]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/fair.c
sched/fair: Avoid using decay_load_missed() with a negative value
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306 }
307
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314 }
315
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328 }
329
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 return se->parent;
333 }
334
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365 }
366
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
368
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 return container_of(se, struct task_struct, se);
372 }
373
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 return container_of(cfs_rq, struct rq, cfs);
377 }
378
379 #define entity_is_task(se) 1
380
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 return &task_rq(p)->cfs;
387 }
388
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395 }
396
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 return NULL;
401 }
402
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 return NULL;
417 }
418
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
425
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440 }
441
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449 }
450
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453 {
454 return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482
483 /*
484 * Enqueue an entity into the rb-tree:
485 */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542 }
543
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552 }
553
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563 }
564
565 /**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588
589 return 0;
590 }
591 #endif
592
593 /*
594 * delta /= w
595 */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602 }
603
604 /*
605 * The idea is to set a period in which each task runs once.
606 *
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618 }
619
620 /*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
624 * s = p*P[w/rw]
625 */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646 }
647
648 /*
649 * We calculate the vruntime slice of a to-be-inserted task.
650 *
651 * vs = s/w
652 */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661
662 /*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
666 */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 struct sched_avg *sa = &se->avg;
675
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688 }
689
690 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692 #else
693 void init_entity_runnable_average(struct sched_entity *se)
694 {
695 }
696 #endif
697
698 /*
699 * Update the current task's runtime statistics.
700 */
701 static void update_curr(struct cfs_rq *cfs_rq)
702 {
703 struct sched_entity *curr = cfs_rq->curr;
704 u64 now = rq_clock_task(rq_of(cfs_rq));
705 u64 delta_exec;
706
707 if (unlikely(!curr))
708 return;
709
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
712 return;
713
714 curr->exec_start = now;
715
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729 cpuacct_charge(curtask, delta_exec);
730 account_group_exec_runtime(curtask, delta_exec);
731 }
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
734 }
735
736 static void update_curr_fair(struct rq *rq)
737 {
738 update_curr(cfs_rq_of(&rq->curr->se));
739 }
740
741 #ifdef CONFIG_SCHEDSTATS
742 static inline void
743 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 u64 wait_start = rq_clock(rq_of(cfs_rq));
746
747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 likely(wait_start > se->statistics.wait_start))
749 wait_start -= se->statistics.wait_start;
750
751 se->statistics.wait_start = wait_start;
752 }
753
754 static void
755 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757 struct task_struct *p;
758 u64 delta;
759
760 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
761
762 if (entity_is_task(se)) {
763 p = task_of(se);
764 if (task_on_rq_migrating(p)) {
765 /*
766 * Preserve migrating task's wait time so wait_start
767 * time stamp can be adjusted to accumulate wait time
768 * prior to migration.
769 */
770 se->statistics.wait_start = delta;
771 return;
772 }
773 trace_sched_stat_wait(p, delta);
774 }
775
776 se->statistics.wait_max = max(se->statistics.wait_max, delta);
777 se->statistics.wait_count++;
778 se->statistics.wait_sum += delta;
779 se->statistics.wait_start = 0;
780 }
781
782 /*
783 * Task is being enqueued - update stats:
784 */
785 static inline void
786 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 {
788 /*
789 * Are we enqueueing a waiting task? (for current tasks
790 * a dequeue/enqueue event is a NOP)
791 */
792 if (se != cfs_rq->curr)
793 update_stats_wait_start(cfs_rq, se);
794 }
795
796 static inline void
797 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
798 {
799 /*
800 * Mark the end of the wait period if dequeueing a
801 * waiting task:
802 */
803 if (se != cfs_rq->curr)
804 update_stats_wait_end(cfs_rq, se);
805
806 if (flags & DEQUEUE_SLEEP) {
807 if (entity_is_task(se)) {
808 struct task_struct *tsk = task_of(se);
809
810 if (tsk->state & TASK_INTERRUPTIBLE)
811 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
812 if (tsk->state & TASK_UNINTERRUPTIBLE)
813 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
814 }
815 }
816
817 }
818 #else
819 static inline void
820 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
821 {
822 }
823
824 static inline void
825 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
826 {
827 }
828
829 static inline void
830 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
831 {
832 }
833
834 static inline void
835 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
836 {
837 }
838 #endif
839
840 /*
841 * We are picking a new current task - update its stats:
842 */
843 static inline void
844 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
845 {
846 /*
847 * We are starting a new run period:
848 */
849 se->exec_start = rq_clock_task(rq_of(cfs_rq));
850 }
851
852 /**************************************************
853 * Scheduling class queueing methods:
854 */
855
856 #ifdef CONFIG_NUMA_BALANCING
857 /*
858 * Approximate time to scan a full NUMA task in ms. The task scan period is
859 * calculated based on the tasks virtual memory size and
860 * numa_balancing_scan_size.
861 */
862 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
863 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
864
865 /* Portion of address space to scan in MB */
866 unsigned int sysctl_numa_balancing_scan_size = 256;
867
868 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
869 unsigned int sysctl_numa_balancing_scan_delay = 1000;
870
871 static unsigned int task_nr_scan_windows(struct task_struct *p)
872 {
873 unsigned long rss = 0;
874 unsigned long nr_scan_pages;
875
876 /*
877 * Calculations based on RSS as non-present and empty pages are skipped
878 * by the PTE scanner and NUMA hinting faults should be trapped based
879 * on resident pages
880 */
881 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
882 rss = get_mm_rss(p->mm);
883 if (!rss)
884 rss = nr_scan_pages;
885
886 rss = round_up(rss, nr_scan_pages);
887 return rss / nr_scan_pages;
888 }
889
890 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
891 #define MAX_SCAN_WINDOW 2560
892
893 static unsigned int task_scan_min(struct task_struct *p)
894 {
895 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
896 unsigned int scan, floor;
897 unsigned int windows = 1;
898
899 if (scan_size < MAX_SCAN_WINDOW)
900 windows = MAX_SCAN_WINDOW / scan_size;
901 floor = 1000 / windows;
902
903 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
904 return max_t(unsigned int, floor, scan);
905 }
906
907 static unsigned int task_scan_max(struct task_struct *p)
908 {
909 unsigned int smin = task_scan_min(p);
910 unsigned int smax;
911
912 /* Watch for min being lower than max due to floor calculations */
913 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
914 return max(smin, smax);
915 }
916
917 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
918 {
919 rq->nr_numa_running += (p->numa_preferred_nid != -1);
920 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
921 }
922
923 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
924 {
925 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
926 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
927 }
928
929 struct numa_group {
930 atomic_t refcount;
931
932 spinlock_t lock; /* nr_tasks, tasks */
933 int nr_tasks;
934 pid_t gid;
935 int active_nodes;
936
937 struct rcu_head rcu;
938 unsigned long total_faults;
939 unsigned long max_faults_cpu;
940 /*
941 * Faults_cpu is used to decide whether memory should move
942 * towards the CPU. As a consequence, these stats are weighted
943 * more by CPU use than by memory faults.
944 */
945 unsigned long *faults_cpu;
946 unsigned long faults[0];
947 };
948
949 /* Shared or private faults. */
950 #define NR_NUMA_HINT_FAULT_TYPES 2
951
952 /* Memory and CPU locality */
953 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
954
955 /* Averaged statistics, and temporary buffers. */
956 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
957
958 pid_t task_numa_group_id(struct task_struct *p)
959 {
960 return p->numa_group ? p->numa_group->gid : 0;
961 }
962
963 /*
964 * The averaged statistics, shared & private, memory & cpu,
965 * occupy the first half of the array. The second half of the
966 * array is for current counters, which are averaged into the
967 * first set by task_numa_placement.
968 */
969 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
970 {
971 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
972 }
973
974 static inline unsigned long task_faults(struct task_struct *p, int nid)
975 {
976 if (!p->numa_faults)
977 return 0;
978
979 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
980 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
981 }
982
983 static inline unsigned long group_faults(struct task_struct *p, int nid)
984 {
985 if (!p->numa_group)
986 return 0;
987
988 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
989 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
990 }
991
992 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
993 {
994 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
995 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
996 }
997
998 /*
999 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1000 * considered part of a numa group's pseudo-interleaving set. Migrations
1001 * between these nodes are slowed down, to allow things to settle down.
1002 */
1003 #define ACTIVE_NODE_FRACTION 3
1004
1005 static bool numa_is_active_node(int nid, struct numa_group *ng)
1006 {
1007 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1008 }
1009
1010 /* Handle placement on systems where not all nodes are directly connected. */
1011 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1012 int maxdist, bool task)
1013 {
1014 unsigned long score = 0;
1015 int node;
1016
1017 /*
1018 * All nodes are directly connected, and the same distance
1019 * from each other. No need for fancy placement algorithms.
1020 */
1021 if (sched_numa_topology_type == NUMA_DIRECT)
1022 return 0;
1023
1024 /*
1025 * This code is called for each node, introducing N^2 complexity,
1026 * which should be ok given the number of nodes rarely exceeds 8.
1027 */
1028 for_each_online_node(node) {
1029 unsigned long faults;
1030 int dist = node_distance(nid, node);
1031
1032 /*
1033 * The furthest away nodes in the system are not interesting
1034 * for placement; nid was already counted.
1035 */
1036 if (dist == sched_max_numa_distance || node == nid)
1037 continue;
1038
1039 /*
1040 * On systems with a backplane NUMA topology, compare groups
1041 * of nodes, and move tasks towards the group with the most
1042 * memory accesses. When comparing two nodes at distance
1043 * "hoplimit", only nodes closer by than "hoplimit" are part
1044 * of each group. Skip other nodes.
1045 */
1046 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1047 dist > maxdist)
1048 continue;
1049
1050 /* Add up the faults from nearby nodes. */
1051 if (task)
1052 faults = task_faults(p, node);
1053 else
1054 faults = group_faults(p, node);
1055
1056 /*
1057 * On systems with a glueless mesh NUMA topology, there are
1058 * no fixed "groups of nodes". Instead, nodes that are not
1059 * directly connected bounce traffic through intermediate
1060 * nodes; a numa_group can occupy any set of nodes.
1061 * The further away a node is, the less the faults count.
1062 * This seems to result in good task placement.
1063 */
1064 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1065 faults *= (sched_max_numa_distance - dist);
1066 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1067 }
1068
1069 score += faults;
1070 }
1071
1072 return score;
1073 }
1074
1075 /*
1076 * These return the fraction of accesses done by a particular task, or
1077 * task group, on a particular numa node. The group weight is given a
1078 * larger multiplier, in order to group tasks together that are almost
1079 * evenly spread out between numa nodes.
1080 */
1081 static inline unsigned long task_weight(struct task_struct *p, int nid,
1082 int dist)
1083 {
1084 unsigned long faults, total_faults;
1085
1086 if (!p->numa_faults)
1087 return 0;
1088
1089 total_faults = p->total_numa_faults;
1090
1091 if (!total_faults)
1092 return 0;
1093
1094 faults = task_faults(p, nid);
1095 faults += score_nearby_nodes(p, nid, dist, true);
1096
1097 return 1000 * faults / total_faults;
1098 }
1099
1100 static inline unsigned long group_weight(struct task_struct *p, int nid,
1101 int dist)
1102 {
1103 unsigned long faults, total_faults;
1104
1105 if (!p->numa_group)
1106 return 0;
1107
1108 total_faults = p->numa_group->total_faults;
1109
1110 if (!total_faults)
1111 return 0;
1112
1113 faults = group_faults(p, nid);
1114 faults += score_nearby_nodes(p, nid, dist, false);
1115
1116 return 1000 * faults / total_faults;
1117 }
1118
1119 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1120 int src_nid, int dst_cpu)
1121 {
1122 struct numa_group *ng = p->numa_group;
1123 int dst_nid = cpu_to_node(dst_cpu);
1124 int last_cpupid, this_cpupid;
1125
1126 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1127
1128 /*
1129 * Multi-stage node selection is used in conjunction with a periodic
1130 * migration fault to build a temporal task<->page relation. By using
1131 * a two-stage filter we remove short/unlikely relations.
1132 *
1133 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1134 * a task's usage of a particular page (n_p) per total usage of this
1135 * page (n_t) (in a given time-span) to a probability.
1136 *
1137 * Our periodic faults will sample this probability and getting the
1138 * same result twice in a row, given these samples are fully
1139 * independent, is then given by P(n)^2, provided our sample period
1140 * is sufficiently short compared to the usage pattern.
1141 *
1142 * This quadric squishes small probabilities, making it less likely we
1143 * act on an unlikely task<->page relation.
1144 */
1145 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1146 if (!cpupid_pid_unset(last_cpupid) &&
1147 cpupid_to_nid(last_cpupid) != dst_nid)
1148 return false;
1149
1150 /* Always allow migrate on private faults */
1151 if (cpupid_match_pid(p, last_cpupid))
1152 return true;
1153
1154 /* A shared fault, but p->numa_group has not been set up yet. */
1155 if (!ng)
1156 return true;
1157
1158 /*
1159 * Destination node is much more heavily used than the source
1160 * node? Allow migration.
1161 */
1162 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1163 ACTIVE_NODE_FRACTION)
1164 return true;
1165
1166 /*
1167 * Distribute memory according to CPU & memory use on each node,
1168 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1169 *
1170 * faults_cpu(dst) 3 faults_cpu(src)
1171 * --------------- * - > ---------------
1172 * faults_mem(dst) 4 faults_mem(src)
1173 */
1174 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1175 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1176 }
1177
1178 static unsigned long weighted_cpuload(const int cpu);
1179 static unsigned long source_load(int cpu, int type);
1180 static unsigned long target_load(int cpu, int type);
1181 static unsigned long capacity_of(int cpu);
1182 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1183
1184 /* Cached statistics for all CPUs within a node */
1185 struct numa_stats {
1186 unsigned long nr_running;
1187 unsigned long load;
1188
1189 /* Total compute capacity of CPUs on a node */
1190 unsigned long compute_capacity;
1191
1192 /* Approximate capacity in terms of runnable tasks on a node */
1193 unsigned long task_capacity;
1194 int has_free_capacity;
1195 };
1196
1197 /*
1198 * XXX borrowed from update_sg_lb_stats
1199 */
1200 static void update_numa_stats(struct numa_stats *ns, int nid)
1201 {
1202 int smt, cpu, cpus = 0;
1203 unsigned long capacity;
1204
1205 memset(ns, 0, sizeof(*ns));
1206 for_each_cpu(cpu, cpumask_of_node(nid)) {
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 ns->nr_running += rq->nr_running;
1210 ns->load += weighted_cpuload(cpu);
1211 ns->compute_capacity += capacity_of(cpu);
1212
1213 cpus++;
1214 }
1215
1216 /*
1217 * If we raced with hotplug and there are no CPUs left in our mask
1218 * the @ns structure is NULL'ed and task_numa_compare() will
1219 * not find this node attractive.
1220 *
1221 * We'll either bail at !has_free_capacity, or we'll detect a huge
1222 * imbalance and bail there.
1223 */
1224 if (!cpus)
1225 return;
1226
1227 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1228 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1229 capacity = cpus / smt; /* cores */
1230
1231 ns->task_capacity = min_t(unsigned, capacity,
1232 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1233 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1234 }
1235
1236 struct task_numa_env {
1237 struct task_struct *p;
1238
1239 int src_cpu, src_nid;
1240 int dst_cpu, dst_nid;
1241
1242 struct numa_stats src_stats, dst_stats;
1243
1244 int imbalance_pct;
1245 int dist;
1246
1247 struct task_struct *best_task;
1248 long best_imp;
1249 int best_cpu;
1250 };
1251
1252 static void task_numa_assign(struct task_numa_env *env,
1253 struct task_struct *p, long imp)
1254 {
1255 if (env->best_task)
1256 put_task_struct(env->best_task);
1257
1258 env->best_task = p;
1259 env->best_imp = imp;
1260 env->best_cpu = env->dst_cpu;
1261 }
1262
1263 static bool load_too_imbalanced(long src_load, long dst_load,
1264 struct task_numa_env *env)
1265 {
1266 long imb, old_imb;
1267 long orig_src_load, orig_dst_load;
1268 long src_capacity, dst_capacity;
1269
1270 /*
1271 * The load is corrected for the CPU capacity available on each node.
1272 *
1273 * src_load dst_load
1274 * ------------ vs ---------
1275 * src_capacity dst_capacity
1276 */
1277 src_capacity = env->src_stats.compute_capacity;
1278 dst_capacity = env->dst_stats.compute_capacity;
1279
1280 /* We care about the slope of the imbalance, not the direction. */
1281 if (dst_load < src_load)
1282 swap(dst_load, src_load);
1283
1284 /* Is the difference below the threshold? */
1285 imb = dst_load * src_capacity * 100 -
1286 src_load * dst_capacity * env->imbalance_pct;
1287 if (imb <= 0)
1288 return false;
1289
1290 /*
1291 * The imbalance is above the allowed threshold.
1292 * Compare it with the old imbalance.
1293 */
1294 orig_src_load = env->src_stats.load;
1295 orig_dst_load = env->dst_stats.load;
1296
1297 if (orig_dst_load < orig_src_load)
1298 swap(orig_dst_load, orig_src_load);
1299
1300 old_imb = orig_dst_load * src_capacity * 100 -
1301 orig_src_load * dst_capacity * env->imbalance_pct;
1302
1303 /* Would this change make things worse? */
1304 return (imb > old_imb);
1305 }
1306
1307 /*
1308 * This checks if the overall compute and NUMA accesses of the system would
1309 * be improved if the source tasks was migrated to the target dst_cpu taking
1310 * into account that it might be best if task running on the dst_cpu should
1311 * be exchanged with the source task
1312 */
1313 static void task_numa_compare(struct task_numa_env *env,
1314 long taskimp, long groupimp)
1315 {
1316 struct rq *src_rq = cpu_rq(env->src_cpu);
1317 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1318 struct task_struct *cur;
1319 long src_load, dst_load;
1320 long load;
1321 long imp = env->p->numa_group ? groupimp : taskimp;
1322 long moveimp = imp;
1323 int dist = env->dist;
1324 bool assigned = false;
1325
1326 rcu_read_lock();
1327
1328 raw_spin_lock_irq(&dst_rq->lock);
1329 cur = dst_rq->curr;
1330 /*
1331 * No need to move the exiting task or idle task.
1332 */
1333 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1334 cur = NULL;
1335 else {
1336 /*
1337 * The task_struct must be protected here to protect the
1338 * p->numa_faults access in the task_weight since the
1339 * numa_faults could already be freed in the following path:
1340 * finish_task_switch()
1341 * --> put_task_struct()
1342 * --> __put_task_struct()
1343 * --> task_numa_free()
1344 */
1345 get_task_struct(cur);
1346 }
1347
1348 raw_spin_unlock_irq(&dst_rq->lock);
1349
1350 /*
1351 * Because we have preemption enabled we can get migrated around and
1352 * end try selecting ourselves (current == env->p) as a swap candidate.
1353 */
1354 if (cur == env->p)
1355 goto unlock;
1356
1357 /*
1358 * "imp" is the fault differential for the source task between the
1359 * source and destination node. Calculate the total differential for
1360 * the source task and potential destination task. The more negative
1361 * the value is, the more rmeote accesses that would be expected to
1362 * be incurred if the tasks were swapped.
1363 */
1364 if (cur) {
1365 /* Skip this swap candidate if cannot move to the source cpu */
1366 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1367 goto unlock;
1368
1369 /*
1370 * If dst and source tasks are in the same NUMA group, or not
1371 * in any group then look only at task weights.
1372 */
1373 if (cur->numa_group == env->p->numa_group) {
1374 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1375 task_weight(cur, env->dst_nid, dist);
1376 /*
1377 * Add some hysteresis to prevent swapping the
1378 * tasks within a group over tiny differences.
1379 */
1380 if (cur->numa_group)
1381 imp -= imp/16;
1382 } else {
1383 /*
1384 * Compare the group weights. If a task is all by
1385 * itself (not part of a group), use the task weight
1386 * instead.
1387 */
1388 if (cur->numa_group)
1389 imp += group_weight(cur, env->src_nid, dist) -
1390 group_weight(cur, env->dst_nid, dist);
1391 else
1392 imp += task_weight(cur, env->src_nid, dist) -
1393 task_weight(cur, env->dst_nid, dist);
1394 }
1395 }
1396
1397 if (imp <= env->best_imp && moveimp <= env->best_imp)
1398 goto unlock;
1399
1400 if (!cur) {
1401 /* Is there capacity at our destination? */
1402 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1403 !env->dst_stats.has_free_capacity)
1404 goto unlock;
1405
1406 goto balance;
1407 }
1408
1409 /* Balance doesn't matter much if we're running a task per cpu */
1410 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1411 dst_rq->nr_running == 1)
1412 goto assign;
1413
1414 /*
1415 * In the overloaded case, try and keep the load balanced.
1416 */
1417 balance:
1418 load = task_h_load(env->p);
1419 dst_load = env->dst_stats.load + load;
1420 src_load = env->src_stats.load - load;
1421
1422 if (moveimp > imp && moveimp > env->best_imp) {
1423 /*
1424 * If the improvement from just moving env->p direction is
1425 * better than swapping tasks around, check if a move is
1426 * possible. Store a slightly smaller score than moveimp,
1427 * so an actually idle CPU will win.
1428 */
1429 if (!load_too_imbalanced(src_load, dst_load, env)) {
1430 imp = moveimp - 1;
1431 put_task_struct(cur);
1432 cur = NULL;
1433 goto assign;
1434 }
1435 }
1436
1437 if (imp <= env->best_imp)
1438 goto unlock;
1439
1440 if (cur) {
1441 load = task_h_load(cur);
1442 dst_load -= load;
1443 src_load += load;
1444 }
1445
1446 if (load_too_imbalanced(src_load, dst_load, env))
1447 goto unlock;
1448
1449 /*
1450 * One idle CPU per node is evaluated for a task numa move.
1451 * Call select_idle_sibling to maybe find a better one.
1452 */
1453 if (!cur)
1454 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1455
1456 assign:
1457 assigned = true;
1458 task_numa_assign(env, cur, imp);
1459 unlock:
1460 rcu_read_unlock();
1461 /*
1462 * The dst_rq->curr isn't assigned. The protection for task_struct is
1463 * finished.
1464 */
1465 if (cur && !assigned)
1466 put_task_struct(cur);
1467 }
1468
1469 static void task_numa_find_cpu(struct task_numa_env *env,
1470 long taskimp, long groupimp)
1471 {
1472 int cpu;
1473
1474 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1475 /* Skip this CPU if the source task cannot migrate */
1476 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1477 continue;
1478
1479 env->dst_cpu = cpu;
1480 task_numa_compare(env, taskimp, groupimp);
1481 }
1482 }
1483
1484 /* Only move tasks to a NUMA node less busy than the current node. */
1485 static bool numa_has_capacity(struct task_numa_env *env)
1486 {
1487 struct numa_stats *src = &env->src_stats;
1488 struct numa_stats *dst = &env->dst_stats;
1489
1490 if (src->has_free_capacity && !dst->has_free_capacity)
1491 return false;
1492
1493 /*
1494 * Only consider a task move if the source has a higher load
1495 * than the destination, corrected for CPU capacity on each node.
1496 *
1497 * src->load dst->load
1498 * --------------------- vs ---------------------
1499 * src->compute_capacity dst->compute_capacity
1500 */
1501 if (src->load * dst->compute_capacity * env->imbalance_pct >
1502
1503 dst->load * src->compute_capacity * 100)
1504 return true;
1505
1506 return false;
1507 }
1508
1509 static int task_numa_migrate(struct task_struct *p)
1510 {
1511 struct task_numa_env env = {
1512 .p = p,
1513
1514 .src_cpu = task_cpu(p),
1515 .src_nid = task_node(p),
1516
1517 .imbalance_pct = 112,
1518
1519 .best_task = NULL,
1520 .best_imp = 0,
1521 .best_cpu = -1,
1522 };
1523 struct sched_domain *sd;
1524 unsigned long taskweight, groupweight;
1525 int nid, ret, dist;
1526 long taskimp, groupimp;
1527
1528 /*
1529 * Pick the lowest SD_NUMA domain, as that would have the smallest
1530 * imbalance and would be the first to start moving tasks about.
1531 *
1532 * And we want to avoid any moving of tasks about, as that would create
1533 * random movement of tasks -- counter the numa conditions we're trying
1534 * to satisfy here.
1535 */
1536 rcu_read_lock();
1537 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1538 if (sd)
1539 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1540 rcu_read_unlock();
1541
1542 /*
1543 * Cpusets can break the scheduler domain tree into smaller
1544 * balance domains, some of which do not cross NUMA boundaries.
1545 * Tasks that are "trapped" in such domains cannot be migrated
1546 * elsewhere, so there is no point in (re)trying.
1547 */
1548 if (unlikely(!sd)) {
1549 p->numa_preferred_nid = task_node(p);
1550 return -EINVAL;
1551 }
1552
1553 env.dst_nid = p->numa_preferred_nid;
1554 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1555 taskweight = task_weight(p, env.src_nid, dist);
1556 groupweight = group_weight(p, env.src_nid, dist);
1557 update_numa_stats(&env.src_stats, env.src_nid);
1558 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1559 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1560 update_numa_stats(&env.dst_stats, env.dst_nid);
1561
1562 /* Try to find a spot on the preferred nid. */
1563 if (numa_has_capacity(&env))
1564 task_numa_find_cpu(&env, taskimp, groupimp);
1565
1566 /*
1567 * Look at other nodes in these cases:
1568 * - there is no space available on the preferred_nid
1569 * - the task is part of a numa_group that is interleaved across
1570 * multiple NUMA nodes; in order to better consolidate the group,
1571 * we need to check other locations.
1572 */
1573 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1574 for_each_online_node(nid) {
1575 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1576 continue;
1577
1578 dist = node_distance(env.src_nid, env.dst_nid);
1579 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1580 dist != env.dist) {
1581 taskweight = task_weight(p, env.src_nid, dist);
1582 groupweight = group_weight(p, env.src_nid, dist);
1583 }
1584
1585 /* Only consider nodes where both task and groups benefit */
1586 taskimp = task_weight(p, nid, dist) - taskweight;
1587 groupimp = group_weight(p, nid, dist) - groupweight;
1588 if (taskimp < 0 && groupimp < 0)
1589 continue;
1590
1591 env.dist = dist;
1592 env.dst_nid = nid;
1593 update_numa_stats(&env.dst_stats, env.dst_nid);
1594 if (numa_has_capacity(&env))
1595 task_numa_find_cpu(&env, taskimp, groupimp);
1596 }
1597 }
1598
1599 /*
1600 * If the task is part of a workload that spans multiple NUMA nodes,
1601 * and is migrating into one of the workload's active nodes, remember
1602 * this node as the task's preferred numa node, so the workload can
1603 * settle down.
1604 * A task that migrated to a second choice node will be better off
1605 * trying for a better one later. Do not set the preferred node here.
1606 */
1607 if (p->numa_group) {
1608 struct numa_group *ng = p->numa_group;
1609
1610 if (env.best_cpu == -1)
1611 nid = env.src_nid;
1612 else
1613 nid = env.dst_nid;
1614
1615 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1616 sched_setnuma(p, env.dst_nid);
1617 }
1618
1619 /* No better CPU than the current one was found. */
1620 if (env.best_cpu == -1)
1621 return -EAGAIN;
1622
1623 /*
1624 * Reset the scan period if the task is being rescheduled on an
1625 * alternative node to recheck if the tasks is now properly placed.
1626 */
1627 p->numa_scan_period = task_scan_min(p);
1628
1629 if (env.best_task == NULL) {
1630 ret = migrate_task_to(p, env.best_cpu);
1631 if (ret != 0)
1632 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1633 return ret;
1634 }
1635
1636 ret = migrate_swap(p, env.best_task);
1637 if (ret != 0)
1638 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1639 put_task_struct(env.best_task);
1640 return ret;
1641 }
1642
1643 /* Attempt to migrate a task to a CPU on the preferred node. */
1644 static void numa_migrate_preferred(struct task_struct *p)
1645 {
1646 unsigned long interval = HZ;
1647
1648 /* This task has no NUMA fault statistics yet */
1649 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1650 return;
1651
1652 /* Periodically retry migrating the task to the preferred node */
1653 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1654 p->numa_migrate_retry = jiffies + interval;
1655
1656 /* Success if task is already running on preferred CPU */
1657 if (task_node(p) == p->numa_preferred_nid)
1658 return;
1659
1660 /* Otherwise, try migrate to a CPU on the preferred node */
1661 task_numa_migrate(p);
1662 }
1663
1664 /*
1665 * Find out how many nodes on the workload is actively running on. Do this by
1666 * tracking the nodes from which NUMA hinting faults are triggered. This can
1667 * be different from the set of nodes where the workload's memory is currently
1668 * located.
