]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/fair.c
Merge tag 'sh-for-linus' of git://github.com/pmundt/linux-sh
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29
30 #include <trace/events/sched.h>
31
32 #include "sched.h"
33
34 /*
35 * Targeted preemption latency for CPU-bound tasks:
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 *
38 * NOTE: this latency value is not the same as the concept of
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
42 *
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
45 */
46 unsigned int sysctl_sched_latency = 6000000ULL;
47 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
48
49 /*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58 enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
61 /*
62 * Minimal preemption granularity for CPU-bound tasks:
63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
64 */
65 unsigned int sysctl_sched_min_granularity = 750000ULL;
66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
67
68 /*
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
71 static unsigned int sched_nr_latency = 8;
72
73 /*
74 * After fork, child runs first. If set to 0 (default) then
75 * parent will (try to) run first.
76 */
77 unsigned int sysctl_sched_child_runs_first __read_mostly;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 /*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111 #endif
112
113 /*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122 static int get_update_sysctl_factor(void)
123 {
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141 }
142
143 static void update_sysctl(void)
144 {
145 unsigned int factor = get_update_sysctl_factor();
146
147 #define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152 #undef SET_SYSCTL
153 }
154
155 void sched_init_granularity(void)
156 {
157 update_sysctl();
158 }
159
160 #if BITS_PER_LONG == 32
161 # define WMULT_CONST (~0UL)
162 #else
163 # define WMULT_CONST (1UL << 32)
164 #endif
165
166 #define WMULT_SHIFT 32
167
168 /*
169 * Shift right and round:
170 */
171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173 /*
174 * delta *= weight / lw
175 */
176 static unsigned long
177 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179 {
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213 }
214
215
216 const struct sched_class fair_sched_class;
217
218 /**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
222 #ifdef CONFIG_FAIR_GROUP_SCHED
223
224 /* cpu runqueue to which this cfs_rq is attached */
225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226 {
227 return cfs_rq->rq;
228 }
229
230 /* An entity is a task if it doesn't "own" a runqueue */
231 #define entity_is_task(se) (!se->my_q)
232
233 static inline struct task_struct *task_of(struct sched_entity *se)
234 {
235 #ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237 #endif
238 return container_of(se, struct task_struct, se);
239 }
240
241 /* Walk up scheduling entities hierarchy */
242 #define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246 {
247 return p->se.cfs_rq;
248 }
249
250 /* runqueue on which this entity is (to be) queued */
251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252 {
253 return se->cfs_rq;
254 }
255
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258 {
259 return grp->my_q;
260 }
261
262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263 {
264 if (!cfs_rq->on_list) {
265 /*
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
270 */
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
278 }
279
280 cfs_rq->on_list = 1;
281 }
282 }
283
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285 {
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
289 }
290 }
291
292 /* Iterate thr' all leaf cfs_rq's on a runqueue */
293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295
296 /* Do the two (enqueued) entities belong to the same group ? */
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
299 {
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
302
303 return 0;
304 }
305
306 static inline struct sched_entity *parent_entity(struct sched_entity *se)
307 {
308 return se->parent;
309 }
310
311 /* return depth at which a sched entity is present in the hierarchy */
312 static inline int depth_se(struct sched_entity *se)
313 {
314 int depth = 0;
315
316 for_each_sched_entity(se)
317 depth++;
318
319 return depth;
320 }
321
322 static void
323 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324 {
325 int se_depth, pse_depth;
326
327 /*
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
332 */
333
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
337
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
341 }
342
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
346 }
347
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
351 }
352 }
353
354 #else /* !CONFIG_FAIR_GROUP_SCHED */
355
356 static inline struct task_struct *task_of(struct sched_entity *se)
357 {
358 return container_of(se, struct task_struct, se);
359 }
360
361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362 {
363 return container_of(cfs_rq, struct rq, cfs);
364 }
365
366 #define entity_is_task(se) 1
367
368 #define for_each_sched_entity(se) \
369 for (; se; se = NULL)
370
371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
372 {
373 return &task_rq(p)->cfs;
374 }
375
376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377 {
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
380
381 return &rq->cfs;
382 }
383
384 /* runqueue "owned" by this group */
385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386 {
387 return NULL;
388 }
389
390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391 {
392 }
393
394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395 {
396 }
397
398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400
401 static inline int
402 is_same_group(struct sched_entity *se, struct sched_entity *pse)
403 {
404 return 1;
405 }
406
407 static inline struct sched_entity *parent_entity(struct sched_entity *se)
408 {
409 return NULL;
410 }
411
412 static inline void
413 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414 {
415 }
416
417 #endif /* CONFIG_FAIR_GROUP_SCHED */
418
419 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
420 unsigned long delta_exec);
421
422 /**************************************************************
423 * Scheduling class tree data structure manipulation methods:
424 */
425
426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
427 {
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
430 min_vruntime = vruntime;
431
432 return min_vruntime;
433 }
434
435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
436 {
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
440
441 return min_vruntime;
442 }
443
444 static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
446 {
447 return (s64)(a->vruntime - b->vruntime) < 0;
448 }
449
450 static void update_min_vruntime(struct cfs_rq *cfs_rq)
451 {
452 u64 vruntime = cfs_rq->min_vruntime;
453
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
456
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
461
462 if (!cfs_rq->curr)
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
466 }
467
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
469 #ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472 #endif
473 }
474
475 /*
476 * Enqueue an entity into the rb-tree:
477 */
478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
479 {
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
483 int leftmost = 1;
484
485 /*
486 * Find the right place in the rbtree:
487 */
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
491 /*
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
494 */
495 if (entity_before(se, entry)) {
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
500 }
501 }
502
503 /*
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
506 */
507 if (leftmost)
508 cfs_rq->rb_leftmost = &se->run_node;
509
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
512 }
513
514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
515 {
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
518
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
521 }
522
523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525
526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
527 {
528 struct rb_node *left = cfs_rq->rb_leftmost;
529
530 if (!left)
531 return NULL;
532
533 return rb_entry(left, struct sched_entity, run_node);
534 }
535
536 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537 {
538 struct rb_node *next = rb_next(&se->run_node);
539
540 if (!next)
541 return NULL;
542
543 return rb_entry(next, struct sched_entity, run_node);
544 }
545
546 #ifdef CONFIG_SCHED_DEBUG
547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
548 {
549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
550
551 if (!last)
552 return NULL;
553
554 return rb_entry(last, struct sched_entity, run_node);
555 }
556
557 /**************************************************************
558 * Scheduling class statistics methods:
559 */
560
561 int sched_proc_update_handler(struct ctl_table *table, int write,
562 void __user *buffer, size_t *lenp,
563 loff_t *ppos)
564 {
565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
566 int factor = get_update_sysctl_factor();
567
568 if (ret || !write)
569 return ret;
570
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
573
574 #define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
579 #undef WRT_SYSCTL
580
581 return 0;
582 }
583 #endif
584
585 /*
586 * delta /= w
587 */
588 static inline unsigned long
589 calc_delta_fair(unsigned long delta, struct sched_entity *se)
590 {
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
593
594 return delta;
595 }
596
597 /*
598 * The idea is to set a period in which each task runs once.
599 *
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
602 *
603 * p = (nr <= nl) ? l : l*nr/nl
604 */
605 static u64 __sched_period(unsigned long nr_running)
606 {
607 u64 period = sysctl_sched_latency;
608 unsigned long nr_latency = sched_nr_latency;
609
610 if (unlikely(nr_running > nr_latency)) {
611 period = sysctl_sched_min_granularity;
612 period *= nr_running;
613 }
614
615 return period;
616 }
617
618 /*
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
621 *
622 * s = p*P[w/rw]
623 */
624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
627
628 for_each_sched_entity(se) {
629 struct load_weight *load;
630 struct load_weight lw;
631
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
634
635 if (unlikely(!se->on_rq)) {
636 lw = cfs_rq->load;
637
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
640 }
641 slice = calc_delta_mine(slice, se->load.weight, load);
642 }
643 return slice;
644 }
645
646 /*
647 * We calculate the vruntime slice of a to be inserted task
648 *
649 * vs = s/w
650 */
651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
654 }
655
656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
657 static void update_cfs_shares(struct cfs_rq *cfs_rq);
658
659 /*
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
662 */
663 static inline void
664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
666 {
667 unsigned long delta_exec_weighted;
668
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
671
672 curr->sum_exec_runtime += delta_exec;
673 schedstat_add(cfs_rq, exec_clock, delta_exec);
674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
675
676 curr->vruntime += delta_exec_weighted;
677 update_min_vruntime(cfs_rq);
678
679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 cfs_rq->load_unacc_exec_time += delta_exec;
681 #endif
682 }
683
684 static void update_curr(struct cfs_rq *cfs_rq)
685 {
686 struct sched_entity *curr = cfs_rq->curr;
687 u64 now = rq_of(cfs_rq)->clock_task;
688 unsigned long delta_exec;
689
690 if (unlikely(!curr))
691 return;
692
693 /*
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
697 */
698 delta_exec = (unsigned long)(now - curr->exec_start);
699 if (!delta_exec)
700 return;
701
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
704
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
707
708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
709 cpuacct_charge(curtask, delta_exec);
710 account_group_exec_runtime(curtask, delta_exec);
711 }
712
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
714 }
715
716 static inline void
717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
718 {
719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
720 }
721
722 /*
723 * Task is being enqueued - update stats:
724 */
725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 /*
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
730 */
731 if (se != cfs_rq->curr)
732 update_stats_wait_start(cfs_rq, se);
733 }
734
735 static void
736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
743 #ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
747 }
748 #endif
749 schedstat_set(se->statistics.wait_start, 0);
750 }
751
752 static inline void
753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 /*
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
758 */
759 if (se != cfs_rq->curr)
760 update_stats_wait_end(cfs_rq, se);
761 }
762
763 /*
764 * We are picking a new current task - update its stats:
765 */
766 static inline void
767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 /*
770 * We are starting a new run period:
771 */
772 se->exec_start = rq_of(cfs_rq)->clock_task;
773 }
774
775 /**************************************************
776 * Scheduling class queueing methods:
777 */
778
779 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
780 static void
781 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
782 {
783 cfs_rq->task_weight += weight;
784 }
785 #else
786 static inline void
787 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
788 {
789 }
790 #endif
791
792 static void
793 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 update_load_add(&cfs_rq->load, se->load.weight);
796 if (!parent_entity(se))
797 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
798 if (entity_is_task(se)) {
799 add_cfs_task_weight(cfs_rq, se->load.weight);
800 list_add(&se->group_node, &cfs_rq->tasks);
801 }
802 cfs_rq->nr_running++;
803 }
804
805 static void
806 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
807 {
808 update_load_sub(&cfs_rq->load, se->load.weight);
809 if (!parent_entity(se))
810 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
811 if (entity_is_task(se)) {
812 add_cfs_task_weight(cfs_rq, -se->load.weight);
813 list_del_init(&se->group_node);
814 }
815 cfs_rq->nr_running--;
816 }
817
818 #ifdef CONFIG_FAIR_GROUP_SCHED
819 /* we need this in update_cfs_load and load-balance functions below */
820 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
821 # ifdef CONFIG_SMP
822 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
823 int global_update)
824 {
825 struct task_group *tg = cfs_rq->tg;
826 long load_avg;
827
828 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
829 load_avg -= cfs_rq->load_contribution;
830
831 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
832 atomic_add(load_avg, &tg->load_weight);
833 cfs_rq->load_contribution += load_avg;
834 }
835 }
836
837 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
838 {
839 u64 period = sysctl_sched_shares_window;
840 u64 now, delta;
841 unsigned long load = cfs_rq->load.weight;
842
843 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
844 return;
845
846 now = rq_of(cfs_rq)->clock_task;
847 delta = now - cfs_rq->load_stamp;
848
849 /* truncate load history at 4 idle periods */
850 if (cfs_rq->load_stamp > cfs_rq->load_last &&
851 now - cfs_rq->load_last > 4 * period) {
852 cfs_rq->load_period = 0;
853 cfs_rq->load_avg = 0;
854 delta = period - 1;
855 }
856
857 cfs_rq->load_stamp = now;
858 cfs_rq->load_unacc_exec_time = 0;
859 cfs_rq->load_period += delta;
860 if (load) {
861 cfs_rq->load_last = now;
862 cfs_rq->load_avg += delta * load;
863 }
864
865 /* consider updating load contribution on each fold or truncate */
866 if (global_update || cfs_rq->load_period > period
867 || !cfs_rq->load_period)
868 update_cfs_rq_load_contribution(cfs_rq, global_update);
869
870 while (cfs_rq->load_period > period) {
871 /*
872 * Inline assembly required to prevent the compiler
873 * optimising this loop into a divmod call.
874 * See __iter_div_u64_rem() for another example of this.
875 */
876 asm("" : "+rm" (cfs_rq->load_period));
877 cfs_rq->load_period /= 2;
878 cfs_rq->load_avg /= 2;
879 }
880
881 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
882 list_del_leaf_cfs_rq(cfs_rq);
883 }
884
885 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
886 {
887 long tg_weight;
888
889 /*
890 * Use this CPU's actual weight instead of the last load_contribution
891 * to gain a more accurate current total weight. See
892 * update_cfs_rq_load_contribution().
893 */
894 tg_weight = atomic_read(&tg->load_weight);
895 tg_weight -= cfs_rq->load_contribution;
896 tg_weight += cfs_rq->load.weight;
897
898 return tg_weight;
899 }
900
901 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
902 {
903 long tg_weight, load, shares;
904
905 tg_weight = calc_tg_weight(tg, cfs_rq);
906 load = cfs_rq->load.weight;
907
908 shares = (tg->shares * load);
909 if (tg_weight)
910 shares /= tg_weight;
911
912 if (shares < MIN_SHARES)
913 shares = MIN_SHARES;
914 if (shares > tg->shares)
915 shares = tg->shares;
916
917 return shares;
918 }
919
920 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
921 {
922 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
923 update_cfs_load(cfs_rq, 0);
924 update_cfs_shares(cfs_rq);
925 }
926 }
927 # else /* CONFIG_SMP */
928 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
929 {
930 }
931
932 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
933 {
934 return tg->shares;
935 }
936
937 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
938 {
939 }
940 # endif /* CONFIG_SMP */
941 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
942 unsigned long weight)
943 {
944 if (se->on_rq) {
945 /* commit outstanding execution time */
946 if (cfs_rq->curr == se)
947 update_curr(cfs_rq);
948 account_entity_dequeue(cfs_rq, se);
949 }
950
951 update_load_set(&se->load, weight);
952
953 if (se->on_rq)
954 account_entity_enqueue(cfs_rq, se);
955 }
956
957 static void update_cfs_shares(struct cfs_rq *cfs_rq)
958 {
959 struct task_group *tg;
960 struct sched_entity *se;
961 long shares;
962
963 tg = cfs_rq->tg;
964 se = tg->se[cpu_of(rq_of(cfs_rq))];
965 if (!se || throttled_hierarchy(cfs_rq))
966 return;
967 #ifndef CONFIG_SMP
968 if (likely(se->load.weight == tg->shares))
969 return;
970 #endif
971 shares = calc_cfs_shares(cfs_rq, tg);
972
973 reweight_entity(cfs_rq_of(se), se, shares);
974 }
975 #else /* CONFIG_FAIR_GROUP_SCHED */
976 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
977 {
978 }
979
980 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
981 {
982 }
983
984 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
985 {
986 }
987 #endif /* CONFIG_FAIR_GROUP_SCHED */
988
989 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
990 {
991 #ifdef CONFIG_SCHEDSTATS
992 struct task_struct *tsk = NULL;
993
994 if (entity_is_task(se))
995 tsk = task_of(se);
996
997 if (se->statistics.sleep_start) {
998 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
999
1000 if ((s64)delta < 0)
1001 delta = 0;
1002
1003 if (unlikely(delta > se->statistics.sleep_max))
1004 se->statistics.sleep_max = delta;
1005
1006 se->statistics.sum_sleep_runtime += delta;
1007
1008 if (tsk) {
1009 account_scheduler_latency(tsk, delta >> 10, 1);
1010 trace_sched_stat_sleep(tsk, delta);
1011 }
1012 }
1013 if (se->statistics.block_start) {
1014 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1015
1016 if ((s64)delta < 0)
1017 delta = 0;
1018
1019 if (unlikely(delta > se->statistics.block_max))
1020 se->statistics.block_max = delta;
1021
1022 se->statistics.sum_sleep_runtime += delta;
1023
1024 if (tsk) {
1025 if (tsk->in_iowait) {
1026 se->statistics.iowait_sum += delta;
1027 se->statistics.iowait_count++;
1028 trace_sched_stat_iowait(tsk, delta);
1029 }
1030
1031 trace_sched_stat_blocked(tsk, delta);
1032
1033 /*
1034 * Blocking time is in units of nanosecs, so shift by
1035 * 20 to get a milliseconds-range estimation of the
1036 * amount of time that the task spent sleeping:
1037 */
1038 if (unlikely(prof_on == SLEEP_PROFILING)) {
1039 profile_hits(SLEEP_PROFILING,
1040 (void *)get_wchan(tsk),
1041 delta >> 20);
1042 }
1043 account_scheduler_latency(tsk, delta >> 10, 0);
1044 }
1045 }
1046 #endif
1047 }
1048
1049 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1050 {
1051 #ifdef CONFIG_SCHED_DEBUG
1052 s64 d = se->vruntime - cfs_rq->min_vruntime;
1053
1054 if (d < 0)
1055 d = -d;
1056
1057 if (d > 3*sysctl_sched_latency)
1058 schedstat_inc(cfs_rq, nr_spread_over);
1059 #endif
1060 }
1061
1062 static void
1063 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1064 {
1065 u64 vruntime = cfs_rq->min_vruntime;
1066
1067 /*
1068 * The 'current' period is already promised to the current tasks,
1069 * however the extra weight of the new task will slow them down a
1070 * little, place the new task so that it fits in the slot that
1071 * stays open at the end.
1072 */
1073 if (initial && sched_feat(START_DEBIT))
1074 vruntime += sched_vslice(cfs_rq, se);
1075
1076 /* sleeps up to a single latency don't count. */
1077 if (!initial) {
1078 unsigned long thresh = sysctl_sched_latency;
1079
1080 /*
1081 * Halve their sleep time's effect, to allow
1082 * for a gentler effect of sleepers:
1083 */
1084 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1085 thresh >>= 1;
1086
1087 vruntime -= thresh;
1088 }
1089
1090 /* ensure we never gain time by being placed backwards. */
1091 vruntime = max_vruntime(se->vruntime, vruntime);
1092
1093 se->vruntime = vruntime;
1094 }
1095
1096 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1097
1098 static void
1099 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1100 {
1101 /*
1102 * Update the normalized vruntime before updating min_vruntime
1103 * through callig update_curr().
1104 */
1105 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1106 se->vruntime += cfs_rq->min_vruntime;
1107
1108 /*
1109 * Update run-time statistics of the 'current'.
