]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/fair.c
Merge branch 'sched/urgent' into sched/core, to pick up fixes before applying new...
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
288
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 if (!cfs_rq->on_list) {
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 }
306
307 cfs_rq->on_list = 1;
308 /* We should have no load, but we need to update last_decay. */
309 update_cfs_rq_blocked_load(cfs_rq, 0);
310 }
311 }
312
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319 }
320
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 if (se->cfs_rq == pse->cfs_rq)
330 return se->cfs_rq;
331
332 return NULL;
333 }
334
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 return se->parent;
338 }
339
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370 }
371
372 #else /* !CONFIG_FAIR_GROUP_SCHED */
373
374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 return container_of(se, struct task_struct, se);
377 }
378
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 return container_of(cfs_rq, struct rq, cfs);
382 }
383
384 #define entity_is_task(se) 1
385
386 #define for_each_sched_entity(se) \
387 for (; se; se = NULL)
388
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 return &task_rq(p)->cfs;
392 }
393
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400 }
401
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 return NULL;
406 }
407
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 return NULL;
422 }
423
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428
429 #endif /* CONFIG_FAIR_GROUP_SCHED */
430
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433
434 /**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 s64 delta = (s64)(vruntime - max_vruntime);
441 if (delta > 0)
442 max_vruntime = vruntime;
443
444 return max_vruntime;
445 }
446
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454 }
455
456 static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458 {
459 return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
474 if (!cfs_rq->curr)
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
480 /* ensure we never gain time by being placed backwards. */
481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487
488 /*
489 * Enqueue an entity into the rb-tree:
490 */
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
508 if (entity_before(se, entry)) {
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
520 if (leftmost)
521 cfs_rq->rb_leftmost = &se->run_node;
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
534 }
535
536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
547 }
548
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557 }
558
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563
564 if (!last)
565 return NULL;
566
567 return rb_entry(last, struct sched_entity, run_node);
568 }
569
570 /**************************************************************
571 * Scheduling class statistics methods:
572 */
573
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 void __user *buffer, size_t *lenp,
576 loff_t *ppos)
577 {
578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 int factor = get_update_sysctl_factor();
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
587 #define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593
594 return 0;
595 }
596 #endif
597
598 /*
599 * delta /= w
600 */
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 if (unlikely(se->load.weight != NICE_0_LOAD))
604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605
606 return delta;
607 }
608
609 /*
610 * The idea is to set a period in which each task runs once.
611 *
612 * When there are too many tasks (sched_nr_latency) we have to stretch
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
617 static u64 __sched_period(unsigned long nr_running)
618 {
619 u64 period = sysctl_sched_latency;
620 unsigned long nr_latency = sched_nr_latency;
621
622 if (unlikely(nr_running > nr_latency)) {
623 period = sysctl_sched_min_granularity;
624 period *= nr_running;
625 }
626
627 return period;
628 }
629
630 /*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
634 * s = p*P[w/rw]
635 */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639
640 for_each_sched_entity(se) {
641 struct load_weight *load;
642 struct load_weight lw;
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
646
647 if (unlikely(!se->on_rq)) {
648 lw = cfs_rq->load;
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
653 slice = __calc_delta(slice, se->load.weight, load);
654 }
655 return slice;
656 }
657
658 /*
659 * We calculate the vruntime slice of a to-be-inserted task.
660 *
661 * vs = s/w
662 */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674 /* Give new task start runnable values to heavy its load in infant time */
675 void init_task_runnable_average(struct task_struct *p)
676 {
677 u32 slice;
678
679 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
680 p->se.avg.runnable_avg_sum = slice;
681 p->se.avg.runnable_avg_period = slice;
682 __update_task_entity_contrib(&p->se);
683 }
684 #else
685 void init_task_runnable_average(struct task_struct *p)
686 {
687 }
688 #endif
689
690 /*
691 * Update the current task's runtime statistics.
692 */
693 static void update_curr(struct cfs_rq *cfs_rq)
694 {
695 struct sched_entity *curr = cfs_rq->curr;
696 u64 now = rq_clock_task(rq_of(cfs_rq));
697 u64 delta_exec;
698
699 if (unlikely(!curr))
700 return;
701
702 delta_exec = now - curr->exec_start;
703 if (unlikely((s64)delta_exec <= 0))
704 return;
705
706 curr->exec_start = now;
707
708 schedstat_set(curr->statistics.exec_max,
709 max(delta_exec, curr->statistics.exec_max));
710
711 curr->sum_exec_runtime += delta_exec;
712 schedstat_add(cfs_rq, exec_clock, delta_exec);
713
714 curr->vruntime += calc_delta_fair(delta_exec, curr);
715 update_min_vruntime(cfs_rq);
716
717 if (entity_is_task(curr)) {
718 struct task_struct *curtask = task_of(curr);
719
720 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
721 cpuacct_charge(curtask, delta_exec);
722 account_group_exec_runtime(curtask, delta_exec);
723 }
724
725 account_cfs_rq_runtime(cfs_rq, delta_exec);
726 }
727
728 static void update_curr_fair(struct rq *rq)
729 {
730 update_curr(cfs_rq_of(&rq->curr->se));
731 }
732
733 static inline void
734 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
735 {
736 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
737 }
738
739 /*
740 * Task is being enqueued - update stats:
741 */
742 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 /*
745 * Are we enqueueing a waiting task? (for current tasks
746 * a dequeue/enqueue event is a NOP)
747 */
748 if (se != cfs_rq->curr)
749 update_stats_wait_start(cfs_rq, se);
750 }
751
752 static void
753 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
756 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
757 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
758 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 #ifdef CONFIG_SCHEDSTATS
761 if (entity_is_task(se)) {
762 trace_sched_stat_wait(task_of(se),
763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
764 }
765 #endif
766 schedstat_set(se->statistics.wait_start, 0);
767 }
768
769 static inline void
770 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
771 {
772 /*
773 * Mark the end of the wait period if dequeueing a
774 * waiting task:
775 */
776 if (se != cfs_rq->curr)
777 update_stats_wait_end(cfs_rq, se);
778 }
779
780 /*
781 * We are picking a new current task - update its stats:
782 */
783 static inline void
784 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
785 {
786 /*
787 * We are starting a new run period:
788 */
789 se->exec_start = rq_clock_task(rq_of(cfs_rq));
790 }
791
792 /**************************************************
793 * Scheduling class queueing methods:
794 */
795
796 #ifdef CONFIG_NUMA_BALANCING
797 /*
798 * Approximate time to scan a full NUMA task in ms. The task scan period is
799 * calculated based on the tasks virtual memory size and
800 * numa_balancing_scan_size.
801 */
802 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
803 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
804
805 /* Portion of address space to scan in MB */
806 unsigned int sysctl_numa_balancing_scan_size = 256;
807
808 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
809 unsigned int sysctl_numa_balancing_scan_delay = 1000;
810
811 static unsigned int task_nr_scan_windows(struct task_struct *p)
812 {
813 unsigned long rss = 0;
814 unsigned long nr_scan_pages;
815
816 /*
817 * Calculations based on RSS as non-present and empty pages are skipped
818 * by the PTE scanner and NUMA hinting faults should be trapped based
819 * on resident pages
820 */
821 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
822 rss = get_mm_rss(p->mm);
823 if (!rss)
824 rss = nr_scan_pages;
825
826 rss = round_up(rss, nr_scan_pages);
827 return rss / nr_scan_pages;
828 }
829
830 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
831 #define MAX_SCAN_WINDOW 2560
832
833 static unsigned int task_scan_min(struct task_struct *p)
834 {
835 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
836 unsigned int scan, floor;
837 unsigned int windows = 1;
838
839 if (scan_size < MAX_SCAN_WINDOW)
840 windows = MAX_SCAN_WINDOW / scan_size;
841 floor = 1000 / windows;
842
843 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
844 return max_t(unsigned int, floor, scan);
845 }
846
847 static unsigned int task_scan_max(struct task_struct *p)
848 {
849 unsigned int smin = task_scan_min(p);
850 unsigned int smax;
851
852 /* Watch for min being lower than max due to floor calculations */
853 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
854 return max(smin, smax);
855 }
856
857 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
858 {
859 rq->nr_numa_running += (p->numa_preferred_nid != -1);
860 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
861 }
862
863 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
864 {
865 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
866 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
867 }
868
869 struct numa_group {
870 atomic_t refcount;
871
872 spinlock_t lock; /* nr_tasks, tasks */
873 int nr_tasks;
874 pid_t gid;
875
876 struct rcu_head rcu;
877 nodemask_t active_nodes;
878 unsigned long total_faults;
879 /*
880 * Faults_cpu is used to decide whether memory should move
881 * towards the CPU. As a consequence, these stats are weighted
882 * more by CPU use than by memory faults.
883 */
884 unsigned long *faults_cpu;
885 unsigned long faults[0];
886 };
887
888 /* Shared or private faults. */
889 #define NR_NUMA_HINT_FAULT_TYPES 2
890
891 /* Memory and CPU locality */
892 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
893
894 /* Averaged statistics, and temporary buffers. */
895 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
896
897 pid_t task_numa_group_id(struct task_struct *p)
898 {
899 return p->numa_group ? p->numa_group->gid : 0;
900 }
901
902 /*
903 * The averaged statistics, shared & private, memory & cpu,
904 * occupy the first half of the array. The second half of the
905 * array is for current counters, which are averaged into the
906 * first set by task_numa_placement.
907 */
908 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
909 {
910 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
911 }
912
913 static inline unsigned long task_faults(struct task_struct *p, int nid)
914 {
915 if (!p->numa_faults)
916 return 0;
917
918 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
919 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
920 }
921
922 static inline unsigned long group_faults(struct task_struct *p, int nid)
923 {
924 if (!p->numa_group)
925 return 0;
926
927 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
928 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
929 }
930
931 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
932 {
933 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
934 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
935 }
936
937 /* Handle placement on systems where not all nodes are directly connected. */
938 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
939 int maxdist, bool task)
940 {
941 unsigned long score = 0;
942 int node;
943
944 /*
945 * All nodes are directly connected, and the same distance
946 * from each other. No need for fancy placement algorithms.
947 */
948 if (sched_numa_topology_type == NUMA_DIRECT)
949 return 0;
950
951 /*
952 * This code is called for each node, introducing N^2 complexity,
953 * which should be ok given the number of nodes rarely exceeds 8.
954 */
955 for_each_online_node(node) {
956 unsigned long faults;
957 int dist = node_distance(nid, node);
958
959 /*
960 * The furthest away nodes in the system are not interesting
961 * for placement; nid was already counted.
962 */
963 if (dist == sched_max_numa_distance || node == nid)
964 continue;
965
966 /*
967 * On systems with a backplane NUMA topology, compare groups
968 * of nodes, and move tasks towards the group with the most
969 * memory accesses. When comparing two nodes at distance
970 * "hoplimit", only nodes closer by than "hoplimit" are part
971 * of each group. Skip other nodes.
972 */
973 if (sched_numa_topology_type == NUMA_BACKPLANE &&
974 dist > maxdist)
975 continue;
976
977 /* Add up the faults from nearby nodes. */
978 if (task)
979 faults = task_faults(p, node);
980 else
981 faults = group_faults(p, node);
982
983 /*
984 * On systems with a glueless mesh NUMA topology, there are
985 * no fixed "groups of nodes". Instead, nodes that are not
986 * directly connected bounce traffic through intermediate
987 * nodes; a numa_group can occupy any set of nodes.
988 * The further away a node is, the less the faults count.
989 * This seems to result in good task placement.
990 */
991 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
992 faults *= (sched_max_numa_distance - dist);
993 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
994 }
995
996 score += faults;
997 }
998
999 return score;
1000 }
1001
1002 /*
1003 * These return the fraction of accesses done by a particular task, or
1004 * task group, on a particular numa node. The group weight is given a
1005 * larger multiplier, in order to group tasks together that are almost
1006 * evenly spread out between numa nodes.
1007 */
1008 static inline unsigned long task_weight(struct task_struct *p, int nid,
1009 int dist)
1010 {
1011 unsigned long faults, total_faults;
1012
1013 if (!p->numa_faults)
1014 return 0;
1015
1016 total_faults = p->total_numa_faults;
1017
1018 if (!total_faults)
1019 return 0;
1020
1021 faults = task_faults(p, nid);
1022 faults += score_nearby_nodes(p, nid, dist, true);
1023
1024 return 1000 * faults / total_faults;
1025 }
1026
1027 static inline unsigned long group_weight(struct task_struct *p, int nid,
1028 int dist)
1029 {
1030 unsigned long faults, total_faults;
1031
1032 if (!p->numa_group)
1033 return 0;
1034
1035 total_faults = p->numa_group->total_faults;
1036
1037 if (!total_faults)
1038 return 0;
1039
1040 faults = group_faults(p, nid);
1041 faults += score_nearby_nodes(p, nid, dist, false);
1042
1043 return 1000 * faults / total_faults;
1044 }
1045
1046 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1047 int src_nid, int dst_cpu)
1048 {
1049 struct numa_group *ng = p->numa_group;
1050 int dst_nid = cpu_to_node(dst_cpu);
1051 int last_cpupid, this_cpupid;
1052
1053 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1054
1055 /*
1056 * Multi-stage node selection is used in conjunction with a periodic
1057 * migration fault to build a temporal task<->page relation. By using
1058 * a two-stage filter we remove short/unlikely relations.
1059 *
1060 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1061 * a task's usage of a particular page (n_p) per total usage of this
1062 * page (n_t) (in a given time-span) to a probability.
1063 *
1064 * Our periodic faults will sample this probability and getting the
1065 * same result twice in a row, given these samples are fully
1066 * independent, is then given by P(n)^2, provided our sample period
1067 * is sufficiently short compared to the usage pattern.
1068 *
1069 * This quadric squishes small probabilities, making it less likely we
1070 * act on an unlikely task<->page relation.
1071 */
1072 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1073 if (!cpupid_pid_unset(last_cpupid) &&
1074 cpupid_to_nid(last_cpupid) != dst_nid)
1075 return false;
1076
1077 /* Always allow migrate on private faults */
1078 if (cpupid_match_pid(p, last_cpupid))
1079 return true;
1080
1081 /* A shared fault, but p->numa_group has not been set up yet. */
1082 if (!ng)
1083 return true;
1084
1085 /*
1086 * Do not migrate if the destination is not a node that
1087 * is actively used by this numa group.
1088 */
1089 if (!node_isset(dst_nid, ng->active_nodes))
1090 return false;
1091
1092 /*
1093 * Source is a node that is not actively used by this
1094 * numa group, while the destination is. Migrate.
1095 */
1096 if (!node_isset(src_nid, ng->active_nodes))
1097 return true;
1098
1099 /*
1100 * Both source and destination are nodes in active
1101 * use by this numa group. Maximize memory bandwidth
1102 * by migrating from more heavily used groups, to less
1103 * heavily used ones, spreading the load around.
1104 * Use a 1/4 hysteresis to avoid spurious page movement.
1105 */
1106 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1107 }
1108
1109 static unsigned long weighted_cpuload(const int cpu);
1110 static unsigned long source_load(int cpu, int type);
1111 static unsigned long target_load(int cpu, int type);
1112 static unsigned long capacity_of(int cpu);
1113 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1114
1115 /* Cached statistics for all CPUs within a node */
1116 struct numa_stats {
1117 unsigned long nr_running;
1118 unsigned long load;
1119
1120 /* Total compute capacity of CPUs on a node */
1121 unsigned long compute_capacity;
1122
1123 /* Approximate capacity in terms of runnable tasks on a node */
1124 unsigned long task_capacity;
1125 int has_free_capacity;
1126 };
1127
1128 /*
1129 * XXX borrowed from update_sg_lb_stats
1130 */
1131 static void update_numa_stats(struct numa_stats *ns, int nid)
1132 {
1133 int smt, cpu, cpus = 0;
1134 unsigned long capacity;
1135
1136 memset(ns, 0, sizeof(*ns));
1137 for_each_cpu(cpu, cpumask_of_node(nid)) {
1138 struct rq *rq = cpu_rq(cpu);
1139
1140 ns->nr_running += rq->nr_running;
1141 ns->load += weighted_cpuload(cpu);
1142 ns->compute_capacity += capacity_of(cpu);
1143
1144 cpus++;
1145 }
1146
1147 /*
1148 * If we raced with hotplug and there are no CPUs left in our mask
1149 * the @ns structure is NULL'ed and task_numa_compare() will
1150 * not find this node attractive.
1151 *
1152 * We'll either bail at !has_free_capacity, or we'll detect a huge
1153 * imbalance and bail there.
1154 */
1155 if (!cpus)
1156 return;
1157
1158 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1159 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1160 capacity = cpus / smt; /* cores */
1161
1162 ns->task_capacity = min_t(unsigned, capacity,
1163 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1164 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1165 }
1166
1167 struct task_numa_env {
1168 struct task_struct *p;
1169
1170 int src_cpu, src_nid;
1171 int dst_cpu, dst_nid;
1172
1173 struct numa_stats src_stats, dst_stats;
1174
1175 int imbalance_pct;
1176 int dist;
1177
1178 struct task_struct *best_task;
1179 long best_imp;
1180 int best_cpu;
1181 };
1182
1183 static void task_numa_assign(struct task_numa_env *env,
1184 struct task_struct *p, long imp)
1185 {
1186 if (env->best_task)
1187 put_task_struct(env->best_task);
1188 if (p)
1189 get_task_struct(p);
1190
1191 env->best_task = p;
1192 env->best_imp = imp;
1193 env->best_cpu = env->dst_cpu;
1194 }
1195
1196 static bool load_too_imbalanced(long src_load, long dst_load,
1197 struct task_numa_env *env)
1198 {
1199 long src_capacity, dst_capacity;
1200 long orig_src_load;
1201 long load_a, load_b;
1202 long moved_load;
1203 long imb;
1204
1205 /*
1206 * The load is corrected for the CPU capacity available on each node.
1207 *
1208 * src_load dst_load
1209 * ------------ vs ---------
1210 * src_capacity dst_capacity
1211 */
1212 src_capacity = env->src_stats.compute_capacity;
1213 dst_capacity = env->dst_stats.compute_capacity;
1214
1215 /* We care about the slope of the imbalance, not the direction. */
1216 load_a = dst_load;
1217 load_b = src_load;
1218 if (load_a < load_b)
1219 swap(load_a, load_b);
1220
1221 /* Is the difference below the threshold? */
1222 imb = load_a * src_capacity * 100 -
1223 load_b * dst_capacity * env->imbalance_pct;
1224 if (imb <= 0)
1225 return false;
1226
1227 /*
1228 * The imbalance is above the allowed threshold.
1229 * Allow a move that brings us closer to a balanced situation,
1230 * without moving things past the point of balance.
1231 */
1232 orig_src_load = env->src_stats.load;
1233
1234 /*
1235 * In a task swap, there will be one load moving from src to dst,
1236 * and another moving back. This is the net sum of both moves.
1237 * A simple task move will always have a positive value.
1238 * Allow the move if it brings the system closer to a balanced
1239 * situation, without crossing over the balance point.
1240 */
1241 moved_load = orig_src_load - src_load;
1242
1243 if (moved_load > 0)
1244 /* Moving src -> dst. Did we overshoot balance? */
1245 return src_load * dst_capacity < dst_load * src_capacity;
1246 else
1247 /* Moving dst -> src. Did we overshoot balance? */
1248 return dst_load * src_capacity < src_load * dst_capacity;
1249 }
1250
1251 /*
1252 * This checks if the overall compute and NUMA accesses of the system would
1253 * be improved if the source tasks was migrated to the target dst_cpu taking
1254 * into account that it might be best if task running on the dst_cpu should
1255 * be exchanged with the source task
1256 */
1257 static void task_numa_compare(struct task_numa_env *env,
1258 long taskimp, long groupimp)
1259 {
1260 struct rq *src_rq = cpu_rq(env->src_cpu);
1261 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1262 struct task_struct *cur;
1263 long src_load, dst_load;
1264 long load;
1265 long imp = env->p->numa_group ? groupimp : taskimp;
1266 long moveimp = imp;
1267 int dist = env->dist;
1268
1269 rcu_read_lock();
1270
1271 raw_spin_lock_irq(&dst_rq->lock);
1272 cur = dst_rq->curr;
1273 /*
1274 * No need to move the exiting task, and this ensures that ->curr
1275 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1276 * is safe under RCU read lock.
1277 * Note that rcu_read_lock() itself can't protect from the final
1278 * put_task_struct() after the last schedule().
1279 */
1280 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1281 cur = NULL;
1282 raw_spin_unlock_irq(&dst_rq->lock);
1283
1284 /*
1285 * Because we have preemption enabled we can get migrated around and
1286 * end try selecting ourselves (current == env->p) as a swap candidate.
1287 */
1288 if (cur == env->p)
1289 goto unlock;
1290
1291 /*
1292 * "imp" is the fault differential for the source task between the
1293 * source and destination node. Calculate the total differential for
1294 * the source task and potential destination task. The more negative
1295 * the value is, the more rmeote accesses that would be expected to
1296 * be incurred if the tasks were swapped.
1297 */
1298 if (cur) {
1299 /* Skip this swap candidate if cannot move to the source cpu */
1300 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1301 goto unlock;
1302
1303 /*
1304 * If dst and source tasks are in the same NUMA group, or not
1305 * in any group then look only at task weights.
1306 */
1307 if (cur->numa_group == env->p->numa_group) {
1308 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1309 task_weight(cur, env->dst_nid, dist);
1310 /*
1311 * Add some hysteresis to prevent swapping the
1312 * tasks within a group over tiny differences.
1313 */
1314 if (cur->numa_group)
1315 imp -= imp/16;
1316 } else {
1317 /*
1318 * Compare the group weights. If a task is all by
1319 * itself (not part of a group), use the task weight
1320 * instead.
1321 */
1322 if (cur->numa_group)
1323 imp += group_weight(cur, env->src_nid, dist) -
1324 group_weight(cur, env->dst_nid, dist);
1325 else
1326 imp += task_weight(cur, env->src_nid, dist) -
1327 task_weight(cur, env->dst_nid, dist);
1328 }
1329 }
1330
1331 if (imp <= env->best_imp && moveimp <= env->best_imp)
1332 goto unlock;
1333
1334 if (!cur) {
1335 /* Is there capacity at our destination? */
1336 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1337 !env->dst_stats.has_free_capacity)
1338 goto unlock;
1339
1340 goto balance;
1341 }
1342
1343 /* Balance doesn't matter much if we're running a task per cpu */
1344 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1345 dst_rq->nr_running == 1)
1346 goto assign;
1347
1348 /*
1349 * In the overloaded case, try and keep the load balanced.
1350 */
1351 balance:
1352 load = task_h_load(env->p);
1353 dst_load = env->dst_stats.load + load;
1354 src_load = env->src_stats.load - load;
1355
1356 if (moveimp > imp && moveimp > env->best_imp) {
1357 /*
1358 * If the improvement from just moving env->p direction is
1359 * better than swapping tasks around, check if a move is
1360 * possible. Store a slightly smaller score than moveimp,
1361 * so an actually idle CPU will win.
1362 */
1363 if (!load_too_imbalanced(src_load, dst_load, env)) {
1364 imp = moveimp - 1;
1365 cur = NULL;
1366 goto assign;
1367 }
1368 }
1369
1370 if (imp <= env->best_imp)
1371 goto unlock;
1372
1373 if (cur) {
1374 load = task_h_load(cur);
1375 dst_load -= load;
1376 src_load += load;
1377 }
1378
1379 if (load_too_imbalanced(src_load, dst_load, env))
1380 goto unlock;
1381
1382 /*
1383 * One idle CPU per node is evaluated for a task numa move.
1384 * Call select_idle_sibling to maybe find a better one.
1385 */
1386 if (!cur)
1387 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1388
1389 assign:
1390 task_numa_assign(env, cur, imp);
1391 unlock:
1392 rcu_read_unlock();
1393 }
1394
1395 static void task_numa_find_cpu(struct task_numa_env *env,
1396 long taskimp, long groupimp)
1397 {
1398 int cpu;
1399
1400 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1401 /* Skip this CPU if the source task cannot migrate */
1402 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1403 continue;
1404
1405 env->dst_cpu = cpu;
1406 task_numa_compare(env, taskimp, groupimp);
1407 }
1408 }
1409
1410 static int task_numa_migrate(struct task_struct *p)
1411 {
1412 struct task_numa_env env = {
1413 .p = p,
1414
1415 .src_cpu = task_cpu(p),
1416 .src_nid = task_node(p),
1417
1418 .imbalance_pct = 112,
1419
1420 .best_task = NULL,
1421 .best_imp = 0,
1422 .best_cpu = -1
1423 };
1424 struct sched_domain *sd;
1425 unsigned long taskweight, groupweight;
1426 int nid, ret, dist;
1427 long taskimp, groupimp;
1428
1429 /*
1430 * Pick the lowest SD_NUMA domain, as that would have the smallest
1431 * imbalance and would be the first to start moving tasks about.
1432 *
1433 * And we want to avoid any moving of tasks about, as that would create
1434 * random movement of tasks -- counter the numa conditions we're trying
1435 * to satisfy here.
1436 */
1437 rcu_read_lock();
1438 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1439 if (sd)
1440 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1441 rcu_read_unlock();
1442
1443 /*
1444 * Cpusets can break the scheduler domain tree into smaller
1445 * balance domains, some of which do not cross NUMA boundaries.
1446 * Tasks that are "trapped" in such domains cannot be migrated
1447 * elsewhere, so there is no point in (re)trying.
1448 */
1449 if (unlikely(!sd)) {
1450 p->numa_preferred_nid = task_node(p);
1451 return -EINVAL;
1452 }
1453
1454 env.dst_nid = p->numa_preferred_nid;
1455 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1456 taskweight = task_weight(p, env.src_nid, dist);
1457 groupweight = group_weight(p, env.src_nid, dist);
1458 update_numa_stats(&env.src_stats, env.src_nid);
1459 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1460 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1461 update_numa_stats(&env.dst_stats, env.dst_nid);
1462
1463 /* Try to find a spot on the preferred nid. */
1464 task_numa_find_cpu(&env, taskimp, groupimp);
1465
1466 /*
1467 * Look at other nodes in these cases:
1468 * - there is no space available on the preferred_nid
1469 * - the task is part of a numa_group that is interleaved across
1470 * multiple NUMA nodes; in order to better consolidate the group,
1471 * we need to check other locations.
1472 */
1473 if (env.best_cpu == -1 || (p->numa_group &&
1474 nodes_weight(p->numa_group->active_nodes) > 1)) {
1475 for_each_online_node(nid) {
1476 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1477 continue;
1478
1479 dist = node_distance(env.src_nid, env.dst_nid);
1480 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1481 dist != env.dist) {
1482 taskweight = task_weight(p, env.src_nid, dist);
1483 groupweight = group_weight(p, env.src_nid, dist);
1484 }
1485
1486 /* Only consider nodes where both task and groups benefit */
1487 taskimp = task_weight(p, nid, dist) - taskweight;
1488 groupimp = group_weight(p, nid, dist) - groupweight;
1489 if (taskimp < 0 && groupimp < 0)
1490 continue;
1491
1492 env.dist = dist;
1493 env.dst_nid = nid;
1494 update_numa_stats(&env.dst_stats, env.dst_nid);
1495 task_numa_find_cpu(&env, taskimp, groupimp);
1496 }
1497 }
1498
1499 /*
1500 * If the task is part of a workload that spans multiple NUMA nodes,
1501 * and is migrating into one of the workload's active nodes, remember
1502 * this node as the task's preferred numa node, so the workload can
1503 * settle down.
1504 * A task that migrated to a second choice node will be better off
1505 * trying for a better one later. Do not set the preferred node here.
1506 */
1507 if (p->numa_group) {
1508 if (env.best_cpu == -1)
1509 nid = env.src_nid;
1510 else
1511 nid = env.dst_nid;
1512
1513 if (node_isset(nid, p->numa_group->active_nodes))
1514 sched_setnuma(p, env.dst_nid);
1515 }
1516
1517 /* No better CPU than the current one was found. */
1518 if (env.best_cpu == -1)
1519 return -EAGAIN;
1520
1521 /*
1522 * Reset the scan period if the task is being rescheduled on an
1523 * alternative node to recheck if the tasks is now properly placed.
