]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched/fair.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 *
28 * NOTE: this latency value is not the same as the concept of
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
32 *
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 *
44 * Options are:
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51 */
52 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53
54 /*
55 * Minimal preemption granularity for CPU-bound tasks:
56 *
57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 */
59 unsigned int sysctl_sched_min_granularity = 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61
62 /*
63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64 */
65 static unsigned int sched_nr_latency = 8;
66
67 /*
68 * After fork, child runs first. If set to 0 (default) then
69 * parent will (try to) run first.
70 */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72
73 /*
74 * SCHED_OTHER wake-up granularity.
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81 */
82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
84
85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
100 #ifdef CONFIG_SMP
101 /*
102 * For asym packing, by default the lower numbered CPU has higher priority.
103 */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 return -cpu;
107 }
108
109 /*
110 * The margin used when comparing utilization with CPU capacity.
111 *
112 * (default: ~20%)
113 */
114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
116 #endif
117
118 #ifdef CONFIG_CFS_BANDWIDTH
119 /*
120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121 * each time a cfs_rq requests quota.
122 *
123 * Note: in the case that the slice exceeds the runtime remaining (either due
124 * to consumption or the quota being specified to be smaller than the slice)
125 * we will always only issue the remaining available time.
126 *
127 * (default: 5 msec, units: microseconds)
128 */
129 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
130 #endif
131
132 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133 {
134 lw->weight += inc;
135 lw->inv_weight = 0;
136 }
137
138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139 {
140 lw->weight -= dec;
141 lw->inv_weight = 0;
142 }
143
144 static inline void update_load_set(struct load_weight *lw, unsigned long w)
145 {
146 lw->weight = w;
147 lw->inv_weight = 0;
148 }
149
150 /*
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
156 *
157 * This idea comes from the SD scheduler of Con Kolivas:
158 */
159 static unsigned int get_update_sysctl_factor(void)
160 {
161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 unsigned int factor;
163
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
175 }
176
177 return factor;
178 }
179
180 static void update_sysctl(void)
181 {
182 unsigned int factor = get_update_sysctl_factor();
183
184 #define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189 #undef SET_SYSCTL
190 }
191
192 void __init sched_init_granularity(void)
193 {
194 update_sysctl();
195 }
196
197 #define WMULT_CONST (~0U)
198 #define WMULT_SHIFT 32
199
200 static void __update_inv_weight(struct load_weight *lw)
201 {
202 unsigned long w;
203
204 if (likely(lw->inv_weight))
205 return;
206
207 w = scale_load_down(lw->weight);
208
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
215 }
216
217 /*
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221 *
222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225 *
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
228 */
229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
230 {
231 u64 fact = scale_load_down(weight);
232 int shift = WMULT_SHIFT;
233
234 __update_inv_weight(lw);
235
236 if (unlikely(fact >> 32)) {
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
241 }
242
243 fact = mul_u32_u32(fact, lw->inv_weight);
244
245 while (fact >> 32) {
246 fact >>= 1;
247 shift--;
248 }
249
250 return mul_u64_u32_shr(delta_exec, fact, shift);
251 }
252
253
254 const struct sched_class fair_sched_class;
255
256 /**************************************************************
257 * CFS operations on generic schedulable entities:
258 */
259
260 #ifdef CONFIG_FAIR_GROUP_SCHED
261 static inline struct task_struct *task_of(struct sched_entity *se)
262 {
263 SCHED_WARN_ON(!entity_is_task(se));
264 return container_of(se, struct task_struct, se);
265 }
266
267 /* Walk up scheduling entities hierarchy */
268 #define for_each_sched_entity(se) \
269 for (; se; se = se->parent)
270
271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272 {
273 return p->se.cfs_rq;
274 }
275
276 /* runqueue on which this entity is (to be) queued */
277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278 {
279 return se->cfs_rq;
280 }
281
282 /* runqueue "owned" by this group */
283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284 {
285 return grp->my_q;
286 }
287
288 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289 {
290 if (!path)
291 return;
292
293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 autogroup_path(cfs_rq->tg, path, len);
295 else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 else
298 strlcpy(path, "(null)", len);
299 }
300
301 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 struct rq *rq = rq_of(cfs_rq);
304 int cpu = cpu_of(rq);
305
306 if (cfs_rq->on_list)
307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
308
309 cfs_rq->on_list = 1;
310
311 /*
312 * Ensure we either appear before our parent (if already
313 * enqueued) or force our parent to appear after us when it is
314 * enqueued. The fact that we always enqueue bottom-up
315 * reduces this to two cases and a special case for the root
316 * cfs_rq. Furthermore, it also means that we will always reset
317 * tmp_alone_branch either when the branch is connected
318 * to a tree or when we reach the top of the tree
319 */
320 if (cfs_rq->tg->parent &&
321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
322 /*
323 * If parent is already on the list, we add the child
324 * just before. Thanks to circular linked property of
325 * the list, this means to put the child at the tail
326 * of the list that starts by parent.
327 */
328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
330 /*
331 * The branch is now connected to its tree so we can
332 * reset tmp_alone_branch to the beginning of the
333 * list.
334 */
335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
336 return true;
337 }
338
339 if (!cfs_rq->tg->parent) {
340 /*
341 * cfs rq without parent should be put
342 * at the tail of the list.
343 */
344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 &rq->leaf_cfs_rq_list);
346 /*
347 * We have reach the top of a tree so we can reset
348 * tmp_alone_branch to the beginning of the list.
349 */
350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 return true;
352 }
353
354 /*
355 * The parent has not already been added so we want to
356 * make sure that it will be put after us.
357 * tmp_alone_branch points to the begin of the branch
358 * where we will add parent.
359 */
360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
361 /*
362 * update tmp_alone_branch to points to the new begin
363 * of the branch
364 */
365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
366 return false;
367 }
368
369 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
370 {
371 if (cfs_rq->on_list) {
372 struct rq *rq = rq_of(cfs_rq);
373
374 /*
375 * With cfs_rq being unthrottled/throttled during an enqueue,
376 * it can happen the tmp_alone_branch points the a leaf that
377 * we finally want to del. In this case, tmp_alone_branch moves
378 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 * at the end of the enqueue.
380 */
381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
383
384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 cfs_rq->on_list = 0;
386 }
387 }
388
389 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
390 {
391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
392 }
393
394 /* Iterate thr' all leaf cfs_rq's on a runqueue */
395 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
397 leaf_cfs_rq_list)
398
399 /* Do the two (enqueued) entities belong to the same group ? */
400 static inline struct cfs_rq *
401 is_same_group(struct sched_entity *se, struct sched_entity *pse)
402 {
403 if (se->cfs_rq == pse->cfs_rq)
404 return se->cfs_rq;
405
406 return NULL;
407 }
408
409 static inline struct sched_entity *parent_entity(struct sched_entity *se)
410 {
411 return se->parent;
412 }
413
414 static void
415 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416 {
417 int se_depth, pse_depth;
418
419 /*
420 * preemption test can be made between sibling entities who are in the
421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 * both tasks until we find their ancestors who are siblings of common
423 * parent.
424 */
425
426 /* First walk up until both entities are at same depth */
427 se_depth = (*se)->depth;
428 pse_depth = (*pse)->depth;
429
430 while (se_depth > pse_depth) {
431 se_depth--;
432 *se = parent_entity(*se);
433 }
434
435 while (pse_depth > se_depth) {
436 pse_depth--;
437 *pse = parent_entity(*pse);
438 }
439
440 while (!is_same_group(*se, *pse)) {
441 *se = parent_entity(*se);
442 *pse = parent_entity(*pse);
443 }
444 }
445
446 #else /* !CONFIG_FAIR_GROUP_SCHED */
447
448 static inline struct task_struct *task_of(struct sched_entity *se)
449 {
450 return container_of(se, struct task_struct, se);
451 }
452
453 #define for_each_sched_entity(se) \
454 for (; se; se = NULL)
455
456 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
457 {
458 return &task_rq(p)->cfs;
459 }
460
461 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
462 {
463 struct task_struct *p = task_of(se);
464 struct rq *rq = task_rq(p);
465
466 return &rq->cfs;
467 }
468
469 /* runqueue "owned" by this group */
470 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
471 {
472 return NULL;
473 }
474
475 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
476 {
477 if (path)
478 strlcpy(path, "(null)", len);
479 }
480
481 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 return true;
484 }
485
486 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
487 {
488 }
489
490 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
491 {
492 }
493
494 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
496
497 static inline struct sched_entity *parent_entity(struct sched_entity *se)
498 {
499 return NULL;
500 }
501
502 static inline void
503 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
504 {
505 }
506
507 #endif /* CONFIG_FAIR_GROUP_SCHED */
508
509 static __always_inline
510 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
511
512 /**************************************************************
513 * Scheduling class tree data structure manipulation methods:
514 */
515
516 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
517 {
518 s64 delta = (s64)(vruntime - max_vruntime);
519 if (delta > 0)
520 max_vruntime = vruntime;
521
522 return max_vruntime;
523 }
524
525 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
526 {
527 s64 delta = (s64)(vruntime - min_vruntime);
528 if (delta < 0)
529 min_vruntime = vruntime;
530
531 return min_vruntime;
532 }
533
534 static inline int entity_before(struct sched_entity *a,
535 struct sched_entity *b)
536 {
537 return (s64)(a->vruntime - b->vruntime) < 0;
538 }
539
540 static void update_min_vruntime(struct cfs_rq *cfs_rq)
541 {
542 struct sched_entity *curr = cfs_rq->curr;
543 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
544
545 u64 vruntime = cfs_rq->min_vruntime;
546
547 if (curr) {
548 if (curr->on_rq)
549 vruntime = curr->vruntime;
550 else
551 curr = NULL;
552 }
553
554 if (leftmost) { /* non-empty tree */
555 struct sched_entity *se;
556 se = rb_entry(leftmost, struct sched_entity, run_node);
557
558 if (!curr)
559 vruntime = se->vruntime;
560 else
561 vruntime = min_vruntime(vruntime, se->vruntime);
562 }
563
564 /* ensure we never gain time by being placed backwards. */
565 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
566 #ifndef CONFIG_64BIT
567 smp_wmb();
568 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569 #endif
570 }
571
572 /*
573 * Enqueue an entity into the rb-tree:
574 */
575 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
576 {
577 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
578 struct rb_node *parent = NULL;
579 struct sched_entity *entry;
580 bool leftmost = true;
581
582 /*
583 * Find the right place in the rbtree:
584 */
585 while (*link) {
586 parent = *link;
587 entry = rb_entry(parent, struct sched_entity, run_node);
588 /*
589 * We dont care about collisions. Nodes with
590 * the same key stay together.
591 */
592 if (entity_before(se, entry)) {
593 link = &parent->rb_left;
594 } else {
595 link = &parent->rb_right;
596 leftmost = false;
597 }
598 }
599
600 rb_link_node(&se->run_node, parent, link);
601 rb_insert_color_cached(&se->run_node,
602 &cfs_rq->tasks_timeline, leftmost);
603 }
604
605 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
606 {
607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
608 }
609
610 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
611 {
612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
613
614 if (!left)
615 return NULL;
616
617 return rb_entry(left, struct sched_entity, run_node);
618 }
619
620 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
621 {
622 struct rb_node *next = rb_next(&se->run_node);
623
624 if (!next)
625 return NULL;
626
627 return rb_entry(next, struct sched_entity, run_node);
628 }
629
630 #ifdef CONFIG_SCHED_DEBUG
631 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
632 {
633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
634
635 if (!last)
636 return NULL;
637
638 return rb_entry(last, struct sched_entity, run_node);
639 }
640
641 /**************************************************************
642 * Scheduling class statistics methods:
643 */
644
645 int sched_proc_update_handler(struct ctl_table *table, int write,
646 void *buffer, size_t *lenp, loff_t *ppos)
647 {
648 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
649 unsigned int factor = get_update_sysctl_factor();
650
651 if (ret || !write)
652 return ret;
653
654 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 sysctl_sched_min_granularity);
656
657 #define WRT_SYSCTL(name) \
658 (normalized_sysctl_##name = sysctl_##name / (factor))
659 WRT_SYSCTL(sched_min_granularity);
660 WRT_SYSCTL(sched_latency);
661 WRT_SYSCTL(sched_wakeup_granularity);
662 #undef WRT_SYSCTL
663
664 return 0;
665 }
666 #endif
667
668 /*
669 * delta /= w
670 */
671 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
672 {
673 if (unlikely(se->load.weight != NICE_0_LOAD))
674 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
675
676 return delta;
677 }
678
679 /*
680 * The idea is to set a period in which each task runs once.
681 *
682 * When there are too many tasks (sched_nr_latency) we have to stretch
683 * this period because otherwise the slices get too small.
684 *
685 * p = (nr <= nl) ? l : l*nr/nl
686 */
687 static u64 __sched_period(unsigned long nr_running)
688 {
689 if (unlikely(nr_running > sched_nr_latency))
690 return nr_running * sysctl_sched_min_granularity;
691 else
692 return sysctl_sched_latency;
693 }
694
695 /*
696 * We calculate the wall-time slice from the period by taking a part
697 * proportional to the weight.
698 *
699 * s = p*P[w/rw]
700 */
701 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
702 {
703 unsigned int nr_running = cfs_rq->nr_running;
704 u64 slice;
705
706 if (sched_feat(ALT_PERIOD))
707 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
708
709 slice = __sched_period(nr_running + !se->on_rq);
710
711 for_each_sched_entity(se) {
712 struct load_weight *load;
713 struct load_weight lw;
714
715 cfs_rq = cfs_rq_of(se);
716 load = &cfs_rq->load;
717
718 if (unlikely(!se->on_rq)) {
719 lw = cfs_rq->load;
720
721 update_load_add(&lw, se->load.weight);
722 load = &lw;
723 }
724 slice = __calc_delta(slice, se->load.weight, load);
725 }
726
727 if (sched_feat(BASE_SLICE))
728 slice = max(slice, (u64)sysctl_sched_min_granularity);
729
730 return slice;
731 }
732
733 /*
734 * We calculate the vruntime slice of a to-be-inserted task.
735 *
736 * vs = s/w
737 */
738 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 return calc_delta_fair(sched_slice(cfs_rq, se), se);
741 }
742
743 #include "pelt.h"
744 #ifdef CONFIG_SMP
745
746 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
747 static unsigned long task_h_load(struct task_struct *p);
748 static unsigned long capacity_of(int cpu);
749
750 /* Give new sched_entity start runnable values to heavy its load in infant time */
751 void init_entity_runnable_average(struct sched_entity *se)
752 {
753 struct sched_avg *sa = &se->avg;
754
755 memset(sa, 0, sizeof(*sa));
756
757 /*
758 * Tasks are initialized with full load to be seen as heavy tasks until
759 * they get a chance to stabilize to their real load level.
760 * Group entities are initialized with zero load to reflect the fact that
761 * nothing has been attached to the task group yet.
762 */
763 if (entity_is_task(se))
764 sa->load_avg = scale_load_down(se->load.weight);
765
766 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
767 }
768
769 static void attach_entity_cfs_rq(struct sched_entity *se);
770
771 /*
772 * With new tasks being created, their initial util_avgs are extrapolated
773 * based on the cfs_rq's current util_avg:
774 *
775 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
776 *
777 * However, in many cases, the above util_avg does not give a desired
778 * value. Moreover, the sum of the util_avgs may be divergent, such
779 * as when the series is a harmonic series.
780 *
781 * To solve this problem, we also cap the util_avg of successive tasks to
782 * only 1/2 of the left utilization budget:
783 *
784 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
785 *
786 * where n denotes the nth task and cpu_scale the CPU capacity.
787 *
788 * For example, for a CPU with 1024 of capacity, a simplest series from
789 * the beginning would be like:
790 *
791 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
792 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
793 *
794 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
795 * if util_avg > util_avg_cap.
796 */
797 void post_init_entity_util_avg(struct task_struct *p)
798 {
799 struct sched_entity *se = &p->se;
800 struct cfs_rq *cfs_rq = cfs_rq_of(se);
801 struct sched_avg *sa = &se->avg;
802 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
803 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
804
805 if (cap > 0) {
806 if (cfs_rq->avg.util_avg != 0) {
807 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
808 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
809
810 if (sa->util_avg > cap)
811 sa->util_avg = cap;
812 } else {
813 sa->util_avg = cap;
814 }
815 }
816
817 sa->runnable_avg = sa->util_avg;
818
819 if (p->sched_class != &fair_sched_class) {
820 /*
821 * For !fair tasks do:
822 *
823 update_cfs_rq_load_avg(now, cfs_rq);
824 attach_entity_load_avg(cfs_rq, se);
825 switched_from_fair(rq, p);
826 *
827 * such that the next switched_to_fair() has the
828 * expected state.
829 */
830 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
831 return;
832 }
833
834 attach_entity_cfs_rq(se);
835 }
836
837 #else /* !CONFIG_SMP */
838 void init_entity_runnable_average(struct sched_entity *se)
839 {
840 }
841 void post_init_entity_util_avg(struct task_struct *p)
842 {
843 }
844 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
845 {
846 }
847 #endif /* CONFIG_SMP */
848
849 /*
850 * Update the current task's runtime statistics.
851 */
852 static void update_curr(struct cfs_rq *cfs_rq)
853 {
854 struct sched_entity *curr = cfs_rq->curr;
855 u64 now = rq_clock_task(rq_of(cfs_rq));
856 u64 delta_exec;
857
858 if (unlikely(!curr))
859 return;
860
861 delta_exec = now - curr->exec_start;
862 if (unlikely((s64)delta_exec <= 0))
863 return;
864
865 curr->exec_start = now;
866
867 schedstat_set(curr->statistics.exec_max,
868 max(delta_exec, curr->statistics.exec_max));
869
870 curr->sum_exec_runtime += delta_exec;
871 schedstat_add(cfs_rq->exec_clock, delta_exec);
872
873 curr->vruntime += calc_delta_fair(delta_exec, curr);
874 update_min_vruntime(cfs_rq);
875
876 if (entity_is_task(curr)) {
877 struct task_struct *curtask = task_of(curr);
878
879 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
880 cgroup_account_cputime(curtask, delta_exec);
881 account_group_exec_runtime(curtask, delta_exec);
882 }
883
884 account_cfs_rq_runtime(cfs_rq, delta_exec);
885 }
886
887 static void update_curr_fair(struct rq *rq)
888 {
889 update_curr(cfs_rq_of(&rq->curr->se));
890 }
891
892 static inline void
893 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 u64 wait_start, prev_wait_start;
896
897 if (!schedstat_enabled())
898 return;
899
900 wait_start = rq_clock(rq_of(cfs_rq));
901 prev_wait_start = schedstat_val(se->statistics.wait_start);
902
903 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
904 likely(wait_start > prev_wait_start))
905 wait_start -= prev_wait_start;
906
907 __schedstat_set(se->statistics.wait_start, wait_start);
908 }
909
910 static inline void
911 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
912 {
913 struct task_struct *p;
914 u64 delta;
915
916 if (!schedstat_enabled())
917 return;
918
919 /*
920 * When the sched_schedstat changes from 0 to 1, some sched se
921 * maybe already in the runqueue, the se->statistics.wait_start
922 * will be 0.So it will let the delta wrong. We need to avoid this
923 * scenario.
924 */
925 if (unlikely(!schedstat_val(se->statistics.wait_start)))
926 return;
927
928 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
929
930 if (entity_is_task(se)) {
931 p = task_of(se);
932 if (task_on_rq_migrating(p)) {
933 /*
934 * Preserve migrating task's wait time so wait_start
935 * time stamp can be adjusted to accumulate wait time
936 * prior to migration.
937 */
938 __schedstat_set(se->statistics.wait_start, delta);
939 return;
940 }
941 trace_sched_stat_wait(p, delta);
942 }
943
944 __schedstat_set(se->statistics.wait_max,
945 max(schedstat_val(se->statistics.wait_max), delta));
946 __schedstat_inc(se->statistics.wait_count);
947 __schedstat_add(se->statistics.wait_sum, delta);
948 __schedstat_set(se->statistics.wait_start, 0);
949 }
950
951 static inline void
952 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
953 {
954 struct task_struct *tsk = NULL;
955 u64 sleep_start, block_start;
956
957 if (!schedstat_enabled())
958 return;
959
960 sleep_start = schedstat_val(se->statistics.sleep_start);
961 block_start = schedstat_val(se->statistics.block_start);
962
963 if (entity_is_task(se))
964 tsk = task_of(se);
965
966 if (sleep_start) {
967 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
968
969 if ((s64)delta < 0)
970 delta = 0;
971
972 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
973 __schedstat_set(se->statistics.sleep_max, delta);
974
975 __schedstat_set(se->statistics.sleep_start, 0);
976 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
977
978 if (tsk) {
979 account_scheduler_latency(tsk, delta >> 10, 1);
980 trace_sched_stat_sleep(tsk, delta);
981 }
982 }
983 if (block_start) {
984 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
985
986 if ((s64)delta < 0)
987 delta = 0;
988
989 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
990 __schedstat_set(se->statistics.block_max, delta);
991
992 __schedstat_set(se->statistics.block_start, 0);
993 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
994
995 if (tsk) {
996 if (tsk->in_iowait) {
997 __schedstat_add(se->statistics.iowait_sum, delta);
998 __schedstat_inc(se->statistics.iowait_count);
999 trace_sched_stat_iowait(tsk, delta);
1000 }
1001
1002 trace_sched_stat_blocked(tsk, delta);
1003
1004 /*
1005 * Blocking time is in units of nanosecs, so shift by
1006 * 20 to get a milliseconds-range estimation of the
1007 * amount of time that the task spent sleeping:
1008 */
1009 if (unlikely(prof_on == SLEEP_PROFILING)) {
1010 profile_hits(SLEEP_PROFILING,
1011 (void *)get_wchan(tsk),
1012 delta >> 20);
1013 }
1014 account_scheduler_latency(tsk, delta >> 10, 0);
1015 }
1016 }
1017 }
1018
1019 /*
1020 * Task is being enqueued - update stats:
1021 */
1022 static inline void
1023 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1024 {
1025 if (!schedstat_enabled())
1026 return;
1027
1028 /*
1029 * Are we enqueueing a waiting task? (for current tasks
1030 * a dequeue/enqueue event is a NOP)
1031 */
1032 if (se != cfs_rq->curr)
1033 update_stats_wait_start(cfs_rq, se);
1034
1035 if (flags & ENQUEUE_WAKEUP)
1036 update_stats_enqueue_sleeper(cfs_rq, se);
1037 }
1038
1039 static inline void
1040 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1041 {
1042
1043 if (!schedstat_enabled())
1044 return;
1045
1046 /*
1047 * Mark the end of the wait period if dequeueing a
1048 * waiting task:
1049 */
1050 if (se != cfs_rq->curr)
1051 update_stats_wait_end(cfs_rq, se);
1052
1053 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1054 struct task_struct *tsk = task_of(se);
1055
1056 if (tsk->state & TASK_INTERRUPTIBLE)
1057 __schedstat_set(se->statistics.sleep_start,
1058 rq_clock(rq_of(cfs_rq)));
1059 if (tsk->state & TASK_UNINTERRUPTIBLE)
1060 __schedstat_set(se->statistics.block_start,
1061 rq_clock(rq_of(cfs_rq)));
1062 }
1063 }
1064
1065 /*
1066 * We are picking a new current task - update its stats:
1067 */
1068 static inline void
1069 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1070 {
1071 /*
1072 * We are starting a new run period:
1073 */
1074 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1075 }
1076
1077 /**************************************************
1078 * Scheduling class queueing methods:
1079 */
1080
1081 #ifdef CONFIG_NUMA_BALANCING
1082 /*
1083 * Approximate time to scan a full NUMA task in ms. The task scan period is
1084 * calculated based on the tasks virtual memory size and
1085 * numa_balancing_scan_size.
1086 */
1087 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1088 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1089
1090 /* Portion of address space to scan in MB */
1091 unsigned int sysctl_numa_balancing_scan_size = 256;
1092
1093 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1094 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1095
1096 struct numa_group {
1097 refcount_t refcount;
1098
1099 spinlock_t lock; /* nr_tasks, tasks */
1100 int nr_tasks;
1101 pid_t gid;
1102 int active_nodes;
1103
1104 struct rcu_head rcu;
1105 unsigned long total_faults;
1106 unsigned long max_faults_cpu;
1107 /*
1108 * Faults_cpu is used to decide whether memory should move
1109 * towards the CPU. As a consequence, these stats are weighted
1110 * more by CPU use than by memory faults.
1111 */
1112 unsigned long *faults_cpu;
1113 unsigned long faults[];
1114 };
1115
1116 /*
1117 * For functions that can be called in multiple contexts that permit reading
1118 * ->numa_group (see struct task_struct for locking rules).
1119 */
1120 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1121 {
1122 return rcu_dereference_check(p->numa_group, p == current ||
1123 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1124 }
1125
1126 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1127 {
1128 return rcu_dereference_protected(p->numa_group, p == current);
1129 }
1130
1131 static inline unsigned long group_faults_priv(struct numa_group *ng);
1132 static inline unsigned long group_faults_shared(struct numa_group *ng);
1133
1134 static unsigned int task_nr_scan_windows(struct task_struct *p)
1135 {
1136 unsigned long rss = 0;
1137 unsigned long nr_scan_pages;
1138
1139 /*
1140 * Calculations based on RSS as non-present and empty pages are skipped
1141 * by the PTE scanner and NUMA hinting faults should be trapped based
1142 * on resident pages
1143 */
1144 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1145 rss = get_mm_rss(p->mm);
1146 if (!rss)
1147 rss = nr_scan_pages;
1148
1149 rss = round_up(rss, nr_scan_pages);
1150 return rss / nr_scan_pages;
1151 }
1152
1153 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1154 #define MAX_SCAN_WINDOW 2560
1155
1156 static unsigned int task_scan_min(struct task_struct *p)
1157 {
1158 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1159 unsigned int scan, floor;
1160 unsigned int windows = 1;
1161
1162 if (scan_size < MAX_SCAN_WINDOW)
1163 windows = MAX_SCAN_WINDOW / scan_size;
1164 floor = 1000 / windows;
1165
1166 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1167 return max_t(unsigned int, floor, scan);
1168 }
1169
1170 static unsigned int task_scan_start(struct task_struct *p)
1171 {
1172 unsigned long smin = task_scan_min(p);
1173 unsigned long period = smin;
1174 struct numa_group *ng;
1175
1176 /* Scale the maximum scan period with the amount of shared memory. */
1177 rcu_read_lock();
1178 ng = rcu_dereference(p->numa_group);
1179 if (ng) {
1180 unsigned long shared = group_faults_shared(ng);
1181 unsigned long private = group_faults_priv(ng);
1182
1183 period *= refcount_read(&ng->refcount);
1184 period *= shared + 1;
1185 period /= private + shared + 1;
1186 }
1187 rcu_read_unlock();
1188
1189 return max(smin, period);
1190 }
1191
1192 static unsigned int task_scan_max(struct task_struct *p)
1193 {
1194 unsigned long smin = task_scan_min(p);
1195 unsigned long smax;
1196 struct numa_group *ng;
1197
1198 /* Watch for min being lower than max due to floor calculations */
1199 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1200
1201 /* Scale the maximum scan period with the amount of shared memory. */
1202 ng = deref_curr_numa_group(p);
1203 if (ng) {
1204 unsigned long shared = group_faults_shared(ng);
1205 unsigned long private = group_faults_priv(ng);
1206 unsigned long period = smax;
1207
1208 period *= refcount_read(&ng->refcount);
1209 period *= shared + 1;
1210 period /= private + shared + 1;
1211
1212 smax = max(smax, period);
1213 }
1214
1215 return max(smin, smax);
1216 }
1217
1218 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1219 {
1220 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1221 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1222 }
1223
1224 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1225 {
1226 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1227 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1228 }
1229
1230 /* Shared or private faults. */
1231 #define NR_NUMA_HINT_FAULT_TYPES 2
1232
1233 /* Memory and CPU locality */
1234 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1235
1236 /* Averaged statistics, and temporary buffers. */
1237 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1238
1239 pid_t task_numa_group_id(struct task_struct *p)
1240 {
1241 struct numa_group *ng;
1242 pid_t gid = 0;
1243
1244 rcu_read_lock();
1245 ng = rcu_dereference(p->numa_group);
1246 if (ng)
1247 gid = ng->gid;
1248 rcu_read_unlock();
1249
1250 return gid;
1251 }
1252
1253 /*
1254 * The averaged statistics, shared & private, memory & CPU,
1255 * occupy the first half of the array. The second half of the
1256 * array is for current counters, which are averaged into the
1257 * first set by task_numa_placement.
1258 */
1259 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1260 {
1261 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1262 }
1263
1264 static inline unsigned long task_faults(struct task_struct *p, int nid)
1265 {
1266 if (!p->numa_faults)
1267 return 0;
1268
1269 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1270 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1271 }
1272
1273 static inline unsigned long group_faults(struct task_struct *p, int nid)
1274 {
1275 struct numa_group *ng = deref_task_numa_group(p);
1276
1277 if (!ng)
1278 return 0;
1279
1280 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1281 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1282 }
1283
1284 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1285 {
1286 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1287 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1288 }
1289
1290 static inline unsigned long group_faults_priv(struct numa_group *ng)
1291 {
1292 unsigned long faults = 0;
1293 int node;
1294
1295 for_each_online_node(node) {
1296 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1297 }
1298
1299 return faults;
1300 }
1301
1302 static inline unsigned long group_faults_shared(struct numa_group *ng)
1303 {
1304 unsigned long faults = 0;
1305 int node;
1306
1307 for_each_online_node(node) {
1308 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1309 }
1310
1311 return faults;
1312 }
1313
1314 /*
1315 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1316 * considered part of a numa group's pseudo-interleaving set. Migrations
1317 * between these nodes are slowed down, to allow things to settle down.
1318 */
1319 #define ACTIVE_NODE_FRACTION 3
1320
1321 static bool numa_is_active_node(int nid, struct numa_group *ng)
1322 {
1323 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1324 }
1325
1326 /* Handle placement on systems where not all nodes are directly connected. */
1327 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1328 int maxdist, bool task)
1329 {
1330 unsigned long score = 0;
1331 int node;
1332
1333 /*
1334 * All nodes are directly connected, and the same distance
1335 * from each other. No need for fancy placement algorithms.
1336 */
1337 if (sched_numa_topology_type == NUMA_DIRECT)
1338 return 0;
1339
1340 /*
1341 * This code is called for each node, introducing N^2 complexity,
1342 * which should be ok given the number of nodes rarely exceeds 8.
1343 */
1344 for_each_online_node(node) {
1345 unsigned long faults;
1346 int dist = node_distance(nid, node);
1347
1348 /*
1349 * The furthest away nodes in the system are not interesting
1350 * for placement; nid was already counted.
1351 */
1352 if (dist == sched_max_numa_distance || node == nid)
1353 continue;
1354
1355 /*
1356 * On systems with a backplane NUMA topology, compare groups
1357 * of nodes, and move tasks towards the group with the most
1358 * memory accesses. When comparing two nodes at distance
1359 * "hoplimit", only nodes closer by than "hoplimit" are part
1360 * of each group. Skip other nodes.
1361 */
1362 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1363 dist >= maxdist)
1364 continue;
1365
1366 /* Add up the faults from nearby nodes. */
1367 if (task)
1368 faults = task_faults(p, node);
1369 else
1370 faults = group_faults(p, node);
1371
1372 /*
1373 * On systems with a glueless mesh NUMA topology, there are
1374 * no fixed "groups of nodes". Instead, nodes that are not
1375 * directly connected bounce traffic through intermediate
1376 * nodes; a numa_group can occupy any set of nodes.
1377 * The further away a node is, the less the faults count.
1378 * This seems to result in good task placement.
1379 */
1380 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1381 faults *= (sched_max_numa_distance - dist);
1382 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1383 }
1384
1385 score += faults;
1386 }
1387
1388 return score;
1389 }
1390
1391 /*
1392 * These return the fraction of accesses done by a particular task, or
1393 * task group, on a particular numa node. The group weight is given a
1394 * larger multiplier, in order to group tasks together that are almost
1395 * evenly spread out between numa nodes.
1396 */
1397 static inline unsigned long task_weight(struct task_struct *p, int nid,
1398 int dist)
1399 {
1400 unsigned long faults, total_faults;
1401
1402 if (!p->numa_faults)
1403 return 0;
1404
1405 total_faults = p->total_numa_faults;
1406
1407 if (!total_faults)
1408 return 0;
1409
1410 faults = task_faults(p, nid);
1411 faults += score_nearby_nodes(p, nid, dist, true);
1412
1413 return 1000 * faults / total_faults;
1414 }
1415
1416 static inline unsigned long group_weight(struct task_struct *p, int nid,
1417 int dist)
1418 {
1419 struct numa_group *ng = deref_task_numa_group(p);
1420 unsigned long faults, total_faults;
1421
1422 if (!ng)
1423 return 0;
1424
1425 total_faults = ng->total_faults;
1426
1427 if (!total_faults)
1428 return 0;
1429
1430 faults = group_faults(p, nid);
1431 faults += score_nearby_nodes(p, nid, dist, false);
1432
1433 return 1000 * faults / total_faults;
1434 }
1435
1436 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1437 int src_nid, int dst_cpu)
1438 {
1439 struct numa_group *ng = deref_curr_numa_group(p);
1440 int dst_nid = cpu_to_node(dst_cpu);
1441 int last_cpupid, this_cpupid;
1442
1443 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1444 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1445
1446 /*
1447 * Allow first faults or private faults to migrate immediately early in
1448 * the lifetime of a task. The magic number 4 is based on waiting for
1449 * two full passes of the "multi-stage node selection" test that is
1450 * executed below.
1451 */
1452 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1453 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1454 return true;
1455
1456 /*
1457 * Multi-stage node selection is used in conjunction with a periodic
1458 * migration fault to build a temporal task<->page relation. By using
1459 * a two-stage filter we remove short/unlikely relations.
1460 *
1461 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1462 * a task's usage of a particular page (n_p) per total usage of this
1463 * page (n_t) (in a given time-span) to a probability.
1464 *
1465 * Our periodic faults will sample this probability and getting the
1466 * same result twice in a row, given these samples are fully
1467 * independent, is then given by P(n)^2, provided our sample period
1468 * is sufficiently short compared to the usage pattern.
1469 *
1470 * This quadric squishes small probabilities, making it less likely we
1471 * act on an unlikely task<->page relation.
1472 */
1473 if (!cpupid_pid_unset(last_cpupid) &&
1474 cpupid_to_nid(last_cpupid) != dst_nid)
1475 return false;
1476
1477 /* Always allow migrate on private faults */
1478 if (cpupid_match_pid(p, last_cpupid))
1479 return true;
1480
1481 /* A shared fault, but p->numa_group has not been set up yet. */
1482 if (!ng)
1483 return true;
1484
1485 /*
1486 * Destination node is much more heavily used than the source
1487 * node? Allow migration.
1488 */
1489 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1490 ACTIVE_NODE_FRACTION)
1491 return true;
1492
1493 /*
1494 * Distribute memory according to CPU & memory use on each node,
1495 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1496 *
1497 * faults_cpu(dst) 3 faults_cpu(src)
1498 * --------------- * - > ---------------
1499 * faults_mem(dst) 4 faults_mem(src)
1500 */
1501 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1502 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1503 }
1504
1505 /*
1506 * 'numa_type' describes the node at the moment of load balancing.
1507 */
1508 enum numa_type {
1509 /* The node has spare capacity that can be used to run more tasks. */
1510 node_has_spare = 0,
1511 /*
1512 * The node is fully used and the tasks don't compete for more CPU
1513 * cycles. Nevertheless, some tasks might wait before running.
1514 */
1515 node_fully_busy,
1516 /*
1517 * The node is overloaded and can't provide expected CPU cycles to all
1518 * tasks.
1519 */
1520 node_overloaded
1521 };
1522
1523 /* Cached statistics for all CPUs within a node */
1524 struct numa_stats {
1525 unsigned long load;
1526 unsigned long runnable;
1527 unsigned long util;
1528 /* Total compute capacity of CPUs on a node */
1529 unsigned long compute_capacity;
1530 unsigned int nr_running;
1531 unsigned int weight;
1532 enum numa_type node_type;
1533 int idle_cpu;
1534 };
1535
1536 static inline bool is_core_idle(int cpu)
1537 {
1538 #ifdef CONFIG_SCHED_SMT
1539 int sibling;
1540
1541 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1542 if (cpu == sibling)
1543 continue;
1544
1545 if (!idle_cpu(cpu))
1546 return false;
1547 }
1548 #endif
1549
1550 return true;
1551 }
1552
1553 struct task_numa_env {
1554 struct task_struct *p;
1555
1556 int src_cpu, src_nid;
1557 int dst_cpu, dst_nid;
1558
1559 struct numa_stats src_stats, dst_stats;
1560
1561 int imbalance_pct;
1562 int dist;
1563
1564 struct task_struct *best_task;
1565 long best_imp;
1566 int best_cpu;
1567 };
1568
1569 static unsigned long cpu_load(struct rq *rq);
1570 static unsigned long cpu_runnable(struct rq *rq);
1571 static unsigned long cpu_util(int cpu);
1572 static inline long adjust_numa_imbalance(int imbalance,
1573 int dst_running, int dst_weight);
1574
1575 static inline enum
1576 numa_type numa_classify(unsigned int imbalance_pct,
1577 struct numa_stats *ns)
1578 {
1579 if ((ns->nr_running > ns->weight) &&
1580 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1581 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1582 return node_overloaded;
1583
1584 if ((ns->nr_running < ns->weight) ||
1585 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1586 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1587 return node_has_spare;
1588
1589 return node_fully_busy;
1590 }
1591
1592 #ifdef CONFIG_SCHED_SMT
1593 /* Forward declarations of select_idle_sibling helpers */
1594 static inline bool test_idle_cores(int cpu, bool def);
1595 static inline int numa_idle_core(int idle_core, int cpu)
1596 {
1597 if (!static_branch_likely(&sched_smt_present) ||
1598 idle_core >= 0 || !test_idle_cores(cpu, false))
1599 return idle_core;
1600
1601 /*
1602 * Prefer cores instead of packing HT siblings
1603 * and triggering future load balancing.
1604 */
1605 if (is_core_idle(cpu))
1606 idle_core = cpu;
1607
1608 return idle_core;
1609 }
1610 #else
1611 static inline int numa_idle_core(int idle_core, int cpu)
1612 {
1613 return idle_core;
1614 }
1615 #endif
1616
1617 /*
1618 * Gather all necessary information to make NUMA balancing placement
1619 * decisions that are compatible with standard load balancer. This
1620 * borrows code and logic from update_sg_lb_stats but sharing a
1621 * common implementation is impractical.
1622 */
1623 static void update_numa_stats(struct task_numa_env *env,
1624 struct numa_stats *ns, int nid,
1625 bool find_idle)
1626 {
1627 int cpu, idle_core = -1;
1628
1629 memset(ns, 0, sizeof(*ns));
1630 ns->idle_cpu = -1;
1631
1632 rcu_read_lock();
1633 for_each_cpu(cpu, cpumask_of_node(nid)) {
1634 struct rq *rq = cpu_rq(cpu);
1635
1636 ns->load += cpu_load(rq);
1637 ns->runnable += cpu_runnable(rq);
1638 ns->util += cpu_util(cpu);
1639 ns->nr_running += rq->cfs.h_nr_running;
1640 ns->compute_capacity += capacity_of(cpu);
1641
1642 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1643 if (READ_ONCE(rq->numa_migrate_on) ||
1644 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1645 continue;
1646
1647 if (ns->idle_cpu == -1)
1648 ns->idle_cpu = cpu;
1649
1650 idle_core = numa_idle_core(idle_core, cpu);
1651 }
1652 }
1653 rcu_read_unlock();
1654
1655 ns->weight = cpumask_weight(cpumask_of_node(nid));
1656
1657 ns->node_type = numa_classify(env->imbalance_pct, ns);
1658
1659 if (idle_core >= 0)
1660 ns->idle_cpu = idle_core;
1661 }
1662
1663 static void task_numa_assign(struct task_numa_env *env,
1664 struct task_struct *p, long imp)
1665 {
1666 struct rq *rq = cpu_rq(env->dst_cpu);
1667
1668 /* Check if run-queue part of active NUMA balance. */
1669 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1670 int cpu;
1671 int start = env->dst_cpu;
1672
1673 /* Find alternative idle CPU. */
1674 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1675 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1676 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1677 continue;
1678 }
1679
1680 env->dst_cpu = cpu;
1681 rq = cpu_rq(env->dst_cpu);
1682 if (!xchg(&rq->numa_migrate_on, 1))
1683 goto assign;
1684 }
1685
1686 /* Failed to find an alternative idle CPU */
1687 return;
1688 }
1689
1690 assign:
1691 /*
1692 * Clear previous best_cpu/rq numa-migrate flag, since task now
1693 * found a better CPU to move/swap.
