]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/fair.c
Merge tag 'cleanup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
288
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 if (!cfs_rq->on_list) {
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 }
306
307 cfs_rq->on_list = 1;
308 /* We should have no load, but we need to update last_decay. */
309 update_cfs_rq_blocked_load(cfs_rq, 0);
310 }
311 }
312
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319 }
320
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 if (se->cfs_rq == pse->cfs_rq)
330 return se->cfs_rq;
331
332 return NULL;
333 }
334
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 return se->parent;
338 }
339
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370 }
371
372 #else /* !CONFIG_FAIR_GROUP_SCHED */
373
374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 return container_of(se, struct task_struct, se);
377 }
378
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 return container_of(cfs_rq, struct rq, cfs);
382 }
383
384 #define entity_is_task(se) 1
385
386 #define for_each_sched_entity(se) \
387 for (; se; se = NULL)
388
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 return &task_rq(p)->cfs;
392 }
393
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400 }
401
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 return NULL;
406 }
407
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 return NULL;
422 }
423
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428
429 #endif /* CONFIG_FAIR_GROUP_SCHED */
430
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433
434 /**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 s64 delta = (s64)(vruntime - max_vruntime);
441 if (delta > 0)
442 max_vruntime = vruntime;
443
444 return max_vruntime;
445 }
446
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454 }
455
456 static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458 {
459 return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
474 if (!cfs_rq->curr)
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
480 /* ensure we never gain time by being placed backwards. */
481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487
488 /*
489 * Enqueue an entity into the rb-tree:
490 */
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
508 if (entity_before(se, entry)) {
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
520 if (leftmost)
521 cfs_rq->rb_leftmost = &se->run_node;
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
534 }
535
536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
547 }
548
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557 }
558
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563
564 if (!last)
565 return NULL;
566
567 return rb_entry(last, struct sched_entity, run_node);
568 }
569
570 /**************************************************************
571 * Scheduling class statistics methods:
572 */
573
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 void __user *buffer, size_t *lenp,
576 loff_t *ppos)
577 {
578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 int factor = get_update_sysctl_factor();
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
587 #define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593
594 return 0;
595 }
596 #endif
597
598 /*
599 * delta /= w
600 */
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 if (unlikely(se->load.weight != NICE_0_LOAD))
604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605
606 return delta;
607 }
608
609 /*
610 * The idea is to set a period in which each task runs once.
611 *
612 * When there are too many tasks (sched_nr_latency) we have to stretch
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
617 static u64 __sched_period(unsigned long nr_running)
618 {
619 u64 period = sysctl_sched_latency;
620 unsigned long nr_latency = sched_nr_latency;
621
622 if (unlikely(nr_running > nr_latency)) {
623 period = sysctl_sched_min_granularity;
624 period *= nr_running;
625 }
626
627 return period;
628 }
629
630 /*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
634 * s = p*P[w/rw]
635 */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639
640 for_each_sched_entity(se) {
641 struct load_weight *load;
642 struct load_weight lw;
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
646
647 if (unlikely(!se->on_rq)) {
648 lw = cfs_rq->load;
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
653 slice = __calc_delta(slice, se->load.weight, load);
654 }
655 return slice;
656 }
657
658 /*
659 * We calculate the vruntime slice of a to-be-inserted task.
660 *
661 * vs = s/w
662 */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674 /* Give new task start runnable values to heavy its load in infant time */
675 void init_task_runnable_average(struct task_struct *p)
676 {
677 u32 slice;
678
679 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
680 p->se.avg.runnable_avg_sum = slice;
681 p->se.avg.runnable_avg_period = slice;
682 __update_task_entity_contrib(&p->se);
683 }
684 #else
685 void init_task_runnable_average(struct task_struct *p)
686 {
687 }
688 #endif
689
690 /*
691 * Update the current task's runtime statistics.
