]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/fair.c
Merge branch 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306 }
307
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314 }
315
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328 }
329
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 return se->parent;
333 }
334
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365 }
366
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
368
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 return container_of(se, struct task_struct, se);
372 }
373
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 return container_of(cfs_rq, struct rq, cfs);
377 }
378
379 #define entity_is_task(se) 1
380
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 return &task_rq(p)->cfs;
387 }
388
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395 }
396
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 return NULL;
401 }
402
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 return NULL;
417 }
418
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
425
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440 }
441
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449 }
450
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453 {
454 return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482
483 /*
484 * Enqueue an entity into the rb-tree:
485 */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542 }
543
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552 }
553
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563 }
564
565 /**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588
589 return 0;
590 }
591 #endif
592
593 /*
594 * delta /= w
595 */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602 }
603
604 /*
605 * The idea is to set a period in which each task runs once.
606 *
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618 }
619
620 /*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
624 * s = p*P[w/rw]
625 */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646 }
647
648 /*
649 * We calculate the vruntime slice of a to-be-inserted task.
650 *
651 * vs = s/w
652 */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661
662 /*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
666 */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 struct sched_avg *sa = &se->avg;
675
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688 }
689
690 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692 #else
693 void init_entity_runnable_average(struct sched_entity *se)
694 {
695 }
696 #endif
697
698 /*
699 * Update the current task's runtime statistics.
700 */
701 static void update_curr(struct cfs_rq *cfs_rq)
702 {
703 struct sched_entity *curr = cfs_rq->curr;
704 u64 now = rq_clock_task(rq_of(cfs_rq));
705 u64 delta_exec;
706
707 if (unlikely(!curr))
708 return;
709
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
712 return;
713
714 curr->exec_start = now;
715
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729 cpuacct_charge(curtask, delta_exec);
730 account_group_exec_runtime(curtask, delta_exec);
731 }
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
734 }
735
736 static void update_curr_fair(struct rq *rq)
737 {
738 update_curr(cfs_rq_of(&rq->curr->se));
739 }
740
741 #ifdef CONFIG_SCHEDSTATS
742 static inline void
743 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 u64 wait_start = rq_clock(rq_of(cfs_rq));
746
747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 likely(wait_start > se->statistics.wait_start))
749 wait_start -= se->statistics.wait_start;
750
751 se->statistics.wait_start = wait_start;
752 }
753
754 static void
755 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757 struct task_struct *p;
758 u64 delta;
759
760 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
761
762 if (entity_is_task(se)) {
763 p = task_of(se);
764 if (task_on_rq_migrating(p)) {
765 /*
766 * Preserve migrating task's wait time so wait_start
767 * time stamp can be adjusted to accumulate wait time
768 * prior to migration.
769 */
770 se->statistics.wait_start = delta;
771 return;
772 }
773 trace_sched_stat_wait(p, delta);
774 }
775
776 se->statistics.wait_max = max(se->statistics.wait_max, delta);
777 se->statistics.wait_count++;
778 se->statistics.wait_sum += delta;
779 se->statistics.wait_start = 0;
780 }
781
782 /*
783 * Task is being enqueued - update stats:
784 */
785 static inline void
786 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 {
788 /*
789 * Are we enqueueing a waiting task? (for current tasks
790 * a dequeue/enqueue event is a NOP)
791 */
792 if (se != cfs_rq->curr)
793 update_stats_wait_start(cfs_rq, se);
794 }
795
796 static inline void
797 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
798 {
799 /*
800 * Mark the end of the wait period if dequeueing a
801 * waiting task:
802 */
803 if (se != cfs_rq->curr)
804 update_stats_wait_end(cfs_rq, se);
805
806 if (flags & DEQUEUE_SLEEP) {
807 if (entity_is_task(se)) {
808 struct task_struct *tsk = task_of(se);
809
810 if (tsk->state & TASK_INTERRUPTIBLE)
811 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
812 if (tsk->state & TASK_UNINTERRUPTIBLE)
813 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
814 }
815 }
816
817 }
818 #else
819 static inline void
820 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
821 {
822 }
823
824 static inline void
825 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
826 {
827 }
828
829 static inline void
830 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
831 {
832 }
833
834 static inline void
835 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
836 {
837 }
838 #endif
839
840 /*
841 * We are picking a new current task - update its stats:
842 */
843 static inline void
844 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
845 {
846 /*
847 * We are starting a new run period:
848 */
849 se->exec_start = rq_clock_task(rq_of(cfs_rq));
850 }
851
852 /**************************************************
853 * Scheduling class queueing methods:
854 */
855
856 #ifdef CONFIG_NUMA_BALANCING
857 /*
858 * Approximate time to scan a full NUMA task in ms. The task scan period is
859 * calculated based on the tasks virtual memory size and
860 * numa_balancing_scan_size.
861 */
862 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
863 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
864
865 /* Portion of address space to scan in MB */
866 unsigned int sysctl_numa_balancing_scan_size = 256;
867
868 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
869 unsigned int sysctl_numa_balancing_scan_delay = 1000;
870
871 static unsigned int task_nr_scan_windows(struct task_struct *p)
872 {
873 unsigned long rss = 0;
874 unsigned long nr_scan_pages;
875
876 /*
877 * Calculations based on RSS as non-present and empty pages are skipped
878 * by the PTE scanner and NUMA hinting faults should be trapped based
879 * on resident pages
880 */
881 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
882 rss = get_mm_rss(p->mm);
883 if (!rss)
884 rss = nr_scan_pages;
885
886 rss = round_up(rss, nr_scan_pages);
887 return rss / nr_scan_pages;
888 }
889
890 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
891 #define MAX_SCAN_WINDOW 2560
892
893 static unsigned int task_scan_min(struct task_struct *p)
894 {
895 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
896 unsigned int scan, floor;
897 unsigned int windows = 1;
898
899 if (scan_size < MAX_SCAN_WINDOW)
900 windows = MAX_SCAN_WINDOW / scan_size;
901 floor = 1000 / windows;
902
903 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
904 return max_t(unsigned int, floor, scan);
905 }
906
907 static unsigned int task_scan_max(struct task_struct *p)
908 {
909 unsigned int smin = task_scan_min(p);
910 unsigned int smax;
911
912 /* Watch for min being lower than max due to floor calculations */
913 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
914 return max(smin, smax);
915 }
916
917 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
918 {
919 rq->nr_numa_running += (p->numa_preferred_nid != -1);
920 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
921 }
922
923 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
924 {
925 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
926 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
927 }
928
929 struct numa_group {
930 atomic_t refcount;
931
932 spinlock_t lock; /* nr_tasks, tasks */
933 int nr_tasks;
934 pid_t gid;
935 int active_nodes;
936
937 struct rcu_head rcu;
938 unsigned long total_faults;
939 unsigned long max_faults_cpu;
940 /*
941 * Faults_cpu is used to decide whether memory should move
942 * towards the CPU. As a consequence, these stats are weighted
943 * more by CPU use than by memory faults.
944 */
945 unsigned long *faults_cpu;
946 unsigned long faults[0];
947 };
948
949 /* Shared or private faults. */
950 #define NR_NUMA_HINT_FAULT_TYPES 2
951
952 /* Memory and CPU locality */
953 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
954
955 /* Averaged statistics, and temporary buffers. */
956 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
957
958 pid_t task_numa_group_id(struct task_struct *p)
959 {
960 return p->numa_group ? p->numa_group->gid : 0;
961 }
962
963 /*
964 * The averaged statistics, shared & private, memory & cpu,
965 * occupy the first half of the array. The second half of the
966 * array is for current counters, which are averaged into the
967 * first set by task_numa_placement.
968 */
969 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
970 {
971 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
972 }
973
974 static inline unsigned long task_faults(struct task_struct *p, int nid)
975 {
976 if (!p->numa_faults)
977 return 0;
978
979 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
980 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
981 }
982
983 static inline unsigned long group_faults(struct task_struct *p, int nid)
984 {
985 if (!p->numa_group)
986 return 0;
987
988 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
989 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
990 }
991
992 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
993 {
994 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
995 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
996 }
997
998 /*
999 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1000 * considered part of a numa group's pseudo-interleaving set. Migrations
1001 * between these nodes are slowed down, to allow things to settle down.
1002 */
1003 #define ACTIVE_NODE_FRACTION 3
1004
1005 static bool numa_is_active_node(int nid, struct numa_group *ng)
1006 {
1007 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1008 }
1009
1010 /* Handle placement on systems where not all nodes are directly connected. */
1011 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1012 int maxdist, bool task)
1013 {
1014 unsigned long score = 0;
1015 int node;
1016
1017 /*
1018 * All nodes are directly connected, and the same distance
1019 * from each other. No need for fancy placement algorithms.
1020 */
1021 if (sched_numa_topology_type == NUMA_DIRECT)
1022 return 0;
1023
1024 /*
1025 * This code is called for each node, introducing N^2 complexity,
1026 * which should be ok given the number of nodes rarely exceeds 8.
1027 */
1028 for_each_online_node(node) {
1029 unsigned long faults;
1030 int dist = node_distance(nid, node);
1031
1032 /*
1033 * The furthest away nodes in the system are not interesting
1034 * for placement; nid was already counted.
1035 */
1036 if (dist == sched_max_numa_distance || node == nid)
1037 continue;
1038
1039 /*
1040 * On systems with a backplane NUMA topology, compare groups
1041 * of nodes, and move tasks towards the group with the most
1042 * memory accesses. When comparing two nodes at distance
1043 * "hoplimit", only nodes closer by than "hoplimit" are part
1044 * of each group. Skip other nodes.
1045 */
1046 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1047 dist > maxdist)
1048 continue;
1049
1050 /* Add up the faults from nearby nodes. */
1051 if (task)
1052 faults = task_faults(p, node);
1053 else
1054 faults = group_faults(p, node);
1055
1056 /*
1057 * On systems with a glueless mesh NUMA topology, there are
1058 * no fixed "groups of nodes". Instead, nodes that are not
1059 * directly connected bounce traffic through intermediate
1060 * nodes; a numa_group can occupy any set of nodes.
1061 * The further away a node is, the less the faults count.
1062 * This seems to result in good task placement.
1063 */
1064 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1065 faults *= (sched_max_numa_distance - dist);
1066 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1067 }
1068
1069 score += faults;
1070 }
1071
1072 return score;
1073 }
1074
1075 /*
1076 * These return the fraction of accesses done by a particular task, or
1077 * task group, on a particular numa node. The group weight is given a
1078 * larger multiplier, in order to group tasks together that are almost
1079 * evenly spread out between numa nodes.
1080 */
1081 static inline unsigned long task_weight(struct task_struct *p, int nid,
1082 int dist)
1083 {
1084 unsigned long faults, total_faults;
1085
1086 if (!p->numa_faults)
1087 return 0;
1088
1089 total_faults = p->total_numa_faults;
1090
1091 if (!total_faults)
1092 return 0;
1093
1094 faults = task_faults(p, nid);
1095 faults += score_nearby_nodes(p, nid, dist, true);
1096
1097 return 1000 * faults / total_faults;
1098 }
1099
1100 static inline unsigned long group_weight(struct task_struct *p, int nid,
1101 int dist)
1102 {
1103 unsigned long faults, total_faults;
1104
1105 if (!p->numa_group)
1106 return 0;
1107
1108 total_faults = p->numa_group->total_faults;
1109
1110 if (!total_faults)
1111 return 0;
1112
1113 faults = group_faults(p, nid);
1114 faults += score_nearby_nodes(p, nid, dist, false);
1115
1116 return 1000 * faults / total_faults;
1117 }
1118
1119 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1120 int src_nid, int dst_cpu)
1121 {
1122 struct numa_group *ng = p->numa_group;
1123 int dst_nid = cpu_to_node(dst_cpu);
1124 int last_cpupid, this_cpupid;
1125
1126 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1127
1128 /*
1129 * Multi-stage node selection is used in conjunction with a periodic
1130 * migration fault to build a temporal task<->page relation. By using
1131 * a two-stage filter we remove short/unlikely relations.
1132 *
1133 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1134 * a task's usage of a particular page (n_p) per total usage of this
1135 * page (n_t) (in a given time-span) to a probability.
1136 *
1137 * Our periodic faults will sample this probability and getting the
1138 * same result twice in a row, given these samples are fully
1139 * independent, is then given by P(n)^2, provided our sample period
1140 * is sufficiently short compared to the usage pattern.
1141 *
1142 * This quadric squishes small probabilities, making it less likely we
1143 * act on an unlikely task<->page relation.
1144 */
1145 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1146 if (!cpupid_pid_unset(last_cpupid) &&
1147 cpupid_to_nid(last_cpupid) != dst_nid)
1148 return false;
1149
1150 /* Always allow migrate on private faults */
1151 if (cpupid_match_pid(p, last_cpupid))
1152 return true;
1153
1154 /* A shared fault, but p->numa_group has not been set up yet. */
1155 if (!ng)
1156 return true;
1157
1158 /*
1159 * Destination node is much more heavily used than the source
1160 * node? Allow migration.
1161 */
1162 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1163 ACTIVE_NODE_FRACTION)
1164 return true;
1165
1166 /*
1167 * Distribute memory according to CPU & memory use on each node,
1168 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1169 *
1170 * faults_cpu(dst) 3 faults_cpu(src)
1171 * --------------- * - > ---------------
1172 * faults_mem(dst) 4 faults_mem(src)
1173 */
1174 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1175 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1176 }
1177
1178 static unsigned long weighted_cpuload(const int cpu);
1179 static unsigned long source_load(int cpu, int type);
1180 static unsigned long target_load(int cpu, int type);
1181 static unsigned long capacity_of(int cpu);
1182 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1183
1184 /* Cached statistics for all CPUs within a node */
1185 struct numa_stats {
1186 unsigned long nr_running;
1187 unsigned long load;
1188
1189 /* Total compute capacity of CPUs on a node */
1190 unsigned long compute_capacity;
1191
1192 /* Approximate capacity in terms of runnable tasks on a node */
1193 unsigned long task_capacity;
1194 int has_free_capacity;
1195 };
1196
1197 /*
1198 * XXX borrowed from update_sg_lb_stats
1199 */
1200 static void update_numa_stats(struct numa_stats *ns, int nid)
1201 {
1202 int smt, cpu, cpus = 0;
1203 unsigned long capacity;
1204
1205 memset(ns, 0, sizeof(*ns));
1206 for_each_cpu(cpu, cpumask_of_node(nid)) {
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 ns->nr_running += rq->nr_running;
1210 ns->load += weighted_cpuload(cpu);
1211 ns->compute_capacity += capacity_of(cpu);
1212
1213 cpus++;
1214 }
1215
1216 /*
1217 * If we raced with hotplug and there are no CPUs left in our mask
1218 * the @ns structure is NULL'ed and task_numa_compare() will
1219 * not find this node attractive.
1220 *
1221 * We'll either bail at !has_free_capacity, or we'll detect a huge
1222 * imbalance and bail there.
1223 */
1224 if (!cpus)
1225 return;
1226
1227 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1228 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1229 capacity = cpus / smt; /* cores */
1230
1231 ns->task_capacity = min_t(unsigned, capacity,
1232 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1233 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1234 }
1235
1236 struct task_numa_env {
1237 struct task_struct *p;
1238
1239 int src_cpu, src_nid;
1240 int dst_cpu, dst_nid;
1241
1242 struct numa_stats src_stats, dst_stats;
1243
1244 int imbalance_pct;
1245 int dist;
1246
1247 struct task_struct *best_task;
1248 long best_imp;
1249 int best_cpu;
1250 };
1251
1252 static void task_numa_assign(struct task_numa_env *env,
1253 struct task_struct *p, long imp)
1254 {
1255 if (env->best_task)
1256 put_task_struct(env->best_task);
1257
1258 env->best_task = p;
1259 env->best_imp = imp;
1260 env->best_cpu = env->dst_cpu;
1261 }
1262
1263 static bool load_too_imbalanced(long src_load, long dst_load,
1264 struct task_numa_env *env)
1265 {
1266 long imb, old_imb;
1267 long orig_src_load, orig_dst_load;
1268 long src_capacity, dst_capacity;
1269
1270 /*
1271 * The load is corrected for the CPU capacity available on each node.
1272 *
1273 * src_load dst_load
1274 * ------------ vs ---------
1275 * src_capacity dst_capacity
1276 */
1277 src_capacity = env->src_stats.compute_capacity;
1278 dst_capacity = env->dst_stats.compute_capacity;
1279
1280 /* We care about the slope of the imbalance, not the direction. */
1281 if (dst_load < src_load)
1282 swap(dst_load, src_load);
1283
1284 /* Is the difference below the threshold? */
1285 imb = dst_load * src_capacity * 100 -
1286 src_load * dst_capacity * env->imbalance_pct;
1287 if (imb <= 0)
1288 return false;
1289
1290 /*
1291 * The imbalance is above the allowed threshold.
1292 * Compare it with the old imbalance.
1293 */
1294 orig_src_load = env->src_stats.load;
1295 orig_dst_load = env->dst_stats.load;
1296
1297 if (orig_dst_load < orig_src_load)
1298 swap(orig_dst_load, orig_src_load);
1299
1300 old_imb = orig_dst_load * src_capacity * 100 -
1301 orig_src_load * dst_capacity * env->imbalance_pct;
1302
1303 /* Would this change make things worse? */
1304 return (imb > old_imb);
1305 }
1306
1307 /*
1308 * This checks if the overall compute and NUMA accesses of the system would
1309 * be improved if the source tasks was migrated to the target dst_cpu taking
1310 * into account that it might be best if task running on the dst_cpu should
1311 * be exchanged with the source task
1312 */
1313 static void task_numa_compare(struct task_numa_env *env,
1314 long taskimp, long groupimp)
1315 {
1316 struct rq *src_rq = cpu_rq(env->src_cpu);
1317 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1318 struct task_struct *cur;
1319 long src_load, dst_load;
1320 long load;
1321 long imp = env->p->numa_group ? groupimp : taskimp;
1322 long moveimp = imp;
1323 int dist = env->dist;
1324 bool assigned = false;
1325
1326 rcu_read_lock();
1327
1328 raw_spin_lock_irq(&dst_rq->lock);
1329 cur = dst_rq->curr;
1330 /*
1331 * No need to move the exiting task or idle task.
1332 */
1333 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1334 cur = NULL;
1335 else {
1336 /*
1337 * The task_struct must be protected here to protect the
1338 * p->numa_faults access in the task_weight since the
1339 * numa_faults could already be freed in the following path:
1340 * finish_task_switch()
1341 * --> put_task_struct()
1342 * --> __put_task_struct()
1343 * --> task_numa_free()
1344 */
1345 get_task_struct(cur);
1346 }
1347
1348 raw_spin_unlock_irq(&dst_rq->lock);
1349
1350 /*
1351 * Because we have preemption enabled we can get migrated around and
1352 * end try selecting ourselves (current == env->p) as a swap candidate.
1353 */
1354 if (cur == env->p)
1355 goto unlock;
1356
1357 /*
1358 * "imp" is the fault differential for the source task between the
1359 * source and destination node. Calculate the total differential for
1360 * the source task and potential destination task. The more negative
1361 * the value is, the more rmeote accesses that would be expected to
1362 * be incurred if the tasks were swapped.
1363 */
1364 if (cur) {
1365 /* Skip this swap candidate if cannot move to the source cpu */
1366 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1367 goto unlock;
1368
1369 /*
1370 * If dst and source tasks are in the same NUMA group, or not
1371 * in any group then look only at task weights.
1372 */
1373 if (cur->numa_group == env->p->numa_group) {
1374 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1375 task_weight(cur, env->dst_nid, dist);
1376 /*
1377 * Add some hysteresis to prevent swapping the
1378 * tasks within a group over tiny differences.
1379 */
1380 if (cur->numa_group)
1381 imp -= imp/16;
1382 } else {
1383 /*
1384 * Compare the group weights. If a task is all by
1385 * itself (not part of a group), use the task weight
1386 * instead.
1387 */
1388 if (cur->numa_group)
1389 imp += group_weight(cur, env->src_nid, dist) -
1390 group_weight(cur, env->dst_nid, dist);
1391 else
1392 imp += task_weight(cur, env->src_nid, dist) -
1393 task_weight(cur, env->dst_nid, dist);
1394 }
1395 }
1396
1397 if (imp <= env->best_imp && moveimp <= env->best_imp)
1398 goto unlock;
1399
1400 if (!cur) {
1401 /* Is there capacity at our destination? */
1402 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1403 !env->dst_stats.has_free_capacity)
1404 goto unlock;
1405
1406 goto balance;
1407 }
1408
1409 /* Balance doesn't matter much if we're running a task per cpu */
1410 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1411 dst_rq->nr_running == 1)
1412 goto assign;
1413
1414 /*
1415 * In the overloaded case, try and keep the load balanced.
1416 */
1417 balance:
1418 load = task_h_load(env->p);
1419 dst_load = env->dst_stats.load + load;
1420 src_load = env->src_stats.load - load;
1421
1422 if (moveimp > imp && moveimp > env->best_imp) {
1423 /*
1424 * If the improvement from just moving env->p direction is
1425 * better than swapping tasks around, check if a move is
1426 * possible. Store a slightly smaller score than moveimp,
1427 * so an actually idle CPU will win.
1428 */
1429 if (!load_too_imbalanced(src_load, dst_load, env)) {
1430 imp = moveimp - 1;
1431 put_task_struct(cur);
1432 cur = NULL;
1433 goto assign;
1434 }
1435 }
1436
1437 if (imp <= env->best_imp)
1438 goto unlock;
1439
1440 if (cur) {
1441 load = task_h_load(cur);
1442 dst_load -= load;
1443 src_load += load;
1444 }
1445
1446 if (load_too_imbalanced(src_load, dst_load, env))
1447 goto unlock;
1448
1449 /*
1450 * One idle CPU per node is evaluated for a task numa move.
1451 * Call select_idle_sibling to maybe find a better one.
1452 */
1453 if (!cur)
1454 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1455
1456 assign:
1457 assigned = true;
1458 task_numa_assign(env, cur, imp);
1459 unlock:
1460 rcu_read_unlock();
1461 /*
1462 * The dst_rq->curr isn't assigned. The protection for task_struct is
1463 * finished.
1464 */
1465 if (cur && !assigned)
1466 put_task_struct(cur);
1467 }
1468
1469 static void task_numa_find_cpu(struct task_numa_env *env,
1470 long taskimp, long groupimp)
1471 {
1472 int cpu;
1473
1474 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1475 /* Skip this CPU if the source task cannot migrate */
1476 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1477 continue;
1478
1479 env->dst_cpu = cpu;
1480 task_numa_compare(env, taskimp, groupimp);
1481 }
1482 }
1483
1484 /* Only move tasks to a NUMA node less busy than the current node. */
1485 static bool numa_has_capacity(struct task_numa_env *env)
1486 {
1487 struct numa_stats *src = &env->src_stats;
1488 struct numa_stats *dst = &env->dst_stats;
1489
1490 if (src->has_free_capacity && !dst->has_free_capacity)
1491 return false;
1492
1493 /*
1494 * Only consider a task move if the source has a higher load
1495 * than the destination, corrected for CPU capacity on each node.
1496 *
1497 * src->load dst->load
1498 * --------------------- vs ---------------------
1499 * src->compute_capacity dst->compute_capacity
1500 */
1501 if (src->load * dst->compute_capacity * env->imbalance_pct >
1502
1503 dst->load * src->compute_capacity * 100)
1504 return true;
1505
1506 return false;
1507 }
1508
1509 static int task_numa_migrate(struct task_struct *p)
1510 {
1511 struct task_numa_env env = {
1512 .p = p,
1513
1514 .src_cpu = task_cpu(p),
1515 .src_nid = task_node(p),
1516
1517 .imbalance_pct = 112,
1518
1519 .best_task = NULL,
1520 .best_imp = 0,
1521 .best_cpu = -1,
1522 };
1523 struct sched_domain *sd;
1524 unsigned long taskweight, groupweight;
1525 int nid, ret, dist;
1526 long taskimp, groupimp;
1527
1528 /*
1529 * Pick the lowest SD_NUMA domain, as that would have the smallest
1530 * imbalance and would be the first to start moving tasks about.
1531 *
1532 * And we want to avoid any moving of tasks about, as that would create
1533 * random movement of tasks -- counter the numa conditions we're trying
1534 * to satisfy here.
1535 */
1536 rcu_read_lock();
1537 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1538 if (sd)
1539 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1540 rcu_read_unlock();
1541
1542 /*
1543 * Cpusets can break the scheduler domain tree into smaller
1544 * balance domains, some of which do not cross NUMA boundaries.
1545 * Tasks that are "trapped" in such domains cannot be migrated
1546 * elsewhere, so there is no point in (re)trying.
1547 */
1548 if (unlikely(!sd)) {
1549 p->numa_preferred_nid = task_node(p);
1550 return -EINVAL;
1551 }
1552
1553 env.dst_nid = p->numa_preferred_nid;
1554 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1555 taskweight = task_weight(p, env.src_nid, dist);
1556 groupweight = group_weight(p, env.src_nid, dist);
1557 update_numa_stats(&env.src_stats, env.src_nid);
1558 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1559 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1560 update_numa_stats(&env.dst_stats, env.dst_nid);
1561
1562 /* Try to find a spot on the preferred nid. */
1563 if (numa_has_capacity(&env))
1564 task_numa_find_cpu(&env, taskimp, groupimp);
1565
1566 /*
1567 * Look at other nodes in these cases:
1568 * - there is no space available on the preferred_nid
1569 * - the task is part of a numa_group that is interleaved across
1570 * multiple NUMA nodes; in order to better consolidate the group,
1571 * we need to check other locations.
1572 */
1573 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1574 for_each_online_node(nid) {
1575 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1576 continue;
1577
1578 dist = node_distance(env.src_nid, env.dst_nid);
1579 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1580 dist != env.dist) {
1581 taskweight = task_weight(p, env.src_nid, dist);
1582 groupweight = group_weight(p, env.src_nid, dist);
1583 }
1584
1585 /* Only consider nodes where both task and groups benefit */
1586 taskimp = task_weight(p, nid, dist) - taskweight;
1587 groupimp = group_weight(p, nid, dist) - groupweight;
1588 if (taskimp < 0 && groupimp < 0)
1589 continue;
1590
1591 env.dist = dist;
1592 env.dst_nid = nid;
1593 update_numa_stats(&env.dst_stats, env.dst_nid);
1594 if (numa_has_capacity(&env))
1595 task_numa_find_cpu(&env, taskimp, groupimp);
1596 }
1597 }
1598
1599 /*
1600 * If the task is part of a workload that spans multiple NUMA nodes,
1601 * and is migrating into one of the workload's active nodes, remember
1602 * this node as the task's preferred numa node, so the workload can
1603 * settle down.
1604 * A task that migrated to a second choice node will be better off
1605 * trying for a better one later. Do not set the preferred node here.
1606 */
1607 if (p->numa_group) {
1608 struct numa_group *ng = p->numa_group;
1609
1610 if (env.best_cpu == -1)
1611 nid = env.src_nid;
1612 else
1613 nid = env.dst_nid;
1614
1615 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1616 sched_setnuma(p, env.dst_nid);
1617 }
1618
1619 /* No better CPU than the current one was found. */
1620 if (env.best_cpu == -1)
1621 return -EAGAIN;
1622
1623 /*
1624 * Reset the scan period if the task is being rescheduled on an
1625 * alternative node to recheck if the tasks is now properly placed.
1626 */
1627 p->numa_scan_period = task_scan_min(p);
1628
1629 if (env.best_task == NULL) {
1630 ret = migrate_task_to(p, env.best_cpu);
1631 if (ret != 0)
1632 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1633 return ret;
1634 }
1635
1636 ret = migrate_swap(p, env.best_task);
1637 if (ret != 0)
1638 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1639 put_task_struct(env.best_task);
1640 return ret;
1641 }
1642
1643 /* Attempt to migrate a task to a CPU on the preferred node. */
1644 static void numa_migrate_preferred(struct task_struct *p)
1645 {
1646 unsigned long interval = HZ;
1647
1648 /* This task has no NUMA fault statistics yet */
1649 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1650 return;
1651
1652 /* Periodically retry migrating the task to the preferred node */
1653 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1654 p->numa_migrate_retry = jiffies + interval;
1655
1656 /* Success if task is already running on preferred CPU */
1657 if (task_node(p) == p->numa_preferred_nid)
1658 return;
1659
1660 /* Otherwise, try migrate to a CPU on the preferred node */
1661 task_numa_migrate(p);
1662 }
1663
1664 /*
1665 * Find out how many nodes on the workload is actively running on. Do this by
1666 * tracking the nodes from which NUMA hinting faults are triggered. This can
1667 * be different from the set of nodes where the workload's memory is currently
1668 * located.