1694 */
1695 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1696 rq = cpu_rq(env->best_cpu);
1697 WRITE_ONCE(rq->numa_migrate_on, 0);
1698 }
1699
1700 if (env->best_task)
1701 put_task_struct(env->best_task);
1702 if (p)
1703 get_task_struct(p);
1704
1705 env->best_task = p;
1706 env->best_imp = imp;
1707 env->best_cpu = env->dst_cpu;
1708 }
1709
1710 static bool load_too_imbalanced(long src_load, long dst_load,
1711 struct task_numa_env *env)
1712 {
1713 long imb, old_imb;
1714 long orig_src_load, orig_dst_load;
1715 long src_capacity, dst_capacity;
1716
1717 /*
1718 * The load is corrected for the CPU capacity available on each node.
1719 *
1720 * src_load dst_load
1721 * ------------ vs ---------
1722 * src_capacity dst_capacity
1723 */
1724 src_capacity = env->src_stats.compute_capacity;
1725 dst_capacity = env->dst_stats.compute_capacity;
1726
1727 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1728
1729 orig_src_load = env->src_stats.load;
1730 orig_dst_load = env->dst_stats.load;
1731
1732 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1733
1734 /* Would this change make things worse? */
1735 return (imb > old_imb);
1736 }
1737
1738 /*
1739 * Maximum NUMA importance can be 1998 (2*999);
1740 * SMALLIMP @ 30 would be close to 1998/64.
1741 * Used to deter task migration.
1742 */
1743 #define SMALLIMP 30
1744
1745 /*
1746 * This checks if the overall compute and NUMA accesses of the system would
1747 * be improved if the source tasks was migrated to the target dst_cpu taking
1748 * into account that it might be best if task running on the dst_cpu should
1749 * be exchanged with the source task
1750 */
1751 static bool task_numa_compare(struct task_numa_env *env,
1752 long taskimp, long groupimp, bool maymove)
1753 {
1754 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1755 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1756 long imp = p_ng ? groupimp : taskimp;
1757 struct task_struct *cur;
1758 long src_load, dst_load;
1759 int dist = env->dist;
1760 long moveimp = imp;
1761 long load;
1762 bool stopsearch = false;
1763
1764 if (READ_ONCE(dst_rq->numa_migrate_on))
1765 return false;
1766
1767 rcu_read_lock();
1768 cur = rcu_dereference(dst_rq->curr);
1769 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1770 cur = NULL;
1771
1772 /*
1773 * Because we have preemption enabled we can get migrated around and
1774 * end try selecting ourselves (current == env->p) as a swap candidate.
1775 */
1776 if (cur == env->p) {
1777 stopsearch = true;
1778 goto unlock;
1779 }
1780
1781 if (!cur) {
1782 if (maymove && moveimp >= env->best_imp)
1783 goto assign;
1784 else
1785 goto unlock;
1786 }
1787
1788 /* Skip this swap candidate if cannot move to the source cpu. */
1789 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1790 goto unlock;
1791
1792 /*
1793 * Skip this swap candidate if it is not moving to its preferred
1794 * node and the best task is.
1795 */
1796 if (env->best_task &&
1797 env->best_task->numa_preferred_nid == env->src_nid &&
1798 cur->numa_preferred_nid != env->src_nid) {
1799 goto unlock;
1800 }
1801
1802 /*
1803 * "imp" is the fault differential for the source task between the
1804 * source and destination node. Calculate the total differential for
1805 * the source task and potential destination task. The more negative
1806 * the value is, the more remote accesses that would be expected to
1807 * be incurred if the tasks were swapped.
1808 *
1809 * If dst and source tasks are in the same NUMA group, or not
1810 * in any group then look only at task weights.
1811 */
1812 cur_ng = rcu_dereference(cur->numa_group);
1813 if (cur_ng == p_ng) {
1814 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1815 task_weight(cur, env->dst_nid, dist);
1816 /*
1817 * Add some hysteresis to prevent swapping the
1818 * tasks within a group over tiny differences.
1819 */
1820 if (cur_ng)
1821 imp -= imp / 16;
1822 } else {
1823 /*
1824 * Compare the group weights. If a task is all by itself
1825 * (not part of a group), use the task weight instead.
1826 */
1827 if (cur_ng && p_ng)
1828 imp += group_weight(cur, env->src_nid, dist) -
1829 group_weight(cur, env->dst_nid, dist);
1830 else
1831 imp += task_weight(cur, env->src_nid, dist) -
1832 task_weight(cur, env->dst_nid, dist);
1833 }
1834
1835 /* Discourage picking a task already on its preferred node */
1836 if (cur->numa_preferred_nid == env->dst_nid)
1837 imp -= imp / 16;
1838
1839 /*
1840 * Encourage picking a task that moves to its preferred node.
1841 * This potentially makes imp larger than it's maximum of
1842 * 1998 (see SMALLIMP and task_weight for why) but in this
1843 * case, it does not matter.
1844 */
1845 if (cur->numa_preferred_nid == env->src_nid)
1846 imp += imp / 8;
1847
1848 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1849 imp = moveimp;
1850 cur = NULL;
1851 goto assign;
1852 }
1853
1854 /*
1855 * Prefer swapping with a task moving to its preferred node over a
1856 * task that is not.
1857 */
1858 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1859 env->best_task->numa_preferred_nid != env->src_nid) {
1860 goto assign;
1861 }
1862
1863 /*
1864 * If the NUMA importance is less than SMALLIMP,
1865 * task migration might only result in ping pong
1866 * of tasks and also hurt performance due to cache
1867 * misses.
1868 */
1869 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1870 goto unlock;
1871
1872 /*
1873 * In the overloaded case, try and keep the load balanced.
1874 */
1875 load = task_h_load(env->p) - task_h_load(cur);
1876 if (!load)
1877 goto assign;
1878
1879 dst_load = env->dst_stats.load + load;
1880 src_load = env->src_stats.load - load;
1881
1882 if (load_too_imbalanced(src_load, dst_load, env))
1883 goto unlock;
1884
1885 assign:
1886 /* Evaluate an idle CPU for a task numa move. */
1887 if (!cur) {
1888 int cpu = env->dst_stats.idle_cpu;
1889
1890 /* Nothing cached so current CPU went idle since the search. */
1891 if (cpu < 0)
1892 cpu = env->dst_cpu;
1893
1894 /*
1895 * If the CPU is no longer truly idle and the previous best CPU
1896 * is, keep using it.
1897 */
1898 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1899 idle_cpu(env->best_cpu)) {
1900 cpu = env->best_cpu;
1901 }
1902
1903 env->dst_cpu = cpu;
1904 }
1905
1906 task_numa_assign(env, cur, imp);
1907
1908 /*
1909 * If a move to idle is allowed because there is capacity or load
1910 * balance improves then stop the search. While a better swap
1911 * candidate may exist, a search is not free.
1912 */
1913 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1914 stopsearch = true;
1915
1916 /*
1917 * If a swap candidate must be identified and the current best task
1918 * moves its preferred node then stop the search.
1919 */
1920 if (!maymove && env->best_task &&
1921 env->best_task->numa_preferred_nid == env->src_nid) {
1922 stopsearch = true;
1923 }
1924 unlock:
1925 rcu_read_unlock();
1926
1927 return stopsearch;
1928 }
1929
1930 static void task_numa_find_cpu(struct task_numa_env *env,
1931 long taskimp, long groupimp)
1932 {
1933 bool maymove = false;
1934 int cpu;
1935
1936 /*
1937 * If dst node has spare capacity, then check if there is an
1938 * imbalance that would be overruled by the load balancer.
1939 */
1940 if (env->dst_stats.node_type == node_has_spare) {
1941 unsigned int imbalance;
1942 int src_running, dst_running;
1943
1944 /*
1945 * Would movement cause an imbalance? Note that if src has
1946 * more running tasks that the imbalance is ignored as the
1947 * move improves the imbalance from the perspective of the
1948 * CPU load balancer.
1949 * */
1950 src_running = env->src_stats.nr_running - 1;
1951 dst_running = env->dst_stats.nr_running + 1;
1952 imbalance = max(0, dst_running - src_running);
1953 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1954 env->dst_stats.weight);
1955
1956 /* Use idle CPU if there is no imbalance */
1957 if (!imbalance) {
1958 maymove = true;
1959 if (env->dst_stats.idle_cpu >= 0) {
1960 env->dst_cpu = env->dst_stats.idle_cpu;
1961 task_numa_assign(env, NULL, 0);
1962 return;
1963 }
1964 }
1965 } else {
1966 long src_load, dst_load, load;
1967 /*
1968 * If the improvement from just moving env->p direction is better
1969 * than swapping tasks around, check if a move is possible.
1970 */
1971 load = task_h_load(env->p);
1972 dst_load = env->dst_stats.load + load;
1973 src_load = env->src_stats.load - load;
1974 maymove = !load_too_imbalanced(src_load, dst_load, env);
1975 }
1976
1977 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1978 /* Skip this CPU if the source task cannot migrate */
1979 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1980 continue;
1981
1982 env->dst_cpu = cpu;
1983 if (task_numa_compare(env, taskimp, groupimp, maymove))
1984 break;
1985 }
1986 }
1987
1988 static int task_numa_migrate(struct task_struct *p)
1989 {
1990 struct task_numa_env env = {
1991 .p = p,
1992
1993 .src_cpu = task_cpu(p),
1994 .src_nid = task_node(p),
1995
1996 .imbalance_pct = 112,
1997
1998 .best_task = NULL,
1999 .best_imp = 0,
2000 .best_cpu = -1,
2001 };
2002 unsigned long taskweight, groupweight;
2003 struct sched_domain *sd;
2004 long taskimp, groupimp;
2005 struct numa_group *ng;
2006 struct rq *best_rq;
2007 int nid, ret, dist;
2008
2009 /*
2010 * Pick the lowest SD_NUMA domain, as that would have the smallest
2011 * imbalance and would be the first to start moving tasks about.
2012 *
2013 * And we want to avoid any moving of tasks about, as that would create
2014 * random movement of tasks -- counter the numa conditions we're trying
2015 * to satisfy here.
2016 */
2017 rcu_read_lock();
2018 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2019 if (sd)
2020 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2021 rcu_read_unlock();
2022
2023 /*
2024 * Cpusets can break the scheduler domain tree into smaller
2025 * balance domains, some of which do not cross NUMA boundaries.
2026 * Tasks that are "trapped" in such domains cannot be migrated
2027 * elsewhere, so there is no point in (re)trying.
2028 */
2029 if (unlikely(!sd)) {
2030 sched_setnuma(p, task_node(p));
2031 return -EINVAL;
2032 }
2033
2034 env.dst_nid = p->numa_preferred_nid;
2035 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2036 taskweight = task_weight(p, env.src_nid, dist);
2037 groupweight = group_weight(p, env.src_nid, dist);
2038 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2039 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2040 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2041 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2042
2043 /* Try to find a spot on the preferred nid. */
2044 task_numa_find_cpu(&env, taskimp, groupimp);
2045
2046 /*
2047 * Look at other nodes in these cases:
2048 * - there is no space available on the preferred_nid
2049 * - the task is part of a numa_group that is interleaved across
2050 * multiple NUMA nodes; in order to better consolidate the group,
2051 * we need to check other locations.
2052 */
2053 ng = deref_curr_numa_group(p);
2054 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2055 for_each_online_node(nid) {
2056 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2057 continue;
2058
2059 dist = node_distance(env.src_nid, env.dst_nid);
2060 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2061 dist != env.dist) {
2062 taskweight = task_weight(p, env.src_nid, dist);
2063 groupweight = group_weight(p, env.src_nid, dist);
2064 }
2065
2066 /* Only consider nodes where both task and groups benefit */
2067 taskimp = task_weight(p, nid, dist) - taskweight;
2068 groupimp = group_weight(p, nid, dist) - groupweight;
2069 if (taskimp < 0 && groupimp < 0)
2070 continue;
2071
2072 env.dist = dist;
2073 env.dst_nid = nid;
2074 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2075 task_numa_find_cpu(&env, taskimp, groupimp);
2076 }
2077 }
2078
2079 /*
2080 * If the task is part of a workload that spans multiple NUMA nodes,
2081 * and is migrating into one of the workload's active nodes, remember
2082 * this node as the task's preferred numa node, so the workload can
2083 * settle down.
2084 * A task that migrated to a second choice node will be better off
2085 * trying for a better one later. Do not set the preferred node here.
2086 */
2087 if (ng) {
2088 if (env.best_cpu == -1)
2089 nid = env.src_nid;
2090 else
2091 nid = cpu_to_node(env.best_cpu);
2092
2093 if (nid != p->numa_preferred_nid)
2094 sched_setnuma(p, nid);
2095 }
2096
2097 /* No better CPU than the current one was found. */
2098 if (env.best_cpu == -1) {
2099 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2100 return -EAGAIN;
2101 }
2102
2103 best_rq = cpu_rq(env.best_cpu);
2104 if (env.best_task == NULL) {
2105 ret = migrate_task_to(p, env.best_cpu);
2106 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2107 if (ret != 0)
2108 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2109 return ret;
2110 }
2111
2112 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2113 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2114
2115 if (ret != 0)
2116 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2117 put_task_struct(env.best_task);
2118 return ret;
2119 }
2120
2121 /* Attempt to migrate a task to a CPU on the preferred node. */
2122 static void numa_migrate_preferred(struct task_struct *p)
2123 {
2124 unsigned long interval = HZ;
2125
2126 /* This task has no NUMA fault statistics yet */
2127 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2128 return;
2129
2130 /* Periodically retry migrating the task to the preferred node */
2131 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2132 p->numa_migrate_retry = jiffies + interval;
2133
2134 /* Success if task is already running on preferred CPU */
2135 if (task_node(p) == p->numa_preferred_nid)
2136 return;
2137
2138 /* Otherwise, try migrate to a CPU on the preferred node */
2139 task_numa_migrate(p);
2140 }
2141
2142 /*
2143 * Find out how many nodes on the workload is actively running on. Do this by
2144 * tracking the nodes from which NUMA hinting faults are triggered. This can
2145 * be different from the set of nodes where the workload's memory is currently
2146 * located.
2147 */
2148 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2149 {
2150 unsigned long faults, max_faults = 0;
2151 int nid, active_nodes = 0;
2152
2153 for_each_online_node(nid) {
2154 faults = group_faults_cpu(numa_group, nid);
2155 if (faults > max_faults)
2156 max_faults = faults;
2157 }
2158
2159 for_each_online_node(nid) {
2160 faults = group_faults_cpu(numa_group, nid);
2161 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2162 active_nodes++;
2163 }
2164
2165 numa_group->max_faults_cpu = max_faults;
2166 numa_group->active_nodes = active_nodes;
2167 }
2168
2169 /*
2170 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2171 * increments. The more local the fault statistics are, the higher the scan
2172 * period will be for the next scan window. If local/(local+remote) ratio is
2173 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2174 * the scan period will decrease. Aim for 70% local accesses.
2175 */
2176 #define NUMA_PERIOD_SLOTS 10
2177 #define NUMA_PERIOD_THRESHOLD 7
2178
2179 /*
2180 * Increase the scan period (slow down scanning) if the majority of
2181 * our memory is already on our local node, or if the majority of
2182 * the page accesses are shared with other processes.
2183 * Otherwise, decrease the scan period.
2184 */
2185 static void update_task_scan_period(struct task_struct *p,
2186 unsigned long shared, unsigned long private)
2187 {
2188 unsigned int period_slot;
2189 int lr_ratio, ps_ratio;
2190 int diff;
2191
2192 unsigned long remote = p->numa_faults_locality[0];
2193 unsigned long local = p->numa_faults_locality[1];
2194
2195 /*
2196 * If there were no record hinting faults then either the task is
2197 * completely idle or all activity is areas that are not of interest
2198 * to automatic numa balancing. Related to that, if there were failed
2199 * migration then it implies we are migrating too quickly or the local
2200 * node is overloaded. In either case, scan slower
2201 */
2202 if (local + shared == 0 || p->numa_faults_locality[2]) {
2203 p->numa_scan_period = min(p->numa_scan_period_max,
2204 p->numa_scan_period << 1);
2205
2206 p->mm->numa_next_scan = jiffies +
2207 msecs_to_jiffies(p->numa_scan_period);
2208
2209 return;
2210 }
2211
2212 /*
2213 * Prepare to scale scan period relative to the current period.
2214 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2215 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2216 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2217 */
2218 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2219 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2220 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2221
2222 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2223 /*
2224 * Most memory accesses are local. There is no need to
2225 * do fast NUMA scanning, since memory is already local.
2226 */
2227 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2228 if (!slot)
2229 slot = 1;
2230 diff = slot * period_slot;
2231 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2232 /*
2233 * Most memory accesses are shared with other tasks.
2234 * There is no point in continuing fast NUMA scanning,
2235 * since other tasks may just move the memory elsewhere.
2236 */
2237 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2238 if (!slot)
2239 slot = 1;
2240 diff = slot * period_slot;
2241 } else {
2242 /*
2243 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2244 * yet they are not on the local NUMA node. Speed up
2245 * NUMA scanning to get the memory moved over.
2246 */
2247 int ratio = max(lr_ratio, ps_ratio);
2248 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2249 }
2250
2251 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2252 task_scan_min(p), task_scan_max(p));
2253 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2254 }
2255
2256 /*
2257 * Get the fraction of time the task has been running since the last
2258 * NUMA placement cycle. The scheduler keeps similar statistics, but
2259 * decays those on a 32ms period, which is orders of magnitude off
2260 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2261 * stats only if the task is so new there are no NUMA statistics yet.
2262 */
2263 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2264 {
2265 u64 runtime, delta, now;
2266 /* Use the start of this time slice to avoid calculations. */
2267 now = p->se.exec_start;
2268 runtime = p->se.sum_exec_runtime;
2269
2270 if (p->last_task_numa_placement) {
2271 delta = runtime - p->last_sum_exec_runtime;
2272 *period = now - p->last_task_numa_placement;
2273
2274 /* Avoid time going backwards, prevent potential divide error: */
2275 if (unlikely((s64)*period < 0))
2276 *period = 0;
2277 } else {
2278 delta = p->se.avg.load_sum;
2279 *period = LOAD_AVG_MAX;
2280 }
2281
2282 p->last_sum_exec_runtime = runtime;
2283 p->last_task_numa_placement = now;
2284
2285 return delta;
2286 }
2287
2288 /*
2289 * Determine the preferred nid for a task in a numa_group. This needs to
2290 * be done in a way that produces consistent results with group_weight,
2291 * otherwise workloads might not converge.
2292 */
2293 static int preferred_group_nid(struct task_struct *p, int nid)
2294 {
2295 nodemask_t nodes;
2296 int dist;
2297
2298 /* Direct connections between all NUMA nodes. */
2299 if (sched_numa_topology_type == NUMA_DIRECT)
2300 return nid;
2301
2302 /*
2303 * On a system with glueless mesh NUMA topology, group_weight
2304 * scores nodes according to the number of NUMA hinting faults on
2305 * both the node itself, and on nearby nodes.
2306 */
2307 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2308 unsigned long score, max_score = 0;
2309 int node, max_node = nid;
2310
2311 dist = sched_max_numa_distance;
2312
2313 for_each_online_node(node) {
2314 score = group_weight(p, node, dist);
2315 if (score > max_score) {
2316 max_score = score;
2317 max_node = node;
2318 }
2319 }
2320 return max_node;
2321 }
2322
2323 /*
2324 * Finding the preferred nid in a system with NUMA backplane
2325 * interconnect topology is more involved. The goal is to locate
2326 * tasks from numa_groups near each other in the system, and
2327 * untangle workloads from different sides of the system. This requires
2328 * searching down the hierarchy of node groups, recursively searching
2329 * inside the highest scoring group of nodes. The nodemask tricks
2330 * keep the complexity of the search down.
2331 */
2332 nodes = node_online_map;
2333 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2334 unsigned long max_faults = 0;
2335 nodemask_t max_group = NODE_MASK_NONE;
2336 int a, b;
2337
2338 /* Are there nodes at this distance from each other? */
2339 if (!find_numa_distance(dist))
2340 continue;
2341
2342 for_each_node_mask(a, nodes) {
2343 unsigned long faults = 0;
2344 nodemask_t this_group;
2345 nodes_clear(this_group);
2346
2347 /* Sum group's NUMA faults; includes a==b case. */
2348 for_each_node_mask(b, nodes) {
2349 if (node_distance(a, b) < dist) {
2350 faults += group_faults(p, b);
2351 node_set(b, this_group);
2352 node_clear(b, nodes);
2353 }
2354 }
2355
2356 /* Remember the top group. */
2357 if (faults > max_faults) {
2358 max_faults = faults;
2359 max_group = this_group;
2360 /*
2361 * subtle: at the smallest distance there is
2362 * just one node left in each "group", the
2363 * winner is the preferred nid.
2364 */
2365 nid = a;
2366 }
2367 }
2368 /* Next round, evaluate the nodes within max_group. */
2369 if (!max_faults)
2370 break;
2371 nodes = max_group;
2372 }
2373 return nid;
2374 }
2375
2376 static void task_numa_placement(struct task_struct *p)
2377 {
2378 int seq, nid, max_nid = NUMA_NO_NODE;
2379 unsigned long max_faults = 0;
2380 unsigned long fault_types[2] = { 0, 0 };
2381 unsigned long total_faults;
2382 u64 runtime, period;
2383 spinlock_t *group_lock = NULL;
2384 struct numa_group *ng;
2385
2386 /*
2387 * The p->mm->numa_scan_seq field gets updated without
2388 * exclusive access. Use READ_ONCE() here to ensure
2389 * that the field is read in a single access:
2390 */
2391 seq = READ_ONCE(p->mm->numa_scan_seq);
2392 if (p->numa_scan_seq == seq)
2393 return;
2394 p->numa_scan_seq = seq;
2395 p->numa_scan_period_max = task_scan_max(p);
2396
2397 total_faults = p->numa_faults_locality[0] +
2398 p->numa_faults_locality[1];
2399 runtime = numa_get_avg_runtime(p, &period);
2400
2401 /* If the task is part of a group prevent parallel updates to group stats */
2402 ng = deref_curr_numa_group(p);
2403 if (ng) {
2404 group_lock = &ng->lock;
2405 spin_lock_irq(group_lock);
2406 }
2407
2408 /* Find the node with the highest number of faults */
2409 for_each_online_node(nid) {
2410 /* Keep track of the offsets in numa_faults array */
2411 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2412 unsigned long faults = 0, group_faults = 0;
2413 int priv;
2414
2415 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2416 long diff, f_diff, f_weight;
2417
2418 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2419 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2420 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2421 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2422
2423 /* Decay existing window, copy faults since last scan */
2424 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2425 fault_types[priv] += p->numa_faults[membuf_idx];
2426 p->numa_faults[membuf_idx] = 0;
2427
2428 /*
2429 * Normalize the faults_from, so all tasks in a group
2430 * count according to CPU use, instead of by the raw
2431 * number of faults. Tasks with little runtime have
2432 * little over-all impact on throughput, and thus their
2433 * faults are less important.
2434 */
2435 f_weight = div64_u64(runtime << 16, period + 1);
2436 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2437 (total_faults + 1);
2438 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2439 p->numa_faults[cpubuf_idx] = 0;
2440
2441 p->numa_faults[mem_idx] += diff;
2442 p->numa_faults[cpu_idx] += f_diff;
2443 faults += p->numa_faults[mem_idx];
2444 p->total_numa_faults += diff;
2445 if (ng) {
2446 /*
2447 * safe because we can only change our own group
2448 *
2449 * mem_idx represents the offset for a given
2450 * nid and priv in a specific region because it
2451 * is at the beginning of the numa_faults array.
2452 */
2453 ng->faults[mem_idx] += diff;
2454 ng->faults_cpu[mem_idx] += f_diff;
2455 ng->total_faults += diff;
2456 group_faults += ng->faults[mem_idx];
2457 }
2458 }
2459
2460 if (!ng) {
2461 if (faults > max_faults) {
2462 max_faults = faults;
2463 max_nid = nid;
2464 }
2465 } else if (group_faults > max_faults) {
2466 max_faults = group_faults;
2467 max_nid = nid;
2468 }
2469 }
2470
2471 if (ng) {
2472 numa_group_count_active_nodes(ng);
2473 spin_unlock_irq(group_lock);
2474 max_nid = preferred_group_nid(p, max_nid);
2475 }
2476
2477 if (max_faults) {
2478 /* Set the new preferred node */
2479 if (max_nid != p->numa_preferred_nid)
2480 sched_setnuma(p, max_nid);
2481 }
2482
2483 update_task_scan_period(p, fault_types[0], fault_types[1]);
2484 }
2485
2486 static inline int get_numa_group(struct numa_group *grp)
2487 {
2488 return refcount_inc_not_zero(&grp->refcount);
2489 }
2490
2491 static inline void put_numa_group(struct numa_group *grp)
2492 {
2493 if (refcount_dec_and_test(&grp->refcount))
2494 kfree_rcu(grp, rcu);
2495 }
2496
2497 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2498 int *priv)
2499 {
2500 struct numa_group *grp, *my_grp;
2501 struct task_struct *tsk;
2502 bool join = false;
2503 int cpu = cpupid_to_cpu(cpupid);
2504 int i;
2505
2506 if (unlikely(!deref_curr_numa_group(p))) {
2507 unsigned int size = sizeof(struct numa_group) +
2508 4*nr_node_ids*sizeof(unsigned long);
2509
2510 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2511 if (!grp)
2512 return;
2513
2514 refcount_set(&grp->refcount, 1);
2515 grp->active_nodes = 1;
2516 grp->max_faults_cpu = 0;
2517 spin_lock_init(&grp->lock);
2518 grp->gid = p->pid;
2519 /* Second half of the array tracks nids where faults happen */
2520 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2521 nr_node_ids;
2522
2523 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2524 grp->faults[i] = p->numa_faults[i];
2525
2526 grp->total_faults = p->total_numa_faults;
2527
2528 grp->nr_tasks++;
2529 rcu_assign_pointer(p->numa_group, grp);
2530 }
2531
2532 rcu_read_lock();
2533 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2534
2535 if (!cpupid_match_pid(tsk, cpupid))
2536 goto no_join;
2537
2538 grp = rcu_dereference(tsk->numa_group);
2539 if (!grp)
2540 goto no_join;
2541
2542 my_grp = deref_curr_numa_group(p);
2543 if (grp == my_grp)
2544 goto no_join;
2545
2546 /*
2547 * Only join the other group if its bigger; if we're the bigger group,
2548 * the other task will join us.
2549 */
2550 if (my_grp->nr_tasks > grp->nr_tasks)
2551 goto no_join;
2552
2553 /*
2554 * Tie-break on the grp address.
2555 */
2556 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2557 goto no_join;
2558
2559 /* Always join threads in the same process. */
2560 if (tsk->mm == current->mm)
2561 join = true;
2562
2563 /* Simple filter to avoid false positives due to PID collisions */
2564 if (flags & TNF_SHARED)
2565 join = true;
2566
2567 /* Update priv based on whether false sharing was detected */
2568 *priv = !join;
2569
2570 if (join && !get_numa_group(grp))
2571 goto no_join;
2572
2573 rcu_read_unlock();
2574
2575 if (!join)
2576 return;
2577
2578 BUG_ON(irqs_disabled());
2579 double_lock_irq(&my_grp->lock, &grp->lock);
2580
2581 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2582 my_grp->faults[i] -= p->numa_faults[i];
2583 grp->faults[i] += p->numa_faults[i];
2584 }
2585 my_grp->total_faults -= p->total_numa_faults;
2586 grp->total_faults += p->total_numa_faults;
2587
2588 my_grp->nr_tasks--;
2589 grp->nr_tasks++;
2590
2591 spin_unlock(&my_grp->lock);
2592 spin_unlock_irq(&grp->lock);
2593
2594 rcu_assign_pointer(p->numa_group, grp);
2595
2596 put_numa_group(my_grp);
2597 return;
2598
2599 no_join:
2600 rcu_read_unlock();
2601 return;
2602 }
2603
2604 /*
2605 * Get rid of NUMA staticstics associated with a task (either current or dead).
2606 * If @final is set, the task is dead and has reached refcount zero, so we can
2607 * safely free all relevant data structures. Otherwise, there might be
2608 * concurrent reads from places like load balancing and procfs, and we should
2609 * reset the data back to default state without freeing ->numa_faults.
2610 */
2611 void task_numa_free(struct task_struct *p, bool final)
2612 {
2613 /* safe: p either is current or is being freed by current */
2614 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2615 unsigned long *numa_faults = p->numa_faults;
2616 unsigned long flags;
2617 int i;
2618
2619 if (!numa_faults)
2620 return;
2621
2622 if (grp) {
2623 spin_lock_irqsave(&grp->lock, flags);
2624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2625 grp->faults[i] -= p->numa_faults[i];
2626 grp->total_faults -= p->total_numa_faults;
2627
2628 grp->nr_tasks--;
2629 spin_unlock_irqrestore(&grp->lock, flags);
2630 RCU_INIT_POINTER(p->numa_group, NULL);
2631 put_numa_group(grp);
2632 }
2633
2634 if (final) {
2635 p->numa_faults = NULL;
2636 kfree(numa_faults);
2637 } else {
2638 p->total_numa_faults = 0;
2639 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2640 numa_faults[i] = 0;
2641 }
2642 }
2643
2644 /*
2645 * Got a PROT_NONE fault for a page on @node.
2646 */
2647 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2648 {
2649 struct task_struct *p = current;
2650 bool migrated = flags & TNF_MIGRATED;
2651 int cpu_node = task_node(current);
2652 int local = !!(flags & TNF_FAULT_LOCAL);
2653 struct numa_group *ng;
2654 int priv;
2655
2656 if (!static_branch_likely(&sched_numa_balancing))
2657 return;
2658
2659 /* for example, ksmd faulting in a user's mm */
2660 if (!p->mm)
2661 return;
2662
2663 /* Allocate buffer to track faults on a per-node basis */
2664 if (unlikely(!p->numa_faults)) {
2665 int size = sizeof(*p->numa_faults) *
2666 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2667
2668 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2669 if (!p->numa_faults)
2670 return;
2671
2672 p->total_numa_faults = 0;
2673 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2674 }
2675
2676 /*
2677 * First accesses are treated as private, otherwise consider accesses
2678 * to be private if the accessing pid has not changed
2679 */
2680 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2681 priv = 1;
2682 } else {
2683 priv = cpupid_match_pid(p, last_cpupid);
2684 if (!priv && !(flags & TNF_NO_GROUP))
2685 task_numa_group(p, last_cpupid, flags, &priv);
2686 }
2687
2688 /*
2689 * If a workload spans multiple NUMA nodes, a shared fault that
2690 * occurs wholly within the set of nodes that the workload is
2691 * actively using should be counted as local. This allows the
2692 * scan rate to slow down when a workload has settled down.
2693 */
2694 ng = deref_curr_numa_group(p);
2695 if (!priv && !local && ng && ng->active_nodes > 1 &&
2696 numa_is_active_node(cpu_node, ng) &&
2697 numa_is_active_node(mem_node, ng))
2698 local = 1;
2699
2700 /*
2701 * Retry to migrate task to preferred node periodically, in case it
2702 * previously failed, or the scheduler moved us.
2703 */
2704 if (time_after(jiffies, p->numa_migrate_retry)) {
2705 task_numa_placement(p);
2706 numa_migrate_preferred(p);
2707 }
2708
2709 if (migrated)
2710 p->numa_pages_migrated += pages;
2711 if (flags & TNF_MIGRATE_FAIL)
2712 p->numa_faults_locality[2] += pages;
2713
2714 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2715 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2716 p->numa_faults_locality[local] += pages;
2717 }
2718
2719 static void reset_ptenuma_scan(struct task_struct *p)
2720 {
2721 /*
2722 * We only did a read acquisition of the mmap sem, so
2723 * p->mm->numa_scan_seq is written to without exclusive access
2724 * and the update is not guaranteed to be atomic. That's not
2725 * much of an issue though, since this is just used for
2726 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2727 * expensive, to avoid any form of compiler optimizations:
2728 */
2729 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2730 p->mm->numa_scan_offset = 0;
2731 }
2732
2733 /*
2734 * The expensive part of numa migration is done from task_work context.
2735 * Triggered from task_tick_numa().
2736 */
2737 static void task_numa_work(struct callback_head *work)
2738 {
2739 unsigned long migrate, next_scan, now = jiffies;
2740 struct task_struct *p = current;
2741 struct mm_struct *mm = p->mm;
2742 u64 runtime = p->se.sum_exec_runtime;
2743 struct vm_area_struct *vma;
2744 unsigned long start, end;
2745 unsigned long nr_pte_updates = 0;
2746 long pages, virtpages;
2747
2748 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2749
2750 work->next = work;
2751 /*
2752 * Who cares about NUMA placement when they're dying.
2753 *
2754 * NOTE: make sure not to dereference p->mm before this check,
2755 * exit_task_work() happens _after_ exit_mm() so we could be called
2756 * without p->mm even though we still had it when we enqueued this
2757 * work.
2758 */
2759 if (p->flags & PF_EXITING)
2760 return;
2761
2762 if (!mm->numa_next_scan) {
2763 mm->numa_next_scan = now +
2764 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2765 }
2766
2767 /*
2768 * Enforce maximal scan/migration frequency..
2769 */
2770 migrate = mm->numa_next_scan;
2771 if (time_before(now, migrate))
2772 return;
2773
2774 if (p->numa_scan_period == 0) {
2775 p->numa_scan_period_max = task_scan_max(p);
2776 p->numa_scan_period = task_scan_start(p);
2777 }
2778
2779 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2780 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2781 return;
2782
2783 /*
2784 * Delay this task enough that another task of this mm will likely win
2785 * the next time around.
2786 */
2787 p->node_stamp += 2 * TICK_NSEC;
2788
2789 start = mm->numa_scan_offset;
2790 pages = sysctl_numa_balancing_scan_size;
2791 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2792 virtpages = pages * 8; /* Scan up to this much virtual space */
2793 if (!pages)
2794 return;
2795
2796
2797 if (!mmap_read_trylock(mm))
2798 return;
2799 vma = find_vma(mm, start);
2800 if (!vma) {
2801 reset_ptenuma_scan(p);
2802 start = 0;
2803 vma = mm->mmap;
2804 }
2805 for (; vma; vma = vma->vm_next) {
2806 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2807 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2808 continue;
2809 }
2810
2811 /*
2812 * Shared library pages mapped by multiple processes are not
2813 * migrated as it is expected they are cache replicated. Avoid
2814 * hinting faults in read-only file-backed mappings or the vdso
2815 * as migrating the pages will be of marginal benefit.
2816 */
2817 if (!vma->vm_mm ||
2818 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2819 continue;
2820
2821 /*
2822 * Skip inaccessible VMAs to avoid any confusion between
2823 * PROT_NONE and NUMA hinting ptes
2824 */
2825 if (!vma_is_accessible(vma))
2826 continue;
2827
2828 do {
2829 start = max(start, vma->vm_start);
2830 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2831 end = min(end, vma->vm_end);
2832 nr_pte_updates = change_prot_numa(vma, start, end);
2833
2834 /*
2835 * Try to scan sysctl_numa_balancing_size worth of
2836 * hpages that have at least one present PTE that
2837 * is not already pte-numa. If the VMA contains
2838 * areas that are unused or already full of prot_numa
2839 * PTEs, scan up to virtpages, to skip through those
2840 * areas faster.
2841 */
2842 if (nr_pte_updates)
2843 pages -= (end - start) >> PAGE_SHIFT;
2844 virtpages -= (end - start) >> PAGE_SHIFT;
2845
2846 start = end;
2847 if (pages <= 0 || virtpages <= 0)
2848 goto out;
2849
2850 cond_resched();
2851 } while (end != vma->vm_end);
2852 }
2853
2854 out:
2855 /*
2856 * It is possible to reach the end of the VMA list but the last few
2857 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2858 * would find the !migratable VMA on the next scan but not reset the
2859 * scanner to the start so check it now.
2860 */
2861 if (vma)
2862 mm->numa_scan_offset = start;
2863 else
2864 reset_ptenuma_scan(p);
2865 mmap_read_unlock(mm);
2866
2867 /*
2868 * Make sure tasks use at least 32x as much time to run other code
2869 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2870 * Usually update_task_scan_period slows down scanning enough; on an
2871 * overloaded system we need to limit overhead on a per task basis.
2872 */
2873 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2874 u64 diff = p->se.sum_exec_runtime - runtime;
2875 p->node_stamp += 32 * diff;
2876 }
2877 }
2878
2879 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2880 {
2881 int mm_users = 0;
2882 struct mm_struct *mm = p->mm;
2883
2884 if (mm) {
2885 mm_users = atomic_read(&mm->mm_users);
2886 if (mm_users == 1) {
2887 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2888 mm->numa_scan_seq = 0;
2889 }
2890 }
2891 p->node_stamp = 0;
2892 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2893 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2894 /* Protect against double add, see task_tick_numa and task_numa_work */
2895 p->numa_work.next = &p->numa_work;
2896 p->numa_faults = NULL;
2897 RCU_INIT_POINTER(p->numa_group, NULL);
2898 p->last_task_numa_placement = 0;
2899 p->last_sum_exec_runtime = 0;
2900
2901 init_task_work(&p->numa_work, task_numa_work);
2902
2903 /* New address space, reset the preferred nid */
2904 if (!(clone_flags & CLONE_VM)) {
2905 p->numa_preferred_nid = NUMA_NO_NODE;
2906 return;
2907 }
2908
2909 /*
2910 * New thread, keep existing numa_preferred_nid which should be copied
2911 * already by arch_dup_task_struct but stagger when scans start.
2912 */
2913 if (mm) {
2914 unsigned int delay;
2915
2916 delay = min_t(unsigned int, task_scan_max(current),
2917 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2918 delay += 2 * TICK_NSEC;
2919 p->node_stamp = delay;
2920 }
2921 }
2922
2923 /*
2924 * Drive the periodic memory faults..
2925 */
2926 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2927 {
2928 struct callback_head *work = &curr->numa_work;
2929 u64 period, now;
2930
2931 /*
2932 * We don't care about NUMA placement if we don't have memory.
2933 */
2934 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2935 return;
2936
2937 /*
2938 * Using runtime rather than walltime has the dual advantage that
2939 * we (mostly) drive the selection from busy threads and that the
2940 * task needs to have done some actual work before we bother with
2941 * NUMA placement.
2942 */
2943 now = curr->se.sum_exec_runtime;
2944 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2945
2946 if (now > curr->node_stamp + period) {
2947 if (!curr->node_stamp)
2948 curr->numa_scan_period = task_scan_start(curr);
2949 curr->node_stamp += period;
2950
2951 if (!time_before(jiffies, curr->mm->numa_next_scan))
2952 task_work_add(curr, work, TWA_RESUME);
2953 }
2954 }
2955
2956 static void update_scan_period(struct task_struct *p, int new_cpu)
2957 {
2958 int src_nid = cpu_to_node(task_cpu(p));
2959 int dst_nid = cpu_to_node(new_cpu);
2960
2961 if (!static_branch_likely(&sched_numa_balancing))
2962 return;
2963
2964 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2965 return;
2966
2967 if (src_nid == dst_nid)
2968 return;
2969
2970 /*
2971 * Allow resets if faults have been trapped before one scan
2972 * has completed. This is most likely due to a new task that
2973 * is pulled cross-node due to wakeups or load balancing.
2974 */
2975 if (p->numa_scan_seq) {
2976 /*
2977 * Avoid scan adjustments if moving to the preferred
2978 * node or if the task was not previously running on
2979 * the preferred node.
2980 */
2981 if (dst_nid == p->numa_preferred_nid ||
2982 (p->numa_preferred_nid != NUMA_NO_NODE &&
2983 src_nid != p->numa_preferred_nid))
2984 return;
2985 }
2986
2987 p->numa_scan_period = task_scan_start(p);
2988 }
2989
2990 #else
2991 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2992 {
2993 }
2994
2995 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2996 {
2997 }
2998
2999 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3000 {
3001 }
3002
3003 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3004 {
3005 }
3006
3007 #endif /* CONFIG_NUMA_BALANCING */
3008
3009 static void
3010 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3011 {
3012 update_load_add(&cfs_rq->load, se->load.weight);
3013 #ifdef CONFIG_SMP
3014 if (entity_is_task(se)) {
3015 struct rq *rq = rq_of(cfs_rq);
3016
3017 account_numa_enqueue(rq, task_of(se));
3018 list_add(&se->group_node, &rq->cfs_tasks);
3019 }
3020 #endif
3021 cfs_rq->nr_running++;
3022 }
3023
3024 static void
3025 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3026 {
3027 update_load_sub(&cfs_rq->load, se->load.weight);
3028 #ifdef CONFIG_SMP
3029 if (entity_is_task(se)) {
3030 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3031 list_del_init(&se->group_node);
3032 }
3033 #endif
3034 cfs_rq->nr_running--;
3035 }
3036
3037 /*
3038 * Signed add and clamp on underflow.
