]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched/fair.c
Merge tag 'asoc-v3.17-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32
183
184 static void __update_inv_weight(struct load_weight *lw)
185 {
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199 }
200
201 /*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214 {
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
217
218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
225 }
226
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
229
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
236 }
237
238
239 const struct sched_class fair_sched_class;
240
241 /**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249 {
250 return cfs_rq->rq;
251 }
252
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q)
255
256 static inline struct task_struct *task_of(struct sched_entity *se)
257 {
258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260 #endif
261 return container_of(se, struct task_struct, se);
262 }
263
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 return p->se.cfs_rq;
271 }
272
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 return se->cfs_rq;
277 }
278
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 return grp->my_q;
283 }
284
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
287
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 if (!cfs_rq->on_list) {
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
305
306 cfs_rq->on_list = 1;
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
309 }
310 }
311
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318 }
319
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq *
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 if (se->cfs_rq == pse->cfs_rq)
329 return se->cfs_rq;
330
331 return NULL;
332 }
333
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 return se->parent;
337 }
338
339 static void
340 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341 {
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369 }
370
371 #else /* !CONFIG_FAIR_GROUP_SCHED */
372
373 static inline struct task_struct *task_of(struct sched_entity *se)
374 {
375 return container_of(se, struct task_struct, se);
376 }
377
378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379 {
380 return container_of(cfs_rq, struct rq, cfs);
381 }
382
383 #define entity_is_task(se) 1
384
385 #define for_each_sched_entity(se) \
386 for (; se; se = NULL)
387
388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389 {
390 return &task_rq(p)->cfs;
391 }
392
393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394 {
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399 }
400
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403 {
404 return NULL;
405 }
406
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 {
413 }
414
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
418 static inline struct sched_entity *parent_entity(struct sched_entity *se)
419 {
420 return NULL;
421 }
422
423 static inline void
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 }
427
428 #endif /* CONFIG_FAIR_GROUP_SCHED */
429
430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432
433 /**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438 {
439 s64 delta = (s64)(vruntime - max_vruntime);
440 if (delta > 0)
441 max_vruntime = vruntime;
442
443 return max_vruntime;
444 }
445
446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
447 {
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453 }
454
455 static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457 {
458 return (s64)(a->vruntime - b->vruntime) < 0;
459 }
460
461 static void update_min_vruntime(struct cfs_rq *cfs_rq)
462 {
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
473 if (!cfs_rq->curr)
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
479 /* ensure we never gain time by being placed backwards. */
480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 #ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484 #endif
485 }
486
487 /*
488 * Enqueue an entity into the rb-tree:
489 */
490 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 {
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
507 if (entity_before(se, entry)) {
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
519 if (leftmost)
520 cfs_rq->rb_leftmost = &se->run_node;
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525
526 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527 {
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
533 }
534
535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
536 }
537
538 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539 {
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
546 }
547
548 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549 {
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556 }
557
558 #ifdef CONFIG_SCHED_DEBUG
559 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560 {
561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562
563 if (!last)
564 return NULL;
565
566 return rb_entry(last, struct sched_entity, run_node);
567 }
568
569 /**************************************************************
570 * Scheduling class statistics methods:
571 */
572
573 int sched_proc_update_handler(struct ctl_table *table, int write,
574 void __user *buffer, size_t *lenp,
575 loff_t *ppos)
576 {
577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578 int factor = get_update_sysctl_factor();
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
586 #define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
591 #undef WRT_SYSCTL
592
593 return 0;
594 }
595 #endif
596
597 /*
598 * delta /= w
599 */
600 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601 {
602 if (unlikely(se->load.weight != NICE_0_LOAD))
603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604
605 return delta;
606 }
607
608 /*
609 * The idea is to set a period in which each task runs once.
610 *
611 * When there are too many tasks (sched_nr_latency) we have to stretch
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
616 static u64 __sched_period(unsigned long nr_running)
617 {
618 u64 period = sysctl_sched_latency;
619 unsigned long nr_latency = sched_nr_latency;
620
621 if (unlikely(nr_running > nr_latency)) {
622 period = sysctl_sched_min_granularity;
623 period *= nr_running;
624 }
625
626 return period;
627 }
628
629 /*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
633 * s = p*P[w/rw]
634 */
635 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638
639 for_each_sched_entity(se) {
640 struct load_weight *load;
641 struct load_weight lw;
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
645
646 if (unlikely(!se->on_rq)) {
647 lw = cfs_rq->load;
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
652 slice = __calc_delta(slice, se->load.weight, load);
653 }
654 return slice;
655 }
656
657 /*
658 * We calculate the vruntime slice of a to-be-inserted task.
659 *
660 * vs = s/w
661 */
662 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663 {
664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 }
666
667 #ifdef CONFIG_SMP
668 static unsigned long task_h_load(struct task_struct *p);
669
670 static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672 /* Give new task start runnable values to heavy its load in infant time */
673 void init_task_runnable_average(struct task_struct *p)
674 {
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682 }
683 #else
684 void init_task_runnable_average(struct task_struct *p)
685 {
686 }
687 #endif
688
689 /*
690 * Update the current task's runtime statistics.
691 */
692 static void update_curr(struct cfs_rq *cfs_rq)
693 {
694 struct sched_entity *curr = cfs_rq->curr;
695 u64 now = rq_clock_task(rq_of(cfs_rq));
696 u64 delta_exec;
697
698 if (unlikely(!curr))
699 return;
700
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
703 return;
704
705 curr->exec_start = now;
706
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720 cpuacct_charge(curtask, delta_exec);
721 account_group_exec_runtime(curtask, delta_exec);
722 }
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
725 }
726
727 static inline void
728 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 }
732
733 /*
734 * Task is being enqueued - update stats:
735 */
736 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
742 if (se != cfs_rq->curr)
743 update_stats_wait_start(cfs_rq, se);
744 }
745
746 static void
747 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748 {
749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 #ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 }
759 #endif
760 schedstat_set(se->statistics.wait_start, 0);
761 }
762
763 static inline void
764 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 {
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
770 if (se != cfs_rq->curr)
771 update_stats_wait_end(cfs_rq, se);
772 }
773
774 /*
775 * We are picking a new current task - update its stats:
776 */
777 static inline void
778 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 /*
781 * We are starting a new run period:
782 */
783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 }
785
786 /**************************************************
787 * Scheduling class queueing methods:
788 */
789
790 #ifdef CONFIG_NUMA_BALANCING
791 /*
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
795 */
796 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798
799 /* Portion of address space to scan in MB */
800 unsigned int sysctl_numa_balancing_scan_size = 256;
801
802 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803 unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
805 static unsigned int task_nr_scan_windows(struct task_struct *p)
806 {
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822 }
823
824 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825 #define MAX_SCAN_WINDOW 2560
826
827 static unsigned int task_scan_min(struct task_struct *p)
828 {
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838 }
839
840 static unsigned int task_scan_max(struct task_struct *p)
841 {
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848 }
849
850 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851 {
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854 }
855
856 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857 {
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860 }
861
862 struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
867 pid_t gid;
868 struct list_head task_list;
869
870 struct rcu_head rcu;
871 nodemask_t active_nodes;
872 unsigned long total_faults;
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
878 unsigned long *faults_cpu;
879 unsigned long faults[0];
880 };
881
882 /* Shared or private faults. */
883 #define NR_NUMA_HINT_FAULT_TYPES 2
884
885 /* Memory and CPU locality */
886 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888 /* Averaged statistics, and temporary buffers. */
889 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
891 pid_t task_numa_group_id(struct task_struct *p)
892 {
893 return p->numa_group ? p->numa_group->gid : 0;
894 }
895
896 static inline int task_faults_idx(int nid, int priv)
897 {
898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 }
900
901 static inline unsigned long task_faults(struct task_struct *p, int nid)
902 {
903 if (!p->numa_faults_memory)
904 return 0;
905
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
908 }
909
910 static inline unsigned long group_faults(struct task_struct *p, int nid)
911 {
912 if (!p->numa_group)
913 return 0;
914
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
917 }
918
919 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920 {
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923 }
924
925 /*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931 static inline unsigned long task_weight(struct task_struct *p, int nid)
932 {
933 unsigned long total_faults;
934
935 if (!p->numa_faults_memory)
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944 }
945
946 static inline unsigned long group_weight(struct task_struct *p, int nid)
947 {
948 if (!p->numa_group || !p->numa_group->total_faults)
949 return 0;
950
951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 }
953
954 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956 {
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015 }
1016
1017 static unsigned long weighted_cpuload(const int cpu);
1018 static unsigned long source_load(int cpu, int type);
1019 static unsigned long target_load(int cpu, int type);
1020 static unsigned long capacity_of(int cpu);
1021 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
1023 /* Cached statistics for all CPUs within a node */
1024 struct numa_stats {
1025 unsigned long nr_running;
1026 unsigned long load;
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long compute_capacity;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long task_capacity;
1033 int has_free_capacity;
1034 };
1035
1036 /*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039 static void update_numa_stats(struct numa_stats *ns, int nid)
1040 {
1041 int cpu, cpus = 0;
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->compute_capacity += capacity_of(cpu);
1050
1051 cpus++;
1052 }
1053
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_free_capacity, or we'll detect a huge
1060 * imbalance and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
1065 ns->task_capacity =
1066 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1067 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1068 }
1069
1070 struct task_numa_env {
1071 struct task_struct *p;
1072
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
1075
1076 struct numa_stats src_stats, dst_stats;
1077
1078 int imbalance_pct;
1079
1080 struct task_struct *best_task;
1081 long best_imp;
1082 int best_cpu;
1083 };
1084
1085 static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087 {
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096 }
1097
1098 static bool load_too_imbalanced(long src_load, long dst_load,
1099 struct task_numa_env *env)
1100 {
1101 long imb, old_imb;
1102 long orig_src_load, orig_dst_load;
1103 long src_capacity, dst_capacity;
1104
1105 /*
1106 * The load is corrected for the CPU capacity available on each node.
1107 *
1108 * src_load dst_load
1109 * ------------ vs ---------
1110 * src_capacity dst_capacity
1111 */
1112 src_capacity = env->src_stats.compute_capacity;
1113 dst_capacity = env->dst_stats.compute_capacity;
1114
1115 /* We care about the slope of the imbalance, not the direction. */
1116 if (dst_load < src_load)
1117 swap(dst_load, src_load);
1118
1119 /* Is the difference below the threshold? */
1120 imb = dst_load * src_capacity * 100 -
1121 src_load * dst_capacity * env->imbalance_pct;
1122 if (imb <= 0)
1123 return false;
1124
1125 /*
1126 * The imbalance is above the allowed threshold.
1127 * Compare it with the old imbalance.
1128 */
1129 orig_src_load = env->src_stats.load;
1130 orig_dst_load = env->dst_stats.load;
1131
1132 if (orig_dst_load < orig_src_load)
1133 swap(orig_dst_load, orig_src_load);
1134
1135 old_imb = orig_dst_load * src_capacity * 100 -
1136 orig_src_load * dst_capacity * env->imbalance_pct;
1137
1138 /* Would this change make things worse? */
1139 return (imb > old_imb);
1140 }
1141
1142 /*
1143 * This checks if the overall compute and NUMA accesses of the system would
1144 * be improved if the source tasks was migrated to the target dst_cpu taking
1145 * into account that it might be best if task running on the dst_cpu should
1146 * be exchanged with the source task
1147 */
1148 static void task_numa_compare(struct task_numa_env *env,
1149 long taskimp, long groupimp)
1150 {
1151 struct rq *src_rq = cpu_rq(env->src_cpu);
1152 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1153 struct task_struct *cur;
1154 long src_load, dst_load;
1155 long load;
1156 long imp = env->p->numa_group ? groupimp : taskimp;
1157 long moveimp = imp;
1158
1159 rcu_read_lock();
1160 cur = ACCESS_ONCE(dst_rq->curr);
1161 if (cur->pid == 0) /* idle */
1162 cur = NULL;
1163
1164 /*
1165 * "imp" is the fault differential for the source task between the
1166 * source and destination node. Calculate the total differential for
1167 * the source task and potential destination task. The more negative
1168 * the value is, the more rmeote accesses that would be expected to
1169 * be incurred if the tasks were swapped.
1170 */
1171 if (cur) {
1172 /* Skip this swap candidate if cannot move to the source cpu */
1173 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1174 goto unlock;
1175
1176 /*
1177 * If dst and source tasks are in the same NUMA group, or not
1178 * in any group then look only at task weights.
1179 */
1180 if (cur->numa_group == env->p->numa_group) {
1181 imp = taskimp + task_weight(cur, env->src_nid) -
1182 task_weight(cur, env->dst_nid);
1183 /*
1184 * Add some hysteresis to prevent swapping the
1185 * tasks within a group over tiny differences.
1186 */
1187 if (cur->numa_group)
1188 imp -= imp/16;
1189 } else {
1190 /*
1191 * Compare the group weights. If a task is all by
1192 * itself (not part of a group), use the task weight
1193 * instead.
1194 */
1195 if (cur->numa_group)
1196 imp += group_weight(cur, env->src_nid) -
1197 group_weight(cur, env->dst_nid);
1198 else
1199 imp += task_weight(cur, env->src_nid) -
1200 task_weight(cur, env->dst_nid);
1201 }
1202 }
1203
1204 if (imp <= env->best_imp && moveimp <= env->best_imp)
1205 goto unlock;
1206
1207 if (!cur) {
1208 /* Is there capacity at our destination? */
1209 if (env->src_stats.has_free_capacity &&
1210 !env->dst_stats.has_free_capacity)
1211 goto unlock;
1212
1213 goto balance;
1214 }
1215
1216 /* Balance doesn't matter much if we're running a task per cpu */
1217 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1218 dst_rq->nr_running == 1)
1219 goto assign;
1220
1221 /*
1222 * In the overloaded case, try and keep the load balanced.
1223 */
1224 balance:
1225 load = task_h_load(env->p);
1226 dst_load = env->dst_stats.load + load;
1227 src_load = env->src_stats.load - load;
1228
1229 if (moveimp > imp && moveimp > env->best_imp) {
1230 /*
1231 * If the improvement from just moving env->p direction is
1232 * better than swapping tasks around, check if a move is
1233 * possible. Store a slightly smaller score than moveimp,
1234 * so an actually idle CPU will win.
1235 */
1236 if (!load_too_imbalanced(src_load, dst_load, env)) {
1237 imp = moveimp - 1;
1238 cur = NULL;
1239 goto assign;
1240 }
1241 }
1242
1243 if (imp <= env->best_imp)
1244 goto unlock;
1245
1246 if (cur) {
1247 load = task_h_load(cur);
1248 dst_load -= load;
1249 src_load += load;
1250 }
1251
1252 if (load_too_imbalanced(src_load, dst_load, env))
1253 goto unlock;
1254
1255 assign:
1256 task_numa_assign(env, cur, imp);
1257 unlock:
1258 rcu_read_unlock();
1259 }
1260
1261 static void task_numa_find_cpu(struct task_numa_env *env,
1262 long taskimp, long groupimp)
1263 {
1264 int cpu;
1265
1266 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1267 /* Skip this CPU if the source task cannot migrate */
1268 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1269 continue;
1270
1271 env->dst_cpu = cpu;
1272 task_numa_compare(env, taskimp, groupimp);
1273 }
1274 }
1275
1276 static int task_numa_migrate(struct task_struct *p)
1277 {
1278 struct task_numa_env env = {
1279 .p = p,
1280
1281 .src_cpu = task_cpu(p),
1282 .src_nid = task_node(p),
1283
1284 .imbalance_pct = 112,
1285
1286 .best_task = NULL,
1287 .best_imp = 0,
1288 .best_cpu = -1
1289 };
1290 struct sched_domain *sd;
1291 unsigned long taskweight, groupweight;
1292 int nid, ret;
1293 long taskimp, groupimp;
1294
1295 /*
1296 * Pick the lowest SD_NUMA domain, as that would have the smallest
1297 * imbalance and would be the first to start moving tasks about.
1298 *
1299 * And we want to avoid any moving of tasks about, as that would create
1300 * random movement of tasks -- counter the numa conditions we're trying
1301 * to satisfy here.
1302 */
1303 rcu_read_lock();
1304 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1305 if (sd)
1306 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1307 rcu_read_unlock();
1308
1309 /*
1310 * Cpusets can break the scheduler domain tree into smaller
1311 * balance domains, some of which do not cross NUMA boundaries.
1312 * Tasks that are "trapped" in such domains cannot be migrated
1313 * elsewhere, so there is no point in (re)trying.
1314 */
1315 if (unlikely(!sd)) {
1316 p->numa_preferred_nid = task_node(p);
1317 return -EINVAL;
1318 }
1319
1320 taskweight = task_weight(p, env.src_nid);
1321 groupweight = group_weight(p, env.src_nid);
1322 update_numa_stats(&env.src_stats, env.src_nid);
1323 env.dst_nid = p->numa_preferred_nid;
1324 taskimp = task_weight(p, env.dst_nid) - taskweight;
1325 groupimp = group_weight(p, env.dst_nid) - groupweight;
1326 update_numa_stats(&env.dst_stats, env.dst_nid);
1327
1328 /* Try to find a spot on the preferred nid. */
1329 task_numa_find_cpu(&env, taskimp, groupimp);
1330
1331 /* No space available on the preferred nid. Look elsewhere. */
1332 if (env.best_cpu == -1) {
1333 for_each_online_node(nid) {
1334 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1335 continue;
1336
1337 /* Only consider nodes where both task and groups benefit */
1338 taskimp = task_weight(p, nid) - taskweight;
1339 groupimp = group_weight(p, nid) - groupweight;
1340 if (taskimp < 0 && groupimp < 0)
1341 continue;
1342
1343 env.dst_nid = nid;
1344 update_numa_stats(&env.dst_stats, env.dst_nid);
1345 task_numa_find_cpu(&env, taskimp, groupimp);
1346 }
1347 }
1348
1349 /*
1350 * If the task is part of a workload that spans multiple NUMA nodes,
1351 * and is migrating into one of the workload's active nodes, remember
1352 * this node as the task's preferred numa node, so the workload can
1353 * settle down.
1354 * A task that migrated to a second choice node will be better off
1355 * trying for a better one later. Do not set the preferred node here.
1356 */
1357 if (p->numa_group) {
1358 if (env.best_cpu == -1)
1359 nid = env.src_nid;
1360 else
1361 nid = env.dst_nid;
1362
1363 if (node_isset(nid, p->numa_group->active_nodes))
1364 sched_setnuma(p, env.dst_nid);
1365 }
1366
1367 /* No better CPU than the current one was found. */
1368 if (env.best_cpu == -1)
1369 return -EAGAIN;
1370
1371 /*
1372 * Reset the scan period if the task is being rescheduled on an
1373 * alternative node to recheck if the tasks is now properly placed.
1374 */
1375 p->numa_scan_period = task_scan_min(p);
1376
1377 if (env.best_task == NULL) {
1378 ret = migrate_task_to(p, env.best_cpu);
1379 if (ret != 0)
1380 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1381 return ret;
1382 }
1383
1384 ret = migrate_swap(p, env.best_task);
1385 if (ret != 0)
1386 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1387 put_task_struct(env.best_task);
1388 return ret;
1389 }
1390
1391 /* Attempt to migrate a task to a CPU on the preferred node. */
1392 static void numa_migrate_preferred(struct task_struct *p)
1393 {
1394 unsigned long interval = HZ;
1395
1396 /* This task has no NUMA fault statistics yet */
1397 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1398 return;
1399
1400 /* Periodically retry migrating the task to the preferred node */
1401 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1402 p->numa_migrate_retry = jiffies + interval;
1403
1404 /* Success if task is already running on preferred CPU */
1405 if (task_node(p) == p->numa_preferred_nid)
1406 return;
1407
1408 /* Otherwise, try migrate to a CPU on the preferred node */
1409 task_numa_migrate(p);
1410 }
1411
1412 /*
1413 * Find the nodes on which the workload is actively running. We do this by
1414 * tracking the nodes from which NUMA hinting faults are triggered. This can
1415 * be different from the set of nodes where the workload's memory is currently
1416 * located.
1417 *
1418 * The bitmask is used to make smarter decisions on when to do NUMA page
1419 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1420 * are added when they cause over 6/16 of the maximum number of faults, but
1421 * only removed when they drop below 3/16.
1422 */
1423 static void update_numa_active_node_mask(struct numa_group *numa_group)
1424 {
1425 unsigned long faults, max_faults = 0;
1426 int nid;
1427
1428 for_each_online_node(nid) {
1429 faults = group_faults_cpu(numa_group, nid);
1430 if (faults > max_faults)
1431 max_faults = faults;
1432 }
1433
1434 for_each_online_node(nid) {
1435 faults = group_faults_cpu(numa_group, nid);
1436 if (!node_isset(nid, numa_group->active_nodes)) {
1437 if (faults > max_faults * 6 / 16)
1438 node_set(nid, numa_group->active_nodes);
1439 } else if (faults < max_faults * 3 / 16)
1440 node_clear(nid, numa_group->active_nodes);
1441 }
1442 }
1443
1444 /*
1445 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1446 * increments. The more local the fault statistics are, the higher the scan
1447 * period will be for the next scan window. If local/(local+remote) ratio is
1448 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1449 * the scan period will decrease. Aim for 70% local accesses.
1450 */
1451 #define NUMA_PERIOD_SLOTS 10
1452 #define NUMA_PERIOD_THRESHOLD 7
1453
1454 /*
1455 * Increase the scan period (slow down scanning) if the majority of
1456 * our memory is already on our local node, or if the majority of
1457 * the page accesses are shared with other processes.
1458 * Otherwise, decrease the scan period.
1459 */
1460 static void update_task_scan_period(struct task_struct *p,
1461 unsigned long shared, unsigned long private)
1462 {
1463 unsigned int period_slot;
1464 int ratio;
1465 int diff;
1466
1467 unsigned long remote = p->numa_faults_locality[0];
1468 unsigned long local = p->numa_faults_locality[1];
1469
1470 /*
1471 * If there were no record hinting faults then either the task is
1472 * completely idle or all activity is areas that are not of interest
1473 * to automatic numa balancing. Scan slower
1474 */
1475 if (local + shared == 0) {
1476 p->numa_scan_period = min(p->numa_scan_period_max,
1477 p->numa_scan_period << 1);
1478
1479 p->mm->numa_next_scan = jiffies +
1480 msecs_to_jiffies(p->numa_scan_period);
1481
1482 return;
1483 }
1484
1485 /*
1486 * Prepare to scale scan period relative to the current period.
1487 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1488 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1489 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1490 */
1491 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1492 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1493 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1494 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1495 if (!slot)
1496 slot = 1;
1497 diff = slot * period_slot;
1498 } else {
1499 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1500
1501 /*
1502 * Scale scan rate increases based on sharing. There is an
1503 * inverse relationship between the degree of sharing and
1504 * the adjustment made to the scanning period. Broadly
1505 * speaking the intent is that there is little point
1506 * scanning faster if shared accesses dominate as it may
1507 * simply bounce migrations uselessly
1508 */
1509 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1510 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1511 }
1512
1513 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1514 task_scan_min(p), task_scan_max(p));
1515 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1516 }
1517
1518 /*
1519 * Get the fraction of time the task has been running since the last
1520 * NUMA placement cycle. The scheduler keeps similar statistics, but
1521 * decays those on a 32ms period, which is orders of magnitude off
1522 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1523 * stats only if the task is so new there are no NUMA statistics yet.
1524 */
1525 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1526 {
1527 u64 runtime, delta, now;
1528 /* Use the start of this time slice to avoid calculations. */
1529 now = p->se.exec_start;
1530 runtime = p->se.sum_exec_runtime;
1531
1532 if (p->last_task_numa_placement) {
1533 delta = runtime - p->last_sum_exec_runtime;
1534 *period = now - p->last_task_numa_placement;
1535 } else {
1536 delta = p->se.avg.runnable_avg_sum;
1537 *period = p->se.avg.runnable_avg_period;
1538 }
1539
1540 p->last_sum_exec_runtime = runtime;
1541 p->last_task_numa_placement = now;
1542
1543 return delta;
1544 }
1545
1546 static void task_numa_placement(struct task_struct *p)
1547 {
1548 int seq, nid, max_nid = -1, max_group_nid = -1;
1549 unsigned long max_faults = 0, max_group_faults = 0;
1550 unsigned long fault_types[2] = { 0, 0 };
1551 unsigned long total_faults;
1552 u64 runtime, period;
1553 spinlock_t *group_lock = NULL;
1554
1555 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1556 if (p->numa_scan_seq == seq)
1557 return;
1558 p->numa_scan_seq = seq;
1559 p->numa_scan_period_max = task_scan_max(p);
1560
1561 total_faults = p->numa_faults_locality[0] +
1562 p->numa_faults_locality[1];
1563 runtime = numa_get_avg_runtime(p, &period);
1564
1565 /* If the task is part of a group prevent parallel updates to group stats */
1566 if (p->numa_group) {
1567 group_lock = &p->numa_group->lock;
1568 spin_lock_irq(group_lock);
1569 }
1570
1571 /* Find the node with the highest number of faults */
1572 for_each_online_node(nid) {
1573 unsigned long faults = 0, group_faults = 0;
1574 int priv, i;
1575
1576 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1577 long diff, f_diff, f_weight;
1578
1579 i = task_faults_idx(nid, priv);
1580
1581 /* Decay existing window, copy faults since last scan */
1582 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1583 fault_types[priv] += p->numa_faults_buffer_memory[i];
1584 p->numa_faults_buffer_memory[i] = 0;
1585
1586 /*
1587 * Normalize the faults_from, so all tasks in a group
1588 * count according to CPU use, instead of by the raw
1589 * number of faults. Tasks with little runtime have
1590 * little over-all impact on throughput, and thus their
1591 * faults are less important.