1669 */
1670 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1671 {
1672 unsigned long faults, max_faults = 0;
1673 int nid, active_nodes = 0;
1674
1675 for_each_online_node(nid) {
1676 faults = group_faults_cpu(numa_group, nid);
1677 if (faults > max_faults)
1678 max_faults = faults;
1679 }
1680
1681 for_each_online_node(nid) {
1682 faults = group_faults_cpu(numa_group, nid);
1683 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1684 active_nodes++;
1685 }
1686
1687 numa_group->max_faults_cpu = max_faults;
1688 numa_group->active_nodes = active_nodes;
1689 }
1690
1691 /*
1692 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1693 * increments. The more local the fault statistics are, the higher the scan
1694 * period will be for the next scan window. If local/(local+remote) ratio is
1695 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1696 * the scan period will decrease. Aim for 70% local accesses.
1697 */
1698 #define NUMA_PERIOD_SLOTS 10
1699 #define NUMA_PERIOD_THRESHOLD 7
1700
1701 /*
1702 * Increase the scan period (slow down scanning) if the majority of
1703 * our memory is already on our local node, or if the majority of
1704 * the page accesses are shared with other processes.
1705 * Otherwise, decrease the scan period.
1706 */
1707 static void update_task_scan_period(struct task_struct *p,
1708 unsigned long shared, unsigned long private)
1709 {
1710 unsigned int period_slot;
1711 int ratio;
1712 int diff;
1713
1714 unsigned long remote = p->numa_faults_locality[0];
1715 unsigned long local = p->numa_faults_locality[1];
1716
1717 /*
1718 * If there were no record hinting faults then either the task is
1719 * completely idle or all activity is areas that are not of interest
1720 * to automatic numa balancing. Related to that, if there were failed
1721 * migration then it implies we are migrating too quickly or the local
1722 * node is overloaded. In either case, scan slower
1723 */
1724 if (local + shared == 0 || p->numa_faults_locality[2]) {
1725 p->numa_scan_period = min(p->numa_scan_period_max,
1726 p->numa_scan_period << 1);
1727
1728 p->mm->numa_next_scan = jiffies +
1729 msecs_to_jiffies(p->numa_scan_period);
1730
1731 return;
1732 }
1733
1734 /*
1735 * Prepare to scale scan period relative to the current period.
1736 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1737 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1738 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1739 */
1740 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1741 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1742 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1743 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1744 if (!slot)
1745 slot = 1;
1746 diff = slot * period_slot;
1747 } else {
1748 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1749
1750 /*
1751 * Scale scan rate increases based on sharing. There is an
1752 * inverse relationship between the degree of sharing and
1753 * the adjustment made to the scanning period. Broadly
1754 * speaking the intent is that there is little point
1755 * scanning faster if shared accesses dominate as it may
1756 * simply bounce migrations uselessly
1757 */
1758 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1759 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1760 }
1761
1762 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1763 task_scan_min(p), task_scan_max(p));
1764 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1765 }
1766
1767 /*
1768 * Get the fraction of time the task has been running since the last
1769 * NUMA placement cycle. The scheduler keeps similar statistics, but
1770 * decays those on a 32ms period, which is orders of magnitude off
1771 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1772 * stats only if the task is so new there are no NUMA statistics yet.
1773 */
1774 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1775 {
1776 u64 runtime, delta, now;
1777 /* Use the start of this time slice to avoid calculations. */
1778 now = p->se.exec_start;
1779 runtime = p->se.sum_exec_runtime;
1780
1781 if (p->last_task_numa_placement) {
1782 delta = runtime - p->last_sum_exec_runtime;
1783 *period = now - p->last_task_numa_placement;
1784 } else {
1785 delta = p->se.avg.load_sum / p->se.load.weight;
1786 *period = LOAD_AVG_MAX;
1787 }
1788
1789 p->last_sum_exec_runtime = runtime;
1790 p->last_task_numa_placement = now;
1791
1792 return delta;
1793 }
1794
1795 /*
1796 * Determine the preferred nid for a task in a numa_group. This needs to
1797 * be done in a way that produces consistent results with group_weight,
1798 * otherwise workloads might not converge.
1799 */
1800 static int preferred_group_nid(struct task_struct *p, int nid)
1801 {
1802 nodemask_t nodes;
1803 int dist;
1804
1805 /* Direct connections between all NUMA nodes. */
1806 if (sched_numa_topology_type == NUMA_DIRECT)
1807 return nid;
1808
1809 /*
1810 * On a system with glueless mesh NUMA topology, group_weight
1811 * scores nodes according to the number of NUMA hinting faults on
1812 * both the node itself, and on nearby nodes.
1813 */
1814 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1815 unsigned long score, max_score = 0;
1816 int node, max_node = nid;
1817
1818 dist = sched_max_numa_distance;
1819
1820 for_each_online_node(node) {
1821 score = group_weight(p, node, dist);
1822 if (score > max_score) {
1823 max_score = score;
1824 max_node = node;
1825 }
1826 }
1827 return max_node;
1828 }
1829
1830 /*
1831 * Finding the preferred nid in a system with NUMA backplane
1832 * interconnect topology is more involved. The goal is to locate
1833 * tasks from numa_groups near each other in the system, and
1834 * untangle workloads from different sides of the system. This requires
1835 * searching down the hierarchy of node groups, recursively searching
1836 * inside the highest scoring group of nodes. The nodemask tricks
1837 * keep the complexity of the search down.
1838 */
1839 nodes = node_online_map;
1840 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1841 unsigned long max_faults = 0;
1842 nodemask_t max_group = NODE_MASK_NONE;
1843 int a, b;
1844
1845 /* Are there nodes at this distance from each other? */
1846 if (!find_numa_distance(dist))
1847 continue;
1848
1849 for_each_node_mask(a, nodes) {
1850 unsigned long faults = 0;
1851 nodemask_t this_group;
1852 nodes_clear(this_group);
1853
1854 /* Sum group's NUMA faults; includes a==b case. */
1855 for_each_node_mask(b, nodes) {
1856 if (node_distance(a, b) < dist) {
1857 faults += group_faults(p, b);
1858 node_set(b, this_group);
1859 node_clear(b, nodes);
1860 }
1861 }
1862
1863 /* Remember the top group. */
1864 if (faults > max_faults) {
1865 max_faults = faults;
1866 max_group = this_group;
1867 /*
1868 * subtle: at the smallest distance there is
1869 * just one node left in each "group", the
1870 * winner is the preferred nid.
1871 */
1872 nid = a;
1873 }
1874 }
1875 /* Next round, evaluate the nodes within max_group. */
1876 if (!max_faults)
1877 break;
1878 nodes = max_group;
1879 }
1880 return nid;
1881 }
1882
1883 static void task_numa_placement(struct task_struct *p)
1884 {
1885 int seq, nid, max_nid = -1, max_group_nid = -1;
1886 unsigned long max_faults = 0, max_group_faults = 0;
1887 unsigned long fault_types[2] = { 0, 0 };
1888 unsigned long total_faults;
1889 u64 runtime, period;
1890 spinlock_t *group_lock = NULL;
1891
1892 /*
1893 * The p->mm->numa_scan_seq field gets updated without
1894 * exclusive access. Use READ_ONCE() here to ensure
1895 * that the field is read in a single access:
1896 */
1897 seq = READ_ONCE(p->mm->numa_scan_seq);
1898 if (p->numa_scan_seq == seq)
1899 return;
1900 p->numa_scan_seq = seq;
1901 p->numa_scan_period_max = task_scan_max(p);
1902
1903 total_faults = p->numa_faults_locality[0] +
1904 p->numa_faults_locality[1];
1905 runtime = numa_get_avg_runtime(p, &period);
1906
1907 /* If the task is part of a group prevent parallel updates to group stats */
1908 if (p->numa_group) {
1909 group_lock = &p->numa_group->lock;
1910 spin_lock_irq(group_lock);
1911 }
1912
1913 /* Find the node with the highest number of faults */
1914 for_each_online_node(nid) {
1915 /* Keep track of the offsets in numa_faults array */
1916 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1917 unsigned long faults = 0, group_faults = 0;
1918 int priv;
1919
1920 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1921 long diff, f_diff, f_weight;
1922
1923 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1924 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1925 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1926 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1927
1928 /* Decay existing window, copy faults since last scan */
1929 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1930 fault_types[priv] += p->numa_faults[membuf_idx];
1931 p->numa_faults[membuf_idx] = 0;
1932
1933 /*
1934 * Normalize the faults_from, so all tasks in a group
1935 * count according to CPU use, instead of by the raw
1936 * number of faults. Tasks with little runtime have
1937 * little over-all impact on throughput, and thus their
1938 * faults are less important.
1939 */
1940 f_weight = div64_u64(runtime << 16, period + 1);
1941 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1942 (total_faults + 1);
1943 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1944 p->numa_faults[cpubuf_idx] = 0;
1945
1946 p->numa_faults[mem_idx] += diff;
1947 p->numa_faults[cpu_idx] += f_diff;
1948 faults += p->numa_faults[mem_idx];
1949 p->total_numa_faults += diff;
1950 if (p->numa_group) {
1951 /*
1952 * safe because we can only change our own group
1953 *
1954 * mem_idx represents the offset for a given
1955 * nid and priv in a specific region because it
1956 * is at the beginning of the numa_faults array.
1957 */
1958 p->numa_group->faults[mem_idx] += diff;
1959 p->numa_group->faults_cpu[mem_idx] += f_diff;
1960 p->numa_group->total_faults += diff;
1961 group_faults += p->numa_group->faults[mem_idx];
1962 }
1963 }
1964
1965 if (faults > max_faults) {
1966 max_faults = faults;
1967 max_nid = nid;
1968 }
1969
1970 if (group_faults > max_group_faults) {
1971 max_group_faults = group_faults;
1972 max_group_nid = nid;
1973 }
1974 }
1975
1976 update_task_scan_period(p, fault_types[0], fault_types[1]);
1977
1978 if (p->numa_group) {
1979 numa_group_count_active_nodes(p->numa_group);
1980 spin_unlock_irq(group_lock);
1981 max_nid = preferred_group_nid(p, max_group_nid);
1982 }
1983
1984 if (max_faults) {
1985 /* Set the new preferred node */
1986 if (max_nid != p->numa_preferred_nid)
1987 sched_setnuma(p, max_nid);
1988
1989 if (task_node(p) != p->numa_preferred_nid)
1990 numa_migrate_preferred(p);
1991 }
1992 }
1993
1994 static inline int get_numa_group(struct numa_group *grp)
1995 {
1996 return atomic_inc_not_zero(&grp->refcount);
1997 }
1998
1999 static inline void put_numa_group(struct numa_group *grp)
2000 {
2001 if (atomic_dec_and_test(&grp->refcount))
2002 kfree_rcu(grp, rcu);
2003 }
2004
2005 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2006 int *priv)
2007 {
2008 struct numa_group *grp, *my_grp;
2009 struct task_struct *tsk;
2010 bool join = false;
2011 int cpu = cpupid_to_cpu(cpupid);
2012 int i;
2013
2014 if (unlikely(!p->numa_group)) {
2015 unsigned int size = sizeof(struct numa_group) +
2016 4*nr_node_ids*sizeof(unsigned long);
2017
2018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2019 if (!grp)
2020 return;
2021
2022 atomic_set(&grp->refcount, 1);
2023 grp->active_nodes = 1;
2024 grp->max_faults_cpu = 0;
2025 spin_lock_init(&grp->lock);
2026 grp->gid = p->pid;
2027 /* Second half of the array tracks nids where faults happen */
2028 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2029 nr_node_ids;
2030
2031 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2032 grp->faults[i] = p->numa_faults[i];
2033
2034 grp->total_faults = p->total_numa_faults;
2035
2036 grp->nr_tasks++;
2037 rcu_assign_pointer(p->numa_group, grp);
2038 }
2039
2040 rcu_read_lock();
2041 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2042
2043 if (!cpupid_match_pid(tsk, cpupid))
2044 goto no_join;
2045
2046 grp = rcu_dereference(tsk->numa_group);
2047 if (!grp)
2048 goto no_join;
2049
2050 my_grp = p->numa_group;
2051 if (grp == my_grp)
2052 goto no_join;
2053
2054 /*
2055 * Only join the other group if its bigger; if we're the bigger group,
2056 * the other task will join us.
2057 */
2058 if (my_grp->nr_tasks > grp->nr_tasks)
2059 goto no_join;
2060
2061 /*
2062 * Tie-break on the grp address.
2063 */
2064 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2065 goto no_join;
2066
2067 /* Always join threads in the same process. */
2068 if (tsk->mm == current->mm)
2069 join = true;
2070
2071 /* Simple filter to avoid false positives due to PID collisions */
2072 if (flags & TNF_SHARED)
2073 join = true;
2074
2075 /* Update priv based on whether false sharing was detected */
2076 *priv = !join;
2077
2078 if (join && !get_numa_group(grp))
2079 goto no_join;
2080
2081 rcu_read_unlock();
2082
2083 if (!join)
2084 return;
2085
2086 BUG_ON(irqs_disabled());
2087 double_lock_irq(&my_grp->lock, &grp->lock);
2088
2089 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2090 my_grp->faults[i] -= p->numa_faults[i];
2091 grp->faults[i] += p->numa_faults[i];
2092 }
2093 my_grp->total_faults -= p->total_numa_faults;
2094 grp->total_faults += p->total_numa_faults;
2095
2096 my_grp->nr_tasks--;
2097 grp->nr_tasks++;
2098
2099 spin_unlock(&my_grp->lock);
2100 spin_unlock_irq(&grp->lock);
2101
2102 rcu_assign_pointer(p->numa_group, grp);
2103
2104 put_numa_group(my_grp);
2105 return;
2106
2107 no_join:
2108 rcu_read_unlock();
2109 return;
2110 }
2111
2112 void task_numa_free(struct task_struct *p)
2113 {
2114 struct numa_group *grp = p->numa_group;
2115 void *numa_faults = p->numa_faults;
2116 unsigned long flags;
2117 int i;
2118
2119 if (grp) {
2120 spin_lock_irqsave(&grp->lock, flags);
2121 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2122 grp->faults[i] -= p->numa_faults[i];
2123 grp->total_faults -= p->total_numa_faults;
2124
2125 grp->nr_tasks--;
2126 spin_unlock_irqrestore(&grp->lock, flags);
2127 RCU_INIT_POINTER(p->numa_group, NULL);
2128 put_numa_group(grp);
2129 }
2130
2131 p->numa_faults = NULL;
2132 kfree(numa_faults);
2133 }
2134
2135 /*
2136 * Got a PROT_NONE fault for a page on @node.
2137 */
2138 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2139 {
2140 struct task_struct *p = current;
2141 bool migrated = flags & TNF_MIGRATED;
2142 int cpu_node = task_node(current);
2143 int local = !!(flags & TNF_FAULT_LOCAL);
2144 struct numa_group *ng;
2145 int priv;
2146
2147 if (!static_branch_likely(&sched_numa_balancing))
2148 return;
2149
2150 /* for example, ksmd faulting in a user's mm */
2151 if (!p->mm)
2152 return;
2153
2154 /* Allocate buffer to track faults on a per-node basis */
2155 if (unlikely(!p->numa_faults)) {
2156 int size = sizeof(*p->numa_faults) *
2157 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2158
2159 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2160 if (!p->numa_faults)
2161 return;
2162
2163 p->total_numa_faults = 0;
2164 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2165 }
2166
2167 /*
2168 * First accesses are treated as private, otherwise consider accesses
2169 * to be private if the accessing pid has not changed
2170 */
2171 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2172 priv = 1;
2173 } else {
2174 priv = cpupid_match_pid(p, last_cpupid);
2175 if (!priv && !(flags & TNF_NO_GROUP))
2176 task_numa_group(p, last_cpupid, flags, &priv);
2177 }
2178
2179 /*
2180 * If a workload spans multiple NUMA nodes, a shared fault that
2181 * occurs wholly within the set of nodes that the workload is
2182 * actively using should be counted as local. This allows the
2183 * scan rate to slow down when a workload has settled down.
2184 */
2185 ng = p->numa_group;
2186 if (!priv && !local && ng && ng->active_nodes > 1 &&
2187 numa_is_active_node(cpu_node, ng) &&
2188 numa_is_active_node(mem_node, ng))
2189 local = 1;
2190
2191 task_numa_placement(p);
2192
2193 /*
2194 * Retry task to preferred node migration periodically, in case it
2195 * case it previously failed, or the scheduler moved us.
2196 */
2197 if (time_after(jiffies, p->numa_migrate_retry))
2198 numa_migrate_preferred(p);
2199
2200 if (migrated)
2201 p->numa_pages_migrated += pages;
2202 if (flags & TNF_MIGRATE_FAIL)
2203 p->numa_faults_locality[2] += pages;
2204
2205 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2206 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2207 p->numa_faults_locality[local] += pages;
2208 }
2209
2210 static void reset_ptenuma_scan(struct task_struct *p)
2211 {
2212 /*
2213 * We only did a read acquisition of the mmap sem, so
2214 * p->mm->numa_scan_seq is written to without exclusive access
2215 * and the update is not guaranteed to be atomic. That's not
2216 * much of an issue though, since this is just used for
2217 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2218 * expensive, to avoid any form of compiler optimizations:
2219 */
2220 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2221 p->mm->numa_scan_offset = 0;
2222 }
2223
2224 /*
2225 * The expensive part of numa migration is done from task_work context.
2226 * Triggered from task_tick_numa().
2227 */
2228 void task_numa_work(struct callback_head *work)
2229 {
2230 unsigned long migrate, next_scan, now = jiffies;
2231 struct task_struct *p = current;
2232 struct mm_struct *mm = p->mm;
2233 u64 runtime = p->se.sum_exec_runtime;
2234 struct vm_area_struct *vma;
2235 unsigned long start, end;
2236 unsigned long nr_pte_updates = 0;
2237 long pages, virtpages;
2238
2239 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2240
2241 work->next = work; /* protect against double add */
2242 /*
2243 * Who cares about NUMA placement when they're dying.
2244 *
2245 * NOTE: make sure not to dereference p->mm before this check,
2246 * exit_task_work() happens _after_ exit_mm() so we could be called
2247 * without p->mm even though we still had it when we enqueued this
2248 * work.
2249 */
2250 if (p->flags & PF_EXITING)
2251 return;
2252
2253 if (!mm->numa_next_scan) {
2254 mm->numa_next_scan = now +
2255 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2256 }
2257
2258 /*
2259 * Enforce maximal scan/migration frequency..
2260 */
2261 migrate = mm->numa_next_scan;
2262 if (time_before(now, migrate))
2263 return;
2264
2265 if (p->numa_scan_period == 0) {
2266 p->numa_scan_period_max = task_scan_max(p);
2267 p->numa_scan_period = task_scan_min(p);
2268 }
2269
2270 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2271 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2272 return;
2273
2274 /*
2275 * Delay this task enough that another task of this mm will likely win
2276 * the next time around.
2277 */
2278 p->node_stamp += 2 * TICK_NSEC;
2279
2280 start = mm->numa_scan_offset;
2281 pages = sysctl_numa_balancing_scan_size;
2282 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2283 virtpages = pages * 8; /* Scan up to this much virtual space */
2284 if (!pages)
2285 return;
2286
2287
2288 down_read(&mm->mmap_sem);
2289 vma = find_vma(mm, start);
2290 if (!vma) {
2291 reset_ptenuma_scan(p);
2292 start = 0;
2293 vma = mm->mmap;
2294 }
2295 for (; vma; vma = vma->vm_next) {
2296 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2297 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2298 continue;
2299 }
2300
2301 /*
2302 * Shared library pages mapped by multiple processes are not
2303 * migrated as it is expected they are cache replicated. Avoid
2304 * hinting faults in read-only file-backed mappings or the vdso
2305 * as migrating the pages will be of marginal benefit.
2306 */
2307 if (!vma->vm_mm ||
2308 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2309 continue;
2310
2311 /*
2312 * Skip inaccessible VMAs to avoid any confusion between
2313 * PROT_NONE and NUMA hinting ptes
2314 */
2315 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2316 continue;
2317
2318 do {
2319 start = max(start, vma->vm_start);
2320 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2321 end = min(end, vma->vm_end);
2322 nr_pte_updates = change_prot_numa(vma, start, end);
2323
2324 /*
2325 * Try to scan sysctl_numa_balancing_size worth of
2326 * hpages that have at least one present PTE that
2327 * is not already pte-numa. If the VMA contains
2328 * areas that are unused or already full of prot_numa
2329 * PTEs, scan up to virtpages, to skip through those
2330 * areas faster.
2331 */
2332 if (nr_pte_updates)
2333 pages -= (end - start) >> PAGE_SHIFT;
2334 virtpages -= (end - start) >> PAGE_SHIFT;
2335
2336 start = end;
2337 if (pages <= 0 || virtpages <= 0)
2338 goto out;
2339
2340 cond_resched();
2341 } while (end != vma->vm_end);
2342 }
2343
2344 out:
2345 /*
2346 * It is possible to reach the end of the VMA list but the last few
2347 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2348 * would find the !migratable VMA on the next scan but not reset the
2349 * scanner to the start so check it now.
2350 */
2351 if (vma)
2352 mm->numa_scan_offset = start;
2353 else
2354 reset_ptenuma_scan(p);
2355 up_read(&mm->mmap_sem);
2356
2357 /*
2358 * Make sure tasks use at least 32x as much time to run other code
2359 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2360 * Usually update_task_scan_period slows down scanning enough; on an
2361 * overloaded system we need to limit overhead on a per task basis.
2362 */
2363 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2364 u64 diff = p->se.sum_exec_runtime - runtime;
2365 p->node_stamp += 32 * diff;
2366 }
2367 }
2368
2369 /*
2370 * Drive the periodic memory faults..
2371 */
2372 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2373 {
2374 struct callback_head *work = &curr->numa_work;
2375 u64 period, now;
2376
2377 /*
2378 * We don't care about NUMA placement if we don't have memory.
2379 */
2380 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2381 return;
2382
2383 /*
2384 * Using runtime rather than walltime has the dual advantage that
2385 * we (mostly) drive the selection from busy threads and that the
2386 * task needs to have done some actual work before we bother with
2387 * NUMA placement.
2388 */
2389 now = curr->se.sum_exec_runtime;
2390 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2391
2392 if (now > curr->node_stamp + period) {
2393 if (!curr->node_stamp)
2394 curr->numa_scan_period = task_scan_min(curr);
2395 curr->node_stamp += period;
2396
2397 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2398 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2399 task_work_add(curr, work, true);
2400 }
2401 }
2402 }
2403 #else
2404 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2405 {
2406 }
2407
2408 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2409 {
2410 }
2411
2412 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2413 {
2414 }
2415 #endif /* CONFIG_NUMA_BALANCING */
2416
2417 static void
2418 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2419 {
2420 update_load_add(&cfs_rq->load, se->load.weight);
2421 if (!parent_entity(se))
2422 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2423 #ifdef CONFIG_SMP
2424 if (entity_is_task(se)) {
2425 struct rq *rq = rq_of(cfs_rq);
2426
2427 account_numa_enqueue(rq, task_of(se));
2428 list_add(&se->group_node, &rq->cfs_tasks);
2429 }
2430 #endif
2431 cfs_rq->nr_running++;
2432 }
2433
2434 static void
2435 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2436 {
2437 update_load_sub(&cfs_rq->load, se->load.weight);
2438 if (!parent_entity(se))
2439 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2440 if (entity_is_task(se)) {
2441 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2442 list_del_init(&se->group_node);
2443 }
2444 cfs_rq->nr_running--;
2445 }
2446
2447 #ifdef CONFIG_FAIR_GROUP_SCHED
2448 # ifdef CONFIG_SMP
2449 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2450 {
2451 long tg_weight;
2452
2453 /*
2454 * Use this CPU's real-time load instead of the last load contribution
2455 * as the updating of the contribution is delayed, and we will use the
2456 * the real-time load to calc the share. See update_tg_load_avg().
2457 */
2458 tg_weight = atomic_long_read(&tg->load_avg);
2459 tg_weight -= cfs_rq->tg_load_avg_contrib;
2460 tg_weight += cfs_rq->load.weight;
2461
2462 return tg_weight;
2463 }
2464
2465 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2466 {
2467 long tg_weight, load, shares;
2468
2469 tg_weight = calc_tg_weight(tg, cfs_rq);
2470 load = cfs_rq->load.weight;
2471
2472 shares = (tg->shares * load);
2473 if (tg_weight)
2474 shares /= tg_weight;
2475
2476 if (shares < MIN_SHARES)
2477 shares = MIN_SHARES;
2478 if (shares > tg->shares)
2479 shares = tg->shares;
2480
2481 return shares;
2482 }
2483 # else /* CONFIG_SMP */
2484 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2485 {
2486 return tg->shares;
2487 }
2488 # endif /* CONFIG_SMP */
2489 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2490 unsigned long weight)
2491 {
2492 if (se->on_rq) {
2493 /* commit outstanding execution time */
2494 if (cfs_rq->curr == se)
2495 update_curr(cfs_rq);
2496 account_entity_dequeue(cfs_rq, se);
2497 }
2498
2499 update_load_set(&se->load, weight);
2500
2501 if (se->on_rq)
2502 account_entity_enqueue(cfs_rq, se);
2503 }
2504
2505 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2506
2507 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2508 {
2509 struct task_group *tg;
2510 struct sched_entity *se;
2511 long shares;
2512
2513 tg = cfs_rq->tg;
2514 se = tg->se[cpu_of(rq_of(cfs_rq))];
2515 if (!se || throttled_hierarchy(cfs_rq))
2516 return;
2517 #ifndef CONFIG_SMP
2518 if (likely(se->load.weight == tg->shares))
2519 return;
2520 #endif
2521 shares = calc_cfs_shares(cfs_rq, tg);
2522
2523 reweight_entity(cfs_rq_of(se), se, shares);
2524 }
2525 #else /* CONFIG_FAIR_GROUP_SCHED */
2526 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2527 {
2528 }
2529 #endif /* CONFIG_FAIR_GROUP_SCHED */
2530
2531 #ifdef CONFIG_SMP
2532 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2533 static const u32 runnable_avg_yN_inv[] = {
2534 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2535 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2536 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2537 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2538 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2539 0x85aac367, 0x82cd8698,
2540 };
2541
2542 /*
2543 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2544 * over-estimates when re-combining.
2545 */
2546 static const u32 runnable_avg_yN_sum[] = {
2547 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2548 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2549 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2550 };
2551
2552 /*
2553 * Approximate:
2554 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2555 */
2556 static __always_inline u64 decay_load(u64 val, u64 n)
2557 {
2558 unsigned int local_n;
2559
2560 if (!n)
2561 return val;
2562 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2563 return 0;
2564
2565 /* after bounds checking we can collapse to 32-bit */
2566 local_n = n;
2567
2568 /*
2569 * As y^PERIOD = 1/2, we can combine
2570 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2571 * With a look-up table which covers y^n (n<PERIOD)
2572 *
2573 * To achieve constant time decay_load.
2574 */
2575 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2576 val >>= local_n / LOAD_AVG_PERIOD;
2577 local_n %= LOAD_AVG_PERIOD;
2578 }
2579
2580 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2581 return val;
2582 }
2583
2584 /*
2585 * For updates fully spanning n periods, the contribution to runnable
2586 * average will be: \Sum 1024*y^n
2587 *
2588 * We can compute this reasonably efficiently by combining:
2589 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2590 */
2591 static u32 __compute_runnable_contrib(u64 n)
2592 {
2593 u32 contrib = 0;
2594
2595 if (likely(n <= LOAD_AVG_PERIOD))
2596 return runnable_avg_yN_sum[n];
2597 else if (unlikely(n >= LOAD_AVG_MAX_N))
2598 return LOAD_AVG_MAX;
2599
2600 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2601 do {
2602 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2603 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2604
2605 n -= LOAD_AVG_PERIOD;
2606 } while (n > LOAD_AVG_PERIOD);
2607
2608 contrib = decay_load(contrib, n);
2609 return contrib + runnable_avg_yN_sum[n];
2610 }
2611
2612 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2613 #error "load tracking assumes 2^10 as unit"
2614 #endif
2615
2616 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2617
2618 /*
2619 * We can represent the historical contribution to runnable average as the
2620 * coefficients of a geometric series. To do this we sub-divide our runnable
2621 * history into segments of approximately 1ms (1024us); label the segment that
2622 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2623 *
2624 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2625 * p0 p1 p2
2626 * (now) (~1ms ago) (~2ms ago)
2627 *
2628 * Let u_i denote the fraction of p_i that the entity was runnable.
2629 *
2630 * We then designate the fractions u_i as our co-efficients, yielding the
2631 * following representation of historical load:
2632 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2633 *
2634 * We choose y based on the with of a reasonably scheduling period, fixing:
2635 * y^32 = 0.5
2636 *
2637 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2638 * approximately half as much as the contribution to load within the last ms
2639 * (u_0).