3039 *
3040 * Explicitly do a load-store to ensure the intermediate value never hits
3041 * memory. This allows lockless observations without ever seeing the negative
3042 * values.
3043 */
3044 #define add_positive(_ptr, _val) do { \
3045 typeof(_ptr) ptr = (_ptr); \
3046 typeof(_val) val = (_val); \
3047 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3048 \
3049 res = var + val; \
3050 \
3051 if (val < 0 && res > var) \
3052 res = 0; \
3053 \
3054 WRITE_ONCE(*ptr, res); \
3055 } while (0)
3056
3057 /*
3058 * Unsigned subtract and clamp on underflow.
3059 *
3060 * Explicitly do a load-store to ensure the intermediate value never hits
3061 * memory. This allows lockless observations without ever seeing the negative
3062 * values.
3063 */
3064 #define sub_positive(_ptr, _val) do { \
3065 typeof(_ptr) ptr = (_ptr); \
3066 typeof(*ptr) val = (_val); \
3067 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3068 res = var - val; \
3069 if (res > var) \
3070 res = 0; \
3071 WRITE_ONCE(*ptr, res); \
3072 } while (0)
3073
3074 /*
3075 * Remove and clamp on negative, from a local variable.
3076 *
3077 * A variant of sub_positive(), which does not use explicit load-store
3078 * and is thus optimized for local variable updates.
3079 */
3080 #define lsub_positive(_ptr, _val) do { \
3081 typeof(_ptr) ptr = (_ptr); \
3082 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3083 } while (0)
3084
3085 #ifdef CONFIG_SMP
3086 static inline void
3087 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3088 {
3089 cfs_rq->avg.load_avg += se->avg.load_avg;
3090 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3091 }
3092
3093 static inline void
3094 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3095 {
3096 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3097 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3098 }
3099 #else
3100 static inline void
3101 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3102 static inline void
3103 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3104 #endif
3105
3106 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3107 unsigned long weight)
3108 {
3109 if (se->on_rq) {
3110 /* commit outstanding execution time */
3111 if (cfs_rq->curr == se)
3112 update_curr(cfs_rq);
3113 update_load_sub(&cfs_rq->load, se->load.weight);
3114 }
3115 dequeue_load_avg(cfs_rq, se);
3116
3117 update_load_set(&se->load, weight);
3118
3119 #ifdef CONFIG_SMP
3120 do {
3121 u32 divider = get_pelt_divider(&se->avg);
3122
3123 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3124 } while (0);
3125 #endif
3126
3127 enqueue_load_avg(cfs_rq, se);
3128 if (se->on_rq)
3129 update_load_add(&cfs_rq->load, se->load.weight);
3130
3131 }
3132
3133 void reweight_task(struct task_struct *p, int prio)
3134 {
3135 struct sched_entity *se = &p->se;
3136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3137 struct load_weight *load = &se->load;
3138 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3139
3140 reweight_entity(cfs_rq, se, weight);
3141 load->inv_weight = sched_prio_to_wmult[prio];
3142 }
3143
3144 #ifdef CONFIG_FAIR_GROUP_SCHED
3145 #ifdef CONFIG_SMP
3146 /*
3147 * All this does is approximate the hierarchical proportion which includes that
3148 * global sum we all love to hate.
3149 *
3150 * That is, the weight of a group entity, is the proportional share of the
3151 * group weight based on the group runqueue weights. That is:
3152 *
3153 * tg->weight * grq->load.weight
3154 * ge->load.weight = ----------------------------- (1)
3155 * \Sum grq->load.weight
3156 *
3157 * Now, because computing that sum is prohibitively expensive to compute (been
3158 * there, done that) we approximate it with this average stuff. The average
3159 * moves slower and therefore the approximation is cheaper and more stable.
3160 *
3161 * So instead of the above, we substitute:
3162 *
3163 * grq->load.weight -> grq->avg.load_avg (2)
3164 *
3165 * which yields the following:
3166 *
3167 * tg->weight * grq->avg.load_avg
3168 * ge->load.weight = ------------------------------ (3)
3169 * tg->load_avg
3170 *
3171 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3172 *
3173 * That is shares_avg, and it is right (given the approximation (2)).
3174 *
3175 * The problem with it is that because the average is slow -- it was designed
3176 * to be exactly that of course -- this leads to transients in boundary
3177 * conditions. In specific, the case where the group was idle and we start the
3178 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3179 * yielding bad latency etc..
3180 *
3181 * Now, in that special case (1) reduces to:
3182 *
3183 * tg->weight * grq->load.weight
3184 * ge->load.weight = ----------------------------- = tg->weight (4)
3185 * grp->load.weight
3186 *
3187 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3188 *
3189 * So what we do is modify our approximation (3) to approach (4) in the (near)
3190 * UP case, like:
3191 *
3192 * ge->load.weight =
3193 *
3194 * tg->weight * grq->load.weight
3195 * --------------------------------------------------- (5)
3196 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3197 *
3198 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3199 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3200 *
3201 *
3202 * tg->weight * grq->load.weight
3203 * ge->load.weight = ----------------------------- (6)
3204 * tg_load_avg'
3205 *
3206 * Where:
3207 *
3208 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3209 * max(grq->load.weight, grq->avg.load_avg)
3210 *
3211 * And that is shares_weight and is icky. In the (near) UP case it approaches
3212 * (4) while in the normal case it approaches (3). It consistently
3213 * overestimates the ge->load.weight and therefore:
3214 *
3215 * \Sum ge->load.weight >= tg->weight
3216 *
3217 * hence icky!
3218 */
3219 static long calc_group_shares(struct cfs_rq *cfs_rq)
3220 {
3221 long tg_weight, tg_shares, load, shares;
3222 struct task_group *tg = cfs_rq->tg;
3223
3224 tg_shares = READ_ONCE(tg->shares);
3225
3226 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3227
3228 tg_weight = atomic_long_read(&tg->load_avg);
3229
3230 /* Ensure tg_weight >= load */
3231 tg_weight -= cfs_rq->tg_load_avg_contrib;
3232 tg_weight += load;
3233
3234 shares = (tg_shares * load);
3235 if (tg_weight)
3236 shares /= tg_weight;
3237
3238 /*
3239 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3240 * of a group with small tg->shares value. It is a floor value which is
3241 * assigned as a minimum load.weight to the sched_entity representing
3242 * the group on a CPU.
3243 *
3244 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3245 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3246 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3247 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3248 * instead of 0.
3249 */
3250 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3251 }
3252 #endif /* CONFIG_SMP */
3253
3254 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3255
3256 /*
3257 * Recomputes the group entity based on the current state of its group
3258 * runqueue.
3259 */
3260 static void update_cfs_group(struct sched_entity *se)
3261 {
3262 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3263 long shares;
3264
3265 if (!gcfs_rq)
3266 return;
3267
3268 if (throttled_hierarchy(gcfs_rq))
3269 return;
3270
3271 #ifndef CONFIG_SMP
3272 shares = READ_ONCE(gcfs_rq->tg->shares);
3273
3274 if (likely(se->load.weight == shares))
3275 return;
3276 #else
3277 shares = calc_group_shares(gcfs_rq);
3278 #endif
3279
3280 reweight_entity(cfs_rq_of(se), se, shares);
3281 }
3282
3283 #else /* CONFIG_FAIR_GROUP_SCHED */
3284 static inline void update_cfs_group(struct sched_entity *se)
3285 {
3286 }
3287 #endif /* CONFIG_FAIR_GROUP_SCHED */
3288
3289 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3290 {
3291 struct rq *rq = rq_of(cfs_rq);
3292
3293 if (&rq->cfs == cfs_rq) {
3294 /*
3295 * There are a few boundary cases this might miss but it should
3296 * get called often enough that that should (hopefully) not be
3297 * a real problem.
3298 *
3299 * It will not get called when we go idle, because the idle
3300 * thread is a different class (!fair), nor will the utilization
3301 * number include things like RT tasks.
3302 *
3303 * As is, the util number is not freq-invariant (we'd have to
3304 * implement arch_scale_freq_capacity() for that).
3305 *
3306 * See cpu_util().
3307 */
3308 cpufreq_update_util(rq, flags);
3309 }
3310 }
3311
3312 #ifdef CONFIG_SMP
3313 #ifdef CONFIG_FAIR_GROUP_SCHED
3314 /**
3315 * update_tg_load_avg - update the tg's load avg
3316 * @cfs_rq: the cfs_rq whose avg changed
3317 *
3318 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3319 * However, because tg->load_avg is a global value there are performance
3320 * considerations.
3321 *
3322 * In order to avoid having to look at the other cfs_rq's, we use a
3323 * differential update where we store the last value we propagated. This in
3324 * turn allows skipping updates if the differential is 'small'.
3325 *
3326 * Updating tg's load_avg is necessary before update_cfs_share().
3327 */
3328 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3329 {
3330 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3331
3332 /*
3333 * No need to update load_avg for root_task_group as it is not used.
3334 */
3335 if (cfs_rq->tg == &root_task_group)
3336 return;
3337
3338 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3339 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3340 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3341 }
3342 }
3343
3344 /*
3345 * Called within set_task_rq() right before setting a task's CPU. The
3346 * caller only guarantees p->pi_lock is held; no other assumptions,
3347 * including the state of rq->lock, should be made.
3348 */
3349 void set_task_rq_fair(struct sched_entity *se,
3350 struct cfs_rq *prev, struct cfs_rq *next)
3351 {
3352 u64 p_last_update_time;
3353 u64 n_last_update_time;
3354
3355 if (!sched_feat(ATTACH_AGE_LOAD))
3356 return;
3357
3358 /*
3359 * We are supposed to update the task to "current" time, then its up to
3360 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3361 * getting what current time is, so simply throw away the out-of-date
3362 * time. This will result in the wakee task is less decayed, but giving
3363 * the wakee more load sounds not bad.
3364 */
3365 if (!(se->avg.last_update_time && prev))
3366 return;
3367
3368 #ifndef CONFIG_64BIT
3369 {
3370 u64 p_last_update_time_copy;
3371 u64 n_last_update_time_copy;
3372
3373 do {
3374 p_last_update_time_copy = prev->load_last_update_time_copy;
3375 n_last_update_time_copy = next->load_last_update_time_copy;
3376
3377 smp_rmb();
3378
3379 p_last_update_time = prev->avg.last_update_time;
3380 n_last_update_time = next->avg.last_update_time;
3381
3382 } while (p_last_update_time != p_last_update_time_copy ||
3383 n_last_update_time != n_last_update_time_copy);
3384 }
3385 #else
3386 p_last_update_time = prev->avg.last_update_time;
3387 n_last_update_time = next->avg.last_update_time;
3388 #endif
3389 __update_load_avg_blocked_se(p_last_update_time, se);
3390 se->avg.last_update_time = n_last_update_time;
3391 }
3392
3393
3394 /*
3395 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3396 * propagate its contribution. The key to this propagation is the invariant
3397 * that for each group:
3398 *
3399 * ge->avg == grq->avg (1)
3400 *
3401 * _IFF_ we look at the pure running and runnable sums. Because they
3402 * represent the very same entity, just at different points in the hierarchy.
3403 *
3404 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3405 * and simply copies the running/runnable sum over (but still wrong, because
3406 * the group entity and group rq do not have their PELT windows aligned).
3407 *
3408 * However, update_tg_cfs_load() is more complex. So we have:
3409 *
3410 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3411 *
3412 * And since, like util, the runnable part should be directly transferable,
3413 * the following would _appear_ to be the straight forward approach:
3414 *
3415 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3416 *
3417 * And per (1) we have:
3418 *
3419 * ge->avg.runnable_avg == grq->avg.runnable_avg
3420 *
3421 * Which gives:
3422 *
3423 * ge->load.weight * grq->avg.load_avg
3424 * ge->avg.load_avg = ----------------------------------- (4)
3425 * grq->load.weight
3426 *
3427 * Except that is wrong!
3428 *
3429 * Because while for entities historical weight is not important and we
3430 * really only care about our future and therefore can consider a pure
3431 * runnable sum, runqueues can NOT do this.
3432 *
3433 * We specifically want runqueues to have a load_avg that includes
3434 * historical weights. Those represent the blocked load, the load we expect
3435 * to (shortly) return to us. This only works by keeping the weights as
3436 * integral part of the sum. We therefore cannot decompose as per (3).
3437 *
3438 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3439 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3440 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3441 * runnable section of these tasks overlap (or not). If they were to perfectly
3442 * align the rq as a whole would be runnable 2/3 of the time. If however we
3443 * always have at least 1 runnable task, the rq as a whole is always runnable.
3444 *
3445 * So we'll have to approximate.. :/
3446 *
3447 * Given the constraint:
3448 *
3449 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3450 *
3451 * We can construct a rule that adds runnable to a rq by assuming minimal
3452 * overlap.
3453 *
3454 * On removal, we'll assume each task is equally runnable; which yields:
3455 *
3456 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3457 *
3458 * XXX: only do this for the part of runnable > running ?
3459 *
3460 */
3461
3462 static inline void
3463 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3464 {
3465 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3466 u32 divider;
3467
3468 /* Nothing to update */
3469 if (!delta)
3470 return;
3471
3472 /*
3473 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3474 * See ___update_load_avg() for details.
3475 */
3476 divider = get_pelt_divider(&cfs_rq->avg);
3477
3478 /* Set new sched_entity's utilization */
3479 se->avg.util_avg = gcfs_rq->avg.util_avg;
3480 se->avg.util_sum = se->avg.util_avg * divider;
3481
3482 /* Update parent cfs_rq utilization */
3483 add_positive(&cfs_rq->avg.util_avg, delta);
3484 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3485 }
3486
3487 static inline void
3488 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3489 {
3490 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3491 u32 divider;
3492
3493 /* Nothing to update */
3494 if (!delta)
3495 return;
3496
3497 /*
3498 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3499 * See ___update_load_avg() for details.
3500 */
3501 divider = get_pelt_divider(&cfs_rq->avg);
3502
3503 /* Set new sched_entity's runnable */
3504 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3505 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3506
3507 /* Update parent cfs_rq runnable */
3508 add_positive(&cfs_rq->avg.runnable_avg, delta);
3509 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3510 }
3511
3512 static inline void
3513 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3514 {
3515 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3516 unsigned long load_avg;
3517 u64 load_sum = 0;
3518 s64 delta_sum;
3519 u32 divider;
3520
3521 if (!runnable_sum)
3522 return;
3523
3524 gcfs_rq->prop_runnable_sum = 0;
3525
3526 /*
3527 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3528 * See ___update_load_avg() for details.
3529 */
3530 divider = get_pelt_divider(&cfs_rq->avg);
3531
3532 if (runnable_sum >= 0) {
3533 /*
3534 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3535 * the CPU is saturated running == runnable.
3536 */
3537 runnable_sum += se->avg.load_sum;
3538 runnable_sum = min_t(long, runnable_sum, divider);
3539 } else {
3540 /*
3541 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3542 * assuming all tasks are equally runnable.
3543 */
3544 if (scale_load_down(gcfs_rq->load.weight)) {
3545 load_sum = div_s64(gcfs_rq->avg.load_sum,
3546 scale_load_down(gcfs_rq->load.weight));
3547 }
3548
3549 /* But make sure to not inflate se's runnable */
3550 runnable_sum = min(se->avg.load_sum, load_sum);
3551 }
3552
3553 /*
3554 * runnable_sum can't be lower than running_sum
3555 * Rescale running sum to be in the same range as runnable sum
3556 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3557 * runnable_sum is in [0 : LOAD_AVG_MAX]
3558 */
3559 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3560 runnable_sum = max(runnable_sum, running_sum);
3561
3562 load_sum = (s64)se_weight(se) * runnable_sum;
3563 load_avg = div_s64(load_sum, divider);
3564
3565 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3566 delta_avg = load_avg - se->avg.load_avg;
3567
3568 se->avg.load_sum = runnable_sum;
3569 se->avg.load_avg = load_avg;
3570 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3571 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3572 }
3573
3574 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3575 {
3576 cfs_rq->propagate = 1;
3577 cfs_rq->prop_runnable_sum += runnable_sum;
3578 }
3579
3580 /* Update task and its cfs_rq load average */
3581 static inline int propagate_entity_load_avg(struct sched_entity *se)
3582 {
3583 struct cfs_rq *cfs_rq, *gcfs_rq;
3584
3585 if (entity_is_task(se))
3586 return 0;
3587
3588 gcfs_rq = group_cfs_rq(se);
3589 if (!gcfs_rq->propagate)
3590 return 0;
3591
3592 gcfs_rq->propagate = 0;
3593
3594 cfs_rq = cfs_rq_of(se);
3595
3596 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3597
3598 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3599 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3600 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3601
3602 trace_pelt_cfs_tp(cfs_rq);
3603 trace_pelt_se_tp(se);
3604
3605 return 1;
3606 }
3607
3608 /*
3609 * Check if we need to update the load and the utilization of a blocked
3610 * group_entity:
3611 */
3612 static inline bool skip_blocked_update(struct sched_entity *se)
3613 {
3614 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3615
3616 /*
3617 * If sched_entity still have not zero load or utilization, we have to
3618 * decay it:
3619 */
3620 if (se->avg.load_avg || se->avg.util_avg)
3621 return false;
3622
3623 /*
3624 * If there is a pending propagation, we have to update the load and
3625 * the utilization of the sched_entity:
3626 */
3627 if (gcfs_rq->propagate)
3628 return false;
3629
3630 /*
3631 * Otherwise, the load and the utilization of the sched_entity is
3632 * already zero and there is no pending propagation, so it will be a
3633 * waste of time to try to decay it:
3634 */
3635 return true;
3636 }
3637
3638 #else /* CONFIG_FAIR_GROUP_SCHED */
3639
3640 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3641
3642 static inline int propagate_entity_load_avg(struct sched_entity *se)
3643 {
3644 return 0;
3645 }
3646
3647 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3648
3649 #endif /* CONFIG_FAIR_GROUP_SCHED */
3650
3651 /**
3652 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3653 * @now: current time, as per cfs_rq_clock_pelt()
3654 * @cfs_rq: cfs_rq to update
3655 *
3656 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3657 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3658 * post_init_entity_util_avg().
3659 *
3660 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3661 *
3662 * Returns true if the load decayed or we removed load.
3663 *
3664 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3665 * call update_tg_load_avg() when this function returns true.
3666 */
3667 static inline int
3668 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3669 {
3670 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3671 struct sched_avg *sa = &cfs_rq->avg;
3672 int decayed = 0;
3673
3674 if (cfs_rq->removed.nr) {
3675 unsigned long r;
3676 u32 divider = get_pelt_divider(&cfs_rq->avg);
3677
3678 raw_spin_lock(&cfs_rq->removed.lock);
3679 swap(cfs_rq->removed.util_avg, removed_util);
3680 swap(cfs_rq->removed.load_avg, removed_load);
3681 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3682 cfs_rq->removed.nr = 0;
3683 raw_spin_unlock(&cfs_rq->removed.lock);
3684
3685 r = removed_load;
3686 sub_positive(&sa->load_avg, r);
3687 sub_positive(&sa->load_sum, r * divider);
3688
3689 r = removed_util;
3690 sub_positive(&sa->util_avg, r);
3691 sub_positive(&sa->util_sum, r * divider);
3692
3693 r = removed_runnable;
3694 sub_positive(&sa->runnable_avg, r);
3695 sub_positive(&sa->runnable_sum, r * divider);
3696
3697 /*
3698 * removed_runnable is the unweighted version of removed_load so we
3699 * can use it to estimate removed_load_sum.
3700 */
3701 add_tg_cfs_propagate(cfs_rq,
3702 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3703
3704 decayed = 1;
3705 }
3706
3707 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3708
3709 #ifndef CONFIG_64BIT
3710 smp_wmb();
3711 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3712 #endif
3713
3714 return decayed;
3715 }
3716
3717 /**
3718 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3719 * @cfs_rq: cfs_rq to attach to
3720 * @se: sched_entity to attach
3721 *
3722 * Must call update_cfs_rq_load_avg() before this, since we rely on
3723 * cfs_rq->avg.last_update_time being current.
3724 */
3725 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3726 {
3727 /*
3728 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3729 * See ___update_load_avg() for details.
3730 */
3731 u32 divider = get_pelt_divider(&cfs_rq->avg);
3732
3733 /*
3734 * When we attach the @se to the @cfs_rq, we must align the decay
3735 * window because without that, really weird and wonderful things can
3736 * happen.
3737 *
3738 * XXX illustrate
3739 */
3740 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3741 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3742
3743 /*
3744 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3745 * period_contrib. This isn't strictly correct, but since we're
3746 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3747 * _sum a little.
3748 */
3749 se->avg.util_sum = se->avg.util_avg * divider;
3750
3751 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3752
3753 se->avg.load_sum = divider;
3754 if (se_weight(se)) {
3755 se->avg.load_sum =
3756 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3757 }
3758
3759 enqueue_load_avg(cfs_rq, se);
3760 cfs_rq->avg.util_avg += se->avg.util_avg;
3761 cfs_rq->avg.util_sum += se->avg.util_sum;
3762 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3763 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3764
3765 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3766
3767 cfs_rq_util_change(cfs_rq, 0);
3768
3769 trace_pelt_cfs_tp(cfs_rq);
3770 }
3771
3772 /**
3773 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3774 * @cfs_rq: cfs_rq to detach from
3775 * @se: sched_entity to detach
3776 *
3777 * Must call update_cfs_rq_load_avg() before this, since we rely on
3778 * cfs_rq->avg.last_update_time being current.
3779 */
3780 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3781 {
3782 dequeue_load_avg(cfs_rq, se);
3783 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3784 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3785 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3786 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3787
3788 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3789
3790 cfs_rq_util_change(cfs_rq, 0);
3791
3792 trace_pelt_cfs_tp(cfs_rq);
3793 }
3794
3795 /*
3796 * Optional action to be done while updating the load average
3797 */
3798 #define UPDATE_TG 0x1
3799 #define SKIP_AGE_LOAD 0x2
3800 #define DO_ATTACH 0x4
3801
3802 /* Update task and its cfs_rq load average */
3803 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3804 {
3805 u64 now = cfs_rq_clock_pelt(cfs_rq);
3806 int decayed;
3807
3808 /*
3809 * Track task load average for carrying it to new CPU after migrated, and
3810 * track group sched_entity load average for task_h_load calc in migration
3811 */
3812 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3813 __update_load_avg_se(now, cfs_rq, se);
3814
3815 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3816 decayed |= propagate_entity_load_avg(se);
3817
3818 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3819
3820 /*
3821 * DO_ATTACH means we're here from enqueue_entity().
3822 * !last_update_time means we've passed through
3823 * migrate_task_rq_fair() indicating we migrated.
3824 *
3825 * IOW we're enqueueing a task on a new CPU.
3826 */
3827 attach_entity_load_avg(cfs_rq, se);
3828 update_tg_load_avg(cfs_rq);
3829
3830 } else if (decayed) {
3831 cfs_rq_util_change(cfs_rq, 0);
3832
3833 if (flags & UPDATE_TG)
3834 update_tg_load_avg(cfs_rq);
3835 }
3836 }
3837
3838 #ifndef CONFIG_64BIT
3839 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3840 {
3841 u64 last_update_time_copy;
3842 u64 last_update_time;
3843
3844 do {
3845 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3846 smp_rmb();
3847 last_update_time = cfs_rq->avg.last_update_time;
3848 } while (last_update_time != last_update_time_copy);
3849
3850 return last_update_time;
3851 }
3852 #else
3853 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3854 {
3855 return cfs_rq->avg.last_update_time;
3856 }
3857 #endif
3858
3859 /*
3860 * Synchronize entity load avg of dequeued entity without locking
3861 * the previous rq.
3862 */
3863 static void sync_entity_load_avg(struct sched_entity *se)
3864 {
3865 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3866 u64 last_update_time;
3867
3868 last_update_time = cfs_rq_last_update_time(cfs_rq);
3869 __update_load_avg_blocked_se(last_update_time, se);
3870 }
3871
3872 /*
3873 * Task first catches up with cfs_rq, and then subtract
3874 * itself from the cfs_rq (task must be off the queue now).
3875 */
3876 static void remove_entity_load_avg(struct sched_entity *se)
3877 {
3878 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3879 unsigned long flags;
3880
3881 /*
3882 * tasks cannot exit without having gone through wake_up_new_task() ->
3883 * post_init_entity_util_avg() which will have added things to the
3884 * cfs_rq, so we can remove unconditionally.
3885 */
3886
3887 sync_entity_load_avg(se);
3888
3889 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3890 ++cfs_rq->removed.nr;
3891 cfs_rq->removed.util_avg += se->avg.util_avg;
3892 cfs_rq->removed.load_avg += se->avg.load_avg;
3893 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3894 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3895 }
3896
3897 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3898 {
3899 return cfs_rq->avg.runnable_avg;
3900 }
3901
3902 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3903 {
3904 return cfs_rq->avg.load_avg;
3905 }
3906
3907 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3908
3909 static inline unsigned long task_util(struct task_struct *p)
3910 {
3911 return READ_ONCE(p->se.avg.util_avg);
3912 }
3913
3914 static inline unsigned long _task_util_est(struct task_struct *p)
3915 {
3916 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3917
3918 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3919 }
3920
3921 static inline unsigned long task_util_est(struct task_struct *p)
3922 {
3923 return max(task_util(p), _task_util_est(p));
3924 }
3925
3926 #ifdef CONFIG_UCLAMP_TASK
3927 static inline unsigned long uclamp_task_util(struct task_struct *p)
3928 {
3929 return clamp(task_util_est(p),
3930 uclamp_eff_value(p, UCLAMP_MIN),
3931 uclamp_eff_value(p, UCLAMP_MAX));
3932 }
3933 #else
3934 static inline unsigned long uclamp_task_util(struct task_struct *p)
3935 {
3936 return task_util_est(p);
3937 }
3938 #endif
3939
3940 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3941 struct task_struct *p)
3942 {
3943 unsigned int enqueued;
3944
3945 if (!sched_feat(UTIL_EST))
3946 return;
3947
3948 /* Update root cfs_rq's estimated utilization */
3949 enqueued = cfs_rq->avg.util_est.enqueued;
3950 enqueued += _task_util_est(p);
3951 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3952
3953 trace_sched_util_est_cfs_tp(cfs_rq);
3954 }
3955
3956 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3957 struct task_struct *p)
3958 {
3959 unsigned int enqueued;
3960
3961 if (!sched_feat(UTIL_EST))
3962 return;
3963
3964 /* Update root cfs_rq's estimated utilization */
3965 enqueued = cfs_rq->avg.util_est.enqueued;
3966 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3967 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3968
3969 trace_sched_util_est_cfs_tp(cfs_rq);
3970 }
3971
3972 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3973
3974 /*
3975 * Check if a (signed) value is within a specified (unsigned) margin,
3976 * based on the observation that:
3977 *
3978 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3979 *
3980 * NOTE: this only works when value + maring < INT_MAX.
3981 */
3982 static inline bool within_margin(int value, int margin)
3983 {
3984 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3985 }
3986
3987 static inline void util_est_update(struct cfs_rq *cfs_rq,
3988 struct task_struct *p,
3989 bool task_sleep)
3990 {
3991 long last_ewma_diff, last_enqueued_diff;
3992 struct util_est ue;
3993
3994 if (!sched_feat(UTIL_EST))
3995 return;
3996
3997 /*
3998 * Skip update of task's estimated utilization when the task has not
3999 * yet completed an activation, e.g. being migrated.
4000 */
4001 if (!task_sleep)
4002 return;
4003
4004 /*
4005 * If the PELT values haven't changed since enqueue time,
4006 * skip the util_est update.
4007 */
4008 ue = p->se.avg.util_est;
4009 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4010 return;
4011
4012 last_enqueued_diff = ue.enqueued;
4013
4014 /*
4015 * Reset EWMA on utilization increases, the moving average is used only
4016 * to smooth utilization decreases.
4017 */
4018 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
4019 if (sched_feat(UTIL_EST_FASTUP)) {
4020 if (ue.ewma < ue.enqueued) {
4021 ue.ewma = ue.enqueued;
4022 goto done;
4023 }
4024 }
4025
4026 /*
4027 * Skip update of task's estimated utilization when its members are
4028 * already ~1% close to its last activation value.
4029 */
4030 last_ewma_diff = ue.enqueued - ue.ewma;
4031 last_enqueued_diff -= ue.enqueued;
4032 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4033 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4034 goto done;
4035
4036 return;
4037 }
4038
4039 /*
4040 * To avoid overestimation of actual task utilization, skip updates if
4041 * we cannot grant there is idle time in this CPU.
4042 */
4043 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4044 return;
4045
4046 /*
4047 * Update Task's estimated utilization
4048 *
4049 * When *p completes an activation we can consolidate another sample
4050 * of the task size. This is done by storing the current PELT value
4051 * as ue.enqueued and by using this value to update the Exponential
4052 * Weighted Moving Average (EWMA):
4053 *
4054 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4055 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4056 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4057 * = w * ( last_ewma_diff ) + ewma(t-1)
4058 * = w * (last_ewma_diff + ewma(t-1) / w)
4059 *
4060 * Where 'w' is the weight of new samples, which is configured to be
4061 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4062 */
4063 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4064 ue.ewma += last_ewma_diff;
4065 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4066 done:
4067 WRITE_ONCE(p->se.avg.util_est, ue);
4068
4069 trace_sched_util_est_se_tp(&p->se);
4070 }
4071
4072 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4073 {
4074 return fits_capacity(uclamp_task_util(p), capacity);
4075 }
4076
4077 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4078 {
4079 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4080 return;
4081
4082 if (!p || p->nr_cpus_allowed == 1) {
4083 rq->misfit_task_load = 0;
4084 return;
4085 }
4086
4087 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4088 rq->misfit_task_load = 0;
4089 return;
4090 }
4091
4092 /*
4093 * Make sure that misfit_task_load will not be null even if
4094 * task_h_load() returns 0.
4095 */
4096 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4097 }
4098
4099 #else /* CONFIG_SMP */
4100
4101 #define UPDATE_TG 0x0
4102 #define SKIP_AGE_LOAD 0x0
4103 #define DO_ATTACH 0x0
4104
4105 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4106 {
4107 cfs_rq_util_change(cfs_rq, 0);
4108 }
4109
4110 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4111
4112 static inline void
4113 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4114 static inline void
4115 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4116
4117 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4118 {
4119 return 0;
4120 }
4121
4122 static inline void
4123 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4124
4125 static inline void
4126 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4127
4128 static inline void
4129 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4130 bool task_sleep) {}
4131 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4132
4133 #endif /* CONFIG_SMP */
4134
4135 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4136 {
4137 #ifdef CONFIG_SCHED_DEBUG
4138 s64 d = se->vruntime - cfs_rq->min_vruntime;
4139
4140 if (d < 0)
4141 d = -d;
4142
4143 if (d > 3*sysctl_sched_latency)
4144 schedstat_inc(cfs_rq->nr_spread_over);
4145 #endif
4146 }
4147
4148 static void
4149 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4150 {
4151 u64 vruntime = cfs_rq->min_vruntime;
4152
4153 /*
4154 * The 'current' period is already promised to the current tasks,
4155 * however the extra weight of the new task will slow them down a
4156 * little, place the new task so that it fits in the slot that
4157 * stays open at the end.
4158 */
4159 if (initial && sched_feat(START_DEBIT))
4160 vruntime += sched_vslice(cfs_rq, se);
4161
4162 /* sleeps up to a single latency don't count. */
4163 if (!initial) {
4164 unsigned long thresh = sysctl_sched_latency;
4165
4166 /*
4167 * Halve their sleep time's effect, to allow
4168 * for a gentler effect of sleepers:
4169 */
4170 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4171 thresh >>= 1;
4172
4173 vruntime -= thresh;
4174 }
4175
4176 /* ensure we never gain time by being placed backwards. */
4177 se->vruntime = max_vruntime(se->vruntime, vruntime);
4178 }
4179
4180 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4181
4182 static inline void check_schedstat_required(void)
4183 {
4184 #ifdef CONFIG_SCHEDSTATS
4185 if (schedstat_enabled())
4186 return;
4187
4188 /* Force schedstat enabled if a dependent tracepoint is active */
4189 if (trace_sched_stat_wait_enabled() ||
4190 trace_sched_stat_sleep_enabled() ||
4191 trace_sched_stat_iowait_enabled() ||
4192 trace_sched_stat_blocked_enabled() ||
4193 trace_sched_stat_runtime_enabled()) {
4194 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4195 "stat_blocked and stat_runtime require the "
4196 "kernel parameter schedstats=enable or "
4197 "kernel.sched_schedstats=1\n");
4198 }
4199 #endif
4200 }
4201
4202 static inline bool cfs_bandwidth_used(void);
4203
4204 /*
4205 * MIGRATION
4206 *
4207 * dequeue
4208 * update_curr()
4209 * update_min_vruntime()
4210 * vruntime -= min_vruntime
4211 *
4212 * enqueue
4213 * update_curr()
4214 * update_min_vruntime()
4215 * vruntime += min_vruntime
4216 *
4217 * this way the vruntime transition between RQs is done when both
4218 * min_vruntime are up-to-date.
4219 *
4220 * WAKEUP (remote)
4221 *
4222 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4223 * vruntime -= min_vruntime
4224 *
4225 * enqueue
4226 * update_curr()
4227 * update_min_vruntime()
4228 * vruntime += min_vruntime
4229 *
4230 * this way we don't have the most up-to-date min_vruntime on the originating
4231 * CPU and an up-to-date min_vruntime on the destination CPU.
4232 */
4233
4234 static void
4235 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4236 {
4237 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4238 bool curr = cfs_rq->curr == se;
4239
4240 /*
4241 * If we're the current task, we must renormalise before calling
4242 * update_curr().
4243 */
4244 if (renorm && curr)
4245 se->vruntime += cfs_rq->min_vruntime;
4246
4247 update_curr(cfs_rq);
4248
4249 /*
4250 * Otherwise, renormalise after, such that we're placed at the current
4251 * moment in time, instead of some random moment in the past. Being
4252 * placed in the past could significantly boost this task to the
4253 * fairness detriment of existing tasks.
4254 */
4255 if (renorm && !curr)
4256 se->vruntime += cfs_rq->min_vruntime;
4257
4258 /*
4259 * When enqueuing a sched_entity, we must:
4260 * - Update loads to have both entity and cfs_rq synced with now.
4261 * - Add its load to cfs_rq->runnable_avg
4262 * - For group_entity, update its weight to reflect the new share of
4263 * its group cfs_rq
4264 * - Add its new weight to cfs_rq->load.weight
4265 */
4266 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4267 se_update_runnable(se);
4268 update_cfs_group(se);
4269 account_entity_enqueue(cfs_rq, se);
4270
4271 if (flags & ENQUEUE_WAKEUP)
4272 place_entity(cfs_rq, se, 0);
4273
4274 check_schedstat_required();
4275 update_stats_enqueue(cfs_rq, se, flags);
4276 check_spread(cfs_rq, se);
4277 if (!curr)
4278 __enqueue_entity(cfs_rq, se);
4279 se->on_rq = 1;
4280
4281 /*
4282 * When bandwidth control is enabled, cfs might have been removed
4283 * because of a parent been throttled but cfs->nr_running > 1. Try to
4284 * add it unconditionnally.
4285 */
4286 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4287 list_add_leaf_cfs_rq(cfs_rq);
4288
4289 if (cfs_rq->nr_running == 1)
4290 check_enqueue_throttle(cfs_rq);
4291 }
4292
4293 static void __clear_buddies_last(struct sched_entity *se)
4294 {
4295 for_each_sched_entity(se) {
4296 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4297 if (cfs_rq->last != se)
4298 break;
4299
4300 cfs_rq->last = NULL;
4301 }
4302 }
4303
4304 static void __clear_buddies_next(struct sched_entity *se)
4305 {
4306 for_each_sched_entity(se) {
4307 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4308 if (cfs_rq->next != se)
4309 break;
4310
4311 cfs_rq->next = NULL;
4312 }
4313 }
4314
4315 static void __clear_buddies_skip(struct sched_entity *se)
4316 {
4317 for_each_sched_entity(se) {
4318 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4319 if (cfs_rq->skip != se)
4320 break;
4321
4322 cfs_rq->skip = NULL;
4323 }
4324 }
4325
4326 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4327 {
4328 if (cfs_rq->last == se)
4329 __clear_buddies_last(se);
4330
4331 if (cfs_rq->next == se)
4332 __clear_buddies_next(se);
4333
4334 if (cfs_rq->skip == se)
4335 __clear_buddies_skip(se);
4336 }
4337
4338 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4339
4340 static void
4341 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4342 {
4343 /*
4344 * Update run-time statistics of the 'current'.
4345 */
4346 update_curr(cfs_rq);
4347
4348 /*
4349 * When dequeuing a sched_entity, we must:
4350 * - Update loads to have both entity and cfs_rq synced with now.
4351 * - Subtract its load from the cfs_rq->runnable_avg.
4352 * - Subtract its previous weight from cfs_rq->load.weight.
4353 * - For group entity, update its weight to reflect the new share
4354 * of its group cfs_rq.
4355 */
4356 update_load_avg(cfs_rq, se, UPDATE_TG);
4357 se_update_runnable(se);
4358
4359 update_stats_dequeue(cfs_rq, se, flags);
4360
4361 clear_buddies(cfs_rq, se);
4362
4363 if (se != cfs_rq->curr)
4364 __dequeue_entity(cfs_rq, se);
4365 se->on_rq = 0;
4366 account_entity_dequeue(cfs_rq, se);
4367
4368 /*
4369 * Normalize after update_curr(); which will also have moved
4370 * min_vruntime if @se is the one holding it back. But before doing
4371 * update_min_vruntime() again, which will discount @se's position and
4372 * can move min_vruntime forward still more.
4373 */
4374 if (!(flags & DEQUEUE_SLEEP))
4375 se->vruntime -= cfs_rq->min_vruntime;
4376
4377 /* return excess runtime on last dequeue */
4378 return_cfs_rq_runtime(cfs_rq);
4379
4380 update_cfs_group(se);
4381
4382 /*
4383 * Now advance min_vruntime if @se was the entity holding it back,
4384 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4385 * put back on, and if we advance min_vruntime, we'll be placed back
4386 * further than we started -- ie. we'll be penalized.
4387 */
4388 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4389 update_min_vruntime(cfs_rq);
4390 }
4391
4392 /*
4393 * Preempt the current task with a newly woken task if needed:
4394 */
4395 static void
4396 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4397 {
4398 unsigned long ideal_runtime, delta_exec;
4399 struct sched_entity *se;
4400 s64 delta;
4401
4402 ideal_runtime = sched_slice(cfs_rq, curr);
4403 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4404 if (delta_exec > ideal_runtime) {
4405 resched_curr(rq_of(cfs_rq));
4406 /*
4407 * The current task ran long enough, ensure it doesn't get
4408 * re-elected due to buddy favours.
4409 */
4410 clear_buddies(cfs_rq, curr);
4411 return;
4412 }
4413
4414 /*
4415 * Ensure that a task that missed wakeup preemption by a
4416 * narrow margin doesn't have to wait for a full slice.
4417 * This also mitigates buddy induced latencies under load.
4418 */
4419 if (delta_exec < sysctl_sched_min_granularity)
4420 return;
4421
4422 se = __pick_first_entity(cfs_rq);
4423 delta = curr->vruntime - se->vruntime;
4424
4425 if (delta < 0)
4426 return;
4427
4428 if (delta > ideal_runtime)
4429 resched_curr(rq_of(cfs_rq));
4430 }
4431
4432 static void
4433 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4434 {
4435 /* 'current' is not kept within the tree. */
4436 if (se->on_rq) {
4437 /*
4438 * Any task has to be enqueued before it get to execute on
4439 * a CPU. So account for the time it spent waiting on the
4440 * runqueue.