692 */
693 static void update_curr(struct cfs_rq *cfs_rq)
694 {
695 struct sched_entity *curr = cfs_rq->curr;
696 u64 now = rq_clock_task(rq_of(cfs_rq));
697 u64 delta_exec;
698
699 if (unlikely(!curr))
700 return;
701
702 delta_exec = now - curr->exec_start;
703 if (unlikely((s64)delta_exec <= 0))
704 return;
705
706 curr->exec_start = now;
707
708 schedstat_set(curr->statistics.exec_max,
709 max(delta_exec, curr->statistics.exec_max));
710
711 curr->sum_exec_runtime += delta_exec;
712 schedstat_add(cfs_rq, exec_clock, delta_exec);
713
714 curr->vruntime += calc_delta_fair(delta_exec, curr);
715 update_min_vruntime(cfs_rq);
716
717 if (entity_is_task(curr)) {
718 struct task_struct *curtask = task_of(curr);
719
720 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
721 cpuacct_charge(curtask, delta_exec);
722 account_group_exec_runtime(curtask, delta_exec);
723 }
724
725 account_cfs_rq_runtime(cfs_rq, delta_exec);
726 }
727
728 static void update_curr_fair(struct rq *rq)
729 {
730 update_curr(cfs_rq_of(&rq->curr->se));
731 }
732
733 static inline void
734 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
735 {
736 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
737 }
738
739 /*
740 * Task is being enqueued - update stats:
741 */
742 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 /*
745 * Are we enqueueing a waiting task? (for current tasks
746 * a dequeue/enqueue event is a NOP)
747 */
748 if (se != cfs_rq->curr)
749 update_stats_wait_start(cfs_rq, se);
750 }
751
752 static void
753 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
756 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
757 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
758 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 #ifdef CONFIG_SCHEDSTATS
761 if (entity_is_task(se)) {
762 trace_sched_stat_wait(task_of(se),
763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
764 }
765 #endif
766 schedstat_set(se->statistics.wait_start, 0);
767 }
768
769 static inline void
770 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
771 {
772 /*
773 * Mark the end of the wait period if dequeueing a
774 * waiting task:
775 */
776 if (se != cfs_rq->curr)
777 update_stats_wait_end(cfs_rq, se);
778 }
779
780 /*
781 * We are picking a new current task - update its stats:
782 */
783 static inline void
784 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
785 {
786 /*
787 * We are starting a new run period:
788 */
789 se->exec_start = rq_clock_task(rq_of(cfs_rq));
790 }
791
792 /**************************************************
793 * Scheduling class queueing methods:
794 */
795
796 #ifdef CONFIG_NUMA_BALANCING
797 /*
798 * Approximate time to scan a full NUMA task in ms. The task scan period is
799 * calculated based on the tasks virtual memory size and
800 * numa_balancing_scan_size.
801 */
802 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
803 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
804
805 /* Portion of address space to scan in MB */
806 unsigned int sysctl_numa_balancing_scan_size = 256;
807
808 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
809 unsigned int sysctl_numa_balancing_scan_delay = 1000;
810
811 static unsigned int task_nr_scan_windows(struct task_struct *p)
812 {
813 unsigned long rss = 0;
814 unsigned long nr_scan_pages;
815
816 /*
817 * Calculations based on RSS as non-present and empty pages are skipped
818 * by the PTE scanner and NUMA hinting faults should be trapped based
819 * on resident pages
820 */
821 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
822 rss = get_mm_rss(p->mm);
823 if (!rss)
824 rss = nr_scan_pages;
825
826 rss = round_up(rss, nr_scan_pages);
827 return rss / nr_scan_pages;
828 }
829
830 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
831 #define MAX_SCAN_WINDOW 2560
832
833 static unsigned int task_scan_min(struct task_struct *p)
834 {
835 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
836 unsigned int scan, floor;
837 unsigned int windows = 1;
838
839 if (scan_size < MAX_SCAN_WINDOW)
840 windows = MAX_SCAN_WINDOW / scan_size;
841 floor = 1000 / windows;
842
843 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
844 return max_t(unsigned int, floor, scan);
845 }
846
847 static unsigned int task_scan_max(struct task_struct *p)
848 {
849 unsigned int smin = task_scan_min(p);
850 unsigned int smax;
851
852 /* Watch for min being lower than max due to floor calculations */
853 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
854 return max(smin, smax);
855 }
856
857 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
858 {
859 rq->nr_numa_running += (p->numa_preferred_nid != -1);
860 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
861 }
862
863 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
864 {
865 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
866 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
867 }
868
869 struct numa_group {
870 atomic_t refcount;
871
872 spinlock_t lock; /* nr_tasks, tasks */
873 int nr_tasks;
874 pid_t gid;
875
876 struct rcu_head rcu;
877 nodemask_t active_nodes;
878 unsigned long total_faults;
879 /*
880 * Faults_cpu is used to decide whether memory should move
881 * towards the CPU. As a consequence, these stats are weighted
882 * more by CPU use than by memory faults.