2640 *
2641 * When a period "rolls over" and we have new u_0`, multiplying the previous
2642 * sum again by y is sufficient to update:
2643 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2644 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2645 */
2646 static __always_inline int
2647 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2648 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2649 {
2650 u64 delta, scaled_delta, periods;
2651 u32 contrib;
2652 unsigned int delta_w, scaled_delta_w, decayed = 0;
2653 unsigned long scale_freq, scale_cpu;
2654
2655 delta = now - sa->last_update_time;
2656 /*
2657 * This should only happen when time goes backwards, which it
2658 * unfortunately does during sched clock init when we swap over to TSC.
2659 */
2660 if ((s64)delta < 0) {
2661 sa->last_update_time = now;
2662 return 0;
2663 }
2664
2665 /*
2666 * Use 1024ns as the unit of measurement since it's a reasonable
2667 * approximation of 1us and fast to compute.
2668 */
2669 delta >>= 10;
2670 if (!delta)
2671 return 0;
2672 sa->last_update_time = now;
2673
2674 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2675 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2676
2677 /* delta_w is the amount already accumulated against our next period */
2678 delta_w = sa->period_contrib;
2679 if (delta + delta_w >= 1024) {
2680 decayed = 1;
2681
2682 /* how much left for next period will start over, we don't know yet */
2683 sa->period_contrib = 0;
2684
2685 /*
2686 * Now that we know we're crossing a period boundary, figure
2687 * out how much from delta we need to complete the current
2688 * period and accrue it.
2689 */
2690 delta_w = 1024 - delta_w;
2691 scaled_delta_w = cap_scale(delta_w, scale_freq);
2692 if (weight) {
2693 sa->load_sum += weight * scaled_delta_w;
2694 if (cfs_rq) {
2695 cfs_rq->runnable_load_sum +=
2696 weight * scaled_delta_w;
2697 }
2698 }
2699 if (running)
2700 sa->util_sum += scaled_delta_w * scale_cpu;
2701
2702 delta -= delta_w;
2703
2704 /* Figure out how many additional periods this update spans */
2705 periods = delta / 1024;
2706 delta %= 1024;
2707
2708 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2709 if (cfs_rq) {
2710 cfs_rq->runnable_load_sum =
2711 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2712 }
2713 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2714
2715 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2716 contrib = __compute_runnable_contrib(periods);
2717 contrib = cap_scale(contrib, scale_freq);
2718 if (weight) {
2719 sa->load_sum += weight * contrib;
2720 if (cfs_rq)
2721 cfs_rq->runnable_load_sum += weight * contrib;
2722 }
2723 if (running)
2724 sa->util_sum += contrib * scale_cpu;
2725 }
2726
2727 /* Remainder of delta accrued against u_0` */
2728 scaled_delta = cap_scale(delta, scale_freq);
2729 if (weight) {
2730 sa->load_sum += weight * scaled_delta;
2731 if (cfs_rq)
2732 cfs_rq->runnable_load_sum += weight * scaled_delta;
2733 }
2734 if (running)
2735 sa->util_sum += scaled_delta * scale_cpu;
2736
2737 sa->period_contrib += delta;
2738
2739 if (decayed) {
2740 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2741 if (cfs_rq) {
2742 cfs_rq->runnable_load_avg =
2743 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2744 }
2745 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2746 }
2747
2748 return decayed;
2749 }
2750
2751 #ifdef CONFIG_FAIR_GROUP_SCHED
2752 /*
2753 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2754 * and effective_load (which is not done because it is too costly).
2755 */
2756 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2757 {
2758 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2759
2760 /*
2761 * No need to update load_avg for root_task_group as it is not used.
2762 */
2763 if (cfs_rq->tg == &root_task_group)
2764 return;
2765
2766 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2767 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2768 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2769 }
2770 }
2771
2772 /*
2773 * Called within set_task_rq() right before setting a task's cpu. The
2774 * caller only guarantees p->pi_lock is held; no other assumptions,
2775 * including the state of rq->lock, should be made.
2776 */
2777 void set_task_rq_fair(struct sched_entity *se,
2778 struct cfs_rq *prev, struct cfs_rq *next)
2779 {
2780 if (!sched_feat(ATTACH_AGE_LOAD))
2781 return;
2782
2783 /*
2784 * We are supposed to update the task to "current" time, then its up to
2785 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2786 * getting what current time is, so simply throw away the out-of-date
2787 * time. This will result in the wakee task is less decayed, but giving
2788 * the wakee more load sounds not bad.
2789 */
2790 if (se->avg.last_update_time && prev) {
2791 u64 p_last_update_time;
2792 u64 n_last_update_time;
2793
2794 #ifndef CONFIG_64BIT
2795 u64 p_last_update_time_copy;
2796 u64 n_last_update_time_copy;
2797
2798 do {
2799 p_last_update_time_copy = prev->load_last_update_time_copy;
2800 n_last_update_time_copy = next->load_last_update_time_copy;
2801
2802 smp_rmb();
2803
2804 p_last_update_time = prev->avg.last_update_time;
2805 n_last_update_time = next->avg.last_update_time;
2806
2807 } while (p_last_update_time != p_last_update_time_copy ||
2808 n_last_update_time != n_last_update_time_copy);
2809 #else
2810 p_last_update_time = prev->avg.last_update_time;
2811 n_last_update_time = next->avg.last_update_time;
2812 #endif
2813 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2814 &se->avg, 0, 0, NULL);
2815 se->avg.last_update_time = n_last_update_time;
2816 }
2817 }
2818 #else /* CONFIG_FAIR_GROUP_SCHED */
2819 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2820 #endif /* CONFIG_FAIR_GROUP_SCHED */
2821
2822 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2823
2824 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2825 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2826 {
2827 struct sched_avg *sa = &cfs_rq->avg;
2828 int decayed, removed = 0;
2829
2830 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2831 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2832 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2833 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2834 removed = 1;
2835 }
2836
2837 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2838 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2839 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2840 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2841 }
2842
2843 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2844 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2845
2846 #ifndef CONFIG_64BIT
2847 smp_wmb();
2848 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2849 #endif
2850
2851 return decayed || removed;
2852 }
2853
2854 /* Update task and its cfs_rq load average */
2855 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2856 {
2857 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2858 u64 now = cfs_rq_clock_task(cfs_rq);
2859 int cpu = cpu_of(rq_of(cfs_rq));
2860
2861 /*
2862 * Track task load average for carrying it to new CPU after migrated, and
2863 * track group sched_entity load average for task_h_load calc in migration
2864 */
2865 __update_load_avg(now, cpu, &se->avg,
2866 se->on_rq * scale_load_down(se->load.weight),
2867 cfs_rq->curr == se, NULL);
2868
2869 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2870 update_tg_load_avg(cfs_rq, 0);
2871 }
2872
2873 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2874 {
2875 if (!sched_feat(ATTACH_AGE_LOAD))
2876 goto skip_aging;
2877
2878 /*
2879 * If we got migrated (either between CPUs or between cgroups) we'll
2880 * have aged the average right before clearing @last_update_time.
2881 */
2882 if (se->avg.last_update_time) {
2883 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2884 &se->avg, 0, 0, NULL);
2885
2886 /*
2887 * XXX: we could have just aged the entire load away if we've been
2888 * absent from the fair class for too long.
2889 */
2890 }
2891
2892 skip_aging:
2893 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2894 cfs_rq->avg.load_avg += se->avg.load_avg;
2895 cfs_rq->avg.load_sum += se->avg.load_sum;
2896 cfs_rq->avg.util_avg += se->avg.util_avg;
2897 cfs_rq->avg.util_sum += se->avg.util_sum;
2898 }
2899
2900 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2901 {
2902 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2903 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2904 cfs_rq->curr == se, NULL);
2905
2906 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2907 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2908 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2909 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2910 }
2911
2912 /* Add the load generated by se into cfs_rq's load average */
2913 static inline void
2914 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2915 {
2916 struct sched_avg *sa = &se->avg;
2917 u64 now = cfs_rq_clock_task(cfs_rq);
2918 int migrated, decayed;
2919
2920 migrated = !sa->last_update_time;
2921 if (!migrated) {
2922 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2923 se->on_rq * scale_load_down(se->load.weight),
2924 cfs_rq->curr == se, NULL);
2925 }
2926
2927 decayed = update_cfs_rq_load_avg(now, cfs_rq);
2928
2929 cfs_rq->runnable_load_avg += sa->load_avg;
2930 cfs_rq->runnable_load_sum += sa->load_sum;
2931
2932 if (migrated)
2933 attach_entity_load_avg(cfs_rq, se);
2934
2935 if (decayed || migrated)
2936 update_tg_load_avg(cfs_rq, 0);
2937 }
2938
2939 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
2940 static inline void
2941 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2942 {
2943 update_load_avg(se, 1);
2944
2945 cfs_rq->runnable_load_avg =
2946 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2947 cfs_rq->runnable_load_sum =
2948 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2949 }
2950
2951 #ifndef CONFIG_64BIT
2952 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2953 {
2954 u64 last_update_time_copy;
2955 u64 last_update_time;
2956
2957 do {
2958 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2959 smp_rmb();
2960 last_update_time = cfs_rq->avg.last_update_time;
2961 } while (last_update_time != last_update_time_copy);
2962
2963 return last_update_time;
2964 }
2965 #else
2966 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2967 {
2968 return cfs_rq->avg.last_update_time;
2969 }
2970 #endif
2971
2972 /*
2973 * Task first catches up with cfs_rq, and then subtract
2974 * itself from the cfs_rq (task must be off the queue now).
2975 */
2976 void remove_entity_load_avg(struct sched_entity *se)
2977 {
2978 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2979 u64 last_update_time;
2980
2981 /*
2982 * Newly created task or never used group entity should not be removed
2983 * from its (source) cfs_rq
2984 */
2985 if (se->avg.last_update_time == 0)
2986 return;
2987
2988 last_update_time = cfs_rq_last_update_time(cfs_rq);
2989
2990 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2991 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2992 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2993 }
2994
2995 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2996 {
2997 return cfs_rq->runnable_load_avg;
2998 }
2999
3000 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3001 {
3002 return cfs_rq->avg.load_avg;
3003 }
3004
3005 static int idle_balance(struct rq *this_rq);
3006
3007 #else /* CONFIG_SMP */
3008
3009 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3010 static inline void
3011 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3012 static inline void
3013 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3014 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3015
3016 static inline void
3017 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3018 static inline void
3019 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3020
3021 static inline int idle_balance(struct rq *rq)
3022 {
3023 return 0;
3024 }
3025
3026 #endif /* CONFIG_SMP */
3027
3028 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3029 {
3030 #ifdef CONFIG_SCHEDSTATS
3031 struct task_struct *tsk = NULL;
3032
3033 if (entity_is_task(se))
3034 tsk = task_of(se);
3035
3036 if (se->statistics.sleep_start) {
3037 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3038
3039 if ((s64)delta < 0)
3040 delta = 0;
3041
3042 if (unlikely(delta > se->statistics.sleep_max))
3043 se->statistics.sleep_max = delta;
3044
3045 se->statistics.sleep_start = 0;
3046 se->statistics.sum_sleep_runtime += delta;
3047
3048 if (tsk) {
3049 account_scheduler_latency(tsk, delta >> 10, 1);
3050 trace_sched_stat_sleep(tsk, delta);
3051 }
3052 }
3053 if (se->statistics.block_start) {
3054 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3055
3056 if ((s64)delta < 0)
3057 delta = 0;
3058
3059 if (unlikely(delta > se->statistics.block_max))
3060 se->statistics.block_max = delta;
3061
3062 se->statistics.block_start = 0;
3063 se->statistics.sum_sleep_runtime += delta;
3064
3065 if (tsk) {
3066 if (tsk->in_iowait) {
3067 se->statistics.iowait_sum += delta;
3068 se->statistics.iowait_count++;
3069 trace_sched_stat_iowait(tsk, delta);
3070 }
3071
3072 trace_sched_stat_blocked(tsk, delta);
3073
3074 /*
3075 * Blocking time is in units of nanosecs, so shift by
3076 * 20 to get a milliseconds-range estimation of the
3077 * amount of time that the task spent sleeping:
3078 */
3079 if (unlikely(prof_on == SLEEP_PROFILING)) {
3080 profile_hits(SLEEP_PROFILING,
3081 (void *)get_wchan(tsk),
3082 delta >> 20);
3083 }
3084 account_scheduler_latency(tsk, delta >> 10, 0);
3085 }
3086 }
3087 #endif
3088 }
3089
3090 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3091 {
3092 #ifdef CONFIG_SCHED_DEBUG
3093 s64 d = se->vruntime - cfs_rq->min_vruntime;
3094
3095 if (d < 0)
3096 d = -d;
3097
3098 if (d > 3*sysctl_sched_latency)
3099 schedstat_inc(cfs_rq, nr_spread_over);
3100 #endif
3101 }
3102
3103 static void
3104 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3105 {
3106 u64 vruntime = cfs_rq->min_vruntime;
3107
3108 /*
3109 * The 'current' period is already promised to the current tasks,
3110 * however the extra weight of the new task will slow them down a
3111 * little, place the new task so that it fits in the slot that
3112 * stays open at the end.
3113 */
3114 if (initial && sched_feat(START_DEBIT))
3115 vruntime += sched_vslice(cfs_rq, se);
3116
3117 /* sleeps up to a single latency don't count. */
3118 if (!initial) {
3119 unsigned long thresh = sysctl_sched_latency;
3120
3121 /*
3122 * Halve their sleep time's effect, to allow
3123 * for a gentler effect of sleepers:
3124 */
3125 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3126 thresh >>= 1;
3127
3128 vruntime -= thresh;
3129 }
3130
3131 /* ensure we never gain time by being placed backwards. */
3132 se->vruntime = max_vruntime(se->vruntime, vruntime);
3133 }
3134
3135 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3136
3137 static inline void check_schedstat_required(void)
3138 {
3139 #ifdef CONFIG_SCHEDSTATS
3140 if (schedstat_enabled())
3141 return;
3142
3143 /* Force schedstat enabled if a dependent tracepoint is active */
3144 if (trace_sched_stat_wait_enabled() ||
3145 trace_sched_stat_sleep_enabled() ||
3146 trace_sched_stat_iowait_enabled() ||
3147 trace_sched_stat_blocked_enabled() ||
3148 trace_sched_stat_runtime_enabled()) {
3149 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3150 "stat_blocked and stat_runtime require the "
3151 "kernel parameter schedstats=enabled or "
3152 "kernel.sched_schedstats=1\n");
3153 }
3154 #endif
3155 }
3156
3157 static void
3158 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3159 {
3160 /*
3161 * Update the normalized vruntime before updating min_vruntime
3162 * through calling update_curr().
3163 */
3164 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3165 se->vruntime += cfs_rq->min_vruntime;
3166
3167 /*
3168 * Update run-time statistics of the 'current'.
3169 */
3170 update_curr(cfs_rq);
3171 enqueue_entity_load_avg(cfs_rq, se);
3172 account_entity_enqueue(cfs_rq, se);
3173 update_cfs_shares(cfs_rq);
3174
3175 if (flags & ENQUEUE_WAKEUP) {
3176 place_entity(cfs_rq, se, 0);
3177 if (schedstat_enabled())
3178 enqueue_sleeper(cfs_rq, se);
3179 }
3180
3181 check_schedstat_required();
3182 if (schedstat_enabled()) {
3183 update_stats_enqueue(cfs_rq, se);
3184 check_spread(cfs_rq, se);
3185 }
3186 if (se != cfs_rq->curr)
3187 __enqueue_entity(cfs_rq, se);
3188 se->on_rq = 1;
3189
3190 if (cfs_rq->nr_running == 1) {
3191 list_add_leaf_cfs_rq(cfs_rq);
3192 check_enqueue_throttle(cfs_rq);
3193 }
3194 }
3195
3196 static void __clear_buddies_last(struct sched_entity *se)
3197 {
3198 for_each_sched_entity(se) {
3199 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3200 if (cfs_rq->last != se)
3201 break;
3202
3203 cfs_rq->last = NULL;
3204 }
3205 }
3206
3207 static void __clear_buddies_next(struct sched_entity *se)
3208 {
3209 for_each_sched_entity(se) {
3210 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3211 if (cfs_rq->next != se)
3212 break;
3213
3214 cfs_rq->next = NULL;
3215 }
3216 }
3217
3218 static void __clear_buddies_skip(struct sched_entity *se)
3219 {
3220 for_each_sched_entity(se) {
3221 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3222 if (cfs_rq->skip != se)
3223 break;
3224
3225 cfs_rq->skip = NULL;
3226 }
3227 }
3228
3229 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3230 {
3231 if (cfs_rq->last == se)
3232 __clear_buddies_last(se);
3233
3234 if (cfs_rq->next == se)
3235 __clear_buddies_next(se);
3236
3237 if (cfs_rq->skip == se)
3238 __clear_buddies_skip(se);
3239 }
3240
3241 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3242
3243 static void
3244 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3245 {
3246 /*
3247 * Update run-time statistics of the 'current'.
3248 */
3249 update_curr(cfs_rq);
3250 dequeue_entity_load_avg(cfs_rq, se);
3251
3252 if (schedstat_enabled())
3253 update_stats_dequeue(cfs_rq, se, flags);
3254
3255 clear_buddies(cfs_rq, se);
3256
3257 if (se != cfs_rq->curr)
3258 __dequeue_entity(cfs_rq, se);
3259 se->on_rq = 0;
3260 account_entity_dequeue(cfs_rq, se);
3261
3262 /*
3263 * Normalize the entity after updating the min_vruntime because the
3264 * update can refer to the ->curr item and we need to reflect this
3265 * movement in our normalized position.
3266 */
3267 if (!(flags & DEQUEUE_SLEEP))
3268 se->vruntime -= cfs_rq->min_vruntime;
3269
3270 /* return excess runtime on last dequeue */
3271 return_cfs_rq_runtime(cfs_rq);
3272
3273 update_min_vruntime(cfs_rq);
3274 update_cfs_shares(cfs_rq);
3275 }
3276
3277 /*
3278 * Preempt the current task with a newly woken task if needed:
3279 */
3280 static void
3281 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3282 {
3283 unsigned long ideal_runtime, delta_exec;
3284 struct sched_entity *se;
3285 s64 delta;
3286
3287 ideal_runtime = sched_slice(cfs_rq, curr);
3288 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3289 if (delta_exec > ideal_runtime) {
3290 resched_curr(rq_of(cfs_rq));
3291 /*
3292 * The current task ran long enough, ensure it doesn't get
3293 * re-elected due to buddy favours.
3294 */
3295 clear_buddies(cfs_rq, curr);
3296 return;
3297 }
3298
3299 /*
3300 * Ensure that a task that missed wakeup preemption by a
3301 * narrow margin doesn't have to wait for a full slice.
3302 * This also mitigates buddy induced latencies under load.
3303 */
3304 if (delta_exec < sysctl_sched_min_granularity)
3305 return;
3306
3307 se = __pick_first_entity(cfs_rq);
3308 delta = curr->vruntime - se->vruntime;
3309
3310 if (delta < 0)
3311 return;
3312
3313 if (delta > ideal_runtime)
3314 resched_curr(rq_of(cfs_rq));
3315 }
3316
3317 static void
3318 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3319 {
3320 /* 'current' is not kept within the tree. */
3321 if (se->on_rq) {
3322 /*
3323 * Any task has to be enqueued before it get to execute on
3324 * a CPU. So account for the time it spent waiting on the
3325 * runqueue.
3326 */
3327 if (schedstat_enabled())
3328 update_stats_wait_end(cfs_rq, se);
3329 __dequeue_entity(cfs_rq, se);
3330 update_load_avg(se, 1);
3331 }
3332
3333 update_stats_curr_start(cfs_rq, se);
3334 cfs_rq->curr = se;
3335 #ifdef CONFIG_SCHEDSTATS
3336 /*
3337 * Track our maximum slice length, if the CPU's load is at
3338 * least twice that of our own weight (i.e. dont track it
3339 * when there are only lesser-weight tasks around):
3340 */
3341 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3342 se->statistics.slice_max = max(se->statistics.slice_max,
3343 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3344 }
3345 #endif
3346 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3347 }
3348
3349 static int
3350 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3351
3352 /*
3353 * Pick the next process, keeping these things in mind, in this order:
3354 * 1) keep things fair between processes/task groups
3355 * 2) pick the "next" process, since someone really wants that to run
3356 * 3) pick the "last" process, for cache locality
3357 * 4) do not run the "skip" process, if something else is available
3358 */
3359 static struct sched_entity *
3360 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3361 {
3362 struct sched_entity *left = __pick_first_entity(cfs_rq);
3363 struct sched_entity *se;
3364
3365 /*
3366 * If curr is set we have to see if its left of the leftmost entity
3367 * still in the tree, provided there was anything in the tree at all.
3368 */
3369 if (!left || (curr && entity_before(curr, left)))
3370 left = curr;
3371
3372 se = left; /* ideally we run the leftmost entity */
3373
3374 /*
3375 * Avoid running the skip buddy, if running something else can
3376 * be done without getting too unfair.
3377 */
3378 if (cfs_rq->skip == se) {
3379 struct sched_entity *second;
3380
3381 if (se == curr) {
3382 second = __pick_first_entity(cfs_rq);
3383 } else {
3384 second = __pick_next_entity(se);
3385 if (!second || (curr && entity_before(curr, second)))
3386 second = curr;
3387 }
3388
3389 if (second && wakeup_preempt_entity(second, left) < 1)
3390 se = second;
3391 }
3392
3393 /*
3394 * Prefer last buddy, try to return the CPU to a preempted task.
3395 */
3396 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3397 se = cfs_rq->last;
3398
3399 /*
3400 * Someone really wants this to run. If it's not unfair, run it.
3401 */
3402 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3403 se = cfs_rq->next;
3404
3405 clear_buddies(cfs_rq, se);
3406
3407 return se;
3408 }
3409
3410 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3411
3412 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3413 {
3414 /*
3415 * If still on the runqueue then deactivate_task()
3416 * was not called and update_curr() has to be done:
3417 */
3418 if (prev->on_rq)
3419 update_curr(cfs_rq);
3420
3421 /* throttle cfs_rqs exceeding runtime */
3422 check_cfs_rq_runtime(cfs_rq);
3423
3424 if (schedstat_enabled()) {
3425 check_spread(cfs_rq, prev);
3426 if (prev->on_rq)
3427 update_stats_wait_start(cfs_rq, prev);
3428 }
3429
3430 if (prev->on_rq) {
3431 /* Put 'current' back into the tree. */
3432 __enqueue_entity(cfs_rq, prev);
3433 /* in !on_rq case, update occurred at dequeue */
3434 update_load_avg(prev, 0);
3435 }
3436 cfs_rq->curr = NULL;
3437 }
3438
3439 static void
3440 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3441 {
3442 /*
3443 * Update run-time statistics of the 'current'.
3444 */
3445 update_curr(cfs_rq);
3446
3447 /*
3448 * Ensure that runnable average is periodically updated.
3449 */
3450 update_load_avg(curr, 1);
3451 update_cfs_shares(cfs_rq);
3452
3453 #ifdef CONFIG_SCHED_HRTICK
3454 /*
3455 * queued ticks are scheduled to match the slice, so don't bother
3456 * validating it and just reschedule.
3457 */
3458 if (queued) {
3459 resched_curr(rq_of(cfs_rq));
3460 return;
3461 }
3462 /*
3463 * don't let the period tick interfere with the hrtick preemption
3464 */
3465 if (!sched_feat(DOUBLE_TICK) &&
3466 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3467 return;
3468 #endif
3469
3470 if (cfs_rq->nr_running > 1)
3471 check_preempt_tick(cfs_rq, curr);
3472 }
3473
3474
3475 /**************************************************
3476 * CFS bandwidth control machinery
3477 */
3478
3479 #ifdef CONFIG_CFS_BANDWIDTH
3480
3481 #ifdef HAVE_JUMP_LABEL
3482 static struct static_key __cfs_bandwidth_used;
3483
3484 static inline bool cfs_bandwidth_used(void)
3485 {
3486 return static_key_false(&__cfs_bandwidth_used);
3487 }
3488
3489 void cfs_bandwidth_usage_inc(void)
3490 {
3491 static_key_slow_inc(&__cfs_bandwidth_used);
3492 }
3493
3494 void cfs_bandwidth_usage_dec(void)
3495 {
3496 static_key_slow_dec(&__cfs_bandwidth_used);
3497 }
3498 #else /* HAVE_JUMP_LABEL */
3499 static bool cfs_bandwidth_used(void)
3500 {
3501 return true;
3502 }
3503
3504 void cfs_bandwidth_usage_inc(void) {}
3505 void cfs_bandwidth_usage_dec(void) {}
3506 #endif /* HAVE_JUMP_LABEL */
3507
3508 /*
3509 * default period for cfs group bandwidth.
3510 * default: 0.1s, units: nanoseconds
3511 */
3512 static inline u64 default_cfs_period(void)
3513 {
3514 return 100000000ULL;
3515 }
3516
3517 static inline u64 sched_cfs_bandwidth_slice(void)
3518 {
3519 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3520 }
3521
3522 /*
3523 * Replenish runtime according to assigned quota and update expiration time.
3524 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3525 * additional synchronization around rq->lock.
3526 *
3527 * requires cfs_b->lock
3528 */
3529 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3530 {
3531 u64 now;
3532
3533 if (cfs_b->quota == RUNTIME_INF)
3534 return;
3535
3536 now = sched_clock_cpu(smp_processor_id());
3537 cfs_b->runtime = cfs_b->quota;
3538 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3539 }
3540
3541 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3542 {
3543 return &tg->cfs_bandwidth;
3544 }
3545
3546 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3547 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3548 {
3549 if (unlikely(cfs_rq->throttle_count))
3550 return cfs_rq->throttled_clock_task;
3551
3552 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3553 }
3554
3555 /* returns 0 on failure to allocate runtime */
3556 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3557 {
3558 struct task_group *tg = cfs_rq->tg;
3559 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3560 u64 amount = 0, min_amount, expires;
3561
3562 /* note: this is a positive sum as runtime_remaining <= 0 */
3563 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3564
3565 raw_spin_lock(&cfs_b->lock);
3566 if (cfs_b->quota == RUNTIME_INF)
3567 amount = min_amount;
3568 else {
3569 start_cfs_bandwidth(cfs_b);
3570
3571 if (cfs_b->runtime > 0) {
3572 amount = min(cfs_b->runtime, min_amount);
3573 cfs_b->runtime -= amount;
3574 cfs_b->idle = 0;
3575 }
3576 }
3577 expires = cfs_b->runtime_expires;
3578 raw_spin_unlock(&cfs_b->lock);
3579
3580 cfs_rq->runtime_remaining += amount;
3581 /*
3582 * we may have advanced our local expiration to account for allowed
3583 * spread between our sched_clock and the one on which runtime was
3584 * issued.
3585 */
3586 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3587 cfs_rq->runtime_expires = expires;
3588
3589 return cfs_rq->runtime_remaining > 0;
3590 }
3591
3592 /*
3593 * Note: This depends on the synchronization provided by sched_clock and the
3594 * fact that rq->clock snapshots this value.
3595 */
3596 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3597 {
3598 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3599
3600 /* if the deadline is ahead of our clock, nothing to do */
3601 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3602 return;
3603
3604 if (cfs_rq->runtime_remaining < 0)
3605 return;
3606
3607 /*
3608 * If the local deadline has passed we have to consider the
3609 * possibility that our sched_clock is 'fast' and the global deadline
3610 * has not truly expired.
3611 *
3612 * Fortunately we can check determine whether this the case by checking
3613 * whether the global deadline has advanced. It is valid to compare
3614 * cfs_b->runtime_expires without any locks since we only care about
3615 * exact equality, so a partial write will still work.
3616 */
3617
3618 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3619 /* extend local deadline, drift is bounded above by 2 ticks */
3620 cfs_rq->runtime_expires += TICK_NSEC;
3621 } else {
3622 /* global deadline is ahead, expiration has passed */
3623 cfs_rq->runtime_remaining = 0;
3624 }
3625 }
3626
3627 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3628 {
3629 /* dock delta_exec before expiring quota (as it could span periods) */
3630 cfs_rq->runtime_remaining -= delta_exec;
3631 expire_cfs_rq_runtime(cfs_rq);
3632
3633 if (likely(cfs_rq->runtime_remaining > 0))
3634 return;
3635
3636 /*
3637 * if we're unable to extend our runtime we resched so that the active
3638 * hierarchy can be throttled
3639 */
3640 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3641 resched_curr(rq_of(cfs_rq));
3642 }
3643
3644 static __always_inline
3645 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3646 {
3647 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3648 return;
3649
3650 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3651 }
3652
3653 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3654 {
3655 return cfs_bandwidth_used() && cfs_rq->throttled;
3656 }
3657
3658 /* check whether cfs_rq, or any parent, is throttled */
3659 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3660 {
3661 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3662 }
3663
3664 /*
3665 * Ensure that neither of the group entities corresponding to src_cpu or
3666 * dest_cpu are members of a throttled hierarchy when performing group
3667 * load-balance operations.