4441 */
4442 update_stats_wait_end(cfs_rq, se);
4443 __dequeue_entity(cfs_rq, se);
4444 update_load_avg(cfs_rq, se, UPDATE_TG);
4445 }
4446
4447 update_stats_curr_start(cfs_rq, se);
4448 cfs_rq->curr = se;
4449
4450 /*
4451 * Track our maximum slice length, if the CPU's load is at
4452 * least twice that of our own weight (i.e. dont track it
4453 * when there are only lesser-weight tasks around):
4454 */
4455 if (schedstat_enabled() &&
4456 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4457 schedstat_set(se->statistics.slice_max,
4458 max((u64)schedstat_val(se->statistics.slice_max),
4459 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4460 }
4461
4462 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4463 }
4464
4465 static int
4466 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4467
4468 /*
4469 * Pick the next process, keeping these things in mind, in this order:
4470 * 1) keep things fair between processes/task groups
4471 * 2) pick the "next" process, since someone really wants that to run
4472 * 3) pick the "last" process, for cache locality
4473 * 4) do not run the "skip" process, if something else is available
4474 */
4475 static struct sched_entity *
4476 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4477 {
4478 struct sched_entity *left = __pick_first_entity(cfs_rq);
4479 struct sched_entity *se;
4480
4481 /*
4482 * If curr is set we have to see if its left of the leftmost entity
4483 * still in the tree, provided there was anything in the tree at all.
4484 */
4485 if (!left || (curr && entity_before(curr, left)))
4486 left = curr;
4487
4488 se = left; /* ideally we run the leftmost entity */
4489
4490 /*
4491 * Avoid running the skip buddy, if running something else can
4492 * be done without getting too unfair.
4493 */
4494 if (cfs_rq->skip == se) {
4495 struct sched_entity *second;
4496
4497 if (se == curr) {
4498 second = __pick_first_entity(cfs_rq);
4499 } else {
4500 second = __pick_next_entity(se);
4501 if (!second || (curr && entity_before(curr, second)))
4502 second = curr;
4503 }
4504
4505 if (second && wakeup_preempt_entity(second, left) < 1)
4506 se = second;
4507 }
4508
4509 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4510 /*
4511 * Someone really wants this to run. If it's not unfair, run it.
4512 */
4513 se = cfs_rq->next;
4514 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4515 /*
4516 * Prefer last buddy, try to return the CPU to a preempted task.
4517 */
4518 se = cfs_rq->last;
4519 }
4520
4521 clear_buddies(cfs_rq, se);
4522
4523 return se;
4524 }
4525
4526 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4527
4528 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4529 {
4530 /*
4531 * If still on the runqueue then deactivate_task()
4532 * was not called and update_curr() has to be done:
4533 */
4534 if (prev->on_rq)
4535 update_curr(cfs_rq);
4536
4537 /* throttle cfs_rqs exceeding runtime */
4538 check_cfs_rq_runtime(cfs_rq);
4539
4540 check_spread(cfs_rq, prev);
4541
4542 if (prev->on_rq) {
4543 update_stats_wait_start(cfs_rq, prev);
4544 /* Put 'current' back into the tree. */
4545 __enqueue_entity(cfs_rq, prev);
4546 /* in !on_rq case, update occurred at dequeue */
4547 update_load_avg(cfs_rq, prev, 0);
4548 }
4549 cfs_rq->curr = NULL;
4550 }
4551
4552 static void
4553 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4554 {
4555 /*
4556 * Update run-time statistics of the 'current'.
4557 */
4558 update_curr(cfs_rq);
4559
4560 /*
4561 * Ensure that runnable average is periodically updated.
4562 */
4563 update_load_avg(cfs_rq, curr, UPDATE_TG);
4564 update_cfs_group(curr);
4565
4566 #ifdef CONFIG_SCHED_HRTICK
4567 /*
4568 * queued ticks are scheduled to match the slice, so don't bother
4569 * validating it and just reschedule.
4570 */
4571 if (queued) {
4572 resched_curr(rq_of(cfs_rq));
4573 return;
4574 }
4575 /*
4576 * don't let the period tick interfere with the hrtick preemption
4577 */
4578 if (!sched_feat(DOUBLE_TICK) &&
4579 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4580 return;
4581 #endif
4582
4583 if (cfs_rq->nr_running > 1)
4584 check_preempt_tick(cfs_rq, curr);
4585 }
4586
4587
4588 /**************************************************
4589 * CFS bandwidth control machinery
4590 */
4591
4592 #ifdef CONFIG_CFS_BANDWIDTH
4593
4594 #ifdef CONFIG_JUMP_LABEL
4595 static struct static_key __cfs_bandwidth_used;
4596
4597 static inline bool cfs_bandwidth_used(void)
4598 {
4599 return static_key_false(&__cfs_bandwidth_used);
4600 }
4601
4602 void cfs_bandwidth_usage_inc(void)
4603 {
4604 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4605 }
4606
4607 void cfs_bandwidth_usage_dec(void)
4608 {
4609 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4610 }
4611 #else /* CONFIG_JUMP_LABEL */
4612 static bool cfs_bandwidth_used(void)
4613 {
4614 return true;
4615 }
4616
4617 void cfs_bandwidth_usage_inc(void) {}
4618 void cfs_bandwidth_usage_dec(void) {}
4619 #endif /* CONFIG_JUMP_LABEL */
4620
4621 /*
4622 * default period for cfs group bandwidth.
4623 * default: 0.1s, units: nanoseconds
4624 */
4625 static inline u64 default_cfs_period(void)
4626 {
4627 return 100000000ULL;
4628 }
4629
4630 static inline u64 sched_cfs_bandwidth_slice(void)
4631 {
4632 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4633 }
4634
4635 /*
4636 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4637 * directly instead of rq->clock to avoid adding additional synchronization
4638 * around rq->lock.
4639 *
4640 * requires cfs_b->lock
4641 */
4642 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4643 {
4644 if (cfs_b->quota != RUNTIME_INF)
4645 cfs_b->runtime = cfs_b->quota;
4646 }
4647
4648 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4649 {
4650 return &tg->cfs_bandwidth;
4651 }
4652
4653 /* returns 0 on failure to allocate runtime */
4654 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4655 struct cfs_rq *cfs_rq, u64 target_runtime)
4656 {
4657 u64 min_amount, amount = 0;
4658
4659 lockdep_assert_held(&cfs_b->lock);
4660
4661 /* note: this is a positive sum as runtime_remaining <= 0 */
4662 min_amount = target_runtime - cfs_rq->runtime_remaining;
4663
4664 if (cfs_b->quota == RUNTIME_INF)
4665 amount = min_amount;
4666 else {
4667 start_cfs_bandwidth(cfs_b);
4668
4669 if (cfs_b->runtime > 0) {
4670 amount = min(cfs_b->runtime, min_amount);
4671 cfs_b->runtime -= amount;
4672 cfs_b->idle = 0;
4673 }
4674 }
4675
4676 cfs_rq->runtime_remaining += amount;
4677
4678 return cfs_rq->runtime_remaining > 0;
4679 }
4680
4681 /* returns 0 on failure to allocate runtime */
4682 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4683 {
4684 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4685 int ret;
4686
4687 raw_spin_lock(&cfs_b->lock);
4688 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4689 raw_spin_unlock(&cfs_b->lock);
4690
4691 return ret;
4692 }
4693
4694 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4695 {
4696 /* dock delta_exec before expiring quota (as it could span periods) */
4697 cfs_rq->runtime_remaining -= delta_exec;
4698
4699 if (likely(cfs_rq->runtime_remaining > 0))
4700 return;
4701
4702 if (cfs_rq->throttled)
4703 return;
4704 /*
4705 * if we're unable to extend our runtime we resched so that the active
4706 * hierarchy can be throttled
4707 */
4708 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4709 resched_curr(rq_of(cfs_rq));
4710 }
4711
4712 static __always_inline
4713 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4714 {
4715 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4716 return;
4717
4718 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4719 }
4720
4721 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4722 {
4723 return cfs_bandwidth_used() && cfs_rq->throttled;
4724 }
4725
4726 /* check whether cfs_rq, or any parent, is throttled */
4727 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4728 {
4729 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4730 }
4731
4732 /*
4733 * Ensure that neither of the group entities corresponding to src_cpu or
4734 * dest_cpu are members of a throttled hierarchy when performing group
4735 * load-balance operations.
4736 */
4737 static inline int throttled_lb_pair(struct task_group *tg,
4738 int src_cpu, int dest_cpu)
4739 {
4740 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4741
4742 src_cfs_rq = tg->cfs_rq[src_cpu];
4743 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4744
4745 return throttled_hierarchy(src_cfs_rq) ||
4746 throttled_hierarchy(dest_cfs_rq);
4747 }
4748
4749 static int tg_unthrottle_up(struct task_group *tg, void *data)
4750 {
4751 struct rq *rq = data;
4752 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4753
4754 cfs_rq->throttle_count--;
4755 if (!cfs_rq->throttle_count) {
4756 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4757 cfs_rq->throttled_clock_task;
4758
4759 /* Add cfs_rq with already running entity in the list */
4760 if (cfs_rq->nr_running >= 1)
4761 list_add_leaf_cfs_rq(cfs_rq);
4762 }
4763
4764 return 0;
4765 }
4766
4767 static int tg_throttle_down(struct task_group *tg, void *data)
4768 {
4769 struct rq *rq = data;
4770 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4771
4772 /* group is entering throttled state, stop time */
4773 if (!cfs_rq->throttle_count) {
4774 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4775 list_del_leaf_cfs_rq(cfs_rq);
4776 }
4777 cfs_rq->throttle_count++;
4778
4779 return 0;
4780 }
4781
4782 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4783 {
4784 struct rq *rq = rq_of(cfs_rq);
4785 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4786 struct sched_entity *se;
4787 long task_delta, idle_task_delta, dequeue = 1;
4788
4789 raw_spin_lock(&cfs_b->lock);
4790 /* This will start the period timer if necessary */
4791 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4792 /*
4793 * We have raced with bandwidth becoming available, and if we
4794 * actually throttled the timer might not unthrottle us for an
4795 * entire period. We additionally needed to make sure that any
4796 * subsequent check_cfs_rq_runtime calls agree not to throttle
4797 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4798 * for 1ns of runtime rather than just check cfs_b.
4799 */
4800 dequeue = 0;
4801 } else {
4802 list_add_tail_rcu(&cfs_rq->throttled_list,
4803 &cfs_b->throttled_cfs_rq);
4804 }
4805 raw_spin_unlock(&cfs_b->lock);
4806
4807 if (!dequeue)
4808 return false; /* Throttle no longer required. */
4809
4810 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4811
4812 /* freeze hierarchy runnable averages while throttled */
4813 rcu_read_lock();
4814 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4815 rcu_read_unlock();
4816
4817 task_delta = cfs_rq->h_nr_running;
4818 idle_task_delta = cfs_rq->idle_h_nr_running;
4819 for_each_sched_entity(se) {
4820 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4821 /* throttled entity or throttle-on-deactivate */
4822 if (!se->on_rq)
4823 goto done;
4824
4825 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4826
4827 qcfs_rq->h_nr_running -= task_delta;
4828 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4829
4830 if (qcfs_rq->load.weight) {
4831 /* Avoid re-evaluating load for this entity: */
4832 se = parent_entity(se);
4833 break;
4834 }
4835 }
4836
4837 for_each_sched_entity(se) {
4838 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4839 /* throttled entity or throttle-on-deactivate */
4840 if (!se->on_rq)
4841 goto done;
4842
4843 update_load_avg(qcfs_rq, se, 0);
4844 se_update_runnable(se);
4845
4846 qcfs_rq->h_nr_running -= task_delta;
4847 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4848 }
4849
4850 /* At this point se is NULL and we are at root level*/
4851 sub_nr_running(rq, task_delta);
4852
4853 done:
4854 /*
4855 * Note: distribution will already see us throttled via the
4856 * throttled-list. rq->lock protects completion.
4857 */
4858 cfs_rq->throttled = 1;
4859 cfs_rq->throttled_clock = rq_clock(rq);
4860 return true;
4861 }
4862
4863 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4864 {
4865 struct rq *rq = rq_of(cfs_rq);
4866 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4867 struct sched_entity *se;
4868 long task_delta, idle_task_delta;
4869
4870 se = cfs_rq->tg->se[cpu_of(rq)];
4871
4872 cfs_rq->throttled = 0;
4873
4874 update_rq_clock(rq);
4875
4876 raw_spin_lock(&cfs_b->lock);
4877 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4878 list_del_rcu(&cfs_rq->throttled_list);
4879 raw_spin_unlock(&cfs_b->lock);
4880
4881 /* update hierarchical throttle state */
4882 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4883
4884 if (!cfs_rq->load.weight)
4885 return;
4886
4887 task_delta = cfs_rq->h_nr_running;
4888 idle_task_delta = cfs_rq->idle_h_nr_running;
4889 for_each_sched_entity(se) {
4890 if (se->on_rq)
4891 break;
4892 cfs_rq = cfs_rq_of(se);
4893 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4894
4895 cfs_rq->h_nr_running += task_delta;
4896 cfs_rq->idle_h_nr_running += idle_task_delta;
4897
4898 /* end evaluation on encountering a throttled cfs_rq */
4899 if (cfs_rq_throttled(cfs_rq))
4900 goto unthrottle_throttle;
4901 }
4902
4903 for_each_sched_entity(se) {
4904 cfs_rq = cfs_rq_of(se);
4905
4906 update_load_avg(cfs_rq, se, UPDATE_TG);
4907 se_update_runnable(se);
4908
4909 cfs_rq->h_nr_running += task_delta;
4910 cfs_rq->idle_h_nr_running += idle_task_delta;
4911
4912
4913 /* end evaluation on encountering a throttled cfs_rq */
4914 if (cfs_rq_throttled(cfs_rq))
4915 goto unthrottle_throttle;
4916
4917 /*
4918 * One parent has been throttled and cfs_rq removed from the
4919 * list. Add it back to not break the leaf list.
4920 */
4921 if (throttled_hierarchy(cfs_rq))
4922 list_add_leaf_cfs_rq(cfs_rq);
4923 }
4924
4925 /* At this point se is NULL and we are at root level*/
4926 add_nr_running(rq, task_delta);
4927
4928 unthrottle_throttle:
4929 /*
4930 * The cfs_rq_throttled() breaks in the above iteration can result in
4931 * incomplete leaf list maintenance, resulting in triggering the
4932 * assertion below.
4933 */
4934 for_each_sched_entity(se) {
4935 cfs_rq = cfs_rq_of(se);
4936
4937 if (list_add_leaf_cfs_rq(cfs_rq))
4938 break;
4939 }
4940
4941 assert_list_leaf_cfs_rq(rq);
4942
4943 /* Determine whether we need to wake up potentially idle CPU: */
4944 if (rq->curr == rq->idle && rq->cfs.nr_running)
4945 resched_curr(rq);
4946 }
4947
4948 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4949 {
4950 struct cfs_rq *cfs_rq;
4951 u64 runtime, remaining = 1;
4952
4953 rcu_read_lock();
4954 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4955 throttled_list) {
4956 struct rq *rq = rq_of(cfs_rq);
4957 struct rq_flags rf;
4958
4959 rq_lock_irqsave(rq, &rf);
4960 if (!cfs_rq_throttled(cfs_rq))
4961 goto next;
4962
4963 /* By the above check, this should never be true */
4964 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4965
4966 raw_spin_lock(&cfs_b->lock);
4967 runtime = -cfs_rq->runtime_remaining + 1;
4968 if (runtime > cfs_b->runtime)
4969 runtime = cfs_b->runtime;
4970 cfs_b->runtime -= runtime;
4971 remaining = cfs_b->runtime;
4972 raw_spin_unlock(&cfs_b->lock);
4973
4974 cfs_rq->runtime_remaining += runtime;
4975
4976 /* we check whether we're throttled above */
4977 if (cfs_rq->runtime_remaining > 0)
4978 unthrottle_cfs_rq(cfs_rq);
4979
4980 next:
4981 rq_unlock_irqrestore(rq, &rf);
4982
4983 if (!remaining)
4984 break;
4985 }
4986 rcu_read_unlock();
4987 }
4988
4989 /*
4990 * Responsible for refilling a task_group's bandwidth and unthrottling its
4991 * cfs_rqs as appropriate. If there has been no activity within the last
4992 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4993 * used to track this state.
4994 */
4995 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4996 {
4997 int throttled;
4998
4999 /* no need to continue the timer with no bandwidth constraint */
5000 if (cfs_b->quota == RUNTIME_INF)
5001 goto out_deactivate;
5002
5003 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5004 cfs_b->nr_periods += overrun;
5005
5006 /*
5007 * idle depends on !throttled (for the case of a large deficit), and if
5008 * we're going inactive then everything else can be deferred
5009 */
5010 if (cfs_b->idle && !throttled)
5011 goto out_deactivate;
5012
5013 __refill_cfs_bandwidth_runtime(cfs_b);
5014
5015 if (!throttled) {
5016 /* mark as potentially idle for the upcoming period */
5017 cfs_b->idle = 1;
5018 return 0;
5019 }
5020
5021 /* account preceding periods in which throttling occurred */
5022 cfs_b->nr_throttled += overrun;
5023
5024 /*
5025 * This check is repeated as we release cfs_b->lock while we unthrottle.
5026 */
5027 while (throttled && cfs_b->runtime > 0) {
5028 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5029 /* we can't nest cfs_b->lock while distributing bandwidth */
5030 distribute_cfs_runtime(cfs_b);
5031 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5032
5033 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5034 }
5035
5036 /*
5037 * While we are ensured activity in the period following an
5038 * unthrottle, this also covers the case in which the new bandwidth is
5039 * insufficient to cover the existing bandwidth deficit. (Forcing the
5040 * timer to remain active while there are any throttled entities.)
5041 */
5042 cfs_b->idle = 0;
5043
5044 return 0;
5045
5046 out_deactivate:
5047 return 1;
5048 }
5049
5050 /* a cfs_rq won't donate quota below this amount */
5051 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5052 /* minimum remaining period time to redistribute slack quota */
5053 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5054 /* how long we wait to gather additional slack before distributing */
5055 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5056
5057 /*
5058 * Are we near the end of the current quota period?
5059 *
5060 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5061 * hrtimer base being cleared by hrtimer_start. In the case of
5062 * migrate_hrtimers, base is never cleared, so we are fine.
5063 */
5064 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5065 {
5066 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5067 u64 remaining;
5068
5069 /* if the call-back is running a quota refresh is already occurring */
5070 if (hrtimer_callback_running(refresh_timer))
5071 return 1;
5072
5073 /* is a quota refresh about to occur? */
5074 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5075 if (remaining < min_expire)
5076 return 1;
5077
5078 return 0;
5079 }
5080
5081 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5082 {
5083 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5084
5085 /* if there's a quota refresh soon don't bother with slack */
5086 if (runtime_refresh_within(cfs_b, min_left))
5087 return;
5088
5089 /* don't push forwards an existing deferred unthrottle */
5090 if (cfs_b->slack_started)
5091 return;
5092 cfs_b->slack_started = true;
5093
5094 hrtimer_start(&cfs_b->slack_timer,
5095 ns_to_ktime(cfs_bandwidth_slack_period),
5096 HRTIMER_MODE_REL);
5097 }
5098
5099 /* we know any runtime found here is valid as update_curr() precedes return */
5100 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5101 {
5102 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5103 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5104
5105 if (slack_runtime <= 0)
5106 return;
5107
5108 raw_spin_lock(&cfs_b->lock);
5109 if (cfs_b->quota != RUNTIME_INF) {
5110 cfs_b->runtime += slack_runtime;
5111
5112 /* we are under rq->lock, defer unthrottling using a timer */
5113 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5114 !list_empty(&cfs_b->throttled_cfs_rq))
5115 start_cfs_slack_bandwidth(cfs_b);
5116 }
5117 raw_spin_unlock(&cfs_b->lock);
5118
5119 /* even if it's not valid for return we don't want to try again */
5120 cfs_rq->runtime_remaining -= slack_runtime;
5121 }
5122
5123 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5124 {
5125 if (!cfs_bandwidth_used())
5126 return;
5127
5128 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5129 return;
5130
5131 __return_cfs_rq_runtime(cfs_rq);
5132 }
5133
5134 /*
5135 * This is done with a timer (instead of inline with bandwidth return) since
5136 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5137 */
5138 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5139 {
5140 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5141 unsigned long flags;
5142
5143 /* confirm we're still not at a refresh boundary */
5144 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5145 cfs_b->slack_started = false;
5146
5147 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5148 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5149 return;
5150 }
5151
5152 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5153 runtime = cfs_b->runtime;
5154
5155 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5156
5157 if (!runtime)
5158 return;
5159
5160 distribute_cfs_runtime(cfs_b);
5161 }
5162
5163 /*
5164 * When a group wakes up we want to make sure that its quota is not already
5165 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5166 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5167 */
5168 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5169 {
5170 if (!cfs_bandwidth_used())
5171 return;
5172
5173 /* an active group must be handled by the update_curr()->put() path */
5174 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5175 return;
5176
5177 /* ensure the group is not already throttled */
5178 if (cfs_rq_throttled(cfs_rq))
5179 return;
5180
5181 /* update runtime allocation */
5182 account_cfs_rq_runtime(cfs_rq, 0);
5183 if (cfs_rq->runtime_remaining <= 0)
5184 throttle_cfs_rq(cfs_rq);
5185 }
5186
5187 static void sync_throttle(struct task_group *tg, int cpu)
5188 {
5189 struct cfs_rq *pcfs_rq, *cfs_rq;
5190
5191 if (!cfs_bandwidth_used())
5192 return;
5193
5194 if (!tg->parent)
5195 return;
5196
5197 cfs_rq = tg->cfs_rq[cpu];
5198 pcfs_rq = tg->parent->cfs_rq[cpu];
5199
5200 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5201 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5202 }
5203
5204 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5205 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5206 {
5207 if (!cfs_bandwidth_used())
5208 return false;
5209
5210 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5211 return false;
5212
5213 /*
5214 * it's possible for a throttled entity to be forced into a running
5215 * state (e.g. set_curr_task), in this case we're finished.
5216 */
5217 if (cfs_rq_throttled(cfs_rq))
5218 return true;
5219
5220 return throttle_cfs_rq(cfs_rq);
5221 }
5222
5223 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5224 {
5225 struct cfs_bandwidth *cfs_b =
5226 container_of(timer, struct cfs_bandwidth, slack_timer);
5227
5228 do_sched_cfs_slack_timer(cfs_b);
5229
5230 return HRTIMER_NORESTART;
5231 }
5232
5233 extern const u64 max_cfs_quota_period;
5234
5235 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5236 {
5237 struct cfs_bandwidth *cfs_b =
5238 container_of(timer, struct cfs_bandwidth, period_timer);
5239 unsigned long flags;
5240 int overrun;
5241 int idle = 0;
5242 int count = 0;
5243
5244 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5245 for (;;) {
5246 overrun = hrtimer_forward_now(timer, cfs_b->period);
5247 if (!overrun)
5248 break;
5249
5250 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5251
5252 if (++count > 3) {
5253 u64 new, old = ktime_to_ns(cfs_b->period);
5254
5255 /*
5256 * Grow period by a factor of 2 to avoid losing precision.
5257 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5258 * to fail.
5259 */
5260 new = old * 2;
5261 if (new < max_cfs_quota_period) {
5262 cfs_b->period = ns_to_ktime(new);
5263 cfs_b->quota *= 2;
5264
5265 pr_warn_ratelimited(
5266 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5267 smp_processor_id(),
5268 div_u64(new, NSEC_PER_USEC),
5269 div_u64(cfs_b->quota, NSEC_PER_USEC));
5270 } else {
5271 pr_warn_ratelimited(
5272 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5273 smp_processor_id(),
5274 div_u64(old, NSEC_PER_USEC),
5275 div_u64(cfs_b->quota, NSEC_PER_USEC));
5276 }
5277
5278 /* reset count so we don't come right back in here */
5279 count = 0;
5280 }
5281 }
5282 if (idle)
5283 cfs_b->period_active = 0;
5284 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5285
5286 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5287 }
5288
5289 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5290 {
5291 raw_spin_lock_init(&cfs_b->lock);
5292 cfs_b->runtime = 0;
5293 cfs_b->quota = RUNTIME_INF;
5294 cfs_b->period = ns_to_ktime(default_cfs_period());
5295
5296 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5297 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5298 cfs_b->period_timer.function = sched_cfs_period_timer;
5299 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5300 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5301 cfs_b->slack_started = false;
5302 }
5303
5304 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5305 {
5306 cfs_rq->runtime_enabled = 0;
5307 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5308 }
5309
5310 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5311 {
5312 lockdep_assert_held(&cfs_b->lock);
5313
5314 if (cfs_b->period_active)
5315 return;
5316
5317 cfs_b->period_active = 1;
5318 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5319 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5320 }
5321
5322 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5323 {
5324 /* init_cfs_bandwidth() was not called */
5325 if (!cfs_b->throttled_cfs_rq.next)
5326 return;
5327
5328 hrtimer_cancel(&cfs_b->period_timer);
5329 hrtimer_cancel(&cfs_b->slack_timer);
5330 }
5331
5332 /*
5333 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5334 *
5335 * The race is harmless, since modifying bandwidth settings of unhooked group
5336 * bits doesn't do much.
5337 */
5338
5339 /* cpu online calback */
5340 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5341 {
5342 struct task_group *tg;
5343
5344 lockdep_assert_held(&rq->lock);
5345
5346 rcu_read_lock();
5347 list_for_each_entry_rcu(tg, &task_groups, list) {
5348 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5349 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5350
5351 raw_spin_lock(&cfs_b->lock);
5352 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5353 raw_spin_unlock(&cfs_b->lock);
5354 }
5355 rcu_read_unlock();
5356 }
5357
5358 /* cpu offline callback */
5359 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5360 {
5361 struct task_group *tg;
5362
5363 lockdep_assert_held(&rq->lock);
5364
5365 rcu_read_lock();
5366 list_for_each_entry_rcu(tg, &task_groups, list) {
5367 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5368
5369 if (!cfs_rq->runtime_enabled)
5370 continue;
5371
5372 /*
5373 * clock_task is not advancing so we just need to make sure
5374 * there's some valid quota amount
5375 */
5376 cfs_rq->runtime_remaining = 1;
5377 /*
5378 * Offline rq is schedulable till CPU is completely disabled
5379 * in take_cpu_down(), so we prevent new cfs throttling here.
5380 */
5381 cfs_rq->runtime_enabled = 0;
5382
5383 if (cfs_rq_throttled(cfs_rq))
5384 unthrottle_cfs_rq(cfs_rq);
5385 }
5386 rcu_read_unlock();
5387 }
5388
5389 #else /* CONFIG_CFS_BANDWIDTH */
5390
5391 static inline bool cfs_bandwidth_used(void)
5392 {
5393 return false;
5394 }
5395
5396 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5397 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5398 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5399 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5400 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5401
5402 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5403 {
5404 return 0;
5405 }
5406
5407 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5408 {
5409 return 0;
5410 }
5411
5412 static inline int throttled_lb_pair(struct task_group *tg,
5413 int src_cpu, int dest_cpu)
5414 {
5415 return 0;
5416 }
5417
5418 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5419
5420 #ifdef CONFIG_FAIR_GROUP_SCHED
5421 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5422 #endif
5423
5424 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5425 {
5426 return NULL;
5427 }
5428 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5429 static inline void update_runtime_enabled(struct rq *rq) {}
5430 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5431
5432 #endif /* CONFIG_CFS_BANDWIDTH */
5433
5434 /**************************************************
5435 * CFS operations on tasks:
5436 */
5437
5438 #ifdef CONFIG_SCHED_HRTICK
5439 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5440 {
5441 struct sched_entity *se = &p->se;
5442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5443
5444 SCHED_WARN_ON(task_rq(p) != rq);
5445
5446 if (rq->cfs.h_nr_running > 1) {
5447 u64 slice = sched_slice(cfs_rq, se);
5448 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5449 s64 delta = slice - ran;
5450
5451 if (delta < 0) {
5452 if (rq->curr == p)
5453 resched_curr(rq);
5454 return;
5455 }
5456 hrtick_start(rq, delta);
5457 }
5458 }
5459
5460 /*
5461 * called from enqueue/dequeue and updates the hrtick when the
5462 * current task is from our class and nr_running is low enough
5463 * to matter.
5464 */
5465 static void hrtick_update(struct rq *rq)
5466 {
5467 struct task_struct *curr = rq->curr;
5468
5469 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5470 return;
5471
5472 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5473 hrtick_start_fair(rq, curr);
5474 }
5475 #else /* !CONFIG_SCHED_HRTICK */
5476 static inline void
5477 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5478 {
5479 }
5480
5481 static inline void hrtick_update(struct rq *rq)
5482 {
5483 }
5484 #endif
5485
5486 #ifdef CONFIG_SMP
5487 static inline unsigned long cpu_util(int cpu);
5488
5489 static inline bool cpu_overutilized(int cpu)
5490 {
5491 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5492 }
5493
5494 static inline void update_overutilized_status(struct rq *rq)
5495 {
5496 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5497 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5498 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5499 }
5500 }
5501 #else
5502 static inline void update_overutilized_status(struct rq *rq) { }
5503 #endif
5504
5505 /* Runqueue only has SCHED_IDLE tasks enqueued */
5506 static int sched_idle_rq(struct rq *rq)
5507 {
5508 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5509 rq->nr_running);
5510 }
5511
5512 #ifdef CONFIG_SMP
5513 static int sched_idle_cpu(int cpu)
5514 {
5515 return sched_idle_rq(cpu_rq(cpu));
5516 }
5517 #endif
5518
5519 /*
5520 * The enqueue_task method is called before nr_running is
5521 * increased. Here we update the fair scheduling stats and
5522 * then put the task into the rbtree:
5523 */
5524 static void
5525 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5526 {
5527 struct cfs_rq *cfs_rq;
5528 struct sched_entity *se = &p->se;
5529 int idle_h_nr_running = task_has_idle_policy(p);
5530 int task_new = !(flags & ENQUEUE_WAKEUP);
5531
5532 /*
5533 * The code below (indirectly) updates schedutil which looks at
5534 * the cfs_rq utilization to select a frequency.
5535 * Let's add the task's estimated utilization to the cfs_rq's
5536 * estimated utilization, before we update schedutil.
5537 */
5538 util_est_enqueue(&rq->cfs, p);
5539
5540 /*
5541 * If in_iowait is set, the code below may not trigger any cpufreq
5542 * utilization updates, so do it here explicitly with the IOWAIT flag
5543 * passed.
5544 */
5545 if (p->in_iowait)
5546 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5547
5548 for_each_sched_entity(se) {
5549 if (se->on_rq)
5550 break;
5551 cfs_rq = cfs_rq_of(se);
5552 enqueue_entity(cfs_rq, se, flags);
5553
5554 cfs_rq->h_nr_running++;
5555 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5556
5557 /* end evaluation on encountering a throttled cfs_rq */
5558 if (cfs_rq_throttled(cfs_rq))
5559 goto enqueue_throttle;
5560
5561 flags = ENQUEUE_WAKEUP;
5562 }
5563
5564 for_each_sched_entity(se) {
5565 cfs_rq = cfs_rq_of(se);
5566
5567 update_load_avg(cfs_rq, se, UPDATE_TG);
5568 se_update_runnable(se);
5569 update_cfs_group(se);
5570
5571 cfs_rq->h_nr_running++;
5572 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5573
5574 /* end evaluation on encountering a throttled cfs_rq */
5575 if (cfs_rq_throttled(cfs_rq))
5576 goto enqueue_throttle;
5577
5578 /*
5579 * One parent has been throttled and cfs_rq removed from the
5580 * list. Add it back to not break the leaf list.
5581 */
5582 if (throttled_hierarchy(cfs_rq))
5583 list_add_leaf_cfs_rq(cfs_rq);
5584 }
5585
5586 /* At this point se is NULL and we are at root level*/
5587 add_nr_running(rq, 1);
5588
5589 /*
5590 * Since new tasks are assigned an initial util_avg equal to
5591 * half of the spare capacity of their CPU, tiny tasks have the
5592 * ability to cross the overutilized threshold, which will
5593 * result in the load balancer ruining all the task placement
5594 * done by EAS. As a way to mitigate that effect, do not account
5595 * for the first enqueue operation of new tasks during the
5596 * overutilized flag detection.
5597 *
5598 * A better way of solving this problem would be to wait for
5599 * the PELT signals of tasks to converge before taking them
5600 * into account, but that is not straightforward to implement,
5601 * and the following generally works well enough in practice.
5602 */
5603 if (!task_new)
5604 update_overutilized_status(rq);
5605
5606 enqueue_throttle:
5607 if (cfs_bandwidth_used()) {
5608 /*
5609 * When bandwidth control is enabled; the cfs_rq_throttled()
5610 * breaks in the above iteration can result in incomplete
5611 * leaf list maintenance, resulting in triggering the assertion
5612 * below.
5613 */
5614 for_each_sched_entity(se) {
5615 cfs_rq = cfs_rq_of(se);
5616
5617 if (list_add_leaf_cfs_rq(cfs_rq))
5618 break;
5619 }
5620 }
5621
5622 assert_list_leaf_cfs_rq(rq);
5623
5624 hrtick_update(rq);
5625 }
5626
5627 static void set_next_buddy(struct sched_entity *se);
5628
5629 /*
5630 * The dequeue_task method is called before nr_running is
5631 * decreased. We remove the task from the rbtree and
5632 * update the fair scheduling stats:
5633 */
5634 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5635 {
5636 struct cfs_rq *cfs_rq;
5637 struct sched_entity *se = &p->se;
5638 int task_sleep = flags & DEQUEUE_SLEEP;
5639 int idle_h_nr_running = task_has_idle_policy(p);
5640 bool was_sched_idle = sched_idle_rq(rq);
5641
5642 util_est_dequeue(&rq->cfs, p);
5643
5644 for_each_sched_entity(se) {
5645 cfs_rq = cfs_rq_of(se);
5646 dequeue_entity(cfs_rq, se, flags);
5647
5648 cfs_rq->h_nr_running--;
5649 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5650
5651 /* end evaluation on encountering a throttled cfs_rq */
5652 if (cfs_rq_throttled(cfs_rq))
5653 goto dequeue_throttle;
5654
5655 /* Don't dequeue parent if it has other entities besides us */
5656 if (cfs_rq->load.weight) {
5657 /* Avoid re-evaluating load for this entity: */
5658 se = parent_entity(se);
5659 /*
5660 * Bias pick_next to pick a task from this cfs_rq, as
5661 * p is sleeping when it is within its sched_slice.
5662 */
5663 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5664 set_next_buddy(se);
5665 break;
5666 }
5667 flags |= DEQUEUE_SLEEP;
5668 }
5669
5670 for_each_sched_entity(se) {
5671 cfs_rq = cfs_rq_of(se);
5672
5673 update_load_avg(cfs_rq, se, UPDATE_TG);
5674 se_update_runnable(se);
5675 update_cfs_group(se);
5676
5677 cfs_rq->h_nr_running--;
5678 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5679
5680 /* end evaluation on encountering a throttled cfs_rq */
5681 if (cfs_rq_throttled(cfs_rq))
5682 goto dequeue_throttle;
5683
5684 }
5685
5686 /* At this point se is NULL and we are at root level*/
5687 sub_nr_running(rq, 1);
5688
5689 /* balance early to pull high priority tasks */
5690 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5691 rq->next_balance = jiffies;
5692
5693 dequeue_throttle:
5694 util_est_update(&rq->cfs, p, task_sleep);
5695 hrtick_update(rq);
5696 }
5697
5698 #ifdef CONFIG_SMP
5699
5700 /* Working cpumask for: load_balance, load_balance_newidle. */
5701 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5702 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5703
5704 #ifdef CONFIG_NO_HZ_COMMON
5705
5706 static struct {
5707 cpumask_var_t idle_cpus_mask;
5708 atomic_t nr_cpus;
5709 int has_blocked; /* Idle CPUS has blocked load */
5710 unsigned long next_balance; /* in jiffy units */
5711 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5712 } nohz ____cacheline_aligned;
5713
5714 #endif /* CONFIG_NO_HZ_COMMON */
5715
5716 static unsigned long cpu_load(struct rq *rq)
5717 {
5718 return cfs_rq_load_avg(&rq->cfs);
5719 }
5720
5721 /*
5722 * cpu_load_without - compute CPU load without any contributions from *p
5723 * @cpu: the CPU which load is requested
5724 * @p: the task which load should be discounted
5725 *
5726 * The load of a CPU is defined by the load of tasks currently enqueued on that
5727 * CPU as well as tasks which are currently sleeping after an execution on that
5728 * CPU.
5729 *
5730 * This method returns the load of the specified CPU by discounting the load of
5731 * the specified task, whenever the task is currently contributing to the CPU
5732 * load.
5733 */
5734 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5735 {
5736 struct cfs_rq *cfs_rq;
5737 unsigned int load;
5738
5739 /* Task has no contribution or is new */
5740 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5741 return cpu_load(rq);
5742
5743 cfs_rq = &rq->cfs;
5744 load = READ_ONCE(cfs_rq->avg.load_avg);
5745
5746 /* Discount task's util from CPU's util */
5747 lsub_positive(&load, task_h_load(p));
5748
5749 return load;
5750 }
5751
5752 static unsigned long cpu_runnable(struct rq *rq)
5753 {
5754 return cfs_rq_runnable_avg(&rq->cfs);
5755 }
5756
5757 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5758 {
5759 struct cfs_rq *cfs_rq;
5760 unsigned int runnable;
5761
5762 /* Task has no contribution or is new */
5763 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5764 return cpu_runnable(rq);
5765
5766 cfs_rq = &rq->cfs;
5767 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5768
5769 /* Discount task's runnable from CPU's runnable */
5770 lsub_positive(&runnable, p->se.avg.runnable_avg);
5771
5772 return runnable;
5773 }
5774
5775 static unsigned long capacity_of(int cpu)
5776 {
5777 return cpu_rq(cpu)->cpu_capacity;
5778 }
5779
5780 static void record_wakee(struct task_struct *p)
5781 {
5782 /*
5783 * Only decay a single time; tasks that have less then 1 wakeup per
5784 * jiffy will not have built up many flips.
5785 */
5786 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5787 current->wakee_flips >>= 1;
5788 current->wakee_flip_decay_ts = jiffies;
5789 }
5790
5791 if (current->last_wakee != p) {
5792 current->last_wakee = p;
5793 current->wakee_flips++;
5794 }
5795 }
5796
5797 /*
5798 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5799 *
5800 * A waker of many should wake a different task than the one last awakened
5801 * at a frequency roughly N times higher than one of its wakees.
5802 *
5803 * In order to determine whether we should let the load spread vs consolidating
5804 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5805 * partner, and a factor of lls_size higher frequency in the other.
5806 *
5807 * With both conditions met, we can be relatively sure that the relationship is
5808 * non-monogamous, with partner count exceeding socket size.
5809 *
5810 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5811 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5812 * socket size.
5813 */
5814 static int wake_wide(struct task_struct *p)
5815 {
5816 unsigned int master = current->wakee_flips;
5817 unsigned int slave = p->wakee_flips;
5818 int factor = __this_cpu_read(sd_llc_size);
5819
5820 if (master < slave)
5821 swap(master, slave);
5822 if (slave < factor || master < slave * factor)
5823 return 0;
5824 return 1;
5825 }
5826
5827 /*
5828 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5829 * soonest. For the purpose of speed we only consider the waking and previous
5830 * CPU.
5831 *
5832 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5833 * cache-affine and is (or will be) idle.
5834 *
5835 * wake_affine_weight() - considers the weight to reflect the average
5836 * scheduling latency of the CPUs. This seems to work
5837 * for the overloaded case.
5838 */
5839 static int
5840 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5841 {
5842 /*
5843 * If this_cpu is idle, it implies the wakeup is from interrupt
5844 * context. Only allow the move if cache is shared. Otherwise an
5845 * interrupt intensive workload could force all tasks onto one
5846 * node depending on the IO topology or IRQ affinity settings.
5847 *
5848 * If the prev_cpu is idle and cache affine then avoid a migration.
5849 * There is no guarantee that the cache hot data from an interrupt
5850 * is more important than cache hot data on the prev_cpu and from
5851 * a cpufreq perspective, it's better to have higher utilisation
5852 * on one CPU.
5853 */
5854 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5855 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5856
5857 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5858 return this_cpu;
5859
5860 if (available_idle_cpu(prev_cpu))
5861 return prev_cpu;
5862
5863 return nr_cpumask_bits;
5864 }
5865
5866 static int
5867 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5868 int this_cpu, int prev_cpu, int sync)
5869 {
5870 s64 this_eff_load, prev_eff_load;
5871 unsigned long task_load;
5872
5873 this_eff_load = cpu_load(cpu_rq(this_cpu));
5874
5875 if (sync) {
5876 unsigned long current_load = task_h_load(current);
5877
5878 if (current_load > this_eff_load)
5879 return this_cpu;
5880
5881 this_eff_load -= current_load;
5882 }
5883
5884 task_load = task_h_load(p);
5885
5886 this_eff_load += task_load;
5887 if (sched_feat(WA_BIAS))
5888 this_eff_load *= 100;
5889 this_eff_load *= capacity_of(prev_cpu);
5890
5891 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5892 prev_eff_load -= task_load;
5893 if (sched_feat(WA_BIAS))
5894 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5895 prev_eff_load *= capacity_of(this_cpu);
5896
5897 /*
5898 * If sync, adjust the weight of prev_eff_load such that if
5899 * prev_eff == this_eff that select_idle_sibling() will consider
5900 * stacking the wakee on top of the waker if no other CPU is
5901 * idle.