1669 */
1670 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1671 {
1672 unsigned long faults, max_faults = 0;
1673 int nid, active_nodes = 0;
1674
1675 for_each_online_node(nid) {
1676 faults = group_faults_cpu(numa_group, nid);
1677 if (faults > max_faults)
1678 max_faults = faults;
1679 }
1680
1681 for_each_online_node(nid) {
1682 faults = group_faults_cpu(numa_group, nid);
1683 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1684 active_nodes++;
1685 }
1686
1687 numa_group->max_faults_cpu = max_faults;
1688 numa_group->active_nodes = active_nodes;
1689 }
1690
1691 /*
1692 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1693 * increments. The more local the fault statistics are, the higher the scan
1694 * period will be for the next scan window. If local/(local+remote) ratio is
1695 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1696 * the scan period will decrease. Aim for 70% local accesses.
1697 */
1698 #define NUMA_PERIOD_SLOTS 10
1699 #define NUMA_PERIOD_THRESHOLD 7
1700
1701 /*
1702 * Increase the scan period (slow down scanning) if the majority of
1703 * our memory is already on our local node, or if the majority of
1704 * the page accesses are shared with other processes.
1705 * Otherwise, decrease the scan period.
1706 */
1707 static void update_task_scan_period(struct task_struct *p,
1708 unsigned long shared, unsigned long private)
1709 {
1710 unsigned int period_slot;
1711 int ratio;
1712 int diff;
1713
1714 unsigned long remote = p->numa_faults_locality[0];
1715 unsigned long local = p->numa_faults_locality[1];
1716
1717 /*
1718 * If there were no record hinting faults then either the task is
1719 * completely idle or all activity is areas that are not of interest
1720 * to automatic numa balancing. Related to that, if there were failed
1721 * migration then it implies we are migrating too quickly or the local
1722 * node is overloaded. In either case, scan slower
1723 */
1724 if (local + shared == 0 || p->numa_faults_locality[2]) {
1725 p->numa_scan_period = min(p->numa_scan_period_max,
1726 p->numa_scan_period << 1);
1727
1728 p->mm->numa_next_scan = jiffies +
1729 msecs_to_jiffies(p->numa_scan_period);
1730
1731 return;
1732 }
1733
1734 /*
1735 * Prepare to scale scan period relative to the current period.
1736 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1737 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1738 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1739 */
1740 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1741 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1742 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1743 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1744 if (!slot)
1745 slot = 1;
1746 diff = slot * period_slot;
1747 } else {
1748 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1749
1750 /*
1751 * Scale scan rate increases based on sharing. There is an
1752 * inverse relationship between the degree of sharing and
1753 * the adjustment made to the scanning period. Broadly
1754 * speaking the intent is that there is little point
1755 * scanning faster if shared accesses dominate as it may
1756 * simply bounce migrations uselessly
1757 */
1758 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1759 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1760 }
1761
1762 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1763 task_scan_min(p), task_scan_max(p));
1764 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1765 }
1766
1767 /*
1768 * Get the fraction of time the task has been running since the last
1769 * NUMA placement cycle. The scheduler keeps similar statistics, but
1770 * decays those on a 32ms period, which is orders of magnitude off
1771 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1772 * stats only if the task is so new there are no NUMA statistics yet.
1773 */
1774 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1775 {
1776 u64 runtime, delta, now;
1777 /* Use the start of this time slice to avoid calculations. */
1778 now = p->se.exec_start;
1779 runtime = p->se.sum_exec_runtime;
1780
1781 if (p->last_task_numa_placement) {
1782 delta = runtime - p->last_sum_exec_runtime;
1783 *period = now - p->last_task_numa_placement;
1784 } else {
1785 delta = p->se.avg.load_sum / p->se.load.weight;
1786 *period = LOAD_AVG_MAX;
1787 }
1788
1789 p->last_sum_exec_runtime = runtime;
1790 p->last_task_numa_placement = now;
1791
1792 return delta;
1793 }
1794
1795 /*
1796 * Determine the preferred nid for a task in a numa_group. This needs to
1797 * be done in a way that produces consistent results with group_weight,
1798 * otherwise workloads might not converge.
1799 */
1800 static int preferred_group_nid(struct task_struct *p, int nid)
1801 {
1802 nodemask_t nodes;
1803 int dist;
1804
1805 /* Direct connections between all NUMA nodes. */
1806 if (sched_numa_topology_type == NUMA_DIRECT)
1807 return nid;
1808
1809 /*
1810 * On a system with glueless mesh NUMA topology, group_weight
1811 * scores nodes according to the number of NUMA hinting faults on
1812 * both the node itself, and on nearby nodes.
1813 */
1814 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1815 unsigned long score, max_score = 0;
1816 int node, max_node = nid;
1817
1818 dist = sched_max_numa_distance;
1819
1820 for_each_online_node(node) {
1821 score = group_weight(p, node, dist);
1822 if (score > max_score) {
1823 max_score = score;
1824 max_node = node;
1825 }
1826 }
1827 return max_node;
1828 }
1829
1830 /*
1831 * Finding the preferred nid in a system with NUMA backplane
1832 * interconnect topology is more involved. The goal is to locate
1833 * tasks from numa_groups near each other in the system, and
1834 * untangle workloads from different sides of the system. This requires
1835 * searching down the hierarchy of node groups, recursively searching
1836 * inside the highest scoring group of nodes. The nodemask tricks
1837 * keep the complexity of the search down.
1838 */
1839 nodes = node_online_map;
1840 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1841 unsigned long max_faults = 0;
1842 nodemask_t max_group = NODE_MASK_NONE;
1843 int a, b;
1844
1845 /* Are there nodes at this distance from each other? */
1846 if (!find_numa_distance(dist))
1847 continue;
1848
1849 for_each_node_mask(a, nodes) {
1850 unsigned long faults = 0;
1851 nodemask_t this_group;
1852 nodes_clear(this_group);
1853
1854 /* Sum group's NUMA faults; includes a==b case. */
1855 for_each_node_mask(b, nodes) {
1856 if (node_distance(a, b) < dist) {
1857 faults += group_faults(p, b);
1858 node_set(b, this_group);
1859 node_clear(b, nodes);
1860 }
1861 }
1862
1863 /* Remember the top group. */
1864 if (faults > max_faults) {
1865 max_faults = faults;
1866 max_group = this_group;
1867 /*
1868 * subtle: at the smallest distance there is
1869 * just one node left in each "group", the
1870 * winner is the preferred nid.
1871 */
1872 nid = a;
1873 }
1874 }
1875 /* Next round, evaluate the nodes within max_group. */
1876 if (!max_faults)
1877 break;
1878 nodes = max_group;
1879 }
1880 return nid;
1881 }
1882
1883 static void task_numa_placement(struct task_struct *p)
1884 {
1885 int seq, nid, max_nid = -1, max_group_nid = -1;
1886 unsigned long max_faults = 0, max_group_faults = 0;
1887 unsigned long fault_types[2] = { 0, 0 };
1888 unsigned long total_faults;
1889 u64 runtime, period;
1890 spinlock_t *group_lock = NULL;
1891
1892 /*
1893 * The p->mm->numa_scan_seq field gets updated without
1894 * exclusive access. Use READ_ONCE() here to ensure
1895 * that the field is read in a single access:
1896 */
1897 seq = READ_ONCE(p->mm->numa_scan_seq);
1898 if (p->numa_scan_seq == seq)
1899 return;
1900 p->numa_scan_seq = seq;
1901 p->numa_scan_period_max = task_scan_max(p);
1902
1903 total_faults = p->numa_faults_locality[0] +
1904 p->numa_faults_locality[1];
1905 runtime = numa_get_avg_runtime(p, &period);
1906
1907 /* If the task is part of a group prevent parallel updates to group stats */
1908 if (p->numa_group) {
1909 group_lock = &p->numa_group->lock;
1910 spin_lock_irq(group_lock);
1911 }
1912
1913 /* Find the node with the highest number of faults */
1914 for_each_online_node(nid) {
1915 /* Keep track of the offsets in numa_faults array */
1916 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1917 unsigned long faults = 0, group_faults = 0;
1918 int priv;
1919
1920 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1921 long diff, f_diff, f_weight;
1922
1923 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1924 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1925 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1926 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1927
1928 /* Decay existing window, copy faults since last scan */
1929 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1930 fault_types[priv] += p->numa_faults[membuf_idx];
1931 p->numa_faults[membuf_idx] = 0;
1932
1933 /*
1934 * Normalize the faults_from, so all tasks in a group
1935 * count according to CPU use, instead of by the raw
1936 * number of faults. Tasks with little runtime have
1937 * little over-all impact on throughput, and thus their
1938 * faults are less important.
1939 */
1940 f_weight = div64_u64(runtime << 16, period + 1);
1941 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1942 (total_faults + 1);
1943 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1944 p->numa_faults[cpubuf_idx] = 0;
1945
1946 p->numa_faults[mem_idx] += diff;
1947 p->numa_faults[cpu_idx] += f_diff;
1948 faults += p->numa_faults[mem_idx];
1949 p->total_numa_faults += diff;
1950 if (p->numa_group) {
1951 /*
1952 * safe because we can only change our own group
1953 *
1954 * mem_idx represents the offset for a given
1955 * nid and priv in a specific region because it
1956 * is at the beginning of the numa_faults array.
1957 */
1958 p->numa_group->faults[mem_idx] += diff;
1959 p->numa_group->faults_cpu[mem_idx] += f_diff;
1960 p->numa_group->total_faults += diff;
1961 group_faults += p->numa_group->faults[mem_idx];
1962 }
1963 }
1964
1965 if (faults > max_faults) {
1966 max_faults = faults;
1967 max_nid = nid;
1968 }
1969
1970 if (group_faults > max_group_faults) {
1971 max_group_faults = group_faults;
1972 max_group_nid = nid;
1973 }
1974 }
1975
1976 update_task_scan_period(p, fault_types[0], fault_types[1]);
1977
1978 if (p->numa_group) {
1979 numa_group_count_active_nodes(p->numa_group);
1980 spin_unlock_irq(group_lock);
1981 max_nid = preferred_group_nid(p, max_group_nid);
1982 }
1983
1984 if (max_faults) {
1985 /* Set the new preferred node */
1986 if (max_nid != p->numa_preferred_nid)
1987 sched_setnuma(p, max_nid);
1988
1989 if (task_node(p) != p->numa_preferred_nid)
1990 numa_migrate_preferred(p);
1991 }
1992 }
1993
1994 static inline int get_numa_group(struct numa_group *grp)
1995 {
1996 return atomic_inc_not_zero(&grp->refcount);
1997 }
1998
1999 static inline void put_numa_group(struct numa_group *grp)
2000 {
2001 if (atomic_dec_and_test(&grp->refcount))
2002 kfree_rcu(grp, rcu);
2003 }
2004
2005 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2006 int *priv)
2007 {
2008 struct numa_group *grp, *my_grp;
2009 struct task_struct *tsk;
2010 bool join = false;
2011 int cpu = cpupid_to_cpu(cpupid);
2012 int i;
2013
2014 if (unlikely(!p->numa_group)) {
2015 unsigned int size = sizeof(struct numa_group) +
2016 4*nr_node_ids*sizeof(unsigned long);
2017
2018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2019 if (!grp)
2020 return;
2021
2022 atomic_set(&grp->refcount, 1);
2023 grp->active_nodes = 1;
2024 grp->max_faults_cpu = 0;
2025 spin_lock_init(&grp->lock);
2026 grp->gid = p->pid;
2027 /* Second half of the array tracks nids where faults happen */
2028 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2029 nr_node_ids;
2030
2031 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2032 grp->faults[i] = p->numa_faults[i];
2033
2034 grp->total_faults = p->total_numa_faults;
2035
2036 grp->nr_tasks++;
2037 rcu_assign_pointer(p->numa_group, grp);
2038 }
2039
2040 rcu_read_lock();
2041 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2042
2043 if (!cpupid_match_pid(tsk, cpupid))
2044 goto no_join;
2045
2046 grp = rcu_dereference(tsk->numa_group);
2047 if (!grp)
2048 goto no_join;
2049
2050 my_grp = p->numa_group;
2051 if (grp == my_grp)
2052 goto no_join;
2053
2054 /*
2055 * Only join the other group if its bigger; if we're the bigger group,
2056 * the other task will join us.
2057 */
2058 if (my_grp->nr_tasks > grp->nr_tasks)
2059 goto no_join;
2060
2061 /*
2062 * Tie-break on the grp address.
2063 */
2064 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2065 goto no_join;
2066
2067 /* Always join threads in the same process. */
2068 if (tsk->mm == current->mm)
2069 join = true;
2070
2071 /* Simple filter to avoid false positives due to PID collisions */
2072 if (flags & TNF_SHARED)
2073 join = true;
2074
2075 /* Update priv based on whether false sharing was detected */
2076 *priv = !join;
2077
2078 if (join && !get_numa_group(grp))
2079 goto no_join;
2080
2081 rcu_read_unlock();
2082
2083 if (!join)
2084 return;
2085
2086 BUG_ON(irqs_disabled());
2087 double_lock_irq(&my_grp->lock, &grp->lock);
2088
2089 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2090 my_grp->faults[i] -= p->numa_faults[i];
2091 grp->faults[i] += p->numa_faults[i];
2092 }
2093 my_grp->total_faults -= p->total_numa_faults;
2094 grp->total_faults += p->total_numa_faults;
2095
2096 my_grp->nr_tasks--;
2097 grp->nr_tasks++;
2098
2099 spin_unlock(&my_grp->lock);
2100 spin_unlock_irq(&grp->lock);
2101
2102 rcu_assign_pointer(p->numa_group, grp);
2103
2104 put_numa_group(my_grp);
2105 return;
2106
2107 no_join:
2108 rcu_read_unlock();
2109 return;
2110 }
2111
2112 void task_numa_free(struct task_struct *p)
2113 {
2114 struct numa_group *grp = p->numa_group;
2115 void *numa_faults = p->numa_faults;
2116 unsigned long flags;
2117 int i;
2118
2119 if (grp) {
2120 spin_lock_irqsave(&grp->lock, flags);
2121 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2122 grp->faults[i] -= p->numa_faults[i];
2123 grp->total_faults -= p->total_numa_faults;
2124
2125 grp->nr_tasks--;
2126 spin_unlock_irqrestore(&grp->lock, flags);
2127 RCU_INIT_POINTER(p->numa_group, NULL);
2128 put_numa_group(grp);
2129 }
2130
2131 p->numa_faults = NULL;
2132 kfree(numa_faults);
2133 }
2134
2135 /*
2136 * Got a PROT_NONE fault for a page on @node.
2137 */
2138 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2139 {
2140 struct task_struct *p = current;
2141 bool migrated = flags & TNF_MIGRATED;
2142 int cpu_node = task_node(current);
2143 int local = !!(flags & TNF_FAULT_LOCAL);
2144 struct numa_group *ng;
2145 int priv;
2146
2147 if (!static_branch_likely(&sched_numa_balancing))
2148 return;
2149
2150 /* for example, ksmd faulting in a user's mm */
2151 if (!p->mm)
2152 return;
2153
2154 /* Allocate buffer to track faults on a per-node basis */
2155 if (unlikely(!p->numa_faults)) {
2156 int size = sizeof(*p->numa_faults) *
2157 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2158
2159 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2160 if (!p->numa_faults)
2161 return;
2162
2163 p->total_numa_faults = 0;
2164 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2165 }
2166
2167 /*
2168 * First accesses are treated as private, otherwise consider accesses
2169 * to be private if the accessing pid has not changed
2170 */
2171 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2172 priv = 1;
2173 } else {
2174 priv = cpupid_match_pid(p, last_cpupid);
2175 if (!priv && !(flags & TNF_NO_GROUP))
2176 task_numa_group(p, last_cpupid, flags, &priv);
2177 }
2178
2179 /*
2180 * If a workload spans multiple NUMA nodes, a shared fault that
2181 * occurs wholly within the set of nodes that the workload is
2182 * actively using should be counted as local. This allows the
2183 * scan rate to slow down when a workload has settled down.
2184 */
2185 ng = p->numa_group;
2186 if (!priv && !local && ng && ng->active_nodes > 1 &&
2187 numa_is_active_node(cpu_node, ng) &&
2188 numa_is_active_node(mem_node, ng))
2189 local = 1;
2190
2191 task_numa_placement(p);
2192
2193 /*
2194 * Retry task to preferred node migration periodically, in case it
2195 * case it previously failed, or the scheduler moved us.
2196 */
2197 if (time_after(jiffies, p->numa_migrate_retry))
2198 numa_migrate_preferred(p);
2199
2200 if (migrated)
2201 p->numa_pages_migrated += pages;
2202 if (flags & TNF_MIGRATE_FAIL)
2203 p->numa_faults_locality[2] += pages;
2204
2205 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2206 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2207 p->numa_faults_locality[local] += pages;
2208 }
2209
2210 static void reset_ptenuma_scan(struct task_struct *p)
2211 {
2212 /*
2213 * We only did a read acquisition of the mmap sem, so
2214 * p->mm->numa_scan_seq is written to without exclusive access
2215 * and the update is not guaranteed to be atomic. That's not
2216 * much of an issue though, since this is just used for
2217 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2218 * expensive, to avoid any form of compiler optimizations:
2219 */
2220 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2221 p->mm->numa_scan_offset = 0;
2222 }
2223
2224 /*
2225 * The expensive part of numa migration is done from task_work context.
2226 * Triggered from task_tick_numa().
2227 */
2228 void task_numa_work(struct callback_head *work)
2229 {
2230 unsigned long migrate, next_scan, now = jiffies;
2231 struct task_struct *p = current;
2232 struct mm_struct *mm = p->mm;
2233 u64 runtime = p->se.sum_exec_runtime;
2234 struct vm_area_struct *vma;
2235 unsigned long start, end;
2236 unsigned long nr_pte_updates = 0;
2237 long pages, virtpages;
2238
2239 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2240
2241 work->next = work; /* protect against double add */
2242 /*
2243 * Who cares about NUMA placement when they're dying.
2244 *
2245 * NOTE: make sure not to dereference p->mm before this check,
2246 * exit_task_work() happens _after_ exit_mm() so we could be called
2247 * without p->mm even though we still had it when we enqueued this
2248 * work.
2249 */
2250 if (p->flags & PF_EXITING)
2251 return;
2252
2253 if (!mm->numa_next_scan) {
2254 mm->numa_next_scan = now +
2255 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2256 }
2257
2258 /*
2259 * Enforce maximal scan/migration frequency..
2260 */
2261 migrate = mm->numa_next_scan;
2262 if (time_before(now, migrate))
2263 return;
2264
2265 if (p->numa_scan_period == 0) {
2266 p->numa_scan_period_max = task_scan_max(p);
2267 p->numa_scan_period = task_scan_min(p);
2268 }
2269
2270 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2271 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2272 return;
2273
2274 /*
2275 * Delay this task enough that another task of this mm will likely win
2276 * the next time around.
2277 */
2278 p->node_stamp += 2 * TICK_NSEC;
2279
2280 start = mm->numa_scan_offset;
2281 pages = sysctl_numa_balancing_scan_size;
2282 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2283 virtpages = pages * 8; /* Scan up to this much virtual space */
2284 if (!pages)
2285 return;
2286
2287
2288 down_read(&mm->mmap_sem);
2289 vma = find_vma(mm, start);
2290 if (!vma) {
2291 reset_ptenuma_scan(p);
2292 start = 0;
2293 vma = mm->mmap;
2294 }
2295 for (; vma; vma = vma->vm_next) {
2296 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2297 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2298 continue;
2299 }
2300
2301 /*
2302 * Shared library pages mapped by multiple processes are not
2303 * migrated as it is expected they are cache replicated. Avoid
2304 * hinting faults in read-only file-backed mappings or the vdso
2305 * as migrating the pages will be of marginal benefit.
2306 */
2307 if (!vma->vm_mm ||
2308 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2309 continue;
2310
2311 /*
2312 * Skip inaccessible VMAs to avoid any confusion between
2313 * PROT_NONE and NUMA hinting ptes
2314 */
2315 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2316 continue;
2317
2318 do {
2319 start = max(start, vma->vm_start);
2320 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2321 end = min(end, vma->vm_end);
2322 nr_pte_updates = change_prot_numa(vma, start, end);
2323
2324 /*
2325 * Try to scan sysctl_numa_balancing_size worth of
2326 * hpages that have at least one present PTE that
2327 * is not already pte-numa. If the VMA contains
2328 * areas that are unused or already full of prot_numa
2329 * PTEs, scan up to virtpages, to skip through those
2330 * areas faster.
2331 */
2332 if (nr_pte_updates)
2333 pages -= (end - start) >> PAGE_SHIFT;
2334 virtpages -= (end - start) >> PAGE_SHIFT;
2335
2336 start = end;
2337 if (pages <= 0 || virtpages <= 0)
2338 goto out;
2339
2340 cond_resched();
2341 } while (end != vma->vm_end);
2342 }
2343
2344 out:
2345 /*
2346 * It is possible to reach the end of the VMA list but the last few
2347 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2348 * would find the !migratable VMA on the next scan but not reset the
2349 * scanner to the start so check it now.
2350 */
2351 if (vma)
2352 mm->numa_scan_offset = start;
2353 else
2354 reset_ptenuma_scan(p);
2355 up_read(&mm->mmap_sem);
2356
2357 /*
2358 * Make sure tasks use at least 32x as much time to run other code
2359 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2360 * Usually update_task_scan_period slows down scanning enough; on an
2361 * overloaded system we need to limit overhead on a per task basis.
2362 */
2363 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2364 u64 diff = p->se.sum_exec_runtime - runtime;
2365 p->node_stamp += 32 * diff;
2366 }
2367 }
2368
2369 /*
2370 * Drive the periodic memory faults..
2371 */
2372 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2373 {
2374 struct callback_head *work = &curr->numa_work;
2375 u64 period, now;
2376
2377 /*
2378 * We don't care about NUMA placement if we don't have memory.
2379 */
2380 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2381 return;
2382
2383 /*
2384 * Using runtime rather than walltime has the dual advantage that
2385 * we (mostly) drive the selection from busy threads and that the
2386 * task needs to have done some actual work before we bother with
2387 * NUMA placement.
2388 */
2389 now = curr->se.sum_exec_runtime;
2390 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2391
2392 if (now > curr->node_stamp + period) {
2393 if (!curr->node_stamp)
2394 curr->numa_scan_period = task_scan_min(curr);
2395 curr->node_stamp += period;
2396
2397 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2398 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2399 task_work_add(curr, work, true);
2400 }
2401 }
2402 }
2403 #else
2404 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2405 {
2406 }
2407
2408 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2409 {
2410 }
2411
2412 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2413 {
2414 }
2415 #endif /* CONFIG_NUMA_BALANCING */
2416
2417 static void
2418 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2419 {
2420 update_load_add(&cfs_rq->load, se->load.weight);
2421 if (!parent_entity(se))
2422 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2423 #ifdef CONFIG_SMP
2424 if (entity_is_task(se)) {
2425 struct rq *rq = rq_of(cfs_rq);
2426
2427 account_numa_enqueue(rq, task_of(se));
2428 list_add(&se->group_node, &rq->cfs_tasks);
2429 }
2430 #endif
2431 cfs_rq->nr_running++;
2432 }
2433
2434 static void
2435 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2436 {
2437 update_load_sub(&cfs_rq->load, se->load.weight);
2438 if (!parent_entity(se))
2439 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2440 if (entity_is_task(se)) {
2441 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2442 list_del_init(&se->group_node);
2443 }
2444 cfs_rq->nr_running--;
2445 }
2446
2447 #ifdef CONFIG_FAIR_GROUP_SCHED
2448 # ifdef CONFIG_SMP
2449 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2450 {
2451 long tg_weight;
2452
2453 /*
2454 * Use this CPU's real-time load instead of the last load contribution
2455 * as the updating of the contribution is delayed, and we will use the
2456 * the real-time load to calc the share. See update_tg_load_avg().
2457 */
2458 tg_weight = atomic_long_read(&tg->load_avg);
2459 tg_weight -= cfs_rq->tg_load_avg_contrib;
2460 tg_weight += cfs_rq->load.weight;
2461
2462 return tg_weight;
2463 }
2464
2465 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2466 {
2467 long tg_weight, load, shares;
2468
2469 tg_weight = calc_tg_weight(tg, cfs_rq);
2470 load = cfs_rq->load.weight;
2471
2472 shares = (tg->shares * load);
2473 if (tg_weight)
2474 shares /= tg_weight;
2475
2476 if (shares < MIN_SHARES)
2477 shares = MIN_SHARES;
2478 if (shares > tg->shares)
2479 shares = tg->shares;
2480
2481 return shares;
2482 }
2483 # else /* CONFIG_SMP */
2484 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2485 {
2486 return tg->shares;
2487 }
2488 # endif /* CONFIG_SMP */
2489 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2490 unsigned long weight)
2491 {
2492 if (se->on_rq) {
2493 /* commit outstanding execution time */
2494 if (cfs_rq->curr == se)
2495 update_curr(cfs_rq);
2496 account_entity_dequeue(cfs_rq, se);
2497 }
2498
2499 update_load_set(&se->load, weight);
2500
2501 if (se->on_rq)
2502 account_entity_enqueue(cfs_rq, se);
2503 }
2504
2505 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2506
2507 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2508 {
2509 struct task_group *tg;
2510 struct sched_entity *se;
2511 long shares;
2512
2513 tg = cfs_rq->tg;
2514 se = tg->se[cpu_of(rq_of(cfs_rq))];
2515 if (!se || throttled_hierarchy(cfs_rq))
2516 return;
2517 #ifndef CONFIG_SMP
2518 if (likely(se->load.weight == tg->shares))
2519 return;
2520 #endif
2521 shares = calc_cfs_shares(cfs_rq, tg);
2522
2523 reweight_entity(cfs_rq_of(se), se, shares);
2524 }
2525 #else /* CONFIG_FAIR_GROUP_SCHED */
2526 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2527 {
2528 }
2529 #endif /* CONFIG_FAIR_GROUP_SCHED */
2530
2531 #ifdef CONFIG_SMP
2532 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2533 static const u32 runnable_avg_yN_inv[] = {
2534 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2535 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2536 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2537 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2538 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2539 0x85aac367, 0x82cd8698,
2540 };
2541
2542 /*
2543 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2544 * over-estimates when re-combining.
2545 */
2546 static const u32 runnable_avg_yN_sum[] = {
2547 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2548 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2549 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2550 };
2551
2552 /*
2553 * Approximate:
2554 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2555 */
2556 static __always_inline u64 decay_load(u64 val, u64 n)
2557 {
2558 unsigned int local_n;
2559
2560 if (!n)
2561 return val;
2562 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2563 return 0;
2564
2565 /* after bounds checking we can collapse to 32-bit */
2566 local_n = n;
2567
2568 /*
2569 * As y^PERIOD = 1/2, we can combine
2570 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2571 * With a look-up table which covers y^n (n<PERIOD)
2572 *
2573 * To achieve constant time decay_load.
2574 */
2575 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2576 val >>= local_n / LOAD_AVG_PERIOD;
2577 local_n %= LOAD_AVG_PERIOD;
2578 }
2579
2580 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2581 return val;
2582 }
2583
2584 /*
2585 * For updates fully spanning n periods, the contribution to runnable
2586 * average will be: \Sum 1024*y^n
2587 *
2588 * We can compute this reasonably efficiently by combining:
2589 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2590 */
2591 static u32 __compute_runnable_contrib(u64 n)
2592 {
2593 u32 contrib = 0;
2594
2595 if (likely(n <= LOAD_AVG_PERIOD))
2596 return runnable_avg_yN_sum[n];
2597 else if (unlikely(n >= LOAD_AVG_MAX_N))
2598 return LOAD_AVG_MAX;
2599
2600 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2601 do {
2602 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2603 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2604
2605 n -= LOAD_AVG_PERIOD;
2606 } while (n > LOAD_AVG_PERIOD);
2607
2608 contrib = decay_load(contrib, n);
2609 return contrib + runnable_avg_yN_sum[n];
2610 }
2611
2612 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2613 #error "load tracking assumes 2^10 as unit"
2614 #endif
2615
2616 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2617
2618 /*
2619 * We can represent the historical contribution to runnable average as the
2620 * coefficients of a geometric series. To do this we sub-divide our runnable
2621 * history into segments of approximately 1ms (1024us); label the segment that
2622 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2623 *
2624 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2625 * p0 p1 p2
2626 * (now) (~1ms ago) (~2ms ago)
2627 *
2628 * Let u_i denote the fraction of p_i that the entity was runnable.
2629 *
2630 * We then designate the fractions u_i as our co-efficients, yielding the
2631 * following representation of historical load:
2632 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2633 *
2634 * We choose y based on the with of a reasonably scheduling period, fixing:
2635 * y^32 = 0.5
2636 *
2637 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2638 * approximately half as much as the contribution to load within the last ms
2639 * (u_0).