1110 */
1111 update_curr(cfs_rq);
1112 update_cfs_load(cfs_rq, 0);
1113 account_entity_enqueue(cfs_rq, se);
1114 update_cfs_shares(cfs_rq);
1115
1116 if (flags & ENQUEUE_WAKEUP) {
1117 place_entity(cfs_rq, se, 0);
1118 enqueue_sleeper(cfs_rq, se);
1119 }
1120
1121 update_stats_enqueue(cfs_rq, se);
1122 check_spread(cfs_rq, se);
1123 if (se != cfs_rq->curr)
1124 __enqueue_entity(cfs_rq, se);
1125 se->on_rq = 1;
1126
1127 if (cfs_rq->nr_running == 1) {
1128 list_add_leaf_cfs_rq(cfs_rq);
1129 check_enqueue_throttle(cfs_rq);
1130 }
1131 }
1132
1133 static void __clear_buddies_last(struct sched_entity *se)
1134 {
1135 for_each_sched_entity(se) {
1136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1137 if (cfs_rq->last == se)
1138 cfs_rq->last = NULL;
1139 else
1140 break;
1141 }
1142 }
1143
1144 static void __clear_buddies_next(struct sched_entity *se)
1145 {
1146 for_each_sched_entity(se) {
1147 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1148 if (cfs_rq->next == se)
1149 cfs_rq->next = NULL;
1150 else
1151 break;
1152 }
1153 }
1154
1155 static void __clear_buddies_skip(struct sched_entity *se)
1156 {
1157 for_each_sched_entity(se) {
1158 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1159 if (cfs_rq->skip == se)
1160 cfs_rq->skip = NULL;
1161 else
1162 break;
1163 }
1164 }
1165
1166 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1167 {
1168 if (cfs_rq->last == se)
1169 __clear_buddies_last(se);
1170
1171 if (cfs_rq->next == se)
1172 __clear_buddies_next(se);
1173
1174 if (cfs_rq->skip == se)
1175 __clear_buddies_skip(se);
1176 }
1177
1178 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1179
1180 static void
1181 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1182 {
1183 /*
1184 * Update run-time statistics of the 'current'.
1185 */
1186 update_curr(cfs_rq);
1187
1188 update_stats_dequeue(cfs_rq, se);
1189 if (flags & DEQUEUE_SLEEP) {
1190 #ifdef CONFIG_SCHEDSTATS
1191 if (entity_is_task(se)) {
1192 struct task_struct *tsk = task_of(se);
1193
1194 if (tsk->state & TASK_INTERRUPTIBLE)
1195 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1196 if (tsk->state & TASK_UNINTERRUPTIBLE)
1197 se->statistics.block_start = rq_of(cfs_rq)->clock;
1198 }
1199 #endif
1200 }
1201
1202 clear_buddies(cfs_rq, se);
1203
1204 if (se != cfs_rq->curr)
1205 __dequeue_entity(cfs_rq, se);
1206 se->on_rq = 0;
1207 update_cfs_load(cfs_rq, 0);
1208 account_entity_dequeue(cfs_rq, se);
1209
1210 /*
1211 * Normalize the entity after updating the min_vruntime because the
1212 * update can refer to the ->curr item and we need to reflect this
1213 * movement in our normalized position.
1214 */
1215 if (!(flags & DEQUEUE_SLEEP))
1216 se->vruntime -= cfs_rq->min_vruntime;
1217
1218 /* return excess runtime on last dequeue */
1219 return_cfs_rq_runtime(cfs_rq);
1220
1221 update_min_vruntime(cfs_rq);
1222 update_cfs_shares(cfs_rq);
1223 }
1224
1225 /*
1226 * Preempt the current task with a newly woken task if needed:
1227 */
1228 static void
1229 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1230 {
1231 unsigned long ideal_runtime, delta_exec;
1232 struct sched_entity *se;
1233 s64 delta;
1234
1235 ideal_runtime = sched_slice(cfs_rq, curr);
1236 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1237 if (delta_exec > ideal_runtime) {
1238 resched_task(rq_of(cfs_rq)->curr);
1239 /*
1240 * The current task ran long enough, ensure it doesn't get
1241 * re-elected due to buddy favours.
1242 */
1243 clear_buddies(cfs_rq, curr);
1244 return;
1245 }
1246
1247 /*
1248 * Ensure that a task that missed wakeup preemption by a
1249 * narrow margin doesn't have to wait for a full slice.
1250 * This also mitigates buddy induced latencies under load.
1251 */
1252 if (delta_exec < sysctl_sched_min_granularity)
1253 return;
1254
1255 se = __pick_first_entity(cfs_rq);
1256 delta = curr->vruntime - se->vruntime;
1257
1258 if (delta < 0)
1259 return;
1260
1261 if (delta > ideal_runtime)
1262 resched_task(rq_of(cfs_rq)->curr);
1263 }
1264
1265 static void
1266 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1267 {
1268 /* 'current' is not kept within the tree. */
1269 if (se->on_rq) {
1270 /*
1271 * Any task has to be enqueued before it get to execute on
1272 * a CPU. So account for the time it spent waiting on the
1273 * runqueue.
1274 */
1275 update_stats_wait_end(cfs_rq, se);
1276 __dequeue_entity(cfs_rq, se);
1277 }
1278
1279 update_stats_curr_start(cfs_rq, se);
1280 cfs_rq->curr = se;
1281 #ifdef CONFIG_SCHEDSTATS
1282 /*
1283 * Track our maximum slice length, if the CPU's load is at
1284 * least twice that of our own weight (i.e. dont track it
1285 * when there are only lesser-weight tasks around):
1286 */
1287 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1288 se->statistics.slice_max = max(se->statistics.slice_max,
1289 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1290 }
1291 #endif
1292 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1293 }
1294
1295 static int
1296 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1297
1298 /*
1299 * Pick the next process, keeping these things in mind, in this order:
1300 * 1) keep things fair between processes/task groups
1301 * 2) pick the "next" process, since someone really wants that to run
1302 * 3) pick the "last" process, for cache locality
1303 * 4) do not run the "skip" process, if something else is available
1304 */
1305 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1306 {
1307 struct sched_entity *se = __pick_first_entity(cfs_rq);
1308 struct sched_entity *left = se;
1309
1310 /*
1311 * Avoid running the skip buddy, if running something else can
1312 * be done without getting too unfair.
1313 */
1314 if (cfs_rq->skip == se) {
1315 struct sched_entity *second = __pick_next_entity(se);
1316 if (second && wakeup_preempt_entity(second, left) < 1)
1317 se = second;
1318 }
1319
1320 /*
1321 * Prefer last buddy, try to return the CPU to a preempted task.
1322 */
1323 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1324 se = cfs_rq->last;
1325
1326 /*
1327 * Someone really wants this to run. If it's not unfair, run it.
1328 */
1329 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1330 se = cfs_rq->next;
1331
1332 clear_buddies(cfs_rq, se);
1333
1334 return se;
1335 }
1336
1337 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1338
1339 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1340 {
1341 /*
1342 * If still on the runqueue then deactivate_task()
1343 * was not called and update_curr() has to be done:
1344 */
1345 if (prev->on_rq)
1346 update_curr(cfs_rq);
1347
1348 /* throttle cfs_rqs exceeding runtime */
1349 check_cfs_rq_runtime(cfs_rq);
1350
1351 check_spread(cfs_rq, prev);
1352 if (prev->on_rq) {
1353 update_stats_wait_start(cfs_rq, prev);
1354 /* Put 'current' back into the tree. */
1355 __enqueue_entity(cfs_rq, prev);
1356 }
1357 cfs_rq->curr = NULL;
1358 }
1359
1360 static void
1361 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1362 {
1363 /*
1364 * Update run-time statistics of the 'current'.
1365 */
1366 update_curr(cfs_rq);
1367
1368 /*
1369 * Update share accounting for long-running entities.
1370 */
1371 update_entity_shares_tick(cfs_rq);
1372
1373 #ifdef CONFIG_SCHED_HRTICK
1374 /*
1375 * queued ticks are scheduled to match the slice, so don't bother
1376 * validating it and just reschedule.
1377 */
1378 if (queued) {
1379 resched_task(rq_of(cfs_rq)->curr);
1380 return;
1381 }
1382 /*
1383 * don't let the period tick interfere with the hrtick preemption
1384 */
1385 if (!sched_feat(DOUBLE_TICK) &&
1386 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1387 return;
1388 #endif
1389
1390 if (cfs_rq->nr_running > 1)
1391 check_preempt_tick(cfs_rq, curr);
1392 }
1393
1394
1395 /**************************************************
1396 * CFS bandwidth control machinery
1397 */
1398
1399 #ifdef CONFIG_CFS_BANDWIDTH
1400
1401 #ifdef HAVE_JUMP_LABEL
1402 static struct jump_label_key __cfs_bandwidth_used;
1403
1404 static inline bool cfs_bandwidth_used(void)
1405 {
1406 return static_branch(&__cfs_bandwidth_used);
1407 }
1408
1409 void account_cfs_bandwidth_used(int enabled, int was_enabled)
1410 {
1411 /* only need to count groups transitioning between enabled/!enabled */
1412 if (enabled && !was_enabled)
1413 jump_label_inc(&__cfs_bandwidth_used);
1414 else if (!enabled && was_enabled)
1415 jump_label_dec(&__cfs_bandwidth_used);
1416 }
1417 #else /* HAVE_JUMP_LABEL */
1418 static bool cfs_bandwidth_used(void)
1419 {
1420 return true;
1421 }
1422
1423 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1424 #endif /* HAVE_JUMP_LABEL */
1425
1426 /*
1427 * default period for cfs group bandwidth.
1428 * default: 0.1s, units: nanoseconds
1429 */
1430 static inline u64 default_cfs_period(void)
1431 {
1432 return 100000000ULL;
1433 }
1434
1435 static inline u64 sched_cfs_bandwidth_slice(void)
1436 {
1437 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1438 }
1439
1440 /*
1441 * Replenish runtime according to assigned quota and update expiration time.
1442 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1443 * additional synchronization around rq->lock.
1444 *
1445 * requires cfs_b->lock
1446 */
1447 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1448 {
1449 u64 now;
1450
1451 if (cfs_b->quota == RUNTIME_INF)
1452 return;
1453
1454 now = sched_clock_cpu(smp_processor_id());
1455 cfs_b->runtime = cfs_b->quota;
1456 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1457 }
1458
1459 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1460 {
1461 return &tg->cfs_bandwidth;
1462 }
1463
1464 /* returns 0 on failure to allocate runtime */
1465 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1466 {
1467 struct task_group *tg = cfs_rq->tg;
1468 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1469 u64 amount = 0, min_amount, expires;
1470
1471 /* note: this is a positive sum as runtime_remaining <= 0 */
1472 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1473
1474 raw_spin_lock(&cfs_b->lock);
1475 if (cfs_b->quota == RUNTIME_INF)
1476 amount = min_amount;
1477 else {
1478 /*
1479 * If the bandwidth pool has become inactive, then at least one
1480 * period must have elapsed since the last consumption.
1481 * Refresh the global state and ensure bandwidth timer becomes
1482 * active.
1483 */
1484 if (!cfs_b->timer_active) {
1485 __refill_cfs_bandwidth_runtime(cfs_b);
1486 __start_cfs_bandwidth(cfs_b);
1487 }
1488
1489 if (cfs_b->runtime > 0) {
1490 amount = min(cfs_b->runtime, min_amount);
1491 cfs_b->runtime -= amount;
1492 cfs_b->idle = 0;
1493 }
1494 }
1495 expires = cfs_b->runtime_expires;
1496 raw_spin_unlock(&cfs_b->lock);
1497
1498 cfs_rq->runtime_remaining += amount;
1499 /*
1500 * we may have advanced our local expiration to account for allowed
1501 * spread between our sched_clock and the one on which runtime was
1502 * issued.
1503 */
1504 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1505 cfs_rq->runtime_expires = expires;
1506
1507 return cfs_rq->runtime_remaining > 0;
1508 }
1509
1510 /*
1511 * Note: This depends on the synchronization provided by sched_clock and the
1512 * fact that rq->clock snapshots this value.
1513 */
1514 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1515 {
1516 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1517 struct rq *rq = rq_of(cfs_rq);
1518
1519 /* if the deadline is ahead of our clock, nothing to do */
1520 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1521 return;
1522
1523 if (cfs_rq->runtime_remaining < 0)
1524 return;
1525
1526 /*
1527 * If the local deadline has passed we have to consider the
1528 * possibility that our sched_clock is 'fast' and the global deadline
1529 * has not truly expired.
1530 *
1531 * Fortunately we can check determine whether this the case by checking
1532 * whether the global deadline has advanced.
1533 */
1534
1535 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1536 /* extend local deadline, drift is bounded above by 2 ticks */
1537 cfs_rq->runtime_expires += TICK_NSEC;
1538 } else {
1539 /* global deadline is ahead, expiration has passed */
1540 cfs_rq->runtime_remaining = 0;
1541 }
1542 }
1543
1544 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1545 unsigned long delta_exec)
1546 {
1547 /* dock delta_exec before expiring quota (as it could span periods) */
1548 cfs_rq->runtime_remaining -= delta_exec;
1549 expire_cfs_rq_runtime(cfs_rq);
1550
1551 if (likely(cfs_rq->runtime_remaining > 0))
1552 return;
1553
1554 /*
1555 * if we're unable to extend our runtime we resched so that the active
1556 * hierarchy can be throttled
1557 */
1558 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1559 resched_task(rq_of(cfs_rq)->curr);
1560 }
1561
1562 static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1563 unsigned long delta_exec)
1564 {
1565 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1566 return;
1567
1568 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1569 }
1570
1571 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1572 {
1573 return cfs_bandwidth_used() && cfs_rq->throttled;
1574 }
1575
1576 /* check whether cfs_rq, or any parent, is throttled */
1577 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1578 {
1579 return cfs_bandwidth_used() && cfs_rq->throttle_count;
1580 }
1581
1582 /*
1583 * Ensure that neither of the group entities corresponding to src_cpu or
1584 * dest_cpu are members of a throttled hierarchy when performing group
1585 * load-balance operations.
1586 */
1587 static inline int throttled_lb_pair(struct task_group *tg,
1588 int src_cpu, int dest_cpu)
1589 {
1590 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1591
1592 src_cfs_rq = tg->cfs_rq[src_cpu];
1593 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1594
1595 return throttled_hierarchy(src_cfs_rq) ||
1596 throttled_hierarchy(dest_cfs_rq);
1597 }
1598
1599 /* updated child weight may affect parent so we have to do this bottom up */
1600 static int tg_unthrottle_up(struct task_group *tg, void *data)
1601 {
1602 struct rq *rq = data;
1603 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1604
1605 cfs_rq->throttle_count--;
1606 #ifdef CONFIG_SMP
1607 if (!cfs_rq->throttle_count) {
1608 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1609
1610 /* leaving throttled state, advance shares averaging windows */
1611 cfs_rq->load_stamp += delta;
1612 cfs_rq->load_last += delta;
1613
1614 /* update entity weight now that we are on_rq again */
1615 update_cfs_shares(cfs_rq);
1616 }
1617 #endif
1618
1619 return 0;
1620 }
1621
1622 static int tg_throttle_down(struct task_group *tg, void *data)
1623 {
1624 struct rq *rq = data;
1625 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1626
1627 /* group is entering throttled state, record last load */
1628 if (!cfs_rq->throttle_count)
1629 update_cfs_load(cfs_rq, 0);
1630 cfs_rq->throttle_count++;
1631
1632 return 0;
1633 }
1634
1635 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1636 {
1637 struct rq *rq = rq_of(cfs_rq);
1638 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1639 struct sched_entity *se;
1640 long task_delta, dequeue = 1;
1641
1642 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1643
1644 /* account load preceding throttle */
1645 rcu_read_lock();
1646 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1647 rcu_read_unlock();
1648
1649 task_delta = cfs_rq->h_nr_running;
1650 for_each_sched_entity(se) {
1651 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1652 /* throttled entity or throttle-on-deactivate */
1653 if (!se->on_rq)
1654 break;
1655
1656 if (dequeue)
1657 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1658 qcfs_rq->h_nr_running -= task_delta;
1659
1660 if (qcfs_rq->load.weight)
1661 dequeue = 0;
1662 }
1663
1664 if (!se)
1665 rq->nr_running -= task_delta;
1666
1667 cfs_rq->throttled = 1;
1668 cfs_rq->throttled_timestamp = rq->clock;
1669 raw_spin_lock(&cfs_b->lock);
1670 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1671 raw_spin_unlock(&cfs_b->lock);
1672 }
1673
1674 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1675 {
1676 struct rq *rq = rq_of(cfs_rq);
1677 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1678 struct sched_entity *se;
1679 int enqueue = 1;
1680 long task_delta;
1681
1682 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1683
1684 cfs_rq->throttled = 0;
1685 raw_spin_lock(&cfs_b->lock);
1686 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1687 list_del_rcu(&cfs_rq->throttled_list);
1688 raw_spin_unlock(&cfs_b->lock);
1689 cfs_rq->throttled_timestamp = 0;
1690
1691 update_rq_clock(rq);
1692 /* update hierarchical throttle state */
1693 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1694
1695 if (!cfs_rq->load.weight)
1696 return;
1697
1698 task_delta = cfs_rq->h_nr_running;
1699 for_each_sched_entity(se) {
1700 if (se->on_rq)
1701 enqueue = 0;
1702
1703 cfs_rq = cfs_rq_of(se);
1704 if (enqueue)
1705 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1706 cfs_rq->h_nr_running += task_delta;
1707
1708 if (cfs_rq_throttled(cfs_rq))
1709 break;
1710 }
1711
1712 if (!se)
1713 rq->nr_running += task_delta;
1714
1715 /* determine whether we need to wake up potentially idle cpu */
1716 if (rq->curr == rq->idle && rq->cfs.nr_running)
1717 resched_task(rq->curr);
1718 }
1719
1720 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1721 u64 remaining, u64 expires)
1722 {
1723 struct cfs_rq *cfs_rq;
1724 u64 runtime = remaining;
1725
1726 rcu_read_lock();
1727 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1728 throttled_list) {
1729 struct rq *rq = rq_of(cfs_rq);
1730
1731 raw_spin_lock(&rq->lock);
1732 if (!cfs_rq_throttled(cfs_rq))
1733 goto next;
1734
1735 runtime = -cfs_rq->runtime_remaining + 1;
1736 if (runtime > remaining)
1737 runtime = remaining;
1738 remaining -= runtime;
1739
1740 cfs_rq->runtime_remaining += runtime;
1741 cfs_rq->runtime_expires = expires;
1742
1743 /* we check whether we're throttled above */
1744 if (cfs_rq->runtime_remaining > 0)
1745 unthrottle_cfs_rq(cfs_rq);
1746
1747 next:
1748 raw_spin_unlock(&rq->lock);
1749
1750 if (!remaining)
1751 break;
1752 }
1753 rcu_read_unlock();
1754
1755 return remaining;
1756 }
1757
1758 /*
1759 * Responsible for refilling a task_group's bandwidth and unthrottling its
1760 * cfs_rqs as appropriate. If there has been no activity within the last
1761 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1762 * used to track this state.
