]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched/fair.c
Merge branch 'for-next' into for-linus
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24
25 #include <trace/events/sched.h>
26
27 /*
28 * Targeted preemption latency for CPU-bound tasks:
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39 */
40 unsigned int sysctl_sched_latency = 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42
43 /*
44 * The initial- and re-scaling of tunables is configurable
45 *
46 * Options are:
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53 */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55
56 /*
57 * Minimal preemption granularity for CPU-bound tasks:
58 *
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60 */
61 unsigned int sysctl_sched_min_granularity = 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
63
64 /*
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66 */
67 static unsigned int sched_nr_latency = 8;
68
69 /*
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
72 */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74
75 /*
76 * SCHED_OTHER wake-up granularity.
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 */
84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
86
87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
88
89 #ifdef CONFIG_SMP
90 /*
91 * For asym packing, by default the lower numbered CPU has higher priority.
92 */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 return -cpu;
96 }
97
98 /*
99 * The margin used when comparing utilization with CPU capacity.
100 *
101 * (default: ~20%)
102 */
103 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
104
105 #endif
106
107 #ifdef CONFIG_CFS_BANDWIDTH
108 /*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
116 * (default: 5 msec, units: microseconds)
117 */
118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
119 #endif
120
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 lw->weight += inc;
124 lw->inv_weight = 0;
125 }
126
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131 }
132
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 lw->weight = w;
136 lw->inv_weight = 0;
137 }
138
139 /*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167 }
168
169 static void update_sysctl(void)
170 {
171 unsigned int factor = get_update_sysctl_factor();
172
173 #define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180
181 void sched_init_granularity(void)
182 {
183 update_sysctl();
184 }
185
186 #define WMULT_CONST (~0U)
187 #define WMULT_SHIFT 32
188
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
217 */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
222
223 __update_inv_weight(lw);
224
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
230 }
231
232 fact = mul_u32_u32(fact, lw->inv_weight);
233
234 while (fact >> 32) {
235 fact >>= 1;
236 shift--;
237 }
238
239 return mul_u64_u32_shr(delta_exec, fact, shift);
240 }
241
242
243 const struct sched_class fair_sched_class;
244
245 /**************************************************************
246 * CFS operations on generic schedulable entities:
247 */
248
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 static inline struct task_struct *task_of(struct sched_entity *se)
251 {
252 SCHED_WARN_ON(!entity_is_task(se));
253 return container_of(se, struct task_struct, se);
254 }
255
256 /* Walk up scheduling entities hierarchy */
257 #define for_each_sched_entity(se) \
258 for (; se; se = se->parent)
259
260 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
261 {
262 return p->se.cfs_rq;
263 }
264
265 /* runqueue on which this entity is (to be) queued */
266 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
267 {
268 return se->cfs_rq;
269 }
270
271 /* runqueue "owned" by this group */
272 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
273 {
274 return grp->my_q;
275 }
276
277 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
278 {
279 if (!path)
280 return;
281
282 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
283 autogroup_path(cfs_rq->tg, path, len);
284 else if (cfs_rq && cfs_rq->tg->css.cgroup)
285 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
286 else
287 strlcpy(path, "(null)", len);
288 }
289
290 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291 {
292 struct rq *rq = rq_of(cfs_rq);
293 int cpu = cpu_of(rq);
294
295 if (cfs_rq->on_list)
296 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
297
298 cfs_rq->on_list = 1;
299
300 /*
301 * Ensure we either appear before our parent (if already
302 * enqueued) or force our parent to appear after us when it is
303 * enqueued. The fact that we always enqueue bottom-up
304 * reduces this to two cases and a special case for the root
305 * cfs_rq. Furthermore, it also means that we will always reset
306 * tmp_alone_branch either when the branch is connected
307 * to a tree or when we reach the top of the tree
308 */
309 if (cfs_rq->tg->parent &&
310 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
311 /*
312 * If parent is already on the list, we add the child
313 * just before. Thanks to circular linked property of
314 * the list, this means to put the child at the tail
315 * of the list that starts by parent.
316 */
317 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
318 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
319 /*
320 * The branch is now connected to its tree so we can
321 * reset tmp_alone_branch to the beginning of the
322 * list.
323 */
324 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
325 return true;
326 }
327
328 if (!cfs_rq->tg->parent) {
329 /*
330 * cfs rq without parent should be put
331 * at the tail of the list.
332 */
333 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
334 &rq->leaf_cfs_rq_list);
335 /*
336 * We have reach the top of a tree so we can reset
337 * tmp_alone_branch to the beginning of the list.
338 */
339 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
340 return true;
341 }
342
343 /*
344 * The parent has not already been added so we want to
345 * make sure that it will be put after us.
346 * tmp_alone_branch points to the begin of the branch
347 * where we will add parent.
348 */
349 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
350 /*
351 * update tmp_alone_branch to points to the new begin
352 * of the branch
353 */
354 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
355 return false;
356 }
357
358 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
359 {
360 if (cfs_rq->on_list) {
361 struct rq *rq = rq_of(cfs_rq);
362
363 /*
364 * With cfs_rq being unthrottled/throttled during an enqueue,
365 * it can happen the tmp_alone_branch points the a leaf that
366 * we finally want to del. In this case, tmp_alone_branch moves
367 * to the prev element but it will point to rq->leaf_cfs_rq_list
368 * at the end of the enqueue.
369 */
370 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
371 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
372
373 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
374 cfs_rq->on_list = 0;
375 }
376 }
377
378 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
379 {
380 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
381 }
382
383 /* Iterate thr' all leaf cfs_rq's on a runqueue */
384 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
385 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
386 leaf_cfs_rq_list)
387
388 /* Do the two (enqueued) entities belong to the same group ? */
389 static inline struct cfs_rq *
390 is_same_group(struct sched_entity *se, struct sched_entity *pse)
391 {
392 if (se->cfs_rq == pse->cfs_rq)
393 return se->cfs_rq;
394
395 return NULL;
396 }
397
398 static inline struct sched_entity *parent_entity(struct sched_entity *se)
399 {
400 return se->parent;
401 }
402
403 static void
404 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
405 {
406 int se_depth, pse_depth;
407
408 /*
409 * preemption test can be made between sibling entities who are in the
410 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
411 * both tasks until we find their ancestors who are siblings of common
412 * parent.
413 */
414
415 /* First walk up until both entities are at same depth */
416 se_depth = (*se)->depth;
417 pse_depth = (*pse)->depth;
418
419 while (se_depth > pse_depth) {
420 se_depth--;
421 *se = parent_entity(*se);
422 }
423
424 while (pse_depth > se_depth) {
425 pse_depth--;
426 *pse = parent_entity(*pse);
427 }
428
429 while (!is_same_group(*se, *pse)) {
430 *se = parent_entity(*se);
431 *pse = parent_entity(*pse);
432 }
433 }
434
435 #else /* !CONFIG_FAIR_GROUP_SCHED */
436
437 static inline struct task_struct *task_of(struct sched_entity *se)
438 {
439 return container_of(se, struct task_struct, se);
440 }
441
442 #define for_each_sched_entity(se) \
443 for (; se; se = NULL)
444
445 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
446 {
447 return &task_rq(p)->cfs;
448 }
449
450 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
451 {
452 struct task_struct *p = task_of(se);
453 struct rq *rq = task_rq(p);
454
455 return &rq->cfs;
456 }
457
458 /* runqueue "owned" by this group */
459 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
460 {
461 return NULL;
462 }
463
464 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
465 {
466 if (path)
467 strlcpy(path, "(null)", len);
468 }
469
470 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
471 {
472 return true;
473 }
474
475 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
476 {
477 }
478
479 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
480 {
481 }
482
483 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
484 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
485
486 static inline struct sched_entity *parent_entity(struct sched_entity *se)
487 {
488 return NULL;
489 }
490
491 static inline void
492 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
493 {
494 }
495
496 #endif /* CONFIG_FAIR_GROUP_SCHED */
497
498 static __always_inline
499 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
500
501 /**************************************************************
502 * Scheduling class tree data structure manipulation methods:
503 */
504
505 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
506 {
507 s64 delta = (s64)(vruntime - max_vruntime);
508 if (delta > 0)
509 max_vruntime = vruntime;
510
511 return max_vruntime;
512 }
513
514 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
515 {
516 s64 delta = (s64)(vruntime - min_vruntime);
517 if (delta < 0)
518 min_vruntime = vruntime;
519
520 return min_vruntime;
521 }
522
523 static inline int entity_before(struct sched_entity *a,
524 struct sched_entity *b)
525 {
526 return (s64)(a->vruntime - b->vruntime) < 0;
527 }
528
529 static void update_min_vruntime(struct cfs_rq *cfs_rq)
530 {
531 struct sched_entity *curr = cfs_rq->curr;
532 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
533
534 u64 vruntime = cfs_rq->min_vruntime;
535
536 if (curr) {
537 if (curr->on_rq)
538 vruntime = curr->vruntime;
539 else
540 curr = NULL;
541 }
542
543 if (leftmost) { /* non-empty tree */
544 struct sched_entity *se;
545 se = rb_entry(leftmost, struct sched_entity, run_node);
546
547 if (!curr)
548 vruntime = se->vruntime;
549 else
550 vruntime = min_vruntime(vruntime, se->vruntime);
551 }
552
553 /* ensure we never gain time by being placed backwards. */
554 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
555 #ifndef CONFIG_64BIT
556 smp_wmb();
557 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
558 #endif
559 }
560
561 /*
562 * Enqueue an entity into the rb-tree:
563 */
564 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
565 {
566 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
567 struct rb_node *parent = NULL;
568 struct sched_entity *entry;
569 bool leftmost = true;
570
571 /*
572 * Find the right place in the rbtree:
573 */
574 while (*link) {
575 parent = *link;
576 entry = rb_entry(parent, struct sched_entity, run_node);
577 /*
578 * We dont care about collisions. Nodes with
579 * the same key stay together.
580 */
581 if (entity_before(se, entry)) {
582 link = &parent->rb_left;
583 } else {
584 link = &parent->rb_right;
585 leftmost = false;
586 }
587 }
588
589 rb_link_node(&se->run_node, parent, link);
590 rb_insert_color_cached(&se->run_node,
591 &cfs_rq->tasks_timeline, leftmost);
592 }
593
594 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
595 {
596 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
597 }
598
599 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
600 {
601 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
602
603 if (!left)
604 return NULL;
605
606 return rb_entry(left, struct sched_entity, run_node);
607 }
608
609 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
610 {
611 struct rb_node *next = rb_next(&se->run_node);
612
613 if (!next)
614 return NULL;
615
616 return rb_entry(next, struct sched_entity, run_node);
617 }
618
619 #ifdef CONFIG_SCHED_DEBUG
620 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
621 {
622 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
623
624 if (!last)
625 return NULL;
626
627 return rb_entry(last, struct sched_entity, run_node);
628 }
629
630 /**************************************************************
631 * Scheduling class statistics methods:
632 */
633
634 int sched_proc_update_handler(struct ctl_table *table, int write,
635 void __user *buffer, size_t *lenp,
636 loff_t *ppos)
637 {
638 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
639 unsigned int factor = get_update_sysctl_factor();
640
641 if (ret || !write)
642 return ret;
643
644 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
645 sysctl_sched_min_granularity);
646
647 #define WRT_SYSCTL(name) \
648 (normalized_sysctl_##name = sysctl_##name / (factor))
649 WRT_SYSCTL(sched_min_granularity);
650 WRT_SYSCTL(sched_latency);
651 WRT_SYSCTL(sched_wakeup_granularity);
652 #undef WRT_SYSCTL
653
654 return 0;
655 }
656 #endif
657
658 /*
659 * delta /= w
660 */
661 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
662 {
663 if (unlikely(se->load.weight != NICE_0_LOAD))
664 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
665
666 return delta;
667 }
668
669 /*
670 * The idea is to set a period in which each task runs once.
671 *
672 * When there are too many tasks (sched_nr_latency) we have to stretch
673 * this period because otherwise the slices get too small.
674 *
675 * p = (nr <= nl) ? l : l*nr/nl
676 */
677 static u64 __sched_period(unsigned long nr_running)
678 {
679 if (unlikely(nr_running > sched_nr_latency))
680 return nr_running * sysctl_sched_min_granularity;
681 else
682 return sysctl_sched_latency;
683 }
684
685 /*
686 * We calculate the wall-time slice from the period by taking a part
687 * proportional to the weight.
688 *
689 * s = p*P[w/rw]
690 */
691 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
692 {
693 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
694
695 for_each_sched_entity(se) {
696 struct load_weight *load;
697 struct load_weight lw;
698
699 cfs_rq = cfs_rq_of(se);
700 load = &cfs_rq->load;
701
702 if (unlikely(!se->on_rq)) {
703 lw = cfs_rq->load;
704
705 update_load_add(&lw, se->load.weight);
706 load = &lw;
707 }
708 slice = __calc_delta(slice, se->load.weight, load);
709 }
710 return slice;
711 }
712
713 /*
714 * We calculate the vruntime slice of a to-be-inserted task.
715 *
716 * vs = s/w
717 */
718 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
719 {
720 return calc_delta_fair(sched_slice(cfs_rq, se), se);
721 }
722
723 #include "pelt.h"
724 #ifdef CONFIG_SMP
725
726 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
727 static unsigned long task_h_load(struct task_struct *p);
728 static unsigned long capacity_of(int cpu);
729
730 /* Give new sched_entity start runnable values to heavy its load in infant time */
731 void init_entity_runnable_average(struct sched_entity *se)
732 {
733 struct sched_avg *sa = &se->avg;
734
735 memset(sa, 0, sizeof(*sa));
736
737 /*
738 * Tasks are initialized with full load to be seen as heavy tasks until
739 * they get a chance to stabilize to their real load level.
740 * Group entities are initialized with zero load to reflect the fact that
741 * nothing has been attached to the task group yet.
742 */
743 if (entity_is_task(se))
744 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
745
746 se->runnable_weight = se->load.weight;
747
748 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
749 }
750
751 static void attach_entity_cfs_rq(struct sched_entity *se);
752
753 /*
754 * With new tasks being created, their initial util_avgs are extrapolated
755 * based on the cfs_rq's current util_avg:
756 *
757 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
758 *
759 * However, in many cases, the above util_avg does not give a desired
760 * value. Moreover, the sum of the util_avgs may be divergent, such
761 * as when the series is a harmonic series.
762 *
763 * To solve this problem, we also cap the util_avg of successive tasks to
764 * only 1/2 of the left utilization budget:
765 *
766 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
767 *
768 * where n denotes the nth task and cpu_scale the CPU capacity.
769 *
770 * For example, for a CPU with 1024 of capacity, a simplest series from
771 * the beginning would be like:
772 *
773 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
774 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
775 *
776 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
777 * if util_avg > util_avg_cap.
778 */
779 void post_init_entity_util_avg(struct task_struct *p)
780 {
781 struct sched_entity *se = &p->se;
782 struct cfs_rq *cfs_rq = cfs_rq_of(se);
783 struct sched_avg *sa = &se->avg;
784 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
785 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
786
787 if (cap > 0) {
788 if (cfs_rq->avg.util_avg != 0) {
789 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
790 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
791
792 if (sa->util_avg > cap)
793 sa->util_avg = cap;
794 } else {
795 sa->util_avg = cap;
796 }
797 }
798
799 if (p->sched_class != &fair_sched_class) {
800 /*
801 * For !fair tasks do:
802 *
803 update_cfs_rq_load_avg(now, cfs_rq);
804 attach_entity_load_avg(cfs_rq, se);
805 switched_from_fair(rq, p);
806 *
807 * such that the next switched_to_fair() has the
808 * expected state.
809 */
810 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
811 return;
812 }
813
814 attach_entity_cfs_rq(se);
815 }
816
817 #else /* !CONFIG_SMP */
818 void init_entity_runnable_average(struct sched_entity *se)
819 {
820 }
821 void post_init_entity_util_avg(struct task_struct *p)
822 {
823 }
824 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
825 {
826 }
827 #endif /* CONFIG_SMP */
828
829 /*
830 * Update the current task's runtime statistics.
831 */
832 static void update_curr(struct cfs_rq *cfs_rq)
833 {
834 struct sched_entity *curr = cfs_rq->curr;
835 u64 now = rq_clock_task(rq_of(cfs_rq));
836 u64 delta_exec;
837
838 if (unlikely(!curr))
839 return;
840
841 delta_exec = now - curr->exec_start;
842 if (unlikely((s64)delta_exec <= 0))
843 return;
844
845 curr->exec_start = now;
846
847 schedstat_set(curr->statistics.exec_max,
848 max(delta_exec, curr->statistics.exec_max));
849
850 curr->sum_exec_runtime += delta_exec;
851 schedstat_add(cfs_rq->exec_clock, delta_exec);
852
853 curr->vruntime += calc_delta_fair(delta_exec, curr);
854 update_min_vruntime(cfs_rq);
855
856 if (entity_is_task(curr)) {
857 struct task_struct *curtask = task_of(curr);
858
859 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
860 cgroup_account_cputime(curtask, delta_exec);
861 account_group_exec_runtime(curtask, delta_exec);
862 }
863
864 account_cfs_rq_runtime(cfs_rq, delta_exec);
865 }
866
867 static void update_curr_fair(struct rq *rq)
868 {
869 update_curr(cfs_rq_of(&rq->curr->se));
870 }
871
872 static inline void
873 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
874 {
875 u64 wait_start, prev_wait_start;
876
877 if (!schedstat_enabled())
878 return;
879
880 wait_start = rq_clock(rq_of(cfs_rq));
881 prev_wait_start = schedstat_val(se->statistics.wait_start);
882
883 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
884 likely(wait_start > prev_wait_start))
885 wait_start -= prev_wait_start;
886
887 __schedstat_set(se->statistics.wait_start, wait_start);
888 }
889
890 static inline void
891 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
892 {
893 struct task_struct *p;
894 u64 delta;
895
896 if (!schedstat_enabled())
897 return;
898
899 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
900
901 if (entity_is_task(se)) {
902 p = task_of(se);
903 if (task_on_rq_migrating(p)) {
904 /*
905 * Preserve migrating task's wait time so wait_start
906 * time stamp can be adjusted to accumulate wait time
907 * prior to migration.
908 */
909 __schedstat_set(se->statistics.wait_start, delta);
910 return;
911 }
912 trace_sched_stat_wait(p, delta);
913 }
914
915 __schedstat_set(se->statistics.wait_max,
916 max(schedstat_val(se->statistics.wait_max), delta));
917 __schedstat_inc(se->statistics.wait_count);
918 __schedstat_add(se->statistics.wait_sum, delta);
919 __schedstat_set(se->statistics.wait_start, 0);
920 }
921
922 static inline void
923 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
924 {
925 struct task_struct *tsk = NULL;
926 u64 sleep_start, block_start;
927
928 if (!schedstat_enabled())
929 return;
930
931 sleep_start = schedstat_val(se->statistics.sleep_start);
932 block_start = schedstat_val(se->statistics.block_start);
933
934 if (entity_is_task(se))
935 tsk = task_of(se);
936
937 if (sleep_start) {
938 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
939
940 if ((s64)delta < 0)
941 delta = 0;
942
943 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
944 __schedstat_set(se->statistics.sleep_max, delta);
945
946 __schedstat_set(se->statistics.sleep_start, 0);
947 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
948
949 if (tsk) {
950 account_scheduler_latency(tsk, delta >> 10, 1);
951 trace_sched_stat_sleep(tsk, delta);
952 }
953 }
954 if (block_start) {
955 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
956
957 if ((s64)delta < 0)
958 delta = 0;
959
960 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
961 __schedstat_set(se->statistics.block_max, delta);
962
963 __schedstat_set(se->statistics.block_start, 0);
964 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
965
966 if (tsk) {
967 if (tsk->in_iowait) {
968 __schedstat_add(se->statistics.iowait_sum, delta);
969 __schedstat_inc(se->statistics.iowait_count);
970 trace_sched_stat_iowait(tsk, delta);
971 }
972
973 trace_sched_stat_blocked(tsk, delta);
974
975 /*
976 * Blocking time is in units of nanosecs, so shift by
977 * 20 to get a milliseconds-range estimation of the
978 * amount of time that the task spent sleeping:
979 */
980 if (unlikely(prof_on == SLEEP_PROFILING)) {
981 profile_hits(SLEEP_PROFILING,
982 (void *)get_wchan(tsk),
983 delta >> 20);
984 }
985 account_scheduler_latency(tsk, delta >> 10, 0);
986 }
987 }
988 }
989
990 /*
991 * Task is being enqueued - update stats:
992 */
993 static inline void
994 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
995 {
996 if (!schedstat_enabled())
997 return;
998
999 /*
1000 * Are we enqueueing a waiting task? (for current tasks
1001 * a dequeue/enqueue event is a NOP)
1002 */
1003 if (se != cfs_rq->curr)
1004 update_stats_wait_start(cfs_rq, se);
1005
1006 if (flags & ENQUEUE_WAKEUP)
1007 update_stats_enqueue_sleeper(cfs_rq, se);
1008 }
1009
1010 static inline void
1011 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1012 {
1013
1014 if (!schedstat_enabled())
1015 return;
1016
1017 /*
1018 * Mark the end of the wait period if dequeueing a
1019 * waiting task:
1020 */
1021 if (se != cfs_rq->curr)
1022 update_stats_wait_end(cfs_rq, se);
1023
1024 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1025 struct task_struct *tsk = task_of(se);
1026
1027 if (tsk->state & TASK_INTERRUPTIBLE)
1028 __schedstat_set(se->statistics.sleep_start,
1029 rq_clock(rq_of(cfs_rq)));
1030 if (tsk->state & TASK_UNINTERRUPTIBLE)
1031 __schedstat_set(se->statistics.block_start,
1032 rq_clock(rq_of(cfs_rq)));
1033 }
1034 }
1035
1036 /*
1037 * We are picking a new current task - update its stats:
1038 */
1039 static inline void
1040 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1041 {
1042 /*
1043 * We are starting a new run period:
1044 */
1045 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1046 }
1047
1048 /**************************************************
1049 * Scheduling class queueing methods:
1050 */
1051
1052 #ifdef CONFIG_NUMA_BALANCING
1053 /*
1054 * Approximate time to scan a full NUMA task in ms. The task scan period is
1055 * calculated based on the tasks virtual memory size and
1056 * numa_balancing_scan_size.
1057 */
1058 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1059 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1060
1061 /* Portion of address space to scan in MB */
1062 unsigned int sysctl_numa_balancing_scan_size = 256;
1063
1064 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1065 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1066
1067 struct numa_group {
1068 refcount_t refcount;
1069
1070 spinlock_t lock; /* nr_tasks, tasks */
1071 int nr_tasks;
1072 pid_t gid;
1073 int active_nodes;
1074
1075 struct rcu_head rcu;
1076 unsigned long total_faults;
1077 unsigned long max_faults_cpu;
1078 /*
1079 * Faults_cpu is used to decide whether memory should move
1080 * towards the CPU. As a consequence, these stats are weighted
1081 * more by CPU use than by memory faults.
1082 */
1083 unsigned long *faults_cpu;
1084 unsigned long faults[0];
1085 };
1086
1087 /*
1088 * For functions that can be called in multiple contexts that permit reading
1089 * ->numa_group (see struct task_struct for locking rules).
1090 */
1091 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1092 {
1093 return rcu_dereference_check(p->numa_group, p == current ||
1094 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1095 }
1096
1097 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1098 {
1099 return rcu_dereference_protected(p->numa_group, p == current);
1100 }
1101
1102 static inline unsigned long group_faults_priv(struct numa_group *ng);
1103 static inline unsigned long group_faults_shared(struct numa_group *ng);
1104
1105 static unsigned int task_nr_scan_windows(struct task_struct *p)
1106 {
1107 unsigned long rss = 0;
1108 unsigned long nr_scan_pages;
1109
1110 /*
1111 * Calculations based on RSS as non-present and empty pages are skipped
1112 * by the PTE scanner and NUMA hinting faults should be trapped based
1113 * on resident pages
1114 */
1115 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1116 rss = get_mm_rss(p->mm);
1117 if (!rss)
1118 rss = nr_scan_pages;
1119
1120 rss = round_up(rss, nr_scan_pages);
1121 return rss / nr_scan_pages;
1122 }
1123
1124 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1125 #define MAX_SCAN_WINDOW 2560
1126
1127 static unsigned int task_scan_min(struct task_struct *p)
1128 {
1129 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1130 unsigned int scan, floor;
1131 unsigned int windows = 1;
1132
1133 if (scan_size < MAX_SCAN_WINDOW)
1134 windows = MAX_SCAN_WINDOW / scan_size;
1135 floor = 1000 / windows;
1136
1137 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1138 return max_t(unsigned int, floor, scan);
1139 }
1140
1141 static unsigned int task_scan_start(struct task_struct *p)
1142 {
1143 unsigned long smin = task_scan_min(p);
1144 unsigned long period = smin;
1145 struct numa_group *ng;
1146
1147 /* Scale the maximum scan period with the amount of shared memory. */
1148 rcu_read_lock();
1149 ng = rcu_dereference(p->numa_group);
1150 if (ng) {
1151 unsigned long shared = group_faults_shared(ng);
1152 unsigned long private = group_faults_priv(ng);
1153
1154 period *= refcount_read(&ng->refcount);
1155 period *= shared + 1;
1156 period /= private + shared + 1;
1157 }
1158 rcu_read_unlock();
1159
1160 return max(smin, period);
1161 }
1162
1163 static unsigned int task_scan_max(struct task_struct *p)
1164 {
1165 unsigned long smin = task_scan_min(p);
1166 unsigned long smax;
1167 struct numa_group *ng;
1168
1169 /* Watch for min being lower than max due to floor calculations */
1170 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1171
1172 /* Scale the maximum scan period with the amount of shared memory. */
1173 ng = deref_curr_numa_group(p);
1174 if (ng) {
1175 unsigned long shared = group_faults_shared(ng);
1176 unsigned long private = group_faults_priv(ng);
1177 unsigned long period = smax;
1178
1179 period *= refcount_read(&ng->refcount);
1180 period *= shared + 1;
1181 period /= private + shared + 1;
1182
1183 smax = max(smax, period);
1184 }
1185
1186 return max(smin, smax);
1187 }
1188
1189 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1190 {
1191 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1192 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1193 }
1194
1195 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1196 {
1197 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1198 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1199 }
1200
1201 /* Shared or private faults. */
1202 #define NR_NUMA_HINT_FAULT_TYPES 2
1203
1204 /* Memory and CPU locality */
1205 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1206
1207 /* Averaged statistics, and temporary buffers. */
1208 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1209
1210 pid_t task_numa_group_id(struct task_struct *p)
1211 {
1212 struct numa_group *ng;
1213 pid_t gid = 0;
1214
1215 rcu_read_lock();
1216 ng = rcu_dereference(p->numa_group);
1217 if (ng)
1218 gid = ng->gid;
1219 rcu_read_unlock();
1220
1221 return gid;
1222 }
1223
1224 /*
1225 * The averaged statistics, shared & private, memory & CPU,
1226 * occupy the first half of the array. The second half of the
1227 * array is for current counters, which are averaged into the
1228 * first set by task_numa_placement.
1229 */
1230 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1231 {
1232 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1233 }
1234
1235 static inline unsigned long task_faults(struct task_struct *p, int nid)
1236 {
1237 if (!p->numa_faults)
1238 return 0;
1239
1240 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1241 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1242 }
1243
1244 static inline unsigned long group_faults(struct task_struct *p, int nid)
1245 {
1246 struct numa_group *ng = deref_task_numa_group(p);
1247
1248 if (!ng)
1249 return 0;
1250
1251 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1252 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1253 }
1254
1255 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1256 {
1257 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1258 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1259 }
1260
1261 static inline unsigned long group_faults_priv(struct numa_group *ng)
1262 {
1263 unsigned long faults = 0;
1264 int node;
1265
1266 for_each_online_node(node) {
1267 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1268 }
1269
1270 return faults;
1271 }
1272
1273 static inline unsigned long group_faults_shared(struct numa_group *ng)
1274 {
1275 unsigned long faults = 0;
1276 int node;
1277
1278 for_each_online_node(node) {
1279 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1280 }
1281
1282 return faults;
1283 }
1284
1285 /*
1286 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1287 * considered part of a numa group's pseudo-interleaving set. Migrations
1288 * between these nodes are slowed down, to allow things to settle down.
1289 */
1290 #define ACTIVE_NODE_FRACTION 3
1291
1292 static bool numa_is_active_node(int nid, struct numa_group *ng)
1293 {
1294 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1295 }
1296
1297 /* Handle placement on systems where not all nodes are directly connected. */
1298 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1299 int maxdist, bool task)
1300 {
1301 unsigned long score = 0;
1302 int node;
1303
1304 /*
1305 * All nodes are directly connected, and the same distance
1306 * from each other. No need for fancy placement algorithms.
1307 */
1308 if (sched_numa_topology_type == NUMA_DIRECT)
1309 return 0;
1310
1311 /*
1312 * This code is called for each node, introducing N^2 complexity,
1313 * which should be ok given the number of nodes rarely exceeds 8.
1314 */
1315 for_each_online_node(node) {
1316 unsigned long faults;
1317 int dist = node_distance(nid, node);
1318
1319 /*
1320 * The furthest away nodes in the system are not interesting
1321 * for placement; nid was already counted.
1322 */
1323 if (dist == sched_max_numa_distance || node == nid)
1324 continue;
1325
1326 /*
1327 * On systems with a backplane NUMA topology, compare groups
1328 * of nodes, and move tasks towards the group with the most
1329 * memory accesses. When comparing two nodes at distance
1330 * "hoplimit", only nodes closer by than "hoplimit" are part
1331 * of each group. Skip other nodes.
1332 */
1333 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1334 dist >= maxdist)
1335 continue;
1336
1337 /* Add up the faults from nearby nodes. */
1338 if (task)
1339 faults = task_faults(p, node);
1340 else
1341 faults = group_faults(p, node);
1342
1343 /*
1344 * On systems with a glueless mesh NUMA topology, there are
1345 * no fixed "groups of nodes". Instead, nodes that are not
1346 * directly connected bounce traffic through intermediate
1347 * nodes; a numa_group can occupy any set of nodes.
1348 * The further away a node is, the less the faults count.
1349 * This seems to result in good task placement.
1350 */
1351 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1352 faults *= (sched_max_numa_distance - dist);
1353 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1354 }
1355
1356 score += faults;
1357 }
1358
1359 return score;
1360 }
1361
1362 /*
1363 * These return the fraction of accesses done by a particular task, or
1364 * task group, on a particular numa node. The group weight is given a
1365 * larger multiplier, in order to group tasks together that are almost
1366 * evenly spread out between numa nodes.
1367 */
1368 static inline unsigned long task_weight(struct task_struct *p, int nid,
1369 int dist)
1370 {
1371 unsigned long faults, total_faults;
1372
1373 if (!p->numa_faults)
1374 return 0;
1375
1376 total_faults = p->total_numa_faults;
1377
1378 if (!total_faults)
1379 return 0;
1380
1381 faults = task_faults(p, nid);
1382 faults += score_nearby_nodes(p, nid, dist, true);
1383
1384 return 1000 * faults / total_faults;
1385 }
1386
1387 static inline unsigned long group_weight(struct task_struct *p, int nid,
1388 int dist)
1389 {
1390 struct numa_group *ng = deref_task_numa_group(p);
1391 unsigned long faults, total_faults;
1392
1393 if (!ng)
1394 return 0;
1395
1396 total_faults = ng->total_faults;
1397
1398 if (!total_faults)
1399 return 0;
1400
1401 faults = group_faults(p, nid);
1402 faults += score_nearby_nodes(p, nid, dist, false);
1403
1404 return 1000 * faults / total_faults;
1405 }
1406
1407 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1408 int src_nid, int dst_cpu)
1409 {
1410 struct numa_group *ng = deref_curr_numa_group(p);
1411 int dst_nid = cpu_to_node(dst_cpu);
1412 int last_cpupid, this_cpupid;
1413
1414 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1415 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1416
1417 /*
1418 * Allow first faults or private faults to migrate immediately early in
1419 * the lifetime of a task. The magic number 4 is based on waiting for
1420 * two full passes of the "multi-stage node selection" test that is
1421 * executed below.
1422 */
1423 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1424 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1425 return true;
1426
1427 /*
1428 * Multi-stage node selection is used in conjunction with a periodic
1429 * migration fault to build a temporal task<->page relation. By using
1430 * a two-stage filter we remove short/unlikely relations.
1431 *
1432 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1433 * a task's usage of a particular page (n_p) per total usage of this
1434 * page (n_t) (in a given time-span) to a probability.
1435 *
1436 * Our periodic faults will sample this probability and getting the
1437 * same result twice in a row, given these samples are fully
1438 * independent, is then given by P(n)^2, provided our sample period
1439 * is sufficiently short compared to the usage pattern.
1440 *
1441 * This quadric squishes small probabilities, making it less likely we
1442 * act on an unlikely task<->page relation.
1443 */
1444 if (!cpupid_pid_unset(last_cpupid) &&
1445 cpupid_to_nid(last_cpupid) != dst_nid)
1446 return false;
1447
1448 /* Always allow migrate on private faults */
1449 if (cpupid_match_pid(p, last_cpupid))
1450 return true;
1451
1452 /* A shared fault, but p->numa_group has not been set up yet. */
1453 if (!ng)
1454 return true;
1455
1456 /*
1457 * Destination node is much more heavily used than the source
1458 * node? Allow migration.
1459 */
1460 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1461 ACTIVE_NODE_FRACTION)
1462 return true;
1463
1464 /*
1465 * Distribute memory according to CPU & memory use on each node,
1466 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1467 *
1468 * faults_cpu(dst) 3 faults_cpu(src)
1469 * --------------- * - > ---------------
1470 * faults_mem(dst) 4 faults_mem(src)
1471 */
1472 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1473 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1474 }
1475
1476 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
1477
1478 static unsigned long cpu_runnable_load(struct rq *rq)
1479 {
1480 return cfs_rq_runnable_load_avg(&rq->cfs);
1481 }
1482
1483 /* Cached statistics for all CPUs within a node */
1484 struct numa_stats {
1485 unsigned long load;
1486
1487 /* Total compute capacity of CPUs on a node */
1488 unsigned long compute_capacity;
1489 };
1490
1491 /*
1492 * XXX borrowed from update_sg_lb_stats
1493 */
1494 static void update_numa_stats(struct numa_stats *ns, int nid)
1495 {
1496 int cpu;
1497
1498 memset(ns, 0, sizeof(*ns));
1499 for_each_cpu(cpu, cpumask_of_node(nid)) {
1500 struct rq *rq = cpu_rq(cpu);
1501
1502 ns->load += cpu_runnable_load(rq);
1503 ns->compute_capacity += capacity_of(cpu);
1504 }
1505
1506 }
1507
1508 struct task_numa_env {
1509 struct task_struct *p;
1510
1511 int src_cpu, src_nid;
1512 int dst_cpu, dst_nid;
1513
1514 struct numa_stats src_stats, dst_stats;
1515
1516 int imbalance_pct;
1517 int dist;
1518
1519 struct task_struct *best_task;
1520 long best_imp;
1521 int best_cpu;
1522 };
1523
1524 static void task_numa_assign(struct task_numa_env *env,
1525 struct task_struct *p, long imp)
1526 {
1527 struct rq *rq = cpu_rq(env->dst_cpu);
1528
1529 /* Bail out if run-queue part of active NUMA balance. */
1530 if (xchg(&rq->numa_migrate_on, 1))
1531 return;
1532
1533 /*
1534 * Clear previous best_cpu/rq numa-migrate flag, since task now
1535 * found a better CPU to move/swap.
1536 */
1537 if (env->best_cpu != -1) {
1538 rq = cpu_rq(env->best_cpu);
1539 WRITE_ONCE(rq->numa_migrate_on, 0);
1540 }
1541
1542 if (env->best_task)
1543 put_task_struct(env->best_task);
1544 if (p)
1545 get_task_struct(p);
1546
1547 env->best_task = p;
1548 env->best_imp = imp;
1549 env->best_cpu = env->dst_cpu;
1550 }
1551
1552 static bool load_too_imbalanced(long src_load, long dst_load,
1553 struct task_numa_env *env)
1554 {
1555 long imb, old_imb;
1556 long orig_src_load, orig_dst_load;
1557 long src_capacity, dst_capacity;
1558
1559 /*
1560 * The load is corrected for the CPU capacity available on each node.
1561 *
1562 * src_load dst_load
1563 * ------------ vs ---------
1564 * src_capacity dst_capacity
1565 */
1566 src_capacity = env->src_stats.compute_capacity;
1567 dst_capacity = env->dst_stats.compute_capacity;
1568
1569 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1570
1571 orig_src_load = env->src_stats.load;
1572 orig_dst_load = env->dst_stats.load;
1573
1574 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1575
1576 /* Would this change make things worse? */
1577 return (imb > old_imb);
1578 }
1579
1580 /*
1581 * Maximum NUMA importance can be 1998 (2*999);
1582 * SMALLIMP @ 30 would be close to 1998/64.
1583 * Used to deter task migration.
1584 */
1585 #define SMALLIMP 30
1586
1587 /*
1588 * This checks if the overall compute and NUMA accesses of the system would
1589 * be improved if the source tasks was migrated to the target dst_cpu taking
1590 * into account that it might be best if task running on the dst_cpu should
1591 * be exchanged with the source task
1592 */
1593 static void task_numa_compare(struct task_numa_env *env,
1594 long taskimp, long groupimp, bool maymove)
1595 {
1596 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1597 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1598 long imp = p_ng ? groupimp : taskimp;
1599 struct task_struct *cur;
1600 long src_load, dst_load;
1601 int dist = env->dist;
1602 long moveimp = imp;
1603 long load;
1604
1605 if (READ_ONCE(dst_rq->numa_migrate_on))
1606 return;
1607
1608 rcu_read_lock();
1609 cur = rcu_dereference(dst_rq->curr);
1610 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1611 cur = NULL;
1612
1613 /*
1614 * Because we have preemption enabled we can get migrated around and
1615 * end try selecting ourselves (current == env->p) as a swap candidate.
1616 */
1617 if (cur == env->p)
1618 goto unlock;
1619
1620 if (!cur) {
1621 if (maymove && moveimp >= env->best_imp)
1622 goto assign;
1623 else
1624 goto unlock;
1625 }
1626
1627 /*
1628 * "imp" is the fault differential for the source task between the
1629 * source and destination node. Calculate the total differential for
1630 * the source task and potential destination task. The more negative
1631 * the value is, the more remote accesses that would be expected to
1632 * be incurred if the tasks were swapped.
1633 */
1634 /* Skip this swap candidate if cannot move to the source cpu */
1635 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1636 goto unlock;
1637
1638 /*
1639 * If dst and source tasks are in the same NUMA group, or not
1640 * in any group then look only at task weights.