2640 *
2641 * When a period "rolls over" and we have new u_0`, multiplying the previous
2642 * sum again by y is sufficient to update:
2643 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2644 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2645 */
2646 static __always_inline int
2647 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2648 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2649 {
2650 u64 delta, scaled_delta, periods;
2651 u32 contrib;
2652 unsigned int delta_w, scaled_delta_w, decayed = 0;
2653 unsigned long scale_freq, scale_cpu;
2654
2655 delta = now - sa->last_update_time;
2656 /*
2657 * This should only happen when time goes backwards, which it
2658 * unfortunately does during sched clock init when we swap over to TSC.
2659 */
2660 if ((s64)delta < 0) {
2661 sa->last_update_time = now;
2662 return 0;
2663 }
2664
2665 /*
2666 * Use 1024ns as the unit of measurement since it's a reasonable
2667 * approximation of 1us and fast to compute.
2668 */
2669 delta >>= 10;
2670 if (!delta)
2671 return 0;
2672 sa->last_update_time = now;
2673
2674 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2675 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2676
2677 /* delta_w is the amount already accumulated against our next period */
2678 delta_w = sa->period_contrib;
2679 if (delta + delta_w >= 1024) {
2680 decayed = 1;
2681
2682 /* how much left for next period will start over, we don't know yet */
2683 sa->period_contrib = 0;
2684
2685 /*
2686 * Now that we know we're crossing a period boundary, figure
2687 * out how much from delta we need to complete the current
2688 * period and accrue it.
2689 */
2690 delta_w = 1024 - delta_w;
2691 scaled_delta_w = cap_scale(delta_w, scale_freq);
2692 if (weight) {
2693 sa->load_sum += weight * scaled_delta_w;
2694 if (cfs_rq) {
2695 cfs_rq->runnable_load_sum +=
2696 weight * scaled_delta_w;
2697 }
2698 }
2699 if (running)
2700 sa->util_sum += scaled_delta_w * scale_cpu;
2701
2702 delta -= delta_w;
2703
2704 /* Figure out how many additional periods this update spans */
2705 periods = delta / 1024;
2706 delta %= 1024;
2707
2708 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2709 if (cfs_rq) {
2710 cfs_rq->runnable_load_sum =
2711 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2712 }
2713 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2714
2715 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2716 contrib = __compute_runnable_contrib(periods);
2717 contrib = cap_scale(contrib, scale_freq);
2718 if (weight) {
2719 sa->load_sum += weight * contrib;
2720 if (cfs_rq)
2721 cfs_rq->runnable_load_sum += weight * contrib;
2722 }
2723 if (running)
2724 sa->util_sum += contrib * scale_cpu;
2725 }
2726
2727 /* Remainder of delta accrued against u_0` */
2728 scaled_delta = cap_scale(delta, scale_freq);
2729 if (weight) {
2730 sa->load_sum += weight * scaled_delta;
2731 if (cfs_rq)
2732 cfs_rq->runnable_load_sum += weight * scaled_delta;
2733 }
2734 if (running)
2735 sa->util_sum += scaled_delta * scale_cpu;
2736
2737 sa->period_contrib += delta;
2738
2739 if (decayed) {
2740 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2741 if (cfs_rq) {
2742 cfs_rq->runnable_load_avg =
2743 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2744 }
2745 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2746 }
2747
2748 return decayed;
2749 }
2750
2751 #ifdef CONFIG_FAIR_GROUP_SCHED
2752 /*
2753 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2754 * and effective_load (which is not done because it is too costly).
2755 */
2756 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2757 {
2758 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2759
2760 /*
2761 * No need to update load_avg for root_task_group as it is not used.
2762 */
2763 if (cfs_rq->tg == &root_task_group)
2764 return;
2765
2766 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2767 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2768 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2769 }
2770 }
2771
2772 /*
2773 * Called within set_task_rq() right before setting a task's cpu. The
2774 * caller only guarantees p->pi_lock is held; no other assumptions,
2775 * including the state of rq->lock, should be made.
2776 */
2777 void set_task_rq_fair(struct sched_entity *se,
2778 struct cfs_rq *prev, struct cfs_rq *next)
2779 {
2780 if (!sched_feat(ATTACH_AGE_LOAD))
2781 return;
2782
2783 /*
2784 * We are supposed to update the task to "current" time, then its up to
2785 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2786 * getting what current time is, so simply throw away the out-of-date
2787 * time. This will result in the wakee task is less decayed, but giving
2788 * the wakee more load sounds not bad.
2789 */
2790 if (se->avg.last_update_time && prev) {
2791 u64 p_last_update_time;
2792 u64 n_last_update_time;
2793
2794 #ifndef CONFIG_64BIT
2795 u64 p_last_update_time_copy;
2796 u64 n_last_update_time_copy;
2797
2798 do {
2799 p_last_update_time_copy = prev->load_last_update_time_copy;
2800 n_last_update_time_copy = next->load_last_update_time_copy;
2801
2802 smp_rmb();
2803
2804 p_last_update_time = prev->avg.last_update_time;
2805 n_last_update_time = next->avg.last_update_time;
2806
2807 } while (p_last_update_time != p_last_update_time_copy ||
2808 n_last_update_time != n_last_update_time_copy);
2809 #else
2810 p_last_update_time = prev->avg.last_update_time;
2811 n_last_update_time = next->avg.last_update_time;
2812 #endif
2813 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2814 &se->avg, 0, 0, NULL);
2815 se->avg.last_update_time = n_last_update_time;
2816 }
2817 }
2818 #else /* CONFIG_FAIR_GROUP_SCHED */
2819 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2820 #endif /* CONFIG_FAIR_GROUP_SCHED */
2821
2822 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2823
2824 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2825 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2826 {
2827 struct sched_avg *sa = &cfs_rq->avg;
2828 int decayed, removed = 0;
2829
2830 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2831 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2832 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2833 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2834 removed = 1;
2835 }
2836
2837 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2838 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2839 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2840 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2841 }
2842
2843 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2844 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2845
2846 #ifndef CONFIG_64BIT
2847 smp_wmb();
2848 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2849 #endif
2850
2851 return decayed || removed;
2852 }
2853
2854 /* Update task and its cfs_rq load average */
2855 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2856 {
2857 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2858 u64 now = cfs_rq_clock_task(cfs_rq);
2859 int cpu = cpu_of(rq_of(cfs_rq));
2860
2861 /*
2862 * Track task load average for carrying it to new CPU after migrated, and
2863 * track group sched_entity load average for task_h_load calc in migration
2864 */
2865 __update_load_avg(now, cpu, &se->avg,
2866 se->on_rq * scale_load_down(se->load.weight),
2867 cfs_rq->curr == se, NULL);
2868
2869 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2870 update_tg_load_avg(cfs_rq, 0);
2871 }
2872
2873 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2874 {
2875 if (!sched_feat(ATTACH_AGE_LOAD))
2876 goto skip_aging;
2877
2878 /*
2879 * If we got migrated (either between CPUs or between cgroups) we'll
2880 * have aged the average right before clearing @last_update_time.
2881 */
2882 if (se->avg.last_update_time) {
2883 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2884 &se->avg, 0, 0, NULL);
2885
2886 /*
2887 * XXX: we could have just aged the entire load away if we've been
2888 * absent from the fair class for too long.
2889 */
2890 }
2891
2892 skip_aging:
2893 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2894 cfs_rq->avg.load_avg += se->avg.load_avg;
2895 cfs_rq->avg.load_sum += se->avg.load_sum;
2896 cfs_rq->avg.util_avg += se->avg.util_avg;
2897 cfs_rq->avg.util_sum += se->avg.util_sum;
2898 }
2899
2900 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2901 {
2902 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2903 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2904 cfs_rq->curr == se, NULL);
2905
2906 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2907 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2908 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2909 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2910 }
2911
2912 /* Add the load generated by se into cfs_rq's load average */
2913 static inline void
2914 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2915 {
2916 struct sched_avg *sa = &se->avg;
2917 u64 now = cfs_rq_clock_task(cfs_rq);
2918 int migrated, decayed;
2919
2920 migrated = !sa->last_update_time;
2921 if (!migrated) {
2922 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2923 se->on_rq * scale_load_down(se->load.weight),
2924 cfs_rq->curr == se, NULL);
2925 }
2926
2927 decayed = update_cfs_rq_load_avg(now, cfs_rq);
2928
2929 cfs_rq->runnable_load_avg += sa->load_avg;
2930 cfs_rq->runnable_load_sum += sa->load_sum;
2931
2932 if (migrated)
2933 attach_entity_load_avg(cfs_rq, se);
2934
2935 if (decayed || migrated)
2936 update_tg_load_avg(cfs_rq, 0);
2937 }
2938
2939 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
2940 static inline void
2941 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2942 {
2943 update_load_avg(se, 1);
2944
2945 cfs_rq->runnable_load_avg =
2946 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2947 cfs_rq->runnable_load_sum =
2948 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2949 }
2950
2951 #ifndef CONFIG_64BIT
2952 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2953 {
2954 u64 last_update_time_copy;
2955 u64 last_update_time;
2956
2957 do {
2958 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2959 smp_rmb();
2960 last_update_time = cfs_rq->avg.last_update_time;
2961 } while (last_update_time != last_update_time_copy);
2962
2963 return last_update_time;
2964 }
2965 #else
2966 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2967 {
2968 return cfs_rq->avg.last_update_time;
2969 }
2970 #endif
2971
2972 /*
2973 * Task first catches up with cfs_rq, and then subtract
2974 * itself from the cfs_rq (task must be off the queue now).
2975 */
2976 void remove_entity_load_avg(struct sched_entity *se)
2977 {
2978 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2979 u64 last_update_time;
2980
2981 /*
2982 * Newly created task or never used group entity should not be removed
2983 * from its (source) cfs_rq
2984 */
2985 if (se->avg.last_update_time == 0)
2986 return;
2987
2988 last_update_time = cfs_rq_last_update_time(cfs_rq);
2989
2990 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2991 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2992 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2993 }
2994
2995 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2996 {
2997 return cfs_rq->runnable_load_avg;
2998 }
2999
3000 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3001 {
3002 return cfs_rq->avg.load_avg;
3003 }
3004
3005 static int idle_balance(struct rq *this_rq);
3006
3007 #else /* CONFIG_SMP */
3008
3009 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3010 static inline void
3011 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3012 static inline void
3013 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3014 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3015
3016 static inline void
3017 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3018 static inline void
3019 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3020
3021 static inline int idle_balance(struct rq *rq)
3022 {
3023 return 0;
3024 }
3025
3026 #endif /* CONFIG_SMP */
3027
3028 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3029 {
3030 #ifdef CONFIG_SCHEDSTATS
3031 struct task_struct *tsk = NULL;
3032
3033 if (entity_is_task(se))
3034 tsk = task_of(se);
3035
3036 if (se->statistics.sleep_start) {
3037 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3038
3039 if ((s64)delta < 0)
3040 delta = 0;
3041
3042 if (unlikely(delta > se->statistics.sleep_max))
3043 se->statistics.sleep_max = delta;
3044
3045 se->statistics.sleep_start = 0;
3046 se->statistics.sum_sleep_runtime += delta;
3047
3048 if (tsk) {
3049 account_scheduler_latency(tsk, delta >> 10, 1);
3050 trace_sched_stat_sleep(tsk, delta);
3051 }
3052 }
3053 if (se->statistics.block_start) {
3054 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3055
3056 if ((s64)delta < 0)
3057 delta = 0;
3058
3059 if (unlikely(delta > se->statistics.block_max))
3060 se->statistics.block_max = delta;
3061
3062 se->statistics.block_start = 0;
3063 se->statistics.sum_sleep_runtime += delta;
3064
3065 if (tsk) {
3066 if (tsk->in_iowait) {
3067 se->statistics.iowait_sum += delta;
3068 se->statistics.iowait_count++;
3069 trace_sched_stat_iowait(tsk, delta);
3070 }
3071
3072 trace_sched_stat_blocked(tsk, delta);
3073
3074 /*
3075 * Blocking time is in units of nanosecs, so shift by
3076 * 20 to get a milliseconds-range estimation of the
3077 * amount of time that the task spent sleeping:
3078 */
3079 if (unlikely(prof_on == SLEEP_PROFILING)) {
3080 profile_hits(SLEEP_PROFILING,
3081 (void *)get_wchan(tsk),
3082 delta >> 20);
3083 }
3084 account_scheduler_latency(tsk, delta >> 10, 0);
3085 }
3086 }
3087 #endif
3088 }
3089
3090 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3091 {
3092 #ifdef CONFIG_SCHED_DEBUG
3093 s64 d = se->vruntime - cfs_rq->min_vruntime;
3094
3095 if (d < 0)
3096 d = -d;
3097
3098 if (d > 3*sysctl_sched_latency)
3099 schedstat_inc(cfs_rq, nr_spread_over);
3100 #endif
3101 }
3102
3103 static void
3104 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3105 {
3106 u64 vruntime = cfs_rq->min_vruntime;
3107
3108 /*
3109 * The 'current' period is already promised to the current tasks,
3110 * however the extra weight of the new task will slow them down a
3111 * little, place the new task so that it fits in the slot that
3112 * stays open at the end.
3113 */
3114 if (initial && sched_feat(START_DEBIT))
3115 vruntime += sched_vslice(cfs_rq, se);
3116
3117 /* sleeps up to a single latency don't count. */
3118 if (!initial) {
3119 unsigned long thresh = sysctl_sched_latency;
3120
3121 /*
3122 * Halve their sleep time's effect, to allow
3123 * for a gentler effect of sleepers:
3124 */
3125 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3126 thresh >>= 1;
3127
3128 vruntime -= thresh;
3129 }
3130
3131 /* ensure we never gain time by being placed backwards. */
3132 se->vruntime = max_vruntime(se->vruntime, vruntime);
3133 }
3134
3135 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3136
3137 static inline void check_schedstat_required(void)
3138 {
3139 #ifdef CONFIG_SCHEDSTATS
3140 if (schedstat_enabled())
3141 return;
3142
3143 /* Force schedstat enabled if a dependent tracepoint is active */
3144 if (trace_sched_stat_wait_enabled() ||
3145 trace_sched_stat_sleep_enabled() ||
3146 trace_sched_stat_iowait_enabled() ||
3147 trace_sched_stat_blocked_enabled() ||
3148 trace_sched_stat_runtime_enabled()) {
3149 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3150 "stat_blocked and stat_runtime require the "
3151 "kernel parameter schedstats=enabled or "
3152 "kernel.sched_schedstats=1\n");
3153 }
3154 #endif
3155 }
3156
3157 static void
3158 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3159 {
3160 /*
3161 * Update the normalized vruntime before updating min_vruntime
3162 * through calling update_curr().
3163 */
3164 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3165 se->vruntime += cfs_rq->min_vruntime;
3166
3167 /*
3168 * Update run-time statistics of the 'current'.
3169 */
3170 update_curr(cfs_rq);
3171 enqueue_entity_load_avg(cfs_rq, se);
3172 account_entity_enqueue(cfs_rq, se);
3173 update_cfs_shares(cfs_rq);
3174
3175 if (flags & ENQUEUE_WAKEUP) {
3176 place_entity(cfs_rq, se, 0);
3177 if (schedstat_enabled())
3178 enqueue_sleeper(cfs_rq, se);
3179 }
3180
3181 check_schedstat_required();
3182 if (schedstat_enabled()) {
3183 update_stats_enqueue(cfs_rq, se);
3184 check_spread(cfs_rq, se);
3185 }
3186 if (se != cfs_rq->curr)
3187 __enqueue_entity(cfs_rq, se);
3188 se->on_rq = 1;
3189
3190 if (cfs_rq->nr_running == 1) {
3191 list_add_leaf_cfs_rq(cfs_rq);
3192 check_enqueue_throttle(cfs_rq);
3193 }
3194 }
3195
3196 static void __clear_buddies_last(struct sched_entity *se)
3197 {
3198 for_each_sched_entity(se) {
3199 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3200 if (cfs_rq->last != se)
3201 break;
3202
3203 cfs_rq->last = NULL;
3204 }
3205 }
3206
3207 static void __clear_buddies_next(struct sched_entity *se)
3208 {
3209 for_each_sched_entity(se) {
3210 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3211 if (cfs_rq->next != se)
3212 break;
3213
3214 cfs_rq->next = NULL;
3215 }
3216 }
3217
3218 static void __clear_buddies_skip(struct sched_entity *se)
3219 {
3220 for_each_sched_entity(se) {
3221 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3222 if (cfs_rq->skip != se)
3223 break;
3224
3225 cfs_rq->skip = NULL;
3226 }
3227 }
3228
3229 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3230 {
3231 if (cfs_rq->last == se)
3232 __clear_buddies_last(se);
3233
3234 if (cfs_rq->next == se)
3235 __clear_buddies_next(se);
3236
3237 if (cfs_rq->skip == se)
3238 __clear_buddies_skip(se);
3239 }
3240
3241 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3242
3243 static void
3244 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3245 {
3246 /*
3247 * Update run-time statistics of the 'current'.
3248 */
3249 update_curr(cfs_rq);
3250 dequeue_entity_load_avg(cfs_rq, se);
3251
3252 if (schedstat_enabled())
3253 update_stats_dequeue(cfs_rq, se, flags);
3254
3255 clear_buddies(cfs_rq, se);
3256
3257 if (se != cfs_rq->curr)
3258 __dequeue_entity(cfs_rq, se);
3259 se->on_rq = 0;
3260 account_entity_dequeue(cfs_rq, se);
3261
3262 /*
3263 * Normalize the entity after updating the min_vruntime because the
3264 * update can refer to the ->curr item and we need to reflect this
3265 * movement in our normalized position.
3266 */
3267 if (!(flags & DEQUEUE_SLEEP))
3268 se->vruntime -= cfs_rq->min_vruntime;
3269
3270 /* return excess runtime on last dequeue */
3271 return_cfs_rq_runtime(cfs_rq);
3272
3273 update_min_vruntime(cfs_rq);
3274 update_cfs_shares(cfs_rq);
3275 }
3276
3277 /*
3278 * Preempt the current task with a newly woken task if needed:
3279 */
3280 static void
3281 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3282 {
3283 unsigned long ideal_runtime, delta_exec;
3284 struct sched_entity *se;
3285 s64 delta;
3286
3287 ideal_runtime = sched_slice(cfs_rq, curr);
3288 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3289 if (delta_exec > ideal_runtime) {
3290 resched_curr(rq_of(cfs_rq));
3291 /*
3292 * The current task ran long enough, ensure it doesn't get
3293 * re-elected due to buddy favours.
3294 */
3295 clear_buddies(cfs_rq, curr);
3296 return;
3297 }
3298
3299 /*
3300 * Ensure that a task that missed wakeup preemption by a
3301 * narrow margin doesn't have to wait for a full slice.
3302 * This also mitigates buddy induced latencies under load.
3303 */
3304 if (delta_exec < sysctl_sched_min_granularity)
3305 return;
3306
3307 se = __pick_first_entity(cfs_rq);
3308 delta = curr->vruntime - se->vruntime;
3309
3310 if (delta < 0)
3311 return;
3312
3313 if (delta > ideal_runtime)
3314 resched_curr(rq_of(cfs_rq));
3315 }
3316
3317 static void
3318 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3319 {
3320 /* 'current' is not kept within the tree. */
3321 if (se->on_rq) {
3322 /*
3323 * Any task has to be enqueued before it get to execute on
3324 * a CPU. So account for the time it spent waiting on the
3325 * runqueue.
3326 */
3327 if (schedstat_enabled())
3328 update_stats_wait_end(cfs_rq, se);
3329 __dequeue_entity(cfs_rq, se);
3330 update_load_avg(se, 1);
3331 }
3332
3333 update_stats_curr_start(cfs_rq, se);
3334 cfs_rq->curr = se;
3335 #ifdef CONFIG_SCHEDSTATS
3336 /*
3337 * Track our maximum slice length, if the CPU's load is at
3338 * least twice that of our own weight (i.e. dont track it
3339 * when there are only lesser-weight tasks around):
3340 */
3341 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3342 se->statistics.slice_max = max(se->statistics.slice_max,
3343 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3344 }
3345 #endif
3346 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3347 }
3348
3349 static int
3350 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3351
3352 /*
3353 * Pick the next process, keeping these things in mind, in this order:
3354 * 1) keep things fair between processes/task groups
3355 * 2) pick the "next" process, since someone really wants that to run
3356 * 3) pick the "last" process, for cache locality
3357 * 4) do not run the "skip" process, if something else is available
3358 */
3359 static struct sched_entity *
3360 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3361 {
3362 struct sched_entity *left = __pick_first_entity(cfs_rq);
3363 struct sched_entity *se;
3364
3365 /*
3366 * If curr is set we have to see if its left of the leftmost entity
3367 * still in the tree, provided there was anything in the tree at all.
3368 */
3369 if (!left || (curr && entity_before(curr, left)))
3370 left = curr;
3371
3372 se = left; /* ideally we run the leftmost entity */
3373
3374 /*
3375 * Avoid running the skip buddy, if running something else can
3376 * be done without getting too unfair.
3377 */
3378 if (cfs_rq->skip == se) {
3379 struct sched_entity *second;
3380
3381 if (se == curr) {
3382 second = __pick_first_entity(cfs_rq);
3383 } else {
3384 second = __pick_next_entity(se);
3385 if (!second || (curr && entity_before(curr, second)))
3386 second = curr;
3387 }
3388
3389 if (second && wakeup_preempt_entity(second, left) < 1)
3390 se = second;
3391 }
3392
3393 /*
3394 * Prefer last buddy, try to return the CPU to a preempted task.
3395 */
3396 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3397 se = cfs_rq->last;
3398
3399 /*
3400 * Someone really wants this to run. If it's not unfair, run it.
3401 */
3402 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3403 se = cfs_rq->next;
3404
3405 clear_buddies(cfs_rq, se);
3406
3407 return se;
3408 }
3409
3410 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3411
3412 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3413 {
3414 /*
3415 * If still on the runqueue then deactivate_task()
3416 * was not called and update_curr() has to be done:
3417 */
3418 if (prev->on_rq)
3419 update_curr(cfs_rq);
3420
3421 /* throttle cfs_rqs exceeding runtime */
3422 check_cfs_rq_runtime(cfs_rq);
3423
3424 if (schedstat_enabled()) {
3425 check_spread(cfs_rq, prev);
3426 if (prev->on_rq)
3427 update_stats_wait_start(cfs_rq, prev);
3428 }
3429
3430 if (prev->on_rq) {
3431 /* Put 'current' back into the tree. */
3432 __enqueue_entity(cfs_rq, prev);
3433 /* in !on_rq case, update occurred at dequeue */
3434 update_load_avg(prev, 0);
3435 }
3436 cfs_rq->curr = NULL;
3437 }
3438
3439 static void
3440 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3441 {
3442 /*
3443 * Update run-time statistics of the 'current'.
3444 */
3445 update_curr(cfs_rq);
3446
3447 /*
3448 * Ensure that runnable average is periodically updated.
3449 */
3450 update_load_avg(curr, 1);
3451 update_cfs_shares(cfs_rq);
3452
3453 #ifdef CONFIG_SCHED_HRTICK
3454 /*
3455 * queued ticks are scheduled to match the slice, so don't bother
3456 * validating it and just reschedule.
3457 */
3458 if (queued) {
3459 resched_curr(rq_of(cfs_rq));
3460 return;
3461 }
3462 /*
3463 * don't let the period tick interfere with the hrtick preemption
3464 */
3465 if (!sched_feat(DOUBLE_TICK) &&
3466 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3467 return;
3468 #endif
3469
3470 if (cfs_rq->nr_running > 1)
3471 check_preempt_tick(cfs_rq, curr);
3472 }
3473
3474
3475 /**************************************************
3476 * CFS bandwidth control machinery
3477 */
3478
3479 #ifdef CONFIG_CFS_BANDWIDTH
3480
3481 #ifdef HAVE_JUMP_LABEL
3482 static struct static_key __cfs_bandwidth_used;
3483
3484 static inline bool cfs_bandwidth_used(void)
3485 {
3486 return static_key_false(&__cfs_bandwidth_used);
3487 }
3488
3489 void cfs_bandwidth_usage_inc(void)
3490 {
3491 static_key_slow_inc(&__cfs_bandwidth_used);
3492 }
3493
3494 void cfs_bandwidth_usage_dec(void)
3495 {
3496 static_key_slow_dec(&__cfs_bandwidth_used);
3497 }
3498 #else /* HAVE_JUMP_LABEL */
3499 static bool cfs_bandwidth_used(void)
3500 {
3501 return true;
3502 }
3503
3504 void cfs_bandwidth_usage_inc(void) {}
3505 void cfs_bandwidth_usage_dec(void) {}
3506 #endif /* HAVE_JUMP_LABEL */
3507
3508 /*
3509 * default period for cfs group bandwidth.
3510 * default: 0.1s, units: nanoseconds
3511 */
3512 static inline u64 default_cfs_period(void)
3513 {
3514 return 100000000ULL;
3515 }
3516
3517 static inline u64 sched_cfs_bandwidth_slice(void)
3518 {
3519 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3520 }
3521
3522 /*
3523 * Replenish runtime according to assigned quota and update expiration time.
3524 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3525 * additional synchronization around rq->lock.
3526 *
3527 * requires cfs_b->lock
3528 */
3529 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3530 {
3531 u64 now;
3532
3533 if (cfs_b->quota == RUNTIME_INF)
3534 return;
3535
3536 now = sched_clock_cpu(smp_processor_id());
3537 cfs_b->runtime = cfs_b->quota;
3538 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3539 }
3540
3541 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3542 {
3543 return &tg->cfs_bandwidth;
3544 }
3545
3546 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3547 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3548 {
3549 if (unlikely(cfs_rq->throttle_count))
3550 return cfs_rq->throttled_clock_task;
3551
3552 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3553 }
3554
3555 /* returns 0 on failure to allocate runtime */
3556 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3557 {
3558 struct task_group *tg = cfs_rq->tg;
3559 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3560 u64 amount = 0, min_amount, expires;
3561
3562 /* note: this is a positive sum as runtime_remaining <= 0 */
3563 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3564
3565 raw_spin_lock(&cfs_b->lock);
3566 if (cfs_b->quota == RUNTIME_INF)
3567 amount = min_amount;
3568 else {
3569 start_cfs_bandwidth(cfs_b);
3570
3571 if (cfs_b->runtime > 0) {
3572 amount = min(cfs_b->runtime, min_amount);
3573 cfs_b->runtime -= amount;
3574 cfs_b->idle = 0;
3575 }
3576 }
3577 expires = cfs_b->runtime_expires;
3578 raw_spin_unlock(&cfs_b->lock);
3579
3580 cfs_rq->runtime_remaining += amount;
3581 /*
3582 * we may have advanced our local expiration to account for allowed
3583 * spread between our sched_clock and the one on which runtime was
3584 * issued.
3585 */
3586 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3587 cfs_rq->runtime_expires = expires;
3588
3589 return cfs_rq->runtime_remaining > 0;
3590 }
3591
3592 /*
3593 * Note: This depends on the synchronization provided by sched_clock and the
3594 * fact that rq->clock snapshots this value.
3595 */
3596 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3597 {
3598 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3599
3600 /* if the deadline is ahead of our clock, nothing to do */
3601 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3602 return;
3603
3604 if (cfs_rq->runtime_remaining < 0)
3605 return;
3606
3607 /*
3608 * If the local deadline has passed we have to consider the
3609 * possibility that our sched_clock is 'fast' and the global deadline
3610 * has not truly expired.
3611 *
3612 * Fortunately we can check determine whether this the case by checking
3613 * whether the global deadline has advanced. It is valid to compare
3614 * cfs_b->runtime_expires without any locks since we only care about
3615 * exact equality, so a partial write will still work.
3616 */
3617
3618 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3619 /* extend local deadline, drift is bounded above by 2 ticks */
3620 cfs_rq->runtime_expires += TICK_NSEC;
3621 } else {
3622 /* global deadline is ahead, expiration has passed */
3623 cfs_rq->runtime_remaining = 0;
3624 }
3625 }
3626
3627 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3628 {
3629 /* dock delta_exec before expiring quota (as it could span periods) */
3630 cfs_rq->runtime_remaining -= delta_exec;
3631 expire_cfs_rq_runtime(cfs_rq);
3632
3633 if (likely(cfs_rq->runtime_remaining > 0))
3634 return;
3635
3636 /*
3637 * if we're unable to extend our runtime we resched so that the active
3638 * hierarchy can be throttled
3639 */
3640 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3641 resched_curr(rq_of(cfs_rq));
3642 }
3643
3644 static __always_inline
3645 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3646 {
3647 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3648 return;
3649
3650 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3651 }
3652
3653 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3654 {
3655 return cfs_bandwidth_used() && cfs_rq->throttled;
3656 }
3657
3658 /* check whether cfs_rq, or any parent, is throttled */
3659 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3660 {
3661 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3662 }
3663
3664 /*
3665 * Ensure that neither of the group entities corresponding to src_cpu or
3666 * dest_cpu are members of a throttled hierarchy when performing group
3667 * load-balance operations.
