancing.
5843 * @env: The load balancing environment.
5844 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5845 */
5846 static inline
5847 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5848 {
5849 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5850 unsigned int imbn = 2;
5851 unsigned long scaled_busy_load_per_task;
5852 struct sg_lb_stats *local, *busiest;
5853
5854 local = &sds->local_stat;
5855 busiest = &sds->busiest_stat;
5856
5857 if (!local->sum_nr_running)
5858 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5859 else if (busiest->load_per_task > local->load_per_task)
5860 imbn = 1;
5861
5862 scaled_busy_load_per_task =
5863 (busiest->load_per_task * SCHED_POWER_SCALE) /
5864 busiest->group_power;
5865
5866 if (busiest->avg_load + scaled_busy_load_per_task >=
5867 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5868 env->imbalance = busiest->load_per_task;
5869 return;
5870 }
5871
5872 /*
5873 * OK, we don't have enough imbalance to justify moving tasks,
5874 * however we may be able to increase total CPU power used by
5875 * moving them.
5876 */
5877
5878 pwr_now += busiest->group_power *
5879 min(busiest->load_per_task, busiest->avg_load);
5880 pwr_now += local->group_power *
5881 min(local->load_per_task, local->avg_load);
5882 pwr_now /= SCHED_POWER_SCALE;
5883
5884 /* Amount of load we'd subtract */
5885 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5886 busiest->group_power;
5887 if (busiest->avg_load > tmp) {
5888 pwr_move += busiest->group_power *
5889 min(busiest->load_per_task,
5890 busiest->avg_load - tmp);
5891 }
5892
5893 /* Amount of load we'd add */
5894 if (busiest->avg_load * busiest->group_power <
5895 busiest->load_per_task * SCHED_POWER_SCALE) {
5896 tmp = (busiest->avg_load * busiest->group_power) /
5897 local->group_power;
5898 } else {
5899 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5900 local->group_power;
5901 }
5902 pwr_move += local->group_power *
5903 min(local->load_per_task, local->avg_load + tmp);
5904 pwr_move /= SCHED_POWER_SCALE;
5905
5906 /* Move if we gain throughput */
5907 if (pwr_move > pwr_now)
5908 env->imbalance = busiest->load_per_task;
5909 }
5910
5911 /**
5912 * calculate_imbalance - Calculate the amount of imbalance present within the
5913 * groups of a given sched_domain during load balance.
5914 * @env: load balance environment
5915 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5916 */
5917 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5918 {
5919 unsigned long max_pull, load_above_capacity = ~0UL;
5920 struct sg_lb_stats *local, *busiest;
5921
5922 local = &sds->local_stat;
5923 busiest = &sds->busiest_stat;
5924
5925 if (busiest->group_imb) {
5926 /*
5927 * In the group_imb case we cannot rely on group-wide averages
5928 * to ensure cpu-load equilibrium, look at wider averages. XXX
5929 */
5930 busiest->load_per_task =
5931 min(busiest->load_per_task, sds->avg_load);
5932 }
5933
5934 /*
5935 * In the presence of smp nice balancing, certain scenarios can have
5936 * max load less than avg load(as we skip the groups at or below
5937 * its cpu_power, while calculating max_load..)
5938 */
5939 if (busiest->avg_load <= sds->avg_load ||
5940 local->avg_load >= sds->avg_load) {
5941 env->imbalance = 0;
5942 return fix_small_imbalance(env, sds);
5943 }
5944
5945 if (!busiest->group_imb) {
5946 /*
5947 * Don't want to pull so many tasks that a group would go idle.
5948 * Except of course for the group_imb case, since then we might
5949 * have to drop below capacity to reach cpu-load equilibrium.
5950 */
5951 load_above_capacity =
5952 (busiest->sum_nr_running - busiest->group_capacity);
5953
5954 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5955 load_above_capacity /= busiest->group_power;
5956 }
5957
5958 /*
5959 * We're trying to get all the cpus to the average_load, so we don't
5960 * want to push ourselves above the average load, nor do we wish to
5961 * reduce the max loaded cpu below the average load. At the same time,
5962 * we also don't want to reduce the group load below the group capacity
5963 * (so that we can implement power-savings policies etc). Thus we look
5964 * for the minimum possible imbalance.
5965 */
5966 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5967
5968 /* How much load to actually move to equalise the imbalance */
5969 env->imbalance = min(
5970 max_pull * busiest->group_power,
5971 (sds->avg_load - local->avg_load) * local->group_power
5972 ) / SCHED_POWER_SCALE;
5973
5974 /*
5975 * if *imbalance is less than the average load per runnable task
5976 * there is no guarantee that any tasks will be moved so we'll have
5977 * a think about bumping its value to force at least one task to be
5978 * moved
5979 */
5980 if (env->imbalance < busiest->load_per_task)
5981 return fix_small_imbalance(env, sds);
5982 }
5983
5984 /******* find_busiest_group() helpers end here *********************/
5985
5986 /**
5987 * find_busiest_group - Returns the busiest group within the sched_domain
5988 * if there is an imbalance. If there isn't an imbalance, and
5989 * the user has opted for power-savings, it returns a group whose
5990 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5991 * such a group exists.
5992 *
5993 * Also calculates the amount of weighted load which should be moved
5994 * to restore balance.
5995 *
5996 * @env: The load balancing environment.
5997 *
5998 * Return: - The busiest group if imbalance exists.
5999 * - If no imbalance and user has opted for power-savings balance,
6000 * return the least loaded group whose CPUs can be
6001 * put to idle by rebalancing its tasks onto our group.
6002 */
6003 static struct sched_group *find_busiest_group(struct lb_env *env)
6004 {
6005 struct sg_lb_stats *local, *busiest;
6006 struct sd_lb_stats sds;
6007
6008 init_sd_lb_stats(&sds);
6009
6010 /*
6011 * Compute the various statistics relavent for load balancing at
6012 * this level.
6013 */
6014 update_sd_lb_stats(env, &sds);
6015 local = &sds.local_stat;
6016 busiest = &sds.busiest_stat;
6017
6018 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6019 check_asym_packing(env, &sds))
6020 return sds.busiest;
6021
6022 /* There is no busy sibling group to pull tasks from */
6023 if (!sds.busiest || busiest->sum_nr_running == 0)
6024 goto out_balanced;
6025
6026 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
6027
6028 /*
6029 * If the busiest group is imbalanced the below checks don't
6030 * work because they assume all things are equal, which typically
6031 * isn't true due to cpus_allowed constraints and the like.