1592 */
1593 f_weight = div64_u64(runtime << 16, period + 1);
1594 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1595 (total_faults + 1);
1596 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1597 p->numa_faults_buffer_cpu[i] = 0;
1598
1599 p->numa_faults_memory[i] += diff;
1600 p->numa_faults_cpu[i] += f_diff;
1601 faults += p->numa_faults_memory[i];
1602 p->total_numa_faults += diff;
1603 if (p->numa_group) {
1604 /* safe because we can only change our own group */
1605 p->numa_group->faults[i] += diff;
1606 p->numa_group->faults_cpu[i] += f_diff;
1607 p->numa_group->total_faults += diff;
1608 group_faults += p->numa_group->faults[i];
1609 }
1610 }
1611
1612 if (faults > max_faults) {
1613 max_faults = faults;
1614 max_nid = nid;
1615 }
1616
1617 if (group_faults > max_group_faults) {
1618 max_group_faults = group_faults;
1619 max_group_nid = nid;
1620 }
1621 }
1622
1623 update_task_scan_period(p, fault_types[0], fault_types[1]);
1624
1625 if (p->numa_group) {
1626 update_numa_active_node_mask(p->numa_group);
1627 spin_unlock_irq(group_lock);
1628 max_nid = max_group_nid;
1629 }
1630
1631 if (max_faults) {
1632 /* Set the new preferred node */
1633 if (max_nid != p->numa_preferred_nid)
1634 sched_setnuma(p, max_nid);
1635
1636 if (task_node(p) != p->numa_preferred_nid)
1637 numa_migrate_preferred(p);
1638 }
1639 }
1640
1641 static inline int get_numa_group(struct numa_group *grp)
1642 {
1643 return atomic_inc_not_zero(&grp->refcount);
1644 }
1645
1646 static inline void put_numa_group(struct numa_group *grp)
1647 {
1648 if (atomic_dec_and_test(&grp->refcount))
1649 kfree_rcu(grp, rcu);
1650 }
1651
1652 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1653 int *priv)
1654 {
1655 struct numa_group *grp, *my_grp;
1656 struct task_struct *tsk;
1657 bool join = false;
1658 int cpu = cpupid_to_cpu(cpupid);
1659 int i;
1660
1661 if (unlikely(!p->numa_group)) {
1662 unsigned int size = sizeof(struct numa_group) +
1663 4*nr_node_ids*sizeof(unsigned long);
1664
1665 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1666 if (!grp)
1667 return;
1668
1669 atomic_set(&grp->refcount, 1);
1670 spin_lock_init(&grp->lock);
1671 INIT_LIST_HEAD(&grp->task_list);
1672 grp->gid = p->pid;
1673 /* Second half of the array tracks nids where faults happen */
1674 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1675 nr_node_ids;
1676
1677 node_set(task_node(current), grp->active_nodes);
1678
1679 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1680 grp->faults[i] = p->numa_faults_memory[i];
1681
1682 grp->total_faults = p->total_numa_faults;
1683
1684 list_add(&p->numa_entry, &grp->task_list);
1685 grp->nr_tasks++;
1686 rcu_assign_pointer(p->numa_group, grp);
1687 }
1688
1689 rcu_read_lock();
1690 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1691
1692 if (!cpupid_match_pid(tsk, cpupid))
1693 goto no_join;
1694
1695 grp = rcu_dereference(tsk->numa_group);
1696 if (!grp)
1697 goto no_join;
1698
1699 my_grp = p->numa_group;
1700 if (grp == my_grp)
1701 goto no_join;
1702
1703 /*
1704 * Only join the other group if its bigger; if we're the bigger group,
1705 * the other task will join us.
1706 */
1707 if (my_grp->nr_tasks > grp->nr_tasks)
1708 goto no_join;
1709
1710 /*
1711 * Tie-break on the grp address.
1712 */
1713 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1714 goto no_join;
1715
1716 /* Always join threads in the same process. */
1717 if (tsk->mm == current->mm)
1718 join = true;
1719
1720 /* Simple filter to avoid false positives due to PID collisions */
1721 if (flags & TNF_SHARED)
1722 join = true;
1723
1724 /* Update priv based on whether false sharing was detected */
1725 *priv = !join;
1726
1727 if (join && !get_numa_group(grp))
1728 goto no_join;
1729
1730 rcu_read_unlock();
1731
1732 if (!join)
1733 return;
1734
1735 BUG_ON(irqs_disabled());
1736 double_lock_irq(&my_grp->lock, &grp->lock);
1737
1738 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1739 my_grp->faults[i] -= p->numa_faults_memory[i];
1740 grp->faults[i] += p->numa_faults_memory[i];
1741 }
1742 my_grp->total_faults -= p->total_numa_faults;
1743 grp->total_faults += p->total_numa_faults;
1744
1745 list_move(&p->numa_entry, &grp->task_list);
1746 my_grp->nr_tasks--;
1747 grp->nr_tasks++;
1748
1749 spin_unlock(&my_grp->lock);
1750 spin_unlock_irq(&grp->lock);
1751
1752 rcu_assign_pointer(p->numa_group, grp);
1753
1754 put_numa_group(my_grp);
1755 return;
1756
1757 no_join:
1758 rcu_read_unlock();
1759 return;
1760 }
1761
1762 void task_numa_free(struct task_struct *p)
1763 {
1764 struct numa_group *grp = p->numa_group;
1765 void *numa_faults = p->numa_faults_memory;
1766 unsigned long flags;
1767 int i;
1768
1769 if (grp) {
1770 spin_lock_irqsave(&grp->lock, flags);
1771 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1772 grp->faults[i] -= p->numa_faults_memory[i];
1773 grp->total_faults -= p->total_numa_faults;
1774
1775 list_del(&p->numa_entry);
1776 grp->nr_tasks--;
1777 spin_unlock_irqrestore(&grp->lock, flags);
1778 rcu_assign_pointer(p->numa_group, NULL);
1779 put_numa_group(grp);
1780 }
1781
1782 p->numa_faults_memory = NULL;
1783 p->numa_faults_buffer_memory = NULL;
1784 p->numa_faults_cpu= NULL;
1785 p->numa_faults_buffer_cpu = NULL;
1786 kfree(numa_faults);
1787 }
1788
1789 /*
1790 * Got a PROT_NONE fault for a page on @node.
1791 */
1792 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1793 {
1794 struct task_struct *p = current;
1795 bool migrated = flags & TNF_MIGRATED;
1796 int cpu_node = task_node(current);
1797 int local = !!(flags & TNF_FAULT_LOCAL);
1798 int priv;
1799
1800 if (!numabalancing_enabled)
1801 return;
1802
1803 /* for example, ksmd faulting in a user's mm */
1804 if (!p->mm)
1805 return;
1806
1807 /* Do not worry about placement if exiting */
1808 if (p->state == TASK_DEAD)
1809 return;
1810
1811 /* Allocate buffer to track faults on a per-node basis */
1812 if (unlikely(!p->numa_faults_memory)) {
1813 int size = sizeof(*p->numa_faults_memory) *
1814 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1815
1816 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1817 if (!p->numa_faults_memory)
1818 return;
1819
1820 BUG_ON(p->numa_faults_buffer_memory);
1821 /*
1822 * The averaged statistics, shared & private, memory & cpu,
1823 * occupy the first half of the array. The second half of the
1824 * array is for current counters, which are averaged into the
1825 * first set by task_numa_placement.
1826 */
1827 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1828 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1829 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1830 p->total_numa_faults = 0;
1831 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1832 }
1833
1834 /*
1835 * First accesses are treated as private, otherwise consider accesses
1836 * to be private if the accessing pid has not changed
1837 */
1838 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1839 priv = 1;
1840 } else {
1841 priv = cpupid_match_pid(p, last_cpupid);
1842 if (!priv && !(flags & TNF_NO_GROUP))
1843 task_numa_group(p, last_cpupid, flags, &priv);
1844 }
1845
1846 /*
1847 * If a workload spans multiple NUMA nodes, a shared fault that
1848 * occurs wholly within the set of nodes that the workload is
1849 * actively using should be counted as local. This allows the
1850 * scan rate to slow down when a workload has settled down.
1851 */
1852 if (!priv && !local && p->numa_group &&
1853 node_isset(cpu_node, p->numa_group->active_nodes) &&
1854 node_isset(mem_node, p->numa_group->active_nodes))
1855 local = 1;
1856
1857 task_numa_placement(p);
1858
1859 /*
1860 * Retry task to preferred node migration periodically, in case it
1861 * case it previously failed, or the scheduler moved us.
1862 */
1863 if (time_after(jiffies, p->numa_migrate_retry))
1864 numa_migrate_preferred(p);
1865
1866 if (migrated)
1867 p->numa_pages_migrated += pages;
1868
1869 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1870 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1871 p->numa_faults_locality[local] += pages;
1872 }
1873
1874 static void reset_ptenuma_scan(struct task_struct *p)
1875 {
1876 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1877 p->mm->numa_scan_offset = 0;
1878 }
1879
1880 /*
1881 * The expensive part of numa migration is done from task_work context.
1882 * Triggered from task_tick_numa().
1883 */
1884 void task_numa_work(struct callback_head *work)
1885 {
1886 unsigned long migrate, next_scan, now = jiffies;
1887 struct task_struct *p = current;
1888 struct mm_struct *mm = p->mm;
1889 struct vm_area_struct *vma;
1890 unsigned long start, end;
1891 unsigned long nr_pte_updates = 0;
1892 long pages;
1893
1894 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1895
1896 work->next = work; /* protect against double add */
1897 /*
1898 * Who cares about NUMA placement when they're dying.
1899 *
1900 * NOTE: make sure not to dereference p->mm before this check,
1901 * exit_task_work() happens _after_ exit_mm() so we could be called
1902 * without p->mm even though we still had it when we enqueued this
1903 * work.
1904 */
1905 if (p->flags & PF_EXITING)
1906 return;
1907
1908 if (!mm->numa_next_scan) {
1909 mm->numa_next_scan = now +
1910 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1911 }
1912
1913 /*
1914 * Enforce maximal scan/migration frequency..
1915 */
1916 migrate = mm->numa_next_scan;
1917 if (time_before(now, migrate))
1918 return;
1919
1920 if (p->numa_scan_period == 0) {
1921 p->numa_scan_period_max = task_scan_max(p);
1922 p->numa_scan_period = task_scan_min(p);
1923 }
1924
1925 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1926 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1927 return;
1928
1929 /*
1930 * Delay this task enough that another task of this mm will likely win
1931 * the next time around.
1932 */
1933 p->node_stamp += 2 * TICK_NSEC;
1934
1935 start = mm->numa_scan_offset;
1936 pages = sysctl_numa_balancing_scan_size;
1937 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1938 if (!pages)
1939 return;
1940
1941 down_read(&mm->mmap_sem);
1942 vma = find_vma(mm, start);
1943 if (!vma) {
1944 reset_ptenuma_scan(p);
1945 start = 0;
1946 vma = mm->mmap;
1947 }
1948 for (; vma; vma = vma->vm_next) {
1949 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1950 continue;
1951
1952 /*
1953 * Shared library pages mapped by multiple processes are not
1954 * migrated as it is expected they are cache replicated. Avoid
1955 * hinting faults in read-only file-backed mappings or the vdso
1956 * as migrating the pages will be of marginal benefit.
1957 */
1958 if (!vma->vm_mm ||
1959 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1960 continue;
1961
1962 /*
1963 * Skip inaccessible VMAs to avoid any confusion between
1964 * PROT_NONE and NUMA hinting ptes
1965 */
1966 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1967 continue;
1968
1969 do {
1970 start = max(start, vma->vm_start);
1971 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1972 end = min(end, vma->vm_end);
1973 nr_pte_updates += change_prot_numa(vma, start, end);
1974
1975 /*
1976 * Scan sysctl_numa_balancing_scan_size but ensure that
1977 * at least one PTE is updated so that unused virtual
1978 * address space is quickly skipped.
1979 */
1980 if (nr_pte_updates)
1981 pages -= (end - start) >> PAGE_SHIFT;
1982
1983 start = end;
1984 if (pages <= 0)
1985 goto out;
1986
1987 cond_resched();
1988 } while (end != vma->vm_end);
1989 }
1990
1991 out:
1992 /*
1993 * It is possible to reach the end of the VMA list but the last few
1994 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1995 * would find the !migratable VMA on the next scan but not reset the
1996 * scanner to the start so check it now.
1997 */
1998 if (vma)
1999 mm->numa_scan_offset = start;
2000 else
2001 reset_ptenuma_scan(p);
2002 up_read(&mm->mmap_sem);
2003 }
2004
2005 /*
2006 * Drive the periodic memory faults..
2007 */
2008 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2009 {
2010 struct callback_head *work = &curr->numa_work;
2011 u64 period, now;
2012
2013 /*
2014 * We don't care about NUMA placement if we don't have memory.
2015 */
2016 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2017 return;
2018
2019 /*
2020 * Using runtime rather than walltime has the dual advantage that
2021 * we (mostly) drive the selection from busy threads and that the
2022 * task needs to have done some actual work before we bother with
2023 * NUMA placement.
2024 */
2025 now = curr->se.sum_exec_runtime;
2026 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2027
2028 if (now - curr->node_stamp > period) {
2029 if (!curr->node_stamp)
2030 curr->numa_scan_period = task_scan_min(curr);
2031 curr->node_stamp += period;
2032
2033 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2034 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2035 task_work_add(curr, work, true);
2036 }
2037 }
2038 }
2039 #else
2040 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2041 {
2042 }
2043
2044 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2045 {
2046 }
2047
2048 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2049 {
2050 }
2051 #endif /* CONFIG_NUMA_BALANCING */
2052
2053 static void
2054 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2055 {
2056 update_load_add(&cfs_rq->load, se->load.weight);
2057 if (!parent_entity(se))
2058 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2059 #ifdef CONFIG_SMP
2060 if (entity_is_task(se)) {
2061 struct rq *rq = rq_of(cfs_rq);
2062
2063 account_numa_enqueue(rq, task_of(se));
2064 list_add(&se->group_node, &rq->cfs_tasks);
2065 }
2066 #endif
2067 cfs_rq->nr_running++;
2068 }
2069
2070 static void
2071 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2072 {
2073 update_load_sub(&cfs_rq->load, se->load.weight);
2074 if (!parent_entity(se))
2075 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2076 if (entity_is_task(se)) {
2077 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2078 list_del_init(&se->group_node);
2079 }
2080 cfs_rq->nr_running--;
2081 }
2082
2083 #ifdef CONFIG_FAIR_GROUP_SCHED
2084 # ifdef CONFIG_SMP
2085 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2086 {
2087 long tg_weight;
2088
2089 /*
2090 * Use this CPU's actual weight instead of the last load_contribution
2091 * to gain a more accurate current total weight. See
2092 * update_cfs_rq_load_contribution().
2093 */
2094 tg_weight = atomic_long_read(&tg->load_avg);
2095 tg_weight -= cfs_rq->tg_load_contrib;
2096 tg_weight += cfs_rq->load.weight;
2097
2098 return tg_weight;
2099 }
2100
2101 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2102 {
2103 long tg_weight, load, shares;
2104
2105 tg_weight = calc_tg_weight(tg, cfs_rq);
2106 load = cfs_rq->load.weight;
2107
2108 shares = (tg->shares * load);
2109 if (tg_weight)
2110 shares /= tg_weight;
2111
2112 if (shares < MIN_SHARES)
2113 shares = MIN_SHARES;
2114 if (shares > tg->shares)
2115 shares = tg->shares;
2116
2117 return shares;
2118 }
2119 # else /* CONFIG_SMP */
2120 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2121 {
2122 return tg->shares;
2123 }
2124 # endif /* CONFIG_SMP */
2125 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2126 unsigned long weight)
2127 {
2128 if (se->on_rq) {
2129 /* commit outstanding execution time */
2130 if (cfs_rq->curr == se)
2131 update_curr(cfs_rq);
2132 account_entity_dequeue(cfs_rq, se);
2133 }
2134
2135 update_load_set(&se->load, weight);
2136
2137 if (se->on_rq)
2138 account_entity_enqueue(cfs_rq, se);
2139 }
2140
2141 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2142
2143 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2144 {
2145 struct task_group *tg;
2146 struct sched_entity *se;
2147 long shares;
2148
2149 tg = cfs_rq->tg;
2150 se = tg->se[cpu_of(rq_of(cfs_rq))];
2151 if (!se || throttled_hierarchy(cfs_rq))
2152 return;
2153 #ifndef CONFIG_SMP
2154 if (likely(se->load.weight == tg->shares))
2155 return;
2156 #endif
2157 shares = calc_cfs_shares(cfs_rq, tg);
2158
2159 reweight_entity(cfs_rq_of(se), se, shares);
2160 }
2161 #else /* CONFIG_FAIR_GROUP_SCHED */
2162 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2163 {
2164 }
2165 #endif /* CONFIG_FAIR_GROUP_SCHED */
2166
2167 #ifdef CONFIG_SMP
2168 /*
2169 * We choose a half-life close to 1 scheduling period.
2170 * Note: The tables below are dependent on this value.
2171 */
2172 #define LOAD_AVG_PERIOD 32
2173 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2174 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2175
2176 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2177 static const u32 runnable_avg_yN_inv[] = {
2178 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2179 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2180 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2181 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2182 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2183 0x85aac367, 0x82cd8698,
2184 };
2185
2186 /*
2187 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2188 * over-estimates when re-combining.
2189 */
2190 static const u32 runnable_avg_yN_sum[] = {
2191 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2192 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2193 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2194 };
2195
2196 /*
2197 * Approximate:
2198 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2199 */
2200 static __always_inline u64 decay_load(u64 val, u64 n)
2201 {
2202 unsigned int local_n;
2203
2204 if (!n)
2205 return val;
2206 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2207 return 0;
2208
2209 /* after bounds checking we can collapse to 32-bit */
2210 local_n = n;
2211
2212 /*
2213 * As y^PERIOD = 1/2, we can combine
2214 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2215 * With a look-up table which covers k^n (n<PERIOD)
2216 *
2217 * To achieve constant time decay_load.
2218 */
2219 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2220 val >>= local_n / LOAD_AVG_PERIOD;
2221 local_n %= LOAD_AVG_PERIOD;
2222 }
2223
2224 val *= runnable_avg_yN_inv[local_n];
2225 /* We don't use SRR here since we always want to round down. */
2226 return val >> 32;
2227 }
2228
2229 /*
2230 * For updates fully spanning n periods, the contribution to runnable
2231 * average will be: \Sum 1024*y^n
2232 *
2233 * We can compute this reasonably efficiently by combining:
2234 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2235 */
2236 static u32 __compute_runnable_contrib(u64 n)
2237 {
2238 u32 contrib = 0;
2239
2240 if (likely(n <= LOAD_AVG_PERIOD))
2241 return runnable_avg_yN_sum[n];
2242 else if (unlikely(n >= LOAD_AVG_MAX_N))
2243 return LOAD_AVG_MAX;
2244
2245 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2246 do {
2247 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2248 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2249
2250 n -= LOAD_AVG_PERIOD;
2251 } while (n > LOAD_AVG_PERIOD);
2252
2253 contrib = decay_load(contrib, n);
2254 return contrib + runnable_avg_yN_sum[n];
2255 }
2256
2257 /*
2258 * We can represent the historical contribution to runnable average as the
2259 * coefficients of a geometric series. To do this we sub-divide our runnable
2260 * history into segments of approximately 1ms (1024us); label the segment that
2261 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2262 *
2263 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2264 * p0 p1 p2
2265 * (now) (~1ms ago) (~2ms ago)
2266 *
2267 * Let u_i denote the fraction of p_i that the entity was runnable.
2268 *
2269 * We then designate the fractions u_i as our co-efficients, yielding the
2270 * following representation of historical load:
2271 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2272 *
2273 * We choose y based on the with of a reasonably scheduling period, fixing:
2274 * y^32 = 0.5
2275 *
2276 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2277 * approximately half as much as the contribution to load within the last ms
2278 * (u_0).
2279 *
2280 * When a period "rolls over" and we have new u_0`, multiplying the previous
2281 * sum again by y is sufficient to update:
2282 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2283 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2284 */
2285 static __always_inline int __update_entity_runnable_avg(u64 now,
2286 struct sched_avg *sa,
2287 int runnable)
2288 {
2289 u64 delta, periods;
2290 u32 runnable_contrib;
2291 int delta_w, decayed = 0;
2292
2293 delta = now - sa->last_runnable_update;
2294 /*
2295 * This should only happen when time goes backwards, which it
2296 * unfortunately does during sched clock init when we swap over to TSC.
2297 */
2298 if ((s64)delta < 0) {
2299 sa->last_runnable_update = now;
2300 return 0;
2301 }
2302
2303 /*
2304 * Use 1024ns as the unit of measurement since it's a reasonable
2305 * approximation of 1us and fast to compute.
2306 */
2307 delta >>= 10;
2308 if (!delta)
2309 return 0;
2310 sa->last_runnable_update = now;
2311
2312 /* delta_w is the amount already accumulated against our next period */
2313 delta_w = sa->runnable_avg_period % 1024;
2314 if (delta + delta_w >= 1024) {
2315 /* period roll-over */
2316 decayed = 1;
2317
2318 /*
2319 * Now that we know we're crossing a period boundary, figure
2320 * out how much from delta we need to complete the current
2321 * period and accrue it.
2322 */
2323 delta_w = 1024 - delta_w;
2324 if (runnable)
2325 sa->runnable_avg_sum += delta_w;
2326 sa->runnable_avg_period += delta_w;
2327
2328 delta -= delta_w;
2329
2330 /* Figure out how many additional periods this update spans */
2331 periods = delta / 1024;
2332 delta %= 1024;
2333
2334 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2335 periods + 1);
2336 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2337 periods + 1);
2338
2339 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2340 runnable_contrib = __compute_runnable_contrib(periods);
2341 if (runnable)
2342 sa->runnable_avg_sum += runnable_contrib;
2343 sa->runnable_avg_period += runnable_contrib;
2344 }
2345
2346 /* Remainder of delta accrued against u_0` */
2347 if (runnable)
2348 sa->runnable_avg_sum += delta;
2349 sa->runnable_avg_period += delta;
2350
2351 return decayed;
2352 }
2353
2354 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2355 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2356 {
2357 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2358 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2359
2360 decays -= se->avg.decay_count;
2361 if (!decays)
2362 return 0;
2363
2364 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2365 se->avg.decay_count = 0;
2366
2367 return decays;
2368 }
2369
2370 #ifdef CONFIG_FAIR_GROUP_SCHED
2371 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2372 int force_update)
2373 {
2374 struct task_group *tg = cfs_rq->tg;
2375 long tg_contrib;
2376
2377 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2378 tg_contrib -= cfs_rq->tg_load_contrib;
2379
2380 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2381 atomic_long_add(tg_contrib, &tg->load_avg);
2382 cfs_rq->tg_load_contrib += tg_contrib;
2383 }
2384 }
2385
2386 /*
2387 * Aggregate cfs_rq runnable averages into an equivalent task_group
2388 * representation for computing load contributions.
2389 */
2390 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2391 struct cfs_rq *cfs_rq)
2392 {
2393 struct task_group *tg = cfs_rq->tg;
2394 long contrib;
2395
2396 /* The fraction of a cpu used by this cfs_rq */
2397 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2398 sa->runnable_avg_period + 1);
2399 contrib -= cfs_rq->tg_runnable_contrib;
2400
2401 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2402 atomic_add(contrib, &tg->runnable_avg);
2403 cfs_rq->tg_runnable_contrib += contrib;
2404 }
2405 }
2406
2407 static inline void __update_group_entity_contrib(struct sched_entity *se)
2408 {
2409 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2410 struct task_group *tg = cfs_rq->tg;
2411 int runnable_avg;
2412
2413 u64 contrib;
2414
2415 contrib = cfs_rq->tg_load_contrib * tg->shares;
2416 se->avg.load_avg_contrib = div_u64(contrib,
2417 atomic_long_read(&tg->load_avg) + 1);
2418
2419 /*
2420 * For group entities we need to compute a correction term in the case
2421 * that they are consuming <1 cpu so that we would contribute the same
2422 * load as a task of equal weight.
2423 *
2424 * Explicitly co-ordinating this measurement would be expensive, but
2425 * fortunately the sum of each cpus contribution forms a usable
2426 * lower-bound on the true value.
2427 *
2428 * Consider the aggregate of 2 contributions. Either they are disjoint
2429 * (and the sum represents true value) or they are disjoint and we are
2430 * understating by the aggregate of their overlap.
2431 *
2432 * Extending this to N cpus, for a given overlap, the maximum amount we
2433 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2434 * cpus that overlap for this interval and w_i is the interval width.
2435 *
2436 * On a small machine; the first term is well-bounded which bounds the
2437 * total error since w_i is a subset of the period. Whereas on a
2438 * larger machine, while this first term can be larger, if w_i is the
2439 * of consequential size guaranteed to see n_i*w_i quickly converge to
2440 * our upper bound of 1-cpu.
2441 */
2442 runnable_avg = atomic_read(&tg->runnable_avg);
2443 if (runnable_avg < NICE_0_LOAD) {
2444 se->avg.load_avg_contrib *= runnable_avg;
2445 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2446 }
2447 }
2448
2449 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2450 {
2451 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2452 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2453 }
2454 #else /* CONFIG_FAIR_GROUP_SCHED */
2455 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2456 int force_update) {}
2457 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2458 struct cfs_rq *cfs_rq) {}
2459 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2460 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2461 #endif /* CONFIG_FAIR_GROUP_SCHED */
2462
2463 static inline void __update_task_entity_contrib(struct sched_entity *se)
2464 {
2465 u32 contrib;
2466
2467 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2468 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2469 contrib /= (se->avg.runnable_avg_period + 1);
2470 se->avg.load_avg_contrib = scale_load(contrib);
2471 }
2472
2473 /* Compute the current contribution to load_avg by se, return any delta */
2474 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2475 {
2476 long old_contrib = se->avg.load_avg_contrib;
2477
2478 if (entity_is_task(se)) {
2479 __update_task_entity_contrib(se);
2480 } else {
2481 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2482 __update_group_entity_contrib(se);
2483 }
2484
2485 return se->avg.load_avg_contrib - old_contrib;
2486 }
2487
2488 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2489 long load_contrib)
2490 {
2491 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2492 cfs_rq->blocked_load_avg -= load_contrib;
2493 else
2494 cfs_rq->blocked_load_avg = 0;
2495 }
2496
2497 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2498
2499 /* Update a sched_entity's runnable average */
2500 static inline void update_entity_load_avg(struct sched_entity *se,
2501 int update_cfs_rq)
2502 {
2503 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2504 long contrib_delta;
2505 u64 now;
2506
2507 /*
2508 * For a group entity we need to use their owned cfs_rq_clock_task() in
2509 * case they are the parent of a throttled hierarchy.