3668 */
3669 static inline int throttled_lb_pair(struct task_group *tg,
3670 int src_cpu, int dest_cpu)
3671 {
3672 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3673
3674 src_cfs_rq = tg->cfs_rq[src_cpu];
3675 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3676
3677 return throttled_hierarchy(src_cfs_rq) ||
3678 throttled_hierarchy(dest_cfs_rq);
3679 }
3680
3681 /* updated child weight may affect parent so we have to do this bottom up */
3682 static int tg_unthrottle_up(struct task_group *tg, void *data)
3683 {
3684 struct rq *rq = data;
3685 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3686
3687 cfs_rq->throttle_count--;
3688 #ifdef CONFIG_SMP
3689 if (!cfs_rq->throttle_count) {
3690 /* adjust cfs_rq_clock_task() */
3691 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3692 cfs_rq->throttled_clock_task;
3693 }
3694 #endif
3695
3696 return 0;
3697 }
3698
3699 static int tg_throttle_down(struct task_group *tg, void *data)
3700 {
3701 struct rq *rq = data;
3702 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3703
3704 /* group is entering throttled state, stop time */
3705 if (!cfs_rq->throttle_count)
3706 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3707 cfs_rq->throttle_count++;
3708
3709 return 0;
3710 }
3711
3712 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3713 {
3714 struct rq *rq = rq_of(cfs_rq);
3715 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3716 struct sched_entity *se;
3717 long task_delta, dequeue = 1;
3718 bool empty;
3719
3720 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3721
3722 /* freeze hierarchy runnable averages while throttled */
3723 rcu_read_lock();
3724 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3725 rcu_read_unlock();
3726
3727 task_delta = cfs_rq->h_nr_running;
3728 for_each_sched_entity(se) {
3729 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3730 /* throttled entity or throttle-on-deactivate */
3731 if (!se->on_rq)
3732 break;
3733
3734 if (dequeue)
3735 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3736 qcfs_rq->h_nr_running -= task_delta;
3737
3738 if (qcfs_rq->load.weight)
3739 dequeue = 0;
3740 }
3741
3742 if (!se)
3743 sub_nr_running(rq, task_delta);
3744
3745 cfs_rq->throttled = 1;
3746 cfs_rq->throttled_clock = rq_clock(rq);
3747 raw_spin_lock(&cfs_b->lock);
3748 empty = list_empty(&cfs_b->throttled_cfs_rq);
3749
3750 /*
3751 * Add to the _head_ of the list, so that an already-started
3752 * distribute_cfs_runtime will not see us
3753 */
3754 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3755
3756 /*
3757 * If we're the first throttled task, make sure the bandwidth
3758 * timer is running.
3759 */
3760 if (empty)
3761 start_cfs_bandwidth(cfs_b);
3762
3763 raw_spin_unlock(&cfs_b->lock);
3764 }
3765
3766 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3767 {
3768 struct rq *rq = rq_of(cfs_rq);
3769 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3770 struct sched_entity *se;
3771 int enqueue = 1;
3772 long task_delta;
3773
3774 se = cfs_rq->tg->se[cpu_of(rq)];
3775
3776 cfs_rq->throttled = 0;
3777
3778 update_rq_clock(rq);
3779
3780 raw_spin_lock(&cfs_b->lock);
3781 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3782 list_del_rcu(&cfs_rq->throttled_list);
3783 raw_spin_unlock(&cfs_b->lock);
3784
3785 /* update hierarchical throttle state */
3786 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3787
3788 if (!cfs_rq->load.weight)
3789 return;
3790
3791 task_delta = cfs_rq->h_nr_running;
3792 for_each_sched_entity(se) {
3793 if (se->on_rq)
3794 enqueue = 0;
3795
3796 cfs_rq = cfs_rq_of(se);
3797 if (enqueue)
3798 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3799 cfs_rq->h_nr_running += task_delta;
3800
3801 if (cfs_rq_throttled(cfs_rq))
3802 break;
3803 }
3804
3805 if (!se)
3806 add_nr_running(rq, task_delta);
3807
3808 /* determine whether we need to wake up potentially idle cpu */
3809 if (rq->curr == rq->idle && rq->cfs.nr_running)
3810 resched_curr(rq);
3811 }
3812
3813 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3814 u64 remaining, u64 expires)
3815 {
3816 struct cfs_rq *cfs_rq;
3817 u64 runtime;
3818 u64 starting_runtime = remaining;
3819
3820 rcu_read_lock();
3821 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3822 throttled_list) {
3823 struct rq *rq = rq_of(cfs_rq);
3824
3825 raw_spin_lock(&rq->lock);
3826 if (!cfs_rq_throttled(cfs_rq))
3827 goto next;
3828
3829 runtime = -cfs_rq->runtime_remaining + 1;
3830 if (runtime > remaining)
3831 runtime = remaining;
3832 remaining -= runtime;
3833
3834 cfs_rq->runtime_remaining += runtime;
3835 cfs_rq->runtime_expires = expires;
3836
3837 /* we check whether we're throttled above */
3838 if (cfs_rq->runtime_remaining > 0)
3839 unthrottle_cfs_rq(cfs_rq);
3840
3841 next:
3842 raw_spin_unlock(&rq->lock);
3843
3844 if (!remaining)
3845 break;
3846 }
3847 rcu_read_unlock();
3848
3849 return starting_runtime - remaining;
3850 }
3851
3852 /*
3853 * Responsible for refilling a task_group's bandwidth and unthrottling its
3854 * cfs_rqs as appropriate. If there has been no activity within the last
3855 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3856 * used to track this state.
3857 */
3858 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3859 {
3860 u64 runtime, runtime_expires;
3861 int throttled;
3862
3863 /* no need to continue the timer with no bandwidth constraint */
3864 if (cfs_b->quota == RUNTIME_INF)
3865 goto out_deactivate;
3866
3867 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3868 cfs_b->nr_periods += overrun;
3869
3870 /*
3871 * idle depends on !throttled (for the case of a large deficit), and if
3872 * we're going inactive then everything else can be deferred
3873 */
3874 if (cfs_b->idle && !throttled)
3875 goto out_deactivate;
3876
3877 __refill_cfs_bandwidth_runtime(cfs_b);
3878
3879 if (!throttled) {
3880 /* mark as potentially idle for the upcoming period */
3881 cfs_b->idle = 1;
3882 return 0;
3883 }
3884
3885 /* account preceding periods in which throttling occurred */
3886 cfs_b->nr_throttled += overrun;
3887
3888 runtime_expires = cfs_b->runtime_expires;
3889
3890 /*
3891 * This check is repeated as we are holding onto the new bandwidth while
3892 * we unthrottle. This can potentially race with an unthrottled group
3893 * trying to acquire new bandwidth from the global pool. This can result
3894 * in us over-using our runtime if it is all used during this loop, but
3895 * only by limited amounts in that extreme case.
3896 */
3897 while (throttled && cfs_b->runtime > 0) {
3898 runtime = cfs_b->runtime;
3899 raw_spin_unlock(&cfs_b->lock);
3900 /* we can't nest cfs_b->lock while distributing bandwidth */
3901 runtime = distribute_cfs_runtime(cfs_b, runtime,
3902 runtime_expires);
3903 raw_spin_lock(&cfs_b->lock);
3904
3905 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3906
3907 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3908 }
3909
3910 /*
3911 * While we are ensured activity in the period following an
3912 * unthrottle, this also covers the case in which the new bandwidth is
3913 * insufficient to cover the existing bandwidth deficit. (Forcing the
3914 * timer to remain active while there are any throttled entities.)
3915 */
3916 cfs_b->idle = 0;
3917
3918 return 0;
3919
3920 out_deactivate:
3921 return 1;
3922 }
3923
3924 /* a cfs_rq won't donate quota below this amount */
3925 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3926 /* minimum remaining period time to redistribute slack quota */
3927 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3928 /* how long we wait to gather additional slack before distributing */
3929 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3930
3931 /*
3932 * Are we near the end of the current quota period?
3933 *
3934 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3935 * hrtimer base being cleared by hrtimer_start. In the case of
3936 * migrate_hrtimers, base is never cleared, so we are fine.
3937 */
3938 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3939 {
3940 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3941 u64 remaining;
3942
3943 /* if the call-back is running a quota refresh is already occurring */
3944 if (hrtimer_callback_running(refresh_timer))
3945 return 1;
3946
3947 /* is a quota refresh about to occur? */
3948 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3949 if (remaining < min_expire)
3950 return 1;
3951
3952 return 0;
3953 }
3954
3955 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3956 {
3957 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3958
3959 /* if there's a quota refresh soon don't bother with slack */
3960 if (runtime_refresh_within(cfs_b, min_left))
3961 return;
3962
3963 hrtimer_start(&cfs_b->slack_timer,
3964 ns_to_ktime(cfs_bandwidth_slack_period),
3965 HRTIMER_MODE_REL);
3966 }
3967
3968 /* we know any runtime found here is valid as update_curr() precedes return */
3969 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3970 {
3971 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3972 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3973
3974 if (slack_runtime <= 0)
3975 return;
3976
3977 raw_spin_lock(&cfs_b->lock);
3978 if (cfs_b->quota != RUNTIME_INF &&
3979 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3980 cfs_b->runtime += slack_runtime;
3981
3982 /* we are under rq->lock, defer unthrottling using a timer */
3983 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3984 !list_empty(&cfs_b->throttled_cfs_rq))
3985 start_cfs_slack_bandwidth(cfs_b);
3986 }
3987 raw_spin_unlock(&cfs_b->lock);
3988
3989 /* even if it's not valid for return we don't want to try again */
3990 cfs_rq->runtime_remaining -= slack_runtime;
3991 }
3992
3993 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3994 {
3995 if (!cfs_bandwidth_used())
3996 return;
3997
3998 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3999 return;
4000
4001 __return_cfs_rq_runtime(cfs_rq);
4002 }
4003
4004 /*
4005 * This is done with a timer (instead of inline with bandwidth return) since
4006 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4007 */
4008 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4009 {
4010 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4011 u64 expires;
4012
4013 /* confirm we're still not at a refresh boundary */
4014 raw_spin_lock(&cfs_b->lock);
4015 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4016 raw_spin_unlock(&cfs_b->lock);
4017 return;
4018 }
4019
4020 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4021 runtime = cfs_b->runtime;
4022
4023 expires = cfs_b->runtime_expires;
4024 raw_spin_unlock(&cfs_b->lock);
4025
4026 if (!runtime)
4027 return;
4028
4029 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4030
4031 raw_spin_lock(&cfs_b->lock);
4032 if (expires == cfs_b->runtime_expires)
4033 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4034 raw_spin_unlock(&cfs_b->lock);
4035 }
4036
4037 /*
4038 * When a group wakes up we want to make sure that its quota is not already
4039 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4040 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4041 */
4042 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4043 {
4044 if (!cfs_bandwidth_used())
4045 return;
4046
4047 /* an active group must be handled by the update_curr()->put() path */
4048 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4049 return;
4050
4051 /* ensure the group is not already throttled */
4052 if (cfs_rq_throttled(cfs_rq))
4053 return;
4054
4055 /* update runtime allocation */
4056 account_cfs_rq_runtime(cfs_rq, 0);
4057 if (cfs_rq->runtime_remaining <= 0)
4058 throttle_cfs_rq(cfs_rq);
4059 }
4060
4061 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4062 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4063 {
4064 if (!cfs_bandwidth_used())
4065 return false;
4066
4067 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4068 return false;
4069
4070 /*
4071 * it's possible for a throttled entity to be forced into a running
4072 * state (e.g. set_curr_task), in this case we're finished.
4073 */
4074 if (cfs_rq_throttled(cfs_rq))
4075 return true;
4076
4077 throttle_cfs_rq(cfs_rq);
4078 return true;
4079 }
4080
4081 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4082 {
4083 struct cfs_bandwidth *cfs_b =
4084 container_of(timer, struct cfs_bandwidth, slack_timer);
4085
4086 do_sched_cfs_slack_timer(cfs_b);
4087
4088 return HRTIMER_NORESTART;
4089 }
4090
4091 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4092 {
4093 struct cfs_bandwidth *cfs_b =
4094 container_of(timer, struct cfs_bandwidth, period_timer);
4095 int overrun;
4096 int idle = 0;
4097
4098 raw_spin_lock(&cfs_b->lock);
4099 for (;;) {
4100 overrun = hrtimer_forward_now(timer, cfs_b->period);
4101 if (!overrun)
4102 break;
4103
4104 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4105 }
4106 if (idle)
4107 cfs_b->period_active = 0;
4108 raw_spin_unlock(&cfs_b->lock);
4109
4110 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4111 }
4112
4113 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4114 {
4115 raw_spin_lock_init(&cfs_b->lock);
4116 cfs_b->runtime = 0;
4117 cfs_b->quota = RUNTIME_INF;
4118 cfs_b->period = ns_to_ktime(default_cfs_period());
4119
4120 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4121 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4122 cfs_b->period_timer.function = sched_cfs_period_timer;
4123 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4124 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4125 }
4126
4127 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4128 {
4129 cfs_rq->runtime_enabled = 0;
4130 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4131 }
4132
4133 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4134 {
4135 lockdep_assert_held(&cfs_b->lock);
4136
4137 if (!cfs_b->period_active) {
4138 cfs_b->period_active = 1;
4139 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4140 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4141 }
4142 }
4143
4144 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4145 {
4146 /* init_cfs_bandwidth() was not called */
4147 if (!cfs_b->throttled_cfs_rq.next)
4148 return;
4149
4150 hrtimer_cancel(&cfs_b->period_timer);
4151 hrtimer_cancel(&cfs_b->slack_timer);
4152 }
4153
4154 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4155 {
4156 struct cfs_rq *cfs_rq;
4157
4158 for_each_leaf_cfs_rq(rq, cfs_rq) {
4159 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4160
4161 raw_spin_lock(&cfs_b->lock);
4162 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4163 raw_spin_unlock(&cfs_b->lock);
4164 }
4165 }
4166
4167 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4168 {
4169 struct cfs_rq *cfs_rq;
4170
4171 for_each_leaf_cfs_rq(rq, cfs_rq) {
4172 if (!cfs_rq->runtime_enabled)
4173 continue;
4174
4175 /*
4176 * clock_task is not advancing so we just need to make sure
4177 * there's some valid quota amount
4178 */
4179 cfs_rq->runtime_remaining = 1;
4180 /*
4181 * Offline rq is schedulable till cpu is completely disabled
4182 * in take_cpu_down(), so we prevent new cfs throttling here.
4183 */
4184 cfs_rq->runtime_enabled = 0;
4185
4186 if (cfs_rq_throttled(cfs_rq))
4187 unthrottle_cfs_rq(cfs_rq);
4188 }
4189 }
4190
4191 #else /* CONFIG_CFS_BANDWIDTH */
4192 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4193 {
4194 return rq_clock_task(rq_of(cfs_rq));
4195 }
4196
4197 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4198 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4199 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4200 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4201
4202 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4203 {
4204 return 0;
4205 }
4206
4207 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4208 {
4209 return 0;
4210 }
4211
4212 static inline int throttled_lb_pair(struct task_group *tg,
4213 int src_cpu, int dest_cpu)
4214 {
4215 return 0;
4216 }
4217
4218 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4219
4220 #ifdef CONFIG_FAIR_GROUP_SCHED
4221 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4222 #endif
4223
4224 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4225 {
4226 return NULL;
4227 }
4228 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4229 static inline void update_runtime_enabled(struct rq *rq) {}
4230 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4231
4232 #endif /* CONFIG_CFS_BANDWIDTH */
4233
4234 /**************************************************
4235 * CFS operations on tasks:
4236 */
4237
4238 #ifdef CONFIG_SCHED_HRTICK
4239 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4240 {
4241 struct sched_entity *se = &p->se;
4242 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4243
4244 WARN_ON(task_rq(p) != rq);
4245
4246 if (cfs_rq->nr_running > 1) {
4247 u64 slice = sched_slice(cfs_rq, se);
4248 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4249 s64 delta = slice - ran;
4250
4251 if (delta < 0) {
4252 if (rq->curr == p)
4253 resched_curr(rq);
4254 return;
4255 }
4256 hrtick_start(rq, delta);
4257 }
4258 }
4259
4260 /*
4261 * called from enqueue/dequeue and updates the hrtick when the
4262 * current task is from our class and nr_running is low enough
4263 * to matter.
4264 */
4265 static void hrtick_update(struct rq *rq)
4266 {
4267 struct task_struct *curr = rq->curr;
4268
4269 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4270 return;
4271
4272 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4273 hrtick_start_fair(rq, curr);
4274 }
4275 #else /* !CONFIG_SCHED_HRTICK */
4276 static inline void
4277 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4278 {
4279 }
4280
4281 static inline void hrtick_update(struct rq *rq)
4282 {
4283 }
4284 #endif
4285
4286 /*
4287 * The enqueue_task method is called before nr_running is
4288 * increased. Here we update the fair scheduling stats and
4289 * then put the task into the rbtree:
4290 */
4291 static void
4292 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4293 {
4294 struct cfs_rq *cfs_rq;
4295 struct sched_entity *se = &p->se;
4296
4297 for_each_sched_entity(se) {
4298 if (se->on_rq)
4299 break;
4300 cfs_rq = cfs_rq_of(se);
4301 enqueue_entity(cfs_rq, se, flags);
4302
4303 /*
4304 * end evaluation on encountering a throttled cfs_rq
4305 *
4306 * note: in the case of encountering a throttled cfs_rq we will
4307 * post the final h_nr_running increment below.
4308 */
4309 if (cfs_rq_throttled(cfs_rq))
4310 break;
4311 cfs_rq->h_nr_running++;
4312
4313 flags = ENQUEUE_WAKEUP;
4314 }
4315
4316 for_each_sched_entity(se) {
4317 cfs_rq = cfs_rq_of(se);
4318 cfs_rq->h_nr_running++;
4319
4320 if (cfs_rq_throttled(cfs_rq))
4321 break;
4322
4323 update_load_avg(se, 1);
4324 update_cfs_shares(cfs_rq);
4325 }
4326
4327 if (!se)
4328 add_nr_running(rq, 1);
4329
4330 hrtick_update(rq);
4331 }
4332
4333 static void set_next_buddy(struct sched_entity *se);
4334
4335 /*
4336 * The dequeue_task method is called before nr_running is
4337 * decreased. We remove the task from the rbtree and
4338 * update the fair scheduling stats:
4339 */
4340 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4341 {
4342 struct cfs_rq *cfs_rq;
4343 struct sched_entity *se = &p->se;
4344 int task_sleep = flags & DEQUEUE_SLEEP;
4345
4346 for_each_sched_entity(se) {
4347 cfs_rq = cfs_rq_of(se);
4348 dequeue_entity(cfs_rq, se, flags);
4349
4350 /*
4351 * end evaluation on encountering a throttled cfs_rq
4352 *
4353 * note: in the case of encountering a throttled cfs_rq we will
4354 * post the final h_nr_running decrement below.
4355 */
4356 if (cfs_rq_throttled(cfs_rq))
4357 break;
4358 cfs_rq->h_nr_running--;
4359
4360 /* Don't dequeue parent if it has other entities besides us */
4361 if (cfs_rq->load.weight) {
4362 /*
4363 * Bias pick_next to pick a task from this cfs_rq, as
4364 * p is sleeping when it is within its sched_slice.
4365 */
4366 if (task_sleep && parent_entity(se))
4367 set_next_buddy(parent_entity(se));
4368
4369 /* avoid re-evaluating load for this entity */
4370 se = parent_entity(se);
4371 break;
4372 }
4373 flags |= DEQUEUE_SLEEP;
4374 }
4375
4376 for_each_sched_entity(se) {
4377 cfs_rq = cfs_rq_of(se);
4378 cfs_rq->h_nr_running--;
4379
4380 if (cfs_rq_throttled(cfs_rq))
4381 break;
4382
4383 update_load_avg(se, 1);
4384 update_cfs_shares(cfs_rq);
4385 }
4386
4387 if (!se)
4388 sub_nr_running(rq, 1);
4389
4390 hrtick_update(rq);
4391 }
4392
4393 #ifdef CONFIG_SMP
4394
4395 /*
4396 * per rq 'load' arrray crap; XXX kill this.
4397 */
4398
4399 /*
4400 * The exact cpuload calculated at every tick would be:
4401 *
4402 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4403 *
4404 * If a cpu misses updates for n ticks (as it was idle) and update gets
4405 * called on the n+1-th tick when cpu may be busy, then we have:
4406 *
4407 * load_n = (1 - 1/2^i)^n * load_0
4408 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4409 *
4410 * decay_load_missed() below does efficient calculation of
4411 *
4412 * load' = (1 - 1/2^i)^n * load
4413 *
4414 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4415 * This allows us to precompute the above in said factors, thereby allowing the
4416 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4417 * fixed_power_int())
4418 *
4419 * The calculation is approximated on a 128 point scale.
4420 */
4421 #define DEGRADE_SHIFT 7
4422
4423 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4424 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4425 { 0, 0, 0, 0, 0, 0, 0, 0 },
4426 { 64, 32, 8, 0, 0, 0, 0, 0 },
4427 { 96, 72, 40, 12, 1, 0, 0, 0 },
4428 { 112, 98, 75, 43, 15, 1, 0, 0 },
4429 { 120, 112, 98, 76, 45, 16, 2, 0 }
4430 };
4431
4432 /*
4433 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4434 * would be when CPU is idle and so we just decay the old load without
4435 * adding any new load.
4436 */
4437 static unsigned long
4438 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4439 {
4440 int j = 0;
4441
4442 if (!missed_updates)
4443 return load;
4444
4445 if (missed_updates >= degrade_zero_ticks[idx])
4446 return 0;
4447
4448 if (idx == 1)
4449 return load >> missed_updates;
4450
4451 while (missed_updates) {
4452 if (missed_updates % 2)
4453 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4454
4455 missed_updates >>= 1;
4456 j++;
4457 }
4458 return load;
4459 }
4460
4461 /**
4462 * __update_cpu_load - update the rq->cpu_load[] statistics
4463 * @this_rq: The rq to update statistics for
4464 * @this_load: The current load
4465 * @pending_updates: The number of missed updates
4466 * @active: !0 for NOHZ_FULL
4467 *
4468 * Update rq->cpu_load[] statistics. This function is usually called every
4469 * scheduler tick (TICK_NSEC).
4470 *
4471 * This function computes a decaying average:
4472 *
4473 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4474 *
4475 * Because of NOHZ it might not get called on every tick which gives need for
4476 * the @pending_updates argument.
4477 *
4478 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4479 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4480 * = A * (A * load[i]_n-2 + B) + B
4481 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4482 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4483 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4484 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4485 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4486 *
4487 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4488 * any change in load would have resulted in the tick being turned back on.
4489 *
4490 * For regular NOHZ, this reduces to:
4491 *
4492 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4493 *
4494 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4495 * term. See the @active paramter.
4496 */
4497 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4498 unsigned long pending_updates, int active)
4499 {
4500 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4501 int i, scale;
4502
4503 this_rq->nr_load_updates++;
4504
4505 /* Update our load: */
4506 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4507 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4508 unsigned long old_load, new_load;
4509
4510 /* scale is effectively 1 << i now, and >> i divides by scale */
4511
4512 old_load = this_rq->cpu_load[i];
4513 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4514 if (tickless_load) {
4515 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4516 /*
4517 * old_load can never be a negative value because a
4518 * decayed tickless_load cannot be greater than the
4519 * original tickless_load.
4520 */
4521 old_load += tickless_load;
4522 }
4523 new_load = this_load;
4524 /*
4525 * Round up the averaging division if load is increasing. This
4526 * prevents us from getting stuck on 9 if the load is 10, for
4527 * example.
4528 */
4529 if (new_load > old_load)
4530 new_load += scale - 1;
4531
4532 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4533 }
4534
4535 sched_avg_update(this_rq);
4536 }
4537
4538 /* Used instead of source_load when we know the type == 0 */
4539 static unsigned long weighted_cpuload(const int cpu)
4540 {
4541 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4542 }
4543
4544 #ifdef CONFIG_NO_HZ_COMMON
4545 /*
4546 * There is no sane way to deal with nohz on smp when using jiffies because the
4547 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4548 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4549 *
4550 * Therefore we cannot use the delta approach from the regular tick since that
4551 * would seriously skew the load calculation. However we'll make do for those
4552 * updates happening while idle (nohz_idle_balance) or coming out of idle
4553 * (tick_nohz_idle_exit).
4554 *
4555 * This means we might still be one tick off for nohz periods.
4556 */
4557
4558 /*
4559 * Called from nohz_idle_balance() to update the load ratings before doing the
4560 * idle balance.
4561 */
4562 static void update_idle_cpu_load(struct rq *this_rq)
4563 {
4564 unsigned long curr_jiffies = READ_ONCE(jiffies);
4565 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4566 unsigned long pending_updates;
4567
4568 /*
4569 * bail if there's load or we're actually up-to-date.
4570 */
4571 if (load || curr_jiffies == this_rq->last_load_update_tick)
4572 return;
4573
4574 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4575 this_rq->last_load_update_tick = curr_jiffies;
4576
4577 __update_cpu_load(this_rq, load, pending_updates, 0);
4578 }
4579
4580 /*
4581 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4582 */
4583 void update_cpu_load_nohz(int active)
4584 {
4585 struct rq *this_rq = this_rq();
4586 unsigned long curr_jiffies = READ_ONCE(jiffies);
4587 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4588 unsigned long pending_updates;
4589
4590 if (curr_jiffies == this_rq->last_load_update_tick)
4591 return;
4592
4593 raw_spin_lock(&this_rq->lock);
4594 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4595 if (pending_updates) {
4596 this_rq->last_load_update_tick = curr_jiffies;
4597 /*
4598 * In the regular NOHZ case, we were idle, this means load 0.
4599 * In the NOHZ_FULL case, we were non-idle, we should consider
4600 * its weighted load.
4601 */
4602 __update_cpu_load(this_rq, load, pending_updates, active);
4603 }
4604 raw_spin_unlock(&this_rq->lock);
4605 }
4606 #endif /* CONFIG_NO_HZ */
4607
4608 /*
4609 * Called from scheduler_tick()
4610 */
4611 void update_cpu_load_active(struct rq *this_rq)
4612 {
4613 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4614 /*
4615 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4616 */
4617 this_rq->last_load_update_tick = jiffies;
4618 __update_cpu_load(this_rq, load, 1, 1);
4619 }
4620
4621 /*
4622 * Return a low guess at the load of a migration-source cpu weighted
4623 * according to the scheduling class and "nice" value.
4624 *
4625 * We want to under-estimate the load of migration sources, to
4626 * balance conservatively.
4627 */
4628 static unsigned long source_load(int cpu, int type)
4629 {
4630 struct rq *rq = cpu_rq(cpu);
4631 unsigned long total = weighted_cpuload(cpu);
4632
4633 if (type == 0 || !sched_feat(LB_BIAS))
4634 return total;
4635
4636 return min(rq->cpu_load[type-1], total);
4637 }
4638
4639 /*
4640 * Return a high guess at the load of a migration-target cpu weighted
4641 * according to the scheduling class and "nice" value.
4642 */
4643 static unsigned long target_load(int cpu, int type)
4644 {
4645 struct rq *rq = cpu_rq(cpu);
4646 unsigned long total = weighted_cpuload(cpu);
4647
4648 if (type == 0 || !sched_feat(LB_BIAS))
4649 return total;
4650
4651 return max(rq->cpu_load[type-1], total);
4652 }
4653
4654 static unsigned long capacity_of(int cpu)
4655 {
4656 return cpu_rq(cpu)->cpu_capacity;
4657 }
4658
4659 static unsigned long capacity_orig_of(int cpu)
4660 {
4661 return cpu_rq(cpu)->cpu_capacity_orig;
4662 }
4663
4664 static unsigned long cpu_avg_load_per_task(int cpu)
4665 {
4666 struct rq *rq = cpu_rq(cpu);
4667 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4668 unsigned long load_avg = weighted_cpuload(cpu);
4669
4670 if (nr_running)
4671 return load_avg / nr_running;
4672
4673 return 0;
4674 }
4675
4676 static void record_wakee(struct task_struct *p)
4677 {
4678 /*
4679 * Rough decay (wiping) for cost saving, don't worry
4680 * about the boundary, really active task won't care
4681 * about the loss.
4682 */
4683 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4684 current->wakee_flips >>= 1;
4685 current->wakee_flip_decay_ts = jiffies;
4686 }
4687
4688 if (current->last_wakee != p) {
4689 current->last_wakee = p;
4690 current->wakee_flips++;
4691 }
4692 }
4693
4694 static void task_waking_fair(struct task_struct *p)
4695 {
4696 struct sched_entity *se = &p->se;
4697 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4698 u64 min_vruntime;
4699
4700 #ifndef CONFIG_64BIT
4701 u64 min_vruntime_copy;
4702
4703 do {
4704 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4705 smp_rmb();
4706 min_vruntime = cfs_rq->min_vruntime;
4707 } while (min_vruntime != min_vruntime_copy);
4708 #else
4709 min_vruntime = cfs_rq->min_vruntime;
4710 #endif
4711
4712 se->vruntime -= min_vruntime;
4713 record_wakee(p);
4714 }
4715
4716 #ifdef CONFIG_FAIR_GROUP_SCHED
4717 /*
4718 * effective_load() calculates the load change as seen from the root_task_group
4719 *
4720 * Adding load to a group doesn't make a group heavier, but can cause movement
4721 * of group shares between cpus. Assuming the shares were perfectly aligned one
4722 * can calculate the shift in shares.