1763 */
1764 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1765 {
1766 u64 runtime, runtime_expires;
1767 int idle = 1, throttled;
1768
1769 raw_spin_lock(&cfs_b->lock);
1770 /* no need to continue the timer with no bandwidth constraint */
1771 if (cfs_b->quota == RUNTIME_INF)
1772 goto out_unlock;
1773
1774 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1775 /* idle depends on !throttled (for the case of a large deficit) */
1776 idle = cfs_b->idle && !throttled;
1777 cfs_b->nr_periods += overrun;
1778
1779 /* if we're going inactive then everything else can be deferred */
1780 if (idle)
1781 goto out_unlock;
1782
1783 __refill_cfs_bandwidth_runtime(cfs_b);
1784
1785 if (!throttled) {
1786 /* mark as potentially idle for the upcoming period */
1787 cfs_b->idle = 1;
1788 goto out_unlock;
1789 }
1790
1791 /* account preceding periods in which throttling occurred */
1792 cfs_b->nr_throttled += overrun;
1793
1794 /*
1795 * There are throttled entities so we must first use the new bandwidth
1796 * to unthrottle them before making it generally available. This
1797 * ensures that all existing debts will be paid before a new cfs_rq is
1798 * allowed to run.
1799 */
1800 runtime = cfs_b->runtime;
1801 runtime_expires = cfs_b->runtime_expires;
1802 cfs_b->runtime = 0;
1803
1804 /*
1805 * This check is repeated as we are holding onto the new bandwidth
1806 * while we unthrottle. This can potentially race with an unthrottled
1807 * group trying to acquire new bandwidth from the global pool.
1808 */
1809 while (throttled && runtime > 0) {
1810 raw_spin_unlock(&cfs_b->lock);
1811 /* we can't nest cfs_b->lock while distributing bandwidth */
1812 runtime = distribute_cfs_runtime(cfs_b, runtime,
1813 runtime_expires);
1814 raw_spin_lock(&cfs_b->lock);
1815
1816 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1817 }
1818
1819 /* return (any) remaining runtime */
1820 cfs_b->runtime = runtime;
1821 /*
1822 * While we are ensured activity in the period following an
1823 * unthrottle, this also covers the case in which the new bandwidth is
1824 * insufficient to cover the existing bandwidth deficit. (Forcing the
1825 * timer to remain active while there are any throttled entities.)
1826 */
1827 cfs_b->idle = 0;
1828 out_unlock:
1829 if (idle)
1830 cfs_b->timer_active = 0;
1831 raw_spin_unlock(&cfs_b->lock);
1832
1833 return idle;
1834 }
1835
1836 /* a cfs_rq won't donate quota below this amount */
1837 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1838 /* minimum remaining period time to redistribute slack quota */
1839 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1840 /* how long we wait to gather additional slack before distributing */
1841 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1842
1843 /* are we near the end of the current quota period? */
1844 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1845 {
1846 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1847 u64 remaining;
1848
1849 /* if the call-back is running a quota refresh is already occurring */
1850 if (hrtimer_callback_running(refresh_timer))
1851 return 1;
1852
1853 /* is a quota refresh about to occur? */
1854 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1855 if (remaining < min_expire)
1856 return 1;
1857
1858 return 0;
1859 }
1860
1861 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1862 {
1863 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1864
1865 /* if there's a quota refresh soon don't bother with slack */
1866 if (runtime_refresh_within(cfs_b, min_left))
1867 return;
1868
1869 start_bandwidth_timer(&cfs_b->slack_timer,
1870 ns_to_ktime(cfs_bandwidth_slack_period));
1871 }
1872
1873 /* we know any runtime found here is valid as update_curr() precedes return */
1874 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1875 {
1876 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1877 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1878
1879 if (slack_runtime <= 0)
1880 return;
1881
1882 raw_spin_lock(&cfs_b->lock);
1883 if (cfs_b->quota != RUNTIME_INF &&
1884 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1885 cfs_b->runtime += slack_runtime;
1886
1887 /* we are under rq->lock, defer unthrottling using a timer */
1888 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1889 !list_empty(&cfs_b->throttled_cfs_rq))
1890 start_cfs_slack_bandwidth(cfs_b);
1891 }
1892 raw_spin_unlock(&cfs_b->lock);
1893
1894 /* even if it's not valid for return we don't want to try again */
1895 cfs_rq->runtime_remaining -= slack_runtime;
1896 }
1897
1898 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1899 {
1900 if (!cfs_bandwidth_used())
1901 return;
1902
1903 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1904 return;
1905
1906 __return_cfs_rq_runtime(cfs_rq);
1907 }
1908
1909 /*
1910 * This is done with a timer (instead of inline with bandwidth return) since
1911 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1912 */
1913 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1914 {
1915 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1916 u64 expires;
1917
1918 /* confirm we're still not at a refresh boundary */
1919 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1920 return;
1921
1922 raw_spin_lock(&cfs_b->lock);
1923 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1924 runtime = cfs_b->runtime;
1925 cfs_b->runtime = 0;
1926 }
1927 expires = cfs_b->runtime_expires;
1928 raw_spin_unlock(&cfs_b->lock);
1929
1930 if (!runtime)
1931 return;
1932
1933 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1934
1935 raw_spin_lock(&cfs_b->lock);
1936 if (expires == cfs_b->runtime_expires)
1937 cfs_b->runtime = runtime;
1938 raw_spin_unlock(&cfs_b->lock);
1939 }
1940
1941 /*
1942 * When a group wakes up we want to make sure that its quota is not already
1943 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1944 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1945 */
1946 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1947 {
1948 if (!cfs_bandwidth_used())
1949 return;
1950
1951 /* an active group must be handled by the update_curr()->put() path */
1952 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1953 return;
1954
1955 /* ensure the group is not already throttled */
1956 if (cfs_rq_throttled(cfs_rq))
1957 return;
1958
1959 /* update runtime allocation */
1960 account_cfs_rq_runtime(cfs_rq, 0);
1961 if (cfs_rq->runtime_remaining <= 0)
1962 throttle_cfs_rq(cfs_rq);
1963 }
1964
1965 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1966 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1967 {
1968 if (!cfs_bandwidth_used())
1969 return;
1970
1971 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1972 return;
1973
1974 /*
1975 * it's possible for a throttled entity to be forced into a running
1976 * state (e.g. set_curr_task), in this case we're finished.
1977 */
1978 if (cfs_rq_throttled(cfs_rq))
1979 return;
1980
1981 throttle_cfs_rq(cfs_rq);
1982 }
1983
1984 static inline u64 default_cfs_period(void);
1985 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1986 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1987
1988 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1989 {
1990 struct cfs_bandwidth *cfs_b =
1991 container_of(timer, struct cfs_bandwidth, slack_timer);
1992 do_sched_cfs_slack_timer(cfs_b);
1993
1994 return HRTIMER_NORESTART;
1995 }
1996
1997 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1998 {
1999 struct cfs_bandwidth *cfs_b =
2000 container_of(timer, struct cfs_bandwidth, period_timer);
2001 ktime_t now;
2002 int overrun;
2003 int idle = 0;
2004
2005 for (;;) {
2006 now = hrtimer_cb_get_time(timer);
2007 overrun = hrtimer_forward(timer, now, cfs_b->period);
2008
2009 if (!overrun)
2010 break;
2011
2012 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2013 }
2014
2015 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2016 }
2017
2018 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2019 {
2020 raw_spin_lock_init(&cfs_b->lock);
2021 cfs_b->runtime = 0;
2022 cfs_b->quota = RUNTIME_INF;
2023 cfs_b->period = ns_to_ktime(default_cfs_period());
2024
2025 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2026 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2027 cfs_b->period_timer.function = sched_cfs_period_timer;
2028 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2029 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2030 }
2031
2032 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2033 {
2034 cfs_rq->runtime_enabled = 0;
2035 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2036 }
2037
2038 /* requires cfs_b->lock, may release to reprogram timer */
2039 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2040 {
2041 /*
2042 * The timer may be active because we're trying to set a new bandwidth
2043 * period or because we're racing with the tear-down path
2044 * (timer_active==0 becomes visible before the hrtimer call-back
2045 * terminates). In either case we ensure that it's re-programmed
2046 */
2047 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2048 raw_spin_unlock(&cfs_b->lock);
2049 /* ensure cfs_b->lock is available while we wait */
2050 hrtimer_cancel(&cfs_b->period_timer);
2051
2052 raw_spin_lock(&cfs_b->lock);
2053 /* if someone else restarted the timer then we're done */
2054 if (cfs_b->timer_active)
2055 return;
2056 }
2057
2058 cfs_b->timer_active = 1;
2059 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2060 }
2061
2062 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2063 {
2064 hrtimer_cancel(&cfs_b->period_timer);
2065 hrtimer_cancel(&cfs_b->slack_timer);
2066 }
2067
2068 void unthrottle_offline_cfs_rqs(struct rq *rq)
2069 {
2070 struct cfs_rq *cfs_rq;
2071
2072 for_each_leaf_cfs_rq(rq, cfs_rq) {
2073 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2074
2075 if (!cfs_rq->runtime_enabled)
2076 continue;
2077
2078 /*
2079 * clock_task is not advancing so we just need to make sure
2080 * there's some valid quota amount
2081 */
2082 cfs_rq->runtime_remaining = cfs_b->quota;
2083 if (cfs_rq_throttled(cfs_rq))
2084 unthrottle_cfs_rq(cfs_rq);
2085 }
2086 }
2087
2088 #else /* CONFIG_CFS_BANDWIDTH */
2089 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2090 unsigned long delta_exec) {}
2091 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2092 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2093 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2094
2095 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2096 {
2097 return 0;
2098 }
2099
2100 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2101 {
2102 return 0;
2103 }
2104
2105 static inline int throttled_lb_pair(struct task_group *tg,
2106 int src_cpu, int dest_cpu)
2107 {
2108 return 0;
2109 }
2110
2111 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2112
2113 #ifdef CONFIG_FAIR_GROUP_SCHED
2114 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2115 #endif
2116
2117 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2118 {
2119 return NULL;
2120 }
2121 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2122 void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2123
2124 #endif /* CONFIG_CFS_BANDWIDTH */
2125
2126 /**************************************************
2127 * CFS operations on tasks:
2128 */
2129
2130 #ifdef CONFIG_SCHED_HRTICK
2131 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2132 {
2133 struct sched_entity *se = &p->se;
2134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2135
2136 WARN_ON(task_rq(p) != rq);
2137
2138 if (cfs_rq->nr_running > 1) {
2139 u64 slice = sched_slice(cfs_rq, se);
2140 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2141 s64 delta = slice - ran;
2142
2143 if (delta < 0) {
2144 if (rq->curr == p)
2145 resched_task(p);
2146 return;
2147 }
2148
2149 /*
2150 * Don't schedule slices shorter than 10000ns, that just
2151 * doesn't make sense. Rely on vruntime for fairness.
2152 */
2153 if (rq->curr != p)
2154 delta = max_t(s64, 10000LL, delta);
2155
2156 hrtick_start(rq, delta);
2157 }
2158 }
2159
2160 /*
2161 * called from enqueue/dequeue and updates the hrtick when the
2162 * current task is from our class and nr_running is low enough
2163 * to matter.
2164 */
2165 static void hrtick_update(struct rq *rq)
2166 {
2167 struct task_struct *curr = rq->curr;
2168
2169 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2170 return;
2171
2172 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2173 hrtick_start_fair(rq, curr);
2174 }
2175 #else /* !CONFIG_SCHED_HRTICK */
2176 static inline void
2177 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2178 {
2179 }
2180
2181 static inline void hrtick_update(struct rq *rq)
2182 {
2183 }
2184 #endif
2185
2186 /*
2187 * The enqueue_task method is called before nr_running is
2188 * increased. Here we update the fair scheduling stats and
2189 * then put the task into the rbtree:
2190 */
2191 static void
2192 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2193 {
2194 struct cfs_rq *cfs_rq;
2195 struct sched_entity *se = &p->se;
2196
2197 for_each_sched_entity(se) {
2198 if (se->on_rq)
2199 break;
2200 cfs_rq = cfs_rq_of(se);
2201 enqueue_entity(cfs_rq, se, flags);
2202
2203 /*
2204 * end evaluation on encountering a throttled cfs_rq
2205 *
2206 * note: in the case of encountering a throttled cfs_rq we will
2207 * post the final h_nr_running increment below.
2208 */
2209 if (cfs_rq_throttled(cfs_rq))
2210 break;
2211 cfs_rq->h_nr_running++;
2212
2213 flags = ENQUEUE_WAKEUP;
2214 }
2215
2216 for_each_sched_entity(se) {
2217 cfs_rq = cfs_rq_of(se);
2218 cfs_rq->h_nr_running++;
2219
2220 if (cfs_rq_throttled(cfs_rq))
2221 break;
2222
2223 update_cfs_load(cfs_rq, 0);
2224 update_cfs_shares(cfs_rq);
2225 }
2226
2227 if (!se)
2228 inc_nr_running(rq);
2229 hrtick_update(rq);
2230 }
2231
2232 static void set_next_buddy(struct sched_entity *se);
2233
2234 /*
2235 * The dequeue_task method is called before nr_running is
2236 * decreased. We remove the task from the rbtree and
2237 * update the fair scheduling stats:
2238 */
2239 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2240 {
2241 struct cfs_rq *cfs_rq;
2242 struct sched_entity *se = &p->se;
2243 int task_sleep = flags & DEQUEUE_SLEEP;
2244
2245 for_each_sched_entity(se) {
2246 cfs_rq = cfs_rq_of(se);
2247 dequeue_entity(cfs_rq, se, flags);
2248
2249 /*
2250 * end evaluation on encountering a throttled cfs_rq
2251 *
2252 * note: in the case of encountering a throttled cfs_rq we will
2253 * post the final h_nr_running decrement below.
2254 */
2255 if (cfs_rq_throttled(cfs_rq))
2256 break;
2257 cfs_rq->h_nr_running--;
2258
2259 /* Don't dequeue parent if it has other entities besides us */
2260 if (cfs_rq->load.weight) {
2261 /*
2262 * Bias pick_next to pick a task from this cfs_rq, as
2263 * p is sleeping when it is within its sched_slice.
2264 */
2265 if (task_sleep && parent_entity(se))
2266 set_next_buddy(parent_entity(se));
2267
2268 /* avoid re-evaluating load for this entity */
2269 se = parent_entity(se);
2270 break;
2271 }
2272 flags |= DEQUEUE_SLEEP;
2273 }
2274
2275 for_each_sched_entity(se) {
2276 cfs_rq = cfs_rq_of(se);
2277 cfs_rq->h_nr_running--;
2278
2279 if (cfs_rq_throttled(cfs_rq))
2280 break;
2281
2282 update_cfs_load(cfs_rq, 0);
2283 update_cfs_shares(cfs_rq);
2284 }
2285
2286 if (!se)
2287 dec_nr_running(rq);
2288 hrtick_update(rq);
2289 }
2290
2291 #ifdef CONFIG_SMP
2292 /* Used instead of source_load when we know the type == 0 */
2293 static unsigned long weighted_cpuload(const int cpu)
2294 {
2295 return cpu_rq(cpu)->load.weight;
2296 }
2297
2298 /*
2299 * Return a low guess at the load of a migration-source cpu weighted
2300 * according to the scheduling class and "nice" value.
2301 *
2302 * We want to under-estimate the load of migration sources, to
2303 * balance conservatively.
2304 */
2305 static unsigned long source_load(int cpu, int type)
2306 {
2307 struct rq *rq = cpu_rq(cpu);
2308 unsigned long total = weighted_cpuload(cpu);
2309
2310 if (type == 0 || !sched_feat(LB_BIAS))
2311 return total;
2312
2313 return min(rq->cpu_load[type-1], total);
2314 }
2315
2316 /*
2317 * Return a high guess at the load of a migration-target cpu weighted
2318 * according to the scheduling class and "nice" value.
2319 */
2320 static unsigned long target_load(int cpu, int type)
2321 {
2322 struct rq *rq = cpu_rq(cpu);
2323 unsigned long total = weighted_cpuload(cpu);
2324
2325 if (type == 0 || !sched_feat(LB_BIAS))
2326 return total;
2327
2328 return max(rq->cpu_load[type-1], total);
2329 }
2330
2331 static unsigned long power_of(int cpu)
2332 {
2333 return cpu_rq(cpu)->cpu_power;
2334 }
2335
2336 static unsigned long cpu_avg_load_per_task(int cpu)
2337 {
2338 struct rq *rq = cpu_rq(cpu);
2339 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2340
2341 if (nr_running)
2342 return rq->load.weight / nr_running;
2343
2344 return 0;
2345 }
2346
2347
2348 static void task_waking_fair(struct task_struct *p)
2349 {
2350 struct sched_entity *se = &p->se;
2351 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2352 u64 min_vruntime;
2353
2354 #ifndef CONFIG_64BIT
2355 u64 min_vruntime_copy;
2356
2357 do {
2358 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2359 smp_rmb();
2360 min_vruntime = cfs_rq->min_vruntime;
2361 } while (min_vruntime != min_vruntime_copy);
2362 #else
2363 min_vruntime = cfs_rq->min_vruntime;
2364 #endif
2365
2366 se->vruntime -= min_vruntime;
2367 }
2368
2369 #ifdef CONFIG_FAIR_GROUP_SCHED
2370 /*
2371 * effective_load() calculates the load change as seen from the root_task_group
2372 *
2373 * Adding load to a group doesn't make a group heavier, but can cause movement
2374 * of group shares between cpus. Assuming the shares were perfectly aligned one
2375 * can calculate the shift in shares.
2376 *
2377 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2378 * on this @cpu and results in a total addition (subtraction) of @wg to the
2379 * total group weight.
2380 *
2381 * Given a runqueue weight distribution (rw_i) we can compute a shares
2382 * distribution (s_i) using:
2383 *
2384 * s_i = rw_i / \Sum rw_j (1)
2385 *
2386 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2387 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2388 * shares distribution (s_i):
2389 *
2390 * rw_i = { 2, 4, 1, 0 }
2391 * s_i = { 2/7, 4/7, 1/7, 0 }
2392 *
2393 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2394 * task used to run on and the CPU the waker is running on), we need to
2395 * compute the effect of waking a task on either CPU and, in case of a sync
2396 * wakeup, compute the effect of the current task going to sleep.
2397 *
2398 * So for a change of @wl to the local @cpu with an overall group weight change
2399 * of @wl we can compute the new shares distribution (s'_i) using:
2400 *
2401 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2402 *
2403 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2404 * differences in waking a task to CPU 0. The additional task changes the
2405 * weight and shares distributions like:
2406 *
2407 * rw'_i = { 3, 4, 1, 0 }
2408 * s'_i = { 3/8, 4/8, 1/8, 0 }
2409 *
2410 * We can then compute the difference in effective weight by using:
2411 *
2412 * dw_i = S * (s'_i - s_i) (3)
2413 *
2414 * Where 'S' is the group weight as seen by its parent.
2415 *
2416 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2417 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2418 * 4/7) times the weight of the group.
2419 */
2420 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2421 {
2422 struct sched_entity *se = tg->se[cpu];
2423
2424 if (!tg->parent) /* the trivial, non-cgroup case */
2425 return wl;
2426
2427 for_each_sched_entity(se) {
2428 long w, W;
2429
2430 tg = se->my_q->tg;
2431
2432 /*
2433 * W = @wg + \Sum rw_j
2434 */
2435 W = wg + calc_tg_weight(tg, se->my_q);
2436
2437 /*
2438 * w = rw_i + @wl
2439 */
2440 w = se->my_q->load.weight + wl;
2441
2442 /*
2443 * wl = S * s'_i; see (2)
2444 */
2445 if (W > 0 && w < W)
2446 wl = (w * tg->shares) / W;
2447 else
2448 wl = tg->shares;
2449
2450 /*
2451 * Per the above, wl is the new se->load.weight value; since
2452 * those are clipped to [MIN_SHARES, ...) do so now. See
2453 * calc_cfs_shares().