5902 */
5903 if (sync)
5904 prev_eff_load += 1;
5905
5906 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5907 }
5908
5909 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5910 int this_cpu, int prev_cpu, int sync)
5911 {
5912 int target = nr_cpumask_bits;
5913
5914 if (sched_feat(WA_IDLE))
5915 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5916
5917 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5918 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5919
5920 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5921 if (target == nr_cpumask_bits)
5922 return prev_cpu;
5923
5924 schedstat_inc(sd->ttwu_move_affine);
5925 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5926 return target;
5927 }
5928
5929 static struct sched_group *
5930 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5931
5932 /*
5933 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5934 */
5935 static int
5936 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5937 {
5938 unsigned long load, min_load = ULONG_MAX;
5939 unsigned int min_exit_latency = UINT_MAX;
5940 u64 latest_idle_timestamp = 0;
5941 int least_loaded_cpu = this_cpu;
5942 int shallowest_idle_cpu = -1;
5943 int i;
5944
5945 /* Check if we have any choice: */
5946 if (group->group_weight == 1)
5947 return cpumask_first(sched_group_span(group));
5948
5949 /* Traverse only the allowed CPUs */
5950 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5951 if (sched_idle_cpu(i))
5952 return i;
5953
5954 if (available_idle_cpu(i)) {
5955 struct rq *rq = cpu_rq(i);
5956 struct cpuidle_state *idle = idle_get_state(rq);
5957 if (idle && idle->exit_latency < min_exit_latency) {
5958 /*
5959 * We give priority to a CPU whose idle state
5960 * has the smallest exit latency irrespective
5961 * of any idle timestamp.
5962 */
5963 min_exit_latency = idle->exit_latency;
5964 latest_idle_timestamp = rq->idle_stamp;
5965 shallowest_idle_cpu = i;
5966 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5967 rq->idle_stamp > latest_idle_timestamp) {
5968 /*
5969 * If equal or no active idle state, then
5970 * the most recently idled CPU might have
5971 * a warmer cache.
5972 */
5973 latest_idle_timestamp = rq->idle_stamp;
5974 shallowest_idle_cpu = i;
5975 }
5976 } else if (shallowest_idle_cpu == -1) {
5977 load = cpu_load(cpu_rq(i));
5978 if (load < min_load) {
5979 min_load = load;
5980 least_loaded_cpu = i;
5981 }
5982 }
5983 }
5984
5985 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5986 }
5987
5988 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5989 int cpu, int prev_cpu, int sd_flag)
5990 {
5991 int new_cpu = cpu;
5992
5993 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5994 return prev_cpu;
5995
5996 /*
5997 * We need task's util for cpu_util_without, sync it up to
5998 * prev_cpu's last_update_time.
5999 */
6000 if (!(sd_flag & SD_BALANCE_FORK))
6001 sync_entity_load_avg(&p->se);
6002
6003 while (sd) {
6004 struct sched_group *group;
6005 struct sched_domain *tmp;
6006 int weight;
6007
6008 if (!(sd->flags & sd_flag)) {
6009 sd = sd->child;
6010 continue;
6011 }
6012
6013 group = find_idlest_group(sd, p, cpu);
6014 if (!group) {
6015 sd = sd->child;
6016 continue;
6017 }
6018
6019 new_cpu = find_idlest_group_cpu(group, p, cpu);
6020 if (new_cpu == cpu) {
6021 /* Now try balancing at a lower domain level of 'cpu': */
6022 sd = sd->child;
6023 continue;
6024 }
6025
6026 /* Now try balancing at a lower domain level of 'new_cpu': */
6027 cpu = new_cpu;
6028 weight = sd->span_weight;
6029 sd = NULL;
6030 for_each_domain(cpu, tmp) {
6031 if (weight <= tmp->span_weight)
6032 break;
6033 if (tmp->flags & sd_flag)
6034 sd = tmp;
6035 }
6036 }
6037
6038 return new_cpu;
6039 }
6040
6041 #ifdef CONFIG_SCHED_SMT
6042 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6043 EXPORT_SYMBOL_GPL(sched_smt_present);
6044
6045 static inline void set_idle_cores(int cpu, int val)
6046 {
6047 struct sched_domain_shared *sds;
6048
6049 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6050 if (sds)
6051 WRITE_ONCE(sds->has_idle_cores, val);
6052 }
6053
6054 static inline bool test_idle_cores(int cpu, bool def)
6055 {
6056 struct sched_domain_shared *sds;
6057
6058 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6059 if (sds)
6060 return READ_ONCE(sds->has_idle_cores);
6061
6062 return def;
6063 }
6064
6065 /*
6066 * Scans the local SMT mask to see if the entire core is idle, and records this
6067 * information in sd_llc_shared->has_idle_cores.
6068 *
6069 * Since SMT siblings share all cache levels, inspecting this limited remote
6070 * state should be fairly cheap.
6071 */
6072 void __update_idle_core(struct rq *rq)
6073 {
6074 int core = cpu_of(rq);
6075 int cpu;
6076
6077 rcu_read_lock();
6078 if (test_idle_cores(core, true))
6079 goto unlock;
6080
6081 for_each_cpu(cpu, cpu_smt_mask(core)) {
6082 if (cpu == core)
6083 continue;
6084
6085 if (!available_idle_cpu(cpu))
6086 goto unlock;
6087 }
6088
6089 set_idle_cores(core, 1);
6090 unlock:
6091 rcu_read_unlock();
6092 }
6093
6094 /*
6095 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6096 * there are no idle cores left in the system; tracked through
6097 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6098 */
6099 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6100 {
6101 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6102 int core, cpu;
6103
6104 if (!static_branch_likely(&sched_smt_present))
6105 return -1;
6106
6107 if (!test_idle_cores(target, false))
6108 return -1;
6109
6110 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6111
6112 for_each_cpu_wrap(core, cpus, target) {
6113 bool idle = true;
6114
6115 for_each_cpu(cpu, cpu_smt_mask(core)) {
6116 if (!available_idle_cpu(cpu)) {
6117 idle = false;
6118 break;
6119 }
6120 }
6121
6122 if (idle)
6123 return core;
6124
6125 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6126 }
6127
6128 /*
6129 * Failed to find an idle core; stop looking for one.
6130 */
6131 set_idle_cores(target, 0);
6132
6133 return -1;
6134 }
6135
6136 /*
6137 * Scan the local SMT mask for idle CPUs.
6138 */
6139 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6140 {
6141 int cpu;
6142
6143 if (!static_branch_likely(&sched_smt_present))
6144 return -1;
6145
6146 for_each_cpu(cpu, cpu_smt_mask(target)) {
6147 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6148 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6149 continue;
6150 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6151 return cpu;
6152 }
6153
6154 return -1;
6155 }
6156
6157 #else /* CONFIG_SCHED_SMT */
6158
6159 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6160 {
6161 return -1;
6162 }
6163
6164 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6165 {
6166 return -1;
6167 }
6168
6169 #endif /* CONFIG_SCHED_SMT */
6170
6171 /*
6172 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6173 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6174 * average idle time for this rq (as found in rq->avg_idle).
6175 */
6176 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6177 {
6178 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6179 struct sched_domain *this_sd;
6180 u64 avg_cost, avg_idle;
6181 u64 time;
6182 int this = smp_processor_id();
6183 int cpu, nr = INT_MAX;
6184
6185 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6186 if (!this_sd)
6187 return -1;
6188
6189 /*
6190 * Due to large variance we need a large fuzz factor; hackbench in
6191 * particularly is sensitive here.
6192 */
6193 avg_idle = this_rq()->avg_idle / 512;
6194 avg_cost = this_sd->avg_scan_cost + 1;
6195
6196 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6197 return -1;
6198
6199 if (sched_feat(SIS_PROP)) {
6200 u64 span_avg = sd->span_weight * avg_idle;
6201 if (span_avg > 4*avg_cost)
6202 nr = div_u64(span_avg, avg_cost);
6203 else
6204 nr = 4;
6205 }
6206
6207 time = cpu_clock(this);
6208
6209 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6210
6211 for_each_cpu_wrap(cpu, cpus, target) {
6212 if (!--nr)
6213 return -1;
6214 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6215 break;
6216 }
6217
6218 time = cpu_clock(this) - time;
6219 update_avg(&this_sd->avg_scan_cost, time);
6220
6221 return cpu;
6222 }
6223
6224 /*
6225 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6226 * the task fits. If no CPU is big enough, but there are idle ones, try to
6227 * maximize capacity.
6228 */
6229 static int
6230 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6231 {
6232 unsigned long task_util, best_cap = 0;
6233 int cpu, best_cpu = -1;
6234 struct cpumask *cpus;
6235
6236 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6237 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6238
6239 task_util = uclamp_task_util(p);
6240
6241 for_each_cpu_wrap(cpu, cpus, target) {
6242 unsigned long cpu_cap = capacity_of(cpu);
6243
6244 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6245 continue;
6246 if (fits_capacity(task_util, cpu_cap))
6247 return cpu;
6248
6249 if (cpu_cap > best_cap) {
6250 best_cap = cpu_cap;
6251 best_cpu = cpu;
6252 }
6253 }
6254
6255 return best_cpu;
6256 }
6257
6258 static inline bool asym_fits_capacity(int task_util, int cpu)
6259 {
6260 if (static_branch_unlikely(&sched_asym_cpucapacity))
6261 return fits_capacity(task_util, capacity_of(cpu));
6262
6263 return true;
6264 }
6265
6266 /*
6267 * Try and locate an idle core/thread in the LLC cache domain.
6268 */
6269 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6270 {
6271 struct sched_domain *sd;
6272 unsigned long task_util;
6273 int i, recent_used_cpu;
6274
6275 /*
6276 * On asymmetric system, update task utilization because we will check
6277 * that the task fits with cpu's capacity.
6278 */
6279 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6280 sync_entity_load_avg(&p->se);
6281 task_util = uclamp_task_util(p);
6282 }
6283
6284 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6285 asym_fits_capacity(task_util, target))
6286 return target;
6287
6288 /*
6289 * If the previous CPU is cache affine and idle, don't be stupid:
6290 */
6291 if (prev != target && cpus_share_cache(prev, target) &&
6292 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6293 asym_fits_capacity(task_util, prev))
6294 return prev;
6295
6296 /*
6297 * Allow a per-cpu kthread to stack with the wakee if the
6298 * kworker thread and the tasks previous CPUs are the same.
6299 * The assumption is that the wakee queued work for the
6300 * per-cpu kthread that is now complete and the wakeup is
6301 * essentially a sync wakeup. An obvious example of this
6302 * pattern is IO completions.
6303 */
6304 if (is_per_cpu_kthread(current) &&
6305 prev == smp_processor_id() &&
6306 this_rq()->nr_running <= 1) {
6307 return prev;
6308 }
6309
6310 /* Check a recently used CPU as a potential idle candidate: */
6311 recent_used_cpu = p->recent_used_cpu;
6312 if (recent_used_cpu != prev &&
6313 recent_used_cpu != target &&
6314 cpus_share_cache(recent_used_cpu, target) &&
6315 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6316 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6317 asym_fits_capacity(task_util, recent_used_cpu)) {
6318 /*
6319 * Replace recent_used_cpu with prev as it is a potential
6320 * candidate for the next wake:
6321 */
6322 p->recent_used_cpu = prev;
6323 return recent_used_cpu;
6324 }
6325
6326 /*
6327 * For asymmetric CPU capacity systems, our domain of interest is
6328 * sd_asym_cpucapacity rather than sd_llc.
6329 */
6330 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6331 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6332 /*
6333 * On an asymmetric CPU capacity system where an exclusive
6334 * cpuset defines a symmetric island (i.e. one unique
6335 * capacity_orig value through the cpuset), the key will be set
6336 * but the CPUs within that cpuset will not have a domain with
6337 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6338 * capacity path.
6339 */
6340 if (sd) {
6341 i = select_idle_capacity(p, sd, target);
6342 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6343 }
6344 }
6345
6346 sd = rcu_dereference(per_cpu(sd_llc, target));
6347 if (!sd)
6348 return target;
6349
6350 i = select_idle_core(p, sd, target);
6351 if ((unsigned)i < nr_cpumask_bits)
6352 return i;
6353
6354 i = select_idle_cpu(p, sd, target);
6355 if ((unsigned)i < nr_cpumask_bits)
6356 return i;
6357
6358 i = select_idle_smt(p, sd, target);
6359 if ((unsigned)i < nr_cpumask_bits)
6360 return i;
6361
6362 return target;
6363 }
6364
6365 /**
6366 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6367 * @cpu: the CPU to get the utilization of
6368 *
6369 * The unit of the return value must be the one of capacity so we can compare
6370 * the utilization with the capacity of the CPU that is available for CFS task
6371 * (ie cpu_capacity).
6372 *
6373 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6374 * recent utilization of currently non-runnable tasks on a CPU. It represents
6375 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6376 * capacity_orig is the cpu_capacity available at the highest frequency
6377 * (arch_scale_freq_capacity()).
6378 * The utilization of a CPU converges towards a sum equal to or less than the
6379 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6380 * the running time on this CPU scaled by capacity_curr.
6381 *
6382 * The estimated utilization of a CPU is defined to be the maximum between its
6383 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6384 * currently RUNNABLE on that CPU.
6385 * This allows to properly represent the expected utilization of a CPU which
6386 * has just got a big task running since a long sleep period. At the same time
6387 * however it preserves the benefits of the "blocked utilization" in
6388 * describing the potential for other tasks waking up on the same CPU.
6389 *
6390 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6391 * higher than capacity_orig because of unfortunate rounding in
6392 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6393 * the average stabilizes with the new running time. We need to check that the
6394 * utilization stays within the range of [0..capacity_orig] and cap it if
6395 * necessary. Without utilization capping, a group could be seen as overloaded
6396 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6397 * available capacity. We allow utilization to overshoot capacity_curr (but not
6398 * capacity_orig) as it useful for predicting the capacity required after task
6399 * migrations (scheduler-driven DVFS).
6400 *
6401 * Return: the (estimated) utilization for the specified CPU
6402 */
6403 static inline unsigned long cpu_util(int cpu)
6404 {
6405 struct cfs_rq *cfs_rq;
6406 unsigned int util;
6407
6408 cfs_rq = &cpu_rq(cpu)->cfs;
6409 util = READ_ONCE(cfs_rq->avg.util_avg);
6410
6411 if (sched_feat(UTIL_EST))
6412 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6413
6414 return min_t(unsigned long, util, capacity_orig_of(cpu));
6415 }
6416
6417 /*
6418 * cpu_util_without: compute cpu utilization without any contributions from *p
6419 * @cpu: the CPU which utilization is requested
6420 * @p: the task which utilization should be discounted
6421 *
6422 * The utilization of a CPU is defined by the utilization of tasks currently
6423 * enqueued on that CPU as well as tasks which are currently sleeping after an
6424 * execution on that CPU.
6425 *
6426 * This method returns the utilization of the specified CPU by discounting the
6427 * utilization of the specified task, whenever the task is currently
6428 * contributing to the CPU utilization.
6429 */
6430 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6431 {
6432 struct cfs_rq *cfs_rq;
6433 unsigned int util;
6434
6435 /* Task has no contribution or is new */
6436 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6437 return cpu_util(cpu);
6438
6439 cfs_rq = &cpu_rq(cpu)->cfs;
6440 util = READ_ONCE(cfs_rq->avg.util_avg);
6441
6442 /* Discount task's util from CPU's util */
6443 lsub_positive(&util, task_util(p));
6444
6445 /*
6446 * Covered cases:
6447 *
6448 * a) if *p is the only task sleeping on this CPU, then:
6449 * cpu_util (== task_util) > util_est (== 0)
6450 * and thus we return:
6451 * cpu_util_without = (cpu_util - task_util) = 0
6452 *
6453 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6454 * IDLE, then:
6455 * cpu_util >= task_util
6456 * cpu_util > util_est (== 0)
6457 * and thus we discount *p's blocked utilization to return:
6458 * cpu_util_without = (cpu_util - task_util) >= 0
6459 *
6460 * c) if other tasks are RUNNABLE on that CPU and
6461 * util_est > cpu_util
6462 * then we use util_est since it returns a more restrictive
6463 * estimation of the spare capacity on that CPU, by just
6464 * considering the expected utilization of tasks already
6465 * runnable on that CPU.
6466 *
6467 * Cases a) and b) are covered by the above code, while case c) is
6468 * covered by the following code when estimated utilization is
6469 * enabled.
6470 */
6471 if (sched_feat(UTIL_EST)) {
6472 unsigned int estimated =
6473 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6474
6475 /*
6476 * Despite the following checks we still have a small window
6477 * for a possible race, when an execl's select_task_rq_fair()
6478 * races with LB's detach_task():
6479 *
6480 * detach_task()
6481 * p->on_rq = TASK_ON_RQ_MIGRATING;
6482 * ---------------------------------- A
6483 * deactivate_task() \
6484 * dequeue_task() + RaceTime
6485 * util_est_dequeue() /
6486 * ---------------------------------- B
6487 *
6488 * The additional check on "current == p" it's required to
6489 * properly fix the execl regression and it helps in further
6490 * reducing the chances for the above race.
6491 */
6492 if (unlikely(task_on_rq_queued(p) || current == p))
6493 lsub_positive(&estimated, _task_util_est(p));
6494
6495 util = max(util, estimated);
6496 }
6497
6498 /*
6499 * Utilization (estimated) can exceed the CPU capacity, thus let's
6500 * clamp to the maximum CPU capacity to ensure consistency with
6501 * the cpu_util call.
6502 */
6503 return min_t(unsigned long, util, capacity_orig_of(cpu));
6504 }
6505
6506 /*
6507 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6508 * to @dst_cpu.
6509 */
6510 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6511 {
6512 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6513 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6514
6515 /*
6516 * If @p migrates from @cpu to another, remove its contribution. Or,
6517 * if @p migrates from another CPU to @cpu, add its contribution. In
6518 * the other cases, @cpu is not impacted by the migration, so the
6519 * util_avg should already be correct.
6520 */
6521 if (task_cpu(p) == cpu && dst_cpu != cpu)
6522 sub_positive(&util, task_util(p));
6523 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6524 util += task_util(p);
6525
6526 if (sched_feat(UTIL_EST)) {
6527 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6528
6529 /*
6530 * During wake-up, the task isn't enqueued yet and doesn't
6531 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6532 * so just add it (if needed) to "simulate" what will be
6533 * cpu_util() after the task has been enqueued.
6534 */
6535 if (dst_cpu == cpu)
6536 util_est += _task_util_est(p);
6537
6538 util = max(util, util_est);
6539 }
6540
6541 return min(util, capacity_orig_of(cpu));
6542 }
6543
6544 /*
6545 * compute_energy(): Estimates the energy that @pd would consume if @p was
6546 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6547 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6548 * to compute what would be the energy if we decided to actually migrate that
6549 * task.
6550 */
6551 static long
6552 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6553 {
6554 struct cpumask *pd_mask = perf_domain_span(pd);
6555 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6556 unsigned long max_util = 0, sum_util = 0;
6557 int cpu;
6558
6559 /*
6560 * The capacity state of CPUs of the current rd can be driven by CPUs
6561 * of another rd if they belong to the same pd. So, account for the
6562 * utilization of these CPUs too by masking pd with cpu_online_mask
6563 * instead of the rd span.
6564 *
6565 * If an entire pd is outside of the current rd, it will not appear in
6566 * its pd list and will not be accounted by compute_energy().
6567 */
6568 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6569 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6570 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6571
6572 /*
6573 * Busy time computation: utilization clamping is not
6574 * required since the ratio (sum_util / cpu_capacity)
6575 * is already enough to scale the EM reported power
6576 * consumption at the (eventually clamped) cpu_capacity.
6577 */
6578 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6579 ENERGY_UTIL, NULL);
6580
6581 /*
6582 * Performance domain frequency: utilization clamping
6583 * must be considered since it affects the selection
6584 * of the performance domain frequency.
6585 * NOTE: in case RT tasks are running, by default the
6586 * FREQUENCY_UTIL's utilization can be max OPP.
6587 */
6588 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6589 FREQUENCY_UTIL, tsk);
6590 max_util = max(max_util, cpu_util);
6591 }
6592
6593 return em_cpu_energy(pd->em_pd, max_util, sum_util);
6594 }
6595
6596 /*
6597 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6598 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6599 * spare capacity in each performance domain and uses it as a potential
6600 * candidate to execute the task. Then, it uses the Energy Model to figure
6601 * out which of the CPU candidates is the most energy-efficient.
6602 *
6603 * The rationale for this heuristic is as follows. In a performance domain,
6604 * all the most energy efficient CPU candidates (according to the Energy
6605 * Model) are those for which we'll request a low frequency. When there are
6606 * several CPUs for which the frequency request will be the same, we don't
6607 * have enough data to break the tie between them, because the Energy Model
6608 * only includes active power costs. With this model, if we assume that
6609 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6610 * the maximum spare capacity in a performance domain is guaranteed to be among
6611 * the best candidates of the performance domain.
6612 *
6613 * In practice, it could be preferable from an energy standpoint to pack
6614 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6615 * but that could also hurt our chances to go cluster idle, and we have no
6616 * ways to tell with the current Energy Model if this is actually a good
6617 * idea or not. So, find_energy_efficient_cpu() basically favors
6618 * cluster-packing, and spreading inside a cluster. That should at least be
6619 * a good thing for latency, and this is consistent with the idea that most
6620 * of the energy savings of EAS come from the asymmetry of the system, and
6621 * not so much from breaking the tie between identical CPUs. That's also the
6622 * reason why EAS is enabled in the topology code only for systems where
6623 * SD_ASYM_CPUCAPACITY is set.
6624 *
6625 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6626 * they don't have any useful utilization data yet and it's not possible to
6627 * forecast their impact on energy consumption. Consequently, they will be
6628 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6629 * to be energy-inefficient in some use-cases. The alternative would be to
6630 * bias new tasks towards specific types of CPUs first, or to try to infer
6631 * their util_avg from the parent task, but those heuristics could hurt
6632 * other use-cases too. So, until someone finds a better way to solve this,
6633 * let's keep things simple by re-using the existing slow path.
6634 */
6635 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6636 {
6637 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6638 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6639 unsigned long cpu_cap, util, base_energy = 0;
6640 int cpu, best_energy_cpu = prev_cpu;
6641 struct sched_domain *sd;
6642 struct perf_domain *pd;
6643
6644 rcu_read_lock();
6645 pd = rcu_dereference(rd->pd);
6646 if (!pd || READ_ONCE(rd->overutilized))
6647 goto fail;
6648
6649 /*
6650 * Energy-aware wake-up happens on the lowest sched_domain starting
6651 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6652 */
6653 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6654 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6655 sd = sd->parent;
6656 if (!sd)
6657 goto fail;
6658
6659 sync_entity_load_avg(&p->se);
6660 if (!task_util_est(p))
6661 goto unlock;
6662
6663 for (; pd; pd = pd->next) {
6664 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6665 unsigned long base_energy_pd;
6666 int max_spare_cap_cpu = -1;
6667
6668 /* Compute the 'base' energy of the pd, without @p */
6669 base_energy_pd = compute_energy(p, -1, pd);
6670 base_energy += base_energy_pd;
6671
6672 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6673 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6674 continue;
6675
6676 util = cpu_util_next(cpu, p, cpu);
6677 cpu_cap = capacity_of(cpu);
6678 spare_cap = cpu_cap;
6679 lsub_positive(&spare_cap, util);
6680
6681 /*
6682 * Skip CPUs that cannot satisfy the capacity request.
6683 * IOW, placing the task there would make the CPU
6684 * overutilized. Take uclamp into account to see how
6685 * much capacity we can get out of the CPU; this is
6686 * aligned with schedutil_cpu_util().
6687 */
6688 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6689 if (!fits_capacity(util, cpu_cap))
6690 continue;
6691
6692 /* Always use prev_cpu as a candidate. */
6693 if (cpu == prev_cpu) {
6694 prev_delta = compute_energy(p, prev_cpu, pd);
6695 prev_delta -= base_energy_pd;
6696 best_delta = min(best_delta, prev_delta);
6697 }
6698
6699 /*
6700 * Find the CPU with the maximum spare capacity in
6701 * the performance domain
6702 */
6703 if (spare_cap > max_spare_cap) {
6704 max_spare_cap = spare_cap;
6705 max_spare_cap_cpu = cpu;
6706 }
6707 }
6708
6709 /* Evaluate the energy impact of using this CPU. */
6710 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6711 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6712 cur_delta -= base_energy_pd;
6713 if (cur_delta < best_delta) {
6714 best_delta = cur_delta;
6715 best_energy_cpu = max_spare_cap_cpu;
6716 }
6717 }
6718 }
6719 unlock:
6720 rcu_read_unlock();
6721
6722 /*
6723 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6724 * least 6% of the energy used by prev_cpu.
6725 */
6726 if (prev_delta == ULONG_MAX)
6727 return best_energy_cpu;
6728
6729 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6730 return best_energy_cpu;
6731
6732 return prev_cpu;
6733
6734 fail:
6735 rcu_read_unlock();
6736
6737 return -1;
6738 }
6739
6740 /*
6741 * select_task_rq_fair: Select target runqueue for the waking task in domains
6742 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6743 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6744 *
6745 * Balances load by selecting the idlest CPU in the idlest group, or under
6746 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6747 *
6748 * Returns the target CPU number.
6749 *
6750 * preempt must be disabled.
6751 */
6752 static int
6753 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6754 {
6755 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6756 struct sched_domain *tmp, *sd = NULL;
6757 int cpu = smp_processor_id();
6758 int new_cpu = prev_cpu;
6759 int want_affine = 0;
6760 /* SD_flags and WF_flags share the first nibble */
6761 int sd_flag = wake_flags & 0xF;
6762
6763 if (wake_flags & WF_TTWU) {
6764 record_wakee(p);
6765
6766 if (sched_energy_enabled()) {
6767 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6768 if (new_cpu >= 0)
6769 return new_cpu;
6770 new_cpu = prev_cpu;
6771 }
6772
6773 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6774 }
6775
6776 rcu_read_lock();
6777 for_each_domain(cpu, tmp) {
6778 /*
6779 * If both 'cpu' and 'prev_cpu' are part of this domain,
6780 * cpu is a valid SD_WAKE_AFFINE target.
6781 */
6782 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6783 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6784 if (cpu != prev_cpu)
6785 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6786
6787 sd = NULL; /* Prefer wake_affine over balance flags */
6788 break;
6789 }
6790
6791 if (tmp->flags & sd_flag)
6792 sd = tmp;
6793 else if (!want_affine)
6794 break;
6795 }
6796
6797 if (unlikely(sd)) {
6798 /* Slow path */
6799 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6800 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
6801 /* Fast path */
6802 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6803
6804 if (want_affine)
6805 current->recent_used_cpu = cpu;
6806 }
6807 rcu_read_unlock();
6808
6809 return new_cpu;
6810 }
6811
6812 static void detach_entity_cfs_rq(struct sched_entity *se);
6813
6814 /*
6815 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6816 * cfs_rq_of(p) references at time of call are still valid and identify the
6817 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6818 */
6819 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6820 {
6821 /*
6822 * As blocked tasks retain absolute vruntime the migration needs to
6823 * deal with this by subtracting the old and adding the new
6824 * min_vruntime -- the latter is done by enqueue_entity() when placing
6825 * the task on the new runqueue.
6826 */
6827 if (p->state == TASK_WAKING) {
6828 struct sched_entity *se = &p->se;
6829 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6830 u64 min_vruntime;
6831
6832 #ifndef CONFIG_64BIT
6833 u64 min_vruntime_copy;
6834
6835 do {
6836 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6837 smp_rmb();
6838 min_vruntime = cfs_rq->min_vruntime;
6839 } while (min_vruntime != min_vruntime_copy);
6840 #else
6841 min_vruntime = cfs_rq->min_vruntime;
6842 #endif
6843
6844 se->vruntime -= min_vruntime;
6845 }
6846
6847 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6848 /*
6849 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6850 * rq->lock and can modify state directly.
6851 */
6852 lockdep_assert_held(&task_rq(p)->lock);
6853 detach_entity_cfs_rq(&p->se);
6854
6855 } else {
6856 /*
6857 * We are supposed to update the task to "current" time, then
6858 * its up to date and ready to go to new CPU/cfs_rq. But we
6859 * have difficulty in getting what current time is, so simply
6860 * throw away the out-of-date time. This will result in the
6861 * wakee task is less decayed, but giving the wakee more load
6862 * sounds not bad.
6863 */
6864 remove_entity_load_avg(&p->se);
6865 }
6866
6867 /* Tell new CPU we are migrated */
6868 p->se.avg.last_update_time = 0;
6869
6870 /* We have migrated, no longer consider this task hot */
6871 p->se.exec_start = 0;
6872
6873 update_scan_period(p, new_cpu);
6874 }
6875
6876 static void task_dead_fair(struct task_struct *p)
6877 {
6878 remove_entity_load_avg(&p->se);
6879 }
6880
6881 static int
6882 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6883 {
6884 if (rq->nr_running)
6885 return 1;
6886
6887 return newidle_balance(rq, rf) != 0;
6888 }
6889 #endif /* CONFIG_SMP */
6890
6891 static unsigned long wakeup_gran(struct sched_entity *se)
6892 {
6893 unsigned long gran = sysctl_sched_wakeup_granularity;
6894
6895 /*
6896 * Since its curr running now, convert the gran from real-time
6897 * to virtual-time in his units.
6898 *
6899 * By using 'se' instead of 'curr' we penalize light tasks, so
6900 * they get preempted easier. That is, if 'se' < 'curr' then
6901 * the resulting gran will be larger, therefore penalizing the
6902 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6903 * be smaller, again penalizing the lighter task.
6904 *
6905 * This is especially important for buddies when the leftmost
6906 * task is higher priority than the buddy.
6907 */
6908 return calc_delta_fair(gran, se);
6909 }
6910
6911 /*
6912 * Should 'se' preempt 'curr'.
6913 *
6914 * |s1
6915 * |s2
6916 * |s3
6917 * g
6918 * |<--->|c
6919 *
6920 * w(c, s1) = -1
6921 * w(c, s2) = 0
6922 * w(c, s3) = 1
6923 *
6924 */
6925 static int
6926 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6927 {
6928 s64 gran, vdiff = curr->vruntime - se->vruntime;
6929
6930 if (vdiff <= 0)
6931 return -1;
6932
6933 gran = wakeup_gran(se);
6934 if (vdiff > gran)
6935 return 1;
6936
6937 return 0;
6938 }
6939
6940 static void set_last_buddy(struct sched_entity *se)
6941 {
6942 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6943 return;
6944
6945 for_each_sched_entity(se) {
6946 if (SCHED_WARN_ON(!se->on_rq))
6947 return;
6948 cfs_rq_of(se)->last = se;
6949 }
6950 }
6951
6952 static void set_next_buddy(struct sched_entity *se)
6953 {
6954 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6955 return;
6956
6957 for_each_sched_entity(se) {
6958 if (SCHED_WARN_ON(!se->on_rq))
6959 return;
6960 cfs_rq_of(se)->next = se;
6961 }
6962 }
6963
6964 static void set_skip_buddy(struct sched_entity *se)
6965 {
6966 for_each_sched_entity(se)
6967 cfs_rq_of(se)->skip = se;
6968 }
6969
6970 /*
6971 * Preempt the current task with a newly woken task if needed:
6972 */
6973 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6974 {
6975 struct task_struct *curr = rq->curr;
6976 struct sched_entity *se = &curr->se, *pse = &p->se;
6977 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6978 int scale = cfs_rq->nr_running >= sched_nr_latency;
6979 int next_buddy_marked = 0;
6980
6981 if (unlikely(se == pse))
6982 return;
6983
6984 /*
6985 * This is possible from callers such as attach_tasks(), in which we
6986 * unconditionally check_prempt_curr() after an enqueue (which may have
6987 * lead to a throttle). This both saves work and prevents false
6988 * next-buddy nomination below.
6989 */
6990 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6991 return;
6992
6993 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6994 set_next_buddy(pse);
6995 next_buddy_marked = 1;
6996 }
6997
6998 /*
6999 * We can come here with TIF_NEED_RESCHED already set from new task
7000 * wake up path.
7001 *
7002 * Note: this also catches the edge-case of curr being in a throttled
7003 * group (e.g. via set_curr_task), since update_curr() (in the
7004 * enqueue of curr) will have resulted in resched being set. This
7005 * prevents us from potentially nominating it as a false LAST_BUDDY
7006 * below.
7007 */
7008 if (test_tsk_need_resched(curr))
7009 return;
7010
7011 /* Idle tasks are by definition preempted by non-idle tasks. */
7012 if (unlikely(task_has_idle_policy(curr)) &&
7013 likely(!task_has_idle_policy(p)))
7014 goto preempt;
7015
7016 /*
7017 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7018 * is driven by the tick):
7019 */
7020 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7021 return;
7022
7023 find_matching_se(&se, &pse);
7024 update_curr(cfs_rq_of(se));
7025 BUG_ON(!pse);
7026 if (wakeup_preempt_entity(se, pse) == 1) {
7027 /*
7028 * Bias pick_next to pick the sched entity that is
7029 * triggering this preemption.
7030 */
7031 if (!next_buddy_marked)
7032 set_next_buddy(pse);
7033 goto preempt;
7034 }
7035
7036 return;
7037
7038 preempt:
7039 resched_curr(rq);
7040 /*
7041 * Only set the backward buddy when the current task is still
7042 * on the rq. This can happen when a wakeup gets interleaved
7043 * with schedule on the ->pre_schedule() or idle_balance()
7044 * point, either of which can * drop the rq lock.
7045 *
7046 * Also, during early boot the idle thread is in the fair class,
7047 * for obvious reasons its a bad idea to schedule back to it.
7048 */
7049 if (unlikely(!se->on_rq || curr == rq->idle))
7050 return;
7051
7052 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7053 set_last_buddy(se);
7054 }
7055
7056 struct task_struct *
7057 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7058 {
7059 struct cfs_rq *cfs_rq = &rq->cfs;
7060 struct sched_entity *se;
7061 struct task_struct *p;
7062 int new_tasks;
7063
7064 again:
7065 if (!sched_fair_runnable(rq))
7066 goto idle;
7067
7068 #ifdef CONFIG_FAIR_GROUP_SCHED
7069 if (!prev || prev->sched_class != &fair_sched_class)
7070 goto simple;
7071
7072 /*
7073 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7074 * likely that a next task is from the same cgroup as the current.
7075 *
7076 * Therefore attempt to avoid putting and setting the entire cgroup
7077 * hierarchy, only change the part that actually changes.
7078 */
7079
7080 do {
7081 struct sched_entity *curr = cfs_rq->curr;
7082
7083 /*
7084 * Since we got here without doing put_prev_entity() we also
7085 * have to consider cfs_rq->curr. If it is still a runnable
7086 * entity, update_curr() will update its vruntime, otherwise
7087 * forget we've ever seen it.
7088 */
7089 if (curr) {
7090 if (curr->on_rq)
7091 update_curr(cfs_rq);
7092 else
7093 curr = NULL;
7094
7095 /*
7096 * This call to check_cfs_rq_runtime() will do the
7097 * throttle and dequeue its entity in the parent(s).
7098 * Therefore the nr_running test will indeed
7099 * be correct.
7100 */
7101 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7102 cfs_rq = &rq->cfs;
7103
7104 if (!cfs_rq->nr_running)
7105 goto idle;
7106
7107 goto simple;
7108 }
7109 }
7110
7111 se = pick_next_entity(cfs_rq, curr);
7112 cfs_rq = group_cfs_rq(se);
7113 } while (cfs_rq);
7114
7115 p = task_of(se);
7116
7117 /*
7118 * Since we haven't yet done put_prev_entity and if the selected task
7119 * is a different task than we started out with, try and touch the
7120 * least amount of cfs_rqs.
7121 */
7122 if (prev != p) {
7123 struct sched_entity *pse = &prev->se;
7124
7125 while (!(cfs_rq = is_same_group(se, pse))) {
7126 int se_depth = se->depth;
7127 int pse_depth = pse->depth;
7128
7129 if (se_depth <= pse_depth) {
7130 put_prev_entity(cfs_rq_of(pse), pse);
7131 pse = parent_entity(pse);
7132 }
7133 if (se_depth >= pse_depth) {
7134 set_next_entity(cfs_rq_of(se), se);
7135 se = parent_entity(se);
7136 }
7137 }
7138
7139 put_prev_entity(cfs_rq, pse);
7140 set_next_entity(cfs_rq, se);
7141 }
7142
7143 goto done;
7144 simple:
7145 #endif
7146 if (prev)
7147 put_prev_task(rq, prev);
7148
7149 do {
7150 se = pick_next_entity(cfs_rq, NULL);
7151 set_next_entity(cfs_rq, se);
7152 cfs_rq = group_cfs_rq(se);
7153 } while (cfs_rq);
7154
7155 p = task_of(se);
7156
7157 done: __maybe_unused;
7158 #ifdef CONFIG_SMP
7159 /*
7160 * Move the next running task to the front of
7161 * the list, so our cfs_tasks list becomes MRU
7162 * one.
7163 */
7164 list_move(&p->se.group_node, &rq->cfs_tasks);
7165 #endif
7166
7167 if (hrtick_enabled(rq))
7168 hrtick_start_fair(rq, p);
7169
7170 update_misfit_status(p, rq);
7171
7172 return p;
7173
7174 idle:
7175 if (!rf)
7176 return NULL;
7177
7178 new_tasks = newidle_balance(rq, rf);
7179
7180 /*
7181 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7182 * possible for any higher priority task to appear. In that case we
7183 * must re-start the pick_next_entity() loop.
7184 */
7185 if (new_tasks < 0)
7186 return RETRY_TASK;
7187
7188 if (new_tasks > 0)
7189 goto again;
7190
7191 /*
7192 * rq is about to be idle, check if we need to update the
7193 * lost_idle_time of clock_pelt
7194 */
7195 update_idle_rq_clock_pelt(rq);
7196
7197 return NULL;
7198 }
7199
7200 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7201 {
7202 return pick_next_task_fair(rq, NULL, NULL);
7203 }
7204
7205 /*
7206 * Account for a descheduled task:
7207 */
7208 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7209 {
7210 struct sched_entity *se = &prev->se;
7211 struct cfs_rq *cfs_rq;
7212
7213 for_each_sched_entity(se) {
7214 cfs_rq = cfs_rq_of(se);
7215 put_prev_entity(cfs_rq, se);
7216 }
7217 }
7218
7219 /*
7220 * sched_yield() is very simple
7221 *
7222 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7223 */
7224 static void yield_task_fair(struct rq *rq)
7225 {
7226 struct task_struct *curr = rq->curr;
7227 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7228 struct sched_entity *se = &curr->se;
7229
7230 /*
7231 * Are we the only task in the tree?
7232 */
7233 if (unlikely(rq->nr_running == 1))
7234 return;
7235
7236 clear_buddies(cfs_rq, se);
7237
7238 if (curr->policy != SCHED_BATCH) {
7239 update_rq_clock(rq);
7240 /*
7241 * Update run-time statistics of the 'current'.
7242 */
7243 update_curr(cfs_rq);
7244 /*
7245 * Tell update_rq_clock() that we've just updated,
7246 * so we don't do microscopic update in schedule()
7247 * and double the fastpath cost.
7248 */
7249 rq_clock_skip_update(rq);
7250 }
7251
7252 set_skip_buddy(se);
7253 }
7254
7255 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7256 {
7257 struct sched_entity *se = &p->se;
7258
7259 /* throttled hierarchies are not runnable */
7260 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7261 return false;
7262
7263 /* Tell the scheduler that we'd really like pse to run next. */
7264 set_next_buddy(se);
7265
7266 yield_task_fair(rq);
7267
7268 return true;
7269 }
7270
7271 #ifdef CONFIG_SMP
7272 /**************************************************
7273 * Fair scheduling class load-balancing methods.
7274 *
7275 * BASICS
7276 *
7277 * The purpose of load-balancing is to achieve the same basic fairness the
7278 * per-CPU scheduler provides, namely provide a proportional amount of compute
7279 * time to each task. This is expressed in the following equation:
7280 *
7281 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7282 *
7283 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7284 * W_i,0 is defined as:
7285 *
7286 * W_i,0 = \Sum_j w_i,j (2)
7287 *
7288 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7289 * is derived from the nice value as per sched_prio_to_weight[].