4723 *
4724 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4725 * on this @cpu and results in a total addition (subtraction) of @wg to the
4726 * total group weight.
4727 *
4728 * Given a runqueue weight distribution (rw_i) we can compute a shares
4729 * distribution (s_i) using:
4730 *
4731 * s_i = rw_i / \Sum rw_j (1)
4732 *
4733 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4734 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4735 * shares distribution (s_i):
4736 *
4737 * rw_i = { 2, 4, 1, 0 }
4738 * s_i = { 2/7, 4/7, 1/7, 0 }
4739 *
4740 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4741 * task used to run on and the CPU the waker is running on), we need to
4742 * compute the effect of waking a task on either CPU and, in case of a sync
4743 * wakeup, compute the effect of the current task going to sleep.
4744 *
4745 * So for a change of @wl to the local @cpu with an overall group weight change
4746 * of @wl we can compute the new shares distribution (s'_i) using:
4747 *
4748 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4749 *
4750 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4751 * differences in waking a task to CPU 0. The additional task changes the
4752 * weight and shares distributions like:
4753 *
4754 * rw'_i = { 3, 4, 1, 0 }
4755 * s'_i = { 3/8, 4/8, 1/8, 0 }
4756 *
4757 * We can then compute the difference in effective weight by using:
4758 *
4759 * dw_i = S * (s'_i - s_i) (3)
4760 *
4761 * Where 'S' is the group weight as seen by its parent.
4762 *
4763 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4764 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4765 * 4/7) times the weight of the group.
4766 */
4767 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4768 {
4769 struct sched_entity *se = tg->se[cpu];
4770
4771 if (!tg->parent) /* the trivial, non-cgroup case */
4772 return wl;
4773
4774 for_each_sched_entity(se) {
4775 long w, W;
4776
4777 tg = se->my_q->tg;
4778
4779 /*
4780 * W = @wg + \Sum rw_j
4781 */
4782 W = wg + calc_tg_weight(tg, se->my_q);
4783
4784 /*
4785 * w = rw_i + @wl
4786 */
4787 w = cfs_rq_load_avg(se->my_q) + wl;
4788
4789 /*
4790 * wl = S * s'_i; see (2)
4791 */
4792 if (W > 0 && w < W)
4793 wl = (w * (long)tg->shares) / W;
4794 else
4795 wl = tg->shares;
4796
4797 /*
4798 * Per the above, wl is the new se->load.weight value; since
4799 * those are clipped to [MIN_SHARES, ...) do so now. See
4800 * calc_cfs_shares().
4801 */
4802 if (wl < MIN_SHARES)
4803 wl = MIN_SHARES;
4804
4805 /*
4806 * wl = dw_i = S * (s'_i - s_i); see (3)
4807 */
4808 wl -= se->avg.load_avg;
4809
4810 /*
4811 * Recursively apply this logic to all parent groups to compute
4812 * the final effective load change on the root group. Since
4813 * only the @tg group gets extra weight, all parent groups can
4814 * only redistribute existing shares. @wl is the shift in shares
4815 * resulting from this level per the above.
4816 */
4817 wg = 0;
4818 }
4819
4820 return wl;
4821 }
4822 #else
4823
4824 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4825 {
4826 return wl;
4827 }
4828
4829 #endif
4830
4831 /*
4832 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4833 * A waker of many should wake a different task than the one last awakened
4834 * at a frequency roughly N times higher than one of its wakees. In order
4835 * to determine whether we should let the load spread vs consolodating to
4836 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4837 * partner, and a factor of lls_size higher frequency in the other. With
4838 * both conditions met, we can be relatively sure that the relationship is
4839 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4840 * being client/server, worker/dispatcher, interrupt source or whatever is
4841 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4842 */
4843 static int wake_wide(struct task_struct *p)
4844 {
4845 unsigned int master = current->wakee_flips;
4846 unsigned int slave = p->wakee_flips;
4847 int factor = this_cpu_read(sd_llc_size);
4848
4849 if (master < slave)
4850 swap(master, slave);
4851 if (slave < factor || master < slave * factor)
4852 return 0;
4853 return 1;
4854 }
4855
4856 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4857 {
4858 s64 this_load, load;
4859 s64 this_eff_load, prev_eff_load;
4860 int idx, this_cpu, prev_cpu;
4861 struct task_group *tg;
4862 unsigned long weight;
4863 int balanced;
4864
4865 idx = sd->wake_idx;
4866 this_cpu = smp_processor_id();
4867 prev_cpu = task_cpu(p);
4868 load = source_load(prev_cpu, idx);
4869 this_load = target_load(this_cpu, idx);
4870
4871 /*
4872 * If sync wakeup then subtract the (maximum possible)
4873 * effect of the currently running task from the load
4874 * of the current CPU:
4875 */
4876 if (sync) {
4877 tg = task_group(current);
4878 weight = current->se.avg.load_avg;
4879
4880 this_load += effective_load(tg, this_cpu, -weight, -weight);
4881 load += effective_load(tg, prev_cpu, 0, -weight);
4882 }
4883
4884 tg = task_group(p);
4885 weight = p->se.avg.load_avg;
4886
4887 /*
4888 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4889 * due to the sync cause above having dropped this_load to 0, we'll
4890 * always have an imbalance, but there's really nothing you can do
4891 * about that, so that's good too.
4892 *
4893 * Otherwise check if either cpus are near enough in load to allow this
4894 * task to be woken on this_cpu.
4895 */
4896 this_eff_load = 100;
4897 this_eff_load *= capacity_of(prev_cpu);
4898
4899 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4900 prev_eff_load *= capacity_of(this_cpu);
4901
4902 if (this_load > 0) {
4903 this_eff_load *= this_load +
4904 effective_load(tg, this_cpu, weight, weight);
4905
4906 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4907 }
4908
4909 balanced = this_eff_load <= prev_eff_load;
4910
4911 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4912
4913 if (!balanced)
4914 return 0;
4915
4916 schedstat_inc(sd, ttwu_move_affine);
4917 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4918
4919 return 1;
4920 }
4921
4922 /*
4923 * find_idlest_group finds and returns the least busy CPU group within the
4924 * domain.
4925 */
4926 static struct sched_group *
4927 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4928 int this_cpu, int sd_flag)
4929 {
4930 struct sched_group *idlest = NULL, *group = sd->groups;
4931 unsigned long min_load = ULONG_MAX, this_load = 0;
4932 int load_idx = sd->forkexec_idx;
4933 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4934
4935 if (sd_flag & SD_BALANCE_WAKE)
4936 load_idx = sd->wake_idx;
4937
4938 do {
4939 unsigned long load, avg_load;
4940 int local_group;
4941 int i;
4942
4943 /* Skip over this group if it has no CPUs allowed */
4944 if (!cpumask_intersects(sched_group_cpus(group),
4945 tsk_cpus_allowed(p)))
4946 continue;
4947
4948 local_group = cpumask_test_cpu(this_cpu,
4949 sched_group_cpus(group));
4950
4951 /* Tally up the load of all CPUs in the group */
4952 avg_load = 0;
4953
4954 for_each_cpu(i, sched_group_cpus(group)) {
4955 /* Bias balancing toward cpus of our domain */
4956 if (local_group)
4957 load = source_load(i, load_idx);
4958 else
4959 load = target_load(i, load_idx);
4960
4961 avg_load += load;
4962 }
4963
4964 /* Adjust by relative CPU capacity of the group */
4965 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4966
4967 if (local_group) {
4968 this_load = avg_load;
4969 } else if (avg_load < min_load) {
4970 min_load = avg_load;
4971 idlest = group;
4972 }
4973 } while (group = group->next, group != sd->groups);
4974
4975 if (!idlest || 100*this_load < imbalance*min_load)
4976 return NULL;
4977 return idlest;
4978 }
4979
4980 /*
4981 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4982 */
4983 static int
4984 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4985 {
4986 unsigned long load, min_load = ULONG_MAX;
4987 unsigned int min_exit_latency = UINT_MAX;
4988 u64 latest_idle_timestamp = 0;
4989 int least_loaded_cpu = this_cpu;
4990 int shallowest_idle_cpu = -1;
4991 int i;
4992
4993 /* Traverse only the allowed CPUs */
4994 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4995 if (idle_cpu(i)) {
4996 struct rq *rq = cpu_rq(i);
4997 struct cpuidle_state *idle = idle_get_state(rq);
4998 if (idle && idle->exit_latency < min_exit_latency) {
4999 /*
5000 * We give priority to a CPU whose idle state
5001 * has the smallest exit latency irrespective
5002 * of any idle timestamp.
5003 */
5004 min_exit_latency = idle->exit_latency;
5005 latest_idle_timestamp = rq->idle_stamp;
5006 shallowest_idle_cpu = i;
5007 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5008 rq->idle_stamp > latest_idle_timestamp) {
5009 /*
5010 * If equal or no active idle state, then
5011 * the most recently idled CPU might have
5012 * a warmer cache.
5013 */
5014 latest_idle_timestamp = rq->idle_stamp;
5015 shallowest_idle_cpu = i;
5016 }
5017 } else if (shallowest_idle_cpu == -1) {
5018 load = weighted_cpuload(i);
5019 if (load < min_load || (load == min_load && i == this_cpu)) {
5020 min_load = load;
5021 least_loaded_cpu = i;
5022 }
5023 }
5024 }
5025
5026 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5027 }
5028
5029 /*
5030 * Try and locate an idle CPU in the sched_domain.
5031 */
5032 static int select_idle_sibling(struct task_struct *p, int target)
5033 {
5034 struct sched_domain *sd;
5035 struct sched_group *sg;
5036 int i = task_cpu(p);
5037
5038 if (idle_cpu(target))
5039 return target;
5040
5041 /*
5042 * If the prevous cpu is cache affine and idle, don't be stupid.
5043 */
5044 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5045 return i;
5046
5047 /*
5048 * Otherwise, iterate the domains and find an elegible idle cpu.
5049 */
5050 sd = rcu_dereference(per_cpu(sd_llc, target));
5051 for_each_lower_domain(sd) {
5052 sg = sd->groups;
5053 do {
5054 if (!cpumask_intersects(sched_group_cpus(sg),
5055 tsk_cpus_allowed(p)))
5056 goto next;
5057
5058 for_each_cpu(i, sched_group_cpus(sg)) {
5059 if (i == target || !idle_cpu(i))
5060 goto next;
5061 }
5062
5063 target = cpumask_first_and(sched_group_cpus(sg),
5064 tsk_cpus_allowed(p));
5065 goto done;
5066 next:
5067 sg = sg->next;
5068 } while (sg != sd->groups);
5069 }
5070 done:
5071 return target;
5072 }
5073
5074 /*
5075 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5076 * tasks. The unit of the return value must be the one of capacity so we can
5077 * compare the utilization with the capacity of the CPU that is available for
5078 * CFS task (ie cpu_capacity).
5079 *
5080 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5081 * recent utilization of currently non-runnable tasks on a CPU. It represents
5082 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5083 * capacity_orig is the cpu_capacity available at the highest frequency
5084 * (arch_scale_freq_capacity()).
5085 * The utilization of a CPU converges towards a sum equal to or less than the
5086 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5087 * the running time on this CPU scaled by capacity_curr.
5088 *
5089 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5090 * higher than capacity_orig because of unfortunate rounding in
5091 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5092 * the average stabilizes with the new running time. We need to check that the
5093 * utilization stays within the range of [0..capacity_orig] and cap it if
5094 * necessary. Without utilization capping, a group could be seen as overloaded
5095 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5096 * available capacity. We allow utilization to overshoot capacity_curr (but not
5097 * capacity_orig) as it useful for predicting the capacity required after task
5098 * migrations (scheduler-driven DVFS).
5099 */
5100 static int cpu_util(int cpu)
5101 {
5102 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5103 unsigned long capacity = capacity_orig_of(cpu);
5104
5105 return (util >= capacity) ? capacity : util;
5106 }
5107
5108 /*
5109 * select_task_rq_fair: Select target runqueue for the waking task in domains
5110 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5111 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5112 *
5113 * Balances load by selecting the idlest cpu in the idlest group, or under
5114 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5115 *
5116 * Returns the target cpu number.
5117 *
5118 * preempt must be disabled.
5119 */
5120 static int
5121 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5122 {
5123 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5124 int cpu = smp_processor_id();
5125 int new_cpu = prev_cpu;
5126 int want_affine = 0;
5127 int sync = wake_flags & WF_SYNC;
5128
5129 if (sd_flag & SD_BALANCE_WAKE)
5130 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5131
5132 rcu_read_lock();
5133 for_each_domain(cpu, tmp) {
5134 if (!(tmp->flags & SD_LOAD_BALANCE))
5135 break;
5136
5137 /*
5138 * If both cpu and prev_cpu are part of this domain,
5139 * cpu is a valid SD_WAKE_AFFINE target.
5140 */
5141 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5142 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5143 affine_sd = tmp;
5144 break;
5145 }
5146
5147 if (tmp->flags & sd_flag)
5148 sd = tmp;
5149 else if (!want_affine)
5150 break;
5151 }
5152
5153 if (affine_sd) {
5154 sd = NULL; /* Prefer wake_affine over balance flags */
5155 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5156 new_cpu = cpu;
5157 }
5158
5159 if (!sd) {
5160 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5161 new_cpu = select_idle_sibling(p, new_cpu);
5162
5163 } else while (sd) {
5164 struct sched_group *group;
5165 int weight;
5166
5167 if (!(sd->flags & sd_flag)) {
5168 sd = sd->child;
5169 continue;
5170 }
5171
5172 group = find_idlest_group(sd, p, cpu, sd_flag);
5173 if (!group) {
5174 sd = sd->child;
5175 continue;
5176 }
5177
5178 new_cpu = find_idlest_cpu(group, p, cpu);
5179 if (new_cpu == -1 || new_cpu == cpu) {
5180 /* Now try balancing at a lower domain level of cpu */
5181 sd = sd->child;
5182 continue;
5183 }
5184
5185 /* Now try balancing at a lower domain level of new_cpu */
5186 cpu = new_cpu;
5187 weight = sd->span_weight;
5188 sd = NULL;
5189 for_each_domain(cpu, tmp) {
5190 if (weight <= tmp->span_weight)
5191 break;
5192 if (tmp->flags & sd_flag)
5193 sd = tmp;
5194 }
5195 /* while loop will break here if sd == NULL */
5196 }
5197 rcu_read_unlock();
5198
5199 return new_cpu;
5200 }
5201
5202 /*
5203 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5204 * cfs_rq_of(p) references at time of call are still valid and identify the
5205 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5206 */
5207 static void migrate_task_rq_fair(struct task_struct *p)
5208 {
5209 /*
5210 * We are supposed to update the task to "current" time, then its up to date
5211 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5212 * what current time is, so simply throw away the out-of-date time. This
5213 * will result in the wakee task is less decayed, but giving the wakee more
5214 * load sounds not bad.
5215 */
5216 remove_entity_load_avg(&p->se);
5217
5218 /* Tell new CPU we are migrated */
5219 p->se.avg.last_update_time = 0;
5220
5221 /* We have migrated, no longer consider this task hot */
5222 p->se.exec_start = 0;
5223 }
5224
5225 static void task_dead_fair(struct task_struct *p)
5226 {
5227 remove_entity_load_avg(&p->se);
5228 }
5229 #endif /* CONFIG_SMP */
5230
5231 static unsigned long
5232 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5233 {
5234 unsigned long gran = sysctl_sched_wakeup_granularity;
5235
5236 /*
5237 * Since its curr running now, convert the gran from real-time
5238 * to virtual-time in his units.
5239 *
5240 * By using 'se' instead of 'curr' we penalize light tasks, so
5241 * they get preempted easier. That is, if 'se' < 'curr' then
5242 * the resulting gran will be larger, therefore penalizing the
5243 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5244 * be smaller, again penalizing the lighter task.
5245 *
5246 * This is especially important for buddies when the leftmost
5247 * task is higher priority than the buddy.
5248 */
5249 return calc_delta_fair(gran, se);
5250 }
5251
5252 /*
5253 * Should 'se' preempt 'curr'.
5254 *
5255 * |s1
5256 * |s2
5257 * |s3
5258 * g
5259 * |<--->|c
5260 *
5261 * w(c, s1) = -1
5262 * w(c, s2) = 0
5263 * w(c, s3) = 1
5264 *
5265 */
5266 static int
5267 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5268 {
5269 s64 gran, vdiff = curr->vruntime - se->vruntime;
5270
5271 if (vdiff <= 0)
5272 return -1;
5273
5274 gran = wakeup_gran(curr, se);
5275 if (vdiff > gran)
5276 return 1;
5277
5278 return 0;
5279 }
5280
5281 static void set_last_buddy(struct sched_entity *se)
5282 {
5283 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5284 return;
5285
5286 for_each_sched_entity(se)
5287 cfs_rq_of(se)->last = se;
5288 }
5289
5290 static void set_next_buddy(struct sched_entity *se)
5291 {
5292 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5293 return;
5294
5295 for_each_sched_entity(se)
5296 cfs_rq_of(se)->next = se;
5297 }
5298
5299 static void set_skip_buddy(struct sched_entity *se)
5300 {
5301 for_each_sched_entity(se)
5302 cfs_rq_of(se)->skip = se;
5303 }
5304
5305 /*
5306 * Preempt the current task with a newly woken task if needed:
5307 */
5308 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5309 {
5310 struct task_struct *curr = rq->curr;
5311 struct sched_entity *se = &curr->se, *pse = &p->se;
5312 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5313 int scale = cfs_rq->nr_running >= sched_nr_latency;
5314 int next_buddy_marked = 0;
5315
5316 if (unlikely(se == pse))
5317 return;
5318
5319 /*
5320 * This is possible from callers such as attach_tasks(), in which we
5321 * unconditionally check_prempt_curr() after an enqueue (which may have
5322 * lead to a throttle). This both saves work and prevents false
5323 * next-buddy nomination below.
5324 */
5325 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5326 return;
5327
5328 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5329 set_next_buddy(pse);
5330 next_buddy_marked = 1;
5331 }
5332
5333 /*
5334 * We can come here with TIF_NEED_RESCHED already set from new task
5335 * wake up path.
5336 *
5337 * Note: this also catches the edge-case of curr being in a throttled
5338 * group (e.g. via set_curr_task), since update_curr() (in the
5339 * enqueue of curr) will have resulted in resched being set. This
5340 * prevents us from potentially nominating it as a false LAST_BUDDY
5341 * below.
5342 */
5343 if (test_tsk_need_resched(curr))
5344 return;
5345
5346 /* Idle tasks are by definition preempted by non-idle tasks. */
5347 if (unlikely(curr->policy == SCHED_IDLE) &&
5348 likely(p->policy != SCHED_IDLE))
5349 goto preempt;
5350
5351 /*
5352 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5353 * is driven by the tick):
5354 */
5355 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5356 return;
5357
5358 find_matching_se(&se, &pse);
5359 update_curr(cfs_rq_of(se));
5360 BUG_ON(!pse);
5361 if (wakeup_preempt_entity(se, pse) == 1) {
5362 /*
5363 * Bias pick_next to pick the sched entity that is
5364 * triggering this preemption.
5365 */
5366 if (!next_buddy_marked)
5367 set_next_buddy(pse);
5368 goto preempt;
5369 }
5370
5371 return;
5372
5373 preempt:
5374 resched_curr(rq);
5375 /*
5376 * Only set the backward buddy when the current task is still
5377 * on the rq. This can happen when a wakeup gets interleaved
5378 * with schedule on the ->pre_schedule() or idle_balance()
5379 * point, either of which can * drop the rq lock.
5380 *
5381 * Also, during early boot the idle thread is in the fair class,
5382 * for obvious reasons its a bad idea to schedule back to it.
5383 */
5384 if (unlikely(!se->on_rq || curr == rq->idle))
5385 return;
5386
5387 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5388 set_last_buddy(se);
5389 }
5390
5391 static struct task_struct *
5392 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5393 {
5394 struct cfs_rq *cfs_rq = &rq->cfs;
5395 struct sched_entity *se;
5396 struct task_struct *p;
5397 int new_tasks;
5398
5399 again:
5400 #ifdef CONFIG_FAIR_GROUP_SCHED
5401 if (!cfs_rq->nr_running)
5402 goto idle;
5403
5404 if (prev->sched_class != &fair_sched_class)
5405 goto simple;
5406
5407 /*
5408 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5409 * likely that a next task is from the same cgroup as the current.
5410 *
5411 * Therefore attempt to avoid putting and setting the entire cgroup
5412 * hierarchy, only change the part that actually changes.
5413 */
5414
5415 do {
5416 struct sched_entity *curr = cfs_rq->curr;
5417
5418 /*
5419 * Since we got here without doing put_prev_entity() we also
5420 * have to consider cfs_rq->curr. If it is still a runnable
5421 * entity, update_curr() will update its vruntime, otherwise
5422 * forget we've ever seen it.
5423 */
5424 if (curr) {
5425 if (curr->on_rq)
5426 update_curr(cfs_rq);
5427 else
5428 curr = NULL;
5429
5430 /*
5431 * This call to check_cfs_rq_runtime() will do the
5432 * throttle and dequeue its entity in the parent(s).
5433 * Therefore the 'simple' nr_running test will indeed
5434 * be correct.
5435 */
5436 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5437 goto simple;
5438 }
5439
5440 se = pick_next_entity(cfs_rq, curr);
5441 cfs_rq = group_cfs_rq(se);
5442 } while (cfs_rq);
5443
5444 p = task_of(se);
5445
5446 /*
5447 * Since we haven't yet done put_prev_entity and if the selected task
5448 * is a different task than we started out with, try and touch the
5449 * least amount of cfs_rqs.
5450 */
5451 if (prev != p) {
5452 struct sched_entity *pse = &prev->se;
5453
5454 while (!(cfs_rq = is_same_group(se, pse))) {
5455 int se_depth = se->depth;
5456 int pse_depth = pse->depth;
5457
5458 if (se_depth <= pse_depth) {
5459 put_prev_entity(cfs_rq_of(pse), pse);
5460 pse = parent_entity(pse);
5461 }
5462 if (se_depth >= pse_depth) {
5463 set_next_entity(cfs_rq_of(se), se);
5464 se = parent_entity(se);
5465 }
5466 }
5467
5468 put_prev_entity(cfs_rq, pse);
5469 set_next_entity(cfs_rq, se);
5470 }
5471
5472 if (hrtick_enabled(rq))
5473 hrtick_start_fair(rq, p);
5474
5475 return p;
5476 simple:
5477 cfs_rq = &rq->cfs;
5478 #endif
5479
5480 if (!cfs_rq->nr_running)
5481 goto idle;
5482
5483 put_prev_task(rq, prev);
5484
5485 do {
5486 se = pick_next_entity(cfs_rq, NULL);
5487 set_next_entity(cfs_rq, se);
5488 cfs_rq = group_cfs_rq(se);
5489 } while (cfs_rq);
5490
5491 p = task_of(se);
5492
5493 if (hrtick_enabled(rq))
5494 hrtick_start_fair(rq, p);
5495
5496 return p;
5497
5498 idle:
5499 /*
5500 * This is OK, because current is on_cpu, which avoids it being picked
5501 * for load-balance and preemption/IRQs are still disabled avoiding
5502 * further scheduler activity on it and we're being very careful to
5503 * re-start the picking loop.
5504 */
5505 lockdep_unpin_lock(&rq->lock);
5506 new_tasks = idle_balance(rq);
5507 lockdep_pin_lock(&rq->lock);
5508 /*
5509 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5510 * possible for any higher priority task to appear. In that case we
5511 * must re-start the pick_next_entity() loop.
5512 */
5513 if (new_tasks < 0)
5514 return RETRY_TASK;
5515
5516 if (new_tasks > 0)
5517 goto again;
5518
5519 return NULL;
5520 }
5521
5522 /*
5523 * Account for a descheduled task:
5524 */
5525 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5526 {
5527 struct sched_entity *se = &prev->se;
5528 struct cfs_rq *cfs_rq;
5529
5530 for_each_sched_entity(se) {
5531 cfs_rq = cfs_rq_of(se);
5532 put_prev_entity(cfs_rq, se);
5533 }
5534 }
5535
5536 /*
5537 * sched_yield() is very simple
5538 *
5539 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5540 */
5541 static void yield_task_fair(struct rq *rq)
5542 {
5543 struct task_struct *curr = rq->curr;
5544 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5545 struct sched_entity *se = &curr->se;
5546
5547 /*
5548 * Are we the only task in the tree?
5549 */
5550 if (unlikely(rq->nr_running == 1))
5551 return;
5552
5553 clear_buddies(cfs_rq, se);
5554
5555 if (curr->policy != SCHED_BATCH) {
5556 update_rq_clock(rq);
5557 /*
5558 * Update run-time statistics of the 'current'.
5559 */
5560 update_curr(cfs_rq);
5561 /*
5562 * Tell update_rq_clock() that we've just updated,
5563 * so we don't do microscopic update in schedule()
5564 * and double the fastpath cost.
5565 */
5566 rq_clock_skip_update(rq, true);
5567 }
5568
5569 set_skip_buddy(se);
5570 }
5571
5572 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5573 {
5574 struct sched_entity *se = &p->se;
5575
5576 /* throttled hierarchies are not runnable */
5577 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5578 return false;
5579
5580 /* Tell the scheduler that we'd really like pse to run next. */
5581 set_next_buddy(se);
5582
5583 yield_task_fair(rq);
5584
5585 return true;
5586 }
5587
5588 #ifdef CONFIG_SMP
5589 /**************************************************
5590 * Fair scheduling class load-balancing methods.
5591 *
5592 * BASICS
5593 *
5594 * The purpose of load-balancing is to achieve the same basic fairness the
5595 * per-cpu scheduler provides, namely provide a proportional amount of compute
5596 * time to each task. This is expressed in the following equation:
5597 *
5598 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5599 *
5600 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5601 * W_i,0 is defined as:
5602 *
5603 * W_i,0 = \Sum_j w_i,j (2)
5604 *
5605 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5606 * is derived from the nice value as per prio_to_weight[].
5607 *
5608 * The weight average is an exponential decay average of the instantaneous
5609 * weight:
5610 *
5611 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5612 *
5613 * C_i is the compute capacity of cpu i, typically it is the
5614 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5615 * can also include other factors [XXX].
5616 *
5617 * To achieve this balance we define a measure of imbalance which follows
5618 * directly from (1):
5619 *
5620 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5621 *
5622 * We them move tasks around to minimize the imbalance. In the continuous
5623 * function space it is obvious this converges, in the discrete case we get
5624 * a few fun cases generally called infeasible weight scenarios.
5625 *
5626 * [XXX expand on:
5627 * - infeasible weights;
5628 * - local vs global optima in the discrete case. ]
5629 *
5630 *
5631 * SCHED DOMAINS
5632 *
5633 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5634 * for all i,j solution, we create a tree of cpus that follows the hardware
5635 * topology where each level pairs two lower groups (or better). This results
5636 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5637 * tree to only the first of the previous level and we decrease the frequency
5638 * of load-balance at each level inv. proportional to the number of cpus in
5639 * the groups.
5640 *
5641 * This yields:
5642 *
5643 * log_2 n 1 n
5644 * \Sum { --- * --- * 2^i } = O(n) (5)
5645 * i = 0 2^i 2^i
5646 * `- size of each group
5647 * | | `- number of cpus doing load-balance
5648 * | `- freq
5649 * `- sum over all levels
5650 *
5651 * Coupled with a limit on how many tasks we can migrate every balance pass,
5652 * this makes (5) the runtime complexity of the balancer.
5653 *
5654 * An important property here is that each CPU is still (indirectly) connected
5655 * to every other cpu in at most O(log n) steps:
5656 *
5657 * The adjacency matrix of the resulting graph is given by:
5658 *
5659 * log_2 n
5660 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5661 * k = 0
5662 *
5663 * And you'll find that:
5664 *
5665 * A^(log_2 n)_i,j != 0 for all i,j (7)
5666 *
5667 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5668 * The task movement gives a factor of O(m), giving a convergence complexity
5669 * of:
5670 *
5671 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5672 *
5673 *
5674 * WORK CONSERVING
5675 *
5676 * In order to avoid CPUs going idle while there's still work to do, new idle
5677 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5678 * tree itself instead of relying on other CPUs to bring it work.
5679 *
5680 * This adds some complexity to both (5) and (8) but it reduces the total idle
5681 * time.