883 */
884 unsigned long *faults_cpu;
885 unsigned long faults[0];
886 };
887
888 /* Shared or private faults. */
889 #define NR_NUMA_HINT_FAULT_TYPES 2
890
891 /* Memory and CPU locality */
892 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
893
894 /* Averaged statistics, and temporary buffers. */
895 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
896
897 pid_t task_numa_group_id(struct task_struct *p)
898 {
899 return p->numa_group ? p->numa_group->gid : 0;
900 }
901
902 /*
903 * The averaged statistics, shared & private, memory & cpu,
904 * occupy the first half of the array. The second half of the
905 * array is for current counters, which are averaged into the
906 * first set by task_numa_placement.
907 */
908 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
909 {
910 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
911 }
912
913 static inline unsigned long task_faults(struct task_struct *p, int nid)
914 {
915 if (!p->numa_faults)
916 return 0;
917
918 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
919 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
920 }
921
922 static inline unsigned long group_faults(struct task_struct *p, int nid)
923 {
924 if (!p->numa_group)
925 return 0;
926
927 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
928 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
929 }
930
931 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
932 {
933 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
934 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
935 }
936
937 /* Handle placement on systems where not all nodes are directly connected. */
938 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
939 int maxdist, bool task)
940 {
941 unsigned long score = 0;
942 int node;
943
944 /*
945 * All nodes are directly connected, and the same distance
946 * from each other. No need for fancy placement algorithms.
947 */
948 if (sched_numa_topology_type == NUMA_DIRECT)
949 return 0;
950
951 /*
952 * This code is called for each node, introducing N^2 complexity,
953 * which should be ok given the number of nodes rarely exceeds 8.
954 */
955 for_each_online_node(node) {
956 unsigned long faults;
957 int dist = node_distance(nid, node);
958
959 /*
960 * The furthest away nodes in the system are not interesting
961 * for placement; nid was already counted.
962 */
963 if (dist == sched_max_numa_distance || node == nid)
964 continue;
965
966 /*
967 * On systems with a backplane NUMA topology, compare groups
968 * of nodes, and move tasks towards the group with the most
969 * memory accesses. When comparing two nodes at distance
970 * "hoplimit", only nodes closer by than "hoplimit" are part
971 * of each group. Skip other nodes.
972 */
973 if (sched_numa_topology_type == NUMA_BACKPLANE &&
974 dist > maxdist)
975 continue;
976
977 /* Add up the faults from nearby nodes. */
978 if (task)
979 faults = task_faults(p, node);
980 else
981 faults = group_faults(p, node);
982
983 /*
984 * On systems with a glueless mesh NUMA topology, there are
985 * no fixed "groups of nodes". Instead, nodes that are not
986 * directly connected bounce traffic through intermediate
987 * nodes; a numa_group can occupy any set of nodes.
988 * The further away a node is, the less the faults count.
989 * This seems to result in good task placement.
990 */
991 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
992 faults *= (sched_max_numa_distance - dist);
993 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
994 }
995
996 score += faults;
997 }
998
999 return score;
1000 }
1001
1002 /*
1003 * These return the fraction of accesses done by a particular task, or
1004 * task group, on a particular numa node. The group weight is given a
1005 * larger multiplier, in order to group tasks together that are almost
1006 * evenly spread out between numa nodes.
1007 */
1008 static inline unsigned long task_weight(struct task_struct *p, int nid,
1009 int dist)
1010 {
1011 unsigned long faults, total_faults;
1012
1013 if (!p->numa_faults)
1014 return 0;
1015
1016 total_faults = p->total_numa_faults;
1017
1018 if (!total_faults)
1019 return 0;
1020
1021 faults = task_faults(p, nid);
1022 faults += score_nearby_nodes(p, nid, dist, true);
1023
1024 return 1000 * faults / total_faults;
1025 }
1026
1027 static inline unsigned long group_weight(struct task_struct *p, int nid,
1028 int dist)
1029 {
1030 unsigned long faults, total_faults;
1031
1032 if (!p->numa_group)
1033 return 0;
1034
1035 total_faults = p->numa_group->total_faults;
1036
1037 if (!total_faults)
1038 return 0;
1039
1040 faults = group_faults(p, nid);
1041 faults += score_nearby_nodes(p, nid, dist, false);
1042
1043 return 1000 * faults / total_faults;
1044 }
1045
1046 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1047 int src_nid, int dst_cpu)
1048 {
1049 struct numa_group *ng = p->numa_group;
1050 int dst_nid = cpu_to_node(dst_cpu);
1051 int last_cpupid, this_cpupid;
1052
1053 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1054
1055 /*
1056 * Multi-stage node selection is used in conjunction with a periodic
1057 * migration fault to build a temporal task<->page relation. By using
1058 * a two-stage filter we remove short/unlikely relations.