1641 */
1642 cur_ng = rcu_dereference(cur->numa_group);
1643 if (cur_ng == p_ng) {
1644 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1645 task_weight(cur, env->dst_nid, dist);
1646 /*
1647 * Add some hysteresis to prevent swapping the
1648 * tasks within a group over tiny differences.
1649 */
1650 if (cur_ng)
1651 imp -= imp / 16;
1652 } else {
1653 /*
1654 * Compare the group weights. If a task is all by itself
1655 * (not part of a group), use the task weight instead.
1656 */
1657 if (cur_ng && p_ng)
1658 imp += group_weight(cur, env->src_nid, dist) -
1659 group_weight(cur, env->dst_nid, dist);
1660 else
1661 imp += task_weight(cur, env->src_nid, dist) -
1662 task_weight(cur, env->dst_nid, dist);
1663 }
1664
1665 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1666 imp = moveimp;
1667 cur = NULL;
1668 goto assign;
1669 }
1670
1671 /*
1672 * If the NUMA importance is less than SMALLIMP,
1673 * task migration might only result in ping pong
1674 * of tasks and also hurt performance due to cache
1675 * misses.
1676 */
1677 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1678 goto unlock;
1679
1680 /*
1681 * In the overloaded case, try and keep the load balanced.
1682 */
1683 load = task_h_load(env->p) - task_h_load(cur);
1684 if (!load)
1685 goto assign;
1686
1687 dst_load = env->dst_stats.load + load;
1688 src_load = env->src_stats.load - load;
1689
1690 if (load_too_imbalanced(src_load, dst_load, env))
1691 goto unlock;
1692
1693 assign:
1694 /*
1695 * One idle CPU per node is evaluated for a task numa move.
1696 * Call select_idle_sibling to maybe find a better one.
1697 */
1698 if (!cur) {
1699 /*
1700 * select_idle_siblings() uses an per-CPU cpumask that
1701 * can be used from IRQ context.
1702 */
1703 local_irq_disable();
1704 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1705 env->dst_cpu);
1706 local_irq_enable();
1707 }
1708
1709 task_numa_assign(env, cur, imp);
1710 unlock:
1711 rcu_read_unlock();
1712 }
1713
1714 static void task_numa_find_cpu(struct task_numa_env *env,
1715 long taskimp, long groupimp)
1716 {
1717 long src_load, dst_load, load;
1718 bool maymove = false;
1719 int cpu;
1720
1721 load = task_h_load(env->p);
1722 dst_load = env->dst_stats.load + load;
1723 src_load = env->src_stats.load - load;
1724
1725 /*
1726 * If the improvement from just moving env->p direction is better
1727 * than swapping tasks around, check if a move is possible.
1728 */
1729 maymove = !load_too_imbalanced(src_load, dst_load, env);
1730
1731 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1732 /* Skip this CPU if the source task cannot migrate */
1733 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1734 continue;
1735
1736 env->dst_cpu = cpu;
1737 task_numa_compare(env, taskimp, groupimp, maymove);
1738 }
1739 }
1740
1741 static int task_numa_migrate(struct task_struct *p)
1742 {
1743 struct task_numa_env env = {
1744 .p = p,
1745
1746 .src_cpu = task_cpu(p),
1747 .src_nid = task_node(p),
1748
1749 .imbalance_pct = 112,
1750
1751 .best_task = NULL,
1752 .best_imp = 0,
1753 .best_cpu = -1,
1754 };
1755 unsigned long taskweight, groupweight;
1756 struct sched_domain *sd;
1757 long taskimp, groupimp;
1758 struct numa_group *ng;
1759 struct rq *best_rq;
1760 int nid, ret, dist;
1761
1762 /*
1763 * Pick the lowest SD_NUMA domain, as that would have the smallest
1764 * imbalance and would be the first to start moving tasks about.
1765 *
1766 * And we want to avoid any moving of tasks about, as that would create
1767 * random movement of tasks -- counter the numa conditions we're trying
1768 * to satisfy here.
1769 */
1770 rcu_read_lock();
1771 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1772 if (sd)
1773 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1774 rcu_read_unlock();
1775
1776 /*
1777 * Cpusets can break the scheduler domain tree into smaller
1778 * balance domains, some of which do not cross NUMA boundaries.
1779 * Tasks that are "trapped" in such domains cannot be migrated
1780 * elsewhere, so there is no point in (re)trying.
1781 */
1782 if (unlikely(!sd)) {
1783 sched_setnuma(p, task_node(p));
1784 return -EINVAL;
1785 }
1786
1787 env.dst_nid = p->numa_preferred_nid;
1788 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1789 taskweight = task_weight(p, env.src_nid, dist);
1790 groupweight = group_weight(p, env.src_nid, dist);
1791 update_numa_stats(&env.src_stats, env.src_nid);
1792 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1793 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1794 update_numa_stats(&env.dst_stats, env.dst_nid);
1795
1796 /* Try to find a spot on the preferred nid. */
1797 task_numa_find_cpu(&env, taskimp, groupimp);
1798
1799 /*
1800 * Look at other nodes in these cases:
1801 * - there is no space available on the preferred_nid
1802 * - the task is part of a numa_group that is interleaved across
1803 * multiple NUMA nodes; in order to better consolidate the group,
1804 * we need to check other locations.
1805 */
1806 ng = deref_curr_numa_group(p);
1807 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1808 for_each_online_node(nid) {
1809 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1810 continue;
1811
1812 dist = node_distance(env.src_nid, env.dst_nid);
1813 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1814 dist != env.dist) {
1815 taskweight = task_weight(p, env.src_nid, dist);
1816 groupweight = group_weight(p, env.src_nid, dist);
1817 }
1818
1819 /* Only consider nodes where both task and groups benefit */
1820 taskimp = task_weight(p, nid, dist) - taskweight;
1821 groupimp = group_weight(p, nid, dist) - groupweight;
1822 if (taskimp < 0 && groupimp < 0)
1823 continue;
1824
1825 env.dist = dist;
1826 env.dst_nid = nid;
1827 update_numa_stats(&env.dst_stats, env.dst_nid);
1828 task_numa_find_cpu(&env, taskimp, groupimp);
1829 }
1830 }
1831
1832 /*
1833 * If the task is part of a workload that spans multiple NUMA nodes,
1834 * and is migrating into one of the workload's active nodes, remember
1835 * this node as the task's preferred numa node, so the workload can
1836 * settle down.
1837 * A task that migrated to a second choice node will be better off
1838 * trying for a better one later. Do not set the preferred node here.
1839 */
1840 if (ng) {
1841 if (env.best_cpu == -1)
1842 nid = env.src_nid;
1843 else
1844 nid = cpu_to_node(env.best_cpu);
1845
1846 if (nid != p->numa_preferred_nid)
1847 sched_setnuma(p, nid);
1848 }
1849
1850 /* No better CPU than the current one was found. */
1851 if (env.best_cpu == -1)
1852 return -EAGAIN;
1853
1854 best_rq = cpu_rq(env.best_cpu);
1855 if (env.best_task == NULL) {
1856 ret = migrate_task_to(p, env.best_cpu);
1857 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1858 if (ret != 0)
1859 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1860 return ret;
1861 }
1862
1863 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1864 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1865
1866 if (ret != 0)
1867 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1868 put_task_struct(env.best_task);
1869 return ret;
1870 }
1871
1872 /* Attempt to migrate a task to a CPU on the preferred node. */
1873 static void numa_migrate_preferred(struct task_struct *p)
1874 {
1875 unsigned long interval = HZ;
1876
1877 /* This task has no NUMA fault statistics yet */
1878 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1879 return;
1880
1881 /* Periodically retry migrating the task to the preferred node */
1882 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1883 p->numa_migrate_retry = jiffies + interval;
1884
1885 /* Success if task is already running on preferred CPU */
1886 if (task_node(p) == p->numa_preferred_nid)
1887 return;
1888
1889 /* Otherwise, try migrate to a CPU on the preferred node */
1890 task_numa_migrate(p);
1891 }
1892
1893 /*
1894 * Find out how many nodes on the workload is actively running on. Do this by
1895 * tracking the nodes from which NUMA hinting faults are triggered. This can
1896 * be different from the set of nodes where the workload's memory is currently
1897 * located.
1898 */
1899 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1900 {
1901 unsigned long faults, max_faults = 0;
1902 int nid, active_nodes = 0;
1903
1904 for_each_online_node(nid) {
1905 faults = group_faults_cpu(numa_group, nid);
1906 if (faults > max_faults)
1907 max_faults = faults;
1908 }
1909
1910 for_each_online_node(nid) {
1911 faults = group_faults_cpu(numa_group, nid);
1912 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1913 active_nodes++;
1914 }
1915
1916 numa_group->max_faults_cpu = max_faults;
1917 numa_group->active_nodes = active_nodes;
1918 }
1919
1920 /*
1921 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1922 * increments. The more local the fault statistics are, the higher the scan
1923 * period will be for the next scan window. If local/(local+remote) ratio is
1924 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1925 * the scan period will decrease. Aim for 70% local accesses.
1926 */
1927 #define NUMA_PERIOD_SLOTS 10
1928 #define NUMA_PERIOD_THRESHOLD 7
1929
1930 /*
1931 * Increase the scan period (slow down scanning) if the majority of
1932 * our memory is already on our local node, or if the majority of
1933 * the page accesses are shared with other processes.
1934 * Otherwise, decrease the scan period.
1935 */
1936 static void update_task_scan_period(struct task_struct *p,
1937 unsigned long shared, unsigned long private)
1938 {
1939 unsigned int period_slot;
1940 int lr_ratio, ps_ratio;
1941 int diff;
1942
1943 unsigned long remote = p->numa_faults_locality[0];
1944 unsigned long local = p->numa_faults_locality[1];
1945
1946 /*
1947 * If there were no record hinting faults then either the task is
1948 * completely idle or all activity is areas that are not of interest
1949 * to automatic numa balancing. Related to that, if there were failed
1950 * migration then it implies we are migrating too quickly or the local
1951 * node is overloaded. In either case, scan slower
1952 */
1953 if (local + shared == 0 || p->numa_faults_locality[2]) {
1954 p->numa_scan_period = min(p->numa_scan_period_max,
1955 p->numa_scan_period << 1);
1956
1957 p->mm->numa_next_scan = jiffies +
1958 msecs_to_jiffies(p->numa_scan_period);
1959
1960 return;
1961 }
1962
1963 /*
1964 * Prepare to scale scan period relative to the current period.
1965 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1966 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1967 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1968 */
1969 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1970 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1971 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1972
1973 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1974 /*
1975 * Most memory accesses are local. There is no need to
1976 * do fast NUMA scanning, since memory is already local.
1977 */
1978 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1979 if (!slot)
1980 slot = 1;
1981 diff = slot * period_slot;
1982 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1983 /*
1984 * Most memory accesses are shared with other tasks.
1985 * There is no point in continuing fast NUMA scanning,
1986 * since other tasks may just move the memory elsewhere.
1987 */
1988 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1989 if (!slot)
1990 slot = 1;
1991 diff = slot * period_slot;
1992 } else {
1993 /*
1994 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1995 * yet they are not on the local NUMA node. Speed up
1996 * NUMA scanning to get the memory moved over.
1997 */
1998 int ratio = max(lr_ratio, ps_ratio);
1999 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2000 }
2001
2002 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2003 task_scan_min(p), task_scan_max(p));
2004 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2005 }
2006
2007 /*
2008 * Get the fraction of time the task has been running since the last
2009 * NUMA placement cycle. The scheduler keeps similar statistics, but
2010 * decays those on a 32ms period, which is orders of magnitude off
2011 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2012 * stats only if the task is so new there are no NUMA statistics yet.
2013 */
2014 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2015 {
2016 u64 runtime, delta, now;
2017 /* Use the start of this time slice to avoid calculations. */
2018 now = p->se.exec_start;
2019 runtime = p->se.sum_exec_runtime;
2020
2021 if (p->last_task_numa_placement) {
2022 delta = runtime - p->last_sum_exec_runtime;
2023 *period = now - p->last_task_numa_placement;
2024
2025 /* Avoid time going backwards, prevent potential divide error: */
2026 if (unlikely((s64)*period < 0))
2027 *period = 0;
2028 } else {
2029 delta = p->se.avg.load_sum;
2030 *period = LOAD_AVG_MAX;
2031 }
2032
2033 p->last_sum_exec_runtime = runtime;
2034 p->last_task_numa_placement = now;
2035
2036 return delta;
2037 }
2038
2039 /*
2040 * Determine the preferred nid for a task in a numa_group. This needs to
2041 * be done in a way that produces consistent results with group_weight,
2042 * otherwise workloads might not converge.
2043 */
2044 static int preferred_group_nid(struct task_struct *p, int nid)
2045 {
2046 nodemask_t nodes;
2047 int dist;
2048
2049 /* Direct connections between all NUMA nodes. */
2050 if (sched_numa_topology_type == NUMA_DIRECT)
2051 return nid;
2052
2053 /*
2054 * On a system with glueless mesh NUMA topology, group_weight
2055 * scores nodes according to the number of NUMA hinting faults on
2056 * both the node itself, and on nearby nodes.
2057 */
2058 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2059 unsigned long score, max_score = 0;
2060 int node, max_node = nid;
2061
2062 dist = sched_max_numa_distance;
2063
2064 for_each_online_node(node) {
2065 score = group_weight(p, node, dist);
2066 if (score > max_score) {
2067 max_score = score;
2068 max_node = node;
2069 }
2070 }
2071 return max_node;
2072 }
2073
2074 /*
2075 * Finding the preferred nid in a system with NUMA backplane
2076 * interconnect topology is more involved. The goal is to locate
2077 * tasks from numa_groups near each other in the system, and
2078 * untangle workloads from different sides of the system. This requires
2079 * searching down the hierarchy of node groups, recursively searching
2080 * inside the highest scoring group of nodes. The nodemask tricks
2081 * keep the complexity of the search down.
2082 */
2083 nodes = node_online_map;
2084 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2085 unsigned long max_faults = 0;
2086 nodemask_t max_group = NODE_MASK_NONE;
2087 int a, b;
2088
2089 /* Are there nodes at this distance from each other? */
2090 if (!find_numa_distance(dist))
2091 continue;
2092
2093 for_each_node_mask(a, nodes) {
2094 unsigned long faults = 0;
2095 nodemask_t this_group;
2096 nodes_clear(this_group);
2097
2098 /* Sum group's NUMA faults; includes a==b case. */
2099 for_each_node_mask(b, nodes) {
2100 if (node_distance(a, b) < dist) {
2101 faults += group_faults(p, b);
2102 node_set(b, this_group);
2103 node_clear(b, nodes);
2104 }
2105 }
2106
2107 /* Remember the top group. */
2108 if (faults > max_faults) {
2109 max_faults = faults;
2110 max_group = this_group;
2111 /*
2112 * subtle: at the smallest distance there is
2113 * just one node left in each "group", the
2114 * winner is the preferred nid.
2115 */
2116 nid = a;
2117 }
2118 }
2119 /* Next round, evaluate the nodes within max_group. */
2120 if (!max_faults)
2121 break;
2122 nodes = max_group;
2123 }
2124 return nid;
2125 }
2126
2127 static void task_numa_placement(struct task_struct *p)
2128 {
2129 int seq, nid, max_nid = NUMA_NO_NODE;
2130 unsigned long max_faults = 0;
2131 unsigned long fault_types[2] = { 0, 0 };
2132 unsigned long total_faults;
2133 u64 runtime, period;
2134 spinlock_t *group_lock = NULL;
2135 struct numa_group *ng;
2136
2137 /*
2138 * The p->mm->numa_scan_seq field gets updated without
2139 * exclusive access. Use READ_ONCE() here to ensure
2140 * that the field is read in a single access:
2141 */
2142 seq = READ_ONCE(p->mm->numa_scan_seq);
2143 if (p->numa_scan_seq == seq)
2144 return;
2145 p->numa_scan_seq = seq;
2146 p->numa_scan_period_max = task_scan_max(p);
2147
2148 total_faults = p->numa_faults_locality[0] +
2149 p->numa_faults_locality[1];
2150 runtime = numa_get_avg_runtime(p, &period);
2151
2152 /* If the task is part of a group prevent parallel updates to group stats */
2153 ng = deref_curr_numa_group(p);
2154 if (ng) {
2155 group_lock = &ng->lock;
2156 spin_lock_irq(group_lock);
2157 }
2158
2159 /* Find the node with the highest number of faults */
2160 for_each_online_node(nid) {
2161 /* Keep track of the offsets in numa_faults array */
2162 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2163 unsigned long faults = 0, group_faults = 0;
2164 int priv;
2165
2166 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2167 long diff, f_diff, f_weight;
2168
2169 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2170 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2171 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2172 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2173
2174 /* Decay existing window, copy faults since last scan */
2175 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2176 fault_types[priv] += p->numa_faults[membuf_idx];
2177 p->numa_faults[membuf_idx] = 0;
2178
2179 /*
2180 * Normalize the faults_from, so all tasks in a group
2181 * count according to CPU use, instead of by the raw
2182 * number of faults. Tasks with little runtime have
2183 * little over-all impact on throughput, and thus their
2184 * faults are less important.
2185 */
2186 f_weight = div64_u64(runtime << 16, period + 1);
2187 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2188 (total_faults + 1);
2189 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2190 p->numa_faults[cpubuf_idx] = 0;
2191
2192 p->numa_faults[mem_idx] += diff;
2193 p->numa_faults[cpu_idx] += f_diff;
2194 faults += p->numa_faults[mem_idx];
2195 p->total_numa_faults += diff;
2196 if (ng) {
2197 /*
2198 * safe because we can only change our own group
2199 *
2200 * mem_idx represents the offset for a given
2201 * nid and priv in a specific region because it
2202 * is at the beginning of the numa_faults array.
2203 */
2204 ng->faults[mem_idx] += diff;
2205 ng->faults_cpu[mem_idx] += f_diff;
2206 ng->total_faults += diff;
2207 group_faults += ng->faults[mem_idx];
2208 }
2209 }
2210
2211 if (!ng) {
2212 if (faults > max_faults) {
2213 max_faults = faults;
2214 max_nid = nid;
2215 }
2216 } else if (group_faults > max_faults) {
2217 max_faults = group_faults;
2218 max_nid = nid;
2219 }
2220 }
2221
2222 if (ng) {
2223 numa_group_count_active_nodes(ng);
2224 spin_unlock_irq(group_lock);
2225 max_nid = preferred_group_nid(p, max_nid);
2226 }
2227
2228 if (max_faults) {
2229 /* Set the new preferred node */
2230 if (max_nid != p->numa_preferred_nid)
2231 sched_setnuma(p, max_nid);
2232 }
2233
2234 update_task_scan_period(p, fault_types[0], fault_types[1]);
2235 }
2236
2237 static inline int get_numa_group(struct numa_group *grp)
2238 {
2239 return refcount_inc_not_zero(&grp->refcount);
2240 }
2241
2242 static inline void put_numa_group(struct numa_group *grp)
2243 {
2244 if (refcount_dec_and_test(&grp->refcount))
2245 kfree_rcu(grp, rcu);
2246 }
2247
2248 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2249 int *priv)
2250 {
2251 struct numa_group *grp, *my_grp;
2252 struct task_struct *tsk;
2253 bool join = false;
2254 int cpu = cpupid_to_cpu(cpupid);
2255 int i;
2256
2257 if (unlikely(!deref_curr_numa_group(p))) {
2258 unsigned int size = sizeof(struct numa_group) +
2259 4*nr_node_ids*sizeof(unsigned long);
2260
2261 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2262 if (!grp)
2263 return;
2264
2265 refcount_set(&grp->refcount, 1);
2266 grp->active_nodes = 1;
2267 grp->max_faults_cpu = 0;
2268 spin_lock_init(&grp->lock);
2269 grp->gid = p->pid;
2270 /* Second half of the array tracks nids where faults happen */
2271 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2272 nr_node_ids;
2273
2274 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2275 grp->faults[i] = p->numa_faults[i];
2276
2277 grp->total_faults = p->total_numa_faults;
2278
2279 grp->nr_tasks++;
2280 rcu_assign_pointer(p->numa_group, grp);
2281 }
2282
2283 rcu_read_lock();
2284 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2285
2286 if (!cpupid_match_pid(tsk, cpupid))
2287 goto no_join;
2288
2289 grp = rcu_dereference(tsk->numa_group);
2290 if (!grp)
2291 goto no_join;
2292
2293 my_grp = deref_curr_numa_group(p);
2294 if (grp == my_grp)
2295 goto no_join;
2296
2297 /*
2298 * Only join the other group if its bigger; if we're the bigger group,
2299 * the other task will join us.
2300 */
2301 if (my_grp->nr_tasks > grp->nr_tasks)
2302 goto no_join;
2303
2304 /*
2305 * Tie-break on the grp address.
2306 */
2307 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2308 goto no_join;
2309
2310 /* Always join threads in the same process. */
2311 if (tsk->mm == current->mm)
2312 join = true;
2313
2314 /* Simple filter to avoid false positives due to PID collisions */
2315 if (flags & TNF_SHARED)
2316 join = true;
2317
2318 /* Update priv based on whether false sharing was detected */
2319 *priv = !join;
2320
2321 if (join && !get_numa_group(grp))
2322 goto no_join;
2323
2324 rcu_read_unlock();
2325
2326 if (!join)
2327 return;
2328
2329 BUG_ON(irqs_disabled());
2330 double_lock_irq(&my_grp->lock, &grp->lock);
2331
2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2333 my_grp->faults[i] -= p->numa_faults[i];
2334 grp->faults[i] += p->numa_faults[i];
2335 }
2336 my_grp->total_faults -= p->total_numa_faults;
2337 grp->total_faults += p->total_numa_faults;
2338
2339 my_grp->nr_tasks--;
2340 grp->nr_tasks++;
2341
2342 spin_unlock(&my_grp->lock);
2343 spin_unlock_irq(&grp->lock);
2344
2345 rcu_assign_pointer(p->numa_group, grp);
2346
2347 put_numa_group(my_grp);
2348 return;
2349
2350 no_join:
2351 rcu_read_unlock();
2352 return;
2353 }
2354
2355 /*
2356 * Get rid of NUMA staticstics associated with a task (either current or dead).
2357 * If @final is set, the task is dead and has reached refcount zero, so we can
2358 * safely free all relevant data structures. Otherwise, there might be
2359 * concurrent reads from places like load balancing and procfs, and we should
2360 * reset the data back to default state without freeing ->numa_faults.
2361 */
2362 void task_numa_free(struct task_struct *p, bool final)
2363 {
2364 /* safe: p either is current or is being freed by current */
2365 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2366 unsigned long *numa_faults = p->numa_faults;
2367 unsigned long flags;
2368 int i;
2369
2370 if (!numa_faults)
2371 return;
2372
2373 if (grp) {
2374 spin_lock_irqsave(&grp->lock, flags);
2375 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2376 grp->faults[i] -= p->numa_faults[i];
2377 grp->total_faults -= p->total_numa_faults;
2378
2379 grp->nr_tasks--;
2380 spin_unlock_irqrestore(&grp->lock, flags);
2381 RCU_INIT_POINTER(p->numa_group, NULL);
2382 put_numa_group(grp);
2383 }
2384
2385 if (final) {
2386 p->numa_faults = NULL;
2387 kfree(numa_faults);
2388 } else {
2389 p->total_numa_faults = 0;
2390 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2391 numa_faults[i] = 0;
2392 }
2393 }
2394
2395 /*
2396 * Got a PROT_NONE fault for a page on @node.
2397 */
2398 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2399 {
2400 struct task_struct *p = current;
2401 bool migrated = flags & TNF_MIGRATED;
2402 int cpu_node = task_node(current);
2403 int local = !!(flags & TNF_FAULT_LOCAL);
2404 struct numa_group *ng;
2405 int priv;
2406
2407 if (!static_branch_likely(&sched_numa_balancing))
2408 return;
2409
2410 /* for example, ksmd faulting in a user's mm */
2411 if (!p->mm)
2412 return;
2413
2414 /* Allocate buffer to track faults on a per-node basis */
2415 if (unlikely(!p->numa_faults)) {
2416 int size = sizeof(*p->numa_faults) *
2417 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2418
2419 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2420 if (!p->numa_faults)
2421 return;
2422
2423 p->total_numa_faults = 0;
2424 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2425 }
2426
2427 /*
2428 * First accesses are treated as private, otherwise consider accesses
2429 * to be private if the accessing pid has not changed
2430 */
2431 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2432 priv = 1;
2433 } else {
2434 priv = cpupid_match_pid(p, last_cpupid);
2435 if (!priv && !(flags & TNF_NO_GROUP))
2436 task_numa_group(p, last_cpupid, flags, &priv);
2437 }
2438
2439 /*
2440 * If a workload spans multiple NUMA nodes, a shared fault that
2441 * occurs wholly within the set of nodes that the workload is
2442 * actively using should be counted as local. This allows the
2443 * scan rate to slow down when a workload has settled down.
2444 */
2445 ng = deref_curr_numa_group(p);
2446 if (!priv && !local && ng && ng->active_nodes > 1 &&
2447 numa_is_active_node(cpu_node, ng) &&
2448 numa_is_active_node(mem_node, ng))
2449 local = 1;
2450
2451 /*
2452 * Retry to migrate task to preferred node periodically, in case it
2453 * previously failed, or the scheduler moved us.
2454 */
2455 if (time_after(jiffies, p->numa_migrate_retry)) {
2456 task_numa_placement(p);
2457 numa_migrate_preferred(p);
2458 }
2459
2460 if (migrated)
2461 p->numa_pages_migrated += pages;
2462 if (flags & TNF_MIGRATE_FAIL)
2463 p->numa_faults_locality[2] += pages;
2464
2465 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2466 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2467 p->numa_faults_locality[local] += pages;
2468 }
2469
2470 static void reset_ptenuma_scan(struct task_struct *p)
2471 {
2472 /*
2473 * We only did a read acquisition of the mmap sem, so
2474 * p->mm->numa_scan_seq is written to without exclusive access
2475 * and the update is not guaranteed to be atomic. That's not
2476 * much of an issue though, since this is just used for
2477 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2478 * expensive, to avoid any form of compiler optimizations:
2479 */
2480 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2481 p->mm->numa_scan_offset = 0;
2482 }
2483
2484 /*
2485 * The expensive part of numa migration is done from task_work context.
2486 * Triggered from task_tick_numa().
2487 */
2488 static void task_numa_work(struct callback_head *work)
2489 {
2490 unsigned long migrate, next_scan, now = jiffies;
2491 struct task_struct *p = current;
2492 struct mm_struct *mm = p->mm;
2493 u64 runtime = p->se.sum_exec_runtime;
2494 struct vm_area_struct *vma;
2495 unsigned long start, end;
2496 unsigned long nr_pte_updates = 0;
2497 long pages, virtpages;
2498
2499 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2500
2501 work->next = work;
2502 /*
2503 * Who cares about NUMA placement when they're dying.
2504 *
2505 * NOTE: make sure not to dereference p->mm before this check,
2506 * exit_task_work() happens _after_ exit_mm() so we could be called
2507 * without p->mm even though we still had it when we enqueued this
2508 * work.
2509 */
2510 if (p->flags & PF_EXITING)
2511 return;
2512
2513 if (!mm->numa_next_scan) {
2514 mm->numa_next_scan = now +
2515 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2516 }
2517
2518 /*
2519 * Enforce maximal scan/migration frequency..
2520 */
2521 migrate = mm->numa_next_scan;
2522 if (time_before(now, migrate))
2523 return;
2524
2525 if (p->numa_scan_period == 0) {
2526 p->numa_scan_period_max = task_scan_max(p);
2527 p->numa_scan_period = task_scan_start(p);
2528 }
2529
2530 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2531 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2532 return;
2533
2534 /*
2535 * Delay this task enough that another task of this mm will likely win
2536 * the next time around.
2537 */
2538 p->node_stamp += 2 * TICK_NSEC;
2539
2540 start = mm->numa_scan_offset;
2541 pages = sysctl_numa_balancing_scan_size;
2542 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2543 virtpages = pages * 8; /* Scan up to this much virtual space */
2544 if (!pages)
2545 return;
2546
2547
2548 if (!down_read_trylock(&mm->mmap_sem))
2549 return;
2550 vma = find_vma(mm, start);
2551 if (!vma) {
2552 reset_ptenuma_scan(p);
2553 start = 0;
2554 vma = mm->mmap;
2555 }
2556 for (; vma; vma = vma->vm_next) {
2557 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2558 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2559 continue;
2560 }
2561
2562 /*
2563 * Shared library pages mapped by multiple processes are not
2564 * migrated as it is expected they are cache replicated. Avoid
2565 * hinting faults in read-only file-backed mappings or the vdso
2566 * as migrating the pages will be of marginal benefit.
2567 */
2568 if (!vma->vm_mm ||
2569 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2570 continue;
2571
2572 /*
2573 * Skip inaccessible VMAs to avoid any confusion between
2574 * PROT_NONE and NUMA hinting ptes
2575 */
2576 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2577 continue;
2578
2579 do {
2580 start = max(start, vma->vm_start);
2581 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2582 end = min(end, vma->vm_end);
2583 nr_pte_updates = change_prot_numa(vma, start, end);
2584
2585 /*
2586 * Try to scan sysctl_numa_balancing_size worth of
2587 * hpages that have at least one present PTE that
2588 * is not already pte-numa. If the VMA contains
2589 * areas that are unused or already full of prot_numa
2590 * PTEs, scan up to virtpages, to skip through those
2591 * areas faster.
2592 */
2593 if (nr_pte_updates)
2594 pages -= (end - start) >> PAGE_SHIFT;
2595 virtpages -= (end - start) >> PAGE_SHIFT;
2596
2597 start = end;
2598 if (pages <= 0 || virtpages <= 0)
2599 goto out;
2600
2601 cond_resched();
2602 } while (end != vma->vm_end);
2603 }
2604
2605 out:
2606 /*
2607 * It is possible to reach the end of the VMA list but the last few
2608 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2609 * would find the !migratable VMA on the next scan but not reset the
2610 * scanner to the start so check it now.
2611 */
2612 if (vma)
2613 mm->numa_scan_offset = start;
2614 else
2615 reset_ptenuma_scan(p);
2616 up_read(&mm->mmap_sem);
2617
2618 /*
2619 * Make sure tasks use at least 32x as much time to run other code
2620 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2621 * Usually update_task_scan_period slows down scanning enough; on an
2622 * overloaded system we need to limit overhead on a per task basis.
2623 */
2624 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2625 u64 diff = p->se.sum_exec_runtime - runtime;
2626 p->node_stamp += 32 * diff;
2627 }
2628 }
2629
2630 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2631 {
2632 int mm_users = 0;
2633 struct mm_struct *mm = p->mm;
2634
2635 if (mm) {
2636 mm_users = atomic_read(&mm->mm_users);
2637 if (mm_users == 1) {
2638 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2639 mm->numa_scan_seq = 0;
2640 }
2641 }
2642 p->node_stamp = 0;
2643 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2644 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2645 /* Protect against double add, see task_tick_numa and task_numa_work */
2646 p->numa_work.next = &p->numa_work;
2647 p->numa_faults = NULL;
2648 RCU_INIT_POINTER(p->numa_group, NULL);
2649 p->last_task_numa_placement = 0;
2650 p->last_sum_exec_runtime = 0;
2651
2652 init_task_work(&p->numa_work, task_numa_work);
2653
2654 /* New address space, reset the preferred nid */
2655 if (!(clone_flags & CLONE_VM)) {
2656 p->numa_preferred_nid = NUMA_NO_NODE;
2657 return;
2658 }
2659
2660 /*
2661 * New thread, keep existing numa_preferred_nid which should be copied
2662 * already by arch_dup_task_struct but stagger when scans start.
2663 */
2664 if (mm) {
2665 unsigned int delay;
2666
2667 delay = min_t(unsigned int, task_scan_max(current),
2668 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2669 delay += 2 * TICK_NSEC;
2670 p->node_stamp = delay;
2671 }
2672 }
2673
2674 /*
2675 * Drive the periodic memory faults..
2676 */
2677 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2678 {
2679 struct callback_head *work = &curr->numa_work;
2680 u64 period, now;
2681
2682 /*
2683 * We don't care about NUMA placement if we don't have memory.
2684 */
2685 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2686 return;
2687
2688 /*
2689 * Using runtime rather than walltime has the dual advantage that
2690 * we (mostly) drive the selection from busy threads and that the
2691 * task needs to have done some actual work before we bother with
2692 * NUMA placement.
2693 */
2694 now = curr->se.sum_exec_runtime;
2695 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2696
2697 if (now > curr->node_stamp + period) {
2698 if (!curr->node_stamp)
2699 curr->numa_scan_period = task_scan_start(curr);
2700 curr->node_stamp += period;
2701
2702 if (!time_before(jiffies, curr->mm->numa_next_scan))
2703 task_work_add(curr, work, true);
2704 }
2705 }
2706
2707 static void update_scan_period(struct task_struct *p, int new_cpu)
2708 {
2709 int src_nid = cpu_to_node(task_cpu(p));
2710 int dst_nid = cpu_to_node(new_cpu);
2711
2712 if (!static_branch_likely(&sched_numa_balancing))
2713 return;
2714
2715 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2716 return;
2717
2718 if (src_nid == dst_nid)
2719 return;
2720
2721 /*
2722 * Allow resets if faults have been trapped before one scan
2723 * has completed. This is most likely due to a new task that
2724 * is pulled cross-node due to wakeups or load balancing.
2725 */
2726 if (p->numa_scan_seq) {
2727 /*
2728 * Avoid scan adjustments if moving to the preferred
2729 * node or if the task was not previously running on
2730 * the preferred node.
2731 */
2732 if (dst_nid == p->numa_preferred_nid ||
2733 (p->numa_preferred_nid != NUMA_NO_NODE &&
2734 src_nid != p->numa_preferred_nid))
2735 return;
2736 }
2737
2738 p->numa_scan_period = task_scan_start(p);
2739 }
2740
2741 #else
2742 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2743 {
2744 }
2745
2746 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2747 {
2748 }
2749
2750 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2751 {
2752 }
2753
2754 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2755 {
2756 }
2757
2758 #endif /* CONFIG_NUMA_BALANCING */
2759
2760 static void
2761 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2762 {
2763 update_load_add(&cfs_rq->load, se->load.weight);
2764 #ifdef CONFIG_SMP
2765 if (entity_is_task(se)) {
2766 struct rq *rq = rq_of(cfs_rq);
2767
2768 account_numa_enqueue(rq, task_of(se));
2769 list_add(&se->group_node, &rq->cfs_tasks);
2770 }
2771 #endif
2772 cfs_rq->nr_running++;
2773 }
2774
2775 static void
2776 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2777 {
2778 update_load_sub(&cfs_rq->load, se->load.weight);
2779 #ifdef CONFIG_SMP
2780 if (entity_is_task(se)) {
2781 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2782 list_del_init(&se->group_node);
2783 }
2784 #endif
2785 cfs_rq->nr_running--;
2786 }
2787
2788 /*
2789 * Signed add and clamp on underflow.
2790 *
2791 * Explicitly do a load-store to ensure the intermediate value never hits
2792 * memory. This allows lockless observations without ever seeing the negative
2793 * values.
2794 */
2795 #define add_positive(_ptr, _val) do { \
2796 typeof(_ptr) ptr = (_ptr); \
2797 typeof(_val) val = (_val); \
2798 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2799 \
2800 res = var + val; \
2801 \
2802 if (val < 0 && res > var) \
2803 res = 0; \
2804 \
2805 WRITE_ONCE(*ptr, res); \
2806 } while (0)
2807
2808 /*
2809 * Unsigned subtract and clamp on underflow.
2810 *
2811 * Explicitly do a load-store to ensure the intermediate value never hits
2812 * memory. This allows lockless observations without ever seeing the negative
2813 * values.
2814 */
2815 #define sub_positive(_ptr, _val) do { \
2816 typeof(_ptr) ptr = (_ptr); \
2817 typeof(*ptr) val = (_val); \
2818 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2819 res = var - val; \
2820 if (res > var) \
2821 res = 0; \
2822 WRITE_ONCE(*ptr, res); \
2823 } while (0)
2824
2825 /*
2826 * Remove and clamp on negative, from a local variable.
2827 *
2828 * A variant of sub_positive(), which does not use explicit load-store
2829 * and is thus optimized for local variable updates.
2830 */
2831 #define lsub_positive(_ptr, _val) do { \
2832 typeof(_ptr) ptr = (_ptr); \
2833 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2834 } while (0)
2835
2836 #ifdef CONFIG_SMP
2837 static inline void
2838 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2839 {
2840 cfs_rq->runnable_weight += se->runnable_weight;
2841
2842 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2843 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2844 }
2845
2846 static inline void
2847 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2848 {
2849 cfs_rq->runnable_weight -= se->runnable_weight;
2850
2851 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2852 sub_positive(&cfs_rq->avg.runnable_load_sum,
2853 se_runnable(se) * se->avg.runnable_load_sum);
2854 }
2855
2856 static inline void
2857 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2858 {
2859 cfs_rq->avg.load_avg += se->avg.load_avg;
2860 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2861 }
2862
2863 static inline void
2864 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2865 {
2866 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2867 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2868 }
2869 #else
2870 static inline void
2871 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2872 static inline void
2873 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2874 static inline void
2875 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2876 static inline void
2877 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2878 #endif
2879
2880 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2881 unsigned long weight, unsigned long runnable)
2882 {
2883 if (se->on_rq) {
2884 /* commit outstanding execution time */
2885 if (cfs_rq->curr == se)
2886 update_curr(cfs_rq);
2887 account_entity_dequeue(cfs_rq, se);
2888 dequeue_runnable_load_avg(cfs_rq, se);
2889 }
2890 dequeue_load_avg(cfs_rq, se);
2891
2892 se->runnable_weight = runnable;
2893 update_load_set(&se->load, weight);
2894
2895 #ifdef CONFIG_SMP
2896 do {
2897 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2898
2899 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2900 se->avg.runnable_load_avg =
2901 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2902 } while (0);
2903 #endif
2904
2905 enqueue_load_avg(cfs_rq, se);
2906 if (se->on_rq) {
2907 account_entity_enqueue(cfs_rq, se);
2908 enqueue_runnable_load_avg(cfs_rq, se);
2909 }
2910 }
2911
2912 void reweight_task(struct task_struct *p, int prio)
2913 {
2914 struct sched_entity *se = &p->se;
2915 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2916 struct load_weight *load = &se->load;
2917 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2918
2919 reweight_entity(cfs_rq, se, weight, weight);
2920 load->inv_weight = sched_prio_to_wmult[prio];
2921 }
2922
2923 #ifdef CONFIG_FAIR_GROUP_SCHED
2924 #ifdef CONFIG_SMP
2925 /*
2926 * All this does is approximate the hierarchical proportion which includes that
2927 * global sum we all love to hate.