7290 *
7291 * The weight average is an exponential decay average of the instantaneous
7292 * weight:
7293 *
7294 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7295 *
7296 * C_i is the compute capacity of CPU i, typically it is the
7297 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7298 * can also include other factors [XXX].
7299 *
7300 * To achieve this balance we define a measure of imbalance which follows
7301 * directly from (1):
7302 *
7303 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7304 *
7305 * We them move tasks around to minimize the imbalance. In the continuous
7306 * function space it is obvious this converges, in the discrete case we get
7307 * a few fun cases generally called infeasible weight scenarios.
7308 *
7309 * [XXX expand on:
7310 * - infeasible weights;
7311 * - local vs global optima in the discrete case. ]
7312 *
7313 *
7314 * SCHED DOMAINS
7315 *
7316 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7317 * for all i,j solution, we create a tree of CPUs that follows the hardware
7318 * topology where each level pairs two lower groups (or better). This results
7319 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7320 * tree to only the first of the previous level and we decrease the frequency
7321 * of load-balance at each level inv. proportional to the number of CPUs in
7322 * the groups.
7323 *
7324 * This yields:
7325 *
7326 * log_2 n 1 n
7327 * \Sum { --- * --- * 2^i } = O(n) (5)
7328 * i = 0 2^i 2^i
7329 * `- size of each group
7330 * | | `- number of CPUs doing load-balance
7331 * | `- freq
7332 * `- sum over all levels
7333 *
7334 * Coupled with a limit on how many tasks we can migrate every balance pass,
7335 * this makes (5) the runtime complexity of the balancer.
7336 *
7337 * An important property here is that each CPU is still (indirectly) connected
7338 * to every other CPU in at most O(log n) steps:
7339 *
7340 * The adjacency matrix of the resulting graph is given by:
7341 *
7342 * log_2 n
7343 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7344 * k = 0
7345 *
7346 * And you'll find that:
7347 *
7348 * A^(log_2 n)_i,j != 0 for all i,j (7)
7349 *
7350 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7351 * The task movement gives a factor of O(m), giving a convergence complexity
7352 * of:
7353 *
7354 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7355 *
7356 *
7357 * WORK CONSERVING
7358 *
7359 * In order to avoid CPUs going idle while there's still work to do, new idle
7360 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7361 * tree itself instead of relying on other CPUs to bring it work.
7362 *
7363 * This adds some complexity to both (5) and (8) but it reduces the total idle
7364 * time.
7365 *
7366 * [XXX more?]
7367 *
7368 *
7369 * CGROUPS
7370 *
7371 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7372 *
7373 * s_k,i
7374 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7375 * S_k
7376 *
7377 * Where
7378 *
7379 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7380 *
7381 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7382 *
7383 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7384 * property.
7385 *
7386 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7387 * rewrite all of this once again.]
7388 */
7389
7390 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7391
7392 enum fbq_type { regular, remote, all };
7393
7394 /*
7395 * 'group_type' describes the group of CPUs at the moment of load balancing.
7396 *
7397 * The enum is ordered by pulling priority, with the group with lowest priority
7398 * first so the group_type can simply be compared when selecting the busiest
7399 * group. See update_sd_pick_busiest().
7400 */
7401 enum group_type {
7402 /* The group has spare capacity that can be used to run more tasks. */
7403 group_has_spare = 0,
7404 /*
7405 * The group is fully used and the tasks don't compete for more CPU
7406 * cycles. Nevertheless, some tasks might wait before running.
7407 */
7408 group_fully_busy,
7409 /*
7410 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7411 * and must be migrated to a more powerful CPU.
7412 */
7413 group_misfit_task,
7414 /*
7415 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7416 * and the task should be migrated to it instead of running on the
7417 * current CPU.
7418 */
7419 group_asym_packing,
7420 /*
7421 * The tasks' affinity constraints previously prevented the scheduler
7422 * from balancing the load across the system.
7423 */
7424 group_imbalanced,
7425 /*
7426 * The CPU is overloaded and can't provide expected CPU cycles to all
7427 * tasks.
7428 */
7429 group_overloaded
7430 };
7431
7432 enum migration_type {
7433 migrate_load = 0,
7434 migrate_util,
7435 migrate_task,
7436 migrate_misfit
7437 };
7438
7439 #define LBF_ALL_PINNED 0x01
7440 #define LBF_NEED_BREAK 0x02
7441 #define LBF_DST_PINNED 0x04
7442 #define LBF_SOME_PINNED 0x08
7443 #define LBF_NOHZ_STATS 0x10
7444 #define LBF_NOHZ_AGAIN 0x20
7445
7446 struct lb_env {
7447 struct sched_domain *sd;
7448
7449 struct rq *src_rq;
7450 int src_cpu;
7451
7452 int dst_cpu;
7453 struct rq *dst_rq;
7454
7455 struct cpumask *dst_grpmask;
7456 int new_dst_cpu;
7457 enum cpu_idle_type idle;
7458 long imbalance;
7459 /* The set of CPUs under consideration for load-balancing */
7460 struct cpumask *cpus;
7461
7462 unsigned int flags;
7463
7464 unsigned int loop;
7465 unsigned int loop_break;
7466 unsigned int loop_max;
7467
7468 enum fbq_type fbq_type;
7469 enum migration_type migration_type;
7470 struct list_head tasks;
7471 };
7472
7473 /*
7474 * Is this task likely cache-hot:
7475 */
7476 static int task_hot(struct task_struct *p, struct lb_env *env)
7477 {
7478 s64 delta;
7479
7480 lockdep_assert_held(&env->src_rq->lock);
7481
7482 if (p->sched_class != &fair_sched_class)
7483 return 0;
7484
7485 if (unlikely(task_has_idle_policy(p)))
7486 return 0;
7487
7488 /* SMT siblings share cache */
7489 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7490 return 0;
7491
7492 /*
7493 * Buddy candidates are cache hot:
7494 */
7495 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7496 (&p->se == cfs_rq_of(&p->se)->next ||
7497 &p->se == cfs_rq_of(&p->se)->last))
7498 return 1;
7499
7500 if (sysctl_sched_migration_cost == -1)
7501 return 1;
7502 if (sysctl_sched_migration_cost == 0)
7503 return 0;
7504
7505 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7506
7507 return delta < (s64)sysctl_sched_migration_cost;
7508 }
7509
7510 #ifdef CONFIG_NUMA_BALANCING
7511 /*
7512 * Returns 1, if task migration degrades locality
7513 * Returns 0, if task migration improves locality i.e migration preferred.
7514 * Returns -1, if task migration is not affected by locality.
7515 */
7516 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7517 {
7518 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7519 unsigned long src_weight, dst_weight;
7520 int src_nid, dst_nid, dist;
7521
7522 if (!static_branch_likely(&sched_numa_balancing))
7523 return -1;
7524
7525 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7526 return -1;
7527
7528 src_nid = cpu_to_node(env->src_cpu);
7529 dst_nid = cpu_to_node(env->dst_cpu);
7530
7531 if (src_nid == dst_nid)
7532 return -1;
7533
7534 /* Migrating away from the preferred node is always bad. */
7535 if (src_nid == p->numa_preferred_nid) {
7536 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7537 return 1;
7538 else
7539 return -1;
7540 }
7541
7542 /* Encourage migration to the preferred node. */
7543 if (dst_nid == p->numa_preferred_nid)
7544 return 0;
7545
7546 /* Leaving a core idle is often worse than degrading locality. */
7547 if (env->idle == CPU_IDLE)
7548 return -1;
7549
7550 dist = node_distance(src_nid, dst_nid);
7551 if (numa_group) {
7552 src_weight = group_weight(p, src_nid, dist);
7553 dst_weight = group_weight(p, dst_nid, dist);
7554 } else {
7555 src_weight = task_weight(p, src_nid, dist);
7556 dst_weight = task_weight(p, dst_nid, dist);
7557 }
7558
7559 return dst_weight < src_weight;
7560 }
7561
7562 #else
7563 static inline int migrate_degrades_locality(struct task_struct *p,
7564 struct lb_env *env)
7565 {
7566 return -1;
7567 }
7568 #endif
7569
7570 /*
7571 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7572 */
7573 static
7574 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7575 {
7576 int tsk_cache_hot;
7577
7578 lockdep_assert_held(&env->src_rq->lock);
7579
7580 /*
7581 * We do not migrate tasks that are:
7582 * 1) throttled_lb_pair, or
7583 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7584 * 3) running (obviously), or
7585 * 4) are cache-hot on their current CPU.
7586 */
7587 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7588 return 0;
7589
7590 /* Disregard pcpu kthreads; they are where they need to be. */
7591 if (kthread_is_per_cpu(p))
7592 return 0;
7593
7594 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7595 int cpu;
7596
7597 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7598
7599 env->flags |= LBF_SOME_PINNED;
7600
7601 /*
7602 * Remember if this task can be migrated to any other CPU in
7603 * our sched_group. We may want to revisit it if we couldn't
7604 * meet load balance goals by pulling other tasks on src_cpu.
7605 *
7606 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7607 * already computed one in current iteration.
7608 */
7609 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7610 return 0;
7611
7612 /* Prevent to re-select dst_cpu via env's CPUs: */
7613 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7614 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7615 env->flags |= LBF_DST_PINNED;
7616 env->new_dst_cpu = cpu;
7617 break;
7618 }
7619 }
7620
7621 return 0;
7622 }
7623
7624 /* Record that we found atleast one task that could run on dst_cpu */
7625 env->flags &= ~LBF_ALL_PINNED;
7626
7627 if (task_running(env->src_rq, p)) {
7628 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7629 return 0;
7630 }
7631
7632 /*
7633 * Aggressive migration if:
7634 * 1) destination numa is preferred
7635 * 2) task is cache cold, or
7636 * 3) too many balance attempts have failed.
7637 */
7638 tsk_cache_hot = migrate_degrades_locality(p, env);
7639 if (tsk_cache_hot == -1)
7640 tsk_cache_hot = task_hot(p, env);
7641
7642 if (tsk_cache_hot <= 0 ||
7643 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7644 if (tsk_cache_hot == 1) {
7645 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7646 schedstat_inc(p->se.statistics.nr_forced_migrations);
7647 }
7648 return 1;
7649 }
7650
7651 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7652 return 0;
7653 }
7654
7655 /*
7656 * detach_task() -- detach the task for the migration specified in env
7657 */
7658 static void detach_task(struct task_struct *p, struct lb_env *env)
7659 {
7660 lockdep_assert_held(&env->src_rq->lock);
7661
7662 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7663 set_task_cpu(p, env->dst_cpu);
7664 }
7665
7666 /*
7667 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7668 * part of active balancing operations within "domain".
7669 *
7670 * Returns a task if successful and NULL otherwise.
7671 */
7672 static struct task_struct *detach_one_task(struct lb_env *env)
7673 {
7674 struct task_struct *p;
7675
7676 lockdep_assert_held(&env->src_rq->lock);
7677
7678 list_for_each_entry_reverse(p,
7679 &env->src_rq->cfs_tasks, se.group_node) {
7680 if (!can_migrate_task(p, env))
7681 continue;
7682
7683 detach_task(p, env);
7684
7685 /*
7686 * Right now, this is only the second place where
7687 * lb_gained[env->idle] is updated (other is detach_tasks)
7688 * so we can safely collect stats here rather than
7689 * inside detach_tasks().
7690 */
7691 schedstat_inc(env->sd->lb_gained[env->idle]);
7692 return p;
7693 }
7694 return NULL;
7695 }
7696
7697 static const unsigned int sched_nr_migrate_break = 32;
7698
7699 /*
7700 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7701 * busiest_rq, as part of a balancing operation within domain "sd".
7702 *
7703 * Returns number of detached tasks if successful and 0 otherwise.
7704 */
7705 static int detach_tasks(struct lb_env *env)
7706 {
7707 struct list_head *tasks = &env->src_rq->cfs_tasks;
7708 unsigned long util, load;
7709 struct task_struct *p;
7710 int detached = 0;
7711
7712 lockdep_assert_held(&env->src_rq->lock);
7713
7714 if (env->imbalance <= 0)
7715 return 0;
7716
7717 while (!list_empty(tasks)) {
7718 /*
7719 * We don't want to steal all, otherwise we may be treated likewise,
7720 * which could at worst lead to a livelock crash.
7721 */
7722 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7723 break;
7724
7725 p = list_last_entry(tasks, struct task_struct, se.group_node);
7726
7727 env->loop++;
7728 /* We've more or less seen every task there is, call it quits */
7729 if (env->loop > env->loop_max)
7730 break;
7731
7732 /* take a breather every nr_migrate tasks */
7733 if (env->loop > env->loop_break) {
7734 env->loop_break += sched_nr_migrate_break;
7735 env->flags |= LBF_NEED_BREAK;
7736 break;
7737 }
7738
7739 if (!can_migrate_task(p, env))
7740 goto next;
7741
7742 switch (env->migration_type) {
7743 case migrate_load:
7744 /*
7745 * Depending of the number of CPUs and tasks and the
7746 * cgroup hierarchy, task_h_load() can return a null
7747 * value. Make sure that env->imbalance decreases
7748 * otherwise detach_tasks() will stop only after
7749 * detaching up to loop_max tasks.
7750 */
7751 load = max_t(unsigned long, task_h_load(p), 1);
7752
7753 if (sched_feat(LB_MIN) &&
7754 load < 16 && !env->sd->nr_balance_failed)
7755 goto next;
7756
7757 /*
7758 * Make sure that we don't migrate too much load.
7759 * Nevertheless, let relax the constraint if
7760 * scheduler fails to find a good waiting task to
7761 * migrate.
7762 */
7763 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7764 goto next;
7765
7766 env->imbalance -= load;
7767 break;
7768
7769 case migrate_util:
7770 util = task_util_est(p);
7771
7772 if (util > env->imbalance)
7773 goto next;
7774
7775 env->imbalance -= util;
7776 break;
7777
7778 case migrate_task:
7779 env->imbalance--;
7780 break;
7781
7782 case migrate_misfit:
7783 /* This is not a misfit task */
7784 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7785 goto next;
7786
7787 env->imbalance = 0;
7788 break;
7789 }
7790
7791 detach_task(p, env);
7792 list_add(&p->se.group_node, &env->tasks);
7793
7794 detached++;
7795
7796 #ifdef CONFIG_PREEMPTION
7797 /*
7798 * NEWIDLE balancing is a source of latency, so preemptible
7799 * kernels will stop after the first task is detached to minimize
7800 * the critical section.
7801 */
7802 if (env->idle == CPU_NEWLY_IDLE)
7803 break;
7804 #endif
7805
7806 /*
7807 * We only want to steal up to the prescribed amount of
7808 * load/util/tasks.
7809 */
7810 if (env->imbalance <= 0)
7811 break;
7812
7813 continue;
7814 next:
7815 list_move(&p->se.group_node, tasks);
7816 }
7817
7818 /*
7819 * Right now, this is one of only two places we collect this stat
7820 * so we can safely collect detach_one_task() stats here rather
7821 * than inside detach_one_task().
7822 */
7823 schedstat_add(env->sd->lb_gained[env->idle], detached);
7824
7825 return detached;
7826 }
7827
7828 /*
7829 * attach_task() -- attach the task detached by detach_task() to its new rq.
7830 */
7831 static void attach_task(struct rq *rq, struct task_struct *p)
7832 {
7833 lockdep_assert_held(&rq->lock);
7834
7835 BUG_ON(task_rq(p) != rq);
7836 activate_task(rq, p, ENQUEUE_NOCLOCK);
7837 check_preempt_curr(rq, p, 0);
7838 }
7839
7840 /*
7841 * attach_one_task() -- attaches the task returned from detach_one_task() to
7842 * its new rq.
7843 */
7844 static void attach_one_task(struct rq *rq, struct task_struct *p)
7845 {
7846 struct rq_flags rf;
7847
7848 rq_lock(rq, &rf);
7849 update_rq_clock(rq);
7850 attach_task(rq, p);
7851 rq_unlock(rq, &rf);
7852 }
7853
7854 /*
7855 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7856 * new rq.
7857 */
7858 static void attach_tasks(struct lb_env *env)
7859 {
7860 struct list_head *tasks = &env->tasks;
7861 struct task_struct *p;
7862 struct rq_flags rf;
7863
7864 rq_lock(env->dst_rq, &rf);
7865 update_rq_clock(env->dst_rq);
7866
7867 while (!list_empty(tasks)) {
7868 p = list_first_entry(tasks, struct task_struct, se.group_node);
7869 list_del_init(&p->se.group_node);
7870
7871 attach_task(env->dst_rq, p);
7872 }
7873
7874 rq_unlock(env->dst_rq, &rf);
7875 }
7876
7877 #ifdef CONFIG_NO_HZ_COMMON
7878 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7879 {
7880 if (cfs_rq->avg.load_avg)
7881 return true;
7882
7883 if (cfs_rq->avg.util_avg)
7884 return true;
7885
7886 return false;
7887 }
7888
7889 static inline bool others_have_blocked(struct rq *rq)
7890 {
7891 if (READ_ONCE(rq->avg_rt.util_avg))
7892 return true;
7893
7894 if (READ_ONCE(rq->avg_dl.util_avg))
7895 return true;
7896
7897 if (thermal_load_avg(rq))
7898 return true;
7899
7900 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7901 if (READ_ONCE(rq->avg_irq.util_avg))
7902 return true;
7903 #endif
7904
7905 return false;
7906 }
7907
7908 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7909 {
7910 rq->last_blocked_load_update_tick = jiffies;
7911
7912 if (!has_blocked)
7913 rq->has_blocked_load = 0;
7914 }
7915 #else
7916 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7917 static inline bool others_have_blocked(struct rq *rq) { return false; }
7918 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7919 #endif
7920
7921 static bool __update_blocked_others(struct rq *rq, bool *done)
7922 {
7923 const struct sched_class *curr_class;
7924 u64 now = rq_clock_pelt(rq);
7925 unsigned long thermal_pressure;
7926 bool decayed;
7927
7928 /*
7929 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7930 * DL and IRQ signals have been updated before updating CFS.
7931 */
7932 curr_class = rq->curr->sched_class;
7933
7934 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7935
7936 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7937 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7938 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7939 update_irq_load_avg(rq, 0);
7940
7941 if (others_have_blocked(rq))
7942 *done = false;
7943
7944 return decayed;
7945 }
7946
7947 #ifdef CONFIG_FAIR_GROUP_SCHED
7948
7949 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7950 {
7951 if (cfs_rq->load.weight)
7952 return false;
7953
7954 if (cfs_rq->avg.load_sum)
7955 return false;
7956
7957 if (cfs_rq->avg.util_sum)
7958 return false;
7959
7960 if (cfs_rq->avg.runnable_sum)
7961 return false;
7962
7963 return true;
7964 }
7965
7966 static bool __update_blocked_fair(struct rq *rq, bool *done)
7967 {
7968 struct cfs_rq *cfs_rq, *pos;
7969 bool decayed = false;
7970 int cpu = cpu_of(rq);
7971
7972 /*
7973 * Iterates the task_group tree in a bottom up fashion, see
7974 * list_add_leaf_cfs_rq() for details.
7975 */
7976 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7977 struct sched_entity *se;
7978
7979 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7980 update_tg_load_avg(cfs_rq);
7981
7982 if (cfs_rq == &rq->cfs)
7983 decayed = true;
7984 }
7985
7986 /* Propagate pending load changes to the parent, if any: */
7987 se = cfs_rq->tg->se[cpu];
7988 if (se && !skip_blocked_update(se))
7989 update_load_avg(cfs_rq_of(se), se, 0);
7990
7991 /*
7992 * There can be a lot of idle CPU cgroups. Don't let fully
7993 * decayed cfs_rqs linger on the list.
7994 */
7995 if (cfs_rq_is_decayed(cfs_rq))
7996 list_del_leaf_cfs_rq(cfs_rq);
7997
7998 /* Don't need periodic decay once load/util_avg are null */
7999 if (cfs_rq_has_blocked(cfs_rq))
8000 *done = false;
8001 }
8002
8003 return decayed;
8004 }
8005
8006 /*
8007 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8008 * This needs to be done in a top-down fashion because the load of a child
8009 * group is a fraction of its parents load.
8010 */
8011 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8012 {
8013 struct rq *rq = rq_of(cfs_rq);
8014 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8015 unsigned long now = jiffies;
8016 unsigned long load;
8017
8018 if (cfs_rq->last_h_load_update == now)
8019 return;
8020
8021 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8022 for_each_sched_entity(se) {
8023 cfs_rq = cfs_rq_of(se);
8024 WRITE_ONCE(cfs_rq->h_load_next, se);
8025 if (cfs_rq->last_h_load_update == now)
8026 break;
8027 }
8028
8029 if (!se) {
8030 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8031 cfs_rq->last_h_load_update = now;
8032 }
8033
8034 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8035 load = cfs_rq->h_load;
8036 load = div64_ul(load * se->avg.load_avg,
8037 cfs_rq_load_avg(cfs_rq) + 1);
8038 cfs_rq = group_cfs_rq(se);
8039 cfs_rq->h_load = load;
8040 cfs_rq->last_h_load_update = now;
8041 }
8042 }
8043
8044 static unsigned long task_h_load(struct task_struct *p)
8045 {
8046 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8047
8048 update_cfs_rq_h_load(cfs_rq);
8049 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8050 cfs_rq_load_avg(cfs_rq) + 1);
8051 }
8052 #else
8053 static bool __update_blocked_fair(struct rq *rq, bool *done)
8054 {
8055 struct cfs_rq *cfs_rq = &rq->cfs;
8056 bool decayed;
8057
8058 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8059 if (cfs_rq_has_blocked(cfs_rq))
8060 *done = false;
8061
8062 return decayed;
8063 }
8064
8065 static unsigned long task_h_load(struct task_struct *p)
8066 {
8067 return p->se.avg.load_avg;
8068 }
8069 #endif
8070
8071 static void update_blocked_averages(int cpu)
8072 {
8073 bool decayed = false, done = true;
8074 struct rq *rq = cpu_rq(cpu);
8075 struct rq_flags rf;
8076
8077 rq_lock_irqsave(rq, &rf);
8078 update_rq_clock(rq);
8079
8080 decayed |= __update_blocked_others(rq, &done);
8081 decayed |= __update_blocked_fair(rq, &done);
8082
8083 update_blocked_load_status(rq, !done);
8084 if (decayed)
8085 cpufreq_update_util(rq, 0);
8086 rq_unlock_irqrestore(rq, &rf);
8087 }
8088
8089 /********** Helpers for find_busiest_group ************************/
8090
8091 /*
8092 * sg_lb_stats - stats of a sched_group required for load_balancing
8093 */
8094 struct sg_lb_stats {
8095 unsigned long avg_load; /*Avg load across the CPUs of the group */
8096 unsigned long group_load; /* Total load over the CPUs of the group */
8097 unsigned long group_capacity;
8098 unsigned long group_util; /* Total utilization over the CPUs of the group */
8099 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8100 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8101 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8102 unsigned int idle_cpus;
8103 unsigned int group_weight;
8104 enum group_type group_type;
8105 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8106 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8107 #ifdef CONFIG_NUMA_BALANCING
8108 unsigned int nr_numa_running;
8109 unsigned int nr_preferred_running;
8110 #endif
8111 };
8112
8113 /*
8114 * sd_lb_stats - Structure to store the statistics of a sched_domain
8115 * during load balancing.
8116 */
8117 struct sd_lb_stats {
8118 struct sched_group *busiest; /* Busiest group in this sd */
8119 struct sched_group *local; /* Local group in this sd */
8120 unsigned long total_load; /* Total load of all groups in sd */
8121 unsigned long total_capacity; /* Total capacity of all groups in sd */
8122 unsigned long avg_load; /* Average load across all groups in sd */
8123 unsigned int prefer_sibling; /* tasks should go to sibling first */
8124
8125 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8126 struct sg_lb_stats local_stat; /* Statistics of the local group */
8127 };
8128
8129 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8130 {
8131 /*
8132 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8133 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8134 * We must however set busiest_stat::group_type and
8135 * busiest_stat::idle_cpus to the worst busiest group because
8136 * update_sd_pick_busiest() reads these before assignment.
8137 */
8138 *sds = (struct sd_lb_stats){
8139 .busiest = NULL,
8140 .local = NULL,
8141 .total_load = 0UL,
8142 .total_capacity = 0UL,
8143 .busiest_stat = {
8144 .idle_cpus = UINT_MAX,
8145 .group_type = group_has_spare,
8146 },
8147 };
8148 }
8149
8150 static unsigned long scale_rt_capacity(int cpu)
8151 {
8152 struct rq *rq = cpu_rq(cpu);
8153 unsigned long max = arch_scale_cpu_capacity(cpu);
8154 unsigned long used, free;
8155 unsigned long irq;
8156
8157 irq = cpu_util_irq(rq);
8158
8159 if (unlikely(irq >= max))
8160 return 1;
8161
8162 /*
8163 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8164 * (running and not running) with weights 0 and 1024 respectively.
8165 * avg_thermal.load_avg tracks thermal pressure and the weighted
8166 * average uses the actual delta max capacity(load).
8167 */
8168 used = READ_ONCE(rq->avg_rt.util_avg);
8169 used += READ_ONCE(rq->avg_dl.util_avg);
8170 used += thermal_load_avg(rq);
8171
8172 if (unlikely(used >= max))
8173 return 1;
8174
8175 free = max - used;
8176
8177 return scale_irq_capacity(free, irq, max);
8178 }
8179
8180 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8181 {
8182 unsigned long capacity = scale_rt_capacity(cpu);
8183 struct sched_group *sdg = sd->groups;
8184
8185 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8186
8187 if (!capacity)
8188 capacity = 1;
8189
8190 cpu_rq(cpu)->cpu_capacity = capacity;
8191 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8192
8193 sdg->sgc->capacity = capacity;
8194 sdg->sgc->min_capacity = capacity;
8195 sdg->sgc->max_capacity = capacity;
8196 }
8197
8198 void update_group_capacity(struct sched_domain *sd, int cpu)
8199 {
8200 struct sched_domain *child = sd->child;
8201 struct sched_group *group, *sdg = sd->groups;
8202 unsigned long capacity, min_capacity, max_capacity;
8203 unsigned long interval;
8204
8205 interval = msecs_to_jiffies(sd->balance_interval);
8206 interval = clamp(interval, 1UL, max_load_balance_interval);
8207 sdg->sgc->next_update = jiffies + interval;
8208
8209 if (!child) {
8210 update_cpu_capacity(sd, cpu);
8211 return;
8212 }
8213
8214 capacity = 0;
8215 min_capacity = ULONG_MAX;
8216 max_capacity = 0;
8217
8218 if (child->flags & SD_OVERLAP) {
8219 /*
8220 * SD_OVERLAP domains cannot assume that child groups
8221 * span the current group.
8222 */
8223
8224 for_each_cpu(cpu, sched_group_span(sdg)) {
8225 unsigned long cpu_cap = capacity_of(cpu);
8226
8227 capacity += cpu_cap;
8228 min_capacity = min(cpu_cap, min_capacity);
8229 max_capacity = max(cpu_cap, max_capacity);
8230 }
8231 } else {
8232 /*
8233 * !SD_OVERLAP domains can assume that child groups
8234 * span the current group.
8235 */
8236
8237 group = child->groups;
8238 do {
8239 struct sched_group_capacity *sgc = group->sgc;
8240
8241 capacity += sgc->capacity;
8242 min_capacity = min(sgc->min_capacity, min_capacity);
8243 max_capacity = max(sgc->max_capacity, max_capacity);
8244 group = group->next;
8245 } while (group != child->groups);
8246 }
8247
8248 sdg->sgc->capacity = capacity;
8249 sdg->sgc->min_capacity = min_capacity;
8250 sdg->sgc->max_capacity = max_capacity;
8251 }
8252
8253 /*
8254 * Check whether the capacity of the rq has been noticeably reduced by side
8255 * activity. The imbalance_pct is used for the threshold.
8256 * Return true is the capacity is reduced
8257 */
8258 static inline int
8259 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8260 {
8261 return ((rq->cpu_capacity * sd->imbalance_pct) <
8262 (rq->cpu_capacity_orig * 100));
8263 }
8264
8265 /*
8266 * Check whether a rq has a misfit task and if it looks like we can actually
8267 * help that task: we can migrate the task to a CPU of higher capacity, or
8268 * the task's current CPU is heavily pressured.
8269 */
8270 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8271 {
8272 return rq->misfit_task_load &&
8273 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8274 check_cpu_capacity(rq, sd));
8275 }
8276
8277 /*
8278 * Group imbalance indicates (and tries to solve) the problem where balancing
8279 * groups is inadequate due to ->cpus_ptr constraints.
8280 *
8281 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8282 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8283 * Something like:
8284 *
8285 * { 0 1 2 3 } { 4 5 6 7 }
8286 * * * * *
8287 *
8288 * If we were to balance group-wise we'd place two tasks in the first group and
8289 * two tasks in the second group. Clearly this is undesired as it will overload
8290 * cpu 3 and leave one of the CPUs in the second group unused.
8291 *
8292 * The current solution to this issue is detecting the skew in the first group
8293 * by noticing the lower domain failed to reach balance and had difficulty
8294 * moving tasks due to affinity constraints.
8295 *
8296 * When this is so detected; this group becomes a candidate for busiest; see
8297 * update_sd_pick_busiest(). And calculate_imbalance() and
8298 * find_busiest_group() avoid some of the usual balance conditions to allow it
8299 * to create an effective group imbalance.
8300 *
8301 * This is a somewhat tricky proposition since the next run might not find the
8302 * group imbalance and decide the groups need to be balanced again. A most
8303 * subtle and fragile situation.
8304 */
8305
8306 static inline int sg_imbalanced(struct sched_group *group)
8307 {
8308 return group->sgc->imbalance;
8309 }
8310
8311 /*
8312 * group_has_capacity returns true if the group has spare capacity that could
8313 * be used by some tasks.
8314 * We consider that a group has spare capacity if the * number of task is
8315 * smaller than the number of CPUs or if the utilization is lower than the
8316 * available capacity for CFS tasks.
8317 * For the latter, we use a threshold to stabilize the state, to take into
8318 * account the variance of the tasks' load and to return true if the available
8319 * capacity in meaningful for the load balancer.
8320 * As an example, an available capacity of 1% can appear but it doesn't make
8321 * any benefit for the load balance.
8322 */
8323 static inline bool
8324 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8325 {
8326 if (sgs->sum_nr_running < sgs->group_weight)
8327 return true;
8328
8329 if ((sgs->group_capacity * imbalance_pct) <
8330 (sgs->group_runnable * 100))
8331 return false;
8332
8333 if ((sgs->group_capacity * 100) >
8334 (sgs->group_util * imbalance_pct))
8335 return true;
8336
8337 return false;
8338 }
8339
8340 /*
8341 * group_is_overloaded returns true if the group has more tasks than it can
8342 * handle.
8343 * group_is_overloaded is not equals to !group_has_capacity because a group
8344 * with the exact right number of tasks, has no more spare capacity but is not
8345 * overloaded so both group_has_capacity and group_is_overloaded return
8346 * false.
8347 */
8348 static inline bool
8349 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8350 {
8351 if (sgs->sum_nr_running <= sgs->group_weight)
8352 return false;
8353
8354 if ((sgs->group_capacity * 100) <
8355 (sgs->group_util * imbalance_pct))
8356 return true;
8357
8358 if ((sgs->group_capacity * imbalance_pct) <
8359 (sgs->group_runnable * 100))
8360 return true;
8361
8362 return false;
8363 }
8364
8365 /*
8366 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8367 * per-CPU capacity than sched_group ref.
8368 */
8369 static inline bool
8370 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8371 {
8372 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8373 }
8374
8375 /*
8376 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8377 * per-CPU capacity_orig than sched_group ref.
8378 */
8379 static inline bool
8380 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8381 {
8382 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8383 }
8384
8385 static inline enum
8386 group_type group_classify(unsigned int imbalance_pct,
8387 struct sched_group *group,
8388 struct sg_lb_stats *sgs)
8389 {
8390 if (group_is_overloaded(imbalance_pct, sgs))
8391 return group_overloaded;
8392
8393 if (sg_imbalanced(group))
8394 return group_imbalanced;
8395
8396 if (sgs->group_asym_packing)
8397 return group_asym_packing;
8398
8399 if (sgs->group_misfit_task_load)
8400 return group_misfit_task;
8401
8402 if (!group_has_capacity(imbalance_pct, sgs))
8403 return group_fully_busy;
8404
8405 return group_has_spare;
8406 }
8407
8408 static bool update_nohz_stats(struct rq *rq, bool force)
8409 {
8410 #ifdef CONFIG_NO_HZ_COMMON
8411 unsigned int cpu = rq->cpu;
8412
8413 if (!rq->has_blocked_load)
8414 return false;
8415
8416 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8417 return false;
8418
8419 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8420 return true;
8421
8422 update_blocked_averages(cpu);
8423
8424 return rq->has_blocked_load;
8425 #else
8426 return false;
8427 #endif
8428 }
8429
8430 /**
8431 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8432 * @env: The load balancing environment.
8433 * @group: sched_group whose statistics are to be updated.
8434 * @sgs: variable to hold the statistics for this group.
8435 * @sg_status: Holds flag indicating the status of the sched_group
8436 */
8437 static inline void update_sg_lb_stats(struct lb_env *env,
8438 struct sched_group *group,
8439 struct sg_lb_stats *sgs,
8440 int *sg_status)
8441 {
8442 int i, nr_running, local_group;
8443
8444 memset(sgs, 0, sizeof(*sgs));
8445
8446 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8447
8448 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8449 struct rq *rq = cpu_rq(i);
8450
8451 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8452 env->flags |= LBF_NOHZ_AGAIN;
8453
8454 sgs->group_load += cpu_load(rq);
8455 sgs->group_util += cpu_util(i);
8456 sgs->group_runnable += cpu_runnable(rq);
8457 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8458
8459 nr_running = rq->nr_running;
8460 sgs->sum_nr_running += nr_running;
8461
8462 if (nr_running > 1)
8463 *sg_status |= SG_OVERLOAD;
8464
8465 if (cpu_overutilized(i))
8466 *sg_status |= SG_OVERUTILIZED;
8467
8468 #ifdef CONFIG_NUMA_BALANCING
8469 sgs->nr_numa_running += rq->nr_numa_running;
8470 sgs->nr_preferred_running += rq->nr_preferred_running;
8471 #endif
8472 /*
8473 * No need to call idle_cpu() if nr_running is not 0
8474 */
8475 if (!nr_running && idle_cpu(i)) {
8476 sgs->idle_cpus++;
8477 /* Idle cpu can't have misfit task */
8478 continue;
8479 }
8480
8481 if (local_group)
8482 continue;
8483
8484 /* Check for a misfit task on the cpu */
8485 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8486 sgs->group_misfit_task_load < rq->misfit_task_load) {
8487 sgs->group_misfit_task_load = rq->misfit_task_load;
8488 *sg_status |= SG_OVERLOAD;
8489 }
8490 }
8491
8492 /* Check if dst CPU is idle and preferred to this group */
8493 if (env->sd->flags & SD_ASYM_PACKING &&
8494 env->idle != CPU_NOT_IDLE &&
8495 sgs->sum_h_nr_running &&
8496 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8497 sgs->group_asym_packing = 1;
8498 }
8499
8500 sgs->group_capacity = group->sgc->capacity;
8501
8502 sgs->group_weight = group->group_weight;
8503
8504 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8505
8506 /* Computing avg_load makes sense only when group is overloaded */
8507 if (sgs->group_type == group_overloaded)
8508 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8509 sgs->group_capacity;
8510 }
8511
8512 /**
8513 * update_sd_pick_busiest - return 1 on busiest group
8514 * @env: The load balancing environment.
8515 * @sds: sched_domain statistics
8516 * @sg: sched_group candidate to be checked for being the busiest
8517 * @sgs: sched_group statistics
8518 *
8519 * Determine if @sg is a busier group than the previously selected
8520 * busiest group.
8521 *
8522 * Return: %true if @sg is a busier group than the previously selected
8523 * busiest group. %false otherwise.
8524 */
8525 static bool update_sd_pick_busiest(struct lb_env *env,
8526 struct sd_lb_stats *sds,
8527 struct sched_group *sg,
8528 struct sg_lb_stats *sgs)
8529 {
8530 struct sg_lb_stats *busiest = &sds->busiest_stat;
8531
8532 /* Make sure that there is at least one task to pull */
8533 if (!sgs->sum_h_nr_running)
8534 return false;
8535
8536 /*
8537 * Don't try to pull misfit tasks we can't help.
8538 * We can use max_capacity here as reduction in capacity on some
8539 * CPUs in the group should either be possible to resolve
8540 * internally or be covered by avg_load imbalance (eventually).
8541 */
8542 if (sgs->group_type == group_misfit_task &&
8543 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8544 sds->local_stat.group_type != group_has_spare))
8545 return false;
8546
8547 if (sgs->group_type > busiest->group_type)
8548 return true;
8549
8550 if (sgs->group_type < busiest->group_type)
8551 return false;
8552
8553 /*
8554 * The candidate and the current busiest group are the same type of
8555 * group. Let check which one is the busiest according to the type.
8556 */
8557
8558 switch (sgs->group_type) {
8559 case group_overloaded:
8560 /* Select the overloaded group with highest avg_load. */
8561 if (sgs->avg_load <= busiest->avg_load)
8562 return false;
8563 break;
8564
8565 case group_imbalanced:
8566 /*
8567 * Select the 1st imbalanced group as we don't have any way to
8568 * choose one more than another.
8569 */
8570 return false;
8571
8572 case group_asym_packing:
8573 /* Prefer to move from lowest priority CPU's work */
8574 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8575 return false;
8576 break;
8577
8578 case group_misfit_task:
8579 /*
8580 * If we have more than one misfit sg go with the biggest
8581 * misfit.
8582 */
8583 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8584 return false;
8585 break;
8586
8587 case group_fully_busy:
8588 /*
8589 * Select the fully busy group with highest avg_load. In
8590 * theory, there is no need to pull task from such kind of
8591 * group because tasks have all compute capacity that they need
8592 * but we can still improve the overall throughput by reducing
8593 * contention when accessing shared HW resources.
8594 *
8595 * XXX for now avg_load is not computed and always 0 so we
8596 * select the 1st one.
8597 */
8598 if (sgs->avg_load <= busiest->avg_load)
8599 return false;
8600 break;
8601
8602 case group_has_spare:
8603 /*
8604 * Select not overloaded group with lowest number of idle cpus
8605 * and highest number of running tasks. We could also compare
8606 * the spare capacity which is more stable but it can end up
8607 * that the group has less spare capacity but finally more idle
8608 * CPUs which means less opportunity to pull tasks.
8609 */
8610 if (sgs->idle_cpus > busiest->idle_cpus)
8611 return false;
8612 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8613 (sgs->sum_nr_running <= busiest->sum_nr_running))
8614 return false;
8615
8616 break;
8617 }
8618
8619 /*
8620 * Candidate sg has no more than one task per CPU and has higher
8621 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8622 * throughput. Maximize throughput, power/energy consequences are not
8623 * considered.
8624 */
8625 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8626 (sgs->group_type <= group_fully_busy) &&
8627 (group_smaller_min_cpu_capacity(sds->local, sg)))
8628 return false;
8629
8630 return true;
8631 }
8632
8633 #ifdef CONFIG_NUMA_BALANCING
8634 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8635 {
8636 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8637 return regular;
8638 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8639 return remote;
8640 return all;
8641 }
8642
8643 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8644 {
8645 if (rq->nr_running > rq->nr_numa_running)
8646 return regular;
8647 if (rq->nr_running > rq->nr_preferred_running)
8648 return remote;
8649 return all;
8650 }
8651 #else
8652 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8653 {
8654 return all;
8655 }
8656
8657 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8658 {
8659 return regular;
8660 }
8661 #endif /* CONFIG_NUMA_BALANCING */
8662
8663
8664 struct sg_lb_stats;
8665
8666 /*
8667 * task_running_on_cpu - return 1 if @p is running on @cpu.
8668 */
8669
8670 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8671 {
8672 /* Task has no contribution or is new */
8673 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8674 return 0;
8675
8676 if (task_on_rq_queued(p))
8677 return 1;
8678
8679 return 0;
8680 }
8681
8682 /**
8683 * idle_cpu_without - would a given CPU be idle without p ?
8684 * @cpu: the processor on which idleness is tested.
8685 * @p: task which should be ignored.
8686 *
8687 * Return: 1 if the CPU would be idle. 0 otherwise.