1524 */
1525 p->numa_scan_period = task_scan_min(p);
1526
1527 if (env.best_task == NULL) {
1528 ret = migrate_task_to(p, env.best_cpu);
1529 if (ret != 0)
1530 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1531 return ret;
1532 }
1533
1534 ret = migrate_swap(p, env.best_task);
1535 if (ret != 0)
1536 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1537 put_task_struct(env.best_task);
1538 return ret;
1539 }
1540
1541 /* Attempt to migrate a task to a CPU on the preferred node. */
1542 static void numa_migrate_preferred(struct task_struct *p)
1543 {
1544 unsigned long interval = HZ;
1545
1546 /* This task has no NUMA fault statistics yet */
1547 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1548 return;
1549
1550 /* Periodically retry migrating the task to the preferred node */
1551 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1552 p->numa_migrate_retry = jiffies + interval;
1553
1554 /* Success if task is already running on preferred CPU */
1555 if (task_node(p) == p->numa_preferred_nid)
1556 return;
1557
1558 /* Otherwise, try migrate to a CPU on the preferred node */
1559 task_numa_migrate(p);
1560 }
1561
1562 /*
1563 * Find the nodes on which the workload is actively running. We do this by
1564 * tracking the nodes from which NUMA hinting faults are triggered. This can
1565 * be different from the set of nodes where the workload's memory is currently
1566 * located.
1567 *
1568 * The bitmask is used to make smarter decisions on when to do NUMA page
1569 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1570 * are added when they cause over 6/16 of the maximum number of faults, but
1571 * only removed when they drop below 3/16.
1572 */
1573 static void update_numa_active_node_mask(struct numa_group *numa_group)
1574 {
1575 unsigned long faults, max_faults = 0;
1576 int nid;
1577
1578 for_each_online_node(nid) {
1579 faults = group_faults_cpu(numa_group, nid);
1580 if (faults > max_faults)
1581 max_faults = faults;
1582 }
1583
1584 for_each_online_node(nid) {
1585 faults = group_faults_cpu(numa_group, nid);
1586 if (!node_isset(nid, numa_group->active_nodes)) {
1587 if (faults > max_faults * 6 / 16)
1588 node_set(nid, numa_group->active_nodes);
1589 } else if (faults < max_faults * 3 / 16)
1590 node_clear(nid, numa_group->active_nodes);
1591 }
1592 }
1593
1594 /*
1595 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1596 * increments. The more local the fault statistics are, the higher the scan
1597 * period will be for the next scan window. If local/(local+remote) ratio is
1598 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1599 * the scan period will decrease. Aim for 70% local accesses.
1600 */
1601 #define NUMA_PERIOD_SLOTS 10
1602 #define NUMA_PERIOD_THRESHOLD 7
1603
1604 /*
1605 * Increase the scan period (slow down scanning) if the majority of
1606 * our memory is already on our local node, or if the majority of
1607 * the page accesses are shared with other processes.
1608 * Otherwise, decrease the scan period.
1609 */
1610 static void update_task_scan_period(struct task_struct *p,
1611 unsigned long shared, unsigned long private)
1612 {
1613 unsigned int period_slot;
1614 int ratio;
1615 int diff;
1616
1617 unsigned long remote = p->numa_faults_locality[0];
1618 unsigned long local = p->numa_faults_locality[1];
1619
1620 /*
1621 * If there were no record hinting faults then either the task is
1622 * completely idle or all activity is areas that are not of interest
1623 * to automatic numa balancing. Scan slower
1624 */
1625 if (local + shared == 0) {
1626 p->numa_scan_period = min(p->numa_scan_period_max,
1627 p->numa_scan_period << 1);
1628
1629 p->mm->numa_next_scan = jiffies +
1630 msecs_to_jiffies(p->numa_scan_period);
1631
1632 return;
1633 }
1634
1635 /*
1636 * Prepare to scale scan period relative to the current period.
1637 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1638 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1639 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1640 */
1641 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1642 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1643 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1644 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1645 if (!slot)
1646 slot = 1;
1647 diff = slot * period_slot;
1648 } else {
1649 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1650
1651 /*
1652 * Scale scan rate increases based on sharing. There is an
1653 * inverse relationship between the degree of sharing and
1654 * the adjustment made to the scanning period. Broadly
1655 * speaking the intent is that there is little point
1656 * scanning faster if shared accesses dominate as it may
1657 * simply bounce migrations uselessly
1658 */
1659 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1660 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1661 }
1662
1663 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1664 task_scan_min(p), task_scan_max(p));
1665 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1666 }
1667
1668 /*
1669 * Get the fraction of time the task has been running since the last
1670 * NUMA placement cycle. The scheduler keeps similar statistics, but
1671 * decays those on a 32ms period, which is orders of magnitude off
1672 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1673 * stats only if the task is so new there are no NUMA statistics yet.
1674 */
1675 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1676 {
1677 u64 runtime, delta, now;
1678 /* Use the start of this time slice to avoid calculations. */
1679 now = p->se.exec_start;
1680 runtime = p->se.sum_exec_runtime;
1681
1682 if (p->last_task_numa_placement) {
1683 delta = runtime - p->last_sum_exec_runtime;
1684 *period = now - p->last_task_numa_placement;
1685 } else {
1686 delta = p->se.avg.runnable_avg_sum;
1687 *period = p->se.avg.runnable_avg_period;
1688 }
1689
1690 p->last_sum_exec_runtime = runtime;
1691 p->last_task_numa_placement = now;
1692
1693 return delta;
1694 }
1695
1696 /*
1697 * Determine the preferred nid for a task in a numa_group. This needs to
1698 * be done in a way that produces consistent results with group_weight,
1699 * otherwise workloads might not converge.
1700 */
1701 static int preferred_group_nid(struct task_struct *p, int nid)
1702 {
1703 nodemask_t nodes;
1704 int dist;
1705
1706 /* Direct connections between all NUMA nodes. */
1707 if (sched_numa_topology_type == NUMA_DIRECT)
1708 return nid;
1709
1710 /*
1711 * On a system with glueless mesh NUMA topology, group_weight
1712 * scores nodes according to the number of NUMA hinting faults on
1713 * both the node itself, and on nearby nodes.
1714 */
1715 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1716 unsigned long score, max_score = 0;
1717 int node, max_node = nid;
1718
1719 dist = sched_max_numa_distance;
1720
1721 for_each_online_node(node) {
1722 score = group_weight(p, node, dist);
1723 if (score > max_score) {
1724 max_score = score;
1725 max_node = node;
1726 }
1727 }
1728 return max_node;
1729 }
1730
1731 /*
1732 * Finding the preferred nid in a system with NUMA backplane
1733 * interconnect topology is more involved. The goal is to locate
1734 * tasks from numa_groups near each other in the system, and
1735 * untangle workloads from different sides of the system. This requires
1736 * searching down the hierarchy of node groups, recursively searching
1737 * inside the highest scoring group of nodes. The nodemask tricks
1738 * keep the complexity of the search down.
1739 */
1740 nodes = node_online_map;
1741 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1742 unsigned long max_faults = 0;
1743 nodemask_t max_group = NODE_MASK_NONE;
1744 int a, b;
1745
1746 /* Are there nodes at this distance from each other? */
1747 if (!find_numa_distance(dist))
1748 continue;
1749
1750 for_each_node_mask(a, nodes) {
1751 unsigned long faults = 0;
1752 nodemask_t this_group;
1753 nodes_clear(this_group);
1754
1755 /* Sum group's NUMA faults; includes a==b case. */
1756 for_each_node_mask(b, nodes) {
1757 if (node_distance(a, b) < dist) {
1758 faults += group_faults(p, b);
1759 node_set(b, this_group);
1760 node_clear(b, nodes);
1761 }
1762 }
1763
1764 /* Remember the top group. */
1765 if (faults > max_faults) {
1766 max_faults = faults;
1767 max_group = this_group;
1768 /*
1769 * subtle: at the smallest distance there is
1770 * just one node left in each "group", the
1771 * winner is the preferred nid.
1772 */
1773 nid = a;
1774 }
1775 }
1776 /* Next round, evaluate the nodes within max_group. */
1777 if (!max_faults)
1778 break;
1779 nodes = max_group;
1780 }
1781 return nid;
1782 }
1783
1784 static void task_numa_placement(struct task_struct *p)
1785 {
1786 int seq, nid, max_nid = -1, max_group_nid = -1;
1787 unsigned long max_faults = 0, max_group_faults = 0;
1788 unsigned long fault_types[2] = { 0, 0 };
1789 unsigned long total_faults;
1790 u64 runtime, period;
1791 spinlock_t *group_lock = NULL;
1792
1793 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1794 if (p->numa_scan_seq == seq)
1795 return;
1796 p->numa_scan_seq = seq;
1797 p->numa_scan_period_max = task_scan_max(p);
1798
1799 total_faults = p->numa_faults_locality[0] +
1800 p->numa_faults_locality[1];
1801 runtime = numa_get_avg_runtime(p, &period);
1802
1803 /* If the task is part of a group prevent parallel updates to group stats */
1804 if (p->numa_group) {
1805 group_lock = &p->numa_group->lock;
1806 spin_lock_irq(group_lock);
1807 }
1808
1809 /* Find the node with the highest number of faults */
1810 for_each_online_node(nid) {
1811 /* Keep track of the offsets in numa_faults array */
1812 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1813 unsigned long faults = 0, group_faults = 0;
1814 int priv;
1815
1816 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1817 long diff, f_diff, f_weight;
1818
1819 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1820 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1821 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1822 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1823
1824 /* Decay existing window, copy faults since last scan */
1825 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1826 fault_types[priv] += p->numa_faults[membuf_idx];
1827 p->numa_faults[membuf_idx] = 0;
1828
1829 /*
1830 * Normalize the faults_from, so all tasks in a group
1831 * count according to CPU use, instead of by the raw
1832 * number of faults. Tasks with little runtime have
1833 * little over-all impact on throughput, and thus their
1834 * faults are less important.
1835 */
1836 f_weight = div64_u64(runtime << 16, period + 1);
1837 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1838 (total_faults + 1);
1839 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1840 p->numa_faults[cpubuf_idx] = 0;
1841
1842 p->numa_faults[mem_idx] += diff;
1843 p->numa_faults[cpu_idx] += f_diff;
1844 faults += p->numa_faults[mem_idx];
1845 p->total_numa_faults += diff;
1846 if (p->numa_group) {
1847 /*
1848 * safe because we can only change our own group
1849 *
1850 * mem_idx represents the offset for a given
1851 * nid and priv in a specific region because it
1852 * is at the beginning of the numa_faults array.
1853 */
1854 p->numa_group->faults[mem_idx] += diff;
1855 p->numa_group->faults_cpu[mem_idx] += f_diff;
1856 p->numa_group->total_faults += diff;
1857 group_faults += p->numa_group->faults[mem_idx];
1858 }
1859 }
1860
1861 if (faults > max_faults) {
1862 max_faults = faults;
1863 max_nid = nid;
1864 }
1865
1866 if (group_faults > max_group_faults) {
1867 max_group_faults = group_faults;
1868 max_group_nid = nid;
1869 }
1870 }
1871
1872 update_task_scan_period(p, fault_types[0], fault_types[1]);
1873
1874 if (p->numa_group) {
1875 update_numa_active_node_mask(p->numa_group);
1876 spin_unlock_irq(group_lock);
1877 max_nid = preferred_group_nid(p, max_group_nid);
1878 }
1879
1880 if (max_faults) {
1881 /* Set the new preferred node */
1882 if (max_nid != p->numa_preferred_nid)
1883 sched_setnuma(p, max_nid);
1884
1885 if (task_node(p) != p->numa_preferred_nid)
1886 numa_migrate_preferred(p);
1887 }
1888 }
1889
1890 static inline int get_numa_group(struct numa_group *grp)
1891 {
1892 return atomic_inc_not_zero(&grp->refcount);
1893 }
1894
1895 static inline void put_numa_group(struct numa_group *grp)
1896 {
1897 if (atomic_dec_and_test(&grp->refcount))
1898 kfree_rcu(grp, rcu);
1899 }
1900
1901 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1902 int *priv)
1903 {
1904 struct numa_group *grp, *my_grp;
1905 struct task_struct *tsk;
1906 bool join = false;
1907 int cpu = cpupid_to_cpu(cpupid);
1908 int i;
1909
1910 if (unlikely(!p->numa_group)) {
1911 unsigned int size = sizeof(struct numa_group) +
1912 4*nr_node_ids*sizeof(unsigned long);
1913
1914 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1915 if (!grp)
1916 return;
1917
1918 atomic_set(&grp->refcount, 1);
1919 spin_lock_init(&grp->lock);
1920 grp->gid = p->pid;
1921 /* Second half of the array tracks nids where faults happen */
1922 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1923 nr_node_ids;
1924
1925 node_set(task_node(current), grp->active_nodes);
1926
1927 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1928 grp->faults[i] = p->numa_faults[i];
1929
1930 grp->total_faults = p->total_numa_faults;
1931
1932 grp->nr_tasks++;
1933 rcu_assign_pointer(p->numa_group, grp);
1934 }
1935
1936 rcu_read_lock();
1937 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1938
1939 if (!cpupid_match_pid(tsk, cpupid))
1940 goto no_join;
1941
1942 grp = rcu_dereference(tsk->numa_group);
1943 if (!grp)
1944 goto no_join;
1945
1946 my_grp = p->numa_group;
1947 if (grp == my_grp)
1948 goto no_join;
1949
1950 /*
1951 * Only join the other group if its bigger; if we're the bigger group,
1952 * the other task will join us.
1953 */
1954 if (my_grp->nr_tasks > grp->nr_tasks)
1955 goto no_join;
1956
1957 /*
1958 * Tie-break on the grp address.
1959 */
1960 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1961 goto no_join;
1962
1963 /* Always join threads in the same process. */
1964 if (tsk->mm == current->mm)
1965 join = true;
1966
1967 /* Simple filter to avoid false positives due to PID collisions */
1968 if (flags & TNF_SHARED)
1969 join = true;
1970
1971 /* Update priv based on whether false sharing was detected */
1972 *priv = !join;
1973
1974 if (join && !get_numa_group(grp))
1975 goto no_join;
1976
1977 rcu_read_unlock();
1978
1979 if (!join)
1980 return;
1981
1982 BUG_ON(irqs_disabled());
1983 double_lock_irq(&my_grp->lock, &grp->lock);
1984
1985 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1986 my_grp->faults[i] -= p->numa_faults[i];
1987 grp->faults[i] += p->numa_faults[i];
1988 }
1989 my_grp->total_faults -= p->total_numa_faults;
1990 grp->total_faults += p->total_numa_faults;
1991
1992 my_grp->nr_tasks--;
1993 grp->nr_tasks++;
1994
1995 spin_unlock(&my_grp->lock);
1996 spin_unlock_irq(&grp->lock);
1997
1998 rcu_assign_pointer(p->numa_group, grp);
1999
2000 put_numa_group(my_grp);
2001 return;
2002
2003 no_join:
2004 rcu_read_unlock();
2005 return;
2006 }
2007
2008 void task_numa_free(struct task_struct *p)
2009 {
2010 struct numa_group *grp = p->numa_group;
2011 void *numa_faults = p->numa_faults;
2012 unsigned long flags;
2013 int i;
2014
2015 if (grp) {
2016 spin_lock_irqsave(&grp->lock, flags);
2017 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2018 grp->faults[i] -= p->numa_faults[i];
2019 grp->total_faults -= p->total_numa_faults;
2020
2021 grp->nr_tasks--;
2022 spin_unlock_irqrestore(&grp->lock, flags);
2023 RCU_INIT_POINTER(p->numa_group, NULL);
2024 put_numa_group(grp);
2025 }
2026
2027 p->numa_faults = NULL;
2028 kfree(numa_faults);
2029 }
2030
2031 /*
2032 * Got a PROT_NONE fault for a page on @node.
2033 */
2034 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2035 {
2036 struct task_struct *p = current;
2037 bool migrated = flags & TNF_MIGRATED;
2038 int cpu_node = task_node(current);
2039 int local = !!(flags & TNF_FAULT_LOCAL);
2040 int priv;
2041
2042 if (!numabalancing_enabled)
2043 return;
2044
2045 /* for example, ksmd faulting in a user's mm */
2046 if (!p->mm)
2047 return;
2048
2049 /* Allocate buffer to track faults on a per-node basis */
2050 if (unlikely(!p->numa_faults)) {
2051 int size = sizeof(*p->numa_faults) *
2052 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2053
2054 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2055 if (!p->numa_faults)
2056 return;
2057
2058 p->total_numa_faults = 0;
2059 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2060 }
2061
2062 /*
2063 * First accesses are treated as private, otherwise consider accesses
2064 * to be private if the accessing pid has not changed
2065 */
2066 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2067 priv = 1;
2068 } else {
2069 priv = cpupid_match_pid(p, last_cpupid);
2070 if (!priv && !(flags & TNF_NO_GROUP))
2071 task_numa_group(p, last_cpupid, flags, &priv);
2072 }
2073
2074 /*
2075 * If a workload spans multiple NUMA nodes, a shared fault that
2076 * occurs wholly within the set of nodes that the workload is
2077 * actively using should be counted as local. This allows the
2078 * scan rate to slow down when a workload has settled down.
2079 */
2080 if (!priv && !local && p->numa_group &&
2081 node_isset(cpu_node, p->numa_group->active_nodes) &&
2082 node_isset(mem_node, p->numa_group->active_nodes))
2083 local = 1;
2084
2085 task_numa_placement(p);
2086
2087 /*
2088 * Retry task to preferred node migration periodically, in case it
2089 * case it previously failed, or the scheduler moved us.
2090 */
2091 if (time_after(jiffies, p->numa_migrate_retry))
2092 numa_migrate_preferred(p);
2093
2094 if (migrated)
2095 p->numa_pages_migrated += pages;
2096
2097 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2098 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2099 p->numa_faults_locality[local] += pages;
2100 }
2101
2102 static void reset_ptenuma_scan(struct task_struct *p)
2103 {
2104 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2105 p->mm->numa_scan_offset = 0;
2106 }
2107
2108 /*
2109 * The expensive part of numa migration is done from task_work context.
2110 * Triggered from task_tick_numa().
2111 */
2112 void task_numa_work(struct callback_head *work)
2113 {
2114 unsigned long migrate, next_scan, now = jiffies;
2115 struct task_struct *p = current;
2116 struct mm_struct *mm = p->mm;
2117 struct vm_area_struct *vma;
2118 unsigned long start, end;
2119 unsigned long nr_pte_updates = 0;
2120 long pages;
2121
2122 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2123
2124 work->next = work; /* protect against double add */
2125 /*
2126 * Who cares about NUMA placement when they're dying.
2127 *
2128 * NOTE: make sure not to dereference p->mm before this check,
2129 * exit_task_work() happens _after_ exit_mm() so we could be called
2130 * without p->mm even though we still had it when we enqueued this
2131 * work.
2132 */
2133 if (p->flags & PF_EXITING)
2134 return;
2135
2136 if (!mm->numa_next_scan) {
2137 mm->numa_next_scan = now +
2138 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2139 }
2140
2141 /*
2142 * Enforce maximal scan/migration frequency..
2143 */
2144 migrate = mm->numa_next_scan;
2145 if (time_before(now, migrate))
2146 return;
2147
2148 if (p->numa_scan_period == 0) {
2149 p->numa_scan_period_max = task_scan_max(p);
2150 p->numa_scan_period = task_scan_min(p);
2151 }
2152
2153 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2154 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2155 return;
2156
2157 /*
2158 * Delay this task enough that another task of this mm will likely win
2159 * the next time around.
2160 */
2161 p->node_stamp += 2 * TICK_NSEC;
2162
2163 start = mm->numa_scan_offset;
2164 pages = sysctl_numa_balancing_scan_size;
2165 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2166 if (!pages)
2167 return;
2168
2169 down_read(&mm->mmap_sem);
2170 vma = find_vma(mm, start);
2171 if (!vma) {
2172 reset_ptenuma_scan(p);
2173 start = 0;
2174 vma = mm->mmap;
2175 }
2176 for (; vma; vma = vma->vm_next) {
2177 if (!vma_migratable(vma) || !vma_policy_mof(vma))
2178 continue;
2179
2180 /*
2181 * Shared library pages mapped by multiple processes are not
2182 * migrated as it is expected they are cache replicated. Avoid
2183 * hinting faults in read-only file-backed mappings or the vdso
2184 * as migrating the pages will be of marginal benefit.
2185 */
2186 if (!vma->vm_mm ||
2187 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2188 continue;
2189
2190 /*
2191 * Skip inaccessible VMAs to avoid any confusion between
2192 * PROT_NONE and NUMA hinting ptes
2193 */
2194 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2195 continue;
2196
2197 do {
2198 start = max(start, vma->vm_start);
2199 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2200 end = min(end, vma->vm_end);
2201 nr_pte_updates += change_prot_numa(vma, start, end);
2202
2203 /*
2204 * Scan sysctl_numa_balancing_scan_size but ensure that
2205 * at least one PTE is updated so that unused virtual
2206 * address space is quickly skipped.
2207 */
2208 if (nr_pte_updates)
2209 pages -= (end - start) >> PAGE_SHIFT;
2210
2211 start = end;
2212 if (pages <= 0)
2213 goto out;
2214
2215 cond_resched();
2216 } while (end != vma->vm_end);
2217 }
2218
2219 out:
2220 /*
2221 * It is possible to reach the end of the VMA list but the last few
2222 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2223 * would find the !migratable VMA on the next scan but not reset the
2224 * scanner to the start so check it now.
2225 */
2226 if (vma)
2227 mm->numa_scan_offset = start;
2228 else
2229 reset_ptenuma_scan(p);
2230 up_read(&mm->mmap_sem);
2231 }
2232
2233 /*
2234 * Drive the periodic memory faults..
2235 */
2236 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2237 {
2238 struct callback_head *work = &curr->numa_work;
2239 u64 period, now;
2240
2241 /*
2242 * We don't care about NUMA placement if we don't have memory.
2243 */
2244 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2245 return;
2246
2247 /*
2248 * Using runtime rather than walltime has the dual advantage that
2249 * we (mostly) drive the selection from busy threads and that the
2250 * task needs to have done some actual work before we bother with
2251 * NUMA placement.
2252 */
2253 now = curr->se.sum_exec_runtime;
2254 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2255
2256 if (now - curr->node_stamp > period) {
2257 if (!curr->node_stamp)
2258 curr->numa_scan_period = task_scan_min(curr);
2259 curr->node_stamp += period;
2260
2261 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2262 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2263 task_work_add(curr, work, true);
2264 }
2265 }
2266 }
2267 #else
2268 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2269 {
2270 }
2271
2272 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2273 {
2274 }
2275
2276 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2277 {
2278 }
2279 #endif /* CONFIG_NUMA_BALANCING */
2280
2281 static void
2282 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2283 {
2284 update_load_add(&cfs_rq->load, se->load.weight);
2285 if (!parent_entity(se))
2286 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2287 #ifdef CONFIG_SMP
2288 if (entity_is_task(se)) {
2289 struct rq *rq = rq_of(cfs_rq);
2290
2291 account_numa_enqueue(rq, task_of(se));
2292 list_add(&se->group_node, &rq->cfs_tasks);
2293 }
2294 #endif
2295 cfs_rq->nr_running++;
2296 }
2297
2298 static void
2299 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2300 {
2301 update_load_sub(&cfs_rq->load, se->load.weight);
2302 if (!parent_entity(se))
2303 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2304 if (entity_is_task(se)) {
2305 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2306 list_del_init(&se->group_node);
2307 }
2308 cfs_rq->nr_running--;
2309 }
2310
2311 #ifdef CONFIG_FAIR_GROUP_SCHED
2312 # ifdef CONFIG_SMP
2313 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2314 {
2315 long tg_weight;
2316
2317 /*
2318 * Use this CPU's actual weight instead of the last load_contribution
2319 * to gain a more accurate current total weight. See
2320 * update_cfs_rq_load_contribution().
2321 */
2322 tg_weight = atomic_long_read(&tg->load_avg);
2323 tg_weight -= cfs_rq->tg_load_contrib;
2324 tg_weight += cfs_rq->load.weight;
2325
2326 return tg_weight;
2327 }
2328
2329 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2330 {
2331 long tg_weight, load, shares;
2332
2333 tg_weight = calc_tg_weight(tg, cfs_rq);
2334 load = cfs_rq->load.weight;
2335
2336 shares = (tg->shares * load);
2337 if (tg_weight)
2338 shares /= tg_weight;
2339
2340 if (shares < MIN_SHARES)
2341 shares = MIN_SHARES;
2342 if (shares > tg->shares)
2343 shares = tg->shares;
2344
2345 return shares;
2346 }
2347 # else /* CONFIG_SMP */
2348 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2349 {
2350 return tg->shares;
2351 }
2352 # endif /* CONFIG_SMP */
2353 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2354 unsigned long weight)
2355 {
2356 if (se->on_rq) {
2357 /* commit outstanding execution time */
2358 if (cfs_rq->curr == se)
2359 update_curr(cfs_rq);
2360 account_entity_dequeue(cfs_rq, se);
2361 }
2362
2363 update_load_set(&se->load, weight);
2364
2365 if (se->on_rq)
2366 account_entity_enqueue(cfs_rq, se);
2367 }
2368
2369 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2370
2371 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2372 {
2373 struct task_group *tg;
2374 struct sched_entity *se;
2375 long shares;
2376
2377 tg = cfs_rq->tg;
2378 se = tg->se[cpu_of(rq_of(cfs_rq))];
2379 if (!se || throttled_hierarchy(cfs_rq))
2380 return;
2381 #ifndef CONFIG_SMP
2382 if (likely(se->load.weight == tg->shares))
2383 return;
2384 #endif
2385 shares = calc_cfs_shares(cfs_rq, tg);
2386
2387 reweight_entity(cfs_rq_of(se), se, shares);
2388 }
2389 #else /* CONFIG_FAIR_GROUP_SCHED */
2390 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2391 {
2392 }
2393 #endif /* CONFIG_FAIR_GROUP_SCHED */
2394
2395 #ifdef CONFIG_SMP
2396 /*
2397 * We choose a half-life close to 1 scheduling period.
2398 * Note: The tables below are dependent on this value.
2399 */
2400 #define LOAD_AVG_PERIOD 32
2401 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2402 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2403
2404 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2405 static const u32 runnable_avg_yN_inv[] = {
2406 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2407 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2408 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2409 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2410 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2411 0x85aac367, 0x82cd8698,
2412 };
2413
2414 /*
2415 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2416 * over-estimates when re-combining.
2417 */
2418 static const u32 runnable_avg_yN_sum[] = {
2419 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2420 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2421 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2422 };
2423
2424 /*
2425 * Approximate:
2426 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2427 */
2428 static __always_inline u64 decay_load(u64 val, u64 n)
2429 {
2430 unsigned int local_n;
2431
2432 if (!n)
2433 return val;
2434 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2435 return 0;
2436
2437 /* after bounds checking we can collapse to 32-bit */
2438 local_n = n;
2439
2440 /*
2441 * As y^PERIOD = 1/2, we can combine
2442 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2443 * With a look-up table which covers y^n (n<PERIOD)
2444 *
2445 * To achieve constant time decay_load.