2928 *
2929 * That is, the weight of a group entity, is the proportional share of the
2930 * group weight based on the group runqueue weights. That is:
2931 *
2932 * tg->weight * grq->load.weight
2933 * ge->load.weight = ----------------------------- (1)
2934 * \Sum grq->load.weight
2935 *
2936 * Now, because computing that sum is prohibitively expensive to compute (been
2937 * there, done that) we approximate it with this average stuff. The average
2938 * moves slower and therefore the approximation is cheaper and more stable.
2939 *
2940 * So instead of the above, we substitute:
2941 *
2942 * grq->load.weight -> grq->avg.load_avg (2)
2943 *
2944 * which yields the following:
2945 *
2946 * tg->weight * grq->avg.load_avg
2947 * ge->load.weight = ------------------------------ (3)
2948 * tg->load_avg
2949 *
2950 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2951 *
2952 * That is shares_avg, and it is right (given the approximation (2)).
2953 *
2954 * The problem with it is that because the average is slow -- it was designed
2955 * to be exactly that of course -- this leads to transients in boundary
2956 * conditions. In specific, the case where the group was idle and we start the
2957 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2958 * yielding bad latency etc..
2959 *
2960 * Now, in that special case (1) reduces to:
2961 *
2962 * tg->weight * grq->load.weight
2963 * ge->load.weight = ----------------------------- = tg->weight (4)
2964 * grp->load.weight
2965 *
2966 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2967 *
2968 * So what we do is modify our approximation (3) to approach (4) in the (near)
2969 * UP case, like:
2970 *
2971 * ge->load.weight =
2972 *
2973 * tg->weight * grq->load.weight
2974 * --------------------------------------------------- (5)
2975 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2976 *
2977 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2978 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2979 *
2980 *
2981 * tg->weight * grq->load.weight
2982 * ge->load.weight = ----------------------------- (6)
2983 * tg_load_avg'
2984 *
2985 * Where:
2986 *
2987 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2988 * max(grq->load.weight, grq->avg.load_avg)
2989 *
2990 * And that is shares_weight and is icky. In the (near) UP case it approaches
2991 * (4) while in the normal case it approaches (3). It consistently
2992 * overestimates the ge->load.weight and therefore:
2993 *
2994 * \Sum ge->load.weight >= tg->weight
2995 *
2996 * hence icky!
2997 */
2998 static long calc_group_shares(struct cfs_rq *cfs_rq)
2999 {
3000 long tg_weight, tg_shares, load, shares;
3001 struct task_group *tg = cfs_rq->tg;
3002
3003 tg_shares = READ_ONCE(tg->shares);
3004
3005 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3006
3007 tg_weight = atomic_long_read(&tg->load_avg);
3008
3009 /* Ensure tg_weight >= load */
3010 tg_weight -= cfs_rq->tg_load_avg_contrib;
3011 tg_weight += load;
3012
3013 shares = (tg_shares * load);
3014 if (tg_weight)
3015 shares /= tg_weight;
3016
3017 /*
3018 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3019 * of a group with small tg->shares value. It is a floor value which is
3020 * assigned as a minimum load.weight to the sched_entity representing
3021 * the group on a CPU.
3022 *
3023 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3024 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3025 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3026 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3027 * instead of 0.
3028 */
3029 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3030 }
3031
3032 /*
3033 * This calculates the effective runnable weight for a group entity based on
3034 * the group entity weight calculated above.
3035 *
3036 * Because of the above approximation (2), our group entity weight is
3037 * an load_avg based ratio (3). This means that it includes blocked load and
3038 * does not represent the runnable weight.
3039 *
3040 * Approximate the group entity's runnable weight per ratio from the group
3041 * runqueue:
3042 *
3043 * grq->avg.runnable_load_avg
3044 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
3045 * grq->avg.load_avg
3046 *
3047 * However, analogous to above, since the avg numbers are slow, this leads to
3048 * transients in the from-idle case. Instead we use:
3049 *
3050 * ge->runnable_weight = ge->load.weight *
3051 *
3052 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
3053 * ----------------------------------------------------- (8)
3054 * max(grq->avg.load_avg, grq->load.weight)
3055 *
3056 * Where these max() serve both to use the 'instant' values to fix the slow
3057 * from-idle and avoid the /0 on to-idle, similar to (6).
3058 */
3059 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3060 {
3061 long runnable, load_avg;
3062
3063 load_avg = max(cfs_rq->avg.load_avg,
3064 scale_load_down(cfs_rq->load.weight));
3065
3066 runnable = max(cfs_rq->avg.runnable_load_avg,
3067 scale_load_down(cfs_rq->runnable_weight));
3068
3069 runnable *= shares;
3070 if (load_avg)
3071 runnable /= load_avg;
3072
3073 return clamp_t(long, runnable, MIN_SHARES, shares);
3074 }
3075 #endif /* CONFIG_SMP */
3076
3077 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3078
3079 /*
3080 * Recomputes the group entity based on the current state of its group
3081 * runqueue.
3082 */
3083 static void update_cfs_group(struct sched_entity *se)
3084 {
3085 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3086 long shares, runnable;
3087
3088 if (!gcfs_rq)
3089 return;
3090
3091 if (throttled_hierarchy(gcfs_rq))
3092 return;
3093
3094 #ifndef CONFIG_SMP
3095 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3096
3097 if (likely(se->load.weight == shares))
3098 return;
3099 #else
3100 shares = calc_group_shares(gcfs_rq);
3101 runnable = calc_group_runnable(gcfs_rq, shares);
3102 #endif
3103
3104 reweight_entity(cfs_rq_of(se), se, shares, runnable);
3105 }
3106
3107 #else /* CONFIG_FAIR_GROUP_SCHED */
3108 static inline void update_cfs_group(struct sched_entity *se)
3109 {
3110 }
3111 #endif /* CONFIG_FAIR_GROUP_SCHED */
3112
3113 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3114 {
3115 struct rq *rq = rq_of(cfs_rq);
3116
3117 if (&rq->cfs == cfs_rq) {
3118 /*
3119 * There are a few boundary cases this might miss but it should
3120 * get called often enough that that should (hopefully) not be
3121 * a real problem.
3122 *
3123 * It will not get called when we go idle, because the idle
3124 * thread is a different class (!fair), nor will the utilization
3125 * number include things like RT tasks.
3126 *
3127 * As is, the util number is not freq-invariant (we'd have to
3128 * implement arch_scale_freq_capacity() for that).
3129 *
3130 * See cpu_util().
3131 */
3132 cpufreq_update_util(rq, flags);
3133 }
3134 }
3135
3136 #ifdef CONFIG_SMP
3137 #ifdef CONFIG_FAIR_GROUP_SCHED
3138 /**
3139 * update_tg_load_avg - update the tg's load avg
3140 * @cfs_rq: the cfs_rq whose avg changed
3141 * @force: update regardless of how small the difference
3142 *
3143 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3144 * However, because tg->load_avg is a global value there are performance
3145 * considerations.
3146 *
3147 * In order to avoid having to look at the other cfs_rq's, we use a
3148 * differential update where we store the last value we propagated. This in
3149 * turn allows skipping updates if the differential is 'small'.
3150 *
3151 * Updating tg's load_avg is necessary before update_cfs_share().
3152 */
3153 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3154 {
3155 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3156
3157 /*
3158 * No need to update load_avg for root_task_group as it is not used.
3159 */
3160 if (cfs_rq->tg == &root_task_group)
3161 return;
3162
3163 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3164 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3165 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3166 }
3167 }
3168
3169 /*
3170 * Called within set_task_rq() right before setting a task's CPU. The
3171 * caller only guarantees p->pi_lock is held; no other assumptions,
3172 * including the state of rq->lock, should be made.
3173 */
3174 void set_task_rq_fair(struct sched_entity *se,
3175 struct cfs_rq *prev, struct cfs_rq *next)
3176 {
3177 u64 p_last_update_time;
3178 u64 n_last_update_time;
3179
3180 if (!sched_feat(ATTACH_AGE_LOAD))
3181 return;
3182
3183 /*
3184 * We are supposed to update the task to "current" time, then its up to
3185 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3186 * getting what current time is, so simply throw away the out-of-date
3187 * time. This will result in the wakee task is less decayed, but giving
3188 * the wakee more load sounds not bad.
3189 */
3190 if (!(se->avg.last_update_time && prev))
3191 return;
3192
3193 #ifndef CONFIG_64BIT
3194 {
3195 u64 p_last_update_time_copy;
3196 u64 n_last_update_time_copy;
3197
3198 do {
3199 p_last_update_time_copy = prev->load_last_update_time_copy;
3200 n_last_update_time_copy = next->load_last_update_time_copy;
3201
3202 smp_rmb();
3203
3204 p_last_update_time = prev->avg.last_update_time;
3205 n_last_update_time = next->avg.last_update_time;
3206
3207 } while (p_last_update_time != p_last_update_time_copy ||
3208 n_last_update_time != n_last_update_time_copy);
3209 }
3210 #else
3211 p_last_update_time = prev->avg.last_update_time;
3212 n_last_update_time = next->avg.last_update_time;
3213 #endif
3214 __update_load_avg_blocked_se(p_last_update_time, se);
3215 se->avg.last_update_time = n_last_update_time;
3216 }
3217
3218
3219 /*
3220 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3221 * propagate its contribution. The key to this propagation is the invariant
3222 * that for each group:
3223 *
3224 * ge->avg == grq->avg (1)
3225 *
3226 * _IFF_ we look at the pure running and runnable sums. Because they
3227 * represent the very same entity, just at different points in the hierarchy.
3228 *
3229 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3230 * sum over (but still wrong, because the group entity and group rq do not have
3231 * their PELT windows aligned).
3232 *
3233 * However, update_tg_cfs_runnable() is more complex. So we have:
3234 *
3235 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3236 *
3237 * And since, like util, the runnable part should be directly transferable,
3238 * the following would _appear_ to be the straight forward approach:
3239 *
3240 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3241 *
3242 * And per (1) we have:
3243 *
3244 * ge->avg.runnable_avg == grq->avg.runnable_avg
3245 *
3246 * Which gives:
3247 *
3248 * ge->load.weight * grq->avg.load_avg
3249 * ge->avg.load_avg = ----------------------------------- (4)
3250 * grq->load.weight
3251 *
3252 * Except that is wrong!
3253 *
3254 * Because while for entities historical weight is not important and we
3255 * really only care about our future and therefore can consider a pure
3256 * runnable sum, runqueues can NOT do this.
3257 *
3258 * We specifically want runqueues to have a load_avg that includes
3259 * historical weights. Those represent the blocked load, the load we expect
3260 * to (shortly) return to us. This only works by keeping the weights as
3261 * integral part of the sum. We therefore cannot decompose as per (3).
3262 *
3263 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3264 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3265 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3266 * runnable section of these tasks overlap (or not). If they were to perfectly
3267 * align the rq as a whole would be runnable 2/3 of the time. If however we
3268 * always have at least 1 runnable task, the rq as a whole is always runnable.
3269 *
3270 * So we'll have to approximate.. :/
3271 *
3272 * Given the constraint:
3273 *
3274 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3275 *
3276 * We can construct a rule that adds runnable to a rq by assuming minimal
3277 * overlap.
3278 *
3279 * On removal, we'll assume each task is equally runnable; which yields:
3280 *
3281 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3282 *
3283 * XXX: only do this for the part of runnable > running ?
3284 *
3285 */
3286
3287 static inline void
3288 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3289 {
3290 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3291
3292 /* Nothing to update */
3293 if (!delta)
3294 return;
3295
3296 /*
3297 * The relation between sum and avg is:
3298 *
3299 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3300 *
3301 * however, the PELT windows are not aligned between grq and gse.
3302 */
3303
3304 /* Set new sched_entity's utilization */
3305 se->avg.util_avg = gcfs_rq->avg.util_avg;
3306 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3307
3308 /* Update parent cfs_rq utilization */
3309 add_positive(&cfs_rq->avg.util_avg, delta);
3310 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3311 }
3312
3313 static inline void
3314 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3315 {
3316 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3317 unsigned long runnable_load_avg, load_avg;
3318 u64 runnable_load_sum, load_sum = 0;
3319 s64 delta_sum;
3320
3321 if (!runnable_sum)
3322 return;
3323
3324 gcfs_rq->prop_runnable_sum = 0;
3325
3326 if (runnable_sum >= 0) {
3327 /*
3328 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3329 * the CPU is saturated running == runnable.
3330 */
3331 runnable_sum += se->avg.load_sum;
3332 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3333 } else {
3334 /*
3335 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3336 * assuming all tasks are equally runnable.
3337 */
3338 if (scale_load_down(gcfs_rq->load.weight)) {
3339 load_sum = div_s64(gcfs_rq->avg.load_sum,
3340 scale_load_down(gcfs_rq->load.weight));
3341 }
3342
3343 /* But make sure to not inflate se's runnable */
3344 runnable_sum = min(se->avg.load_sum, load_sum);
3345 }
3346
3347 /*
3348 * runnable_sum can't be lower than running_sum
3349 * Rescale running sum to be in the same range as runnable sum
3350 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3351 * runnable_sum is in [0 : LOAD_AVG_MAX]
3352 */
3353 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3354 runnable_sum = max(runnable_sum, running_sum);
3355
3356 load_sum = (s64)se_weight(se) * runnable_sum;
3357 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3358
3359 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3360 delta_avg = load_avg - se->avg.load_avg;
3361
3362 se->avg.load_sum = runnable_sum;
3363 se->avg.load_avg = load_avg;
3364 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3365 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3366
3367 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3368 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3369
3370 if (se->on_rq) {
3371 delta_sum = runnable_load_sum -
3372 se_weight(se) * se->avg.runnable_load_sum;
3373 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3374 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3375 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3376 }
3377
3378 se->avg.runnable_load_sum = runnable_sum;
3379 se->avg.runnable_load_avg = runnable_load_avg;
3380 }
3381
3382 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3383 {
3384 cfs_rq->propagate = 1;
3385 cfs_rq->prop_runnable_sum += runnable_sum;
3386 }
3387
3388 /* Update task and its cfs_rq load average */
3389 static inline int propagate_entity_load_avg(struct sched_entity *se)
3390 {
3391 struct cfs_rq *cfs_rq, *gcfs_rq;
3392
3393 if (entity_is_task(se))
3394 return 0;
3395
3396 gcfs_rq = group_cfs_rq(se);
3397 if (!gcfs_rq->propagate)
3398 return 0;
3399
3400 gcfs_rq->propagate = 0;
3401
3402 cfs_rq = cfs_rq_of(se);
3403
3404 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3405
3406 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3407 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3408
3409 trace_pelt_cfs_tp(cfs_rq);
3410 trace_pelt_se_tp(se);
3411
3412 return 1;
3413 }
3414
3415 /*
3416 * Check if we need to update the load and the utilization of a blocked
3417 * group_entity:
3418 */
3419 static inline bool skip_blocked_update(struct sched_entity *se)
3420 {
3421 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3422
3423 /*
3424 * If sched_entity still have not zero load or utilization, we have to
3425 * decay it:
3426 */
3427 if (se->avg.load_avg || se->avg.util_avg)
3428 return false;
3429
3430 /*
3431 * If there is a pending propagation, we have to update the load and
3432 * the utilization of the sched_entity:
3433 */
3434 if (gcfs_rq->propagate)
3435 return false;
3436
3437 /*
3438 * Otherwise, the load and the utilization of the sched_entity is
3439 * already zero and there is no pending propagation, so it will be a
3440 * waste of time to try to decay it:
3441 */
3442 return true;
3443 }
3444
3445 #else /* CONFIG_FAIR_GROUP_SCHED */
3446
3447 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3448
3449 static inline int propagate_entity_load_avg(struct sched_entity *se)
3450 {
3451 return 0;
3452 }
3453
3454 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3455
3456 #endif /* CONFIG_FAIR_GROUP_SCHED */
3457
3458 /**
3459 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3460 * @now: current time, as per cfs_rq_clock_pelt()
3461 * @cfs_rq: cfs_rq to update
3462 *
3463 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3464 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3465 * post_init_entity_util_avg().
3466 *
3467 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3468 *
3469 * Returns true if the load decayed or we removed load.
3470 *
3471 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3472 * call update_tg_load_avg() when this function returns true.
3473 */
3474 static inline int
3475 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3476 {
3477 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3478 struct sched_avg *sa = &cfs_rq->avg;
3479 int decayed = 0;
3480
3481 if (cfs_rq->removed.nr) {
3482 unsigned long r;
3483 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3484
3485 raw_spin_lock(&cfs_rq->removed.lock);
3486 swap(cfs_rq->removed.util_avg, removed_util);
3487 swap(cfs_rq->removed.load_avg, removed_load);
3488 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3489 cfs_rq->removed.nr = 0;
3490 raw_spin_unlock(&cfs_rq->removed.lock);
3491
3492 r = removed_load;
3493 sub_positive(&sa->load_avg, r);
3494 sub_positive(&sa->load_sum, r * divider);
3495
3496 r = removed_util;
3497 sub_positive(&sa->util_avg, r);
3498 sub_positive(&sa->util_sum, r * divider);
3499
3500 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3501
3502 decayed = 1;
3503 }
3504
3505 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3506
3507 #ifndef CONFIG_64BIT
3508 smp_wmb();
3509 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3510 #endif
3511
3512 return decayed;
3513 }
3514
3515 /**
3516 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3517 * @cfs_rq: cfs_rq to attach to
3518 * @se: sched_entity to attach
3519 * @flags: migration hints
3520 *
3521 * Must call update_cfs_rq_load_avg() before this, since we rely on
3522 * cfs_rq->avg.last_update_time being current.
3523 */
3524 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3525 {
3526 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3527
3528 /*
3529 * When we attach the @se to the @cfs_rq, we must align the decay
3530 * window because without that, really weird and wonderful things can
3531 * happen.
3532 *
3533 * XXX illustrate
3534 */
3535 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3536 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3537
3538 /*
3539 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3540 * period_contrib. This isn't strictly correct, but since we're
3541 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3542 * _sum a little.
3543 */
3544 se->avg.util_sum = se->avg.util_avg * divider;
3545
3546 se->avg.load_sum = divider;
3547 if (se_weight(se)) {
3548 se->avg.load_sum =
3549 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3550 }
3551
3552 se->avg.runnable_load_sum = se->avg.load_sum;
3553
3554 enqueue_load_avg(cfs_rq, se);
3555 cfs_rq->avg.util_avg += se->avg.util_avg;
3556 cfs_rq->avg.util_sum += se->avg.util_sum;
3557
3558 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3559
3560 cfs_rq_util_change(cfs_rq, 0);
3561
3562 trace_pelt_cfs_tp(cfs_rq);
3563 }
3564
3565 /**
3566 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3567 * @cfs_rq: cfs_rq to detach from
3568 * @se: sched_entity to detach
3569 *
3570 * Must call update_cfs_rq_load_avg() before this, since we rely on
3571 * cfs_rq->avg.last_update_time being current.
3572 */
3573 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3574 {
3575 dequeue_load_avg(cfs_rq, se);
3576 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3577 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3578
3579 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3580
3581 cfs_rq_util_change(cfs_rq, 0);
3582
3583 trace_pelt_cfs_tp(cfs_rq);
3584 }
3585
3586 /*
3587 * Optional action to be done while updating the load average
3588 */
3589 #define UPDATE_TG 0x1
3590 #define SKIP_AGE_LOAD 0x2
3591 #define DO_ATTACH 0x4
3592
3593 /* Update task and its cfs_rq load average */
3594 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3595 {
3596 u64 now = cfs_rq_clock_pelt(cfs_rq);
3597 int decayed;
3598
3599 /*
3600 * Track task load average for carrying it to new CPU after migrated, and
3601 * track group sched_entity load average for task_h_load calc in migration
3602 */
3603 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3604 __update_load_avg_se(now, cfs_rq, se);
3605
3606 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3607 decayed |= propagate_entity_load_avg(se);
3608
3609 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3610
3611 /*
3612 * DO_ATTACH means we're here from enqueue_entity().
3613 * !last_update_time means we've passed through
3614 * migrate_task_rq_fair() indicating we migrated.
3615 *
3616 * IOW we're enqueueing a task on a new CPU.
3617 */
3618 attach_entity_load_avg(cfs_rq, se);
3619 update_tg_load_avg(cfs_rq, 0);
3620
3621 } else if (decayed) {
3622 cfs_rq_util_change(cfs_rq, 0);
3623
3624 if (flags & UPDATE_TG)
3625 update_tg_load_avg(cfs_rq, 0);
3626 }
3627 }
3628
3629 #ifndef CONFIG_64BIT
3630 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3631 {
3632 u64 last_update_time_copy;
3633 u64 last_update_time;
3634
3635 do {
3636 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3637 smp_rmb();
3638 last_update_time = cfs_rq->avg.last_update_time;
3639 } while (last_update_time != last_update_time_copy);
3640
3641 return last_update_time;
3642 }
3643 #else
3644 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3645 {
3646 return cfs_rq->avg.last_update_time;
3647 }
3648 #endif
3649
3650 /*
3651 * Synchronize entity load avg of dequeued entity without locking
3652 * the previous rq.
3653 */
3654 static void sync_entity_load_avg(struct sched_entity *se)
3655 {
3656 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3657 u64 last_update_time;
3658
3659 last_update_time = cfs_rq_last_update_time(cfs_rq);
3660 __update_load_avg_blocked_se(last_update_time, se);
3661 }
3662
3663 /*
3664 * Task first catches up with cfs_rq, and then subtract
3665 * itself from the cfs_rq (task must be off the queue now).
3666 */
3667 static void remove_entity_load_avg(struct sched_entity *se)
3668 {
3669 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3670 unsigned long flags;
3671
3672 /*
3673 * tasks cannot exit without having gone through wake_up_new_task() ->
3674 * post_init_entity_util_avg() which will have added things to the
3675 * cfs_rq, so we can remove unconditionally.
3676 */
3677
3678 sync_entity_load_avg(se);
3679
3680 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3681 ++cfs_rq->removed.nr;
3682 cfs_rq->removed.util_avg += se->avg.util_avg;
3683 cfs_rq->removed.load_avg += se->avg.load_avg;
3684 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
3685 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3686 }
3687
3688 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3689 {
3690 return cfs_rq->avg.runnable_load_avg;
3691 }
3692
3693 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3694 {
3695 return cfs_rq->avg.load_avg;
3696 }
3697
3698 static inline unsigned long task_util(struct task_struct *p)
3699 {
3700 return READ_ONCE(p->se.avg.util_avg);
3701 }
3702
3703 static inline unsigned long _task_util_est(struct task_struct *p)
3704 {
3705 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3706
3707 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3708 }
3709
3710 static inline unsigned long task_util_est(struct task_struct *p)
3711 {
3712 return max(task_util(p), _task_util_est(p));
3713 }
3714
3715 #ifdef CONFIG_UCLAMP_TASK
3716 static inline unsigned long uclamp_task_util(struct task_struct *p)
3717 {
3718 return clamp(task_util_est(p),
3719 uclamp_eff_value(p, UCLAMP_MIN),
3720 uclamp_eff_value(p, UCLAMP_MAX));
3721 }
3722 #else
3723 static inline unsigned long uclamp_task_util(struct task_struct *p)
3724 {
3725 return task_util_est(p);
3726 }
3727 #endif
3728
3729 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3730 struct task_struct *p)
3731 {
3732 unsigned int enqueued;
3733
3734 if (!sched_feat(UTIL_EST))
3735 return;
3736
3737 /* Update root cfs_rq's estimated utilization */
3738 enqueued = cfs_rq->avg.util_est.enqueued;
3739 enqueued += _task_util_est(p);
3740 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3741 }
3742
3743 /*
3744 * Check if a (signed) value is within a specified (unsigned) margin,
3745 * based on the observation that:
3746 *
3747 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3748 *
3749 * NOTE: this only works when value + maring < INT_MAX.
3750 */
3751 static inline bool within_margin(int value, int margin)
3752 {
3753 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3754 }
3755
3756 static void
3757 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3758 {
3759 long last_ewma_diff;
3760 struct util_est ue;
3761 int cpu;
3762
3763 if (!sched_feat(UTIL_EST))
3764 return;
3765
3766 /* Update root cfs_rq's estimated utilization */
3767 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3768 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3769 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3770
3771 /*
3772 * Skip update of task's estimated utilization when the task has not
3773 * yet completed an activation, e.g. being migrated.
3774 */
3775 if (!task_sleep)
3776 return;
3777
3778 /*
3779 * If the PELT values haven't changed since enqueue time,
3780 * skip the util_est update.
3781 */
3782 ue = p->se.avg.util_est;
3783 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3784 return;
3785
3786 /*
3787 * Reset EWMA on utilization increases, the moving average is used only
3788 * to smooth utilization decreases.
3789 */
3790 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3791 if (sched_feat(UTIL_EST_FASTUP)) {
3792 if (ue.ewma < ue.enqueued) {
3793 ue.ewma = ue.enqueued;
3794 goto done;
3795 }
3796 }
3797
3798 /*
3799 * Skip update of task's estimated utilization when its EWMA is
3800 * already ~1% close to its last activation value.
3801 */
3802 last_ewma_diff = ue.enqueued - ue.ewma;
3803 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3804 return;
3805
3806 /*
3807 * To avoid overestimation of actual task utilization, skip updates if
3808 * we cannot grant there is idle time in this CPU.
3809 */
3810 cpu = cpu_of(rq_of(cfs_rq));
3811 if (task_util(p) > capacity_orig_of(cpu))
3812 return;
3813
3814 /*
3815 * Update Task's estimated utilization
3816 *
3817 * When *p completes an activation we can consolidate another sample
3818 * of the task size. This is done by storing the current PELT value
3819 * as ue.enqueued and by using this value to update the Exponential
3820 * Weighted Moving Average (EWMA):
3821 *
3822 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3823 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3824 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3825 * = w * ( last_ewma_diff ) + ewma(t-1)
3826 * = w * (last_ewma_diff + ewma(t-1) / w)
3827 *
3828 * Where 'w' is the weight of new samples, which is configured to be
3829 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3830 */
3831 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3832 ue.ewma += last_ewma_diff;
3833 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3834 done:
3835 WRITE_ONCE(p->se.avg.util_est, ue);
3836 }
3837
3838 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3839 {
3840 return fits_capacity(uclamp_task_util(p), capacity);
3841 }
3842
3843 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3844 {
3845 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3846 return;
3847
3848 if (!p) {
3849 rq->misfit_task_load = 0;
3850 return;
3851 }
3852
3853 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3854 rq->misfit_task_load = 0;
3855 return;
3856 }
3857
3858 rq->misfit_task_load = task_h_load(p);
3859 }
3860
3861 #else /* CONFIG_SMP */
3862
3863 #define UPDATE_TG 0x0
3864 #define SKIP_AGE_LOAD 0x0
3865 #define DO_ATTACH 0x0
3866
3867 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3868 {
3869 cfs_rq_util_change(cfs_rq, 0);
3870 }
3871
3872 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3873
3874 static inline void
3875 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3876 static inline void
3877 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3878
3879 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3880 {
3881 return 0;
3882 }
3883
3884 static inline void
3885 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3886
3887 static inline void
3888 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3889 bool task_sleep) {}
3890 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3891
3892 #endif /* CONFIG_SMP */
3893
3894 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3895 {
3896 #ifdef CONFIG_SCHED_DEBUG
3897 s64 d = se->vruntime - cfs_rq->min_vruntime;
3898
3899 if (d < 0)
3900 d = -d;
3901
3902 if (d > 3*sysctl_sched_latency)
3903 schedstat_inc(cfs_rq->nr_spread_over);
3904 #endif
3905 }
3906
3907 static void
3908 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3909 {
3910 u64 vruntime = cfs_rq->min_vruntime;
3911
3912 /*
3913 * The 'current' period is already promised to the current tasks,
3914 * however the extra weight of the new task will slow them down a
3915 * little, place the new task so that it fits in the slot that
3916 * stays open at the end.
3917 */
3918 if (initial && sched_feat(START_DEBIT))
3919 vruntime += sched_vslice(cfs_rq, se);
3920
3921 /* sleeps up to a single latency don't count. */
3922 if (!initial) {
3923 unsigned long thresh = sysctl_sched_latency;
3924
3925 /*
3926 * Halve their sleep time's effect, to allow
3927 * for a gentler effect of sleepers:
3928 */
3929 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3930 thresh >>= 1;
3931
3932 vruntime -= thresh;
3933 }
3934
3935 /* ensure we never gain time by being placed backwards. */
3936 se->vruntime = max_vruntime(se->vruntime, vruntime);
3937 }
3938
3939 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3940
3941 static inline void check_schedstat_required(void)
3942 {
3943 #ifdef CONFIG_SCHEDSTATS
3944 if (schedstat_enabled())
3945 return;
3946
3947 /* Force schedstat enabled if a dependent tracepoint is active */
3948 if (trace_sched_stat_wait_enabled() ||
3949 trace_sched_stat_sleep_enabled() ||
3950 trace_sched_stat_iowait_enabled() ||
3951 trace_sched_stat_blocked_enabled() ||
3952 trace_sched_stat_runtime_enabled()) {
3953 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3954 "stat_blocked and stat_runtime require the "
3955 "kernel parameter schedstats=enable or "
3956 "kernel.sched_schedstats=1\n");
3957 }
3958 #endif
3959 }
3960
3961
3962 /*
3963 * MIGRATION
3964 *
3965 * dequeue
3966 * update_curr()
3967 * update_min_vruntime()
3968 * vruntime -= min_vruntime
3969 *
3970 * enqueue
3971 * update_curr()
3972 * update_min_vruntime()
3973 * vruntime += min_vruntime
3974 *
3975 * this way the vruntime transition between RQs is done when both
3976 * min_vruntime are up-to-date.
3977 *
3978 * WAKEUP (remote)
3979 *
3980 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3981 * vruntime -= min_vruntime
3982 *
3983 * enqueue
3984 * update_curr()
3985 * update_min_vruntime()
3986 * vruntime += min_vruntime
3987 *
3988 * this way we don't have the most up-to-date min_vruntime on the originating
3989 * CPU and an up-to-date min_vruntime on the destination CPU.
3990 */
3991
3992 static void
3993 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3994 {
3995 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3996 bool curr = cfs_rq->curr == se;
3997
3998 /*
3999 * If we're the current task, we must renormalise before calling
4000 * update_curr().
4001 */
4002 if (renorm && curr)
4003 se->vruntime += cfs_rq->min_vruntime;
4004
4005 update_curr(cfs_rq);
4006
4007 /*
4008 * Otherwise, renormalise after, such that we're placed at the current
4009 * moment in time, instead of some random moment in the past. Being
4010 * placed in the past could significantly boost this task to the
4011 * fairness detriment of existing tasks.
4012 */
4013 if (renorm && !curr)
4014 se->vruntime += cfs_rq->min_vruntime;
4015
4016 /*
4017 * When enqueuing a sched_entity, we must:
4018 * - Update loads to have both entity and cfs_rq synced with now.
4019 * - Add its load to cfs_rq->runnable_avg
4020 * - For group_entity, update its weight to reflect the new share of
4021 * its group cfs_rq
4022 * - Add its new weight to cfs_rq->load.weight
4023 */
4024 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4025 update_cfs_group(se);
4026 enqueue_runnable_load_avg(cfs_rq, se);
4027 account_entity_enqueue(cfs_rq, se);
4028
4029 if (flags & ENQUEUE_WAKEUP)
4030 place_entity(cfs_rq, se, 0);
4031
4032 check_schedstat_required();
4033 update_stats_enqueue(cfs_rq, se, flags);
4034 check_spread(cfs_rq, se);
4035 if (!curr)
4036 __enqueue_entity(cfs_rq, se);
4037 se->on_rq = 1;
4038
4039 if (cfs_rq->nr_running == 1) {
4040 list_add_leaf_cfs_rq(cfs_rq);
4041 check_enqueue_throttle(cfs_rq);
4042 }
4043 }
4044
4045 static void __clear_buddies_last(struct sched_entity *se)
4046 {
4047 for_each_sched_entity(se) {
4048 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4049 if (cfs_rq->last != se)
4050 break;
4051
4052 cfs_rq->last = NULL;
4053 }
4054 }
4055
4056 static void __clear_buddies_next(struct sched_entity *se)
4057 {
4058 for_each_sched_entity(se) {
4059 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4060 if (cfs_rq->next != se)
4061 break;
4062
4063 cfs_rq->next = NULL;
4064 }
4065 }
4066
4067 static void __clear_buddies_skip(struct sched_entity *se)
4068 {
4069 for_each_sched_entity(se) {
4070 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4071 if (cfs_rq->skip != se)
4072 break;
4073
4074 cfs_rq->skip = NULL;
4075 }
4076 }
4077
4078 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4079 {
4080 if (cfs_rq->last == se)
4081 __clear_buddies_last(se);
4082
4083 if (cfs_rq->next == se)
4084 __clear_buddies_next(se);
4085
4086 if (cfs_rq->skip == se)
4087 __clear_buddies_skip(se);
4088 }
4089
4090 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4091
4092 static void
4093 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4094 {
4095 /*
4096 * Update run-time statistics of the 'current'.
4097 */
4098 update_curr(cfs_rq);
4099
4100 /*
4101 * When dequeuing a sched_entity, we must:
4102 * - Update loads to have both entity and cfs_rq synced with now.
4103 * - Subtract its load from the cfs_rq->runnable_avg.
4104 * - Subtract its previous weight from cfs_rq->load.weight.
4105 * - For group entity, update its weight to reflect the new share
4106 * of its group cfs_rq.
4107 */
4108 update_load_avg(cfs_rq, se, UPDATE_TG);
4109 dequeue_runnable_load_avg(cfs_rq, se);
4110
4111 update_stats_dequeue(cfs_rq, se, flags);
4112
4113 clear_buddies(cfs_rq, se);
4114
4115 if (se != cfs_rq->curr)
4116 __dequeue_entity(cfs_rq, se);
4117 se->on_rq = 0;
4118 account_entity_dequeue(cfs_rq, se);
4119
4120 /*
4121 * Normalize after update_curr(); which will also have moved
4122 * min_vruntime if @se is the one holding it back. But before doing
4123 * update_min_vruntime() again, which will discount @se's position and
4124 * can move min_vruntime forward still more.
4125 */
4126 if (!(flags & DEQUEUE_SLEEP))
4127 se->vruntime -= cfs_rq->min_vruntime;
4128
4129 /* return excess runtime on last dequeue */
4130 return_cfs_rq_runtime(cfs_rq);
4131
4132 update_cfs_group(se);
4133
4134 /*
4135 * Now advance min_vruntime if @se was the entity holding it back,
4136 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4137 * put back on, and if we advance min_vruntime, we'll be placed back
4138 * further than we started -- ie. we'll be penalized.
4139 */
4140 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4141 update_min_vruntime(cfs_rq);
4142 }
4143
4144 /*
4145 * Preempt the current task with a newly woken task if needed:
4146 */
4147 static void
4148 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4149 {
4150 unsigned long ideal_runtime, delta_exec;
4151 struct sched_entity *se;
4152 s64 delta;
4153
4154 ideal_runtime = sched_slice(cfs_rq, curr);
4155 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4156 if (delta_exec > ideal_runtime) {
4157 resched_curr(rq_of(cfs_rq));
4158 /*
4159 * The current task ran long enough, ensure it doesn't get
4160 * re-elected due to buddy favours.
4161 */
4162 clear_buddies(cfs_rq, curr);
4163 return;
4164 }
4165
4166 /*
4167 * Ensure that a task that missed wakeup preemption by a
4168 * narrow margin doesn't have to wait for a full slice.
4169 * This also mitigates buddy induced latencies under load.
4170 */
4171 if (delta_exec < sysctl_sched_min_granularity)
4172 return;
4173
4174 se = __pick_first_entity(cfs_rq);
4175 delta = curr->vruntime - se->vruntime;
4176
4177 if (delta < 0)
4178 return;
4179
4180 if (delta > ideal_runtime)
4181 resched_curr(rq_of(cfs_rq));
4182 }
4183
4184 static void
4185 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4186 {
4187 /* 'current' is not kept within the tree. */
4188 if (se->on_rq) {
4189 /*
4190 * Any task has to be enqueued before it get to execute on
4191 * a CPU. So account for the time it spent waiting on the
4192 * runqueue.
4193 */
4194 update_stats_wait_end(cfs_rq, se);
4195 __dequeue_entity(cfs_rq, se);
4196 update_load_avg(cfs_rq, se, UPDATE_TG);
4197 }
4198
4199 update_stats_curr_start(cfs_rq, se);
4200 cfs_rq->curr = se;
4201
4202 /*
4203 * Track our maximum slice length, if the CPU's load is at
4204 * least twice that of our own weight (i.e. dont track it
4205 * when there are only lesser-weight tasks around):
4206 */
4207 if (schedstat_enabled() &&
4208 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4209 schedstat_set(se->statistics.slice_max,
4210 max((u64)schedstat_val(se->statistics.slice_max),
4211 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4212 }
4213
4214 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4215 }
4216
4217 static int
4218 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4219
4220 /*
4221 * Pick the next process, keeping these things in mind, in this order:
4222 * 1) keep things fair between processes/task groups
4223 * 2) pick the "next" process, since someone really wants that to run
4224 * 3) pick the "last" process, for cache locality
4225 * 4) do not run the "skip" process, if something else is available
4226 */
4227 static struct sched_entity *
4228 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4229 {
4230 struct sched_entity *left = __pick_first_entity(cfs_rq);
4231 struct sched_entity *se;
4232
4233 /*
4234 * If curr is set we have to see if its left of the leftmost entity
4235 * still in the tree, provided there was anything in the tree at all.
4236 */
4237 if (!left || (curr && entity_before(curr, left)))
4238 left = curr;
4239
4240 se = left; /* ideally we run the leftmost entity */
4241
4242 /*
4243 * Avoid running the skip buddy, if running something else can
4244 * be done without getting too unfair.
4245 */
4246 if (cfs_rq->skip == se) {
4247 struct sched_entity *second;
4248
4249 if (se == curr) {
4250 second = __pick_first_entity(cfs_rq);
4251 } else {
4252 second = __pick_next_entity(se);
4253 if (!second || (curr && entity_before(curr, second)))
4254 second = curr;
4255 }
4256
4257 if (second && wakeup_preempt_entity(second, left) < 1)
4258 se = second;
4259 }
4260
4261 /*
4262 * Prefer last buddy, try to return the CPU to a preempted task.
4263 */
4264 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4265 se = cfs_rq->last;
4266
4267 /*
4268 * Someone really wants this to run. If it's not unfair, run it.