3668 */
3669 static inline int throttled_lb_pair(struct task_group *tg,
3670 int src_cpu, int dest_cpu)
3671 {
3672 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3673
3674 src_cfs_rq = tg->cfs_rq[src_cpu];
3675 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3676
3677 return throttled_hierarchy(src_cfs_rq) ||
3678 throttled_hierarchy(dest_cfs_rq);
3679 }
3680
3681 /* updated child weight may affect parent so we have to do this bottom up */
3682 static int tg_unthrottle_up(struct task_group *tg, void *data)
3683 {
3684 struct rq *rq = data;
3685 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3686
3687 cfs_rq->throttle_count--;
3688 #ifdef CONFIG_SMP
3689 if (!cfs_rq->throttle_count) {
3690 /* adjust cfs_rq_clock_task() */
3691 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3692 cfs_rq->throttled_clock_task;
3693 }
3694 #endif
3695
3696 return 0;
3697 }
3698
3699 static int tg_throttle_down(struct task_group *tg, void *data)
3700 {
3701 struct rq *rq = data;
3702 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3703
3704 /* group is entering throttled state, stop time */
3705 if (!cfs_rq->throttle_count)
3706 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3707 cfs_rq->throttle_count++;
3708
3709 return 0;
3710 }
3711
3712 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3713 {
3714 struct rq *rq = rq_of(cfs_rq);
3715 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3716 struct sched_entity *se;
3717 long task_delta, dequeue = 1;
3718 bool empty;
3719
3720 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3721
3722 /* freeze hierarchy runnable averages while throttled */
3723 rcu_read_lock();
3724 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3725 rcu_read_unlock();
3726
3727 task_delta = cfs_rq->h_nr_running;
3728 for_each_sched_entity(se) {
3729 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3730 /* throttled entity or throttle-on-deactivate */
3731 if (!se->on_rq)
3732 break;
3733
3734 if (dequeue)
3735 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3736 qcfs_rq->h_nr_running -= task_delta;
3737
3738 if (qcfs_rq->load.weight)
3739 dequeue = 0;
3740 }
3741
3742 if (!se)
3743 sub_nr_running(rq, task_delta);
3744
3745 cfs_rq->throttled = 1;
3746 cfs_rq->throttled_clock = rq_clock(rq);
3747 raw_spin_lock(&cfs_b->lock);
3748 empty = list_empty(&cfs_b->throttled_cfs_rq);
3749
3750 /*
3751 * Add to the _head_ of the list, so that an already-started
3752 * distribute_cfs_runtime will not see us
3753 */
3754 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3755
3756 /*
3757 * If we're the first throttled task, make sure the bandwidth
3758 * timer is running.
3759 */
3760 if (empty)
3761 start_cfs_bandwidth(cfs_b);
3762
3763 raw_spin_unlock(&cfs_b->lock);
3764 }
3765
3766 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3767 {
3768 struct rq *rq = rq_of(cfs_rq);
3769 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3770 struct sched_entity *se;
3771 int enqueue = 1;
3772 long task_delta;
3773
3774 se = cfs_rq->tg->se[cpu_of(rq)];
3775
3776 cfs_rq->throttled = 0;
3777
3778 update_rq_clock(rq);
3779
3780 raw_spin_lock(&cfs_b->lock);
3781 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3782 list_del_rcu(&cfs_rq->throttled_list);
3783 raw_spin_unlock(&cfs_b->lock);
3784
3785 /* update hierarchical throttle state */
3786 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3787
3788 if (!cfs_rq->load.weight)
3789 return;
3790
3791 task_delta = cfs_rq->h_nr_running;
3792 for_each_sched_entity(se) {
3793 if (se->on_rq)
3794 enqueue = 0;
3795
3796 cfs_rq = cfs_rq_of(se);
3797 if (enqueue)
3798 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3799 cfs_rq->h_nr_running += task_delta;
3800
3801 if (cfs_rq_throttled(cfs_rq))
3802 break;
3803 }
3804
3805 if (!se)
3806 add_nr_running(rq, task_delta);
3807
3808 /* determine whether we need to wake up potentially idle cpu */
3809 if (rq->curr == rq->idle && rq->cfs.nr_running)
3810 resched_curr(rq);
3811 }
3812
3813 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3814 u64 remaining, u64 expires)
3815 {
3816 struct cfs_rq *cfs_rq;
3817 u64 runtime;
3818 u64 starting_runtime = remaining;
3819
3820 rcu_read_lock();
3821 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3822 throttled_list) {
3823 struct rq *rq = rq_of(cfs_rq);
3824
3825 raw_spin_lock(&rq->lock);
3826 if (!cfs_rq_throttled(cfs_rq))
3827 goto next;
3828
3829 runtime = -cfs_rq->runtime_remaining + 1;
3830 if (runtime > remaining)
3831 runtime = remaining;
3832 remaining -= runtime;
3833
3834 cfs_rq->runtime_remaining += runtime;
3835 cfs_rq->runtime_expires = expires;
3836
3837 /* we check whether we're throttled above */
3838 if (cfs_rq->runtime_remaining > 0)
3839 unthrottle_cfs_rq(cfs_rq);
3840
3841 next:
3842 raw_spin_unlock(&rq->lock);
3843
3844 if (!remaining)
3845 break;
3846 }
3847 rcu_read_unlock();
3848
3849 return starting_runtime - remaining;
3850 }
3851
3852 /*
3853 * Responsible for refilling a task_group's bandwidth and unthrottling its
3854 * cfs_rqs as appropriate. If there has been no activity within the last
3855 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3856 * used to track this state.
3857 */
3858 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3859 {
3860 u64 runtime, runtime_expires;
3861 int throttled;
3862
3863 /* no need to continue the timer with no bandwidth constraint */
3864 if (cfs_b->quota == RUNTIME_INF)
3865 goto out_deactivate;
3866
3867 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3868 cfs_b->nr_periods += overrun;
3869
3870 /*
3871 * idle depends on !throttled (for the case of a large deficit), and if
3872 * we're going inactive then everything else can be deferred
3873 */
3874 if (cfs_b->idle && !throttled)
3875 goto out_deactivate;
3876
3877 __refill_cfs_bandwidth_runtime(cfs_b);
3878
3879 if (!throttled) {
3880 /* mark as potentially idle for the upcoming period */
3881 cfs_b->idle = 1;
3882 return 0;
3883 }
3884
3885 /* account preceding periods in which throttling occurred */
3886 cfs_b->nr_throttled += overrun;
3887
3888 runtime_expires = cfs_b->runtime_expires;
3889
3890 /*
3891 * This check is repeated as we are holding onto the new bandwidth while
3892 * we unthrottle. This can potentially race with an unthrottled group
3893 * trying to acquire new bandwidth from the global pool. This can result
3894 * in us over-using our runtime if it is all used during this loop, but
3895 * only by limited amounts in that extreme case.
3896 */
3897 while (throttled && cfs_b->runtime > 0) {
3898 runtime = cfs_b->runtime;
3899 raw_spin_unlock(&cfs_b->lock);
3900 /* we can't nest cfs_b->lock while distributing bandwidth */
3901 runtime = distribute_cfs_runtime(cfs_b, runtime,
3902 runtime_expires);
3903 raw_spin_lock(&cfs_b->lock);
3904
3905 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3906
3907 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3908 }
3909
3910 /*
3911 * While we are ensured activity in the period following an
3912 * unthrottle, this also covers the case in which the new bandwidth is
3913 * insufficient to cover the existing bandwidth deficit. (Forcing the
3914 * timer to remain active while there are any throttled entities.)
3915 */
3916 cfs_b->idle = 0;
3917
3918 return 0;
3919
3920 out_deactivate:
3921 return 1;
3922 }
3923
3924 /* a cfs_rq won't donate quota below this amount */
3925 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3926 /* minimum remaining period time to redistribute slack quota */
3927 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3928 /* how long we wait to gather additional slack before distributing */
3929 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3930
3931 /*
3932 * Are we near the end of the current quota period?
3933 *
3934 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3935 * hrtimer base being cleared by hrtimer_start. In the case of
3936 * migrate_hrtimers, base is never cleared, so we are fine.
3937 */
3938 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3939 {
3940 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3941 u64 remaining;
3942
3943 /* if the call-back is running a quota refresh is already occurring */
3944 if (hrtimer_callback_running(refresh_timer))
3945 return 1;
3946
3947 /* is a quota refresh about to occur? */
3948 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3949 if (remaining < min_expire)
3950 return 1;
3951
3952 return 0;
3953 }
3954
3955 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3956 {
3957 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3958
3959 /* if there's a quota refresh soon don't bother with slack */
3960 if (runtime_refresh_within(cfs_b, min_left))
3961 return;
3962
3963 hrtimer_start(&cfs_b->slack_timer,
3964 ns_to_ktime(cfs_bandwidth_slack_period),
3965 HRTIMER_MODE_REL);
3966 }
3967
3968 /* we know any runtime found here is valid as update_curr() precedes return */
3969 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3970 {
3971 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3972 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3973
3974 if (slack_runtime <= 0)
3975 return;
3976
3977 raw_spin_lock(&cfs_b->lock);
3978 if (cfs_b->quota != RUNTIME_INF &&
3979 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3980 cfs_b->runtime += slack_runtime;
3981
3982 /* we are under rq->lock, defer unthrottling using a timer */
3983 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3984 !list_empty(&cfs_b->throttled_cfs_rq))
3985 start_cfs_slack_bandwidth(cfs_b);
3986 }
3987 raw_spin_unlock(&cfs_b->lock);
3988
3989 /* even if it's not valid for return we don't want to try again */
3990 cfs_rq->runtime_remaining -= slack_runtime;
3991 }
3992
3993 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3994 {
3995 if (!cfs_bandwidth_used())
3996 return;
3997
3998 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3999 return;
4000
4001 __return_cfs_rq_runtime(cfs_rq);
4002 }
4003
4004 /*
4005 * This is done with a timer (instead of inline with bandwidth return) since
4006 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4007 */
4008 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4009 {
4010 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4011 u64 expires;
4012
4013 /* confirm we're still not at a refresh boundary */
4014 raw_spin_lock(&cfs_b->lock);
4015 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4016 raw_spin_unlock(&cfs_b->lock);
4017 return;
4018 }
4019
4020 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4021 runtime = cfs_b->runtime;
4022
4023 expires = cfs_b->runtime_expires;
4024 raw_spin_unlock(&cfs_b->lock);
4025
4026 if (!runtime)
4027 return;
4028
4029 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4030
4031 raw_spin_lock(&cfs_b->lock);
4032 if (expires == cfs_b->runtime_expires)
4033 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4034 raw_spin_unlock(&cfs_b->lock);
4035 }
4036
4037 /*
4038 * When a group wakes up we want to make sure that its quota is not already
4039 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4040 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4041 */
4042 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4043 {
4044 if (!cfs_bandwidth_used())
4045 return;
4046
4047 /* an active group must be handled by the update_curr()->put() path */
4048 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4049 return;
4050
4051 /* ensure the group is not already throttled */
4052 if (cfs_rq_throttled(cfs_rq))
4053 return;
4054
4055 /* update runtime allocation */
4056 account_cfs_rq_runtime(cfs_rq, 0);
4057 if (cfs_rq->runtime_remaining <= 0)
4058 throttle_cfs_rq(cfs_rq);
4059 }
4060
4061 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4062 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4063 {
4064 if (!cfs_bandwidth_used())
4065 return false;
4066
4067 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4068 return false;
4069
4070 /*
4071 * it's possible for a throttled entity to be forced into a running
4072 * state (e.g. set_curr_task), in this case we're finished.
4073 */
4074 if (cfs_rq_throttled(cfs_rq))
4075 return true;
4076
4077 throttle_cfs_rq(cfs_rq);
4078 return true;
4079 }
4080
4081 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4082 {
4083 struct cfs_bandwidth *cfs_b =
4084 container_of(timer, struct cfs_bandwidth, slack_timer);
4085
4086 do_sched_cfs_slack_timer(cfs_b);
4087
4088 return HRTIMER_NORESTART;
4089 }
4090
4091 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4092 {
4093 struct cfs_bandwidth *cfs_b =
4094 container_of(timer, struct cfs_bandwidth, period_timer);
4095 int overrun;
4096 int idle = 0;
4097
4098 raw_spin_lock(&cfs_b->lock);
4099 for (;;) {
4100 overrun = hrtimer_forward_now(timer, cfs_b->period);
4101 if (!overrun)
4102 break;
4103
4104 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4105 }
4106 if (idle)
4107 cfs_b->period_active = 0;
4108 raw_spin_unlock(&cfs_b->lock);
4109
4110 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4111 }
4112
4113 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4114 {
4115 raw_spin_lock_init(&cfs_b->lock);
4116 cfs_b->runtime = 0;
4117 cfs_b->quota = RUNTIME_INF;
4118 cfs_b->period = ns_to_ktime(default_cfs_period());
4119
4120 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4121 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4122 cfs_b->period_timer.function = sched_cfs_period_timer;
4123 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4124 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4125 }
4126
4127 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4128 {
4129 cfs_rq->runtime_enabled = 0;
4130 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4131 }
4132
4133 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4134 {
4135 lockdep_assert_held(&cfs_b->lock);
4136
4137 if (!cfs_b->period_active) {
4138 cfs_b->period_active = 1;
4139 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4140 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4141 }
4142 }
4143
4144 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4145 {
4146 /* init_cfs_bandwidth() was not called */
4147 if (!cfs_b->throttled_cfs_rq.next)
4148 return;
4149
4150 hrtimer_cancel(&cfs_b->period_timer);
4151 hrtimer_cancel(&cfs_b->slack_timer);
4152 }
4153
4154 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4155 {
4156 struct cfs_rq *cfs_rq;
4157
4158 for_each_leaf_cfs_rq(rq, cfs_rq) {
4159 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4160
4161 raw_spin_lock(&cfs_b->lock);
4162 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4163 raw_spin_unlock(&cfs_b->lock);
4164 }
4165 }
4166
4167 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4168 {
4169 struct cfs_rq *cfs_rq;
4170
4171 for_each_leaf_cfs_rq(rq, cfs_rq) {
4172 if (!cfs_rq->runtime_enabled)
4173 continue;
4174
4175 /*
4176 * clock_task is not advancing so we just need to make sure
4177 * there's some valid quota amount
4178 */
4179 cfs_rq->runtime_remaining = 1;
4180 /*
4181 * Offline rq is schedulable till cpu is completely disabled
4182 * in take_cpu_down(), so we prevent new cfs throttling here.
4183 */
4184 cfs_rq->runtime_enabled = 0;
4185
4186 if (cfs_rq_throttled(cfs_rq))
4187 unthrottle_cfs_rq(cfs_rq);
4188 }
4189 }
4190
4191 #else /* CONFIG_CFS_BANDWIDTH */
4192 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4193 {
4194 return rq_clock_task(rq_of(cfs_rq));
4195 }
4196
4197 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4198 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4199 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4200 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4201
4202 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4203 {
4204 return 0;
4205 }
4206
4207 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4208 {
4209 return 0;
4210 }
4211
4212 static inline int throttled_lb_pair(struct task_group *tg,
4213 int src_cpu, int dest_cpu)
4214 {
4215 return 0;
4216 }
4217
4218 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4219
4220 #ifdef CONFIG_FAIR_GROUP_SCHED
4221 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4222 #endif
4223
4224 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4225 {
4226 return NULL;
4227 }
4228 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4229 static inline void update_runtime_enabled(struct rq *rq) {}
4230 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4231
4232 #endif /* CONFIG_CFS_BANDWIDTH */
4233
4234 /**************************************************
4235 * CFS operations on tasks:
4236 */
4237
4238 #ifdef CONFIG_SCHED_HRTICK
4239 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4240 {
4241 struct sched_entity *se = &p->se;
4242 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4243
4244 WARN_ON(task_rq(p) != rq);
4245
4246 if (cfs_rq->nr_running > 1) {
4247 u64 slice = sched_slice(cfs_rq, se);
4248 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4249 s64 delta = slice - ran;
4250
4251 if (delta < 0) {
4252 if (rq->curr == p)
4253 resched_curr(rq);
4254 return;
4255 }
4256 hrtick_start(rq, delta);
4257 }
4258 }
4259
4260 /*
4261 * called from enqueue/dequeue and updates the hrtick when the
4262 * current task is from our class and nr_running is low enough
4263 * to matter.
4264 */
4265 static void hrtick_update(struct rq *rq)
4266 {
4267 struct task_struct *curr = rq->curr;
4268
4269 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4270 return;
4271
4272 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4273 hrtick_start_fair(rq, curr);
4274 }
4275 #else /* !CONFIG_SCHED_HRTICK */
4276 static inline void
4277 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4278 {
4279 }
4280
4281 static inline void hrtick_update(struct rq *rq)
4282 {
4283 }
4284 #endif
4285
4286 /*
4287 * The enqueue_task method is called before nr_running is
4288 * increased. Here we update the fair scheduling stats and
4289 * then put the task into the rbtree:
4290 */
4291 static void
4292 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4293 {
4294 struct cfs_rq *cfs_rq;
4295 struct sched_entity *se = &p->se;
4296
4297 for_each_sched_entity(se) {
4298 if (se->on_rq)
4299 break;
4300 cfs_rq = cfs_rq_of(se);
4301 enqueue_entity(cfs_rq, se, flags);
4302
4303 /*
4304 * end evaluation on encountering a throttled cfs_rq
4305 *
4306 * note: in the case of encountering a throttled cfs_rq we will
4307 * post the final h_nr_running increment below.
4308 */
4309 if (cfs_rq_throttled(cfs_rq))
4310 break;
4311 cfs_rq->h_nr_running++;
4312
4313 flags = ENQUEUE_WAKEUP;
4314 }
4315
4316 for_each_sched_entity(se) {
4317 cfs_rq = cfs_rq_of(se);
4318 cfs_rq->h_nr_running++;
4319
4320 if (cfs_rq_throttled(cfs_rq))
4321 break;
4322
4323 update_load_avg(se, 1);
4324 update_cfs_shares(cfs_rq);
4325 }
4326
4327 if (!se)
4328 add_nr_running(rq, 1);
4329
4330 hrtick_update(rq);
4331 }
4332
4333 static void set_next_buddy(struct sched_entity *se);
4334
4335 /*
4336 * The dequeue_task method is called before nr_running is
4337 * decreased. We remove the task from the rbtree and
4338 * update the fair scheduling stats:
4339 */
4340 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4341 {
4342 struct cfs_rq *cfs_rq;
4343 struct sched_entity *se = &p->se;
4344 int task_sleep = flags & DEQUEUE_SLEEP;
4345
4346 for_each_sched_entity(se) {
4347 cfs_rq = cfs_rq_of(se);
4348 dequeue_entity(cfs_rq, se, flags);
4349
4350 /*
4351 * end evaluation on encountering a throttled cfs_rq
4352 *
4353 * note: in the case of encountering a throttled cfs_rq we will
4354 * post the final h_nr_running decrement below.
4355 */
4356 if (cfs_rq_throttled(cfs_rq))
4357 break;
4358 cfs_rq->h_nr_running--;
4359
4360 /* Don't dequeue parent if it has other entities besides us */
4361 if (cfs_rq->load.weight) {
4362 /*
4363 * Bias pick_next to pick a task from this cfs_rq, as
4364 * p is sleeping when it is within its sched_slice.
4365 */
4366 if (task_sleep && parent_entity(se))
4367 set_next_buddy(parent_entity(se));
4368
4369 /* avoid re-evaluating load for this entity */
4370 se = parent_entity(se);
4371 break;
4372 }
4373 flags |= DEQUEUE_SLEEP;
4374 }
4375
4376 for_each_sched_entity(se) {
4377 cfs_rq = cfs_rq_of(se);
4378 cfs_rq->h_nr_running--;
4379
4380 if (cfs_rq_throttled(cfs_rq))
4381 break;
4382
4383 update_load_avg(se, 1);
4384 update_cfs_shares(cfs_rq);
4385 }
4386
4387 if (!se)
4388 sub_nr_running(rq, 1);
4389
4390 hrtick_update(rq);
4391 }
4392
4393 #ifdef CONFIG_SMP
4394
4395 /*
4396 * per rq 'load' arrray crap; XXX kill this.
4397 */
4398
4399 /*
4400 * The exact cpuload calculated at every tick would be:
4401 *
4402 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4403 *
4404 * If a cpu misses updates for n ticks (as it was idle) and update gets
4405 * called on the n+1-th tick when cpu may be busy, then we have:
4406 *
4407 * load_n = (1 - 1/2^i)^n * load_0
4408 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4409 *
4410 * decay_load_missed() below does efficient calculation of
4411 *
4412 * load' = (1 - 1/2^i)^n * load
4413 *
4414 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4415 * This allows us to precompute the above in said factors, thereby allowing the
4416 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4417 * fixed_power_int())
4418 *
4419 * The calculation is approximated on a 128 point scale.
4420 */
4421 #define DEGRADE_SHIFT 7
4422
4423 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4424 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4425 { 0, 0, 0, 0, 0, 0, 0, 0 },
4426 { 64, 32, 8, 0, 0, 0, 0, 0 },
4427 { 96, 72, 40, 12, 1, 0, 0, 0 },
4428 { 112, 98, 75, 43, 15, 1, 0, 0 },
4429 { 120, 112, 98, 76, 45, 16, 2, 0 }
4430 };
4431
4432 /*
4433 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4434 * would be when CPU is idle and so we just decay the old load without
4435 * adding any new load.
4436 */
4437 static unsigned long
4438 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4439 {
4440 int j = 0;
4441
4442 if (!missed_updates)
4443 return load;
4444
4445 if (missed_updates >= degrade_zero_ticks[idx])
4446 return 0;
4447
4448 if (idx == 1)
4449 return load >> missed_updates;
4450
4451 while (missed_updates) {
4452 if (missed_updates % 2)
4453 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4454
4455 missed_updates >>= 1;
4456 j++;
4457 }
4458 return load;
4459 }
4460
4461 /**
4462 * __update_cpu_load - update the rq->cpu_load[] statistics
4463 * @this_rq: The rq to update statistics for
4464 * @this_load: The current load
4465 * @pending_updates: The number of missed updates
4466 * @active: !0 for NOHZ_FULL
4467 *
4468 * Update rq->cpu_load[] statistics. This function is usually called every
4469 * scheduler tick (TICK_NSEC).
4470 *
4471 * This function computes a decaying average:
4472 *
4473 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4474 *
4475 * Because of NOHZ it might not get called on every tick which gives need for
4476 * the @pending_updates argument.
4477 *
4478 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4479 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4480 * = A * (A * load[i]_n-2 + B) + B
4481 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4482 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4483 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4484 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4485 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4486 *
4487 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4488 * any change in load would have resulted in the tick being turned back on.
4489 *
4490 * For regular NOHZ, this reduces to:
4491 *
4492 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4493 *
4494 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4495 * term. See the @active paramter.
4496 */
4497 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4498 unsigned long pending_updates, int active)
4499 {
4500 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4501 int i, scale;
4502
4503 this_rq->nr_load_updates++;
4504
4505 /* Update our load: */
4506 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4507 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4508 unsigned long old_load, new_load;
4509
4510 /* scale is effectively 1 << i now, and >> i divides by scale */
4511
4512 old_load = this_rq->cpu_load[i];
4513 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4514 if (tickless_load) {
4515 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4516 /*
4517 * old_load can never be a negative value because a
4518 * decayed tickless_load cannot be greater than the
4519 * original tickless_load.
4520 */
4521 old_load += tickless_load;
4522 }
4523 new_load = this_load;
4524 /*
4525 * Round up the averaging division if load is increasing. This
4526 * prevents us from getting stuck on 9 if the load is 10, for
4527 * example.
4528 */
4529 if (new_load > old_load)
4530 new_load += scale - 1;
4531
4532 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4533 }
4534
4535 sched_avg_update(this_rq);
4536 }
4537
4538 /* Used instead of source_load when we know the type == 0 */
4539 static unsigned long weighted_cpuload(const int cpu)
4540 {
4541 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4542 }
4543
4544 #ifdef CONFIG_NO_HZ_COMMON
4545 static void __update_cpu_load_nohz(struct rq *this_rq,
4546 unsigned long curr_jiffies,
4547 unsigned long load,
4548 int active)
4549 {
4550 unsigned long pending_updates;
4551
4552 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4553 if (pending_updates) {
4554 this_rq->last_load_update_tick = curr_jiffies;
4555 /*
4556 * In the regular NOHZ case, we were idle, this means load 0.
4557 * In the NOHZ_FULL case, we were non-idle, we should consider
4558 * its weighted load.
4559 */
4560 __update_cpu_load(this_rq, load, pending_updates, active);
4561 }
4562 }
4563
4564 /*
4565 * There is no sane way to deal with nohz on smp when using jiffies because the
4566 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4567 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4568 *
4569 * Therefore we cannot use the delta approach from the regular tick since that
4570 * would seriously skew the load calculation. However we'll make do for those
4571 * updates happening while idle (nohz_idle_balance) or coming out of idle
4572 * (tick_nohz_idle_exit).
4573 *
4574 * This means we might still be one tick off for nohz periods.
4575 */
4576
4577 /*
4578 * Called from nohz_idle_balance() to update the load ratings before doing the
4579 * idle balance.
4580 */
4581 static void update_cpu_load_idle(struct rq *this_rq)
4582 {
4583 /*
4584 * bail if there's load or we're actually up-to-date.
4585 */
4586 if (weighted_cpuload(cpu_of(this_rq)))
4587 return;
4588
4589 __update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
4590 }
4591
4592 /*
4593 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4594 */
4595 void update_cpu_load_nohz(int active)
4596 {
4597 struct rq *this_rq = this_rq();
4598 unsigned long curr_jiffies = READ_ONCE(jiffies);
4599 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4600
4601 if (curr_jiffies == this_rq->last_load_update_tick)
4602 return;
4603
4604 raw_spin_lock(&this_rq->lock);
4605 __update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
4606 raw_spin_unlock(&this_rq->lock);
4607 }
4608 #endif /* CONFIG_NO_HZ */
4609
4610 /*
4611 * Called from scheduler_tick()
4612 */
4613 void update_cpu_load_active(struct rq *this_rq)
4614 {
4615 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4616 /*
4617 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
4618 */
4619 this_rq->last_load_update_tick = jiffies;
4620 __update_cpu_load(this_rq, load, 1, 1);
4621 }
4622
4623 /*
4624 * Return a low guess at the load of a migration-source cpu weighted
4625 * according to the scheduling class and "nice" value.
4626 *
4627 * We want to under-estimate the load of migration sources, to
4628 * balance conservatively.
4629 */
4630 static unsigned long source_load(int cpu, int type)
4631 {
4632 struct rq *rq = cpu_rq(cpu);
4633 unsigned long total = weighted_cpuload(cpu);
4634
4635 if (type == 0 || !sched_feat(LB_BIAS))
4636 return total;
4637
4638 return min(rq->cpu_load[type-1], total);
4639 }
4640
4641 /*
4642 * Return a high guess at the load of a migration-target cpu weighted
4643 * according to the scheduling class and "nice" value.
4644 */
4645 static unsigned long target_load(int cpu, int type)
4646 {
4647 struct rq *rq = cpu_rq(cpu);
4648 unsigned long total = weighted_cpuload(cpu);
4649
4650 if (type == 0 || !sched_feat(LB_BIAS))
4651 return total;
4652
4653 return max(rq->cpu_load[type-1], total);
4654 }
4655
4656 static unsigned long capacity_of(int cpu)
4657 {
4658 return cpu_rq(cpu)->cpu_capacity;
4659 }
4660
4661 static unsigned long capacity_orig_of(int cpu)
4662 {
4663 return cpu_rq(cpu)->cpu_capacity_orig;
4664 }
4665
4666 static unsigned long cpu_avg_load_per_task(int cpu)
4667 {
4668 struct rq *rq = cpu_rq(cpu);
4669 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4670 unsigned long load_avg = weighted_cpuload(cpu);
4671
4672 if (nr_running)
4673 return load_avg / nr_running;
4674
4675 return 0;
4676 }
4677
4678 static void record_wakee(struct task_struct *p)
4679 {
4680 /*
4681 * Rough decay (wiping) for cost saving, don't worry
4682 * about the boundary, really active task won't care
4683 * about the loss.
4684 */
4685 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4686 current->wakee_flips >>= 1;
4687 current->wakee_flip_decay_ts = jiffies;
4688 }
4689
4690 if (current->last_wakee != p) {
4691 current->last_wakee = p;
4692 current->wakee_flips++;
4693 }
4694 }
4695
4696 static void task_waking_fair(struct task_struct *p)
4697 {
4698 struct sched_entity *se = &p->se;
4699 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4700 u64 min_vruntime;
4701
4702 #ifndef CONFIG_64BIT
4703 u64 min_vruntime_copy;
4704
4705 do {
4706 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4707 smp_rmb();
4708 min_vruntime = cfs_rq->min_vruntime;
4709 } while (min_vruntime != min_vruntime_copy);
4710 #else
4711 min_vruntime = cfs_rq->min_vruntime;
4712 #endif
4713
4714 se->vruntime -= min_vruntime;
4715 record_wakee(p);
4716 }
4717
4718 #ifdef CONFIG_FAIR_GROUP_SCHED
4719 /*
4720 * effective_load() calculates the load change as seen from the root_task_group
4721 *
4722 * Adding load to a group doesn't make a group heavier, but can cause movement
4723 * of group shares between cpus. Assuming the shares were perfectly aligned one
4724 * can calculate the shift in shares.