2446 */
2447 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2448 val >>= local_n / LOAD_AVG_PERIOD;
2449 local_n %= LOAD_AVG_PERIOD;
2450 }
2451
2452 val *= runnable_avg_yN_inv[local_n];
2453 /* We don't use SRR here since we always want to round down. */
2454 return val >> 32;
2455 }
2456
2457 /*
2458 * For updates fully spanning n periods, the contribution to runnable
2459 * average will be: \Sum 1024*y^n
2460 *
2461 * We can compute this reasonably efficiently by combining:
2462 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2463 */
2464 static u32 __compute_runnable_contrib(u64 n)
2465 {
2466 u32 contrib = 0;
2467
2468 if (likely(n <= LOAD_AVG_PERIOD))
2469 return runnable_avg_yN_sum[n];
2470 else if (unlikely(n >= LOAD_AVG_MAX_N))
2471 return LOAD_AVG_MAX;
2472
2473 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2474 do {
2475 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2476 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2477
2478 n -= LOAD_AVG_PERIOD;
2479 } while (n > LOAD_AVG_PERIOD);
2480
2481 contrib = decay_load(contrib, n);
2482 return contrib + runnable_avg_yN_sum[n];
2483 }
2484
2485 /*
2486 * We can represent the historical contribution to runnable average as the
2487 * coefficients of a geometric series. To do this we sub-divide our runnable
2488 * history into segments of approximately 1ms (1024us); label the segment that
2489 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2490 *
2491 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2492 * p0 p1 p2
2493 * (now) (~1ms ago) (~2ms ago)
2494 *
2495 * Let u_i denote the fraction of p_i that the entity was runnable.
2496 *
2497 * We then designate the fractions u_i as our co-efficients, yielding the
2498 * following representation of historical load:
2499 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2500 *
2501 * We choose y based on the with of a reasonably scheduling period, fixing:
2502 * y^32 = 0.5
2503 *
2504 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2505 * approximately half as much as the contribution to load within the last ms
2506 * (u_0).
2507 *
2508 * When a period "rolls over" and we have new u_0`, multiplying the previous
2509 * sum again by y is sufficient to update:
2510 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2511 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2512 */
2513 static __always_inline int __update_entity_runnable_avg(u64 now,
2514 struct sched_avg *sa,
2515 int runnable)
2516 {
2517 u64 delta, periods;
2518 u32 runnable_contrib;
2519 int delta_w, decayed = 0;
2520
2521 delta = now - sa->last_runnable_update;
2522 /*
2523 * This should only happen when time goes backwards, which it
2524 * unfortunately does during sched clock init when we swap over to TSC.
2525 */
2526 if ((s64)delta < 0) {
2527 sa->last_runnable_update = now;
2528 return 0;
2529 }
2530
2531 /*
2532 * Use 1024ns as the unit of measurement since it's a reasonable
2533 * approximation of 1us and fast to compute.
2534 */
2535 delta >>= 10;
2536 if (!delta)
2537 return 0;
2538 sa->last_runnable_update = now;
2539
2540 /* delta_w is the amount already accumulated against our next period */
2541 delta_w = sa->runnable_avg_period % 1024;
2542 if (delta + delta_w >= 1024) {
2543 /* period roll-over */
2544 decayed = 1;
2545
2546 /*
2547 * Now that we know we're crossing a period boundary, figure
2548 * out how much from delta we need to complete the current
2549 * period and accrue it.
2550 */
2551 delta_w = 1024 - delta_w;
2552 if (runnable)
2553 sa->runnable_avg_sum += delta_w;
2554 sa->runnable_avg_period += delta_w;
2555
2556 delta -= delta_w;
2557
2558 /* Figure out how many additional periods this update spans */
2559 periods = delta / 1024;
2560 delta %= 1024;
2561
2562 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2563 periods + 1);
2564 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2565 periods + 1);
2566
2567 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2568 runnable_contrib = __compute_runnable_contrib(periods);
2569 if (runnable)
2570 sa->runnable_avg_sum += runnable_contrib;
2571 sa->runnable_avg_period += runnable_contrib;
2572 }
2573
2574 /* Remainder of delta accrued against u_0` */
2575 if (runnable)
2576 sa->runnable_avg_sum += delta;
2577 sa->runnable_avg_period += delta;
2578
2579 return decayed;
2580 }
2581
2582 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2583 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2584 {
2585 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2586 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2587
2588 decays -= se->avg.decay_count;
2589 se->avg.decay_count = 0;
2590 if (!decays)
2591 return 0;
2592
2593 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2594
2595 return decays;
2596 }
2597
2598 #ifdef CONFIG_FAIR_GROUP_SCHED
2599 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2600 int force_update)
2601 {
2602 struct task_group *tg = cfs_rq->tg;
2603 long tg_contrib;
2604
2605 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2606 tg_contrib -= cfs_rq->tg_load_contrib;
2607
2608 if (!tg_contrib)
2609 return;
2610
2611 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2612 atomic_long_add(tg_contrib, &tg->load_avg);
2613 cfs_rq->tg_load_contrib += tg_contrib;
2614 }
2615 }
2616
2617 /*
2618 * Aggregate cfs_rq runnable averages into an equivalent task_group
2619 * representation for computing load contributions.
2620 */
2621 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2622 struct cfs_rq *cfs_rq)
2623 {
2624 struct task_group *tg = cfs_rq->tg;
2625 long contrib;
2626
2627 /* The fraction of a cpu used by this cfs_rq */
2628 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2629 sa->runnable_avg_period + 1);
2630 contrib -= cfs_rq->tg_runnable_contrib;
2631
2632 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2633 atomic_add(contrib, &tg->runnable_avg);
2634 cfs_rq->tg_runnable_contrib += contrib;
2635 }
2636 }
2637
2638 static inline void __update_group_entity_contrib(struct sched_entity *se)
2639 {
2640 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2641 struct task_group *tg = cfs_rq->tg;
2642 int runnable_avg;
2643
2644 u64 contrib;
2645
2646 contrib = cfs_rq->tg_load_contrib * tg->shares;
2647 se->avg.load_avg_contrib = div_u64(contrib,
2648 atomic_long_read(&tg->load_avg) + 1);
2649
2650 /*
2651 * For group entities we need to compute a correction term in the case
2652 * that they are consuming <1 cpu so that we would contribute the same
2653 * load as a task of equal weight.
2654 *
2655 * Explicitly co-ordinating this measurement would be expensive, but
2656 * fortunately the sum of each cpus contribution forms a usable
2657 * lower-bound on the true value.
2658 *
2659 * Consider the aggregate of 2 contributions. Either they are disjoint
2660 * (and the sum represents true value) or they are disjoint and we are
2661 * understating by the aggregate of their overlap.
2662 *
2663 * Extending this to N cpus, for a given overlap, the maximum amount we
2664 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2665 * cpus that overlap for this interval and w_i is the interval width.
2666 *
2667 * On a small machine; the first term is well-bounded which bounds the
2668 * total error since w_i is a subset of the period. Whereas on a
2669 * larger machine, while this first term can be larger, if w_i is the
2670 * of consequential size guaranteed to see n_i*w_i quickly converge to
2671 * our upper bound of 1-cpu.
2672 */
2673 runnable_avg = atomic_read(&tg->runnable_avg);
2674 if (runnable_avg < NICE_0_LOAD) {
2675 se->avg.load_avg_contrib *= runnable_avg;
2676 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2677 }
2678 }
2679
2680 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2681 {
2682 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2683 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2684 }
2685 #else /* CONFIG_FAIR_GROUP_SCHED */
2686 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2687 int force_update) {}
2688 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2689 struct cfs_rq *cfs_rq) {}
2690 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2691 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2692 #endif /* CONFIG_FAIR_GROUP_SCHED */
2693
2694 static inline void __update_task_entity_contrib(struct sched_entity *se)
2695 {
2696 u32 contrib;
2697
2698 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2699 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2700 contrib /= (se->avg.runnable_avg_period + 1);
2701 se->avg.load_avg_contrib = scale_load(contrib);
2702 }
2703
2704 /* Compute the current contribution to load_avg by se, return any delta */
2705 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2706 {
2707 long old_contrib = se->avg.load_avg_contrib;
2708
2709 if (entity_is_task(se)) {
2710 __update_task_entity_contrib(se);
2711 } else {
2712 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2713 __update_group_entity_contrib(se);
2714 }
2715
2716 return se->avg.load_avg_contrib - old_contrib;
2717 }
2718
2719 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2720 long load_contrib)
2721 {
2722 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2723 cfs_rq->blocked_load_avg -= load_contrib;
2724 else
2725 cfs_rq->blocked_load_avg = 0;
2726 }
2727
2728 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2729
2730 /* Update a sched_entity's runnable average */
2731 static inline void update_entity_load_avg(struct sched_entity *se,
2732 int update_cfs_rq)
2733 {
2734 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2735 long contrib_delta;
2736 u64 now;
2737
2738 /*
2739 * For a group entity we need to use their owned cfs_rq_clock_task() in
2740 * case they are the parent of a throttled hierarchy.
2741 */
2742 if (entity_is_task(se))
2743 now = cfs_rq_clock_task(cfs_rq);
2744 else
2745 now = cfs_rq_clock_task(group_cfs_rq(se));
2746
2747 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2748 return;
2749
2750 contrib_delta = __update_entity_load_avg_contrib(se);
2751
2752 if (!update_cfs_rq)
2753 return;
2754
2755 if (se->on_rq)
2756 cfs_rq->runnable_load_avg += contrib_delta;
2757 else
2758 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2759 }
2760
2761 /*
2762 * Decay the load contributed by all blocked children and account this so that
2763 * their contribution may appropriately discounted when they wake up.
2764 */
2765 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2766 {
2767 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2768 u64 decays;
2769
2770 decays = now - cfs_rq->last_decay;
2771 if (!decays && !force_update)
2772 return;
2773
2774 if (atomic_long_read(&cfs_rq->removed_load)) {
2775 unsigned long removed_load;
2776 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2777 subtract_blocked_load_contrib(cfs_rq, removed_load);
2778 }
2779
2780 if (decays) {
2781 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2782 decays);
2783 atomic64_add(decays, &cfs_rq->decay_counter);
2784 cfs_rq->last_decay = now;
2785 }
2786
2787 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2788 }
2789
2790 /* Add the load generated by se into cfs_rq's child load-average */
2791 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2792 struct sched_entity *se,
2793 int wakeup)
2794 {
2795 /*
2796 * We track migrations using entity decay_count <= 0, on a wake-up
2797 * migration we use a negative decay count to track the remote decays
2798 * accumulated while sleeping.
2799 *
2800 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2801 * are seen by enqueue_entity_load_avg() as a migration with an already
2802 * constructed load_avg_contrib.
2803 */
2804 if (unlikely(se->avg.decay_count <= 0)) {
2805 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2806 if (se->avg.decay_count) {
2807 /*
2808 * In a wake-up migration we have to approximate the
2809 * time sleeping. This is because we can't synchronize
2810 * clock_task between the two cpus, and it is not
2811 * guaranteed to be read-safe. Instead, we can
2812 * approximate this using our carried decays, which are
2813 * explicitly atomically readable.
2814 */
2815 se->avg.last_runnable_update -= (-se->avg.decay_count)
2816 << 20;
2817 update_entity_load_avg(se, 0);
2818 /* Indicate that we're now synchronized and on-rq */
2819 se->avg.decay_count = 0;
2820 }
2821 wakeup = 0;
2822 } else {
2823 __synchronize_entity_decay(se);
2824 }
2825
2826 /* migrated tasks did not contribute to our blocked load */
2827 if (wakeup) {
2828 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2829 update_entity_load_avg(se, 0);
2830 }
2831
2832 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2833 /* we force update consideration on load-balancer moves */
2834 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2835 }
2836
2837 /*
2838 * Remove se's load from this cfs_rq child load-average, if the entity is
2839 * transitioning to a blocked state we track its projected decay using
2840 * blocked_load_avg.
2841 */
2842 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2843 struct sched_entity *se,
2844 int sleep)
2845 {
2846 update_entity_load_avg(se, 1);
2847 /* we force update consideration on load-balancer moves */
2848 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2849
2850 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2851 if (sleep) {
2852 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2853 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2854 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2855 }
2856
2857 /*
2858 * Update the rq's load with the elapsed running time before entering
2859 * idle. if the last scheduled task is not a CFS task, idle_enter will
2860 * be the only way to update the runnable statistic.
2861 */
2862 void idle_enter_fair(struct rq *this_rq)
2863 {
2864 update_rq_runnable_avg(this_rq, 1);
2865 }
2866
2867 /*
2868 * Update the rq's load with the elapsed idle time before a task is
2869 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2870 * be the only way to update the runnable statistic.
2871 */
2872 void idle_exit_fair(struct rq *this_rq)
2873 {
2874 update_rq_runnable_avg(this_rq, 0);
2875 }
2876
2877 static int idle_balance(struct rq *this_rq);
2878
2879 #else /* CONFIG_SMP */
2880
2881 static inline void update_entity_load_avg(struct sched_entity *se,
2882 int update_cfs_rq) {}
2883 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2884 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2885 struct sched_entity *se,
2886 int wakeup) {}
2887 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2888 struct sched_entity *se,
2889 int sleep) {}
2890 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2891 int force_update) {}
2892
2893 static inline int idle_balance(struct rq *rq)
2894 {
2895 return 0;
2896 }
2897
2898 #endif /* CONFIG_SMP */
2899
2900 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2901 {
2902 #ifdef CONFIG_SCHEDSTATS
2903 struct task_struct *tsk = NULL;
2904
2905 if (entity_is_task(se))
2906 tsk = task_of(se);
2907
2908 if (se->statistics.sleep_start) {
2909 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2910
2911 if ((s64)delta < 0)
2912 delta = 0;
2913
2914 if (unlikely(delta > se->statistics.sleep_max))
2915 se->statistics.sleep_max = delta;
2916
2917 se->statistics.sleep_start = 0;
2918 se->statistics.sum_sleep_runtime += delta;
2919
2920 if (tsk) {
2921 account_scheduler_latency(tsk, delta >> 10, 1);
2922 trace_sched_stat_sleep(tsk, delta);
2923 }
2924 }
2925 if (se->statistics.block_start) {
2926 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2927
2928 if ((s64)delta < 0)
2929 delta = 0;
2930
2931 if (unlikely(delta > se->statistics.block_max))
2932 se->statistics.block_max = delta;
2933
2934 se->statistics.block_start = 0;
2935 se->statistics.sum_sleep_runtime += delta;
2936
2937 if (tsk) {
2938 if (tsk->in_iowait) {
2939 se->statistics.iowait_sum += delta;
2940 se->statistics.iowait_count++;
2941 trace_sched_stat_iowait(tsk, delta);
2942 }
2943
2944 trace_sched_stat_blocked(tsk, delta);
2945
2946 /*
2947 * Blocking time is in units of nanosecs, so shift by
2948 * 20 to get a milliseconds-range estimation of the
2949 * amount of time that the task spent sleeping:
2950 */
2951 if (unlikely(prof_on == SLEEP_PROFILING)) {
2952 profile_hits(SLEEP_PROFILING,
2953 (void *)get_wchan(tsk),
2954 delta >> 20);
2955 }
2956 account_scheduler_latency(tsk, delta >> 10, 0);
2957 }
2958 }
2959 #endif
2960 }
2961
2962 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2963 {
2964 #ifdef CONFIG_SCHED_DEBUG
2965 s64 d = se->vruntime - cfs_rq->min_vruntime;
2966
2967 if (d < 0)
2968 d = -d;
2969
2970 if (d > 3*sysctl_sched_latency)
2971 schedstat_inc(cfs_rq, nr_spread_over);
2972 #endif
2973 }
2974
2975 static void
2976 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2977 {
2978 u64 vruntime = cfs_rq->min_vruntime;
2979
2980 /*
2981 * The 'current' period is already promised to the current tasks,
2982 * however the extra weight of the new task will slow them down a
2983 * little, place the new task so that it fits in the slot that
2984 * stays open at the end.
2985 */
2986 if (initial && sched_feat(START_DEBIT))
2987 vruntime += sched_vslice(cfs_rq, se);
2988
2989 /* sleeps up to a single latency don't count. */
2990 if (!initial) {
2991 unsigned long thresh = sysctl_sched_latency;
2992
2993 /*
2994 * Halve their sleep time's effect, to allow
2995 * for a gentler effect of sleepers:
2996 */
2997 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2998 thresh >>= 1;
2999
3000 vruntime -= thresh;
3001 }
3002
3003 /* ensure we never gain time by being placed backwards. */
3004 se->vruntime = max_vruntime(se->vruntime, vruntime);
3005 }
3006
3007 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3008
3009 static void
3010 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3011 {
3012 /*
3013 * Update the normalized vruntime before updating min_vruntime
3014 * through calling update_curr().
3015 */
3016 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3017 se->vruntime += cfs_rq->min_vruntime;
3018
3019 /*
3020 * Update run-time statistics of the 'current'.
3021 */
3022 update_curr(cfs_rq);
3023 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3024 account_entity_enqueue(cfs_rq, se);
3025 update_cfs_shares(cfs_rq);
3026
3027 if (flags & ENQUEUE_WAKEUP) {
3028 place_entity(cfs_rq, se, 0);
3029 enqueue_sleeper(cfs_rq, se);
3030 }
3031
3032 update_stats_enqueue(cfs_rq, se);
3033 check_spread(cfs_rq, se);
3034 if (se != cfs_rq->curr)
3035 __enqueue_entity(cfs_rq, se);
3036 se->on_rq = 1;
3037
3038 if (cfs_rq->nr_running == 1) {
3039 list_add_leaf_cfs_rq(cfs_rq);
3040 check_enqueue_throttle(cfs_rq);
3041 }
3042 }
3043
3044 static void __clear_buddies_last(struct sched_entity *se)
3045 {
3046 for_each_sched_entity(se) {
3047 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3048 if (cfs_rq->last != se)
3049 break;
3050
3051 cfs_rq->last = NULL;
3052 }
3053 }
3054
3055 static void __clear_buddies_next(struct sched_entity *se)
3056 {
3057 for_each_sched_entity(se) {
3058 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3059 if (cfs_rq->next != se)
3060 break;
3061
3062 cfs_rq->next = NULL;
3063 }
3064 }
3065
3066 static void __clear_buddies_skip(struct sched_entity *se)
3067 {
3068 for_each_sched_entity(se) {
3069 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3070 if (cfs_rq->skip != se)
3071 break;
3072
3073 cfs_rq->skip = NULL;
3074 }
3075 }
3076
3077 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3078 {
3079 if (cfs_rq->last == se)
3080 __clear_buddies_last(se);
3081
3082 if (cfs_rq->next == se)
3083 __clear_buddies_next(se);
3084
3085 if (cfs_rq->skip == se)
3086 __clear_buddies_skip(se);
3087 }
3088
3089 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3090
3091 static void
3092 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3093 {
3094 /*
3095 * Update run-time statistics of the 'current'.
3096 */
3097 update_curr(cfs_rq);
3098 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3099
3100 update_stats_dequeue(cfs_rq, se);
3101 if (flags & DEQUEUE_SLEEP) {
3102 #ifdef CONFIG_SCHEDSTATS
3103 if (entity_is_task(se)) {
3104 struct task_struct *tsk = task_of(se);
3105
3106 if (tsk->state & TASK_INTERRUPTIBLE)
3107 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3108 if (tsk->state & TASK_UNINTERRUPTIBLE)
3109 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3110 }
3111 #endif
3112 }
3113
3114 clear_buddies(cfs_rq, se);
3115
3116 if (se != cfs_rq->curr)
3117 __dequeue_entity(cfs_rq, se);
3118 se->on_rq = 0;
3119 account_entity_dequeue(cfs_rq, se);
3120
3121 /*
3122 * Normalize the entity after updating the min_vruntime because the
3123 * update can refer to the ->curr item and we need to reflect this
3124 * movement in our normalized position.
3125 */
3126 if (!(flags & DEQUEUE_SLEEP))
3127 se->vruntime -= cfs_rq->min_vruntime;
3128
3129 /* return excess runtime on last dequeue */
3130 return_cfs_rq_runtime(cfs_rq);
3131
3132 update_min_vruntime(cfs_rq);
3133 update_cfs_shares(cfs_rq);
3134 }
3135
3136 /*
3137 * Preempt the current task with a newly woken task if needed:
3138 */
3139 static void
3140 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3141 {
3142 unsigned long ideal_runtime, delta_exec;
3143 struct sched_entity *se;
3144 s64 delta;
3145
3146 ideal_runtime = sched_slice(cfs_rq, curr);
3147 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3148 if (delta_exec > ideal_runtime) {
3149 resched_curr(rq_of(cfs_rq));
3150 /*
3151 * The current task ran long enough, ensure it doesn't get
3152 * re-elected due to buddy favours.
3153 */
3154 clear_buddies(cfs_rq, curr);
3155 return;
3156 }
3157
3158 /*
3159 * Ensure that a task that missed wakeup preemption by a
3160 * narrow margin doesn't have to wait for a full slice.
3161 * This also mitigates buddy induced latencies under load.
3162 */
3163 if (delta_exec < sysctl_sched_min_granularity)
3164 return;
3165
3166 se = __pick_first_entity(cfs_rq);
3167 delta = curr->vruntime - se->vruntime;
3168
3169 if (delta < 0)
3170 return;
3171
3172 if (delta > ideal_runtime)
3173 resched_curr(rq_of(cfs_rq));
3174 }
3175
3176 static void
3177 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3178 {
3179 /* 'current' is not kept within the tree. */
3180 if (se->on_rq) {
3181 /*
3182 * Any task has to be enqueued before it get to execute on
3183 * a CPU. So account for the time it spent waiting on the
3184 * runqueue.
3185 */
3186 update_stats_wait_end(cfs_rq, se);
3187 __dequeue_entity(cfs_rq, se);
3188 }
3189
3190 update_stats_curr_start(cfs_rq, se);
3191 cfs_rq->curr = se;
3192 #ifdef CONFIG_SCHEDSTATS
3193 /*
3194 * Track our maximum slice length, if the CPU's load is at
3195 * least twice that of our own weight (i.e. dont track it
3196 * when there are only lesser-weight tasks around):
3197 */
3198 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3199 se->statistics.slice_max = max(se->statistics.slice_max,
3200 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3201 }
3202 #endif
3203 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3204 }
3205
3206 static int
3207 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3208
3209 /*
3210 * Pick the next process, keeping these things in mind, in this order:
3211 * 1) keep things fair between processes/task groups
3212 * 2) pick the "next" process, since someone really wants that to run
3213 * 3) pick the "last" process, for cache locality
3214 * 4) do not run the "skip" process, if something else is available
3215 */
3216 static struct sched_entity *
3217 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3218 {
3219 struct sched_entity *left = __pick_first_entity(cfs_rq);
3220 struct sched_entity *se;
3221
3222 /*
3223 * If curr is set we have to see if its left of the leftmost entity
3224 * still in the tree, provided there was anything in the tree at all.
3225 */
3226 if (!left || (curr && entity_before(curr, left)))
3227 left = curr;
3228
3229 se = left; /* ideally we run the leftmost entity */
3230
3231 /*
3232 * Avoid running the skip buddy, if running something else can
3233 * be done without getting too unfair.
3234 */
3235 if (cfs_rq->skip == se) {
3236 struct sched_entity *second;
3237
3238 if (se == curr) {
3239 second = __pick_first_entity(cfs_rq);
3240 } else {
3241 second = __pick_next_entity(se);
3242 if (!second || (curr && entity_before(curr, second)))
3243 second = curr;
3244 }
3245
3246 if (second && wakeup_preempt_entity(second, left) < 1)
3247 se = second;
3248 }
3249
3250 /*
3251 * Prefer last buddy, try to return the CPU to a preempted task.
3252 */
3253 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3254 se = cfs_rq->last;
3255
3256 /*
3257 * Someone really wants this to run. If it's not unfair, run it.
3258 */
3259 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3260 se = cfs_rq->next;
3261
3262 clear_buddies(cfs_rq, se);
3263
3264 return se;
3265 }
3266
3267 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3268
3269 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3270 {
3271 /*
3272 * If still on the runqueue then deactivate_task()
3273 * was not called and update_curr() has to be done:
3274 */
3275 if (prev->on_rq)
3276 update_curr(cfs_rq);
3277
3278 /* throttle cfs_rqs exceeding runtime */
3279 check_cfs_rq_runtime(cfs_rq);
3280
3281 check_spread(cfs_rq, prev);
3282 if (prev->on_rq) {
3283 update_stats_wait_start(cfs_rq, prev);
3284 /* Put 'current' back into the tree. */
3285 __enqueue_entity(cfs_rq, prev);
3286 /* in !on_rq case, update occurred at dequeue */
3287 update_entity_load_avg(prev, 1);
3288 }
3289 cfs_rq->curr = NULL;
3290 }
3291
3292 static void
3293 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3294 {
3295 /*
3296 * Update run-time statistics of the 'current'.
3297 */
3298 update_curr(cfs_rq);
3299
3300 /*
3301 * Ensure that runnable average is periodically updated.
3302 */
3303 update_entity_load_avg(curr, 1);
3304 update_cfs_rq_blocked_load(cfs_rq, 1);
3305 update_cfs_shares(cfs_rq);
3306
3307 #ifdef CONFIG_SCHED_HRTICK
3308 /*
3309 * queued ticks are scheduled to match the slice, so don't bother
3310 * validating it and just reschedule.
3311 */
3312 if (queued) {
3313 resched_curr(rq_of(cfs_rq));
3314 return;
3315 }
3316 /*
3317 * don't let the period tick interfere with the hrtick preemption
3318 */
3319 if (!sched_feat(DOUBLE_TICK) &&
3320 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3321 return;
3322 #endif
3323
3324 if (cfs_rq->nr_running > 1)
3325 check_preempt_tick(cfs_rq, curr);
3326 }
3327
3328
3329 /**************************************************
3330 * CFS bandwidth control machinery
3331 */
3332
3333 #ifdef CONFIG_CFS_BANDWIDTH
3334
3335 #ifdef HAVE_JUMP_LABEL
3336 static struct static_key __cfs_bandwidth_used;
3337
3338 static inline bool cfs_bandwidth_used(void)
3339 {
3340 return static_key_false(&__cfs_bandwidth_used);
3341 }
3342
3343 void cfs_bandwidth_usage_inc(void)
3344 {
3345 static_key_slow_inc(&__cfs_bandwidth_used);
3346 }
3347
3348 void cfs_bandwidth_usage_dec(void)
3349 {
3350 static_key_slow_dec(&__cfs_bandwidth_used);
3351 }
3352 #else /* HAVE_JUMP_LABEL */
3353 static bool cfs_bandwidth_used(void)
3354 {
3355 return true;
3356 }
3357
3358 void cfs_bandwidth_usage_inc(void) {}
3359 void cfs_bandwidth_usage_dec(void) {}
3360 #endif /* HAVE_JUMP_LABEL */
3361
3362 /*
3363 * default period for cfs group bandwidth.
3364 * default: 0.1s, units: nanoseconds
3365 */
3366 static inline u64 default_cfs_period(void)
3367 {
3368 return 100000000ULL;
3369 }
3370
3371 static inline u64 sched_cfs_bandwidth_slice(void)
3372 {
3373 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3374 }
3375
3376 /*
3377 * Replenish runtime according to assigned quota and update expiration time.
3378 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3379 * additional synchronization around rq->lock.
3380 *
3381 * requires cfs_b->lock
3382 */
3383 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3384 {
3385 u64 now;
3386
3387 if (cfs_b->quota == RUNTIME_INF)
3388 return;
3389
3390 now = sched_clock_cpu(smp_processor_id());
3391 cfs_b->runtime = cfs_b->quota;
3392 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3393 }
3394
3395 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3396 {
3397 return &tg->cfs_bandwidth;
3398 }
3399
3400 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3401 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3402 {
3403 if (unlikely(cfs_rq->throttle_count))
3404 return cfs_rq->throttled_clock_task;
3405
3406 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3407 }
3408
3409 /* returns 0 on failure to allocate runtime */
3410 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3411 {
3412 struct task_group *tg = cfs_rq->tg;
3413 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3414 u64 amount = 0, min_amount, expires;
3415
3416 /* note: this is a positive sum as runtime_remaining <= 0 */
3417 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3418
3419 raw_spin_lock(&cfs_b->lock);
3420 if (cfs_b->quota == RUNTIME_INF)
3421 amount = min_amount;
3422 else {
3423 /*
3424 * If the bandwidth pool has become inactive, then at least one
3425 * period must have elapsed since the last consumption.
3426 * Refresh the global state and ensure bandwidth timer becomes
3427 * active.