2510 */
2511 if (entity_is_task(se))
2512 now = cfs_rq_clock_task(cfs_rq);
2513 else
2514 now = cfs_rq_clock_task(group_cfs_rq(se));
2515
2516 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2517 return;
2518
2519 contrib_delta = __update_entity_load_avg_contrib(se);
2520
2521 if (!update_cfs_rq)
2522 return;
2523
2524 if (se->on_rq)
2525 cfs_rq->runnable_load_avg += contrib_delta;
2526 else
2527 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2528 }
2529
2530 /*
2531 * Decay the load contributed by all blocked children and account this so that
2532 * their contribution may appropriately discounted when they wake up.
2533 */
2534 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2535 {
2536 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2537 u64 decays;
2538
2539 decays = now - cfs_rq->last_decay;
2540 if (!decays && !force_update)
2541 return;
2542
2543 if (atomic_long_read(&cfs_rq->removed_load)) {
2544 unsigned long removed_load;
2545 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2546 subtract_blocked_load_contrib(cfs_rq, removed_load);
2547 }
2548
2549 if (decays) {
2550 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2551 decays);
2552 atomic64_add(decays, &cfs_rq->decay_counter);
2553 cfs_rq->last_decay = now;
2554 }
2555
2556 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2557 }
2558
2559 /* Add the load generated by se into cfs_rq's child load-average */
2560 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2561 struct sched_entity *se,
2562 int wakeup)
2563 {
2564 /*
2565 * We track migrations using entity decay_count <= 0, on a wake-up
2566 * migration we use a negative decay count to track the remote decays
2567 * accumulated while sleeping.
2568 *
2569 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2570 * are seen by enqueue_entity_load_avg() as a migration with an already
2571 * constructed load_avg_contrib.
2572 */
2573 if (unlikely(se->avg.decay_count <= 0)) {
2574 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2575 if (se->avg.decay_count) {
2576 /*
2577 * In a wake-up migration we have to approximate the
2578 * time sleeping. This is because we can't synchronize
2579 * clock_task between the two cpus, and it is not
2580 * guaranteed to be read-safe. Instead, we can
2581 * approximate this using our carried decays, which are
2582 * explicitly atomically readable.
2583 */
2584 se->avg.last_runnable_update -= (-se->avg.decay_count)
2585 << 20;
2586 update_entity_load_avg(se, 0);
2587 /* Indicate that we're now synchronized and on-rq */
2588 se->avg.decay_count = 0;
2589 }
2590 wakeup = 0;
2591 } else {
2592 __synchronize_entity_decay(se);
2593 }
2594
2595 /* migrated tasks did not contribute to our blocked load */
2596 if (wakeup) {
2597 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2598 update_entity_load_avg(se, 0);
2599 }
2600
2601 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2602 /* we force update consideration on load-balancer moves */
2603 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2604 }
2605
2606 /*
2607 * Remove se's load from this cfs_rq child load-average, if the entity is
2608 * transitioning to a blocked state we track its projected decay using
2609 * blocked_load_avg.
2610 */
2611 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2612 struct sched_entity *se,
2613 int sleep)
2614 {
2615 update_entity_load_avg(se, 1);
2616 /* we force update consideration on load-balancer moves */
2617 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2618
2619 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2620 if (sleep) {
2621 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2622 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2623 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2624 }
2625
2626 /*
2627 * Update the rq's load with the elapsed running time before entering
2628 * idle. if the last scheduled task is not a CFS task, idle_enter will
2629 * be the only way to update the runnable statistic.
2630 */
2631 void idle_enter_fair(struct rq *this_rq)
2632 {
2633 update_rq_runnable_avg(this_rq, 1);
2634 }
2635
2636 /*
2637 * Update the rq's load with the elapsed idle time before a task is
2638 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2639 * be the only way to update the runnable statistic.
2640 */
2641 void idle_exit_fair(struct rq *this_rq)
2642 {
2643 update_rq_runnable_avg(this_rq, 0);
2644 }
2645
2646 static int idle_balance(struct rq *this_rq);
2647
2648 #else /* CONFIG_SMP */
2649
2650 static inline void update_entity_load_avg(struct sched_entity *se,
2651 int update_cfs_rq) {}
2652 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2653 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2654 struct sched_entity *se,
2655 int wakeup) {}
2656 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2657 struct sched_entity *se,
2658 int sleep) {}
2659 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2660 int force_update) {}
2661
2662 static inline int idle_balance(struct rq *rq)
2663 {
2664 return 0;
2665 }
2666
2667 #endif /* CONFIG_SMP */
2668
2669 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2670 {
2671 #ifdef CONFIG_SCHEDSTATS
2672 struct task_struct *tsk = NULL;
2673
2674 if (entity_is_task(se))
2675 tsk = task_of(se);
2676
2677 if (se->statistics.sleep_start) {
2678 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2679
2680 if ((s64)delta < 0)
2681 delta = 0;
2682
2683 if (unlikely(delta > se->statistics.sleep_max))
2684 se->statistics.sleep_max = delta;
2685
2686 se->statistics.sleep_start = 0;
2687 se->statistics.sum_sleep_runtime += delta;
2688
2689 if (tsk) {
2690 account_scheduler_latency(tsk, delta >> 10, 1);
2691 trace_sched_stat_sleep(tsk, delta);
2692 }
2693 }
2694 if (se->statistics.block_start) {
2695 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2696
2697 if ((s64)delta < 0)
2698 delta = 0;
2699
2700 if (unlikely(delta > se->statistics.block_max))
2701 se->statistics.block_max = delta;
2702
2703 se->statistics.block_start = 0;
2704 se->statistics.sum_sleep_runtime += delta;
2705
2706 if (tsk) {
2707 if (tsk->in_iowait) {
2708 se->statistics.iowait_sum += delta;
2709 se->statistics.iowait_count++;
2710 trace_sched_stat_iowait(tsk, delta);
2711 }
2712
2713 trace_sched_stat_blocked(tsk, delta);
2714
2715 /*
2716 * Blocking time is in units of nanosecs, so shift by
2717 * 20 to get a milliseconds-range estimation of the
2718 * amount of time that the task spent sleeping:
2719 */
2720 if (unlikely(prof_on == SLEEP_PROFILING)) {
2721 profile_hits(SLEEP_PROFILING,
2722 (void *)get_wchan(tsk),
2723 delta >> 20);
2724 }
2725 account_scheduler_latency(tsk, delta >> 10, 0);
2726 }
2727 }
2728 #endif
2729 }
2730
2731 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2732 {
2733 #ifdef CONFIG_SCHED_DEBUG
2734 s64 d = se->vruntime - cfs_rq->min_vruntime;
2735
2736 if (d < 0)
2737 d = -d;
2738
2739 if (d > 3*sysctl_sched_latency)
2740 schedstat_inc(cfs_rq, nr_spread_over);
2741 #endif
2742 }
2743
2744 static void
2745 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2746 {
2747 u64 vruntime = cfs_rq->min_vruntime;
2748
2749 /*
2750 * The 'current' period is already promised to the current tasks,
2751 * however the extra weight of the new task will slow them down a
2752 * little, place the new task so that it fits in the slot that
2753 * stays open at the end.
2754 */
2755 if (initial && sched_feat(START_DEBIT))
2756 vruntime += sched_vslice(cfs_rq, se);
2757
2758 /* sleeps up to a single latency don't count. */
2759 if (!initial) {
2760 unsigned long thresh = sysctl_sched_latency;
2761
2762 /*
2763 * Halve their sleep time's effect, to allow
2764 * for a gentler effect of sleepers:
2765 */
2766 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2767 thresh >>= 1;
2768
2769 vruntime -= thresh;
2770 }
2771
2772 /* ensure we never gain time by being placed backwards. */
2773 se->vruntime = max_vruntime(se->vruntime, vruntime);
2774 }
2775
2776 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2777
2778 static void
2779 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2780 {
2781 /*
2782 * Update the normalized vruntime before updating min_vruntime
2783 * through calling update_curr().
2784 */
2785 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2786 se->vruntime += cfs_rq->min_vruntime;
2787
2788 /*
2789 * Update run-time statistics of the 'current'.
2790 */
2791 update_curr(cfs_rq);
2792 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2793 account_entity_enqueue(cfs_rq, se);
2794 update_cfs_shares(cfs_rq);
2795
2796 if (flags & ENQUEUE_WAKEUP) {
2797 place_entity(cfs_rq, se, 0);
2798 enqueue_sleeper(cfs_rq, se);
2799 }
2800
2801 update_stats_enqueue(cfs_rq, se);
2802 check_spread(cfs_rq, se);
2803 if (se != cfs_rq->curr)
2804 __enqueue_entity(cfs_rq, se);
2805 se->on_rq = 1;
2806
2807 if (cfs_rq->nr_running == 1) {
2808 list_add_leaf_cfs_rq(cfs_rq);
2809 check_enqueue_throttle(cfs_rq);
2810 }
2811 }
2812
2813 static void __clear_buddies_last(struct sched_entity *se)
2814 {
2815 for_each_sched_entity(se) {
2816 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2817 if (cfs_rq->last != se)
2818 break;
2819
2820 cfs_rq->last = NULL;
2821 }
2822 }
2823
2824 static void __clear_buddies_next(struct sched_entity *se)
2825 {
2826 for_each_sched_entity(se) {
2827 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2828 if (cfs_rq->next != se)
2829 break;
2830
2831 cfs_rq->next = NULL;
2832 }
2833 }
2834
2835 static void __clear_buddies_skip(struct sched_entity *se)
2836 {
2837 for_each_sched_entity(se) {
2838 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2839 if (cfs_rq->skip != se)
2840 break;
2841
2842 cfs_rq->skip = NULL;
2843 }
2844 }
2845
2846 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2847 {
2848 if (cfs_rq->last == se)
2849 __clear_buddies_last(se);
2850
2851 if (cfs_rq->next == se)
2852 __clear_buddies_next(se);
2853
2854 if (cfs_rq->skip == se)
2855 __clear_buddies_skip(se);
2856 }
2857
2858 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2859
2860 static void
2861 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2862 {
2863 /*
2864 * Update run-time statistics of the 'current'.
2865 */
2866 update_curr(cfs_rq);
2867 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2868
2869 update_stats_dequeue(cfs_rq, se);
2870 if (flags & DEQUEUE_SLEEP) {
2871 #ifdef CONFIG_SCHEDSTATS
2872 if (entity_is_task(se)) {
2873 struct task_struct *tsk = task_of(se);
2874
2875 if (tsk->state & TASK_INTERRUPTIBLE)
2876 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2877 if (tsk->state & TASK_UNINTERRUPTIBLE)
2878 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2879 }
2880 #endif
2881 }
2882
2883 clear_buddies(cfs_rq, se);
2884
2885 if (se != cfs_rq->curr)
2886 __dequeue_entity(cfs_rq, se);
2887 se->on_rq = 0;
2888 account_entity_dequeue(cfs_rq, se);
2889
2890 /*
2891 * Normalize the entity after updating the min_vruntime because the
2892 * update can refer to the ->curr item and we need to reflect this
2893 * movement in our normalized position.
2894 */
2895 if (!(flags & DEQUEUE_SLEEP))
2896 se->vruntime -= cfs_rq->min_vruntime;
2897
2898 /* return excess runtime on last dequeue */
2899 return_cfs_rq_runtime(cfs_rq);
2900
2901 update_min_vruntime(cfs_rq);
2902 update_cfs_shares(cfs_rq);
2903 }
2904
2905 /*
2906 * Preempt the current task with a newly woken task if needed:
2907 */
2908 static void
2909 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2910 {
2911 unsigned long ideal_runtime, delta_exec;
2912 struct sched_entity *se;
2913 s64 delta;
2914
2915 ideal_runtime = sched_slice(cfs_rq, curr);
2916 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2917 if (delta_exec > ideal_runtime) {
2918 resched_curr(rq_of(cfs_rq));
2919 /*
2920 * The current task ran long enough, ensure it doesn't get
2921 * re-elected due to buddy favours.
2922 */
2923 clear_buddies(cfs_rq, curr);
2924 return;
2925 }
2926
2927 /*
2928 * Ensure that a task that missed wakeup preemption by a
2929 * narrow margin doesn't have to wait for a full slice.
2930 * This also mitigates buddy induced latencies under load.
2931 */
2932 if (delta_exec < sysctl_sched_min_granularity)
2933 return;
2934
2935 se = __pick_first_entity(cfs_rq);
2936 delta = curr->vruntime - se->vruntime;
2937
2938 if (delta < 0)
2939 return;
2940
2941 if (delta > ideal_runtime)
2942 resched_curr(rq_of(cfs_rq));
2943 }
2944
2945 static void
2946 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2947 {
2948 /* 'current' is not kept within the tree. */
2949 if (se->on_rq) {
2950 /*
2951 * Any task has to be enqueued before it get to execute on
2952 * a CPU. So account for the time it spent waiting on the
2953 * runqueue.
2954 */
2955 update_stats_wait_end(cfs_rq, se);
2956 __dequeue_entity(cfs_rq, se);
2957 }
2958
2959 update_stats_curr_start(cfs_rq, se);
2960 cfs_rq->curr = se;
2961 #ifdef CONFIG_SCHEDSTATS
2962 /*
2963 * Track our maximum slice length, if the CPU's load is at
2964 * least twice that of our own weight (i.e. dont track it
2965 * when there are only lesser-weight tasks around):
2966 */
2967 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2968 se->statistics.slice_max = max(se->statistics.slice_max,
2969 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2970 }
2971 #endif
2972 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2973 }
2974
2975 static int
2976 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2977
2978 /*
2979 * Pick the next process, keeping these things in mind, in this order:
2980 * 1) keep things fair between processes/task groups
2981 * 2) pick the "next" process, since someone really wants that to run
2982 * 3) pick the "last" process, for cache locality
2983 * 4) do not run the "skip" process, if something else is available
2984 */
2985 static struct sched_entity *
2986 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2987 {
2988 struct sched_entity *left = __pick_first_entity(cfs_rq);
2989 struct sched_entity *se;
2990
2991 /*
2992 * If curr is set we have to see if its left of the leftmost entity
2993 * still in the tree, provided there was anything in the tree at all.
2994 */
2995 if (!left || (curr && entity_before(curr, left)))
2996 left = curr;
2997
2998 se = left; /* ideally we run the leftmost entity */
2999
3000 /*
3001 * Avoid running the skip buddy, if running something else can
3002 * be done without getting too unfair.
3003 */
3004 if (cfs_rq->skip == se) {
3005 struct sched_entity *second;
3006
3007 if (se == curr) {
3008 second = __pick_first_entity(cfs_rq);
3009 } else {
3010 second = __pick_next_entity(se);
3011 if (!second || (curr && entity_before(curr, second)))
3012 second = curr;
3013 }
3014
3015 if (second && wakeup_preempt_entity(second, left) < 1)
3016 se = second;
3017 }
3018
3019 /*
3020 * Prefer last buddy, try to return the CPU to a preempted task.
3021 */
3022 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3023 se = cfs_rq->last;
3024
3025 /*
3026 * Someone really wants this to run. If it's not unfair, run it.
3027 */
3028 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3029 se = cfs_rq->next;
3030
3031 clear_buddies(cfs_rq, se);
3032
3033 return se;
3034 }
3035
3036 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3037
3038 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3039 {
3040 /*
3041 * If still on the runqueue then deactivate_task()
3042 * was not called and update_curr() has to be done:
3043 */
3044 if (prev->on_rq)
3045 update_curr(cfs_rq);
3046
3047 /* throttle cfs_rqs exceeding runtime */
3048 check_cfs_rq_runtime(cfs_rq);
3049
3050 check_spread(cfs_rq, prev);
3051 if (prev->on_rq) {
3052 update_stats_wait_start(cfs_rq, prev);
3053 /* Put 'current' back into the tree. */
3054 __enqueue_entity(cfs_rq, prev);
3055 /* in !on_rq case, update occurred at dequeue */
3056 update_entity_load_avg(prev, 1);
3057 }
3058 cfs_rq->curr = NULL;
3059 }
3060
3061 static void
3062 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3063 {
3064 /*
3065 * Update run-time statistics of the 'current'.
3066 */
3067 update_curr(cfs_rq);
3068
3069 /*
3070 * Ensure that runnable average is periodically updated.
3071 */
3072 update_entity_load_avg(curr, 1);
3073 update_cfs_rq_blocked_load(cfs_rq, 1);
3074 update_cfs_shares(cfs_rq);
3075
3076 #ifdef CONFIG_SCHED_HRTICK
3077 /*
3078 * queued ticks are scheduled to match the slice, so don't bother
3079 * validating it and just reschedule.
3080 */
3081 if (queued) {
3082 resched_curr(rq_of(cfs_rq));
3083 return;
3084 }
3085 /*
3086 * don't let the period tick interfere with the hrtick preemption
3087 */
3088 if (!sched_feat(DOUBLE_TICK) &&
3089 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3090 return;
3091 #endif
3092
3093 if (cfs_rq->nr_running > 1)
3094 check_preempt_tick(cfs_rq, curr);
3095 }
3096
3097
3098 /**************************************************
3099 * CFS bandwidth control machinery
3100 */
3101
3102 #ifdef CONFIG_CFS_BANDWIDTH
3103
3104 #ifdef HAVE_JUMP_LABEL
3105 static struct static_key __cfs_bandwidth_used;
3106
3107 static inline bool cfs_bandwidth_used(void)
3108 {
3109 return static_key_false(&__cfs_bandwidth_used);
3110 }
3111
3112 void cfs_bandwidth_usage_inc(void)
3113 {
3114 static_key_slow_inc(&__cfs_bandwidth_used);
3115 }
3116
3117 void cfs_bandwidth_usage_dec(void)
3118 {
3119 static_key_slow_dec(&__cfs_bandwidth_used);
3120 }
3121 #else /* HAVE_JUMP_LABEL */
3122 static bool cfs_bandwidth_used(void)
3123 {
3124 return true;
3125 }
3126
3127 void cfs_bandwidth_usage_inc(void) {}
3128 void cfs_bandwidth_usage_dec(void) {}
3129 #endif /* HAVE_JUMP_LABEL */
3130
3131 /*
3132 * default period for cfs group bandwidth.
3133 * default: 0.1s, units: nanoseconds
3134 */
3135 static inline u64 default_cfs_period(void)
3136 {
3137 return 100000000ULL;
3138 }
3139
3140 static inline u64 sched_cfs_bandwidth_slice(void)
3141 {
3142 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3143 }
3144
3145 /*
3146 * Replenish runtime according to assigned quota and update expiration time.
3147 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3148 * additional synchronization around rq->lock.
3149 *
3150 * requires cfs_b->lock
3151 */
3152 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3153 {
3154 u64 now;
3155
3156 if (cfs_b->quota == RUNTIME_INF)
3157 return;
3158
3159 now = sched_clock_cpu(smp_processor_id());
3160 cfs_b->runtime = cfs_b->quota;
3161 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3162 }
3163
3164 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3165 {
3166 return &tg->cfs_bandwidth;
3167 }
3168
3169 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3170 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3171 {
3172 if (unlikely(cfs_rq->throttle_count))
3173 return cfs_rq->throttled_clock_task;
3174
3175 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3176 }
3177
3178 /* returns 0 on failure to allocate runtime */
3179 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3180 {
3181 struct task_group *tg = cfs_rq->tg;
3182 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3183 u64 amount = 0, min_amount, expires;
3184
3185 /* note: this is a positive sum as runtime_remaining <= 0 */
3186 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3187
3188 raw_spin_lock(&cfs_b->lock);
3189 if (cfs_b->quota == RUNTIME_INF)
3190 amount = min_amount;
3191 else {
3192 /*
3193 * If the bandwidth pool has become inactive, then at least one
3194 * period must have elapsed since the last consumption.
3195 * Refresh the global state and ensure bandwidth timer becomes
3196 * active.
3197 */
3198 if (!cfs_b->timer_active) {
3199 __refill_cfs_bandwidth_runtime(cfs_b);
3200 __start_cfs_bandwidth(cfs_b, false);
3201 }
3202
3203 if (cfs_b->runtime > 0) {
3204 amount = min(cfs_b->runtime, min_amount);
3205 cfs_b->runtime -= amount;
3206 cfs_b->idle = 0;
3207 }
3208 }
3209 expires = cfs_b->runtime_expires;
3210 raw_spin_unlock(&cfs_b->lock);
3211
3212 cfs_rq->runtime_remaining += amount;
3213 /*
3214 * we may have advanced our local expiration to account for allowed
3215 * spread between our sched_clock and the one on which runtime was
3216 * issued.
3217 */
3218 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3219 cfs_rq->runtime_expires = expires;
3220
3221 return cfs_rq->runtime_remaining > 0;
3222 }
3223
3224 /*
3225 * Note: This depends on the synchronization provided by sched_clock and the
3226 * fact that rq->clock snapshots this value.
3227 */
3228 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3229 {
3230 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3231
3232 /* if the deadline is ahead of our clock, nothing to do */
3233 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3234 return;
3235
3236 if (cfs_rq->runtime_remaining < 0)
3237 return;
3238
3239 /*
3240 * If the local deadline has passed we have to consider the
3241 * possibility that our sched_clock is 'fast' and the global deadline
3242 * has not truly expired.
3243 *
3244 * Fortunately we can check determine whether this the case by checking
3245 * whether the global deadline has advanced. It is valid to compare
3246 * cfs_b->runtime_expires without any locks since we only care about
3247 * exact equality, so a partial write will still work.
3248 */
3249
3250 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3251 /* extend local deadline, drift is bounded above by 2 ticks */
3252 cfs_rq->runtime_expires += TICK_NSEC;
3253 } else {
3254 /* global deadline is ahead, expiration has passed */
3255 cfs_rq->runtime_remaining = 0;
3256 }
3257 }
3258
3259 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3260 {
3261 /* dock delta_exec before expiring quota (as it could span periods) */
3262 cfs_rq->runtime_remaining -= delta_exec;
3263 expire_cfs_rq_runtime(cfs_rq);
3264
3265 if (likely(cfs_rq->runtime_remaining > 0))
3266 return;
3267
3268 /*
3269 * if we're unable to extend our runtime we resched so that the active
3270 * hierarchy can be throttled
3271 */
3272 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3273 resched_curr(rq_of(cfs_rq));
3274 }
3275
3276 static __always_inline
3277 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3278 {
3279 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3280 return;
3281
3282 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3283 }
3284
3285 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3286 {
3287 return cfs_bandwidth_used() && cfs_rq->throttled;
3288 }
3289
3290 /* check whether cfs_rq, or any parent, is throttled */
3291 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3292 {
3293 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3294 }
3295
3296 /*
3297 * Ensure that neither of the group entities corresponding to src_cpu or
3298 * dest_cpu are members of a throttled hierarchy when performing group
3299 * load-balance operations.
3300 */
3301 static inline int throttled_lb_pair(struct task_group *tg,
3302 int src_cpu, int dest_cpu)
3303 {
3304 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3305
3306 src_cfs_rq = tg->cfs_rq[src_cpu];
3307 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3308
3309 return throttled_hierarchy(src_cfs_rq) ||
3310 throttled_hierarchy(dest_cfs_rq);
3311 }
3312
3313 /* updated child weight may affect parent so we have to do this bottom up */
3314 static int tg_unthrottle_up(struct task_group *tg, void *data)
3315 {
3316 struct rq *rq = data;
3317 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3318
3319 cfs_rq->throttle_count--;
3320 #ifdef CONFIG_SMP
3321 if (!cfs_rq->throttle_count) {
3322 /* adjust cfs_rq_clock_task() */
3323 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3324 cfs_rq->throttled_clock_task;
3325 }
3326 #endif
3327
3328 return 0;
3329 }
3330
3331 static int tg_throttle_down(struct task_group *tg, void *data)
3332 {
3333 struct rq *rq = data;
3334 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3335
3336 /* group is entering throttled state, stop time */
3337 if (!cfs_rq->throttle_count)
3338 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3339 cfs_rq->throttle_count++;
3340
3341 return 0;
3342 }
3343
3344 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3345 {
3346 struct rq *rq = rq_of(cfs_rq);
3347 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3348 struct sched_entity *se;
3349 long task_delta, dequeue = 1;
3350
3351 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3352
3353 /* freeze hierarchy runnable averages while throttled */
3354 rcu_read_lock();
3355 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3356 rcu_read_unlock();
3357
3358 task_delta = cfs_rq->h_nr_running;
3359 for_each_sched_entity(se) {
3360 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3361 /* throttled entity or throttle-on-deactivate */
3362 if (!se->on_rq)
3363 break;
3364
3365 if (dequeue)
3366 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3367 qcfs_rq->h_nr_running -= task_delta;
3368
3369 if (qcfs_rq->load.weight)
3370 dequeue = 0;
3371 }
3372
3373 if (!se)
3374 sub_nr_running(rq, task_delta);
3375
3376 cfs_rq->throttled = 1;
3377 cfs_rq->throttled_clock = rq_clock(rq);
3378 raw_spin_lock(&cfs_b->lock);
3379 /*
3380 * Add to the _head_ of the list, so that an already-started
3381 * distribute_cfs_runtime will not see us
3382 */
3383 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3384 if (!cfs_b->timer_active)
3385 __start_cfs_bandwidth(cfs_b, false);
3386 raw_spin_unlock(&cfs_b->lock);
3387 }
3388
3389 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3390 {
3391 struct rq *rq = rq_of(cfs_rq);
3392 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3393 struct sched_entity *se;
3394 int enqueue = 1;
3395 long task_delta;
3396
3397 se = cfs_rq->tg->se[cpu_of(rq)];
3398
3399 cfs_rq->throttled = 0;
3400
3401 update_rq_clock(rq);
3402
3403 raw_spin_lock(&cfs_b->lock);
3404 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3405 list_del_rcu(&cfs_rq->throttled_list);
3406 raw_spin_unlock(&cfs_b->lock);
3407
3408 /* update hierarchical throttle state */
3409 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3410
3411 if (!cfs_rq->load.weight)
3412 return;
3413
3414 task_delta = cfs_rq->h_nr_running;
3415 for_each_sched_entity(se) {
3416 if (se->on_rq)
3417 enqueue = 0;
3418
3419 cfs_rq = cfs_rq_of(se);
3420 if (enqueue)
3421 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3422 cfs_rq->h_nr_running += task_delta;
3423
3424 if (cfs_rq_throttled(cfs_rq))
3425 break;
3426 }
3427
3428 if (!se)
3429 add_nr_running(rq, task_delta);
3430
3431 /* determine whether we need to wake up potentially idle cpu */
3432 if (rq->curr == rq->idle && rq->cfs.nr_running)
3433 resched_curr(rq);
3434 }
3435
3436 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3437 u64 remaining, u64 expires)
3438 {
3439 struct cfs_rq *cfs_rq;
3440 u64 runtime;
3441 u64 starting_runtime = remaining;
3442
3443 rcu_read_lock();
3444 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3445 throttled_list) {
3446 struct rq *rq = rq_of(cfs_rq);
3447
3448 raw_spin_lock(&rq->lock);
3449 if (!cfs_rq_throttled(cfs_rq))
3450 goto next;
3451
3452 runtime = -cfs_rq->runtime_remaining + 1;
3453 if (runtime > remaining)
3454 runtime = remaining;
3455 remaining -= runtime;
3456
3457 cfs_rq->runtime_remaining += runtime;
3458 cfs_rq->runtime_expires = expires;
3459
3460 /* we check whether we're throttled above */
3461 if (cfs_rq->runtime_remaining > 0)
3462 unthrottle_cfs_rq(cfs_rq);
3463
3464 next:
3465 raw_spin_unlock(&rq->lock);
3466
3467 if (!remaining)
3468 break;
3469 }
3470 rcu_read_unlock();
3471
3472 return starting_runtime - remaining;
3473 }
3474
3475 /*
3476 * Responsible for refilling a task_group's bandwidth and unthrottling its
3477 * cfs_rqs as appropriate. If there has been no activity within the last
3478 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3479 * used to track this state.