6032 */
6033 if (busiest->group_imb)
6034 goto force_balance;
6035
6036 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6037 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6038 !busiest->group_has_capacity)
6039 goto force_balance;
6040
6041 /*
6042 * If the local group is more busy than the selected busiest group
6043 * don't try and pull any tasks.
6044 */
6045 if (local->avg_load >= busiest->avg_load)
6046 goto out_balanced;
6047
6048 /*
6049 * Don't pull any tasks if this group is already above the domain
6050 * average load.
6051 */
6052 if (local->avg_load >= sds.avg_load)
6053 goto out_balanced;
6054
6055 if (env->idle == CPU_IDLE) {
6056 /*
6057 * This cpu is idle. If the busiest group load doesn't
6058 * have more tasks than the number of available cpu's and
6059 * there is no imbalance between this and busiest group
6060 * wrt to idle cpu's, it is balanced.
6061 */
6062 if ((local->idle_cpus < busiest->idle_cpus) &&
6063 busiest->sum_nr_running <= busiest->group_weight)
6064 goto out_balanced;
6065 } else {
6066 /*
6067 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6068 * imbalance_pct to be conservative.
6069 */
6070 if (100 * busiest->avg_load <=
6071 env->sd->imbalance_pct * local->avg_load)
6072 goto out_balanced;
6073 }
6074
6075 force_balance:
6076 /* Looks like there is an imbalance. Compute it */
6077 calculate_imbalance(env, &sds);
6078 return sds.busiest;
6079
6080 out_balanced:
6081 env->imbalance = 0;
6082 return NULL;
6083 }
6084
6085 /*
6086 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6087 */
6088 static struct rq *find_busiest_queue(struct lb_env *env,
6089 struct sched_group *group)
6090 {
6091 struct rq *busiest = NULL, *rq;
6092 unsigned long busiest_load = 0, busiest_power = 1;
6093 int i;
6094
6095 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6096 unsigned long power, capacity, wl;
6097 enum fbq_type rt;
6098
6099 rq = cpu_rq(i);
6100 rt = fbq_classify_rq(rq);
6101
6102 /*
6103 * We classify groups/runqueues into three groups:
6104 * - regular: there are !numa tasks
6105 * - remote: there are numa tasks that run on the 'wrong' node
6106 * - all: there is no distinction
6107 *
6108 * In order to avoid migrating ideally placed numa tasks,
6109 * ignore those when there's better options.
6110 *
6111 * If we ignore the actual busiest queue to migrate another
6112 * task, the next balance pass can still reduce the busiest
6113 * queue by moving tasks around inside the node.
6114 *
6115 * If we cannot move enough load due to this classification
6116 * the next pass will adjust the group classification and
6117 * allow migration of more tasks.
6118 *
6119 * Both cases only affect the total convergence complexity.
6120 */
6121 if (rt > env->fbq_type)
6122 continue;
6123
6124 power = power_of(i);
6125 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6126 if (!capacity)
6127 capacity = fix_small_capacity(env->sd, group);
6128
6129 wl = weighted_cpuload(i);
6130
6131 /*
6132 * When comparing with imbalance, use weighted_cpuload()
6133 * which is not scaled with the cpu power.
6134 */
6135 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6136 continue;
6137
6138 /*
6139 * For the load comparisons with the other cpu's, consider
6140 * the weighted_cpuload() scaled with the cpu power, so that
6141 * the load can be moved away from the cpu that is potentially
6142 * running at a lower capacity.
6143 *
6144 * Thus we're looking for max(wl_i / power_i), crosswise
6145 * multiplication to rid ourselves of the division works out
6146 * to: wl_i * power_j > wl_j * power_i; where j is our
6147 * previous maximum.
6148 */
6149 if (wl * busiest_power > busiest_load * power) {
6150 busiest_load = wl;
6151 busiest_power = power;
6152 busiest = rq;
6153 }
6154 }
6155
6156 return busiest;
6157 }
6158
6159 /*
6160 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6161 * so long as it is large enough.
6162 */
6163 #define MAX_PINNED_INTERVAL 512
6164
6165 /* Working cpumask for load_balance and load_balance_newidle. */
6166 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6167
6168 static int need_active_balance(struct lb_env *env)
6169 {
6170 struct sched_domain *sd = env->sd;
6171
6172 if (env->idle == CPU_NEWLY_IDLE) {
6173
6174 /*
6175 * ASYM_PACKING needs to force migrate tasks from busy but
6176 * higher numbered CPUs in order to pack all tasks in the
6177 * lowest numbered CPUs.
6178 */
6179 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6180 return 1;
6181 }
6182
6183 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6184 }
6185
6186 static int active_load_balance_cpu_stop(void *data);
6187
6188 static int should_we_balance(struct lb_env *env)
6189 {
6190 struct sched_group *sg = env->sd->groups;
6191 struct cpumask *sg_cpus, *sg_mask;
6192 int cpu, balance_cpu = -1;
6193
6194 /*
6195 * In the newly idle case, we will allow all the cpu's
6196 * to do the newly idle load balance.
6197 */
6198 if (env->idle == CPU_NEWLY_IDLE)
6199 return 1;
6200
6201 sg_cpus = sched_group_cpus(sg);
6202 sg_mask = sched_group_mask(sg);
6203 /* Try to find first idle cpu */
6204 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6205 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6206 continue;
6207
6208 balance_cpu = cpu;
6209 break;
6210 }
6211
6212 if (balance_cpu == -1)
6213 balance_cpu = group_balance_cpu(sg);
6214
6215 /*
6216 * First idle cpu or the first cpu(busiest) in this sched group
6217 * is eligible for doing load balancing at this and above domains.
6218 */
6219 return balance_cpu == env->dst_cpu;
6220 }
6221
6222 /*
6223 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6224 * tasks if there is an imbalance.