4269 */
4270 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4271 se = cfs_rq->next;
4272
4273 clear_buddies(cfs_rq, se);
4274
4275 return se;
4276 }
4277
4278 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4279
4280 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4281 {
4282 /*
4283 * If still on the runqueue then deactivate_task()
4284 * was not called and update_curr() has to be done:
4285 */
4286 if (prev->on_rq)
4287 update_curr(cfs_rq);
4288
4289 /* throttle cfs_rqs exceeding runtime */
4290 check_cfs_rq_runtime(cfs_rq);
4291
4292 check_spread(cfs_rq, prev);
4293
4294 if (prev->on_rq) {
4295 update_stats_wait_start(cfs_rq, prev);
4296 /* Put 'current' back into the tree. */
4297 __enqueue_entity(cfs_rq, prev);
4298 /* in !on_rq case, update occurred at dequeue */
4299 update_load_avg(cfs_rq, prev, 0);
4300 }
4301 cfs_rq->curr = NULL;
4302 }
4303
4304 static void
4305 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4306 {
4307 /*
4308 * Update run-time statistics of the 'current'.
4309 */
4310 update_curr(cfs_rq);
4311
4312 /*
4313 * Ensure that runnable average is periodically updated.
4314 */
4315 update_load_avg(cfs_rq, curr, UPDATE_TG);
4316 update_cfs_group(curr);
4317
4318 #ifdef CONFIG_SCHED_HRTICK
4319 /*
4320 * queued ticks are scheduled to match the slice, so don't bother
4321 * validating it and just reschedule.
4322 */
4323 if (queued) {
4324 resched_curr(rq_of(cfs_rq));
4325 return;
4326 }
4327 /*
4328 * don't let the period tick interfere with the hrtick preemption
4329 */
4330 if (!sched_feat(DOUBLE_TICK) &&
4331 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4332 return;
4333 #endif
4334
4335 if (cfs_rq->nr_running > 1)
4336 check_preempt_tick(cfs_rq, curr);
4337 }
4338
4339
4340 /**************************************************
4341 * CFS bandwidth control machinery
4342 */
4343
4344 #ifdef CONFIG_CFS_BANDWIDTH
4345
4346 #ifdef CONFIG_JUMP_LABEL
4347 static struct static_key __cfs_bandwidth_used;
4348
4349 static inline bool cfs_bandwidth_used(void)
4350 {
4351 return static_key_false(&__cfs_bandwidth_used);
4352 }
4353
4354 void cfs_bandwidth_usage_inc(void)
4355 {
4356 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4357 }
4358
4359 void cfs_bandwidth_usage_dec(void)
4360 {
4361 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4362 }
4363 #else /* CONFIG_JUMP_LABEL */
4364 static bool cfs_bandwidth_used(void)
4365 {
4366 return true;
4367 }
4368
4369 void cfs_bandwidth_usage_inc(void) {}
4370 void cfs_bandwidth_usage_dec(void) {}
4371 #endif /* CONFIG_JUMP_LABEL */
4372
4373 /*
4374 * default period for cfs group bandwidth.
4375 * default: 0.1s, units: nanoseconds
4376 */
4377 static inline u64 default_cfs_period(void)
4378 {
4379 return 100000000ULL;
4380 }
4381
4382 static inline u64 sched_cfs_bandwidth_slice(void)
4383 {
4384 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4385 }
4386
4387 /*
4388 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4389 * directly instead of rq->clock to avoid adding additional synchronization
4390 * around rq->lock.
4391 *
4392 * requires cfs_b->lock
4393 */
4394 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4395 {
4396 if (cfs_b->quota != RUNTIME_INF)
4397 cfs_b->runtime = cfs_b->quota;
4398 }
4399
4400 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4401 {
4402 return &tg->cfs_bandwidth;
4403 }
4404
4405 /* returns 0 on failure to allocate runtime */
4406 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4407 {
4408 struct task_group *tg = cfs_rq->tg;
4409 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4410 u64 amount = 0, min_amount;
4411
4412 /* note: this is a positive sum as runtime_remaining <= 0 */
4413 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4414
4415 raw_spin_lock(&cfs_b->lock);
4416 if (cfs_b->quota == RUNTIME_INF)
4417 amount = min_amount;
4418 else {
4419 start_cfs_bandwidth(cfs_b);
4420
4421 if (cfs_b->runtime > 0) {
4422 amount = min(cfs_b->runtime, min_amount);
4423 cfs_b->runtime -= amount;
4424 cfs_b->idle = 0;
4425 }
4426 }
4427 raw_spin_unlock(&cfs_b->lock);
4428
4429 cfs_rq->runtime_remaining += amount;
4430
4431 return cfs_rq->runtime_remaining > 0;
4432 }
4433
4434 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4435 {
4436 /* dock delta_exec before expiring quota (as it could span periods) */
4437 cfs_rq->runtime_remaining -= delta_exec;
4438
4439 if (likely(cfs_rq->runtime_remaining > 0))
4440 return;
4441
4442 if (cfs_rq->throttled)
4443 return;
4444 /*
4445 * if we're unable to extend our runtime we resched so that the active
4446 * hierarchy can be throttled
4447 */
4448 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4449 resched_curr(rq_of(cfs_rq));
4450 }
4451
4452 static __always_inline
4453 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4454 {
4455 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4456 return;
4457
4458 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4459 }
4460
4461 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4462 {
4463 return cfs_bandwidth_used() && cfs_rq->throttled;
4464 }
4465
4466 /* check whether cfs_rq, or any parent, is throttled */
4467 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4468 {
4469 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4470 }
4471
4472 /*
4473 * Ensure that neither of the group entities corresponding to src_cpu or
4474 * dest_cpu are members of a throttled hierarchy when performing group
4475 * load-balance operations.
4476 */
4477 static inline int throttled_lb_pair(struct task_group *tg,
4478 int src_cpu, int dest_cpu)
4479 {
4480 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4481
4482 src_cfs_rq = tg->cfs_rq[src_cpu];
4483 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4484
4485 return throttled_hierarchy(src_cfs_rq) ||
4486 throttled_hierarchy(dest_cfs_rq);
4487 }
4488
4489 static int tg_unthrottle_up(struct task_group *tg, void *data)
4490 {
4491 struct rq *rq = data;
4492 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4493
4494 cfs_rq->throttle_count--;
4495 if (!cfs_rq->throttle_count) {
4496 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4497 cfs_rq->throttled_clock_task;
4498
4499 /* Add cfs_rq with already running entity in the list */
4500 if (cfs_rq->nr_running >= 1)
4501 list_add_leaf_cfs_rq(cfs_rq);
4502 }
4503
4504 return 0;
4505 }
4506
4507 static int tg_throttle_down(struct task_group *tg, void *data)
4508 {
4509 struct rq *rq = data;
4510 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4511
4512 /* group is entering throttled state, stop time */
4513 if (!cfs_rq->throttle_count) {
4514 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4515 list_del_leaf_cfs_rq(cfs_rq);
4516 }
4517 cfs_rq->throttle_count++;
4518
4519 return 0;
4520 }
4521
4522 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4523 {
4524 struct rq *rq = rq_of(cfs_rq);
4525 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4526 struct sched_entity *se;
4527 long task_delta, idle_task_delta, dequeue = 1;
4528 bool empty;
4529
4530 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4531
4532 /* freeze hierarchy runnable averages while throttled */
4533 rcu_read_lock();
4534 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4535 rcu_read_unlock();
4536
4537 task_delta = cfs_rq->h_nr_running;
4538 idle_task_delta = cfs_rq->idle_h_nr_running;
4539 for_each_sched_entity(se) {
4540 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4541 /* throttled entity or throttle-on-deactivate */
4542 if (!se->on_rq)
4543 break;
4544
4545 if (dequeue)
4546 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4547 qcfs_rq->h_nr_running -= task_delta;
4548 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4549
4550 if (qcfs_rq->load.weight)
4551 dequeue = 0;
4552 }
4553
4554 if (!se)
4555 sub_nr_running(rq, task_delta);
4556
4557 cfs_rq->throttled = 1;
4558 cfs_rq->throttled_clock = rq_clock(rq);
4559 raw_spin_lock(&cfs_b->lock);
4560 empty = list_empty(&cfs_b->throttled_cfs_rq);
4561
4562 /*
4563 * Add to the _head_ of the list, so that an already-started
4564 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4565 * not running add to the tail so that later runqueues don't get starved.
4566 */
4567 if (cfs_b->distribute_running)
4568 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4569 else
4570 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4571
4572 /*
4573 * If we're the first throttled task, make sure the bandwidth
4574 * timer is running.
4575 */
4576 if (empty)
4577 start_cfs_bandwidth(cfs_b);
4578
4579 raw_spin_unlock(&cfs_b->lock);
4580 }
4581
4582 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4583 {
4584 struct rq *rq = rq_of(cfs_rq);
4585 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4586 struct sched_entity *se;
4587 int enqueue = 1;
4588 long task_delta, idle_task_delta;
4589
4590 se = cfs_rq->tg->se[cpu_of(rq)];
4591
4592 cfs_rq->throttled = 0;
4593
4594 update_rq_clock(rq);
4595
4596 raw_spin_lock(&cfs_b->lock);
4597 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4598 list_del_rcu(&cfs_rq->throttled_list);
4599 raw_spin_unlock(&cfs_b->lock);
4600
4601 /* update hierarchical throttle state */
4602 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4603
4604 if (!cfs_rq->load.weight)
4605 return;
4606
4607 task_delta = cfs_rq->h_nr_running;
4608 idle_task_delta = cfs_rq->idle_h_nr_running;
4609 for_each_sched_entity(se) {
4610 if (se->on_rq)
4611 enqueue = 0;
4612
4613 cfs_rq = cfs_rq_of(se);
4614 if (enqueue)
4615 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4616 cfs_rq->h_nr_running += task_delta;
4617 cfs_rq->idle_h_nr_running += idle_task_delta;
4618
4619 if (cfs_rq_throttled(cfs_rq))
4620 break;
4621 }
4622
4623 assert_list_leaf_cfs_rq(rq);
4624
4625 if (!se)
4626 add_nr_running(rq, task_delta);
4627
4628 /* Determine whether we need to wake up potentially idle CPU: */
4629 if (rq->curr == rq->idle && rq->cfs.nr_running)
4630 resched_curr(rq);
4631 }
4632
4633 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
4634 {
4635 struct cfs_rq *cfs_rq;
4636 u64 runtime;
4637 u64 starting_runtime = remaining;
4638
4639 rcu_read_lock();
4640 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4641 throttled_list) {
4642 struct rq *rq = rq_of(cfs_rq);
4643 struct rq_flags rf;
4644
4645 rq_lock_irqsave(rq, &rf);
4646 if (!cfs_rq_throttled(cfs_rq))
4647 goto next;
4648
4649 /* By the above check, this should never be true */
4650 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4651
4652 runtime = -cfs_rq->runtime_remaining + 1;
4653 if (runtime > remaining)
4654 runtime = remaining;
4655 remaining -= runtime;
4656
4657 cfs_rq->runtime_remaining += runtime;
4658
4659 /* we check whether we're throttled above */
4660 if (cfs_rq->runtime_remaining > 0)
4661 unthrottle_cfs_rq(cfs_rq);
4662
4663 next:
4664 rq_unlock_irqrestore(rq, &rf);
4665
4666 if (!remaining)
4667 break;
4668 }
4669 rcu_read_unlock();
4670
4671 return starting_runtime - remaining;
4672 }
4673
4674 /*
4675 * Responsible for refilling a task_group's bandwidth and unthrottling its
4676 * cfs_rqs as appropriate. If there has been no activity within the last
4677 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4678 * used to track this state.
4679 */
4680 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4681 {
4682 u64 runtime;
4683 int throttled;
4684
4685 /* no need to continue the timer with no bandwidth constraint */
4686 if (cfs_b->quota == RUNTIME_INF)
4687 goto out_deactivate;
4688
4689 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4690 cfs_b->nr_periods += overrun;
4691
4692 /*
4693 * idle depends on !throttled (for the case of a large deficit), and if
4694 * we're going inactive then everything else can be deferred
4695 */
4696 if (cfs_b->idle && !throttled)
4697 goto out_deactivate;
4698
4699 __refill_cfs_bandwidth_runtime(cfs_b);
4700
4701 if (!throttled) {
4702 /* mark as potentially idle for the upcoming period */
4703 cfs_b->idle = 1;
4704 return 0;
4705 }
4706
4707 /* account preceding periods in which throttling occurred */
4708 cfs_b->nr_throttled += overrun;
4709
4710 /*
4711 * This check is repeated as we are holding onto the new bandwidth while
4712 * we unthrottle. This can potentially race with an unthrottled group
4713 * trying to acquire new bandwidth from the global pool. This can result
4714 * in us over-using our runtime if it is all used during this loop, but
4715 * only by limited amounts in that extreme case.
4716 */
4717 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4718 runtime = cfs_b->runtime;
4719 cfs_b->distribute_running = 1;
4720 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4721 /* we can't nest cfs_b->lock while distributing bandwidth */
4722 runtime = distribute_cfs_runtime(cfs_b, runtime);
4723 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4724
4725 cfs_b->distribute_running = 0;
4726 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4727
4728 lsub_positive(&cfs_b->runtime, runtime);
4729 }
4730
4731 /*
4732 * While we are ensured activity in the period following an
4733 * unthrottle, this also covers the case in which the new bandwidth is
4734 * insufficient to cover the existing bandwidth deficit. (Forcing the
4735 * timer to remain active while there are any throttled entities.)
4736 */
4737 cfs_b->idle = 0;
4738
4739 return 0;
4740
4741 out_deactivate:
4742 return 1;
4743 }
4744
4745 /* a cfs_rq won't donate quota below this amount */
4746 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4747 /* minimum remaining period time to redistribute slack quota */
4748 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4749 /* how long we wait to gather additional slack before distributing */
4750 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4751
4752 /*
4753 * Are we near the end of the current quota period?
4754 *
4755 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4756 * hrtimer base being cleared by hrtimer_start. In the case of
4757 * migrate_hrtimers, base is never cleared, so we are fine.
4758 */
4759 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4760 {
4761 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4762 u64 remaining;
4763
4764 /* if the call-back is running a quota refresh is already occurring */
4765 if (hrtimer_callback_running(refresh_timer))
4766 return 1;
4767
4768 /* is a quota refresh about to occur? */
4769 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4770 if (remaining < min_expire)
4771 return 1;
4772
4773 return 0;
4774 }
4775
4776 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4777 {
4778 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4779
4780 /* if there's a quota refresh soon don't bother with slack */
4781 if (runtime_refresh_within(cfs_b, min_left))
4782 return;
4783
4784 /* don't push forwards an existing deferred unthrottle */
4785 if (cfs_b->slack_started)
4786 return;
4787 cfs_b->slack_started = true;
4788
4789 hrtimer_start(&cfs_b->slack_timer,
4790 ns_to_ktime(cfs_bandwidth_slack_period),
4791 HRTIMER_MODE_REL);
4792 }
4793
4794 /* we know any runtime found here is valid as update_curr() precedes return */
4795 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4796 {
4797 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4798 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4799
4800 if (slack_runtime <= 0)
4801 return;
4802
4803 raw_spin_lock(&cfs_b->lock);
4804 if (cfs_b->quota != RUNTIME_INF) {
4805 cfs_b->runtime += slack_runtime;
4806
4807 /* we are under rq->lock, defer unthrottling using a timer */
4808 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4809 !list_empty(&cfs_b->throttled_cfs_rq))
4810 start_cfs_slack_bandwidth(cfs_b);
4811 }
4812 raw_spin_unlock(&cfs_b->lock);
4813
4814 /* even if it's not valid for return we don't want to try again */
4815 cfs_rq->runtime_remaining -= slack_runtime;
4816 }
4817
4818 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4819 {
4820 if (!cfs_bandwidth_used())
4821 return;
4822
4823 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4824 return;
4825
4826 __return_cfs_rq_runtime(cfs_rq);
4827 }
4828
4829 /*
4830 * This is done with a timer (instead of inline with bandwidth return) since
4831 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4832 */
4833 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4834 {
4835 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4836 unsigned long flags;
4837
4838 /* confirm we're still not at a refresh boundary */
4839 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4840 cfs_b->slack_started = false;
4841 if (cfs_b->distribute_running) {
4842 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4843 return;
4844 }
4845
4846 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4847 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4848 return;
4849 }
4850
4851 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4852 runtime = cfs_b->runtime;
4853
4854 if (runtime)
4855 cfs_b->distribute_running = 1;
4856
4857 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4858
4859 if (!runtime)
4860 return;
4861
4862 runtime = distribute_cfs_runtime(cfs_b, runtime);
4863
4864 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4865 lsub_positive(&cfs_b->runtime, runtime);
4866 cfs_b->distribute_running = 0;
4867 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4868 }
4869
4870 /*
4871 * When a group wakes up we want to make sure that its quota is not already
4872 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4873 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4874 */
4875 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4876 {
4877 if (!cfs_bandwidth_used())
4878 return;
4879
4880 /* an active group must be handled by the update_curr()->put() path */
4881 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4882 return;
4883
4884 /* ensure the group is not already throttled */
4885 if (cfs_rq_throttled(cfs_rq))
4886 return;
4887
4888 /* update runtime allocation */
4889 account_cfs_rq_runtime(cfs_rq, 0);
4890 if (cfs_rq->runtime_remaining <= 0)
4891 throttle_cfs_rq(cfs_rq);
4892 }
4893
4894 static void sync_throttle(struct task_group *tg, int cpu)
4895 {
4896 struct cfs_rq *pcfs_rq, *cfs_rq;
4897
4898 if (!cfs_bandwidth_used())
4899 return;
4900
4901 if (!tg->parent)
4902 return;
4903
4904 cfs_rq = tg->cfs_rq[cpu];
4905 pcfs_rq = tg->parent->cfs_rq[cpu];
4906
4907 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4908 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4909 }
4910
4911 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4912 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4913 {
4914 if (!cfs_bandwidth_used())
4915 return false;
4916
4917 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4918 return false;
4919
4920 /*
4921 * it's possible for a throttled entity to be forced into a running
4922 * state (e.g. set_curr_task), in this case we're finished.
4923 */
4924 if (cfs_rq_throttled(cfs_rq))
4925 return true;
4926
4927 throttle_cfs_rq(cfs_rq);
4928 return true;
4929 }
4930
4931 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4932 {
4933 struct cfs_bandwidth *cfs_b =
4934 container_of(timer, struct cfs_bandwidth, slack_timer);
4935
4936 do_sched_cfs_slack_timer(cfs_b);
4937
4938 return HRTIMER_NORESTART;
4939 }
4940
4941 extern const u64 max_cfs_quota_period;
4942
4943 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4944 {
4945 struct cfs_bandwidth *cfs_b =
4946 container_of(timer, struct cfs_bandwidth, period_timer);
4947 unsigned long flags;
4948 int overrun;
4949 int idle = 0;
4950 int count = 0;
4951
4952 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4953 for (;;) {
4954 overrun = hrtimer_forward_now(timer, cfs_b->period);
4955 if (!overrun)
4956 break;
4957
4958 if (++count > 3) {
4959 u64 new, old = ktime_to_ns(cfs_b->period);
4960
4961 /*
4962 * Grow period by a factor of 2 to avoid losing precision.
4963 * Precision loss in the quota/period ratio can cause __cfs_schedulable
4964 * to fail.
4965 */
4966 new = old * 2;
4967 if (new < max_cfs_quota_period) {
4968 cfs_b->period = ns_to_ktime(new);
4969 cfs_b->quota *= 2;
4970
4971 pr_warn_ratelimited(
4972 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4973 smp_processor_id(),
4974 div_u64(new, NSEC_PER_USEC),
4975 div_u64(cfs_b->quota, NSEC_PER_USEC));
4976 } else {
4977 pr_warn_ratelimited(
4978 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4979 smp_processor_id(),
4980 div_u64(old, NSEC_PER_USEC),
4981 div_u64(cfs_b->quota, NSEC_PER_USEC));
4982 }
4983
4984 /* reset count so we don't come right back in here */
4985 count = 0;
4986 }
4987
4988 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
4989 }
4990 if (idle)
4991 cfs_b->period_active = 0;
4992 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4993
4994 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4995 }
4996
4997 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4998 {
4999 raw_spin_lock_init(&cfs_b->lock);
5000 cfs_b->runtime = 0;
5001 cfs_b->quota = RUNTIME_INF;
5002 cfs_b->period = ns_to_ktime(default_cfs_period());
5003
5004 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5005 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5006 cfs_b->period_timer.function = sched_cfs_period_timer;
5007 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5008 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5009 cfs_b->distribute_running = 0;
5010 cfs_b->slack_started = false;
5011 }
5012
5013 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5014 {
5015 cfs_rq->runtime_enabled = 0;
5016 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5017 }
5018
5019 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5020 {
5021 lockdep_assert_held(&cfs_b->lock);
5022
5023 if (cfs_b->period_active)
5024 return;
5025
5026 cfs_b->period_active = 1;
5027 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5028 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5029 }
5030
5031 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5032 {
5033 /* init_cfs_bandwidth() was not called */
5034 if (!cfs_b->throttled_cfs_rq.next)
5035 return;
5036
5037 hrtimer_cancel(&cfs_b->period_timer);
5038 hrtimer_cancel(&cfs_b->slack_timer);
5039 }
5040
5041 /*
5042 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5043 *
5044 * The race is harmless, since modifying bandwidth settings of unhooked group
5045 * bits doesn't do much.
5046 */
5047
5048 /* cpu online calback */
5049 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5050 {
5051 struct task_group *tg;
5052
5053 lockdep_assert_held(&rq->lock);
5054
5055 rcu_read_lock();
5056 list_for_each_entry_rcu(tg, &task_groups, list) {
5057 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5058 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5059
5060 raw_spin_lock(&cfs_b->lock);
5061 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5062 raw_spin_unlock(&cfs_b->lock);
5063 }
5064 rcu_read_unlock();
5065 }
5066
5067 /* cpu offline callback */
5068 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5069 {
5070 struct task_group *tg;
5071
5072 lockdep_assert_held(&rq->lock);
5073
5074 rcu_read_lock();
5075 list_for_each_entry_rcu(tg, &task_groups, list) {
5076 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5077
5078 if (!cfs_rq->runtime_enabled)
5079 continue;
5080
5081 /*
5082 * clock_task is not advancing so we just need to make sure
5083 * there's some valid quota amount
5084 */
5085 cfs_rq->runtime_remaining = 1;
5086 /*
5087 * Offline rq is schedulable till CPU is completely disabled
5088 * in take_cpu_down(), so we prevent new cfs throttling here.
5089 */
5090 cfs_rq->runtime_enabled = 0;
5091
5092 if (cfs_rq_throttled(cfs_rq))
5093 unthrottle_cfs_rq(cfs_rq);
5094 }
5095 rcu_read_unlock();
5096 }
5097
5098 #else /* CONFIG_CFS_BANDWIDTH */
5099
5100 static inline bool cfs_bandwidth_used(void)
5101 {
5102 return false;
5103 }
5104
5105 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5106 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5107 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5108 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5109 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5110
5111 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5112 {
5113 return 0;
5114 }
5115
5116 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5117 {
5118 return 0;
5119 }
5120
5121 static inline int throttled_lb_pair(struct task_group *tg,
5122 int src_cpu, int dest_cpu)
5123 {
5124 return 0;
5125 }
5126
5127 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5128
5129 #ifdef CONFIG_FAIR_GROUP_SCHED
5130 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5131 #endif
5132
5133 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5134 {
5135 return NULL;
5136 }
5137 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5138 static inline void update_runtime_enabled(struct rq *rq) {}
5139 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5140
5141 #endif /* CONFIG_CFS_BANDWIDTH */
5142
5143 /**************************************************
5144 * CFS operations on tasks:
5145 */
5146
5147 #ifdef CONFIG_SCHED_HRTICK
5148 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5149 {
5150 struct sched_entity *se = &p->se;
5151 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5152
5153 SCHED_WARN_ON(task_rq(p) != rq);
5154
5155 if (rq->cfs.h_nr_running > 1) {
5156 u64 slice = sched_slice(cfs_rq, se);
5157 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5158 s64 delta = slice - ran;
5159
5160 if (delta < 0) {
5161 if (rq->curr == p)
5162 resched_curr(rq);
5163 return;
5164 }
5165 hrtick_start(rq, delta);
5166 }
5167 }
5168
5169 /*
5170 * called from enqueue/dequeue and updates the hrtick when the
5171 * current task is from our class and nr_running is low enough
5172 * to matter.
5173 */
5174 static void hrtick_update(struct rq *rq)
5175 {
5176 struct task_struct *curr = rq->curr;
5177
5178 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5179 return;
5180
5181 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5182 hrtick_start_fair(rq, curr);
5183 }
5184 #else /* !CONFIG_SCHED_HRTICK */
5185 static inline void
5186 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5187 {
5188 }
5189
5190 static inline void hrtick_update(struct rq *rq)
5191 {
5192 }
5193 #endif
5194
5195 #ifdef CONFIG_SMP
5196 static inline unsigned long cpu_util(int cpu);
5197
5198 static inline bool cpu_overutilized(int cpu)
5199 {
5200 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5201 }
5202
5203 static inline void update_overutilized_status(struct rq *rq)
5204 {
5205 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5206 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5207 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5208 }
5209 }
5210 #else
5211 static inline void update_overutilized_status(struct rq *rq) { }
5212 #endif
5213
5214 /* Runqueue only has SCHED_IDLE tasks enqueued */
5215 static int sched_idle_rq(struct rq *rq)
5216 {
5217 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5218 rq->nr_running);
5219 }
5220
5221 #ifdef CONFIG_SMP
5222 static int sched_idle_cpu(int cpu)
5223 {
5224 return sched_idle_rq(cpu_rq(cpu));
5225 }
5226 #endif
5227
5228 /*
5229 * The enqueue_task method is called before nr_running is
5230 * increased. Here we update the fair scheduling stats and
5231 * then put the task into the rbtree:
5232 */
5233 static void
5234 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5235 {
5236 struct cfs_rq *cfs_rq;
5237 struct sched_entity *se = &p->se;
5238 int idle_h_nr_running = task_has_idle_policy(p);
5239
5240 /*
5241 * The code below (indirectly) updates schedutil which looks at
5242 * the cfs_rq utilization to select a frequency.
5243 * Let's add the task's estimated utilization to the cfs_rq's
5244 * estimated utilization, before we update schedutil.
5245 */
5246 util_est_enqueue(&rq->cfs, p);
5247
5248 /*
5249 * If in_iowait is set, the code below may not trigger any cpufreq
5250 * utilization updates, so do it here explicitly with the IOWAIT flag
5251 * passed.
5252 */
5253 if (p->in_iowait)
5254 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5255
5256 for_each_sched_entity(se) {
5257 if (se->on_rq)
5258 break;
5259 cfs_rq = cfs_rq_of(se);
5260 enqueue_entity(cfs_rq, se, flags);
5261
5262 /*
5263 * end evaluation on encountering a throttled cfs_rq
5264 *
5265 * note: in the case of encountering a throttled cfs_rq we will
5266 * post the final h_nr_running increment below.
5267 */
5268 if (cfs_rq_throttled(cfs_rq))
5269 break;
5270 cfs_rq->h_nr_running++;
5271 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5272
5273 flags = ENQUEUE_WAKEUP;
5274 }
5275
5276 for_each_sched_entity(se) {
5277 cfs_rq = cfs_rq_of(se);
5278 cfs_rq->h_nr_running++;
5279 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5280
5281 if (cfs_rq_throttled(cfs_rq))
5282 break;
5283
5284 update_load_avg(cfs_rq, se, UPDATE_TG);
5285 update_cfs_group(se);
5286 }
5287
5288 if (!se) {
5289 add_nr_running(rq, 1);
5290 /*
5291 * Since new tasks are assigned an initial util_avg equal to
5292 * half of the spare capacity of their CPU, tiny tasks have the
5293 * ability to cross the overutilized threshold, which will
5294 * result in the load balancer ruining all the task placement
5295 * done by EAS. As a way to mitigate that effect, do not account
5296 * for the first enqueue operation of new tasks during the
5297 * overutilized flag detection.
5298 *
5299 * A better way of solving this problem would be to wait for
5300 * the PELT signals of tasks to converge before taking them
5301 * into account, but that is not straightforward to implement,
5302 * and the following generally works well enough in practice.
5303 */
5304 if (flags & ENQUEUE_WAKEUP)
5305 update_overutilized_status(rq);
5306
5307 }
5308
5309 if (cfs_bandwidth_used()) {
5310 /*
5311 * When bandwidth control is enabled; the cfs_rq_throttled()
5312 * breaks in the above iteration can result in incomplete
5313 * leaf list maintenance, resulting in triggering the assertion
5314 * below.
5315 */
5316 for_each_sched_entity(se) {
5317 cfs_rq = cfs_rq_of(se);
5318
5319 if (list_add_leaf_cfs_rq(cfs_rq))
5320 break;
5321 }
5322 }
5323
5324 assert_list_leaf_cfs_rq(rq);
5325
5326 hrtick_update(rq);
5327 }
5328
5329 static void set_next_buddy(struct sched_entity *se);
5330
5331 /*
5332 * The dequeue_task method is called before nr_running is
5333 * decreased. We remove the task from the rbtree and
5334 * update the fair scheduling stats:
5335 */
5336 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5337 {
5338 struct cfs_rq *cfs_rq;
5339 struct sched_entity *se = &p->se;
5340 int task_sleep = flags & DEQUEUE_SLEEP;
5341 int idle_h_nr_running = task_has_idle_policy(p);
5342 bool was_sched_idle = sched_idle_rq(rq);
5343
5344 for_each_sched_entity(se) {
5345 cfs_rq = cfs_rq_of(se);
5346 dequeue_entity(cfs_rq, se, flags);
5347
5348 /*
5349 * end evaluation on encountering a throttled cfs_rq
5350 *
5351 * note: in the case of encountering a throttled cfs_rq we will
5352 * post the final h_nr_running decrement below.
5353 */
5354 if (cfs_rq_throttled(cfs_rq))
5355 break;
5356 cfs_rq->h_nr_running--;
5357 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5358
5359 /* Don't dequeue parent if it has other entities besides us */
5360 if (cfs_rq->load.weight) {
5361 /* Avoid re-evaluating load for this entity: */
5362 se = parent_entity(se);
5363 /*
5364 * Bias pick_next to pick a task from this cfs_rq, as
5365 * p is sleeping when it is within its sched_slice.
5366 */
5367 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5368 set_next_buddy(se);
5369 break;
5370 }
5371 flags |= DEQUEUE_SLEEP;
5372 }
5373
5374 for_each_sched_entity(se) {
5375 cfs_rq = cfs_rq_of(se);
5376 cfs_rq->h_nr_running--;
5377 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5378
5379 if (cfs_rq_throttled(cfs_rq))
5380 break;
5381
5382 update_load_avg(cfs_rq, se, UPDATE_TG);
5383 update_cfs_group(se);
5384 }
5385
5386 if (!se)
5387 sub_nr_running(rq, 1);
5388
5389 /* balance early to pull high priority tasks */
5390 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5391 rq->next_balance = jiffies;
5392
5393 util_est_dequeue(&rq->cfs, p, task_sleep);
5394 hrtick_update(rq);
5395 }
5396
5397 #ifdef CONFIG_SMP
5398
5399 /* Working cpumask for: load_balance, load_balance_newidle. */
5400 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5401 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5402
5403 #ifdef CONFIG_NO_HZ_COMMON
5404
5405 static struct {
5406 cpumask_var_t idle_cpus_mask;
5407 atomic_t nr_cpus;
5408 int has_blocked; /* Idle CPUS has blocked load */
5409 unsigned long next_balance; /* in jiffy units */
5410 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5411 } nohz ____cacheline_aligned;
5412
5413 #endif /* CONFIG_NO_HZ_COMMON */
5414
5415 static unsigned long cpu_load(struct rq *rq)
5416 {
5417 return cfs_rq_load_avg(&rq->cfs);
5418 }
5419
5420 /*
5421 * cpu_load_without - compute CPU load without any contributions from *p
5422 * @cpu: the CPU which load is requested
5423 * @p: the task which load should be discounted
5424 *
5425 * The load of a CPU is defined by the load of tasks currently enqueued on that
5426 * CPU as well as tasks which are currently sleeping after an execution on that
5427 * CPU.
5428 *
5429 * This method returns the load of the specified CPU by discounting the load of
5430 * the specified task, whenever the task is currently contributing to the CPU
5431 * load.
5432 */
5433 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5434 {
5435 struct cfs_rq *cfs_rq;
5436 unsigned int load;
5437
5438 /* Task has no contribution or is new */
5439 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5440 return cpu_load(rq);
5441
5442 cfs_rq = &rq->cfs;
5443 load = READ_ONCE(cfs_rq->avg.load_avg);
5444
5445 /* Discount task's util from CPU's util */
5446 lsub_positive(&load, task_h_load(p));
5447
5448 return load;
5449 }
5450
5451 static unsigned long capacity_of(int cpu)
5452 {
5453 return cpu_rq(cpu)->cpu_capacity;
5454 }
5455
5456 static void record_wakee(struct task_struct *p)
5457 {
5458 /*
5459 * Only decay a single time; tasks that have less then 1 wakeup per
5460 * jiffy will not have built up many flips.
5461 */
5462 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5463 current->wakee_flips >>= 1;
5464 current->wakee_flip_decay_ts = jiffies;
5465 }
5466
5467 if (current->last_wakee != p) {
5468 current->last_wakee = p;
5469 current->wakee_flips++;
5470 }
5471 }
5472
5473 /*
5474 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5475 *
5476 * A waker of many should wake a different task than the one last awakened
5477 * at a frequency roughly N times higher than one of its wakees.
5478 *
5479 * In order to determine whether we should let the load spread vs consolidating
5480 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5481 * partner, and a factor of lls_size higher frequency in the other.
5482 *
5483 * With both conditions met, we can be relatively sure that the relationship is
5484 * non-monogamous, with partner count exceeding socket size.
5485 *
5486 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5487 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5488 * socket size.
5489 */
5490 static int wake_wide(struct task_struct *p)
5491 {
5492 unsigned int master = current->wakee_flips;
5493 unsigned int slave = p->wakee_flips;
5494 int factor = this_cpu_read(sd_llc_size);
5495
5496 if (master < slave)
5497 swap(master, slave);
5498 if (slave < factor || master < slave * factor)
5499 return 0;
5500 return 1;
5501 }
5502
5503 /*
5504 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5505 * soonest. For the purpose of speed we only consider the waking and previous
5506 * CPU.
5507 *
5508 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5509 * cache-affine and is (or will be) idle.
5510 *
5511 * wake_affine_weight() - considers the weight to reflect the average
5512 * scheduling latency of the CPUs. This seems to work
5513 * for the overloaded case.
5514 */
5515 static int
5516 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5517 {
5518 /*
5519 * If this_cpu is idle, it implies the wakeup is from interrupt
5520 * context. Only allow the move if cache is shared. Otherwise an
5521 * interrupt intensive workload could force all tasks onto one
5522 * node depending on the IO topology or IRQ affinity settings.
5523 *
5524 * If the prev_cpu is idle and cache affine then avoid a migration.
5525 * There is no guarantee that the cache hot data from an interrupt
5526 * is more important than cache hot data on the prev_cpu and from
5527 * a cpufreq perspective, it's better to have higher utilisation
5528 * on one CPU.
5529 */
5530 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5531 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5532
5533 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5534 return this_cpu;
5535
5536 return nr_cpumask_bits;
5537 }
5538
5539 static int
5540 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5541 int this_cpu, int prev_cpu, int sync)
5542 {
5543 s64 this_eff_load, prev_eff_load;
5544 unsigned long task_load;
5545
5546 this_eff_load = cpu_load(cpu_rq(this_cpu));
5547
5548 if (sync) {
5549 unsigned long current_load = task_h_load(current);
5550
5551 if (current_load > this_eff_load)
5552 return this_cpu;
5553
5554 this_eff_load -= current_load;
5555 }
5556
5557 task_load = task_h_load(p);
5558
5559 this_eff_load += task_load;
5560 if (sched_feat(WA_BIAS))
5561 this_eff_load *= 100;
5562 this_eff_load *= capacity_of(prev_cpu);
5563
5564 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5565 prev_eff_load -= task_load;
5566 if (sched_feat(WA_BIAS))
5567 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5568 prev_eff_load *= capacity_of(this_cpu);
5569
5570 /*
5571 * If sync, adjust the weight of prev_eff_load such that if
5572 * prev_eff == this_eff that select_idle_sibling() will consider
5573 * stacking the wakee on top of the waker if no other CPU is
5574 * idle.
5575 */
5576 if (sync)
5577 prev_eff_load += 1;
5578
5579 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5580 }
5581
5582 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5583 int this_cpu, int prev_cpu, int sync)
5584 {
5585 int target = nr_cpumask_bits;
5586
5587 if (sched_feat(WA_IDLE))
5588 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5589
5590 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5591 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5592
5593 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5594 if (target == nr_cpumask_bits)
5595 return prev_cpu;
5596
5597 schedstat_inc(sd->ttwu_move_affine);
5598 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5599 return target;
5600 }
5601
5602 static struct sched_group *
5603 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5604 int this_cpu, int sd_flag);
5605
5606 /*
5607 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5608 */
5609 static int
5610 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5611 {
5612 unsigned long load, min_load = ULONG_MAX;
5613 unsigned int min_exit_latency = UINT_MAX;
5614 u64 latest_idle_timestamp = 0;
5615 int least_loaded_cpu = this_cpu;
5616 int shallowest_idle_cpu = -1;
5617 int i;
5618
5619 /* Check if we have any choice: */
5620 if (group->group_weight == 1)
5621 return cpumask_first(sched_group_span(group));
5622
5623 /* Traverse only the allowed CPUs */
5624 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5625 if (sched_idle_cpu(i))
5626 return i;
5627
5628 if (available_idle_cpu(i)) {
5629 struct rq *rq = cpu_rq(i);
5630 struct cpuidle_state *idle = idle_get_state(rq);
5631 if (idle && idle->exit_latency < min_exit_latency) {
5632 /*
5633 * We give priority to a CPU whose idle state
5634 * has the smallest exit latency irrespective
5635 * of any idle timestamp.
5636 */
5637 min_exit_latency = idle->exit_latency;
5638 latest_idle_timestamp = rq->idle_stamp;
5639 shallowest_idle_cpu = i;
5640 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5641 rq->idle_stamp > latest_idle_timestamp) {
5642 /*
5643 * If equal or no active idle state, then
5644 * the most recently idled CPU might have
5645 * a warmer cache.
5646 */
5647 latest_idle_timestamp = rq->idle_stamp;
5648 shallowest_idle_cpu = i;
5649 }
5650 } else if (shallowest_idle_cpu == -1) {
5651 load = cpu_load(cpu_rq(i));
5652 if (load < min_load) {
5653 min_load = load;
5654 least_loaded_cpu = i;
5655 }
5656 }
5657 }
5658
5659 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5660 }
5661
5662 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5663 int cpu, int prev_cpu, int sd_flag)
5664 {
5665 int new_cpu = cpu;
5666
5667 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5668 return prev_cpu;
5669
5670 /*
5671 * We need task's util for cpu_util_without, sync it up to
5672 * prev_cpu's last_update_time.