8688 */
8689 static int idle_cpu_without(int cpu, struct task_struct *p)
8690 {
8691 struct rq *rq = cpu_rq(cpu);
8692
8693 if (rq->curr != rq->idle && rq->curr != p)
8694 return 0;
8695
8696 /*
8697 * rq->nr_running can't be used but an updated version without the
8698 * impact of p on cpu must be used instead. The updated nr_running
8699 * be computed and tested before calling idle_cpu_without().
8700 */
8701
8702 #ifdef CONFIG_SMP
8703 if (rq->ttwu_pending)
8704 return 0;
8705 #endif
8706
8707 return 1;
8708 }
8709
8710 /*
8711 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8712 * @sd: The sched_domain level to look for idlest group.
8713 * @group: sched_group whose statistics are to be updated.
8714 * @sgs: variable to hold the statistics for this group.
8715 * @p: The task for which we look for the idlest group/CPU.
8716 */
8717 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8718 struct sched_group *group,
8719 struct sg_lb_stats *sgs,
8720 struct task_struct *p)
8721 {
8722 int i, nr_running;
8723
8724 memset(sgs, 0, sizeof(*sgs));
8725
8726 for_each_cpu(i, sched_group_span(group)) {
8727 struct rq *rq = cpu_rq(i);
8728 unsigned int local;
8729
8730 sgs->group_load += cpu_load_without(rq, p);
8731 sgs->group_util += cpu_util_without(i, p);
8732 sgs->group_runnable += cpu_runnable_without(rq, p);
8733 local = task_running_on_cpu(i, p);
8734 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8735
8736 nr_running = rq->nr_running - local;
8737 sgs->sum_nr_running += nr_running;
8738
8739 /*
8740 * No need to call idle_cpu_without() if nr_running is not 0
8741 */
8742 if (!nr_running && idle_cpu_without(i, p))
8743 sgs->idle_cpus++;
8744
8745 }
8746
8747 /* Check if task fits in the group */
8748 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8749 !task_fits_capacity(p, group->sgc->max_capacity)) {
8750 sgs->group_misfit_task_load = 1;
8751 }
8752
8753 sgs->group_capacity = group->sgc->capacity;
8754
8755 sgs->group_weight = group->group_weight;
8756
8757 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8758
8759 /*
8760 * Computing avg_load makes sense only when group is fully busy or
8761 * overloaded
8762 */
8763 if (sgs->group_type == group_fully_busy ||
8764 sgs->group_type == group_overloaded)
8765 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8766 sgs->group_capacity;
8767 }
8768
8769 static bool update_pick_idlest(struct sched_group *idlest,
8770 struct sg_lb_stats *idlest_sgs,
8771 struct sched_group *group,
8772 struct sg_lb_stats *sgs)
8773 {
8774 if (sgs->group_type < idlest_sgs->group_type)
8775 return true;
8776
8777 if (sgs->group_type > idlest_sgs->group_type)
8778 return false;
8779
8780 /*
8781 * The candidate and the current idlest group are the same type of
8782 * group. Let check which one is the idlest according to the type.
8783 */
8784
8785 switch (sgs->group_type) {
8786 case group_overloaded:
8787 case group_fully_busy:
8788 /* Select the group with lowest avg_load. */
8789 if (idlest_sgs->avg_load <= sgs->avg_load)
8790 return false;
8791 break;
8792
8793 case group_imbalanced:
8794 case group_asym_packing:
8795 /* Those types are not used in the slow wakeup path */
8796 return false;
8797
8798 case group_misfit_task:
8799 /* Select group with the highest max capacity */
8800 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8801 return false;
8802 break;
8803
8804 case group_has_spare:
8805 /* Select group with most idle CPUs */
8806 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8807 return false;
8808
8809 /* Select group with lowest group_util */
8810 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8811 idlest_sgs->group_util <= sgs->group_util)
8812 return false;
8813
8814 break;
8815 }
8816
8817 return true;
8818 }
8819
8820 /*
8821 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8822 * This is an approximation as the number of running tasks may not be
8823 * related to the number of busy CPUs due to sched_setaffinity.
8824 */
8825 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8826 {
8827 return (dst_running < (dst_weight >> 2));
8828 }
8829
8830 /*
8831 * find_idlest_group() finds and returns the least busy CPU group within the
8832 * domain.
8833 *
8834 * Assumes p is allowed on at least one CPU in sd.
8835 */
8836 static struct sched_group *
8837 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8838 {
8839 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8840 struct sg_lb_stats local_sgs, tmp_sgs;
8841 struct sg_lb_stats *sgs;
8842 unsigned long imbalance;
8843 struct sg_lb_stats idlest_sgs = {
8844 .avg_load = UINT_MAX,
8845 .group_type = group_overloaded,
8846 };
8847
8848 do {
8849 int local_group;
8850
8851 /* Skip over this group if it has no CPUs allowed */
8852 if (!cpumask_intersects(sched_group_span(group),
8853 p->cpus_ptr))
8854 continue;
8855
8856 local_group = cpumask_test_cpu(this_cpu,
8857 sched_group_span(group));
8858
8859 if (local_group) {
8860 sgs = &local_sgs;
8861 local = group;
8862 } else {
8863 sgs = &tmp_sgs;
8864 }
8865
8866 update_sg_wakeup_stats(sd, group, sgs, p);
8867
8868 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8869 idlest = group;
8870 idlest_sgs = *sgs;
8871 }
8872
8873 } while (group = group->next, group != sd->groups);
8874
8875
8876 /* There is no idlest group to push tasks to */
8877 if (!idlest)
8878 return NULL;
8879
8880 /* The local group has been skipped because of CPU affinity */
8881 if (!local)
8882 return idlest;
8883
8884 /*
8885 * If the local group is idler than the selected idlest group
8886 * don't try and push the task.
8887 */
8888 if (local_sgs.group_type < idlest_sgs.group_type)
8889 return NULL;
8890
8891 /*
8892 * If the local group is busier than the selected idlest group
8893 * try and push the task.
8894 */
8895 if (local_sgs.group_type > idlest_sgs.group_type)
8896 return idlest;
8897
8898 switch (local_sgs.group_type) {
8899 case group_overloaded:
8900 case group_fully_busy:
8901
8902 /* Calculate allowed imbalance based on load */
8903 imbalance = scale_load_down(NICE_0_LOAD) *
8904 (sd->imbalance_pct-100) / 100;
8905
8906 /*
8907 * When comparing groups across NUMA domains, it's possible for
8908 * the local domain to be very lightly loaded relative to the
8909 * remote domains but "imbalance" skews the comparison making
8910 * remote CPUs look much more favourable. When considering
8911 * cross-domain, add imbalance to the load on the remote node
8912 * and consider staying local.
8913 */
8914
8915 if ((sd->flags & SD_NUMA) &&
8916 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8917 return NULL;
8918
8919 /*
8920 * If the local group is less loaded than the selected
8921 * idlest group don't try and push any tasks.
8922 */
8923 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8924 return NULL;
8925
8926 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8927 return NULL;
8928 break;
8929
8930 case group_imbalanced:
8931 case group_asym_packing:
8932 /* Those type are not used in the slow wakeup path */
8933 return NULL;
8934
8935 case group_misfit_task:
8936 /* Select group with the highest max capacity */
8937 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8938 return NULL;
8939 break;
8940
8941 case group_has_spare:
8942 if (sd->flags & SD_NUMA) {
8943 #ifdef CONFIG_NUMA_BALANCING
8944 int idlest_cpu;
8945 /*
8946 * If there is spare capacity at NUMA, try to select
8947 * the preferred node
8948 */
8949 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8950 return NULL;
8951
8952 idlest_cpu = cpumask_first(sched_group_span(idlest));
8953 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8954 return idlest;
8955 #endif
8956 /*
8957 * Otherwise, keep the task on this node to stay close
8958 * its wakeup source and improve locality. If there is
8959 * a real need of migration, periodic load balance will
8960 * take care of it.
8961 */
8962 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
8963 return NULL;
8964 }
8965
8966 /*
8967 * Select group with highest number of idle CPUs. We could also
8968 * compare the utilization which is more stable but it can end
8969 * up that the group has less spare capacity but finally more
8970 * idle CPUs which means more opportunity to run task.
8971 */
8972 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8973 return NULL;
8974 break;
8975 }
8976
8977 return idlest;
8978 }
8979
8980 /**
8981 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8982 * @env: The load balancing environment.
8983 * @sds: variable to hold the statistics for this sched_domain.
8984 */
8985
8986 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8987 {
8988 struct sched_domain *child = env->sd->child;
8989 struct sched_group *sg = env->sd->groups;
8990 struct sg_lb_stats *local = &sds->local_stat;
8991 struct sg_lb_stats tmp_sgs;
8992 int sg_status = 0;
8993
8994 #ifdef CONFIG_NO_HZ_COMMON
8995 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8996 env->flags |= LBF_NOHZ_STATS;
8997 #endif
8998
8999 do {
9000 struct sg_lb_stats *sgs = &tmp_sgs;
9001 int local_group;
9002
9003 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9004 if (local_group) {
9005 sds->local = sg;
9006 sgs = local;
9007
9008 if (env->idle != CPU_NEWLY_IDLE ||
9009 time_after_eq(jiffies, sg->sgc->next_update))
9010 update_group_capacity(env->sd, env->dst_cpu);
9011 }
9012
9013 update_sg_lb_stats(env, sg, sgs, &sg_status);
9014
9015 if (local_group)
9016 goto next_group;
9017
9018
9019 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9020 sds->busiest = sg;
9021 sds->busiest_stat = *sgs;
9022 }
9023
9024 next_group:
9025 /* Now, start updating sd_lb_stats */
9026 sds->total_load += sgs->group_load;
9027 sds->total_capacity += sgs->group_capacity;
9028
9029 sg = sg->next;
9030 } while (sg != env->sd->groups);
9031
9032 /* Tag domain that child domain prefers tasks go to siblings first */
9033 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9034
9035 #ifdef CONFIG_NO_HZ_COMMON
9036 if ((env->flags & LBF_NOHZ_AGAIN) &&
9037 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
9038
9039 WRITE_ONCE(nohz.next_blocked,
9040 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
9041 }
9042 #endif
9043
9044 if (env->sd->flags & SD_NUMA)
9045 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9046
9047 if (!env->sd->parent) {
9048 struct root_domain *rd = env->dst_rq->rd;
9049
9050 /* update overload indicator if we are at root domain */
9051 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9052
9053 /* Update over-utilization (tipping point, U >= 0) indicator */
9054 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9055 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9056 } else if (sg_status & SG_OVERUTILIZED) {
9057 struct root_domain *rd = env->dst_rq->rd;
9058
9059 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9060 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9061 }
9062 }
9063
9064 #define NUMA_IMBALANCE_MIN 2
9065
9066 static inline long adjust_numa_imbalance(int imbalance,
9067 int dst_running, int dst_weight)
9068 {
9069 if (!allow_numa_imbalance(dst_running, dst_weight))
9070 return imbalance;
9071
9072 /*
9073 * Allow a small imbalance based on a simple pair of communicating
9074 * tasks that remain local when the destination is lightly loaded.
9075 */
9076 if (imbalance <= NUMA_IMBALANCE_MIN)
9077 return 0;
9078
9079 return imbalance;
9080 }
9081
9082 /**
9083 * calculate_imbalance - Calculate the amount of imbalance present within the
9084 * groups of a given sched_domain during load balance.
9085 * @env: load balance environment
9086 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9087 */
9088 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9089 {
9090 struct sg_lb_stats *local, *busiest;
9091
9092 local = &sds->local_stat;
9093 busiest = &sds->busiest_stat;
9094
9095 if (busiest->group_type == group_misfit_task) {
9096 /* Set imbalance to allow misfit tasks to be balanced. */
9097 env->migration_type = migrate_misfit;
9098 env->imbalance = 1;
9099 return;
9100 }
9101
9102 if (busiest->group_type == group_asym_packing) {
9103 /*
9104 * In case of asym capacity, we will try to migrate all load to
9105 * the preferred CPU.
9106 */
9107 env->migration_type = migrate_task;
9108 env->imbalance = busiest->sum_h_nr_running;
9109 return;
9110 }
9111
9112 if (busiest->group_type == group_imbalanced) {
9113 /*
9114 * In the group_imb case we cannot rely on group-wide averages
9115 * to ensure CPU-load equilibrium, try to move any task to fix
9116 * the imbalance. The next load balance will take care of
9117 * balancing back the system.
9118 */
9119 env->migration_type = migrate_task;
9120 env->imbalance = 1;
9121 return;
9122 }
9123
9124 /*
9125 * Try to use spare capacity of local group without overloading it or
9126 * emptying busiest.
9127 */
9128 if (local->group_type == group_has_spare) {
9129 if ((busiest->group_type > group_fully_busy) &&
9130 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9131 /*
9132 * If busiest is overloaded, try to fill spare
9133 * capacity. This might end up creating spare capacity
9134 * in busiest or busiest still being overloaded but
9135 * there is no simple way to directly compute the
9136 * amount of load to migrate in order to balance the
9137 * system.
9138 */
9139 env->migration_type = migrate_util;
9140 env->imbalance = max(local->group_capacity, local->group_util) -
9141 local->group_util;
9142
9143 /*
9144 * In some cases, the group's utilization is max or even
9145 * higher than capacity because of migrations but the
9146 * local CPU is (newly) idle. There is at least one
9147 * waiting task in this overloaded busiest group. Let's
9148 * try to pull it.
9149 */
9150 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9151 env->migration_type = migrate_task;
9152 env->imbalance = 1;
9153 }
9154
9155 return;
9156 }
9157
9158 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9159 unsigned int nr_diff = busiest->sum_nr_running;
9160 /*
9161 * When prefer sibling, evenly spread running tasks on
9162 * groups.
9163 */
9164 env->migration_type = migrate_task;
9165 lsub_positive(&nr_diff, local->sum_nr_running);
9166 env->imbalance = nr_diff >> 1;
9167 } else {
9168
9169 /*
9170 * If there is no overload, we just want to even the number of
9171 * idle cpus.
9172 */
9173 env->migration_type = migrate_task;
9174 env->imbalance = max_t(long, 0, (local->idle_cpus -
9175 busiest->idle_cpus) >> 1);
9176 }
9177
9178 /* Consider allowing a small imbalance between NUMA groups */
9179 if (env->sd->flags & SD_NUMA) {
9180 env->imbalance = adjust_numa_imbalance(env->imbalance,
9181 busiest->sum_nr_running, busiest->group_weight);
9182 }
9183
9184 return;
9185 }
9186
9187 /*
9188 * Local is fully busy but has to take more load to relieve the
9189 * busiest group
9190 */
9191 if (local->group_type < group_overloaded) {
9192 /*
9193 * Local will become overloaded so the avg_load metrics are
9194 * finally needed.
9195 */
9196
9197 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9198 local->group_capacity;
9199
9200 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9201 sds->total_capacity;
9202 /*
9203 * If the local group is more loaded than the selected
9204 * busiest group don't try to pull any tasks.
9205 */
9206 if (local->avg_load >= busiest->avg_load) {
9207 env->imbalance = 0;
9208 return;
9209 }
9210 }
9211
9212 /*
9213 * Both group are or will become overloaded and we're trying to get all
9214 * the CPUs to the average_load, so we don't want to push ourselves
9215 * above the average load, nor do we wish to reduce the max loaded CPU
9216 * below the average load. At the same time, we also don't want to
9217 * reduce the group load below the group capacity. Thus we look for
9218 * the minimum possible imbalance.
9219 */
9220 env->migration_type = migrate_load;
9221 env->imbalance = min(
9222 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9223 (sds->avg_load - local->avg_load) * local->group_capacity
9224 ) / SCHED_CAPACITY_SCALE;
9225 }
9226
9227 /******* find_busiest_group() helpers end here *********************/
9228
9229 /*
9230 * Decision matrix according to the local and busiest group type:
9231 *
9232 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9233 * has_spare nr_idle balanced N/A N/A balanced balanced
9234 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9235 * misfit_task force N/A N/A N/A force force
9236 * asym_packing force force N/A N/A force force
9237 * imbalanced force force N/A N/A force force
9238 * overloaded force force N/A N/A force avg_load
9239 *
9240 * N/A : Not Applicable because already filtered while updating
9241 * statistics.
9242 * balanced : The system is balanced for these 2 groups.
9243 * force : Calculate the imbalance as load migration is probably needed.
9244 * avg_load : Only if imbalance is significant enough.
9245 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9246 * different in groups.
9247 */
9248
9249 /**
9250 * find_busiest_group - Returns the busiest group within the sched_domain
9251 * if there is an imbalance.
9252 *
9253 * Also calculates the amount of runnable load which should be moved
9254 * to restore balance.
9255 *
9256 * @env: The load balancing environment.
9257 *
9258 * Return: - The busiest group if imbalance exists.
9259 */
9260 static struct sched_group *find_busiest_group(struct lb_env *env)
9261 {
9262 struct sg_lb_stats *local, *busiest;
9263 struct sd_lb_stats sds;
9264
9265 init_sd_lb_stats(&sds);
9266
9267 /*
9268 * Compute the various statistics relevant for load balancing at
9269 * this level.
9270 */
9271 update_sd_lb_stats(env, &sds);
9272
9273 if (sched_energy_enabled()) {
9274 struct root_domain *rd = env->dst_rq->rd;
9275
9276 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9277 goto out_balanced;
9278 }
9279
9280 local = &sds.local_stat;
9281 busiest = &sds.busiest_stat;
9282
9283 /* There is no busy sibling group to pull tasks from */
9284 if (!sds.busiest)
9285 goto out_balanced;
9286
9287 /* Misfit tasks should be dealt with regardless of the avg load */
9288 if (busiest->group_type == group_misfit_task)
9289 goto force_balance;
9290
9291 /* ASYM feature bypasses nice load balance check */
9292 if (busiest->group_type == group_asym_packing)
9293 goto force_balance;
9294
9295 /*
9296 * If the busiest group is imbalanced the below checks don't
9297 * work because they assume all things are equal, which typically
9298 * isn't true due to cpus_ptr constraints and the like.
9299 */
9300 if (busiest->group_type == group_imbalanced)
9301 goto force_balance;
9302
9303 /*
9304 * If the local group is busier than the selected busiest group
9305 * don't try and pull any tasks.
9306 */
9307 if (local->group_type > busiest->group_type)
9308 goto out_balanced;
9309
9310 /*
9311 * When groups are overloaded, use the avg_load to ensure fairness
9312 * between tasks.
9313 */
9314 if (local->group_type == group_overloaded) {
9315 /*
9316 * If the local group is more loaded than the selected
9317 * busiest group don't try to pull any tasks.
9318 */
9319 if (local->avg_load >= busiest->avg_load)
9320 goto out_balanced;
9321
9322 /* XXX broken for overlapping NUMA groups */
9323 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9324 sds.total_capacity;
9325
9326 /*
9327 * Don't pull any tasks if this group is already above the
9328 * domain average load.
9329 */
9330 if (local->avg_load >= sds.avg_load)
9331 goto out_balanced;
9332
9333 /*
9334 * If the busiest group is more loaded, use imbalance_pct to be
9335 * conservative.
9336 */
9337 if (100 * busiest->avg_load <=
9338 env->sd->imbalance_pct * local->avg_load)
9339 goto out_balanced;
9340 }
9341
9342 /* Try to move all excess tasks to child's sibling domain */
9343 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9344 busiest->sum_nr_running > local->sum_nr_running + 1)
9345 goto force_balance;
9346
9347 if (busiest->group_type != group_overloaded) {
9348 if (env->idle == CPU_NOT_IDLE)
9349 /*
9350 * If the busiest group is not overloaded (and as a
9351 * result the local one too) but this CPU is already
9352 * busy, let another idle CPU try to pull task.
9353 */
9354 goto out_balanced;
9355
9356 if (busiest->group_weight > 1 &&
9357 local->idle_cpus <= (busiest->idle_cpus + 1))
9358 /*
9359 * If the busiest group is not overloaded
9360 * and there is no imbalance between this and busiest
9361 * group wrt idle CPUs, it is balanced. The imbalance
9362 * becomes significant if the diff is greater than 1
9363 * otherwise we might end up to just move the imbalance
9364 * on another group. Of course this applies only if
9365 * there is more than 1 CPU per group.
9366 */
9367 goto out_balanced;
9368
9369 if (busiest->sum_h_nr_running == 1)
9370 /*
9371 * busiest doesn't have any tasks waiting to run
9372 */
9373 goto out_balanced;
9374 }
9375
9376 force_balance:
9377 /* Looks like there is an imbalance. Compute it */
9378 calculate_imbalance(env, &sds);
9379 return env->imbalance ? sds.busiest : NULL;
9380
9381 out_balanced:
9382 env->imbalance = 0;
9383 return NULL;
9384 }
9385
9386 /*
9387 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9388 */
9389 static struct rq *find_busiest_queue(struct lb_env *env,
9390 struct sched_group *group)
9391 {
9392 struct rq *busiest = NULL, *rq;
9393 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9394 unsigned int busiest_nr = 0;
9395 int i;
9396
9397 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9398 unsigned long capacity, load, util;
9399 unsigned int nr_running;
9400 enum fbq_type rt;
9401
9402 rq = cpu_rq(i);
9403 rt = fbq_classify_rq(rq);
9404
9405 /*
9406 * We classify groups/runqueues into three groups:
9407 * - regular: there are !numa tasks
9408 * - remote: there are numa tasks that run on the 'wrong' node
9409 * - all: there is no distinction
9410 *
9411 * In order to avoid migrating ideally placed numa tasks,
9412 * ignore those when there's better options.
9413 *
9414 * If we ignore the actual busiest queue to migrate another
9415 * task, the next balance pass can still reduce the busiest
9416 * queue by moving tasks around inside the node.
9417 *
9418 * If we cannot move enough load due to this classification
9419 * the next pass will adjust the group classification and
9420 * allow migration of more tasks.
9421 *
9422 * Both cases only affect the total convergence complexity.
9423 */
9424 if (rt > env->fbq_type)
9425 continue;
9426
9427 capacity = capacity_of(i);
9428 nr_running = rq->cfs.h_nr_running;
9429
9430 /*
9431 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9432 * eventually lead to active_balancing high->low capacity.
9433 * Higher per-CPU capacity is considered better than balancing
9434 * average load.
9435 */
9436 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9437 capacity_of(env->dst_cpu) < capacity &&
9438 nr_running == 1)
9439 continue;
9440
9441 switch (env->migration_type) {
9442 case migrate_load:
9443 /*
9444 * When comparing with load imbalance, use cpu_load()
9445 * which is not scaled with the CPU capacity.
9446 */
9447 load = cpu_load(rq);
9448
9449 if (nr_running == 1 && load > env->imbalance &&
9450 !check_cpu_capacity(rq, env->sd))
9451 break;
9452
9453 /*
9454 * For the load comparisons with the other CPUs,
9455 * consider the cpu_load() scaled with the CPU
9456 * capacity, so that the load can be moved away
9457 * from the CPU that is potentially running at a
9458 * lower capacity.
9459 *
9460 * Thus we're looking for max(load_i / capacity_i),
9461 * crosswise multiplication to rid ourselves of the
9462 * division works out to:
9463 * load_i * capacity_j > load_j * capacity_i;
9464 * where j is our previous maximum.
9465 */
9466 if (load * busiest_capacity > busiest_load * capacity) {
9467 busiest_load = load;
9468 busiest_capacity = capacity;
9469 busiest = rq;
9470 }
9471 break;
9472
9473 case migrate_util:
9474 util = cpu_util(cpu_of(rq));
9475
9476 /*
9477 * Don't try to pull utilization from a CPU with one
9478 * running task. Whatever its utilization, we will fail
9479 * detach the task.
9480 */
9481 if (nr_running <= 1)
9482 continue;
9483
9484 if (busiest_util < util) {
9485 busiest_util = util;
9486 busiest = rq;
9487 }
9488 break;
9489
9490 case migrate_task:
9491 if (busiest_nr < nr_running) {
9492 busiest_nr = nr_running;
9493 busiest = rq;
9494 }
9495 break;
9496
9497 case migrate_misfit:
9498 /*
9499 * For ASYM_CPUCAPACITY domains with misfit tasks we
9500 * simply seek the "biggest" misfit task.
9501 */
9502 if (rq->misfit_task_load > busiest_load) {
9503 busiest_load = rq->misfit_task_load;
9504 busiest = rq;
9505 }
9506
9507 break;
9508
9509 }
9510 }
9511
9512 return busiest;
9513 }
9514
9515 /*
9516 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9517 * so long as it is large enough.
9518 */
9519 #define MAX_PINNED_INTERVAL 512
9520
9521 static inline bool
9522 asym_active_balance(struct lb_env *env)
9523 {
9524 /*
9525 * ASYM_PACKING needs to force migrate tasks from busy but
9526 * lower priority CPUs in order to pack all tasks in the
9527 * highest priority CPUs.
9528 */
9529 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9530 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9531 }
9532
9533 static inline bool
9534 voluntary_active_balance(struct lb_env *env)
9535 {
9536 struct sched_domain *sd = env->sd;
9537
9538 if (asym_active_balance(env))
9539 return 1;
9540
9541 /*
9542 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9543 * It's worth migrating the task if the src_cpu's capacity is reduced
9544 * because of other sched_class or IRQs if more capacity stays
9545 * available on dst_cpu.
9546 */
9547 if ((env->idle != CPU_NOT_IDLE) &&
9548 (env->src_rq->cfs.h_nr_running == 1)) {
9549 if ((check_cpu_capacity(env->src_rq, sd)) &&
9550 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9551 return 1;
9552 }
9553
9554 if (env->migration_type == migrate_misfit)
9555 return 1;
9556
9557 return 0;
9558 }
9559
9560 static int need_active_balance(struct lb_env *env)
9561 {
9562 struct sched_domain *sd = env->sd;
9563
9564 if (voluntary_active_balance(env))
9565 return 1;
9566
9567 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9568 }
9569
9570 static int active_load_balance_cpu_stop(void *data);
9571
9572 static int should_we_balance(struct lb_env *env)
9573 {
9574 struct sched_group *sg = env->sd->groups;
9575 int cpu;
9576
9577 /*
9578 * Ensure the balancing environment is consistent; can happen
9579 * when the softirq triggers 'during' hotplug.
9580 */
9581 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9582 return 0;
9583
9584 /*
9585 * In the newly idle case, we will allow all the CPUs
9586 * to do the newly idle load balance.
9587 */
9588 if (env->idle == CPU_NEWLY_IDLE)
9589 return 1;
9590
9591 /* Try to find first idle CPU */
9592 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9593 if (!idle_cpu(cpu))
9594 continue;
9595
9596 /* Are we the first idle CPU? */
9597 return cpu == env->dst_cpu;
9598 }
9599
9600 /* Are we the first CPU of this group ? */
9601 return group_balance_cpu(sg) == env->dst_cpu;
9602 }
9603
9604 /*
9605 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9606 * tasks if there is an imbalance.
9607 */
9608 static int load_balance(int this_cpu, struct rq *this_rq,
9609 struct sched_domain *sd, enum cpu_idle_type idle,
9610 int *continue_balancing)
9611 {
9612 int ld_moved, cur_ld_moved, active_balance = 0;
9613 struct sched_domain *sd_parent = sd->parent;
9614 struct sched_group *group;
9615 struct rq *busiest;
9616 struct rq_flags rf;
9617 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9618
9619 struct lb_env env = {
9620 .sd = sd,
9621 .dst_cpu = this_cpu,
9622 .dst_rq = this_rq,
9623 .dst_grpmask = sched_group_span(sd->groups),
9624 .idle = idle,
9625 .loop_break = sched_nr_migrate_break,
9626 .cpus = cpus,
9627 .fbq_type = all,
9628 .tasks = LIST_HEAD_INIT(env.tasks),
9629 };
9630
9631 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9632
9633 schedstat_inc(sd->lb_count[idle]);
9634
9635 redo:
9636 if (!should_we_balance(&env)) {
9637 *continue_balancing = 0;
9638 goto out_balanced;
9639 }
9640
9641 group = find_busiest_group(&env);
9642 if (!group) {
9643 schedstat_inc(sd->lb_nobusyg[idle]);
9644 goto out_balanced;
9645 }
9646
9647 busiest = find_busiest_queue(&env, group);
9648 if (!busiest) {
9649 schedstat_inc(sd->lb_nobusyq[idle]);
9650 goto out_balanced;
9651 }
9652
9653 BUG_ON(busiest == env.dst_rq);
9654
9655 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9656
9657 env.src_cpu = busiest->cpu;
9658 env.src_rq = busiest;
9659
9660 ld_moved = 0;
9661 if (busiest->nr_running > 1) {
9662 /*
9663 * Attempt to move tasks. If find_busiest_group has found
9664 * an imbalance but busiest->nr_running <= 1, the group is
9665 * still unbalanced. ld_moved simply stays zero, so it is
9666 * correctly treated as an imbalance.
9667 */
9668 env.flags |= LBF_ALL_PINNED;
9669 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9670
9671 more_balance:
9672 rq_lock_irqsave(busiest, &rf);
9673 update_rq_clock(busiest);
9674
9675 /*
9676 * cur_ld_moved - load moved in current iteration
9677 * ld_moved - cumulative load moved across iterations
9678 */
9679 cur_ld_moved = detach_tasks(&env);
9680
9681 /*
9682 * We've detached some tasks from busiest_rq. Every
9683 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9684 * unlock busiest->lock, and we are able to be sure
9685 * that nobody can manipulate the tasks in parallel.
9686 * See task_rq_lock() family for the details.
9687 */
9688
9689 rq_unlock(busiest, &rf);
9690
9691 if (cur_ld_moved) {
9692 attach_tasks(&env);
9693 ld_moved += cur_ld_moved;
9694 }
9695
9696 local_irq_restore(rf.flags);
9697
9698 if (env.flags & LBF_NEED_BREAK) {
9699 env.flags &= ~LBF_NEED_BREAK;
9700 goto more_balance;
9701 }
9702
9703 /*
9704 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9705 * us and move them to an alternate dst_cpu in our sched_group
9706 * where they can run. The upper limit on how many times we
9707 * iterate on same src_cpu is dependent on number of CPUs in our
9708 * sched_group.
9709 *
9710 * This changes load balance semantics a bit on who can move
9711 * load to a given_cpu. In addition to the given_cpu itself
9712 * (or a ilb_cpu acting on its behalf where given_cpu is
9713 * nohz-idle), we now have balance_cpu in a position to move
9714 * load to given_cpu. In rare situations, this may cause
9715 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9716 * _independently_ and at _same_ time to move some load to
9717 * given_cpu) causing exceess load to be moved to given_cpu.
9718 * This however should not happen so much in practice and
9719 * moreover subsequent load balance cycles should correct the
9720 * excess load moved.
9721 */
9722 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9723
9724 /* Prevent to re-select dst_cpu via env's CPUs */
9725 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9726
9727 env.dst_rq = cpu_rq(env.new_dst_cpu);
9728 env.dst_cpu = env.new_dst_cpu;
9729 env.flags &= ~LBF_DST_PINNED;
9730 env.loop = 0;
9731 env.loop_break = sched_nr_migrate_break;
9732
9733 /*
9734 * Go back to "more_balance" rather than "redo" since we
9735 * need to continue with same src_cpu.
9736 */
9737 goto more_balance;
9738 }
9739
9740 /*
9741 * We failed to reach balance because of affinity.
9742 */
9743 if (sd_parent) {
9744 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9745
9746 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9747 *group_imbalance = 1;
9748 }
9749
9750 /* All tasks on this runqueue were pinned by CPU affinity */
9751 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9752 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9753 /*
9754 * Attempting to continue load balancing at the current
9755 * sched_domain level only makes sense if there are
9756 * active CPUs remaining as possible busiest CPUs to
9757 * pull load from which are not contained within the
9758 * destination group that is receiving any migrated
9759 * load.
9760 */
9761 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9762 env.loop = 0;
9763 env.loop_break = sched_nr_migrate_break;
9764 goto redo;
9765 }
9766 goto out_all_pinned;
9767 }
9768 }
9769
9770 if (!ld_moved) {
9771 schedstat_inc(sd->lb_failed[idle]);
9772 /*
9773 * Increment the failure counter only on periodic balance.
9774 * We do not want newidle balance, which can be very
9775 * frequent, pollute the failure counter causing
9776 * excessive cache_hot migrations and active balances.
9777 */
9778 if (idle != CPU_NEWLY_IDLE)
9779 sd->nr_balance_failed++;
9780
9781 if (need_active_balance(&env)) {
9782 unsigned long flags;
9783
9784 raw_spin_lock_irqsave(&busiest->lock, flags);
9785
9786 /*
9787 * Don't kick the active_load_balance_cpu_stop,
9788 * if the curr task on busiest CPU can't be
9789 * moved to this_cpu:
9790 */
9791 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9792 raw_spin_unlock_irqrestore(&busiest->lock,
9793 flags);
9794 env.flags |= LBF_ALL_PINNED;
9795 goto out_one_pinned;
9796 }
9797
9798 /*
9799 * ->active_balance synchronizes accesses to
9800 * ->active_balance_work. Once set, it's cleared
9801 * only after active load balance is finished.
9802 */
9803 if (!busiest->active_balance) {
9804 busiest->active_balance = 1;
9805 busiest->push_cpu = this_cpu;
9806 active_balance = 1;
9807 }
9808 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9809
9810 if (active_balance) {
9811 stop_one_cpu_nowait(cpu_of(busiest),
9812 active_load_balance_cpu_stop, busiest,
9813 &busiest->active_balance_work);
9814 }
9815
9816 /* We've kicked active balancing, force task migration. */
9817 sd->nr_balance_failed = sd->cache_nice_tries+1;
9818 }
9819 } else
9820 sd->nr_balance_failed = 0;
9821
9822 if (likely(!active_balance) || voluntary_active_balance(&env)) {
9823 /* We were unbalanced, so reset the balancing interval */
9824 sd->balance_interval = sd->min_interval;
9825 } else {
9826 /*
9827 * If we've begun active balancing, start to back off. This
9828 * case may not be covered by the all_pinned logic if there
9829 * is only 1 task on the busy runqueue (because we don't call
9830 * detach_tasks).
9831 */
9832 if (sd->balance_interval < sd->max_interval)
9833 sd->balance_interval *= 2;
9834 }
9835
9836 goto out;
9837
9838 out_balanced:
9839 /*
9840 * We reach balance although we may have faced some affinity
9841 * constraints. Clear the imbalance flag only if other tasks got
9842 * a chance to move and fix the imbalance.
9843 */
9844 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9845 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9846
9847 if (*group_imbalance)
9848 *group_imbalance = 0;
9849 }
9850
9851 out_all_pinned:
9852 /*
9853 * We reach balance because all tasks are pinned at this level so
9854 * we can't migrate them. Let the imbalance flag set so parent level
9855 * can try to migrate them.
9856 */
9857 schedstat_inc(sd->lb_balanced[idle]);
9858
9859 sd->nr_balance_failed = 0;
9860
9861 out_one_pinned:
9862 ld_moved = 0;
9863
9864 /*
9865 * newidle_balance() disregards balance intervals, so we could
9866 * repeatedly reach this code, which would lead to balance_interval
9867 * skyrocketting in a short amount of time. Skip the balance_interval
9868 * increase logic to avoid that.
9869 */
9870 if (env.idle == CPU_NEWLY_IDLE)
9871 goto out;
9872
9873 /* tune up the balancing interval */
9874 if ((env.flags & LBF_ALL_PINNED &&
9875 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9876 sd->balance_interval < sd->max_interval)
9877 sd->balance_interval *= 2;
9878 out:
9879 return ld_moved;
9880 }
9881
9882 static inline unsigned long
9883 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9884 {
9885 unsigned long interval = sd->balance_interval;
9886
9887 if (cpu_busy)
9888 interval *= sd->busy_factor;
9889
9890 /* scale ms to jiffies */
9891 interval = msecs_to_jiffies(interval);
9892
9893 /*
9894 * Reduce likelihood of busy balancing at higher domains racing with
9895 * balancing at lower domains by preventing their balancing periods
9896 * from being multiples of each other.
9897 */
9898 if (cpu_busy)
9899 interval -= 1;
9900
9901 interval = clamp(interval, 1UL, max_load_balance_interval);
9902
9903 return interval;
9904 }
9905
9906 static inline void
9907 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9908 {
9909 unsigned long interval, next;
9910
9911 /* used by idle balance, so cpu_busy = 0 */
9912 interval = get_sd_balance_interval(sd, 0);
9913 next = sd->last_balance + interval;
9914
9915 if (time_after(*next_balance, next))
9916 *next_balance = next;
9917 }
9918
9919 /*
9920 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9921 * running tasks off the busiest CPU onto idle CPUs. It requires at
9922 * least 1 task to be running on each physical CPU where possible, and
9923 * avoids physical / logical imbalances.
9924 */
9925 static int active_load_balance_cpu_stop(void *data)
9926 {
9927 struct rq *busiest_rq = data;
9928 int busiest_cpu = cpu_of(busiest_rq);
9929 int target_cpu = busiest_rq->push_cpu;
9930 struct rq *target_rq = cpu_rq(target_cpu);
9931 struct sched_domain *sd;
9932 struct task_struct *p = NULL;
9933 struct rq_flags rf;
9934
9935 rq_lock_irq(busiest_rq, &rf);
9936 /*
9937 * Between queueing the stop-work and running it is a hole in which
9938 * CPUs can become inactive. We should not move tasks from or to
9939 * inactive CPUs.
9940 */
9941 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9942 goto out_unlock;
9943
9944 /* Make sure the requested CPU hasn't gone down in the meantime: */
9945 if (unlikely(busiest_cpu != smp_processor_id() ||
9946 !busiest_rq->active_balance))
9947 goto out_unlock;
9948
9949 /* Is there any task to move? */
9950 if (busiest_rq->nr_running <= 1)
9951 goto out_unlock;
9952
9953 /*
9954 * This condition is "impossible", if it occurs
9955 * we need to fix it. Originally reported by
9956 * Bjorn Helgaas on a 128-CPU setup.
9957 */
9958 BUG_ON(busiest_rq == target_rq);
9959
9960 /* Search for an sd spanning us and the target CPU. */
9961 rcu_read_lock();
9962 for_each_domain(target_cpu, sd) {
9963 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9964 break;
9965 }
9966
9967 if (likely(sd)) {
9968 struct lb_env env = {
9969 .sd = sd,
9970 .dst_cpu = target_cpu,
9971 .dst_rq = target_rq,
9972 .src_cpu = busiest_rq->cpu,
9973 .src_rq = busiest_rq,
9974 .idle = CPU_IDLE,
9975 /*
9976 * can_migrate_task() doesn't need to compute new_dst_cpu
9977 * for active balancing. Since we have CPU_IDLE, but no
9978 * @dst_grpmask we need to make that test go away with lying
9979 * about DST_PINNED.
9980 */
9981 .flags = LBF_DST_PINNED,
9982 };
9983
9984 schedstat_inc(sd->alb_count);
9985 update_rq_clock(busiest_rq);
9986
9987 p = detach_one_task(&env);
9988 if (p) {
9989 schedstat_inc(sd->alb_pushed);
9990 /* Active balancing done, reset the failure counter. */
9991 sd->nr_balance_failed = 0;
9992 } else {
9993 schedstat_inc(sd->alb_failed);
9994 }
9995 }
9996 rcu_read_unlock();
9997 out_unlock:
9998 busiest_rq->active_balance = 0;
9999 rq_unlock(busiest_rq, &rf);
10000
10001 if (p)
10002 attach_one_task(target_rq, p);
10003
10004 local_irq_enable();
10005
10006 return 0;
10007 }
10008
10009 static DEFINE_SPINLOCK(balancing);
10010
10011 /*
10012 * Scale the max load_balance interval with the number of CPUs in the system.
10013 * This trades load-balance latency on larger machines for less cross talk.
10014 */
10015 void update_max_interval(void)
10016 {
10017 max_load_balance_interval = HZ*num_online_cpus()/10;
10018 }
10019
10020 /*
10021 * It checks each scheduling domain to see if it is due to be balanced,
10022 * and initiates a balancing operation if so.
10023 *
10024 * Balancing parameters are set up in init_sched_domains.
10025 */
10026 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10027 {
10028 int continue_balancing = 1;
10029 int cpu = rq->cpu;
10030 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10031 unsigned long interval;
10032 struct sched_domain *sd;
10033 /* Earliest time when we have to do rebalance again */
10034 unsigned long next_balance = jiffies + 60*HZ;
10035 int update_next_balance = 0;
10036 int need_serialize, need_decay = 0;
10037 u64 max_cost = 0;
10038
10039 rcu_read_lock();
10040 for_each_domain(cpu, sd) {
10041 /*
10042 * Decay the newidle max times here because this is a regular
10043 * visit to all the domains. Decay ~1% per second.