6225 */
6226 static int load_balance(int this_cpu, struct rq *this_rq,
6227 struct sched_domain *sd, enum cpu_idle_type idle,
6228 int *continue_balancing)
6229 {
6230 int ld_moved, cur_ld_moved, active_balance = 0;
6231 struct sched_domain *sd_parent = sd->parent;
6232 struct sched_group *group;
6233 struct rq *busiest;
6234 unsigned long flags;
6235 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6236
6237 struct lb_env env = {
6238 .sd = sd,
6239 .dst_cpu = this_cpu,
6240 .dst_rq = this_rq,
6241 .dst_grpmask = sched_group_cpus(sd->groups),
6242 .idle = idle,
6243 .loop_break = sched_nr_migrate_break,
6244 .cpus = cpus,
6245 .fbq_type = all,
6246 };
6247
6248 /*
6249 * For NEWLY_IDLE load_balancing, we don't need to consider
6250 * other cpus in our group
6251 */
6252 if (idle == CPU_NEWLY_IDLE)
6253 env.dst_grpmask = NULL;
6254
6255 cpumask_copy(cpus, cpu_active_mask);
6256
6257 schedstat_inc(sd, lb_count[idle]);
6258
6259 redo:
6260 if (!should_we_balance(&env)) {
6261 *continue_balancing = 0;
6262 goto out_balanced;
6263 }
6264
6265 group = find_busiest_group(&env);
6266 if (!group) {
6267 schedstat_inc(sd, lb_nobusyg[idle]);
6268 goto out_balanced;
6269 }
6270
6271 busiest = find_busiest_queue(&env, group);
6272 if (!busiest) {
6273 schedstat_inc(sd, lb_nobusyq[idle]);
6274 goto out_balanced;
6275 }
6276
6277 BUG_ON(busiest == env.dst_rq);
6278
6279 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6280
6281 ld_moved = 0;
6282 if (busiest->nr_running > 1) {
6283 /*
6284 * Attempt to move tasks. If find_busiest_group has found
6285 * an imbalance but busiest->nr_running <= 1, the group is
6286 * still unbalanced. ld_moved simply stays zero, so it is
6287 * correctly treated as an imbalance.
6288 */
6289 env.flags |= LBF_ALL_PINNED;
6290 env.src_cpu = busiest->cpu;
6291 env.src_rq = busiest;
6292 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6293
6294 more_balance:
6295 local_irq_save(flags);
6296 double_rq_lock(env.dst_rq, busiest);
6297
6298 /*
6299 * cur_ld_moved - load moved in current iteration
6300 * ld_moved - cumulative load moved across iterations
6301 */
6302 cur_ld_moved = move_tasks(&env);
6303 ld_moved += cur_ld_moved;
6304 double_rq_unlock(env.dst_rq, busiest);
6305 local_irq_restore(flags);
6306
6307 /*
6308 * some other cpu did the load balance for us.
6309 */
6310 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6311 resched_cpu(env.dst_cpu);
6312
6313 if (env.flags & LBF_NEED_BREAK) {
6314 env.flags &= ~LBF_NEED_BREAK;
6315 goto more_balance;
6316 }
6317
6318 /*
6319 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6320 * us and move them to an alternate dst_cpu in our sched_group
6321 * where they can run. The upper limit on how many times we
6322 * iterate on same src_cpu is dependent on number of cpus in our
6323 * sched_group.
6324 *
6325 * This changes load balance semantics a bit on who can move
6326 * load to a given_cpu. In addition to the given_cpu itself
6327 * (or a ilb_cpu acting on its behalf where given_cpu is
6328 * nohz-idle), we now have balance_cpu in a position to move
6329 * load to given_cpu. In rare situations, this may cause
6330 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6331 * _independently_ and at _same_ time to move some load to
6332 * given_cpu) causing exceess load to be moved to given_cpu.
6333 * This however should not happen so much in practice and
6334 * moreover subsequent load balance cycles should correct the
6335 * excess load moved.
6336 */
6337 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6338
6339 /* Prevent to re-select dst_cpu via env's cpus */
6340 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6341
6342 env.dst_rq = cpu_rq(env.new_dst_cpu);
6343 env.dst_cpu = env.new_dst_cpu;
6344 env.flags &= ~LBF_DST_PINNED;
6345 env.loop = 0;
6346 env.loop_break = sched_nr_migrate_break;
6347
6348 /*
6349 * Go back to "more_balance" rather than "redo" since we
6350 * need to continue with same src_cpu.
6351 */
6352 goto more_balance;
6353 }
6354
6355 /*
6356 * We failed to reach balance because of affinity.
6357 */
6358 if (sd_parent) {
6359 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6360
6361 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6362 *group_imbalance = 1;
6363 } else if (*group_imbalance)
6364 *group_imbalance = 0;
6365 }
6366
6367 /* All tasks on this runqueue were pinned by CPU affinity */
6368 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6369 cpumask_clear_cpu(cpu_of(busiest), cpus);
6370 if (!cpumask_empty(cpus)) {
6371 env.loop = 0;
6372 env.loop_break = sched_nr_migrate_break;
6373 goto redo;
6374 }
6375 goto out_balanced;
6376 }
6377 }
6378
6379 if (!ld_moved) {
6380 schedstat_inc(sd, lb_failed[idle]);
6381 /*
6382 * Increment the failure counter only on periodic balance.
6383 * We do not want newidle balance, which can be very
6384 * frequent, pollute the failure counter causing
6385 * excessive cache_hot migrations and active balances.
6386 */
6387 if (idle != CPU_NEWLY_IDLE)
6388 sd->nr_balance_failed++;
6389
6390 if (need_active_balance(&env)) {
6391 raw_spin_lock_irqsave(&busiest->lock, flags);
6392
6393 /* don't kick the active_load_balance_cpu_stop,
6394 * if the curr task on busiest cpu can't be
6395 * moved to this_cpu
6396 */
6397 if (!cpumask_test_cpu(this_cpu,
6398 tsk_cpus_allowed(busiest->curr))) {
6399 raw_spin_unlock_irqrestore(&busiest->lock,
6400 flags);
6401 env.flags |= LBF_ALL_PINNED;
6402 goto out_one_pinned;
6403 }
6404
6405 /*
6406 * ->active_balance synchronizes accesses to
6407 * ->active_balance_work. Once set, it's cleared
6408 * only after active load balance is finished.
6409 */
6410 if (!busiest->active_balance) {
6411 busiest->active_balance = 1;
6412 busiest->push_cpu = this_cpu;
6413 active_balance = 1;
6414 }
6415 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6416
6417 if (active_balance) {
6418 stop_one_cpu_nowait(cpu_of(busiest),
6419 active_load_balance_cpu_stop, busiest,
6420 &busiest->active_balance_work);
6421 }
6422
6423 /*
6424 * We've kicked active balancing, reset the failure
6425 * counter.