1059 *
1060 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1061 * a task's usage of a particular page (n_p) per total usage of this
1062 * page (n_t) (in a given time-span) to a probability.
1063 *
1064 * Our periodic faults will sample this probability and getting the
1065 * same result twice in a row, given these samples are fully
1066 * independent, is then given by P(n)^2, provided our sample period
1067 * is sufficiently short compared to the usage pattern.
1068 *
1069 * This quadric squishes small probabilities, making it less likely we
1070 * act on an unlikely task<->page relation.
1071 */
1072 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1073 if (!cpupid_pid_unset(last_cpupid) &&
1074 cpupid_to_nid(last_cpupid) != dst_nid)
1075 return false;
1076
1077 /* Always allow migrate on private faults */
1078 if (cpupid_match_pid(p, last_cpupid))
1079 return true;
1080
1081 /* A shared fault, but p->numa_group has not been set up yet. */
1082 if (!ng)
1083 return true;
1084
1085 /*
1086 * Do not migrate if the destination is not a node that
1087 * is actively used by this numa group.
1088 */
1089 if (!node_isset(dst_nid, ng->active_nodes))
1090 return false;
1091
1092 /*
1093 * Source is a node that is not actively used by this
1094 * numa group, while the destination is. Migrate.
1095 */
1096 if (!node_isset(src_nid, ng->active_nodes))
1097 return true;
1098
1099 /*
1100 * Both source and destination are nodes in active
1101 * use by this numa group. Maximize memory bandwidth
1102 * by migrating from more heavily used groups, to less
1103 * heavily used ones, spreading the load around.
1104 * Use a 1/4 hysteresis to avoid spurious page movement.
1105 */
1106 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1107 }
1108
1109 static unsigned long weighted_cpuload(const int cpu);
1110 static unsigned long source_load(int cpu, int type);
1111 static unsigned long target_load(int cpu, int type);
1112 static unsigned long capacity_of(int cpu);
1113 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1114
1115 /* Cached statistics for all CPUs within a node */
1116 struct numa_stats {
1117 unsigned long nr_running;
1118 unsigned long load;
1119
1120 /* Total compute capacity of CPUs on a node */
1121 unsigned long compute_capacity;
1122
1123 /* Approximate capacity in terms of runnable tasks on a node */
1124 unsigned long task_capacity;
1125 int has_free_capacity;
1126 };
1127
1128 /*
1129 * XXX borrowed from update_sg_lb_stats
1130 */
1131 static void update_numa_stats(struct numa_stats *ns, int nid)
1132 {
1133 int smt, cpu, cpus = 0;
1134 unsigned long capacity;
1135
1136 memset(ns, 0, sizeof(*ns));
1137 for_each_cpu(cpu, cpumask_of_node(nid)) {
1138 struct rq *rq = cpu_rq(cpu);
1139
1140 ns->nr_running += rq->nr_running;
1141 ns->load += weighted_cpuload(cpu);
1142 ns->compute_capacity += capacity_of(cpu);
1143
1144 cpus++;
1145 }
1146
1147 /*
1148 * If we raced with hotplug and there are no CPUs left in our mask
1149 * the @ns structure is NULL'ed and task_numa_compare() will
1150 * not find this node attractive.
1151 *
1152 * We'll either bail at !has_free_capacity, or we'll detect a huge
1153 * imbalance and bail there.
1154 */
1155 if (!cpus)
1156 return;
1157
1158 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1159 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1160 capacity = cpus / smt; /* cores */
1161
1162 ns->task_capacity = min_t(unsigned, capacity,
1163 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1164 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1165 }
1166
1167 struct task_numa_env {
1168 struct task_struct *p;
1169
1170 int src_cpu, src_nid;
1171 int dst_cpu, dst_nid;
1172
1173 struct numa_stats src_stats, dst_stats;
1174
1175 int imbalance_pct;
1176 int dist;
1177
1178 struct task_struct *best_task;
1179 long best_imp;
1180 int best_cpu;
1181 };
1182
1183 static void task_numa_assign(struct task_numa_env *env,
1184 struct task_struct *p, long imp)
1185 {
1186 if (env->best_task)
1187 put_task_struct(env->best_task);
1188 if (p)
1189 get_task_struct(p);
1190
1191 env->best_task = p;
1192 env->best_imp = imp;
1193 env->best_cpu = env->dst_cpu;
1194 }
1195
1196 static bool load_too_imbalanced(long src_load, long dst_load,
1197 struct task_numa_env *env)
1198 {
1199 long imb, old_imb;
1200 long orig_src_load, orig_dst_load;
1201 long src_capacity, dst_capacity;
1202
1203 /*
1204 * The load is corrected for the CPU capacity available on each node.