3480 */
3481 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3482 {
3483 u64 runtime, runtime_expires;
3484 int throttled;
3485
3486 /* no need to continue the timer with no bandwidth constraint */
3487 if (cfs_b->quota == RUNTIME_INF)
3488 goto out_deactivate;
3489
3490 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3491 cfs_b->nr_periods += overrun;
3492
3493 /*
3494 * idle depends on !throttled (for the case of a large deficit), and if
3495 * we're going inactive then everything else can be deferred
3496 */
3497 if (cfs_b->idle && !throttled)
3498 goto out_deactivate;
3499
3500 /*
3501 * if we have relooped after returning idle once, we need to update our
3502 * status as actually running, so that other cpus doing
3503 * __start_cfs_bandwidth will stop trying to cancel us.
3504 */
3505 cfs_b->timer_active = 1;
3506
3507 __refill_cfs_bandwidth_runtime(cfs_b);
3508
3509 if (!throttled) {
3510 /* mark as potentially idle for the upcoming period */
3511 cfs_b->idle = 1;
3512 return 0;
3513 }
3514
3515 /* account preceding periods in which throttling occurred */
3516 cfs_b->nr_throttled += overrun;
3517
3518 runtime_expires = cfs_b->runtime_expires;
3519
3520 /*
3521 * This check is repeated as we are holding onto the new bandwidth while
3522 * we unthrottle. This can potentially race with an unthrottled group
3523 * trying to acquire new bandwidth from the global pool. This can result
3524 * in us over-using our runtime if it is all used during this loop, but
3525 * only by limited amounts in that extreme case.
3526 */
3527 while (throttled && cfs_b->runtime > 0) {
3528 runtime = cfs_b->runtime;
3529 raw_spin_unlock(&cfs_b->lock);
3530 /* we can't nest cfs_b->lock while distributing bandwidth */
3531 runtime = distribute_cfs_runtime(cfs_b, runtime,
3532 runtime_expires);
3533 raw_spin_lock(&cfs_b->lock);
3534
3535 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3536
3537 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3538 }
3539
3540 /*
3541 * While we are ensured activity in the period following an
3542 * unthrottle, this also covers the case in which the new bandwidth is
3543 * insufficient to cover the existing bandwidth deficit. (Forcing the
3544 * timer to remain active while there are any throttled entities.)
3545 */
3546 cfs_b->idle = 0;
3547
3548 return 0;
3549
3550 out_deactivate:
3551 cfs_b->timer_active = 0;
3552 return 1;
3553 }
3554
3555 /* a cfs_rq won't donate quota below this amount */
3556 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3557 /* minimum remaining period time to redistribute slack quota */
3558 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3559 /* how long we wait to gather additional slack before distributing */
3560 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3561
3562 /*
3563 * Are we near the end of the current quota period?
3564 *
3565 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3566 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3567 * migrate_hrtimers, base is never cleared, so we are fine.
3568 */
3569 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3570 {
3571 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3572 u64 remaining;
3573
3574 /* if the call-back is running a quota refresh is already occurring */
3575 if (hrtimer_callback_running(refresh_timer))
3576 return 1;
3577
3578 /* is a quota refresh about to occur? */
3579 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3580 if (remaining < min_expire)
3581 return 1;
3582
3583 return 0;
3584 }
3585
3586 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3587 {
3588 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3589
3590 /* if there's a quota refresh soon don't bother with slack */
3591 if (runtime_refresh_within(cfs_b, min_left))
3592 return;
3593
3594 start_bandwidth_timer(&cfs_b->slack_timer,
3595 ns_to_ktime(cfs_bandwidth_slack_period));
3596 }
3597
3598 /* we know any runtime found here is valid as update_curr() precedes return */
3599 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3600 {
3601 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3602 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3603
3604 if (slack_runtime <= 0)
3605 return;
3606
3607 raw_spin_lock(&cfs_b->lock);
3608 if (cfs_b->quota != RUNTIME_INF &&
3609 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3610 cfs_b->runtime += slack_runtime;
3611
3612 /* we are under rq->lock, defer unthrottling using a timer */
3613 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3614 !list_empty(&cfs_b->throttled_cfs_rq))
3615 start_cfs_slack_bandwidth(cfs_b);
3616 }
3617 raw_spin_unlock(&cfs_b->lock);
3618
3619 /* even if it's not valid for return we don't want to try again */
3620 cfs_rq->runtime_remaining -= slack_runtime;
3621 }
3622
3623 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3624 {
3625 if (!cfs_bandwidth_used())
3626 return;
3627
3628 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3629 return;
3630
3631 __return_cfs_rq_runtime(cfs_rq);
3632 }
3633
3634 /*
3635 * This is done with a timer (instead of inline with bandwidth return) since
3636 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3637 */
3638 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3639 {
3640 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3641 u64 expires;
3642
3643 /* confirm we're still not at a refresh boundary */
3644 raw_spin_lock(&cfs_b->lock);
3645 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3646 raw_spin_unlock(&cfs_b->lock);
3647 return;
3648 }
3649
3650 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3651 runtime = cfs_b->runtime;
3652
3653 expires = cfs_b->runtime_expires;
3654 raw_spin_unlock(&cfs_b->lock);
3655
3656 if (!runtime)
3657 return;
3658
3659 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3660
3661 raw_spin_lock(&cfs_b->lock);
3662 if (expires == cfs_b->runtime_expires)
3663 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3664 raw_spin_unlock(&cfs_b->lock);
3665 }
3666
3667 /*
3668 * When a group wakes up we want to make sure that its quota is not already
3669 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3670 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3671 */
3672 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3673 {
3674 if (!cfs_bandwidth_used())
3675 return;
3676
3677 /* an active group must be handled by the update_curr()->put() path */
3678 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3679 return;
3680
3681 /* ensure the group is not already throttled */
3682 if (cfs_rq_throttled(cfs_rq))
3683 return;
3684
3685 /* update runtime allocation */
3686 account_cfs_rq_runtime(cfs_rq, 0);
3687 if (cfs_rq->runtime_remaining <= 0)
3688 throttle_cfs_rq(cfs_rq);
3689 }
3690
3691 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3692 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3693 {
3694 if (!cfs_bandwidth_used())
3695 return false;
3696
3697 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3698 return false;
3699
3700 /*
3701 * it's possible for a throttled entity to be forced into a running
3702 * state (e.g. set_curr_task), in this case we're finished.
3703 */
3704 if (cfs_rq_throttled(cfs_rq))
3705 return true;
3706
3707 throttle_cfs_rq(cfs_rq);
3708 return true;
3709 }
3710
3711 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3712 {
3713 struct cfs_bandwidth *cfs_b =
3714 container_of(timer, struct cfs_bandwidth, slack_timer);
3715 do_sched_cfs_slack_timer(cfs_b);
3716
3717 return HRTIMER_NORESTART;
3718 }
3719
3720 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3721 {
3722 struct cfs_bandwidth *cfs_b =
3723 container_of(timer, struct cfs_bandwidth, period_timer);
3724 ktime_t now;
3725 int overrun;
3726 int idle = 0;
3727
3728 raw_spin_lock(&cfs_b->lock);
3729 for (;;) {
3730 now = hrtimer_cb_get_time(timer);
3731 overrun = hrtimer_forward(timer, now, cfs_b->period);
3732
3733 if (!overrun)
3734 break;
3735
3736 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3737 }
3738 raw_spin_unlock(&cfs_b->lock);
3739
3740 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3741 }
3742
3743 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3744 {
3745 raw_spin_lock_init(&cfs_b->lock);
3746 cfs_b->runtime = 0;
3747 cfs_b->quota = RUNTIME_INF;
3748 cfs_b->period = ns_to_ktime(default_cfs_period());
3749
3750 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3751 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3752 cfs_b->period_timer.function = sched_cfs_period_timer;
3753 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3754 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3755 }
3756
3757 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3758 {
3759 cfs_rq->runtime_enabled = 0;
3760 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3761 }
3762
3763 /* requires cfs_b->lock, may release to reprogram timer */
3764 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3765 {
3766 /*
3767 * The timer may be active because we're trying to set a new bandwidth
3768 * period or because we're racing with the tear-down path
3769 * (timer_active==0 becomes visible before the hrtimer call-back
3770 * terminates). In either case we ensure that it's re-programmed
3771 */
3772 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3773 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3774 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3775 raw_spin_unlock(&cfs_b->lock);
3776 cpu_relax();
3777 raw_spin_lock(&cfs_b->lock);
3778 /* if someone else restarted the timer then we're done */
3779 if (!force && cfs_b->timer_active)
3780 return;
3781 }
3782
3783 cfs_b->timer_active = 1;
3784 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3785 }
3786
3787 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3788 {
3789 hrtimer_cancel(&cfs_b->period_timer);
3790 hrtimer_cancel(&cfs_b->slack_timer);
3791 }
3792
3793 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3794 {
3795 struct cfs_rq *cfs_rq;
3796
3797 for_each_leaf_cfs_rq(rq, cfs_rq) {
3798 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3799
3800 raw_spin_lock(&cfs_b->lock);
3801 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3802 raw_spin_unlock(&cfs_b->lock);
3803 }
3804 }
3805
3806 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3807 {
3808 struct cfs_rq *cfs_rq;
3809
3810 for_each_leaf_cfs_rq(rq, cfs_rq) {
3811 if (!cfs_rq->runtime_enabled)
3812 continue;
3813
3814 /*
3815 * clock_task is not advancing so we just need to make sure
3816 * there's some valid quota amount
3817 */
3818 cfs_rq->runtime_remaining = 1;
3819 /*
3820 * Offline rq is schedulable till cpu is completely disabled
3821 * in take_cpu_down(), so we prevent new cfs throttling here.
3822 */
3823 cfs_rq->runtime_enabled = 0;
3824
3825 if (cfs_rq_throttled(cfs_rq))
3826 unthrottle_cfs_rq(cfs_rq);
3827 }
3828 }
3829
3830 #else /* CONFIG_CFS_BANDWIDTH */
3831 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3832 {
3833 return rq_clock_task(rq_of(cfs_rq));
3834 }
3835
3836 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3837 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3838 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3839 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3840
3841 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3842 {
3843 return 0;
3844 }
3845
3846 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3847 {
3848 return 0;
3849 }
3850
3851 static inline int throttled_lb_pair(struct task_group *tg,
3852 int src_cpu, int dest_cpu)
3853 {
3854 return 0;
3855 }
3856
3857 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3858
3859 #ifdef CONFIG_FAIR_GROUP_SCHED
3860 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3861 #endif
3862
3863 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3864 {
3865 return NULL;
3866 }
3867 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3868 static inline void update_runtime_enabled(struct rq *rq) {}
3869 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3870
3871 #endif /* CONFIG_CFS_BANDWIDTH */
3872
3873 /**************************************************
3874 * CFS operations on tasks:
3875 */
3876
3877 #ifdef CONFIG_SCHED_HRTICK
3878 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3879 {
3880 struct sched_entity *se = &p->se;
3881 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3882
3883 WARN_ON(task_rq(p) != rq);
3884
3885 if (cfs_rq->nr_running > 1) {
3886 u64 slice = sched_slice(cfs_rq, se);
3887 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3888 s64 delta = slice - ran;
3889
3890 if (delta < 0) {
3891 if (rq->curr == p)
3892 resched_curr(rq);
3893 return;
3894 }
3895
3896 /*
3897 * Don't schedule slices shorter than 10000ns, that just
3898 * doesn't make sense. Rely on vruntime for fairness.
3899 */
3900 if (rq->curr != p)
3901 delta = max_t(s64, 10000LL, delta);
3902
3903 hrtick_start(rq, delta);
3904 }
3905 }
3906
3907 /*
3908 * called from enqueue/dequeue and updates the hrtick when the
3909 * current task is from our class and nr_running is low enough
3910 * to matter.
3911 */
3912 static void hrtick_update(struct rq *rq)
3913 {
3914 struct task_struct *curr = rq->curr;
3915
3916 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3917 return;
3918
3919 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3920 hrtick_start_fair(rq, curr);
3921 }
3922 #else /* !CONFIG_SCHED_HRTICK */
3923 static inline void
3924 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3925 {
3926 }
3927
3928 static inline void hrtick_update(struct rq *rq)
3929 {
3930 }
3931 #endif
3932
3933 /*
3934 * The enqueue_task method is called before nr_running is
3935 * increased. Here we update the fair scheduling stats and
3936 * then put the task into the rbtree:
3937 */
3938 static void
3939 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3940 {
3941 struct cfs_rq *cfs_rq;
3942 struct sched_entity *se = &p->se;
3943
3944 for_each_sched_entity(se) {
3945 if (se->on_rq)
3946 break;
3947 cfs_rq = cfs_rq_of(se);
3948 enqueue_entity(cfs_rq, se, flags);
3949
3950 /*
3951 * end evaluation on encountering a throttled cfs_rq
3952 *
3953 * note: in the case of encountering a throttled cfs_rq we will
3954 * post the final h_nr_running increment below.
3955 */
3956 if (cfs_rq_throttled(cfs_rq))
3957 break;
3958 cfs_rq->h_nr_running++;
3959
3960 flags = ENQUEUE_WAKEUP;
3961 }
3962
3963 for_each_sched_entity(se) {
3964 cfs_rq = cfs_rq_of(se);
3965 cfs_rq->h_nr_running++;
3966
3967 if (cfs_rq_throttled(cfs_rq))
3968 break;
3969
3970 update_cfs_shares(cfs_rq);
3971 update_entity_load_avg(se, 1);
3972 }
3973
3974 if (!se) {
3975 update_rq_runnable_avg(rq, rq->nr_running);
3976 add_nr_running(rq, 1);
3977 }
3978 hrtick_update(rq);
3979 }
3980
3981 static void set_next_buddy(struct sched_entity *se);
3982
3983 /*
3984 * The dequeue_task method is called before nr_running is
3985 * decreased. We remove the task from the rbtree and
3986 * update the fair scheduling stats:
3987 */
3988 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3989 {
3990 struct cfs_rq *cfs_rq;
3991 struct sched_entity *se = &p->se;
3992 int task_sleep = flags & DEQUEUE_SLEEP;
3993
3994 for_each_sched_entity(se) {
3995 cfs_rq = cfs_rq_of(se);
3996 dequeue_entity(cfs_rq, se, flags);
3997
3998 /*
3999 * end evaluation on encountering a throttled cfs_rq
4000 *
4001 * note: in the case of encountering a throttled cfs_rq we will
4002 * post the final h_nr_running decrement below.
4003 */
4004 if (cfs_rq_throttled(cfs_rq))
4005 break;
4006 cfs_rq->h_nr_running--;
4007
4008 /* Don't dequeue parent if it has other entities besides us */
4009 if (cfs_rq->load.weight) {
4010 /*
4011 * Bias pick_next to pick a task from this cfs_rq, as
4012 * p is sleeping when it is within its sched_slice.
4013 */
4014 if (task_sleep && parent_entity(se))
4015 set_next_buddy(parent_entity(se));
4016
4017 /* avoid re-evaluating load for this entity */
4018 se = parent_entity(se);
4019 break;
4020 }
4021 flags |= DEQUEUE_SLEEP;
4022 }
4023
4024 for_each_sched_entity(se) {
4025 cfs_rq = cfs_rq_of(se);
4026 cfs_rq->h_nr_running--;
4027
4028 if (cfs_rq_throttled(cfs_rq))
4029 break;
4030
4031 update_cfs_shares(cfs_rq);
4032 update_entity_load_avg(se, 1);
4033 }
4034
4035 if (!se) {
4036 sub_nr_running(rq, 1);
4037 update_rq_runnable_avg(rq, 1);
4038 }
4039 hrtick_update(rq);
4040 }
4041
4042 #ifdef CONFIG_SMP
4043 /* Used instead of source_load when we know the type == 0 */
4044 static unsigned long weighted_cpuload(const int cpu)
4045 {
4046 return cpu_rq(cpu)->cfs.runnable_load_avg;
4047 }
4048
4049 /*
4050 * Return a low guess at the load of a migration-source cpu weighted
4051 * according to the scheduling class and "nice" value.
4052 *
4053 * We want to under-estimate the load of migration sources, to
4054 * balance conservatively.
4055 */
4056 static unsigned long source_load(int cpu, int type)
4057 {
4058 struct rq *rq = cpu_rq(cpu);
4059 unsigned long total = weighted_cpuload(cpu);
4060
4061 if (type == 0 || !sched_feat(LB_BIAS))
4062 return total;
4063
4064 return min(rq->cpu_load[type-1], total);
4065 }
4066
4067 /*
4068 * Return a high guess at the load of a migration-target cpu weighted
4069 * according to the scheduling class and "nice" value.
4070 */
4071 static unsigned long target_load(int cpu, int type)
4072 {
4073 struct rq *rq = cpu_rq(cpu);
4074 unsigned long total = weighted_cpuload(cpu);
4075
4076 if (type == 0 || !sched_feat(LB_BIAS))
4077 return total;
4078
4079 return max(rq->cpu_load[type-1], total);
4080 }
4081
4082 static unsigned long capacity_of(int cpu)
4083 {
4084 return cpu_rq(cpu)->cpu_capacity;
4085 }
4086
4087 static unsigned long cpu_avg_load_per_task(int cpu)
4088 {
4089 struct rq *rq = cpu_rq(cpu);
4090 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4091 unsigned long load_avg = rq->cfs.runnable_load_avg;
4092
4093 if (nr_running)
4094 return load_avg / nr_running;
4095
4096 return 0;
4097 }
4098
4099 static void record_wakee(struct task_struct *p)
4100 {
4101 /*
4102 * Rough decay (wiping) for cost saving, don't worry
4103 * about the boundary, really active task won't care
4104 * about the loss.
4105 */
4106 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4107 current->wakee_flips >>= 1;
4108 current->wakee_flip_decay_ts = jiffies;
4109 }
4110
4111 if (current->last_wakee != p) {
4112 current->last_wakee = p;
4113 current->wakee_flips++;
4114 }
4115 }
4116
4117 static void task_waking_fair(struct task_struct *p)
4118 {
4119 struct sched_entity *se = &p->se;
4120 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4121 u64 min_vruntime;
4122
4123 #ifndef CONFIG_64BIT
4124 u64 min_vruntime_copy;
4125
4126 do {
4127 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4128 smp_rmb();
4129 min_vruntime = cfs_rq->min_vruntime;
4130 } while (min_vruntime != min_vruntime_copy);
4131 #else
4132 min_vruntime = cfs_rq->min_vruntime;
4133 #endif
4134
4135 se->vruntime -= min_vruntime;
4136 record_wakee(p);
4137 }
4138
4139 #ifdef CONFIG_FAIR_GROUP_SCHED
4140 /*
4141 * effective_load() calculates the load change as seen from the root_task_group
4142 *
4143 * Adding load to a group doesn't make a group heavier, but can cause movement
4144 * of group shares between cpus. Assuming the shares were perfectly aligned one
4145 * can calculate the shift in shares.
4146 *
4147 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4148 * on this @cpu and results in a total addition (subtraction) of @wg to the
4149 * total group weight.
4150 *
4151 * Given a runqueue weight distribution (rw_i) we can compute a shares
4152 * distribution (s_i) using:
4153 *
4154 * s_i = rw_i / \Sum rw_j (1)
4155 *
4156 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4157 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4158 * shares distribution (s_i):
4159 *
4160 * rw_i = { 2, 4, 1, 0 }
4161 * s_i = { 2/7, 4/7, 1/7, 0 }
4162 *
4163 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4164 * task used to run on and the CPU the waker is running on), we need to
4165 * compute the effect of waking a task on either CPU and, in case of a sync
4166 * wakeup, compute the effect of the current task going to sleep.
4167 *
4168 * So for a change of @wl to the local @cpu with an overall group weight change
4169 * of @wl we can compute the new shares distribution (s'_i) using:
4170 *
4171 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4172 *
4173 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4174 * differences in waking a task to CPU 0. The additional task changes the
4175 * weight and shares distributions like:
4176 *
4177 * rw'_i = { 3, 4, 1, 0 }
4178 * s'_i = { 3/8, 4/8, 1/8, 0 }
4179 *
4180 * We can then compute the difference in effective weight by using:
4181 *
4182 * dw_i = S * (s'_i - s_i) (3)
4183 *
4184 * Where 'S' is the group weight as seen by its parent.
4185 *
4186 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4187 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4188 * 4/7) times the weight of the group.
4189 */
4190 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4191 {
4192 struct sched_entity *se = tg->se[cpu];
4193
4194 if (!tg->parent) /* the trivial, non-cgroup case */
4195 return wl;
4196
4197 for_each_sched_entity(se) {
4198 long w, W;
4199
4200 tg = se->my_q->tg;
4201
4202 /*
4203 * W = @wg + \Sum rw_j
4204 */
4205 W = wg + calc_tg_weight(tg, se->my_q);
4206
4207 /*
4208 * w = rw_i + @wl
4209 */
4210 w = se->my_q->load.weight + wl;
4211
4212 /*
4213 * wl = S * s'_i; see (2)
4214 */
4215 if (W > 0 && w < W)
4216 wl = (w * tg->shares) / W;
4217 else
4218 wl = tg->shares;
4219
4220 /*
4221 * Per the above, wl is the new se->load.weight value; since
4222 * those are clipped to [MIN_SHARES, ...) do so now. See
4223 * calc_cfs_shares().
4224 */
4225 if (wl < MIN_SHARES)
4226 wl = MIN_SHARES;
4227
4228 /*
4229 * wl = dw_i = S * (s'_i - s_i); see (3)
4230 */
4231 wl -= se->load.weight;
4232
4233 /*
4234 * Recursively apply this logic to all parent groups to compute
4235 * the final effective load change on the root group. Since
4236 * only the @tg group gets extra weight, all parent groups can
4237 * only redistribute existing shares. @wl is the shift in shares
4238 * resulting from this level per the above.
4239 */
4240 wg = 0;
4241 }
4242
4243 return wl;
4244 }
4245 #else
4246
4247 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4248 {
4249 return wl;
4250 }
4251
4252 #endif
4253
4254 static int wake_wide(struct task_struct *p)
4255 {
4256 int factor = this_cpu_read(sd_llc_size);
4257
4258 /*
4259 * Yeah, it's the switching-frequency, could means many wakee or
4260 * rapidly switch, use factor here will just help to automatically
4261 * adjust the loose-degree, so bigger node will lead to more pull.
4262 */
4263 if (p->wakee_flips > factor) {
4264 /*
4265 * wakee is somewhat hot, it needs certain amount of cpu
4266 * resource, so if waker is far more hot, prefer to leave
4267 * it alone.
4268 */
4269 if (current->wakee_flips > (factor * p->wakee_flips))
4270 return 1;
4271 }
4272
4273 return 0;
4274 }
4275
4276 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4277 {
4278 s64 this_load, load;
4279 int idx, this_cpu, prev_cpu;
4280 unsigned long tl_per_task;
4281 struct task_group *tg;
4282 unsigned long weight;
4283 int balanced;
4284
4285 /*
4286 * If we wake multiple tasks be careful to not bounce
4287 * ourselves around too much.
4288 */
4289 if (wake_wide(p))
4290 return 0;
4291
4292 idx = sd->wake_idx;
4293 this_cpu = smp_processor_id();
4294 prev_cpu = task_cpu(p);
4295 load = source_load(prev_cpu, idx);
4296 this_load = target_load(this_cpu, idx);
4297
4298 /*
4299 * If sync wakeup then subtract the (maximum possible)
4300 * effect of the currently running task from the load
4301 * of the current CPU:
4302 */
4303 if (sync) {
4304 tg = task_group(current);
4305 weight = current->se.load.weight;
4306
4307 this_load += effective_load(tg, this_cpu, -weight, -weight);
4308 load += effective_load(tg, prev_cpu, 0, -weight);
4309 }
4310
4311 tg = task_group(p);
4312 weight = p->se.load.weight;
4313
4314 /*
4315 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4316 * due to the sync cause above having dropped this_load to 0, we'll
4317 * always have an imbalance, but there's really nothing you can do
4318 * about that, so that's good too.
4319 *
4320 * Otherwise check if either cpus are near enough in load to allow this
4321 * task to be woken on this_cpu.