6426 */
6427 sd->nr_balance_failed = sd->cache_nice_tries+1;
6428 }
6429 } else
6430 sd->nr_balance_failed = 0;
6431
6432 if (likely(!active_balance)) {
6433 /* We were unbalanced, so reset the balancing interval */
6434 sd->balance_interval = sd->min_interval;
6435 } else {
6436 /*
6437 * If we've begun active balancing, start to back off. This
6438 * case may not be covered by the all_pinned logic if there
6439 * is only 1 task on the busy runqueue (because we don't call
6440 * move_tasks).
6441 */
6442 if (sd->balance_interval < sd->max_interval)
6443 sd->balance_interval *= 2;
6444 }
6445
6446 goto out;
6447
6448 out_balanced:
6449 schedstat_inc(sd, lb_balanced[idle]);
6450
6451 sd->nr_balance_failed = 0;
6452
6453 out_one_pinned:
6454 /* tune up the balancing interval */
6455 if (((env.flags & LBF_ALL_PINNED) &&
6456 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6457 (sd->balance_interval < sd->max_interval))
6458 sd->balance_interval *= 2;
6459
6460 ld_moved = 0;
6461 out:
6462 return ld_moved;
6463 }
6464
6465 /*
6466 * idle_balance is called by schedule() if this_cpu is about to become
6467 * idle. Attempts to pull tasks from other CPUs.
6468 */
6469 void idle_balance(int this_cpu, struct rq *this_rq)
6470 {
6471 struct sched_domain *sd;
6472 int pulled_task = 0;
6473 unsigned long next_balance = jiffies + HZ;
6474 u64 curr_cost = 0;
6475
6476 this_rq->idle_stamp = rq_clock(this_rq);
6477
6478 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6479 return;
6480
6481 /*
6482 * Drop the rq->lock, but keep IRQ/preempt disabled.
6483 */
6484 raw_spin_unlock(&this_rq->lock);
6485
6486 update_blocked_averages(this_cpu);
6487 rcu_read_lock();
6488 for_each_domain(this_cpu, sd) {
6489 unsigned long interval;
6490 int continue_balancing = 1;
6491 u64 t0, domain_cost;
6492
6493 if (!(sd->flags & SD_LOAD_BALANCE))
6494 continue;
6495
6496 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6497 break;
6498
6499 if (sd->flags & SD_BALANCE_NEWIDLE) {
6500 t0 = sched_clock_cpu(this_cpu);
6501
6502 /* If we've pulled tasks over stop searching: */
6503 pulled_task = load_balance(this_cpu, this_rq,
6504 sd, CPU_NEWLY_IDLE,
6505 &continue_balancing);
6506
6507 domain_cost = sched_clock_cpu(this_cpu) - t0;
6508 if (domain_cost > sd->max_newidle_lb_cost)
6509 sd->max_newidle_lb_cost = domain_cost;
6510
6511 curr_cost += domain_cost;
6512 }
6513
6514 interval = msecs_to_jiffies(sd->balance_interval);
6515 if (time_after(next_balance, sd->last_balance + interval))
6516 next_balance = sd->last_balance + interval;
6517 if (pulled_task) {
6518 this_rq->idle_stamp = 0;
6519 break;
6520 }
6521 }
6522 rcu_read_unlock();
6523
6524 raw_spin_lock(&this_rq->lock);
6525
6526 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6527 /*
6528 * We are going idle. next_balance may be set based on
6529 * a busy processor. So reset next_balance.
6530 */
6531 this_rq->next_balance = next_balance;
6532 }
6533
6534 if (curr_cost > this_rq->max_idle_balance_cost)
6535 this_rq->max_idle_balance_cost = curr_cost;
6536 }
6537
6538 /*
6539 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6540 * running tasks off the busiest CPU onto idle CPUs. It requires at
6541 * least 1 task to be running on each physical CPU where possible, and
6542 * avoids physical / logical imbalances.
6543 */
6544 static int active_load_balance_cpu_stop(void *data)
6545 {
6546 struct rq *busiest_rq = data;
6547 int busiest_cpu = cpu_of(busiest_rq);
6548 int target_cpu = busiest_rq->push_cpu;
6549 struct rq *target_rq = cpu_rq(target_cpu);
6550 struct sched_domain *sd;
6551
6552 raw_spin_lock_irq(&busiest_rq->lock);
6553
6554 /* make sure the requested cpu hasn't gone down in the meantime */
6555 if (unlikely(busiest_cpu != smp_processor_id() ||
6556 !busiest_rq->active_balance))
6557 goto out_unlock;
6558
6559 /* Is there any task to move? */
6560 if (busiest_rq->nr_running <= 1)
6561 goto out_unlock;
6562
6563 /*
6564 * This condition is "impossible", if it occurs
6565 * we need to fix it. Originally reported by
6566 * Bjorn Helgaas on a 128-cpu setup.
6567 */
6568 BUG_ON(busiest_rq == target_rq);
6569
6570 /* move a task from busiest_rq to target_rq */
6571 double_lock_balance(busiest_rq, target_rq);
6572
6573 /* Search for an sd spanning us and the target CPU. */
6574 rcu_read_lock();
6575 for_each_domain(target_cpu, sd) {
6576 if ((sd->flags & SD_LOAD_BALANCE) &&
6577 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6578 break;
6579 }
6580
6581 if (likely(sd)) {
6582 struct lb_env env = {
6583 .sd = sd,
6584 .dst_cpu = target_cpu,
6585 .dst_rq = target_rq,
6586 .src_cpu = busiest_rq->cpu,
6587 .src_rq = busiest_rq,
6588 .idle = CPU_IDLE,
6589 };
6590
6591 schedstat_inc(sd, alb_count);
6592
6593 if (move_one_task(&env))
6594 schedstat_inc(sd, alb_pushed);
6595 else
6596 schedstat_inc(sd, alb_failed);
6597 }
6598 rcu_read_unlock();
6599 double_unlock_balance(busiest_rq, target_rq);
6600 out_unlock:
6601 busiest_rq->active_balance = 0;
6602 raw_spin_unlock_irq(&busiest_rq->lock);
6603 return 0;
6604 }
6605
6606 #ifdef CONFIG_NO_HZ_COMMON
6607 /*
6608 * idle load balancing details
6609 * - When one of the busy CPUs notice that there may be an idle rebalancing
6610 * needed, they will kick the idle load balancer, which then does idle
6611 * load balancing for all the idle CPUs.