4725 *
4726 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4727 * on this @cpu and results in a total addition (subtraction) of @wg to the
4728 * total group weight.
4729 *
4730 * Given a runqueue weight distribution (rw_i) we can compute a shares
4731 * distribution (s_i) using:
4732 *
4733 * s_i = rw_i / \Sum rw_j (1)
4734 *
4735 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4736 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4737 * shares distribution (s_i):
4738 *
4739 * rw_i = { 2, 4, 1, 0 }
4740 * s_i = { 2/7, 4/7, 1/7, 0 }
4741 *
4742 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4743 * task used to run on and the CPU the waker is running on), we need to
4744 * compute the effect of waking a task on either CPU and, in case of a sync
4745 * wakeup, compute the effect of the current task going to sleep.
4746 *
4747 * So for a change of @wl to the local @cpu with an overall group weight change
4748 * of @wl we can compute the new shares distribution (s'_i) using:
4749 *
4750 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4751 *
4752 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4753 * differences in waking a task to CPU 0. The additional task changes the
4754 * weight and shares distributions like:
4755 *
4756 * rw'_i = { 3, 4, 1, 0 }
4757 * s'_i = { 3/8, 4/8, 1/8, 0 }
4758 *
4759 * We can then compute the difference in effective weight by using:
4760 *
4761 * dw_i = S * (s'_i - s_i) (3)
4762 *
4763 * Where 'S' is the group weight as seen by its parent.
4764 *
4765 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4766 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4767 * 4/7) times the weight of the group.
4768 */
4769 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4770 {
4771 struct sched_entity *se = tg->se[cpu];
4772
4773 if (!tg->parent) /* the trivial, non-cgroup case */
4774 return wl;
4775
4776 for_each_sched_entity(se) {
4777 long w, W;
4778
4779 tg = se->my_q->tg;
4780
4781 /*
4782 * W = @wg + \Sum rw_j
4783 */
4784 W = wg + calc_tg_weight(tg, se->my_q);
4785
4786 /*
4787 * w = rw_i + @wl
4788 */
4789 w = cfs_rq_load_avg(se->my_q) + wl;
4790
4791 /*
4792 * wl = S * s'_i; see (2)
4793 */
4794 if (W > 0 && w < W)
4795 wl = (w * (long)tg->shares) / W;
4796 else
4797 wl = tg->shares;
4798
4799 /*
4800 * Per the above, wl is the new se->load.weight value; since
4801 * those are clipped to [MIN_SHARES, ...) do so now. See
4802 * calc_cfs_shares().
4803 */
4804 if (wl < MIN_SHARES)
4805 wl = MIN_SHARES;
4806
4807 /*
4808 * wl = dw_i = S * (s'_i - s_i); see (3)
4809 */
4810 wl -= se->avg.load_avg;
4811
4812 /*
4813 * Recursively apply this logic to all parent groups to compute
4814 * the final effective load change on the root group. Since
4815 * only the @tg group gets extra weight, all parent groups can
4816 * only redistribute existing shares. @wl is the shift in shares
4817 * resulting from this level per the above.
4818 */
4819 wg = 0;
4820 }
4821
4822 return wl;
4823 }
4824 #else
4825
4826 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4827 {
4828 return wl;
4829 }
4830
4831 #endif
4832
4833 /*
4834 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4835 * A waker of many should wake a different task than the one last awakened
4836 * at a frequency roughly N times higher than one of its wakees. In order
4837 * to determine whether we should let the load spread vs consolodating to
4838 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4839 * partner, and a factor of lls_size higher frequency in the other. With
4840 * both conditions met, we can be relatively sure that the relationship is
4841 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4842 * being client/server, worker/dispatcher, interrupt source or whatever is
4843 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4844 */
4845 static int wake_wide(struct task_struct *p)
4846 {
4847 unsigned int master = current->wakee_flips;
4848 unsigned int slave = p->wakee_flips;
4849 int factor = this_cpu_read(sd_llc_size);
4850
4851 if (master < slave)
4852 swap(master, slave);
4853 if (slave < factor || master < slave * factor)
4854 return 0;
4855 return 1;
4856 }
4857
4858 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4859 {
4860 s64 this_load, load;
4861 s64 this_eff_load, prev_eff_load;
4862 int idx, this_cpu, prev_cpu;
4863 struct task_group *tg;
4864 unsigned long weight;
4865 int balanced;
4866
4867 idx = sd->wake_idx;
4868 this_cpu = smp_processor_id();
4869 prev_cpu = task_cpu(p);
4870 load = source_load(prev_cpu, idx);
4871 this_load = target_load(this_cpu, idx);
4872
4873 /*
4874 * If sync wakeup then subtract the (maximum possible)
4875 * effect of the currently running task from the load
4876 * of the current CPU:
4877 */
4878 if (sync) {
4879 tg = task_group(current);
4880 weight = current->se.avg.load_avg;
4881
4882 this_load += effective_load(tg, this_cpu, -weight, -weight);
4883 load += effective_load(tg, prev_cpu, 0, -weight);
4884 }
4885
4886 tg = task_group(p);
4887 weight = p->se.avg.load_avg;
4888
4889 /*
4890 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4891 * due to the sync cause above having dropped this_load to 0, we'll
4892 * always have an imbalance, but there's really nothing you can do
4893 * about that, so that's good too.
4894 *
4895 * Otherwise check if either cpus are near enough in load to allow this
4896 * task to be woken on this_cpu.
4897 */
4898 this_eff_load = 100;
4899 this_eff_load *= capacity_of(prev_cpu);
4900
4901 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4902 prev_eff_load *= capacity_of(this_cpu);
4903
4904 if (this_load > 0) {
4905 this_eff_load *= this_load +
4906 effective_load(tg, this_cpu, weight, weight);
4907
4908 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4909 }
4910
4911 balanced = this_eff_load <= prev_eff_load;
4912
4913 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4914
4915 if (!balanced)
4916 return 0;
4917
4918 schedstat_inc(sd, ttwu_move_affine);
4919 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4920
4921 return 1;
4922 }
4923
4924 /*
4925 * find_idlest_group finds and returns the least busy CPU group within the
4926 * domain.
4927 */
4928 static struct sched_group *
4929 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4930 int this_cpu, int sd_flag)
4931 {
4932 struct sched_group *idlest = NULL, *group = sd->groups;
4933 unsigned long min_load = ULONG_MAX, this_load = 0;
4934 int load_idx = sd->forkexec_idx;
4935 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4936
4937 if (sd_flag & SD_BALANCE_WAKE)
4938 load_idx = sd->wake_idx;
4939
4940 do {
4941 unsigned long load, avg_load;
4942 int local_group;
4943 int i;
4944
4945 /* Skip over this group if it has no CPUs allowed */
4946 if (!cpumask_intersects(sched_group_cpus(group),
4947 tsk_cpus_allowed(p)))
4948 continue;
4949
4950 local_group = cpumask_test_cpu(this_cpu,
4951 sched_group_cpus(group));
4952
4953 /* Tally up the load of all CPUs in the group */
4954 avg_load = 0;
4955
4956 for_each_cpu(i, sched_group_cpus(group)) {
4957 /* Bias balancing toward cpus of our domain */
4958 if (local_group)
4959 load = source_load(i, load_idx);
4960 else
4961 load = target_load(i, load_idx);
4962
4963 avg_load += load;
4964 }
4965
4966 /* Adjust by relative CPU capacity of the group */
4967 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4968
4969 if (local_group) {
4970 this_load = avg_load;
4971 } else if (avg_load < min_load) {
4972 min_load = avg_load;
4973 idlest = group;
4974 }
4975 } while (group = group->next, group != sd->groups);
4976
4977 if (!idlest || 100*this_load < imbalance*min_load)
4978 return NULL;
4979 return idlest;
4980 }
4981
4982 /*
4983 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4984 */
4985 static int
4986 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4987 {
4988 unsigned long load, min_load = ULONG_MAX;
4989 unsigned int min_exit_latency = UINT_MAX;
4990 u64 latest_idle_timestamp = 0;
4991 int least_loaded_cpu = this_cpu;
4992 int shallowest_idle_cpu = -1;
4993 int i;
4994
4995 /* Traverse only the allowed CPUs */
4996 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4997 if (idle_cpu(i)) {
4998 struct rq *rq = cpu_rq(i);
4999 struct cpuidle_state *idle = idle_get_state(rq);
5000 if (idle && idle->exit_latency < min_exit_latency) {
5001 /*
5002 * We give priority to a CPU whose idle state
5003 * has the smallest exit latency irrespective
5004 * of any idle timestamp.
5005 */
5006 min_exit_latency = idle->exit_latency;
5007 latest_idle_timestamp = rq->idle_stamp;
5008 shallowest_idle_cpu = i;
5009 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5010 rq->idle_stamp > latest_idle_timestamp) {
5011 /*
5012 * If equal or no active idle state, then
5013 * the most recently idled CPU might have
5014 * a warmer cache.
5015 */
5016 latest_idle_timestamp = rq->idle_stamp;
5017 shallowest_idle_cpu = i;
5018 }
5019 } else if (shallowest_idle_cpu == -1) {
5020 load = weighted_cpuload(i);
5021 if (load < min_load || (load == min_load && i == this_cpu)) {
5022 min_load = load;
5023 least_loaded_cpu = i;
5024 }
5025 }
5026 }
5027
5028 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5029 }
5030
5031 /*
5032 * Try and locate an idle CPU in the sched_domain.
5033 */
5034 static int select_idle_sibling(struct task_struct *p, int target)
5035 {
5036 struct sched_domain *sd;
5037 struct sched_group *sg;
5038 int i = task_cpu(p);
5039
5040 if (idle_cpu(target))
5041 return target;
5042
5043 /*
5044 * If the prevous cpu is cache affine and idle, don't be stupid.
5045 */
5046 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5047 return i;
5048
5049 /*
5050 * Otherwise, iterate the domains and find an elegible idle cpu.
5051 */
5052 sd = rcu_dereference(per_cpu(sd_llc, target));
5053 for_each_lower_domain(sd) {
5054 sg = sd->groups;
5055 do {
5056 if (!cpumask_intersects(sched_group_cpus(sg),
5057 tsk_cpus_allowed(p)))
5058 goto next;
5059
5060 for_each_cpu(i, sched_group_cpus(sg)) {
5061 if (i == target || !idle_cpu(i))
5062 goto next;
5063 }
5064
5065 target = cpumask_first_and(sched_group_cpus(sg),
5066 tsk_cpus_allowed(p));
5067 goto done;
5068 next:
5069 sg = sg->next;
5070 } while (sg != sd->groups);
5071 }
5072 done:
5073 return target;
5074 }
5075
5076 /*
5077 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5078 * tasks. The unit of the return value must be the one of capacity so we can
5079 * compare the utilization with the capacity of the CPU that is available for
5080 * CFS task (ie cpu_capacity).
5081 *
5082 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5083 * recent utilization of currently non-runnable tasks on a CPU. It represents
5084 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5085 * capacity_orig is the cpu_capacity available at the highest frequency
5086 * (arch_scale_freq_capacity()).
5087 * The utilization of a CPU converges towards a sum equal to or less than the
5088 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5089 * the running time on this CPU scaled by capacity_curr.
5090 *
5091 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5092 * higher than capacity_orig because of unfortunate rounding in
5093 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5094 * the average stabilizes with the new running time. We need to check that the
5095 * utilization stays within the range of [0..capacity_orig] and cap it if
5096 * necessary. Without utilization capping, a group could be seen as overloaded
5097 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5098 * available capacity. We allow utilization to overshoot capacity_curr (but not
5099 * capacity_orig) as it useful for predicting the capacity required after task
5100 * migrations (scheduler-driven DVFS).
5101 */
5102 static int cpu_util(int cpu)
5103 {
5104 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5105 unsigned long capacity = capacity_orig_of(cpu);
5106
5107 return (util >= capacity) ? capacity : util;
5108 }
5109
5110 /*
5111 * select_task_rq_fair: Select target runqueue for the waking task in domains
5112 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5113 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5114 *
5115 * Balances load by selecting the idlest cpu in the idlest group, or under
5116 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5117 *
5118 * Returns the target cpu number.
5119 *
5120 * preempt must be disabled.
5121 */
5122 static int
5123 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5124 {
5125 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5126 int cpu = smp_processor_id();
5127 int new_cpu = prev_cpu;
5128 int want_affine = 0;
5129 int sync = wake_flags & WF_SYNC;
5130
5131 if (sd_flag & SD_BALANCE_WAKE)
5132 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5133
5134 rcu_read_lock();
5135 for_each_domain(cpu, tmp) {
5136 if (!(tmp->flags & SD_LOAD_BALANCE))
5137 break;
5138
5139 /*
5140 * If both cpu and prev_cpu are part of this domain,
5141 * cpu is a valid SD_WAKE_AFFINE target.
5142 */
5143 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5144 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5145 affine_sd = tmp;
5146 break;
5147 }
5148
5149 if (tmp->flags & sd_flag)
5150 sd = tmp;
5151 else if (!want_affine)
5152 break;
5153 }
5154
5155 if (affine_sd) {
5156 sd = NULL; /* Prefer wake_affine over balance flags */
5157 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5158 new_cpu = cpu;
5159 }
5160
5161 if (!sd) {
5162 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5163 new_cpu = select_idle_sibling(p, new_cpu);
5164
5165 } else while (sd) {
5166 struct sched_group *group;
5167 int weight;
5168
5169 if (!(sd->flags & sd_flag)) {
5170 sd = sd->child;
5171 continue;
5172 }
5173
5174 group = find_idlest_group(sd, p, cpu, sd_flag);
5175 if (!group) {
5176 sd = sd->child;
5177 continue;
5178 }
5179
5180 new_cpu = find_idlest_cpu(group, p, cpu);
5181 if (new_cpu == -1 || new_cpu == cpu) {
5182 /* Now try balancing at a lower domain level of cpu */
5183 sd = sd->child;
5184 continue;
5185 }
5186
5187 /* Now try balancing at a lower domain level of new_cpu */
5188 cpu = new_cpu;
5189 weight = sd->span_weight;
5190 sd = NULL;
5191 for_each_domain(cpu, tmp) {
5192 if (weight <= tmp->span_weight)
5193 break;
5194 if (tmp->flags & sd_flag)
5195 sd = tmp;
5196 }
5197 /* while loop will break here if sd == NULL */
5198 }
5199 rcu_read_unlock();
5200
5201 return new_cpu;
5202 }
5203
5204 /*
5205 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5206 * cfs_rq_of(p) references at time of call are still valid and identify the
5207 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5208 */
5209 static void migrate_task_rq_fair(struct task_struct *p)
5210 {
5211 /*
5212 * We are supposed to update the task to "current" time, then its up to date
5213 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5214 * what current time is, so simply throw away the out-of-date time. This
5215 * will result in the wakee task is less decayed, but giving the wakee more
5216 * load sounds not bad.
5217 */
5218 remove_entity_load_avg(&p->se);
5219
5220 /* Tell new CPU we are migrated */
5221 p->se.avg.last_update_time = 0;
5222
5223 /* We have migrated, no longer consider this task hot */
5224 p->se.exec_start = 0;
5225 }
5226
5227 static void task_dead_fair(struct task_struct *p)
5228 {
5229 remove_entity_load_avg(&p->se);
5230 }
5231 #endif /* CONFIG_SMP */
5232
5233 static unsigned long
5234 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5235 {
5236 unsigned long gran = sysctl_sched_wakeup_granularity;
5237
5238 /*
5239 * Since its curr running now, convert the gran from real-time
5240 * to virtual-time in his units.
5241 *
5242 * By using 'se' instead of 'curr' we penalize light tasks, so
5243 * they get preempted easier. That is, if 'se' < 'curr' then
5244 * the resulting gran will be larger, therefore penalizing the
5245 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5246 * be smaller, again penalizing the lighter task.
5247 *
5248 * This is especially important for buddies when the leftmost
5249 * task is higher priority than the buddy.
5250 */
5251 return calc_delta_fair(gran, se);
5252 }
5253
5254 /*
5255 * Should 'se' preempt 'curr'.
5256 *
5257 * |s1
5258 * |s2
5259 * |s3
5260 * g
5261 * |<--->|c
5262 *
5263 * w(c, s1) = -1
5264 * w(c, s2) = 0
5265 * w(c, s3) = 1
5266 *
5267 */
5268 static int
5269 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5270 {
5271 s64 gran, vdiff = curr->vruntime - se->vruntime;
5272
5273 if (vdiff <= 0)
5274 return -1;
5275
5276 gran = wakeup_gran(curr, se);
5277 if (vdiff > gran)
5278 return 1;
5279
5280 return 0;
5281 }
5282
5283 static void set_last_buddy(struct sched_entity *se)
5284 {
5285 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5286 return;
5287
5288 for_each_sched_entity(se)
5289 cfs_rq_of(se)->last = se;
5290 }
5291
5292 static void set_next_buddy(struct sched_entity *se)
5293 {
5294 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5295 return;
5296
5297 for_each_sched_entity(se)
5298 cfs_rq_of(se)->next = se;
5299 }
5300
5301 static void set_skip_buddy(struct sched_entity *se)
5302 {
5303 for_each_sched_entity(se)
5304 cfs_rq_of(se)->skip = se;
5305 }
5306
5307 /*
5308 * Preempt the current task with a newly woken task if needed:
5309 */
5310 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5311 {
5312 struct task_struct *curr = rq->curr;
5313 struct sched_entity *se = &curr->se, *pse = &p->se;
5314 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5315 int scale = cfs_rq->nr_running >= sched_nr_latency;
5316 int next_buddy_marked = 0;
5317
5318 if (unlikely(se == pse))
5319 return;
5320
5321 /*
5322 * This is possible from callers such as attach_tasks(), in which we
5323 * unconditionally check_prempt_curr() after an enqueue (which may have
5324 * lead to a throttle). This both saves work and prevents false
5325 * next-buddy nomination below.
5326 */
5327 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5328 return;
5329
5330 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5331 set_next_buddy(pse);
5332 next_buddy_marked = 1;
5333 }
5334
5335 /*
5336 * We can come here with TIF_NEED_RESCHED already set from new task
5337 * wake up path.
5338 *
5339 * Note: this also catches the edge-case of curr being in a throttled
5340 * group (e.g. via set_curr_task), since update_curr() (in the
5341 * enqueue of curr) will have resulted in resched being set. This
5342 * prevents us from potentially nominating it as a false LAST_BUDDY
5343 * below.
5344 */
5345 if (test_tsk_need_resched(curr))
5346 return;
5347
5348 /* Idle tasks are by definition preempted by non-idle tasks. */
5349 if (unlikely(curr->policy == SCHED_IDLE) &&
5350 likely(p->policy != SCHED_IDLE))
5351 goto preempt;
5352
5353 /*
5354 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5355 * is driven by the tick):
5356 */
5357 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5358 return;
5359
5360 find_matching_se(&se, &pse);
5361 update_curr(cfs_rq_of(se));
5362 BUG_ON(!pse);
5363 if (wakeup_preempt_entity(se, pse) == 1) {
5364 /*
5365 * Bias pick_next to pick the sched entity that is
5366 * triggering this preemption.
5367 */
5368 if (!next_buddy_marked)
5369 set_next_buddy(pse);
5370 goto preempt;
5371 }
5372
5373 return;
5374
5375 preempt:
5376 resched_curr(rq);
5377 /*
5378 * Only set the backward buddy when the current task is still
5379 * on the rq. This can happen when a wakeup gets interleaved
5380 * with schedule on the ->pre_schedule() or idle_balance()
5381 * point, either of which can * drop the rq lock.
5382 *
5383 * Also, during early boot the idle thread is in the fair class,
5384 * for obvious reasons its a bad idea to schedule back to it.
5385 */
5386 if (unlikely(!se->on_rq || curr == rq->idle))
5387 return;
5388
5389 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5390 set_last_buddy(se);
5391 }
5392
5393 static struct task_struct *
5394 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5395 {
5396 struct cfs_rq *cfs_rq = &rq->cfs;
5397 struct sched_entity *se;
5398 struct task_struct *p;
5399 int new_tasks;
5400
5401 again:
5402 #ifdef CONFIG_FAIR_GROUP_SCHED
5403 if (!cfs_rq->nr_running)
5404 goto idle;
5405
5406 if (prev->sched_class != &fair_sched_class)
5407 goto simple;
5408
5409 /*
5410 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5411 * likely that a next task is from the same cgroup as the current.
5412 *
5413 * Therefore attempt to avoid putting and setting the entire cgroup
5414 * hierarchy, only change the part that actually changes.
5415 */
5416
5417 do {
5418 struct sched_entity *curr = cfs_rq->curr;
5419
5420 /*
5421 * Since we got here without doing put_prev_entity() we also
5422 * have to consider cfs_rq->curr. If it is still a runnable
5423 * entity, update_curr() will update its vruntime, otherwise
5424 * forget we've ever seen it.
5425 */
5426 if (curr) {
5427 if (curr->on_rq)
5428 update_curr(cfs_rq);
5429 else
5430 curr = NULL;
5431
5432 /*
5433 * This call to check_cfs_rq_runtime() will do the
5434 * throttle and dequeue its entity in the parent(s).
5435 * Therefore the 'simple' nr_running test will indeed
5436 * be correct.
5437 */
5438 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5439 goto simple;
5440 }
5441
5442 se = pick_next_entity(cfs_rq, curr);
5443 cfs_rq = group_cfs_rq(se);
5444 } while (cfs_rq);
5445
5446 p = task_of(se);
5447
5448 /*
5449 * Since we haven't yet done put_prev_entity and if the selected task
5450 * is a different task than we started out with, try and touch the
5451 * least amount of cfs_rqs.
5452 */
5453 if (prev != p) {
5454 struct sched_entity *pse = &prev->se;
5455
5456 while (!(cfs_rq = is_same_group(se, pse))) {
5457 int se_depth = se->depth;
5458 int pse_depth = pse->depth;
5459
5460 if (se_depth <= pse_depth) {
5461 put_prev_entity(cfs_rq_of(pse), pse);
5462 pse = parent_entity(pse);
5463 }
5464 if (se_depth >= pse_depth) {
5465 set_next_entity(cfs_rq_of(se), se);
5466 se = parent_entity(se);
5467 }
5468 }
5469
5470 put_prev_entity(cfs_rq, pse);
5471 set_next_entity(cfs_rq, se);
5472 }
5473
5474 if (hrtick_enabled(rq))
5475 hrtick_start_fair(rq, p);
5476
5477 return p;
5478 simple:
5479 cfs_rq = &rq->cfs;
5480 #endif
5481
5482 if (!cfs_rq->nr_running)
5483 goto idle;
5484
5485 put_prev_task(rq, prev);
5486
5487 do {
5488 se = pick_next_entity(cfs_rq, NULL);
5489 set_next_entity(cfs_rq, se);
5490 cfs_rq = group_cfs_rq(se);
5491 } while (cfs_rq);
5492
5493 p = task_of(se);
5494
5495 if (hrtick_enabled(rq))
5496 hrtick_start_fair(rq, p);
5497
5498 return p;
5499
5500 idle:
5501 /*
5502 * This is OK, because current is on_cpu, which avoids it being picked
5503 * for load-balance and preemption/IRQs are still disabled avoiding
5504 * further scheduler activity on it and we're being very careful to
5505 * re-start the picking loop.
5506 */
5507 lockdep_unpin_lock(&rq->lock);
5508 new_tasks = idle_balance(rq);
5509 lockdep_pin_lock(&rq->lock);
5510 /*
5511 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5512 * possible for any higher priority task to appear. In that case we
5513 * must re-start the pick_next_entity() loop.
5514 */
5515 if (new_tasks < 0)
5516 return RETRY_TASK;
5517
5518 if (new_tasks > 0)
5519 goto again;
5520
5521 return NULL;
5522 }
5523
5524 /*
5525 * Account for a descheduled task:
5526 */
5527 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5528 {
5529 struct sched_entity *se = &prev->se;
5530 struct cfs_rq *cfs_rq;
5531
5532 for_each_sched_entity(se) {
5533 cfs_rq = cfs_rq_of(se);
5534 put_prev_entity(cfs_rq, se);
5535 }
5536 }
5537
5538 /*
5539 * sched_yield() is very simple
5540 *
5541 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5542 */
5543 static void yield_task_fair(struct rq *rq)
5544 {
5545 struct task_struct *curr = rq->curr;
5546 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5547 struct sched_entity *se = &curr->se;
5548
5549 /*
5550 * Are we the only task in the tree?
5551 */
5552 if (unlikely(rq->nr_running == 1))
5553 return;
5554
5555 clear_buddies(cfs_rq, se);
5556
5557 if (curr->policy != SCHED_BATCH) {
5558 update_rq_clock(rq);
5559 /*
5560 * Update run-time statistics of the 'current'.
5561 */
5562 update_curr(cfs_rq);
5563 /*
5564 * Tell update_rq_clock() that we've just updated,
5565 * so we don't do microscopic update in schedule()
5566 * and double the fastpath cost.
5567 */
5568 rq_clock_skip_update(rq, true);
5569 }
5570
5571 set_skip_buddy(se);
5572 }
5573
5574 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5575 {
5576 struct sched_entity *se = &p->se;
5577
5578 /* throttled hierarchies are not runnable */
5579 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5580 return false;
5581
5582 /* Tell the scheduler that we'd really like pse to run next. */
5583 set_next_buddy(se);
5584
5585 yield_task_fair(rq);
5586
5587 return true;
5588 }
5589
5590 #ifdef CONFIG_SMP
5591 /**************************************************
5592 * Fair scheduling class load-balancing methods.
5593 *
5594 * BASICS
5595 *
5596 * The purpose of load-balancing is to achieve the same basic fairness the
5597 * per-cpu scheduler provides, namely provide a proportional amount of compute
5598 * time to each task. This is expressed in the following equation:
5599 *
5600 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5601 *
5602 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5603 * W_i,0 is defined as:
5604 *
5605 * W_i,0 = \Sum_j w_i,j (2)
5606 *
5607 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5608 * is derived from the nice value as per prio_to_weight[].
5609 *
5610 * The weight average is an exponential decay average of the instantaneous
5611 * weight:
5612 *
5613 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5614 *
5615 * C_i is the compute capacity of cpu i, typically it is the
5616 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5617 * can also include other factors [XXX].
5618 *
5619 * To achieve this balance we define a measure of imbalance which follows
5620 * directly from (1):
5621 *
5622 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5623 *
5624 * We them move tasks around to minimize the imbalance. In the continuous
5625 * function space it is obvious this converges, in the discrete case we get
5626 * a few fun cases generally called infeasible weight scenarios.
5627 *
5628 * [XXX expand on:
5629 * - infeasible weights;
5630 * - local vs global optima in the discrete case. ]
5631 *
5632 *
5633 * SCHED DOMAINS
5634 *
5635 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5636 * for all i,j solution, we create a tree of cpus that follows the hardware
5637 * topology where each level pairs two lower groups (or better). This results
5638 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5639 * tree to only the first of the previous level and we decrease the frequency
5640 * of load-balance at each level inv. proportional to the number of cpus in
5641 * the groups.
5642 *
5643 * This yields:
5644 *
5645 * log_2 n 1 n
5646 * \Sum { --- * --- * 2^i } = O(n) (5)
5647 * i = 0 2^i 2^i
5648 * `- size of each group
5649 * | | `- number of cpus doing load-balance
5650 * | `- freq
5651 * `- sum over all levels
5652 *
5653 * Coupled with a limit on how many tasks we can migrate every balance pass,
5654 * this makes (5) the runtime complexity of the balancer.
5655 *
5656 * An important property here is that each CPU is still (indirectly) connected
5657 * to every other cpu in at most O(log n) steps:
5658 *
5659 * The adjacency matrix of the resulting graph is given by:
5660 *
5661 * log_2 n
5662 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5663 * k = 0
5664 *
5665 * And you'll find that:
5666 *
5667 * A^(log_2 n)_i,j != 0 for all i,j (7)
5668 *
5669 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5670 * The task movement gives a factor of O(m), giving a convergence complexity
5671 * of:
5672 *
5673 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5674 *
5675 *
5676 * WORK CONSERVING
5677 *
5678 * In order to avoid CPUs going idle while there's still work to do, new idle
5679 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5680 * tree itself instead of relying on other CPUs to bring it work.
5681 *
5682 * This adds some complexity to both (5) and (8) but it reduces the total idle
5683 * time.