3428 */
3429 if (!cfs_b->timer_active) {
3430 __refill_cfs_bandwidth_runtime(cfs_b);
3431 __start_cfs_bandwidth(cfs_b, false);
3432 }
3433
3434 if (cfs_b->runtime > 0) {
3435 amount = min(cfs_b->runtime, min_amount);
3436 cfs_b->runtime -= amount;
3437 cfs_b->idle = 0;
3438 }
3439 }
3440 expires = cfs_b->runtime_expires;
3441 raw_spin_unlock(&cfs_b->lock);
3442
3443 cfs_rq->runtime_remaining += amount;
3444 /*
3445 * we may have advanced our local expiration to account for allowed
3446 * spread between our sched_clock and the one on which runtime was
3447 * issued.
3448 */
3449 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3450 cfs_rq->runtime_expires = expires;
3451
3452 return cfs_rq->runtime_remaining > 0;
3453 }
3454
3455 /*
3456 * Note: This depends on the synchronization provided by sched_clock and the
3457 * fact that rq->clock snapshots this value.
3458 */
3459 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3460 {
3461 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3462
3463 /* if the deadline is ahead of our clock, nothing to do */
3464 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3465 return;
3466
3467 if (cfs_rq->runtime_remaining < 0)
3468 return;
3469
3470 /*
3471 * If the local deadline has passed we have to consider the
3472 * possibility that our sched_clock is 'fast' and the global deadline
3473 * has not truly expired.
3474 *
3475 * Fortunately we can check determine whether this the case by checking
3476 * whether the global deadline has advanced. It is valid to compare
3477 * cfs_b->runtime_expires without any locks since we only care about
3478 * exact equality, so a partial write will still work.
3479 */
3480
3481 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3482 /* extend local deadline, drift is bounded above by 2 ticks */
3483 cfs_rq->runtime_expires += TICK_NSEC;
3484 } else {
3485 /* global deadline is ahead, expiration has passed */
3486 cfs_rq->runtime_remaining = 0;
3487 }
3488 }
3489
3490 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3491 {
3492 /* dock delta_exec before expiring quota (as it could span periods) */
3493 cfs_rq->runtime_remaining -= delta_exec;
3494 expire_cfs_rq_runtime(cfs_rq);
3495
3496 if (likely(cfs_rq->runtime_remaining > 0))
3497 return;
3498
3499 /*
3500 * if we're unable to extend our runtime we resched so that the active
3501 * hierarchy can be throttled
3502 */
3503 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3504 resched_curr(rq_of(cfs_rq));
3505 }
3506
3507 static __always_inline
3508 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3509 {
3510 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3511 return;
3512
3513 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3514 }
3515
3516 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3517 {
3518 return cfs_bandwidth_used() && cfs_rq->throttled;
3519 }
3520
3521 /* check whether cfs_rq, or any parent, is throttled */
3522 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3523 {
3524 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3525 }
3526
3527 /*
3528 * Ensure that neither of the group entities corresponding to src_cpu or
3529 * dest_cpu are members of a throttled hierarchy when performing group
3530 * load-balance operations.
3531 */
3532 static inline int throttled_lb_pair(struct task_group *tg,
3533 int src_cpu, int dest_cpu)
3534 {
3535 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3536
3537 src_cfs_rq = tg->cfs_rq[src_cpu];
3538 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3539
3540 return throttled_hierarchy(src_cfs_rq) ||
3541 throttled_hierarchy(dest_cfs_rq);
3542 }
3543
3544 /* updated child weight may affect parent so we have to do this bottom up */
3545 static int tg_unthrottle_up(struct task_group *tg, void *data)
3546 {
3547 struct rq *rq = data;
3548 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3549
3550 cfs_rq->throttle_count--;
3551 #ifdef CONFIG_SMP
3552 if (!cfs_rq->throttle_count) {
3553 /* adjust cfs_rq_clock_task() */
3554 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3555 cfs_rq->throttled_clock_task;
3556 }
3557 #endif
3558
3559 return 0;
3560 }
3561
3562 static int tg_throttle_down(struct task_group *tg, void *data)
3563 {
3564 struct rq *rq = data;
3565 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3566
3567 /* group is entering throttled state, stop time */
3568 if (!cfs_rq->throttle_count)
3569 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3570 cfs_rq->throttle_count++;
3571
3572 return 0;
3573 }
3574
3575 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3576 {
3577 struct rq *rq = rq_of(cfs_rq);
3578 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3579 struct sched_entity *se;
3580 long task_delta, dequeue = 1;
3581
3582 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3583
3584 /* freeze hierarchy runnable averages while throttled */
3585 rcu_read_lock();
3586 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3587 rcu_read_unlock();
3588
3589 task_delta = cfs_rq->h_nr_running;
3590 for_each_sched_entity(se) {
3591 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3592 /* throttled entity or throttle-on-deactivate */
3593 if (!se->on_rq)
3594 break;
3595
3596 if (dequeue)
3597 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3598 qcfs_rq->h_nr_running -= task_delta;
3599
3600 if (qcfs_rq->load.weight)
3601 dequeue = 0;
3602 }
3603
3604 if (!se)
3605 sub_nr_running(rq, task_delta);
3606
3607 cfs_rq->throttled = 1;
3608 cfs_rq->throttled_clock = rq_clock(rq);
3609 raw_spin_lock(&cfs_b->lock);
3610 /*
3611 * Add to the _head_ of the list, so that an already-started
3612 * distribute_cfs_runtime will not see us
3613 */
3614 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3615 if (!cfs_b->timer_active)
3616 __start_cfs_bandwidth(cfs_b, false);
3617 raw_spin_unlock(&cfs_b->lock);
3618 }
3619
3620 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3621 {
3622 struct rq *rq = rq_of(cfs_rq);
3623 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3624 struct sched_entity *se;
3625 int enqueue = 1;
3626 long task_delta;
3627
3628 se = cfs_rq->tg->se[cpu_of(rq)];
3629
3630 cfs_rq->throttled = 0;
3631
3632 update_rq_clock(rq);
3633
3634 raw_spin_lock(&cfs_b->lock);
3635 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3636 list_del_rcu(&cfs_rq->throttled_list);
3637 raw_spin_unlock(&cfs_b->lock);
3638
3639 /* update hierarchical throttle state */
3640 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3641
3642 if (!cfs_rq->load.weight)
3643 return;
3644
3645 task_delta = cfs_rq->h_nr_running;
3646 for_each_sched_entity(se) {
3647 if (se->on_rq)
3648 enqueue = 0;
3649
3650 cfs_rq = cfs_rq_of(se);
3651 if (enqueue)
3652 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3653 cfs_rq->h_nr_running += task_delta;
3654
3655 if (cfs_rq_throttled(cfs_rq))
3656 break;
3657 }
3658
3659 if (!se)
3660 add_nr_running(rq, task_delta);
3661
3662 /* determine whether we need to wake up potentially idle cpu */
3663 if (rq->curr == rq->idle && rq->cfs.nr_running)
3664 resched_curr(rq);
3665 }
3666
3667 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3668 u64 remaining, u64 expires)
3669 {
3670 struct cfs_rq *cfs_rq;
3671 u64 runtime;
3672 u64 starting_runtime = remaining;
3673
3674 rcu_read_lock();
3675 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3676 throttled_list) {
3677 struct rq *rq = rq_of(cfs_rq);
3678
3679 raw_spin_lock(&rq->lock);
3680 if (!cfs_rq_throttled(cfs_rq))
3681 goto next;
3682
3683 runtime = -cfs_rq->runtime_remaining + 1;
3684 if (runtime > remaining)
3685 runtime = remaining;
3686 remaining -= runtime;
3687
3688 cfs_rq->runtime_remaining += runtime;
3689 cfs_rq->runtime_expires = expires;
3690
3691 /* we check whether we're throttled above */
3692 if (cfs_rq->runtime_remaining > 0)
3693 unthrottle_cfs_rq(cfs_rq);
3694
3695 next:
3696 raw_spin_unlock(&rq->lock);
3697
3698 if (!remaining)
3699 break;
3700 }
3701 rcu_read_unlock();
3702
3703 return starting_runtime - remaining;
3704 }
3705
3706 /*
3707 * Responsible for refilling a task_group's bandwidth and unthrottling its
3708 * cfs_rqs as appropriate. If there has been no activity within the last
3709 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3710 * used to track this state.
3711 */
3712 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3713 {
3714 u64 runtime, runtime_expires;
3715 int throttled;
3716
3717 /* no need to continue the timer with no bandwidth constraint */
3718 if (cfs_b->quota == RUNTIME_INF)
3719 goto out_deactivate;
3720
3721 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3722 cfs_b->nr_periods += overrun;
3723
3724 /*
3725 * idle depends on !throttled (for the case of a large deficit), and if
3726 * we're going inactive then everything else can be deferred
3727 */
3728 if (cfs_b->idle && !throttled)
3729 goto out_deactivate;
3730
3731 /*
3732 * if we have relooped after returning idle once, we need to update our
3733 * status as actually running, so that other cpus doing
3734 * __start_cfs_bandwidth will stop trying to cancel us.
3735 */
3736 cfs_b->timer_active = 1;
3737
3738 __refill_cfs_bandwidth_runtime(cfs_b);
3739
3740 if (!throttled) {
3741 /* mark as potentially idle for the upcoming period */
3742 cfs_b->idle = 1;
3743 return 0;
3744 }
3745
3746 /* account preceding periods in which throttling occurred */
3747 cfs_b->nr_throttled += overrun;
3748
3749 runtime_expires = cfs_b->runtime_expires;
3750
3751 /*
3752 * This check is repeated as we are holding onto the new bandwidth while
3753 * we unthrottle. This can potentially race with an unthrottled group
3754 * trying to acquire new bandwidth from the global pool. This can result
3755 * in us over-using our runtime if it is all used during this loop, but
3756 * only by limited amounts in that extreme case.
3757 */
3758 while (throttled && cfs_b->runtime > 0) {
3759 runtime = cfs_b->runtime;
3760 raw_spin_unlock(&cfs_b->lock);
3761 /* we can't nest cfs_b->lock while distributing bandwidth */
3762 runtime = distribute_cfs_runtime(cfs_b, runtime,
3763 runtime_expires);
3764 raw_spin_lock(&cfs_b->lock);
3765
3766 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3767
3768 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3769 }
3770
3771 /*
3772 * While we are ensured activity in the period following an
3773 * unthrottle, this also covers the case in which the new bandwidth is
3774 * insufficient to cover the existing bandwidth deficit. (Forcing the
3775 * timer to remain active while there are any throttled entities.)
3776 */
3777 cfs_b->idle = 0;
3778
3779 return 0;
3780
3781 out_deactivate:
3782 cfs_b->timer_active = 0;
3783 return 1;
3784 }
3785
3786 /* a cfs_rq won't donate quota below this amount */
3787 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3788 /* minimum remaining period time to redistribute slack quota */
3789 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3790 /* how long we wait to gather additional slack before distributing */
3791 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3792
3793 /*
3794 * Are we near the end of the current quota period?
3795 *
3796 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3797 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3798 * migrate_hrtimers, base is never cleared, so we are fine.
3799 */
3800 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3801 {
3802 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3803 u64 remaining;
3804
3805 /* if the call-back is running a quota refresh is already occurring */
3806 if (hrtimer_callback_running(refresh_timer))
3807 return 1;
3808
3809 /* is a quota refresh about to occur? */
3810 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3811 if (remaining < min_expire)
3812 return 1;
3813
3814 return 0;
3815 }
3816
3817 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3818 {
3819 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3820
3821 /* if there's a quota refresh soon don't bother with slack */
3822 if (runtime_refresh_within(cfs_b, min_left))
3823 return;
3824
3825 start_bandwidth_timer(&cfs_b->slack_timer,
3826 ns_to_ktime(cfs_bandwidth_slack_period));
3827 }
3828
3829 /* we know any runtime found here is valid as update_curr() precedes return */
3830 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3831 {
3832 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3833 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3834
3835 if (slack_runtime <= 0)
3836 return;
3837
3838 raw_spin_lock(&cfs_b->lock);
3839 if (cfs_b->quota != RUNTIME_INF &&
3840 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3841 cfs_b->runtime += slack_runtime;
3842
3843 /* we are under rq->lock, defer unthrottling using a timer */
3844 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3845 !list_empty(&cfs_b->throttled_cfs_rq))
3846 start_cfs_slack_bandwidth(cfs_b);
3847 }
3848 raw_spin_unlock(&cfs_b->lock);
3849
3850 /* even if it's not valid for return we don't want to try again */
3851 cfs_rq->runtime_remaining -= slack_runtime;
3852 }
3853
3854 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3855 {
3856 if (!cfs_bandwidth_used())
3857 return;
3858
3859 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3860 return;
3861
3862 __return_cfs_rq_runtime(cfs_rq);
3863 }
3864
3865 /*
3866 * This is done with a timer (instead of inline with bandwidth return) since
3867 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3868 */
3869 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3870 {
3871 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3872 u64 expires;
3873
3874 /* confirm we're still not at a refresh boundary */
3875 raw_spin_lock(&cfs_b->lock);
3876 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3877 raw_spin_unlock(&cfs_b->lock);
3878 return;
3879 }
3880
3881 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3882 runtime = cfs_b->runtime;
3883
3884 expires = cfs_b->runtime_expires;
3885 raw_spin_unlock(&cfs_b->lock);
3886
3887 if (!runtime)
3888 return;
3889
3890 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3891
3892 raw_spin_lock(&cfs_b->lock);
3893 if (expires == cfs_b->runtime_expires)
3894 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3895 raw_spin_unlock(&cfs_b->lock);
3896 }
3897
3898 /*
3899 * When a group wakes up we want to make sure that its quota is not already
3900 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3901 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3902 */
3903 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3904 {
3905 if (!cfs_bandwidth_used())
3906 return;
3907
3908 /* an active group must be handled by the update_curr()->put() path */
3909 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3910 return;
3911
3912 /* ensure the group is not already throttled */
3913 if (cfs_rq_throttled(cfs_rq))
3914 return;
3915
3916 /* update runtime allocation */
3917 account_cfs_rq_runtime(cfs_rq, 0);
3918 if (cfs_rq->runtime_remaining <= 0)
3919 throttle_cfs_rq(cfs_rq);
3920 }
3921
3922 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3923 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3924 {
3925 if (!cfs_bandwidth_used())
3926 return false;
3927
3928 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3929 return false;
3930
3931 /*
3932 * it's possible for a throttled entity to be forced into a running
3933 * state (e.g. set_curr_task), in this case we're finished.
3934 */
3935 if (cfs_rq_throttled(cfs_rq))
3936 return true;
3937
3938 throttle_cfs_rq(cfs_rq);
3939 return true;
3940 }
3941
3942 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3943 {
3944 struct cfs_bandwidth *cfs_b =
3945 container_of(timer, struct cfs_bandwidth, slack_timer);
3946 do_sched_cfs_slack_timer(cfs_b);
3947
3948 return HRTIMER_NORESTART;
3949 }
3950
3951 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3952 {
3953 struct cfs_bandwidth *cfs_b =
3954 container_of(timer, struct cfs_bandwidth, period_timer);
3955 ktime_t now;
3956 int overrun;
3957 int idle = 0;
3958
3959 raw_spin_lock(&cfs_b->lock);
3960 for (;;) {
3961 now = hrtimer_cb_get_time(timer);
3962 overrun = hrtimer_forward(timer, now, cfs_b->period);
3963
3964 if (!overrun)
3965 break;
3966
3967 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3968 }
3969 raw_spin_unlock(&cfs_b->lock);
3970
3971 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3972 }
3973
3974 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3975 {
3976 raw_spin_lock_init(&cfs_b->lock);
3977 cfs_b->runtime = 0;
3978 cfs_b->quota = RUNTIME_INF;
3979 cfs_b->period = ns_to_ktime(default_cfs_period());
3980
3981 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3982 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3983 cfs_b->period_timer.function = sched_cfs_period_timer;
3984 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3985 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3986 }
3987
3988 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3989 {
3990 cfs_rq->runtime_enabled = 0;
3991 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3992 }
3993
3994 /* requires cfs_b->lock, may release to reprogram timer */
3995 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3996 {
3997 /*
3998 * The timer may be active because we're trying to set a new bandwidth
3999 * period or because we're racing with the tear-down path
4000 * (timer_active==0 becomes visible before the hrtimer call-back
4001 * terminates). In either case we ensure that it's re-programmed
4002 */
4003 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4004 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4005 /* bounce the lock to allow do_sched_cfs_period_timer to run */
4006 raw_spin_unlock(&cfs_b->lock);
4007 cpu_relax();
4008 raw_spin_lock(&cfs_b->lock);
4009 /* if someone else restarted the timer then we're done */
4010 if (!force && cfs_b->timer_active)
4011 return;
4012 }
4013
4014 cfs_b->timer_active = 1;
4015 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4016 }
4017
4018 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4019 {
4020 /* init_cfs_bandwidth() was not called */
4021 if (!cfs_b->throttled_cfs_rq.next)
4022 return;
4023
4024 hrtimer_cancel(&cfs_b->period_timer);
4025 hrtimer_cancel(&cfs_b->slack_timer);
4026 }
4027
4028 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4029 {
4030 struct cfs_rq *cfs_rq;
4031
4032 for_each_leaf_cfs_rq(rq, cfs_rq) {
4033 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4034
4035 raw_spin_lock(&cfs_b->lock);
4036 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4037 raw_spin_unlock(&cfs_b->lock);
4038 }
4039 }
4040
4041 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4042 {
4043 struct cfs_rq *cfs_rq;
4044
4045 for_each_leaf_cfs_rq(rq, cfs_rq) {
4046 if (!cfs_rq->runtime_enabled)
4047 continue;
4048
4049 /*
4050 * clock_task is not advancing so we just need to make sure
4051 * there's some valid quota amount
4052 */
4053 cfs_rq->runtime_remaining = 1;
4054 /*
4055 * Offline rq is schedulable till cpu is completely disabled
4056 * in take_cpu_down(), so we prevent new cfs throttling here.
4057 */
4058 cfs_rq->runtime_enabled = 0;
4059
4060 if (cfs_rq_throttled(cfs_rq))
4061 unthrottle_cfs_rq(cfs_rq);
4062 }
4063 }
4064
4065 #else /* CONFIG_CFS_BANDWIDTH */
4066 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4067 {
4068 return rq_clock_task(rq_of(cfs_rq));
4069 }
4070
4071 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4072 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4073 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4074 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4075
4076 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4077 {
4078 return 0;
4079 }
4080
4081 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4082 {
4083 return 0;
4084 }
4085
4086 static inline int throttled_lb_pair(struct task_group *tg,
4087 int src_cpu, int dest_cpu)
4088 {
4089 return 0;
4090 }
4091
4092 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4093
4094 #ifdef CONFIG_FAIR_GROUP_SCHED
4095 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4096 #endif
4097
4098 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4099 {
4100 return NULL;
4101 }
4102 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4103 static inline void update_runtime_enabled(struct rq *rq) {}
4104 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4105
4106 #endif /* CONFIG_CFS_BANDWIDTH */
4107
4108 /**************************************************
4109 * CFS operations on tasks:
4110 */
4111
4112 #ifdef CONFIG_SCHED_HRTICK
4113 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4114 {
4115 struct sched_entity *se = &p->se;
4116 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4117
4118 WARN_ON(task_rq(p) != rq);
4119
4120 if (cfs_rq->nr_running > 1) {
4121 u64 slice = sched_slice(cfs_rq, se);
4122 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4123 s64 delta = slice - ran;
4124
4125 if (delta < 0) {
4126 if (rq->curr == p)
4127 resched_curr(rq);
4128 return;
4129 }
4130 hrtick_start(rq, delta);
4131 }
4132 }
4133
4134 /*
4135 * called from enqueue/dequeue and updates the hrtick when the
4136 * current task is from our class and nr_running is low enough
4137 * to matter.
4138 */
4139 static void hrtick_update(struct rq *rq)
4140 {
4141 struct task_struct *curr = rq->curr;
4142
4143 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4144 return;
4145
4146 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4147 hrtick_start_fair(rq, curr);
4148 }
4149 #else /* !CONFIG_SCHED_HRTICK */
4150 static inline void
4151 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4152 {
4153 }
4154
4155 static inline void hrtick_update(struct rq *rq)
4156 {
4157 }
4158 #endif
4159
4160 /*
4161 * The enqueue_task method is called before nr_running is
4162 * increased. Here we update the fair scheduling stats and
4163 * then put the task into the rbtree:
4164 */
4165 static void
4166 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4167 {
4168 struct cfs_rq *cfs_rq;
4169 struct sched_entity *se = &p->se;
4170
4171 for_each_sched_entity(se) {
4172 if (se->on_rq)
4173 break;
4174 cfs_rq = cfs_rq_of(se);
4175 enqueue_entity(cfs_rq, se, flags);
4176
4177 /*
4178 * end evaluation on encountering a throttled cfs_rq
4179 *
4180 * note: in the case of encountering a throttled cfs_rq we will
4181 * post the final h_nr_running increment below.
4182 */
4183 if (cfs_rq_throttled(cfs_rq))
4184 break;
4185 cfs_rq->h_nr_running++;
4186
4187 flags = ENQUEUE_WAKEUP;
4188 }
4189
4190 for_each_sched_entity(se) {
4191 cfs_rq = cfs_rq_of(se);
4192 cfs_rq->h_nr_running++;
4193
4194 if (cfs_rq_throttled(cfs_rq))
4195 break;
4196
4197 update_cfs_shares(cfs_rq);
4198 update_entity_load_avg(se, 1);
4199 }
4200
4201 if (!se) {
4202 update_rq_runnable_avg(rq, rq->nr_running);
4203 add_nr_running(rq, 1);
4204 }
4205 hrtick_update(rq);
4206 }
4207
4208 static void set_next_buddy(struct sched_entity *se);
4209
4210 /*
4211 * The dequeue_task method is called before nr_running is
4212 * decreased. We remove the task from the rbtree and
4213 * update the fair scheduling stats:
4214 */
4215 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4216 {
4217 struct cfs_rq *cfs_rq;
4218 struct sched_entity *se = &p->se;
4219 int task_sleep = flags & DEQUEUE_SLEEP;
4220
4221 for_each_sched_entity(se) {
4222 cfs_rq = cfs_rq_of(se);
4223 dequeue_entity(cfs_rq, se, flags);
4224
4225 /*
4226 * end evaluation on encountering a throttled cfs_rq
4227 *
4228 * note: in the case of encountering a throttled cfs_rq we will
4229 * post the final h_nr_running decrement below.
4230 */
4231 if (cfs_rq_throttled(cfs_rq))
4232 break;
4233 cfs_rq->h_nr_running--;
4234
4235 /* Don't dequeue parent if it has other entities besides us */
4236 if (cfs_rq->load.weight) {
4237 /*
4238 * Bias pick_next to pick a task from this cfs_rq, as
4239 * p is sleeping when it is within its sched_slice.
4240 */
4241 if (task_sleep && parent_entity(se))
4242 set_next_buddy(parent_entity(se));
4243
4244 /* avoid re-evaluating load for this entity */
4245 se = parent_entity(se);
4246 break;
4247 }
4248 flags |= DEQUEUE_SLEEP;
4249 }
4250
4251 for_each_sched_entity(se) {
4252 cfs_rq = cfs_rq_of(se);
4253 cfs_rq->h_nr_running--;
4254
4255 if (cfs_rq_throttled(cfs_rq))
4256 break;
4257
4258 update_cfs_shares(cfs_rq);
4259 update_entity_load_avg(se, 1);
4260 }
4261
4262 if (!se) {
4263 sub_nr_running(rq, 1);
4264 update_rq_runnable_avg(rq, 1);
4265 }
4266 hrtick_update(rq);
4267 }
4268
4269 #ifdef CONFIG_SMP
4270 /* Used instead of source_load when we know the type == 0 */
4271 static unsigned long weighted_cpuload(const int cpu)
4272 {
4273 return cpu_rq(cpu)->cfs.runnable_load_avg;
4274 }
4275
4276 /*
4277 * Return a low guess at the load of a migration-source cpu weighted
4278 * according to the scheduling class and "nice" value.
4279 *
4280 * We want to under-estimate the load of migration sources, to
4281 * balance conservatively.
4282 */
4283 static unsigned long source_load(int cpu, int type)
4284 {
4285 struct rq *rq = cpu_rq(cpu);
4286 unsigned long total = weighted_cpuload(cpu);
4287
4288 if (type == 0 || !sched_feat(LB_BIAS))
4289 return total;
4290
4291 return min(rq->cpu_load[type-1], total);
4292 }
4293
4294 /*
4295 * Return a high guess at the load of a migration-target cpu weighted
4296 * according to the scheduling class and "nice" value.
4297 */
4298 static unsigned long target_load(int cpu, int type)
4299 {
4300 struct rq *rq = cpu_rq(cpu);
4301 unsigned long total = weighted_cpuload(cpu);
4302
4303 if (type == 0 || !sched_feat(LB_BIAS))
4304 return total;
4305
4306 return max(rq->cpu_load[type-1], total);
4307 }
4308
4309 static unsigned long capacity_of(int cpu)
4310 {
4311 return cpu_rq(cpu)->cpu_capacity;
4312 }
4313
4314 static unsigned long cpu_avg_load_per_task(int cpu)
4315 {
4316 struct rq *rq = cpu_rq(cpu);
4317 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4318 unsigned long load_avg = rq->cfs.runnable_load_avg;
4319
4320 if (nr_running)
4321 return load_avg / nr_running;
4322
4323 return 0;
4324 }
4325
4326 static void record_wakee(struct task_struct *p)
4327 {
4328 /*
4329 * Rough decay (wiping) for cost saving, don't worry
4330 * about the boundary, really active task won't care
4331 * about the loss.
4332 */
4333 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4334 current->wakee_flips >>= 1;
4335 current->wakee_flip_decay_ts = jiffies;
4336 }
4337
4338 if (current->last_wakee != p) {
4339 current->last_wakee = p;
4340 current->wakee_flips++;
4341 }
4342 }
4343
4344 static void task_waking_fair(struct task_struct *p)
4345 {
4346 struct sched_entity *se = &p->se;
4347 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4348 u64 min_vruntime;
4349
4350 #ifndef CONFIG_64BIT
4351 u64 min_vruntime_copy;
4352
4353 do {
4354 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4355 smp_rmb();
4356 min_vruntime = cfs_rq->min_vruntime;
4357 } while (min_vruntime != min_vruntime_copy);
4358 #else
4359 min_vruntime = cfs_rq->min_vruntime;
4360 #endif
4361
4362 se->vruntime -= min_vruntime;
4363 record_wakee(p);
4364 }
4365
4366 #ifdef CONFIG_FAIR_GROUP_SCHED
4367 /*
4368 * effective_load() calculates the load change as seen from the root_task_group
4369 *
4370 * Adding load to a group doesn't make a group heavier, but can cause movement
4371 * of group shares between cpus. Assuming the shares were perfectly aligned one
4372 * can calculate the shift in shares.
4373 *
4374 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4375 * on this @cpu and results in a total addition (subtraction) of @wg to the
4376 * total group weight.
4377 *
4378 * Given a runqueue weight distribution (rw_i) we can compute a shares
4379 * distribution (s_i) using:
4380 *
4381 * s_i = rw_i / \Sum rw_j (1)
4382 *
4383 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4384 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4385 * shares distribution (s_i):
4386 *
4387 * rw_i = { 2, 4, 1, 0 }
4388 * s_i = { 2/7, 4/7, 1/7, 0 }
4389 *
4390 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4391 * task used to run on and the CPU the waker is running on), we need to
4392 * compute the effect of waking a task on either CPU and, in case of a sync
4393 * wakeup, compute the effect of the current task going to sleep.
4394 *
4395 * So for a change of @wl to the local @cpu with an overall group weight change
4396 * of @wl we can compute the new shares distribution (s'_i) using:
4397 *
4398 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4399 *
4400 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4401 * differences in waking a task to CPU 0. The additional task changes the
4402 * weight and shares distributions like:
4403 *
4404 * rw'_i = { 3, 4, 1, 0 }
4405 * s'_i = { 3/8, 4/8, 1/8, 0 }
4406 *
4407 * We can then compute the difference in effective weight by using:
4408 *
4409 * dw_i = S * (s'_i - s_i) (3)
4410 *
4411 * Where 'S' is the group weight as seen by its parent.