1205 *
1206 * src_load dst_load
1207 * ------------ vs ---------
1208 * src_capacity dst_capacity
1209 */
1210 src_capacity = env->src_stats.compute_capacity;
1211 dst_capacity = env->dst_stats.compute_capacity;
1212
1213 /* We care about the slope of the imbalance, not the direction. */
1214 if (dst_load < src_load)
1215 swap(dst_load, src_load);
1216
1217 /* Is the difference below the threshold? */
1218 imb = dst_load * src_capacity * 100 -
1219 src_load * dst_capacity * env->imbalance_pct;
1220 if (imb <= 0)
1221 return false;
1222
1223 /*
1224 * The imbalance is above the allowed threshold.
1225 * Compare it with the old imbalance.
1226 */
1227 orig_src_load = env->src_stats.load;
1228 orig_dst_load = env->dst_stats.load;
1229
1230 if (orig_dst_load < orig_src_load)
1231 swap(orig_dst_load, orig_src_load);
1232
1233 old_imb = orig_dst_load * src_capacity * 100 -
1234 orig_src_load * dst_capacity * env->imbalance_pct;
1235
1236 /* Would this change make things worse? */
1237 return (imb > old_imb);
1238 }
1239
1240 /*
1241 * This checks if the overall compute and NUMA accesses of the system would
1242 * be improved if the source tasks was migrated to the target dst_cpu taking
1243 * into account that it might be best if task running on the dst_cpu should
1244 * be exchanged with the source task
1245 */
1246 static void task_numa_compare(struct task_numa_env *env,
1247 long taskimp, long groupimp)
1248 {
1249 struct rq *src_rq = cpu_rq(env->src_cpu);
1250 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1251 struct task_struct *cur;
1252 long src_load, dst_load;
1253 long load;
1254 long imp = env->p->numa_group ? groupimp : taskimp;
1255 long moveimp = imp;
1256 int dist = env->dist;
1257
1258 rcu_read_lock();
1259
1260 raw_spin_lock_irq(&dst_rq->lock);
1261 cur = dst_rq->curr;
1262 /*
1263 * No need to move the exiting task, and this ensures that ->curr
1264 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1265 * is safe under RCU read lock.
1266 * Note that rcu_read_lock() itself can't protect from the final
1267 * put_task_struct() after the last schedule().
1268 */
1269 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1270 cur = NULL;
1271 raw_spin_unlock_irq(&dst_rq->lock);
1272
1273 /*
1274 * Because we have preemption enabled we can get migrated around and
1275 * end try selecting ourselves (current == env->p) as a swap candidate.
1276 */
1277 if (cur == env->p)
1278 goto unlock;
1279
1280 /*
1281 * "imp" is the fault differential for the source task between the
1282 * source and destination node. Calculate the total differential for
1283 * the source task and potential destination task. The more negative
1284 * the value is, the more rmeote accesses that would be expected to
1285 * be incurred if the tasks were swapped.
1286 */
1287 if (cur) {
1288 /* Skip this swap candidate if cannot move to the source cpu */
1289 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1290 goto unlock;
1291
1292 /*
1293 * If dst and source tasks are in the same NUMA group, or not
1294 * in any group then look only at task weights.
1295 */
1296 if (cur->numa_group == env->p->numa_group) {
1297 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1298 task_weight(cur, env->dst_nid, dist);
1299 /*
1300 * Add some hysteresis to prevent swapping the
1301 * tasks within a group over tiny differences.
1302 */
1303 if (cur->numa_group)
1304 imp -= imp/16;
1305 } else {
1306 /*
1307 * Compare the group weights. If a task is all by
1308 * itself (not part of a group), use the task weight
1309 * instead.