5684 *
5685 * [XXX more?]
5686 *
5687 *
5688 * CGROUPS
5689 *
5690 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5691 *
5692 * s_k,i
5693 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5694 * S_k
5695 *
5696 * Where
5697 *
5698 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5699 *
5700 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5701 *
5702 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5703 * property.
5704 *
5705 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5706 * rewrite all of this once again.]
5707 */
5708
5709 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5710
5711 enum fbq_type { regular, remote, all };
5712
5713 #define LBF_ALL_PINNED 0x01
5714 #define LBF_NEED_BREAK 0x02
5715 #define LBF_DST_PINNED 0x04
5716 #define LBF_SOME_PINNED 0x08
5717
5718 struct lb_env {
5719 struct sched_domain *sd;
5720
5721 struct rq *src_rq;
5722 int src_cpu;
5723
5724 int dst_cpu;
5725 struct rq *dst_rq;
5726
5727 struct cpumask *dst_grpmask;
5728 int new_dst_cpu;
5729 enum cpu_idle_type idle;
5730 long imbalance;
5731 /* The set of CPUs under consideration for load-balancing */
5732 struct cpumask *cpus;
5733
5734 unsigned int flags;
5735
5736 unsigned int loop;
5737 unsigned int loop_break;
5738 unsigned int loop_max;
5739
5740 enum fbq_type fbq_type;
5741 struct list_head tasks;
5742 };
5743
5744 /*
5745 * Is this task likely cache-hot:
5746 */
5747 static int task_hot(struct task_struct *p, struct lb_env *env)
5748 {
5749 s64 delta;
5750
5751 lockdep_assert_held(&env->src_rq->lock);
5752
5753 if (p->sched_class != &fair_sched_class)
5754 return 0;
5755
5756 if (unlikely(p->policy == SCHED_IDLE))
5757 return 0;
5758
5759 /*
5760 * Buddy candidates are cache hot:
5761 */
5762 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5763 (&p->se == cfs_rq_of(&p->se)->next ||
5764 &p->se == cfs_rq_of(&p->se)->last))
5765 return 1;
5766
5767 if (sysctl_sched_migration_cost == -1)
5768 return 1;
5769 if (sysctl_sched_migration_cost == 0)
5770 return 0;
5771
5772 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5773
5774 return delta < (s64)sysctl_sched_migration_cost;
5775 }
5776
5777 #ifdef CONFIG_NUMA_BALANCING
5778 /*
5779 * Returns 1, if task migration degrades locality
5780 * Returns 0, if task migration improves locality i.e migration preferred.
5781 * Returns -1, if task migration is not affected by locality.
5782 */
5783 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5784 {
5785 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5786 unsigned long src_faults, dst_faults;
5787 int src_nid, dst_nid;
5788
5789 if (!static_branch_likely(&sched_numa_balancing))
5790 return -1;
5791
5792 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5793 return -1;
5794
5795 src_nid = cpu_to_node(env->src_cpu);
5796 dst_nid = cpu_to_node(env->dst_cpu);
5797
5798 if (src_nid == dst_nid)
5799 return -1;
5800
5801 /* Migrating away from the preferred node is always bad. */
5802 if (src_nid == p->numa_preferred_nid) {
5803 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5804 return 1;
5805 else
5806 return -1;
5807 }
5808
5809 /* Encourage migration to the preferred node. */
5810 if (dst_nid == p->numa_preferred_nid)
5811 return 0;
5812
5813 if (numa_group) {
5814 src_faults = group_faults(p, src_nid);
5815 dst_faults = group_faults(p, dst_nid);
5816 } else {
5817 src_faults = task_faults(p, src_nid);
5818 dst_faults = task_faults(p, dst_nid);
5819 }
5820
5821 return dst_faults < src_faults;
5822 }
5823
5824 #else
5825 static inline int migrate_degrades_locality(struct task_struct *p,
5826 struct lb_env *env)
5827 {
5828 return -1;
5829 }
5830 #endif
5831
5832 /*
5833 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5834 */
5835 static
5836 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5837 {
5838 int tsk_cache_hot;
5839
5840 lockdep_assert_held(&env->src_rq->lock);
5841
5842 /*
5843 * We do not migrate tasks that are:
5844 * 1) throttled_lb_pair, or
5845 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5846 * 3) running (obviously), or
5847 * 4) are cache-hot on their current CPU.
5848 */
5849 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5850 return 0;
5851
5852 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5853 int cpu;
5854
5855 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5856
5857 env->flags |= LBF_SOME_PINNED;
5858
5859 /*
5860 * Remember if this task can be migrated to any other cpu in
5861 * our sched_group. We may want to revisit it if we couldn't
5862 * meet load balance goals by pulling other tasks on src_cpu.
5863 *
5864 * Also avoid computing new_dst_cpu if we have already computed
5865 * one in current iteration.
5866 */
5867 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5868 return 0;
5869
5870 /* Prevent to re-select dst_cpu via env's cpus */
5871 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5872 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5873 env->flags |= LBF_DST_PINNED;
5874 env->new_dst_cpu = cpu;
5875 break;
5876 }
5877 }
5878
5879 return 0;
5880 }
5881
5882 /* Record that we found atleast one task that could run on dst_cpu */
5883 env->flags &= ~LBF_ALL_PINNED;
5884
5885 if (task_running(env->src_rq, p)) {
5886 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5887 return 0;
5888 }
5889
5890 /*
5891 * Aggressive migration if:
5892 * 1) destination numa is preferred
5893 * 2) task is cache cold, or
5894 * 3) too many balance attempts have failed.
5895 */
5896 tsk_cache_hot = migrate_degrades_locality(p, env);
5897 if (tsk_cache_hot == -1)
5898 tsk_cache_hot = task_hot(p, env);
5899
5900 if (tsk_cache_hot <= 0 ||
5901 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5902 if (tsk_cache_hot == 1) {
5903 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5904 schedstat_inc(p, se.statistics.nr_forced_migrations);
5905 }
5906 return 1;
5907 }
5908
5909 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5910 return 0;
5911 }
5912
5913 /*
5914 * detach_task() -- detach the task for the migration specified in env
5915 */
5916 static void detach_task(struct task_struct *p, struct lb_env *env)
5917 {
5918 lockdep_assert_held(&env->src_rq->lock);
5919
5920 p->on_rq = TASK_ON_RQ_MIGRATING;
5921 deactivate_task(env->src_rq, p, 0);
5922 set_task_cpu(p, env->dst_cpu);
5923 }
5924
5925 /*
5926 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5927 * part of active balancing operations within "domain".
5928 *
5929 * Returns a task if successful and NULL otherwise.
5930 */
5931 static struct task_struct *detach_one_task(struct lb_env *env)
5932 {
5933 struct task_struct *p, *n;
5934
5935 lockdep_assert_held(&env->src_rq->lock);
5936
5937 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5938 if (!can_migrate_task(p, env))
5939 continue;
5940
5941 detach_task(p, env);
5942
5943 /*
5944 * Right now, this is only the second place where
5945 * lb_gained[env->idle] is updated (other is detach_tasks)
5946 * so we can safely collect stats here rather than
5947 * inside detach_tasks().
5948 */
5949 schedstat_inc(env->sd, lb_gained[env->idle]);
5950 return p;
5951 }
5952 return NULL;
5953 }
5954
5955 static const unsigned int sched_nr_migrate_break = 32;
5956
5957 /*
5958 * detach_tasks() -- tries to detach up to imbalance weighted load from
5959 * busiest_rq, as part of a balancing operation within domain "sd".
5960 *
5961 * Returns number of detached tasks if successful and 0 otherwise.
5962 */
5963 static int detach_tasks(struct lb_env *env)
5964 {
5965 struct list_head *tasks = &env->src_rq->cfs_tasks;
5966 struct task_struct *p;
5967 unsigned long load;
5968 int detached = 0;
5969
5970 lockdep_assert_held(&env->src_rq->lock);
5971
5972 if (env->imbalance <= 0)
5973 return 0;
5974
5975 while (!list_empty(tasks)) {
5976 /*
5977 * We don't want to steal all, otherwise we may be treated likewise,
5978 * which could at worst lead to a livelock crash.
5979 */
5980 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5981 break;
5982
5983 p = list_first_entry(tasks, struct task_struct, se.group_node);
5984
5985 env->loop++;
5986 /* We've more or less seen every task there is, call it quits */
5987 if (env->loop > env->loop_max)
5988 break;
5989
5990 /* take a breather every nr_migrate tasks */
5991 if (env->loop > env->loop_break) {
5992 env->loop_break += sched_nr_migrate_break;
5993 env->flags |= LBF_NEED_BREAK;
5994 break;
5995 }
5996
5997 if (!can_migrate_task(p, env))
5998 goto next;
5999
6000 load = task_h_load(p);
6001
6002 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6003 goto next;
6004
6005 if ((load / 2) > env->imbalance)
6006 goto next;
6007
6008 detach_task(p, env);
6009 list_add(&p->se.group_node, &env->tasks);
6010
6011 detached++;
6012 env->imbalance -= load;
6013
6014 #ifdef CONFIG_PREEMPT
6015 /*
6016 * NEWIDLE balancing is a source of latency, so preemptible
6017 * kernels will stop after the first task is detached to minimize
6018 * the critical section.
6019 */
6020 if (env->idle == CPU_NEWLY_IDLE)
6021 break;
6022 #endif
6023
6024 /*
6025 * We only want to steal up to the prescribed amount of
6026 * weighted load.
6027 */
6028 if (env->imbalance <= 0)
6029 break;
6030
6031 continue;
6032 next:
6033 list_move_tail(&p->se.group_node, tasks);
6034 }
6035
6036 /*
6037 * Right now, this is one of only two places we collect this stat
6038 * so we can safely collect detach_one_task() stats here rather
6039 * than inside detach_one_task().
6040 */
6041 schedstat_add(env->sd, lb_gained[env->idle], detached);
6042
6043 return detached;
6044 }
6045
6046 /*
6047 * attach_task() -- attach the task detached by detach_task() to its new rq.
6048 */
6049 static void attach_task(struct rq *rq, struct task_struct *p)
6050 {
6051 lockdep_assert_held(&rq->lock);
6052
6053 BUG_ON(task_rq(p) != rq);
6054 activate_task(rq, p, 0);
6055 p->on_rq = TASK_ON_RQ_QUEUED;
6056 check_preempt_curr(rq, p, 0);
6057 }
6058
6059 /*
6060 * attach_one_task() -- attaches the task returned from detach_one_task() to
6061 * its new rq.
6062 */
6063 static void attach_one_task(struct rq *rq, struct task_struct *p)
6064 {
6065 raw_spin_lock(&rq->lock);
6066 attach_task(rq, p);
6067 raw_spin_unlock(&rq->lock);
6068 }
6069
6070 /*
6071 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6072 * new rq.
6073 */
6074 static void attach_tasks(struct lb_env *env)
6075 {
6076 struct list_head *tasks = &env->tasks;
6077 struct task_struct *p;
6078
6079 raw_spin_lock(&env->dst_rq->lock);
6080
6081 while (!list_empty(tasks)) {
6082 p = list_first_entry(tasks, struct task_struct, se.group_node);
6083 list_del_init(&p->se.group_node);
6084
6085 attach_task(env->dst_rq, p);
6086 }
6087
6088 raw_spin_unlock(&env->dst_rq->lock);
6089 }
6090
6091 #ifdef CONFIG_FAIR_GROUP_SCHED
6092 static void update_blocked_averages(int cpu)
6093 {
6094 struct rq *rq = cpu_rq(cpu);
6095 struct cfs_rq *cfs_rq;
6096 unsigned long flags;
6097
6098 raw_spin_lock_irqsave(&rq->lock, flags);
6099 update_rq_clock(rq);
6100
6101 /*
6102 * Iterates the task_group tree in a bottom up fashion, see
6103 * list_add_leaf_cfs_rq() for details.
6104 */
6105 for_each_leaf_cfs_rq(rq, cfs_rq) {
6106 /* throttled entities do not contribute to load */
6107 if (throttled_hierarchy(cfs_rq))
6108 continue;
6109
6110 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6111 update_tg_load_avg(cfs_rq, 0);
6112 }
6113 raw_spin_unlock_irqrestore(&rq->lock, flags);
6114 }
6115
6116 /*
6117 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6118 * This needs to be done in a top-down fashion because the load of a child
6119 * group is a fraction of its parents load.
6120 */
6121 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6122 {
6123 struct rq *rq = rq_of(cfs_rq);
6124 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6125 unsigned long now = jiffies;
6126 unsigned long load;
6127
6128 if (cfs_rq->last_h_load_update == now)
6129 return;
6130
6131 cfs_rq->h_load_next = NULL;
6132 for_each_sched_entity(se) {
6133 cfs_rq = cfs_rq_of(se);
6134 cfs_rq->h_load_next = se;
6135 if (cfs_rq->last_h_load_update == now)
6136 break;
6137 }
6138
6139 if (!se) {
6140 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6141 cfs_rq->last_h_load_update = now;
6142 }
6143
6144 while ((se = cfs_rq->h_load_next) != NULL) {
6145 load = cfs_rq->h_load;
6146 load = div64_ul(load * se->avg.load_avg,
6147 cfs_rq_load_avg(cfs_rq) + 1);
6148 cfs_rq = group_cfs_rq(se);
6149 cfs_rq->h_load = load;
6150 cfs_rq->last_h_load_update = now;
6151 }
6152 }
6153
6154 static unsigned long task_h_load(struct task_struct *p)
6155 {
6156 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6157
6158 update_cfs_rq_h_load(cfs_rq);
6159 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6160 cfs_rq_load_avg(cfs_rq) + 1);
6161 }
6162 #else
6163 static inline void update_blocked_averages(int cpu)
6164 {
6165 struct rq *rq = cpu_rq(cpu);
6166 struct cfs_rq *cfs_rq = &rq->cfs;
6167 unsigned long flags;
6168
6169 raw_spin_lock_irqsave(&rq->lock, flags);
6170 update_rq_clock(rq);
6171 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6172 raw_spin_unlock_irqrestore(&rq->lock, flags);
6173 }
6174
6175 static unsigned long task_h_load(struct task_struct *p)
6176 {
6177 return p->se.avg.load_avg;
6178 }
6179 #endif
6180
6181 /********** Helpers for find_busiest_group ************************/
6182
6183 enum group_type {
6184 group_other = 0,
6185 group_imbalanced,
6186 group_overloaded,
6187 };
6188
6189 /*
6190 * sg_lb_stats - stats of a sched_group required for load_balancing
6191 */
6192 struct sg_lb_stats {
6193 unsigned long avg_load; /*Avg load across the CPUs of the group */
6194 unsigned long group_load; /* Total load over the CPUs of the group */
6195 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6196 unsigned long load_per_task;
6197 unsigned long group_capacity;
6198 unsigned long group_util; /* Total utilization of the group */
6199 unsigned int sum_nr_running; /* Nr tasks running in the group */
6200 unsigned int idle_cpus;
6201 unsigned int group_weight;
6202 enum group_type group_type;
6203 int group_no_capacity;
6204 #ifdef CONFIG_NUMA_BALANCING
6205 unsigned int nr_numa_running;
6206 unsigned int nr_preferred_running;
6207 #endif
6208 };
6209
6210 /*
6211 * sd_lb_stats - Structure to store the statistics of a sched_domain
6212 * during load balancing.
6213 */
6214 struct sd_lb_stats {
6215 struct sched_group *busiest; /* Busiest group in this sd */
6216 struct sched_group *local; /* Local group in this sd */
6217 unsigned long total_load; /* Total load of all groups in sd */
6218 unsigned long total_capacity; /* Total capacity of all groups in sd */
6219 unsigned long avg_load; /* Average load across all groups in sd */
6220
6221 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6222 struct sg_lb_stats local_stat; /* Statistics of the local group */
6223 };
6224
6225 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6226 {
6227 /*
6228 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6229 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6230 * We must however clear busiest_stat::avg_load because
6231 * update_sd_pick_busiest() reads this before assignment.
6232 */
6233 *sds = (struct sd_lb_stats){
6234 .busiest = NULL,
6235 .local = NULL,
6236 .total_load = 0UL,
6237 .total_capacity = 0UL,
6238 .busiest_stat = {
6239 .avg_load = 0UL,
6240 .sum_nr_running = 0,
6241 .group_type = group_other,
6242 },
6243 };
6244 }
6245
6246 /**
6247 * get_sd_load_idx - Obtain the load index for a given sched domain.
6248 * @sd: The sched_domain whose load_idx is to be obtained.
6249 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6250 *
6251 * Return: The load index.
6252 */
6253 static inline int get_sd_load_idx(struct sched_domain *sd,
6254 enum cpu_idle_type idle)
6255 {
6256 int load_idx;
6257
6258 switch (idle) {
6259 case CPU_NOT_IDLE:
6260 load_idx = sd->busy_idx;
6261 break;
6262
6263 case CPU_NEWLY_IDLE:
6264 load_idx = sd->newidle_idx;
6265 break;
6266 default:
6267 load_idx = sd->idle_idx;
6268 break;
6269 }
6270
6271 return load_idx;
6272 }
6273
6274 static unsigned long scale_rt_capacity(int cpu)
6275 {
6276 struct rq *rq = cpu_rq(cpu);
6277 u64 total, used, age_stamp, avg;
6278 s64 delta;
6279
6280 /*
6281 * Since we're reading these variables without serialization make sure
6282 * we read them once before doing sanity checks on them.
6283 */
6284 age_stamp = READ_ONCE(rq->age_stamp);
6285 avg = READ_ONCE(rq->rt_avg);
6286 delta = __rq_clock_broken(rq) - age_stamp;
6287
6288 if (unlikely(delta < 0))
6289 delta = 0;
6290
6291 total = sched_avg_period() + delta;
6292
6293 used = div_u64(avg, total);
6294
6295 if (likely(used < SCHED_CAPACITY_SCALE))
6296 return SCHED_CAPACITY_SCALE - used;
6297
6298 return 1;
6299 }
6300
6301 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6302 {
6303 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6304 struct sched_group *sdg = sd->groups;
6305
6306 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6307
6308 capacity *= scale_rt_capacity(cpu);
6309 capacity >>= SCHED_CAPACITY_SHIFT;
6310
6311 if (!capacity)
6312 capacity = 1;
6313
6314 cpu_rq(cpu)->cpu_capacity = capacity;
6315 sdg->sgc->capacity = capacity;
6316 }
6317
6318 void update_group_capacity(struct sched_domain *sd, int cpu)
6319 {
6320 struct sched_domain *child = sd->child;
6321 struct sched_group *group, *sdg = sd->groups;
6322 unsigned long capacity;
6323 unsigned long interval;
6324
6325 interval = msecs_to_jiffies(sd->balance_interval);
6326 interval = clamp(interval, 1UL, max_load_balance_interval);
6327 sdg->sgc->next_update = jiffies + interval;
6328
6329 if (!child) {
6330 update_cpu_capacity(sd, cpu);
6331 return;
6332 }
6333
6334 capacity = 0;
6335
6336 if (child->flags & SD_OVERLAP) {
6337 /*
6338 * SD_OVERLAP domains cannot assume that child groups
6339 * span the current group.
6340 */
6341
6342 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6343 struct sched_group_capacity *sgc;
6344 struct rq *rq = cpu_rq(cpu);
6345
6346 /*
6347 * build_sched_domains() -> init_sched_groups_capacity()
6348 * gets here before we've attached the domains to the
6349 * runqueues.
6350 *
6351 * Use capacity_of(), which is set irrespective of domains
6352 * in update_cpu_capacity().
6353 *
6354 * This avoids capacity from being 0 and
6355 * causing divide-by-zero issues on boot.
6356 */
6357 if (unlikely(!rq->sd)) {
6358 capacity += capacity_of(cpu);
6359 continue;
6360 }
6361
6362 sgc = rq->sd->groups->sgc;
6363 capacity += sgc->capacity;
6364 }
6365 } else {
6366 /*
6367 * !SD_OVERLAP domains can assume that child groups
6368 * span the current group.
6369 */
6370
6371 group = child->groups;
6372 do {
6373 capacity += group->sgc->capacity;
6374 group = group->next;
6375 } while (group != child->groups);
6376 }
6377
6378 sdg->sgc->capacity = capacity;
6379 }
6380
6381 /*
6382 * Check whether the capacity of the rq has been noticeably reduced by side
6383 * activity. The imbalance_pct is used for the threshold.
6384 * Return true is the capacity is reduced
6385 */
6386 static inline int
6387 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6388 {
6389 return ((rq->cpu_capacity * sd->imbalance_pct) <
6390 (rq->cpu_capacity_orig * 100));
6391 }
6392
6393 /*
6394 * Group imbalance indicates (and tries to solve) the problem where balancing
6395 * groups is inadequate due to tsk_cpus_allowed() constraints.
6396 *
6397 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6398 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6399 * Something like:
6400 *
6401 * { 0 1 2 3 } { 4 5 6 7 }
6402 * * * * *
6403 *
6404 * If we were to balance group-wise we'd place two tasks in the first group and
6405 * two tasks in the second group. Clearly this is undesired as it will overload
6406 * cpu 3 and leave one of the cpus in the second group unused.
6407 *
6408 * The current solution to this issue is detecting the skew in the first group
6409 * by noticing the lower domain failed to reach balance and had difficulty
6410 * moving tasks due to affinity constraints.
6411 *
6412 * When this is so detected; this group becomes a candidate for busiest; see
6413 * update_sd_pick_busiest(). And calculate_imbalance() and
6414 * find_busiest_group() avoid some of the usual balance conditions to allow it
6415 * to create an effective group imbalance.
6416 *
6417 * This is a somewhat tricky proposition since the next run might not find the
6418 * group imbalance and decide the groups need to be balanced again. A most
6419 * subtle and fragile situation.
6420 */
6421
6422 static inline int sg_imbalanced(struct sched_group *group)
6423 {
6424 return group->sgc->imbalance;
6425 }
6426
6427 /*
6428 * group_has_capacity returns true if the group has spare capacity that could
6429 * be used by some tasks.
6430 * We consider that a group has spare capacity if the * number of task is
6431 * smaller than the number of CPUs or if the utilization is lower than the
6432 * available capacity for CFS tasks.
6433 * For the latter, we use a threshold to stabilize the state, to take into
6434 * account the variance of the tasks' load and to return true if the available
6435 * capacity in meaningful for the load balancer.
6436 * As an example, an available capacity of 1% can appear but it doesn't make
6437 * any benefit for the load balance.
6438 */
6439 static inline bool
6440 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6441 {
6442 if (sgs->sum_nr_running < sgs->group_weight)
6443 return true;
6444
6445 if ((sgs->group_capacity * 100) >
6446 (sgs->group_util * env->sd->imbalance_pct))
6447 return true;
6448
6449 return false;
6450 }
6451
6452 /*
6453 * group_is_overloaded returns true if the group has more tasks than it can
6454 * handle.
6455 * group_is_overloaded is not equals to !group_has_capacity because a group
6456 * with the exact right number of tasks, has no more spare capacity but is not
6457 * overloaded so both group_has_capacity and group_is_overloaded return
6458 * false.
6459 */
6460 static inline bool
6461 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6462 {
6463 if (sgs->sum_nr_running <= sgs->group_weight)
6464 return false;
6465
6466 if ((sgs->group_capacity * 100) <
6467 (sgs->group_util * env->sd->imbalance_pct))
6468 return true;
6469
6470 return false;
6471 }
6472
6473 static inline enum
6474 group_type group_classify(struct sched_group *group,
6475 struct sg_lb_stats *sgs)
6476 {
6477 if (sgs->group_no_capacity)
6478 return group_overloaded;
6479
6480 if (sg_imbalanced(group))
6481 return group_imbalanced;
6482
6483 return group_other;
6484 }
6485
6486 /**
6487 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6488 * @env: The load balancing environment.
6489 * @group: sched_group whose statistics are to be updated.
6490 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6491 * @local_group: Does group contain this_cpu.
6492 * @sgs: variable to hold the statistics for this group.
6493 * @overload: Indicate more than one runnable task for any CPU.
6494 */
6495 static inline void update_sg_lb_stats(struct lb_env *env,
6496 struct sched_group *group, int load_idx,
6497 int local_group, struct sg_lb_stats *sgs,
6498 bool *overload)
6499 {
6500 unsigned long load;
6501 int i, nr_running;
6502
6503 memset(sgs, 0, sizeof(*sgs));
6504
6505 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6506 struct rq *rq = cpu_rq(i);
6507
6508 /* Bias balancing toward cpus of our domain */
6509 if (local_group)
6510 load = target_load(i, load_idx);
6511 else
6512 load = source_load(i, load_idx);
6513
6514 sgs->group_load += load;
6515 sgs->group_util += cpu_util(i);
6516 sgs->sum_nr_running += rq->cfs.h_nr_running;
6517
6518 nr_running = rq->nr_running;
6519 if (nr_running > 1)
6520 *overload = true;
6521
6522 #ifdef CONFIG_NUMA_BALANCING
6523 sgs->nr_numa_running += rq->nr_numa_running;
6524 sgs->nr_preferred_running += rq->nr_preferred_running;
6525 #endif
6526 sgs->sum_weighted_load += weighted_cpuload(i);
6527 /*
6528 * No need to call idle_cpu() if nr_running is not 0
6529 */
6530 if (!nr_running && idle_cpu(i))
6531 sgs->idle_cpus++;
6532 }
6533
6534 /* Adjust by relative CPU capacity of the group */
6535 sgs->group_capacity = group->sgc->capacity;
6536 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6537
6538 if (sgs->sum_nr_running)
6539 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6540
6541 sgs->group_weight = group->group_weight;
6542
6543 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6544 sgs->group_type = group_classify(group, sgs);
6545 }
6546
6547 /**
6548 * update_sd_pick_busiest - return 1 on busiest group
6549 * @env: The load balancing environment.
6550 * @sds: sched_domain statistics
6551 * @sg: sched_group candidate to be checked for being the busiest
6552 * @sgs: sched_group statistics
6553 *
6554 * Determine if @sg is a busier group than the previously selected
6555 * busiest group.
6556 *
6557 * Return: %true if @sg is a busier group than the previously selected
6558 * busiest group. %false otherwise.
6559 */
6560 static bool update_sd_pick_busiest(struct lb_env *env,
6561 struct sd_lb_stats *sds,
6562 struct sched_group *sg,
6563 struct sg_lb_stats *sgs)
6564 {
6565 struct sg_lb_stats *busiest = &sds->busiest_stat;
6566
6567 if (sgs->group_type > busiest->group_type)
6568 return true;
6569
6570 if (sgs->group_type < busiest->group_type)
6571 return false;
6572
6573 if (sgs->avg_load <= busiest->avg_load)
6574 return false;
6575
6576 /* This is the busiest node in its class. */
6577 if (!(env->sd->flags & SD_ASYM_PACKING))
6578 return true;
6579
6580 /*
6581 * ASYM_PACKING needs to move all the work to the lowest
6582 * numbered CPUs in the group, therefore mark all groups
6583 * higher than ourself as busy.
6584 */
6585 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6586 if (!sds->busiest)
6587 return true;
6588
6589 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6590 return true;
6591 }
6592
6593 return false;
6594 }
6595
6596 #ifdef CONFIG_NUMA_BALANCING
6597 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6598 {
6599 if (sgs->sum_nr_running > sgs->nr_numa_running)
6600 return regular;
6601 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6602 return remote;
6603 return all;
6604 }
6605
6606 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6607 {
6608 if (rq->nr_running > rq->nr_numa_running)
6609 return regular;
6610 if (rq->nr_running > rq->nr_preferred_running)
6611 return remote;
6612 return all;
6613 }
6614 #else
6615 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6616 {
6617 return all;
6618 }
6619
6620 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6621 {
6622 return regular;
6623 }
6624 #endif /* CONFIG_NUMA_BALANCING */
6625
6626 /**
6627 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6628 * @env: The load balancing environment.
6629 * @sds: variable to hold the statistics for this sched_domain.
6630 */
6631 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6632 {
6633 struct sched_domain *child = env->sd->child;
6634 struct sched_group *sg = env->sd->groups;
6635 struct sg_lb_stats tmp_sgs;
6636 int load_idx, prefer_sibling = 0;
6637 bool overload = false;
6638
6639 if (child && child->flags & SD_PREFER_SIBLING)
6640 prefer_sibling = 1;
6641
6642 load_idx = get_sd_load_idx(env->sd, env->idle);
6643
6644 do {
6645 struct sg_lb_stats *sgs = &tmp_sgs;
6646 int local_group;
6647
6648 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6649 if (local_group) {
6650 sds->local = sg;
6651 sgs = &sds->local_stat;
6652
6653 if (env->idle != CPU_NEWLY_IDLE ||
6654 time_after_eq(jiffies, sg->sgc->next_update))
6655 update_group_capacity(env->sd, env->dst_cpu);
6656 }
6657
6658 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6659 &overload);
6660
6661 if (local_group)
6662 goto next_group;
6663
6664 /*
6665 * In case the child domain prefers tasks go to siblings
6666 * first, lower the sg capacity so that we'll try
6667 * and move all the excess tasks away. We lower the capacity
6668 * of a group only if the local group has the capacity to fit
6669 * these excess tasks. The extra check prevents the case where
6670 * you always pull from the heaviest group when it is already
6671 * under-utilized (possible with a large weight task outweighs
6672 * the tasks on the system).