4412 *
4413 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4414 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4415 * 4/7) times the weight of the group.
4416 */
4417 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4418 {
4419 struct sched_entity *se = tg->se[cpu];
4420
4421 if (!tg->parent) /* the trivial, non-cgroup case */
4422 return wl;
4423
4424 for_each_sched_entity(se) {
4425 long w, W;
4426
4427 tg = se->my_q->tg;
4428
4429 /*
4430 * W = @wg + \Sum rw_j
4431 */
4432 W = wg + calc_tg_weight(tg, se->my_q);
4433
4434 /*
4435 * w = rw_i + @wl
4436 */
4437 w = se->my_q->load.weight + wl;
4438
4439 /*
4440 * wl = S * s'_i; see (2)
4441 */
4442 if (W > 0 && w < W)
4443 wl = (w * (long)tg->shares) / W;
4444 else
4445 wl = tg->shares;
4446
4447 /*
4448 * Per the above, wl is the new se->load.weight value; since
4449 * those are clipped to [MIN_SHARES, ...) do so now. See
4450 * calc_cfs_shares().
4451 */
4452 if (wl < MIN_SHARES)
4453 wl = MIN_SHARES;
4454
4455 /*
4456 * wl = dw_i = S * (s'_i - s_i); see (3)
4457 */
4458 wl -= se->load.weight;
4459
4460 /*
4461 * Recursively apply this logic to all parent groups to compute
4462 * the final effective load change on the root group. Since
4463 * only the @tg group gets extra weight, all parent groups can
4464 * only redistribute existing shares. @wl is the shift in shares
4465 * resulting from this level per the above.
4466 */
4467 wg = 0;
4468 }
4469
4470 return wl;
4471 }
4472 #else
4473
4474 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4475 {
4476 return wl;
4477 }
4478
4479 #endif
4480
4481 static int wake_wide(struct task_struct *p)
4482 {
4483 int factor = this_cpu_read(sd_llc_size);
4484
4485 /*
4486 * Yeah, it's the switching-frequency, could means many wakee or
4487 * rapidly switch, use factor here will just help to automatically
4488 * adjust the loose-degree, so bigger node will lead to more pull.
4489 */
4490 if (p->wakee_flips > factor) {
4491 /*
4492 * wakee is somewhat hot, it needs certain amount of cpu
4493 * resource, so if waker is far more hot, prefer to leave
4494 * it alone.
4495 */
4496 if (current->wakee_flips > (factor * p->wakee_flips))
4497 return 1;
4498 }
4499
4500 return 0;
4501 }
4502
4503 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4504 {
4505 s64 this_load, load;
4506 s64 this_eff_load, prev_eff_load;
4507 int idx, this_cpu, prev_cpu;
4508 struct task_group *tg;
4509 unsigned long weight;
4510 int balanced;
4511
4512 /*
4513 * If we wake multiple tasks be careful to not bounce
4514 * ourselves around too much.
4515 */
4516 if (wake_wide(p))
4517 return 0;
4518
4519 idx = sd->wake_idx;
4520 this_cpu = smp_processor_id();
4521 prev_cpu = task_cpu(p);
4522 load = source_load(prev_cpu, idx);
4523 this_load = target_load(this_cpu, idx);
4524
4525 /*
4526 * If sync wakeup then subtract the (maximum possible)
4527 * effect of the currently running task from the load
4528 * of the current CPU:
4529 */
4530 if (sync) {
4531 tg = task_group(current);
4532 weight = current->se.load.weight;
4533
4534 this_load += effective_load(tg, this_cpu, -weight, -weight);
4535 load += effective_load(tg, prev_cpu, 0, -weight);
4536 }
4537
4538 tg = task_group(p);
4539 weight = p->se.load.weight;
4540
4541 /*
4542 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4543 * due to the sync cause above having dropped this_load to 0, we'll
4544 * always have an imbalance, but there's really nothing you can do
4545 * about that, so that's good too.
4546 *
4547 * Otherwise check if either cpus are near enough in load to allow this
4548 * task to be woken on this_cpu.
4549 */
4550 this_eff_load = 100;
4551 this_eff_load *= capacity_of(prev_cpu);
4552
4553 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4554 prev_eff_load *= capacity_of(this_cpu);
4555
4556 if (this_load > 0) {
4557 this_eff_load *= this_load +
4558 effective_load(tg, this_cpu, weight, weight);
4559
4560 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4561 }
4562
4563 balanced = this_eff_load <= prev_eff_load;
4564
4565 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4566
4567 if (!balanced)
4568 return 0;
4569
4570 schedstat_inc(sd, ttwu_move_affine);
4571 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4572
4573 return 1;
4574 }
4575
4576 /*
4577 * find_idlest_group finds and returns the least busy CPU group within the
4578 * domain.
4579 */
4580 static struct sched_group *
4581 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4582 int this_cpu, int sd_flag)
4583 {
4584 struct sched_group *idlest = NULL, *group = sd->groups;
4585 unsigned long min_load = ULONG_MAX, this_load = 0;
4586 int load_idx = sd->forkexec_idx;
4587 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4588
4589 if (sd_flag & SD_BALANCE_WAKE)
4590 load_idx = sd->wake_idx;
4591
4592 do {
4593 unsigned long load, avg_load;
4594 int local_group;
4595 int i;
4596
4597 /* Skip over this group if it has no CPUs allowed */
4598 if (!cpumask_intersects(sched_group_cpus(group),
4599 tsk_cpus_allowed(p)))
4600 continue;
4601
4602 local_group = cpumask_test_cpu(this_cpu,
4603 sched_group_cpus(group));
4604
4605 /* Tally up the load of all CPUs in the group */
4606 avg_load = 0;
4607
4608 for_each_cpu(i, sched_group_cpus(group)) {
4609 /* Bias balancing toward cpus of our domain */
4610 if (local_group)
4611 load = source_load(i, load_idx);
4612 else
4613 load = target_load(i, load_idx);
4614
4615 avg_load += load;
4616 }
4617
4618 /* Adjust by relative CPU capacity of the group */
4619 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4620
4621 if (local_group) {
4622 this_load = avg_load;
4623 } else if (avg_load < min_load) {
4624 min_load = avg_load;
4625 idlest = group;
4626 }
4627 } while (group = group->next, group != sd->groups);
4628
4629 if (!idlest || 100*this_load < imbalance*min_load)
4630 return NULL;
4631 return idlest;
4632 }
4633
4634 /*
4635 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4636 */
4637 static int
4638 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4639 {
4640 unsigned long load, min_load = ULONG_MAX;
4641 unsigned int min_exit_latency = UINT_MAX;
4642 u64 latest_idle_timestamp = 0;
4643 int least_loaded_cpu = this_cpu;
4644 int shallowest_idle_cpu = -1;
4645 int i;
4646
4647 /* Traverse only the allowed CPUs */
4648 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4649 if (idle_cpu(i)) {
4650 struct rq *rq = cpu_rq(i);
4651 struct cpuidle_state *idle = idle_get_state(rq);
4652 if (idle && idle->exit_latency < min_exit_latency) {
4653 /*
4654 * We give priority to a CPU whose idle state
4655 * has the smallest exit latency irrespective
4656 * of any idle timestamp.
4657 */
4658 min_exit_latency = idle->exit_latency;
4659 latest_idle_timestamp = rq->idle_stamp;
4660 shallowest_idle_cpu = i;
4661 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4662 rq->idle_stamp > latest_idle_timestamp) {
4663 /*
4664 * If equal or no active idle state, then
4665 * the most recently idled CPU might have
4666 * a warmer cache.
4667 */
4668 latest_idle_timestamp = rq->idle_stamp;
4669 shallowest_idle_cpu = i;
4670 }
4671 } else if (shallowest_idle_cpu == -1) {
4672 load = weighted_cpuload(i);
4673 if (load < min_load || (load == min_load && i == this_cpu)) {
4674 min_load = load;
4675 least_loaded_cpu = i;
4676 }
4677 }
4678 }
4679
4680 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4681 }
4682
4683 /*
4684 * Try and locate an idle CPU in the sched_domain.
4685 */
4686 static int select_idle_sibling(struct task_struct *p, int target)
4687 {
4688 struct sched_domain *sd;
4689 struct sched_group *sg;
4690 int i = task_cpu(p);
4691
4692 if (idle_cpu(target))
4693 return target;
4694
4695 /*
4696 * If the prevous cpu is cache affine and idle, don't be stupid.
4697 */
4698 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4699 return i;
4700
4701 /*
4702 * Otherwise, iterate the domains and find an elegible idle cpu.
4703 */
4704 sd = rcu_dereference(per_cpu(sd_llc, target));
4705 for_each_lower_domain(sd) {
4706 sg = sd->groups;
4707 do {
4708 if (!cpumask_intersects(sched_group_cpus(sg),
4709 tsk_cpus_allowed(p)))
4710 goto next;
4711
4712 for_each_cpu(i, sched_group_cpus(sg)) {
4713 if (i == target || !idle_cpu(i))
4714 goto next;
4715 }
4716
4717 target = cpumask_first_and(sched_group_cpus(sg),
4718 tsk_cpus_allowed(p));
4719 goto done;
4720 next:
4721 sg = sg->next;
4722 } while (sg != sd->groups);
4723 }
4724 done:
4725 return target;
4726 }
4727
4728 /*
4729 * select_task_rq_fair: Select target runqueue for the waking task in domains
4730 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4731 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4732 *
4733 * Balances load by selecting the idlest cpu in the idlest group, or under
4734 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4735 *
4736 * Returns the target cpu number.
4737 *
4738 * preempt must be disabled.
4739 */
4740 static int
4741 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4742 {
4743 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4744 int cpu = smp_processor_id();
4745 int new_cpu = cpu;
4746 int want_affine = 0;
4747 int sync = wake_flags & WF_SYNC;
4748
4749 if (sd_flag & SD_BALANCE_WAKE)
4750 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4751
4752 rcu_read_lock();
4753 for_each_domain(cpu, tmp) {
4754 if (!(tmp->flags & SD_LOAD_BALANCE))
4755 continue;
4756
4757 /*
4758 * If both cpu and prev_cpu are part of this domain,
4759 * cpu is a valid SD_WAKE_AFFINE target.
4760 */
4761 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4762 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4763 affine_sd = tmp;
4764 break;
4765 }
4766
4767 if (tmp->flags & sd_flag)
4768 sd = tmp;
4769 }
4770
4771 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4772 prev_cpu = cpu;
4773
4774 if (sd_flag & SD_BALANCE_WAKE) {
4775 new_cpu = select_idle_sibling(p, prev_cpu);
4776 goto unlock;
4777 }
4778
4779 while (sd) {
4780 struct sched_group *group;
4781 int weight;
4782
4783 if (!(sd->flags & sd_flag)) {
4784 sd = sd->child;
4785 continue;
4786 }
4787
4788 group = find_idlest_group(sd, p, cpu, sd_flag);
4789 if (!group) {
4790 sd = sd->child;
4791 continue;
4792 }
4793
4794 new_cpu = find_idlest_cpu(group, p, cpu);
4795 if (new_cpu == -1 || new_cpu == cpu) {
4796 /* Now try balancing at a lower domain level of cpu */
4797 sd = sd->child;
4798 continue;
4799 }
4800
4801 /* Now try balancing at a lower domain level of new_cpu */
4802 cpu = new_cpu;
4803 weight = sd->span_weight;
4804 sd = NULL;
4805 for_each_domain(cpu, tmp) {
4806 if (weight <= tmp->span_weight)
4807 break;
4808 if (tmp->flags & sd_flag)
4809 sd = tmp;
4810 }
4811 /* while loop will break here if sd == NULL */
4812 }
4813 unlock:
4814 rcu_read_unlock();
4815
4816 return new_cpu;
4817 }
4818
4819 /*
4820 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4821 * cfs_rq_of(p) references at time of call are still valid and identify the
4822 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4823 * other assumptions, including the state of rq->lock, should be made.
4824 */
4825 static void
4826 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4827 {
4828 struct sched_entity *se = &p->se;
4829 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4830
4831 /*
4832 * Load tracking: accumulate removed load so that it can be processed
4833 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4834 * to blocked load iff they have a positive decay-count. It can never
4835 * be negative here since on-rq tasks have decay-count == 0.
4836 */
4837 if (se->avg.decay_count) {
4838 se->avg.decay_count = -__synchronize_entity_decay(se);
4839 atomic_long_add(se->avg.load_avg_contrib,
4840 &cfs_rq->removed_load);
4841 }
4842
4843 /* We have migrated, no longer consider this task hot */
4844 se->exec_start = 0;
4845 }
4846 #endif /* CONFIG_SMP */
4847
4848 static unsigned long
4849 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4850 {
4851 unsigned long gran = sysctl_sched_wakeup_granularity;
4852
4853 /*
4854 * Since its curr running now, convert the gran from real-time
4855 * to virtual-time in his units.
4856 *
4857 * By using 'se' instead of 'curr' we penalize light tasks, so
4858 * they get preempted easier. That is, if 'se' < 'curr' then
4859 * the resulting gran will be larger, therefore penalizing the
4860 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4861 * be smaller, again penalizing the lighter task.
4862 *
4863 * This is especially important for buddies when the leftmost
4864 * task is higher priority than the buddy.
4865 */
4866 return calc_delta_fair(gran, se);
4867 }
4868
4869 /*
4870 * Should 'se' preempt 'curr'.
4871 *
4872 * |s1
4873 * |s2
4874 * |s3
4875 * g
4876 * |<--->|c
4877 *
4878 * w(c, s1) = -1
4879 * w(c, s2) = 0
4880 * w(c, s3) = 1
4881 *
4882 */
4883 static int
4884 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4885 {
4886 s64 gran, vdiff = curr->vruntime - se->vruntime;
4887
4888 if (vdiff <= 0)
4889 return -1;
4890
4891 gran = wakeup_gran(curr, se);
4892 if (vdiff > gran)
4893 return 1;
4894
4895 return 0;
4896 }
4897
4898 static void set_last_buddy(struct sched_entity *se)
4899 {
4900 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4901 return;
4902
4903 for_each_sched_entity(se)
4904 cfs_rq_of(se)->last = se;
4905 }
4906
4907 static void set_next_buddy(struct sched_entity *se)
4908 {
4909 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4910 return;
4911
4912 for_each_sched_entity(se)
4913 cfs_rq_of(se)->next = se;
4914 }
4915
4916 static void set_skip_buddy(struct sched_entity *se)
4917 {
4918 for_each_sched_entity(se)
4919 cfs_rq_of(se)->skip = se;
4920 }
4921
4922 /*
4923 * Preempt the current task with a newly woken task if needed:
4924 */
4925 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4926 {
4927 struct task_struct *curr = rq->curr;
4928 struct sched_entity *se = &curr->se, *pse = &p->se;
4929 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4930 int scale = cfs_rq->nr_running >= sched_nr_latency;
4931 int next_buddy_marked = 0;
4932
4933 if (unlikely(se == pse))
4934 return;
4935
4936 /*
4937 * This is possible from callers such as attach_tasks(), in which we
4938 * unconditionally check_prempt_curr() after an enqueue (which may have
4939 * lead to a throttle). This both saves work and prevents false
4940 * next-buddy nomination below.
4941 */
4942 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4943 return;
4944
4945 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4946 set_next_buddy(pse);
4947 next_buddy_marked = 1;
4948 }
4949
4950 /*
4951 * We can come here with TIF_NEED_RESCHED already set from new task
4952 * wake up path.
4953 *
4954 * Note: this also catches the edge-case of curr being in a throttled
4955 * group (e.g. via set_curr_task), since update_curr() (in the
4956 * enqueue of curr) will have resulted in resched being set. This
4957 * prevents us from potentially nominating it as a false LAST_BUDDY
4958 * below.
4959 */
4960 if (test_tsk_need_resched(curr))
4961 return;
4962
4963 /* Idle tasks are by definition preempted by non-idle tasks. */
4964 if (unlikely(curr->policy == SCHED_IDLE) &&
4965 likely(p->policy != SCHED_IDLE))
4966 goto preempt;
4967
4968 /*
4969 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4970 * is driven by the tick):
4971 */
4972 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4973 return;
4974
4975 find_matching_se(&se, &pse);
4976 update_curr(cfs_rq_of(se));
4977 BUG_ON(!pse);
4978 if (wakeup_preempt_entity(se, pse) == 1) {
4979 /*
4980 * Bias pick_next to pick the sched entity that is
4981 * triggering this preemption.
4982 */
4983 if (!next_buddy_marked)
4984 set_next_buddy(pse);
4985 goto preempt;
4986 }
4987
4988 return;
4989
4990 preempt:
4991 resched_curr(rq);
4992 /*
4993 * Only set the backward buddy when the current task is still
4994 * on the rq. This can happen when a wakeup gets interleaved
4995 * with schedule on the ->pre_schedule() or idle_balance()
4996 * point, either of which can * drop the rq lock.
4997 *
4998 * Also, during early boot the idle thread is in the fair class,
4999 * for obvious reasons its a bad idea to schedule back to it.
5000 */
5001 if (unlikely(!se->on_rq || curr == rq->idle))
5002 return;
5003
5004 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5005 set_last_buddy(se);
5006 }
5007
5008 static struct task_struct *
5009 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5010 {
5011 struct cfs_rq *cfs_rq = &rq->cfs;
5012 struct sched_entity *se;
5013 struct task_struct *p;
5014 int new_tasks;
5015
5016 again:
5017 #ifdef CONFIG_FAIR_GROUP_SCHED
5018 if (!cfs_rq->nr_running)
5019 goto idle;
5020
5021 if (prev->sched_class != &fair_sched_class)
5022 goto simple;
5023
5024 /*
5025 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5026 * likely that a next task is from the same cgroup as the current.
5027 *
5028 * Therefore attempt to avoid putting and setting the entire cgroup
5029 * hierarchy, only change the part that actually changes.
5030 */
5031
5032 do {
5033 struct sched_entity *curr = cfs_rq->curr;
5034
5035 /*
5036 * Since we got here without doing put_prev_entity() we also
5037 * have to consider cfs_rq->curr. If it is still a runnable
5038 * entity, update_curr() will update its vruntime, otherwise
5039 * forget we've ever seen it.
5040 */
5041 if (curr && curr->on_rq)
5042 update_curr(cfs_rq);
5043 else
5044 curr = NULL;
5045
5046 /*
5047 * This call to check_cfs_rq_runtime() will do the throttle and
5048 * dequeue its entity in the parent(s). Therefore the 'simple'
5049 * nr_running test will indeed be correct.
5050 */
5051 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5052 goto simple;
5053
5054 se = pick_next_entity(cfs_rq, curr);
5055 cfs_rq = group_cfs_rq(se);
5056 } while (cfs_rq);
5057
5058 p = task_of(se);
5059
5060 /*
5061 * Since we haven't yet done put_prev_entity and if the selected task
5062 * is a different task than we started out with, try and touch the
5063 * least amount of cfs_rqs.
5064 */
5065 if (prev != p) {
5066 struct sched_entity *pse = &prev->se;
5067
5068 while (!(cfs_rq = is_same_group(se, pse))) {
5069 int se_depth = se->depth;
5070 int pse_depth = pse->depth;
5071
5072 if (se_depth <= pse_depth) {
5073 put_prev_entity(cfs_rq_of(pse), pse);
5074 pse = parent_entity(pse);
5075 }
5076 if (se_depth >= pse_depth) {
5077 set_next_entity(cfs_rq_of(se), se);
5078 se = parent_entity(se);
5079 }
5080 }
5081
5082 put_prev_entity(cfs_rq, pse);
5083 set_next_entity(cfs_rq, se);
5084 }
5085
5086 if (hrtick_enabled(rq))
5087 hrtick_start_fair(rq, p);
5088
5089 return p;
5090 simple:
5091 cfs_rq = &rq->cfs;
5092 #endif
5093
5094 if (!cfs_rq->nr_running)
5095 goto idle;
5096
5097 put_prev_task(rq, prev);
5098
5099 do {
5100 se = pick_next_entity(cfs_rq, NULL);
5101 set_next_entity(cfs_rq, se);
5102 cfs_rq = group_cfs_rq(se);
5103 } while (cfs_rq);
5104
5105 p = task_of(se);
5106
5107 if (hrtick_enabled(rq))
5108 hrtick_start_fair(rq, p);
5109
5110 return p;
5111
5112 idle:
5113 new_tasks = idle_balance(rq);
5114 /*
5115 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5116 * possible for any higher priority task to appear. In that case we
5117 * must re-start the pick_next_entity() loop.
5118 */
5119 if (new_tasks < 0)
5120 return RETRY_TASK;
5121
5122 if (new_tasks > 0)
5123 goto again;
5124
5125 return NULL;
5126 }
5127
5128 /*
5129 * Account for a descheduled task:
5130 */
5131 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5132 {
5133 struct sched_entity *se = &prev->se;
5134 struct cfs_rq *cfs_rq;
5135
5136 for_each_sched_entity(se) {
5137 cfs_rq = cfs_rq_of(se);
5138 put_prev_entity(cfs_rq, se);
5139 }
5140 }
5141
5142 /*
5143 * sched_yield() is very simple
5144 *
5145 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5146 */
5147 static void yield_task_fair(struct rq *rq)
5148 {
5149 struct task_struct *curr = rq->curr;
5150 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5151 struct sched_entity *se = &curr->se;
5152
5153 /*
5154 * Are we the only task in the tree?
5155 */
5156 if (unlikely(rq->nr_running == 1))
5157 return;
5158
5159 clear_buddies(cfs_rq, se);
5160
5161 if (curr->policy != SCHED_BATCH) {
5162 update_rq_clock(rq);
5163 /*
5164 * Update run-time statistics of the 'current'.
5165 */
5166 update_curr(cfs_rq);
5167 /*
5168 * Tell update_rq_clock() that we've just updated,
5169 * so we don't do microscopic update in schedule()
5170 * and double the fastpath cost.
5171 */
5172 rq_clock_skip_update(rq, true);
5173 }
5174
5175 set_skip_buddy(se);
5176 }
5177
5178 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5179 {
5180 struct sched_entity *se = &p->se;
5181
5182 /* throttled hierarchies are not runnable */
5183 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5184 return false;
5185
5186 /* Tell the scheduler that we'd really like pse to run next. */
5187 set_next_buddy(se);
5188
5189 yield_task_fair(rq);
5190
5191 return true;
5192 }
5193
5194 #ifdef CONFIG_SMP
5195 /**************************************************
5196 * Fair scheduling class load-balancing methods.
5197 *
5198 * BASICS
5199 *
5200 * The purpose of load-balancing is to achieve the same basic fairness the
5201 * per-cpu scheduler provides, namely provide a proportional amount of compute
5202 * time to each task. This is expressed in the following equation:
5203 *
5204 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5205 *
5206 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5207 * W_i,0 is defined as:
5208 *
5209 * W_i,0 = \Sum_j w_i,j (2)
5210 *
5211 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5212 * is derived from the nice value as per prio_to_weight[].
5213 *
5214 * The weight average is an exponential decay average of the instantaneous
5215 * weight:
5216 *
5217 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5218 *
5219 * C_i is the compute capacity of cpu i, typically it is the
5220 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5221 * can also include other factors [XXX].
5222 *
5223 * To achieve this balance we define a measure of imbalance which follows
5224 * directly from (1):
5225 *
5226 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5227 *
5228 * We them move tasks around to minimize the imbalance. In the continuous
5229 * function space it is obvious this converges, in the discrete case we get
5230 * a few fun cases generally called infeasible weight scenarios.
5231 *
5232 * [XXX expand on:
5233 * - infeasible weights;
5234 * - local vs global optima in the discrete case. ]
5235 *
5236 *
5237 * SCHED DOMAINS
5238 *
5239 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5240 * for all i,j solution, we create a tree of cpus that follows the hardware
5241 * topology where each level pairs two lower groups (or better). This results
5242 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5243 * tree to only the first of the previous level and we decrease the frequency
5244 * of load-balance at each level inv. proportional to the number of cpus in
5245 * the groups.
5246 *
5247 * This yields:
5248 *
5249 * log_2 n 1 n
5250 * \Sum { --- * --- * 2^i } = O(n) (5)
5251 * i = 0 2^i 2^i
5252 * `- size of each group
5253 * | | `- number of cpus doing load-balance
5254 * | `- freq
5255 * `- sum over all levels
5256 *
5257 * Coupled with a limit on how many tasks we can migrate every balance pass,
5258 * this makes (5) the runtime complexity of the balancer.
5259 *
5260 * An important property here is that each CPU is still (indirectly) connected
5261 * to every other cpu in at most O(log n) steps:
5262 *
5263 * The adjacency matrix of the resulting graph is given by:
5264 *
5265 * log_2 n
5266 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5267 * k = 0
5268 *
5269 * And you'll find that:
5270 *
5271 * A^(log_2 n)_i,j != 0 for all i,j (7)
5272 *
5273 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5274 * The task movement gives a factor of O(m), giving a convergence complexity
5275 * of:
5276 *
5277 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5278 *
5279 *
5280 * WORK CONSERVING
5281 *
5282 * In order to avoid CPUs going idle while there's still work to do, new idle
5283 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5284 * tree itself instead of relying on other CPUs to bring it work.
5285 *
5286 * This adds some complexity to both (5) and (8) but it reduces the total idle
5287 * time.
5288 *
5289 * [XXX more?]
5290 *
5291 *
5292 * CGROUPS
5293 *
5294 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5295 *
5296 * s_k,i
5297 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5298 * S_k
5299 *
5300 * Where
5301 *
5302 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5303 *
5304 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5305 *
5306 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5307 * property.
5308 *
5309 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5310 * rewrite all of this once again.]
5311 */
5312
5313 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5314
5315 enum fbq_type { regular, remote, all };
5316
5317 #define LBF_ALL_PINNED 0x01
5318 #define LBF_NEED_BREAK 0x02
5319 #define LBF_DST_PINNED 0x04
5320 #define LBF_SOME_PINNED 0x08
5321
5322 struct lb_env {
5323 struct sched_domain *sd;
5324
5325 struct rq *src_rq;
5326 int src_cpu;
5327
5328 int dst_cpu;
5329 struct rq *dst_rq;
5330
5331 struct cpumask *dst_grpmask;
5332 int new_dst_cpu;
5333 enum cpu_idle_type idle;
5334 long imbalance;
5335 /* The set of CPUs under consideration for load-balancing */
5336 struct cpumask *cpus;
5337
5338 unsigned int flags;
5339
5340 unsigned int loop;
5341 unsigned int loop_break;
5342 unsigned int loop_max;
5343
5344 enum fbq_type fbq_type;
5345 struct list_head tasks;
5346 };
5347
5348 /*
5349 * Is this task likely cache-hot:
5350 */
5351 static int task_hot(struct task_struct *p, struct lb_env *env)
5352 {
5353 s64 delta;
5354
5355 lockdep_assert_held(&env->src_rq->lock);
5356
5357 if (p->sched_class != &fair_sched_class)
5358 return 0;
5359
5360 if (unlikely(p->policy == SCHED_IDLE))
5361 return 0;
5362
5363 /*
5364 * Buddy candidates are cache hot:
5365 */
5366 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5367 (&p->se == cfs_rq_of(&p->se)->next ||
5368 &p->se == cfs_rq_of(&p->se)->last))
5369 return 1;
5370
5371 if (sysctl_sched_migration_cost == -1)
5372 return 1;
5373 if (sysctl_sched_migration_cost == 0)
5374 return 0;
5375
5376 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5377
5378 return delta < (s64)sysctl_sched_migration_cost;
5379 }
5380
5381 #ifdef CONFIG_NUMA_BALANCING
5382 /* Returns true if the destination node has incurred more faults */
5383 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5384 {
5385 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5386 int src_nid, dst_nid;
5387
5388 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5389 !(env->sd->flags & SD_NUMA)) {
5390 return false;
5391 }
5392
5393 src_nid = cpu_to_node(env->src_cpu);
5394 dst_nid = cpu_to_node(env->dst_cpu);
5395
5396 if (src_nid == dst_nid)
5397 return false;
5398
5399 if (numa_group) {
5400 /* Task is already in the group's interleave set. */
5401 if (node_isset(src_nid, numa_group->active_nodes))
5402 return false;
5403
5404 /* Task is moving into the group's interleave set. */
5405 if (node_isset(dst_nid, numa_group->active_nodes))
5406 return true;
5407
5408 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5409 }
5410
5411 /* Encourage migration to the preferred node. */
5412 if (dst_nid == p->numa_preferred_nid)
5413 return true;
5414
5415 return task_faults(p, dst_nid) > task_faults(p, src_nid);
5416 }
5417
5418
5419 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5420 {
5421 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5422 int src_nid, dst_nid;
5423
5424 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5425 return false;
5426
5427 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5428 return false;
5429
5430 src_nid = cpu_to_node(env->src_cpu);
5431 dst_nid = cpu_to_node(env->dst_cpu);
5432
5433 if (src_nid == dst_nid)
5434 return false;
5435
5436 if (numa_group) {
5437 /* Task is moving within/into the group's interleave set. */
5438 if (node_isset(dst_nid, numa_group->active_nodes))
5439 return false;
5440
5441 /* Task is moving out of the group's interleave set. */
5442 if (node_isset(src_nid, numa_group->active_nodes))
5443 return true;
5444
5445 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5446 }
5447
5448 /* Migrating away from the preferred node is always bad. */
5449 if (src_nid == p->numa_preferred_nid)
5450 return true;
5451
5452 return task_faults(p, dst_nid) < task_faults(p, src_nid);
5453 }
5454
5455 #else
5456 static inline bool migrate_improves_locality(struct task_struct *p,
5457 struct lb_env *env)
5458 {
5459 return false;
5460 }
5461
5462 static inline bool migrate_degrades_locality(struct task_struct *p,
5463 struct lb_env *env)
5464 {
5465 return false;
5466 }
5467 #endif
5468
5469 /*
5470 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5471 */
5472 static
5473 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5474 {
5475 int tsk_cache_hot = 0;
5476
5477 lockdep_assert_held(&env->src_rq->lock);
5478
5479 /*
5480 * We do not migrate tasks that are:
5481 * 1) throttled_lb_pair, or
5482 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5483 * 3) running (obviously), or
5484 * 4) are cache-hot on their current CPU.