5682 *
5683 * [XXX more?]
5684 *
5685 *
5686 * CGROUPS
5687 *
5688 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5689 *
5690 * s_k,i
5691 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5692 * S_k
5693 *
5694 * Where
5695 *
5696 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5697 *
5698 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5699 *
5700 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5701 * property.
5702 *
5703 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5704 * rewrite all of this once again.]
5705 */
5706
5707 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5708
5709 enum fbq_type { regular, remote, all };
5710
5711 #define LBF_ALL_PINNED 0x01
5712 #define LBF_NEED_BREAK 0x02
5713 #define LBF_DST_PINNED 0x04
5714 #define LBF_SOME_PINNED 0x08
5715
5716 struct lb_env {
5717 struct sched_domain *sd;
5718
5719 struct rq *src_rq;
5720 int src_cpu;
5721
5722 int dst_cpu;
5723 struct rq *dst_rq;
5724
5725 struct cpumask *dst_grpmask;
5726 int new_dst_cpu;
5727 enum cpu_idle_type idle;
5728 long imbalance;
5729 /* The set of CPUs under consideration for load-balancing */
5730 struct cpumask *cpus;
5731
5732 unsigned int flags;
5733
5734 unsigned int loop;
5735 unsigned int loop_break;
5736 unsigned int loop_max;
5737
5738 enum fbq_type fbq_type;
5739 struct list_head tasks;
5740 };
5741
5742 /*
5743 * Is this task likely cache-hot:
5744 */
5745 static int task_hot(struct task_struct *p, struct lb_env *env)
5746 {
5747 s64 delta;
5748
5749 lockdep_assert_held(&env->src_rq->lock);
5750
5751 if (p->sched_class != &fair_sched_class)
5752 return 0;
5753
5754 if (unlikely(p->policy == SCHED_IDLE))
5755 return 0;
5756
5757 /*
5758 * Buddy candidates are cache hot:
5759 */
5760 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5761 (&p->se == cfs_rq_of(&p->se)->next ||
5762 &p->se == cfs_rq_of(&p->se)->last))
5763 return 1;
5764
5765 if (sysctl_sched_migration_cost == -1)
5766 return 1;
5767 if (sysctl_sched_migration_cost == 0)
5768 return 0;
5769
5770 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5771
5772 return delta < (s64)sysctl_sched_migration_cost;
5773 }
5774
5775 #ifdef CONFIG_NUMA_BALANCING
5776 /*
5777 * Returns 1, if task migration degrades locality
5778 * Returns 0, if task migration improves locality i.e migration preferred.
5779 * Returns -1, if task migration is not affected by locality.
5780 */
5781 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5782 {
5783 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5784 unsigned long src_faults, dst_faults;
5785 int src_nid, dst_nid;
5786
5787 if (!static_branch_likely(&sched_numa_balancing))
5788 return -1;
5789
5790 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5791 return -1;
5792
5793 src_nid = cpu_to_node(env->src_cpu);
5794 dst_nid = cpu_to_node(env->dst_cpu);
5795
5796 if (src_nid == dst_nid)
5797 return -1;
5798
5799 /* Migrating away from the preferred node is always bad. */
5800 if (src_nid == p->numa_preferred_nid) {
5801 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5802 return 1;
5803 else
5804 return -1;
5805 }
5806
5807 /* Encourage migration to the preferred node. */
5808 if (dst_nid == p->numa_preferred_nid)
5809 return 0;
5810
5811 if (numa_group) {
5812 src_faults = group_faults(p, src_nid);
5813 dst_faults = group_faults(p, dst_nid);
5814 } else {
5815 src_faults = task_faults(p, src_nid);
5816 dst_faults = task_faults(p, dst_nid);
5817 }
5818
5819 return dst_faults < src_faults;
5820 }
5821
5822 #else
5823 static inline int migrate_degrades_locality(struct task_struct *p,
5824 struct lb_env *env)
5825 {
5826 return -1;
5827 }
5828 #endif
5829
5830 /*
5831 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5832 */
5833 static
5834 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5835 {
5836 int tsk_cache_hot;
5837
5838 lockdep_assert_held(&env->src_rq->lock);
5839
5840 /*
5841 * We do not migrate tasks that are:
5842 * 1) throttled_lb_pair, or
5843 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5844 * 3) running (obviously), or
5845 * 4) are cache-hot on their current CPU.
5846 */
5847 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5848 return 0;
5849
5850 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5851 int cpu;
5852
5853 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5854
5855 env->flags |= LBF_SOME_PINNED;
5856
5857 /*
5858 * Remember if this task can be migrated to any other cpu in
5859 * our sched_group. We may want to revisit it if we couldn't
5860 * meet load balance goals by pulling other tasks on src_cpu.
5861 *
5862 * Also avoid computing new_dst_cpu if we have already computed
5863 * one in current iteration.
5864 */
5865 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5866 return 0;
5867
5868 /* Prevent to re-select dst_cpu via env's cpus */
5869 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5870 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5871 env->flags |= LBF_DST_PINNED;
5872 env->new_dst_cpu = cpu;
5873 break;
5874 }
5875 }
5876
5877 return 0;
5878 }
5879
5880 /* Record that we found atleast one task that could run on dst_cpu */
5881 env->flags &= ~LBF_ALL_PINNED;
5882
5883 if (task_running(env->src_rq, p)) {
5884 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5885 return 0;
5886 }
5887
5888 /*
5889 * Aggressive migration if:
5890 * 1) destination numa is preferred
5891 * 2) task is cache cold, or
5892 * 3) too many balance attempts have failed.
5893 */
5894 tsk_cache_hot = migrate_degrades_locality(p, env);
5895 if (tsk_cache_hot == -1)
5896 tsk_cache_hot = task_hot(p, env);
5897
5898 if (tsk_cache_hot <= 0 ||
5899 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5900 if (tsk_cache_hot == 1) {
5901 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5902 schedstat_inc(p, se.statistics.nr_forced_migrations);
5903 }
5904 return 1;
5905 }
5906
5907 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5908 return 0;
5909 }
5910
5911 /*
5912 * detach_task() -- detach the task for the migration specified in env
5913 */
5914 static void detach_task(struct task_struct *p, struct lb_env *env)
5915 {
5916 lockdep_assert_held(&env->src_rq->lock);
5917
5918 p->on_rq = TASK_ON_RQ_MIGRATING;
5919 deactivate_task(env->src_rq, p, 0);
5920 set_task_cpu(p, env->dst_cpu);
5921 }
5922
5923 /*
5924 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5925 * part of active balancing operations within "domain".
5926 *
5927 * Returns a task if successful and NULL otherwise.
5928 */
5929 static struct task_struct *detach_one_task(struct lb_env *env)
5930 {
5931 struct task_struct *p, *n;
5932
5933 lockdep_assert_held(&env->src_rq->lock);
5934
5935 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5936 if (!can_migrate_task(p, env))
5937 continue;
5938
5939 detach_task(p, env);
5940
5941 /*
5942 * Right now, this is only the second place where
5943 * lb_gained[env->idle] is updated (other is detach_tasks)
5944 * so we can safely collect stats here rather than
5945 * inside detach_tasks().
5946 */
5947 schedstat_inc(env->sd, lb_gained[env->idle]);
5948 return p;
5949 }
5950 return NULL;
5951 }
5952
5953 static const unsigned int sched_nr_migrate_break = 32;
5954
5955 /*
5956 * detach_tasks() -- tries to detach up to imbalance weighted load from
5957 * busiest_rq, as part of a balancing operation within domain "sd".
5958 *
5959 * Returns number of detached tasks if successful and 0 otherwise.
5960 */
5961 static int detach_tasks(struct lb_env *env)
5962 {
5963 struct list_head *tasks = &env->src_rq->cfs_tasks;
5964 struct task_struct *p;
5965 unsigned long load;
5966 int detached = 0;
5967
5968 lockdep_assert_held(&env->src_rq->lock);
5969
5970 if (env->imbalance <= 0)
5971 return 0;
5972
5973 while (!list_empty(tasks)) {
5974 /*
5975 * We don't want to steal all, otherwise we may be treated likewise,
5976 * which could at worst lead to a livelock crash.
5977 */
5978 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5979 break;
5980
5981 p = list_first_entry(tasks, struct task_struct, se.group_node);
5982
5983 env->loop++;
5984 /* We've more or less seen every task there is, call it quits */
5985 if (env->loop > env->loop_max)
5986 break;
5987
5988 /* take a breather every nr_migrate tasks */
5989 if (env->loop > env->loop_break) {
5990 env->loop_break += sched_nr_migrate_break;
5991 env->flags |= LBF_NEED_BREAK;
5992 break;
5993 }
5994
5995 if (!can_migrate_task(p, env))
5996 goto next;
5997
5998 load = task_h_load(p);
5999
6000 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6001 goto next;
6002
6003 if ((load / 2) > env->imbalance)
6004 goto next;
6005
6006 detach_task(p, env);
6007 list_add(&p->se.group_node, &env->tasks);
6008
6009 detached++;
6010 env->imbalance -= load;
6011
6012 #ifdef CONFIG_PREEMPT
6013 /*
6014 * NEWIDLE balancing is a source of latency, so preemptible
6015 * kernels will stop after the first task is detached to minimize
6016 * the critical section.
6017 */
6018 if (env->idle == CPU_NEWLY_IDLE)
6019 break;
6020 #endif
6021
6022 /*
6023 * We only want to steal up to the prescribed amount of
6024 * weighted load.
6025 */
6026 if (env->imbalance <= 0)
6027 break;
6028
6029 continue;
6030 next:
6031 list_move_tail(&p->se.group_node, tasks);
6032 }
6033
6034 /*
6035 * Right now, this is one of only two places we collect this stat
6036 * so we can safely collect detach_one_task() stats here rather
6037 * than inside detach_one_task().
6038 */
6039 schedstat_add(env->sd, lb_gained[env->idle], detached);
6040
6041 return detached;
6042 }
6043
6044 /*
6045 * attach_task() -- attach the task detached by detach_task() to its new rq.
6046 */
6047 static void attach_task(struct rq *rq, struct task_struct *p)
6048 {
6049 lockdep_assert_held(&rq->lock);
6050
6051 BUG_ON(task_rq(p) != rq);
6052 activate_task(rq, p, 0);
6053 p->on_rq = TASK_ON_RQ_QUEUED;
6054 check_preempt_curr(rq, p, 0);
6055 }
6056
6057 /*
6058 * attach_one_task() -- attaches the task returned from detach_one_task() to
6059 * its new rq.
6060 */
6061 static void attach_one_task(struct rq *rq, struct task_struct *p)
6062 {
6063 raw_spin_lock(&rq->lock);
6064 attach_task(rq, p);
6065 raw_spin_unlock(&rq->lock);
6066 }
6067
6068 /*
6069 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6070 * new rq.
6071 */
6072 static void attach_tasks(struct lb_env *env)
6073 {
6074 struct list_head *tasks = &env->tasks;
6075 struct task_struct *p;
6076
6077 raw_spin_lock(&env->dst_rq->lock);
6078
6079 while (!list_empty(tasks)) {
6080 p = list_first_entry(tasks, struct task_struct, se.group_node);
6081 list_del_init(&p->se.group_node);
6082
6083 attach_task(env->dst_rq, p);
6084 }
6085
6086 raw_spin_unlock(&env->dst_rq->lock);
6087 }
6088
6089 #ifdef CONFIG_FAIR_GROUP_SCHED
6090 static void update_blocked_averages(int cpu)
6091 {
6092 struct rq *rq = cpu_rq(cpu);
6093 struct cfs_rq *cfs_rq;
6094 unsigned long flags;
6095
6096 raw_spin_lock_irqsave(&rq->lock, flags);
6097 update_rq_clock(rq);
6098
6099 /*
6100 * Iterates the task_group tree in a bottom up fashion, see
6101 * list_add_leaf_cfs_rq() for details.
6102 */
6103 for_each_leaf_cfs_rq(rq, cfs_rq) {
6104 /* throttled entities do not contribute to load */
6105 if (throttled_hierarchy(cfs_rq))
6106 continue;
6107
6108 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6109 update_tg_load_avg(cfs_rq, 0);
6110 }
6111 raw_spin_unlock_irqrestore(&rq->lock, flags);
6112 }
6113
6114 /*
6115 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6116 * This needs to be done in a top-down fashion because the load of a child
6117 * group is a fraction of its parents load.
6118 */
6119 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6120 {
6121 struct rq *rq = rq_of(cfs_rq);
6122 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6123 unsigned long now = jiffies;
6124 unsigned long load;
6125
6126 if (cfs_rq->last_h_load_update == now)
6127 return;
6128
6129 cfs_rq->h_load_next = NULL;
6130 for_each_sched_entity(se) {
6131 cfs_rq = cfs_rq_of(se);
6132 cfs_rq->h_load_next = se;
6133 if (cfs_rq->last_h_load_update == now)
6134 break;
6135 }
6136
6137 if (!se) {
6138 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6139 cfs_rq->last_h_load_update = now;
6140 }
6141
6142 while ((se = cfs_rq->h_load_next) != NULL) {
6143 load = cfs_rq->h_load;
6144 load = div64_ul(load * se->avg.load_avg,
6145 cfs_rq_load_avg(cfs_rq) + 1);
6146 cfs_rq = group_cfs_rq(se);
6147 cfs_rq->h_load = load;
6148 cfs_rq->last_h_load_update = now;
6149 }
6150 }
6151
6152 static unsigned long task_h_load(struct task_struct *p)
6153 {
6154 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6155
6156 update_cfs_rq_h_load(cfs_rq);
6157 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6158 cfs_rq_load_avg(cfs_rq) + 1);
6159 }
6160 #else
6161 static inline void update_blocked_averages(int cpu)
6162 {
6163 struct rq *rq = cpu_rq(cpu);
6164 struct cfs_rq *cfs_rq = &rq->cfs;
6165 unsigned long flags;
6166
6167 raw_spin_lock_irqsave(&rq->lock, flags);
6168 update_rq_clock(rq);
6169 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6170 raw_spin_unlock_irqrestore(&rq->lock, flags);
6171 }
6172
6173 static unsigned long task_h_load(struct task_struct *p)
6174 {
6175 return p->se.avg.load_avg;
6176 }
6177 #endif
6178
6179 /********** Helpers for find_busiest_group ************************/
6180
6181 enum group_type {
6182 group_other = 0,
6183 group_imbalanced,
6184 group_overloaded,
6185 };
6186
6187 /*
6188 * sg_lb_stats - stats of a sched_group required for load_balancing
6189 */
6190 struct sg_lb_stats {
6191 unsigned long avg_load; /*Avg load across the CPUs of the group */
6192 unsigned long group_load; /* Total load over the CPUs of the group */
6193 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6194 unsigned long load_per_task;
6195 unsigned long group_capacity;
6196 unsigned long group_util; /* Total utilization of the group */
6197 unsigned int sum_nr_running; /* Nr tasks running in the group */
6198 unsigned int idle_cpus;
6199 unsigned int group_weight;
6200 enum group_type group_type;
6201 int group_no_capacity;
6202 #ifdef CONFIG_NUMA_BALANCING
6203 unsigned int nr_numa_running;
6204 unsigned int nr_preferred_running;
6205 #endif
6206 };
6207
6208 /*
6209 * sd_lb_stats - Structure to store the statistics of a sched_domain
6210 * during load balancing.
6211 */
6212 struct sd_lb_stats {
6213 struct sched_group *busiest; /* Busiest group in this sd */
6214 struct sched_group *local; /* Local group in this sd */
6215 unsigned long total_load; /* Total load of all groups in sd */
6216 unsigned long total_capacity; /* Total capacity of all groups in sd */
6217 unsigned long avg_load; /* Average load across all groups in sd */
6218
6219 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6220 struct sg_lb_stats local_stat; /* Statistics of the local group */
6221 };
6222
6223 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6224 {
6225 /*
6226 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6227 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6228 * We must however clear busiest_stat::avg_load because
6229 * update_sd_pick_busiest() reads this before assignment.
6230 */
6231 *sds = (struct sd_lb_stats){
6232 .busiest = NULL,
6233 .local = NULL,
6234 .total_load = 0UL,
6235 .total_capacity = 0UL,
6236 .busiest_stat = {
6237 .avg_load = 0UL,
6238 .sum_nr_running = 0,
6239 .group_type = group_other,
6240 },
6241 };
6242 }
6243
6244 /**
6245 * get_sd_load_idx - Obtain the load index for a given sched domain.
6246 * @sd: The sched_domain whose load_idx is to be obtained.
6247 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6248 *
6249 * Return: The load index.
6250 */
6251 static inline int get_sd_load_idx(struct sched_domain *sd,
6252 enum cpu_idle_type idle)
6253 {
6254 int load_idx;
6255
6256 switch (idle) {
6257 case CPU_NOT_IDLE:
6258 load_idx = sd->busy_idx;
6259 break;
6260
6261 case CPU_NEWLY_IDLE:
6262 load_idx = sd->newidle_idx;
6263 break;
6264 default:
6265 load_idx = sd->idle_idx;
6266 break;
6267 }
6268
6269 return load_idx;
6270 }
6271
6272 static unsigned long scale_rt_capacity(int cpu)
6273 {
6274 struct rq *rq = cpu_rq(cpu);
6275 u64 total, used, age_stamp, avg;
6276 s64 delta;
6277
6278 /*
6279 * Since we're reading these variables without serialization make sure
6280 * we read them once before doing sanity checks on them.
6281 */
6282 age_stamp = READ_ONCE(rq->age_stamp);
6283 avg = READ_ONCE(rq->rt_avg);
6284 delta = __rq_clock_broken(rq) - age_stamp;
6285
6286 if (unlikely(delta < 0))
6287 delta = 0;
6288
6289 total = sched_avg_period() + delta;
6290
6291 used = div_u64(avg, total);
6292
6293 if (likely(used < SCHED_CAPACITY_SCALE))
6294 return SCHED_CAPACITY_SCALE - used;
6295
6296 return 1;
6297 }
6298
6299 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6300 {
6301 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6302 struct sched_group *sdg = sd->groups;
6303
6304 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6305
6306 capacity *= scale_rt_capacity(cpu);
6307 capacity >>= SCHED_CAPACITY_SHIFT;
6308
6309 if (!capacity)
6310 capacity = 1;
6311
6312 cpu_rq(cpu)->cpu_capacity = capacity;
6313 sdg->sgc->capacity = capacity;
6314 }
6315
6316 void update_group_capacity(struct sched_domain *sd, int cpu)
6317 {
6318 struct sched_domain *child = sd->child;
6319 struct sched_group *group, *sdg = sd->groups;
6320 unsigned long capacity;
6321 unsigned long interval;
6322
6323 interval = msecs_to_jiffies(sd->balance_interval);
6324 interval = clamp(interval, 1UL, max_load_balance_interval);
6325 sdg->sgc->next_update = jiffies + interval;
6326
6327 if (!child) {
6328 update_cpu_capacity(sd, cpu);
6329 return;
6330 }
6331
6332 capacity = 0;
6333
6334 if (child->flags & SD_OVERLAP) {
6335 /*
6336 * SD_OVERLAP domains cannot assume that child groups
6337 * span the current group.
6338 */
6339
6340 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6341 struct sched_group_capacity *sgc;
6342 struct rq *rq = cpu_rq(cpu);
6343
6344 /*
6345 * build_sched_domains() -> init_sched_groups_capacity()
6346 * gets here before we've attached the domains to the
6347 * runqueues.
6348 *
6349 * Use capacity_of(), which is set irrespective of domains
6350 * in update_cpu_capacity().
6351 *
6352 * This avoids capacity from being 0 and
6353 * causing divide-by-zero issues on boot.
6354 */
6355 if (unlikely(!rq->sd)) {
6356 capacity += capacity_of(cpu);
6357 continue;
6358 }
6359
6360 sgc = rq->sd->groups->sgc;
6361 capacity += sgc->capacity;
6362 }
6363 } else {
6364 /*
6365 * !SD_OVERLAP domains can assume that child groups
6366 * span the current group.
6367 */
6368
6369 group = child->groups;
6370 do {
6371 capacity += group->sgc->capacity;
6372 group = group->next;
6373 } while (group != child->groups);
6374 }
6375
6376 sdg->sgc->capacity = capacity;
6377 }
6378
6379 /*
6380 * Check whether the capacity of the rq has been noticeably reduced by side
6381 * activity. The imbalance_pct is used for the threshold.
6382 * Return true is the capacity is reduced
6383 */
6384 static inline int
6385 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6386 {
6387 return ((rq->cpu_capacity * sd->imbalance_pct) <
6388 (rq->cpu_capacity_orig * 100));
6389 }
6390
6391 /*
6392 * Group imbalance indicates (and tries to solve) the problem where balancing
6393 * groups is inadequate due to tsk_cpus_allowed() constraints.
6394 *
6395 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6396 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6397 * Something like:
6398 *
6399 * { 0 1 2 3 } { 4 5 6 7 }
6400 * * * * *
6401 *
6402 * If we were to balance group-wise we'd place two tasks in the first group and
6403 * two tasks in the second group. Clearly this is undesired as it will overload
6404 * cpu 3 and leave one of the cpus in the second group unused.
6405 *
6406 * The current solution to this issue is detecting the skew in the first group
6407 * by noticing the lower domain failed to reach balance and had difficulty
6408 * moving tasks due to affinity constraints.
6409 *
6410 * When this is so detected; this group becomes a candidate for busiest; see
6411 * update_sd_pick_busiest(). And calculate_imbalance() and
6412 * find_busiest_group() avoid some of the usual balance conditions to allow it
6413 * to create an effective group imbalance.
6414 *
6415 * This is a somewhat tricky proposition since the next run might not find the
6416 * group imbalance and decide the groups need to be balanced again. A most
6417 * subtle and fragile situation.
6418 */
6419
6420 static inline int sg_imbalanced(struct sched_group *group)
6421 {
6422 return group->sgc->imbalance;
6423 }
6424
6425 /*
6426 * group_has_capacity returns true if the group has spare capacity that could
6427 * be used by some tasks.
6428 * We consider that a group has spare capacity if the * number of task is
6429 * smaller than the number of CPUs or if the utilization is lower than the
6430 * available capacity for CFS tasks.
6431 * For the latter, we use a threshold to stabilize the state, to take into
6432 * account the variance of the tasks' load and to return true if the available
6433 * capacity in meaningful for the load balancer.
6434 * As an example, an available capacity of 1% can appear but it doesn't make
6435 * any benefit for the load balance.
6436 */
6437 static inline bool
6438 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6439 {
6440 if (sgs->sum_nr_running < sgs->group_weight)
6441 return true;
6442
6443 if ((sgs->group_capacity * 100) >
6444 (sgs->group_util * env->sd->imbalance_pct))
6445 return true;
6446
6447 return false;
6448 }
6449
6450 /*
6451 * group_is_overloaded returns true if the group has more tasks than it can
6452 * handle.
6453 * group_is_overloaded is not equals to !group_has_capacity because a group
6454 * with the exact right number of tasks, has no more spare capacity but is not
6455 * overloaded so both group_has_capacity and group_is_overloaded return
6456 * false.
6457 */
6458 static inline bool
6459 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6460 {
6461 if (sgs->sum_nr_running <= sgs->group_weight)
6462 return false;
6463
6464 if ((sgs->group_capacity * 100) <
6465 (sgs->group_util * env->sd->imbalance_pct))
6466 return true;
6467
6468 return false;
6469 }
6470
6471 static inline enum
6472 group_type group_classify(struct sched_group *group,
6473 struct sg_lb_stats *sgs)
6474 {
6475 if (sgs->group_no_capacity)
6476 return group_overloaded;
6477
6478 if (sg_imbalanced(group))
6479 return group_imbalanced;
6480
6481 return group_other;
6482 }
6483
6484 /**
6485 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6486 * @env: The load balancing environment.
6487 * @group: sched_group whose statistics are to be updated.
6488 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6489 * @local_group: Does group contain this_cpu.
6490 * @sgs: variable to hold the statistics for this group.
6491 * @overload: Indicate more than one runnable task for any CPU.
6492 */
6493 static inline void update_sg_lb_stats(struct lb_env *env,
6494 struct sched_group *group, int load_idx,
6495 int local_group, struct sg_lb_stats *sgs,
6496 bool *overload)
6497 {
6498 unsigned long load;
6499 int i, nr_running;
6500
6501 memset(sgs, 0, sizeof(*sgs));
6502
6503 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6504 struct rq *rq = cpu_rq(i);
6505
6506 /* Bias balancing toward cpus of our domain */
6507 if (local_group)
6508 load = target_load(i, load_idx);
6509 else
6510 load = source_load(i, load_idx);
6511
6512 sgs->group_load += load;
6513 sgs->group_util += cpu_util(i);
6514 sgs->sum_nr_running += rq->cfs.h_nr_running;
6515
6516 nr_running = rq->nr_running;
6517 if (nr_running > 1)
6518 *overload = true;
6519
6520 #ifdef CONFIG_NUMA_BALANCING
6521 sgs->nr_numa_running += rq->nr_numa_running;
6522 sgs->nr_preferred_running += rq->nr_preferred_running;
6523 #endif
6524 sgs->sum_weighted_load += weighted_cpuload(i);
6525 /*
6526 * No need to call idle_cpu() if nr_running is not 0
6527 */
6528 if (!nr_running && idle_cpu(i))
6529 sgs->idle_cpus++;
6530 }
6531
6532 /* Adjust by relative CPU capacity of the group */
6533 sgs->group_capacity = group->sgc->capacity;
6534 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6535
6536 if (sgs->sum_nr_running)
6537 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6538
6539 sgs->group_weight = group->group_weight;
6540
6541 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6542 sgs->group_type = group_classify(group, sgs);
6543 }
6544
6545 /**
6546 * update_sd_pick_busiest - return 1 on busiest group
6547 * @env: The load balancing environment.
6548 * @sds: sched_domain statistics
6549 * @sg: sched_group candidate to be checked for being the busiest
6550 * @sgs: sched_group statistics
6551 *
6552 * Determine if @sg is a busier group than the previously selected
6553 * busiest group.
6554 *
6555 * Return: %true if @sg is a busier group than the previously selected
6556 * busiest group. %false otherwise.
6557 */
6558 static bool update_sd_pick_busiest(struct lb_env *env,
6559 struct sd_lb_stats *sds,
6560 struct sched_group *sg,
6561 struct sg_lb_stats *sgs)
6562 {
6563 struct sg_lb_stats *busiest = &sds->busiest_stat;
6564
6565 if (sgs->group_type > busiest->group_type)
6566 return true;
6567
6568 if (sgs->group_type < busiest->group_type)
6569 return false;
6570
6571 if (sgs->avg_load <= busiest->avg_load)
6572 return false;
6573
6574 /* This is the busiest node in its class. */
6575 if (!(env->sd->flags & SD_ASYM_PACKING))
6576 return true;
6577
6578 /*
6579 * ASYM_PACKING needs to move all the work to the lowest
6580 * numbered CPUs in the group, therefore mark all groups
6581 * higher than ourself as busy.
6582 */
6583 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6584 if (!sds->busiest)
6585 return true;
6586
6587 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6588 return true;
6589 }
6590
6591 return false;
6592 }
6593
6594 #ifdef CONFIG_NUMA_BALANCING
6595 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6596 {
6597 if (sgs->sum_nr_running > sgs->nr_numa_running)
6598 return regular;
6599 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6600 return remote;
6601 return all;
6602 }
6603
6604 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6605 {
6606 if (rq->nr_running > rq->nr_numa_running)
6607 return regular;
6608 if (rq->nr_running > rq->nr_preferred_running)
6609 return remote;
6610 return all;
6611 }
6612 #else
6613 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6614 {
6615 return all;
6616 }
6617
6618 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6619 {
6620 return regular;
6621 }
6622 #endif /* CONFIG_NUMA_BALANCING */
6623
6624 /**
6625 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6626 * @env: The load balancing environment.
6627 * @sds: variable to hold the statistics for this sched_domain.
6628 */
6629 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6630 {
6631 struct sched_domain *child = env->sd->child;
6632 struct sched_group *sg = env->sd->groups;
6633 struct sg_lb_stats tmp_sgs;
6634 int load_idx, prefer_sibling = 0;
6635 bool overload = false;
6636
6637 if (child && child->flags & SD_PREFER_SIBLING)
6638 prefer_sibling = 1;
6639
6640 load_idx = get_sd_load_idx(env->sd, env->idle);
6641
6642 do {
6643 struct sg_lb_stats *sgs = &tmp_sgs;
6644 int local_group;
6645
6646 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6647 if (local_group) {
6648 sds->local = sg;
6649 sgs = &sds->local_stat;
6650
6651 if (env->idle != CPU_NEWLY_IDLE ||
6652 time_after_eq(jiffies, sg->sgc->next_update))
6653 update_group_capacity(env->sd, env->dst_cpu);
6654 }
6655
6656 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6657 &overload);
6658
6659 if (local_group)
6660 goto next_group;
6661
6662 /*
6663 * In case the child domain prefers tasks go to siblings
6664 * first, lower the sg capacity so that we'll try
6665 * and move all the excess tasks away. We lower the capacity
6666 * of a group only if the local group has the capacity to fit
6667 * these excess tasks. The extra check prevents the case where
6668 * you always pull from the heaviest group when it is already
6669 * under-utilized (possible with a large weight task outweighs
6670 * the tasks on the system).