6612 */
6613 static struct {
6614 cpumask_var_t idle_cpus_mask;
6615 atomic_t nr_cpus;
6616 unsigned long next_balance; /* in jiffy units */
6617 } nohz ____cacheline_aligned;
6618
6619 static inline int find_new_ilb(void)
6620 {
6621 int ilb = cpumask_first(nohz.idle_cpus_mask);
6622
6623 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6624 return ilb;
6625
6626 return nr_cpu_ids;
6627 }
6628
6629 /*
6630 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6631 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6632 * CPU (if there is one).
6633 */
6634 static void nohz_balancer_kick(void)
6635 {
6636 int ilb_cpu;
6637
6638 nohz.next_balance++;
6639
6640 ilb_cpu = find_new_ilb();
6641
6642 if (ilb_cpu >= nr_cpu_ids)
6643 return;
6644
6645 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6646 return;
6647 /*
6648 * Use smp_send_reschedule() instead of resched_cpu().
6649 * This way we generate a sched IPI on the target cpu which
6650 * is idle. And the softirq performing nohz idle load balance
6651 * will be run before returning from the IPI.
6652 */
6653 smp_send_reschedule(ilb_cpu);
6654 return;
6655 }
6656
6657 static inline void nohz_balance_exit_idle(int cpu)
6658 {
6659 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6660 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6661 atomic_dec(&nohz.nr_cpus);
6662 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6663 }
6664 }
6665
6666 static inline void set_cpu_sd_state_busy(void)
6667 {
6668 struct sched_domain *sd;
6669 int cpu = smp_processor_id();
6670
6671 rcu_read_lock();
6672 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6673
6674 if (!sd || !sd->nohz_idle)
6675 goto unlock;
6676 sd->nohz_idle = 0;
6677
6678 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6679 unlock:
6680 rcu_read_unlock();
6681 }
6682
6683 void set_cpu_sd_state_idle(void)
6684 {
6685 struct sched_domain *sd;
6686 int cpu = smp_processor_id();
6687
6688 rcu_read_lock();
6689 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6690
6691 if (!sd || sd->nohz_idle)
6692 goto unlock;
6693 sd->nohz_idle = 1;
6694
6695 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6696 unlock:
6697 rcu_read_unlock();
6698 }
6699
6700 /*
6701 * This routine will record that the cpu is going idle with tick stopped.
6702 * This info will be used in performing idle load balancing in the future.
6703 */
6704 void nohz_balance_enter_idle(int cpu)
6705 {
6706 /*
6707 * If this cpu is going down, then nothing needs to be done.
6708 */
6709 if (!cpu_active(cpu))
6710 return;
6711
6712 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6713 return;
6714
6715 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6716 atomic_inc(&nohz.nr_cpus);
6717 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6718 }
6719
6720 static int sched_ilb_notifier(struct notifier_block *nfb,
6721 unsigned long action, void *hcpu)
6722 {
6723 switch (action & ~CPU_TASKS_FROZEN) {
6724 case CPU_DYING:
6725 nohz_balance_exit_idle(smp_processor_id());
6726 return NOTIFY_OK;
6727 default:
6728 return NOTIFY_DONE;
6729 }
6730 }
6731 #endif
6732
6733 static DEFINE_SPINLOCK(balancing);
6734
6735 /*
6736 * Scale the max load_balance interval with the number of CPUs in the system.
6737 * This trades load-balance latency on larger machines for less cross talk.
6738 */
6739 void update_max_interval(void)
6740 {
6741 max_load_balance_interval = HZ*num_online_cpus()/10;
6742 }
6743
6744 /*
6745 * It checks each scheduling domain to see if it is due to be balanced,
6746 * and initiates a balancing operation if so.
6747 *
6748 * Balancing parameters are set up in init_sched_domains.
6749 */
6750 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6751 {
6752 int continue_balancing = 1;
6753 int cpu = rq->cpu;
6754 unsigned long interval;
6755 struct sched_domain *sd;
6756 /* Earliest time when we have to do rebalance again */
6757 unsigned long next_balance = jiffies + 60*HZ;
6758 int update_next_balance = 0;
6759 int need_serialize, need_decay = 0;
6760 u64 max_cost = 0;
6761
6762 update_blocked_averages(cpu);
6763
6764 rcu_read_lock();
6765 for_each_domain(cpu, sd) {
6766 /*
6767 * Decay the newidle max times here because this is a regular
6768 * visit to all the domains. Decay ~1% per second.
6769 */
6770 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6771 sd->max_newidle_lb_cost =
6772 (sd->max_newidle_lb_cost * 253) / 256;
6773 sd->next_decay_max_lb_cost = jiffies + HZ;
6774 need_decay = 1;
6775 }
6776 max_cost += sd->max_newidle_lb_cost;
6777
6778 if (!(sd->flags & SD_LOAD_BALANCE))
6779 continue;
6780
6781 /*
6782 * Stop the load balance at this level. There is another
6783 * CPU in our sched group which is doing load balancing more
6784 * actively.
6785 */
6786 if (!continue_balancing) {
6787 if (need_decay)
6788 continue;
6789 break;
6790 }
6791
6792 interval = sd->balance_interval;
6793 if (idle != CPU_IDLE)
6794 interval *= sd->busy_factor;
6795
6796 /* scale ms to jiffies */
6797 interval = msecs_to_jiffies(interval);
6798 interval = clamp(interval, 1UL, max_load_balance_interval);
6799
6800 need_serialize = sd->flags & SD_SERIALIZE;
6801
6802 if (need_serialize) {
6803 if (!spin_trylock(&balancing))
6804 goto out;
6805 }
6806
6807 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6808 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6809 /*
6810 * The LBF_DST_PINNED logic could have changed
6811 * env->dst_cpu, so we can't know our idle
6812 * state even if we migrated tasks. Update it.
6813 */
6814 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6815 }
6816 sd->last_balance = jiffies;
6817 }
6818 if (need_serialize)
6819 spin_unlock(&balancing);
6820 out:
6821 if (time_after(next_balance, sd->last_balance + interval)) {
6822 next_balance = sd->last_balance + interval;
6823 update_next_balance = 1;
6824 }
6825 }
6826 if (need_decay) {
6827 /*
6828 * Ensure the rq-wide value also decays but keep it at a
6829 * reasonable floor to avoid funnies with rq->avg_idle.
6830 */
6831 rq->max_idle_balance_cost =
6832 max((u64)sysctl_sched_migration_cost, max_cost);
6833 }
6834 rcu_read_unlock();
6835
6836 /*
6837 * next_balance will be updated only when there is a need.