5485 */
5486 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5487 return 0;
5488
5489 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5490 int cpu;
5491
5492 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5493
5494 env->flags |= LBF_SOME_PINNED;
5495
5496 /*
5497 * Remember if this task can be migrated to any other cpu in
5498 * our sched_group. We may want to revisit it if we couldn't
5499 * meet load balance goals by pulling other tasks on src_cpu.
5500 *
5501 * Also avoid computing new_dst_cpu if we have already computed
5502 * one in current iteration.
5503 */
5504 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5505 return 0;
5506
5507 /* Prevent to re-select dst_cpu via env's cpus */
5508 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5509 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5510 env->flags |= LBF_DST_PINNED;
5511 env->new_dst_cpu = cpu;
5512 break;
5513 }
5514 }
5515
5516 return 0;
5517 }
5518
5519 /* Record that we found atleast one task that could run on dst_cpu */
5520 env->flags &= ~LBF_ALL_PINNED;
5521
5522 if (task_running(env->src_rq, p)) {
5523 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5524 return 0;
5525 }
5526
5527 /*
5528 * Aggressive migration if:
5529 * 1) destination numa is preferred
5530 * 2) task is cache cold, or
5531 * 3) too many balance attempts have failed.
5532 */
5533 tsk_cache_hot = task_hot(p, env);
5534 if (!tsk_cache_hot)
5535 tsk_cache_hot = migrate_degrades_locality(p, env);
5536
5537 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5538 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5539 if (tsk_cache_hot) {
5540 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5541 schedstat_inc(p, se.statistics.nr_forced_migrations);
5542 }
5543 return 1;
5544 }
5545
5546 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5547 return 0;
5548 }
5549
5550 /*
5551 * detach_task() -- detach the task for the migration specified in env
5552 */
5553 static void detach_task(struct task_struct *p, struct lb_env *env)
5554 {
5555 lockdep_assert_held(&env->src_rq->lock);
5556
5557 deactivate_task(env->src_rq, p, 0);
5558 p->on_rq = TASK_ON_RQ_MIGRATING;
5559 set_task_cpu(p, env->dst_cpu);
5560 }
5561
5562 /*
5563 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5564 * part of active balancing operations within "domain".
5565 *
5566 * Returns a task if successful and NULL otherwise.
5567 */
5568 static struct task_struct *detach_one_task(struct lb_env *env)
5569 {
5570 struct task_struct *p, *n;
5571
5572 lockdep_assert_held(&env->src_rq->lock);
5573
5574 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5575 if (!can_migrate_task(p, env))
5576 continue;
5577
5578 detach_task(p, env);
5579
5580 /*
5581 * Right now, this is only the second place where
5582 * lb_gained[env->idle] is updated (other is detach_tasks)
5583 * so we can safely collect stats here rather than
5584 * inside detach_tasks().
5585 */
5586 schedstat_inc(env->sd, lb_gained[env->idle]);
5587 return p;
5588 }
5589 return NULL;
5590 }
5591
5592 static const unsigned int sched_nr_migrate_break = 32;
5593
5594 /*
5595 * detach_tasks() -- tries to detach up to imbalance weighted load from
5596 * busiest_rq, as part of a balancing operation within domain "sd".
5597 *
5598 * Returns number of detached tasks if successful and 0 otherwise.
5599 */
5600 static int detach_tasks(struct lb_env *env)
5601 {
5602 struct list_head *tasks = &env->src_rq->cfs_tasks;
5603 struct task_struct *p;
5604 unsigned long load;
5605 int detached = 0;
5606
5607 lockdep_assert_held(&env->src_rq->lock);
5608
5609 if (env->imbalance <= 0)
5610 return 0;
5611
5612 while (!list_empty(tasks)) {
5613 p = list_first_entry(tasks, struct task_struct, se.group_node);
5614
5615 env->loop++;
5616 /* We've more or less seen every task there is, call it quits */
5617 if (env->loop > env->loop_max)
5618 break;
5619
5620 /* take a breather every nr_migrate tasks */
5621 if (env->loop > env->loop_break) {
5622 env->loop_break += sched_nr_migrate_break;
5623 env->flags |= LBF_NEED_BREAK;
5624 break;
5625 }
5626
5627 if (!can_migrate_task(p, env))
5628 goto next;
5629
5630 load = task_h_load(p);
5631
5632 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5633 goto next;
5634
5635 if ((load / 2) > env->imbalance)
5636 goto next;
5637
5638 detach_task(p, env);
5639 list_add(&p->se.group_node, &env->tasks);
5640
5641 detached++;
5642 env->imbalance -= load;
5643
5644 #ifdef CONFIG_PREEMPT
5645 /*
5646 * NEWIDLE balancing is a source of latency, so preemptible
5647 * kernels will stop after the first task is detached to minimize
5648 * the critical section.
5649 */
5650 if (env->idle == CPU_NEWLY_IDLE)
5651 break;
5652 #endif
5653
5654 /*
5655 * We only want to steal up to the prescribed amount of
5656 * weighted load.
5657 */
5658 if (env->imbalance <= 0)
5659 break;
5660
5661 continue;
5662 next:
5663 list_move_tail(&p->se.group_node, tasks);
5664 }
5665
5666 /*
5667 * Right now, this is one of only two places we collect this stat
5668 * so we can safely collect detach_one_task() stats here rather
5669 * than inside detach_one_task().
5670 */
5671 schedstat_add(env->sd, lb_gained[env->idle], detached);
5672
5673 return detached;
5674 }
5675
5676 /*
5677 * attach_task() -- attach the task detached by detach_task() to its new rq.
5678 */
5679 static void attach_task(struct rq *rq, struct task_struct *p)
5680 {
5681 lockdep_assert_held(&rq->lock);
5682
5683 BUG_ON(task_rq(p) != rq);
5684 p->on_rq = TASK_ON_RQ_QUEUED;
5685 activate_task(rq, p, 0);
5686 check_preempt_curr(rq, p, 0);
5687 }
5688
5689 /*
5690 * attach_one_task() -- attaches the task returned from detach_one_task() to
5691 * its new rq.
5692 */
5693 static void attach_one_task(struct rq *rq, struct task_struct *p)
5694 {
5695 raw_spin_lock(&rq->lock);
5696 attach_task(rq, p);
5697 raw_spin_unlock(&rq->lock);
5698 }
5699
5700 /*
5701 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5702 * new rq.
5703 */
5704 static void attach_tasks(struct lb_env *env)
5705 {
5706 struct list_head *tasks = &env->tasks;
5707 struct task_struct *p;
5708
5709 raw_spin_lock(&env->dst_rq->lock);
5710
5711 while (!list_empty(tasks)) {
5712 p = list_first_entry(tasks, struct task_struct, se.group_node);
5713 list_del_init(&p->se.group_node);
5714
5715 attach_task(env->dst_rq, p);
5716 }
5717
5718 raw_spin_unlock(&env->dst_rq->lock);
5719 }
5720
5721 #ifdef CONFIG_FAIR_GROUP_SCHED
5722 /*
5723 * update tg->load_weight by folding this cpu's load_avg
5724 */
5725 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5726 {
5727 struct sched_entity *se = tg->se[cpu];
5728 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5729
5730 /* throttled entities do not contribute to load */
5731 if (throttled_hierarchy(cfs_rq))
5732 return;
5733
5734 update_cfs_rq_blocked_load(cfs_rq, 1);
5735
5736 if (se) {
5737 update_entity_load_avg(se, 1);
5738 /*
5739 * We pivot on our runnable average having decayed to zero for
5740 * list removal. This generally implies that all our children
5741 * have also been removed (modulo rounding error or bandwidth
5742 * control); however, such cases are rare and we can fix these
5743 * at enqueue.
5744 *
5745 * TODO: fix up out-of-order children on enqueue.
5746 */
5747 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5748 list_del_leaf_cfs_rq(cfs_rq);
5749 } else {
5750 struct rq *rq = rq_of(cfs_rq);
5751 update_rq_runnable_avg(rq, rq->nr_running);
5752 }
5753 }
5754
5755 static void update_blocked_averages(int cpu)
5756 {
5757 struct rq *rq = cpu_rq(cpu);
5758 struct cfs_rq *cfs_rq;
5759 unsigned long flags;
5760
5761 raw_spin_lock_irqsave(&rq->lock, flags);
5762 update_rq_clock(rq);
5763 /*
5764 * Iterates the task_group tree in a bottom up fashion, see
5765 * list_add_leaf_cfs_rq() for details.
5766 */
5767 for_each_leaf_cfs_rq(rq, cfs_rq) {
5768 /*
5769 * Note: We may want to consider periodically releasing
5770 * rq->lock about these updates so that creating many task
5771 * groups does not result in continually extending hold time.
5772 */
5773 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5774 }
5775
5776 raw_spin_unlock_irqrestore(&rq->lock, flags);
5777 }
5778
5779 /*
5780 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5781 * This needs to be done in a top-down fashion because the load of a child
5782 * group is a fraction of its parents load.
5783 */
5784 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5785 {
5786 struct rq *rq = rq_of(cfs_rq);
5787 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5788 unsigned long now = jiffies;
5789 unsigned long load;
5790
5791 if (cfs_rq->last_h_load_update == now)
5792 return;
5793
5794 cfs_rq->h_load_next = NULL;
5795 for_each_sched_entity(se) {
5796 cfs_rq = cfs_rq_of(se);
5797 cfs_rq->h_load_next = se;
5798 if (cfs_rq->last_h_load_update == now)
5799 break;
5800 }
5801
5802 if (!se) {
5803 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5804 cfs_rq->last_h_load_update = now;
5805 }
5806
5807 while ((se = cfs_rq->h_load_next) != NULL) {
5808 load = cfs_rq->h_load;
5809 load = div64_ul(load * se->avg.load_avg_contrib,
5810 cfs_rq->runnable_load_avg + 1);
5811 cfs_rq = group_cfs_rq(se);
5812 cfs_rq->h_load = load;
5813 cfs_rq->last_h_load_update = now;
5814 }
5815 }
5816
5817 static unsigned long task_h_load(struct task_struct *p)
5818 {
5819 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5820
5821 update_cfs_rq_h_load(cfs_rq);
5822 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5823 cfs_rq->runnable_load_avg + 1);
5824 }
5825 #else
5826 static inline void update_blocked_averages(int cpu)
5827 {
5828 }
5829
5830 static unsigned long task_h_load(struct task_struct *p)
5831 {
5832 return p->se.avg.load_avg_contrib;
5833 }
5834 #endif
5835
5836 /********** Helpers for find_busiest_group ************************/
5837
5838 enum group_type {
5839 group_other = 0,
5840 group_imbalanced,
5841 group_overloaded,
5842 };
5843
5844 /*
5845 * sg_lb_stats - stats of a sched_group required for load_balancing
5846 */
5847 struct sg_lb_stats {
5848 unsigned long avg_load; /*Avg load across the CPUs of the group */
5849 unsigned long group_load; /* Total load over the CPUs of the group */
5850 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5851 unsigned long load_per_task;
5852 unsigned long group_capacity;
5853 unsigned int sum_nr_running; /* Nr tasks running in the group */
5854 unsigned int group_capacity_factor;
5855 unsigned int idle_cpus;
5856 unsigned int group_weight;
5857 enum group_type group_type;
5858 int group_has_free_capacity;
5859 #ifdef CONFIG_NUMA_BALANCING
5860 unsigned int nr_numa_running;
5861 unsigned int nr_preferred_running;
5862 #endif
5863 };
5864
5865 /*
5866 * sd_lb_stats - Structure to store the statistics of a sched_domain
5867 * during load balancing.
5868 */
5869 struct sd_lb_stats {
5870 struct sched_group *busiest; /* Busiest group in this sd */
5871 struct sched_group *local; /* Local group in this sd */
5872 unsigned long total_load; /* Total load of all groups in sd */
5873 unsigned long total_capacity; /* Total capacity of all groups in sd */
5874 unsigned long avg_load; /* Average load across all groups in sd */
5875
5876 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5877 struct sg_lb_stats local_stat; /* Statistics of the local group */
5878 };
5879
5880 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5881 {
5882 /*
5883 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5884 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5885 * We must however clear busiest_stat::avg_load because
5886 * update_sd_pick_busiest() reads this before assignment.
5887 */
5888 *sds = (struct sd_lb_stats){
5889 .busiest = NULL,
5890 .local = NULL,
5891 .total_load = 0UL,
5892 .total_capacity = 0UL,
5893 .busiest_stat = {
5894 .avg_load = 0UL,
5895 .sum_nr_running = 0,
5896 .group_type = group_other,
5897 },
5898 };
5899 }
5900
5901 /**
5902 * get_sd_load_idx - Obtain the load index for a given sched domain.
5903 * @sd: The sched_domain whose load_idx is to be obtained.
5904 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5905 *
5906 * Return: The load index.
5907 */
5908 static inline int get_sd_load_idx(struct sched_domain *sd,
5909 enum cpu_idle_type idle)
5910 {
5911 int load_idx;
5912
5913 switch (idle) {
5914 case CPU_NOT_IDLE:
5915 load_idx = sd->busy_idx;
5916 break;
5917
5918 case CPU_NEWLY_IDLE:
5919 load_idx = sd->newidle_idx;
5920 break;
5921 default:
5922 load_idx = sd->idle_idx;
5923 break;
5924 }
5925
5926 return load_idx;
5927 }
5928
5929 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5930 {
5931 return SCHED_CAPACITY_SCALE;
5932 }
5933
5934 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5935 {
5936 return default_scale_capacity(sd, cpu);
5937 }
5938
5939 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5940 {
5941 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5942 return sd->smt_gain / sd->span_weight;
5943
5944 return SCHED_CAPACITY_SCALE;
5945 }
5946
5947 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5948 {
5949 return default_scale_cpu_capacity(sd, cpu);
5950 }
5951
5952 static unsigned long scale_rt_capacity(int cpu)
5953 {
5954 struct rq *rq = cpu_rq(cpu);
5955 u64 total, available, age_stamp, avg;
5956 s64 delta;
5957
5958 /*
5959 * Since we're reading these variables without serialization make sure
5960 * we read them once before doing sanity checks on them.
5961 */
5962 age_stamp = ACCESS_ONCE(rq->age_stamp);
5963 avg = ACCESS_ONCE(rq->rt_avg);
5964 delta = __rq_clock_broken(rq) - age_stamp;
5965
5966 if (unlikely(delta < 0))
5967 delta = 0;
5968
5969 total = sched_avg_period() + delta;
5970
5971 if (unlikely(total < avg)) {
5972 /* Ensures that capacity won't end up being negative */
5973 available = 0;
5974 } else {
5975 available = total - avg;
5976 }
5977
5978 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5979 total = SCHED_CAPACITY_SCALE;
5980
5981 total >>= SCHED_CAPACITY_SHIFT;
5982
5983 return div_u64(available, total);
5984 }
5985
5986 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5987 {
5988 unsigned long capacity = SCHED_CAPACITY_SCALE;
5989 struct sched_group *sdg = sd->groups;
5990
5991 if (sched_feat(ARCH_CAPACITY))
5992 capacity *= arch_scale_cpu_capacity(sd, cpu);
5993 else
5994 capacity *= default_scale_cpu_capacity(sd, cpu);
5995
5996 capacity >>= SCHED_CAPACITY_SHIFT;
5997
5998 sdg->sgc->capacity_orig = capacity;
5999
6000 if (sched_feat(ARCH_CAPACITY))
6001 capacity *= arch_scale_freq_capacity(sd, cpu);
6002 else
6003 capacity *= default_scale_capacity(sd, cpu);
6004
6005 capacity >>= SCHED_CAPACITY_SHIFT;
6006
6007 capacity *= scale_rt_capacity(cpu);
6008 capacity >>= SCHED_CAPACITY_SHIFT;
6009
6010 if (!capacity)
6011 capacity = 1;
6012
6013 cpu_rq(cpu)->cpu_capacity = capacity;
6014 sdg->sgc->capacity = capacity;
6015 }
6016
6017 void update_group_capacity(struct sched_domain *sd, int cpu)
6018 {
6019 struct sched_domain *child = sd->child;
6020 struct sched_group *group, *sdg = sd->groups;
6021 unsigned long capacity, capacity_orig;
6022 unsigned long interval;
6023
6024 interval = msecs_to_jiffies(sd->balance_interval);
6025 interval = clamp(interval, 1UL, max_load_balance_interval);
6026 sdg->sgc->next_update = jiffies + interval;
6027
6028 if (!child) {
6029 update_cpu_capacity(sd, cpu);
6030 return;
6031 }
6032
6033 capacity_orig = capacity = 0;
6034
6035 if (child->flags & SD_OVERLAP) {
6036 /*
6037 * SD_OVERLAP domains cannot assume that child groups
6038 * span the current group.
6039 */
6040
6041 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6042 struct sched_group_capacity *sgc;
6043 struct rq *rq = cpu_rq(cpu);
6044
6045 /*
6046 * build_sched_domains() -> init_sched_groups_capacity()
6047 * gets here before we've attached the domains to the
6048 * runqueues.
6049 *
6050 * Use capacity_of(), which is set irrespective of domains
6051 * in update_cpu_capacity().
6052 *
6053 * This avoids capacity/capacity_orig from being 0 and
6054 * causing divide-by-zero issues on boot.
6055 *
6056 * Runtime updates will correct capacity_orig.
6057 */
6058 if (unlikely(!rq->sd)) {
6059 capacity_orig += capacity_of(cpu);
6060 capacity += capacity_of(cpu);
6061 continue;
6062 }
6063
6064 sgc = rq->sd->groups->sgc;
6065 capacity_orig += sgc->capacity_orig;
6066 capacity += sgc->capacity;
6067 }
6068 } else {
6069 /*
6070 * !SD_OVERLAP domains can assume that child groups
6071 * span the current group.
6072 */
6073
6074 group = child->groups;
6075 do {
6076 capacity_orig += group->sgc->capacity_orig;
6077 capacity += group->sgc->capacity;
6078 group = group->next;
6079 } while (group != child->groups);
6080 }
6081
6082 sdg->sgc->capacity_orig = capacity_orig;
6083 sdg->sgc->capacity = capacity;
6084 }
6085
6086 /*
6087 * Try and fix up capacity for tiny siblings, this is needed when
6088 * things like SD_ASYM_PACKING need f_b_g to select another sibling
6089 * which on its own isn't powerful enough.
6090 *
6091 * See update_sd_pick_busiest() and check_asym_packing().
6092 */
6093 static inline int
6094 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
6095 {
6096 /*
6097 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
6098 */
6099 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
6100 return 0;
6101
6102 /*
6103 * If ~90% of the cpu_capacity is still there, we're good.
6104 */
6105 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
6106 return 1;
6107
6108 return 0;
6109 }
6110
6111 /*
6112 * Group imbalance indicates (and tries to solve) the problem where balancing
6113 * groups is inadequate due to tsk_cpus_allowed() constraints.
6114 *
6115 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6116 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6117 * Something like:
6118 *
6119 * { 0 1 2 3 } { 4 5 6 7 }
6120 * * * * *
6121 *
6122 * If we were to balance group-wise we'd place two tasks in the first group and
6123 * two tasks in the second group. Clearly this is undesired as it will overload
6124 * cpu 3 and leave one of the cpus in the second group unused.
6125 *
6126 * The current solution to this issue is detecting the skew in the first group
6127 * by noticing the lower domain failed to reach balance and had difficulty
6128 * moving tasks due to affinity constraints.
6129 *
6130 * When this is so detected; this group becomes a candidate for busiest; see
6131 * update_sd_pick_busiest(). And calculate_imbalance() and
6132 * find_busiest_group() avoid some of the usual balance conditions to allow it
6133 * to create an effective group imbalance.
6134 *
6135 * This is a somewhat tricky proposition since the next run might not find the
6136 * group imbalance and decide the groups need to be balanced again. A most
6137 * subtle and fragile situation.
6138 */
6139
6140 static inline int sg_imbalanced(struct sched_group *group)
6141 {
6142 return group->sgc->imbalance;
6143 }
6144
6145 /*
6146 * Compute the group capacity factor.
6147 *
6148 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
6149 * first dividing out the smt factor and computing the actual number of cores
6150 * and limit unit capacity with that.
6151 */
6152 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
6153 {
6154 unsigned int capacity_factor, smt, cpus;
6155 unsigned int capacity, capacity_orig;
6156
6157 capacity = group->sgc->capacity;
6158 capacity_orig = group->sgc->capacity_orig;
6159 cpus = group->group_weight;
6160
6161 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
6162 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
6163 capacity_factor = cpus / smt; /* cores */
6164
6165 capacity_factor = min_t(unsigned,
6166 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
6167 if (!capacity_factor)
6168 capacity_factor = fix_small_capacity(env->sd, group);
6169
6170 return capacity_factor;
6171 }
6172
6173 static enum group_type
6174 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
6175 {
6176 if (sgs->sum_nr_running > sgs->group_capacity_factor)
6177 return group_overloaded;
6178
6179 if (sg_imbalanced(group))
6180 return group_imbalanced;
6181
6182 return group_other;
6183 }
6184
6185 /**
6186 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6187 * @env: The load balancing environment.
6188 * @group: sched_group whose statistics are to be updated.
6189 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6190 * @local_group: Does group contain this_cpu.
6191 * @sgs: variable to hold the statistics for this group.
6192 * @overload: Indicate more than one runnable task for any CPU.
6193 */
6194 static inline void update_sg_lb_stats(struct lb_env *env,
6195 struct sched_group *group, int load_idx,
6196 int local_group, struct sg_lb_stats *sgs,
6197 bool *overload)
6198 {
6199 unsigned long load;
6200 int i;
6201
6202 memset(sgs, 0, sizeof(*sgs));
6203
6204 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6205 struct rq *rq = cpu_rq(i);
6206
6207 /* Bias balancing toward cpus of our domain */
6208 if (local_group)
6209 load = target_load(i, load_idx);
6210 else
6211 load = source_load(i, load_idx);
6212
6213 sgs->group_load += load;
6214 sgs->sum_nr_running += rq->cfs.h_nr_running;
6215
6216 if (rq->nr_running > 1)
6217 *overload = true;
6218
6219 #ifdef CONFIG_NUMA_BALANCING
6220 sgs->nr_numa_running += rq->nr_numa_running;
6221 sgs->nr_preferred_running += rq->nr_preferred_running;
6222 #endif
6223 sgs->sum_weighted_load += weighted_cpuload(i);
6224 if (idle_cpu(i))
6225 sgs->idle_cpus++;
6226 }
6227
6228 /* Adjust by relative CPU capacity of the group */
6229 sgs->group_capacity = group->sgc->capacity;
6230 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6231
6232 if (sgs->sum_nr_running)
6233 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6234
6235 sgs->group_weight = group->group_weight;
6236 sgs->group_capacity_factor = sg_capacity_factor(env, group);
6237 sgs->group_type = group_classify(group, sgs);
6238
6239 if (sgs->group_capacity_factor > sgs->sum_nr_running)
6240 sgs->group_has_free_capacity = 1;
6241 }
6242
6243 /**
6244 * update_sd_pick_busiest - return 1 on busiest group
6245 * @env: The load balancing environment.
6246 * @sds: sched_domain statistics
6247 * @sg: sched_group candidate to be checked for being the busiest
6248 * @sgs: sched_group statistics
6249 *
6250 * Determine if @sg is a busier group than the previously selected
6251 * busiest group.
6252 *
6253 * Return: %true if @sg is a busier group than the previously selected
6254 * busiest group. %false otherwise.
6255 */
6256 static bool update_sd_pick_busiest(struct lb_env *env,
6257 struct sd_lb_stats *sds,
6258 struct sched_group *sg,
6259 struct sg_lb_stats *sgs)
6260 {
6261 struct sg_lb_stats *busiest = &sds->busiest_stat;
6262
6263 if (sgs->group_type > busiest->group_type)
6264 return true;
6265
6266 if (sgs->group_type < busiest->group_type)
6267 return false;
6268
6269 if (sgs->avg_load <= busiest->avg_load)
6270 return false;
6271
6272 /* This is the busiest node in its class. */
6273 if (!(env->sd->flags & SD_ASYM_PACKING))
6274 return true;
6275
6276 /*
6277 * ASYM_PACKING needs to move all the work to the lowest
6278 * numbered CPUs in the group, therefore mark all groups
6279 * higher than ourself as busy.
6280 */
6281 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6282 if (!sds->busiest)
6283 return true;
6284
6285 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6286 return true;
6287 }
6288
6289 return false;
6290 }
6291
6292 #ifdef CONFIG_NUMA_BALANCING
6293 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6294 {
6295 if (sgs->sum_nr_running > sgs->nr_numa_running)
6296 return regular;
6297 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6298 return remote;
6299 return all;
6300 }
6301
6302 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6303 {
6304 if (rq->nr_running > rq->nr_numa_running)
6305 return regular;
6306 if (rq->nr_running > rq->nr_preferred_running)
6307 return remote;
6308 return all;
6309 }
6310 #else
6311 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6312 {
6313 return all;
6314 }
6315
6316 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6317 {
6318 return regular;
6319 }
6320 #endif /* CONFIG_NUMA_BALANCING */
6321
6322 /**
6323 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6324 * @env: The load balancing environment.
6325 * @sds: variable to hold the statistics for this sched_domain.
6326 */
6327 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6328 {
6329 struct sched_domain *child = env->sd->child;
6330 struct sched_group *sg = env->sd->groups;
6331 struct sg_lb_stats tmp_sgs;
6332 int load_idx, prefer_sibling = 0;
6333 bool overload = false;
6334
6335 if (child && child->flags & SD_PREFER_SIBLING)
6336 prefer_sibling = 1;
6337
6338 load_idx = get_sd_load_idx(env->sd, env->idle);
6339
6340 do {
6341 struct sg_lb_stats *sgs = &tmp_sgs;
6342 int local_group;
6343
6344 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6345 if (local_group) {
6346 sds->local = sg;
6347 sgs = &sds->local_stat;
6348
6349 if (env->idle != CPU_NEWLY_IDLE ||
6350 time_after_eq(jiffies, sg->sgc->next_update))
6351 update_group_capacity(env->sd, env->dst_cpu);
6352 }
6353
6354 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6355 &overload);
6356
6357 if (local_group)
6358 goto next_group;
6359
6360 /*
6361 * In case the child domain prefers tasks go to siblings
6362 * first, lower the sg capacity factor to one so that we'll try
6363 * and move all the excess tasks away. We lower the capacity
6364 * of a group only if the local group has the capacity to fit
6365 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6366 * extra check prevents the case where you always pull from the
6367 * heaviest group when it is already under-utilized (possible
6368 * with a large weight task outweighs the tasks on the system).