4322 */
4323 if (this_load > 0) {
4324 s64 this_eff_load, prev_eff_load;
4325
4326 this_eff_load = 100;
4327 this_eff_load *= capacity_of(prev_cpu);
4328 this_eff_load *= this_load +
4329 effective_load(tg, this_cpu, weight, weight);
4330
4331 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4332 prev_eff_load *= capacity_of(this_cpu);
4333 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4334
4335 balanced = this_eff_load <= prev_eff_load;
4336 } else
4337 balanced = true;
4338
4339 /*
4340 * If the currently running task will sleep within
4341 * a reasonable amount of time then attract this newly
4342 * woken task:
4343 */
4344 if (sync && balanced)
4345 return 1;
4346
4347 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4348 tl_per_task = cpu_avg_load_per_task(this_cpu);
4349
4350 if (balanced ||
4351 (this_load <= load &&
4352 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4353 /*
4354 * This domain has SD_WAKE_AFFINE and
4355 * p is cache cold in this domain, and
4356 * there is no bad imbalance.
4357 */
4358 schedstat_inc(sd, ttwu_move_affine);
4359 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4360
4361 return 1;
4362 }
4363 return 0;
4364 }
4365
4366 /*
4367 * find_idlest_group finds and returns the least busy CPU group within the
4368 * domain.
4369 */
4370 static struct sched_group *
4371 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4372 int this_cpu, int sd_flag)
4373 {
4374 struct sched_group *idlest = NULL, *group = sd->groups;
4375 unsigned long min_load = ULONG_MAX, this_load = 0;
4376 int load_idx = sd->forkexec_idx;
4377 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4378
4379 if (sd_flag & SD_BALANCE_WAKE)
4380 load_idx = sd->wake_idx;
4381
4382 do {
4383 unsigned long load, avg_load;
4384 int local_group;
4385 int i;
4386
4387 /* Skip over this group if it has no CPUs allowed */
4388 if (!cpumask_intersects(sched_group_cpus(group),
4389 tsk_cpus_allowed(p)))
4390 continue;
4391
4392 local_group = cpumask_test_cpu(this_cpu,
4393 sched_group_cpus(group));
4394
4395 /* Tally up the load of all CPUs in the group */
4396 avg_load = 0;
4397
4398 for_each_cpu(i, sched_group_cpus(group)) {
4399 /* Bias balancing toward cpus of our domain */
4400 if (local_group)
4401 load = source_load(i, load_idx);
4402 else
4403 load = target_load(i, load_idx);
4404
4405 avg_load += load;
4406 }
4407
4408 /* Adjust by relative CPU capacity of the group */
4409 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4410
4411 if (local_group) {
4412 this_load = avg_load;
4413 } else if (avg_load < min_load) {
4414 min_load = avg_load;
4415 idlest = group;
4416 }
4417 } while (group = group->next, group != sd->groups);
4418
4419 if (!idlest || 100*this_load < imbalance*min_load)
4420 return NULL;
4421 return idlest;
4422 }
4423
4424 /*
4425 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4426 */
4427 static int
4428 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4429 {
4430 unsigned long load, min_load = ULONG_MAX;
4431 int idlest = -1;
4432 int i;
4433
4434 /* Traverse only the allowed CPUs */
4435 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4436 load = weighted_cpuload(i);
4437
4438 if (load < min_load || (load == min_load && i == this_cpu)) {
4439 min_load = load;
4440 idlest = i;
4441 }
4442 }
4443
4444 return idlest;
4445 }
4446
4447 /*
4448 * Try and locate an idle CPU in the sched_domain.
4449 */
4450 static int select_idle_sibling(struct task_struct *p, int target)
4451 {
4452 struct sched_domain *sd;
4453 struct sched_group *sg;
4454 int i = task_cpu(p);
4455
4456 if (idle_cpu(target))
4457 return target;
4458
4459 /*
4460 * If the prevous cpu is cache affine and idle, don't be stupid.
4461 */
4462 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4463 return i;
4464
4465 /*
4466 * Otherwise, iterate the domains and find an elegible idle cpu.
4467 */
4468 sd = rcu_dereference(per_cpu(sd_llc, target));
4469 for_each_lower_domain(sd) {
4470 sg = sd->groups;
4471 do {
4472 if (!cpumask_intersects(sched_group_cpus(sg),
4473 tsk_cpus_allowed(p)))
4474 goto next;
4475
4476 for_each_cpu(i, sched_group_cpus(sg)) {
4477 if (i == target || !idle_cpu(i))
4478 goto next;
4479 }
4480
4481 target = cpumask_first_and(sched_group_cpus(sg),
4482 tsk_cpus_allowed(p));
4483 goto done;
4484 next:
4485 sg = sg->next;
4486 } while (sg != sd->groups);
4487 }
4488 done:
4489 return target;
4490 }
4491
4492 /*
4493 * select_task_rq_fair: Select target runqueue for the waking task in domains
4494 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4495 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4496 *
4497 * Balances load by selecting the idlest cpu in the idlest group, or under
4498 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4499 *
4500 * Returns the target cpu number.
4501 *
4502 * preempt must be disabled.
4503 */
4504 static int
4505 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4506 {
4507 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4508 int cpu = smp_processor_id();
4509 int new_cpu = cpu;
4510 int want_affine = 0;
4511 int sync = wake_flags & WF_SYNC;
4512
4513 if (p->nr_cpus_allowed == 1)
4514 return prev_cpu;
4515
4516 if (sd_flag & SD_BALANCE_WAKE) {
4517 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4518 want_affine = 1;
4519 new_cpu = prev_cpu;
4520 }
4521
4522 rcu_read_lock();
4523 for_each_domain(cpu, tmp) {
4524 if (!(tmp->flags & SD_LOAD_BALANCE))
4525 continue;
4526
4527 /*
4528 * If both cpu and prev_cpu are part of this domain,
4529 * cpu is a valid SD_WAKE_AFFINE target.
4530 */
4531 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4532 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4533 affine_sd = tmp;
4534 break;
4535 }
4536
4537 if (tmp->flags & sd_flag)
4538 sd = tmp;
4539 }
4540
4541 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4542 prev_cpu = cpu;
4543
4544 if (sd_flag & SD_BALANCE_WAKE) {
4545 new_cpu = select_idle_sibling(p, prev_cpu);
4546 goto unlock;
4547 }
4548
4549 while (sd) {
4550 struct sched_group *group;
4551 int weight;
4552
4553 if (!(sd->flags & sd_flag)) {
4554 sd = sd->child;
4555 continue;
4556 }
4557
4558 group = find_idlest_group(sd, p, cpu, sd_flag);
4559 if (!group) {
4560 sd = sd->child;
4561 continue;
4562 }
4563
4564 new_cpu = find_idlest_cpu(group, p, cpu);
4565 if (new_cpu == -1 || new_cpu == cpu) {
4566 /* Now try balancing at a lower domain level of cpu */
4567 sd = sd->child;
4568 continue;
4569 }
4570
4571 /* Now try balancing at a lower domain level of new_cpu */
4572 cpu = new_cpu;
4573 weight = sd->span_weight;
4574 sd = NULL;
4575 for_each_domain(cpu, tmp) {
4576 if (weight <= tmp->span_weight)
4577 break;
4578 if (tmp->flags & sd_flag)
4579 sd = tmp;
4580 }
4581 /* while loop will break here if sd == NULL */
4582 }
4583 unlock:
4584 rcu_read_unlock();
4585
4586 return new_cpu;
4587 }
4588
4589 /*
4590 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4591 * cfs_rq_of(p) references at time of call are still valid and identify the
4592 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4593 * other assumptions, including the state of rq->lock, should be made.
4594 */
4595 static void
4596 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4597 {
4598 struct sched_entity *se = &p->se;
4599 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4600
4601 /*
4602 * Load tracking: accumulate removed load so that it can be processed
4603 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4604 * to blocked load iff they have a positive decay-count. It can never
4605 * be negative here since on-rq tasks have decay-count == 0.
4606 */
4607 if (se->avg.decay_count) {
4608 se->avg.decay_count = -__synchronize_entity_decay(se);
4609 atomic_long_add(se->avg.load_avg_contrib,
4610 &cfs_rq->removed_load);
4611 }
4612
4613 /* We have migrated, no longer consider this task hot */
4614 se->exec_start = 0;
4615 }
4616 #endif /* CONFIG_SMP */
4617
4618 static unsigned long
4619 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4620 {
4621 unsigned long gran = sysctl_sched_wakeup_granularity;
4622
4623 /*
4624 * Since its curr running now, convert the gran from real-time
4625 * to virtual-time in his units.
4626 *
4627 * By using 'se' instead of 'curr' we penalize light tasks, so
4628 * they get preempted easier. That is, if 'se' < 'curr' then
4629 * the resulting gran will be larger, therefore penalizing the
4630 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4631 * be smaller, again penalizing the lighter task.
4632 *
4633 * This is especially important for buddies when the leftmost
4634 * task is higher priority than the buddy.
4635 */
4636 return calc_delta_fair(gran, se);
4637 }
4638
4639 /*
4640 * Should 'se' preempt 'curr'.
4641 *
4642 * |s1
4643 * |s2
4644 * |s3
4645 * g
4646 * |<--->|c
4647 *
4648 * w(c, s1) = -1
4649 * w(c, s2) = 0
4650 * w(c, s3) = 1
4651 *
4652 */
4653 static int
4654 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4655 {
4656 s64 gran, vdiff = curr->vruntime - se->vruntime;
4657
4658 if (vdiff <= 0)
4659 return -1;
4660
4661 gran = wakeup_gran(curr, se);
4662 if (vdiff > gran)
4663 return 1;
4664
4665 return 0;
4666 }
4667
4668 static void set_last_buddy(struct sched_entity *se)
4669 {
4670 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4671 return;
4672
4673 for_each_sched_entity(se)
4674 cfs_rq_of(se)->last = se;
4675 }
4676
4677 static void set_next_buddy(struct sched_entity *se)
4678 {
4679 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4680 return;
4681
4682 for_each_sched_entity(se)
4683 cfs_rq_of(se)->next = se;
4684 }
4685
4686 static void set_skip_buddy(struct sched_entity *se)
4687 {
4688 for_each_sched_entity(se)
4689 cfs_rq_of(se)->skip = se;
4690 }
4691
4692 /*
4693 * Preempt the current task with a newly woken task if needed:
4694 */
4695 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4696 {
4697 struct task_struct *curr = rq->curr;
4698 struct sched_entity *se = &curr->se, *pse = &p->se;
4699 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4700 int scale = cfs_rq->nr_running >= sched_nr_latency;
4701 int next_buddy_marked = 0;
4702
4703 if (unlikely(se == pse))
4704 return;
4705
4706 /*
4707 * This is possible from callers such as move_task(), in which we
4708 * unconditionally check_prempt_curr() after an enqueue (which may have
4709 * lead to a throttle). This both saves work and prevents false
4710 * next-buddy nomination below.
4711 */
4712 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4713 return;
4714
4715 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4716 set_next_buddy(pse);
4717 next_buddy_marked = 1;
4718 }
4719
4720 /*
4721 * We can come here with TIF_NEED_RESCHED already set from new task
4722 * wake up path.
4723 *
4724 * Note: this also catches the edge-case of curr being in a throttled
4725 * group (e.g. via set_curr_task), since update_curr() (in the
4726 * enqueue of curr) will have resulted in resched being set. This
4727 * prevents us from potentially nominating it as a false LAST_BUDDY
4728 * below.
4729 */
4730 if (test_tsk_need_resched(curr))
4731 return;
4732
4733 /* Idle tasks are by definition preempted by non-idle tasks. */
4734 if (unlikely(curr->policy == SCHED_IDLE) &&
4735 likely(p->policy != SCHED_IDLE))
4736 goto preempt;
4737
4738 /*
4739 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4740 * is driven by the tick):
4741 */
4742 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4743 return;
4744
4745 find_matching_se(&se, &pse);
4746 update_curr(cfs_rq_of(se));
4747 BUG_ON(!pse);
4748 if (wakeup_preempt_entity(se, pse) == 1) {
4749 /*
4750 * Bias pick_next to pick the sched entity that is
4751 * triggering this preemption.
4752 */
4753 if (!next_buddy_marked)
4754 set_next_buddy(pse);
4755 goto preempt;
4756 }
4757
4758 return;
4759
4760 preempt:
4761 resched_curr(rq);
4762 /*
4763 * Only set the backward buddy when the current task is still
4764 * on the rq. This can happen when a wakeup gets interleaved
4765 * with schedule on the ->pre_schedule() or idle_balance()
4766 * point, either of which can * drop the rq lock.
4767 *
4768 * Also, during early boot the idle thread is in the fair class,
4769 * for obvious reasons its a bad idea to schedule back to it.
4770 */
4771 if (unlikely(!se->on_rq || curr == rq->idle))
4772 return;
4773
4774 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4775 set_last_buddy(se);
4776 }
4777
4778 static struct task_struct *
4779 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4780 {
4781 struct cfs_rq *cfs_rq = &rq->cfs;
4782 struct sched_entity *se;
4783 struct task_struct *p;
4784 int new_tasks;
4785
4786 again:
4787 #ifdef CONFIG_FAIR_GROUP_SCHED
4788 if (!cfs_rq->nr_running)
4789 goto idle;
4790
4791 if (prev->sched_class != &fair_sched_class)
4792 goto simple;
4793
4794 /*
4795 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4796 * likely that a next task is from the same cgroup as the current.
4797 *
4798 * Therefore attempt to avoid putting and setting the entire cgroup
4799 * hierarchy, only change the part that actually changes.
4800 */
4801
4802 do {
4803 struct sched_entity *curr = cfs_rq->curr;
4804
4805 /*
4806 * Since we got here without doing put_prev_entity() we also
4807 * have to consider cfs_rq->curr. If it is still a runnable
4808 * entity, update_curr() will update its vruntime, otherwise
4809 * forget we've ever seen it.
4810 */
4811 if (curr && curr->on_rq)
4812 update_curr(cfs_rq);
4813 else
4814 curr = NULL;
4815
4816 /*
4817 * This call to check_cfs_rq_runtime() will do the throttle and
4818 * dequeue its entity in the parent(s). Therefore the 'simple'
4819 * nr_running test will indeed be correct.
4820 */
4821 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4822 goto simple;
4823
4824 se = pick_next_entity(cfs_rq, curr);
4825 cfs_rq = group_cfs_rq(se);
4826 } while (cfs_rq);
4827
4828 p = task_of(se);
4829
4830 /*
4831 * Since we haven't yet done put_prev_entity and if the selected task
4832 * is a different task than we started out with, try and touch the
4833 * least amount of cfs_rqs.
4834 */
4835 if (prev != p) {
4836 struct sched_entity *pse = &prev->se;
4837
4838 while (!(cfs_rq = is_same_group(se, pse))) {
4839 int se_depth = se->depth;
4840 int pse_depth = pse->depth;
4841
4842 if (se_depth <= pse_depth) {
4843 put_prev_entity(cfs_rq_of(pse), pse);
4844 pse = parent_entity(pse);
4845 }
4846 if (se_depth >= pse_depth) {
4847 set_next_entity(cfs_rq_of(se), se);
4848 se = parent_entity(se);
4849 }
4850 }
4851
4852 put_prev_entity(cfs_rq, pse);
4853 set_next_entity(cfs_rq, se);
4854 }
4855
4856 if (hrtick_enabled(rq))
4857 hrtick_start_fair(rq, p);
4858
4859 return p;
4860 simple:
4861 cfs_rq = &rq->cfs;
4862 #endif
4863
4864 if (!cfs_rq->nr_running)
4865 goto idle;
4866
4867 put_prev_task(rq, prev);
4868
4869 do {
4870 se = pick_next_entity(cfs_rq, NULL);
4871 set_next_entity(cfs_rq, se);
4872 cfs_rq = group_cfs_rq(se);
4873 } while (cfs_rq);
4874
4875 p = task_of(se);
4876
4877 if (hrtick_enabled(rq))
4878 hrtick_start_fair(rq, p);
4879
4880 return p;
4881
4882 idle:
4883 new_tasks = idle_balance(rq);
4884 /*
4885 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4886 * possible for any higher priority task to appear. In that case we
4887 * must re-start the pick_next_entity() loop.
4888 */
4889 if (new_tasks < 0)
4890 return RETRY_TASK;
4891
4892 if (new_tasks > 0)
4893 goto again;
4894
4895 return NULL;
4896 }
4897
4898 /*
4899 * Account for a descheduled task:
4900 */
4901 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4902 {
4903 struct sched_entity *se = &prev->se;
4904 struct cfs_rq *cfs_rq;
4905
4906 for_each_sched_entity(se) {
4907 cfs_rq = cfs_rq_of(se);
4908 put_prev_entity(cfs_rq, se);
4909 }
4910 }
4911
4912 /*
4913 * sched_yield() is very simple
4914 *
4915 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4916 */
4917 static void yield_task_fair(struct rq *rq)
4918 {
4919 struct task_struct *curr = rq->curr;
4920 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4921 struct sched_entity *se = &curr->se;
4922
4923 /*
4924 * Are we the only task in the tree?
4925 */
4926 if (unlikely(rq->nr_running == 1))
4927 return;
4928
4929 clear_buddies(cfs_rq, se);
4930
4931 if (curr->policy != SCHED_BATCH) {
4932 update_rq_clock(rq);
4933 /*
4934 * Update run-time statistics of the 'current'.
4935 */
4936 update_curr(cfs_rq);
4937 /*
4938 * Tell update_rq_clock() that we've just updated,
4939 * so we don't do microscopic update in schedule()
4940 * and double the fastpath cost.
4941 */
4942 rq->skip_clock_update = 1;
4943 }
4944
4945 set_skip_buddy(se);
4946 }
4947
4948 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4949 {
4950 struct sched_entity *se = &p->se;
4951
4952 /* throttled hierarchies are not runnable */
4953 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4954 return false;
4955
4956 /* Tell the scheduler that we'd really like pse to run next. */
4957 set_next_buddy(se);
4958
4959 yield_task_fair(rq);
4960
4961 return true;
4962 }
4963
4964 #ifdef CONFIG_SMP
4965 /**************************************************
4966 * Fair scheduling class load-balancing methods.
4967 *
4968 * BASICS
4969 *
4970 * The purpose of load-balancing is to achieve the same basic fairness the
4971 * per-cpu scheduler provides, namely provide a proportional amount of compute
4972 * time to each task. This is expressed in the following equation:
4973 *
4974 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4975 *
4976 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4977 * W_i,0 is defined as:
4978 *
4979 * W_i,0 = \Sum_j w_i,j (2)
4980 *
4981 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4982 * is derived from the nice value as per prio_to_weight[].
4983 *
4984 * The weight average is an exponential decay average of the instantaneous
4985 * weight:
4986 *
4987 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4988 *
4989 * C_i is the compute capacity of cpu i, typically it is the
4990 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4991 * can also include other factors [XXX].
4992 *
4993 * To achieve this balance we define a measure of imbalance which follows
4994 * directly from (1):
4995 *
4996 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
4997 *
4998 * We them move tasks around to minimize the imbalance. In the continuous
4999 * function space it is obvious this converges, in the discrete case we get
5000 * a few fun cases generally called infeasible weight scenarios.
5001 *
5002 * [XXX expand on:
5003 * - infeasible weights;
5004 * - local vs global optima in the discrete case. ]
5005 *
5006 *
5007 * SCHED DOMAINS
5008 *
5009 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5010 * for all i,j solution, we create a tree of cpus that follows the hardware
5011 * topology where each level pairs two lower groups (or better). This results
5012 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5013 * tree to only the first of the previous level and we decrease the frequency
5014 * of load-balance at each level inv. proportional to the number of cpus in
5015 * the groups.
5016 *
5017 * This yields:
5018 *
5019 * log_2 n 1 n
5020 * \Sum { --- * --- * 2^i } = O(n) (5)
5021 * i = 0 2^i 2^i
5022 * `- size of each group
5023 * | | `- number of cpus doing load-balance
5024 * | `- freq
5025 * `- sum over all levels
5026 *
5027 * Coupled with a limit on how many tasks we can migrate every balance pass,
5028 * this makes (5) the runtime complexity of the balancer.
5029 *
5030 * An important property here is that each CPU is still (indirectly) connected
5031 * to every other cpu in at most O(log n) steps:
5032 *
5033 * The adjacency matrix of the resulting graph is given by:
5034 *
5035 * log_2 n
5036 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5037 * k = 0
5038 *
5039 * And you'll find that:
5040 *
5041 * A^(log_2 n)_i,j != 0 for all i,j (7)
5042 *
5043 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5044 * The task movement gives a factor of O(m), giving a convergence complexity
5045 * of:
5046 *
5047 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5048 *
5049 *
5050 * WORK CONSERVING
5051 *
5052 * In order to avoid CPUs going idle while there's still work to do, new idle
5053 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5054 * tree itself instead of relying on other CPUs to bring it work.
5055 *
5056 * This adds some complexity to both (5) and (8) but it reduces the total idle
5057 * time.
5058 *
5059 * [XXX more?]
5060 *
5061 *
5062 * CGROUPS
5063 *
5064 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5065 *
5066 * s_k,i
5067 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5068 * S_k
5069 *
5070 * Where
5071 *
5072 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5073 *
5074 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5075 *
5076 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5077 * property.
5078 *
5079 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5080 * rewrite all of this once again.]
5081 */
5082
5083 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5084
5085 enum fbq_type { regular, remote, all };
5086
5087 #define LBF_ALL_PINNED 0x01
5088 #define LBF_NEED_BREAK 0x02
5089 #define LBF_DST_PINNED 0x04
5090 #define LBF_SOME_PINNED 0x08
5091
5092 struct lb_env {
5093 struct sched_domain *sd;
5094
5095 struct rq *src_rq;
5096 int src_cpu;
5097
5098 int dst_cpu;
5099 struct rq *dst_rq;
5100
5101 struct cpumask *dst_grpmask;
5102 int new_dst_cpu;
5103 enum cpu_idle_type idle;
5104 long imbalance;
5105 /* The set of CPUs under consideration for load-balancing */
5106 struct cpumask *cpus;
5107
5108 unsigned int flags;
5109
5110 unsigned int loop;
5111 unsigned int loop_break;
5112 unsigned int loop_max;
5113
5114 enum fbq_type fbq_type;
5115 };
5116
5117 /*
5118 * move_task - move a task from one runqueue to another runqueue.
5119 * Both runqueues must be locked.
5120 */
5121 static void move_task(struct task_struct *p, struct lb_env *env)
5122 {
5123 deactivate_task(env->src_rq, p, 0);
5124 set_task_cpu(p, env->dst_cpu);
5125 activate_task(env->dst_rq, p, 0);
5126 check_preempt_curr(env->dst_rq, p, 0);
5127 }
5128
5129 /*
5130 * Is this task likely cache-hot:
5131 */
5132 static int task_hot(struct task_struct *p, struct lb_env *env)
5133 {
5134 s64 delta;
5135
5136 if (p->sched_class != &fair_sched_class)
5137 return 0;
5138
5139 if (unlikely(p->policy == SCHED_IDLE))
5140 return 0;
5141
5142 /*
5143 * Buddy candidates are cache hot:
5144 */
5145 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5146 (&p->se == cfs_rq_of(&p->se)->next ||
5147 &p->se == cfs_rq_of(&p->se)->last))
5148 return 1;
5149
5150 if (sysctl_sched_migration_cost == -1)
5151 return 1;
5152 if (sysctl_sched_migration_cost == 0)
5153 return 0;
5154
5155 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5156
5157 return delta < (s64)sysctl_sched_migration_cost;
5158 }
5159
5160 #ifdef CONFIG_NUMA_BALANCING
5161 /* Returns true if the destination node has incurred more faults */
5162 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5163 {
5164 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5165 int src_nid, dst_nid;
5166
5167 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5168 !(env->sd->flags & SD_NUMA)) {
5169 return false;
5170 }
5171
5172 src_nid = cpu_to_node(env->src_cpu);
5173 dst_nid = cpu_to_node(env->dst_cpu);
5174
5175 if (src_nid == dst_nid)
5176 return false;
5177
5178 if (numa_group) {
5179 /* Task is already in the group's interleave set. */
5180 if (node_isset(src_nid, numa_group->active_nodes))
5181 return false;
5182
5183 /* Task is moving into the group's interleave set. */
5184 if (node_isset(dst_nid, numa_group->active_nodes))
5185 return true;
5186
5187 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5188 }
5189
5190 /* Encourage migration to the preferred node. */
5191 if (dst_nid == p->numa_preferred_nid)
5192 return true;
5193
5194 return task_faults(p, dst_nid) > task_faults(p, src_nid);
5195 }
5196
5197
5198 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5199 {
5200 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5201 int src_nid, dst_nid;
5202
5203 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5204 return false;
5205
5206 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5207 return false;
5208
5209 src_nid = cpu_to_node(env->src_cpu);
5210 dst_nid = cpu_to_node(env->dst_cpu);
5211
5212 if (src_nid == dst_nid)
5213 return false;
5214
5215 if (numa_group) {
5216 /* Task is moving within/into the group's interleave set. */
5217 if (node_isset(dst_nid, numa_group->active_nodes))
5218 return false;
5219
5220 /* Task is moving out of the group's interleave set. */
5221 if (node_isset(src_nid, numa_group->active_nodes))
5222 return true;
5223
5224 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5225 }
5226
5227 /* Migrating away from the preferred node is always bad. */
5228 if (src_nid == p->numa_preferred_nid)
5229 return true;
5230
5231 return task_faults(p, dst_nid) < task_faults(p, src_nid);
5232 }
5233
5234 #else
5235 static inline bool migrate_improves_locality(struct task_struct *p,
5236 struct lb_env *env)
5237 {
5238 return false;
5239 }
5240
5241 static inline bool migrate_degrades_locality(struct task_struct *p,
5242 struct lb_env *env)
5243 {
5244 return false;
5245 }
5246 #endif
5247
5248 /*
5249 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5250 */
5251 static
5252 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5253 {
5254 int tsk_cache_hot = 0;
5255 /*
5256 * We do not migrate tasks that are:
5257 * 1) throttled_lb_pair, or
5258 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5259 * 3) running (obviously), or
5260 * 4) are cache-hot on their current CPU.
5261 */
5262 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5263 return 0;
5264
5265 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5266 int cpu;
5267
5268 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5269
5270 env->flags |= LBF_SOME_PINNED;
5271
5272 /*
5273 * Remember if this task can be migrated to any other cpu in
5274 * our sched_group. We may want to revisit it if we couldn't
5275 * meet load balance goals by pulling other tasks on src_cpu.