10044 */
10045 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10046 sd->max_newidle_lb_cost =
10047 (sd->max_newidle_lb_cost * 253) / 256;
10048 sd->next_decay_max_lb_cost = jiffies + HZ;
10049 need_decay = 1;
10050 }
10051 max_cost += sd->max_newidle_lb_cost;
10052
10053 /*
10054 * Stop the load balance at this level. There is another
10055 * CPU in our sched group which is doing load balancing more
10056 * actively.
10057 */
10058 if (!continue_balancing) {
10059 if (need_decay)
10060 continue;
10061 break;
10062 }
10063
10064 interval = get_sd_balance_interval(sd, busy);
10065
10066 need_serialize = sd->flags & SD_SERIALIZE;
10067 if (need_serialize) {
10068 if (!spin_trylock(&balancing))
10069 goto out;
10070 }
10071
10072 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10073 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10074 /*
10075 * The LBF_DST_PINNED logic could have changed
10076 * env->dst_cpu, so we can't know our idle
10077 * state even if we migrated tasks. Update it.
10078 */
10079 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10080 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10081 }
10082 sd->last_balance = jiffies;
10083 interval = get_sd_balance_interval(sd, busy);
10084 }
10085 if (need_serialize)
10086 spin_unlock(&balancing);
10087 out:
10088 if (time_after(next_balance, sd->last_balance + interval)) {
10089 next_balance = sd->last_balance + interval;
10090 update_next_balance = 1;
10091 }
10092 }
10093 if (need_decay) {
10094 /*
10095 * Ensure the rq-wide value also decays but keep it at a
10096 * reasonable floor to avoid funnies with rq->avg_idle.
10097 */
10098 rq->max_idle_balance_cost =
10099 max((u64)sysctl_sched_migration_cost, max_cost);
10100 }
10101 rcu_read_unlock();
10102
10103 /*
10104 * next_balance will be updated only when there is a need.
10105 * When the cpu is attached to null domain for ex, it will not be
10106 * updated.
10107 */
10108 if (likely(update_next_balance)) {
10109 rq->next_balance = next_balance;
10110
10111 #ifdef CONFIG_NO_HZ_COMMON
10112 /*
10113 * If this CPU has been elected to perform the nohz idle
10114 * balance. Other idle CPUs have already rebalanced with
10115 * nohz_idle_balance() and nohz.next_balance has been
10116 * updated accordingly. This CPU is now running the idle load
10117 * balance for itself and we need to update the
10118 * nohz.next_balance accordingly.
10119 */
10120 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10121 nohz.next_balance = rq->next_balance;
10122 #endif
10123 }
10124 }
10125
10126 static inline int on_null_domain(struct rq *rq)
10127 {
10128 return unlikely(!rcu_dereference_sched(rq->sd));
10129 }
10130
10131 #ifdef CONFIG_NO_HZ_COMMON
10132 /*
10133 * idle load balancing details
10134 * - When one of the busy CPUs notice that there may be an idle rebalancing
10135 * needed, they will kick the idle load balancer, which then does idle
10136 * load balancing for all the idle CPUs.
10137 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10138 * anywhere yet.
10139 */
10140
10141 static inline int find_new_ilb(void)
10142 {
10143 int ilb;
10144
10145 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10146 housekeeping_cpumask(HK_FLAG_MISC)) {
10147
10148 if (ilb == smp_processor_id())
10149 continue;
10150
10151 if (idle_cpu(ilb))
10152 return ilb;
10153 }
10154
10155 return nr_cpu_ids;
10156 }
10157
10158 /*
10159 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10160 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10161 */
10162 static void kick_ilb(unsigned int flags)
10163 {
10164 int ilb_cpu;
10165
10166 /*
10167 * Increase nohz.next_balance only when if full ilb is triggered but
10168 * not if we only update stats.
10169 */
10170 if (flags & NOHZ_BALANCE_KICK)
10171 nohz.next_balance = jiffies+1;
10172
10173 ilb_cpu = find_new_ilb();
10174
10175 if (ilb_cpu >= nr_cpu_ids)
10176 return;
10177
10178 /*
10179 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10180 * the first flag owns it; cleared by nohz_csd_func().
10181 */
10182 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10183 if (flags & NOHZ_KICK_MASK)
10184 return;
10185
10186 /*
10187 * This way we generate an IPI on the target CPU which
10188 * is idle. And the softirq performing nohz idle load balance
10189 * will be run before returning from the IPI.
10190 */
10191 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10192 }
10193
10194 /*
10195 * Current decision point for kicking the idle load balancer in the presence
10196 * of idle CPUs in the system.
10197 */
10198 static void nohz_balancer_kick(struct rq *rq)
10199 {
10200 unsigned long now = jiffies;
10201 struct sched_domain_shared *sds;
10202 struct sched_domain *sd;
10203 int nr_busy, i, cpu = rq->cpu;
10204 unsigned int flags = 0;
10205
10206 if (unlikely(rq->idle_balance))
10207 return;
10208
10209 /*
10210 * We may be recently in ticked or tickless idle mode. At the first
10211 * busy tick after returning from idle, we will update the busy stats.
10212 */
10213 nohz_balance_exit_idle(rq);
10214
10215 /*
10216 * None are in tickless mode and hence no need for NOHZ idle load
10217 * balancing.
10218 */
10219 if (likely(!atomic_read(&nohz.nr_cpus)))
10220 return;
10221
10222 if (READ_ONCE(nohz.has_blocked) &&
10223 time_after(now, READ_ONCE(nohz.next_blocked)))
10224 flags = NOHZ_STATS_KICK;
10225
10226 if (time_before(now, nohz.next_balance))
10227 goto out;
10228
10229 if (rq->nr_running >= 2) {
10230 flags = NOHZ_KICK_MASK;
10231 goto out;
10232 }
10233
10234 rcu_read_lock();
10235
10236 sd = rcu_dereference(rq->sd);
10237 if (sd) {
10238 /*
10239 * If there's a CFS task and the current CPU has reduced
10240 * capacity; kick the ILB to see if there's a better CPU to run
10241 * on.
10242 */
10243 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10244 flags = NOHZ_KICK_MASK;
10245 goto unlock;
10246 }
10247 }
10248
10249 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10250 if (sd) {
10251 /*
10252 * When ASYM_PACKING; see if there's a more preferred CPU
10253 * currently idle; in which case, kick the ILB to move tasks
10254 * around.
10255 */
10256 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10257 if (sched_asym_prefer(i, cpu)) {
10258 flags = NOHZ_KICK_MASK;
10259 goto unlock;
10260 }
10261 }
10262 }
10263
10264 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10265 if (sd) {
10266 /*
10267 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10268 * to run the misfit task on.
10269 */
10270 if (check_misfit_status(rq, sd)) {
10271 flags = NOHZ_KICK_MASK;
10272 goto unlock;
10273 }
10274
10275 /*
10276 * For asymmetric systems, we do not want to nicely balance
10277 * cache use, instead we want to embrace asymmetry and only
10278 * ensure tasks have enough CPU capacity.
10279 *
10280 * Skip the LLC logic because it's not relevant in that case.
10281 */
10282 goto unlock;
10283 }
10284
10285 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10286 if (sds) {
10287 /*
10288 * If there is an imbalance between LLC domains (IOW we could
10289 * increase the overall cache use), we need some less-loaded LLC
10290 * domain to pull some load. Likewise, we may need to spread
10291 * load within the current LLC domain (e.g. packed SMT cores but
10292 * other CPUs are idle). We can't really know from here how busy
10293 * the others are - so just get a nohz balance going if it looks
10294 * like this LLC domain has tasks we could move.
10295 */
10296 nr_busy = atomic_read(&sds->nr_busy_cpus);
10297 if (nr_busy > 1) {
10298 flags = NOHZ_KICK_MASK;
10299 goto unlock;
10300 }
10301 }
10302 unlock:
10303 rcu_read_unlock();
10304 out:
10305 if (flags)
10306 kick_ilb(flags);
10307 }
10308
10309 static void set_cpu_sd_state_busy(int cpu)
10310 {
10311 struct sched_domain *sd;
10312
10313 rcu_read_lock();
10314 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10315
10316 if (!sd || !sd->nohz_idle)
10317 goto unlock;
10318 sd->nohz_idle = 0;
10319
10320 atomic_inc(&sd->shared->nr_busy_cpus);
10321 unlock:
10322 rcu_read_unlock();
10323 }
10324
10325 void nohz_balance_exit_idle(struct rq *rq)
10326 {
10327 SCHED_WARN_ON(rq != this_rq());
10328
10329 if (likely(!rq->nohz_tick_stopped))
10330 return;
10331
10332 rq->nohz_tick_stopped = 0;
10333 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10334 atomic_dec(&nohz.nr_cpus);
10335
10336 set_cpu_sd_state_busy(rq->cpu);
10337 }
10338
10339 static void set_cpu_sd_state_idle(int cpu)
10340 {
10341 struct sched_domain *sd;
10342
10343 rcu_read_lock();
10344 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10345
10346 if (!sd || sd->nohz_idle)
10347 goto unlock;
10348 sd->nohz_idle = 1;
10349
10350 atomic_dec(&sd->shared->nr_busy_cpus);
10351 unlock:
10352 rcu_read_unlock();
10353 }
10354
10355 /*
10356 * This routine will record that the CPU is going idle with tick stopped.
10357 * This info will be used in performing idle load balancing in the future.
10358 */
10359 void nohz_balance_enter_idle(int cpu)
10360 {
10361 struct rq *rq = cpu_rq(cpu);
10362
10363 SCHED_WARN_ON(cpu != smp_processor_id());
10364
10365 /* If this CPU is going down, then nothing needs to be done: */
10366 if (!cpu_active(cpu))
10367 return;
10368
10369 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10370 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10371 return;
10372
10373 /*
10374 * Can be set safely without rq->lock held
10375 * If a clear happens, it will have evaluated last additions because
10376 * rq->lock is held during the check and the clear
10377 */
10378 rq->has_blocked_load = 1;
10379
10380 /*
10381 * The tick is still stopped but load could have been added in the
10382 * meantime. We set the nohz.has_blocked flag to trig a check of the
10383 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10384 * of nohz.has_blocked can only happen after checking the new load
10385 */
10386 if (rq->nohz_tick_stopped)
10387 goto out;
10388
10389 /* If we're a completely isolated CPU, we don't play: */
10390 if (on_null_domain(rq))
10391 return;
10392
10393 rq->nohz_tick_stopped = 1;
10394
10395 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10396 atomic_inc(&nohz.nr_cpus);
10397
10398 /*
10399 * Ensures that if nohz_idle_balance() fails to observe our
10400 * @idle_cpus_mask store, it must observe the @has_blocked
10401 * store.
10402 */
10403 smp_mb__after_atomic();
10404
10405 set_cpu_sd_state_idle(cpu);
10406
10407 out:
10408 /*
10409 * Each time a cpu enter idle, we assume that it has blocked load and
10410 * enable the periodic update of the load of idle cpus
10411 */
10412 WRITE_ONCE(nohz.has_blocked, 1);
10413 }
10414
10415 /*
10416 * Internal function that runs load balance for all idle cpus. The load balance
10417 * can be a simple update of blocked load or a complete load balance with
10418 * tasks movement depending of flags.
10419 * The function returns false if the loop has stopped before running
10420 * through all idle CPUs.
10421 */
10422 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10423 enum cpu_idle_type idle)
10424 {
10425 /* Earliest time when we have to do rebalance again */
10426 unsigned long now = jiffies;
10427 unsigned long next_balance = now + 60*HZ;
10428 bool has_blocked_load = false;
10429 int update_next_balance = 0;
10430 int this_cpu = this_rq->cpu;
10431 int balance_cpu;
10432 int ret = false;
10433 struct rq *rq;
10434
10435 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10436
10437 /*
10438 * We assume there will be no idle load after this update and clear
10439 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10440 * set the has_blocked flag and trig another update of idle load.
10441 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10442 * setting the flag, we are sure to not clear the state and not
10443 * check the load of an idle cpu.
10444 */
10445 WRITE_ONCE(nohz.has_blocked, 0);
10446
10447 /*
10448 * Ensures that if we miss the CPU, we must see the has_blocked
10449 * store from nohz_balance_enter_idle().
10450 */
10451 smp_mb();
10452
10453 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10454 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10455 continue;
10456
10457 /*
10458 * If this CPU gets work to do, stop the load balancing
10459 * work being done for other CPUs. Next load
10460 * balancing owner will pick it up.
10461 */
10462 if (need_resched()) {
10463 has_blocked_load = true;
10464 goto abort;
10465 }
10466
10467 rq = cpu_rq(balance_cpu);
10468
10469 has_blocked_load |= update_nohz_stats(rq, true);
10470
10471 /*
10472 * If time for next balance is due,
10473 * do the balance.
10474 */
10475 if (time_after_eq(jiffies, rq->next_balance)) {
10476 struct rq_flags rf;
10477
10478 rq_lock_irqsave(rq, &rf);
10479 update_rq_clock(rq);
10480 rq_unlock_irqrestore(rq, &rf);
10481
10482 if (flags & NOHZ_BALANCE_KICK)
10483 rebalance_domains(rq, CPU_IDLE);
10484 }
10485
10486 if (time_after(next_balance, rq->next_balance)) {
10487 next_balance = rq->next_balance;
10488 update_next_balance = 1;
10489 }
10490 }
10491
10492 /*
10493 * next_balance will be updated only when there is a need.
10494 * When the CPU is attached to null domain for ex, it will not be
10495 * updated.
10496 */
10497 if (likely(update_next_balance))
10498 nohz.next_balance = next_balance;
10499
10500 /* Newly idle CPU doesn't need an update */
10501 if (idle != CPU_NEWLY_IDLE) {
10502 update_blocked_averages(this_cpu);
10503 has_blocked_load |= this_rq->has_blocked_load;
10504 }
10505
10506 if (flags & NOHZ_BALANCE_KICK)
10507 rebalance_domains(this_rq, CPU_IDLE);
10508
10509 WRITE_ONCE(nohz.next_blocked,
10510 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10511
10512 /* The full idle balance loop has been done */
10513 ret = true;
10514
10515 abort:
10516 /* There is still blocked load, enable periodic update */
10517 if (has_blocked_load)
10518 WRITE_ONCE(nohz.has_blocked, 1);
10519
10520 return ret;
10521 }
10522
10523 /*
10524 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10525 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10526 */
10527 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10528 {
10529 unsigned int flags = this_rq->nohz_idle_balance;
10530
10531 if (!flags)
10532 return false;
10533
10534 this_rq->nohz_idle_balance = 0;
10535
10536 if (idle != CPU_IDLE)
10537 return false;
10538
10539 _nohz_idle_balance(this_rq, flags, idle);
10540
10541 return true;
10542 }
10543
10544 static void nohz_newidle_balance(struct rq *this_rq)
10545 {
10546 int this_cpu = this_rq->cpu;
10547
10548 /*
10549 * This CPU doesn't want to be disturbed by scheduler
10550 * housekeeping
10551 */
10552 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10553 return;
10554
10555 /* Will wake up very soon. No time for doing anything else*/
10556 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10557 return;
10558
10559 /* Don't need to update blocked load of idle CPUs*/
10560 if (!READ_ONCE(nohz.has_blocked) ||
10561 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10562 return;
10563
10564 raw_spin_unlock(&this_rq->lock);
10565 /*
10566 * This CPU is going to be idle and blocked load of idle CPUs
10567 * need to be updated. Run the ilb locally as it is a good
10568 * candidate for ilb instead of waking up another idle CPU.
10569 * Kick an normal ilb if we failed to do the update.
10570 */
10571 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10572 kick_ilb(NOHZ_STATS_KICK);
10573 raw_spin_lock(&this_rq->lock);
10574 }
10575
10576 #else /* !CONFIG_NO_HZ_COMMON */
10577 static inline void nohz_balancer_kick(struct rq *rq) { }
10578
10579 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10580 {
10581 return false;
10582 }
10583
10584 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10585 #endif /* CONFIG_NO_HZ_COMMON */
10586
10587 /*
10588 * newidle_balance is called by schedule() if this_cpu is about to become
10589 * idle. Attempts to pull tasks from other CPUs.
10590 *
10591 * Returns:
10592 * < 0 - we released the lock and there are !fair tasks present
10593 * 0 - failed, no new tasks
10594 * > 0 - success, new (fair) tasks present
10595 */
10596 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10597 {
10598 unsigned long next_balance = jiffies + HZ;
10599 int this_cpu = this_rq->cpu;
10600 struct sched_domain *sd;
10601 int pulled_task = 0;
10602 u64 curr_cost = 0;
10603
10604 update_misfit_status(NULL, this_rq);
10605 /*
10606 * We must set idle_stamp _before_ calling idle_balance(), such that we
10607 * measure the duration of idle_balance() as idle time.
10608 */
10609 this_rq->idle_stamp = rq_clock(this_rq);
10610
10611 /*
10612 * Do not pull tasks towards !active CPUs...
10613 */
10614 if (!cpu_active(this_cpu))
10615 return 0;
10616
10617 /*
10618 * This is OK, because current is on_cpu, which avoids it being picked
10619 * for load-balance and preemption/IRQs are still disabled avoiding
10620 * further scheduler activity on it and we're being very careful to
10621 * re-start the picking loop.
10622 */
10623 rq_unpin_lock(this_rq, rf);
10624
10625 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10626 !READ_ONCE(this_rq->rd->overload)) {
10627
10628 rcu_read_lock();
10629 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10630 if (sd)
10631 update_next_balance(sd, &next_balance);
10632 rcu_read_unlock();
10633
10634 nohz_newidle_balance(this_rq);
10635
10636 goto out;
10637 }
10638
10639 raw_spin_unlock(&this_rq->lock);
10640
10641 update_blocked_averages(this_cpu);
10642 rcu_read_lock();
10643 for_each_domain(this_cpu, sd) {
10644 int continue_balancing = 1;
10645 u64 t0, domain_cost;
10646
10647 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10648 update_next_balance(sd, &next_balance);
10649 break;
10650 }
10651
10652 if (sd->flags & SD_BALANCE_NEWIDLE) {
10653 t0 = sched_clock_cpu(this_cpu);
10654
10655 pulled_task = load_balance(this_cpu, this_rq,
10656 sd, CPU_NEWLY_IDLE,
10657 &continue_balancing);
10658
10659 domain_cost = sched_clock_cpu(this_cpu) - t0;
10660 if (domain_cost > sd->max_newidle_lb_cost)
10661 sd->max_newidle_lb_cost = domain_cost;
10662
10663 curr_cost += domain_cost;
10664 }
10665
10666 update_next_balance(sd, &next_balance);
10667
10668 /*
10669 * Stop searching for tasks to pull if there are
10670 * now runnable tasks on this rq.
10671 */
10672 if (pulled_task || this_rq->nr_running > 0)
10673 break;
10674 }
10675 rcu_read_unlock();
10676
10677 raw_spin_lock(&this_rq->lock);
10678
10679 if (curr_cost > this_rq->max_idle_balance_cost)
10680 this_rq->max_idle_balance_cost = curr_cost;
10681
10682 out:
10683 /*
10684 * While browsing the domains, we released the rq lock, a task could
10685 * have been enqueued in the meantime. Since we're not going idle,
10686 * pretend we pulled a task.
10687 */
10688 if (this_rq->cfs.h_nr_running && !pulled_task)
10689 pulled_task = 1;
10690
10691 /* Move the next balance forward */
10692 if (time_after(this_rq->next_balance, next_balance))
10693 this_rq->next_balance = next_balance;
10694
10695 /* Is there a task of a high priority class? */
10696 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10697 pulled_task = -1;
10698
10699 if (pulled_task)
10700 this_rq->idle_stamp = 0;
10701
10702 rq_repin_lock(this_rq, rf);
10703
10704 return pulled_task;
10705 }
10706
10707 /*
10708 * run_rebalance_domains is triggered when needed from the scheduler tick.
10709 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10710 */
10711 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10712 {
10713 struct rq *this_rq = this_rq();
10714 enum cpu_idle_type idle = this_rq->idle_balance ?
10715 CPU_IDLE : CPU_NOT_IDLE;
10716
10717 /*
10718 * If this CPU has a pending nohz_balance_kick, then do the
10719 * balancing on behalf of the other idle CPUs whose ticks are
10720 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10721 * give the idle CPUs a chance to load balance. Else we may
10722 * load balance only within the local sched_domain hierarchy
10723 * and abort nohz_idle_balance altogether if we pull some load.
10724 */
10725 if (nohz_idle_balance(this_rq, idle))
10726 return;
10727
10728 /* normal load balance */
10729 update_blocked_averages(this_rq->cpu);
10730 rebalance_domains(this_rq, idle);
10731 }
10732
10733 /*
10734 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10735 */
10736 void trigger_load_balance(struct rq *rq)
10737 {
10738 /* Don't need to rebalance while attached to NULL domain */
10739 if (unlikely(on_null_domain(rq)))
10740 return;
10741
10742 if (time_after_eq(jiffies, rq->next_balance))
10743 raise_softirq(SCHED_SOFTIRQ);
10744
10745 nohz_balancer_kick(rq);
10746 }
10747
10748 static void rq_online_fair(struct rq *rq)
10749 {
10750 update_sysctl();
10751
10752 update_runtime_enabled(rq);
10753 }
10754
10755 static void rq_offline_fair(struct rq *rq)
10756 {
10757 update_sysctl();
10758
10759 /* Ensure any throttled groups are reachable by pick_next_task */
10760 unthrottle_offline_cfs_rqs(rq);
10761 }
10762
10763 #endif /* CONFIG_SMP */
10764
10765 /*
10766 * scheduler tick hitting a task of our scheduling class.
10767 *
10768 * NOTE: This function can be called remotely by the tick offload that
10769 * goes along full dynticks. Therefore no local assumption can be made
10770 * and everything must be accessed through the @rq and @curr passed in
10771 * parameters.
10772 */
10773 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10774 {
10775 struct cfs_rq *cfs_rq;
10776 struct sched_entity *se = &curr->se;
10777
10778 for_each_sched_entity(se) {
10779 cfs_rq = cfs_rq_of(se);
10780 entity_tick(cfs_rq, se, queued);
10781 }
10782
10783 if (static_branch_unlikely(&sched_numa_balancing))
10784 task_tick_numa(rq, curr);
10785
10786 update_misfit_status(curr, rq);
10787 update_overutilized_status(task_rq(curr));
10788 }
10789
10790 /*
10791 * called on fork with the child task as argument from the parent's context
10792 * - child not yet on the tasklist
10793 * - preemption disabled
10794 */
10795 static void task_fork_fair(struct task_struct *p)
10796 {
10797 struct cfs_rq *cfs_rq;
10798 struct sched_entity *se = &p->se, *curr;
10799 struct rq *rq = this_rq();
10800 struct rq_flags rf;
10801
10802 rq_lock(rq, &rf);
10803 update_rq_clock(rq);
10804
10805 cfs_rq = task_cfs_rq(current);
10806 curr = cfs_rq->curr;
10807 if (curr) {
10808 update_curr(cfs_rq);
10809 se->vruntime = curr->vruntime;
10810 }
10811 place_entity(cfs_rq, se, 1);
10812
10813 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10814 /*
10815 * Upon rescheduling, sched_class::put_prev_task() will place
10816 * 'current' within the tree based on its new key value.
10817 */
10818 swap(curr->vruntime, se->vruntime);
10819 resched_curr(rq);
10820 }
10821
10822 se->vruntime -= cfs_rq->min_vruntime;
10823 rq_unlock(rq, &rf);
10824 }
10825
10826 /*
10827 * Priority of the task has changed. Check to see if we preempt
10828 * the current task.
10829 */
10830 static void
10831 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10832 {
10833 if (!task_on_rq_queued(p))
10834 return;
10835
10836 if (rq->cfs.nr_running == 1)
10837 return;
10838
10839 /*
10840 * Reschedule if we are currently running on this runqueue and
10841 * our priority decreased, or if we are not currently running on
10842 * this runqueue and our priority is higher than the current's
10843 */
10844 if (rq->curr == p) {
10845 if (p->prio > oldprio)
10846 resched_curr(rq);
10847 } else
10848 check_preempt_curr(rq, p, 0);
10849 }
10850
10851 static inline bool vruntime_normalized(struct task_struct *p)
10852 {
10853 struct sched_entity *se = &p->se;
10854
10855 /*
10856 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10857 * the dequeue_entity(.flags=0) will already have normalized the
10858 * vruntime.
10859 */
10860 if (p->on_rq)
10861 return true;
10862
10863 /*
10864 * When !on_rq, vruntime of the task has usually NOT been normalized.
10865 * But there are some cases where it has already been normalized:
10866 *
10867 * - A forked child which is waiting for being woken up by
10868 * wake_up_new_task().
10869 * - A task which has been woken up by try_to_wake_up() and
10870 * waiting for actually being woken up by sched_ttwu_pending().
10871 */
10872 if (!se->sum_exec_runtime ||
10873 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10874 return true;
10875
10876 return false;
10877 }
10878
10879 #ifdef CONFIG_FAIR_GROUP_SCHED
10880 /*
10881 * Propagate the changes of the sched_entity across the tg tree to make it
10882 * visible to the root
10883 */
10884 static void propagate_entity_cfs_rq(struct sched_entity *se)
10885 {
10886 struct cfs_rq *cfs_rq;
10887
10888 /* Start to propagate at parent */
10889 se = se->parent;
10890
10891 for_each_sched_entity(se) {
10892 cfs_rq = cfs_rq_of(se);
10893
10894 if (cfs_rq_throttled(cfs_rq))
10895 break;
10896
10897 update_load_avg(cfs_rq, se, UPDATE_TG);
10898 }
10899 }
10900 #else
10901 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10902 #endif
10903
10904 static void detach_entity_cfs_rq(struct sched_entity *se)
10905 {
10906 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10907
10908 /* Catch up with the cfs_rq and remove our load when we leave */
10909 update_load_avg(cfs_rq, se, 0);
10910 detach_entity_load_avg(cfs_rq, se);
10911 update_tg_load_avg(cfs_rq);
10912 propagate_entity_cfs_rq(se);
10913 }
10914
10915 static void attach_entity_cfs_rq(struct sched_entity *se)
10916 {
10917 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10918
10919 #ifdef CONFIG_FAIR_GROUP_SCHED
10920 /*
10921 * Since the real-depth could have been changed (only FAIR
10922 * class maintain depth value), reset depth properly.
10923 */
10924 se->depth = se->parent ? se->parent->depth + 1 : 0;
10925 #endif
10926
10927 /* Synchronize entity with its cfs_rq */
10928 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10929 attach_entity_load_avg(cfs_rq, se);
10930 update_tg_load_avg(cfs_rq);
10931 propagate_entity_cfs_rq(se);
10932 }
10933
10934 static void detach_task_cfs_rq(struct task_struct *p)
10935 {
10936 struct sched_entity *se = &p->se;
10937 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10938
10939 if (!vruntime_normalized(p)) {
10940 /*
10941 * Fix up our vruntime so that the current sleep doesn't
10942 * cause 'unlimited' sleep bonus.
10943 */
10944 place_entity(cfs_rq, se, 0);
10945 se->vruntime -= cfs_rq->min_vruntime;
10946 }
10947
10948 detach_entity_cfs_rq(se);
10949 }
10950
10951 static void attach_task_cfs_rq(struct task_struct *p)
10952 {
10953 struct sched_entity *se = &p->se;
10954 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10955
10956 attach_entity_cfs_rq(se);
10957
10958 if (!vruntime_normalized(p))
10959 se->vruntime += cfs_rq->min_vruntime;
10960 }
10961
10962 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10963 {
10964 detach_task_cfs_rq(p);
10965 }
10966
10967 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10968 {
10969 attach_task_cfs_rq(p);
10970
10971 if (task_on_rq_queued(p)) {
10972 /*
10973 * We were most likely switched from sched_rt, so
10974 * kick off the schedule if running, otherwise just see
10975 * if we can still preempt the current task.
10976 */
10977 if (rq->curr == p)
10978 resched_curr(rq);
10979 else
10980 check_preempt_curr(rq, p, 0);
10981 }
10982 }
10983
10984 /* Account for a task changing its policy or group.
10985 *
10986 * This routine is mostly called to set cfs_rq->curr field when a task
10987 * migrates between groups/classes.
10988 */
10989 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10990 {
10991 struct sched_entity *se = &p->se;
10992
10993 #ifdef CONFIG_SMP
10994 if (task_on_rq_queued(p)) {
10995 /*
10996 * Move the next running task to the front of the list, so our
10997 * cfs_tasks list becomes MRU one.
10998 */
10999 list_move(&se->group_node, &rq->cfs_tasks);
11000 }
11001 #endif
11002
11003 for_each_sched_entity(se) {
11004 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11005
11006 set_next_entity(cfs_rq, se);
11007 /* ensure bandwidth has been allocated on our new cfs_rq */
11008 account_cfs_rq_runtime(cfs_rq, 0);
11009 }
11010 }
11011
11012 void init_cfs_rq(struct cfs_rq *cfs_rq)
11013 {
11014 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11015 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11016 #ifndef CONFIG_64BIT
11017 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11018 #endif
11019 #ifdef CONFIG_SMP
11020 raw_spin_lock_init(&cfs_rq->removed.lock);
11021 #endif
11022 }
11023
11024 #ifdef CONFIG_FAIR_GROUP_SCHED
11025 static void task_set_group_fair(struct task_struct *p)
11026 {
11027 struct sched_entity *se = &p->se;
11028
11029 set_task_rq(p, task_cpu(p));
11030 se->depth = se->parent ? se->parent->depth + 1 : 0;
11031 }
11032
11033 static void task_move_group_fair(struct task_struct *p)
11034 {
11035 detach_task_cfs_rq(p);
11036 set_task_rq(p, task_cpu(p));
11037
11038 #ifdef CONFIG_SMP
11039 /* Tell se's cfs_rq has been changed -- migrated */
11040 p->se.avg.last_update_time = 0;
11041 #endif
11042 attach_task_cfs_rq(p);
11043 }
11044
11045 static void task_change_group_fair(struct task_struct *p, int type)
11046 {
11047 switch (type) {
11048 case TASK_SET_GROUP:
11049 task_set_group_fair(p);
11050 break;
11051
11052 case TASK_MOVE_GROUP:
11053 task_move_group_fair(p);
11054 break;
11055 }
11056 }
11057
11058 void free_fair_sched_group(struct task_group *tg)
11059 {
11060 int i;
11061
11062 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11063
11064 for_each_possible_cpu(i) {
11065 if (tg->cfs_rq)
11066 kfree(tg->cfs_rq[i]);
11067 if (tg->se)
11068 kfree(tg->se[i]);
11069 }
11070
11071 kfree(tg->cfs_rq);
11072 kfree(tg->se);
11073 }
11074
11075 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11076 {
11077 struct sched_entity *se;
11078 struct cfs_rq *cfs_rq;
11079 int i;
11080
11081 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11082 if (!tg->cfs_rq)
11083 goto err;
11084 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11085 if (!tg->se)
11086 goto err;
11087
11088 tg->shares = NICE_0_LOAD;
11089
11090 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11091
11092 for_each_possible_cpu(i) {
11093 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11094 GFP_KERNEL, cpu_to_node(i));
11095 if (!cfs_rq)
11096 goto err;
11097
11098 se = kzalloc_node(sizeof(struct sched_entity),
11099 GFP_KERNEL, cpu_to_node(i));
11100 if (!se)
11101 goto err_free_rq;
11102
11103 init_cfs_rq(cfs_rq);
11104 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11105 init_entity_runnable_average(se);
11106 }
11107
11108 return 1;
11109
11110 err_free_rq:
11111 kfree(cfs_rq);
11112 err:
11113 return 0;
11114 }
11115
11116 void online_fair_sched_group(struct task_group *tg)
11117 {
11118 struct sched_entity *se;
11119 struct rq_flags rf;
11120 struct rq *rq;
11121 int i;
11122
11123 for_each_possible_cpu(i) {
11124 rq = cpu_rq(i);
11125 se = tg->se[i];
11126 rq_lock_irq(rq, &rf);
11127 update_rq_clock(rq);
11128 attach_entity_cfs_rq(se);
11129 sync_throttle(tg, i);
11130 rq_unlock_irq(rq, &rf);
11131 }
11132 }
11133
11134 void unregister_fair_sched_group(struct task_group *tg)
11135 {
11136 unsigned long flags;
11137 struct rq *rq;
11138 int cpu;
11139
11140 for_each_possible_cpu(cpu) {
11141 if (tg->se[cpu])
11142 remove_entity_load_avg(tg->se[cpu]);
11143
11144 /*
11145 * Only empty task groups can be destroyed; so we can speculatively
11146 * check on_list without danger of it being re-added.
11147 */
11148 if (!tg->cfs_rq[cpu]->on_list)
11149 continue;
11150
11151 rq = cpu_rq(cpu);
11152
11153 raw_spin_lock_irqsave(&rq->lock, flags);
11154 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11155 raw_spin_unlock_irqrestore(&rq->lock, flags);
11156 }
11157 }
11158
11159 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11160 struct sched_entity *se, int cpu,
11161 struct sched_entity *parent)
11162 {
11163 struct rq *rq = cpu_rq(cpu);
11164
11165 cfs_rq->tg = tg;
11166 cfs_rq->rq = rq;
11167 init_cfs_rq_runtime(cfs_rq);
11168
11169 tg->cfs_rq[cpu] = cfs_rq;
11170 tg->se[cpu] = se;
11171
11172 /* se could be NULL for root_task_group */
11173 if (!se)
11174 return;
11175
11176 if (!parent) {
11177 se->cfs_rq = &rq->cfs;
11178 se->depth = 0;
11179 } else {
11180 se->cfs_rq = parent->my_q;
11181 se->depth = parent->depth + 1;
11182 }
11183
11184 se->my_q = cfs_rq;
11185 /* guarantee group entities always have weight */
11186 update_load_set(&se->load, NICE_0_LOAD);
11187 se->parent = parent;
11188 }
11189
11190 static DEFINE_MUTEX(shares_mutex);
11191
11192 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11193 {
11194 int i;
11195
11196 /*
11197 * We can't change the weight of the root cgroup.
11198 */
11199 if (!tg->se[0])
11200 return -EINVAL;
11201
11202 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11203
11204 mutex_lock(&shares_mutex);
11205 if (tg->shares == shares)
11206 goto done;
11207
11208 tg->shares = shares;
11209 for_each_possible_cpu(i) {
11210 struct rq *rq = cpu_rq(i);
11211 struct sched_entity *se = tg->se[i];
11212 struct rq_flags rf;
11213
11214 /* Propagate contribution to hierarchy */
11215 rq_lock_irqsave(rq, &rf);
11216 update_rq_clock(rq);
11217 for_each_sched_entity(se) {
11218 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11219 update_cfs_group(se);
11220 }
11221 rq_unlock_irqrestore(rq, &rf);
11222 }
11223
11224 done:
11225 mutex_unlock(&shares_mutex);
11226 return 0;
11227 }
11228 #else /* CONFIG_FAIR_GROUP_SCHED */
11229
11230 void free_fair_sched_group(struct task_group *tg) { }
11231
11232 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11233 {
11234 return 1;
11235 }
11236
11237 void online_fair_sched_group(struct task_group *tg) { }
11238
11239 void unregister_fair_sched_group(struct task_group *tg) { }
11240
11241 #endif /* CONFIG_FAIR_GROUP_SCHED */
11242
11243
11244 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11245 {
11246 struct sched_entity *se = &task->se;
11247 unsigned int rr_interval = 0;
11248
11249 /*
11250 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11251 * idle runqueue:
11252 */
11253 if (rq->cfs.load.weight)
11254 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11255
11256 return rr_interval;
11257 }
11258
11259 /*
11260 * All the scheduling class methods:
11261 */
11262 DEFINE_SCHED_CLASS(fair) = {
11263
11264 .enqueue_task = enqueue_task_fair,
11265 .dequeue_task = dequeue_task_fair,
11266 .yield_task = yield_task_fair,
11267 .yield_to_task = yield_to_task_fair,
11268
11269 .check_preempt_curr = check_preempt_wakeup,
11270
11271 .pick_next_task = __pick_next_task_fair,
11272 .put_prev_task = put_prev_task_fair,
11273 .set_next_task = set_next_task_fair,
11274
11275 #ifdef CONFIG_SMP
11276 .balance = balance_fair,
11277 .select_task_rq = select_task_rq_fair,
11278 .migrate_task_rq = migrate_task_rq_fair,
11279
11280 .rq_online = rq_online_fair,
11281 .rq_offline = rq_offline_fair,
11282
11283 .task_dead = task_dead_fair,
11284 .set_cpus_allowed = set_cpus_allowed_common,
11285 #endif
11286
11287 .task_tick = task_tick_fair,
11288 .task_fork = task_fork_fair,
11289
11290 .prio_changed = prio_changed_fair,
11291 .switched_from = switched_from_fair,
11292 .switched_to = switched_to_fair,
11293
11294 .get_rr_interval = get_rr_interval_fair,
11295
11296 .update_curr = update_curr_fair,
11297
11298 #ifdef CONFIG_FAIR_GROUP_SCHED
11299 .task_change_group = task_change_group_fair,
11300 #endif
11301
11302 #ifdef CONFIG_UCLAMP_TASK
11303 .uclamp_enabled = 1,
11304 #endif
11305 };
11306
11307 #ifdef CONFIG_SCHED_DEBUG
11308 void print_cfs_stats(struct seq_file *m, int cpu)
11309 {
11310 struct cfs_rq *cfs_rq, *pos;
11311
11312 rcu_read_lock();
11313 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11314 print_cfs_rq(m, cpu, cfs_rq);
11315 rcu_read_unlock();
11316 }
11317
11318 #ifdef CONFIG_NUMA_BALANCING
11319 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11320 {
11321 int node;
11322 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11323 struct numa_group *ng;
11324
11325 rcu_read_lock();
11326 ng = rcu_dereference(p->numa_group);
11327 for_each_online_node(node) {
11328 if (p->numa_faults) {
11329 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11330 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11331 }
11332 if (ng) {
11333 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11334 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11335 }
11336 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11337 }
11338 rcu_read_unlock();
11339 }
11340 #endif /* CONFIG_NUMA_BALANCING */
11341 #endif /* CONFIG_SCHED_DEBUG */
11342
11343 __init void init_sched_fair_class(void)
11344 {
11345 #ifdef CONFIG_SMP
11346 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11347
11348 #ifdef CONFIG_NO_HZ_COMMON
11349 nohz.next_balance = jiffies;
11350 nohz.next_blocked = jiffies;
11351 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11352 #endif
11353 #endif /* SMP */
11354
11355 }
11356
11357 /*
11358 * Helper functions to facilitate extracting info from tracepoints.
11359 */
11360
11361 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11362 {
11363 #ifdef CONFIG_SMP
11364 return cfs_rq ? &cfs_rq->avg : NULL;
11365 #else
11366 return NULL;
11367 #endif
11368 }
11369 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11370
11371 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11372 {
11373 if (!cfs_rq) {
11374 if (str)
11375 strlcpy(str, "(null)", len);
11376 else
11377 return NULL;
11378 }
11379
11380 cfs_rq_tg_path(cfs_rq, str, len);
11381 return str;
11382 }
11383 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11384
11385 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11386 {
11387 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11388 }
11389 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11390
11391 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11392 {
11393 #ifdef CONFIG_SMP
11394 return rq ? &rq->avg_rt : NULL;
11395 #else
11396 return NULL;
11397 #endif
11398 }
11399 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11400
11401 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11402 {
11403 #ifdef CONFIG_SMP
11404 return rq ? &rq->avg_dl : NULL;
11405 #else
11406 return NULL;
11407 #endif
11408 }
11409 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11410
11411 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11412 {
11413 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11414 return rq ? &rq->avg_irq : NULL;
11415 #else
11416 return NULL;
11417 #endif
11418 }
11419 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11420
11421 int sched_trace_rq_cpu(struct rq *rq)
11422 {
11423 return rq ? cpu_of(rq) : -1;
11424 }
11425 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11426
11427 int sched_trace_rq_cpu_capacity(struct rq *rq)
11428 {
11429 return rq ?
11430 #ifdef CONFIG_SMP
11431 rq->cpu_capacity
11432 #else
11433 SCHED_CAPACITY_SCALE
11434 #endif
11435 : -1;
11436 }
11437 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11438
11439 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11440 {
11441 #ifdef CONFIG_SMP
11442 return rd ? rd->span : NULL;
11443 #else
11444 return NULL;
11445 #endif
11446 }
11447 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11448
11449 int sched_trace_rq_nr_running(struct rq *rq)
11450 {
11451 return rq ? rq->nr_running : -1;
11452 }
11453 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);