1310 */
1311 if (cur->numa_group)
1312 imp += group_weight(cur, env->src_nid, dist) -
1313 group_weight(cur, env->dst_nid, dist);
1314 else
1315 imp += task_weight(cur, env->src_nid, dist) -
1316 task_weight(cur, env->dst_nid, dist);
1317 }
1318 }
1319
1320 if (imp <= env->best_imp && moveimp <= env->best_imp)
1321 goto unlock;
1322
1323 if (!cur) {
1324 /* Is there capacity at our destination? */
1325 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1326 !env->dst_stats.has_free_capacity)
1327 goto unlock;
1328
1329 goto balance;
1330 }
1331
1332 /* Balance doesn't matter much if we're running a task per cpu */
1333 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1334 dst_rq->nr_running == 1)
1335 goto assign;
1336
1337 /*
1338 * In the overloaded case, try and keep the load balanced.
1339 */
1340 balance:
1341 load = task_h_load(env->p);
1342 dst_load = env->dst_stats.load + load;
1343 src_load = env->src_stats.load - load;
1344
1345 if (moveimp > imp && moveimp > env->best_imp) {
1346 /*
1347 * If the improvement from just moving env->p direction is
1348 * better than swapping tasks around, check if a move is
1349 * possible. Store a slightly smaller score than moveimp,
1350 * so an actually idle CPU will win.
1351 */
1352 if (!load_too_imbalanced(src_load, dst_load, env)) {
1353 imp = moveimp - 1;
1354 cur = NULL;
1355 goto assign;
1356 }
1357 }
1358
1359 if (imp <= env->best_imp)
1360 goto unlock;
1361
1362 if (cur) {
1363 load = task_h_load(cur);
1364 dst_load -= load;
1365 src_load += load;
1366 }
1367
1368 if (load_too_imbalanced(src_load, dst_load, env))
1369 goto unlock;
1370
1371 /*
1372 * One idle CPU per node is evaluated for a task numa move.
1373 * Call select_idle_sibling to maybe find a better one.
1374 */
1375 if (!cur)
1376 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1377
1378 assign:
1379 task_numa_assign(env, cur, imp);
1380 unlock:
1381 rcu_read_unlock();
1382 }
1383
1384 static void task_numa_find_cpu(struct task_numa_env *env,
1385 long taskimp, long groupimp)
1386 {
1387 int cpu;
1388
1389 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1390 /* Skip this CPU if the source task cannot migrate */
1391 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1392 continue;
1393
1394 env->dst_cpu = cpu;
1395 task_numa_compare(env, taskimp, groupimp);
1396 }
1397 }
1398
1399 static int task_numa_migrate(struct task_struct *p)
1400 {
1401 struct task_numa_env env = {
1402 .p = p,
1403
1404 .src_cpu = task_cpu(p),
1405 .src_nid = task_node(p),
1406
1407 .imbalance_pct = 112,
1408
1409 .best_task = NULL,
1410 .best_imp = 0,
1411 .best_cpu = -1
1412 };
1413 struct sched_domain *sd;
1414 unsigned long taskweight, groupweight;
1415 int nid, ret, dist;
1416 long taskimp, groupimp;
1417
1418 /*
1419 * Pick the lowest SD_NUMA domain, as that would have the smallest
1420 * imbalance and would be the first to start moving tasks about.
1421 *
1422 * And we want to avoid any moving of tasks about, as that would create
1423 * random movement of tasks -- counter the numa conditions we're trying
1424 * to satisfy here.
1425 */
1426 rcu_read_lock();
1427 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1428 if (sd)
1429 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1430 rcu_read_unlock();
1431
1432 /*
1433 * Cpusets can break the scheduler domain tree into smaller
1434 * balance domains, some of which do not cross NUMA boundaries.
1435 * Tasks that are "trapped" in such domains cannot be migrated
1436 * elsewhere, so there is no point in (re)trying.
1437 */
1438 if (unlikely(!sd)) {
1439 p->numa_preferred_nid = task_node(p);
1440 return -EINVAL;
1441 }
1442
1443 env.dst_nid = p->numa_preferred_nid;
1444 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1445 taskweight = task_weight(p, env.src_nid, dist);
1446 groupweight = group_weight(p, env.src_nid, dist);
1447 update_numa_stats(&env.src_stats, env.src_nid);
1448 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1449 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1450 update_numa_stats(&env.dst_stats, env.dst_nid);
1451
1452 /* Try to find a spot on the preferred nid. */
1453 task_numa_find_cpu(&env, taskimp, groupimp);
1454
1455 /*
1456 * Look at other nodes in these cases:
1457 * - there is no space available on the preferred_nid
1458 * - the task is part of a numa_group that is interleaved across
1459 * multiple NUMA nodes; in order to better consolidate the group,
1460 * we need to check other locations.