5276 *
5277 * Also avoid computing new_dst_cpu if we have already computed
5278 * one in current iteration.
5279 */
5280 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5281 return 0;
5282
5283 /* Prevent to re-select dst_cpu via env's cpus */
5284 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5285 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5286 env->flags |= LBF_DST_PINNED;
5287 env->new_dst_cpu = cpu;
5288 break;
5289 }
5290 }
5291
5292 return 0;
5293 }
5294
5295 /* Record that we found atleast one task that could run on dst_cpu */
5296 env->flags &= ~LBF_ALL_PINNED;
5297
5298 if (task_running(env->src_rq, p)) {
5299 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5300 return 0;
5301 }
5302
5303 /*
5304 * Aggressive migration if:
5305 * 1) destination numa is preferred
5306 * 2) task is cache cold, or
5307 * 3) too many balance attempts have failed.
5308 */
5309 tsk_cache_hot = task_hot(p, env);
5310 if (!tsk_cache_hot)
5311 tsk_cache_hot = migrate_degrades_locality(p, env);
5312
5313 if (migrate_improves_locality(p, env)) {
5314 #ifdef CONFIG_SCHEDSTATS
5315 if (tsk_cache_hot) {
5316 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5317 schedstat_inc(p, se.statistics.nr_forced_migrations);
5318 }
5319 #endif
5320 return 1;
5321 }
5322
5323 if (!tsk_cache_hot ||
5324 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5325
5326 if (tsk_cache_hot) {
5327 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5328 schedstat_inc(p, se.statistics.nr_forced_migrations);
5329 }
5330
5331 return 1;
5332 }
5333
5334 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5335 return 0;
5336 }
5337
5338 /*
5339 * move_one_task tries to move exactly one task from busiest to this_rq, as
5340 * part of active balancing operations within "domain".
5341 * Returns 1 if successful and 0 otherwise.
5342 *
5343 * Called with both runqueues locked.
5344 */
5345 static int move_one_task(struct lb_env *env)
5346 {
5347 struct task_struct *p, *n;
5348
5349 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5350 if (!can_migrate_task(p, env))
5351 continue;
5352
5353 move_task(p, env);
5354 /*
5355 * Right now, this is only the second place move_task()
5356 * is called, so we can safely collect move_task()
5357 * stats here rather than inside move_task().
5358 */
5359 schedstat_inc(env->sd, lb_gained[env->idle]);
5360 return 1;
5361 }
5362 return 0;
5363 }
5364
5365 static const unsigned int sched_nr_migrate_break = 32;
5366
5367 /*
5368 * move_tasks tries to move up to imbalance weighted load from busiest to
5369 * this_rq, as part of a balancing operation within domain "sd".
5370 * Returns 1 if successful and 0 otherwise.
5371 *
5372 * Called with both runqueues locked.
5373 */
5374 static int move_tasks(struct lb_env *env)
5375 {
5376 struct list_head *tasks = &env->src_rq->cfs_tasks;
5377 struct task_struct *p;
5378 unsigned long load;
5379 int pulled = 0;
5380
5381 if (env->imbalance <= 0)
5382 return 0;
5383
5384 while (!list_empty(tasks)) {
5385 p = list_first_entry(tasks, struct task_struct, se.group_node);
5386
5387 env->loop++;
5388 /* We've more or less seen every task there is, call it quits */
5389 if (env->loop > env->loop_max)
5390 break;
5391
5392 /* take a breather every nr_migrate tasks */
5393 if (env->loop > env->loop_break) {
5394 env->loop_break += sched_nr_migrate_break;
5395 env->flags |= LBF_NEED_BREAK;
5396 break;
5397 }
5398
5399 if (!can_migrate_task(p, env))
5400 goto next;
5401
5402 load = task_h_load(p);
5403
5404 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5405 goto next;
5406
5407 if ((load / 2) > env->imbalance)
5408 goto next;
5409
5410 move_task(p, env);
5411 pulled++;
5412 env->imbalance -= load;
5413
5414 #ifdef CONFIG_PREEMPT
5415 /*
5416 * NEWIDLE balancing is a source of latency, so preemptible
5417 * kernels will stop after the first task is pulled to minimize
5418 * the critical section.
5419 */
5420 if (env->idle == CPU_NEWLY_IDLE)
5421 break;
5422 #endif
5423
5424 /*
5425 * We only want to steal up to the prescribed amount of
5426 * weighted load.
5427 */
5428 if (env->imbalance <= 0)
5429 break;
5430
5431 continue;
5432 next:
5433 list_move_tail(&p->se.group_node, tasks);
5434 }
5435
5436 /*
5437 * Right now, this is one of only two places move_task() is called,
5438 * so we can safely collect move_task() stats here rather than
5439 * inside move_task().
5440 */
5441 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5442
5443 return pulled;
5444 }
5445
5446 #ifdef CONFIG_FAIR_GROUP_SCHED
5447 /*
5448 * update tg->load_weight by folding this cpu's load_avg
5449 */
5450 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5451 {
5452 struct sched_entity *se = tg->se[cpu];
5453 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5454
5455 /* throttled entities do not contribute to load */
5456 if (throttled_hierarchy(cfs_rq))
5457 return;
5458
5459 update_cfs_rq_blocked_load(cfs_rq, 1);
5460
5461 if (se) {
5462 update_entity_load_avg(se, 1);
5463 /*
5464 * We pivot on our runnable average having decayed to zero for
5465 * list removal. This generally implies that all our children
5466 * have also been removed (modulo rounding error or bandwidth
5467 * control); however, such cases are rare and we can fix these
5468 * at enqueue.
5469 *
5470 * TODO: fix up out-of-order children on enqueue.
5471 */
5472 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5473 list_del_leaf_cfs_rq(cfs_rq);
5474 } else {
5475 struct rq *rq = rq_of(cfs_rq);
5476 update_rq_runnable_avg(rq, rq->nr_running);
5477 }
5478 }
5479
5480 static void update_blocked_averages(int cpu)
5481 {
5482 struct rq *rq = cpu_rq(cpu);
5483 struct cfs_rq *cfs_rq;
5484 unsigned long flags;
5485
5486 raw_spin_lock_irqsave(&rq->lock, flags);
5487 update_rq_clock(rq);
5488 /*
5489 * Iterates the task_group tree in a bottom up fashion, see
5490 * list_add_leaf_cfs_rq() for details.
5491 */
5492 for_each_leaf_cfs_rq(rq, cfs_rq) {
5493 /*
5494 * Note: We may want to consider periodically releasing
5495 * rq->lock about these updates so that creating many task
5496 * groups does not result in continually extending hold time.
5497 */
5498 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5499 }
5500
5501 raw_spin_unlock_irqrestore(&rq->lock, flags);
5502 }
5503
5504 /*
5505 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5506 * This needs to be done in a top-down fashion because the load of a child
5507 * group is a fraction of its parents load.
5508 */
5509 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5510 {
5511 struct rq *rq = rq_of(cfs_rq);
5512 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5513 unsigned long now = jiffies;
5514 unsigned long load;
5515
5516 if (cfs_rq->last_h_load_update == now)
5517 return;
5518
5519 cfs_rq->h_load_next = NULL;
5520 for_each_sched_entity(se) {
5521 cfs_rq = cfs_rq_of(se);
5522 cfs_rq->h_load_next = se;
5523 if (cfs_rq->last_h_load_update == now)
5524 break;
5525 }
5526
5527 if (!se) {
5528 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5529 cfs_rq->last_h_load_update = now;
5530 }
5531
5532 while ((se = cfs_rq->h_load_next) != NULL) {
5533 load = cfs_rq->h_load;
5534 load = div64_ul(load * se->avg.load_avg_contrib,
5535 cfs_rq->runnable_load_avg + 1);
5536 cfs_rq = group_cfs_rq(se);
5537 cfs_rq->h_load = load;
5538 cfs_rq->last_h_load_update = now;
5539 }
5540 }
5541
5542 static unsigned long task_h_load(struct task_struct *p)
5543 {
5544 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5545
5546 update_cfs_rq_h_load(cfs_rq);
5547 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5548 cfs_rq->runnable_load_avg + 1);
5549 }
5550 #else
5551 static inline void update_blocked_averages(int cpu)
5552 {
5553 }
5554
5555 static unsigned long task_h_load(struct task_struct *p)
5556 {
5557 return p->se.avg.load_avg_contrib;
5558 }
5559 #endif
5560
5561 /********** Helpers for find_busiest_group ************************/
5562 /*
5563 * sg_lb_stats - stats of a sched_group required for load_balancing
5564 */
5565 struct sg_lb_stats {
5566 unsigned long avg_load; /*Avg load across the CPUs of the group */
5567 unsigned long group_load; /* Total load over the CPUs of the group */
5568 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5569 unsigned long load_per_task;
5570 unsigned long group_capacity;
5571 unsigned int sum_nr_running; /* Nr tasks running in the group */
5572 unsigned int group_capacity_factor;
5573 unsigned int idle_cpus;
5574 unsigned int group_weight;
5575 int group_imb; /* Is there an imbalance in the group ? */
5576 int group_has_free_capacity;
5577 #ifdef CONFIG_NUMA_BALANCING
5578 unsigned int nr_numa_running;
5579 unsigned int nr_preferred_running;
5580 #endif
5581 };
5582
5583 /*
5584 * sd_lb_stats - Structure to store the statistics of a sched_domain
5585 * during load balancing.
5586 */
5587 struct sd_lb_stats {
5588 struct sched_group *busiest; /* Busiest group in this sd */
5589 struct sched_group *local; /* Local group in this sd */
5590 unsigned long total_load; /* Total load of all groups in sd */
5591 unsigned long total_capacity; /* Total capacity of all groups in sd */
5592 unsigned long avg_load; /* Average load across all groups in sd */
5593
5594 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5595 struct sg_lb_stats local_stat; /* Statistics of the local group */
5596 };
5597
5598 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5599 {
5600 /*
5601 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5602 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5603 * We must however clear busiest_stat::avg_load because
5604 * update_sd_pick_busiest() reads this before assignment.
5605 */
5606 *sds = (struct sd_lb_stats){
5607 .busiest = NULL,
5608 .local = NULL,
5609 .total_load = 0UL,
5610 .total_capacity = 0UL,
5611 .busiest_stat = {
5612 .avg_load = 0UL,
5613 },
5614 };
5615 }
5616
5617 /**
5618 * get_sd_load_idx - Obtain the load index for a given sched domain.
5619 * @sd: The sched_domain whose load_idx is to be obtained.
5620 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5621 *
5622 * Return: The load index.
5623 */
5624 static inline int get_sd_load_idx(struct sched_domain *sd,
5625 enum cpu_idle_type idle)
5626 {
5627 int load_idx;
5628
5629 switch (idle) {
5630 case CPU_NOT_IDLE:
5631 load_idx = sd->busy_idx;
5632 break;
5633
5634 case CPU_NEWLY_IDLE:
5635 load_idx = sd->newidle_idx;
5636 break;
5637 default:
5638 load_idx = sd->idle_idx;
5639 break;
5640 }
5641
5642 return load_idx;
5643 }
5644
5645 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5646 {
5647 return SCHED_CAPACITY_SCALE;
5648 }
5649
5650 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5651 {
5652 return default_scale_capacity(sd, cpu);
5653 }
5654
5655 static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
5656 {
5657 unsigned long weight = sd->span_weight;
5658 unsigned long smt_gain = sd->smt_gain;
5659
5660 smt_gain /= weight;
5661
5662 return smt_gain;
5663 }
5664
5665 unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
5666 {
5667 return default_scale_smt_capacity(sd, cpu);
5668 }
5669
5670 static unsigned long scale_rt_capacity(int cpu)
5671 {
5672 struct rq *rq = cpu_rq(cpu);
5673 u64 total, available, age_stamp, avg;
5674 s64 delta;
5675
5676 /*
5677 * Since we're reading these variables without serialization make sure
5678 * we read them once before doing sanity checks on them.
5679 */
5680 age_stamp = ACCESS_ONCE(rq->age_stamp);
5681 avg = ACCESS_ONCE(rq->rt_avg);
5682
5683 delta = rq_clock(rq) - age_stamp;
5684 if (unlikely(delta < 0))
5685 delta = 0;
5686
5687 total = sched_avg_period() + delta;
5688
5689 if (unlikely(total < avg)) {
5690 /* Ensures that capacity won't end up being negative */
5691 available = 0;
5692 } else {
5693 available = total - avg;
5694 }
5695
5696 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5697 total = SCHED_CAPACITY_SCALE;
5698
5699 total >>= SCHED_CAPACITY_SHIFT;
5700
5701 return div_u64(available, total);
5702 }
5703
5704 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5705 {
5706 unsigned long weight = sd->span_weight;
5707 unsigned long capacity = SCHED_CAPACITY_SCALE;
5708 struct sched_group *sdg = sd->groups;
5709
5710 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5711 if (sched_feat(ARCH_CAPACITY))
5712 capacity *= arch_scale_smt_capacity(sd, cpu);
5713 else
5714 capacity *= default_scale_smt_capacity(sd, cpu);
5715
5716 capacity >>= SCHED_CAPACITY_SHIFT;
5717 }
5718
5719 sdg->sgc->capacity_orig = capacity;
5720
5721 if (sched_feat(ARCH_CAPACITY))
5722 capacity *= arch_scale_freq_capacity(sd, cpu);
5723 else
5724 capacity *= default_scale_capacity(sd, cpu);
5725
5726 capacity >>= SCHED_CAPACITY_SHIFT;
5727
5728 capacity *= scale_rt_capacity(cpu);
5729 capacity >>= SCHED_CAPACITY_SHIFT;
5730
5731 if (!capacity)
5732 capacity = 1;
5733
5734 cpu_rq(cpu)->cpu_capacity = capacity;
5735 sdg->sgc->capacity = capacity;
5736 }
5737
5738 void update_group_capacity(struct sched_domain *sd, int cpu)
5739 {
5740 struct sched_domain *child = sd->child;
5741 struct sched_group *group, *sdg = sd->groups;
5742 unsigned long capacity, capacity_orig;
5743 unsigned long interval;
5744
5745 interval = msecs_to_jiffies(sd->balance_interval);
5746 interval = clamp(interval, 1UL, max_load_balance_interval);
5747 sdg->sgc->next_update = jiffies + interval;
5748
5749 if (!child) {
5750 update_cpu_capacity(sd, cpu);
5751 return;
5752 }
5753
5754 capacity_orig = capacity = 0;
5755
5756 if (child->flags & SD_OVERLAP) {
5757 /*
5758 * SD_OVERLAP domains cannot assume that child groups
5759 * span the current group.
5760 */
5761
5762 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5763 struct sched_group_capacity *sgc;
5764 struct rq *rq = cpu_rq(cpu);
5765
5766 /*
5767 * build_sched_domains() -> init_sched_groups_capacity()
5768 * gets here before we've attached the domains to the
5769 * runqueues.
5770 *
5771 * Use capacity_of(), which is set irrespective of domains
5772 * in update_cpu_capacity().
5773 *
5774 * This avoids capacity/capacity_orig from being 0 and
5775 * causing divide-by-zero issues on boot.
5776 *
5777 * Runtime updates will correct capacity_orig.
5778 */
5779 if (unlikely(!rq->sd)) {
5780 capacity_orig += capacity_of(cpu);
5781 capacity += capacity_of(cpu);
5782 continue;
5783 }
5784
5785 sgc = rq->sd->groups->sgc;
5786 capacity_orig += sgc->capacity_orig;
5787 capacity += sgc->capacity;
5788 }
5789 } else {
5790 /*
5791 * !SD_OVERLAP domains can assume that child groups
5792 * span the current group.
5793 */
5794
5795 group = child->groups;
5796 do {
5797 capacity_orig += group->sgc->capacity_orig;
5798 capacity += group->sgc->capacity;
5799 group = group->next;
5800 } while (group != child->groups);
5801 }
5802
5803 sdg->sgc->capacity_orig = capacity_orig;
5804 sdg->sgc->capacity = capacity;
5805 }
5806
5807 /*
5808 * Try and fix up capacity for tiny siblings, this is needed when
5809 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5810 * which on its own isn't powerful enough.
5811 *
5812 * See update_sd_pick_busiest() and check_asym_packing().
5813 */
5814 static inline int
5815 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5816 {
5817 /*
5818 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5819 */
5820 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5821 return 0;
5822
5823 /*
5824 * If ~90% of the cpu_capacity is still there, we're good.
5825 */
5826 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5827 return 1;
5828
5829 return 0;
5830 }
5831
5832 /*
5833 * Group imbalance indicates (and tries to solve) the problem where balancing
5834 * groups is inadequate due to tsk_cpus_allowed() constraints.
5835 *
5836 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5837 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5838 * Something like:
5839 *
5840 * { 0 1 2 3 } { 4 5 6 7 }
5841 * * * * *
5842 *
5843 * If we were to balance group-wise we'd place two tasks in the first group and
5844 * two tasks in the second group. Clearly this is undesired as it will overload
5845 * cpu 3 and leave one of the cpus in the second group unused.
5846 *
5847 * The current solution to this issue is detecting the skew in the first group
5848 * by noticing the lower domain failed to reach balance and had difficulty
5849 * moving tasks due to affinity constraints.
5850 *
5851 * When this is so detected; this group becomes a candidate for busiest; see
5852 * update_sd_pick_busiest(). And calculate_imbalance() and
5853 * find_busiest_group() avoid some of the usual balance conditions to allow it
5854 * to create an effective group imbalance.
5855 *
5856 * This is a somewhat tricky proposition since the next run might not find the
5857 * group imbalance and decide the groups need to be balanced again. A most
5858 * subtle and fragile situation.
5859 */
5860
5861 static inline int sg_imbalanced(struct sched_group *group)
5862 {
5863 return group->sgc->imbalance;
5864 }
5865
5866 /*
5867 * Compute the group capacity factor.
5868 *
5869 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5870 * first dividing out the smt factor and computing the actual number of cores
5871 * and limit unit capacity with that.
5872 */
5873 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5874 {
5875 unsigned int capacity_factor, smt, cpus;
5876 unsigned int capacity, capacity_orig;
5877
5878 capacity = group->sgc->capacity;
5879 capacity_orig = group->sgc->capacity_orig;
5880 cpus = group->group_weight;
5881
5882 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5883 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5884 capacity_factor = cpus / smt; /* cores */
5885
5886 capacity_factor = min_t(unsigned,
5887 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5888 if (!capacity_factor)
5889 capacity_factor = fix_small_capacity(env->sd, group);
5890
5891 return capacity_factor;
5892 }
5893
5894 /**
5895 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5896 * @env: The load balancing environment.
5897 * @group: sched_group whose statistics are to be updated.
5898 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5899 * @local_group: Does group contain this_cpu.
5900 * @sgs: variable to hold the statistics for this group.
5901 * @overload: Indicate more than one runnable task for any CPU.
5902 */
5903 static inline void update_sg_lb_stats(struct lb_env *env,
5904 struct sched_group *group, int load_idx,
5905 int local_group, struct sg_lb_stats *sgs,
5906 bool *overload)
5907 {
5908 unsigned long load;
5909 int i;
5910
5911 memset(sgs, 0, sizeof(*sgs));
5912
5913 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5914 struct rq *rq = cpu_rq(i);
5915
5916 /* Bias balancing toward cpus of our domain */
5917 if (local_group)
5918 load = target_load(i, load_idx);
5919 else
5920 load = source_load(i, load_idx);
5921
5922 sgs->group_load += load;
5923 sgs->sum_nr_running += rq->nr_running;
5924
5925 if (rq->nr_running > 1)
5926 *overload = true;
5927
5928 #ifdef CONFIG_NUMA_BALANCING
5929 sgs->nr_numa_running += rq->nr_numa_running;
5930 sgs->nr_preferred_running += rq->nr_preferred_running;
5931 #endif
5932 sgs->sum_weighted_load += weighted_cpuload(i);
5933 if (idle_cpu(i))
5934 sgs->idle_cpus++;
5935 }
5936
5937 /* Adjust by relative CPU capacity of the group */
5938 sgs->group_capacity = group->sgc->capacity;
5939 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
5940
5941 if (sgs->sum_nr_running)
5942 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5943
5944 sgs->group_weight = group->group_weight;
5945
5946 sgs->group_imb = sg_imbalanced(group);
5947 sgs->group_capacity_factor = sg_capacity_factor(env, group);
5948
5949 if (sgs->group_capacity_factor > sgs->sum_nr_running)
5950 sgs->group_has_free_capacity = 1;
5951 }
5952
5953 /**
5954 * update_sd_pick_busiest - return 1 on busiest group
5955 * @env: The load balancing environment.
5956 * @sds: sched_domain statistics
5957 * @sg: sched_group candidate to be checked for being the busiest
5958 * @sgs: sched_group statistics
5959 *
5960 * Determine if @sg is a busier group than the previously selected
5961 * busiest group.
5962 *
5963 * Return: %true if @sg is a busier group than the previously selected
5964 * busiest group. %false otherwise.
5965 */
5966 static bool update_sd_pick_busiest(struct lb_env *env,
5967 struct sd_lb_stats *sds,
5968 struct sched_group *sg,
5969 struct sg_lb_stats *sgs)
5970 {
5971 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5972 return false;
5973
5974 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5975 return true;
5976
5977 if (sgs->group_imb)
5978 return true;
5979
5980 /*
5981 * ASYM_PACKING needs to move all the work to the lowest
5982 * numbered CPUs in the group, therefore mark all groups
5983 * higher than ourself as busy.
5984 */
5985 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5986 env->dst_cpu < group_first_cpu(sg)) {
5987 if (!sds->busiest)
5988 return true;
5989
5990 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5991 return true;
5992 }
5993
5994 return false;
5995 }
5996
5997 #ifdef CONFIG_NUMA_BALANCING
5998 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5999 {
6000 if (sgs->sum_nr_running > sgs->nr_numa_running)
6001 return regular;
6002 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6003 return remote;
6004 return all;
6005 }
6006
6007 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6008 {
6009 if (rq->nr_running > rq->nr_numa_running)
6010 return regular;
6011 if (rq->nr_running > rq->nr_preferred_running)
6012 return remote;
6013 return all;
6014 }
6015 #else
6016 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6017 {
6018 return all;
6019 }
6020
6021 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6022 {
6023 return regular;
6024 }
6025 #endif /* CONFIG_NUMA_BALANCING */
6026
6027 /**
6028 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6029 * @env: The load balancing environment.
6030 * @sds: variable to hold the statistics for this sched_domain.
6031 */
6032 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6033 {
6034 struct sched_domain *child = env->sd->child;
6035 struct sched_group *sg = env->sd->groups;
6036 struct sg_lb_stats tmp_sgs;
6037 int load_idx, prefer_sibling = 0;
6038 bool overload = false;
6039
6040 if (child && child->flags & SD_PREFER_SIBLING)
6041 prefer_sibling = 1;
6042
6043 load_idx = get_sd_load_idx(env->sd, env->idle);
6044
6045 do {
6046 struct sg_lb_stats *sgs = &tmp_sgs;
6047 int local_group;
6048
6049 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6050 if (local_group) {
6051 sds->local = sg;
6052 sgs = &sds->local_stat;
6053
6054 if (env->idle != CPU_NEWLY_IDLE ||
6055 time_after_eq(jiffies, sg->sgc->next_update))
6056 update_group_capacity(env->sd, env->dst_cpu);
6057 }
6058
6059 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6060 &overload);
6061
6062 if (local_group)
6063 goto next_group;
6064
6065 /*
6066 * In case the child domain prefers tasks go to siblings
6067 * first, lower the sg capacity factor to one so that we'll try
6068 * and move all the excess tasks away. We lower the capacity
6069 * of a group only if the local group has the capacity to fit
6070 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6071 * extra check prevents the case where you always pull from the
6072 * heaviest group when it is already under-utilized (possible
6073 * with a large weight task outweighs the tasks on the system).
6074 */
6075 if (prefer_sibling && sds->local &&
6076 sds->local_stat.group_has_free_capacity)
6077 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6078
6079 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6080 sds->busiest = sg;
6081 sds->busiest_stat = *sgs;
6082 }
6083
6084 next_group:
6085 /* Now, start updating sd_lb_stats */
6086 sds->total_load += sgs->group_load;
6087 sds->total_capacity += sgs->group_capacity;
6088
6089 sg = sg->next;
6090 } while (sg != env->sd->groups);
6091
6092 if (env->sd->flags & SD_NUMA)
6093 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6094
6095 if (!env->sd->parent) {
6096 /* update overload indicator if we are at root domain */
6097 if (env->dst_rq->rd->overload != overload)
6098 env->dst_rq->rd->overload = overload;
6099 }
6100
6101 }
6102
6103 /**
6104 * check_asym_packing - Check to see if the group is packed into the
6105 * sched doman.
6106 *
6107 * This is primarily intended to used at the sibling level. Some
6108 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6109 * case of POWER7, it can move to lower SMT modes only when higher
6110 * threads are idle. When in lower SMT modes, the threads will
6111 * perform better since they share less core resources. Hence when we
6112 * have idle threads, we want them to be the higher ones.
6113 *
6114 * This packing function is run on idle threads. It checks to see if
6115 * the busiest CPU in this domain (core in the P7 case) has a higher
6116 * CPU number than the packing function is being run on. Here we are
6117 * assuming lower CPU number will be equivalent to lower a SMT thread
6118 * number.
6119 *
6120 * Return: 1 when packing is required and a task should be moved to
6121 * this CPU. The amount of the imbalance is returned in *imbalance.
6122 *
6123 * @env: The load balancing environment.
6124 * @sds: Statistics of the sched_domain which is to be packed
6125 */
6126 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6127 {
6128 int busiest_cpu;
6129
6130 if (!(env->sd->flags & SD_ASYM_PACKING))
6131 return 0;
6132
6133 if (!sds->busiest)
6134 return 0;
6135
6136 busiest_cpu = group_first_cpu(sds->busiest);
6137 if (env->dst_cpu > busiest_cpu)
6138 return 0;
6139
6140 env->imbalance = DIV_ROUND_CLOSEST(
6141 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6142 SCHED_CAPACITY_SCALE);
6143
6144 return 1;
6145 }
6146
6147 /**
6148 * fix_small_imbalance - Calculate the minor imbalance that exists
6149 * amongst the groups of a sched_domain, during
6150 * load balancing.