6673 */
6674 if (prefer_sibling && sds->local &&
6675 group_has_capacity(env, &sds->local_stat) &&
6676 (sgs->sum_nr_running > 1)) {
6677 sgs->group_no_capacity = 1;
6678 sgs->group_type = group_classify(sg, sgs);
6679 }
6680
6681 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6682 sds->busiest = sg;
6683 sds->busiest_stat = *sgs;
6684 }
6685
6686 next_group:
6687 /* Now, start updating sd_lb_stats */
6688 sds->total_load += sgs->group_load;
6689 sds->total_capacity += sgs->group_capacity;
6690
6691 sg = sg->next;
6692 } while (sg != env->sd->groups);
6693
6694 if (env->sd->flags & SD_NUMA)
6695 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6696
6697 if (!env->sd->parent) {
6698 /* update overload indicator if we are at root domain */
6699 if (env->dst_rq->rd->overload != overload)
6700 env->dst_rq->rd->overload = overload;
6701 }
6702
6703 }
6704
6705 /**
6706 * check_asym_packing - Check to see if the group is packed into the
6707 * sched doman.
6708 *
6709 * This is primarily intended to used at the sibling level. Some
6710 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6711 * case of POWER7, it can move to lower SMT modes only when higher
6712 * threads are idle. When in lower SMT modes, the threads will
6713 * perform better since they share less core resources. Hence when we
6714 * have idle threads, we want them to be the higher ones.
6715 *
6716 * This packing function is run on idle threads. It checks to see if
6717 * the busiest CPU in this domain (core in the P7 case) has a higher
6718 * CPU number than the packing function is being run on. Here we are
6719 * assuming lower CPU number will be equivalent to lower a SMT thread
6720 * number.
6721 *
6722 * Return: 1 when packing is required and a task should be moved to
6723 * this CPU. The amount of the imbalance is returned in *imbalance.
6724 *
6725 * @env: The load balancing environment.
6726 * @sds: Statistics of the sched_domain which is to be packed
6727 */
6728 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6729 {
6730 int busiest_cpu;
6731
6732 if (!(env->sd->flags & SD_ASYM_PACKING))
6733 return 0;
6734
6735 if (!sds->busiest)
6736 return 0;
6737
6738 busiest_cpu = group_first_cpu(sds->busiest);
6739 if (env->dst_cpu > busiest_cpu)
6740 return 0;
6741
6742 env->imbalance = DIV_ROUND_CLOSEST(
6743 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6744 SCHED_CAPACITY_SCALE);
6745
6746 return 1;
6747 }
6748
6749 /**
6750 * fix_small_imbalance - Calculate the minor imbalance that exists
6751 * amongst the groups of a sched_domain, during
6752 * load balancing.
6753 * @env: The load balancing environment.
6754 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6755 */
6756 static inline
6757 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6758 {
6759 unsigned long tmp, capa_now = 0, capa_move = 0;
6760 unsigned int imbn = 2;
6761 unsigned long scaled_busy_load_per_task;
6762 struct sg_lb_stats *local, *busiest;
6763
6764 local = &sds->local_stat;
6765 busiest = &sds->busiest_stat;
6766
6767 if (!local->sum_nr_running)
6768 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6769 else if (busiest->load_per_task > local->load_per_task)
6770 imbn = 1;
6771
6772 scaled_busy_load_per_task =
6773 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6774 busiest->group_capacity;
6775
6776 if (busiest->avg_load + scaled_busy_load_per_task >=
6777 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6778 env->imbalance = busiest->load_per_task;
6779 return;
6780 }
6781
6782 /*
6783 * OK, we don't have enough imbalance to justify moving tasks,
6784 * however we may be able to increase total CPU capacity used by
6785 * moving them.
6786 */
6787
6788 capa_now += busiest->group_capacity *
6789 min(busiest->load_per_task, busiest->avg_load);
6790 capa_now += local->group_capacity *
6791 min(local->load_per_task, local->avg_load);
6792 capa_now /= SCHED_CAPACITY_SCALE;
6793
6794 /* Amount of load we'd subtract */
6795 if (busiest->avg_load > scaled_busy_load_per_task) {
6796 capa_move += busiest->group_capacity *
6797 min(busiest->load_per_task,
6798 busiest->avg_load - scaled_busy_load_per_task);
6799 }
6800
6801 /* Amount of load we'd add */
6802 if (busiest->avg_load * busiest->group_capacity <
6803 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6804 tmp = (busiest->avg_load * busiest->group_capacity) /
6805 local->group_capacity;
6806 } else {
6807 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6808 local->group_capacity;
6809 }
6810 capa_move += local->group_capacity *
6811 min(local->load_per_task, local->avg_load + tmp);
6812 capa_move /= SCHED_CAPACITY_SCALE;
6813
6814 /* Move if we gain throughput */
6815 if (capa_move > capa_now)
6816 env->imbalance = busiest->load_per_task;
6817 }
6818
6819 /**
6820 * calculate_imbalance - Calculate the amount of imbalance present within the
6821 * groups of a given sched_domain during load balance.
6822 * @env: load balance environment
6823 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6824 */
6825 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6826 {
6827 unsigned long max_pull, load_above_capacity = ~0UL;
6828 struct sg_lb_stats *local, *busiest;
6829
6830 local = &sds->local_stat;
6831 busiest = &sds->busiest_stat;
6832
6833 if (busiest->group_type == group_imbalanced) {
6834 /*
6835 * In the group_imb case we cannot rely on group-wide averages
6836 * to ensure cpu-load equilibrium, look at wider averages. XXX
6837 */
6838 busiest->load_per_task =
6839 min(busiest->load_per_task, sds->avg_load);
6840 }
6841
6842 /*
6843 * In the presence of smp nice balancing, certain scenarios can have
6844 * max load less than avg load(as we skip the groups at or below
6845 * its cpu_capacity, while calculating max_load..)
6846 */
6847 if (busiest->avg_load <= sds->avg_load ||
6848 local->avg_load >= sds->avg_load) {
6849 env->imbalance = 0;
6850 return fix_small_imbalance(env, sds);
6851 }
6852
6853 /*
6854 * If there aren't any idle cpus, avoid creating some.
6855 */
6856 if (busiest->group_type == group_overloaded &&
6857 local->group_type == group_overloaded) {
6858 load_above_capacity = busiest->sum_nr_running *
6859 SCHED_LOAD_SCALE;
6860 if (load_above_capacity > busiest->group_capacity)
6861 load_above_capacity -= busiest->group_capacity;
6862 else
6863 load_above_capacity = ~0UL;
6864 }
6865
6866 /*
6867 * We're trying to get all the cpus to the average_load, so we don't
6868 * want to push ourselves above the average load, nor do we wish to
6869 * reduce the max loaded cpu below the average load. At the same time,
6870 * we also don't want to reduce the group load below the group capacity
6871 * (so that we can implement power-savings policies etc). Thus we look
6872 * for the minimum possible imbalance.
6873 */
6874 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6875
6876 /* How much load to actually move to equalise the imbalance */
6877 env->imbalance = min(
6878 max_pull * busiest->group_capacity,
6879 (sds->avg_load - local->avg_load) * local->group_capacity
6880 ) / SCHED_CAPACITY_SCALE;
6881
6882 /*
6883 * if *imbalance is less than the average load per runnable task
6884 * there is no guarantee that any tasks will be moved so we'll have
6885 * a think about bumping its value to force at least one task to be
6886 * moved
6887 */
6888 if (env->imbalance < busiest->load_per_task)
6889 return fix_small_imbalance(env, sds);
6890 }
6891
6892 /******* find_busiest_group() helpers end here *********************/
6893
6894 /**
6895 * find_busiest_group - Returns the busiest group within the sched_domain
6896 * if there is an imbalance. If there isn't an imbalance, and
6897 * the user has opted for power-savings, it returns a group whose
6898 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6899 * such a group exists.
6900 *
6901 * Also calculates the amount of weighted load which should be moved
6902 * to restore balance.
6903 *
6904 * @env: The load balancing environment.
6905 *
6906 * Return: - The busiest group if imbalance exists.
6907 * - If no imbalance and user has opted for power-savings balance,
6908 * return the least loaded group whose CPUs can be
6909 * put to idle by rebalancing its tasks onto our group.
6910 */
6911 static struct sched_group *find_busiest_group(struct lb_env *env)
6912 {
6913 struct sg_lb_stats *local, *busiest;
6914 struct sd_lb_stats sds;
6915
6916 init_sd_lb_stats(&sds);
6917
6918 /*
6919 * Compute the various statistics relavent for load balancing at
6920 * this level.
6921 */
6922 update_sd_lb_stats(env, &sds);
6923 local = &sds.local_stat;
6924 busiest = &sds.busiest_stat;
6925
6926 /* ASYM feature bypasses nice load balance check */
6927 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6928 check_asym_packing(env, &sds))
6929 return sds.busiest;
6930
6931 /* There is no busy sibling group to pull tasks from */
6932 if (!sds.busiest || busiest->sum_nr_running == 0)
6933 goto out_balanced;
6934
6935 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6936 / sds.total_capacity;
6937
6938 /*
6939 * If the busiest group is imbalanced the below checks don't
6940 * work because they assume all things are equal, which typically
6941 * isn't true due to cpus_allowed constraints and the like.
6942 */
6943 if (busiest->group_type == group_imbalanced)
6944 goto force_balance;
6945
6946 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6947 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6948 busiest->group_no_capacity)
6949 goto force_balance;
6950
6951 /*
6952 * If the local group is busier than the selected busiest group
6953 * don't try and pull any tasks.
6954 */
6955 if (local->avg_load >= busiest->avg_load)
6956 goto out_balanced;
6957
6958 /*
6959 * Don't pull any tasks if this group is already above the domain
6960 * average load.
6961 */
6962 if (local->avg_load >= sds.avg_load)
6963 goto out_balanced;
6964
6965 if (env->idle == CPU_IDLE) {
6966 /*
6967 * This cpu is idle. If the busiest group is not overloaded
6968 * and there is no imbalance between this and busiest group
6969 * wrt idle cpus, it is balanced. The imbalance becomes
6970 * significant if the diff is greater than 1 otherwise we
6971 * might end up to just move the imbalance on another group
6972 */
6973 if ((busiest->group_type != group_overloaded) &&
6974 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6975 goto out_balanced;
6976 } else {
6977 /*
6978 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6979 * imbalance_pct to be conservative.
6980 */
6981 if (100 * busiest->avg_load <=
6982 env->sd->imbalance_pct * local->avg_load)
6983 goto out_balanced;
6984 }
6985
6986 force_balance:
6987 /* Looks like there is an imbalance. Compute it */
6988 calculate_imbalance(env, &sds);
6989 return sds.busiest;
6990
6991 out_balanced:
6992 env->imbalance = 0;
6993 return NULL;
6994 }
6995
6996 /*
6997 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6998 */
6999 static struct rq *find_busiest_queue(struct lb_env *env,
7000 struct sched_group *group)
7001 {
7002 struct rq *busiest = NULL, *rq;
7003 unsigned long busiest_load = 0, busiest_capacity = 1;
7004 int i;
7005
7006 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7007 unsigned long capacity, wl;
7008 enum fbq_type rt;
7009
7010 rq = cpu_rq(i);
7011 rt = fbq_classify_rq(rq);
7012
7013 /*
7014 * We classify groups/runqueues into three groups:
7015 * - regular: there are !numa tasks
7016 * - remote: there are numa tasks that run on the 'wrong' node
7017 * - all: there is no distinction
7018 *
7019 * In order to avoid migrating ideally placed numa tasks,
7020 * ignore those when there's better options.
7021 *
7022 * If we ignore the actual busiest queue to migrate another
7023 * task, the next balance pass can still reduce the busiest
7024 * queue by moving tasks around inside the node.
7025 *
7026 * If we cannot move enough load due to this classification
7027 * the next pass will adjust the group classification and
7028 * allow migration of more tasks.
7029 *
7030 * Both cases only affect the total convergence complexity.
7031 */
7032 if (rt > env->fbq_type)
7033 continue;
7034
7035 capacity = capacity_of(i);
7036
7037 wl = weighted_cpuload(i);
7038
7039 /*
7040 * When comparing with imbalance, use weighted_cpuload()
7041 * which is not scaled with the cpu capacity.
7042 */
7043
7044 if (rq->nr_running == 1 && wl > env->imbalance &&
7045 !check_cpu_capacity(rq, env->sd))
7046 continue;
7047
7048 /*
7049 * For the load comparisons with the other cpu's, consider
7050 * the weighted_cpuload() scaled with the cpu capacity, so
7051 * that the load can be moved away from the cpu that is
7052 * potentially running at a lower capacity.
7053 *
7054 * Thus we're looking for max(wl_i / capacity_i), crosswise
7055 * multiplication to rid ourselves of the division works out
7056 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7057 * our previous maximum.
7058 */
7059 if (wl * busiest_capacity > busiest_load * capacity) {
7060 busiest_load = wl;
7061 busiest_capacity = capacity;
7062 busiest = rq;
7063 }
7064 }
7065
7066 return busiest;
7067 }
7068
7069 /*
7070 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7071 * so long as it is large enough.
7072 */
7073 #define MAX_PINNED_INTERVAL 512
7074
7075 /* Working cpumask for load_balance and load_balance_newidle. */
7076 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7077
7078 static int need_active_balance(struct lb_env *env)
7079 {
7080 struct sched_domain *sd = env->sd;
7081
7082 if (env->idle == CPU_NEWLY_IDLE) {
7083
7084 /*
7085 * ASYM_PACKING needs to force migrate tasks from busy but
7086 * higher numbered CPUs in order to pack all tasks in the
7087 * lowest numbered CPUs.
7088 */
7089 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7090 return 1;
7091 }
7092
7093 /*
7094 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7095 * It's worth migrating the task if the src_cpu's capacity is reduced
7096 * because of other sched_class or IRQs if more capacity stays
7097 * available on dst_cpu.
7098 */
7099 if ((env->idle != CPU_NOT_IDLE) &&
7100 (env->src_rq->cfs.h_nr_running == 1)) {
7101 if ((check_cpu_capacity(env->src_rq, sd)) &&
7102 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7103 return 1;
7104 }
7105
7106 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7107 }
7108
7109 static int active_load_balance_cpu_stop(void *data);
7110
7111 static int should_we_balance(struct lb_env *env)
7112 {
7113 struct sched_group *sg = env->sd->groups;
7114 struct cpumask *sg_cpus, *sg_mask;
7115 int cpu, balance_cpu = -1;
7116
7117 /*
7118 * In the newly idle case, we will allow all the cpu's
7119 * to do the newly idle load balance.
7120 */
7121 if (env->idle == CPU_NEWLY_IDLE)
7122 return 1;
7123
7124 sg_cpus = sched_group_cpus(sg);
7125 sg_mask = sched_group_mask(sg);
7126 /* Try to find first idle cpu */
7127 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7128 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7129 continue;
7130
7131 balance_cpu = cpu;
7132 break;
7133 }
7134
7135 if (balance_cpu == -1)
7136 balance_cpu = group_balance_cpu(sg);
7137
7138 /*
7139 * First idle cpu or the first cpu(busiest) in this sched group
7140 * is eligible for doing load balancing at this and above domains.
7141 */
7142 return balance_cpu == env->dst_cpu;
7143 }
7144
7145 /*
7146 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7147 * tasks if there is an imbalance.
7148 */
7149 static int load_balance(int this_cpu, struct rq *this_rq,
7150 struct sched_domain *sd, enum cpu_idle_type idle,
7151 int *continue_balancing)
7152 {
7153 int ld_moved, cur_ld_moved, active_balance = 0;
7154 struct sched_domain *sd_parent = sd->parent;
7155 struct sched_group *group;
7156 struct rq *busiest;
7157 unsigned long flags;
7158 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7159
7160 struct lb_env env = {
7161 .sd = sd,
7162 .dst_cpu = this_cpu,
7163 .dst_rq = this_rq,
7164 .dst_grpmask = sched_group_cpus(sd->groups),
7165 .idle = idle,
7166 .loop_break = sched_nr_migrate_break,
7167 .cpus = cpus,
7168 .fbq_type = all,
7169 .tasks = LIST_HEAD_INIT(env.tasks),
7170 };
7171
7172 /*
7173 * For NEWLY_IDLE load_balancing, we don't need to consider
7174 * other cpus in our group
7175 */
7176 if (idle == CPU_NEWLY_IDLE)
7177 env.dst_grpmask = NULL;
7178
7179 cpumask_copy(cpus, cpu_active_mask);
7180
7181 schedstat_inc(sd, lb_count[idle]);
7182
7183 redo:
7184 if (!should_we_balance(&env)) {
7185 *continue_balancing = 0;
7186 goto out_balanced;
7187 }
7188
7189 group = find_busiest_group(&env);
7190 if (!group) {
7191 schedstat_inc(sd, lb_nobusyg[idle]);
7192 goto out_balanced;
7193 }
7194
7195 busiest = find_busiest_queue(&env, group);
7196 if (!busiest) {
7197 schedstat_inc(sd, lb_nobusyq[idle]);
7198 goto out_balanced;
7199 }
7200
7201 BUG_ON(busiest == env.dst_rq);
7202
7203 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7204
7205 env.src_cpu = busiest->cpu;
7206 env.src_rq = busiest;
7207
7208 ld_moved = 0;
7209 if (busiest->nr_running > 1) {
7210 /*
7211 * Attempt to move tasks. If find_busiest_group has found
7212 * an imbalance but busiest->nr_running <= 1, the group is
7213 * still unbalanced. ld_moved simply stays zero, so it is
7214 * correctly treated as an imbalance.
7215 */
7216 env.flags |= LBF_ALL_PINNED;
7217 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7218
7219 more_balance:
7220 raw_spin_lock_irqsave(&busiest->lock, flags);
7221
7222 /*
7223 * cur_ld_moved - load moved in current iteration
7224 * ld_moved - cumulative load moved across iterations
7225 */
7226 cur_ld_moved = detach_tasks(&env);
7227
7228 /*
7229 * We've detached some tasks from busiest_rq. Every
7230 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7231 * unlock busiest->lock, and we are able to be sure
7232 * that nobody can manipulate the tasks in parallel.
7233 * See task_rq_lock() family for the details.
7234 */
7235
7236 raw_spin_unlock(&busiest->lock);
7237
7238 if (cur_ld_moved) {
7239 attach_tasks(&env);
7240 ld_moved += cur_ld_moved;
7241 }
7242
7243 local_irq_restore(flags);
7244
7245 if (env.flags & LBF_NEED_BREAK) {
7246 env.flags &= ~LBF_NEED_BREAK;
7247 goto more_balance;
7248 }
7249
7250 /*
7251 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7252 * us and move them to an alternate dst_cpu in our sched_group
7253 * where they can run. The upper limit on how many times we
7254 * iterate on same src_cpu is dependent on number of cpus in our
7255 * sched_group.
7256 *
7257 * This changes load balance semantics a bit on who can move
7258 * load to a given_cpu. In addition to the given_cpu itself
7259 * (or a ilb_cpu acting on its behalf where given_cpu is
7260 * nohz-idle), we now have balance_cpu in a position to move
7261 * load to given_cpu. In rare situations, this may cause
7262 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7263 * _independently_ and at _same_ time to move some load to
7264 * given_cpu) causing exceess load to be moved to given_cpu.
7265 * This however should not happen so much in practice and
7266 * moreover subsequent load balance cycles should correct the
7267 * excess load moved.
7268 */
7269 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7270
7271 /* Prevent to re-select dst_cpu via env's cpus */
7272 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7273
7274 env.dst_rq = cpu_rq(env.new_dst_cpu);
7275 env.dst_cpu = env.new_dst_cpu;
7276 env.flags &= ~LBF_DST_PINNED;
7277 env.loop = 0;
7278 env.loop_break = sched_nr_migrate_break;
7279
7280 /*
7281 * Go back to "more_balance" rather than "redo" since we
7282 * need to continue with same src_cpu.
7283 */
7284 goto more_balance;
7285 }
7286
7287 /*
7288 * We failed to reach balance because of affinity.
7289 */
7290 if (sd_parent) {
7291 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7292
7293 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7294 *group_imbalance = 1;
7295 }
7296
7297 /* All tasks on this runqueue were pinned by CPU affinity */
7298 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7299 cpumask_clear_cpu(cpu_of(busiest), cpus);
7300 if (!cpumask_empty(cpus)) {
7301 env.loop = 0;
7302 env.loop_break = sched_nr_migrate_break;
7303 goto redo;
7304 }
7305 goto out_all_pinned;
7306 }
7307 }
7308
7309 if (!ld_moved) {
7310 schedstat_inc(sd, lb_failed[idle]);
7311 /*
7312 * Increment the failure counter only on periodic balance.
7313 * We do not want newidle balance, which can be very
7314 * frequent, pollute the failure counter causing
7315 * excessive cache_hot migrations and active balances.
7316 */
7317 if (idle != CPU_NEWLY_IDLE)
7318 sd->nr_balance_failed++;
7319
7320 if (need_active_balance(&env)) {
7321 raw_spin_lock_irqsave(&busiest->lock, flags);
7322
7323 /* don't kick the active_load_balance_cpu_stop,
7324 * if the curr task on busiest cpu can't be
7325 * moved to this_cpu
7326 */
7327 if (!cpumask_test_cpu(this_cpu,
7328 tsk_cpus_allowed(busiest->curr))) {
7329 raw_spin_unlock_irqrestore(&busiest->lock,
7330 flags);
7331 env.flags |= LBF_ALL_PINNED;
7332 goto out_one_pinned;
7333 }
7334
7335 /*
7336 * ->active_balance synchronizes accesses to
7337 * ->active_balance_work. Once set, it's cleared
7338 * only after active load balance is finished.
7339 */
7340 if (!busiest->active_balance) {
7341 busiest->active_balance = 1;
7342 busiest->push_cpu = this_cpu;
7343 active_balance = 1;
7344 }
7345 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7346
7347 if (active_balance) {
7348 stop_one_cpu_nowait(cpu_of(busiest),
7349 active_load_balance_cpu_stop, busiest,
7350 &busiest->active_balance_work);
7351 }
7352
7353 /*
7354 * We've kicked active balancing, reset the failure
7355 * counter.
7356 */
7357 sd->nr_balance_failed = sd->cache_nice_tries+1;
7358 }
7359 } else
7360 sd->nr_balance_failed = 0;
7361
7362 if (likely(!active_balance)) {
7363 /* We were unbalanced, so reset the balancing interval */
7364 sd->balance_interval = sd->min_interval;
7365 } else {
7366 /*
7367 * If we've begun active balancing, start to back off. This
7368 * case may not be covered by the all_pinned logic if there
7369 * is only 1 task on the busy runqueue (because we don't call
7370 * detach_tasks).
7371 */
7372 if (sd->balance_interval < sd->max_interval)
7373 sd->balance_interval *= 2;
7374 }
7375
7376 goto out;
7377
7378 out_balanced:
7379 /*
7380 * We reach balance although we may have faced some affinity
7381 * constraints. Clear the imbalance flag if it was set.
7382 */
7383 if (sd_parent) {
7384 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7385
7386 if (*group_imbalance)
7387 *group_imbalance = 0;
7388 }
7389
7390 out_all_pinned:
7391 /*
7392 * We reach balance because all tasks are pinned at this level so
7393 * we can't migrate them. Let the imbalance flag set so parent level
7394 * can try to migrate them.
7395 */
7396 schedstat_inc(sd, lb_balanced[idle]);
7397
7398 sd->nr_balance_failed = 0;
7399
7400 out_one_pinned:
7401 /* tune up the balancing interval */
7402 if (((env.flags & LBF_ALL_PINNED) &&
7403 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7404 (sd->balance_interval < sd->max_interval))
7405 sd->balance_interval *= 2;
7406
7407 ld_moved = 0;
7408 out:
7409 return ld_moved;
7410 }
7411
7412 static inline unsigned long
7413 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7414 {
7415 unsigned long interval = sd->balance_interval;
7416
7417 if (cpu_busy)
7418 interval *= sd->busy_factor;
7419
7420 /* scale ms to jiffies */
7421 interval = msecs_to_jiffies(interval);
7422 interval = clamp(interval, 1UL, max_load_balance_interval);
7423
7424 return interval;
7425 }
7426
7427 static inline void
7428 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7429 {
7430 unsigned long interval, next;
7431
7432 interval = get_sd_balance_interval(sd, cpu_busy);
7433 next = sd->last_balance + interval;
7434
7435 if (time_after(*next_balance, next))
7436 *next_balance = next;
7437 }
7438
7439 /*
7440 * idle_balance is called by schedule() if this_cpu is about to become
7441 * idle. Attempts to pull tasks from other CPUs.
7442 */
7443 static int idle_balance(struct rq *this_rq)
7444 {
7445 unsigned long next_balance = jiffies + HZ;
7446 int this_cpu = this_rq->cpu;
7447 struct sched_domain *sd;
7448 int pulled_task = 0;
7449 u64 curr_cost = 0;
7450
7451 /*
7452 * We must set idle_stamp _before_ calling idle_balance(), such that we
7453 * measure the duration of idle_balance() as idle time.
7454 */
7455 this_rq->idle_stamp = rq_clock(this_rq);
7456
7457 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7458 !this_rq->rd->overload) {
7459 rcu_read_lock();
7460 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7461 if (sd)
7462 update_next_balance(sd, 0, &next_balance);
7463 rcu_read_unlock();
7464
7465 goto out;
7466 }
7467
7468 raw_spin_unlock(&this_rq->lock);
7469
7470 update_blocked_averages(this_cpu);
7471 rcu_read_lock();
7472 for_each_domain(this_cpu, sd) {
7473 int continue_balancing = 1;
7474 u64 t0, domain_cost;
7475
7476 if (!(sd->flags & SD_LOAD_BALANCE))
7477 continue;
7478
7479 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7480 update_next_balance(sd, 0, &next_balance);
7481 break;
7482 }
7483
7484 if (sd->flags & SD_BALANCE_NEWIDLE) {
7485 t0 = sched_clock_cpu(this_cpu);
7486
7487 pulled_task = load_balance(this_cpu, this_rq,
7488 sd, CPU_NEWLY_IDLE,
7489 &continue_balancing);
7490
7491 domain_cost = sched_clock_cpu(this_cpu) - t0;
7492 if (domain_cost > sd->max_newidle_lb_cost)
7493 sd->max_newidle_lb_cost = domain_cost;
7494
7495 curr_cost += domain_cost;
7496 }
7497
7498 update_next_balance(sd, 0, &next_balance);
7499
7500 /*
7501 * Stop searching for tasks to pull if there are
7502 * now runnable tasks on this rq.
7503 */
7504 if (pulled_task || this_rq->nr_running > 0)
7505 break;
7506 }
7507 rcu_read_unlock();
7508
7509 raw_spin_lock(&this_rq->lock);
7510
7511 if (curr_cost > this_rq->max_idle_balance_cost)
7512 this_rq->max_idle_balance_cost = curr_cost;
7513
7514 /*
7515 * While browsing the domains, we released the rq lock, a task could
7516 * have been enqueued in the meantime. Since we're not going idle,
7517 * pretend we pulled a task.
7518 */
7519 if (this_rq->cfs.h_nr_running && !pulled_task)
7520 pulled_task = 1;
7521
7522 out:
7523 /* Move the next balance forward */
7524 if (time_after(this_rq->next_balance, next_balance))
7525 this_rq->next_balance = next_balance;
7526
7527 /* Is there a task of a high priority class? */
7528 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7529 pulled_task = -1;
7530
7531 if (pulled_task)
7532 this_rq->idle_stamp = 0;
7533
7534 return pulled_task;
7535 }
7536
7537 /*
7538 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7539 * running tasks off the busiest CPU onto idle CPUs. It requires at
7540 * least 1 task to be running on each physical CPU where possible, and
7541 * avoids physical / logical imbalances.
7542 */
7543 static int active_load_balance_cpu_stop(void *data)
7544 {
7545 struct rq *busiest_rq = data;
7546 int busiest_cpu = cpu_of(busiest_rq);
7547 int target_cpu = busiest_rq->push_cpu;
7548 struct rq *target_rq = cpu_rq(target_cpu);
7549 struct sched_domain *sd;
7550 struct task_struct *p = NULL;
7551
7552 raw_spin_lock_irq(&busiest_rq->lock);
7553
7554 /* make sure the requested cpu hasn't gone down in the meantime */
7555 if (unlikely(busiest_cpu != smp_processor_id() ||
7556 !busiest_rq->active_balance))
7557 goto out_unlock;
7558
7559 /* Is there any task to move? */
7560 if (busiest_rq->nr_running <= 1)
7561 goto out_unlock;
7562
7563 /*
7564 * This condition is "impossible", if it occurs
7565 * we need to fix it. Originally reported by
7566 * Bjorn Helgaas on a 128-cpu setup.