6838 * When the cpu is attached to null domain for ex, it will not be
6839 * updated.
6840 */
6841 if (likely(update_next_balance))
6842 rq->next_balance = next_balance;
6843 }
6844
6845 #ifdef CONFIG_NO_HZ_COMMON
6846 /*
6847 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6848 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6849 */
6850 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
6851 {
6852 int this_cpu = this_rq->cpu;
6853 struct rq *rq;
6854 int balance_cpu;
6855
6856 if (idle != CPU_IDLE ||
6857 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6858 goto end;
6859
6860 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6861 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6862 continue;
6863
6864 /*
6865 * If this cpu gets work to do, stop the load balancing
6866 * work being done for other cpus. Next load
6867 * balancing owner will pick it up.
6868 */
6869 if (need_resched())
6870 break;
6871
6872 rq = cpu_rq(balance_cpu);
6873
6874 raw_spin_lock_irq(&rq->lock);
6875 update_rq_clock(rq);
6876 update_idle_cpu_load(rq);
6877 raw_spin_unlock_irq(&rq->lock);
6878
6879 rebalance_domains(rq, CPU_IDLE);
6880
6881 if (time_after(this_rq->next_balance, rq->next_balance))
6882 this_rq->next_balance = rq->next_balance;
6883 }
6884 nohz.next_balance = this_rq->next_balance;
6885 end:
6886 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6887 }
6888
6889 /*
6890 * Current heuristic for kicking the idle load balancer in the presence
6891 * of an idle cpu is the system.
6892 * - This rq has more than one task.
6893 * - At any scheduler domain level, this cpu's scheduler group has multiple
6894 * busy cpu's exceeding the group's power.
6895 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6896 * domain span are idle.
6897 */
6898 static inline int nohz_kick_needed(struct rq *rq)
6899 {
6900 unsigned long now = jiffies;
6901 struct sched_domain *sd;
6902 struct sched_group_power *sgp;
6903 int nr_busy, cpu = rq->cpu;
6904
6905 if (unlikely(rq->idle_balance))
6906 return 0;
6907
6908 /*
6909 * We may be recently in ticked or tickless idle mode. At the first
6910 * busy tick after returning from idle, we will update the busy stats.
6911 */
6912 set_cpu_sd_state_busy();
6913 nohz_balance_exit_idle(cpu);
6914
6915 /*
6916 * None are in tickless mode and hence no need for NOHZ idle load
6917 * balancing.
6918 */
6919 if (likely(!atomic_read(&nohz.nr_cpus)))
6920 return 0;
6921
6922 if (time_before(now, nohz.next_balance))
6923 return 0;
6924
6925 if (rq->nr_running >= 2)
6926 goto need_kick;
6927
6928 rcu_read_lock();
6929 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6930
6931 if (sd) {
6932 sgp = sd->groups->sgp;
6933 nr_busy = atomic_read(&sgp->nr_busy_cpus);
6934
6935 if (nr_busy > 1)
6936 goto need_kick_unlock;
6937 }
6938
6939 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6940
6941 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6942 sched_domain_span(sd)) < cpu))
6943 goto need_kick_unlock;
6944
6945 rcu_read_unlock();
6946 return 0;
6947
6948 need_kick_unlock:
6949 rcu_read_unlock();
6950 need_kick:
6951 return 1;
6952 }
6953 #else
6954 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
6955 #endif
6956
6957 /*
6958 * run_rebalance_domains is triggered when needed from the scheduler tick.
6959 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6960 */
6961 static void run_rebalance_domains(struct softirq_action *h)
6962 {
6963 struct rq *this_rq = this_rq();
6964 enum cpu_idle_type idle = this_rq->idle_balance ?
6965 CPU_IDLE : CPU_NOT_IDLE;
6966
6967 rebalance_domains(this_rq, idle);
6968
6969 /*
6970 * If this cpu has a pending nohz_balance_kick, then do the
6971 * balancing on behalf of the other idle cpus whose ticks are
6972 * stopped.
6973 */
6974 nohz_idle_balance(this_rq, idle);
6975 }
6976
6977 static inline int on_null_domain(struct rq *rq)
6978 {
6979 return !rcu_dereference_sched(rq->sd);
6980 }
6981
6982 /*
6983 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6984 */
6985 void trigger_load_balance(struct rq *rq)
6986 {
6987 /* Don't need to rebalance while attached to NULL domain */
6988 if (unlikely(on_null_domain(rq)))
6989 return;
6990
6991 if (time_after_eq(jiffies, rq->next_balance))
6992 raise_softirq(SCHED_SOFTIRQ);
6993 #ifdef CONFIG_NO_HZ_COMMON
6994 if (nohz_kick_needed(rq))
6995 nohz_balancer_kick();
6996 #endif
6997 }
6998
6999 static void rq_online_fair(struct rq *rq)
7000 {
7001 update_sysctl();
7002 }
7003
7004 static void rq_offline_fair(struct rq *rq)
7005 {
7006 update_sysctl();
7007
7008 /* Ensure any throttled groups are reachable by pick_next_task */
7009 unthrottle_offline_cfs_rqs(rq);
7010 }
7011
7012 #endif /* CONFIG_SMP */
7013
7014 /*
7015 * scheduler tick hitting a task of our scheduling class:
7016 */
7017 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7018 {
7019 struct cfs_rq *cfs_rq;
7020 struct sched_entity *se = &curr->se;
7021
7022 for_each_sched_entity(se) {
7023 cfs_rq = cfs_rq_of(se);
7024 entity_tick(cfs_rq, se, queued);
7025 }
7026
7027 if (numabalancing_enabled)
7028 task_tick_numa(rq, curr);
7029
7030 update_rq_runnable_avg(rq, 1);
7031 }
7032
7033 /*
7034 * called on fork with the child task as argument from the parent's context
7035 * - child not yet on the tasklist
7036 * - preemption disabled
7037 */
7038 static void task_fork_fair(struct task_struct *p)
7039 {
7040 struct cfs_rq *cfs_rq;
7041 struct sched_entity *se = &p->se, *curr;
7042 int this_cpu = smp_processor_id();
7043 struct rq *rq = this_rq();
7044 unsigned long flags;
7045
7046 raw_spin_lock_irqsave(&rq->lock, flags);
7047
7048 update_rq_clock(rq);
7049
7050 cfs_rq = task_cfs_rq(current);
7051 curr = cfs_rq->curr;
7052
7053 /*
7054 * Not only the cpu but also the task_group of the parent might have
7055 * been changed after parent->se.parent,cfs_rq were copied to
7056 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7057 * of child point to valid ones.