5673 */
5674 if (!(sd_flag & SD_BALANCE_FORK))
5675 sync_entity_load_avg(&p->se);
5676
5677 while (sd) {
5678 struct sched_group *group;
5679 struct sched_domain *tmp;
5680 int weight;
5681
5682 if (!(sd->flags & sd_flag)) {
5683 sd = sd->child;
5684 continue;
5685 }
5686
5687 group = find_idlest_group(sd, p, cpu, sd_flag);
5688 if (!group) {
5689 sd = sd->child;
5690 continue;
5691 }
5692
5693 new_cpu = find_idlest_group_cpu(group, p, cpu);
5694 if (new_cpu == cpu) {
5695 /* Now try balancing at a lower domain level of 'cpu': */
5696 sd = sd->child;
5697 continue;
5698 }
5699
5700 /* Now try balancing at a lower domain level of 'new_cpu': */
5701 cpu = new_cpu;
5702 weight = sd->span_weight;
5703 sd = NULL;
5704 for_each_domain(cpu, tmp) {
5705 if (weight <= tmp->span_weight)
5706 break;
5707 if (tmp->flags & sd_flag)
5708 sd = tmp;
5709 }
5710 }
5711
5712 return new_cpu;
5713 }
5714
5715 #ifdef CONFIG_SCHED_SMT
5716 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5717 EXPORT_SYMBOL_GPL(sched_smt_present);
5718
5719 static inline void set_idle_cores(int cpu, int val)
5720 {
5721 struct sched_domain_shared *sds;
5722
5723 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5724 if (sds)
5725 WRITE_ONCE(sds->has_idle_cores, val);
5726 }
5727
5728 static inline bool test_idle_cores(int cpu, bool def)
5729 {
5730 struct sched_domain_shared *sds;
5731
5732 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5733 if (sds)
5734 return READ_ONCE(sds->has_idle_cores);
5735
5736 return def;
5737 }
5738
5739 /*
5740 * Scans the local SMT mask to see if the entire core is idle, and records this
5741 * information in sd_llc_shared->has_idle_cores.
5742 *
5743 * Since SMT siblings share all cache levels, inspecting this limited remote
5744 * state should be fairly cheap.
5745 */
5746 void __update_idle_core(struct rq *rq)
5747 {
5748 int core = cpu_of(rq);
5749 int cpu;
5750
5751 rcu_read_lock();
5752 if (test_idle_cores(core, true))
5753 goto unlock;
5754
5755 for_each_cpu(cpu, cpu_smt_mask(core)) {
5756 if (cpu == core)
5757 continue;
5758
5759 if (!available_idle_cpu(cpu))
5760 goto unlock;
5761 }
5762
5763 set_idle_cores(core, 1);
5764 unlock:
5765 rcu_read_unlock();
5766 }
5767
5768 /*
5769 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5770 * there are no idle cores left in the system; tracked through
5771 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5772 */
5773 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5774 {
5775 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5776 int core, cpu;
5777
5778 if (!static_branch_likely(&sched_smt_present))
5779 return -1;
5780
5781 if (!test_idle_cores(target, false))
5782 return -1;
5783
5784 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
5785
5786 for_each_cpu_wrap(core, cpus, target) {
5787 bool idle = true;
5788
5789 for_each_cpu(cpu, cpu_smt_mask(core)) {
5790 __cpumask_clear_cpu(cpu, cpus);
5791 if (!available_idle_cpu(cpu))
5792 idle = false;
5793 }
5794
5795 if (idle)
5796 return core;
5797 }
5798
5799 /*
5800 * Failed to find an idle core; stop looking for one.
5801 */
5802 set_idle_cores(target, 0);
5803
5804 return -1;
5805 }
5806
5807 /*
5808 * Scan the local SMT mask for idle CPUs.
5809 */
5810 static int select_idle_smt(struct task_struct *p, int target)
5811 {
5812 int cpu;
5813
5814 if (!static_branch_likely(&sched_smt_present))
5815 return -1;
5816
5817 for_each_cpu(cpu, cpu_smt_mask(target)) {
5818 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5819 continue;
5820 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
5821 return cpu;
5822 }
5823
5824 return -1;
5825 }
5826
5827 #else /* CONFIG_SCHED_SMT */
5828
5829 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5830 {
5831 return -1;
5832 }
5833
5834 static inline int select_idle_smt(struct task_struct *p, int target)
5835 {
5836 return -1;
5837 }
5838
5839 #endif /* CONFIG_SCHED_SMT */
5840
5841 /*
5842 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5843 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5844 * average idle time for this rq (as found in rq->avg_idle).
5845 */
5846 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5847 {
5848 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5849 struct sched_domain *this_sd;
5850 u64 avg_cost, avg_idle;
5851 u64 time, cost;
5852 s64 delta;
5853 int this = smp_processor_id();
5854 int cpu, nr = INT_MAX;
5855
5856 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5857 if (!this_sd)
5858 return -1;
5859
5860 /*
5861 * Due to large variance we need a large fuzz factor; hackbench in
5862 * particularly is sensitive here.
5863 */
5864 avg_idle = this_rq()->avg_idle / 512;
5865 avg_cost = this_sd->avg_scan_cost + 1;
5866
5867 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5868 return -1;
5869
5870 if (sched_feat(SIS_PROP)) {
5871 u64 span_avg = sd->span_weight * avg_idle;
5872 if (span_avg > 4*avg_cost)
5873 nr = div_u64(span_avg, avg_cost);
5874 else
5875 nr = 4;
5876 }
5877
5878 time = cpu_clock(this);
5879
5880 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
5881
5882 for_each_cpu_wrap(cpu, cpus, target) {
5883 if (!--nr)
5884 return -1;
5885 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
5886 break;
5887 }
5888
5889 time = cpu_clock(this) - time;
5890 cost = this_sd->avg_scan_cost;
5891 delta = (s64)(time - cost) / 8;
5892 this_sd->avg_scan_cost += delta;
5893
5894 return cpu;
5895 }
5896
5897 /*
5898 * Try and locate an idle core/thread in the LLC cache domain.
5899 */
5900 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5901 {
5902 struct sched_domain *sd;
5903 int i, recent_used_cpu;
5904
5905 if (available_idle_cpu(target) || sched_idle_cpu(target))
5906 return target;
5907
5908 /*
5909 * If the previous CPU is cache affine and idle, don't be stupid:
5910 */
5911 if (prev != target && cpus_share_cache(prev, target) &&
5912 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
5913 return prev;
5914
5915 /* Check a recently used CPU as a potential idle candidate: */
5916 recent_used_cpu = p->recent_used_cpu;
5917 if (recent_used_cpu != prev &&
5918 recent_used_cpu != target &&
5919 cpus_share_cache(recent_used_cpu, target) &&
5920 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
5921 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
5922 /*
5923 * Replace recent_used_cpu with prev as it is a potential
5924 * candidate for the next wake:
5925 */
5926 p->recent_used_cpu = prev;
5927 return recent_used_cpu;
5928 }
5929
5930 sd = rcu_dereference(per_cpu(sd_llc, target));
5931 if (!sd)
5932 return target;
5933
5934 i = select_idle_core(p, sd, target);
5935 if ((unsigned)i < nr_cpumask_bits)
5936 return i;
5937
5938 i = select_idle_cpu(p, sd, target);
5939 if ((unsigned)i < nr_cpumask_bits)
5940 return i;
5941
5942 i = select_idle_smt(p, target);
5943 if ((unsigned)i < nr_cpumask_bits)
5944 return i;
5945
5946 return target;
5947 }
5948
5949 /**
5950 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
5951 * @cpu: the CPU to get the utilization of
5952 *
5953 * The unit of the return value must be the one of capacity so we can compare
5954 * the utilization with the capacity of the CPU that is available for CFS task
5955 * (ie cpu_capacity).
5956 *
5957 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5958 * recent utilization of currently non-runnable tasks on a CPU. It represents
5959 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5960 * capacity_orig is the cpu_capacity available at the highest frequency
5961 * (arch_scale_freq_capacity()).
5962 * The utilization of a CPU converges towards a sum equal to or less than the
5963 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5964 * the running time on this CPU scaled by capacity_curr.
5965 *
5966 * The estimated utilization of a CPU is defined to be the maximum between its
5967 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
5968 * currently RUNNABLE on that CPU.
5969 * This allows to properly represent the expected utilization of a CPU which
5970 * has just got a big task running since a long sleep period. At the same time
5971 * however it preserves the benefits of the "blocked utilization" in
5972 * describing the potential for other tasks waking up on the same CPU.
5973 *
5974 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5975 * higher than capacity_orig because of unfortunate rounding in
5976 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5977 * the average stabilizes with the new running time. We need to check that the
5978 * utilization stays within the range of [0..capacity_orig] and cap it if
5979 * necessary. Without utilization capping, a group could be seen as overloaded
5980 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5981 * available capacity. We allow utilization to overshoot capacity_curr (but not
5982 * capacity_orig) as it useful for predicting the capacity required after task
5983 * migrations (scheduler-driven DVFS).
5984 *
5985 * Return: the (estimated) utilization for the specified CPU
5986 */
5987 static inline unsigned long cpu_util(int cpu)
5988 {
5989 struct cfs_rq *cfs_rq;
5990 unsigned int util;
5991
5992 cfs_rq = &cpu_rq(cpu)->cfs;
5993 util = READ_ONCE(cfs_rq->avg.util_avg);
5994
5995 if (sched_feat(UTIL_EST))
5996 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
5997
5998 return min_t(unsigned long, util, capacity_orig_of(cpu));
5999 }
6000
6001 /*
6002 * cpu_util_without: compute cpu utilization without any contributions from *p
6003 * @cpu: the CPU which utilization is requested
6004 * @p: the task which utilization should be discounted
6005 *
6006 * The utilization of a CPU is defined by the utilization of tasks currently
6007 * enqueued on that CPU as well as tasks which are currently sleeping after an
6008 * execution on that CPU.
6009 *
6010 * This method returns the utilization of the specified CPU by discounting the
6011 * utilization of the specified task, whenever the task is currently
6012 * contributing to the CPU utilization.
6013 */
6014 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6015 {
6016 struct cfs_rq *cfs_rq;
6017 unsigned int util;
6018
6019 /* Task has no contribution or is new */
6020 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6021 return cpu_util(cpu);
6022
6023 cfs_rq = &cpu_rq(cpu)->cfs;
6024 util = READ_ONCE(cfs_rq->avg.util_avg);
6025
6026 /* Discount task's util from CPU's util */
6027 lsub_positive(&util, task_util(p));
6028
6029 /*
6030 * Covered cases:
6031 *
6032 * a) if *p is the only task sleeping on this CPU, then:
6033 * cpu_util (== task_util) > util_est (== 0)
6034 * and thus we return:
6035 * cpu_util_without = (cpu_util - task_util) = 0
6036 *
6037 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6038 * IDLE, then:
6039 * cpu_util >= task_util
6040 * cpu_util > util_est (== 0)
6041 * and thus we discount *p's blocked utilization to return:
6042 * cpu_util_without = (cpu_util - task_util) >= 0
6043 *
6044 * c) if other tasks are RUNNABLE on that CPU and
6045 * util_est > cpu_util
6046 * then we use util_est since it returns a more restrictive
6047 * estimation of the spare capacity on that CPU, by just
6048 * considering the expected utilization of tasks already
6049 * runnable on that CPU.
6050 *
6051 * Cases a) and b) are covered by the above code, while case c) is
6052 * covered by the following code when estimated utilization is
6053 * enabled.
6054 */
6055 if (sched_feat(UTIL_EST)) {
6056 unsigned int estimated =
6057 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6058
6059 /*
6060 * Despite the following checks we still have a small window
6061 * for a possible race, when an execl's select_task_rq_fair()
6062 * races with LB's detach_task():
6063 *
6064 * detach_task()
6065 * p->on_rq = TASK_ON_RQ_MIGRATING;
6066 * ---------------------------------- A
6067 * deactivate_task() \
6068 * dequeue_task() + RaceTime
6069 * util_est_dequeue() /
6070 * ---------------------------------- B
6071 *
6072 * The additional check on "current == p" it's required to
6073 * properly fix the execl regression and it helps in further
6074 * reducing the chances for the above race.
6075 */
6076 if (unlikely(task_on_rq_queued(p) || current == p))
6077 lsub_positive(&estimated, _task_util_est(p));
6078
6079 util = max(util, estimated);
6080 }
6081
6082 /*
6083 * Utilization (estimated) can exceed the CPU capacity, thus let's
6084 * clamp to the maximum CPU capacity to ensure consistency with
6085 * the cpu_util call.
6086 */
6087 return min_t(unsigned long, util, capacity_orig_of(cpu));
6088 }
6089
6090 /*
6091 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6092 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6093 *
6094 * In that case WAKE_AFFINE doesn't make sense and we'll let
6095 * BALANCE_WAKE sort things out.
6096 */
6097 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6098 {
6099 long min_cap, max_cap;
6100
6101 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6102 return 0;
6103
6104 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6105 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6106
6107 /* Minimum capacity is close to max, no need to abort wake_affine */
6108 if (max_cap - min_cap < max_cap >> 3)
6109 return 0;
6110
6111 /* Bring task utilization in sync with prev_cpu */
6112 sync_entity_load_avg(&p->se);
6113
6114 return !task_fits_capacity(p, min_cap);
6115 }
6116
6117 /*
6118 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6119 * to @dst_cpu.
6120 */
6121 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6122 {
6123 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6124 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6125
6126 /*
6127 * If @p migrates from @cpu to another, remove its contribution. Or,
6128 * if @p migrates from another CPU to @cpu, add its contribution. In
6129 * the other cases, @cpu is not impacted by the migration, so the
6130 * util_avg should already be correct.
6131 */
6132 if (task_cpu(p) == cpu && dst_cpu != cpu)
6133 sub_positive(&util, task_util(p));
6134 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6135 util += task_util(p);
6136
6137 if (sched_feat(UTIL_EST)) {
6138 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6139
6140 /*
6141 * During wake-up, the task isn't enqueued yet and doesn't
6142 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6143 * so just add it (if needed) to "simulate" what will be
6144 * cpu_util() after the task has been enqueued.
6145 */
6146 if (dst_cpu == cpu)
6147 util_est += _task_util_est(p);
6148
6149 util = max(util, util_est);
6150 }
6151
6152 return min(util, capacity_orig_of(cpu));
6153 }
6154
6155 /*
6156 * compute_energy(): Estimates the energy that @pd would consume if @p was
6157 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6158 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6159 * to compute what would be the energy if we decided to actually migrate that
6160 * task.
6161 */
6162 static long
6163 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6164 {
6165 struct cpumask *pd_mask = perf_domain_span(pd);
6166 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6167 unsigned long max_util = 0, sum_util = 0;
6168 int cpu;
6169
6170 /*
6171 * The capacity state of CPUs of the current rd can be driven by CPUs
6172 * of another rd if they belong to the same pd. So, account for the
6173 * utilization of these CPUs too by masking pd with cpu_online_mask
6174 * instead of the rd span.
6175 *
6176 * If an entire pd is outside of the current rd, it will not appear in
6177 * its pd list and will not be accounted by compute_energy().
6178 */
6179 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6180 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6181 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6182
6183 /*
6184 * Busy time computation: utilization clamping is not
6185 * required since the ratio (sum_util / cpu_capacity)
6186 * is already enough to scale the EM reported power
6187 * consumption at the (eventually clamped) cpu_capacity.
6188 */
6189 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6190 ENERGY_UTIL, NULL);
6191
6192 /*
6193 * Performance domain frequency: utilization clamping
6194 * must be considered since it affects the selection
6195 * of the performance domain frequency.
6196 * NOTE: in case RT tasks are running, by default the
6197 * FREQUENCY_UTIL's utilization can be max OPP.
6198 */
6199 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6200 FREQUENCY_UTIL, tsk);
6201 max_util = max(max_util, cpu_util);
6202 }
6203
6204 return em_pd_energy(pd->em_pd, max_util, sum_util);
6205 }
6206
6207 /*
6208 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6209 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6210 * spare capacity in each performance domain and uses it as a potential
6211 * candidate to execute the task. Then, it uses the Energy Model to figure
6212 * out which of the CPU candidates is the most energy-efficient.
6213 *
6214 * The rationale for this heuristic is as follows. In a performance domain,
6215 * all the most energy efficient CPU candidates (according to the Energy
6216 * Model) are those for which we'll request a low frequency. When there are
6217 * several CPUs for which the frequency request will be the same, we don't
6218 * have enough data to break the tie between them, because the Energy Model
6219 * only includes active power costs. With this model, if we assume that
6220 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6221 * the maximum spare capacity in a performance domain is guaranteed to be among
6222 * the best candidates of the performance domain.
6223 *
6224 * In practice, it could be preferable from an energy standpoint to pack
6225 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6226 * but that could also hurt our chances to go cluster idle, and we have no
6227 * ways to tell with the current Energy Model if this is actually a good
6228 * idea or not. So, find_energy_efficient_cpu() basically favors
6229 * cluster-packing, and spreading inside a cluster. That should at least be
6230 * a good thing for latency, and this is consistent with the idea that most
6231 * of the energy savings of EAS come from the asymmetry of the system, and
6232 * not so much from breaking the tie between identical CPUs. That's also the
6233 * reason why EAS is enabled in the topology code only for systems where
6234 * SD_ASYM_CPUCAPACITY is set.
6235 *
6236 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6237 * they don't have any useful utilization data yet and it's not possible to
6238 * forecast their impact on energy consumption. Consequently, they will be
6239 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6240 * to be energy-inefficient in some use-cases. The alternative would be to
6241 * bias new tasks towards specific types of CPUs first, or to try to infer
6242 * their util_avg from the parent task, but those heuristics could hurt
6243 * other use-cases too. So, until someone finds a better way to solve this,
6244 * let's keep things simple by re-using the existing slow path.
6245 */
6246 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6247 {
6248 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6249 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6250 unsigned long cpu_cap, util, base_energy = 0;
6251 int cpu, best_energy_cpu = prev_cpu;
6252 struct sched_domain *sd;
6253 struct perf_domain *pd;
6254
6255 rcu_read_lock();
6256 pd = rcu_dereference(rd->pd);
6257 if (!pd || READ_ONCE(rd->overutilized))
6258 goto fail;
6259
6260 /*
6261 * Energy-aware wake-up happens on the lowest sched_domain starting
6262 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6263 */
6264 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6265 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6266 sd = sd->parent;
6267 if (!sd)
6268 goto fail;
6269
6270 sync_entity_load_avg(&p->se);
6271 if (!task_util_est(p))
6272 goto unlock;
6273
6274 for (; pd; pd = pd->next) {
6275 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6276 unsigned long base_energy_pd;
6277 int max_spare_cap_cpu = -1;
6278
6279 /* Compute the 'base' energy of the pd, without @p */
6280 base_energy_pd = compute_energy(p, -1, pd);
6281 base_energy += base_energy_pd;
6282
6283 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6284 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6285 continue;
6286
6287 util = cpu_util_next(cpu, p, cpu);
6288 cpu_cap = capacity_of(cpu);
6289 spare_cap = cpu_cap - util;
6290
6291 /*
6292 * Skip CPUs that cannot satisfy the capacity request.
6293 * IOW, placing the task there would make the CPU
6294 * overutilized. Take uclamp into account to see how
6295 * much capacity we can get out of the CPU; this is
6296 * aligned with schedutil_cpu_util().
6297 */
6298 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6299 if (!fits_capacity(util, cpu_cap))
6300 continue;
6301
6302 /* Always use prev_cpu as a candidate. */
6303 if (cpu == prev_cpu) {
6304 prev_delta = compute_energy(p, prev_cpu, pd);
6305 prev_delta -= base_energy_pd;
6306 best_delta = min(best_delta, prev_delta);
6307 }
6308
6309 /*
6310 * Find the CPU with the maximum spare capacity in
6311 * the performance domain
6312 */
6313 if (spare_cap > max_spare_cap) {
6314 max_spare_cap = spare_cap;
6315 max_spare_cap_cpu = cpu;
6316 }
6317 }
6318
6319 /* Evaluate the energy impact of using this CPU. */
6320 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6321 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6322 cur_delta -= base_energy_pd;
6323 if (cur_delta < best_delta) {
6324 best_delta = cur_delta;
6325 best_energy_cpu = max_spare_cap_cpu;
6326 }
6327 }
6328 }
6329 unlock:
6330 rcu_read_unlock();
6331
6332 /*
6333 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6334 * least 6% of the energy used by prev_cpu.
6335 */
6336 if (prev_delta == ULONG_MAX)
6337 return best_energy_cpu;
6338
6339 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6340 return best_energy_cpu;
6341
6342 return prev_cpu;
6343
6344 fail:
6345 rcu_read_unlock();
6346
6347 return -1;
6348 }
6349
6350 /*
6351 * select_task_rq_fair: Select target runqueue for the waking task in domains
6352 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6353 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6354 *
6355 * Balances load by selecting the idlest CPU in the idlest group, or under
6356 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6357 *
6358 * Returns the target CPU number.
6359 *
6360 * preempt must be disabled.
6361 */
6362 static int
6363 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6364 {
6365 struct sched_domain *tmp, *sd = NULL;
6366 int cpu = smp_processor_id();
6367 int new_cpu = prev_cpu;
6368 int want_affine = 0;
6369 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6370
6371 if (sd_flag & SD_BALANCE_WAKE) {
6372 record_wakee(p);
6373
6374 if (sched_energy_enabled()) {
6375 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6376 if (new_cpu >= 0)
6377 return new_cpu;
6378 new_cpu = prev_cpu;
6379 }
6380
6381 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6382 cpumask_test_cpu(cpu, p->cpus_ptr);
6383 }
6384
6385 rcu_read_lock();
6386 for_each_domain(cpu, tmp) {
6387 if (!(tmp->flags & SD_LOAD_BALANCE))
6388 break;
6389
6390 /*
6391 * If both 'cpu' and 'prev_cpu' are part of this domain,
6392 * cpu is a valid SD_WAKE_AFFINE target.
6393 */
6394 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6395 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6396 if (cpu != prev_cpu)
6397 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6398
6399 sd = NULL; /* Prefer wake_affine over balance flags */
6400 break;
6401 }
6402
6403 if (tmp->flags & sd_flag)
6404 sd = tmp;
6405 else if (!want_affine)
6406 break;
6407 }
6408
6409 if (unlikely(sd)) {
6410 /* Slow path */
6411 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6412 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6413 /* Fast path */
6414
6415 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6416
6417 if (want_affine)
6418 current->recent_used_cpu = cpu;
6419 }
6420 rcu_read_unlock();
6421
6422 return new_cpu;
6423 }
6424
6425 static void detach_entity_cfs_rq(struct sched_entity *se);
6426
6427 /*
6428 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6429 * cfs_rq_of(p) references at time of call are still valid and identify the
6430 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6431 */
6432 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6433 {
6434 /*
6435 * As blocked tasks retain absolute vruntime the migration needs to
6436 * deal with this by subtracting the old and adding the new
6437 * min_vruntime -- the latter is done by enqueue_entity() when placing
6438 * the task on the new runqueue.
6439 */
6440 if (p->state == TASK_WAKING) {
6441 struct sched_entity *se = &p->se;
6442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6443 u64 min_vruntime;
6444
6445 #ifndef CONFIG_64BIT
6446 u64 min_vruntime_copy;
6447
6448 do {
6449 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6450 smp_rmb();
6451 min_vruntime = cfs_rq->min_vruntime;
6452 } while (min_vruntime != min_vruntime_copy);
6453 #else
6454 min_vruntime = cfs_rq->min_vruntime;
6455 #endif
6456
6457 se->vruntime -= min_vruntime;
6458 }
6459
6460 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6461 /*
6462 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6463 * rq->lock and can modify state directly.
6464 */
6465 lockdep_assert_held(&task_rq(p)->lock);
6466 detach_entity_cfs_rq(&p->se);
6467
6468 } else {
6469 /*
6470 * We are supposed to update the task to "current" time, then
6471 * its up to date and ready to go to new CPU/cfs_rq. But we
6472 * have difficulty in getting what current time is, so simply
6473 * throw away the out-of-date time. This will result in the
6474 * wakee task is less decayed, but giving the wakee more load
6475 * sounds not bad.
6476 */
6477 remove_entity_load_avg(&p->se);
6478 }
6479
6480 /* Tell new CPU we are migrated */
6481 p->se.avg.last_update_time = 0;
6482
6483 /* We have migrated, no longer consider this task hot */
6484 p->se.exec_start = 0;
6485
6486 update_scan_period(p, new_cpu);
6487 }
6488
6489 static void task_dead_fair(struct task_struct *p)
6490 {
6491 remove_entity_load_avg(&p->se);
6492 }
6493
6494 static int
6495 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6496 {
6497 if (rq->nr_running)
6498 return 1;
6499
6500 return newidle_balance(rq, rf) != 0;
6501 }
6502 #endif /* CONFIG_SMP */
6503
6504 static unsigned long wakeup_gran(struct sched_entity *se)
6505 {
6506 unsigned long gran = sysctl_sched_wakeup_granularity;
6507
6508 /*
6509 * Since its curr running now, convert the gran from real-time
6510 * to virtual-time in his units.
6511 *
6512 * By using 'se' instead of 'curr' we penalize light tasks, so
6513 * they get preempted easier. That is, if 'se' < 'curr' then
6514 * the resulting gran will be larger, therefore penalizing the
6515 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6516 * be smaller, again penalizing the lighter task.
6517 *
6518 * This is especially important for buddies when the leftmost
6519 * task is higher priority than the buddy.
6520 */
6521 return calc_delta_fair(gran, se);
6522 }
6523
6524 /*
6525 * Should 'se' preempt 'curr'.
6526 *
6527 * |s1
6528 * |s2
6529 * |s3
6530 * g
6531 * |<--->|c
6532 *
6533 * w(c, s1) = -1
6534 * w(c, s2) = 0
6535 * w(c, s3) = 1
6536 *
6537 */
6538 static int
6539 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6540 {
6541 s64 gran, vdiff = curr->vruntime - se->vruntime;
6542
6543 if (vdiff <= 0)
6544 return -1;
6545
6546 gran = wakeup_gran(se);
6547 if (vdiff > gran)
6548 return 1;
6549
6550 return 0;
6551 }
6552
6553 static void set_last_buddy(struct sched_entity *se)
6554 {
6555 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6556 return;
6557
6558 for_each_sched_entity(se) {
6559 if (SCHED_WARN_ON(!se->on_rq))
6560 return;
6561 cfs_rq_of(se)->last = se;
6562 }
6563 }
6564
6565 static void set_next_buddy(struct sched_entity *se)
6566 {
6567 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6568 return;
6569
6570 for_each_sched_entity(se) {
6571 if (SCHED_WARN_ON(!se->on_rq))
6572 return;
6573 cfs_rq_of(se)->next = se;
6574 }
6575 }
6576
6577 static void set_skip_buddy(struct sched_entity *se)
6578 {
6579 for_each_sched_entity(se)
6580 cfs_rq_of(se)->skip = se;
6581 }
6582
6583 /*
6584 * Preempt the current task with a newly woken task if needed:
6585 */
6586 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6587 {
6588 struct task_struct *curr = rq->curr;
6589 struct sched_entity *se = &curr->se, *pse = &p->se;
6590 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6591 int scale = cfs_rq->nr_running >= sched_nr_latency;
6592 int next_buddy_marked = 0;
6593
6594 if (unlikely(se == pse))
6595 return;
6596
6597 /*
6598 * This is possible from callers such as attach_tasks(), in which we
6599 * unconditionally check_prempt_curr() after an enqueue (which may have
6600 * lead to a throttle). This both saves work and prevents false
6601 * next-buddy nomination below.
6602 */
6603 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6604 return;
6605
6606 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6607 set_next_buddy(pse);
6608 next_buddy_marked = 1;
6609 }
6610
6611 /*
6612 * We can come here with TIF_NEED_RESCHED already set from new task
6613 * wake up path.
6614 *
6615 * Note: this also catches the edge-case of curr being in a throttled
6616 * group (e.g. via set_curr_task), since update_curr() (in the
6617 * enqueue of curr) will have resulted in resched being set. This
6618 * prevents us from potentially nominating it as a false LAST_BUDDY
6619 * below.
6620 */
6621 if (test_tsk_need_resched(curr))
6622 return;
6623
6624 /* Idle tasks are by definition preempted by non-idle tasks. */
6625 if (unlikely(task_has_idle_policy(curr)) &&
6626 likely(!task_has_idle_policy(p)))
6627 goto preempt;
6628
6629 /*
6630 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6631 * is driven by the tick):
6632 */
6633 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6634 return;
6635
6636 find_matching_se(&se, &pse);
6637 update_curr(cfs_rq_of(se));
6638 BUG_ON(!pse);
6639 if (wakeup_preempt_entity(se, pse) == 1) {
6640 /*
6641 * Bias pick_next to pick the sched entity that is
6642 * triggering this preemption.
6643 */
6644 if (!next_buddy_marked)
6645 set_next_buddy(pse);
6646 goto preempt;
6647 }
6648
6649 return;
6650
6651 preempt:
6652 resched_curr(rq);
6653 /*
6654 * Only set the backward buddy when the current task is still
6655 * on the rq. This can happen when a wakeup gets interleaved
6656 * with schedule on the ->pre_schedule() or idle_balance()
6657 * point, either of which can * drop the rq lock.
6658 *
6659 * Also, during early boot the idle thread is in the fair class,
6660 * for obvious reasons its a bad idea to schedule back to it.
6661 */
6662 if (unlikely(!se->on_rq || curr == rq->idle))
6663 return;
6664
6665 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6666 set_last_buddy(se);
6667 }
6668
6669 struct task_struct *
6670 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6671 {
6672 struct cfs_rq *cfs_rq = &rq->cfs;
6673 struct sched_entity *se;
6674 struct task_struct *p;
6675 int new_tasks;
6676
6677 again:
6678 if (!sched_fair_runnable(rq))
6679 goto idle;
6680
6681 #ifdef CONFIG_FAIR_GROUP_SCHED
6682 if (!prev || prev->sched_class != &fair_sched_class)
6683 goto simple;
6684
6685 /*
6686 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6687 * likely that a next task is from the same cgroup as the current.
6688 *
6689 * Therefore attempt to avoid putting and setting the entire cgroup
6690 * hierarchy, only change the part that actually changes.
6691 */
6692
6693 do {
6694 struct sched_entity *curr = cfs_rq->curr;
6695
6696 /*
6697 * Since we got here without doing put_prev_entity() we also
6698 * have to consider cfs_rq->curr. If it is still a runnable
6699 * entity, update_curr() will update its vruntime, otherwise
6700 * forget we've ever seen it.
6701 */
6702 if (curr) {
6703 if (curr->on_rq)
6704 update_curr(cfs_rq);
6705 else
6706 curr = NULL;
6707
6708 /*
6709 * This call to check_cfs_rq_runtime() will do the
6710 * throttle and dequeue its entity in the parent(s).
6711 * Therefore the nr_running test will indeed
6712 * be correct.
6713 */
6714 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6715 cfs_rq = &rq->cfs;
6716
6717 if (!cfs_rq->nr_running)
6718 goto idle;
6719
6720 goto simple;
6721 }
6722 }
6723
6724 se = pick_next_entity(cfs_rq, curr);
6725 cfs_rq = group_cfs_rq(se);
6726 } while (cfs_rq);
6727
6728 p = task_of(se);
6729
6730 /*
6731 * Since we haven't yet done put_prev_entity and if the selected task
6732 * is a different task than we started out with, try and touch the
6733 * least amount of cfs_rqs.
6734 */
6735 if (prev != p) {
6736 struct sched_entity *pse = &prev->se;
6737
6738 while (!(cfs_rq = is_same_group(se, pse))) {
6739 int se_depth = se->depth;
6740 int pse_depth = pse->depth;
6741
6742 if (se_depth <= pse_depth) {
6743 put_prev_entity(cfs_rq_of(pse), pse);
6744 pse = parent_entity(pse);
6745 }
6746 if (se_depth >= pse_depth) {
6747 set_next_entity(cfs_rq_of(se), se);
6748 se = parent_entity(se);
6749 }
6750 }
6751
6752 put_prev_entity(cfs_rq, pse);
6753 set_next_entity(cfs_rq, se);
6754 }
6755
6756 goto done;
6757 simple:
6758 #endif
6759 if (prev)
6760 put_prev_task(rq, prev);
6761
6762 do {
6763 se = pick_next_entity(cfs_rq, NULL);
6764 set_next_entity(cfs_rq, se);
6765 cfs_rq = group_cfs_rq(se);
6766 } while (cfs_rq);
6767
6768 p = task_of(se);
6769
6770 done: __maybe_unused;
6771 #ifdef CONFIG_SMP
6772 /*
6773 * Move the next running task to the front of
6774 * the list, so our cfs_tasks list becomes MRU
6775 * one.
6776 */
6777 list_move(&p->se.group_node, &rq->cfs_tasks);
6778 #endif
6779
6780 if (hrtick_enabled(rq))
6781 hrtick_start_fair(rq, p);
6782
6783 update_misfit_status(p, rq);
6784
6785 return p;
6786
6787 idle:
6788 if (!rf)
6789 return NULL;
6790
6791 new_tasks = newidle_balance(rq, rf);
6792
6793 /*
6794 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
6795 * possible for any higher priority task to appear. In that case we
6796 * must re-start the pick_next_entity() loop.
6797 */
6798 if (new_tasks < 0)
6799 return RETRY_TASK;
6800
6801 if (new_tasks > 0)
6802 goto again;
6803
6804 /*
6805 * rq is about to be idle, check if we need to update the
6806 * lost_idle_time of clock_pelt
6807 */
6808 update_idle_rq_clock_pelt(rq);
6809
6810 return NULL;
6811 }
6812
6813 static struct task_struct *__pick_next_task_fair(struct rq *rq)
6814 {
6815 return pick_next_task_fair(rq, NULL, NULL);
6816 }
6817
6818 /*
6819 * Account for a descheduled task:
6820 */
6821 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6822 {
6823 struct sched_entity *se = &prev->se;
6824 struct cfs_rq *cfs_rq;
6825
6826 for_each_sched_entity(se) {
6827 cfs_rq = cfs_rq_of(se);
6828 put_prev_entity(cfs_rq, se);
6829 }
6830 }
6831
6832 /*
6833 * sched_yield() is very simple
6834 *
6835 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6836 */
6837 static void yield_task_fair(struct rq *rq)
6838 {
6839 struct task_struct *curr = rq->curr;
6840 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6841 struct sched_entity *se = &curr->se;
6842
6843 /*
6844 * Are we the only task in the tree?
6845 */
6846 if (unlikely(rq->nr_running == 1))
6847 return;
6848
6849 clear_buddies(cfs_rq, se);
6850
6851 if (curr->policy != SCHED_BATCH) {
6852 update_rq_clock(rq);
6853 /*
6854 * Update run-time statistics of the 'current'.
6855 */
6856 update_curr(cfs_rq);
6857 /*
6858 * Tell update_rq_clock() that we've just updated,
6859 * so we don't do microscopic update in schedule()
6860 * and double the fastpath cost.
6861 */
6862 rq_clock_skip_update(rq);
6863 }
6864
6865 set_skip_buddy(se);
6866 }
6867
6868 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6869 {
6870 struct sched_entity *se = &p->se;
6871
6872 /* throttled hierarchies are not runnable */
6873 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6874 return false;
6875
6876 /* Tell the scheduler that we'd really like pse to run next. */
6877 set_next_buddy(se);
6878
6879 yield_task_fair(rq);
6880
6881 return true;
6882 }
6883
6884 #ifdef CONFIG_SMP
6885 /**************************************************
6886 * Fair scheduling class load-balancing methods.
6887 *
6888 * BASICS
6889 *
6890 * The purpose of load-balancing is to achieve the same basic fairness the
6891 * per-CPU scheduler provides, namely provide a proportional amount of compute
6892 * time to each task. This is expressed in the following equation:
6893 *
6894 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6895 *
6896 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6897 * W_i,0 is defined as:
6898 *
6899 * W_i,0 = \Sum_j w_i,j (2)
6900 *
6901 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6902 * is derived from the nice value as per sched_prio_to_weight[].
6903 *
6904 * The weight average is an exponential decay average of the instantaneous
6905 * weight:
6906 *
6907 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6908 *
6909 * C_i is the compute capacity of CPU i, typically it is the
6910 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6911 * can also include other factors [XXX].
6912 *
6913 * To achieve this balance we define a measure of imbalance which follows
6914 * directly from (1):
6915 *
6916 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6917 *
6918 * We them move tasks around to minimize the imbalance. In the continuous
6919 * function space it is obvious this converges, in the discrete case we get
6920 * a few fun cases generally called infeasible weight scenarios.
6921 *
6922 * [XXX expand on:
6923 * - infeasible weights;
6924 * - local vs global optima in the discrete case. ]
6925 *
6926 *
6927 * SCHED DOMAINS
6928 *
6929 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6930 * for all i,j solution, we create a tree of CPUs that follows the hardware
6931 * topology where each level pairs two lower groups (or better). This results
6932 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6933 * tree to only the first of the previous level and we decrease the frequency
6934 * of load-balance at each level inv. proportional to the number of CPUs in
6935 * the groups.
6936 *
6937 * This yields:
6938 *
6939 * log_2 n 1 n
6940 * \Sum { --- * --- * 2^i } = O(n) (5)
6941 * i = 0 2^i 2^i
6942 * `- size of each group
6943 * | | `- number of CPUs doing load-balance
6944 * | `- freq
6945 * `- sum over all levels
6946 *
6947 * Coupled with a limit on how many tasks we can migrate every balance pass,
6948 * this makes (5) the runtime complexity of the balancer.
6949 *
6950 * An important property here is that each CPU is still (indirectly) connected
6951 * to every other CPU in at most O(log n) steps:
6952 *
6953 * The adjacency matrix of the resulting graph is given by:
6954 *
6955 * log_2 n
6956 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6957 * k = 0
6958 *
6959 * And you'll find that:
6960 *
6961 * A^(log_2 n)_i,j != 0 for all i,j (7)
6962 *
6963 * Showing there's indeed a path between every CPU in at most O(log n) steps.
6964 * The task movement gives a factor of O(m), giving a convergence complexity
6965 * of:
6966 *
6967 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6968 *
6969 *
6970 * WORK CONSERVING
6971 *
6972 * In order to avoid CPUs going idle while there's still work to do, new idle
6973 * balancing is more aggressive and has the newly idle CPU iterate up the domain
6974 * tree itself instead of relying on other CPUs to bring it work.
6975 *
6976 * This adds some complexity to both (5) and (8) but it reduces the total idle
6977 * time.
6978 *
6979 * [XXX more?]
6980 *
6981 *
6982 * CGROUPS
6983 *
6984 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6985 *
6986 * s_k,i
6987 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6988 * S_k
6989 *
6990 * Where
6991 *
6992 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6993 *
6994 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
6995 *
6996 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6997 * property.