1461 */
1462 if (env.best_cpu == -1 || (p->numa_group &&
1463 nodes_weight(p->numa_group->active_nodes) > 1)) {
1464 for_each_online_node(nid) {
1465 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1466 continue;
1467
1468 dist = node_distance(env.src_nid, env.dst_nid);
1469 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1470 dist != env.dist) {
1471 taskweight = task_weight(p, env.src_nid, dist);
1472 groupweight = group_weight(p, env.src_nid, dist);
1473 }
1474
1475 /* Only consider nodes where both task and groups benefit */
1476 taskimp = task_weight(p, nid, dist) - taskweight;
1477 groupimp = group_weight(p, nid, dist) - groupweight;
1478 if (taskimp < 0 && groupimp < 0)
1479 continue;
1480
1481 env.dist = dist;
1482 env.dst_nid = nid;
1483 update_numa_stats(&env.dst_stats, env.dst_nid);
1484 task_numa_find_cpu(&env, taskimp, groupimp);
1485 }
1486 }
1487
1488 /*
1489 * If the task is part of a workload that spans multiple NUMA nodes,
1490 * and is migrating into one of the workload's active nodes, remember
1491 * this node as the task's preferred numa node, so the workload can
1492 * settle down.
1493 * A task that migrated to a second choice node will be better off
1494 * trying for a better one later. Do not set the preferred node here.
1495 */
1496 if (p->numa_group) {
1497 if (env.best_cpu == -1)
1498 nid = env.src_nid;
1499 else
1500 nid = env.dst_nid;
1501
1502 if (node_isset(nid, p->numa_group->active_nodes))
1503 sched_setnuma(p, env.dst_nid);
1504 }
1505
1506 /* No better CPU than the current one was found. */
1507 if (env.best_cpu == -1)
1508 return -EAGAIN;
1509
1510 /*
1511 * Reset the scan period if the task is being rescheduled on an
1512 * alternative node to recheck if the tasks is now properly placed.
1513 */
1514 p->numa_scan_period = task_scan_min(p);
1515
1516 if (env.best_task == NULL) {
1517 ret = migrate_task_to(p, env.best_cpu);
1518 if (ret != 0)
1519 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1520 return ret;
1521 }
1522
1523 ret = migrate_swap(p, env.best_task);
1524 if (ret != 0)
1525 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1526 put_task_struct(env.best_task);
1527 return ret;
1528 }
1529
1530 /* Attempt to migrate a task to a CPU on the preferred node. */
1531 static void numa_migrate_preferred(struct task_struct *p)
1532 {
1533 unsigned long interval = HZ;
1534
1535 /* This task has no NUMA fault statistics yet */
1536 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1537 return;
1538
1539 /* Periodically retry migrating the task to the preferred node */
1540 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1541 p->numa_migrate_retry = jiffies + interval;
1542
1543 /* Success if task is already running on preferred CPU */
1544 if (task_node(p) == p->numa_preferred_nid)
1545 return;
1546
1547 /* Otherwise, try migrate to a CPU on the preferred node */
1548 task_numa_migrate(p);
1549 }
1550
1551 /*
1552 * Find the nodes on which the workload is actively running. We do this by
1553 * tracking the nodes from which NUMA hinting faults are triggered. This can
1554 * be different from the set of nodes where the workload's memory is currently
1555 * located.
1556 *
1557 * The bitmask is used to make smarter decisions on when to do NUMA page
1558 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1559 * are added when they cause over 6/16 of the maximum number of faults, but
1560 * only removed when they drop below 3/16.
1561 */
1562 static void update_numa_active_node_mask(struct numa_group *numa_group)
1563 {
1564 unsigned long faults, max_faults = 0;
1565 int nid;
1566
1567 for_each_online_node(nid) {
1568 faults = group_faults_cpu(numa_group, nid);
1569 if (faults > max_faults)
1570 max_faults = faults;
1571 }
1572
1573 for_each_online_node(nid) {
1574 faults = group_faults_cpu(numa_group, nid);
1575 if (!node_isset(nid, numa_group->active_nodes)) {
1576 if (faults > max_faults * 6 / 16)
1577 node_set(nid, numa_group->active_nodes);
1578 } else if (faults < max_faults * 3 / 16)
1579 node_clear(nid, numa_group->active_nodes);
1580 }
1581 }
1582
1583 /*
1584 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1585 * increments. The more local the fault statistics are, the higher the scan
1586 * period will be for the next scan window. If local/(local+remote) ratio is
1587 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1588 * the scan period will decrease. Aim for 70% local accesses.