7058 */
7059 rcu_read_lock();
7060 __set_task_cpu(p, this_cpu);
7061 rcu_read_unlock();
7062
7063 update_curr(cfs_rq);
7064
7065 if (curr)
7066 se->vruntime = curr->vruntime;
7067 place_entity(cfs_rq, se, 1);
7068
7069 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7070 /*
7071 * Upon rescheduling, sched_class::put_prev_task() will place
7072 * 'current' within the tree based on its new key value.
7073 */
7074 swap(curr->vruntime, se->vruntime);
7075 resched_task(rq->curr);
7076 }
7077
7078 se->vruntime -= cfs_rq->min_vruntime;
7079
7080 raw_spin_unlock_irqrestore(&rq->lock, flags);
7081 }
7082
7083 /*
7084 * Priority of the task has changed. Check to see if we preempt
7085 * the current task.
7086 */
7087 static void
7088 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7089 {
7090 if (!p->se.on_rq)
7091 return;
7092
7093 /*
7094 * Reschedule if we are currently running on this runqueue and
7095 * our priority decreased, or if we are not currently running on
7096 * this runqueue and our priority is higher than the current's
7097 */
7098 if (rq->curr == p) {
7099 if (p->prio > oldprio)
7100 resched_task(rq->curr);
7101 } else
7102 check_preempt_curr(rq, p, 0);
7103 }
7104
7105 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7106 {
7107 struct sched_entity *se = &p->se;
7108 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7109
7110 /*
7111 * Ensure the task's vruntime is normalized, so that when its
7112 * switched back to the fair class the enqueue_entity(.flags=0) will
7113 * do the right thing.
7114 *
7115 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7116 * have normalized the vruntime, if it was !on_rq, then only when
7117 * the task is sleeping will it still have non-normalized vruntime.
7118 */
7119 if (!se->on_rq && p->state != TASK_RUNNING) {
7120 /*
7121 * Fix up our vruntime so that the current sleep doesn't
7122 * cause 'unlimited' sleep bonus.
7123 */
7124 place_entity(cfs_rq, se, 0);
7125 se->vruntime -= cfs_rq->min_vruntime;
7126 }
7127
7128 #ifdef CONFIG_SMP
7129 /*
7130 * Remove our load from contribution when we leave sched_fair
7131 * and ensure we don't carry in an old decay_count if we
7132 * switch back.
7133 */
7134 if (se->avg.decay_count) {
7135 __synchronize_entity_decay(se);
7136 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7137 }
7138 #endif
7139 }
7140
7141 /*
7142 * We switched to the sched_fair class.
7143 */
7144 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7145 {
7146 if (!p->se.on_rq)
7147 return;
7148
7149 /*
7150 * We were most likely switched from sched_rt, so
7151 * kick off the schedule if running, otherwise just see
7152 * if we can still preempt the current task.
7153 */
7154 if (rq->curr == p)
7155 resched_task(rq->curr);
7156 else
7157 check_preempt_curr(rq, p, 0);
7158 }
7159
7160 /* Account for a task changing its policy or group.
7161 *
7162 * This routine is mostly called to set cfs_rq->curr field when a task
7163 * migrates between groups/classes.
7164 */
7165 static void set_curr_task_fair(struct rq *rq)
7166 {
7167 struct sched_entity *se = &rq->curr->se;
7168
7169 for_each_sched_entity(se) {
7170 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7171
7172 set_next_entity(cfs_rq, se);
7173 /* ensure bandwidth has been allocated on our new cfs_rq */
7174 account_cfs_rq_runtime(cfs_rq, 0);
7175 }
7176 }
7177
7178 void init_cfs_rq(struct cfs_rq *cfs_rq)
7179 {
7180 cfs_rq->tasks_timeline = RB_ROOT;
7181 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7182 #ifndef CONFIG_64BIT
7183 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7184 #endif
7185 #ifdef CONFIG_SMP
7186 atomic64_set(&cfs_rq->decay_counter, 1);
7187 atomic_long_set(&cfs_rq->removed_load, 0);
7188 #endif
7189 }
7190
7191 #ifdef CONFIG_FAIR_GROUP_SCHED
7192 static void task_move_group_fair(struct task_struct *p, int on_rq)
7193 {
7194 struct cfs_rq *cfs_rq;
7195 /*
7196 * If the task was not on the rq at the time of this cgroup movement
7197 * it must have been asleep, sleeping tasks keep their ->vruntime
7198 * absolute on their old rq until wakeup (needed for the fair sleeper
7199 * bonus in place_entity()).
7200 *
7201 * If it was on the rq, we've just 'preempted' it, which does convert
7202 * ->vruntime to a relative base.
7203 *
7204 * Make sure both cases convert their relative position when migrating
7205 * to another cgroup's rq. This does somewhat interfere with the
7206 * fair sleeper stuff for the first placement, but who cares.
7207 */
7208 /*
7209 * When !on_rq, vruntime of the task has usually NOT been normalized.
7210 * But there are some cases where it has already been normalized:
7211 *
7212 * - Moving a forked child which is waiting for being woken up by
7213 * wake_up_new_task().
7214 * - Moving a task which has been woken up by try_to_wake_up() and
7215 * waiting for actually being woken up by sched_ttwu_pending().
7216 *
7217 * To prevent boost or penalty in the new cfs_rq caused by delta
7218 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7219 */
7220 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7221 on_rq = 1;
7222
7223 if (!on_rq)
7224 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7225 set_task_rq(p, task_cpu(p));
7226 if (!on_rq) {
7227 cfs_rq = cfs_rq_of(&p->se);
7228 p->se.vruntime += cfs_rq->min_vruntime;
7229 #ifdef CONFIG_SMP
7230 /*
7231 * migrate_task_rq_fair() will have removed our previous
7232 * contribution, but we must synchronize for ongoing future
7233 * decay.