6369 */
6370 if (prefer_sibling && sds->local &&
6371 sds->local_stat.group_has_free_capacity) {
6372 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6373 sgs->group_type = group_classify(sg, sgs);
6374 }
6375
6376 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6377 sds->busiest = sg;
6378 sds->busiest_stat = *sgs;
6379 }
6380
6381 next_group:
6382 /* Now, start updating sd_lb_stats */
6383 sds->total_load += sgs->group_load;
6384 sds->total_capacity += sgs->group_capacity;
6385
6386 sg = sg->next;
6387 } while (sg != env->sd->groups);
6388
6389 if (env->sd->flags & SD_NUMA)
6390 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6391
6392 if (!env->sd->parent) {
6393 /* update overload indicator if we are at root domain */
6394 if (env->dst_rq->rd->overload != overload)
6395 env->dst_rq->rd->overload = overload;
6396 }
6397
6398 }
6399
6400 /**
6401 * check_asym_packing - Check to see if the group is packed into the
6402 * sched doman.
6403 *
6404 * This is primarily intended to used at the sibling level. Some
6405 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6406 * case of POWER7, it can move to lower SMT modes only when higher
6407 * threads are idle. When in lower SMT modes, the threads will
6408 * perform better since they share less core resources. Hence when we
6409 * have idle threads, we want them to be the higher ones.
6410 *
6411 * This packing function is run on idle threads. It checks to see if
6412 * the busiest CPU in this domain (core in the P7 case) has a higher
6413 * CPU number than the packing function is being run on. Here we are
6414 * assuming lower CPU number will be equivalent to lower a SMT thread
6415 * number.
6416 *
6417 * Return: 1 when packing is required and a task should be moved to
6418 * this CPU. The amount of the imbalance is returned in *imbalance.
6419 *
6420 * @env: The load balancing environment.
6421 * @sds: Statistics of the sched_domain which is to be packed
6422 */
6423 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6424 {
6425 int busiest_cpu;
6426
6427 if (!(env->sd->flags & SD_ASYM_PACKING))
6428 return 0;
6429
6430 if (!sds->busiest)
6431 return 0;
6432
6433 busiest_cpu = group_first_cpu(sds->busiest);
6434 if (env->dst_cpu > busiest_cpu)
6435 return 0;
6436
6437 env->imbalance = DIV_ROUND_CLOSEST(
6438 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6439 SCHED_CAPACITY_SCALE);
6440
6441 return 1;
6442 }
6443
6444 /**
6445 * fix_small_imbalance - Calculate the minor imbalance that exists
6446 * amongst the groups of a sched_domain, during
6447 * load balancing.
6448 * @env: The load balancing environment.
6449 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6450 */
6451 static inline
6452 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6453 {
6454 unsigned long tmp, capa_now = 0, capa_move = 0;
6455 unsigned int imbn = 2;
6456 unsigned long scaled_busy_load_per_task;
6457 struct sg_lb_stats *local, *busiest;
6458
6459 local = &sds->local_stat;
6460 busiest = &sds->busiest_stat;
6461
6462 if (!local->sum_nr_running)
6463 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6464 else if (busiest->load_per_task > local->load_per_task)
6465 imbn = 1;
6466
6467 scaled_busy_load_per_task =
6468 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6469 busiest->group_capacity;
6470
6471 if (busiest->avg_load + scaled_busy_load_per_task >=
6472 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6473 env->imbalance = busiest->load_per_task;
6474 return;
6475 }
6476
6477 /*
6478 * OK, we don't have enough imbalance to justify moving tasks,
6479 * however we may be able to increase total CPU capacity used by
6480 * moving them.
6481 */
6482
6483 capa_now += busiest->group_capacity *
6484 min(busiest->load_per_task, busiest->avg_load);
6485 capa_now += local->group_capacity *
6486 min(local->load_per_task, local->avg_load);
6487 capa_now /= SCHED_CAPACITY_SCALE;
6488
6489 /* Amount of load we'd subtract */
6490 if (busiest->avg_load > scaled_busy_load_per_task) {
6491 capa_move += busiest->group_capacity *
6492 min(busiest->load_per_task,
6493 busiest->avg_load - scaled_busy_load_per_task);
6494 }
6495
6496 /* Amount of load we'd add */
6497 if (busiest->avg_load * busiest->group_capacity <
6498 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6499 tmp = (busiest->avg_load * busiest->group_capacity) /
6500 local->group_capacity;
6501 } else {
6502 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6503 local->group_capacity;
6504 }
6505 capa_move += local->group_capacity *
6506 min(local->load_per_task, local->avg_load + tmp);
6507 capa_move /= SCHED_CAPACITY_SCALE;
6508
6509 /* Move if we gain throughput */
6510 if (capa_move > capa_now)
6511 env->imbalance = busiest->load_per_task;
6512 }
6513
6514 /**
6515 * calculate_imbalance - Calculate the amount of imbalance present within the
6516 * groups of a given sched_domain during load balance.
6517 * @env: load balance environment
6518 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6519 */
6520 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6521 {
6522 unsigned long max_pull, load_above_capacity = ~0UL;
6523 struct sg_lb_stats *local, *busiest;
6524
6525 local = &sds->local_stat;
6526 busiest = &sds->busiest_stat;
6527
6528 if (busiest->group_type == group_imbalanced) {
6529 /*
6530 * In the group_imb case we cannot rely on group-wide averages
6531 * to ensure cpu-load equilibrium, look at wider averages. XXX
6532 */
6533 busiest->load_per_task =
6534 min(busiest->load_per_task, sds->avg_load);
6535 }
6536
6537 /*
6538 * In the presence of smp nice balancing, certain scenarios can have
6539 * max load less than avg load(as we skip the groups at or below
6540 * its cpu_capacity, while calculating max_load..)
6541 */
6542 if (busiest->avg_load <= sds->avg_load ||
6543 local->avg_load >= sds->avg_load) {
6544 env->imbalance = 0;
6545 return fix_small_imbalance(env, sds);
6546 }
6547
6548 /*
6549 * If there aren't any idle cpus, avoid creating some.
6550 */
6551 if (busiest->group_type == group_overloaded &&
6552 local->group_type == group_overloaded) {
6553 load_above_capacity =
6554 (busiest->sum_nr_running - busiest->group_capacity_factor);
6555
6556 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6557 load_above_capacity /= busiest->group_capacity;
6558 }
6559
6560 /*
6561 * We're trying to get all the cpus to the average_load, so we don't
6562 * want to push ourselves above the average load, nor do we wish to
6563 * reduce the max loaded cpu below the average load. At the same time,
6564 * we also don't want to reduce the group load below the group capacity
6565 * (so that we can implement power-savings policies etc). Thus we look
6566 * for the minimum possible imbalance.
6567 */
6568 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6569
6570 /* How much load to actually move to equalise the imbalance */
6571 env->imbalance = min(
6572 max_pull * busiest->group_capacity,
6573 (sds->avg_load - local->avg_load) * local->group_capacity
6574 ) / SCHED_CAPACITY_SCALE;
6575
6576 /*
6577 * if *imbalance is less than the average load per runnable task
6578 * there is no guarantee that any tasks will be moved so we'll have
6579 * a think about bumping its value to force at least one task to be
6580 * moved
6581 */
6582 if (env->imbalance < busiest->load_per_task)
6583 return fix_small_imbalance(env, sds);
6584 }
6585
6586 /******* find_busiest_group() helpers end here *********************/
6587
6588 /**
6589 * find_busiest_group - Returns the busiest group within the sched_domain
6590 * if there is an imbalance. If there isn't an imbalance, and
6591 * the user has opted for power-savings, it returns a group whose
6592 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6593 * such a group exists.
6594 *
6595 * Also calculates the amount of weighted load which should be moved
6596 * to restore balance.
6597 *
6598 * @env: The load balancing environment.
6599 *
6600 * Return: - The busiest group if imbalance exists.
6601 * - If no imbalance and user has opted for power-savings balance,
6602 * return the least loaded group whose CPUs can be
6603 * put to idle by rebalancing its tasks onto our group.
6604 */
6605 static struct sched_group *find_busiest_group(struct lb_env *env)
6606 {
6607 struct sg_lb_stats *local, *busiest;
6608 struct sd_lb_stats sds;
6609
6610 init_sd_lb_stats(&sds);
6611
6612 /*
6613 * Compute the various statistics relavent for load balancing at
6614 * this level.
6615 */
6616 update_sd_lb_stats(env, &sds);
6617 local = &sds.local_stat;
6618 busiest = &sds.busiest_stat;
6619
6620 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6621 check_asym_packing(env, &sds))
6622 return sds.busiest;
6623
6624 /* There is no busy sibling group to pull tasks from */
6625 if (!sds.busiest || busiest->sum_nr_running == 0)
6626 goto out_balanced;
6627
6628 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6629 / sds.total_capacity;
6630
6631 /*
6632 * If the busiest group is imbalanced the below checks don't
6633 * work because they assume all things are equal, which typically
6634 * isn't true due to cpus_allowed constraints and the like.
6635 */
6636 if (busiest->group_type == group_imbalanced)
6637 goto force_balance;
6638
6639 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6640 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6641 !busiest->group_has_free_capacity)
6642 goto force_balance;
6643
6644 /*
6645 * If the local group is busier than the selected busiest group
6646 * don't try and pull any tasks.
6647 */
6648 if (local->avg_load >= busiest->avg_load)
6649 goto out_balanced;
6650
6651 /*
6652 * Don't pull any tasks if this group is already above the domain
6653 * average load.
6654 */
6655 if (local->avg_load >= sds.avg_load)
6656 goto out_balanced;
6657
6658 if (env->idle == CPU_IDLE) {
6659 /*
6660 * This cpu is idle. If the busiest group is not overloaded
6661 * and there is no imbalance between this and busiest group
6662 * wrt idle cpus, it is balanced. The imbalance becomes
6663 * significant if the diff is greater than 1 otherwise we
6664 * might end up to just move the imbalance on another group
6665 */
6666 if ((busiest->group_type != group_overloaded) &&
6667 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6668 goto out_balanced;
6669 } else {
6670 /*
6671 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6672 * imbalance_pct to be conservative.
6673 */
6674 if (100 * busiest->avg_load <=
6675 env->sd->imbalance_pct * local->avg_load)
6676 goto out_balanced;
6677 }
6678
6679 force_balance:
6680 /* Looks like there is an imbalance. Compute it */
6681 calculate_imbalance(env, &sds);
6682 return sds.busiest;
6683
6684 out_balanced:
6685 env->imbalance = 0;
6686 return NULL;
6687 }
6688
6689 /*
6690 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6691 */
6692 static struct rq *find_busiest_queue(struct lb_env *env,
6693 struct sched_group *group)
6694 {
6695 struct rq *busiest = NULL, *rq;
6696 unsigned long busiest_load = 0, busiest_capacity = 1;
6697 int i;
6698
6699 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6700 unsigned long capacity, capacity_factor, wl;
6701 enum fbq_type rt;
6702
6703 rq = cpu_rq(i);
6704 rt = fbq_classify_rq(rq);
6705
6706 /*
6707 * We classify groups/runqueues into three groups:
6708 * - regular: there are !numa tasks
6709 * - remote: there are numa tasks that run on the 'wrong' node
6710 * - all: there is no distinction
6711 *
6712 * In order to avoid migrating ideally placed numa tasks,
6713 * ignore those when there's better options.
6714 *
6715 * If we ignore the actual busiest queue to migrate another
6716 * task, the next balance pass can still reduce the busiest
6717 * queue by moving tasks around inside the node.
6718 *
6719 * If we cannot move enough load due to this classification
6720 * the next pass will adjust the group classification and
6721 * allow migration of more tasks.
6722 *
6723 * Both cases only affect the total convergence complexity.
6724 */
6725 if (rt > env->fbq_type)
6726 continue;
6727
6728 capacity = capacity_of(i);
6729 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6730 if (!capacity_factor)
6731 capacity_factor = fix_small_capacity(env->sd, group);
6732
6733 wl = weighted_cpuload(i);
6734
6735 /*
6736 * When comparing with imbalance, use weighted_cpuload()
6737 * which is not scaled with the cpu capacity.
6738 */
6739 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6740 continue;
6741
6742 /*
6743 * For the load comparisons with the other cpu's, consider
6744 * the weighted_cpuload() scaled with the cpu capacity, so
6745 * that the load can be moved away from the cpu that is
6746 * potentially running at a lower capacity.
6747 *
6748 * Thus we're looking for max(wl_i / capacity_i), crosswise
6749 * multiplication to rid ourselves of the division works out
6750 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6751 * our previous maximum.
6752 */
6753 if (wl * busiest_capacity > busiest_load * capacity) {
6754 busiest_load = wl;
6755 busiest_capacity = capacity;
6756 busiest = rq;
6757 }
6758 }
6759
6760 return busiest;
6761 }
6762
6763 /*
6764 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6765 * so long as it is large enough.
6766 */
6767 #define MAX_PINNED_INTERVAL 512
6768
6769 /* Working cpumask for load_balance and load_balance_newidle. */
6770 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6771
6772 static int need_active_balance(struct lb_env *env)
6773 {
6774 struct sched_domain *sd = env->sd;
6775
6776 if (env->idle == CPU_NEWLY_IDLE) {
6777
6778 /*
6779 * ASYM_PACKING needs to force migrate tasks from busy but
6780 * higher numbered CPUs in order to pack all tasks in the
6781 * lowest numbered CPUs.
6782 */
6783 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6784 return 1;
6785 }
6786
6787 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6788 }
6789
6790 static int active_load_balance_cpu_stop(void *data);
6791
6792 static int should_we_balance(struct lb_env *env)
6793 {
6794 struct sched_group *sg = env->sd->groups;
6795 struct cpumask *sg_cpus, *sg_mask;
6796 int cpu, balance_cpu = -1;
6797
6798 /*
6799 * In the newly idle case, we will allow all the cpu's
6800 * to do the newly idle load balance.
6801 */
6802 if (env->idle == CPU_NEWLY_IDLE)
6803 return 1;
6804
6805 sg_cpus = sched_group_cpus(sg);
6806 sg_mask = sched_group_mask(sg);
6807 /* Try to find first idle cpu */
6808 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6809 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6810 continue;
6811
6812 balance_cpu = cpu;
6813 break;
6814 }
6815
6816 if (balance_cpu == -1)
6817 balance_cpu = group_balance_cpu(sg);
6818
6819 /*
6820 * First idle cpu or the first cpu(busiest) in this sched group
6821 * is eligible for doing load balancing at this and above domains.
6822 */
6823 return balance_cpu == env->dst_cpu;
6824 }
6825
6826 /*
6827 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6828 * tasks if there is an imbalance.
6829 */
6830 static int load_balance(int this_cpu, struct rq *this_rq,
6831 struct sched_domain *sd, enum cpu_idle_type idle,
6832 int *continue_balancing)
6833 {
6834 int ld_moved, cur_ld_moved, active_balance = 0;
6835 struct sched_domain *sd_parent = sd->parent;
6836 struct sched_group *group;
6837 struct rq *busiest;
6838 unsigned long flags;
6839 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6840
6841 struct lb_env env = {
6842 .sd = sd,
6843 .dst_cpu = this_cpu,
6844 .dst_rq = this_rq,
6845 .dst_grpmask = sched_group_cpus(sd->groups),
6846 .idle = idle,
6847 .loop_break = sched_nr_migrate_break,
6848 .cpus = cpus,
6849 .fbq_type = all,
6850 .tasks = LIST_HEAD_INIT(env.tasks),
6851 };
6852
6853 /*
6854 * For NEWLY_IDLE load_balancing, we don't need to consider
6855 * other cpus in our group
6856 */
6857 if (idle == CPU_NEWLY_IDLE)
6858 env.dst_grpmask = NULL;
6859
6860 cpumask_copy(cpus, cpu_active_mask);
6861
6862 schedstat_inc(sd, lb_count[idle]);
6863
6864 redo:
6865 if (!should_we_balance(&env)) {
6866 *continue_balancing = 0;
6867 goto out_balanced;
6868 }
6869
6870 group = find_busiest_group(&env);
6871 if (!group) {
6872 schedstat_inc(sd, lb_nobusyg[idle]);
6873 goto out_balanced;
6874 }
6875
6876 busiest = find_busiest_queue(&env, group);
6877 if (!busiest) {
6878 schedstat_inc(sd, lb_nobusyq[idle]);
6879 goto out_balanced;
6880 }
6881
6882 BUG_ON(busiest == env.dst_rq);
6883
6884 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6885
6886 ld_moved = 0;
6887 if (busiest->nr_running > 1) {
6888 /*
6889 * Attempt to move tasks. If find_busiest_group has found
6890 * an imbalance but busiest->nr_running <= 1, the group is
6891 * still unbalanced. ld_moved simply stays zero, so it is
6892 * correctly treated as an imbalance.
6893 */
6894 env.flags |= LBF_ALL_PINNED;
6895 env.src_cpu = busiest->cpu;
6896 env.src_rq = busiest;
6897 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6898
6899 more_balance:
6900 raw_spin_lock_irqsave(&busiest->lock, flags);
6901
6902 /*
6903 * cur_ld_moved - load moved in current iteration
6904 * ld_moved - cumulative load moved across iterations
6905 */
6906 cur_ld_moved = detach_tasks(&env);
6907
6908 /*
6909 * We've detached some tasks from busiest_rq. Every
6910 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6911 * unlock busiest->lock, and we are able to be sure
6912 * that nobody can manipulate the tasks in parallel.
6913 * See task_rq_lock() family for the details.
6914 */
6915
6916 raw_spin_unlock(&busiest->lock);
6917
6918 if (cur_ld_moved) {
6919 attach_tasks(&env);
6920 ld_moved += cur_ld_moved;
6921 }
6922
6923 local_irq_restore(flags);
6924
6925 if (env.flags & LBF_NEED_BREAK) {
6926 env.flags &= ~LBF_NEED_BREAK;
6927 goto more_balance;
6928 }
6929
6930 /*
6931 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6932 * us and move them to an alternate dst_cpu in our sched_group
6933 * where they can run. The upper limit on how many times we
6934 * iterate on same src_cpu is dependent on number of cpus in our
6935 * sched_group.
6936 *
6937 * This changes load balance semantics a bit on who can move
6938 * load to a given_cpu. In addition to the given_cpu itself
6939 * (or a ilb_cpu acting on its behalf where given_cpu is
6940 * nohz-idle), we now have balance_cpu in a position to move
6941 * load to given_cpu. In rare situations, this may cause
6942 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6943 * _independently_ and at _same_ time to move some load to
6944 * given_cpu) causing exceess load to be moved to given_cpu.
6945 * This however should not happen so much in practice and
6946 * moreover subsequent load balance cycles should correct the
6947 * excess load moved.
6948 */
6949 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6950
6951 /* Prevent to re-select dst_cpu via env's cpus */
6952 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6953
6954 env.dst_rq = cpu_rq(env.new_dst_cpu);
6955 env.dst_cpu = env.new_dst_cpu;
6956 env.flags &= ~LBF_DST_PINNED;
6957 env.loop = 0;
6958 env.loop_break = sched_nr_migrate_break;
6959
6960 /*
6961 * Go back to "more_balance" rather than "redo" since we
6962 * need to continue with same src_cpu.
6963 */
6964 goto more_balance;
6965 }
6966
6967 /*
6968 * We failed to reach balance because of affinity.
6969 */
6970 if (sd_parent) {
6971 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6972
6973 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6974 *group_imbalance = 1;
6975 }
6976
6977 /* All tasks on this runqueue were pinned by CPU affinity */
6978 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6979 cpumask_clear_cpu(cpu_of(busiest), cpus);
6980 if (!cpumask_empty(cpus)) {
6981 env.loop = 0;
6982 env.loop_break = sched_nr_migrate_break;
6983 goto redo;
6984 }
6985 goto out_all_pinned;
6986 }
6987 }
6988
6989 if (!ld_moved) {
6990 schedstat_inc(sd, lb_failed[idle]);
6991 /*
6992 * Increment the failure counter only on periodic balance.
6993 * We do not want newidle balance, which can be very
6994 * frequent, pollute the failure counter causing
6995 * excessive cache_hot migrations and active balances.
6996 */
6997 if (idle != CPU_NEWLY_IDLE)
6998 sd->nr_balance_failed++;
6999
7000 if (need_active_balance(&env)) {
7001 raw_spin_lock_irqsave(&busiest->lock, flags);
7002
7003 /* don't kick the active_load_balance_cpu_stop,
7004 * if the curr task on busiest cpu can't be
7005 * moved to this_cpu
7006 */
7007 if (!cpumask_test_cpu(this_cpu,
7008 tsk_cpus_allowed(busiest->curr))) {
7009 raw_spin_unlock_irqrestore(&busiest->lock,
7010 flags);
7011 env.flags |= LBF_ALL_PINNED;
7012 goto out_one_pinned;
7013 }
7014
7015 /*
7016 * ->active_balance synchronizes accesses to
7017 * ->active_balance_work. Once set, it's cleared
7018 * only after active load balance is finished.
7019 */
7020 if (!busiest->active_balance) {
7021 busiest->active_balance = 1;
7022 busiest->push_cpu = this_cpu;
7023 active_balance = 1;
7024 }
7025 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7026
7027 if (active_balance) {
7028 stop_one_cpu_nowait(cpu_of(busiest),
7029 active_load_balance_cpu_stop, busiest,
7030 &busiest->active_balance_work);
7031 }
7032
7033 /*
7034 * We've kicked active balancing, reset the failure
7035 * counter.
7036 */
7037 sd->nr_balance_failed = sd->cache_nice_tries+1;
7038 }
7039 } else
7040 sd->nr_balance_failed = 0;
7041
7042 if (likely(!active_balance)) {
7043 /* We were unbalanced, so reset the balancing interval */
7044 sd->balance_interval = sd->min_interval;
7045 } else {
7046 /*
7047 * If we've begun active balancing, start to back off. This
7048 * case may not be covered by the all_pinned logic if there
7049 * is only 1 task on the busy runqueue (because we don't call
7050 * detach_tasks).
7051 */
7052 if (sd->balance_interval < sd->max_interval)
7053 sd->balance_interval *= 2;
7054 }
7055
7056 goto out;
7057
7058 out_balanced:
7059 /*
7060 * We reach balance although we may have faced some affinity
7061 * constraints. Clear the imbalance flag if it was set.
7062 */
7063 if (sd_parent) {
7064 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7065
7066 if (*group_imbalance)
7067 *group_imbalance = 0;
7068 }
7069
7070 out_all_pinned:
7071 /*
7072 * We reach balance because all tasks are pinned at this level so
7073 * we can't migrate them. Let the imbalance flag set so parent level
7074 * can try to migrate them.
7075 */
7076 schedstat_inc(sd, lb_balanced[idle]);
7077
7078 sd->nr_balance_failed = 0;
7079
7080 out_one_pinned:
7081 /* tune up the balancing interval */
7082 if (((env.flags & LBF_ALL_PINNED) &&
7083 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7084 (sd->balance_interval < sd->max_interval))
7085 sd->balance_interval *= 2;
7086
7087 ld_moved = 0;
7088 out:
7089 return ld_moved;
7090 }
7091
7092 static inline unsigned long
7093 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7094 {
7095 unsigned long interval = sd->balance_interval;
7096
7097 if (cpu_busy)
7098 interval *= sd->busy_factor;
7099
7100 /* scale ms to jiffies */
7101 interval = msecs_to_jiffies(interval);
7102 interval = clamp(interval, 1UL, max_load_balance_interval);
7103
7104 return interval;
7105 }
7106
7107 static inline void
7108 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7109 {
7110 unsigned long interval, next;
7111
7112 interval = get_sd_balance_interval(sd, cpu_busy);
7113 next = sd->last_balance + interval;
7114
7115 if (time_after(*next_balance, next))
7116 *next_balance = next;
7117 }
7118
7119 /*
7120 * idle_balance is called by schedule() if this_cpu is about to become
7121 * idle. Attempts to pull tasks from other CPUs.
7122 */
7123 static int idle_balance(struct rq *this_rq)
7124 {
7125 unsigned long next_balance = jiffies + HZ;
7126 int this_cpu = this_rq->cpu;
7127 struct sched_domain *sd;
7128 int pulled_task = 0;
7129 u64 curr_cost = 0;
7130
7131 idle_enter_fair(this_rq);
7132
7133 /*
7134 * We must set idle_stamp _before_ calling idle_balance(), such that we
7135 * measure the duration of idle_balance() as idle time.
7136 */
7137 this_rq->idle_stamp = rq_clock(this_rq);
7138
7139 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7140 !this_rq->rd->overload) {
7141 rcu_read_lock();
7142 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7143 if (sd)
7144 update_next_balance(sd, 0, &next_balance);
7145 rcu_read_unlock();
7146
7147 goto out;
7148 }
7149
7150 /*
7151 * Drop the rq->lock, but keep IRQ/preempt disabled.
7152 */
7153 raw_spin_unlock(&this_rq->lock);
7154
7155 update_blocked_averages(this_cpu);
7156 rcu_read_lock();
7157 for_each_domain(this_cpu, sd) {
7158 int continue_balancing = 1;
7159 u64 t0, domain_cost;
7160
7161 if (!(sd->flags & SD_LOAD_BALANCE))
7162 continue;
7163
7164 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7165 update_next_balance(sd, 0, &next_balance);
7166 break;
7167 }
7168
7169 if (sd->flags & SD_BALANCE_NEWIDLE) {
7170 t0 = sched_clock_cpu(this_cpu);
7171
7172 pulled_task = load_balance(this_cpu, this_rq,
7173 sd, CPU_NEWLY_IDLE,
7174 &continue_balancing);
7175
7176 domain_cost = sched_clock_cpu(this_cpu) - t0;
7177 if (domain_cost > sd->max_newidle_lb_cost)
7178 sd->max_newidle_lb_cost = domain_cost;
7179
7180 curr_cost += domain_cost;
7181 }
7182
7183 update_next_balance(sd, 0, &next_balance);
7184
7185 /*
7186 * Stop searching for tasks to pull if there are
7187 * now runnable tasks on this rq.
7188 */
7189 if (pulled_task || this_rq->nr_running > 0)
7190 break;
7191 }
7192 rcu_read_unlock();
7193
7194 raw_spin_lock(&this_rq->lock);
7195
7196 if (curr_cost > this_rq->max_idle_balance_cost)
7197 this_rq->max_idle_balance_cost = curr_cost;
7198
7199 /*
7200 * While browsing the domains, we released the rq lock, a task could
7201 * have been enqueued in the meantime. Since we're not going idle,
7202 * pretend we pulled a task.
7203 */
7204 if (this_rq->cfs.h_nr_running && !pulled_task)
7205 pulled_task = 1;
7206
7207 out:
7208 /* Move the next balance forward */
7209 if (time_after(this_rq->next_balance, next_balance))
7210 this_rq->next_balance = next_balance;
7211
7212 /* Is there a task of a high priority class? */
7213 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7214 pulled_task = -1;
7215
7216 if (pulled_task) {
7217 idle_exit_fair(this_rq);
7218 this_rq->idle_stamp = 0;
7219 }
7220
7221 return pulled_task;
7222 }
7223
7224 /*
7225 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7226 * running tasks off the busiest CPU onto idle CPUs. It requires at
7227 * least 1 task to be running on each physical CPU where possible, and
7228 * avoids physical / logical imbalances.