2454 */
2455 if (wl < MIN_SHARES)
2456 wl = MIN_SHARES;
2457
2458 /*
2459 * wl = dw_i = S * (s'_i - s_i); see (3)
2460 */
2461 wl -= se->load.weight;
2462
2463 /*
2464 * Recursively apply this logic to all parent groups to compute
2465 * the final effective load change on the root group. Since
2466 * only the @tg group gets extra weight, all parent groups can
2467 * only redistribute existing shares. @wl is the shift in shares
2468 * resulting from this level per the above.
2469 */
2470 wg = 0;
2471 }
2472
2473 return wl;
2474 }
2475 #else
2476
2477 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2478 unsigned long wl, unsigned long wg)
2479 {
2480 return wl;
2481 }
2482
2483 #endif
2484
2485 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2486 {
2487 s64 this_load, load;
2488 int idx, this_cpu, prev_cpu;
2489 unsigned long tl_per_task;
2490 struct task_group *tg;
2491 unsigned long weight;
2492 int balanced;
2493
2494 idx = sd->wake_idx;
2495 this_cpu = smp_processor_id();
2496 prev_cpu = task_cpu(p);
2497 load = source_load(prev_cpu, idx);
2498 this_load = target_load(this_cpu, idx);
2499
2500 /*
2501 * If sync wakeup then subtract the (maximum possible)
2502 * effect of the currently running task from the load
2503 * of the current CPU:
2504 */
2505 if (sync) {
2506 tg = task_group(current);
2507 weight = current->se.load.weight;
2508
2509 this_load += effective_load(tg, this_cpu, -weight, -weight);
2510 load += effective_load(tg, prev_cpu, 0, -weight);
2511 }
2512
2513 tg = task_group(p);
2514 weight = p->se.load.weight;
2515
2516 /*
2517 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2518 * due to the sync cause above having dropped this_load to 0, we'll
2519 * always have an imbalance, but there's really nothing you can do
2520 * about that, so that's good too.
2521 *
2522 * Otherwise check if either cpus are near enough in load to allow this
2523 * task to be woken on this_cpu.
2524 */
2525 if (this_load > 0) {
2526 s64 this_eff_load, prev_eff_load;
2527
2528 this_eff_load = 100;
2529 this_eff_load *= power_of(prev_cpu);
2530 this_eff_load *= this_load +
2531 effective_load(tg, this_cpu, weight, weight);
2532
2533 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2534 prev_eff_load *= power_of(this_cpu);
2535 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2536
2537 balanced = this_eff_load <= prev_eff_load;
2538 } else
2539 balanced = true;
2540
2541 /*
2542 * If the currently running task will sleep within
2543 * a reasonable amount of time then attract this newly
2544 * woken task:
2545 */
2546 if (sync && balanced)
2547 return 1;
2548
2549 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2550 tl_per_task = cpu_avg_load_per_task(this_cpu);
2551
2552 if (balanced ||
2553 (this_load <= load &&
2554 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2555 /*
2556 * This domain has SD_WAKE_AFFINE and
2557 * p is cache cold in this domain, and
2558 * there is no bad imbalance.
2559 */
2560 schedstat_inc(sd, ttwu_move_affine);
2561 schedstat_inc(p, se.statistics.nr_wakeups_affine);
2562
2563 return 1;
2564 }
2565 return 0;
2566 }
2567
2568 /*
2569 * find_idlest_group finds and returns the least busy CPU group within the
2570 * domain.
2571 */
2572 static struct sched_group *
2573 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2574 int this_cpu, int load_idx)
2575 {
2576 struct sched_group *idlest = NULL, *group = sd->groups;
2577 unsigned long min_load = ULONG_MAX, this_load = 0;
2578 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2579
2580 do {
2581 unsigned long load, avg_load;
2582 int local_group;
2583 int i;
2584
2585 /* Skip over this group if it has no CPUs allowed */
2586 if (!cpumask_intersects(sched_group_cpus(group),
2587 tsk_cpus_allowed(p)))
2588 continue;
2589
2590 local_group = cpumask_test_cpu(this_cpu,
2591 sched_group_cpus(group));
2592
2593 /* Tally up the load of all CPUs in the group */
2594 avg_load = 0;
2595
2596 for_each_cpu(i, sched_group_cpus(group)) {
2597 /* Bias balancing toward cpus of our domain */
2598 if (local_group)
2599 load = source_load(i, load_idx);
2600 else
2601 load = target_load(i, load_idx);
2602
2603 avg_load += load;
2604 }
2605
2606 /* Adjust by relative CPU power of the group */
2607 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2608
2609 if (local_group) {
2610 this_load = avg_load;
2611 } else if (avg_load < min_load) {
2612 min_load = avg_load;
2613 idlest = group;
2614 }
2615 } while (group = group->next, group != sd->groups);
2616
2617 if (!idlest || 100*this_load < imbalance*min_load)
2618 return NULL;
2619 return idlest;
2620 }
2621
2622 /*
2623 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2624 */
2625 static int
2626 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2627 {
2628 unsigned long load, min_load = ULONG_MAX;
2629 int idlest = -1;
2630 int i;
2631
2632 /* Traverse only the allowed CPUs */
2633 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2634 load = weighted_cpuload(i);
2635
2636 if (load < min_load || (load == min_load && i == this_cpu)) {
2637 min_load = load;
2638 idlest = i;
2639 }
2640 }
2641
2642 return idlest;
2643 }
2644
2645 /*
2646 * Try and locate an idle CPU in the sched_domain.
2647 */
2648 static int select_idle_sibling(struct task_struct *p, int target)
2649 {
2650 int cpu = smp_processor_id();
2651 int prev_cpu = task_cpu(p);
2652 struct sched_domain *sd;
2653 struct sched_group *sg;
2654 int i;
2655
2656 /*
2657 * If the task is going to be woken-up on this cpu and if it is
2658 * already idle, then it is the right target.
2659 */
2660 if (target == cpu && idle_cpu(cpu))
2661 return cpu;
2662
2663 /*
2664 * If the task is going to be woken-up on the cpu where it previously
2665 * ran and if it is currently idle, then it the right target.
2666 */
2667 if (target == prev_cpu && idle_cpu(prev_cpu))
2668 return prev_cpu;
2669
2670 /*
2671 * Otherwise, iterate the domains and find an elegible idle cpu.
2672 */
2673 rcu_read_lock();
2674
2675 sd = rcu_dereference(per_cpu(sd_llc, target));
2676 for_each_lower_domain(sd) {
2677 sg = sd->groups;
2678 do {
2679 if (!cpumask_intersects(sched_group_cpus(sg),
2680 tsk_cpus_allowed(p)))
2681 goto next;
2682
2683 for_each_cpu(i, sched_group_cpus(sg)) {
2684 if (!idle_cpu(i))
2685 goto next;
2686 }
2687
2688 target = cpumask_first_and(sched_group_cpus(sg),
2689 tsk_cpus_allowed(p));
2690 goto done;
2691 next:
2692 sg = sg->next;
2693 } while (sg != sd->groups);
2694 }
2695 done:
2696 rcu_read_unlock();
2697
2698 return target;
2699 }
2700
2701 /*
2702 * sched_balance_self: balance the current task (running on cpu) in domains
2703 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2704 * SD_BALANCE_EXEC.
2705 *
2706 * Balance, ie. select the least loaded group.
2707 *
2708 * Returns the target CPU number, or the same CPU if no balancing is needed.
2709 *
2710 * preempt must be disabled.
2711 */
2712 static int
2713 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2714 {
2715 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2716 int cpu = smp_processor_id();
2717 int prev_cpu = task_cpu(p);
2718 int new_cpu = cpu;
2719 int want_affine = 0;
2720 int want_sd = 1;
2721 int sync = wake_flags & WF_SYNC;
2722
2723 if (p->rt.nr_cpus_allowed == 1)
2724 return prev_cpu;
2725
2726 if (sd_flag & SD_BALANCE_WAKE) {
2727 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2728 want_affine = 1;
2729 new_cpu = prev_cpu;
2730 }
2731
2732 rcu_read_lock();
2733 for_each_domain(cpu, tmp) {
2734 if (!(tmp->flags & SD_LOAD_BALANCE))
2735 continue;
2736
2737 /*
2738 * If power savings logic is enabled for a domain, see if we
2739 * are not overloaded, if so, don't balance wider.
2740 */
2741 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
2742 unsigned long power = 0;
2743 unsigned long nr_running = 0;
2744 unsigned long capacity;
2745 int i;
2746
2747 for_each_cpu(i, sched_domain_span(tmp)) {
2748 power += power_of(i);
2749 nr_running += cpu_rq(i)->cfs.nr_running;
2750 }
2751
2752 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2753
2754 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2755 nr_running /= 2;
2756
2757 if (nr_running < capacity)
2758 want_sd = 0;
2759 }
2760
2761 /*
2762 * If both cpu and prev_cpu are part of this domain,
2763 * cpu is a valid SD_WAKE_AFFINE target.
2764 */
2765 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2766 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2767 affine_sd = tmp;
2768 want_affine = 0;
2769 }
2770
2771 if (!want_sd && !want_affine)
2772 break;
2773
2774 if (!(tmp->flags & sd_flag))
2775 continue;
2776
2777 if (want_sd)
2778 sd = tmp;
2779 }
2780
2781 if (affine_sd) {
2782 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2783 prev_cpu = cpu;
2784
2785 new_cpu = select_idle_sibling(p, prev_cpu);
2786 goto unlock;
2787 }
2788
2789 while (sd) {
2790 int load_idx = sd->forkexec_idx;
2791 struct sched_group *group;
2792 int weight;
2793
2794 if (!(sd->flags & sd_flag)) {
2795 sd = sd->child;
2796 continue;
2797 }
2798
2799 if (sd_flag & SD_BALANCE_WAKE)
2800 load_idx = sd->wake_idx;
2801
2802 group = find_idlest_group(sd, p, cpu, load_idx);
2803 if (!group) {
2804 sd = sd->child;
2805 continue;
2806 }
2807
2808 new_cpu = find_idlest_cpu(group, p, cpu);
2809 if (new_cpu == -1 || new_cpu == cpu) {
2810 /* Now try balancing at a lower domain level of cpu */
2811 sd = sd->child;
2812 continue;
2813 }
2814
2815 /* Now try balancing at a lower domain level of new_cpu */
2816 cpu = new_cpu;
2817 weight = sd->span_weight;
2818 sd = NULL;
2819 for_each_domain(cpu, tmp) {
2820 if (weight <= tmp->span_weight)
2821 break;
2822 if (tmp->flags & sd_flag)
2823 sd = tmp;
2824 }
2825 /* while loop will break here if sd == NULL */
2826 }
2827 unlock:
2828 rcu_read_unlock();
2829
2830 return new_cpu;
2831 }
2832 #endif /* CONFIG_SMP */
2833
2834 static unsigned long
2835 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2836 {
2837 unsigned long gran = sysctl_sched_wakeup_granularity;
2838
2839 /*
2840 * Since its curr running now, convert the gran from real-time
2841 * to virtual-time in his units.
2842 *
2843 * By using 'se' instead of 'curr' we penalize light tasks, so
2844 * they get preempted easier. That is, if 'se' < 'curr' then
2845 * the resulting gran will be larger, therefore penalizing the
2846 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2847 * be smaller, again penalizing the lighter task.
2848 *
2849 * This is especially important for buddies when the leftmost
2850 * task is higher priority than the buddy.
2851 */
2852 return calc_delta_fair(gran, se);
2853 }
2854
2855 /*
2856 * Should 'se' preempt 'curr'.
2857 *
2858 * |s1
2859 * |s2
2860 * |s3
2861 * g
2862 * |<--->|c
2863 *
2864 * w(c, s1) = -1
2865 * w(c, s2) = 0
2866 * w(c, s3) = 1
2867 *
2868 */
2869 static int
2870 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2871 {
2872 s64 gran, vdiff = curr->vruntime - se->vruntime;
2873
2874 if (vdiff <= 0)
2875 return -1;
2876
2877 gran = wakeup_gran(curr, se);
2878 if (vdiff > gran)
2879 return 1;
2880
2881 return 0;
2882 }
2883
2884 static void set_last_buddy(struct sched_entity *se)
2885 {
2886 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2887 return;
2888
2889 for_each_sched_entity(se)
2890 cfs_rq_of(se)->last = se;
2891 }
2892
2893 static void set_next_buddy(struct sched_entity *se)
2894 {
2895 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2896 return;
2897
2898 for_each_sched_entity(se)
2899 cfs_rq_of(se)->next = se;
2900 }
2901
2902 static void set_skip_buddy(struct sched_entity *se)
2903 {
2904 for_each_sched_entity(se)
2905 cfs_rq_of(se)->skip = se;
2906 }
2907
2908 /*
2909 * Preempt the current task with a newly woken task if needed:
2910 */
2911 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2912 {
2913 struct task_struct *curr = rq->curr;
2914 struct sched_entity *se = &curr->se, *pse = &p->se;
2915 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2916 int scale = cfs_rq->nr_running >= sched_nr_latency;
2917 int next_buddy_marked = 0;
2918
2919 if (unlikely(se == pse))
2920 return;
2921
2922 /*
2923 * This is possible from callers such as pull_task(), in which we
2924 * unconditionally check_prempt_curr() after an enqueue (which may have
2925 * lead to a throttle). This both saves work and prevents false
2926 * next-buddy nomination below.
2927 */
2928 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2929 return;
2930
2931 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2932 set_next_buddy(pse);
2933 next_buddy_marked = 1;
2934 }
2935
2936 /*
2937 * We can come here with TIF_NEED_RESCHED already set from new task
2938 * wake up path.
2939 *
2940 * Note: this also catches the edge-case of curr being in a throttled
2941 * group (e.g. via set_curr_task), since update_curr() (in the
2942 * enqueue of curr) will have resulted in resched being set. This
2943 * prevents us from potentially nominating it as a false LAST_BUDDY
2944 * below.
2945 */
2946 if (test_tsk_need_resched(curr))
2947 return;
2948
2949 /* Idle tasks are by definition preempted by non-idle tasks. */
2950 if (unlikely(curr->policy == SCHED_IDLE) &&
2951 likely(p->policy != SCHED_IDLE))
2952 goto preempt;
2953
2954 /*
2955 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2956 * is driven by the tick):
2957 */
2958 if (unlikely(p->policy != SCHED_NORMAL))
2959 return;
2960
2961 find_matching_se(&se, &pse);
2962 update_curr(cfs_rq_of(se));
2963 BUG_ON(!pse);
2964 if (wakeup_preempt_entity(se, pse) == 1) {
2965 /*
2966 * Bias pick_next to pick the sched entity that is
2967 * triggering this preemption.
2968 */
2969 if (!next_buddy_marked)
2970 set_next_buddy(pse);
2971 goto preempt;
2972 }
2973
2974 return;
2975
2976 preempt:
2977 resched_task(curr);
2978 /*
2979 * Only set the backward buddy when the current task is still
2980 * on the rq. This can happen when a wakeup gets interleaved
2981 * with schedule on the ->pre_schedule() or idle_balance()
2982 * point, either of which can * drop the rq lock.
2983 *
2984 * Also, during early boot the idle thread is in the fair class,
2985 * for obvious reasons its a bad idea to schedule back to it.
2986 */
2987 if (unlikely(!se->on_rq || curr == rq->idle))
2988 return;
2989
2990 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2991 set_last_buddy(se);
2992 }
2993
2994 static struct task_struct *pick_next_task_fair(struct rq *rq)
2995 {
2996 struct task_struct *p;
2997 struct cfs_rq *cfs_rq = &rq->cfs;
2998 struct sched_entity *se;
2999
3000 if (!cfs_rq->nr_running)
3001 return NULL;
3002
3003 do {
3004 se = pick_next_entity(cfs_rq);
3005 set_next_entity(cfs_rq, se);
3006 cfs_rq = group_cfs_rq(se);
3007 } while (cfs_rq);
3008
3009 p = task_of(se);
3010 if (hrtick_enabled(rq))
3011 hrtick_start_fair(rq, p);
3012
3013 return p;
3014 }
3015
3016 /*
3017 * Account for a descheduled task:
3018 */
3019 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3020 {
3021 struct sched_entity *se = &prev->se;
3022 struct cfs_rq *cfs_rq;
3023
3024 for_each_sched_entity(se) {
3025 cfs_rq = cfs_rq_of(se);
3026 put_prev_entity(cfs_rq, se);
3027 }
3028 }
3029
3030 /*
3031 * sched_yield() is very simple
3032 *
3033 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3034 */
3035 static void yield_task_fair(struct rq *rq)
3036 {
3037 struct task_struct *curr = rq->curr;
3038 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3039 struct sched_entity *se = &curr->se;
3040
3041 /*
3042 * Are we the only task in the tree?
3043 */
3044 if (unlikely(rq->nr_running == 1))
3045 return;
3046
3047 clear_buddies(cfs_rq, se);
3048
3049 if (curr->policy != SCHED_BATCH) {
3050 update_rq_clock(rq);
3051 /*
3052 * Update run-time statistics of the 'current'.
3053 */
3054 update_curr(cfs_rq);
3055 /*
3056 * Tell update_rq_clock() that we've just updated,
3057 * so we don't do microscopic update in schedule()
3058 * and double the fastpath cost.
3059 */
3060 rq->skip_clock_update = 1;
3061 }
3062
3063 set_skip_buddy(se);
3064 }
3065
3066 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3067 {
3068 struct sched_entity *se = &p->se;
3069
3070 /* throttled hierarchies are not runnable */
3071 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3072 return false;
3073
3074 /* Tell the scheduler that we'd really like pse to run next. */
3075 set_next_buddy(se);
3076
3077 yield_task_fair(rq);
3078
3079 return true;
3080 }
3081
3082 #ifdef CONFIG_SMP
3083 /**************************************************
3084 * Fair scheduling class load-balancing methods:
3085 */
3086
3087 /*
3088 * pull_task - move a task from a remote runqueue to the local runqueue.
3089 * Both runqueues must be locked.
3090 */
3091 static void pull_task(struct rq *src_rq, struct task_struct *p,
3092 struct rq *this_rq, int this_cpu)
3093 {
3094 deactivate_task(src_rq, p, 0);
3095 set_task_cpu(p, this_cpu);
3096 activate_task(this_rq, p, 0);
3097 check_preempt_curr(this_rq, p, 0);
3098 }
3099
3100 /*
3101 * Is this task likely cache-hot:
3102 */
3103 static int
3104 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3105 {
3106 s64 delta;
3107
3108 if (p->sched_class != &fair_sched_class)
3109 return 0;
3110
3111 if (unlikely(p->policy == SCHED_IDLE))
3112 return 0;
3113
3114 /*
3115 * Buddy candidates are cache hot:
3116 */
3117 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3118 (&p->se == cfs_rq_of(&p->se)->next ||
3119 &p->se == cfs_rq_of(&p->se)->last))
3120 return 1;
3121
3122 if (sysctl_sched_migration_cost == -1)
3123 return 1;
3124 if (sysctl_sched_migration_cost == 0)
3125 return 0;
3126
3127 delta = now - p->se.exec_start;
3128
3129 return delta < (s64)sysctl_sched_migration_cost;
3130 }
3131
3132 #define LBF_ALL_PINNED 0x01
3133 #define LBF_NEED_BREAK 0x02 /* clears into HAD_BREAK */
3134 #define LBF_HAD_BREAK 0x04
3135 #define LBF_HAD_BREAKS 0x0C /* count HAD_BREAKs overflows into ABORT */
3136 #define LBF_ABORT 0x10
3137
3138 /*
3139 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3140 */
3141 static
3142 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3143 struct sched_domain *sd, enum cpu_idle_type idle,
3144 int *lb_flags)
3145 {
3146 int tsk_cache_hot = 0;
3147 /*
3148 * We do not migrate tasks that are:
3149 * 1) running (obviously), or
3150 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3151 * 3) are cache-hot on their current CPU.