6151 * @env: The load balancing environment.
6152 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6153 */
6154 static inline
6155 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6156 {
6157 unsigned long tmp, capa_now = 0, capa_move = 0;
6158 unsigned int imbn = 2;
6159 unsigned long scaled_busy_load_per_task;
6160 struct sg_lb_stats *local, *busiest;
6161
6162 local = &sds->local_stat;
6163 busiest = &sds->busiest_stat;
6164
6165 if (!local->sum_nr_running)
6166 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6167 else if (busiest->load_per_task > local->load_per_task)
6168 imbn = 1;
6169
6170 scaled_busy_load_per_task =
6171 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6172 busiest->group_capacity;
6173
6174 if (busiest->avg_load + scaled_busy_load_per_task >=
6175 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6176 env->imbalance = busiest->load_per_task;
6177 return;
6178 }
6179
6180 /*
6181 * OK, we don't have enough imbalance to justify moving tasks,
6182 * however we may be able to increase total CPU capacity used by
6183 * moving them.
6184 */
6185
6186 capa_now += busiest->group_capacity *
6187 min(busiest->load_per_task, busiest->avg_load);
6188 capa_now += local->group_capacity *
6189 min(local->load_per_task, local->avg_load);
6190 capa_now /= SCHED_CAPACITY_SCALE;
6191
6192 /* Amount of load we'd subtract */
6193 if (busiest->avg_load > scaled_busy_load_per_task) {
6194 capa_move += busiest->group_capacity *
6195 min(busiest->load_per_task,
6196 busiest->avg_load - scaled_busy_load_per_task);
6197 }
6198
6199 /* Amount of load we'd add */
6200 if (busiest->avg_load * busiest->group_capacity <
6201 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6202 tmp = (busiest->avg_load * busiest->group_capacity) /
6203 local->group_capacity;
6204 } else {
6205 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6206 local->group_capacity;
6207 }
6208 capa_move += local->group_capacity *
6209 min(local->load_per_task, local->avg_load + tmp);
6210 capa_move /= SCHED_CAPACITY_SCALE;
6211
6212 /* Move if we gain throughput */
6213 if (capa_move > capa_now)
6214 env->imbalance = busiest->load_per_task;
6215 }
6216
6217 /**
6218 * calculate_imbalance - Calculate the amount of imbalance present within the
6219 * groups of a given sched_domain during load balance.
6220 * @env: load balance environment
6221 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6222 */
6223 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6224 {
6225 unsigned long max_pull, load_above_capacity = ~0UL;
6226 struct sg_lb_stats *local, *busiest;
6227
6228 local = &sds->local_stat;
6229 busiest = &sds->busiest_stat;
6230
6231 if (busiest->group_imb) {
6232 /*
6233 * In the group_imb case we cannot rely on group-wide averages
6234 * to ensure cpu-load equilibrium, look at wider averages. XXX
6235 */
6236 busiest->load_per_task =
6237 min(busiest->load_per_task, sds->avg_load);
6238 }
6239
6240 /*
6241 * In the presence of smp nice balancing, certain scenarios can have
6242 * max load less than avg load(as we skip the groups at or below
6243 * its cpu_capacity, while calculating max_load..)
6244 */
6245 if (busiest->avg_load <= sds->avg_load ||
6246 local->avg_load >= sds->avg_load) {
6247 env->imbalance = 0;
6248 return fix_small_imbalance(env, sds);
6249 }
6250
6251 if (!busiest->group_imb) {
6252 /*
6253 * Don't want to pull so many tasks that a group would go idle.
6254 * Except of course for the group_imb case, since then we might
6255 * have to drop below capacity to reach cpu-load equilibrium.
6256 */
6257 load_above_capacity =
6258 (busiest->sum_nr_running - busiest->group_capacity_factor);
6259
6260 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6261 load_above_capacity /= busiest->group_capacity;
6262 }
6263
6264 /*
6265 * We're trying to get all the cpus to the average_load, so we don't
6266 * want to push ourselves above the average load, nor do we wish to
6267 * reduce the max loaded cpu below the average load. At the same time,
6268 * we also don't want to reduce the group load below the group capacity
6269 * (so that we can implement power-savings policies etc). Thus we look
6270 * for the minimum possible imbalance.
6271 */
6272 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6273
6274 /* How much load to actually move to equalise the imbalance */
6275 env->imbalance = min(
6276 max_pull * busiest->group_capacity,
6277 (sds->avg_load - local->avg_load) * local->group_capacity
6278 ) / SCHED_CAPACITY_SCALE;
6279
6280 /*
6281 * if *imbalance is less than the average load per runnable task
6282 * there is no guarantee that any tasks will be moved so we'll have
6283 * a think about bumping its value to force at least one task to be
6284 * moved
6285 */
6286 if (env->imbalance < busiest->load_per_task)
6287 return fix_small_imbalance(env, sds);
6288 }
6289
6290 /******* find_busiest_group() helpers end here *********************/
6291
6292 /**
6293 * find_busiest_group - Returns the busiest group within the sched_domain
6294 * if there is an imbalance. If there isn't an imbalance, and
6295 * the user has opted for power-savings, it returns a group whose
6296 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6297 * such a group exists.
6298 *
6299 * Also calculates the amount of weighted load which should be moved
6300 * to restore balance.
6301 *
6302 * @env: The load balancing environment.
6303 *
6304 * Return: - The busiest group if imbalance exists.
6305 * - If no imbalance and user has opted for power-savings balance,
6306 * return the least loaded group whose CPUs can be
6307 * put to idle by rebalancing its tasks onto our group.
6308 */
6309 static struct sched_group *find_busiest_group(struct lb_env *env)
6310 {
6311 struct sg_lb_stats *local, *busiest;
6312 struct sd_lb_stats sds;
6313
6314 init_sd_lb_stats(&sds);
6315
6316 /*
6317 * Compute the various statistics relavent for load balancing at
6318 * this level.
6319 */
6320 update_sd_lb_stats(env, &sds);
6321 local = &sds.local_stat;
6322 busiest = &sds.busiest_stat;
6323
6324 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6325 check_asym_packing(env, &sds))
6326 return sds.busiest;
6327
6328 /* There is no busy sibling group to pull tasks from */
6329 if (!sds.busiest || busiest->sum_nr_running == 0)
6330 goto out_balanced;
6331
6332 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6333 / sds.total_capacity;
6334
6335 /*
6336 * If the busiest group is imbalanced the below checks don't
6337 * work because they assume all things are equal, which typically
6338 * isn't true due to cpus_allowed constraints and the like.
6339 */
6340 if (busiest->group_imb)
6341 goto force_balance;
6342
6343 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6344 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6345 !busiest->group_has_free_capacity)
6346 goto force_balance;
6347
6348 /*
6349 * If the local group is more busy than the selected busiest group
6350 * don't try and pull any tasks.
6351 */
6352 if (local->avg_load >= busiest->avg_load)
6353 goto out_balanced;
6354
6355 /*
6356 * Don't pull any tasks if this group is already above the domain
6357 * average load.
6358 */
6359 if (local->avg_load >= sds.avg_load)
6360 goto out_balanced;
6361
6362 if (env->idle == CPU_IDLE) {
6363 /*
6364 * This cpu is idle. If the busiest group load doesn't
6365 * have more tasks than the number of available cpu's and
6366 * there is no imbalance between this and busiest group
6367 * wrt to idle cpu's, it is balanced.
6368 */
6369 if ((local->idle_cpus < busiest->idle_cpus) &&
6370 busiest->sum_nr_running <= busiest->group_weight)
6371 goto out_balanced;
6372 } else {
6373 /*
6374 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6375 * imbalance_pct to be conservative.
6376 */
6377 if (100 * busiest->avg_load <=
6378 env->sd->imbalance_pct * local->avg_load)
6379 goto out_balanced;
6380 }
6381
6382 force_balance:
6383 /* Looks like there is an imbalance. Compute it */
6384 calculate_imbalance(env, &sds);
6385 return sds.busiest;
6386
6387 out_balanced:
6388 env->imbalance = 0;
6389 return NULL;
6390 }
6391
6392 /*
6393 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6394 */
6395 static struct rq *find_busiest_queue(struct lb_env *env,
6396 struct sched_group *group)
6397 {
6398 struct rq *busiest = NULL, *rq;
6399 unsigned long busiest_load = 0, busiest_capacity = 1;
6400 int i;
6401
6402 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6403 unsigned long capacity, capacity_factor, wl;
6404 enum fbq_type rt;
6405
6406 rq = cpu_rq(i);
6407 rt = fbq_classify_rq(rq);
6408
6409 /*
6410 * We classify groups/runqueues into three groups:
6411 * - regular: there are !numa tasks
6412 * - remote: there are numa tasks that run on the 'wrong' node
6413 * - all: there is no distinction
6414 *
6415 * In order to avoid migrating ideally placed numa tasks,
6416 * ignore those when there's better options.
6417 *
6418 * If we ignore the actual busiest queue to migrate another
6419 * task, the next balance pass can still reduce the busiest
6420 * queue by moving tasks around inside the node.
6421 *
6422 * If we cannot move enough load due to this classification
6423 * the next pass will adjust the group classification and
6424 * allow migration of more tasks.
6425 *
6426 * Both cases only affect the total convergence complexity.
6427 */
6428 if (rt > env->fbq_type)
6429 continue;
6430
6431 capacity = capacity_of(i);
6432 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6433 if (!capacity_factor)
6434 capacity_factor = fix_small_capacity(env->sd, group);
6435
6436 wl = weighted_cpuload(i);
6437
6438 /*
6439 * When comparing with imbalance, use weighted_cpuload()
6440 * which is not scaled with the cpu capacity.
6441 */
6442 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6443 continue;
6444
6445 /*
6446 * For the load comparisons with the other cpu's, consider
6447 * the weighted_cpuload() scaled with the cpu capacity, so
6448 * that the load can be moved away from the cpu that is
6449 * potentially running at a lower capacity.
6450 *
6451 * Thus we're looking for max(wl_i / capacity_i), crosswise
6452 * multiplication to rid ourselves of the division works out
6453 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6454 * our previous maximum.
6455 */
6456 if (wl * busiest_capacity > busiest_load * capacity) {
6457 busiest_load = wl;
6458 busiest_capacity = capacity;
6459 busiest = rq;
6460 }
6461 }
6462
6463 return busiest;
6464 }
6465
6466 /*
6467 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6468 * so long as it is large enough.
6469 */
6470 #define MAX_PINNED_INTERVAL 512
6471
6472 /* Working cpumask for load_balance and load_balance_newidle. */
6473 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6474
6475 static int need_active_balance(struct lb_env *env)
6476 {
6477 struct sched_domain *sd = env->sd;
6478
6479 if (env->idle == CPU_NEWLY_IDLE) {
6480
6481 /*
6482 * ASYM_PACKING needs to force migrate tasks from busy but
6483 * higher numbered CPUs in order to pack all tasks in the
6484 * lowest numbered CPUs.
6485 */
6486 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6487 return 1;
6488 }
6489
6490 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6491 }
6492
6493 static int active_load_balance_cpu_stop(void *data);
6494
6495 static int should_we_balance(struct lb_env *env)
6496 {
6497 struct sched_group *sg = env->sd->groups;
6498 struct cpumask *sg_cpus, *sg_mask;
6499 int cpu, balance_cpu = -1;
6500
6501 /*
6502 * In the newly idle case, we will allow all the cpu's
6503 * to do the newly idle load balance.
6504 */
6505 if (env->idle == CPU_NEWLY_IDLE)
6506 return 1;
6507
6508 sg_cpus = sched_group_cpus(sg);
6509 sg_mask = sched_group_mask(sg);
6510 /* Try to find first idle cpu */
6511 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6512 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6513 continue;
6514
6515 balance_cpu = cpu;
6516 break;
6517 }
6518
6519 if (balance_cpu == -1)
6520 balance_cpu = group_balance_cpu(sg);
6521
6522 /*
6523 * First idle cpu or the first cpu(busiest) in this sched group
6524 * is eligible for doing load balancing at this and above domains.
6525 */
6526 return balance_cpu == env->dst_cpu;
6527 }
6528
6529 /*
6530 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6531 * tasks if there is an imbalance.
6532 */
6533 static int load_balance(int this_cpu, struct rq *this_rq,
6534 struct sched_domain *sd, enum cpu_idle_type idle,
6535 int *continue_balancing)
6536 {
6537 int ld_moved, cur_ld_moved, active_balance = 0;
6538 struct sched_domain *sd_parent = sd->parent;
6539 struct sched_group *group;
6540 struct rq *busiest;
6541 unsigned long flags;
6542 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6543
6544 struct lb_env env = {
6545 .sd = sd,
6546 .dst_cpu = this_cpu,
6547 .dst_rq = this_rq,
6548 .dst_grpmask = sched_group_cpus(sd->groups),
6549 .idle = idle,
6550 .loop_break = sched_nr_migrate_break,
6551 .cpus = cpus,
6552 .fbq_type = all,
6553 };
6554
6555 /*
6556 * For NEWLY_IDLE load_balancing, we don't need to consider
6557 * other cpus in our group
6558 */
6559 if (idle == CPU_NEWLY_IDLE)
6560 env.dst_grpmask = NULL;
6561
6562 cpumask_copy(cpus, cpu_active_mask);
6563
6564 schedstat_inc(sd, lb_count[idle]);
6565
6566 redo:
6567 if (!should_we_balance(&env)) {
6568 *continue_balancing = 0;
6569 goto out_balanced;
6570 }
6571
6572 group = find_busiest_group(&env);
6573 if (!group) {
6574 schedstat_inc(sd, lb_nobusyg[idle]);
6575 goto out_balanced;
6576 }
6577
6578 busiest = find_busiest_queue(&env, group);
6579 if (!busiest) {
6580 schedstat_inc(sd, lb_nobusyq[idle]);
6581 goto out_balanced;
6582 }
6583
6584 BUG_ON(busiest == env.dst_rq);
6585
6586 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6587
6588 ld_moved = 0;
6589 if (busiest->nr_running > 1) {
6590 /*
6591 * Attempt to move tasks. If find_busiest_group has found
6592 * an imbalance but busiest->nr_running <= 1, the group is
6593 * still unbalanced. ld_moved simply stays zero, so it is
6594 * correctly treated as an imbalance.
6595 */
6596 env.flags |= LBF_ALL_PINNED;
6597 env.src_cpu = busiest->cpu;
6598 env.src_rq = busiest;
6599 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6600
6601 more_balance:
6602 local_irq_save(flags);
6603 double_rq_lock(env.dst_rq, busiest);
6604
6605 /*
6606 * cur_ld_moved - load moved in current iteration
6607 * ld_moved - cumulative load moved across iterations
6608 */
6609 cur_ld_moved = move_tasks(&env);
6610 ld_moved += cur_ld_moved;
6611 double_rq_unlock(env.dst_rq, busiest);
6612 local_irq_restore(flags);
6613
6614 /*
6615 * some other cpu did the load balance for us.
6616 */
6617 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6618 resched_cpu(env.dst_cpu);
6619
6620 if (env.flags & LBF_NEED_BREAK) {
6621 env.flags &= ~LBF_NEED_BREAK;
6622 goto more_balance;
6623 }
6624
6625 /*
6626 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6627 * us and move them to an alternate dst_cpu in our sched_group
6628 * where they can run. The upper limit on how many times we
6629 * iterate on same src_cpu is dependent on number of cpus in our
6630 * sched_group.
6631 *
6632 * This changes load balance semantics a bit on who can move
6633 * load to a given_cpu. In addition to the given_cpu itself
6634 * (or a ilb_cpu acting on its behalf where given_cpu is
6635 * nohz-idle), we now have balance_cpu in a position to move
6636 * load to given_cpu. In rare situations, this may cause
6637 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6638 * _independently_ and at _same_ time to move some load to
6639 * given_cpu) causing exceess load to be moved to given_cpu.
6640 * This however should not happen so much in practice and
6641 * moreover subsequent load balance cycles should correct the
6642 * excess load moved.
6643 */
6644 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6645
6646 /* Prevent to re-select dst_cpu via env's cpus */
6647 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6648
6649 env.dst_rq = cpu_rq(env.new_dst_cpu);
6650 env.dst_cpu = env.new_dst_cpu;
6651 env.flags &= ~LBF_DST_PINNED;
6652 env.loop = 0;
6653 env.loop_break = sched_nr_migrate_break;
6654
6655 /*
6656 * Go back to "more_balance" rather than "redo" since we
6657 * need to continue with same src_cpu.
6658 */
6659 goto more_balance;
6660 }
6661
6662 /*
6663 * We failed to reach balance because of affinity.
6664 */
6665 if (sd_parent) {
6666 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6667
6668 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6669 *group_imbalance = 1;
6670 } else if (*group_imbalance)
6671 *group_imbalance = 0;
6672 }
6673
6674 /* All tasks on this runqueue were pinned by CPU affinity */
6675 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6676 cpumask_clear_cpu(cpu_of(busiest), cpus);
6677 if (!cpumask_empty(cpus)) {
6678 env.loop = 0;
6679 env.loop_break = sched_nr_migrate_break;
6680 goto redo;
6681 }
6682 goto out_balanced;
6683 }
6684 }
6685
6686 if (!ld_moved) {
6687 schedstat_inc(sd, lb_failed[idle]);
6688 /*
6689 * Increment the failure counter only on periodic balance.
6690 * We do not want newidle balance, which can be very
6691 * frequent, pollute the failure counter causing
6692 * excessive cache_hot migrations and active balances.
6693 */
6694 if (idle != CPU_NEWLY_IDLE)
6695 sd->nr_balance_failed++;
6696
6697 if (need_active_balance(&env)) {
6698 raw_spin_lock_irqsave(&busiest->lock, flags);
6699
6700 /* don't kick the active_load_balance_cpu_stop,
6701 * if the curr task on busiest cpu can't be
6702 * moved to this_cpu
6703 */
6704 if (!cpumask_test_cpu(this_cpu,
6705 tsk_cpus_allowed(busiest->curr))) {
6706 raw_spin_unlock_irqrestore(&busiest->lock,
6707 flags);
6708 env.flags |= LBF_ALL_PINNED;
6709 goto out_one_pinned;
6710 }
6711
6712 /*
6713 * ->active_balance synchronizes accesses to
6714 * ->active_balance_work. Once set, it's cleared
6715 * only after active load balance is finished.
6716 */
6717 if (!busiest->active_balance) {
6718 busiest->active_balance = 1;
6719 busiest->push_cpu = this_cpu;
6720 active_balance = 1;
6721 }
6722 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6723
6724 if (active_balance) {
6725 stop_one_cpu_nowait(cpu_of(busiest),
6726 active_load_balance_cpu_stop, busiest,
6727 &busiest->active_balance_work);
6728 }
6729
6730 /*
6731 * We've kicked active balancing, reset the failure
6732 * counter.
6733 */
6734 sd->nr_balance_failed = sd->cache_nice_tries+1;
6735 }
6736 } else
6737 sd->nr_balance_failed = 0;
6738
6739 if (likely(!active_balance)) {
6740 /* We were unbalanced, so reset the balancing interval */
6741 sd->balance_interval = sd->min_interval;
6742 } else {
6743 /*
6744 * If we've begun active balancing, start to back off. This
6745 * case may not be covered by the all_pinned logic if there
6746 * is only 1 task on the busy runqueue (because we don't call
6747 * move_tasks).
6748 */
6749 if (sd->balance_interval < sd->max_interval)
6750 sd->balance_interval *= 2;
6751 }
6752
6753 goto out;
6754
6755 out_balanced:
6756 schedstat_inc(sd, lb_balanced[idle]);
6757
6758 sd->nr_balance_failed = 0;
6759
6760 out_one_pinned:
6761 /* tune up the balancing interval */
6762 if (((env.flags & LBF_ALL_PINNED) &&
6763 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6764 (sd->balance_interval < sd->max_interval))
6765 sd->balance_interval *= 2;
6766
6767 ld_moved = 0;
6768 out:
6769 return ld_moved;
6770 }
6771
6772 static inline unsigned long
6773 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6774 {
6775 unsigned long interval = sd->balance_interval;
6776
6777 if (cpu_busy)
6778 interval *= sd->busy_factor;
6779
6780 /* scale ms to jiffies */
6781 interval = msecs_to_jiffies(interval);
6782 interval = clamp(interval, 1UL, max_load_balance_interval);
6783
6784 return interval;
6785 }
6786
6787 static inline void
6788 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6789 {
6790 unsigned long interval, next;
6791
6792 interval = get_sd_balance_interval(sd, cpu_busy);
6793 next = sd->last_balance + interval;
6794
6795 if (time_after(*next_balance, next))
6796 *next_balance = next;
6797 }
6798
6799 /*
6800 * idle_balance is called by schedule() if this_cpu is about to become
6801 * idle. Attempts to pull tasks from other CPUs.
6802 */
6803 static int idle_balance(struct rq *this_rq)
6804 {
6805 unsigned long next_balance = jiffies + HZ;
6806 int this_cpu = this_rq->cpu;
6807 struct sched_domain *sd;
6808 int pulled_task = 0;
6809 u64 curr_cost = 0;
6810
6811 idle_enter_fair(this_rq);
6812
6813 /*
6814 * We must set idle_stamp _before_ calling idle_balance(), such that we
6815 * measure the duration of idle_balance() as idle time.
6816 */
6817 this_rq->idle_stamp = rq_clock(this_rq);
6818
6819 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6820 !this_rq->rd->overload) {
6821 rcu_read_lock();
6822 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6823 if (sd)
6824 update_next_balance(sd, 0, &next_balance);
6825 rcu_read_unlock();
6826
6827 goto out;
6828 }
6829
6830 /*
6831 * Drop the rq->lock, but keep IRQ/preempt disabled.
6832 */
6833 raw_spin_unlock(&this_rq->lock);
6834
6835 update_blocked_averages(this_cpu);
6836 rcu_read_lock();
6837 for_each_domain(this_cpu, sd) {
6838 int continue_balancing = 1;
6839 u64 t0, domain_cost;
6840
6841 if (!(sd->flags & SD_LOAD_BALANCE))
6842 continue;
6843
6844 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6845 update_next_balance(sd, 0, &next_balance);
6846 break;
6847 }
6848
6849 if (sd->flags & SD_BALANCE_NEWIDLE) {
6850 t0 = sched_clock_cpu(this_cpu);
6851
6852 pulled_task = load_balance(this_cpu, this_rq,
6853 sd, CPU_NEWLY_IDLE,
6854 &continue_balancing);
6855
6856 domain_cost = sched_clock_cpu(this_cpu) - t0;
6857 if (domain_cost > sd->max_newidle_lb_cost)
6858 sd->max_newidle_lb_cost = domain_cost;
6859
6860 curr_cost += domain_cost;
6861 }
6862
6863 update_next_balance(sd, 0, &next_balance);
6864
6865 /*
6866 * Stop searching for tasks to pull if there are
6867 * now runnable tasks on this rq.
6868 */
6869 if (pulled_task || this_rq->nr_running > 0)
6870 break;
6871 }
6872 rcu_read_unlock();
6873
6874 raw_spin_lock(&this_rq->lock);
6875
6876 if (curr_cost > this_rq->max_idle_balance_cost)
6877 this_rq->max_idle_balance_cost = curr_cost;
6878
6879 /*
6880 * While browsing the domains, we released the rq lock, a task could
6881 * have been enqueued in the meantime. Since we're not going idle,
6882 * pretend we pulled a task.
6883 */
6884 if (this_rq->cfs.h_nr_running && !pulled_task)
6885 pulled_task = 1;
6886
6887 out:
6888 /* Move the next balance forward */
6889 if (time_after(this_rq->next_balance, next_balance))
6890 this_rq->next_balance = next_balance;
6891
6892 /* Is there a task of a high priority class? */
6893 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6894 pulled_task = -1;
6895
6896 if (pulled_task) {
6897 idle_exit_fair(this_rq);
6898 this_rq->idle_stamp = 0;
6899 }
6900
6901 return pulled_task;
6902 }
6903
6904 /*
6905 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6906 * running tasks off the busiest CPU onto idle CPUs. It requires at
6907 * least 1 task to be running on each physical CPU where possible, and
6908 * avoids physical / logical imbalances.
6909 */
6910 static int active_load_balance_cpu_stop(void *data)
6911 {
6912 struct rq *busiest_rq = data;
6913 int busiest_cpu = cpu_of(busiest_rq);
6914 int target_cpu = busiest_rq->push_cpu;
6915 struct rq *target_rq = cpu_rq(target_cpu);
6916 struct sched_domain *sd;
6917
6918 raw_spin_lock_irq(&busiest_rq->lock);
6919
6920 /* make sure the requested cpu hasn't gone down in the meantime */
6921 if (unlikely(busiest_cpu != smp_processor_id() ||
6922 !busiest_rq->active_balance))
6923 goto out_unlock;
6924
6925 /* Is there any task to move? */
6926 if (busiest_rq->nr_running <= 1)
6927 goto out_unlock;
6928
6929 /*
6930 * This condition is "impossible", if it occurs
6931 * we need to fix it. Originally reported by
6932 * Bjorn Helgaas on a 128-cpu setup.
6933 */
6934 BUG_ON(busiest_rq == target_rq);
6935
6936 /* move a task from busiest_rq to target_rq */
6937 double_lock_balance(busiest_rq, target_rq);
6938
6939 /* Search for an sd spanning us and the target CPU. */
6940 rcu_read_lock();
6941 for_each_domain(target_cpu, sd) {
6942 if ((sd->flags & SD_LOAD_BALANCE) &&
6943 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6944 break;
6945 }
6946
6947 if (likely(sd)) {
6948 struct lb_env env = {
6949 .sd = sd,
6950 .dst_cpu = target_cpu,
6951 .dst_rq = target_rq,
6952 .src_cpu = busiest_rq->cpu,
6953 .src_rq = busiest_rq,
6954 .idle = CPU_IDLE,
6955 };
6956
6957 schedstat_inc(sd, alb_count);
6958
6959 if (move_one_task(&env))
6960 schedstat_inc(sd, alb_pushed);
6961 else
6962 schedstat_inc(sd, alb_failed);
6963 }
6964 rcu_read_unlock();
6965 double_unlock_balance(busiest_rq, target_rq);
6966 out_unlock:
6967 busiest_rq->active_balance = 0;
6968 raw_spin_unlock_irq(&busiest_rq->lock);
6969 return 0;
6970 }
6971
6972 static inline int on_null_domain(struct rq *rq)
6973 {
6974 return unlikely(!rcu_dereference_sched(rq->sd));
6975 }
6976
6977 #ifdef CONFIG_NO_HZ_COMMON
6978 /*
6979 * idle load balancing details
6980 * - When one of the busy CPUs notice that there may be an idle rebalancing
6981 * needed, they will kick the idle load balancer, which then does idle
6982 * load balancing for all the idle CPUs.