6671 */
6672 if (prefer_sibling && sds->local &&
6673 group_has_capacity(env, &sds->local_stat) &&
6674 (sgs->sum_nr_running > 1)) {
6675 sgs->group_no_capacity = 1;
6676 sgs->group_type = group_classify(sg, sgs);
6677 }
6678
6679 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6680 sds->busiest = sg;
6681 sds->busiest_stat = *sgs;
6682 }
6683
6684 next_group:
6685 /* Now, start updating sd_lb_stats */
6686 sds->total_load += sgs->group_load;
6687 sds->total_capacity += sgs->group_capacity;
6688
6689 sg = sg->next;
6690 } while (sg != env->sd->groups);
6691
6692 if (env->sd->flags & SD_NUMA)
6693 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6694
6695 if (!env->sd->parent) {
6696 /* update overload indicator if we are at root domain */
6697 if (env->dst_rq->rd->overload != overload)
6698 env->dst_rq->rd->overload = overload;
6699 }
6700
6701 }
6702
6703 /**
6704 * check_asym_packing - Check to see if the group is packed into the
6705 * sched doman.
6706 *
6707 * This is primarily intended to used at the sibling level. Some
6708 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6709 * case of POWER7, it can move to lower SMT modes only when higher
6710 * threads are idle. When in lower SMT modes, the threads will
6711 * perform better since they share less core resources. Hence when we
6712 * have idle threads, we want them to be the higher ones.
6713 *
6714 * This packing function is run on idle threads. It checks to see if
6715 * the busiest CPU in this domain (core in the P7 case) has a higher
6716 * CPU number than the packing function is being run on. Here we are
6717 * assuming lower CPU number will be equivalent to lower a SMT thread
6718 * number.
6719 *
6720 * Return: 1 when packing is required and a task should be moved to
6721 * this CPU. The amount of the imbalance is returned in *imbalance.
6722 *
6723 * @env: The load balancing environment.
6724 * @sds: Statistics of the sched_domain which is to be packed
6725 */
6726 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6727 {
6728 int busiest_cpu;
6729
6730 if (!(env->sd->flags & SD_ASYM_PACKING))
6731 return 0;
6732
6733 if (!sds->busiest)
6734 return 0;
6735
6736 busiest_cpu = group_first_cpu(sds->busiest);
6737 if (env->dst_cpu > busiest_cpu)
6738 return 0;
6739
6740 env->imbalance = DIV_ROUND_CLOSEST(
6741 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6742 SCHED_CAPACITY_SCALE);
6743
6744 return 1;
6745 }
6746
6747 /**
6748 * fix_small_imbalance - Calculate the minor imbalance that exists
6749 * amongst the groups of a sched_domain, during
6750 * load balancing.
6751 * @env: The load balancing environment.
6752 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6753 */
6754 static inline
6755 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6756 {
6757 unsigned long tmp, capa_now = 0, capa_move = 0;
6758 unsigned int imbn = 2;
6759 unsigned long scaled_busy_load_per_task;
6760 struct sg_lb_stats *local, *busiest;
6761
6762 local = &sds->local_stat;
6763 busiest = &sds->busiest_stat;
6764
6765 if (!local->sum_nr_running)
6766 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6767 else if (busiest->load_per_task > local->load_per_task)
6768 imbn = 1;
6769
6770 scaled_busy_load_per_task =
6771 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6772 busiest->group_capacity;
6773
6774 if (busiest->avg_load + scaled_busy_load_per_task >=
6775 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6776 env->imbalance = busiest->load_per_task;
6777 return;
6778 }
6779
6780 /*
6781 * OK, we don't have enough imbalance to justify moving tasks,
6782 * however we may be able to increase total CPU capacity used by
6783 * moving them.
6784 */
6785
6786 capa_now += busiest->group_capacity *
6787 min(busiest->load_per_task, busiest->avg_load);
6788 capa_now += local->group_capacity *
6789 min(local->load_per_task, local->avg_load);
6790 capa_now /= SCHED_CAPACITY_SCALE;
6791
6792 /* Amount of load we'd subtract */
6793 if (busiest->avg_load > scaled_busy_load_per_task) {
6794 capa_move += busiest->group_capacity *
6795 min(busiest->load_per_task,
6796 busiest->avg_load - scaled_busy_load_per_task);
6797 }
6798
6799 /* Amount of load we'd add */
6800 if (busiest->avg_load * busiest->group_capacity <
6801 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6802 tmp = (busiest->avg_load * busiest->group_capacity) /
6803 local->group_capacity;
6804 } else {
6805 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6806 local->group_capacity;
6807 }
6808 capa_move += local->group_capacity *
6809 min(local->load_per_task, local->avg_load + tmp);
6810 capa_move /= SCHED_CAPACITY_SCALE;
6811
6812 /* Move if we gain throughput */
6813 if (capa_move > capa_now)
6814 env->imbalance = busiest->load_per_task;
6815 }
6816
6817 /**
6818 * calculate_imbalance - Calculate the amount of imbalance present within the
6819 * groups of a given sched_domain during load balance.
6820 * @env: load balance environment
6821 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6822 */
6823 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6824 {
6825 unsigned long max_pull, load_above_capacity = ~0UL;
6826 struct sg_lb_stats *local, *busiest;
6827
6828 local = &sds->local_stat;
6829 busiest = &sds->busiest_stat;
6830
6831 if (busiest->group_type == group_imbalanced) {
6832 /*
6833 * In the group_imb case we cannot rely on group-wide averages
6834 * to ensure cpu-load equilibrium, look at wider averages. XXX
6835 */
6836 busiest->load_per_task =
6837 min(busiest->load_per_task, sds->avg_load);
6838 }
6839
6840 /*
6841 * In the presence of smp nice balancing, certain scenarios can have
6842 * max load less than avg load(as we skip the groups at or below
6843 * its cpu_capacity, while calculating max_load..)
6844 */
6845 if (busiest->avg_load <= sds->avg_load ||
6846 local->avg_load >= sds->avg_load) {
6847 env->imbalance = 0;
6848 return fix_small_imbalance(env, sds);
6849 }
6850
6851 /*
6852 * If there aren't any idle cpus, avoid creating some.
6853 */
6854 if (busiest->group_type == group_overloaded &&
6855 local->group_type == group_overloaded) {
6856 load_above_capacity = busiest->sum_nr_running *
6857 SCHED_LOAD_SCALE;
6858 if (load_above_capacity > busiest->group_capacity)
6859 load_above_capacity -= busiest->group_capacity;
6860 else
6861 load_above_capacity = ~0UL;
6862 }
6863
6864 /*
6865 * We're trying to get all the cpus to the average_load, so we don't
6866 * want to push ourselves above the average load, nor do we wish to
6867 * reduce the max loaded cpu below the average load. At the same time,
6868 * we also don't want to reduce the group load below the group capacity
6869 * (so that we can implement power-savings policies etc). Thus we look
6870 * for the minimum possible imbalance.
6871 */
6872 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6873
6874 /* How much load to actually move to equalise the imbalance */
6875 env->imbalance = min(
6876 max_pull * busiest->group_capacity,
6877 (sds->avg_load - local->avg_load) * local->group_capacity
6878 ) / SCHED_CAPACITY_SCALE;
6879
6880 /*
6881 * if *imbalance is less than the average load per runnable task
6882 * there is no guarantee that any tasks will be moved so we'll have
6883 * a think about bumping its value to force at least one task to be
6884 * moved
6885 */
6886 if (env->imbalance < busiest->load_per_task)
6887 return fix_small_imbalance(env, sds);
6888 }
6889
6890 /******* find_busiest_group() helpers end here *********************/
6891
6892 /**
6893 * find_busiest_group - Returns the busiest group within the sched_domain
6894 * if there is an imbalance. If there isn't an imbalance, and
6895 * the user has opted for power-savings, it returns a group whose
6896 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6897 * such a group exists.
6898 *
6899 * Also calculates the amount of weighted load which should be moved
6900 * to restore balance.
6901 *
6902 * @env: The load balancing environment.
6903 *
6904 * Return: - The busiest group if imbalance exists.
6905 * - If no imbalance and user has opted for power-savings balance,
6906 * return the least loaded group whose CPUs can be
6907 * put to idle by rebalancing its tasks onto our group.
6908 */
6909 static struct sched_group *find_busiest_group(struct lb_env *env)
6910 {
6911 struct sg_lb_stats *local, *busiest;
6912 struct sd_lb_stats sds;
6913
6914 init_sd_lb_stats(&sds);
6915
6916 /*
6917 * Compute the various statistics relavent for load balancing at
6918 * this level.
6919 */
6920 update_sd_lb_stats(env, &sds);
6921 local = &sds.local_stat;
6922 busiest = &sds.busiest_stat;
6923
6924 /* ASYM feature bypasses nice load balance check */
6925 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6926 check_asym_packing(env, &sds))
6927 return sds.busiest;
6928
6929 /* There is no busy sibling group to pull tasks from */
6930 if (!sds.busiest || busiest->sum_nr_running == 0)
6931 goto out_balanced;
6932
6933 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6934 / sds.total_capacity;
6935
6936 /*
6937 * If the busiest group is imbalanced the below checks don't
6938 * work because they assume all things are equal, which typically
6939 * isn't true due to cpus_allowed constraints and the like.
6940 */
6941 if (busiest->group_type == group_imbalanced)
6942 goto force_balance;
6943
6944 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6945 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6946 busiest->group_no_capacity)
6947 goto force_balance;
6948
6949 /*
6950 * If the local group is busier than the selected busiest group
6951 * don't try and pull any tasks.
6952 */
6953 if (local->avg_load >= busiest->avg_load)
6954 goto out_balanced;
6955
6956 /*
6957 * Don't pull any tasks if this group is already above the domain
6958 * average load.
6959 */
6960 if (local->avg_load >= sds.avg_load)
6961 goto out_balanced;
6962
6963 if (env->idle == CPU_IDLE) {
6964 /*
6965 * This cpu is idle. If the busiest group is not overloaded
6966 * and there is no imbalance between this and busiest group
6967 * wrt idle cpus, it is balanced. The imbalance becomes
6968 * significant if the diff is greater than 1 otherwise we
6969 * might end up to just move the imbalance on another group
6970 */
6971 if ((busiest->group_type != group_overloaded) &&
6972 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6973 goto out_balanced;
6974 } else {
6975 /*
6976 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6977 * imbalance_pct to be conservative.
6978 */
6979 if (100 * busiest->avg_load <=
6980 env->sd->imbalance_pct * local->avg_load)
6981 goto out_balanced;
6982 }
6983
6984 force_balance:
6985 /* Looks like there is an imbalance. Compute it */
6986 calculate_imbalance(env, &sds);
6987 return sds.busiest;
6988
6989 out_balanced:
6990 env->imbalance = 0;
6991 return NULL;
6992 }
6993
6994 /*
6995 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6996 */
6997 static struct rq *find_busiest_queue(struct lb_env *env,
6998 struct sched_group *group)
6999 {
7000 struct rq *busiest = NULL, *rq;
7001 unsigned long busiest_load = 0, busiest_capacity = 1;
7002 int i;
7003
7004 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7005 unsigned long capacity, wl;
7006 enum fbq_type rt;
7007
7008 rq = cpu_rq(i);
7009 rt = fbq_classify_rq(rq);
7010
7011 /*
7012 * We classify groups/runqueues into three groups:
7013 * - regular: there are !numa tasks
7014 * - remote: there are numa tasks that run on the 'wrong' node
7015 * - all: there is no distinction
7016 *
7017 * In order to avoid migrating ideally placed numa tasks,
7018 * ignore those when there's better options.
7019 *
7020 * If we ignore the actual busiest queue to migrate another
7021 * task, the next balance pass can still reduce the busiest
7022 * queue by moving tasks around inside the node.
7023 *
7024 * If we cannot move enough load due to this classification
7025 * the next pass will adjust the group classification and
7026 * allow migration of more tasks.
7027 *
7028 * Both cases only affect the total convergence complexity.
7029 */
7030 if (rt > env->fbq_type)
7031 continue;
7032
7033 capacity = capacity_of(i);
7034
7035 wl = weighted_cpuload(i);
7036
7037 /*
7038 * When comparing with imbalance, use weighted_cpuload()
7039 * which is not scaled with the cpu capacity.
7040 */
7041
7042 if (rq->nr_running == 1 && wl > env->imbalance &&
7043 !check_cpu_capacity(rq, env->sd))
7044 continue;
7045
7046 /*
7047 * For the load comparisons with the other cpu's, consider
7048 * the weighted_cpuload() scaled with the cpu capacity, so
7049 * that the load can be moved away from the cpu that is
7050 * potentially running at a lower capacity.
7051 *
7052 * Thus we're looking for max(wl_i / capacity_i), crosswise
7053 * multiplication to rid ourselves of the division works out
7054 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7055 * our previous maximum.
7056 */
7057 if (wl * busiest_capacity > busiest_load * capacity) {
7058 busiest_load = wl;
7059 busiest_capacity = capacity;
7060 busiest = rq;
7061 }
7062 }
7063
7064 return busiest;
7065 }
7066
7067 /*
7068 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7069 * so long as it is large enough.
7070 */
7071 #define MAX_PINNED_INTERVAL 512
7072
7073 /* Working cpumask for load_balance and load_balance_newidle. */
7074 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7075
7076 static int need_active_balance(struct lb_env *env)
7077 {
7078 struct sched_domain *sd = env->sd;
7079
7080 if (env->idle == CPU_NEWLY_IDLE) {
7081
7082 /*
7083 * ASYM_PACKING needs to force migrate tasks from busy but
7084 * higher numbered CPUs in order to pack all tasks in the
7085 * lowest numbered CPUs.
7086 */
7087 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7088 return 1;
7089 }
7090
7091 /*
7092 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7093 * It's worth migrating the task if the src_cpu's capacity is reduced
7094 * because of other sched_class or IRQs if more capacity stays
7095 * available on dst_cpu.
7096 */
7097 if ((env->idle != CPU_NOT_IDLE) &&
7098 (env->src_rq->cfs.h_nr_running == 1)) {
7099 if ((check_cpu_capacity(env->src_rq, sd)) &&
7100 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7101 return 1;
7102 }
7103
7104 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7105 }
7106
7107 static int active_load_balance_cpu_stop(void *data);
7108
7109 static int should_we_balance(struct lb_env *env)
7110 {
7111 struct sched_group *sg = env->sd->groups;
7112 struct cpumask *sg_cpus, *sg_mask;
7113 int cpu, balance_cpu = -1;
7114
7115 /*
7116 * In the newly idle case, we will allow all the cpu's
7117 * to do the newly idle load balance.
7118 */
7119 if (env->idle == CPU_NEWLY_IDLE)
7120 return 1;
7121
7122 sg_cpus = sched_group_cpus(sg);
7123 sg_mask = sched_group_mask(sg);
7124 /* Try to find first idle cpu */
7125 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7126 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7127 continue;
7128
7129 balance_cpu = cpu;
7130 break;
7131 }
7132
7133 if (balance_cpu == -1)
7134 balance_cpu = group_balance_cpu(sg);
7135
7136 /*
7137 * First idle cpu or the first cpu(busiest) in this sched group
7138 * is eligible for doing load balancing at this and above domains.
7139 */
7140 return balance_cpu == env->dst_cpu;
7141 }
7142
7143 /*
7144 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7145 * tasks if there is an imbalance.
7146 */
7147 static int load_balance(int this_cpu, struct rq *this_rq,
7148 struct sched_domain *sd, enum cpu_idle_type idle,
7149 int *continue_balancing)
7150 {
7151 int ld_moved, cur_ld_moved, active_balance = 0;
7152 struct sched_domain *sd_parent = sd->parent;
7153 struct sched_group *group;
7154 struct rq *busiest;
7155 unsigned long flags;
7156 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7157
7158 struct lb_env env = {
7159 .sd = sd,
7160 .dst_cpu = this_cpu,
7161 .dst_rq = this_rq,
7162 .dst_grpmask = sched_group_cpus(sd->groups),
7163 .idle = idle,
7164 .loop_break = sched_nr_migrate_break,
7165 .cpus = cpus,
7166 .fbq_type = all,
7167 .tasks = LIST_HEAD_INIT(env.tasks),
7168 };
7169
7170 /*
7171 * For NEWLY_IDLE load_balancing, we don't need to consider
7172 * other cpus in our group
7173 */
7174 if (idle == CPU_NEWLY_IDLE)
7175 env.dst_grpmask = NULL;
7176
7177 cpumask_copy(cpus, cpu_active_mask);
7178
7179 schedstat_inc(sd, lb_count[idle]);
7180
7181 redo:
7182 if (!should_we_balance(&env)) {
7183 *continue_balancing = 0;
7184 goto out_balanced;
7185 }
7186
7187 group = find_busiest_group(&env);
7188 if (!group) {
7189 schedstat_inc(sd, lb_nobusyg[idle]);
7190 goto out_balanced;
7191 }
7192
7193 busiest = find_busiest_queue(&env, group);
7194 if (!busiest) {
7195 schedstat_inc(sd, lb_nobusyq[idle]);
7196 goto out_balanced;
7197 }
7198
7199 BUG_ON(busiest == env.dst_rq);
7200
7201 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7202
7203 env.src_cpu = busiest->cpu;
7204 env.src_rq = busiest;
7205
7206 ld_moved = 0;
7207 if (busiest->nr_running > 1) {
7208 /*
7209 * Attempt to move tasks. If find_busiest_group has found
7210 * an imbalance but busiest->nr_running <= 1, the group is
7211 * still unbalanced. ld_moved simply stays zero, so it is
7212 * correctly treated as an imbalance.
7213 */
7214 env.flags |= LBF_ALL_PINNED;
7215 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7216
7217 more_balance:
7218 raw_spin_lock_irqsave(&busiest->lock, flags);
7219
7220 /*
7221 * cur_ld_moved - load moved in current iteration
7222 * ld_moved - cumulative load moved across iterations
7223 */
7224 cur_ld_moved = detach_tasks(&env);
7225
7226 /*
7227 * We've detached some tasks from busiest_rq. Every
7228 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7229 * unlock busiest->lock, and we are able to be sure
7230 * that nobody can manipulate the tasks in parallel.
7231 * See task_rq_lock() family for the details.
7232 */
7233
7234 raw_spin_unlock(&busiest->lock);
7235
7236 if (cur_ld_moved) {
7237 attach_tasks(&env);
7238 ld_moved += cur_ld_moved;
7239 }
7240
7241 local_irq_restore(flags);
7242
7243 if (env.flags & LBF_NEED_BREAK) {
7244 env.flags &= ~LBF_NEED_BREAK;
7245 goto more_balance;
7246 }
7247
7248 /*
7249 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7250 * us and move them to an alternate dst_cpu in our sched_group
7251 * where they can run. The upper limit on how many times we
7252 * iterate on same src_cpu is dependent on number of cpus in our
7253 * sched_group.
7254 *
7255 * This changes load balance semantics a bit on who can move
7256 * load to a given_cpu. In addition to the given_cpu itself
7257 * (or a ilb_cpu acting on its behalf where given_cpu is
7258 * nohz-idle), we now have balance_cpu in a position to move
7259 * load to given_cpu. In rare situations, this may cause
7260 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7261 * _independently_ and at _same_ time to move some load to
7262 * given_cpu) causing exceess load to be moved to given_cpu.
7263 * This however should not happen so much in practice and
7264 * moreover subsequent load balance cycles should correct the
7265 * excess load moved.
7266 */
7267 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7268
7269 /* Prevent to re-select dst_cpu via env's cpus */
7270 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7271
7272 env.dst_rq = cpu_rq(env.new_dst_cpu);
7273 env.dst_cpu = env.new_dst_cpu;
7274 env.flags &= ~LBF_DST_PINNED;
7275 env.loop = 0;
7276 env.loop_break = sched_nr_migrate_break;
7277
7278 /*
7279 * Go back to "more_balance" rather than "redo" since we
7280 * need to continue with same src_cpu.
7281 */
7282 goto more_balance;
7283 }
7284
7285 /*
7286 * We failed to reach balance because of affinity.
7287 */
7288 if (sd_parent) {
7289 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7290
7291 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7292 *group_imbalance = 1;
7293 }
7294
7295 /* All tasks on this runqueue were pinned by CPU affinity */
7296 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7297 cpumask_clear_cpu(cpu_of(busiest), cpus);
7298 if (!cpumask_empty(cpus)) {
7299 env.loop = 0;
7300 env.loop_break = sched_nr_migrate_break;
7301 goto redo;
7302 }
7303 goto out_all_pinned;
7304 }
7305 }
7306
7307 if (!ld_moved) {
7308 schedstat_inc(sd, lb_failed[idle]);
7309 /*
7310 * Increment the failure counter only on periodic balance.
7311 * We do not want newidle balance, which can be very
7312 * frequent, pollute the failure counter causing
7313 * excessive cache_hot migrations and active balances.
7314 */
7315 if (idle != CPU_NEWLY_IDLE)
7316 sd->nr_balance_failed++;
7317
7318 if (need_active_balance(&env)) {
7319 raw_spin_lock_irqsave(&busiest->lock, flags);
7320
7321 /* don't kick the active_load_balance_cpu_stop,
7322 * if the curr task on busiest cpu can't be
7323 * moved to this_cpu
7324 */
7325 if (!cpumask_test_cpu(this_cpu,
7326 tsk_cpus_allowed(busiest->curr))) {
7327 raw_spin_unlock_irqrestore(&busiest->lock,
7328 flags);
7329 env.flags |= LBF_ALL_PINNED;
7330 goto out_one_pinned;
7331 }
7332
7333 /*
7334 * ->active_balance synchronizes accesses to
7335 * ->active_balance_work. Once set, it's cleared
7336 * only after active load balance is finished.
7337 */
7338 if (!busiest->active_balance) {
7339 busiest->active_balance = 1;
7340 busiest->push_cpu = this_cpu;
7341 active_balance = 1;
7342 }
7343 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7344
7345 if (active_balance) {
7346 stop_one_cpu_nowait(cpu_of(busiest),
7347 active_load_balance_cpu_stop, busiest,
7348 &busiest->active_balance_work);
7349 }
7350
7351 /*
7352 * We've kicked active balancing, reset the failure
7353 * counter.
7354 */
7355 sd->nr_balance_failed = sd->cache_nice_tries+1;
7356 }
7357 } else
7358 sd->nr_balance_failed = 0;
7359
7360 if (likely(!active_balance)) {
7361 /* We were unbalanced, so reset the balancing interval */
7362 sd->balance_interval = sd->min_interval;
7363 } else {
7364 /*
7365 * If we've begun active balancing, start to back off. This
7366 * case may not be covered by the all_pinned logic if there
7367 * is only 1 task on the busy runqueue (because we don't call
7368 * detach_tasks).
7369 */
7370 if (sd->balance_interval < sd->max_interval)
7371 sd->balance_interval *= 2;
7372 }
7373
7374 goto out;
7375
7376 out_balanced:
7377 /*
7378 * We reach balance although we may have faced some affinity
7379 * constraints. Clear the imbalance flag if it was set.
7380 */
7381 if (sd_parent) {
7382 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7383
7384 if (*group_imbalance)
7385 *group_imbalance = 0;
7386 }
7387
7388 out_all_pinned:
7389 /*
7390 * We reach balance because all tasks are pinned at this level so
7391 * we can't migrate them. Let the imbalance flag set so parent level
7392 * can try to migrate them.
7393 */
7394 schedstat_inc(sd, lb_balanced[idle]);
7395
7396 sd->nr_balance_failed = 0;
7397
7398 out_one_pinned:
7399 /* tune up the balancing interval */
7400 if (((env.flags & LBF_ALL_PINNED) &&
7401 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7402 (sd->balance_interval < sd->max_interval))
7403 sd->balance_interval *= 2;
7404
7405 ld_moved = 0;
7406 out:
7407 return ld_moved;
7408 }
7409
7410 static inline unsigned long
7411 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7412 {
7413 unsigned long interval = sd->balance_interval;
7414
7415 if (cpu_busy)
7416 interval *= sd->busy_factor;
7417
7418 /* scale ms to jiffies */
7419 interval = msecs_to_jiffies(interval);
7420 interval = clamp(interval, 1UL, max_load_balance_interval);
7421
7422 return interval;
7423 }
7424
7425 static inline void
7426 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7427 {
7428 unsigned long interval, next;
7429
7430 interval = get_sd_balance_interval(sd, cpu_busy);
7431 next = sd->last_balance + interval;
7432
7433 if (time_after(*next_balance, next))
7434 *next_balance = next;
7435 }
7436
7437 /*
7438 * idle_balance is called by schedule() if this_cpu is about to become
7439 * idle. Attempts to pull tasks from other CPUs.
7440 */
7441 static int idle_balance(struct rq *this_rq)
7442 {
7443 unsigned long next_balance = jiffies + HZ;
7444 int this_cpu = this_rq->cpu;
7445 struct sched_domain *sd;
7446 int pulled_task = 0;
7447 u64 curr_cost = 0;
7448
7449 /*
7450 * We must set idle_stamp _before_ calling idle_balance(), such that we
7451 * measure the duration of idle_balance() as idle time.
7452 */
7453 this_rq->idle_stamp = rq_clock(this_rq);
7454
7455 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7456 !this_rq->rd->overload) {
7457 rcu_read_lock();
7458 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7459 if (sd)
7460 update_next_balance(sd, 0, &next_balance);
7461 rcu_read_unlock();
7462
7463 goto out;
7464 }
7465
7466 raw_spin_unlock(&this_rq->lock);
7467
7468 update_blocked_averages(this_cpu);
7469 rcu_read_lock();
7470 for_each_domain(this_cpu, sd) {
7471 int continue_balancing = 1;
7472 u64 t0, domain_cost;
7473
7474 if (!(sd->flags & SD_LOAD_BALANCE))
7475 continue;
7476
7477 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7478 update_next_balance(sd, 0, &next_balance);
7479 break;
7480 }
7481
7482 if (sd->flags & SD_BALANCE_NEWIDLE) {
7483 t0 = sched_clock_cpu(this_cpu);
7484
7485 pulled_task = load_balance(this_cpu, this_rq,
7486 sd, CPU_NEWLY_IDLE,
7487 &continue_balancing);
7488
7489 domain_cost = sched_clock_cpu(this_cpu) - t0;
7490 if (domain_cost > sd->max_newidle_lb_cost)
7491 sd->max_newidle_lb_cost = domain_cost;
7492
7493 curr_cost += domain_cost;
7494 }
7495
7496 update_next_balance(sd, 0, &next_balance);
7497
7498 /*
7499 * Stop searching for tasks to pull if there are
7500 * now runnable tasks on this rq.
7501 */
7502 if (pulled_task || this_rq->nr_running > 0)
7503 break;
7504 }
7505 rcu_read_unlock();
7506
7507 raw_spin_lock(&this_rq->lock);
7508
7509 if (curr_cost > this_rq->max_idle_balance_cost)
7510 this_rq->max_idle_balance_cost = curr_cost;
7511
7512 /*
7513 * While browsing the domains, we released the rq lock, a task could
7514 * have been enqueued in the meantime. Since we're not going idle,
7515 * pretend we pulled a task.
7516 */
7517 if (this_rq->cfs.h_nr_running && !pulled_task)
7518 pulled_task = 1;
7519
7520 out:
7521 /* Move the next balance forward */
7522 if (time_after(this_rq->next_balance, next_balance))
7523 this_rq->next_balance = next_balance;
7524
7525 /* Is there a task of a high priority class? */
7526 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7527 pulled_task = -1;
7528
7529 if (pulled_task)
7530 this_rq->idle_stamp = 0;
7531
7532 return pulled_task;
7533 }
7534
7535 /*
7536 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7537 * running tasks off the busiest CPU onto idle CPUs. It requires at
7538 * least 1 task to be running on each physical CPU where possible, and
7539 * avoids physical / logical imbalances.
7540 */
7541 static int active_load_balance_cpu_stop(void *data)
7542 {
7543 struct rq *busiest_rq = data;
7544 int busiest_cpu = cpu_of(busiest_rq);
7545 int target_cpu = busiest_rq->push_cpu;
7546 struct rq *target_rq = cpu_rq(target_cpu);
7547 struct sched_domain *sd;
7548 struct task_struct *p = NULL;
7549
7550 raw_spin_lock_irq(&busiest_rq->lock);
7551
7552 /* make sure the requested cpu hasn't gone down in the meantime */
7553 if (unlikely(busiest_cpu != smp_processor_id() ||
7554 !busiest_rq->active_balance))
7555 goto out_unlock;
7556
7557 /* Is there any task to move? */
7558 if (busiest_rq->nr_running <= 1)
7559 goto out_unlock;
7560
7561 /*
7562 * This condition is "impossible", if it occurs
7563 * we need to fix it. Originally reported by
7564 * Bjorn Helgaas on a 128-cpu setup.