3152 */
3153 if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
3154 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3155 return 0;
3156 }
3157 *lb_flags &= ~LBF_ALL_PINNED;
3158
3159 if (task_running(rq, p)) {
3160 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3161 return 0;
3162 }
3163
3164 /*
3165 * Aggressive migration if:
3166 * 1) task is cache cold, or
3167 * 2) too many balance attempts have failed.
3168 */
3169
3170 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
3171 if (!tsk_cache_hot ||
3172 sd->nr_balance_failed > sd->cache_nice_tries) {
3173 #ifdef CONFIG_SCHEDSTATS
3174 if (tsk_cache_hot) {
3175 schedstat_inc(sd, lb_hot_gained[idle]);
3176 schedstat_inc(p, se.statistics.nr_forced_migrations);
3177 }
3178 #endif
3179 return 1;
3180 }
3181
3182 if (tsk_cache_hot) {
3183 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3184 return 0;
3185 }
3186 return 1;
3187 }
3188
3189 /*
3190 * move_one_task tries to move exactly one task from busiest to this_rq, as
3191 * part of active balancing operations within "domain".
3192 * Returns 1 if successful and 0 otherwise.
3193 *
3194 * Called with both runqueues locked.
3195 */
3196 static int
3197 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3198 struct sched_domain *sd, enum cpu_idle_type idle)
3199 {
3200 struct task_struct *p, *n;
3201 struct cfs_rq *cfs_rq;
3202 int pinned = 0;
3203
3204 for_each_leaf_cfs_rq(busiest, cfs_rq) {
3205 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
3206 if (throttled_lb_pair(task_group(p),
3207 busiest->cpu, this_cpu))
3208 break;
3209
3210 if (!can_migrate_task(p, busiest, this_cpu,
3211 sd, idle, &pinned))
3212 continue;
3213
3214 pull_task(busiest, p, this_rq, this_cpu);
3215 /*
3216 * Right now, this is only the second place pull_task()
3217 * is called, so we can safely collect pull_task()
3218 * stats here rather than inside pull_task().
3219 */
3220 schedstat_inc(sd, lb_gained[idle]);
3221 return 1;
3222 }
3223 }
3224
3225 return 0;
3226 }
3227
3228 static unsigned long
3229 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3230 unsigned long max_load_move, struct sched_domain *sd,
3231 enum cpu_idle_type idle, int *lb_flags,
3232 struct cfs_rq *busiest_cfs_rq)
3233 {
3234 int loops = 0, pulled = 0;
3235 long rem_load_move = max_load_move;
3236 struct task_struct *p, *n;
3237
3238 if (max_load_move == 0)
3239 goto out;
3240
3241 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
3242 if (loops++ > sysctl_sched_nr_migrate) {
3243 *lb_flags |= LBF_NEED_BREAK;
3244 break;
3245 }
3246
3247 if ((p->se.load.weight >> 1) > rem_load_move ||
3248 !can_migrate_task(p, busiest, this_cpu, sd, idle,
3249 lb_flags))
3250 continue;
3251
3252 pull_task(busiest, p, this_rq, this_cpu);
3253 pulled++;
3254 rem_load_move -= p->se.load.weight;
3255
3256 #ifdef CONFIG_PREEMPT
3257 /*
3258 * NEWIDLE balancing is a source of latency, so preemptible
3259 * kernels will stop after the first task is pulled to minimize
3260 * the critical section.
3261 */
3262 if (idle == CPU_NEWLY_IDLE) {
3263 *lb_flags |= LBF_ABORT;
3264 break;
3265 }
3266 #endif
3267
3268 /*
3269 * We only want to steal up to the prescribed amount of
3270 * weighted load.
3271 */
3272 if (rem_load_move <= 0)
3273 break;
3274 }
3275 out:
3276 /*
3277 * Right now, this is one of only two places pull_task() is called,
3278 * so we can safely collect pull_task() stats here rather than
3279 * inside pull_task().
3280 */
3281 schedstat_add(sd, lb_gained[idle], pulled);
3282
3283 return max_load_move - rem_load_move;
3284 }
3285
3286 #ifdef CONFIG_FAIR_GROUP_SCHED
3287 /*
3288 * update tg->load_weight by folding this cpu's load_avg
3289 */
3290 static int update_shares_cpu(struct task_group *tg, int cpu)
3291 {
3292 struct cfs_rq *cfs_rq;
3293 unsigned long flags;
3294 struct rq *rq;
3295
3296 if (!tg->se[cpu])
3297 return 0;
3298
3299 rq = cpu_rq(cpu);
3300 cfs_rq = tg->cfs_rq[cpu];
3301
3302 raw_spin_lock_irqsave(&rq->lock, flags);
3303
3304 update_rq_clock(rq);
3305 update_cfs_load(cfs_rq, 1);
3306
3307 /*
3308 * We need to update shares after updating tg->load_weight in
3309 * order to adjust the weight of groups with long running tasks.
3310 */
3311 update_cfs_shares(cfs_rq);
3312
3313 raw_spin_unlock_irqrestore(&rq->lock, flags);
3314
3315 return 0;
3316 }
3317
3318 static void update_shares(int cpu)
3319 {
3320 struct cfs_rq *cfs_rq;
3321 struct rq *rq = cpu_rq(cpu);
3322
3323 rcu_read_lock();
3324 /*
3325 * Iterates the task_group tree in a bottom up fashion, see
3326 * list_add_leaf_cfs_rq() for details.
3327 */
3328 for_each_leaf_cfs_rq(rq, cfs_rq) {
3329 /* throttled entities do not contribute to load */
3330 if (throttled_hierarchy(cfs_rq))
3331 continue;
3332
3333 update_shares_cpu(cfs_rq->tg, cpu);
3334 }
3335 rcu_read_unlock();
3336 }
3337
3338 /*
3339 * Compute the cpu's hierarchical load factor for each task group.
3340 * This needs to be done in a top-down fashion because the load of a child
3341 * group is a fraction of its parents load.
3342 */
3343 static int tg_load_down(struct task_group *tg, void *data)
3344 {
3345 unsigned long load;
3346 long cpu = (long)data;
3347
3348 if (!tg->parent) {
3349 load = cpu_rq(cpu)->load.weight;
3350 } else {
3351 load = tg->parent->cfs_rq[cpu]->h_load;
3352 load *= tg->se[cpu]->load.weight;
3353 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3354 }
3355
3356 tg->cfs_rq[cpu]->h_load = load;
3357
3358 return 0;
3359 }
3360
3361 static void update_h_load(long cpu)
3362 {
3363 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3364 }
3365
3366 static unsigned long
3367 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3368 unsigned long max_load_move,
3369 struct sched_domain *sd, enum cpu_idle_type idle,
3370 int *lb_flags)
3371 {
3372 long rem_load_move = max_load_move;
3373 struct cfs_rq *busiest_cfs_rq;
3374
3375 rcu_read_lock();
3376 update_h_load(cpu_of(busiest));
3377
3378 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
3379 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
3380 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
3381 u64 rem_load, moved_load;
3382
3383 if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
3384 break;
3385
3386 /*
3387 * empty group or part of a throttled hierarchy
3388 */
3389 if (!busiest_cfs_rq->task_weight ||
3390 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
3391 continue;
3392
3393 rem_load = (u64)rem_load_move * busiest_weight;
3394 rem_load = div_u64(rem_load, busiest_h_load + 1);
3395
3396 moved_load = balance_tasks(this_rq, this_cpu, busiest,
3397 rem_load, sd, idle, lb_flags,
3398 busiest_cfs_rq);
3399
3400 if (!moved_load)
3401 continue;
3402
3403 moved_load *= busiest_h_load;
3404 moved_load = div_u64(moved_load, busiest_weight + 1);
3405
3406 rem_load_move -= moved_load;
3407 if (rem_load_move < 0)
3408 break;
3409 }
3410 rcu_read_unlock();
3411
3412 return max_load_move - rem_load_move;
3413 }
3414 #else
3415 static inline void update_shares(int cpu)
3416 {
3417 }
3418
3419 static unsigned long
3420 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3421 unsigned long max_load_move,
3422 struct sched_domain *sd, enum cpu_idle_type idle,
3423 int *lb_flags)
3424 {
3425 return balance_tasks(this_rq, this_cpu, busiest,
3426 max_load_move, sd, idle, lb_flags,
3427 &busiest->cfs);
3428 }
3429 #endif
3430
3431 /*
3432 * move_tasks tries to move up to max_load_move weighted load from busiest to
3433 * this_rq, as part of a balancing operation within domain "sd".
3434 * Returns 1 if successful and 0 otherwise.
3435 *
3436 * Called with both runqueues locked.
3437 */
3438 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3439 unsigned long max_load_move,
3440 struct sched_domain *sd, enum cpu_idle_type idle,
3441 int *lb_flags)
3442 {
3443 unsigned long total_load_moved = 0, load_moved;
3444
3445 do {
3446 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
3447 max_load_move - total_load_moved,
3448 sd, idle, lb_flags);
3449
3450 total_load_moved += load_moved;
3451
3452 if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
3453 break;
3454
3455 #ifdef CONFIG_PREEMPT
3456 /*
3457 * NEWIDLE balancing is a source of latency, so preemptible
3458 * kernels will stop after the first task is pulled to minimize
3459 * the critical section.
3460 */
3461 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) {
3462 *lb_flags |= LBF_ABORT;
3463 break;
3464 }
3465 #endif
3466 } while (load_moved && max_load_move > total_load_moved);
3467
3468 return total_load_moved > 0;
3469 }
3470
3471 /********** Helpers for find_busiest_group ************************/
3472 /*
3473 * sd_lb_stats - Structure to store the statistics of a sched_domain
3474 * during load balancing.
3475 */
3476 struct sd_lb_stats {
3477 struct sched_group *busiest; /* Busiest group in this sd */
3478 struct sched_group *this; /* Local group in this sd */
3479 unsigned long total_load; /* Total load of all groups in sd */
3480 unsigned long total_pwr; /* Total power of all groups in sd */
3481 unsigned long avg_load; /* Average load across all groups in sd */
3482
3483 /** Statistics of this group */
3484 unsigned long this_load;
3485 unsigned long this_load_per_task;
3486 unsigned long this_nr_running;
3487 unsigned long this_has_capacity;
3488 unsigned int this_idle_cpus;
3489
3490 /* Statistics of the busiest group */
3491 unsigned int busiest_idle_cpus;
3492 unsigned long max_load;
3493 unsigned long busiest_load_per_task;
3494 unsigned long busiest_nr_running;
3495 unsigned long busiest_group_capacity;
3496 unsigned long busiest_has_capacity;
3497 unsigned int busiest_group_weight;
3498
3499 int group_imb; /* Is there imbalance in this sd */
3500 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3501 int power_savings_balance; /* Is powersave balance needed for this sd */
3502 struct sched_group *group_min; /* Least loaded group in sd */
3503 struct sched_group *group_leader; /* Group which relieves group_min */
3504 unsigned long min_load_per_task; /* load_per_task in group_min */
3505 unsigned long leader_nr_running; /* Nr running of group_leader */
3506 unsigned long min_nr_running; /* Nr running of group_min */
3507 #endif
3508 };
3509
3510 /*
3511 * sg_lb_stats - stats of a sched_group required for load_balancing
3512 */
3513 struct sg_lb_stats {
3514 unsigned long avg_load; /*Avg load across the CPUs of the group */
3515 unsigned long group_load; /* Total load over the CPUs of the group */
3516 unsigned long sum_nr_running; /* Nr tasks running in the group */
3517 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3518 unsigned long group_capacity;
3519 unsigned long idle_cpus;
3520 unsigned long group_weight;
3521 int group_imb; /* Is there an imbalance in the group ? */
3522 int group_has_capacity; /* Is there extra capacity in the group? */
3523 };
3524
3525 /**
3526 * get_sd_load_idx - Obtain the load index for a given sched domain.
3527 * @sd: The sched_domain whose load_idx is to be obtained.
3528 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3529 */
3530 static inline int get_sd_load_idx(struct sched_domain *sd,
3531 enum cpu_idle_type idle)
3532 {
3533 int load_idx;
3534
3535 switch (idle) {
3536 case CPU_NOT_IDLE:
3537 load_idx = sd->busy_idx;
3538 break;
3539
3540 case CPU_NEWLY_IDLE:
3541 load_idx = sd->newidle_idx;
3542 break;
3543 default:
3544 load_idx = sd->idle_idx;
3545 break;
3546 }
3547
3548 return load_idx;
3549 }
3550
3551
3552 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3553 /**
3554 * init_sd_power_savings_stats - Initialize power savings statistics for
3555 * the given sched_domain, during load balancing.
3556 *
3557 * @sd: Sched domain whose power-savings statistics are to be initialized.
3558 * @sds: Variable containing the statistics for sd.
3559 * @idle: Idle status of the CPU at which we're performing load-balancing.
3560 */
3561 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3562 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3563 {
3564 /*
3565 * Busy processors will not participate in power savings
3566 * balance.
3567 */
3568 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3569 sds->power_savings_balance = 0;
3570 else {
3571 sds->power_savings_balance = 1;
3572 sds->min_nr_running = ULONG_MAX;
3573 sds->leader_nr_running = 0;
3574 }
3575 }
3576
3577 /**
3578 * update_sd_power_savings_stats - Update the power saving stats for a
3579 * sched_domain while performing load balancing.
3580 *
3581 * @group: sched_group belonging to the sched_domain under consideration.
3582 * @sds: Variable containing the statistics of the sched_domain
3583 * @local_group: Does group contain the CPU for which we're performing
3584 * load balancing ?
3585 * @sgs: Variable containing the statistics of the group.
3586 */
3587 static inline void update_sd_power_savings_stats(struct sched_group *group,
3588 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3589 {
3590
3591 if (!sds->power_savings_balance)
3592 return;
3593
3594 /*
3595 * If the local group is idle or completely loaded
3596 * no need to do power savings balance at this domain
3597 */
3598 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3599 !sds->this_nr_running))
3600 sds->power_savings_balance = 0;
3601
3602 /*
3603 * If a group is already running at full capacity or idle,
3604 * don't include that group in power savings calculations
3605 */
3606 if (!sds->power_savings_balance ||
3607 sgs->sum_nr_running >= sgs->group_capacity ||
3608 !sgs->sum_nr_running)
3609 return;
3610
3611 /*
3612 * Calculate the group which has the least non-idle load.
3613 * This is the group from where we need to pick up the load
3614 * for saving power
3615 */
3616 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3617 (sgs->sum_nr_running == sds->min_nr_running &&
3618 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3619 sds->group_min = group;
3620 sds->min_nr_running = sgs->sum_nr_running;
3621 sds->min_load_per_task = sgs->sum_weighted_load /
3622 sgs->sum_nr_running;
3623 }
3624
3625 /*
3626 * Calculate the group which is almost near its
3627 * capacity but still has some space to pick up some load
3628 * from other group and save more power
3629 */
3630 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3631 return;
3632
3633 if (sgs->sum_nr_running > sds->leader_nr_running ||
3634 (sgs->sum_nr_running == sds->leader_nr_running &&
3635 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3636 sds->group_leader = group;
3637 sds->leader_nr_running = sgs->sum_nr_running;
3638 }
3639 }
3640
3641 /**
3642 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3643 * @sds: Variable containing the statistics of the sched_domain
3644 * under consideration.
3645 * @this_cpu: Cpu at which we're currently performing load-balancing.
3646 * @imbalance: Variable to store the imbalance.
3647 *
3648 * Description:
3649 * Check if we have potential to perform some power-savings balance.
3650 * If yes, set the busiest group to be the least loaded group in the
3651 * sched_domain, so that it's CPUs can be put to idle.
3652 *
3653 * Returns 1 if there is potential to perform power-savings balance.
3654 * Else returns 0.
3655 */
3656 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3657 int this_cpu, unsigned long *imbalance)
3658 {
3659 if (!sds->power_savings_balance)
3660 return 0;
3661
3662 if (sds->this != sds->group_leader ||
3663 sds->group_leader == sds->group_min)
3664 return 0;
3665
3666 *imbalance = sds->min_load_per_task;
3667 sds->busiest = sds->group_min;
3668
3669 return 1;
3670
3671 }
3672 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3673 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3674 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3675 {
3676 return;
3677 }
3678
3679 static inline void update_sd_power_savings_stats(struct sched_group *group,
3680 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3681 {
3682 return;
3683 }
3684
3685 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3686 int this_cpu, unsigned long *imbalance)
3687 {
3688 return 0;
3689 }
3690 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3691
3692
3693 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3694 {
3695 return SCHED_POWER_SCALE;
3696 }
3697
3698 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3699 {
3700 return default_scale_freq_power(sd, cpu);
3701 }
3702
3703 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3704 {
3705 unsigned long weight = sd->span_weight;
3706 unsigned long smt_gain = sd->smt_gain;
3707
3708 smt_gain /= weight;
3709
3710 return smt_gain;
3711 }
3712
3713 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3714 {
3715 return default_scale_smt_power(sd, cpu);
3716 }
3717
3718 unsigned long scale_rt_power(int cpu)
3719 {
3720 struct rq *rq = cpu_rq(cpu);
3721 u64 total, available;
3722
3723 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3724
3725 if (unlikely(total < rq->rt_avg)) {
3726 /* Ensures that power won't end up being negative */
3727 available = 0;
3728 } else {
3729 available = total - rq->rt_avg;
3730 }
3731
3732 if (unlikely((s64)total < SCHED_POWER_SCALE))
3733 total = SCHED_POWER_SCALE;
3734
3735 total >>= SCHED_POWER_SHIFT;
3736
3737 return div_u64(available, total);
3738 }
3739
3740 static void update_cpu_power(struct sched_domain *sd, int cpu)
3741 {
3742 unsigned long weight = sd->span_weight;
3743 unsigned long power = SCHED_POWER_SCALE;
3744 struct sched_group *sdg = sd->groups;
3745
3746 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3747 if (sched_feat(ARCH_POWER))
3748 power *= arch_scale_smt_power(sd, cpu);
3749 else
3750 power *= default_scale_smt_power(sd, cpu);
3751
3752 power >>= SCHED_POWER_SHIFT;
3753 }
3754
3755 sdg->sgp->power_orig = power;
3756
3757 if (sched_feat(ARCH_POWER))
3758 power *= arch_scale_freq_power(sd, cpu);
3759 else
3760 power *= default_scale_freq_power(sd, cpu);
3761
3762 power >>= SCHED_POWER_SHIFT;
3763
3764 power *= scale_rt_power(cpu);
3765 power >>= SCHED_POWER_SHIFT;
3766
3767 if (!power)
3768 power = 1;
3769
3770 cpu_rq(cpu)->cpu_power = power;
3771 sdg->sgp->power = power;
3772 }
3773
3774 void update_group_power(struct sched_domain *sd, int cpu)
3775 {
3776 struct sched_domain *child = sd->child;
3777 struct sched_group *group, *sdg = sd->groups;
3778 unsigned long power;
3779
3780 if (!child) {
3781 update_cpu_power(sd, cpu);
3782 return;
3783 }
3784
3785 power = 0;
3786
3787 group = child->groups;
3788 do {
3789 power += group->sgp->power;
3790 group = group->next;
3791 } while (group != child->groups);
3792
3793 sdg->sgp->power = power;
3794 }
3795
3796 /*
3797 * Try and fix up capacity for tiny siblings, this is needed when
3798 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3799 * which on its own isn't powerful enough.