6998 *
6999 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7000 * rewrite all of this once again.]
7001 */
7002
7003 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7004
7005 enum fbq_type { regular, remote, all };
7006
7007 /*
7008 * 'group_type' describes the group of CPUs at the moment of load balancing.
7009 *
7010 * The enum is ordered by pulling priority, with the group with lowest priority
7011 * first so the group_type can simply be compared when selecting the busiest
7012 * group. See update_sd_pick_busiest().
7013 */
7014 enum group_type {
7015 /* The group has spare capacity that can be used to run more tasks. */
7016 group_has_spare = 0,
7017 /*
7018 * The group is fully used and the tasks don't compete for more CPU
7019 * cycles. Nevertheless, some tasks might wait before running.
7020 */
7021 group_fully_busy,
7022 /*
7023 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7024 * and must be migrated to a more powerful CPU.
7025 */
7026 group_misfit_task,
7027 /*
7028 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7029 * and the task should be migrated to it instead of running on the
7030 * current CPU.
7031 */
7032 group_asym_packing,
7033 /*
7034 * The tasks' affinity constraints previously prevented the scheduler
7035 * from balancing the load across the system.
7036 */
7037 group_imbalanced,
7038 /*
7039 * The CPU is overloaded and can't provide expected CPU cycles to all
7040 * tasks.
7041 */
7042 group_overloaded
7043 };
7044
7045 enum migration_type {
7046 migrate_load = 0,
7047 migrate_util,
7048 migrate_task,
7049 migrate_misfit
7050 };
7051
7052 #define LBF_ALL_PINNED 0x01
7053 #define LBF_NEED_BREAK 0x02
7054 #define LBF_DST_PINNED 0x04
7055 #define LBF_SOME_PINNED 0x08
7056 #define LBF_NOHZ_STATS 0x10
7057 #define LBF_NOHZ_AGAIN 0x20
7058
7059 struct lb_env {
7060 struct sched_domain *sd;
7061
7062 struct rq *src_rq;
7063 int src_cpu;
7064
7065 int dst_cpu;
7066 struct rq *dst_rq;
7067
7068 struct cpumask *dst_grpmask;
7069 int new_dst_cpu;
7070 enum cpu_idle_type idle;
7071 long imbalance;
7072 /* The set of CPUs under consideration for load-balancing */
7073 struct cpumask *cpus;
7074
7075 unsigned int flags;
7076
7077 unsigned int loop;
7078 unsigned int loop_break;
7079 unsigned int loop_max;
7080
7081 enum fbq_type fbq_type;
7082 enum migration_type migration_type;
7083 struct list_head tasks;
7084 };
7085
7086 /*
7087 * Is this task likely cache-hot:
7088 */
7089 static int task_hot(struct task_struct *p, struct lb_env *env)
7090 {
7091 s64 delta;
7092
7093 lockdep_assert_held(&env->src_rq->lock);
7094
7095 if (p->sched_class != &fair_sched_class)
7096 return 0;
7097
7098 if (unlikely(task_has_idle_policy(p)))
7099 return 0;
7100
7101 /*
7102 * Buddy candidates are cache hot:
7103 */
7104 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7105 (&p->se == cfs_rq_of(&p->se)->next ||
7106 &p->se == cfs_rq_of(&p->se)->last))
7107 return 1;
7108
7109 if (sysctl_sched_migration_cost == -1)
7110 return 1;
7111 if (sysctl_sched_migration_cost == 0)
7112 return 0;
7113
7114 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7115
7116 return delta < (s64)sysctl_sched_migration_cost;
7117 }
7118
7119 #ifdef CONFIG_NUMA_BALANCING
7120 /*
7121 * Returns 1, if task migration degrades locality
7122 * Returns 0, if task migration improves locality i.e migration preferred.
7123 * Returns -1, if task migration is not affected by locality.
7124 */
7125 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7126 {
7127 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7128 unsigned long src_weight, dst_weight;
7129 int src_nid, dst_nid, dist;
7130
7131 if (!static_branch_likely(&sched_numa_balancing))
7132 return -1;
7133
7134 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7135 return -1;
7136
7137 src_nid = cpu_to_node(env->src_cpu);
7138 dst_nid = cpu_to_node(env->dst_cpu);
7139
7140 if (src_nid == dst_nid)
7141 return -1;
7142
7143 /* Migrating away from the preferred node is always bad. */
7144 if (src_nid == p->numa_preferred_nid) {
7145 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7146 return 1;
7147 else
7148 return -1;
7149 }
7150
7151 /* Encourage migration to the preferred node. */
7152 if (dst_nid == p->numa_preferred_nid)
7153 return 0;
7154
7155 /* Leaving a core idle is often worse than degrading locality. */
7156 if (env->idle == CPU_IDLE)
7157 return -1;
7158
7159 dist = node_distance(src_nid, dst_nid);
7160 if (numa_group) {
7161 src_weight = group_weight(p, src_nid, dist);
7162 dst_weight = group_weight(p, dst_nid, dist);
7163 } else {
7164 src_weight = task_weight(p, src_nid, dist);
7165 dst_weight = task_weight(p, dst_nid, dist);
7166 }
7167
7168 return dst_weight < src_weight;
7169 }
7170
7171 #else
7172 static inline int migrate_degrades_locality(struct task_struct *p,
7173 struct lb_env *env)
7174 {
7175 return -1;
7176 }
7177 #endif
7178
7179 /*
7180 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7181 */
7182 static
7183 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7184 {
7185 int tsk_cache_hot;
7186
7187 lockdep_assert_held(&env->src_rq->lock);
7188
7189 /*
7190 * We do not migrate tasks that are:
7191 * 1) throttled_lb_pair, or
7192 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7193 * 3) running (obviously), or
7194 * 4) are cache-hot on their current CPU.
7195 */
7196 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7197 return 0;
7198
7199 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7200 int cpu;
7201
7202 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7203
7204 env->flags |= LBF_SOME_PINNED;
7205
7206 /*
7207 * Remember if this task can be migrated to any other CPU in
7208 * our sched_group. We may want to revisit it if we couldn't
7209 * meet load balance goals by pulling other tasks on src_cpu.
7210 *
7211 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7212 * already computed one in current iteration.
7213 */
7214 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7215 return 0;
7216
7217 /* Prevent to re-select dst_cpu via env's CPUs: */
7218 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7219 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7220 env->flags |= LBF_DST_PINNED;
7221 env->new_dst_cpu = cpu;
7222 break;
7223 }
7224 }
7225
7226 return 0;
7227 }
7228
7229 /* Record that we found atleast one task that could run on dst_cpu */
7230 env->flags &= ~LBF_ALL_PINNED;
7231
7232 if (task_running(env->src_rq, p)) {
7233 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7234 return 0;
7235 }
7236
7237 /*
7238 * Aggressive migration if:
7239 * 1) destination numa is preferred
7240 * 2) task is cache cold, or
7241 * 3) too many balance attempts have failed.
7242 */
7243 tsk_cache_hot = migrate_degrades_locality(p, env);
7244 if (tsk_cache_hot == -1)
7245 tsk_cache_hot = task_hot(p, env);
7246
7247 if (tsk_cache_hot <= 0 ||
7248 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7249 if (tsk_cache_hot == 1) {
7250 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7251 schedstat_inc(p->se.statistics.nr_forced_migrations);
7252 }
7253 return 1;
7254 }
7255
7256 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7257 return 0;
7258 }
7259
7260 /*
7261 * detach_task() -- detach the task for the migration specified in env
7262 */
7263 static void detach_task(struct task_struct *p, struct lb_env *env)
7264 {
7265 lockdep_assert_held(&env->src_rq->lock);
7266
7267 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7268 set_task_cpu(p, env->dst_cpu);
7269 }
7270
7271 /*
7272 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7273 * part of active balancing operations within "domain".
7274 *
7275 * Returns a task if successful and NULL otherwise.
7276 */
7277 static struct task_struct *detach_one_task(struct lb_env *env)
7278 {
7279 struct task_struct *p;
7280
7281 lockdep_assert_held(&env->src_rq->lock);
7282
7283 list_for_each_entry_reverse(p,
7284 &env->src_rq->cfs_tasks, se.group_node) {
7285 if (!can_migrate_task(p, env))
7286 continue;
7287
7288 detach_task(p, env);
7289
7290 /*
7291 * Right now, this is only the second place where
7292 * lb_gained[env->idle] is updated (other is detach_tasks)
7293 * so we can safely collect stats here rather than
7294 * inside detach_tasks().
7295 */
7296 schedstat_inc(env->sd->lb_gained[env->idle]);
7297 return p;
7298 }
7299 return NULL;
7300 }
7301
7302 static const unsigned int sched_nr_migrate_break = 32;
7303
7304 /*
7305 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7306 * busiest_rq, as part of a balancing operation within domain "sd".
7307 *
7308 * Returns number of detached tasks if successful and 0 otherwise.
7309 */
7310 static int detach_tasks(struct lb_env *env)
7311 {
7312 struct list_head *tasks = &env->src_rq->cfs_tasks;
7313 unsigned long util, load;
7314 struct task_struct *p;
7315 int detached = 0;
7316
7317 lockdep_assert_held(&env->src_rq->lock);
7318
7319 if (env->imbalance <= 0)
7320 return 0;
7321
7322 while (!list_empty(tasks)) {
7323 /*
7324 * We don't want to steal all, otherwise we may be treated likewise,
7325 * which could at worst lead to a livelock crash.
7326 */
7327 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7328 break;
7329
7330 p = list_last_entry(tasks, struct task_struct, se.group_node);
7331
7332 env->loop++;
7333 /* We've more or less seen every task there is, call it quits */
7334 if (env->loop > env->loop_max)
7335 break;
7336
7337 /* take a breather every nr_migrate tasks */
7338 if (env->loop > env->loop_break) {
7339 env->loop_break += sched_nr_migrate_break;
7340 env->flags |= LBF_NEED_BREAK;
7341 break;
7342 }
7343
7344 if (!can_migrate_task(p, env))
7345 goto next;
7346
7347 switch (env->migration_type) {
7348 case migrate_load:
7349 load = task_h_load(p);
7350
7351 if (sched_feat(LB_MIN) &&
7352 load < 16 && !env->sd->nr_balance_failed)
7353 goto next;
7354
7355 /*
7356 * Make sure that we don't migrate too much load.
7357 * Nevertheless, let relax the constraint if
7358 * scheduler fails to find a good waiting task to
7359 * migrate.
7360 */
7361 if (load/2 > env->imbalance &&
7362 env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
7363 goto next;
7364
7365 env->imbalance -= load;
7366 break;
7367
7368 case migrate_util:
7369 util = task_util_est(p);
7370
7371 if (util > env->imbalance)
7372 goto next;
7373
7374 env->imbalance -= util;
7375 break;
7376
7377 case migrate_task:
7378 env->imbalance--;
7379 break;
7380
7381 case migrate_misfit:
7382 /* This is not a misfit task */
7383 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7384 goto next;
7385
7386 env->imbalance = 0;
7387 break;
7388 }
7389
7390 detach_task(p, env);
7391 list_add(&p->se.group_node, &env->tasks);
7392
7393 detached++;
7394
7395 #ifdef CONFIG_PREEMPTION
7396 /*
7397 * NEWIDLE balancing is a source of latency, so preemptible
7398 * kernels will stop after the first task is detached to minimize
7399 * the critical section.
7400 */
7401 if (env->idle == CPU_NEWLY_IDLE)
7402 break;
7403 #endif
7404
7405 /*
7406 * We only want to steal up to the prescribed amount of
7407 * load/util/tasks.
7408 */
7409 if (env->imbalance <= 0)
7410 break;
7411
7412 continue;
7413 next:
7414 list_move(&p->se.group_node, tasks);
7415 }
7416
7417 /*
7418 * Right now, this is one of only two places we collect this stat
7419 * so we can safely collect detach_one_task() stats here rather
7420 * than inside detach_one_task().
7421 */
7422 schedstat_add(env->sd->lb_gained[env->idle], detached);
7423
7424 return detached;
7425 }
7426
7427 /*
7428 * attach_task() -- attach the task detached by detach_task() to its new rq.
7429 */
7430 static void attach_task(struct rq *rq, struct task_struct *p)
7431 {
7432 lockdep_assert_held(&rq->lock);
7433
7434 BUG_ON(task_rq(p) != rq);
7435 activate_task(rq, p, ENQUEUE_NOCLOCK);
7436 check_preempt_curr(rq, p, 0);
7437 }
7438
7439 /*
7440 * attach_one_task() -- attaches the task returned from detach_one_task() to
7441 * its new rq.
7442 */
7443 static void attach_one_task(struct rq *rq, struct task_struct *p)
7444 {
7445 struct rq_flags rf;
7446
7447 rq_lock(rq, &rf);
7448 update_rq_clock(rq);
7449 attach_task(rq, p);
7450 rq_unlock(rq, &rf);
7451 }
7452
7453 /*
7454 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7455 * new rq.
7456 */
7457 static void attach_tasks(struct lb_env *env)
7458 {
7459 struct list_head *tasks = &env->tasks;
7460 struct task_struct *p;
7461 struct rq_flags rf;
7462
7463 rq_lock(env->dst_rq, &rf);
7464 update_rq_clock(env->dst_rq);
7465
7466 while (!list_empty(tasks)) {
7467 p = list_first_entry(tasks, struct task_struct, se.group_node);
7468 list_del_init(&p->se.group_node);
7469
7470 attach_task(env->dst_rq, p);
7471 }
7472
7473 rq_unlock(env->dst_rq, &rf);
7474 }
7475
7476 #ifdef CONFIG_NO_HZ_COMMON
7477 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7478 {
7479 if (cfs_rq->avg.load_avg)
7480 return true;
7481
7482 if (cfs_rq->avg.util_avg)
7483 return true;
7484
7485 return false;
7486 }
7487
7488 static inline bool others_have_blocked(struct rq *rq)
7489 {
7490 if (READ_ONCE(rq->avg_rt.util_avg))
7491 return true;
7492
7493 if (READ_ONCE(rq->avg_dl.util_avg))
7494 return true;
7495
7496 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7497 if (READ_ONCE(rq->avg_irq.util_avg))
7498 return true;
7499 #endif
7500
7501 return false;
7502 }
7503
7504 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7505 {
7506 rq->last_blocked_load_update_tick = jiffies;
7507
7508 if (!has_blocked)
7509 rq->has_blocked_load = 0;
7510 }
7511 #else
7512 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7513 static inline bool others_have_blocked(struct rq *rq) { return false; }
7514 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7515 #endif
7516
7517 static bool __update_blocked_others(struct rq *rq, bool *done)
7518 {
7519 const struct sched_class *curr_class;
7520 u64 now = rq_clock_pelt(rq);
7521 bool decayed;
7522
7523 /*
7524 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7525 * DL and IRQ signals have been updated before updating CFS.
7526 */
7527 curr_class = rq->curr->sched_class;
7528
7529 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7530 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7531 update_irq_load_avg(rq, 0);
7532
7533 if (others_have_blocked(rq))
7534 *done = false;
7535
7536 return decayed;
7537 }
7538
7539 #ifdef CONFIG_FAIR_GROUP_SCHED
7540
7541 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7542 {
7543 if (cfs_rq->load.weight)
7544 return false;
7545
7546 if (cfs_rq->avg.load_sum)
7547 return false;
7548
7549 if (cfs_rq->avg.util_sum)
7550 return false;
7551
7552 if (cfs_rq->avg.runnable_load_sum)
7553 return false;
7554
7555 return true;
7556 }
7557
7558 static bool __update_blocked_fair(struct rq *rq, bool *done)
7559 {
7560 struct cfs_rq *cfs_rq, *pos;
7561 bool decayed = false;
7562 int cpu = cpu_of(rq);
7563
7564 /*
7565 * Iterates the task_group tree in a bottom up fashion, see
7566 * list_add_leaf_cfs_rq() for details.
7567 */
7568 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7569 struct sched_entity *se;
7570
7571 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7572 update_tg_load_avg(cfs_rq, 0);
7573
7574 if (cfs_rq == &rq->cfs)
7575 decayed = true;
7576 }
7577
7578 /* Propagate pending load changes to the parent, if any: */
7579 se = cfs_rq->tg->se[cpu];
7580 if (se && !skip_blocked_update(se))
7581 update_load_avg(cfs_rq_of(se), se, 0);
7582
7583 /*
7584 * There can be a lot of idle CPU cgroups. Don't let fully
7585 * decayed cfs_rqs linger on the list.
7586 */
7587 if (cfs_rq_is_decayed(cfs_rq))
7588 list_del_leaf_cfs_rq(cfs_rq);
7589
7590 /* Don't need periodic decay once load/util_avg are null */
7591 if (cfs_rq_has_blocked(cfs_rq))
7592 *done = false;
7593 }
7594
7595 return decayed;
7596 }
7597
7598 /*
7599 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7600 * This needs to be done in a top-down fashion because the load of a child
7601 * group is a fraction of its parents load.
7602 */
7603 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7604 {
7605 struct rq *rq = rq_of(cfs_rq);
7606 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7607 unsigned long now = jiffies;
7608 unsigned long load;
7609
7610 if (cfs_rq->last_h_load_update == now)
7611 return;
7612
7613 WRITE_ONCE(cfs_rq->h_load_next, NULL);
7614 for_each_sched_entity(se) {
7615 cfs_rq = cfs_rq_of(se);
7616 WRITE_ONCE(cfs_rq->h_load_next, se);
7617 if (cfs_rq->last_h_load_update == now)
7618 break;
7619 }
7620
7621 if (!se) {
7622 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7623 cfs_rq->last_h_load_update = now;
7624 }
7625
7626 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7627 load = cfs_rq->h_load;
7628 load = div64_ul(load * se->avg.load_avg,
7629 cfs_rq_load_avg(cfs_rq) + 1);
7630 cfs_rq = group_cfs_rq(se);
7631 cfs_rq->h_load = load;
7632 cfs_rq->last_h_load_update = now;
7633 }
7634 }
7635
7636 static unsigned long task_h_load(struct task_struct *p)
7637 {
7638 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7639
7640 update_cfs_rq_h_load(cfs_rq);
7641 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7642 cfs_rq_load_avg(cfs_rq) + 1);
7643 }
7644 #else
7645 static bool __update_blocked_fair(struct rq *rq, bool *done)
7646 {
7647 struct cfs_rq *cfs_rq = &rq->cfs;
7648 bool decayed;
7649
7650 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7651 if (cfs_rq_has_blocked(cfs_rq))
7652 *done = false;
7653
7654 return decayed;
7655 }
7656
7657 static unsigned long task_h_load(struct task_struct *p)
7658 {
7659 return p->se.avg.load_avg;
7660 }
7661 #endif
7662
7663 static void update_blocked_averages(int cpu)
7664 {
7665 bool decayed = false, done = true;
7666 struct rq *rq = cpu_rq(cpu);
7667 struct rq_flags rf;
7668
7669 rq_lock_irqsave(rq, &rf);
7670 update_rq_clock(rq);
7671
7672 decayed |= __update_blocked_others(rq, &done);
7673 decayed |= __update_blocked_fair(rq, &done);
7674
7675 update_blocked_load_status(rq, !done);
7676 if (decayed)
7677 cpufreq_update_util(rq, 0);
7678 rq_unlock_irqrestore(rq, &rf);
7679 }
7680
7681 /********** Helpers for find_busiest_group ************************/
7682
7683 /*
7684 * sg_lb_stats - stats of a sched_group required for load_balancing
7685 */
7686 struct sg_lb_stats {
7687 unsigned long avg_load; /*Avg load across the CPUs of the group */
7688 unsigned long group_load; /* Total load over the CPUs of the group */
7689 unsigned long group_capacity;
7690 unsigned long group_util; /* Total utilization of the group */
7691 unsigned int sum_nr_running; /* Nr of tasks running in the group */
7692 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
7693 unsigned int idle_cpus;
7694 unsigned int group_weight;
7695 enum group_type group_type;
7696 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
7697 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7698 #ifdef CONFIG_NUMA_BALANCING
7699 unsigned int nr_numa_running;
7700 unsigned int nr_preferred_running;
7701 #endif
7702 };
7703
7704 /*
7705 * sd_lb_stats - Structure to store the statistics of a sched_domain
7706 * during load balancing.
7707 */
7708 struct sd_lb_stats {
7709 struct sched_group *busiest; /* Busiest group in this sd */
7710 struct sched_group *local; /* Local group in this sd */
7711 unsigned long total_load; /* Total load of all groups in sd */
7712 unsigned long total_capacity; /* Total capacity of all groups in sd */
7713 unsigned long avg_load; /* Average load across all groups in sd */
7714 unsigned int prefer_sibling; /* tasks should go to sibling first */
7715
7716 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7717 struct sg_lb_stats local_stat; /* Statistics of the local group */
7718 };
7719
7720 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7721 {
7722 /*
7723 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7724 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7725 * We must however set busiest_stat::group_type and
7726 * busiest_stat::idle_cpus to the worst busiest group because
7727 * update_sd_pick_busiest() reads these before assignment.
7728 */
7729 *sds = (struct sd_lb_stats){
7730 .busiest = NULL,
7731 .local = NULL,
7732 .total_load = 0UL,
7733 .total_capacity = 0UL,
7734 .busiest_stat = {
7735 .idle_cpus = UINT_MAX,
7736 .group_type = group_has_spare,
7737 },
7738 };
7739 }
7740
7741 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7742 {
7743 struct rq *rq = cpu_rq(cpu);
7744 unsigned long max = arch_scale_cpu_capacity(cpu);
7745 unsigned long used, free;
7746 unsigned long irq;
7747
7748 irq = cpu_util_irq(rq);
7749
7750 if (unlikely(irq >= max))
7751 return 1;
7752
7753 used = READ_ONCE(rq->avg_rt.util_avg);
7754 used += READ_ONCE(rq->avg_dl.util_avg);
7755
7756 if (unlikely(used >= max))
7757 return 1;
7758
7759 free = max - used;
7760
7761 return scale_irq_capacity(free, irq, max);
7762 }
7763
7764 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7765 {
7766 unsigned long capacity = scale_rt_capacity(sd, cpu);
7767 struct sched_group *sdg = sd->groups;
7768
7769 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
7770
7771 if (!capacity)
7772 capacity = 1;
7773
7774 cpu_rq(cpu)->cpu_capacity = capacity;
7775 sdg->sgc->capacity = capacity;
7776 sdg->sgc->min_capacity = capacity;
7777 sdg->sgc->max_capacity = capacity;
7778 }
7779
7780 void update_group_capacity(struct sched_domain *sd, int cpu)
7781 {
7782 struct sched_domain *child = sd->child;
7783 struct sched_group *group, *sdg = sd->groups;
7784 unsigned long capacity, min_capacity, max_capacity;
7785 unsigned long interval;
7786
7787 interval = msecs_to_jiffies(sd->balance_interval);
7788 interval = clamp(interval, 1UL, max_load_balance_interval);
7789 sdg->sgc->next_update = jiffies + interval;
7790
7791 if (!child) {
7792 update_cpu_capacity(sd, cpu);
7793 return;
7794 }
7795
7796 capacity = 0;
7797 min_capacity = ULONG_MAX;
7798 max_capacity = 0;
7799
7800 if (child->flags & SD_OVERLAP) {
7801 /*
7802 * SD_OVERLAP domains cannot assume that child groups
7803 * span the current group.
7804 */
7805
7806 for_each_cpu(cpu, sched_group_span(sdg)) {
7807 unsigned long cpu_cap = capacity_of(cpu);
7808
7809 capacity += cpu_cap;
7810 min_capacity = min(cpu_cap, min_capacity);
7811 max_capacity = max(cpu_cap, max_capacity);
7812 }
7813 } else {
7814 /*
7815 * !SD_OVERLAP domains can assume that child groups
7816 * span the current group.
7817 */
7818
7819 group = child->groups;
7820 do {
7821 struct sched_group_capacity *sgc = group->sgc;
7822
7823 capacity += sgc->capacity;
7824 min_capacity = min(sgc->min_capacity, min_capacity);
7825 max_capacity = max(sgc->max_capacity, max_capacity);
7826 group = group->next;
7827 } while (group != child->groups);
7828 }
7829
7830 sdg->sgc->capacity = capacity;
7831 sdg->sgc->min_capacity = min_capacity;
7832 sdg->sgc->max_capacity = max_capacity;
7833 }
7834
7835 /*
7836 * Check whether the capacity of the rq has been noticeably reduced by side
7837 * activity. The imbalance_pct is used for the threshold.
7838 * Return true is the capacity is reduced
7839 */
7840 static inline int
7841 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7842 {
7843 return ((rq->cpu_capacity * sd->imbalance_pct) <
7844 (rq->cpu_capacity_orig * 100));
7845 }
7846
7847 /*
7848 * Check whether a rq has a misfit task and if it looks like we can actually
7849 * help that task: we can migrate the task to a CPU of higher capacity, or
7850 * the task's current CPU is heavily pressured.
7851 */
7852 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7853 {
7854 return rq->misfit_task_load &&
7855 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7856 check_cpu_capacity(rq, sd));
7857 }
7858
7859 /*
7860 * Group imbalance indicates (and tries to solve) the problem where balancing
7861 * groups is inadequate due to ->cpus_ptr constraints.
7862 *
7863 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7864 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7865 * Something like:
7866 *
7867 * { 0 1 2 3 } { 4 5 6 7 }
7868 * * * * *
7869 *
7870 * If we were to balance group-wise we'd place two tasks in the first group and
7871 * two tasks in the second group. Clearly this is undesired as it will overload
7872 * cpu 3 and leave one of the CPUs in the second group unused.
7873 *
7874 * The current solution to this issue is detecting the skew in the first group
7875 * by noticing the lower domain failed to reach balance and had difficulty
7876 * moving tasks due to affinity constraints.
7877 *
7878 * When this is so detected; this group becomes a candidate for busiest; see
7879 * update_sd_pick_busiest(). And calculate_imbalance() and
7880 * find_busiest_group() avoid some of the usual balance conditions to allow it
7881 * to create an effective group imbalance.
7882 *
7883 * This is a somewhat tricky proposition since the next run might not find the
7884 * group imbalance and decide the groups need to be balanced again. A most
7885 * subtle and fragile situation.
7886 */
7887
7888 static inline int sg_imbalanced(struct sched_group *group)
7889 {
7890 return group->sgc->imbalance;
7891 }
7892
7893 /*
7894 * group_has_capacity returns true if the group has spare capacity that could
7895 * be used by some tasks.
7896 * We consider that a group has spare capacity if the * number of task is
7897 * smaller than the number of CPUs or if the utilization is lower than the
7898 * available capacity for CFS tasks.
7899 * For the latter, we use a threshold to stabilize the state, to take into
7900 * account the variance of the tasks' load and to return true if the available
7901 * capacity in meaningful for the load balancer.
7902 * As an example, an available capacity of 1% can appear but it doesn't make
7903 * any benefit for the load balance.
7904 */
7905 static inline bool
7906 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
7907 {
7908 if (sgs->sum_nr_running < sgs->group_weight)
7909 return true;
7910
7911 if ((sgs->group_capacity * 100) >
7912 (sgs->group_util * imbalance_pct))
7913 return true;
7914
7915 return false;
7916 }
7917
7918 /*
7919 * group_is_overloaded returns true if the group has more tasks than it can
7920 * handle.
7921 * group_is_overloaded is not equals to !group_has_capacity because a group
7922 * with the exact right number of tasks, has no more spare capacity but is not
7923 * overloaded so both group_has_capacity and group_is_overloaded return
7924 * false.
7925 */
7926 static inline bool
7927 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
7928 {
7929 if (sgs->sum_nr_running <= sgs->group_weight)
7930 return false;
7931
7932 if ((sgs->group_capacity * 100) <
7933 (sgs->group_util * imbalance_pct))
7934 return true;
7935
7936 return false;
7937 }
7938
7939 /*
7940 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
7941 * per-CPU capacity than sched_group ref.
7942 */
7943 static inline bool
7944 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7945 {
7946 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
7947 }
7948
7949 /*
7950 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7951 * per-CPU capacity_orig than sched_group ref.
7952 */
7953 static inline bool
7954 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7955 {
7956 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
7957 }
7958
7959 static inline enum
7960 group_type group_classify(unsigned int imbalance_pct,
7961 struct sched_group *group,
7962 struct sg_lb_stats *sgs)
7963 {
7964 if (group_is_overloaded(imbalance_pct, sgs))
7965 return group_overloaded;
7966
7967 if (sg_imbalanced(group))
7968 return group_imbalanced;
7969
7970 if (sgs->group_asym_packing)
7971 return group_asym_packing;
7972
7973 if (sgs->group_misfit_task_load)
7974 return group_misfit_task;
7975
7976 if (!group_has_capacity(imbalance_pct, sgs))
7977 return group_fully_busy;
7978
7979 return group_has_spare;
7980 }
7981
7982 static bool update_nohz_stats(struct rq *rq, bool force)
7983 {
7984 #ifdef CONFIG_NO_HZ_COMMON
7985 unsigned int cpu = rq->cpu;
7986
7987 if (!rq->has_blocked_load)
7988 return false;
7989
7990 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7991 return false;
7992
7993 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7994 return true;
7995
7996 update_blocked_averages(cpu);
7997
7998 return rq->has_blocked_load;
7999 #else
8000 return false;
8001 #endif
8002 }
8003
8004 /**
8005 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8006 * @env: The load balancing environment.
8007 * @group: sched_group whose statistics are to be updated.
8008 * @sgs: variable to hold the statistics for this group.
8009 * @sg_status: Holds flag indicating the status of the sched_group
8010 */
8011 static inline void update_sg_lb_stats(struct lb_env *env,
8012 struct sched_group *group,
8013 struct sg_lb_stats *sgs,
8014 int *sg_status)
8015 {
8016 int i, nr_running, local_group;
8017
8018 memset(sgs, 0, sizeof(*sgs));
8019
8020 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8021
8022 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8023 struct rq *rq = cpu_rq(i);
8024
8025 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8026 env->flags |= LBF_NOHZ_AGAIN;
8027
8028 sgs->group_load += cpu_load(rq);
8029 sgs->group_util += cpu_util(i);
8030 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8031
8032 nr_running = rq->nr_running;
8033 sgs->sum_nr_running += nr_running;
8034
8035 if (nr_running > 1)
8036 *sg_status |= SG_OVERLOAD;
8037
8038 if (cpu_overutilized(i))
8039 *sg_status |= SG_OVERUTILIZED;
8040
8041 #ifdef CONFIG_NUMA_BALANCING
8042 sgs->nr_numa_running += rq->nr_numa_running;
8043 sgs->nr_preferred_running += rq->nr_preferred_running;
8044 #endif
8045 /*
8046 * No need to call idle_cpu() if nr_running is not 0
8047 */
8048 if (!nr_running && idle_cpu(i)) {
8049 sgs->idle_cpus++;
8050 /* Idle cpu can't have misfit task */
8051 continue;
8052 }
8053
8054 if (local_group)
8055 continue;
8056
8057 /* Check for a misfit task on the cpu */
8058 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8059 sgs->group_misfit_task_load < rq->misfit_task_load) {
8060 sgs->group_misfit_task_load = rq->misfit_task_load;
8061 *sg_status |= SG_OVERLOAD;
8062 }
8063 }
8064
8065 /* Check if dst CPU is idle and preferred to this group */
8066 if (env->sd->flags & SD_ASYM_PACKING &&
8067 env->idle != CPU_NOT_IDLE &&
8068 sgs->sum_h_nr_running &&
8069 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8070 sgs->group_asym_packing = 1;
8071 }
8072
8073 sgs->group_capacity = group->sgc->capacity;
8074
8075 sgs->group_weight = group->group_weight;
8076
8077 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8078
8079 /* Computing avg_load makes sense only when group is overloaded */
8080 if (sgs->group_type == group_overloaded)
8081 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8082 sgs->group_capacity;
8083 }
8084
8085 /**
8086 * update_sd_pick_busiest - return 1 on busiest group
8087 * @env: The load balancing environment.
8088 * @sds: sched_domain statistics
8089 * @sg: sched_group candidate to be checked for being the busiest
8090 * @sgs: sched_group statistics
8091 *
8092 * Determine if @sg is a busier group than the previously selected
8093 * busiest group.
8094 *
8095 * Return: %true if @sg is a busier group than the previously selected
8096 * busiest group. %false otherwise.
8097 */
8098 static bool update_sd_pick_busiest(struct lb_env *env,
8099 struct sd_lb_stats *sds,
8100 struct sched_group *sg,
8101 struct sg_lb_stats *sgs)
8102 {
8103 struct sg_lb_stats *busiest = &sds->busiest_stat;
8104
8105 /* Make sure that there is at least one task to pull */
8106 if (!sgs->sum_h_nr_running)
8107 return false;
8108
8109 /*
8110 * Don't try to pull misfit tasks we can't help.
8111 * We can use max_capacity here as reduction in capacity on some
8112 * CPUs in the group should either be possible to resolve
8113 * internally or be covered by avg_load imbalance (eventually).
8114 */
8115 if (sgs->group_type == group_misfit_task &&
8116 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8117 sds->local_stat.group_type != group_has_spare))
8118 return false;
8119
8120 if (sgs->group_type > busiest->group_type)
8121 return true;
8122
8123 if (sgs->group_type < busiest->group_type)
8124 return false;
8125
8126 /*
8127 * The candidate and the current busiest group are the same type of
8128 * group. Let check which one is the busiest according to the type.
8129 */
8130
8131 switch (sgs->group_type) {
8132 case group_overloaded:
8133 /* Select the overloaded group with highest avg_load. */
8134 if (sgs->avg_load <= busiest->avg_load)
8135 return false;
8136 break;
8137
8138 case group_imbalanced:
8139 /*
8140 * Select the 1st imbalanced group as we don't have any way to
8141 * choose one more than another.
8142 */
8143 return false;
8144
8145 case group_asym_packing:
8146 /* Prefer to move from lowest priority CPU's work */
8147 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8148 return false;
8149 break;
8150
8151 case group_misfit_task:
8152 /*
8153 * If we have more than one misfit sg go with the biggest
8154 * misfit.
8155 */
8156 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8157 return false;
8158 break;
8159
8160 case group_fully_busy:
8161 /*
8162 * Select the fully busy group with highest avg_load. In
8163 * theory, there is no need to pull task from such kind of
8164 * group because tasks have all compute capacity that they need
8165 * but we can still improve the overall throughput by reducing
8166 * contention when accessing shared HW resources.
8167 *
8168 * XXX for now avg_load is not computed and always 0 so we
8169 * select the 1st one.
8170 */
8171 if (sgs->avg_load <= busiest->avg_load)
8172 return false;
8173 break;
8174
8175 case group_has_spare:
8176 /*
8177 * Select not overloaded group with lowest number of idle cpus
8178 * and highest number of running tasks. We could also compare
8179 * the spare capacity which is more stable but it can end up
8180 * that the group has less spare capacity but finally more idle
8181 * CPUs which means less opportunity to pull tasks.
8182 */
8183 if (sgs->idle_cpus > busiest->idle_cpus)
8184 return false;
8185 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8186 (sgs->sum_nr_running <= busiest->sum_nr_running))
8187 return false;
8188
8189 break;
8190 }
8191
8192 /*
8193 * Candidate sg has no more than one task per CPU and has higher
8194 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8195 * throughput. Maximize throughput, power/energy consequences are not
8196 * considered.
8197 */
8198 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8199 (sgs->group_type <= group_fully_busy) &&
8200 (group_smaller_min_cpu_capacity(sds->local, sg)))
8201 return false;
8202
8203 return true;
8204 }
8205
8206 #ifdef CONFIG_NUMA_BALANCING
8207 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8208 {
8209 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8210 return regular;
8211 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8212 return remote;
8213 return all;
8214 }
8215
8216 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8217 {
8218 if (rq->nr_running > rq->nr_numa_running)
8219 return regular;
8220 if (rq->nr_running > rq->nr_preferred_running)
8221 return remote;
8222 return all;
8223 }
8224 #else
8225 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8226 {
8227 return all;
8228 }
8229
8230 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8231 {
8232 return regular;
8233 }
8234 #endif /* CONFIG_NUMA_BALANCING */
8235
8236
8237 struct sg_lb_stats;
8238
8239 /*
8240 * task_running_on_cpu - return 1 if @p is running on @cpu.
8241 */
8242
8243 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8244 {
8245 /* Task has no contribution or is new */
8246 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8247 return 0;
8248
8249 if (task_on_rq_queued(p))
8250 return 1;
8251
8252 return 0;
8253 }
8254
8255 /**
8256 * idle_cpu_without - would a given CPU be idle without p ?
8257 * @cpu: the processor on which idleness is tested.
8258 * @p: task which should be ignored.
8259 *
8260 * Return: 1 if the CPU would be idle. 0 otherwise.
8261 */
8262 static int idle_cpu_without(int cpu, struct task_struct *p)
8263 {
8264 struct rq *rq = cpu_rq(cpu);
8265
8266 if (rq->curr != rq->idle && rq->curr != p)
8267 return 0;
8268
8269 /*
8270 * rq->nr_running can't be used but an updated version without the
8271 * impact of p on cpu must be used instead. The updated nr_running
8272 * be computed and tested before calling idle_cpu_without().
8273 */
8274
8275 #ifdef CONFIG_SMP
8276 if (!llist_empty(&rq->wake_list))
8277 return 0;
8278 #endif
8279
8280 return 1;
8281 }
8282
8283 /*
8284 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8285 * @sd: The sched_domain level to look for idlest group.
8286 * @group: sched_group whose statistics are to be updated.
8287 * @sgs: variable to hold the statistics for this group.
8288 * @p: The task for which we look for the idlest group/CPU.
8289 */
8290 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8291 struct sched_group *group,
8292 struct sg_lb_stats *sgs,
8293 struct task_struct *p)
8294 {
8295 int i, nr_running;
8296
8297 memset(sgs, 0, sizeof(*sgs));
8298
8299 for_each_cpu(i, sched_group_span(group)) {
8300 struct rq *rq = cpu_rq(i);
8301 unsigned int local;
8302
8303 sgs->group_load += cpu_load_without(rq, p);
8304 sgs->group_util += cpu_util_without(i, p);
8305 local = task_running_on_cpu(i, p);
8306 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8307
8308 nr_running = rq->nr_running - local;
8309 sgs->sum_nr_running += nr_running;
8310
8311 /*
8312 * No need to call idle_cpu_without() if nr_running is not 0
8313 */
8314 if (!nr_running && idle_cpu_without(i, p))
8315 sgs->idle_cpus++;
8316
8317 }
8318
8319 /* Check if task fits in the group */
8320 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8321 !task_fits_capacity(p, group->sgc->max_capacity)) {
8322 sgs->group_misfit_task_load = 1;
8323 }
8324
8325 sgs->group_capacity = group->sgc->capacity;
8326
8327 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8328
8329 /*
8330 * Computing avg_load makes sense only when group is fully busy or
8331 * overloaded
8332 */
8333 if (sgs->group_type < group_fully_busy)
8334 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8335 sgs->group_capacity;
8336 }
8337
8338 static bool update_pick_idlest(struct sched_group *idlest,
8339 struct sg_lb_stats *idlest_sgs,
8340 struct sched_group *group,
8341 struct sg_lb_stats *sgs)
8342 {
8343 if (sgs->group_type < idlest_sgs->group_type)
8344 return true;
8345
8346 if (sgs->group_type > idlest_sgs->group_type)
8347 return false;
8348
8349 /*
8350 * The candidate and the current idlest group are the same type of
8351 * group. Let check which one is the idlest according to the type.