7567 */
7568 BUG_ON(busiest_rq == target_rq);
7569
7570 /* Search for an sd spanning us and the target CPU. */
7571 rcu_read_lock();
7572 for_each_domain(target_cpu, sd) {
7573 if ((sd->flags & SD_LOAD_BALANCE) &&
7574 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7575 break;
7576 }
7577
7578 if (likely(sd)) {
7579 struct lb_env env = {
7580 .sd = sd,
7581 .dst_cpu = target_cpu,
7582 .dst_rq = target_rq,
7583 .src_cpu = busiest_rq->cpu,
7584 .src_rq = busiest_rq,
7585 .idle = CPU_IDLE,
7586 };
7587
7588 schedstat_inc(sd, alb_count);
7589
7590 p = detach_one_task(&env);
7591 if (p)
7592 schedstat_inc(sd, alb_pushed);
7593 else
7594 schedstat_inc(sd, alb_failed);
7595 }
7596 rcu_read_unlock();
7597 out_unlock:
7598 busiest_rq->active_balance = 0;
7599 raw_spin_unlock(&busiest_rq->lock);
7600
7601 if (p)
7602 attach_one_task(target_rq, p);
7603
7604 local_irq_enable();
7605
7606 return 0;
7607 }
7608
7609 static inline int on_null_domain(struct rq *rq)
7610 {
7611 return unlikely(!rcu_dereference_sched(rq->sd));
7612 }
7613
7614 #ifdef CONFIG_NO_HZ_COMMON
7615 /*
7616 * idle load balancing details
7617 * - When one of the busy CPUs notice that there may be an idle rebalancing
7618 * needed, they will kick the idle load balancer, which then does idle
7619 * load balancing for all the idle CPUs.
7620 */
7621 static struct {
7622 cpumask_var_t idle_cpus_mask;
7623 atomic_t nr_cpus;
7624 unsigned long next_balance; /* in jiffy units */
7625 } nohz ____cacheline_aligned;
7626
7627 static inline int find_new_ilb(void)
7628 {
7629 int ilb = cpumask_first(nohz.idle_cpus_mask);
7630
7631 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7632 return ilb;
7633
7634 return nr_cpu_ids;
7635 }
7636
7637 /*
7638 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7639 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7640 * CPU (if there is one).
7641 */
7642 static void nohz_balancer_kick(void)
7643 {
7644 int ilb_cpu;
7645
7646 nohz.next_balance++;
7647
7648 ilb_cpu = find_new_ilb();
7649
7650 if (ilb_cpu >= nr_cpu_ids)
7651 return;
7652
7653 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7654 return;
7655 /*
7656 * Use smp_send_reschedule() instead of resched_cpu().
7657 * This way we generate a sched IPI on the target cpu which
7658 * is idle. And the softirq performing nohz idle load balance
7659 * will be run before returning from the IPI.
7660 */
7661 smp_send_reschedule(ilb_cpu);
7662 return;
7663 }
7664
7665 static inline void nohz_balance_exit_idle(int cpu)
7666 {
7667 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7668 /*
7669 * Completely isolated CPUs don't ever set, so we must test.
7670 */
7671 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7672 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7673 atomic_dec(&nohz.nr_cpus);
7674 }
7675 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7676 }
7677 }
7678
7679 static inline void set_cpu_sd_state_busy(void)
7680 {
7681 struct sched_domain *sd;
7682 int cpu = smp_processor_id();
7683
7684 rcu_read_lock();
7685 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7686
7687 if (!sd || !sd->nohz_idle)
7688 goto unlock;
7689 sd->nohz_idle = 0;
7690
7691 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7692 unlock:
7693 rcu_read_unlock();
7694 }
7695
7696 void set_cpu_sd_state_idle(void)
7697 {
7698 struct sched_domain *sd;
7699 int cpu = smp_processor_id();
7700
7701 rcu_read_lock();
7702 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7703
7704 if (!sd || sd->nohz_idle)
7705 goto unlock;
7706 sd->nohz_idle = 1;
7707
7708 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7709 unlock:
7710 rcu_read_unlock();
7711 }
7712
7713 /*
7714 * This routine will record that the cpu is going idle with tick stopped.
7715 * This info will be used in performing idle load balancing in the future.
7716 */
7717 void nohz_balance_enter_idle(int cpu)
7718 {
7719 /*
7720 * If this cpu is going down, then nothing needs to be done.
7721 */
7722 if (!cpu_active(cpu))
7723 return;
7724
7725 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7726 return;
7727
7728 /*
7729 * If we're a completely isolated CPU, we don't play.
7730 */
7731 if (on_null_domain(cpu_rq(cpu)))
7732 return;
7733
7734 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7735 atomic_inc(&nohz.nr_cpus);
7736 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7737 }
7738
7739 static int sched_ilb_notifier(struct notifier_block *nfb,
7740 unsigned long action, void *hcpu)
7741 {
7742 switch (action & ~CPU_TASKS_FROZEN) {
7743 case CPU_DYING:
7744 nohz_balance_exit_idle(smp_processor_id());
7745 return NOTIFY_OK;
7746 default:
7747 return NOTIFY_DONE;
7748 }
7749 }
7750 #endif
7751
7752 static DEFINE_SPINLOCK(balancing);
7753
7754 /*
7755 * Scale the max load_balance interval with the number of CPUs in the system.
7756 * This trades load-balance latency on larger machines for less cross talk.
7757 */
7758 void update_max_interval(void)
7759 {
7760 max_load_balance_interval = HZ*num_online_cpus()/10;
7761 }
7762
7763 /*
7764 * It checks each scheduling domain to see if it is due to be balanced,
7765 * and initiates a balancing operation if so.
7766 *
7767 * Balancing parameters are set up in init_sched_domains.
7768 */
7769 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7770 {
7771 int continue_balancing = 1;
7772 int cpu = rq->cpu;
7773 unsigned long interval;
7774 struct sched_domain *sd;
7775 /* Earliest time when we have to do rebalance again */
7776 unsigned long next_balance = jiffies + 60*HZ;
7777 int update_next_balance = 0;
7778 int need_serialize, need_decay = 0;
7779 u64 max_cost = 0;
7780
7781 update_blocked_averages(cpu);
7782
7783 rcu_read_lock();
7784 for_each_domain(cpu, sd) {
7785 /*
7786 * Decay the newidle max times here because this is a regular
7787 * visit to all the domains. Decay ~1% per second.
7788 */
7789 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7790 sd->max_newidle_lb_cost =
7791 (sd->max_newidle_lb_cost * 253) / 256;
7792 sd->next_decay_max_lb_cost = jiffies + HZ;
7793 need_decay = 1;
7794 }
7795 max_cost += sd->max_newidle_lb_cost;
7796
7797 if (!(sd->flags & SD_LOAD_BALANCE))
7798 continue;
7799
7800 /*
7801 * Stop the load balance at this level. There is another
7802 * CPU in our sched group which is doing load balancing more
7803 * actively.
7804 */
7805 if (!continue_balancing) {
7806 if (need_decay)
7807 continue;
7808 break;
7809 }
7810
7811 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7812
7813 need_serialize = sd->flags & SD_SERIALIZE;
7814 if (need_serialize) {
7815 if (!spin_trylock(&balancing))
7816 goto out;
7817 }
7818
7819 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7820 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7821 /*
7822 * The LBF_DST_PINNED logic could have changed
7823 * env->dst_cpu, so we can't know our idle
7824 * state even if we migrated tasks. Update it.
7825 */
7826 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7827 }
7828 sd->last_balance = jiffies;
7829 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7830 }
7831 if (need_serialize)
7832 spin_unlock(&balancing);
7833 out:
7834 if (time_after(next_balance, sd->last_balance + interval)) {
7835 next_balance = sd->last_balance + interval;
7836 update_next_balance = 1;
7837 }
7838 }
7839 if (need_decay) {
7840 /*
7841 * Ensure the rq-wide value also decays but keep it at a
7842 * reasonable floor to avoid funnies with rq->avg_idle.
7843 */
7844 rq->max_idle_balance_cost =
7845 max((u64)sysctl_sched_migration_cost, max_cost);
7846 }
7847 rcu_read_unlock();
7848
7849 /*
7850 * next_balance will be updated only when there is a need.
7851 * When the cpu is attached to null domain for ex, it will not be
7852 * updated.
7853 */
7854 if (likely(update_next_balance)) {
7855 rq->next_balance = next_balance;
7856
7857 #ifdef CONFIG_NO_HZ_COMMON
7858 /*
7859 * If this CPU has been elected to perform the nohz idle
7860 * balance. Other idle CPUs have already rebalanced with
7861 * nohz_idle_balance() and nohz.next_balance has been
7862 * updated accordingly. This CPU is now running the idle load
7863 * balance for itself and we need to update the
7864 * nohz.next_balance accordingly.
7865 */
7866 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7867 nohz.next_balance = rq->next_balance;
7868 #endif
7869 }
7870 }
7871
7872 #ifdef CONFIG_NO_HZ_COMMON
7873 /*
7874 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7875 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7876 */
7877 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7878 {
7879 int this_cpu = this_rq->cpu;
7880 struct rq *rq;
7881 int balance_cpu;
7882 /* Earliest time when we have to do rebalance again */
7883 unsigned long next_balance = jiffies + 60*HZ;
7884 int update_next_balance = 0;
7885
7886 if (idle != CPU_IDLE ||
7887 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7888 goto end;
7889
7890 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7891 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7892 continue;
7893
7894 /*
7895 * If this cpu gets work to do, stop the load balancing
7896 * work being done for other cpus. Next load
7897 * balancing owner will pick it up.
7898 */
7899 if (need_resched())
7900 break;
7901
7902 rq = cpu_rq(balance_cpu);
7903
7904 /*
7905 * If time for next balance is due,
7906 * do the balance.
7907 */
7908 if (time_after_eq(jiffies, rq->next_balance)) {
7909 raw_spin_lock_irq(&rq->lock);
7910 update_rq_clock(rq);
7911 update_cpu_load_idle(rq);
7912 raw_spin_unlock_irq(&rq->lock);
7913 rebalance_domains(rq, CPU_IDLE);
7914 }
7915
7916 if (time_after(next_balance, rq->next_balance)) {
7917 next_balance = rq->next_balance;
7918 update_next_balance = 1;
7919 }
7920 }
7921
7922 /*
7923 * next_balance will be updated only when there is a need.
7924 * When the CPU is attached to null domain for ex, it will not be
7925 * updated.
7926 */
7927 if (likely(update_next_balance))
7928 nohz.next_balance = next_balance;
7929 end:
7930 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7931 }
7932
7933 /*
7934 * Current heuristic for kicking the idle load balancer in the presence
7935 * of an idle cpu in the system.
7936 * - This rq has more than one task.
7937 * - This rq has at least one CFS task and the capacity of the CPU is
7938 * significantly reduced because of RT tasks or IRQs.
7939 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7940 * multiple busy cpu.
7941 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7942 * domain span are idle.
7943 */
7944 static inline bool nohz_kick_needed(struct rq *rq)
7945 {
7946 unsigned long now = jiffies;
7947 struct sched_domain *sd;
7948 struct sched_group_capacity *sgc;
7949 int nr_busy, cpu = rq->cpu;
7950 bool kick = false;
7951
7952 if (unlikely(rq->idle_balance))
7953 return false;
7954
7955 /*
7956 * We may be recently in ticked or tickless idle mode. At the first
7957 * busy tick after returning from idle, we will update the busy stats.
7958 */
7959 set_cpu_sd_state_busy();
7960 nohz_balance_exit_idle(cpu);
7961
7962 /*
7963 * None are in tickless mode and hence no need for NOHZ idle load
7964 * balancing.
7965 */
7966 if (likely(!atomic_read(&nohz.nr_cpus)))
7967 return false;
7968
7969 if (time_before(now, nohz.next_balance))
7970 return false;
7971
7972 if (rq->nr_running >= 2)
7973 return true;
7974
7975 rcu_read_lock();
7976 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7977 if (sd) {
7978 sgc = sd->groups->sgc;
7979 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7980
7981 if (nr_busy > 1) {
7982 kick = true;
7983 goto unlock;
7984 }
7985
7986 }
7987
7988 sd = rcu_dereference(rq->sd);
7989 if (sd) {
7990 if ((rq->cfs.h_nr_running >= 1) &&
7991 check_cpu_capacity(rq, sd)) {
7992 kick = true;
7993 goto unlock;
7994 }
7995 }
7996
7997 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7998 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7999 sched_domain_span(sd)) < cpu)) {
8000 kick = true;
8001 goto unlock;
8002 }
8003
8004 unlock:
8005 rcu_read_unlock();
8006 return kick;
8007 }
8008 #else
8009 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8010 #endif
8011
8012 /*
8013 * run_rebalance_domains is triggered when needed from the scheduler tick.
8014 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8015 */
8016 static void run_rebalance_domains(struct softirq_action *h)
8017 {
8018 struct rq *this_rq = this_rq();
8019 enum cpu_idle_type idle = this_rq->idle_balance ?
8020 CPU_IDLE : CPU_NOT_IDLE;
8021
8022 /*
8023 * If this cpu has a pending nohz_balance_kick, then do the
8024 * balancing on behalf of the other idle cpus whose ticks are
8025 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8026 * give the idle cpus a chance to load balance. Else we may
8027 * load balance only within the local sched_domain hierarchy
8028 * and abort nohz_idle_balance altogether if we pull some load.
8029 */
8030 nohz_idle_balance(this_rq, idle);
8031 rebalance_domains(this_rq, idle);
8032 }
8033
8034 /*
8035 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8036 */
8037 void trigger_load_balance(struct rq *rq)
8038 {
8039 /* Don't need to rebalance while attached to NULL domain */
8040 if (unlikely(on_null_domain(rq)))
8041 return;
8042
8043 if (time_after_eq(jiffies, rq->next_balance))
8044 raise_softirq(SCHED_SOFTIRQ);
8045 #ifdef CONFIG_NO_HZ_COMMON
8046 if (nohz_kick_needed(rq))
8047 nohz_balancer_kick();
8048 #endif
8049 }
8050
8051 static void rq_online_fair(struct rq *rq)
8052 {
8053 update_sysctl();
8054
8055 update_runtime_enabled(rq);
8056 }
8057
8058 static void rq_offline_fair(struct rq *rq)
8059 {
8060 update_sysctl();
8061
8062 /* Ensure any throttled groups are reachable by pick_next_task */
8063 unthrottle_offline_cfs_rqs(rq);
8064 }
8065
8066 #endif /* CONFIG_SMP */
8067
8068 /*
8069 * scheduler tick hitting a task of our scheduling class:
8070 */
8071 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8072 {
8073 struct cfs_rq *cfs_rq;
8074 struct sched_entity *se = &curr->se;
8075
8076 for_each_sched_entity(se) {
8077 cfs_rq = cfs_rq_of(se);
8078 entity_tick(cfs_rq, se, queued);
8079 }
8080
8081 if (static_branch_unlikely(&sched_numa_balancing))
8082 task_tick_numa(rq, curr);
8083 }
8084
8085 /*
8086 * called on fork with the child task as argument from the parent's context
8087 * - child not yet on the tasklist
8088 * - preemption disabled
8089 */
8090 static void task_fork_fair(struct task_struct *p)
8091 {
8092 struct cfs_rq *cfs_rq;
8093 struct sched_entity *se = &p->se, *curr;
8094 int this_cpu = smp_processor_id();
8095 struct rq *rq = this_rq();
8096 unsigned long flags;
8097
8098 raw_spin_lock_irqsave(&rq->lock, flags);
8099
8100 update_rq_clock(rq);
8101
8102 cfs_rq = task_cfs_rq(current);
8103 curr = cfs_rq->curr;
8104
8105 /*
8106 * Not only the cpu but also the task_group of the parent might have
8107 * been changed after parent->se.parent,cfs_rq were copied to
8108 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8109 * of child point to valid ones.
8110 */
8111 rcu_read_lock();
8112 __set_task_cpu(p, this_cpu);
8113 rcu_read_unlock();
8114
8115 update_curr(cfs_rq);
8116
8117 if (curr)
8118 se->vruntime = curr->vruntime;
8119 place_entity(cfs_rq, se, 1);
8120
8121 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8122 /*
8123 * Upon rescheduling, sched_class::put_prev_task() will place
8124 * 'current' within the tree based on its new key value.
8125 */
8126 swap(curr->vruntime, se->vruntime);
8127 resched_curr(rq);
8128 }
8129
8130 se->vruntime -= cfs_rq->min_vruntime;
8131
8132 raw_spin_unlock_irqrestore(&rq->lock, flags);
8133 }
8134
8135 /*
8136 * Priority of the task has changed. Check to see if we preempt
8137 * the current task.
8138 */
8139 static void
8140 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8141 {
8142 if (!task_on_rq_queued(p))
8143 return;
8144
8145 /*
8146 * Reschedule if we are currently running on this runqueue and
8147 * our priority decreased, or if we are not currently running on
8148 * this runqueue and our priority is higher than the current's
8149 */
8150 if (rq->curr == p) {
8151 if (p->prio > oldprio)
8152 resched_curr(rq);
8153 } else
8154 check_preempt_curr(rq, p, 0);
8155 }
8156
8157 static inline bool vruntime_normalized(struct task_struct *p)
8158 {
8159 struct sched_entity *se = &p->se;
8160
8161 /*
8162 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8163 * the dequeue_entity(.flags=0) will already have normalized the
8164 * vruntime.
8165 */
8166 if (p->on_rq)
8167 return true;
8168
8169 /*
8170 * When !on_rq, vruntime of the task has usually NOT been normalized.
8171 * But there are some cases where it has already been normalized:
8172 *
8173 * - A forked child which is waiting for being woken up by
8174 * wake_up_new_task().
8175 * - A task which has been woken up by try_to_wake_up() and
8176 * waiting for actually being woken up by sched_ttwu_pending().
8177 */
8178 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8179 return true;
8180
8181 return false;
8182 }
8183
8184 static void detach_task_cfs_rq(struct task_struct *p)
8185 {
8186 struct sched_entity *se = &p->se;
8187 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8188
8189 if (!vruntime_normalized(p)) {
8190 /*
8191 * Fix up our vruntime so that the current sleep doesn't
8192 * cause 'unlimited' sleep bonus.
8193 */
8194 place_entity(cfs_rq, se, 0);
8195 se->vruntime -= cfs_rq->min_vruntime;
8196 }
8197
8198 /* Catch up with the cfs_rq and remove our load when we leave */
8199 detach_entity_load_avg(cfs_rq, se);
8200 }
8201
8202 static void attach_task_cfs_rq(struct task_struct *p)
8203 {
8204 struct sched_entity *se = &p->se;
8205 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8206
8207 #ifdef CONFIG_FAIR_GROUP_SCHED
8208 /*
8209 * Since the real-depth could have been changed (only FAIR
8210 * class maintain depth value), reset depth properly.
8211 */
8212 se->depth = se->parent ? se->parent->depth + 1 : 0;
8213 #endif
8214
8215 /* Synchronize task with its cfs_rq */
8216 attach_entity_load_avg(cfs_rq, se);
8217
8218 if (!vruntime_normalized(p))
8219 se->vruntime += cfs_rq->min_vruntime;
8220 }
8221
8222 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8223 {
8224 detach_task_cfs_rq(p);
8225 }
8226
8227 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8228 {
8229 attach_task_cfs_rq(p);
8230
8231 if (task_on_rq_queued(p)) {
8232 /*
8233 * We were most likely switched from sched_rt, so
8234 * kick off the schedule if running, otherwise just see
8235 * if we can still preempt the current task.
8236 */
8237 if (rq->curr == p)
8238 resched_curr(rq);
8239 else
8240 check_preempt_curr(rq, p, 0);
8241 }
8242 }
8243
8244 /* Account for a task changing its policy or group.
8245 *
8246 * This routine is mostly called to set cfs_rq->curr field when a task
8247 * migrates between groups/classes.
8248 */
8249 static void set_curr_task_fair(struct rq *rq)
8250 {
8251 struct sched_entity *se = &rq->curr->se;
8252
8253 for_each_sched_entity(se) {
8254 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8255
8256 set_next_entity(cfs_rq, se);
8257 /* ensure bandwidth has been allocated on our new cfs_rq */
8258 account_cfs_rq_runtime(cfs_rq, 0);
8259 }
8260 }
8261
8262 void init_cfs_rq(struct cfs_rq *cfs_rq)
8263 {
8264 cfs_rq->tasks_timeline = RB_ROOT;
8265 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8266 #ifndef CONFIG_64BIT
8267 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8268 #endif
8269 #ifdef CONFIG_SMP
8270 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8271 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8272 #endif
8273 }
8274
8275 #ifdef CONFIG_FAIR_GROUP_SCHED
8276 static void task_move_group_fair(struct task_struct *p)
8277 {
8278 detach_task_cfs_rq(p);
8279 set_task_rq(p, task_cpu(p));
8280
8281 #ifdef CONFIG_SMP
8282 /* Tell se's cfs_rq has been changed -- migrated */
8283 p->se.avg.last_update_time = 0;
8284 #endif
8285 attach_task_cfs_rq(p);
8286 }
8287
8288 void free_fair_sched_group(struct task_group *tg)
8289 {
8290 int i;
8291
8292 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8293
8294 for_each_possible_cpu(i) {
8295 if (tg->cfs_rq)
8296 kfree(tg->cfs_rq[i]);
8297 if (tg->se)
8298 kfree(tg->se[i]);
8299 }
8300
8301 kfree(tg->cfs_rq);
8302 kfree(tg->se);
8303 }
8304
8305 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8306 {
8307 struct cfs_rq *cfs_rq;
8308 struct sched_entity *se;
8309 int i;
8310
8311 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8312 if (!tg->cfs_rq)
8313 goto err;
8314 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8315 if (!tg->se)
8316 goto err;
8317
8318 tg->shares = NICE_0_LOAD;
8319
8320 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8321
8322 for_each_possible_cpu(i) {
8323 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8324 GFP_KERNEL, cpu_to_node(i));
8325 if (!cfs_rq)
8326 goto err;
8327
8328 se = kzalloc_node(sizeof(struct sched_entity),
8329 GFP_KERNEL, cpu_to_node(i));
8330 if (!se)
8331 goto err_free_rq;
8332
8333 init_cfs_rq(cfs_rq);
8334 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8335 init_entity_runnable_average(se);
8336 }
8337
8338 return 1;
8339
8340 err_free_rq:
8341 kfree(cfs_rq);
8342 err:
8343 return 0;
8344 }
8345
8346 void unregister_fair_sched_group(struct task_group *tg)
8347 {
8348 unsigned long flags;
8349 struct rq *rq;
8350 int cpu;
8351
8352 for_each_possible_cpu(cpu) {
8353 if (tg->se[cpu])
8354 remove_entity_load_avg(tg->se[cpu]);
8355
8356 /*
8357 * Only empty task groups can be destroyed; so we can speculatively
8358 * check on_list without danger of it being re-added.
8359 */
8360 if (!tg->cfs_rq[cpu]->on_list)
8361 continue;
8362
8363 rq = cpu_rq(cpu);
8364
8365 raw_spin_lock_irqsave(&rq->lock, flags);
8366 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8367 raw_spin_unlock_irqrestore(&rq->lock, flags);
8368 }
8369 }
8370
8371 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8372 struct sched_entity *se, int cpu,
8373 struct sched_entity *parent)
8374 {
8375 struct rq *rq = cpu_rq(cpu);
8376
8377 cfs_rq->tg = tg;
8378 cfs_rq->rq = rq;
8379 init_cfs_rq_runtime(cfs_rq);
8380
8381 tg->cfs_rq[cpu] = cfs_rq;
8382 tg->se[cpu] = se;
8383
8384 /* se could be NULL for root_task_group */
8385 if (!se)
8386 return;
8387
8388 if (!parent) {
8389 se->cfs_rq = &rq->cfs;
8390 se->depth = 0;
8391 } else {
8392 se->cfs_rq = parent->my_q;
8393 se->depth = parent->depth + 1;
8394 }
8395
8396 se->my_q = cfs_rq;
8397 /* guarantee group entities always have weight */
8398 update_load_set(&se->load, NICE_0_LOAD);
8399 se->parent = parent;
8400 }
8401
8402 static DEFINE_MUTEX(shares_mutex);
8403
8404 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8405 {
8406 int i;
8407 unsigned long flags;
8408
8409 /*
8410 * We can't change the weight of the root cgroup.
8411 */
8412 if (!tg->se[0])
8413 return -EINVAL;
8414
8415 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8416
8417 mutex_lock(&shares_mutex);
8418 if (tg->shares == shares)
8419 goto done;
8420
8421 tg->shares = shares;
8422 for_each_possible_cpu(i) {
8423 struct rq *rq = cpu_rq(i);
8424 struct sched_entity *se;
8425
8426 se = tg->se[i];
8427 /* Propagate contribution to hierarchy */
8428 raw_spin_lock_irqsave(&rq->lock, flags);
8429
8430 /* Possible calls to update_curr() need rq clock */
8431 update_rq_clock(rq);
8432 for_each_sched_entity(se)
8433 update_cfs_shares(group_cfs_rq(se));
8434 raw_spin_unlock_irqrestore(&rq->lock, flags);
8435 }
8436
8437 done:
8438 mutex_unlock(&shares_mutex);
8439 return 0;
8440 }
8441 #else /* CONFIG_FAIR_GROUP_SCHED */
8442
8443 void free_fair_sched_group(struct task_group *tg) { }
8444
8445 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8446 {
8447 return 1;
8448 }
8449
8450 void unregister_fair_sched_group(struct task_group *tg) { }
8451
8452 #endif /* CONFIG_FAIR_GROUP_SCHED */
8453
8454
8455 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8456 {
8457 struct sched_entity *se = &task->se;
8458 unsigned int rr_interval = 0;
8459
8460 /*
8461 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8462 * idle runqueue:
8463 */
8464 if (rq->cfs.load.weight)
8465 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8466
8467 return rr_interval;
8468 }
8469
8470 /*
8471 * All the scheduling class methods:
8472 */
8473 const struct sched_class fair_sched_class = {
8474 .next = &idle_sched_class,
8475 .enqueue_task = enqueue_task_fair,
8476 .dequeue_task = dequeue_task_fair,
8477 .yield_task = yield_task_fair,
8478 .yield_to_task = yield_to_task_fair,
8479
8480 .check_preempt_curr = check_preempt_wakeup,
8481
8482 .pick_next_task = pick_next_task_fair,
8483 .put_prev_task = put_prev_task_fair,
8484
8485 #ifdef CONFIG_SMP
8486 .select_task_rq = select_task_rq_fair,
8487 .migrate_task_rq = migrate_task_rq_fair,
8488
8489 .rq_online = rq_online_fair,
8490 .rq_offline = rq_offline_fair,
8491
8492 .task_waking = task_waking_fair,
8493 .task_dead = task_dead_fair,
8494 .set_cpus_allowed = set_cpus_allowed_common,
8495 #endif
8496
8497 .set_curr_task = set_curr_task_fair,
8498 .task_tick = task_tick_fair,
8499 .task_fork = task_fork_fair,
8500
8501 .prio_changed = prio_changed_fair,
8502 .switched_from = switched_from_fair,
8503 .switched_to = switched_to_fair,
8504
8505 .get_rr_interval = get_rr_interval_fair,
8506
8507 .update_curr = update_curr_fair,
8508
8509 #ifdef CONFIG_FAIR_GROUP_SCHED
8510 .task_move_group = task_move_group_fair,
8511 #endif
8512 };
8513
8514 #ifdef CONFIG_SCHED_DEBUG
8515 void print_cfs_stats(struct seq_file *m, int cpu)
8516 {
8517 struct cfs_rq *cfs_rq;
8518
8519 rcu_read_lock();
8520 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8521 print_cfs_rq(m, cpu, cfs_rq);
8522 rcu_read_unlock();
8523 }
8524
8525 #ifdef CONFIG_NUMA_BALANCING
8526 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8527 {
8528 int node;
8529 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8530
8531 for_each_online_node(node) {
8532 if (p->numa_faults) {
8533 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8534 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8535 }
8536 if (p->numa_group) {
8537 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8538 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8539 }
8540 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8541 }
8542 }
8543 #endif /* CONFIG_NUMA_BALANCING */
8544 #endif /* CONFIG_SCHED_DEBUG */
8545
8546 __init void init_sched_fair_class(void)
8547 {
8548 #ifdef CONFIG_SMP
8549 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8550
8551 #ifdef CONFIG_NO_HZ_COMMON
8552 nohz.next_balance = jiffies;
8553 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8554 cpu_notifier(sched_ilb_notifier, 0);
8555 #endif
8556 #endif /* SMP */
8557
8558 }