3800 *
3801 * See update_sd_pick_busiest() and check_asym_packing().
3802 */
3803 static inline int
3804 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3805 {
3806 /*
3807 * Only siblings can have significantly less than SCHED_POWER_SCALE
3808 */
3809 if (!(sd->flags & SD_SHARE_CPUPOWER))
3810 return 0;
3811
3812 /*
3813 * If ~90% of the cpu_power is still there, we're good.
3814 */
3815 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3816 return 1;
3817
3818 return 0;
3819 }
3820
3821 /**
3822 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3823 * @sd: The sched_domain whose statistics are to be updated.
3824 * @group: sched_group whose statistics are to be updated.
3825 * @this_cpu: Cpu for which load balance is currently performed.
3826 * @idle: Idle status of this_cpu
3827 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3828 * @local_group: Does group contain this_cpu.
3829 * @cpus: Set of cpus considered for load balancing.
3830 * @balance: Should we balance.
3831 * @sgs: variable to hold the statistics for this group.
3832 */
3833 static inline void update_sg_lb_stats(struct sched_domain *sd,
3834 struct sched_group *group, int this_cpu,
3835 enum cpu_idle_type idle, int load_idx,
3836 int local_group, const struct cpumask *cpus,
3837 int *balance, struct sg_lb_stats *sgs)
3838 {
3839 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
3840 int i;
3841 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3842 unsigned long avg_load_per_task = 0;
3843
3844 if (local_group)
3845 balance_cpu = group_first_cpu(group);
3846
3847 /* Tally up the load of all CPUs in the group */
3848 max_cpu_load = 0;
3849 min_cpu_load = ~0UL;
3850 max_nr_running = 0;
3851
3852 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3853 struct rq *rq = cpu_rq(i);
3854
3855 /* Bias balancing toward cpus of our domain */
3856 if (local_group) {
3857 if (idle_cpu(i) && !first_idle_cpu) {
3858 first_idle_cpu = 1;
3859 balance_cpu = i;
3860 }
3861
3862 load = target_load(i, load_idx);
3863 } else {
3864 load = source_load(i, load_idx);
3865 if (load > max_cpu_load) {
3866 max_cpu_load = load;
3867 max_nr_running = rq->nr_running;
3868 }
3869 if (min_cpu_load > load)
3870 min_cpu_load = load;
3871 }
3872
3873 sgs->group_load += load;
3874 sgs->sum_nr_running += rq->nr_running;
3875 sgs->sum_weighted_load += weighted_cpuload(i);
3876 if (idle_cpu(i))
3877 sgs->idle_cpus++;
3878 }
3879
3880 /*
3881 * First idle cpu or the first cpu(busiest) in this sched group
3882 * is eligible for doing load balancing at this and above
3883 * domains. In the newly idle case, we will allow all the cpu's
3884 * to do the newly idle load balance.
3885 */
3886 if (idle != CPU_NEWLY_IDLE && local_group) {
3887 if (balance_cpu != this_cpu) {
3888 *balance = 0;
3889 return;
3890 }
3891 update_group_power(sd, this_cpu);
3892 }
3893
3894 /* Adjust by relative CPU power of the group */
3895 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3896
3897 /*
3898 * Consider the group unbalanced when the imbalance is larger
3899 * than the average weight of a task.
3900 *
3901 * APZ: with cgroup the avg task weight can vary wildly and
3902 * might not be a suitable number - should we keep a
3903 * normalized nr_running number somewhere that negates
3904 * the hierarchy?
3905 */
3906 if (sgs->sum_nr_running)
3907 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3908
3909 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
3910 sgs->group_imb = 1;
3911
3912 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3913 SCHED_POWER_SCALE);
3914 if (!sgs->group_capacity)
3915 sgs->group_capacity = fix_small_capacity(sd, group);
3916 sgs->group_weight = group->group_weight;
3917
3918 if (sgs->group_capacity > sgs->sum_nr_running)
3919 sgs->group_has_capacity = 1;
3920 }
3921
3922 /**
3923 * update_sd_pick_busiest - return 1 on busiest group
3924 * @sd: sched_domain whose statistics are to be checked
3925 * @sds: sched_domain statistics
3926 * @sg: sched_group candidate to be checked for being the busiest
3927 * @sgs: sched_group statistics
3928 * @this_cpu: the current cpu
3929 *
3930 * Determine if @sg is a busier group than the previously selected
3931 * busiest group.
3932 */
3933 static bool update_sd_pick_busiest(struct sched_domain *sd,
3934 struct sd_lb_stats *sds,
3935 struct sched_group *sg,
3936 struct sg_lb_stats *sgs,
3937 int this_cpu)
3938 {
3939 if (sgs->avg_load <= sds->max_load)
3940 return false;
3941
3942 if (sgs->sum_nr_running > sgs->group_capacity)
3943 return true;
3944
3945 if (sgs->group_imb)
3946 return true;
3947
3948 /*
3949 * ASYM_PACKING needs to move all the work to the lowest
3950 * numbered CPUs in the group, therefore mark all groups
3951 * higher than ourself as busy.
3952 */
3953 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3954 this_cpu < group_first_cpu(sg)) {
3955 if (!sds->busiest)
3956 return true;
3957
3958 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3959 return true;
3960 }
3961
3962 return false;
3963 }
3964
3965 /**
3966 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3967 * @sd: sched_domain whose statistics are to be updated.
3968 * @this_cpu: Cpu for which load balance is currently performed.
3969 * @idle: Idle status of this_cpu
3970 * @cpus: Set of cpus considered for load balancing.
3971 * @balance: Should we balance.
3972 * @sds: variable to hold the statistics for this sched_domain.
3973 */
3974 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3975 enum cpu_idle_type idle, const struct cpumask *cpus,
3976 int *balance, struct sd_lb_stats *sds)
3977 {
3978 struct sched_domain *child = sd->child;
3979 struct sched_group *sg = sd->groups;
3980 struct sg_lb_stats sgs;
3981 int load_idx, prefer_sibling = 0;
3982
3983 if (child && child->flags & SD_PREFER_SIBLING)
3984 prefer_sibling = 1;
3985
3986 init_sd_power_savings_stats(sd, sds, idle);
3987 load_idx = get_sd_load_idx(sd, idle);
3988
3989 do {
3990 int local_group;
3991
3992 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
3993 memset(&sgs, 0, sizeof(sgs));
3994 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
3995 local_group, cpus, balance, &sgs);
3996
3997 if (local_group && !(*balance))
3998 return;
3999
4000 sds->total_load += sgs.group_load;
4001 sds->total_pwr += sg->sgp->power;
4002
4003 /*
4004 * In case the child domain prefers tasks go to siblings
4005 * first, lower the sg capacity to one so that we'll try
4006 * and move all the excess tasks away. We lower the capacity
4007 * of a group only if the local group has the capacity to fit
4008 * these excess tasks, i.e. nr_running < group_capacity. The
4009 * extra check prevents the case where you always pull from the
4010 * heaviest group when it is already under-utilized (possible
4011 * with a large weight task outweighs the tasks on the system).
4012 */
4013 if (prefer_sibling && !local_group && sds->this_has_capacity)
4014 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4015
4016 if (local_group) {
4017 sds->this_load = sgs.avg_load;
4018 sds->this = sg;
4019 sds->this_nr_running = sgs.sum_nr_running;
4020 sds->this_load_per_task = sgs.sum_weighted_load;
4021 sds->this_has_capacity = sgs.group_has_capacity;
4022 sds->this_idle_cpus = sgs.idle_cpus;
4023 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
4024 sds->max_load = sgs.avg_load;
4025 sds->busiest = sg;
4026 sds->busiest_nr_running = sgs.sum_nr_running;
4027 sds->busiest_idle_cpus = sgs.idle_cpus;
4028 sds->busiest_group_capacity = sgs.group_capacity;
4029 sds->busiest_load_per_task = sgs.sum_weighted_load;
4030 sds->busiest_has_capacity = sgs.group_has_capacity;
4031 sds->busiest_group_weight = sgs.group_weight;
4032 sds->group_imb = sgs.group_imb;
4033 }
4034
4035 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
4036 sg = sg->next;
4037 } while (sg != sd->groups);
4038 }
4039
4040 /**
4041 * check_asym_packing - Check to see if the group is packed into the
4042 * sched doman.
4043 *
4044 * This is primarily intended to used at the sibling level. Some
4045 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4046 * case of POWER7, it can move to lower SMT modes only when higher
4047 * threads are idle. When in lower SMT modes, the threads will
4048 * perform better since they share less core resources. Hence when we
4049 * have idle threads, we want them to be the higher ones.
4050 *
4051 * This packing function is run on idle threads. It checks to see if
4052 * the busiest CPU in this domain (core in the P7 case) has a higher
4053 * CPU number than the packing function is being run on. Here we are
4054 * assuming lower CPU number will be equivalent to lower a SMT thread
4055 * number.
4056 *
4057 * Returns 1 when packing is required and a task should be moved to
4058 * this CPU. The amount of the imbalance is returned in *imbalance.
4059 *
4060 * @sd: The sched_domain whose packing is to be checked.
4061 * @sds: Statistics of the sched_domain which is to be packed
4062 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4063 * @imbalance: returns amount of imbalanced due to packing.
4064 */
4065 static int check_asym_packing(struct sched_domain *sd,
4066 struct sd_lb_stats *sds,
4067 int this_cpu, unsigned long *imbalance)
4068 {
4069 int busiest_cpu;
4070
4071 if (!(sd->flags & SD_ASYM_PACKING))
4072 return 0;
4073
4074 if (!sds->busiest)
4075 return 0;
4076
4077 busiest_cpu = group_first_cpu(sds->busiest);
4078 if (this_cpu > busiest_cpu)
4079 return 0;
4080
4081 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
4082 SCHED_POWER_SCALE);
4083 return 1;
4084 }
4085
4086 /**
4087 * fix_small_imbalance - Calculate the minor imbalance that exists
4088 * amongst the groups of a sched_domain, during
4089 * load balancing.
4090 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4091 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4092 * @imbalance: Variable to store the imbalance.
4093 */
4094 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4095 int this_cpu, unsigned long *imbalance)
4096 {
4097 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4098 unsigned int imbn = 2;
4099 unsigned long scaled_busy_load_per_task;
4100
4101 if (sds->this_nr_running) {
4102 sds->this_load_per_task /= sds->this_nr_running;
4103 if (sds->busiest_load_per_task >
4104 sds->this_load_per_task)
4105 imbn = 1;
4106 } else
4107 sds->this_load_per_task =
4108 cpu_avg_load_per_task(this_cpu);
4109
4110 scaled_busy_load_per_task = sds->busiest_load_per_task
4111 * SCHED_POWER_SCALE;
4112 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4113
4114 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4115 (scaled_busy_load_per_task * imbn)) {
4116 *imbalance = sds->busiest_load_per_task;
4117 return;
4118 }
4119
4120 /*
4121 * OK, we don't have enough imbalance to justify moving tasks,
4122 * however we may be able to increase total CPU power used by
4123 * moving them.
4124 */
4125
4126 pwr_now += sds->busiest->sgp->power *
4127 min(sds->busiest_load_per_task, sds->max_load);
4128 pwr_now += sds->this->sgp->power *
4129 min(sds->this_load_per_task, sds->this_load);
4130 pwr_now /= SCHED_POWER_SCALE;
4131
4132 /* Amount of load we'd subtract */
4133 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4134 sds->busiest->sgp->power;
4135 if (sds->max_load > tmp)
4136 pwr_move += sds->busiest->sgp->power *
4137 min(sds->busiest_load_per_task, sds->max_load - tmp);
4138
4139 /* Amount of load we'd add */
4140 if (sds->max_load * sds->busiest->sgp->power <
4141 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4142 tmp = (sds->max_load * sds->busiest->sgp->power) /
4143 sds->this->sgp->power;
4144 else
4145 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4146 sds->this->sgp->power;
4147 pwr_move += sds->this->sgp->power *
4148 min(sds->this_load_per_task, sds->this_load + tmp);
4149 pwr_move /= SCHED_POWER_SCALE;
4150
4151 /* Move if we gain throughput */
4152 if (pwr_move > pwr_now)
4153 *imbalance = sds->busiest_load_per_task;
4154 }
4155
4156 /**
4157 * calculate_imbalance - Calculate the amount of imbalance present within the
4158 * groups of a given sched_domain during load balance.
4159 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4160 * @this_cpu: Cpu for which currently load balance is being performed.
4161 * @imbalance: The variable to store the imbalance.
4162 */
4163 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4164 unsigned long *imbalance)
4165 {
4166 unsigned long max_pull, load_above_capacity = ~0UL;
4167
4168 sds->busiest_load_per_task /= sds->busiest_nr_running;
4169 if (sds->group_imb) {
4170 sds->busiest_load_per_task =
4171 min(sds->busiest_load_per_task, sds->avg_load);
4172 }
4173
4174 /*
4175 * In the presence of smp nice balancing, certain scenarios can have
4176 * max load less than avg load(as we skip the groups at or below
4177 * its cpu_power, while calculating max_load..)
4178 */
4179 if (sds->max_load < sds->avg_load) {
4180 *imbalance = 0;
4181 return fix_small_imbalance(sds, this_cpu, imbalance);
4182 }
4183
4184 if (!sds->group_imb) {
4185 /*
4186 * Don't want to pull so many tasks that a group would go idle.
4187 */
4188 load_above_capacity = (sds->busiest_nr_running -
4189 sds->busiest_group_capacity);
4190
4191 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4192
4193 load_above_capacity /= sds->busiest->sgp->power;
4194 }
4195
4196 /*
4197 * We're trying to get all the cpus to the average_load, so we don't
4198 * want to push ourselves above the average load, nor do we wish to
4199 * reduce the max loaded cpu below the average load. At the same time,
4200 * we also don't want to reduce the group load below the group capacity
4201 * (so that we can implement power-savings policies etc). Thus we look
4202 * for the minimum possible imbalance.
4203 * Be careful of negative numbers as they'll appear as very large values
4204 * with unsigned longs.
4205 */
4206 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4207
4208 /* How much load to actually move to equalise the imbalance */
4209 *imbalance = min(max_pull * sds->busiest->sgp->power,
4210 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4211 / SCHED_POWER_SCALE;
4212
4213 /*
4214 * if *imbalance is less than the average load per runnable task
4215 * there is no guarantee that any tasks will be moved so we'll have
4216 * a think about bumping its value to force at least one task to be
4217 * moved
4218 */
4219 if (*imbalance < sds->busiest_load_per_task)
4220 return fix_small_imbalance(sds, this_cpu, imbalance);
4221
4222 }
4223
4224 /******* find_busiest_group() helpers end here *********************/
4225
4226 /**
4227 * find_busiest_group - Returns the busiest group within the sched_domain
4228 * if there is an imbalance. If there isn't an imbalance, and
4229 * the user has opted for power-savings, it returns a group whose
4230 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4231 * such a group exists.
4232 *
4233 * Also calculates the amount of weighted load which should be moved
4234 * to restore balance.
4235 *
4236 * @sd: The sched_domain whose busiest group is to be returned.
4237 * @this_cpu: The cpu for which load balancing is currently being performed.
4238 * @imbalance: Variable which stores amount of weighted load which should
4239 * be moved to restore balance/put a group to idle.
4240 * @idle: The idle status of this_cpu.
4241 * @cpus: The set of CPUs under consideration for load-balancing.
4242 * @balance: Pointer to a variable indicating if this_cpu
4243 * is the appropriate cpu to perform load balancing at this_level.
4244 *
4245 * Returns: - the busiest group if imbalance exists.
4246 * - If no imbalance and user has opted for power-savings balance,
4247 * return the least loaded group whose CPUs can be
4248 * put to idle by rebalancing its tasks onto our group.
4249 */
4250 static struct sched_group *
4251 find_busiest_group(struct sched_domain *sd, int this_cpu,
4252 unsigned long *imbalance, enum cpu_idle_type idle,
4253 const struct cpumask *cpus, int *balance)
4254 {
4255 struct sd_lb_stats sds;
4256
4257 memset(&sds, 0, sizeof(sds));
4258
4259 /*
4260 * Compute the various statistics relavent for load balancing at
4261 * this level.
4262 */
4263 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
4264
4265 /*
4266 * this_cpu is not the appropriate cpu to perform load balancing at
4267 * this level.
4268 */
4269 if (!(*balance))
4270 goto ret;
4271
4272 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
4273 check_asym_packing(sd, &sds, this_cpu, imbalance))
4274 return sds.busiest;
4275
4276 /* There is no busy sibling group to pull tasks from */
4277 if (!sds.busiest || sds.busiest_nr_running == 0)
4278 goto out_balanced;
4279
4280 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4281
4282 /*
4283 * If the busiest group is imbalanced the below checks don't
4284 * work because they assumes all things are equal, which typically
4285 * isn't true due to cpus_allowed constraints and the like.
4286 */
4287 if (sds.group_imb)
4288 goto force_balance;
4289
4290 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4291 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4292 !sds.busiest_has_capacity)
4293 goto force_balance;
4294
4295 /*
4296 * If the local group is more busy than the selected busiest group
4297 * don't try and pull any tasks.
4298 */
4299 if (sds.this_load >= sds.max_load)
4300 goto out_balanced;
4301
4302 /*
4303 * Don't pull any tasks if this group is already above the domain
4304 * average load.
4305 */
4306 if (sds.this_load >= sds.avg_load)
4307 goto out_balanced;
4308
4309 if (idle == CPU_IDLE) {
4310 /*
4311 * This cpu is idle. If the busiest group load doesn't
4312 * have more tasks than the number of available cpu's and
4313 * there is no imbalance between this and busiest group
4314 * wrt to idle cpu's, it is balanced.
4315 */
4316 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4317 sds.busiest_nr_running <= sds.busiest_group_weight)
4318 goto out_balanced;
4319 } else {
4320 /*
4321 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4322 * imbalance_pct to be conservative.
4323 */
4324 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4325 goto out_balanced;
4326 }
4327
4328 force_balance:
4329 /* Looks like there is an imbalance. Compute it */
4330 calculate_imbalance(&sds, this_cpu, imbalance);
4331 return sds.busiest;
4332
4333 out_balanced:
4334 /*
4335 * There is no obvious imbalance. But check if we can do some balancing
4336 * to save power.