8352 */
8353
8354 switch (sgs->group_type) {
8355 case group_overloaded:
8356 case group_fully_busy:
8357 /* Select the group with lowest avg_load. */
8358 if (idlest_sgs->avg_load <= sgs->avg_load)
8359 return false;
8360 break;
8361
8362 case group_imbalanced:
8363 case group_asym_packing:
8364 /* Those types are not used in the slow wakeup path */
8365 return false;
8366
8367 case group_misfit_task:
8368 /* Select group with the highest max capacity */
8369 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8370 return false;
8371 break;
8372
8373 case group_has_spare:
8374 /* Select group with most idle CPUs */
8375 if (idlest_sgs->idle_cpus >= sgs->idle_cpus)
8376 return false;
8377 break;
8378 }
8379
8380 return true;
8381 }
8382
8383 /*
8384 * find_idlest_group() finds and returns the least busy CPU group within the
8385 * domain.
8386 *
8387 * Assumes p is allowed on at least one CPU in sd.
8388 */
8389 static struct sched_group *
8390 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
8391 int this_cpu, int sd_flag)
8392 {
8393 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8394 struct sg_lb_stats local_sgs, tmp_sgs;
8395 struct sg_lb_stats *sgs;
8396 unsigned long imbalance;
8397 struct sg_lb_stats idlest_sgs = {
8398 .avg_load = UINT_MAX,
8399 .group_type = group_overloaded,
8400 };
8401
8402 imbalance = scale_load_down(NICE_0_LOAD) *
8403 (sd->imbalance_pct-100) / 100;
8404
8405 do {
8406 int local_group;
8407
8408 /* Skip over this group if it has no CPUs allowed */
8409 if (!cpumask_intersects(sched_group_span(group),
8410 p->cpus_ptr))
8411 continue;
8412
8413 local_group = cpumask_test_cpu(this_cpu,
8414 sched_group_span(group));
8415
8416 if (local_group) {
8417 sgs = &local_sgs;
8418 local = group;
8419 } else {
8420 sgs = &tmp_sgs;
8421 }
8422
8423 update_sg_wakeup_stats(sd, group, sgs, p);
8424
8425 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8426 idlest = group;
8427 idlest_sgs = *sgs;
8428 }
8429
8430 } while (group = group->next, group != sd->groups);
8431
8432
8433 /* There is no idlest group to push tasks to */
8434 if (!idlest)
8435 return NULL;
8436
8437 /* The local group has been skipped because of CPU affinity */
8438 if (!local)
8439 return idlest;
8440
8441 /*
8442 * If the local group is idler than the selected idlest group
8443 * don't try and push the task.
8444 */
8445 if (local_sgs.group_type < idlest_sgs.group_type)
8446 return NULL;
8447
8448 /*
8449 * If the local group is busier than the selected idlest group
8450 * try and push the task.
8451 */
8452 if (local_sgs.group_type > idlest_sgs.group_type)
8453 return idlest;
8454
8455 switch (local_sgs.group_type) {
8456 case group_overloaded:
8457 case group_fully_busy:
8458 /*
8459 * When comparing groups across NUMA domains, it's possible for
8460 * the local domain to be very lightly loaded relative to the
8461 * remote domains but "imbalance" skews the comparison making
8462 * remote CPUs look much more favourable. When considering
8463 * cross-domain, add imbalance to the load on the remote node
8464 * and consider staying local.
8465 */
8466
8467 if ((sd->flags & SD_NUMA) &&
8468 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8469 return NULL;
8470
8471 /*
8472 * If the local group is less loaded than the selected
8473 * idlest group don't try and push any tasks.
8474 */
8475 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8476 return NULL;
8477
8478 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8479 return NULL;
8480 break;
8481
8482 case group_imbalanced:
8483 case group_asym_packing:
8484 /* Those type are not used in the slow wakeup path */
8485 return NULL;
8486
8487 case group_misfit_task:
8488 /* Select group with the highest max capacity */
8489 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8490 return NULL;
8491 break;
8492
8493 case group_has_spare:
8494 if (sd->flags & SD_NUMA) {
8495 #ifdef CONFIG_NUMA_BALANCING
8496 int idlest_cpu;
8497 /*
8498 * If there is spare capacity at NUMA, try to select
8499 * the preferred node
8500 */
8501 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8502 return NULL;
8503
8504 idlest_cpu = cpumask_first(sched_group_span(idlest));
8505 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8506 return idlest;
8507 #endif
8508 /*
8509 * Otherwise, keep the task on this node to stay close
8510 * its wakeup source and improve locality. If there is
8511 * a real need of migration, periodic load balance will
8512 * take care of it.
8513 */
8514 if (local_sgs.idle_cpus)
8515 return NULL;
8516 }
8517
8518 /*
8519 * Select group with highest number of idle CPUs. We could also
8520 * compare the utilization which is more stable but it can end
8521 * up that the group has less spare capacity but finally more
8522 * idle CPUs which means more opportunity to run task.
8523 */
8524 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8525 return NULL;
8526 break;
8527 }
8528
8529 return idlest;
8530 }
8531
8532 /**
8533 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8534 * @env: The load balancing environment.
8535 * @sds: variable to hold the statistics for this sched_domain.
8536 */
8537
8538 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8539 {
8540 struct sched_domain *child = env->sd->child;
8541 struct sched_group *sg = env->sd->groups;
8542 struct sg_lb_stats *local = &sds->local_stat;
8543 struct sg_lb_stats tmp_sgs;
8544 int sg_status = 0;
8545
8546 #ifdef CONFIG_NO_HZ_COMMON
8547 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8548 env->flags |= LBF_NOHZ_STATS;
8549 #endif
8550
8551 do {
8552 struct sg_lb_stats *sgs = &tmp_sgs;
8553 int local_group;
8554
8555 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8556 if (local_group) {
8557 sds->local = sg;
8558 sgs = local;
8559
8560 if (env->idle != CPU_NEWLY_IDLE ||
8561 time_after_eq(jiffies, sg->sgc->next_update))
8562 update_group_capacity(env->sd, env->dst_cpu);
8563 }
8564
8565 update_sg_lb_stats(env, sg, sgs, &sg_status);
8566
8567 if (local_group)
8568 goto next_group;
8569
8570
8571 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8572 sds->busiest = sg;
8573 sds->busiest_stat = *sgs;
8574 }
8575
8576 next_group:
8577 /* Now, start updating sd_lb_stats */
8578 sds->total_load += sgs->group_load;
8579 sds->total_capacity += sgs->group_capacity;
8580
8581 sg = sg->next;
8582 } while (sg != env->sd->groups);
8583
8584 /* Tag domain that child domain prefers tasks go to siblings first */
8585 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8586
8587 #ifdef CONFIG_NO_HZ_COMMON
8588 if ((env->flags & LBF_NOHZ_AGAIN) &&
8589 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8590
8591 WRITE_ONCE(nohz.next_blocked,
8592 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8593 }
8594 #endif
8595
8596 if (env->sd->flags & SD_NUMA)
8597 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8598
8599 if (!env->sd->parent) {
8600 struct root_domain *rd = env->dst_rq->rd;
8601
8602 /* update overload indicator if we are at root domain */
8603 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8604
8605 /* Update over-utilization (tipping point, U >= 0) indicator */
8606 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8607 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8608 } else if (sg_status & SG_OVERUTILIZED) {
8609 struct root_domain *rd = env->dst_rq->rd;
8610
8611 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8612 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8613 }
8614 }
8615
8616 /**
8617 * calculate_imbalance - Calculate the amount of imbalance present within the
8618 * groups of a given sched_domain during load balance.
8619 * @env: load balance environment
8620 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8621 */
8622 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8623 {
8624 struct sg_lb_stats *local, *busiest;
8625
8626 local = &sds->local_stat;
8627 busiest = &sds->busiest_stat;
8628
8629 if (busiest->group_type == group_misfit_task) {
8630 /* Set imbalance to allow misfit tasks to be balanced. */
8631 env->migration_type = migrate_misfit;
8632 env->imbalance = 1;
8633 return;
8634 }
8635
8636 if (busiest->group_type == group_asym_packing) {
8637 /*
8638 * In case of asym capacity, we will try to migrate all load to
8639 * the preferred CPU.
8640 */
8641 env->migration_type = migrate_task;
8642 env->imbalance = busiest->sum_h_nr_running;
8643 return;
8644 }
8645
8646 if (busiest->group_type == group_imbalanced) {
8647 /*
8648 * In the group_imb case we cannot rely on group-wide averages
8649 * to ensure CPU-load equilibrium, try to move any task to fix
8650 * the imbalance. The next load balance will take care of
8651 * balancing back the system.
8652 */
8653 env->migration_type = migrate_task;
8654 env->imbalance = 1;
8655 return;
8656 }
8657
8658 /*
8659 * Try to use spare capacity of local group without overloading it or
8660 * emptying busiest.
8661 * XXX Spreading tasks across NUMA nodes is not always the best policy
8662 * and special care should be taken for SD_NUMA domain level before
8663 * spreading the tasks. For now, load_balance() fully relies on
8664 * NUMA_BALANCING and fbq_classify_group/rq to override the decision.
8665 */
8666 if (local->group_type == group_has_spare) {
8667 if (busiest->group_type > group_fully_busy) {
8668 /*
8669 * If busiest is overloaded, try to fill spare
8670 * capacity. This might end up creating spare capacity
8671 * in busiest or busiest still being overloaded but
8672 * there is no simple way to directly compute the
8673 * amount of load to migrate in order to balance the
8674 * system.
8675 */
8676 env->migration_type = migrate_util;
8677 env->imbalance = max(local->group_capacity, local->group_util) -
8678 local->group_util;
8679
8680 /*
8681 * In some cases, the group's utilization is max or even
8682 * higher than capacity because of migrations but the
8683 * local CPU is (newly) idle. There is at least one
8684 * waiting task in this overloaded busiest group. Let's
8685 * try to pull it.
8686 */
8687 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
8688 env->migration_type = migrate_task;
8689 env->imbalance = 1;
8690 }
8691
8692 return;
8693 }
8694
8695 if (busiest->group_weight == 1 || sds->prefer_sibling) {
8696 unsigned int nr_diff = busiest->sum_nr_running;
8697 /*
8698 * When prefer sibling, evenly spread running tasks on
8699 * groups.
8700 */
8701 env->migration_type = migrate_task;
8702 lsub_positive(&nr_diff, local->sum_nr_running);
8703 env->imbalance = nr_diff >> 1;
8704 return;
8705 }
8706
8707 /*
8708 * If there is no overload, we just want to even the number of
8709 * idle cpus.
8710 */
8711 env->migration_type = migrate_task;
8712 env->imbalance = max_t(long, 0, (local->idle_cpus -
8713 busiest->idle_cpus) >> 1);
8714 return;
8715 }
8716
8717 /*
8718 * Local is fully busy but has to take more load to relieve the
8719 * busiest group
8720 */
8721 if (local->group_type < group_overloaded) {
8722 /*
8723 * Local will become overloaded so the avg_load metrics are
8724 * finally needed.
8725 */
8726
8727 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
8728 local->group_capacity;
8729
8730 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
8731 sds->total_capacity;
8732 }
8733
8734 /*
8735 * Both group are or will become overloaded and we're trying to get all
8736 * the CPUs to the average_load, so we don't want to push ourselves
8737 * above the average load, nor do we wish to reduce the max loaded CPU
8738 * below the average load. At the same time, we also don't want to
8739 * reduce the group load below the group capacity. Thus we look for
8740 * the minimum possible imbalance.
8741 */
8742 env->migration_type = migrate_load;
8743 env->imbalance = min(
8744 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
8745 (sds->avg_load - local->avg_load) * local->group_capacity
8746 ) / SCHED_CAPACITY_SCALE;
8747 }
8748
8749 /******* find_busiest_group() helpers end here *********************/
8750
8751 /*
8752 * Decision matrix according to the local and busiest group type:
8753 *
8754 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
8755 * has_spare nr_idle balanced N/A N/A balanced balanced
8756 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
8757 * misfit_task force N/A N/A N/A force force
8758 * asym_packing force force N/A N/A force force
8759 * imbalanced force force N/A N/A force force
8760 * overloaded force force N/A N/A force avg_load
8761 *
8762 * N/A : Not Applicable because already filtered while updating
8763 * statistics.
8764 * balanced : The system is balanced for these 2 groups.
8765 * force : Calculate the imbalance as load migration is probably needed.
8766 * avg_load : Only if imbalance is significant enough.
8767 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
8768 * different in groups.
8769 */
8770
8771 /**
8772 * find_busiest_group - Returns the busiest group within the sched_domain
8773 * if there is an imbalance.
8774 *
8775 * Also calculates the amount of runnable load which should be moved
8776 * to restore balance.
8777 *
8778 * @env: The load balancing environment.
8779 *
8780 * Return: - The busiest group if imbalance exists.
8781 */
8782 static struct sched_group *find_busiest_group(struct lb_env *env)
8783 {
8784 struct sg_lb_stats *local, *busiest;
8785 struct sd_lb_stats sds;
8786
8787 init_sd_lb_stats(&sds);
8788
8789 /*
8790 * Compute the various statistics relevant for load balancing at
8791 * this level.
8792 */
8793 update_sd_lb_stats(env, &sds);
8794
8795 if (sched_energy_enabled()) {
8796 struct root_domain *rd = env->dst_rq->rd;
8797
8798 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8799 goto out_balanced;
8800 }
8801
8802 local = &sds.local_stat;
8803 busiest = &sds.busiest_stat;
8804
8805 /* There is no busy sibling group to pull tasks from */
8806 if (!sds.busiest)
8807 goto out_balanced;
8808
8809 /* Misfit tasks should be dealt with regardless of the avg load */
8810 if (busiest->group_type == group_misfit_task)
8811 goto force_balance;
8812
8813 /* ASYM feature bypasses nice load balance check */
8814 if (busiest->group_type == group_asym_packing)
8815 goto force_balance;
8816
8817 /*
8818 * If the busiest group is imbalanced the below checks don't
8819 * work because they assume all things are equal, which typically
8820 * isn't true due to cpus_ptr constraints and the like.
8821 */
8822 if (busiest->group_type == group_imbalanced)
8823 goto force_balance;
8824
8825 /*
8826 * If the local group is busier than the selected busiest group
8827 * don't try and pull any tasks.
8828 */
8829 if (local->group_type > busiest->group_type)
8830 goto out_balanced;
8831
8832 /*
8833 * When groups are overloaded, use the avg_load to ensure fairness
8834 * between tasks.
8835 */
8836 if (local->group_type == group_overloaded) {
8837 /*
8838 * If the local group is more loaded than the selected
8839 * busiest group don't try to pull any tasks.
8840 */
8841 if (local->avg_load >= busiest->avg_load)
8842 goto out_balanced;
8843
8844 /* XXX broken for overlapping NUMA groups */
8845 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
8846 sds.total_capacity;
8847
8848 /*
8849 * Don't pull any tasks if this group is already above the
8850 * domain average load.
8851 */
8852 if (local->avg_load >= sds.avg_load)
8853 goto out_balanced;
8854
8855 /*
8856 * If the busiest group is more loaded, use imbalance_pct to be
8857 * conservative.
8858 */
8859 if (100 * busiest->avg_load <=
8860 env->sd->imbalance_pct * local->avg_load)
8861 goto out_balanced;
8862 }
8863
8864 /* Try to move all excess tasks to child's sibling domain */
8865 if (sds.prefer_sibling && local->group_type == group_has_spare &&
8866 busiest->sum_nr_running > local->sum_nr_running + 1)
8867 goto force_balance;
8868
8869 if (busiest->group_type != group_overloaded) {
8870 if (env->idle == CPU_NOT_IDLE)
8871 /*
8872 * If the busiest group is not overloaded (and as a
8873 * result the local one too) but this CPU is already
8874 * busy, let another idle CPU try to pull task.
8875 */
8876 goto out_balanced;
8877
8878 if (busiest->group_weight > 1 &&
8879 local->idle_cpus <= (busiest->idle_cpus + 1))
8880 /*
8881 * If the busiest group is not overloaded
8882 * and there is no imbalance between this and busiest
8883 * group wrt idle CPUs, it is balanced. The imbalance
8884 * becomes significant if the diff is greater than 1
8885 * otherwise we might end up to just move the imbalance
8886 * on another group. Of course this applies only if
8887 * there is more than 1 CPU per group.
8888 */
8889 goto out_balanced;
8890
8891 if (busiest->sum_h_nr_running == 1)
8892 /*
8893 * busiest doesn't have any tasks waiting to run
8894 */
8895 goto out_balanced;
8896 }
8897
8898 force_balance:
8899 /* Looks like there is an imbalance. Compute it */
8900 calculate_imbalance(env, &sds);
8901 return env->imbalance ? sds.busiest : NULL;
8902
8903 out_balanced:
8904 env->imbalance = 0;
8905 return NULL;
8906 }
8907
8908 /*
8909 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8910 */
8911 static struct rq *find_busiest_queue(struct lb_env *env,
8912 struct sched_group *group)
8913 {
8914 struct rq *busiest = NULL, *rq;
8915 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
8916 unsigned int busiest_nr = 0;
8917 int i;
8918
8919 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8920 unsigned long capacity, load, util;
8921 unsigned int nr_running;
8922 enum fbq_type rt;
8923
8924 rq = cpu_rq(i);
8925 rt = fbq_classify_rq(rq);
8926
8927 /*
8928 * We classify groups/runqueues into three groups:
8929 * - regular: there are !numa tasks
8930 * - remote: there are numa tasks that run on the 'wrong' node
8931 * - all: there is no distinction
8932 *
8933 * In order to avoid migrating ideally placed numa tasks,
8934 * ignore those when there's better options.
8935 *
8936 * If we ignore the actual busiest queue to migrate another
8937 * task, the next balance pass can still reduce the busiest
8938 * queue by moving tasks around inside the node.
8939 *
8940 * If we cannot move enough load due to this classification
8941 * the next pass will adjust the group classification and
8942 * allow migration of more tasks.
8943 *
8944 * Both cases only affect the total convergence complexity.
8945 */
8946 if (rt > env->fbq_type)
8947 continue;
8948
8949 capacity = capacity_of(i);
8950 nr_running = rq->cfs.h_nr_running;
8951
8952 /*
8953 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8954 * eventually lead to active_balancing high->low capacity.
8955 * Higher per-CPU capacity is considered better than balancing
8956 * average load.
8957 */
8958 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8959 capacity_of(env->dst_cpu) < capacity &&
8960 nr_running == 1)
8961 continue;
8962
8963 switch (env->migration_type) {
8964 case migrate_load:
8965 /*
8966 * When comparing with load imbalance, use cpu_load()
8967 * which is not scaled with the CPU capacity.
8968 */
8969 load = cpu_load(rq);
8970
8971 if (nr_running == 1 && load > env->imbalance &&
8972 !check_cpu_capacity(rq, env->sd))
8973 break;
8974
8975 /*
8976 * For the load comparisons with the other CPUs,
8977 * consider the cpu_load() scaled with the CPU
8978 * capacity, so that the load can be moved away
8979 * from the CPU that is potentially running at a
8980 * lower capacity.
8981 *
8982 * Thus we're looking for max(load_i / capacity_i),
8983 * crosswise multiplication to rid ourselves of the
8984 * division works out to:
8985 * load_i * capacity_j > load_j * capacity_i;
8986 * where j is our previous maximum.
8987 */
8988 if (load * busiest_capacity > busiest_load * capacity) {
8989 busiest_load = load;
8990 busiest_capacity = capacity;
8991 busiest = rq;
8992 }
8993 break;
8994
8995 case migrate_util:
8996 util = cpu_util(cpu_of(rq));
8997
8998 if (busiest_util < util) {
8999 busiest_util = util;
9000 busiest = rq;
9001 }
9002 break;
9003
9004 case migrate_task:
9005 if (busiest_nr < nr_running) {
9006 busiest_nr = nr_running;
9007 busiest = rq;
9008 }
9009 break;
9010
9011 case migrate_misfit:
9012 /*
9013 * For ASYM_CPUCAPACITY domains with misfit tasks we
9014 * simply seek the "biggest" misfit task.
9015 */
9016 if (rq->misfit_task_load > busiest_load) {
9017 busiest_load = rq->misfit_task_load;
9018 busiest = rq;
9019 }
9020
9021 break;
9022
9023 }
9024 }
9025
9026 return busiest;
9027 }
9028
9029 /*
9030 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9031 * so long as it is large enough.
9032 */
9033 #define MAX_PINNED_INTERVAL 512
9034
9035 static inline bool
9036 asym_active_balance(struct lb_env *env)
9037 {
9038 /*
9039 * ASYM_PACKING needs to force migrate tasks from busy but
9040 * lower priority CPUs in order to pack all tasks in the
9041 * highest priority CPUs.
9042 */
9043 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9044 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9045 }
9046
9047 static inline bool
9048 voluntary_active_balance(struct lb_env *env)
9049 {
9050 struct sched_domain *sd = env->sd;
9051
9052 if (asym_active_balance(env))
9053 return 1;
9054
9055 /*
9056 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9057 * It's worth migrating the task if the src_cpu's capacity is reduced
9058 * because of other sched_class or IRQs if more capacity stays
9059 * available on dst_cpu.
9060 */
9061 if ((env->idle != CPU_NOT_IDLE) &&
9062 (env->src_rq->cfs.h_nr_running == 1)) {
9063 if ((check_cpu_capacity(env->src_rq, sd)) &&
9064 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9065 return 1;
9066 }
9067
9068 if (env->migration_type == migrate_misfit)
9069 return 1;
9070
9071 return 0;
9072 }
9073
9074 static int need_active_balance(struct lb_env *env)
9075 {
9076 struct sched_domain *sd = env->sd;
9077
9078 if (voluntary_active_balance(env))
9079 return 1;
9080
9081 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9082 }
9083
9084 static int active_load_balance_cpu_stop(void *data);
9085
9086 static int should_we_balance(struct lb_env *env)
9087 {
9088 struct sched_group *sg = env->sd->groups;
9089 int cpu, balance_cpu = -1;
9090
9091 /*
9092 * Ensure the balancing environment is consistent; can happen
9093 * when the softirq triggers 'during' hotplug.
9094 */
9095 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9096 return 0;
9097
9098 /*
9099 * In the newly idle case, we will allow all the CPUs
9100 * to do the newly idle load balance.
9101 */
9102 if (env->idle == CPU_NEWLY_IDLE)
9103 return 1;
9104
9105 /* Try to find first idle CPU */
9106 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9107 if (!idle_cpu(cpu))
9108 continue;
9109
9110 balance_cpu = cpu;
9111 break;
9112 }
9113
9114 if (balance_cpu == -1)
9115 balance_cpu = group_balance_cpu(sg);
9116
9117 /*
9118 * First idle CPU or the first CPU(busiest) in this sched group
9119 * is eligible for doing load balancing at this and above domains.
9120 */
9121 return balance_cpu == env->dst_cpu;
9122 }
9123
9124 /*
9125 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9126 * tasks if there is an imbalance.
9127 */
9128 static int load_balance(int this_cpu, struct rq *this_rq,
9129 struct sched_domain *sd, enum cpu_idle_type idle,
9130 int *continue_balancing)
9131 {
9132 int ld_moved, cur_ld_moved, active_balance = 0;
9133 struct sched_domain *sd_parent = sd->parent;
9134 struct sched_group *group;
9135 struct rq *busiest;
9136 struct rq_flags rf;
9137 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9138
9139 struct lb_env env = {
9140 .sd = sd,
9141 .dst_cpu = this_cpu,
9142 .dst_rq = this_rq,
9143 .dst_grpmask = sched_group_span(sd->groups),
9144 .idle = idle,
9145 .loop_break = sched_nr_migrate_break,
9146 .cpus = cpus,
9147 .fbq_type = all,
9148 .tasks = LIST_HEAD_INIT(env.tasks),
9149 };
9150
9151 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9152
9153 schedstat_inc(sd->lb_count[idle]);
9154
9155 redo:
9156 if (!should_we_balance(&env)) {
9157 *continue_balancing = 0;
9158 goto out_balanced;
9159 }
9160
9161 group = find_busiest_group(&env);
9162 if (!group) {
9163 schedstat_inc(sd->lb_nobusyg[idle]);
9164 goto out_balanced;
9165 }
9166
9167 busiest = find_busiest_queue(&env, group);
9168 if (!busiest) {
9169 schedstat_inc(sd->lb_nobusyq[idle]);
9170 goto out_balanced;
9171 }
9172
9173 BUG_ON(busiest == env.dst_rq);
9174
9175 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9176
9177 env.src_cpu = busiest->cpu;
9178 env.src_rq = busiest;
9179
9180 ld_moved = 0;
9181 if (busiest->nr_running > 1) {
9182 /*
9183 * Attempt to move tasks. If find_busiest_group has found
9184 * an imbalance but busiest->nr_running <= 1, the group is
9185 * still unbalanced. ld_moved simply stays zero, so it is
9186 * correctly treated as an imbalance.
9187 */
9188 env.flags |= LBF_ALL_PINNED;
9189 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9190
9191 more_balance:
9192 rq_lock_irqsave(busiest, &rf);
9193 update_rq_clock(busiest);
9194
9195 /*
9196 * cur_ld_moved - load moved in current iteration
9197 * ld_moved - cumulative load moved across iterations
9198 */
9199 cur_ld_moved = detach_tasks(&env);
9200
9201 /*
9202 * We've detached some tasks from busiest_rq. Every
9203 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9204 * unlock busiest->lock, and we are able to be sure
9205 * that nobody can manipulate the tasks in parallel.
9206 * See task_rq_lock() family for the details.
9207 */
9208
9209 rq_unlock(busiest, &rf);
9210
9211 if (cur_ld_moved) {
9212 attach_tasks(&env);
9213 ld_moved += cur_ld_moved;
9214 }
9215
9216 local_irq_restore(rf.flags);
9217
9218 if (env.flags & LBF_NEED_BREAK) {
9219 env.flags &= ~LBF_NEED_BREAK;
9220 goto more_balance;
9221 }
9222
9223 /*
9224 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9225 * us and move them to an alternate dst_cpu in our sched_group
9226 * where they can run. The upper limit on how many times we
9227 * iterate on same src_cpu is dependent on number of CPUs in our
9228 * sched_group.
9229 *
9230 * This changes load balance semantics a bit on who can move
9231 * load to a given_cpu. In addition to the given_cpu itself
9232 * (or a ilb_cpu acting on its behalf where given_cpu is
9233 * nohz-idle), we now have balance_cpu in a position to move
9234 * load to given_cpu. In rare situations, this may cause
9235 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9236 * _independently_ and at _same_ time to move some load to
9237 * given_cpu) causing exceess load to be moved to given_cpu.
9238 * This however should not happen so much in practice and
9239 * moreover subsequent load balance cycles should correct the
9240 * excess load moved.
9241 */
9242 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9243
9244 /* Prevent to re-select dst_cpu via env's CPUs */
9245 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9246
9247 env.dst_rq = cpu_rq(env.new_dst_cpu);
9248 env.dst_cpu = env.new_dst_cpu;
9249 env.flags &= ~LBF_DST_PINNED;
9250 env.loop = 0;
9251 env.loop_break = sched_nr_migrate_break;
9252
9253 /*
9254 * Go back to "more_balance" rather than "redo" since we
9255 * need to continue with same src_cpu.
9256 */
9257 goto more_balance;
9258 }
9259
9260 /*
9261 * We failed to reach balance because of affinity.
9262 */
9263 if (sd_parent) {
9264 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9265
9266 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9267 *group_imbalance = 1;
9268 }
9269
9270 /* All tasks on this runqueue were pinned by CPU affinity */
9271 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9272 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9273 /*
9274 * Attempting to continue load balancing at the current
9275 * sched_domain level only makes sense if there are
9276 * active CPUs remaining as possible busiest CPUs to
9277 * pull load from which are not contained within the
9278 * destination group that is receiving any migrated
9279 * load.
9280 */
9281 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9282 env.loop = 0;
9283 env.loop_break = sched_nr_migrate_break;
9284 goto redo;
9285 }
9286 goto out_all_pinned;
9287 }
9288 }
9289
9290 if (!ld_moved) {
9291 schedstat_inc(sd->lb_failed[idle]);
9292 /*
9293 * Increment the failure counter only on periodic balance.
9294 * We do not want newidle balance, which can be very
9295 * frequent, pollute the failure counter causing
9296 * excessive cache_hot migrations and active balances.
9297 */
9298 if (idle != CPU_NEWLY_IDLE)
9299 sd->nr_balance_failed++;
9300
9301 if (need_active_balance(&env)) {
9302 unsigned long flags;
9303
9304 raw_spin_lock_irqsave(&busiest->lock, flags);
9305
9306 /*
9307 * Don't kick the active_load_balance_cpu_stop,
9308 * if the curr task on busiest CPU can't be
9309 * moved to this_cpu:
9310 */
9311 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9312 raw_spin_unlock_irqrestore(&busiest->lock,
9313 flags);
9314 env.flags |= LBF_ALL_PINNED;
9315 goto out_one_pinned;
9316 }
9317
9318 /*
9319 * ->active_balance synchronizes accesses to
9320 * ->active_balance_work. Once set, it's cleared
9321 * only after active load balance is finished.
9322 */
9323 if (!busiest->active_balance) {
9324 busiest->active_balance = 1;
9325 busiest->push_cpu = this_cpu;
9326 active_balance = 1;
9327 }
9328 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9329
9330 if (active_balance) {
9331 stop_one_cpu_nowait(cpu_of(busiest),
9332 active_load_balance_cpu_stop, busiest,
9333 &busiest->active_balance_work);
9334 }
9335
9336 /* We've kicked active balancing, force task migration. */
9337 sd->nr_balance_failed = sd->cache_nice_tries+1;
9338 }
9339 } else
9340 sd->nr_balance_failed = 0;
9341
9342 if (likely(!active_balance) || voluntary_active_balance(&env)) {
9343 /* We were unbalanced, so reset the balancing interval */
9344 sd->balance_interval = sd->min_interval;
9345 } else {
9346 /*
9347 * If we've begun active balancing, start to back off. This
9348 * case may not be covered by the all_pinned logic if there
9349 * is only 1 task on the busy runqueue (because we don't call
9350 * detach_tasks).
9351 */
9352 if (sd->balance_interval < sd->max_interval)
9353 sd->balance_interval *= 2;
9354 }
9355
9356 goto out;
9357
9358 out_balanced:
9359 /*
9360 * We reach balance although we may have faced some affinity
9361 * constraints. Clear the imbalance flag only if other tasks got
9362 * a chance to move and fix the imbalance.
9363 */
9364 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9365 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9366
9367 if (*group_imbalance)
9368 *group_imbalance = 0;
9369 }
9370
9371 out_all_pinned:
9372 /*
9373 * We reach balance because all tasks are pinned at this level so
9374 * we can't migrate them. Let the imbalance flag set so parent level
9375 * can try to migrate them.
9376 */
9377 schedstat_inc(sd->lb_balanced[idle]);
9378
9379 sd->nr_balance_failed = 0;
9380
9381 out_one_pinned:
9382 ld_moved = 0;
9383
9384 /*
9385 * newidle_balance() disregards balance intervals, so we could
9386 * repeatedly reach this code, which would lead to balance_interval
9387 * skyrocketting in a short amount of time. Skip the balance_interval
9388 * increase logic to avoid that.
9389 */
9390 if (env.idle == CPU_NEWLY_IDLE)
9391 goto out;
9392
9393 /* tune up the balancing interval */
9394 if ((env.flags & LBF_ALL_PINNED &&
9395 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9396 sd->balance_interval < sd->max_interval)
9397 sd->balance_interval *= 2;
9398 out:
9399 return ld_moved;
9400 }
9401
9402 static inline unsigned long
9403 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9404 {
9405 unsigned long interval = sd->balance_interval;
9406
9407 if (cpu_busy)
9408 interval *= sd->busy_factor;
9409
9410 /* scale ms to jiffies */
9411 interval = msecs_to_jiffies(interval);
9412 interval = clamp(interval, 1UL, max_load_balance_interval);
9413
9414 return interval;
9415 }
9416
9417 static inline void
9418 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9419 {
9420 unsigned long interval, next;
9421
9422 /* used by idle balance, so cpu_busy = 0 */
9423 interval = get_sd_balance_interval(sd, 0);
9424 next = sd->last_balance + interval;
9425
9426 if (time_after(*next_balance, next))
9427 *next_balance = next;
9428 }
9429
9430 /*
9431 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9432 * running tasks off the busiest CPU onto idle CPUs. It requires at
9433 * least 1 task to be running on each physical CPU where possible, and
9434 * avoids physical / logical imbalances.
9435 */
9436 static int active_load_balance_cpu_stop(void *data)
9437 {
9438 struct rq *busiest_rq = data;
9439 int busiest_cpu = cpu_of(busiest_rq);
9440 int target_cpu = busiest_rq->push_cpu;
9441 struct rq *target_rq = cpu_rq(target_cpu);
9442 struct sched_domain *sd;
9443 struct task_struct *p = NULL;
9444 struct rq_flags rf;
9445
9446 rq_lock_irq(busiest_rq, &rf);
9447 /*
9448 * Between queueing the stop-work and running it is a hole in which
9449 * CPUs can become inactive. We should not move tasks from or to
9450 * inactive CPUs.
9451 */
9452 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9453 goto out_unlock;
9454
9455 /* Make sure the requested CPU hasn't gone down in the meantime: */
9456 if (unlikely(busiest_cpu != smp_processor_id() ||
9457 !busiest_rq->active_balance))
9458 goto out_unlock;
9459
9460 /* Is there any task to move? */
9461 if (busiest_rq->nr_running <= 1)
9462 goto out_unlock;
9463
9464 /*
9465 * This condition is "impossible", if it occurs
9466 * we need to fix it. Originally reported by
9467 * Bjorn Helgaas on a 128-CPU setup.
9468 */
9469 BUG_ON(busiest_rq == target_rq);
9470
9471 /* Search for an sd spanning us and the target CPU. */
9472 rcu_read_lock();
9473 for_each_domain(target_cpu, sd) {
9474 if ((sd->flags & SD_LOAD_BALANCE) &&
9475 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9476 break;
9477 }
9478
9479 if (likely(sd)) {
9480 struct lb_env env = {
9481 .sd = sd,
9482 .dst_cpu = target_cpu,
9483 .dst_rq = target_rq,
9484 .src_cpu = busiest_rq->cpu,
9485 .src_rq = busiest_rq,
9486 .idle = CPU_IDLE,
9487 /*
9488 * can_migrate_task() doesn't need to compute new_dst_cpu
9489 * for active balancing. Since we have CPU_IDLE, but no
9490 * @dst_grpmask we need to make that test go away with lying
9491 * about DST_PINNED.
9492 */
9493 .flags = LBF_DST_PINNED,
9494 };
9495
9496 schedstat_inc(sd->alb_count);
9497 update_rq_clock(busiest_rq);
9498
9499 p = detach_one_task(&env);
9500 if (p) {
9501 schedstat_inc(sd->alb_pushed);
9502 /* Active balancing done, reset the failure counter. */
9503 sd->nr_balance_failed = 0;
9504 } else {
9505 schedstat_inc(sd->alb_failed);
9506 }
9507 }
9508 rcu_read_unlock();
9509 out_unlock:
9510 busiest_rq->active_balance = 0;
9511 rq_unlock(busiest_rq, &rf);
9512
9513 if (p)
9514 attach_one_task(target_rq, p);
9515
9516 local_irq_enable();
9517
9518 return 0;
9519 }
9520
9521 static DEFINE_SPINLOCK(balancing);
9522
9523 /*
9524 * Scale the max load_balance interval with the number of CPUs in the system.
9525 * This trades load-balance latency on larger machines for less cross talk.
9526 */
9527 void update_max_interval(void)
9528 {
9529 max_load_balance_interval = HZ*num_online_cpus()/10;
9530 }
9531
9532 /*
9533 * It checks each scheduling domain to see if it is due to be balanced,
9534 * and initiates a balancing operation if so.
9535 *
9536 * Balancing parameters are set up in init_sched_domains.
9537 */
9538 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9539 {
9540 int continue_balancing = 1;
9541 int cpu = rq->cpu;
9542 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9543 unsigned long interval;
9544 struct sched_domain *sd;
9545 /* Earliest time when we have to do rebalance again */
9546 unsigned long next_balance = jiffies + 60*HZ;
9547 int update_next_balance = 0;
9548 int need_serialize, need_decay = 0;
9549 u64 max_cost = 0;
9550
9551 rcu_read_lock();
9552 for_each_domain(cpu, sd) {
9553 /*
9554 * Decay the newidle max times here because this is a regular
9555 * visit to all the domains. Decay ~1% per second.
9556 */
9557 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9558 sd->max_newidle_lb_cost =
9559 (sd->max_newidle_lb_cost * 253) / 256;
9560 sd->next_decay_max_lb_cost = jiffies + HZ;
9561 need_decay = 1;
9562 }
9563 max_cost += sd->max_newidle_lb_cost;
9564
9565 if (!(sd->flags & SD_LOAD_BALANCE))
9566 continue;
9567
9568 /*
9569 * Stop the load balance at this level. There is another
9570 * CPU in our sched group which is doing load balancing more
9571 * actively.
9572 */
9573 if (!continue_balancing) {
9574 if (need_decay)
9575 continue;
9576 break;
9577 }
9578
9579 interval = get_sd_balance_interval(sd, busy);
9580
9581 need_serialize = sd->flags & SD_SERIALIZE;
9582 if (need_serialize) {
9583 if (!spin_trylock(&balancing))
9584 goto out;
9585 }
9586
9587 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9588 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9589 /*
9590 * The LBF_DST_PINNED logic could have changed
9591 * env->dst_cpu, so we can't know our idle
9592 * state even if we migrated tasks. Update it.
9593 */
9594 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9595 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9596 }
9597 sd->last_balance = jiffies;
9598 interval = get_sd_balance_interval(sd, busy);
9599 }
9600 if (need_serialize)
9601 spin_unlock(&balancing);
9602 out:
9603 if (time_after(next_balance, sd->last_balance + interval)) {
9604 next_balance = sd->last_balance + interval;
9605 update_next_balance = 1;
9606 }
9607 }
9608 if (need_decay) {
9609 /*
9610 * Ensure the rq-wide value also decays but keep it at a
9611 * reasonable floor to avoid funnies with rq->avg_idle.