6983 */
6984 static struct {
6985 cpumask_var_t idle_cpus_mask;
6986 atomic_t nr_cpus;
6987 unsigned long next_balance; /* in jiffy units */
6988 } nohz ____cacheline_aligned;
6989
6990 static inline int find_new_ilb(void)
6991 {
6992 int ilb = cpumask_first(nohz.idle_cpus_mask);
6993
6994 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6995 return ilb;
6996
6997 return nr_cpu_ids;
6998 }
6999
7000 /*
7001 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7002 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7003 * CPU (if there is one).
7004 */
7005 static void nohz_balancer_kick(void)
7006 {
7007 int ilb_cpu;
7008
7009 nohz.next_balance++;
7010
7011 ilb_cpu = find_new_ilb();
7012
7013 if (ilb_cpu >= nr_cpu_ids)
7014 return;
7015
7016 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7017 return;
7018 /*
7019 * Use smp_send_reschedule() instead of resched_cpu().
7020 * This way we generate a sched IPI on the target cpu which
7021 * is idle. And the softirq performing nohz idle load balance
7022 * will be run before returning from the IPI.
7023 */
7024 smp_send_reschedule(ilb_cpu);
7025 return;
7026 }
7027
7028 static inline void nohz_balance_exit_idle(int cpu)
7029 {
7030 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7031 /*
7032 * Completely isolated CPUs don't ever set, so we must test.
7033 */
7034 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7035 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7036 atomic_dec(&nohz.nr_cpus);
7037 }
7038 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7039 }
7040 }
7041
7042 static inline void set_cpu_sd_state_busy(void)
7043 {
7044 struct sched_domain *sd;
7045 int cpu = smp_processor_id();
7046
7047 rcu_read_lock();
7048 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7049
7050 if (!sd || !sd->nohz_idle)
7051 goto unlock;
7052 sd->nohz_idle = 0;
7053
7054 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7055 unlock:
7056 rcu_read_unlock();
7057 }
7058
7059 void set_cpu_sd_state_idle(void)
7060 {
7061 struct sched_domain *sd;
7062 int cpu = smp_processor_id();
7063
7064 rcu_read_lock();
7065 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7066
7067 if (!sd || sd->nohz_idle)
7068 goto unlock;
7069 sd->nohz_idle = 1;
7070
7071 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7072 unlock:
7073 rcu_read_unlock();
7074 }
7075
7076 /*
7077 * This routine will record that the cpu is going idle with tick stopped.
7078 * This info will be used in performing idle load balancing in the future.
7079 */
7080 void nohz_balance_enter_idle(int cpu)
7081 {
7082 /*
7083 * If this cpu is going down, then nothing needs to be done.
7084 */
7085 if (!cpu_active(cpu))
7086 return;
7087
7088 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7089 return;
7090
7091 /*
7092 * If we're a completely isolated CPU, we don't play.
7093 */
7094 if (on_null_domain(cpu_rq(cpu)))
7095 return;
7096
7097 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7098 atomic_inc(&nohz.nr_cpus);
7099 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7100 }
7101
7102 static int sched_ilb_notifier(struct notifier_block *nfb,
7103 unsigned long action, void *hcpu)
7104 {
7105 switch (action & ~CPU_TASKS_FROZEN) {
7106 case CPU_DYING:
7107 nohz_balance_exit_idle(smp_processor_id());
7108 return NOTIFY_OK;
7109 default:
7110 return NOTIFY_DONE;
7111 }
7112 }
7113 #endif
7114
7115 static DEFINE_SPINLOCK(balancing);
7116
7117 /*
7118 * Scale the max load_balance interval with the number of CPUs in the system.
7119 * This trades load-balance latency on larger machines for less cross talk.
7120 */
7121 void update_max_interval(void)
7122 {
7123 max_load_balance_interval = HZ*num_online_cpus()/10;
7124 }
7125
7126 /*
7127 * It checks each scheduling domain to see if it is due to be balanced,
7128 * and initiates a balancing operation if so.
7129 *
7130 * Balancing parameters are set up in init_sched_domains.
7131 */
7132 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7133 {
7134 int continue_balancing = 1;
7135 int cpu = rq->cpu;
7136 unsigned long interval;
7137 struct sched_domain *sd;
7138 /* Earliest time when we have to do rebalance again */
7139 unsigned long next_balance = jiffies + 60*HZ;
7140 int update_next_balance = 0;
7141 int need_serialize, need_decay = 0;
7142 u64 max_cost = 0;
7143
7144 update_blocked_averages(cpu);
7145
7146 rcu_read_lock();
7147 for_each_domain(cpu, sd) {
7148 /*
7149 * Decay the newidle max times here because this is a regular
7150 * visit to all the domains. Decay ~1% per second.
7151 */
7152 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7153 sd->max_newidle_lb_cost =
7154 (sd->max_newidle_lb_cost * 253) / 256;
7155 sd->next_decay_max_lb_cost = jiffies + HZ;
7156 need_decay = 1;
7157 }
7158 max_cost += sd->max_newidle_lb_cost;
7159
7160 if (!(sd->flags & SD_LOAD_BALANCE))
7161 continue;
7162
7163 /*
7164 * Stop the load balance at this level. There is another
7165 * CPU in our sched group which is doing load balancing more
7166 * actively.
7167 */
7168 if (!continue_balancing) {
7169 if (need_decay)
7170 continue;
7171 break;
7172 }
7173
7174 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7175
7176 need_serialize = sd->flags & SD_SERIALIZE;
7177 if (need_serialize) {
7178 if (!spin_trylock(&balancing))
7179 goto out;
7180 }
7181
7182 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7183 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7184 /*
7185 * The LBF_DST_PINNED logic could have changed
7186 * env->dst_cpu, so we can't know our idle
7187 * state even if we migrated tasks. Update it.
7188 */
7189 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7190 }
7191 sd->last_balance = jiffies;
7192 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7193 }
7194 if (need_serialize)
7195 spin_unlock(&balancing);
7196 out:
7197 if (time_after(next_balance, sd->last_balance + interval)) {
7198 next_balance = sd->last_balance + interval;
7199 update_next_balance = 1;
7200 }
7201 }
7202 if (need_decay) {
7203 /*
7204 * Ensure the rq-wide value also decays but keep it at a
7205 * reasonable floor to avoid funnies with rq->avg_idle.
7206 */
7207 rq->max_idle_balance_cost =
7208 max((u64)sysctl_sched_migration_cost, max_cost);
7209 }
7210 rcu_read_unlock();
7211
7212 /*
7213 * next_balance will be updated only when there is a need.
7214 * When the cpu is attached to null domain for ex, it will not be
7215 * updated.
7216 */
7217 if (likely(update_next_balance))
7218 rq->next_balance = next_balance;
7219 }
7220
7221 #ifdef CONFIG_NO_HZ_COMMON
7222 /*
7223 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7224 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7225 */
7226 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7227 {
7228 int this_cpu = this_rq->cpu;
7229 struct rq *rq;
7230 int balance_cpu;
7231
7232 if (idle != CPU_IDLE ||
7233 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7234 goto end;
7235
7236 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7237 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7238 continue;
7239
7240 /*
7241 * If this cpu gets work to do, stop the load balancing
7242 * work being done for other cpus. Next load
7243 * balancing owner will pick it up.
7244 */
7245 if (need_resched())
7246 break;
7247
7248 rq = cpu_rq(balance_cpu);
7249
7250 /*
7251 * If time for next balance is due,
7252 * do the balance.
7253 */
7254 if (time_after_eq(jiffies, rq->next_balance)) {
7255 raw_spin_lock_irq(&rq->lock);
7256 update_rq_clock(rq);
7257 update_idle_cpu_load(rq);
7258 raw_spin_unlock_irq(&rq->lock);
7259 rebalance_domains(rq, CPU_IDLE);
7260 }
7261
7262 if (time_after(this_rq->next_balance, rq->next_balance))
7263 this_rq->next_balance = rq->next_balance;
7264 }
7265 nohz.next_balance = this_rq->next_balance;
7266 end:
7267 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7268 }
7269
7270 /*
7271 * Current heuristic for kicking the idle load balancer in the presence
7272 * of an idle cpu is the system.
7273 * - This rq has more than one task.
7274 * - At any scheduler domain level, this cpu's scheduler group has multiple
7275 * busy cpu's exceeding the group's capacity.
7276 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7277 * domain span are idle.
7278 */
7279 static inline int nohz_kick_needed(struct rq *rq)
7280 {
7281 unsigned long now = jiffies;
7282 struct sched_domain *sd;
7283 struct sched_group_capacity *sgc;
7284 int nr_busy, cpu = rq->cpu;
7285
7286 if (unlikely(rq->idle_balance))
7287 return 0;
7288
7289 /*
7290 * We may be recently in ticked or tickless idle mode. At the first
7291 * busy tick after returning from idle, we will update the busy stats.
7292 */
7293 set_cpu_sd_state_busy();
7294 nohz_balance_exit_idle(cpu);
7295
7296 /*
7297 * None are in tickless mode and hence no need for NOHZ idle load
7298 * balancing.
7299 */
7300 if (likely(!atomic_read(&nohz.nr_cpus)))
7301 return 0;
7302
7303 if (time_before(now, nohz.next_balance))
7304 return 0;
7305
7306 if (rq->nr_running >= 2)
7307 goto need_kick;
7308
7309 rcu_read_lock();
7310 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7311
7312 if (sd) {
7313 sgc = sd->groups->sgc;
7314 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7315
7316 if (nr_busy > 1)
7317 goto need_kick_unlock;
7318 }
7319
7320 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7321
7322 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7323 sched_domain_span(sd)) < cpu))
7324 goto need_kick_unlock;
7325
7326 rcu_read_unlock();
7327 return 0;
7328
7329 need_kick_unlock:
7330 rcu_read_unlock();
7331 need_kick:
7332 return 1;
7333 }
7334 #else
7335 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7336 #endif
7337
7338 /*
7339 * run_rebalance_domains is triggered when needed from the scheduler tick.
7340 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7341 */
7342 static void run_rebalance_domains(struct softirq_action *h)
7343 {
7344 struct rq *this_rq = this_rq();
7345 enum cpu_idle_type idle = this_rq->idle_balance ?
7346 CPU_IDLE : CPU_NOT_IDLE;
7347
7348 rebalance_domains(this_rq, idle);
7349
7350 /*
7351 * If this cpu has a pending nohz_balance_kick, then do the
7352 * balancing on behalf of the other idle cpus whose ticks are
7353 * stopped.
7354 */
7355 nohz_idle_balance(this_rq, idle);
7356 }
7357
7358 /*
7359 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7360 */
7361 void trigger_load_balance(struct rq *rq)
7362 {
7363 /* Don't need to rebalance while attached to NULL domain */
7364 if (unlikely(on_null_domain(rq)))
7365 return;
7366
7367 if (time_after_eq(jiffies, rq->next_balance))
7368 raise_softirq(SCHED_SOFTIRQ);
7369 #ifdef CONFIG_NO_HZ_COMMON
7370 if (nohz_kick_needed(rq))
7371 nohz_balancer_kick();
7372 #endif
7373 }
7374
7375 static void rq_online_fair(struct rq *rq)
7376 {
7377 update_sysctl();
7378
7379 update_runtime_enabled(rq);
7380 }
7381
7382 static void rq_offline_fair(struct rq *rq)
7383 {
7384 update_sysctl();
7385
7386 /* Ensure any throttled groups are reachable by pick_next_task */
7387 unthrottle_offline_cfs_rqs(rq);
7388 }
7389
7390 #endif /* CONFIG_SMP */
7391
7392 /*
7393 * scheduler tick hitting a task of our scheduling class:
7394 */
7395 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7396 {
7397 struct cfs_rq *cfs_rq;
7398 struct sched_entity *se = &curr->se;
7399
7400 for_each_sched_entity(se) {
7401 cfs_rq = cfs_rq_of(se);
7402 entity_tick(cfs_rq, se, queued);
7403 }
7404
7405 if (numabalancing_enabled)
7406 task_tick_numa(rq, curr);
7407
7408 update_rq_runnable_avg(rq, 1);
7409 }
7410
7411 /*
7412 * called on fork with the child task as argument from the parent's context
7413 * - child not yet on the tasklist
7414 * - preemption disabled
7415 */
7416 static void task_fork_fair(struct task_struct *p)
7417 {
7418 struct cfs_rq *cfs_rq;
7419 struct sched_entity *se = &p->se, *curr;
7420 int this_cpu = smp_processor_id();
7421 struct rq *rq = this_rq();
7422 unsigned long flags;
7423
7424 raw_spin_lock_irqsave(&rq->lock, flags);
7425
7426 update_rq_clock(rq);
7427
7428 cfs_rq = task_cfs_rq(current);
7429 curr = cfs_rq->curr;
7430
7431 /*
7432 * Not only the cpu but also the task_group of the parent might have
7433 * been changed after parent->se.parent,cfs_rq were copied to
7434 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7435 * of child point to valid ones.
7436 */
7437 rcu_read_lock();
7438 __set_task_cpu(p, this_cpu);
7439 rcu_read_unlock();
7440
7441 update_curr(cfs_rq);
7442
7443 if (curr)
7444 se->vruntime = curr->vruntime;
7445 place_entity(cfs_rq, se, 1);
7446
7447 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7448 /*
7449 * Upon rescheduling, sched_class::put_prev_task() will place
7450 * 'current' within the tree based on its new key value.
7451 */
7452 swap(curr->vruntime, se->vruntime);
7453 resched_curr(rq);
7454 }
7455
7456 se->vruntime -= cfs_rq->min_vruntime;
7457
7458 raw_spin_unlock_irqrestore(&rq->lock, flags);
7459 }
7460
7461 /*
7462 * Priority of the task has changed. Check to see if we preempt
7463 * the current task.
7464 */
7465 static void
7466 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7467 {
7468 if (!p->se.on_rq)
7469 return;
7470
7471 /*
7472 * Reschedule if we are currently running on this runqueue and
7473 * our priority decreased, or if we are not currently running on
7474 * this runqueue and our priority is higher than the current's
7475 */
7476 if (rq->curr == p) {
7477 if (p->prio > oldprio)
7478 resched_curr(rq);
7479 } else
7480 check_preempt_curr(rq, p, 0);
7481 }
7482
7483 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7484 {
7485 struct sched_entity *se = &p->se;
7486 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7487
7488 /*
7489 * Ensure the task's vruntime is normalized, so that when it's
7490 * switched back to the fair class the enqueue_entity(.flags=0) will
7491 * do the right thing.
7492 *
7493 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7494 * have normalized the vruntime, if it's !on_rq, then only when
7495 * the task is sleeping will it still have non-normalized vruntime.
7496 */
7497 if (!p->on_rq && p->state != TASK_RUNNING) {
7498 /*
7499 * Fix up our vruntime so that the current sleep doesn't
7500 * cause 'unlimited' sleep bonus.
7501 */
7502 place_entity(cfs_rq, se, 0);
7503 se->vruntime -= cfs_rq->min_vruntime;
7504 }
7505
7506 #ifdef CONFIG_SMP
7507 /*
7508 * Remove our load from contribution when we leave sched_fair
7509 * and ensure we don't carry in an old decay_count if we
7510 * switch back.
7511 */
7512 if (se->avg.decay_count) {
7513 __synchronize_entity_decay(se);
7514 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7515 }
7516 #endif
7517 }
7518
7519 /*
7520 * We switched to the sched_fair class.
7521 */
7522 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7523 {
7524 struct sched_entity *se = &p->se;
7525 #ifdef CONFIG_FAIR_GROUP_SCHED
7526 /*
7527 * Since the real-depth could have been changed (only FAIR
7528 * class maintain depth value), reset depth properly.
7529 */
7530 se->depth = se->parent ? se->parent->depth + 1 : 0;
7531 #endif
7532 if (!se->on_rq)
7533 return;
7534
7535 /*
7536 * We were most likely switched from sched_rt, so
7537 * kick off the schedule if running, otherwise just see
7538 * if we can still preempt the current task.
7539 */
7540 if (rq->curr == p)
7541 resched_curr(rq);
7542 else
7543 check_preempt_curr(rq, p, 0);
7544 }
7545
7546 /* Account for a task changing its policy or group.
7547 *
7548 * This routine is mostly called to set cfs_rq->curr field when a task
7549 * migrates between groups/classes.
7550 */
7551 static void set_curr_task_fair(struct rq *rq)
7552 {
7553 struct sched_entity *se = &rq->curr->se;
7554
7555 for_each_sched_entity(se) {
7556 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7557
7558 set_next_entity(cfs_rq, se);
7559 /* ensure bandwidth has been allocated on our new cfs_rq */
7560 account_cfs_rq_runtime(cfs_rq, 0);
7561 }
7562 }
7563
7564 void init_cfs_rq(struct cfs_rq *cfs_rq)
7565 {
7566 cfs_rq->tasks_timeline = RB_ROOT;
7567 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7568 #ifndef CONFIG_64BIT
7569 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7570 #endif
7571 #ifdef CONFIG_SMP
7572 atomic64_set(&cfs_rq->decay_counter, 1);
7573 atomic_long_set(&cfs_rq->removed_load, 0);
7574 #endif
7575 }
7576
7577 #ifdef CONFIG_FAIR_GROUP_SCHED
7578 static void task_move_group_fair(struct task_struct *p, int on_rq)
7579 {
7580 struct sched_entity *se = &p->se;
7581 struct cfs_rq *cfs_rq;
7582
7583 /*
7584 * If the task was not on the rq at the time of this cgroup movement
7585 * it must have been asleep, sleeping tasks keep their ->vruntime
7586 * absolute on their old rq until wakeup (needed for the fair sleeper
7587 * bonus in place_entity()).
7588 *
7589 * If it was on the rq, we've just 'preempted' it, which does convert
7590 * ->vruntime to a relative base.
7591 *
7592 * Make sure both cases convert their relative position when migrating
7593 * to another cgroup's rq. This does somewhat interfere with the
7594 * fair sleeper stuff for the first placement, but who cares.
7595 */
7596 /*
7597 * When !on_rq, vruntime of the task has usually NOT been normalized.
7598 * But there are some cases where it has already been normalized:
7599 *
7600 * - Moving a forked child which is waiting for being woken up by
7601 * wake_up_new_task().
7602 * - Moving a task which has been woken up by try_to_wake_up() and
7603 * waiting for actually being woken up by sched_ttwu_pending().
7604 *
7605 * To prevent boost or penalty in the new cfs_rq caused by delta
7606 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7607 */
7608 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7609 on_rq = 1;
7610
7611 if (!on_rq)
7612 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7613 set_task_rq(p, task_cpu(p));
7614 se->depth = se->parent ? se->parent->depth + 1 : 0;
7615 if (!on_rq) {
7616 cfs_rq = cfs_rq_of(se);
7617 se->vruntime += cfs_rq->min_vruntime;
7618 #ifdef CONFIG_SMP
7619 /*
7620 * migrate_task_rq_fair() will have removed our previous
7621 * contribution, but we must synchronize for ongoing future
7622 * decay.
7623 */
7624 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7625 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7626 #endif
7627 }
7628 }
7629
7630 void free_fair_sched_group(struct task_group *tg)
7631 {
7632 int i;
7633
7634 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7635
7636 for_each_possible_cpu(i) {
7637 if (tg->cfs_rq)
7638 kfree(tg->cfs_rq[i]);
7639 if (tg->se)
7640 kfree(tg->se[i]);
7641 }
7642
7643 kfree(tg->cfs_rq);
7644 kfree(tg->se);
7645 }
7646
7647 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7648 {
7649 struct cfs_rq *cfs_rq;
7650 struct sched_entity *se;
7651 int i;
7652
7653 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7654 if (!tg->cfs_rq)
7655 goto err;
7656 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7657 if (!tg->se)
7658 goto err;
7659
7660 tg->shares = NICE_0_LOAD;
7661
7662 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7663
7664 for_each_possible_cpu(i) {
7665 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7666 GFP_KERNEL, cpu_to_node(i));
7667 if (!cfs_rq)
7668 goto err;
7669
7670 se = kzalloc_node(sizeof(struct sched_entity),
7671 GFP_KERNEL, cpu_to_node(i));
7672 if (!se)
7673 goto err_free_rq;
7674
7675 init_cfs_rq(cfs_rq);
7676 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7677 }
7678
7679 return 1;
7680
7681 err_free_rq:
7682 kfree(cfs_rq);
7683 err:
7684 return 0;
7685 }
7686
7687 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7688 {
7689 struct rq *rq = cpu_rq(cpu);
7690 unsigned long flags;
7691
7692 /*
7693 * Only empty task groups can be destroyed; so we can speculatively
7694 * check on_list without danger of it being re-added.
7695 */
7696 if (!tg->cfs_rq[cpu]->on_list)
7697 return;
7698
7699 raw_spin_lock_irqsave(&rq->lock, flags);
7700 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7701 raw_spin_unlock_irqrestore(&rq->lock, flags);
7702 }
7703
7704 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7705 struct sched_entity *se, int cpu,
7706 struct sched_entity *parent)
7707 {
7708 struct rq *rq = cpu_rq(cpu);
7709
7710 cfs_rq->tg = tg;
7711 cfs_rq->rq = rq;
7712 init_cfs_rq_runtime(cfs_rq);
7713
7714 tg->cfs_rq[cpu] = cfs_rq;
7715 tg->se[cpu] = se;
7716
7717 /* se could be NULL for root_task_group */
7718 if (!se)
7719 return;
7720
7721 if (!parent) {
7722 se->cfs_rq = &rq->cfs;
7723 se->depth = 0;
7724 } else {
7725 se->cfs_rq = parent->my_q;
7726 se->depth = parent->depth + 1;
7727 }
7728
7729 se->my_q = cfs_rq;
7730 /* guarantee group entities always have weight */
7731 update_load_set(&se->load, NICE_0_LOAD);
7732 se->parent = parent;
7733 }
7734
7735 static DEFINE_MUTEX(shares_mutex);
7736
7737 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7738 {
7739 int i;
7740 unsigned long flags;
7741
7742 /*
7743 * We can't change the weight of the root cgroup.
7744 */
7745 if (!tg->se[0])
7746 return -EINVAL;
7747
7748 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7749
7750 mutex_lock(&shares_mutex);
7751 if (tg->shares == shares)
7752 goto done;
7753
7754 tg->shares = shares;
7755 for_each_possible_cpu(i) {
7756 struct rq *rq = cpu_rq(i);
7757 struct sched_entity *se;
7758
7759 se = tg->se[i];
7760 /* Propagate contribution to hierarchy */
7761 raw_spin_lock_irqsave(&rq->lock, flags);
7762
7763 /* Possible calls to update_curr() need rq clock */
7764 update_rq_clock(rq);
7765 for_each_sched_entity(se)
7766 update_cfs_shares(group_cfs_rq(se));
7767 raw_spin_unlock_irqrestore(&rq->lock, flags);
7768 }
7769
7770 done:
7771 mutex_unlock(&shares_mutex);
7772 return 0;
7773 }
7774 #else /* CONFIG_FAIR_GROUP_SCHED */
7775
7776 void free_fair_sched_group(struct task_group *tg) { }
7777
7778 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7779 {
7780 return 1;
7781 }
7782
7783 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7784
7785 #endif /* CONFIG_FAIR_GROUP_SCHED */
7786
7787
7788 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7789 {
7790 struct sched_entity *se = &task->se;
7791 unsigned int rr_interval = 0;
7792
7793 /*
7794 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7795 * idle runqueue:
7796 */
7797 if (rq->cfs.load.weight)
7798 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7799
7800 return rr_interval;
7801 }
7802
7803 /*
7804 * All the scheduling class methods:
7805 */
7806 const struct sched_class fair_sched_class = {
7807 .next = &idle_sched_class,
7808 .enqueue_task = enqueue_task_fair,
7809 .dequeue_task = dequeue_task_fair,
7810 .yield_task = yield_task_fair,
7811 .yield_to_task = yield_to_task_fair,
7812
7813 .check_preempt_curr = check_preempt_wakeup,
7814
7815 .pick_next_task = pick_next_task_fair,
7816 .put_prev_task = put_prev_task_fair,
7817
7818 #ifdef CONFIG_SMP
7819 .select_task_rq = select_task_rq_fair,
7820 .migrate_task_rq = migrate_task_rq_fair,
7821
7822 .rq_online = rq_online_fair,
7823 .rq_offline = rq_offline_fair,
7824
7825 .task_waking = task_waking_fair,
7826 #endif
7827
7828 .set_curr_task = set_curr_task_fair,
7829 .task_tick = task_tick_fair,
7830 .task_fork = task_fork_fair,
7831
7832 .prio_changed = prio_changed_fair,
7833 .switched_from = switched_from_fair,
7834 .switched_to = switched_to_fair,
7835
7836 .get_rr_interval = get_rr_interval_fair,
7837
7838 #ifdef CONFIG_FAIR_GROUP_SCHED
7839 .task_move_group = task_move_group_fair,
7840 #endif
7841 };
7842
7843 #ifdef CONFIG_SCHED_DEBUG
7844 void print_cfs_stats(struct seq_file *m, int cpu)
7845 {
7846 struct cfs_rq *cfs_rq;
7847
7848 rcu_read_lock();
7849 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7850 print_cfs_rq(m, cpu, cfs_rq);
7851 rcu_read_unlock();
7852 }
7853 #endif
7854
7855 __init void init_sched_fair_class(void)
7856 {
7857 #ifdef CONFIG_SMP
7858 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7859
7860 #ifdef CONFIG_NO_HZ_COMMON
7861 nohz.next_balance = jiffies;
7862 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7863 cpu_notifier(sched_ilb_notifier, 0);
7864 #endif
7865 #endif /* SMP */
7866
7867 }