4337 */
4338 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4339 return sds.busiest;
4340 ret:
4341 *imbalance = 0;
4342 return NULL;
4343 }
4344
4345 /*
4346 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4347 */
4348 static struct rq *
4349 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4350 enum cpu_idle_type idle, unsigned long imbalance,
4351 const struct cpumask *cpus)
4352 {
4353 struct rq *busiest = NULL, *rq;
4354 unsigned long max_load = 0;
4355 int i;
4356
4357 for_each_cpu(i, sched_group_cpus(group)) {
4358 unsigned long power = power_of(i);
4359 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4360 SCHED_POWER_SCALE);
4361 unsigned long wl;
4362
4363 if (!capacity)
4364 capacity = fix_small_capacity(sd, group);
4365
4366 if (!cpumask_test_cpu(i, cpus))
4367 continue;
4368
4369 rq = cpu_rq(i);
4370 wl = weighted_cpuload(i);
4371
4372 /*
4373 * When comparing with imbalance, use weighted_cpuload()
4374 * which is not scaled with the cpu power.
4375 */
4376 if (capacity && rq->nr_running == 1 && wl > imbalance)
4377 continue;
4378
4379 /*
4380 * For the load comparisons with the other cpu's, consider
4381 * the weighted_cpuload() scaled with the cpu power, so that
4382 * the load can be moved away from the cpu that is potentially
4383 * running at a lower capacity.
4384 */
4385 wl = (wl * SCHED_POWER_SCALE) / power;
4386
4387 if (wl > max_load) {
4388 max_load = wl;
4389 busiest = rq;
4390 }
4391 }
4392
4393 return busiest;
4394 }
4395
4396 /*
4397 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4398 * so long as it is large enough.
4399 */
4400 #define MAX_PINNED_INTERVAL 512
4401
4402 /* Working cpumask for load_balance and load_balance_newidle. */
4403 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4404
4405 static int need_active_balance(struct sched_domain *sd, int idle,
4406 int busiest_cpu, int this_cpu)
4407 {
4408 if (idle == CPU_NEWLY_IDLE) {
4409
4410 /*
4411 * ASYM_PACKING needs to force migrate tasks from busy but
4412 * higher numbered CPUs in order to pack all tasks in the
4413 * lowest numbered CPUs.
4414 */
4415 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4416 return 1;
4417
4418 /*
4419 * The only task running in a non-idle cpu can be moved to this
4420 * cpu in an attempt to completely freeup the other CPU
4421 * package.
4422 *
4423 * The package power saving logic comes from
4424 * find_busiest_group(). If there are no imbalance, then
4425 * f_b_g() will return NULL. However when sched_mc={1,2} then
4426 * f_b_g() will select a group from which a running task may be
4427 * pulled to this cpu in order to make the other package idle.
4428 * If there is no opportunity to make a package idle and if
4429 * there are no imbalance, then f_b_g() will return NULL and no
4430 * action will be taken in load_balance_newidle().
4431 *
4432 * Under normal task pull operation due to imbalance, there
4433 * will be more than one task in the source run queue and
4434 * move_tasks() will succeed. ld_moved will be true and this
4435 * active balance code will not be triggered.
4436 */
4437 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4438 return 0;
4439 }
4440
4441 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4442 }
4443
4444 static int active_load_balance_cpu_stop(void *data);
4445
4446 /*
4447 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4448 * tasks if there is an imbalance.
4449 */
4450 static int load_balance(int this_cpu, struct rq *this_rq,
4451 struct sched_domain *sd, enum cpu_idle_type idle,
4452 int *balance)
4453 {
4454 int ld_moved, lb_flags = 0, active_balance = 0;
4455 struct sched_group *group;
4456 unsigned long imbalance;
4457 struct rq *busiest;
4458 unsigned long flags;
4459 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4460
4461 cpumask_copy(cpus, cpu_active_mask);
4462
4463 schedstat_inc(sd, lb_count[idle]);
4464
4465 redo:
4466 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
4467 cpus, balance);
4468
4469 if (*balance == 0)
4470 goto out_balanced;
4471
4472 if (!group) {
4473 schedstat_inc(sd, lb_nobusyg[idle]);
4474 goto out_balanced;
4475 }
4476
4477 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
4478 if (!busiest) {
4479 schedstat_inc(sd, lb_nobusyq[idle]);
4480 goto out_balanced;
4481 }
4482
4483 BUG_ON(busiest == this_rq);
4484
4485 schedstat_add(sd, lb_imbalance[idle], imbalance);
4486
4487 ld_moved = 0;
4488 if (busiest->nr_running > 1) {
4489 /*
4490 * Attempt to move tasks. If find_busiest_group has found
4491 * an imbalance but busiest->nr_running <= 1, the group is
4492 * still unbalanced. ld_moved simply stays zero, so it is
4493 * correctly treated as an imbalance.
4494 */
4495 lb_flags |= LBF_ALL_PINNED;
4496 local_irq_save(flags);
4497 double_rq_lock(this_rq, busiest);
4498 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4499 imbalance, sd, idle, &lb_flags);
4500 double_rq_unlock(this_rq, busiest);
4501 local_irq_restore(flags);
4502
4503 /*
4504 * some other cpu did the load balance for us.
4505 */
4506 if (ld_moved && this_cpu != smp_processor_id())
4507 resched_cpu(this_cpu);
4508
4509 if (lb_flags & LBF_ABORT)
4510 goto out_balanced;
4511
4512 if (lb_flags & LBF_NEED_BREAK) {
4513 lb_flags += LBF_HAD_BREAK - LBF_NEED_BREAK;
4514 if (lb_flags & LBF_ABORT)
4515 goto out_balanced;
4516 goto redo;
4517 }
4518
4519 /* All tasks on this runqueue were pinned by CPU affinity */
4520 if (unlikely(lb_flags & LBF_ALL_PINNED)) {
4521 cpumask_clear_cpu(cpu_of(busiest), cpus);
4522 if (!cpumask_empty(cpus))
4523 goto redo;
4524 goto out_balanced;
4525 }
4526 }
4527
4528 if (!ld_moved) {
4529 schedstat_inc(sd, lb_failed[idle]);
4530 /*
4531 * Increment the failure counter only on periodic balance.
4532 * We do not want newidle balance, which can be very
4533 * frequent, pollute the failure counter causing
4534 * excessive cache_hot migrations and active balances.
4535 */
4536 if (idle != CPU_NEWLY_IDLE)
4537 sd->nr_balance_failed++;
4538
4539 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
4540 raw_spin_lock_irqsave(&busiest->lock, flags);
4541
4542 /* don't kick the active_load_balance_cpu_stop,
4543 * if the curr task on busiest cpu can't be
4544 * moved to this_cpu
4545 */
4546 if (!cpumask_test_cpu(this_cpu,
4547 tsk_cpus_allowed(busiest->curr))) {
4548 raw_spin_unlock_irqrestore(&busiest->lock,
4549 flags);
4550 lb_flags |= LBF_ALL_PINNED;
4551 goto out_one_pinned;
4552 }
4553
4554 /*
4555 * ->active_balance synchronizes accesses to
4556 * ->active_balance_work. Once set, it's cleared
4557 * only after active load balance is finished.
4558 */
4559 if (!busiest->active_balance) {
4560 busiest->active_balance = 1;
4561 busiest->push_cpu = this_cpu;
4562 active_balance = 1;
4563 }
4564 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4565
4566 if (active_balance)
4567 stop_one_cpu_nowait(cpu_of(busiest),
4568 active_load_balance_cpu_stop, busiest,
4569 &busiest->active_balance_work);
4570
4571 /*
4572 * We've kicked active balancing, reset the failure
4573 * counter.
4574 */
4575 sd->nr_balance_failed = sd->cache_nice_tries+1;
4576 }
4577 } else
4578 sd->nr_balance_failed = 0;
4579
4580 if (likely(!active_balance)) {
4581 /* We were unbalanced, so reset the balancing interval */
4582 sd->balance_interval = sd->min_interval;
4583 } else {
4584 /*
4585 * If we've begun active balancing, start to back off. This
4586 * case may not be covered by the all_pinned logic if there
4587 * is only 1 task on the busy runqueue (because we don't call
4588 * move_tasks).
4589 */
4590 if (sd->balance_interval < sd->max_interval)
4591 sd->balance_interval *= 2;
4592 }
4593
4594 goto out;
4595
4596 out_balanced:
4597 schedstat_inc(sd, lb_balanced[idle]);
4598
4599 sd->nr_balance_failed = 0;
4600
4601 out_one_pinned:
4602 /* tune up the balancing interval */
4603 if (((lb_flags & LBF_ALL_PINNED) &&
4604 sd->balance_interval < MAX_PINNED_INTERVAL) ||
4605 (sd->balance_interval < sd->max_interval))
4606 sd->balance_interval *= 2;
4607
4608 ld_moved = 0;
4609 out:
4610 return ld_moved;
4611 }
4612
4613 /*
4614 * idle_balance is called by schedule() if this_cpu is about to become
4615 * idle. Attempts to pull tasks from other CPUs.
4616 */
4617 void idle_balance(int this_cpu, struct rq *this_rq)
4618 {
4619 struct sched_domain *sd;
4620 int pulled_task = 0;
4621 unsigned long next_balance = jiffies + HZ;
4622
4623 this_rq->idle_stamp = this_rq->clock;
4624
4625 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4626 return;
4627
4628 /*
4629 * Drop the rq->lock, but keep IRQ/preempt disabled.
4630 */
4631 raw_spin_unlock(&this_rq->lock);
4632
4633 update_shares(this_cpu);
4634 rcu_read_lock();
4635 for_each_domain(this_cpu, sd) {
4636 unsigned long interval;
4637 int balance = 1;
4638
4639 if (!(sd->flags & SD_LOAD_BALANCE))
4640 continue;
4641
4642 if (sd->flags & SD_BALANCE_NEWIDLE) {
4643 /* If we've pulled tasks over stop searching: */
4644 pulled_task = load_balance(this_cpu, this_rq,
4645 sd, CPU_NEWLY_IDLE, &balance);
4646 }
4647
4648 interval = msecs_to_jiffies(sd->balance_interval);
4649 if (time_after(next_balance, sd->last_balance + interval))
4650 next_balance = sd->last_balance + interval;
4651 if (pulled_task) {
4652 this_rq->idle_stamp = 0;
4653 break;
4654 }
4655 }
4656 rcu_read_unlock();
4657
4658 raw_spin_lock(&this_rq->lock);
4659
4660 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4661 /*
4662 * We are going idle. next_balance may be set based on
4663 * a busy processor. So reset next_balance.
4664 */
4665 this_rq->next_balance = next_balance;
4666 }
4667 }
4668
4669 /*
4670 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4671 * running tasks off the busiest CPU onto idle CPUs. It requires at
4672 * least 1 task to be running on each physical CPU where possible, and
4673 * avoids physical / logical imbalances.
4674 */
4675 static int active_load_balance_cpu_stop(void *data)
4676 {
4677 struct rq *busiest_rq = data;
4678 int busiest_cpu = cpu_of(busiest_rq);
4679 int target_cpu = busiest_rq->push_cpu;
4680 struct rq *target_rq = cpu_rq(target_cpu);
4681 struct sched_domain *sd;
4682
4683 raw_spin_lock_irq(&busiest_rq->lock);
4684
4685 /* make sure the requested cpu hasn't gone down in the meantime */
4686 if (unlikely(busiest_cpu != smp_processor_id() ||
4687 !busiest_rq->active_balance))
4688 goto out_unlock;
4689
4690 /* Is there any task to move? */
4691 if (busiest_rq->nr_running <= 1)
4692 goto out_unlock;
4693
4694 /*
4695 * This condition is "impossible", if it occurs
4696 * we need to fix it. Originally reported by
4697 * Bjorn Helgaas on a 128-cpu setup.
4698 */
4699 BUG_ON(busiest_rq == target_rq);
4700
4701 /* move a task from busiest_rq to target_rq */
4702 double_lock_balance(busiest_rq, target_rq);
4703
4704 /* Search for an sd spanning us and the target CPU. */
4705 rcu_read_lock();
4706 for_each_domain(target_cpu, sd) {
4707 if ((sd->flags & SD_LOAD_BALANCE) &&
4708 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4709 break;
4710 }
4711
4712 if (likely(sd)) {
4713 schedstat_inc(sd, alb_count);
4714
4715 if (move_one_task(target_rq, target_cpu, busiest_rq,
4716 sd, CPU_IDLE))
4717 schedstat_inc(sd, alb_pushed);
4718 else
4719 schedstat_inc(sd, alb_failed);
4720 }
4721 rcu_read_unlock();
4722 double_unlock_balance(busiest_rq, target_rq);
4723 out_unlock:
4724 busiest_rq->active_balance = 0;
4725 raw_spin_unlock_irq(&busiest_rq->lock);
4726 return 0;
4727 }
4728
4729 #ifdef CONFIG_NO_HZ
4730 /*
4731 * idle load balancing details
4732 * - When one of the busy CPUs notice that there may be an idle rebalancing
4733 * needed, they will kick the idle load balancer, which then does idle
4734 * load balancing for all the idle CPUs.
4735 */
4736 static struct {
4737 cpumask_var_t idle_cpus_mask;
4738 atomic_t nr_cpus;
4739 unsigned long next_balance; /* in jiffy units */
4740 } nohz ____cacheline_aligned;
4741
4742 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4743 /**
4744 * lowest_flag_domain - Return lowest sched_domain containing flag.
4745 * @cpu: The cpu whose lowest level of sched domain is to
4746 * be returned.
4747 * @flag: The flag to check for the lowest sched_domain
4748 * for the given cpu.
4749 *
4750 * Returns the lowest sched_domain of a cpu which contains the given flag.
4751 */
4752 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4753 {
4754 struct sched_domain *sd;
4755
4756 for_each_domain(cpu, sd)
4757 if (sd->flags & flag)
4758 break;
4759
4760 return sd;
4761 }
4762
4763 /**
4764 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4765 * @cpu: The cpu whose domains we're iterating over.
4766 * @sd: variable holding the value of the power_savings_sd
4767 * for cpu.
4768 * @flag: The flag to filter the sched_domains to be iterated.
4769 *
4770 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4771 * set, starting from the lowest sched_domain to the highest.
4772 */
4773 #define for_each_flag_domain(cpu, sd, flag) \
4774 for (sd = lowest_flag_domain(cpu, flag); \
4775 (sd && (sd->flags & flag)); sd = sd->parent)
4776
4777 /**
4778 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4779 * @cpu: The cpu which is nominating a new idle_load_balancer.
4780 *
4781 * Returns: Returns the id of the idle load balancer if it exists,
4782 * Else, returns >= nr_cpu_ids.
4783 *
4784 * This algorithm picks the idle load balancer such that it belongs to a
4785 * semi-idle powersavings sched_domain. The idea is to try and avoid
4786 * completely idle packages/cores just for the purpose of idle load balancing
4787 * when there are other idle cpu's which are better suited for that job.
4788 */
4789 static int find_new_ilb(int cpu)
4790 {
4791 int ilb = cpumask_first(nohz.idle_cpus_mask);
4792 struct sched_group *ilbg;
4793 struct sched_domain *sd;
4794
4795 /*
4796 * Have idle load balancer selection from semi-idle packages only
4797 * when power-aware load balancing is enabled
4798 */
4799 if (!(sched_smt_power_savings || sched_mc_power_savings))
4800 goto out_done;
4801
4802 /*
4803 * Optimize for the case when we have no idle CPUs or only one
4804 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4805 */
4806 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
4807 goto out_done;
4808
4809 rcu_read_lock();
4810 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4811 ilbg = sd->groups;
4812
4813 do {
4814 if (ilbg->group_weight !=
4815 atomic_read(&ilbg->sgp->nr_busy_cpus)) {
4816 ilb = cpumask_first_and(nohz.idle_cpus_mask,
4817 sched_group_cpus(ilbg));
4818 goto unlock;
4819 }
4820
4821 ilbg = ilbg->next;
4822
4823 } while (ilbg != sd->groups);
4824 }
4825 unlock:
4826 rcu_read_unlock();
4827
4828 out_done:
4829 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4830 return ilb;
4831
4832 return nr_cpu_ids;
4833 }
4834 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4835 static inline int find_new_ilb(int call_cpu)
4836 {
4837 return nr_cpu_ids;
4838 }
4839 #endif
4840
4841 /*
4842 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4843 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4844 * CPU (if there is one).
4845 */
4846 static void nohz_balancer_kick(int cpu)
4847 {
4848 int ilb_cpu;
4849
4850 nohz.next_balance++;
4851
4852 ilb_cpu = find_new_ilb(cpu);
4853
4854 if (ilb_cpu >= nr_cpu_ids)
4855 return;
4856
4857 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4858 return;
4859 /*
4860 * Use smp_send_reschedule() instead of resched_cpu().
4861 * This way we generate a sched IPI on the target cpu which
4862 * is idle. And the softirq performing nohz idle load balance
4863 * will be run before returning from the IPI.
4864 */
4865 smp_send_reschedule(ilb_cpu);
4866 return;
4867 }
4868
4869 static inline void clear_nohz_tick_stopped(int cpu)
4870 {
4871 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4872 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4873 atomic_dec(&nohz.nr_cpus);
4874 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4875 }
4876 }
4877
4878 static inline void set_cpu_sd_state_busy(void)
4879 {
4880 struct sched_domain *sd;
4881 int cpu = smp_processor_id();
4882
4883 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4884 return;
4885 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4886
4887 rcu_read_lock();
4888 for_each_domain(cpu, sd)
4889 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4890 rcu_read_unlock();
4891 }
4892
4893 void set_cpu_sd_state_idle(void)
4894 {
4895 struct sched_domain *sd;
4896 int cpu = smp_processor_id();
4897
4898 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4899 return;
4900 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4901
4902 rcu_read_lock();
4903 for_each_domain(cpu, sd)
4904 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4905 rcu_read_unlock();
4906 }
4907
4908 /*
4909 * This routine will record that this cpu is going idle with tick stopped.
4910 * This info will be used in performing idle load balancing in the future.
4911 */
4912 void select_nohz_load_balancer(int stop_tick)
4913 {
4914 int cpu = smp_processor_id();
4915
4916 /*
4917 * If this cpu is going down, then nothing needs to be done.
4918 */
4919 if (!cpu_active(cpu))
4920 return;
4921
4922 if (stop_tick) {
4923 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4924 return;
4925
4926 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4927 atomic_inc(&nohz.nr_cpus);
4928 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4929 }
4930 return;
4931 }
4932
4933 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4934 unsigned long action, void *hcpu)
4935 {
4936 switch (action & ~CPU_TASKS_FROZEN) {
4937 case CPU_DYING:
4938 clear_nohz_tick_stopped(smp_processor_id());
4939 return NOTIFY_OK;
4940 default:
4941 return NOTIFY_DONE;
4942 }
4943 }
4944 #endif
4945
4946 static DEFINE_SPINLOCK(balancing);
4947
4948 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4949
4950 /*
4951 * Scale the max load_balance interval with the number of CPUs in the system.
4952 * This trades load-balance latency on larger machines for less cross talk.
4953 */
4954 void update_max_interval(void)
4955 {
4956 max_load_balance_interval = HZ*num_online_cpus()/10;
4957 }
4958
4959 /*
4960 * It checks each scheduling domain to see if it is due to be balanced,
4961 * and initiates a balancing operation if so.
4962 *
4963 * Balancing parameters are set up in arch_init_sched_domains.