7565 */
7566 BUG_ON(busiest_rq == target_rq);
7567
7568 /* Search for an sd spanning us and the target CPU. */
7569 rcu_read_lock();
7570 for_each_domain(target_cpu, sd) {
7571 if ((sd->flags & SD_LOAD_BALANCE) &&
7572 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7573 break;
7574 }
7575
7576 if (likely(sd)) {
7577 struct lb_env env = {
7578 .sd = sd,
7579 .dst_cpu = target_cpu,
7580 .dst_rq = target_rq,
7581 .src_cpu = busiest_rq->cpu,
7582 .src_rq = busiest_rq,
7583 .idle = CPU_IDLE,
7584 };
7585
7586 schedstat_inc(sd, alb_count);
7587
7588 p = detach_one_task(&env);
7589 if (p)
7590 schedstat_inc(sd, alb_pushed);
7591 else
7592 schedstat_inc(sd, alb_failed);
7593 }
7594 rcu_read_unlock();
7595 out_unlock:
7596 busiest_rq->active_balance = 0;
7597 raw_spin_unlock(&busiest_rq->lock);
7598
7599 if (p)
7600 attach_one_task(target_rq, p);
7601
7602 local_irq_enable();
7603
7604 return 0;
7605 }
7606
7607 static inline int on_null_domain(struct rq *rq)
7608 {
7609 return unlikely(!rcu_dereference_sched(rq->sd));
7610 }
7611
7612 #ifdef CONFIG_NO_HZ_COMMON
7613 /*
7614 * idle load balancing details
7615 * - When one of the busy CPUs notice that there may be an idle rebalancing
7616 * needed, they will kick the idle load balancer, which then does idle
7617 * load balancing for all the idle CPUs.
7618 */
7619 static struct {
7620 cpumask_var_t idle_cpus_mask;
7621 atomic_t nr_cpus;
7622 unsigned long next_balance; /* in jiffy units */
7623 } nohz ____cacheline_aligned;
7624
7625 static inline int find_new_ilb(void)
7626 {
7627 int ilb = cpumask_first(nohz.idle_cpus_mask);
7628
7629 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7630 return ilb;
7631
7632 return nr_cpu_ids;
7633 }
7634
7635 /*
7636 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7637 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7638 * CPU (if there is one).
7639 */
7640 static void nohz_balancer_kick(void)
7641 {
7642 int ilb_cpu;
7643
7644 nohz.next_balance++;
7645
7646 ilb_cpu = find_new_ilb();
7647
7648 if (ilb_cpu >= nr_cpu_ids)
7649 return;
7650
7651 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7652 return;
7653 /*
7654 * Use smp_send_reschedule() instead of resched_cpu().
7655 * This way we generate a sched IPI on the target cpu which
7656 * is idle. And the softirq performing nohz idle load balance
7657 * will be run before returning from the IPI.
7658 */
7659 smp_send_reschedule(ilb_cpu);
7660 return;
7661 }
7662
7663 static inline void nohz_balance_exit_idle(int cpu)
7664 {
7665 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7666 /*
7667 * Completely isolated CPUs don't ever set, so we must test.
7668 */
7669 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7670 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7671 atomic_dec(&nohz.nr_cpus);
7672 }
7673 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7674 }
7675 }
7676
7677 static inline void set_cpu_sd_state_busy(void)
7678 {
7679 struct sched_domain *sd;
7680 int cpu = smp_processor_id();
7681
7682 rcu_read_lock();
7683 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7684
7685 if (!sd || !sd->nohz_idle)
7686 goto unlock;
7687 sd->nohz_idle = 0;
7688
7689 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7690 unlock:
7691 rcu_read_unlock();
7692 }
7693
7694 void set_cpu_sd_state_idle(void)
7695 {
7696 struct sched_domain *sd;
7697 int cpu = smp_processor_id();
7698
7699 rcu_read_lock();
7700 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7701
7702 if (!sd || sd->nohz_idle)
7703 goto unlock;
7704 sd->nohz_idle = 1;
7705
7706 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7707 unlock:
7708 rcu_read_unlock();
7709 }
7710
7711 /*
7712 * This routine will record that the cpu is going idle with tick stopped.
7713 * This info will be used in performing idle load balancing in the future.
7714 */
7715 void nohz_balance_enter_idle(int cpu)
7716 {
7717 /*
7718 * If this cpu is going down, then nothing needs to be done.
7719 */
7720 if (!cpu_active(cpu))
7721 return;
7722
7723 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7724 return;
7725
7726 /*
7727 * If we're a completely isolated CPU, we don't play.
7728 */
7729 if (on_null_domain(cpu_rq(cpu)))
7730 return;
7731
7732 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7733 atomic_inc(&nohz.nr_cpus);
7734 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7735 }
7736
7737 static int sched_ilb_notifier(struct notifier_block *nfb,
7738 unsigned long action, void *hcpu)
7739 {
7740 switch (action & ~CPU_TASKS_FROZEN) {
7741 case CPU_DYING:
7742 nohz_balance_exit_idle(smp_processor_id());
7743 return NOTIFY_OK;
7744 default:
7745 return NOTIFY_DONE;
7746 }
7747 }
7748 #endif
7749
7750 static DEFINE_SPINLOCK(balancing);
7751
7752 /*
7753 * Scale the max load_balance interval with the number of CPUs in the system.
7754 * This trades load-balance latency on larger machines for less cross talk.
7755 */
7756 void update_max_interval(void)
7757 {
7758 max_load_balance_interval = HZ*num_online_cpus()/10;
7759 }
7760
7761 /*
7762 * It checks each scheduling domain to see if it is due to be balanced,
7763 * and initiates a balancing operation if so.
7764 *
7765 * Balancing parameters are set up in init_sched_domains.
7766 */
7767 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7768 {
7769 int continue_balancing = 1;
7770 int cpu = rq->cpu;
7771 unsigned long interval;
7772 struct sched_domain *sd;
7773 /* Earliest time when we have to do rebalance again */
7774 unsigned long next_balance = jiffies + 60*HZ;
7775 int update_next_balance = 0;
7776 int need_serialize, need_decay = 0;
7777 u64 max_cost = 0;
7778
7779 update_blocked_averages(cpu);
7780
7781 rcu_read_lock();
7782 for_each_domain(cpu, sd) {
7783 /*
7784 * Decay the newidle max times here because this is a regular
7785 * visit to all the domains. Decay ~1% per second.
7786 */
7787 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7788 sd->max_newidle_lb_cost =
7789 (sd->max_newidle_lb_cost * 253) / 256;
7790 sd->next_decay_max_lb_cost = jiffies + HZ;
7791 need_decay = 1;
7792 }
7793 max_cost += sd->max_newidle_lb_cost;
7794
7795 if (!(sd->flags & SD_LOAD_BALANCE))
7796 continue;
7797
7798 /*
7799 * Stop the load balance at this level. There is another
7800 * CPU in our sched group which is doing load balancing more
7801 * actively.
7802 */
7803 if (!continue_balancing) {
7804 if (need_decay)
7805 continue;
7806 break;
7807 }
7808
7809 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7810
7811 need_serialize = sd->flags & SD_SERIALIZE;
7812 if (need_serialize) {
7813 if (!spin_trylock(&balancing))
7814 goto out;
7815 }
7816
7817 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7818 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7819 /*
7820 * The LBF_DST_PINNED logic could have changed
7821 * env->dst_cpu, so we can't know our idle
7822 * state even if we migrated tasks. Update it.
7823 */
7824 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7825 }
7826 sd->last_balance = jiffies;
7827 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7828 }
7829 if (need_serialize)
7830 spin_unlock(&balancing);
7831 out:
7832 if (time_after(next_balance, sd->last_balance + interval)) {
7833 next_balance = sd->last_balance + interval;
7834 update_next_balance = 1;
7835 }
7836 }
7837 if (need_decay) {
7838 /*
7839 * Ensure the rq-wide value also decays but keep it at a
7840 * reasonable floor to avoid funnies with rq->avg_idle.
7841 */
7842 rq->max_idle_balance_cost =
7843 max((u64)sysctl_sched_migration_cost, max_cost);
7844 }
7845 rcu_read_unlock();
7846
7847 /*
7848 * next_balance will be updated only when there is a need.
7849 * When the cpu is attached to null domain for ex, it will not be
7850 * updated.
7851 */
7852 if (likely(update_next_balance)) {
7853 rq->next_balance = next_balance;
7854
7855 #ifdef CONFIG_NO_HZ_COMMON
7856 /*
7857 * If this CPU has been elected to perform the nohz idle
7858 * balance. Other idle CPUs have already rebalanced with
7859 * nohz_idle_balance() and nohz.next_balance has been
7860 * updated accordingly. This CPU is now running the idle load
7861 * balance for itself and we need to update the
7862 * nohz.next_balance accordingly.
7863 */
7864 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7865 nohz.next_balance = rq->next_balance;
7866 #endif
7867 }
7868 }
7869
7870 #ifdef CONFIG_NO_HZ_COMMON
7871 /*
7872 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7873 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7874 */
7875 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7876 {
7877 int this_cpu = this_rq->cpu;
7878 struct rq *rq;
7879 int balance_cpu;
7880 /* Earliest time when we have to do rebalance again */
7881 unsigned long next_balance = jiffies + 60*HZ;
7882 int update_next_balance = 0;
7883
7884 if (idle != CPU_IDLE ||
7885 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7886 goto end;
7887
7888 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7889 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7890 continue;
7891
7892 /*
7893 * If this cpu gets work to do, stop the load balancing
7894 * work being done for other cpus. Next load
7895 * balancing owner will pick it up.
7896 */
7897 if (need_resched())
7898 break;
7899
7900 rq = cpu_rq(balance_cpu);
7901
7902 /*
7903 * If time for next balance is due,
7904 * do the balance.
7905 */
7906 if (time_after_eq(jiffies, rq->next_balance)) {
7907 raw_spin_lock_irq(&rq->lock);
7908 update_rq_clock(rq);
7909 update_idle_cpu_load(rq);
7910 raw_spin_unlock_irq(&rq->lock);
7911 rebalance_domains(rq, CPU_IDLE);
7912 }
7913
7914 if (time_after(next_balance, rq->next_balance)) {
7915 next_balance = rq->next_balance;
7916 update_next_balance = 1;
7917 }
7918 }
7919
7920 /*
7921 * next_balance will be updated only when there is a need.
7922 * When the CPU is attached to null domain for ex, it will not be
7923 * updated.
7924 */
7925 if (likely(update_next_balance))
7926 nohz.next_balance = next_balance;
7927 end:
7928 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7929 }
7930
7931 /*
7932 * Current heuristic for kicking the idle load balancer in the presence
7933 * of an idle cpu in the system.
7934 * - This rq has more than one task.
7935 * - This rq has at least one CFS task and the capacity of the CPU is
7936 * significantly reduced because of RT tasks or IRQs.
7937 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7938 * multiple busy cpu.
7939 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7940 * domain span are idle.
7941 */
7942 static inline bool nohz_kick_needed(struct rq *rq)
7943 {
7944 unsigned long now = jiffies;
7945 struct sched_domain *sd;
7946 struct sched_group_capacity *sgc;
7947 int nr_busy, cpu = rq->cpu;
7948 bool kick = false;
7949
7950 if (unlikely(rq->idle_balance))
7951 return false;
7952
7953 /*
7954 * We may be recently in ticked or tickless idle mode. At the first
7955 * busy tick after returning from idle, we will update the busy stats.
7956 */
7957 set_cpu_sd_state_busy();
7958 nohz_balance_exit_idle(cpu);
7959
7960 /*
7961 * None are in tickless mode and hence no need for NOHZ idle load
7962 * balancing.
7963 */
7964 if (likely(!atomic_read(&nohz.nr_cpus)))
7965 return false;
7966
7967 if (time_before(now, nohz.next_balance))
7968 return false;
7969
7970 if (rq->nr_running >= 2)
7971 return true;
7972
7973 rcu_read_lock();
7974 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7975 if (sd) {
7976 sgc = sd->groups->sgc;
7977 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7978
7979 if (nr_busy > 1) {
7980 kick = true;
7981 goto unlock;
7982 }
7983
7984 }
7985
7986 sd = rcu_dereference(rq->sd);
7987 if (sd) {
7988 if ((rq->cfs.h_nr_running >= 1) &&
7989 check_cpu_capacity(rq, sd)) {
7990 kick = true;
7991 goto unlock;
7992 }
7993 }
7994
7995 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7996 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7997 sched_domain_span(sd)) < cpu)) {
7998 kick = true;
7999 goto unlock;
8000 }
8001
8002 unlock:
8003 rcu_read_unlock();
8004 return kick;
8005 }
8006 #else
8007 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8008 #endif
8009
8010 /*
8011 * run_rebalance_domains is triggered when needed from the scheduler tick.
8012 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8013 */
8014 static void run_rebalance_domains(struct softirq_action *h)
8015 {
8016 struct rq *this_rq = this_rq();
8017 enum cpu_idle_type idle = this_rq->idle_balance ?
8018 CPU_IDLE : CPU_NOT_IDLE;
8019
8020 /*
8021 * If this cpu has a pending nohz_balance_kick, then do the
8022 * balancing on behalf of the other idle cpus whose ticks are
8023 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8024 * give the idle cpus a chance to load balance. Else we may
8025 * load balance only within the local sched_domain hierarchy
8026 * and abort nohz_idle_balance altogether if we pull some load.
8027 */
8028 nohz_idle_balance(this_rq, idle);
8029 rebalance_domains(this_rq, idle);
8030 }
8031
8032 /*
8033 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8034 */
8035 void trigger_load_balance(struct rq *rq)
8036 {
8037 /* Don't need to rebalance while attached to NULL domain */
8038 if (unlikely(on_null_domain(rq)))
8039 return;
8040
8041 if (time_after_eq(jiffies, rq->next_balance))
8042 raise_softirq(SCHED_SOFTIRQ);
8043 #ifdef CONFIG_NO_HZ_COMMON
8044 if (nohz_kick_needed(rq))
8045 nohz_balancer_kick();
8046 #endif
8047 }
8048
8049 static void rq_online_fair(struct rq *rq)
8050 {
8051 update_sysctl();
8052
8053 update_runtime_enabled(rq);
8054 }
8055
8056 static void rq_offline_fair(struct rq *rq)
8057 {
8058 update_sysctl();
8059
8060 /* Ensure any throttled groups are reachable by pick_next_task */
8061 unthrottle_offline_cfs_rqs(rq);
8062 }
8063
8064 #endif /* CONFIG_SMP */
8065
8066 /*
8067 * scheduler tick hitting a task of our scheduling class:
8068 */
8069 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8070 {
8071 struct cfs_rq *cfs_rq;
8072 struct sched_entity *se = &curr->se;
8073
8074 for_each_sched_entity(se) {
8075 cfs_rq = cfs_rq_of(se);
8076 entity_tick(cfs_rq, se, queued);
8077 }
8078
8079 if (static_branch_unlikely(&sched_numa_balancing))
8080 task_tick_numa(rq, curr);
8081 }
8082
8083 /*
8084 * called on fork with the child task as argument from the parent's context
8085 * - child not yet on the tasklist
8086 * - preemption disabled
8087 */
8088 static void task_fork_fair(struct task_struct *p)
8089 {
8090 struct cfs_rq *cfs_rq;
8091 struct sched_entity *se = &p->se, *curr;
8092 int this_cpu = smp_processor_id();
8093 struct rq *rq = this_rq();
8094 unsigned long flags;
8095
8096 raw_spin_lock_irqsave(&rq->lock, flags);
8097
8098 update_rq_clock(rq);
8099
8100 cfs_rq = task_cfs_rq(current);
8101 curr = cfs_rq->curr;
8102
8103 /*
8104 * Not only the cpu but also the task_group of the parent might have
8105 * been changed after parent->se.parent,cfs_rq were copied to
8106 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8107 * of child point to valid ones.
8108 */
8109 rcu_read_lock();
8110 __set_task_cpu(p, this_cpu);
8111 rcu_read_unlock();
8112
8113 update_curr(cfs_rq);
8114
8115 if (curr)
8116 se->vruntime = curr->vruntime;
8117 place_entity(cfs_rq, se, 1);
8118
8119 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8120 /*
8121 * Upon rescheduling, sched_class::put_prev_task() will place
8122 * 'current' within the tree based on its new key value.
8123 */
8124 swap(curr->vruntime, se->vruntime);
8125 resched_curr(rq);
8126 }
8127
8128 se->vruntime -= cfs_rq->min_vruntime;
8129
8130 raw_spin_unlock_irqrestore(&rq->lock, flags);
8131 }
8132
8133 /*
8134 * Priority of the task has changed. Check to see if we preempt
8135 * the current task.
8136 */
8137 static void
8138 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8139 {
8140 if (!task_on_rq_queued(p))
8141 return;
8142
8143 /*
8144 * Reschedule if we are currently running on this runqueue and
8145 * our priority decreased, or if we are not currently running on
8146 * this runqueue and our priority is higher than the current's
8147 */
8148 if (rq->curr == p) {
8149 if (p->prio > oldprio)
8150 resched_curr(rq);
8151 } else
8152 check_preempt_curr(rq, p, 0);
8153 }
8154
8155 static inline bool vruntime_normalized(struct task_struct *p)
8156 {
8157 struct sched_entity *se = &p->se;
8158
8159 /*
8160 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8161 * the dequeue_entity(.flags=0) will already have normalized the
8162 * vruntime.
8163 */
8164 if (p->on_rq)
8165 return true;
8166
8167 /*
8168 * When !on_rq, vruntime of the task has usually NOT been normalized.
8169 * But there are some cases where it has already been normalized:
8170 *
8171 * - A forked child which is waiting for being woken up by
8172 * wake_up_new_task().
8173 * - A task which has been woken up by try_to_wake_up() and
8174 * waiting for actually being woken up by sched_ttwu_pending().
8175 */
8176 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8177 return true;
8178
8179 return false;
8180 }
8181
8182 static void detach_task_cfs_rq(struct task_struct *p)
8183 {
8184 struct sched_entity *se = &p->se;
8185 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8186
8187 if (!vruntime_normalized(p)) {
8188 /*
8189 * Fix up our vruntime so that the current sleep doesn't
8190 * cause 'unlimited' sleep bonus.
8191 */
8192 place_entity(cfs_rq, se, 0);
8193 se->vruntime -= cfs_rq->min_vruntime;
8194 }
8195
8196 /* Catch up with the cfs_rq and remove our load when we leave */
8197 detach_entity_load_avg(cfs_rq, se);
8198 }
8199
8200 static void attach_task_cfs_rq(struct task_struct *p)
8201 {
8202 struct sched_entity *se = &p->se;
8203 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8204
8205 #ifdef CONFIG_FAIR_GROUP_SCHED
8206 /*
8207 * Since the real-depth could have been changed (only FAIR
8208 * class maintain depth value), reset depth properly.
8209 */
8210 se->depth = se->parent ? se->parent->depth + 1 : 0;
8211 #endif
8212
8213 /* Synchronize task with its cfs_rq */
8214 attach_entity_load_avg(cfs_rq, se);
8215
8216 if (!vruntime_normalized(p))
8217 se->vruntime += cfs_rq->min_vruntime;
8218 }
8219
8220 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8221 {
8222 detach_task_cfs_rq(p);
8223 }
8224
8225 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8226 {
8227 attach_task_cfs_rq(p);
8228
8229 if (task_on_rq_queued(p)) {
8230 /*
8231 * We were most likely switched from sched_rt, so
8232 * kick off the schedule if running, otherwise just see
8233 * if we can still preempt the current task.
8234 */
8235 if (rq->curr == p)
8236 resched_curr(rq);
8237 else
8238 check_preempt_curr(rq, p, 0);
8239 }
8240 }
8241
8242 /* Account for a task changing its policy or group.
8243 *
8244 * This routine is mostly called to set cfs_rq->curr field when a task
8245 * migrates between groups/classes.
8246 */
8247 static void set_curr_task_fair(struct rq *rq)
8248 {
8249 struct sched_entity *se = &rq->curr->se;
8250
8251 for_each_sched_entity(se) {
8252 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8253
8254 set_next_entity(cfs_rq, se);
8255 /* ensure bandwidth has been allocated on our new cfs_rq */
8256 account_cfs_rq_runtime(cfs_rq, 0);
8257 }
8258 }
8259
8260 void init_cfs_rq(struct cfs_rq *cfs_rq)
8261 {
8262 cfs_rq->tasks_timeline = RB_ROOT;
8263 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8264 #ifndef CONFIG_64BIT
8265 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8266 #endif
8267 #ifdef CONFIG_SMP
8268 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8269 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8270 #endif
8271 }
8272
8273 #ifdef CONFIG_FAIR_GROUP_SCHED
8274 static void task_move_group_fair(struct task_struct *p)
8275 {
8276 detach_task_cfs_rq(p);
8277 set_task_rq(p, task_cpu(p));
8278
8279 #ifdef CONFIG_SMP
8280 /* Tell se's cfs_rq has been changed -- migrated */
8281 p->se.avg.last_update_time = 0;
8282 #endif
8283 attach_task_cfs_rq(p);
8284 }
8285
8286 void free_fair_sched_group(struct task_group *tg)
8287 {
8288 int i;
8289
8290 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8291
8292 for_each_possible_cpu(i) {
8293 if (tg->cfs_rq)
8294 kfree(tg->cfs_rq[i]);
8295 if (tg->se)
8296 kfree(tg->se[i]);
8297 }
8298
8299 kfree(tg->cfs_rq);
8300 kfree(tg->se);
8301 }
8302
8303 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8304 {
8305 struct cfs_rq *cfs_rq;
8306 struct sched_entity *se;
8307 int i;
8308
8309 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8310 if (!tg->cfs_rq)
8311 goto err;
8312 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8313 if (!tg->se)
8314 goto err;
8315
8316 tg->shares = NICE_0_LOAD;
8317
8318 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8319
8320 for_each_possible_cpu(i) {
8321 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8322 GFP_KERNEL, cpu_to_node(i));
8323 if (!cfs_rq)
8324 goto err;
8325
8326 se = kzalloc_node(sizeof(struct sched_entity),
8327 GFP_KERNEL, cpu_to_node(i));
8328 if (!se)
8329 goto err_free_rq;
8330
8331 init_cfs_rq(cfs_rq);
8332 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8333 init_entity_runnable_average(se);
8334 }
8335
8336 return 1;
8337
8338 err_free_rq:
8339 kfree(cfs_rq);
8340 err:
8341 return 0;
8342 }
8343
8344 void unregister_fair_sched_group(struct task_group *tg)
8345 {
8346 unsigned long flags;
8347 struct rq *rq;
8348 int cpu;
8349
8350 for_each_possible_cpu(cpu) {
8351 if (tg->se[cpu])
8352 remove_entity_load_avg(tg->se[cpu]);
8353
8354 /*
8355 * Only empty task groups can be destroyed; so we can speculatively
8356 * check on_list without danger of it being re-added.
8357 */
8358 if (!tg->cfs_rq[cpu]->on_list)
8359 continue;
8360
8361 rq = cpu_rq(cpu);
8362
8363 raw_spin_lock_irqsave(&rq->lock, flags);
8364 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8365 raw_spin_unlock_irqrestore(&rq->lock, flags);
8366 }
8367 }
8368
8369 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8370 struct sched_entity *se, int cpu,
8371 struct sched_entity *parent)
8372 {
8373 struct rq *rq = cpu_rq(cpu);
8374
8375 cfs_rq->tg = tg;
8376 cfs_rq->rq = rq;
8377 init_cfs_rq_runtime(cfs_rq);
8378
8379 tg->cfs_rq[cpu] = cfs_rq;
8380 tg->se[cpu] = se;
8381
8382 /* se could be NULL for root_task_group */
8383 if (!se)
8384 return;
8385
8386 if (!parent) {
8387 se->cfs_rq = &rq->cfs;
8388 se->depth = 0;
8389 } else {
8390 se->cfs_rq = parent->my_q;
8391 se->depth = parent->depth + 1;
8392 }
8393
8394 se->my_q = cfs_rq;
8395 /* guarantee group entities always have weight */
8396 update_load_set(&se->load, NICE_0_LOAD);
8397 se->parent = parent;
8398 }
8399
8400 static DEFINE_MUTEX(shares_mutex);
8401
8402 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8403 {
8404 int i;
8405 unsigned long flags;
8406
8407 /*
8408 * We can't change the weight of the root cgroup.
8409 */
8410 if (!tg->se[0])
8411 return -EINVAL;
8412
8413 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8414
8415 mutex_lock(&shares_mutex);
8416 if (tg->shares == shares)
8417 goto done;
8418
8419 tg->shares = shares;
8420 for_each_possible_cpu(i) {
8421 struct rq *rq = cpu_rq(i);
8422 struct sched_entity *se;
8423
8424 se = tg->se[i];
8425 /* Propagate contribution to hierarchy */
8426 raw_spin_lock_irqsave(&rq->lock, flags);
8427
8428 /* Possible calls to update_curr() need rq clock */
8429 update_rq_clock(rq);
8430 for_each_sched_entity(se)
8431 update_cfs_shares(group_cfs_rq(se));
8432 raw_spin_unlock_irqrestore(&rq->lock, flags);
8433 }
8434
8435 done:
8436 mutex_unlock(&shares_mutex);
8437 return 0;
8438 }
8439 #else /* CONFIG_FAIR_GROUP_SCHED */
8440
8441 void free_fair_sched_group(struct task_group *tg) { }
8442
8443 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8444 {
8445 return 1;
8446 }
8447
8448 void unregister_fair_sched_group(struct task_group *tg) { }
8449
8450 #endif /* CONFIG_FAIR_GROUP_SCHED */
8451
8452
8453 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8454 {
8455 struct sched_entity *se = &task->se;
8456 unsigned int rr_interval = 0;
8457
8458 /*
8459 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8460 * idle runqueue:
8461 */
8462 if (rq->cfs.load.weight)
8463 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8464
8465 return rr_interval;
8466 }
8467
8468 /*
8469 * All the scheduling class methods:
8470 */
8471 const struct sched_class fair_sched_class = {
8472 .next = &idle_sched_class,
8473 .enqueue_task = enqueue_task_fair,
8474 .dequeue_task = dequeue_task_fair,
8475 .yield_task = yield_task_fair,
8476 .yield_to_task = yield_to_task_fair,
8477
8478 .check_preempt_curr = check_preempt_wakeup,
8479
8480 .pick_next_task = pick_next_task_fair,
8481 .put_prev_task = put_prev_task_fair,
8482
8483 #ifdef CONFIG_SMP
8484 .select_task_rq = select_task_rq_fair,
8485 .migrate_task_rq = migrate_task_rq_fair,
8486
8487 .rq_online = rq_online_fair,
8488 .rq_offline = rq_offline_fair,
8489
8490 .task_waking = task_waking_fair,
8491 .task_dead = task_dead_fair,
8492 .set_cpus_allowed = set_cpus_allowed_common,
8493 #endif
8494
8495 .set_curr_task = set_curr_task_fair,
8496 .task_tick = task_tick_fair,
8497 .task_fork = task_fork_fair,
8498
8499 .prio_changed = prio_changed_fair,
8500 .switched_from = switched_from_fair,
8501 .switched_to = switched_to_fair,
8502
8503 .get_rr_interval = get_rr_interval_fair,
8504
8505 .update_curr = update_curr_fair,
8506
8507 #ifdef CONFIG_FAIR_GROUP_SCHED
8508 .task_move_group = task_move_group_fair,
8509 #endif
8510 };
8511
8512 #ifdef CONFIG_SCHED_DEBUG
8513 void print_cfs_stats(struct seq_file *m, int cpu)
8514 {
8515 struct cfs_rq *cfs_rq;
8516
8517 rcu_read_lock();
8518 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8519 print_cfs_rq(m, cpu, cfs_rq);
8520 rcu_read_unlock();
8521 }
8522
8523 #ifdef CONFIG_NUMA_BALANCING
8524 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8525 {
8526 int node;
8527 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8528
8529 for_each_online_node(node) {
8530 if (p->numa_faults) {
8531 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8532 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8533 }
8534 if (p->numa_group) {
8535 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8536 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8537 }
8538 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8539 }
8540 }
8541 #endif /* CONFIG_NUMA_BALANCING */
8542 #endif /* CONFIG_SCHED_DEBUG */
8543
8544 __init void init_sched_fair_class(void)
8545 {
8546 #ifdef CONFIG_SMP
8547 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8548
8549 #ifdef CONFIG_NO_HZ_COMMON
8550 nohz.next_balance = jiffies;
8551 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8552 cpu_notifier(sched_ilb_notifier, 0);
8553 #endif
8554 #endif /* SMP */
8555
8556 }