7234 */
7235 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7236 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7237 #endif
7238 }
7239 }
7240
7241 void free_fair_sched_group(struct task_group *tg)
7242 {
7243 int i;
7244
7245 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7246
7247 for_each_possible_cpu(i) {
7248 if (tg->cfs_rq)
7249 kfree(tg->cfs_rq[i]);
7250 if (tg->se)
7251 kfree(tg->se[i]);
7252 }
7253
7254 kfree(tg->cfs_rq);
7255 kfree(tg->se);
7256 }
7257
7258 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7259 {
7260 struct cfs_rq *cfs_rq;
7261 struct sched_entity *se;
7262 int i;
7263
7264 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7265 if (!tg->cfs_rq)
7266 goto err;
7267 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7268 if (!tg->se)
7269 goto err;
7270
7271 tg->shares = NICE_0_LOAD;
7272
7273 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7274
7275 for_each_possible_cpu(i) {
7276 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7277 GFP_KERNEL, cpu_to_node(i));
7278 if (!cfs_rq)
7279 goto err;
7280
7281 se = kzalloc_node(sizeof(struct sched_entity),
7282 GFP_KERNEL, cpu_to_node(i));
7283 if (!se)
7284 goto err_free_rq;
7285
7286 init_cfs_rq(cfs_rq);
7287 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7288 }
7289
7290 return 1;
7291
7292 err_free_rq:
7293 kfree(cfs_rq);
7294 err:
7295 return 0;
7296 }
7297
7298 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7299 {
7300 struct rq *rq = cpu_rq(cpu);
7301 unsigned long flags;
7302
7303 /*
7304 * Only empty task groups can be destroyed; so we can speculatively
7305 * check on_list without danger of it being re-added.
7306 */
7307 if (!tg->cfs_rq[cpu]->on_list)
7308 return;
7309
7310 raw_spin_lock_irqsave(&rq->lock, flags);
7311 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7312 raw_spin_unlock_irqrestore(&rq->lock, flags);
7313 }
7314
7315 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7316 struct sched_entity *se, int cpu,
7317 struct sched_entity *parent)
7318 {
7319 struct rq *rq = cpu_rq(cpu);
7320
7321 cfs_rq->tg = tg;
7322 cfs_rq->rq = rq;
7323 init_cfs_rq_runtime(cfs_rq);
7324
7325 tg->cfs_rq[cpu] = cfs_rq;
7326 tg->se[cpu] = se;
7327
7328 /* se could be NULL for root_task_group */
7329 if (!se)
7330 return;
7331
7332 if (!parent)
7333 se->cfs_rq = &rq->cfs;
7334 else
7335 se->cfs_rq = parent->my_q;
7336
7337 se->my_q = cfs_rq;
7338 /* guarantee group entities always have weight */
7339 update_load_set(&se->load, NICE_0_LOAD);
7340 se->parent = parent;
7341 }
7342
7343 static DEFINE_MUTEX(shares_mutex);
7344
7345 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7346 {
7347 int i;
7348 unsigned long flags;
7349
7350 /*
7351 * We can't change the weight of the root cgroup.
7352 */
7353 if (!tg->se[0])
7354 return -EINVAL;
7355
7356 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7357
7358 mutex_lock(&shares_mutex);
7359 if (tg->shares == shares)
7360 goto done;
7361
7362 tg->shares = shares;
7363 for_each_possible_cpu(i) {
7364 struct rq *rq = cpu_rq(i);
7365 struct sched_entity *se;
7366
7367 se = tg->se[i];
7368 /* Propagate contribution to hierarchy */
7369 raw_spin_lock_irqsave(&rq->lock, flags);
7370
7371 /* Possible calls to update_curr() need rq clock */
7372 update_rq_clock(rq);
7373 for_each_sched_entity(se)
7374 update_cfs_shares(group_cfs_rq(se));
7375 raw_spin_unlock_irqrestore(&rq->lock, flags);
7376 }
7377
7378 done:
7379 mutex_unlock(&shares_mutex);
7380 return 0;
7381 }
7382 #else /* CONFIG_FAIR_GROUP_SCHED */
7383
7384 void free_fair_sched_group(struct task_group *tg) { }
7385
7386 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7387 {
7388 return 1;
7389 }
7390
7391 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7392
7393 #endif /* CONFIG_FAIR_GROUP_SCHED */
7394
7395
7396 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7397 {
7398 struct sched_entity *se = &task->se;
7399 unsigned int rr_interval = 0;
7400
7401 /*
7402 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7403 * idle runqueue:
7404 */
7405 if (rq->cfs.load.weight)
7406 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7407
7408 return rr_interval;
7409 }
7410
7411 /*
7412 * All the scheduling class methods:
7413 */
7414 const struct sched_class fair_sched_class = {
7415 .next = &idle_sched_class,
7416 .enqueue_task = enqueue_task_fair,
7417 .dequeue_task = dequeue_task_fair,
7418 .yield_task = yield_task_fair,
7419 .yield_to_task = yield_to_task_fair,
7420
7421 .check_preempt_curr = check_preempt_wakeup,
7422
7423 .pick_next_task = pick_next_task_fair,
7424 .put_prev_task = put_prev_task_fair,
7425
7426 #ifdef CONFIG_SMP
7427 .select_task_rq = select_task_rq_fair,
7428 .migrate_task_rq = migrate_task_rq_fair,
7429
7430 .rq_online = rq_online_fair,
7431 .rq_offline = rq_offline_fair,
7432
7433 .task_waking = task_waking_fair,
7434 #endif
7435
7436 .set_curr_task = set_curr_task_fair,
7437 .task_tick = task_tick_fair,
7438 .task_fork = task_fork_fair,
7439
7440 .prio_changed = prio_changed_fair,
7441 .switched_from = switched_from_fair,
7442 .switched_to = switched_to_fair,
7443
7444 .get_rr_interval = get_rr_interval_fair,
7445
7446 #ifdef CONFIG_FAIR_GROUP_SCHED
7447 .task_move_group = task_move_group_fair,
7448 #endif
7449 };
7450
7451 #ifdef CONFIG_SCHED_DEBUG
7452 void print_cfs_stats(struct seq_file *m, int cpu)
7453 {
7454 struct cfs_rq *cfs_rq;
7455
7456 rcu_read_lock();
7457 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7458 print_cfs_rq(m, cpu, cfs_rq);
7459 rcu_read_unlock();
7460 }
7461 #endif
7462
7463 __init void init_sched_fair_class(void)
7464 {
7465 #ifdef CONFIG_SMP
7466 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7467
7468 #ifdef CONFIG_NO_HZ_COMMON
7469 nohz.next_balance = jiffies;
7470 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7471 cpu_notifier(sched_ilb_notifier, 0);
7472 #endif
7473 #endif /* SMP */
7474
7475 }