4964 */
4965 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4966 {
4967 int balance = 1;
4968 struct rq *rq = cpu_rq(cpu);
4969 unsigned long interval;
4970 struct sched_domain *sd;
4971 /* Earliest time when we have to do rebalance again */
4972 unsigned long next_balance = jiffies + 60*HZ;
4973 int update_next_balance = 0;
4974 int need_serialize;
4975
4976 update_shares(cpu);
4977
4978 rcu_read_lock();
4979 for_each_domain(cpu, sd) {
4980 if (!(sd->flags & SD_LOAD_BALANCE))
4981 continue;
4982
4983 interval = sd->balance_interval;
4984 if (idle != CPU_IDLE)
4985 interval *= sd->busy_factor;
4986
4987 /* scale ms to jiffies */
4988 interval = msecs_to_jiffies(interval);
4989 interval = clamp(interval, 1UL, max_load_balance_interval);
4990
4991 need_serialize = sd->flags & SD_SERIALIZE;
4992
4993 if (need_serialize) {
4994 if (!spin_trylock(&balancing))
4995 goto out;
4996 }
4997
4998 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4999 if (load_balance(cpu, rq, sd, idle, &balance)) {
5000 /*
5001 * We've pulled tasks over so either we're no
5002 * longer idle.
5003 */
5004 idle = CPU_NOT_IDLE;
5005 }
5006 sd->last_balance = jiffies;
5007 }
5008 if (need_serialize)
5009 spin_unlock(&balancing);
5010 out:
5011 if (time_after(next_balance, sd->last_balance + interval)) {
5012 next_balance = sd->last_balance + interval;
5013 update_next_balance = 1;
5014 }
5015
5016 /*
5017 * Stop the load balance at this level. There is another
5018 * CPU in our sched group which is doing load balancing more
5019 * actively.
5020 */
5021 if (!balance)
5022 break;
5023 }
5024 rcu_read_unlock();
5025
5026 /*
5027 * next_balance will be updated only when there is a need.
5028 * When the cpu is attached to null domain for ex, it will not be
5029 * updated.
5030 */
5031 if (likely(update_next_balance))
5032 rq->next_balance = next_balance;
5033 }
5034
5035 #ifdef CONFIG_NO_HZ
5036 /*
5037 * In CONFIG_NO_HZ case, the idle balance kickee will do the
5038 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5039 */
5040 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5041 {
5042 struct rq *this_rq = cpu_rq(this_cpu);
5043 struct rq *rq;
5044 int balance_cpu;
5045
5046 if (idle != CPU_IDLE ||
5047 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5048 goto end;
5049
5050 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5051 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5052 continue;
5053
5054 /*
5055 * If this cpu gets work to do, stop the load balancing
5056 * work being done for other cpus. Next load
5057 * balancing owner will pick it up.
5058 */
5059 if (need_resched())
5060 break;
5061
5062 raw_spin_lock_irq(&this_rq->lock);
5063 update_rq_clock(this_rq);
5064 update_cpu_load(this_rq);
5065 raw_spin_unlock_irq(&this_rq->lock);
5066
5067 rebalance_domains(balance_cpu, CPU_IDLE);
5068
5069 rq = cpu_rq(balance_cpu);
5070 if (time_after(this_rq->next_balance, rq->next_balance))
5071 this_rq->next_balance = rq->next_balance;
5072 }
5073 nohz.next_balance = this_rq->next_balance;
5074 end:
5075 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5076 }
5077
5078 /*
5079 * Current heuristic for kicking the idle load balancer in the presence
5080 * of an idle cpu is the system.
5081 * - This rq has more than one task.
5082 * - At any scheduler domain level, this cpu's scheduler group has multiple
5083 * busy cpu's exceeding the group's power.
5084 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5085 * domain span are idle.
5086 */
5087 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5088 {
5089 unsigned long now = jiffies;
5090 struct sched_domain *sd;
5091
5092 if (unlikely(idle_cpu(cpu)))
5093 return 0;
5094
5095 /*
5096 * We may be recently in ticked or tickless idle mode. At the first
5097 * busy tick after returning from idle, we will update the busy stats.
5098 */
5099 set_cpu_sd_state_busy();
5100 clear_nohz_tick_stopped(cpu);
5101
5102 /*
5103 * None are in tickless mode and hence no need for NOHZ idle load
5104 * balancing.
5105 */
5106 if (likely(!atomic_read(&nohz.nr_cpus)))
5107 return 0;
5108
5109 if (time_before(now, nohz.next_balance))
5110 return 0;
5111
5112 if (rq->nr_running >= 2)
5113 goto need_kick;
5114
5115 rcu_read_lock();
5116 for_each_domain(cpu, sd) {
5117 struct sched_group *sg = sd->groups;
5118 struct sched_group_power *sgp = sg->sgp;
5119 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5120
5121 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5122 goto need_kick_unlock;
5123
5124 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5125 && (cpumask_first_and(nohz.idle_cpus_mask,
5126 sched_domain_span(sd)) < cpu))
5127 goto need_kick_unlock;
5128
5129 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5130 break;
5131 }
5132 rcu_read_unlock();
5133 return 0;
5134
5135 need_kick_unlock:
5136 rcu_read_unlock();
5137 need_kick:
5138 return 1;
5139 }
5140 #else
5141 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5142 #endif
5143
5144 /*
5145 * run_rebalance_domains is triggered when needed from the scheduler tick.
5146 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5147 */
5148 static void run_rebalance_domains(struct softirq_action *h)
5149 {
5150 int this_cpu = smp_processor_id();
5151 struct rq *this_rq = cpu_rq(this_cpu);
5152 enum cpu_idle_type idle = this_rq->idle_balance ?
5153 CPU_IDLE : CPU_NOT_IDLE;
5154
5155 rebalance_domains(this_cpu, idle);
5156
5157 /*
5158 * If this cpu has a pending nohz_balance_kick, then do the
5159 * balancing on behalf of the other idle cpus whose ticks are
5160 * stopped.
5161 */
5162 nohz_idle_balance(this_cpu, idle);
5163 }
5164
5165 static inline int on_null_domain(int cpu)
5166 {
5167 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5168 }
5169
5170 /*
5171 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5172 */
5173 void trigger_load_balance(struct rq *rq, int cpu)
5174 {
5175 /* Don't need to rebalance while attached to NULL domain */
5176 if (time_after_eq(jiffies, rq->next_balance) &&
5177 likely(!on_null_domain(cpu)))
5178 raise_softirq(SCHED_SOFTIRQ);
5179 #ifdef CONFIG_NO_HZ
5180 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5181 nohz_balancer_kick(cpu);
5182 #endif
5183 }
5184
5185 static void rq_online_fair(struct rq *rq)
5186 {
5187 update_sysctl();
5188 }
5189
5190 static void rq_offline_fair(struct rq *rq)
5191 {
5192 update_sysctl();
5193 }
5194
5195 #endif /* CONFIG_SMP */
5196
5197 /*
5198 * scheduler tick hitting a task of our scheduling class:
5199 */
5200 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5201 {
5202 struct cfs_rq *cfs_rq;
5203 struct sched_entity *se = &curr->se;
5204
5205 for_each_sched_entity(se) {
5206 cfs_rq = cfs_rq_of(se);
5207 entity_tick(cfs_rq, se, queued);
5208 }
5209 }
5210
5211 /*
5212 * called on fork with the child task as argument from the parent's context
5213 * - child not yet on the tasklist
5214 * - preemption disabled
5215 */
5216 static void task_fork_fair(struct task_struct *p)
5217 {
5218 struct cfs_rq *cfs_rq;
5219 struct sched_entity *se = &p->se, *curr;
5220 int this_cpu = smp_processor_id();
5221 struct rq *rq = this_rq();
5222 unsigned long flags;
5223
5224 raw_spin_lock_irqsave(&rq->lock, flags);
5225
5226 update_rq_clock(rq);
5227
5228 cfs_rq = task_cfs_rq(current);
5229 curr = cfs_rq->curr;
5230
5231 if (unlikely(task_cpu(p) != this_cpu)) {
5232 rcu_read_lock();
5233 __set_task_cpu(p, this_cpu);
5234 rcu_read_unlock();
5235 }
5236
5237 update_curr(cfs_rq);
5238
5239 if (curr)
5240 se->vruntime = curr->vruntime;
5241 place_entity(cfs_rq, se, 1);
5242
5243 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5244 /*
5245 * Upon rescheduling, sched_class::put_prev_task() will place
5246 * 'current' within the tree based on its new key value.
5247 */
5248 swap(curr->vruntime, se->vruntime);
5249 resched_task(rq->curr);
5250 }
5251
5252 se->vruntime -= cfs_rq->min_vruntime;
5253
5254 raw_spin_unlock_irqrestore(&rq->lock, flags);
5255 }
5256
5257 /*
5258 * Priority of the task has changed. Check to see if we preempt
5259 * the current task.
5260 */
5261 static void
5262 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5263 {
5264 if (!p->se.on_rq)
5265 return;
5266
5267 /*
5268 * Reschedule if we are currently running on this runqueue and
5269 * our priority decreased, or if we are not currently running on
5270 * this runqueue and our priority is higher than the current's
5271 */
5272 if (rq->curr == p) {
5273 if (p->prio > oldprio)
5274 resched_task(rq->curr);
5275 } else
5276 check_preempt_curr(rq, p, 0);
5277 }
5278
5279 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5280 {
5281 struct sched_entity *se = &p->se;
5282 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5283
5284 /*
5285 * Ensure the task's vruntime is normalized, so that when its
5286 * switched back to the fair class the enqueue_entity(.flags=0) will
5287 * do the right thing.
5288 *
5289 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5290 * have normalized the vruntime, if it was !on_rq, then only when
5291 * the task is sleeping will it still have non-normalized vruntime.
5292 */
5293 if (!se->on_rq && p->state != TASK_RUNNING) {
5294 /*
5295 * Fix up our vruntime so that the current sleep doesn't
5296 * cause 'unlimited' sleep bonus.
5297 */
5298 place_entity(cfs_rq, se, 0);
5299 se->vruntime -= cfs_rq->min_vruntime;
5300 }
5301 }
5302
5303 /*
5304 * We switched to the sched_fair class.
5305 */
5306 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5307 {
5308 if (!p->se.on_rq)
5309 return;
5310
5311 /*
5312 * We were most likely switched from sched_rt, so
5313 * kick off the schedule if running, otherwise just see
5314 * if we can still preempt the current task.
5315 */
5316 if (rq->curr == p)
5317 resched_task(rq->curr);
5318 else
5319 check_preempt_curr(rq, p, 0);
5320 }
5321
5322 /* Account for a task changing its policy or group.
5323 *
5324 * This routine is mostly called to set cfs_rq->curr field when a task
5325 * migrates between groups/classes.
5326 */
5327 static void set_curr_task_fair(struct rq *rq)
5328 {
5329 struct sched_entity *se = &rq->curr->se;
5330
5331 for_each_sched_entity(se) {
5332 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5333
5334 set_next_entity(cfs_rq, se);
5335 /* ensure bandwidth has been allocated on our new cfs_rq */
5336 account_cfs_rq_runtime(cfs_rq, 0);
5337 }
5338 }
5339
5340 void init_cfs_rq(struct cfs_rq *cfs_rq)
5341 {
5342 cfs_rq->tasks_timeline = RB_ROOT;
5343 INIT_LIST_HEAD(&cfs_rq->tasks);
5344 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5345 #ifndef CONFIG_64BIT
5346 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5347 #endif
5348 }
5349
5350 #ifdef CONFIG_FAIR_GROUP_SCHED
5351 static void task_move_group_fair(struct task_struct *p, int on_rq)
5352 {
5353 /*
5354 * If the task was not on the rq at the time of this cgroup movement
5355 * it must have been asleep, sleeping tasks keep their ->vruntime
5356 * absolute on their old rq until wakeup (needed for the fair sleeper
5357 * bonus in place_entity()).
5358 *
5359 * If it was on the rq, we've just 'preempted' it, which does convert
5360 * ->vruntime to a relative base.
5361 *
5362 * Make sure both cases convert their relative position when migrating
5363 * to another cgroup's rq. This does somewhat interfere with the
5364 * fair sleeper stuff for the first placement, but who cares.
5365 */
5366 /*
5367 * When !on_rq, vruntime of the task has usually NOT been normalized.
5368 * But there are some cases where it has already been normalized:
5369 *
5370 * - Moving a forked child which is waiting for being woken up by
5371 * wake_up_new_task().
5372 * - Moving a task which has been woken up by try_to_wake_up() and
5373 * waiting for actually being woken up by sched_ttwu_pending().
5374 *
5375 * To prevent boost or penalty in the new cfs_rq caused by delta
5376 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5377 */
5378 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5379 on_rq = 1;
5380
5381 if (!on_rq)
5382 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5383 set_task_rq(p, task_cpu(p));
5384 if (!on_rq)
5385 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5386 }
5387
5388 void free_fair_sched_group(struct task_group *tg)
5389 {
5390 int i;
5391
5392 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5393
5394 for_each_possible_cpu(i) {
5395 if (tg->cfs_rq)
5396 kfree(tg->cfs_rq[i]);
5397 if (tg->se)
5398 kfree(tg->se[i]);
5399 }
5400
5401 kfree(tg->cfs_rq);
5402 kfree(tg->se);
5403 }
5404
5405 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5406 {
5407 struct cfs_rq *cfs_rq;
5408 struct sched_entity *se;
5409 int i;
5410
5411 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5412 if (!tg->cfs_rq)
5413 goto err;
5414 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5415 if (!tg->se)
5416 goto err;
5417
5418 tg->shares = NICE_0_LOAD;
5419
5420 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5421
5422 for_each_possible_cpu(i) {
5423 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5424 GFP_KERNEL, cpu_to_node(i));
5425 if (!cfs_rq)
5426 goto err;
5427
5428 se = kzalloc_node(sizeof(struct sched_entity),
5429 GFP_KERNEL, cpu_to_node(i));
5430 if (!se)
5431 goto err_free_rq;
5432
5433 init_cfs_rq(cfs_rq);
5434 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5435 }
5436
5437 return 1;
5438
5439 err_free_rq:
5440 kfree(cfs_rq);
5441 err:
5442 return 0;
5443 }
5444
5445 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5446 {
5447 struct rq *rq = cpu_rq(cpu);
5448 unsigned long flags;
5449
5450 /*
5451 * Only empty task groups can be destroyed; so we can speculatively
5452 * check on_list without danger of it being re-added.
5453 */
5454 if (!tg->cfs_rq[cpu]->on_list)
5455 return;
5456
5457 raw_spin_lock_irqsave(&rq->lock, flags);
5458 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5459 raw_spin_unlock_irqrestore(&rq->lock, flags);
5460 }
5461
5462 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5463 struct sched_entity *se, int cpu,
5464 struct sched_entity *parent)
5465 {
5466 struct rq *rq = cpu_rq(cpu);
5467
5468 cfs_rq->tg = tg;
5469 cfs_rq->rq = rq;
5470 #ifdef CONFIG_SMP
5471 /* allow initial update_cfs_load() to truncate */
5472 cfs_rq->load_stamp = 1;
5473 #endif
5474 init_cfs_rq_runtime(cfs_rq);
5475
5476 tg->cfs_rq[cpu] = cfs_rq;
5477 tg->se[cpu] = se;
5478
5479 /* se could be NULL for root_task_group */
5480 if (!se)
5481 return;
5482
5483 if (!parent)
5484 se->cfs_rq = &rq->cfs;
5485 else
5486 se->cfs_rq = parent->my_q;
5487
5488 se->my_q = cfs_rq;
5489 update_load_set(&se->load, 0);
5490 se->parent = parent;
5491 }
5492
5493 static DEFINE_MUTEX(shares_mutex);
5494
5495 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5496 {
5497 int i;
5498 unsigned long flags;
5499
5500 /*
5501 * We can't change the weight of the root cgroup.
5502 */
5503 if (!tg->se[0])
5504 return -EINVAL;
5505
5506 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5507
5508 mutex_lock(&shares_mutex);
5509 if (tg->shares == shares)
5510 goto done;
5511
5512 tg->shares = shares;
5513 for_each_possible_cpu(i) {
5514 struct rq *rq = cpu_rq(i);
5515 struct sched_entity *se;
5516
5517 se = tg->se[i];
5518 /* Propagate contribution to hierarchy */
5519 raw_spin_lock_irqsave(&rq->lock, flags);
5520 for_each_sched_entity(se)
5521 update_cfs_shares(group_cfs_rq(se));
5522 raw_spin_unlock_irqrestore(&rq->lock, flags);
5523 }
5524
5525 done:
5526 mutex_unlock(&shares_mutex);
5527 return 0;
5528 }
5529 #else /* CONFIG_FAIR_GROUP_SCHED */
5530
5531 void free_fair_sched_group(struct task_group *tg) { }
5532
5533 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5534 {
5535 return 1;
5536 }
5537
5538 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5539
5540 #endif /* CONFIG_FAIR_GROUP_SCHED */
5541
5542
5543 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5544 {
5545 struct sched_entity *se = &task->se;
5546 unsigned int rr_interval = 0;
5547
5548 /*
5549 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5550 * idle runqueue:
5551 */
5552 if (rq->cfs.load.weight)
5553 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5554
5555 return rr_interval;
5556 }
5557
5558 /*
5559 * All the scheduling class methods:
5560 */
5561 const struct sched_class fair_sched_class = {
5562 .next = &idle_sched_class,
5563 .enqueue_task = enqueue_task_fair,
5564 .dequeue_task = dequeue_task_fair,
5565 .yield_task = yield_task_fair,
5566 .yield_to_task = yield_to_task_fair,
5567
5568 .check_preempt_curr = check_preempt_wakeup,
5569
5570 .pick_next_task = pick_next_task_fair,
5571 .put_prev_task = put_prev_task_fair,
5572
5573 #ifdef CONFIG_SMP
5574 .select_task_rq = select_task_rq_fair,
5575
5576 .rq_online = rq_online_fair,
5577 .rq_offline = rq_offline_fair,
5578
5579 .task_waking = task_waking_fair,
5580 #endif
5581
5582 .set_curr_task = set_curr_task_fair,
5583 .task_tick = task_tick_fair,
5584 .task_fork = task_fork_fair,
5585
5586 .prio_changed = prio_changed_fair,
5587 .switched_from = switched_from_fair,
5588 .switched_to = switched_to_fair,
5589
5590 .get_rr_interval = get_rr_interval_fair,
5591
5592 #ifdef CONFIG_FAIR_GROUP_SCHED
5593 .task_move_group = task_move_group_fair,
5594 #endif
5595 };
5596
5597 #ifdef CONFIG_SCHED_DEBUG
5598 void print_cfs_stats(struct seq_file *m, int cpu)
5599 {
5600 struct cfs_rq *cfs_rq;
5601
5602 rcu_read_lock();
5603 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5604 print_cfs_rq(m, cpu, cfs_rq);
5605 rcu_read_unlock();
5606 }
5607 #endif
5608
5609 __init void init_sched_fair_class(void)
5610 {
5611 #ifdef CONFIG_SMP
5612 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5613
5614 #ifdef CONFIG_NO_HZ
5615 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5616 cpu_notifier(sched_ilb_notifier, 0);
5617 #endif
5618 #endif /* SMP */
5619
5620 }