9612 */
9613 rq->max_idle_balance_cost =
9614 max((u64)sysctl_sched_migration_cost, max_cost);
9615 }
9616 rcu_read_unlock();
9617
9618 /*
9619 * next_balance will be updated only when there is a need.
9620 * When the cpu is attached to null domain for ex, it will not be
9621 * updated.
9622 */
9623 if (likely(update_next_balance)) {
9624 rq->next_balance = next_balance;
9625
9626 #ifdef CONFIG_NO_HZ_COMMON
9627 /*
9628 * If this CPU has been elected to perform the nohz idle
9629 * balance. Other idle CPUs have already rebalanced with
9630 * nohz_idle_balance() and nohz.next_balance has been
9631 * updated accordingly. This CPU is now running the idle load
9632 * balance for itself and we need to update the
9633 * nohz.next_balance accordingly.
9634 */
9635 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9636 nohz.next_balance = rq->next_balance;
9637 #endif
9638 }
9639 }
9640
9641 static inline int on_null_domain(struct rq *rq)
9642 {
9643 return unlikely(!rcu_dereference_sched(rq->sd));
9644 }
9645
9646 #ifdef CONFIG_NO_HZ_COMMON
9647 /*
9648 * idle load balancing details
9649 * - When one of the busy CPUs notice that there may be an idle rebalancing
9650 * needed, they will kick the idle load balancer, which then does idle
9651 * load balancing for all the idle CPUs.
9652 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9653 * anywhere yet.
9654 */
9655
9656 static inline int find_new_ilb(void)
9657 {
9658 int ilb;
9659
9660 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9661 housekeeping_cpumask(HK_FLAG_MISC)) {
9662 if (idle_cpu(ilb))
9663 return ilb;
9664 }
9665
9666 return nr_cpu_ids;
9667 }
9668
9669 /*
9670 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9671 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9672 */
9673 static void kick_ilb(unsigned int flags)
9674 {
9675 int ilb_cpu;
9676
9677 nohz.next_balance++;
9678
9679 ilb_cpu = find_new_ilb();
9680
9681 if (ilb_cpu >= nr_cpu_ids)
9682 return;
9683
9684 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9685 if (flags & NOHZ_KICK_MASK)
9686 return;
9687
9688 /*
9689 * Use smp_send_reschedule() instead of resched_cpu().
9690 * This way we generate a sched IPI on the target CPU which
9691 * is idle. And the softirq performing nohz idle load balance
9692 * will be run before returning from the IPI.
9693 */
9694 smp_send_reschedule(ilb_cpu);
9695 }
9696
9697 /*
9698 * Current decision point for kicking the idle load balancer in the presence
9699 * of idle CPUs in the system.
9700 */
9701 static void nohz_balancer_kick(struct rq *rq)
9702 {
9703 unsigned long now = jiffies;
9704 struct sched_domain_shared *sds;
9705 struct sched_domain *sd;
9706 int nr_busy, i, cpu = rq->cpu;
9707 unsigned int flags = 0;
9708
9709 if (unlikely(rq->idle_balance))
9710 return;
9711
9712 /*
9713 * We may be recently in ticked or tickless idle mode. At the first
9714 * busy tick after returning from idle, we will update the busy stats.
9715 */
9716 nohz_balance_exit_idle(rq);
9717
9718 /*
9719 * None are in tickless mode and hence no need for NOHZ idle load
9720 * balancing.
9721 */
9722 if (likely(!atomic_read(&nohz.nr_cpus)))
9723 return;
9724
9725 if (READ_ONCE(nohz.has_blocked) &&
9726 time_after(now, READ_ONCE(nohz.next_blocked)))
9727 flags = NOHZ_STATS_KICK;
9728
9729 if (time_before(now, nohz.next_balance))
9730 goto out;
9731
9732 if (rq->nr_running >= 2) {
9733 flags = NOHZ_KICK_MASK;
9734 goto out;
9735 }
9736
9737 rcu_read_lock();
9738
9739 sd = rcu_dereference(rq->sd);
9740 if (sd) {
9741 /*
9742 * If there's a CFS task and the current CPU has reduced
9743 * capacity; kick the ILB to see if there's a better CPU to run
9744 * on.
9745 */
9746 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9747 flags = NOHZ_KICK_MASK;
9748 goto unlock;
9749 }
9750 }
9751
9752 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9753 if (sd) {
9754 /*
9755 * When ASYM_PACKING; see if there's a more preferred CPU
9756 * currently idle; in which case, kick the ILB to move tasks
9757 * around.
9758 */
9759 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9760 if (sched_asym_prefer(i, cpu)) {
9761 flags = NOHZ_KICK_MASK;
9762 goto unlock;
9763 }
9764 }
9765 }
9766
9767 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9768 if (sd) {
9769 /*
9770 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9771 * to run the misfit task on.
9772 */
9773 if (check_misfit_status(rq, sd)) {
9774 flags = NOHZ_KICK_MASK;
9775 goto unlock;
9776 }
9777
9778 /*
9779 * For asymmetric systems, we do not want to nicely balance
9780 * cache use, instead we want to embrace asymmetry and only
9781 * ensure tasks have enough CPU capacity.
9782 *
9783 * Skip the LLC logic because it's not relevant in that case.
9784 */
9785 goto unlock;
9786 }
9787
9788 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9789 if (sds) {
9790 /*
9791 * If there is an imbalance between LLC domains (IOW we could
9792 * increase the overall cache use), we need some less-loaded LLC
9793 * domain to pull some load. Likewise, we may need to spread
9794 * load within the current LLC domain (e.g. packed SMT cores but
9795 * other CPUs are idle). We can't really know from here how busy
9796 * the others are - so just get a nohz balance going if it looks
9797 * like this LLC domain has tasks we could move.
9798 */
9799 nr_busy = atomic_read(&sds->nr_busy_cpus);
9800 if (nr_busy > 1) {
9801 flags = NOHZ_KICK_MASK;
9802 goto unlock;
9803 }
9804 }
9805 unlock:
9806 rcu_read_unlock();
9807 out:
9808 if (flags)
9809 kick_ilb(flags);
9810 }
9811
9812 static void set_cpu_sd_state_busy(int cpu)
9813 {
9814 struct sched_domain *sd;
9815
9816 rcu_read_lock();
9817 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9818
9819 if (!sd || !sd->nohz_idle)
9820 goto unlock;
9821 sd->nohz_idle = 0;
9822
9823 atomic_inc(&sd->shared->nr_busy_cpus);
9824 unlock:
9825 rcu_read_unlock();
9826 }
9827
9828 void nohz_balance_exit_idle(struct rq *rq)
9829 {
9830 SCHED_WARN_ON(rq != this_rq());
9831
9832 if (likely(!rq->nohz_tick_stopped))
9833 return;
9834
9835 rq->nohz_tick_stopped = 0;
9836 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9837 atomic_dec(&nohz.nr_cpus);
9838
9839 set_cpu_sd_state_busy(rq->cpu);
9840 }
9841
9842 static void set_cpu_sd_state_idle(int cpu)
9843 {
9844 struct sched_domain *sd;
9845
9846 rcu_read_lock();
9847 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9848
9849 if (!sd || sd->nohz_idle)
9850 goto unlock;
9851 sd->nohz_idle = 1;
9852
9853 atomic_dec(&sd->shared->nr_busy_cpus);
9854 unlock:
9855 rcu_read_unlock();
9856 }
9857
9858 /*
9859 * This routine will record that the CPU is going idle with tick stopped.
9860 * This info will be used in performing idle load balancing in the future.
9861 */
9862 void nohz_balance_enter_idle(int cpu)
9863 {
9864 struct rq *rq = cpu_rq(cpu);
9865
9866 SCHED_WARN_ON(cpu != smp_processor_id());
9867
9868 /* If this CPU is going down, then nothing needs to be done: */
9869 if (!cpu_active(cpu))
9870 return;
9871
9872 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9873 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9874 return;
9875
9876 /*
9877 * Can be set safely without rq->lock held
9878 * If a clear happens, it will have evaluated last additions because
9879 * rq->lock is held during the check and the clear
9880 */
9881 rq->has_blocked_load = 1;
9882
9883 /*
9884 * The tick is still stopped but load could have been added in the
9885 * meantime. We set the nohz.has_blocked flag to trig a check of the
9886 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9887 * of nohz.has_blocked can only happen after checking the new load
9888 */
9889 if (rq->nohz_tick_stopped)
9890 goto out;
9891
9892 /* If we're a completely isolated CPU, we don't play: */
9893 if (on_null_domain(rq))
9894 return;
9895
9896 rq->nohz_tick_stopped = 1;
9897
9898 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9899 atomic_inc(&nohz.nr_cpus);
9900
9901 /*
9902 * Ensures that if nohz_idle_balance() fails to observe our
9903 * @idle_cpus_mask store, it must observe the @has_blocked
9904 * store.
9905 */
9906 smp_mb__after_atomic();
9907
9908 set_cpu_sd_state_idle(cpu);
9909
9910 out:
9911 /*
9912 * Each time a cpu enter idle, we assume that it has blocked load and
9913 * enable the periodic update of the load of idle cpus
9914 */
9915 WRITE_ONCE(nohz.has_blocked, 1);
9916 }
9917
9918 /*
9919 * Internal function that runs load balance for all idle cpus. The load balance
9920 * can be a simple update of blocked load or a complete load balance with
9921 * tasks movement depending of flags.
9922 * The function returns false if the loop has stopped before running
9923 * through all idle CPUs.
9924 */
9925 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9926 enum cpu_idle_type idle)
9927 {
9928 /* Earliest time when we have to do rebalance again */
9929 unsigned long now = jiffies;
9930 unsigned long next_balance = now + 60*HZ;
9931 bool has_blocked_load = false;
9932 int update_next_balance = 0;
9933 int this_cpu = this_rq->cpu;
9934 int balance_cpu;
9935 int ret = false;
9936 struct rq *rq;
9937
9938 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9939
9940 /*
9941 * We assume there will be no idle load after this update and clear
9942 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9943 * set the has_blocked flag and trig another update of idle load.
9944 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9945 * setting the flag, we are sure to not clear the state and not
9946 * check the load of an idle cpu.
9947 */
9948 WRITE_ONCE(nohz.has_blocked, 0);
9949
9950 /*
9951 * Ensures that if we miss the CPU, we must see the has_blocked
9952 * store from nohz_balance_enter_idle().
9953 */
9954 smp_mb();
9955
9956 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9957 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9958 continue;
9959
9960 /*
9961 * If this CPU gets work to do, stop the load balancing
9962 * work being done for other CPUs. Next load
9963 * balancing owner will pick it up.
9964 */
9965 if (need_resched()) {
9966 has_blocked_load = true;
9967 goto abort;
9968 }
9969
9970 rq = cpu_rq(balance_cpu);
9971
9972 has_blocked_load |= update_nohz_stats(rq, true);
9973
9974 /*
9975 * If time for next balance is due,
9976 * do the balance.
9977 */
9978 if (time_after_eq(jiffies, rq->next_balance)) {
9979 struct rq_flags rf;
9980
9981 rq_lock_irqsave(rq, &rf);
9982 update_rq_clock(rq);
9983 rq_unlock_irqrestore(rq, &rf);
9984
9985 if (flags & NOHZ_BALANCE_KICK)
9986 rebalance_domains(rq, CPU_IDLE);
9987 }
9988
9989 if (time_after(next_balance, rq->next_balance)) {
9990 next_balance = rq->next_balance;
9991 update_next_balance = 1;
9992 }
9993 }
9994
9995 /* Newly idle CPU doesn't need an update */
9996 if (idle != CPU_NEWLY_IDLE) {
9997 update_blocked_averages(this_cpu);
9998 has_blocked_load |= this_rq->has_blocked_load;
9999 }
10000
10001 if (flags & NOHZ_BALANCE_KICK)
10002 rebalance_domains(this_rq, CPU_IDLE);
10003
10004 WRITE_ONCE(nohz.next_blocked,
10005 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10006
10007 /* The full idle balance loop has been done */
10008 ret = true;
10009
10010 abort:
10011 /* There is still blocked load, enable periodic update */
10012 if (has_blocked_load)
10013 WRITE_ONCE(nohz.has_blocked, 1);
10014
10015 /*
10016 * next_balance will be updated only when there is a need.
10017 * When the CPU is attached to null domain for ex, it will not be
10018 * updated.
10019 */
10020 if (likely(update_next_balance))
10021 nohz.next_balance = next_balance;
10022
10023 return ret;
10024 }
10025
10026 /*
10027 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10028 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10029 */
10030 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10031 {
10032 int this_cpu = this_rq->cpu;
10033 unsigned int flags;
10034
10035 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
10036 return false;
10037
10038 if (idle != CPU_IDLE) {
10039 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10040 return false;
10041 }
10042
10043 /* could be _relaxed() */
10044 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10045 if (!(flags & NOHZ_KICK_MASK))
10046 return false;
10047
10048 _nohz_idle_balance(this_rq, flags, idle);
10049
10050 return true;
10051 }
10052
10053 static void nohz_newidle_balance(struct rq *this_rq)
10054 {
10055 int this_cpu = this_rq->cpu;
10056
10057 /*
10058 * This CPU doesn't want to be disturbed by scheduler
10059 * housekeeping
10060 */
10061 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10062 return;
10063
10064 /* Will wake up very soon. No time for doing anything else*/
10065 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10066 return;
10067
10068 /* Don't need to update blocked load of idle CPUs*/
10069 if (!READ_ONCE(nohz.has_blocked) ||
10070 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10071 return;
10072
10073 raw_spin_unlock(&this_rq->lock);
10074 /*
10075 * This CPU is going to be idle and blocked load of idle CPUs
10076 * need to be updated. Run the ilb locally as it is a good
10077 * candidate for ilb instead of waking up another idle CPU.
10078 * Kick an normal ilb if we failed to do the update.
10079 */
10080 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10081 kick_ilb(NOHZ_STATS_KICK);
10082 raw_spin_lock(&this_rq->lock);
10083 }
10084
10085 #else /* !CONFIG_NO_HZ_COMMON */
10086 static inline void nohz_balancer_kick(struct rq *rq) { }
10087
10088 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10089 {
10090 return false;
10091 }
10092
10093 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10094 #endif /* CONFIG_NO_HZ_COMMON */
10095
10096 /*
10097 * idle_balance is called by schedule() if this_cpu is about to become
10098 * idle. Attempts to pull tasks from other CPUs.
10099 *
10100 * Returns:
10101 * < 0 - we released the lock and there are !fair tasks present
10102 * 0 - failed, no new tasks
10103 * > 0 - success, new (fair) tasks present
10104 */
10105 int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10106 {
10107 unsigned long next_balance = jiffies + HZ;
10108 int this_cpu = this_rq->cpu;
10109 struct sched_domain *sd;
10110 int pulled_task = 0;
10111 u64 curr_cost = 0;
10112
10113 update_misfit_status(NULL, this_rq);
10114 /*
10115 * We must set idle_stamp _before_ calling idle_balance(), such that we
10116 * measure the duration of idle_balance() as idle time.
10117 */
10118 this_rq->idle_stamp = rq_clock(this_rq);
10119
10120 /*
10121 * Do not pull tasks towards !active CPUs...
10122 */
10123 if (!cpu_active(this_cpu))
10124 return 0;
10125
10126 /*
10127 * This is OK, because current is on_cpu, which avoids it being picked
10128 * for load-balance and preemption/IRQs are still disabled avoiding
10129 * further scheduler activity on it and we're being very careful to
10130 * re-start the picking loop.
10131 */
10132 rq_unpin_lock(this_rq, rf);
10133
10134 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10135 !READ_ONCE(this_rq->rd->overload)) {
10136
10137 rcu_read_lock();
10138 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10139 if (sd)
10140 update_next_balance(sd, &next_balance);
10141 rcu_read_unlock();
10142
10143 nohz_newidle_balance(this_rq);
10144
10145 goto out;
10146 }
10147
10148 raw_spin_unlock(&this_rq->lock);
10149
10150 update_blocked_averages(this_cpu);
10151 rcu_read_lock();
10152 for_each_domain(this_cpu, sd) {
10153 int continue_balancing = 1;
10154 u64 t0, domain_cost;
10155
10156 if (!(sd->flags & SD_LOAD_BALANCE))
10157 continue;
10158
10159 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10160 update_next_balance(sd, &next_balance);
10161 break;
10162 }
10163
10164 if (sd->flags & SD_BALANCE_NEWIDLE) {
10165 t0 = sched_clock_cpu(this_cpu);
10166
10167 pulled_task = load_balance(this_cpu, this_rq,
10168 sd, CPU_NEWLY_IDLE,
10169 &continue_balancing);
10170
10171 domain_cost = sched_clock_cpu(this_cpu) - t0;
10172 if (domain_cost > sd->max_newidle_lb_cost)
10173 sd->max_newidle_lb_cost = domain_cost;
10174
10175 curr_cost += domain_cost;
10176 }
10177
10178 update_next_balance(sd, &next_balance);
10179
10180 /*
10181 * Stop searching for tasks to pull if there are
10182 * now runnable tasks on this rq.
10183 */
10184 if (pulled_task || this_rq->nr_running > 0)
10185 break;
10186 }
10187 rcu_read_unlock();
10188
10189 raw_spin_lock(&this_rq->lock);
10190
10191 if (curr_cost > this_rq->max_idle_balance_cost)
10192 this_rq->max_idle_balance_cost = curr_cost;
10193
10194 out:
10195 /*
10196 * While browsing the domains, we released the rq lock, a task could
10197 * have been enqueued in the meantime. Since we're not going idle,
10198 * pretend we pulled a task.
10199 */
10200 if (this_rq->cfs.h_nr_running && !pulled_task)
10201 pulled_task = 1;
10202
10203 /* Move the next balance forward */
10204 if (time_after(this_rq->next_balance, next_balance))
10205 this_rq->next_balance = next_balance;
10206
10207 /* Is there a task of a high priority class? */
10208 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10209 pulled_task = -1;
10210
10211 if (pulled_task)
10212 this_rq->idle_stamp = 0;
10213
10214 rq_repin_lock(this_rq, rf);
10215
10216 return pulled_task;
10217 }
10218
10219 /*
10220 * run_rebalance_domains is triggered when needed from the scheduler tick.
10221 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10222 */
10223 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10224 {
10225 struct rq *this_rq = this_rq();
10226 enum cpu_idle_type idle = this_rq->idle_balance ?
10227 CPU_IDLE : CPU_NOT_IDLE;
10228
10229 /*
10230 * If this CPU has a pending nohz_balance_kick, then do the
10231 * balancing on behalf of the other idle CPUs whose ticks are
10232 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10233 * give the idle CPUs a chance to load balance. Else we may
10234 * load balance only within the local sched_domain hierarchy
10235 * and abort nohz_idle_balance altogether if we pull some load.
10236 */
10237 if (nohz_idle_balance(this_rq, idle))
10238 return;
10239
10240 /* normal load balance */
10241 update_blocked_averages(this_rq->cpu);
10242 rebalance_domains(this_rq, idle);
10243 }
10244
10245 /*
10246 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10247 */
10248 void trigger_load_balance(struct rq *rq)
10249 {
10250 /* Don't need to rebalance while attached to NULL domain */
10251 if (unlikely(on_null_domain(rq)))
10252 return;
10253
10254 if (time_after_eq(jiffies, rq->next_balance))
10255 raise_softirq(SCHED_SOFTIRQ);
10256
10257 nohz_balancer_kick(rq);
10258 }
10259
10260 static void rq_online_fair(struct rq *rq)
10261 {
10262 update_sysctl();
10263
10264 update_runtime_enabled(rq);
10265 }
10266
10267 static void rq_offline_fair(struct rq *rq)
10268 {
10269 update_sysctl();
10270
10271 /* Ensure any throttled groups are reachable by pick_next_task */
10272 unthrottle_offline_cfs_rqs(rq);
10273 }
10274
10275 #endif /* CONFIG_SMP */
10276
10277 /*
10278 * scheduler tick hitting a task of our scheduling class.
10279 *
10280 * NOTE: This function can be called remotely by the tick offload that
10281 * goes along full dynticks. Therefore no local assumption can be made
10282 * and everything must be accessed through the @rq and @curr passed in
10283 * parameters.
10284 */
10285 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10286 {
10287 struct cfs_rq *cfs_rq;
10288 struct sched_entity *se = &curr->se;
10289
10290 for_each_sched_entity(se) {
10291 cfs_rq = cfs_rq_of(se);
10292 entity_tick(cfs_rq, se, queued);
10293 }
10294
10295 if (static_branch_unlikely(&sched_numa_balancing))
10296 task_tick_numa(rq, curr);
10297
10298 update_misfit_status(curr, rq);
10299 update_overutilized_status(task_rq(curr));
10300 }
10301
10302 /*
10303 * called on fork with the child task as argument from the parent's context
10304 * - child not yet on the tasklist
10305 * - preemption disabled
10306 */
10307 static void task_fork_fair(struct task_struct *p)
10308 {
10309 struct cfs_rq *cfs_rq;
10310 struct sched_entity *se = &p->se, *curr;
10311 struct rq *rq = this_rq();
10312 struct rq_flags rf;
10313
10314 rq_lock(rq, &rf);
10315 update_rq_clock(rq);
10316
10317 cfs_rq = task_cfs_rq(current);
10318 curr = cfs_rq->curr;
10319 if (curr) {
10320 update_curr(cfs_rq);
10321 se->vruntime = curr->vruntime;
10322 }
10323 place_entity(cfs_rq, se, 1);
10324
10325 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10326 /*
10327 * Upon rescheduling, sched_class::put_prev_task() will place
10328 * 'current' within the tree based on its new key value.
10329 */
10330 swap(curr->vruntime, se->vruntime);
10331 resched_curr(rq);
10332 }
10333
10334 se->vruntime -= cfs_rq->min_vruntime;
10335 rq_unlock(rq, &rf);
10336 }
10337
10338 /*
10339 * Priority of the task has changed. Check to see if we preempt
10340 * the current task.
10341 */
10342 static void
10343 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10344 {
10345 if (!task_on_rq_queued(p))
10346 return;
10347
10348 if (rq->cfs.nr_running == 1)
10349 return;
10350
10351 /*
10352 * Reschedule if we are currently running on this runqueue and
10353 * our priority decreased, or if we are not currently running on
10354 * this runqueue and our priority is higher than the current's
10355 */
10356 if (rq->curr == p) {
10357 if (p->prio > oldprio)
10358 resched_curr(rq);
10359 } else
10360 check_preempt_curr(rq, p, 0);
10361 }
10362
10363 static inline bool vruntime_normalized(struct task_struct *p)
10364 {
10365 struct sched_entity *se = &p->se;
10366
10367 /*
10368 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10369 * the dequeue_entity(.flags=0) will already have normalized the
10370 * vruntime.
10371 */
10372 if (p->on_rq)
10373 return true;
10374
10375 /*
10376 * When !on_rq, vruntime of the task has usually NOT been normalized.
10377 * But there are some cases where it has already been normalized:
10378 *
10379 * - A forked child which is waiting for being woken up by
10380 * wake_up_new_task().
10381 * - A task which has been woken up by try_to_wake_up() and
10382 * waiting for actually being woken up by sched_ttwu_pending().
10383 */
10384 if (!se->sum_exec_runtime ||
10385 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10386 return true;
10387
10388 return false;
10389 }
10390
10391 #ifdef CONFIG_FAIR_GROUP_SCHED
10392 /*
10393 * Propagate the changes of the sched_entity across the tg tree to make it
10394 * visible to the root
10395 */
10396 static void propagate_entity_cfs_rq(struct sched_entity *se)
10397 {
10398 struct cfs_rq *cfs_rq;
10399
10400 /* Start to propagate at parent */
10401 se = se->parent;
10402
10403 for_each_sched_entity(se) {
10404 cfs_rq = cfs_rq_of(se);
10405
10406 if (cfs_rq_throttled(cfs_rq))
10407 break;
10408
10409 update_load_avg(cfs_rq, se, UPDATE_TG);
10410 }
10411 }
10412 #else
10413 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10414 #endif
10415
10416 static void detach_entity_cfs_rq(struct sched_entity *se)
10417 {
10418 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10419
10420 /* Catch up with the cfs_rq and remove our load when we leave */
10421 update_load_avg(cfs_rq, se, 0);
10422 detach_entity_load_avg(cfs_rq, se);
10423 update_tg_load_avg(cfs_rq, false);
10424 propagate_entity_cfs_rq(se);
10425 }
10426
10427 static void attach_entity_cfs_rq(struct sched_entity *se)
10428 {
10429 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10430
10431 #ifdef CONFIG_FAIR_GROUP_SCHED
10432 /*
10433 * Since the real-depth could have been changed (only FAIR
10434 * class maintain depth value), reset depth properly.
10435 */
10436 se->depth = se->parent ? se->parent->depth + 1 : 0;
10437 #endif
10438
10439 /* Synchronize entity with its cfs_rq */
10440 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10441 attach_entity_load_avg(cfs_rq, se);
10442 update_tg_load_avg(cfs_rq, false);
10443 propagate_entity_cfs_rq(se);
10444 }
10445
10446 static void detach_task_cfs_rq(struct task_struct *p)
10447 {
10448 struct sched_entity *se = &p->se;
10449 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10450
10451 if (!vruntime_normalized(p)) {
10452 /*
10453 * Fix up our vruntime so that the current sleep doesn't
10454 * cause 'unlimited' sleep bonus.
10455 */
10456 place_entity(cfs_rq, se, 0);
10457 se->vruntime -= cfs_rq->min_vruntime;
10458 }
10459
10460 detach_entity_cfs_rq(se);
10461 }
10462
10463 static void attach_task_cfs_rq(struct task_struct *p)
10464 {
10465 struct sched_entity *se = &p->se;
10466 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10467
10468 attach_entity_cfs_rq(se);
10469
10470 if (!vruntime_normalized(p))
10471 se->vruntime += cfs_rq->min_vruntime;
10472 }
10473
10474 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10475 {
10476 detach_task_cfs_rq(p);
10477 }
10478
10479 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10480 {
10481 attach_task_cfs_rq(p);
10482
10483 if (task_on_rq_queued(p)) {
10484 /*
10485 * We were most likely switched from sched_rt, so
10486 * kick off the schedule if running, otherwise just see
10487 * if we can still preempt the current task.
10488 */
10489 if (rq->curr == p)
10490 resched_curr(rq);
10491 else
10492 check_preempt_curr(rq, p, 0);
10493 }
10494 }
10495
10496 /* Account for a task changing its policy or group.
10497 *
10498 * This routine is mostly called to set cfs_rq->curr field when a task
10499 * migrates between groups/classes.
10500 */
10501 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10502 {
10503 struct sched_entity *se = &p->se;
10504
10505 #ifdef CONFIG_SMP
10506 if (task_on_rq_queued(p)) {
10507 /*
10508 * Move the next running task to the front of the list, so our
10509 * cfs_tasks list becomes MRU one.
10510 */
10511 list_move(&se->group_node, &rq->cfs_tasks);
10512 }
10513 #endif
10514
10515 for_each_sched_entity(se) {
10516 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10517
10518 set_next_entity(cfs_rq, se);
10519 /* ensure bandwidth has been allocated on our new cfs_rq */
10520 account_cfs_rq_runtime(cfs_rq, 0);
10521 }
10522 }
10523
10524 void init_cfs_rq(struct cfs_rq *cfs_rq)
10525 {
10526 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10527 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10528 #ifndef CONFIG_64BIT
10529 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10530 #endif
10531 #ifdef CONFIG_SMP
10532 raw_spin_lock_init(&cfs_rq->removed.lock);
10533 #endif
10534 }
10535
10536 #ifdef CONFIG_FAIR_GROUP_SCHED
10537 static void task_set_group_fair(struct task_struct *p)
10538 {
10539 struct sched_entity *se = &p->se;
10540
10541 set_task_rq(p, task_cpu(p));
10542 se->depth = se->parent ? se->parent->depth + 1 : 0;
10543 }
10544
10545 static void task_move_group_fair(struct task_struct *p)
10546 {
10547 detach_task_cfs_rq(p);
10548 set_task_rq(p, task_cpu(p));
10549
10550 #ifdef CONFIG_SMP
10551 /* Tell se's cfs_rq has been changed -- migrated */
10552 p->se.avg.last_update_time = 0;
10553 #endif
10554 attach_task_cfs_rq(p);
10555 }
10556
10557 static void task_change_group_fair(struct task_struct *p, int type)
10558 {
10559 switch (type) {
10560 case TASK_SET_GROUP:
10561 task_set_group_fair(p);
10562 break;
10563
10564 case TASK_MOVE_GROUP:
10565 task_move_group_fair(p);
10566 break;
10567 }
10568 }
10569
10570 void free_fair_sched_group(struct task_group *tg)
10571 {
10572 int i;
10573
10574 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10575
10576 for_each_possible_cpu(i) {
10577 if (tg->cfs_rq)
10578 kfree(tg->cfs_rq[i]);
10579 if (tg->se)
10580 kfree(tg->se[i]);
10581 }
10582
10583 kfree(tg->cfs_rq);
10584 kfree(tg->se);
10585 }
10586
10587 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10588 {
10589 struct sched_entity *se;
10590 struct cfs_rq *cfs_rq;
10591 int i;
10592
10593 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10594 if (!tg->cfs_rq)
10595 goto err;
10596 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10597 if (!tg->se)
10598 goto err;
10599
10600 tg->shares = NICE_0_LOAD;
10601
10602 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10603
10604 for_each_possible_cpu(i) {
10605 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10606 GFP_KERNEL, cpu_to_node(i));
10607 if (!cfs_rq)
10608 goto err;
10609
10610 se = kzalloc_node(sizeof(struct sched_entity),
10611 GFP_KERNEL, cpu_to_node(i));
10612 if (!se)
10613 goto err_free_rq;
10614
10615 init_cfs_rq(cfs_rq);
10616 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10617 init_entity_runnable_average(se);
10618 }
10619
10620 return 1;
10621
10622 err_free_rq:
10623 kfree(cfs_rq);
10624 err:
10625 return 0;
10626 }
10627
10628 void online_fair_sched_group(struct task_group *tg)
10629 {
10630 struct sched_entity *se;
10631 struct rq_flags rf;
10632 struct rq *rq;
10633 int i;
10634
10635 for_each_possible_cpu(i) {
10636 rq = cpu_rq(i);
10637 se = tg->se[i];
10638 rq_lock_irq(rq, &rf);
10639 update_rq_clock(rq);
10640 attach_entity_cfs_rq(se);
10641 sync_throttle(tg, i);
10642 rq_unlock_irq(rq, &rf);
10643 }
10644 }
10645
10646 void unregister_fair_sched_group(struct task_group *tg)
10647 {
10648 unsigned long flags;
10649 struct rq *rq;
10650 int cpu;
10651
10652 for_each_possible_cpu(cpu) {
10653 if (tg->se[cpu])
10654 remove_entity_load_avg(tg->se[cpu]);
10655
10656 /*
10657 * Only empty task groups can be destroyed; so we can speculatively
10658 * check on_list without danger of it being re-added.
10659 */
10660 if (!tg->cfs_rq[cpu]->on_list)
10661 continue;
10662
10663 rq = cpu_rq(cpu);
10664
10665 raw_spin_lock_irqsave(&rq->lock, flags);
10666 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10667 raw_spin_unlock_irqrestore(&rq->lock, flags);
10668 }
10669 }
10670
10671 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10672 struct sched_entity *se, int cpu,
10673 struct sched_entity *parent)
10674 {
10675 struct rq *rq = cpu_rq(cpu);
10676
10677 cfs_rq->tg = tg;
10678 cfs_rq->rq = rq;
10679 init_cfs_rq_runtime(cfs_rq);
10680
10681 tg->cfs_rq[cpu] = cfs_rq;
10682 tg->se[cpu] = se;
10683
10684 /* se could be NULL for root_task_group */
10685 if (!se)
10686 return;
10687
10688 if (!parent) {
10689 se->cfs_rq = &rq->cfs;
10690 se->depth = 0;
10691 } else {
10692 se->cfs_rq = parent->my_q;
10693 se->depth = parent->depth + 1;
10694 }
10695
10696 se->my_q = cfs_rq;
10697 /* guarantee group entities always have weight */
10698 update_load_set(&se->load, NICE_0_LOAD);
10699 se->parent = parent;
10700 }
10701
10702 static DEFINE_MUTEX(shares_mutex);
10703
10704 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10705 {
10706 int i;
10707
10708 /*
10709 * We can't change the weight of the root cgroup.
10710 */
10711 if (!tg->se[0])
10712 return -EINVAL;
10713
10714 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10715
10716 mutex_lock(&shares_mutex);
10717 if (tg->shares == shares)
10718 goto done;
10719
10720 tg->shares = shares;
10721 for_each_possible_cpu(i) {
10722 struct rq *rq = cpu_rq(i);
10723 struct sched_entity *se = tg->se[i];
10724 struct rq_flags rf;
10725
10726 /* Propagate contribution to hierarchy */
10727 rq_lock_irqsave(rq, &rf);
10728 update_rq_clock(rq);
10729 for_each_sched_entity(se) {
10730 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10731 update_cfs_group(se);
10732 }
10733 rq_unlock_irqrestore(rq, &rf);
10734 }
10735
10736 done:
10737 mutex_unlock(&shares_mutex);
10738 return 0;
10739 }
10740 #else /* CONFIG_FAIR_GROUP_SCHED */
10741
10742 void free_fair_sched_group(struct task_group *tg) { }
10743
10744 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10745 {
10746 return 1;
10747 }
10748
10749 void online_fair_sched_group(struct task_group *tg) { }
10750
10751 void unregister_fair_sched_group(struct task_group *tg) { }
10752
10753 #endif /* CONFIG_FAIR_GROUP_SCHED */
10754
10755
10756 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10757 {
10758 struct sched_entity *se = &task->se;
10759 unsigned int rr_interval = 0;
10760
10761 /*
10762 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10763 * idle runqueue:
10764 */
10765 if (rq->cfs.load.weight)
10766 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10767
10768 return rr_interval;
10769 }
10770
10771 /*
10772 * All the scheduling class methods:
10773 */
10774 const struct sched_class fair_sched_class = {
10775 .next = &idle_sched_class,
10776 .enqueue_task = enqueue_task_fair,
10777 .dequeue_task = dequeue_task_fair,
10778 .yield_task = yield_task_fair,
10779 .yield_to_task = yield_to_task_fair,
10780
10781 .check_preempt_curr = check_preempt_wakeup,
10782
10783 .pick_next_task = __pick_next_task_fair,
10784 .put_prev_task = put_prev_task_fair,
10785 .set_next_task = set_next_task_fair,
10786
10787 #ifdef CONFIG_SMP
10788 .balance = balance_fair,
10789 .select_task_rq = select_task_rq_fair,
10790 .migrate_task_rq = migrate_task_rq_fair,
10791
10792 .rq_online = rq_online_fair,
10793 .rq_offline = rq_offline_fair,
10794
10795 .task_dead = task_dead_fair,
10796 .set_cpus_allowed = set_cpus_allowed_common,
10797 #endif
10798
10799 .task_tick = task_tick_fair,
10800 .task_fork = task_fork_fair,
10801
10802 .prio_changed = prio_changed_fair,
10803 .switched_from = switched_from_fair,
10804 .switched_to = switched_to_fair,
10805
10806 .get_rr_interval = get_rr_interval_fair,
10807
10808 .update_curr = update_curr_fair,
10809
10810 #ifdef CONFIG_FAIR_GROUP_SCHED
10811 .task_change_group = task_change_group_fair,
10812 #endif
10813
10814 #ifdef CONFIG_UCLAMP_TASK
10815 .uclamp_enabled = 1,
10816 #endif
10817 };
10818
10819 #ifdef CONFIG_SCHED_DEBUG
10820 void print_cfs_stats(struct seq_file *m, int cpu)
10821 {
10822 struct cfs_rq *cfs_rq, *pos;
10823
10824 rcu_read_lock();
10825 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10826 print_cfs_rq(m, cpu, cfs_rq);
10827 rcu_read_unlock();
10828 }
10829
10830 #ifdef CONFIG_NUMA_BALANCING
10831 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10832 {
10833 int node;
10834 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10835 struct numa_group *ng;
10836
10837 rcu_read_lock();
10838 ng = rcu_dereference(p->numa_group);
10839 for_each_online_node(node) {
10840 if (p->numa_faults) {
10841 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10842 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10843 }
10844 if (ng) {
10845 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10846 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
10847 }
10848 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10849 }
10850 rcu_read_unlock();
10851 }
10852 #endif /* CONFIG_NUMA_BALANCING */
10853 #endif /* CONFIG_SCHED_DEBUG */
10854
10855 __init void init_sched_fair_class(void)
10856 {
10857 #ifdef CONFIG_SMP
10858 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10859
10860 #ifdef CONFIG_NO_HZ_COMMON
10861 nohz.next_balance = jiffies;
10862 nohz.next_blocked = jiffies;
10863 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10864 #endif
10865 #endif /* SMP */
10866
10867 }
10868
10869 /*
10870 * Helper functions to facilitate extracting info from tracepoints.
10871 */
10872
10873 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10874 {
10875 #ifdef CONFIG_SMP
10876 return cfs_rq ? &cfs_rq->avg : NULL;
10877 #else
10878 return NULL;
10879 #endif
10880 }
10881 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10882
10883 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10884 {
10885 if (!cfs_rq) {
10886 if (str)
10887 strlcpy(str, "(null)", len);
10888 else
10889 return NULL;
10890 }
10891
10892 cfs_rq_tg_path(cfs_rq, str, len);
10893 return str;
10894 }
10895 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10896
10897 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10898 {
10899 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10900 }
10901 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10902
10903 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10904 {
10905 #ifdef CONFIG_SMP
10906 return rq ? &rq->avg_rt : NULL;
10907 #else
10908 return NULL;
10909 #endif
10910 }
10911 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10912
10913 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10914 {
10915 #ifdef CONFIG_SMP
10916 return rq ? &rq->avg_dl : NULL;
10917 #else
10918 return NULL;
10919 #endif
10920 }
10921 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10922
10923 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10924 {
10925 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10926 return rq ? &rq->avg_irq : NULL;
10927 #else
10928 return NULL;
10929 #endif
10930 }
10931 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10932
10933 int sched_trace_rq_cpu(struct rq *rq)
10934 {
10935 return rq ? cpu_of(rq) : -1;
10936 }
10937 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10938
10939 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10940 {
10941 #ifdef CONFIG_SMP
10942 return rd ? rd->span : NULL;
10943 #else
10944 return NULL;
10945 #endif
10946 }
10947 EXPORT_SYMBOL_GPL(sched_trace_rd_span);