7229 */
7230 static int active_load_balance_cpu_stop(void *data)
7231 {
7232 struct rq *busiest_rq = data;
7233 int busiest_cpu = cpu_of(busiest_rq);
7234 int target_cpu = busiest_rq->push_cpu;
7235 struct rq *target_rq = cpu_rq(target_cpu);
7236 struct sched_domain *sd;
7237 struct task_struct *p = NULL;
7238
7239 raw_spin_lock_irq(&busiest_rq->lock);
7240
7241 /* make sure the requested cpu hasn't gone down in the meantime */
7242 if (unlikely(busiest_cpu != smp_processor_id() ||
7243 !busiest_rq->active_balance))
7244 goto out_unlock;
7245
7246 /* Is there any task to move? */
7247 if (busiest_rq->nr_running <= 1)
7248 goto out_unlock;
7249
7250 /*
7251 * This condition is "impossible", if it occurs
7252 * we need to fix it. Originally reported by
7253 * Bjorn Helgaas on a 128-cpu setup.
7254 */
7255 BUG_ON(busiest_rq == target_rq);
7256
7257 /* Search for an sd spanning us and the target CPU. */
7258 rcu_read_lock();
7259 for_each_domain(target_cpu, sd) {
7260 if ((sd->flags & SD_LOAD_BALANCE) &&
7261 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7262 break;
7263 }
7264
7265 if (likely(sd)) {
7266 struct lb_env env = {
7267 .sd = sd,
7268 .dst_cpu = target_cpu,
7269 .dst_rq = target_rq,
7270 .src_cpu = busiest_rq->cpu,
7271 .src_rq = busiest_rq,
7272 .idle = CPU_IDLE,
7273 };
7274
7275 schedstat_inc(sd, alb_count);
7276
7277 p = detach_one_task(&env);
7278 if (p)
7279 schedstat_inc(sd, alb_pushed);
7280 else
7281 schedstat_inc(sd, alb_failed);
7282 }
7283 rcu_read_unlock();
7284 out_unlock:
7285 busiest_rq->active_balance = 0;
7286 raw_spin_unlock(&busiest_rq->lock);
7287
7288 if (p)
7289 attach_one_task(target_rq, p);
7290
7291 local_irq_enable();
7292
7293 return 0;
7294 }
7295
7296 static inline int on_null_domain(struct rq *rq)
7297 {
7298 return unlikely(!rcu_dereference_sched(rq->sd));
7299 }
7300
7301 #ifdef CONFIG_NO_HZ_COMMON
7302 /*
7303 * idle load balancing details
7304 * - When one of the busy CPUs notice that there may be an idle rebalancing
7305 * needed, they will kick the idle load balancer, which then does idle
7306 * load balancing for all the idle CPUs.
7307 */
7308 static struct {
7309 cpumask_var_t idle_cpus_mask;
7310 atomic_t nr_cpus;
7311 unsigned long next_balance; /* in jiffy units */
7312 } nohz ____cacheline_aligned;
7313
7314 static inline int find_new_ilb(void)
7315 {
7316 int ilb = cpumask_first(nohz.idle_cpus_mask);
7317
7318 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7319 return ilb;
7320
7321 return nr_cpu_ids;
7322 }
7323
7324 /*
7325 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7326 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7327 * CPU (if there is one).
7328 */
7329 static void nohz_balancer_kick(void)
7330 {
7331 int ilb_cpu;
7332
7333 nohz.next_balance++;
7334
7335 ilb_cpu = find_new_ilb();
7336
7337 if (ilb_cpu >= nr_cpu_ids)
7338 return;
7339
7340 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7341 return;
7342 /*
7343 * Use smp_send_reschedule() instead of resched_cpu().
7344 * This way we generate a sched IPI on the target cpu which
7345 * is idle. And the softirq performing nohz idle load balance
7346 * will be run before returning from the IPI.
7347 */
7348 smp_send_reschedule(ilb_cpu);
7349 return;
7350 }
7351
7352 static inline void nohz_balance_exit_idle(int cpu)
7353 {
7354 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7355 /*
7356 * Completely isolated CPUs don't ever set, so we must test.
7357 */
7358 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7359 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7360 atomic_dec(&nohz.nr_cpus);
7361 }
7362 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7363 }
7364 }
7365
7366 static inline void set_cpu_sd_state_busy(void)
7367 {
7368 struct sched_domain *sd;
7369 int cpu = smp_processor_id();
7370
7371 rcu_read_lock();
7372 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7373
7374 if (!sd || !sd->nohz_idle)
7375 goto unlock;
7376 sd->nohz_idle = 0;
7377
7378 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7379 unlock:
7380 rcu_read_unlock();
7381 }
7382
7383 void set_cpu_sd_state_idle(void)
7384 {
7385 struct sched_domain *sd;
7386 int cpu = smp_processor_id();
7387
7388 rcu_read_lock();
7389 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7390
7391 if (!sd || sd->nohz_idle)
7392 goto unlock;
7393 sd->nohz_idle = 1;
7394
7395 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7396 unlock:
7397 rcu_read_unlock();
7398 }
7399
7400 /*
7401 * This routine will record that the cpu is going idle with tick stopped.
7402 * This info will be used in performing idle load balancing in the future.
7403 */
7404 void nohz_balance_enter_idle(int cpu)
7405 {
7406 /*
7407 * If this cpu is going down, then nothing needs to be done.
7408 */
7409 if (!cpu_active(cpu))
7410 return;
7411
7412 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7413 return;
7414
7415 /*
7416 * If we're a completely isolated CPU, we don't play.
7417 */
7418 if (on_null_domain(cpu_rq(cpu)))
7419 return;
7420
7421 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7422 atomic_inc(&nohz.nr_cpus);
7423 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7424 }
7425
7426 static int sched_ilb_notifier(struct notifier_block *nfb,
7427 unsigned long action, void *hcpu)
7428 {
7429 switch (action & ~CPU_TASKS_FROZEN) {
7430 case CPU_DYING:
7431 nohz_balance_exit_idle(smp_processor_id());
7432 return NOTIFY_OK;
7433 default:
7434 return NOTIFY_DONE;
7435 }
7436 }
7437 #endif
7438
7439 static DEFINE_SPINLOCK(balancing);
7440
7441 /*
7442 * Scale the max load_balance interval with the number of CPUs in the system.
7443 * This trades load-balance latency on larger machines for less cross talk.
7444 */
7445 void update_max_interval(void)
7446 {
7447 max_load_balance_interval = HZ*num_online_cpus()/10;
7448 }
7449
7450 /*
7451 * It checks each scheduling domain to see if it is due to be balanced,
7452 * and initiates a balancing operation if so.
7453 *
7454 * Balancing parameters are set up in init_sched_domains.
7455 */
7456 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7457 {
7458 int continue_balancing = 1;
7459 int cpu = rq->cpu;
7460 unsigned long interval;
7461 struct sched_domain *sd;
7462 /* Earliest time when we have to do rebalance again */
7463 unsigned long next_balance = jiffies + 60*HZ;
7464 int update_next_balance = 0;
7465 int need_serialize, need_decay = 0;
7466 u64 max_cost = 0;
7467
7468 update_blocked_averages(cpu);
7469
7470 rcu_read_lock();
7471 for_each_domain(cpu, sd) {
7472 /*
7473 * Decay the newidle max times here because this is a regular
7474 * visit to all the domains. Decay ~1% per second.
7475 */
7476 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7477 sd->max_newidle_lb_cost =
7478 (sd->max_newidle_lb_cost * 253) / 256;
7479 sd->next_decay_max_lb_cost = jiffies + HZ;
7480 need_decay = 1;
7481 }
7482 max_cost += sd->max_newidle_lb_cost;
7483
7484 if (!(sd->flags & SD_LOAD_BALANCE))
7485 continue;
7486
7487 /*
7488 * Stop the load balance at this level. There is another
7489 * CPU in our sched group which is doing load balancing more
7490 * actively.
7491 */
7492 if (!continue_balancing) {
7493 if (need_decay)
7494 continue;
7495 break;
7496 }
7497
7498 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7499
7500 need_serialize = sd->flags & SD_SERIALIZE;
7501 if (need_serialize) {
7502 if (!spin_trylock(&balancing))
7503 goto out;
7504 }
7505
7506 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7507 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7508 /*
7509 * The LBF_DST_PINNED logic could have changed
7510 * env->dst_cpu, so we can't know our idle
7511 * state even if we migrated tasks. Update it.
7512 */
7513 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7514 }
7515 sd->last_balance = jiffies;
7516 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7517 }
7518 if (need_serialize)
7519 spin_unlock(&balancing);
7520 out:
7521 if (time_after(next_balance, sd->last_balance + interval)) {
7522 next_balance = sd->last_balance + interval;
7523 update_next_balance = 1;
7524 }
7525 }
7526 if (need_decay) {
7527 /*
7528 * Ensure the rq-wide value also decays but keep it at a
7529 * reasonable floor to avoid funnies with rq->avg_idle.
7530 */
7531 rq->max_idle_balance_cost =
7532 max((u64)sysctl_sched_migration_cost, max_cost);
7533 }
7534 rcu_read_unlock();
7535
7536 /*
7537 * next_balance will be updated only when there is a need.
7538 * When the cpu is attached to null domain for ex, it will not be
7539 * updated.
7540 */
7541 if (likely(update_next_balance))
7542 rq->next_balance = next_balance;
7543 }
7544
7545 #ifdef CONFIG_NO_HZ_COMMON
7546 /*
7547 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7548 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7549 */
7550 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7551 {
7552 int this_cpu = this_rq->cpu;
7553 struct rq *rq;
7554 int balance_cpu;
7555
7556 if (idle != CPU_IDLE ||
7557 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7558 goto end;
7559
7560 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7561 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7562 continue;
7563
7564 /*
7565 * If this cpu gets work to do, stop the load balancing
7566 * work being done for other cpus. Next load
7567 * balancing owner will pick it up.
7568 */
7569 if (need_resched())
7570 break;
7571
7572 rq = cpu_rq(balance_cpu);
7573
7574 /*
7575 * If time for next balance is due,
7576 * do the balance.
7577 */
7578 if (time_after_eq(jiffies, rq->next_balance)) {
7579 raw_spin_lock_irq(&rq->lock);
7580 update_rq_clock(rq);
7581 update_idle_cpu_load(rq);
7582 raw_spin_unlock_irq(&rq->lock);
7583 rebalance_domains(rq, CPU_IDLE);
7584 }
7585
7586 if (time_after(this_rq->next_balance, rq->next_balance))
7587 this_rq->next_balance = rq->next_balance;
7588 }
7589 nohz.next_balance = this_rq->next_balance;
7590 end:
7591 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7592 }
7593
7594 /*
7595 * Current heuristic for kicking the idle load balancer in the presence
7596 * of an idle cpu is the system.
7597 * - This rq has more than one task.
7598 * - At any scheduler domain level, this cpu's scheduler group has multiple
7599 * busy cpu's exceeding the group's capacity.
7600 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7601 * domain span are idle.
7602 */
7603 static inline int nohz_kick_needed(struct rq *rq)
7604 {
7605 unsigned long now = jiffies;
7606 struct sched_domain *sd;
7607 struct sched_group_capacity *sgc;
7608 int nr_busy, cpu = rq->cpu;
7609
7610 if (unlikely(rq->idle_balance))
7611 return 0;
7612
7613 /*
7614 * We may be recently in ticked or tickless idle mode. At the first
7615 * busy tick after returning from idle, we will update the busy stats.
7616 */
7617 set_cpu_sd_state_busy();
7618 nohz_balance_exit_idle(cpu);
7619
7620 /*
7621 * None are in tickless mode and hence no need for NOHZ idle load
7622 * balancing.
7623 */
7624 if (likely(!atomic_read(&nohz.nr_cpus)))
7625 return 0;
7626
7627 if (time_before(now, nohz.next_balance))
7628 return 0;
7629
7630 if (rq->nr_running >= 2)
7631 goto need_kick;
7632
7633 rcu_read_lock();
7634 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7635
7636 if (sd) {
7637 sgc = sd->groups->sgc;
7638 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7639
7640 if (nr_busy > 1)
7641 goto need_kick_unlock;
7642 }
7643
7644 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7645
7646 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7647 sched_domain_span(sd)) < cpu))
7648 goto need_kick_unlock;
7649
7650 rcu_read_unlock();
7651 return 0;
7652
7653 need_kick_unlock:
7654 rcu_read_unlock();
7655 need_kick:
7656 return 1;
7657 }
7658 #else
7659 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7660 #endif
7661
7662 /*
7663 * run_rebalance_domains is triggered when needed from the scheduler tick.
7664 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7665 */
7666 static void run_rebalance_domains(struct softirq_action *h)
7667 {
7668 struct rq *this_rq = this_rq();
7669 enum cpu_idle_type idle = this_rq->idle_balance ?
7670 CPU_IDLE : CPU_NOT_IDLE;
7671
7672 rebalance_domains(this_rq, idle);
7673
7674 /*
7675 * If this cpu has a pending nohz_balance_kick, then do the
7676 * balancing on behalf of the other idle cpus whose ticks are
7677 * stopped.
7678 */
7679 nohz_idle_balance(this_rq, idle);
7680 }
7681
7682 /*
7683 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7684 */
7685 void trigger_load_balance(struct rq *rq)
7686 {
7687 /* Don't need to rebalance while attached to NULL domain */
7688 if (unlikely(on_null_domain(rq)))
7689 return;
7690
7691 if (time_after_eq(jiffies, rq->next_balance))
7692 raise_softirq(SCHED_SOFTIRQ);
7693 #ifdef CONFIG_NO_HZ_COMMON
7694 if (nohz_kick_needed(rq))
7695 nohz_balancer_kick();
7696 #endif
7697 }
7698
7699 static void rq_online_fair(struct rq *rq)
7700 {
7701 update_sysctl();
7702
7703 update_runtime_enabled(rq);
7704 }
7705
7706 static void rq_offline_fair(struct rq *rq)
7707 {
7708 update_sysctl();
7709
7710 /* Ensure any throttled groups are reachable by pick_next_task */
7711 unthrottle_offline_cfs_rqs(rq);
7712 }
7713
7714 #endif /* CONFIG_SMP */
7715
7716 /*
7717 * scheduler tick hitting a task of our scheduling class:
7718 */
7719 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7720 {
7721 struct cfs_rq *cfs_rq;
7722 struct sched_entity *se = &curr->se;
7723
7724 for_each_sched_entity(se) {
7725 cfs_rq = cfs_rq_of(se);
7726 entity_tick(cfs_rq, se, queued);
7727 }
7728
7729 if (numabalancing_enabled)
7730 task_tick_numa(rq, curr);
7731
7732 update_rq_runnable_avg(rq, 1);
7733 }
7734
7735 /*
7736 * called on fork with the child task as argument from the parent's context
7737 * - child not yet on the tasklist
7738 * - preemption disabled
7739 */
7740 static void task_fork_fair(struct task_struct *p)
7741 {
7742 struct cfs_rq *cfs_rq;
7743 struct sched_entity *se = &p->se, *curr;
7744 int this_cpu = smp_processor_id();
7745 struct rq *rq = this_rq();
7746 unsigned long flags;
7747
7748 raw_spin_lock_irqsave(&rq->lock, flags);
7749
7750 update_rq_clock(rq);
7751
7752 cfs_rq = task_cfs_rq(current);
7753 curr = cfs_rq->curr;
7754
7755 /*
7756 * Not only the cpu but also the task_group of the parent might have
7757 * been changed after parent->se.parent,cfs_rq were copied to
7758 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7759 * of child point to valid ones.
7760 */
7761 rcu_read_lock();
7762 __set_task_cpu(p, this_cpu);
7763 rcu_read_unlock();
7764
7765 update_curr(cfs_rq);
7766
7767 if (curr)
7768 se->vruntime = curr->vruntime;
7769 place_entity(cfs_rq, se, 1);
7770
7771 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7772 /*
7773 * Upon rescheduling, sched_class::put_prev_task() will place
7774 * 'current' within the tree based on its new key value.
7775 */
7776 swap(curr->vruntime, se->vruntime);
7777 resched_curr(rq);
7778 }
7779
7780 se->vruntime -= cfs_rq->min_vruntime;
7781
7782 raw_spin_unlock_irqrestore(&rq->lock, flags);
7783 }
7784
7785 /*
7786 * Priority of the task has changed. Check to see if we preempt
7787 * the current task.
7788 */
7789 static void
7790 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7791 {
7792 if (!task_on_rq_queued(p))
7793 return;
7794
7795 /*
7796 * Reschedule if we are currently running on this runqueue and
7797 * our priority decreased, or if we are not currently running on
7798 * this runqueue and our priority is higher than the current's
7799 */
7800 if (rq->curr == p) {
7801 if (p->prio > oldprio)
7802 resched_curr(rq);
7803 } else
7804 check_preempt_curr(rq, p, 0);
7805 }
7806
7807 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7808 {
7809 struct sched_entity *se = &p->se;
7810 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7811
7812 /*
7813 * Ensure the task's vruntime is normalized, so that when it's
7814 * switched back to the fair class the enqueue_entity(.flags=0) will
7815 * do the right thing.
7816 *
7817 * If it's queued, then the dequeue_entity(.flags=0) will already
7818 * have normalized the vruntime, if it's !queued, then only when
7819 * the task is sleeping will it still have non-normalized vruntime.
7820 */
7821 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7822 /*
7823 * Fix up our vruntime so that the current sleep doesn't
7824 * cause 'unlimited' sleep bonus.
7825 */
7826 place_entity(cfs_rq, se, 0);
7827 se->vruntime -= cfs_rq->min_vruntime;
7828 }
7829
7830 #ifdef CONFIG_SMP
7831 /*
7832 * Remove our load from contribution when we leave sched_fair
7833 * and ensure we don't carry in an old decay_count if we
7834 * switch back.
7835 */
7836 if (se->avg.decay_count) {
7837 __synchronize_entity_decay(se);
7838 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7839 }
7840 #endif
7841 }
7842
7843 /*
7844 * We switched to the sched_fair class.
7845 */
7846 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7847 {
7848 #ifdef CONFIG_FAIR_GROUP_SCHED
7849 struct sched_entity *se = &p->se;
7850 /*
7851 * Since the real-depth could have been changed (only FAIR
7852 * class maintain depth value), reset depth properly.
7853 */
7854 se->depth = se->parent ? se->parent->depth + 1 : 0;
7855 #endif
7856 if (!task_on_rq_queued(p))
7857 return;
7858
7859 /*
7860 * We were most likely switched from sched_rt, so
7861 * kick off the schedule if running, otherwise just see
7862 * if we can still preempt the current task.
7863 */
7864 if (rq->curr == p)
7865 resched_curr(rq);
7866 else
7867 check_preempt_curr(rq, p, 0);
7868 }
7869
7870 /* Account for a task changing its policy or group.
7871 *
7872 * This routine is mostly called to set cfs_rq->curr field when a task
7873 * migrates between groups/classes.
7874 */
7875 static void set_curr_task_fair(struct rq *rq)
7876 {
7877 struct sched_entity *se = &rq->curr->se;
7878
7879 for_each_sched_entity(se) {
7880 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7881
7882 set_next_entity(cfs_rq, se);
7883 /* ensure bandwidth has been allocated on our new cfs_rq */
7884 account_cfs_rq_runtime(cfs_rq, 0);
7885 }
7886 }
7887
7888 void init_cfs_rq(struct cfs_rq *cfs_rq)
7889 {
7890 cfs_rq->tasks_timeline = RB_ROOT;
7891 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7892 #ifndef CONFIG_64BIT
7893 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7894 #endif
7895 #ifdef CONFIG_SMP
7896 atomic64_set(&cfs_rq->decay_counter, 1);
7897 atomic_long_set(&cfs_rq->removed_load, 0);
7898 #endif
7899 }
7900
7901 #ifdef CONFIG_FAIR_GROUP_SCHED
7902 static void task_move_group_fair(struct task_struct *p, int queued)
7903 {
7904 struct sched_entity *se = &p->se;
7905 struct cfs_rq *cfs_rq;
7906
7907 /*
7908 * If the task was not on the rq at the time of this cgroup movement
7909 * it must have been asleep, sleeping tasks keep their ->vruntime
7910 * absolute on their old rq until wakeup (needed for the fair sleeper
7911 * bonus in place_entity()).
7912 *
7913 * If it was on the rq, we've just 'preempted' it, which does convert
7914 * ->vruntime to a relative base.
7915 *
7916 * Make sure both cases convert their relative position when migrating
7917 * to another cgroup's rq. This does somewhat interfere with the
7918 * fair sleeper stuff for the first placement, but who cares.
7919 */
7920 /*
7921 * When !queued, vruntime of the task has usually NOT been normalized.
7922 * But there are some cases where it has already been normalized:
7923 *
7924 * - Moving a forked child which is waiting for being woken up by
7925 * wake_up_new_task().
7926 * - Moving a task which has been woken up by try_to_wake_up() and
7927 * waiting for actually being woken up by sched_ttwu_pending().
7928 *
7929 * To prevent boost or penalty in the new cfs_rq caused by delta
7930 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7931 */
7932 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7933 queued = 1;
7934
7935 if (!queued)
7936 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7937 set_task_rq(p, task_cpu(p));
7938 se->depth = se->parent ? se->parent->depth + 1 : 0;
7939 if (!queued) {
7940 cfs_rq = cfs_rq_of(se);
7941 se->vruntime += cfs_rq->min_vruntime;
7942 #ifdef CONFIG_SMP
7943 /*
7944 * migrate_task_rq_fair() will have removed our previous
7945 * contribution, but we must synchronize for ongoing future
7946 * decay.
7947 */
7948 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7949 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7950 #endif
7951 }
7952 }
7953
7954 void free_fair_sched_group(struct task_group *tg)
7955 {
7956 int i;
7957
7958 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7959
7960 for_each_possible_cpu(i) {
7961 if (tg->cfs_rq)
7962 kfree(tg->cfs_rq[i]);
7963 if (tg->se)
7964 kfree(tg->se[i]);
7965 }
7966
7967 kfree(tg->cfs_rq);
7968 kfree(tg->se);
7969 }
7970
7971 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7972 {
7973 struct cfs_rq *cfs_rq;
7974 struct sched_entity *se;
7975 int i;
7976
7977 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7978 if (!tg->cfs_rq)
7979 goto err;
7980 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7981 if (!tg->se)
7982 goto err;
7983
7984 tg->shares = NICE_0_LOAD;
7985
7986 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7987
7988 for_each_possible_cpu(i) {
7989 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7990 GFP_KERNEL, cpu_to_node(i));
7991 if (!cfs_rq)
7992 goto err;
7993
7994 se = kzalloc_node(sizeof(struct sched_entity),
7995 GFP_KERNEL, cpu_to_node(i));
7996 if (!se)
7997 goto err_free_rq;
7998
7999 init_cfs_rq(cfs_rq);
8000 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8001 }
8002
8003 return 1;
8004
8005 err_free_rq:
8006 kfree(cfs_rq);
8007 err:
8008 return 0;
8009 }
8010
8011 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8012 {
8013 struct rq *rq = cpu_rq(cpu);
8014 unsigned long flags;
8015
8016 /*
8017 * Only empty task groups can be destroyed; so we can speculatively
8018 * check on_list without danger of it being re-added.
8019 */
8020 if (!tg->cfs_rq[cpu]->on_list)
8021 return;
8022
8023 raw_spin_lock_irqsave(&rq->lock, flags);
8024 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8025 raw_spin_unlock_irqrestore(&rq->lock, flags);
8026 }
8027
8028 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8029 struct sched_entity *se, int cpu,
8030 struct sched_entity *parent)
8031 {
8032 struct rq *rq = cpu_rq(cpu);
8033
8034 cfs_rq->tg = tg;
8035 cfs_rq->rq = rq;
8036 init_cfs_rq_runtime(cfs_rq);
8037
8038 tg->cfs_rq[cpu] = cfs_rq;
8039 tg->se[cpu] = se;
8040
8041 /* se could be NULL for root_task_group */
8042 if (!se)
8043 return;
8044
8045 if (!parent) {
8046 se->cfs_rq = &rq->cfs;
8047 se->depth = 0;
8048 } else {
8049 se->cfs_rq = parent->my_q;
8050 se->depth = parent->depth + 1;
8051 }
8052
8053 se->my_q = cfs_rq;
8054 /* guarantee group entities always have weight */
8055 update_load_set(&se->load, NICE_0_LOAD);
8056 se->parent = parent;
8057 }
8058
8059 static DEFINE_MUTEX(shares_mutex);
8060
8061 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8062 {
8063 int i;
8064 unsigned long flags;
8065
8066 /*
8067 * We can't change the weight of the root cgroup.
8068 */
8069 if (!tg->se[0])
8070 return -EINVAL;
8071
8072 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8073
8074 mutex_lock(&shares_mutex);
8075 if (tg->shares == shares)
8076 goto done;
8077
8078 tg->shares = shares;
8079 for_each_possible_cpu(i) {
8080 struct rq *rq = cpu_rq(i);
8081 struct sched_entity *se;
8082
8083 se = tg->se[i];
8084 /* Propagate contribution to hierarchy */
8085 raw_spin_lock_irqsave(&rq->lock, flags);
8086
8087 /* Possible calls to update_curr() need rq clock */
8088 update_rq_clock(rq);
8089 for_each_sched_entity(se)
8090 update_cfs_shares(group_cfs_rq(se));
8091 raw_spin_unlock_irqrestore(&rq->lock, flags);
8092 }
8093
8094 done:
8095 mutex_unlock(&shares_mutex);
8096 return 0;
8097 }
8098 #else /* CONFIG_FAIR_GROUP_SCHED */
8099
8100 void free_fair_sched_group(struct task_group *tg) { }
8101
8102 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8103 {
8104 return 1;
8105 }
8106
8107 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8108
8109 #endif /* CONFIG_FAIR_GROUP_SCHED */
8110
8111
8112 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8113 {
8114 struct sched_entity *se = &task->se;
8115 unsigned int rr_interval = 0;
8116
8117 /*
8118 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8119 * idle runqueue:
8120 */
8121 if (rq->cfs.load.weight)
8122 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8123
8124 return rr_interval;
8125 }
8126
8127 /*
8128 * All the scheduling class methods:
8129 */
8130 const struct sched_class fair_sched_class = {
8131 .next = &idle_sched_class,
8132 .enqueue_task = enqueue_task_fair,
8133 .dequeue_task = dequeue_task_fair,
8134 .yield_task = yield_task_fair,
8135 .yield_to_task = yield_to_task_fair,
8136
8137 .check_preempt_curr = check_preempt_wakeup,
8138
8139 .pick_next_task = pick_next_task_fair,
8140 .put_prev_task = put_prev_task_fair,
8141
8142 #ifdef CONFIG_SMP
8143 .select_task_rq = select_task_rq_fair,
8144 .migrate_task_rq = migrate_task_rq_fair,
8145
8146 .rq_online = rq_online_fair,
8147 .rq_offline = rq_offline_fair,
8148
8149 .task_waking = task_waking_fair,
8150 #endif
8151
8152 .set_curr_task = set_curr_task_fair,
8153 .task_tick = task_tick_fair,
8154 .task_fork = task_fork_fair,
8155
8156 .prio_changed = prio_changed_fair,
8157 .switched_from = switched_from_fair,
8158 .switched_to = switched_to_fair,
8159
8160 .get_rr_interval = get_rr_interval_fair,
8161
8162 .update_curr = update_curr_fair,
8163
8164 #ifdef CONFIG_FAIR_GROUP_SCHED
8165 .task_move_group = task_move_group_fair,
8166 #endif
8167 };
8168
8169 #ifdef CONFIG_SCHED_DEBUG
8170 void print_cfs_stats(struct seq_file *m, int cpu)
8171 {
8172 struct cfs_rq *cfs_rq;
8173
8174 rcu_read_lock();
8175 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8176 print_cfs_rq(m, cpu, cfs_rq);
8177 rcu_read_unlock();
8178 }
8179 #endif
8180
8181 __init void init_sched_fair_class(void)
8182 {
8183 #ifdef CONFIG_SMP
8184 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8185
8186 #ifdef CONFIG_NO_HZ_COMMON
8187 nohz.next_balance = jiffies;
8188 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8189 cpu_notifier(sched_ilb_notifier, 0);
8190 #endif
8191 #endif /* SMP */
8192
8193 }