1589 */
1590 #define NUMA_PERIOD_SLOTS 10
1591 #define NUMA_PERIOD_THRESHOLD 7
1592
1593 /*
1594 * Increase the scan period (slow down scanning) if the majority of
1595 * our memory is already on our local node, or if the majority of
1596 * the page accesses are shared with other processes.
1597 * Otherwise, decrease the scan period.
1598 */
1599 static void update_task_scan_period(struct task_struct *p,
1600 unsigned long shared, unsigned long private)
1601 {
1602 unsigned int period_slot;
1603 int ratio;
1604 int diff;
1605
1606 unsigned long remote = p->numa_faults_locality[0];
1607 unsigned long local = p->numa_faults_locality[1];
1608
1609 /*
1610 * If there were no record hinting faults then either the task is
1611 * completely idle or all activity is areas that are not of interest
1612 * to automatic numa balancing. Scan slower
1613 */
1614 if (local + shared == 0) {
1615 p->numa_scan_period = min(p->numa_scan_period_max,
1616 p->numa_scan_period << 1);
1617
1618 p->mm->numa_next_scan = jiffies +
1619 msecs_to_jiffies(p->numa_scan_period);
1620
1621 return;
1622 }
1623
1624 /*
1625 * Prepare to scale scan period relative to the current period.
1626 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1627 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1628 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1629 */
1630 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1631 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1632 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1633 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1634 if (!slot)
1635 slot = 1;
1636 diff = slot * period_slot;
1637 } else {
1638 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1639
1640 /*
1641 * Scale scan rate increases based on sharing. There is an
1642 * inverse relationship between the degree of sharing and
1643 * the adjustment made to the scanning period. Broadly
1644 * speaking the intent is that there is little point
1645 * scanning faster if shared accesses dominate as it may
1646 * simply bounce migrations uselessly
1647 */
1648 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1649 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1650 }
1651
1652 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1653 task_scan_min(p), task_scan_max(p));
1654 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1655 }
1656
1657 /*
1658 * Get the fraction of time the task has been running since the last
1659 * NUMA placement cycle. The scheduler keeps similar statistics, but
1660 * decays those on a 32ms period, which is orders of magnitude off
1661 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1662 * stats only if the task is so new there are no NUMA statistics yet.
1663 */
1664 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1665 {
1666 u64 runtime, delta, now;
1667 /* Use the start of this time slice to avoid calculations. */
1668 now = p->se.exec_start;
1669 runtime = p->se.sum_exec_runtime;
1670
1671 if (p->last_task_numa_placement) {
1672 delta = runtime - p->last_sum_exec_runtime;
1673 *period = now - p->last_task_numa_placement;
1674 } else {
1675 delta = p->se.avg.runnable_avg_sum;
1676 *period = p->se.avg.runnable_avg_period;
1677 }
1678
1679 p->last_sum_exec_runtime = runtime;
1680 p->last_task_numa_placement = now;
1681
1682 return delta;
1683 }
1684
1685 /*
1686 * Determine the preferred nid for a task in a numa_group. This needs to
1687 * be done in a way that produces consistent results with group_weight,
1688 * otherwise workloads might not converge.
1689 */
1690 static int preferred_group_nid(struct task_struct *p, int nid)
1691 {
1692 nodemask_t nodes;
1693 int dist;
1694
1695 /* Direct connections between all NUMA nodes. */
1696 if (sched_numa_topology_type == NUMA_DIRECT)
1697 return nid;
1698
1699 /*
1700 * On a system with glueless mesh NUMA topology, group_weight
1701 * scores nodes according to the number of NUMA hinting faults on
1702 * both the node itself, and on nearby nodes.
1703 */
1704 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1705 unsigned long score, max_score = 0;
1706 int node, max_node = nid;
1707
1708 dist = sched_max_numa_distance;
1709
1710 for_each_online_node(node) {
1711 score = group_weight(p, node, dist);
1712 if (score > max_score) {
1713 max_score = score;
1714 max_node = node;
1715 }
1716 }
1717 return max_node;
1718 }
1719
1720 /*
1721 * Finding the preferred nid in a system with NUMA backplane
1722 * interconnect topology is more involved. The goal is to locate
1723 * tasks from numa_groups near each other in the system, and
1724 * untangle workloads from different sides of the system. This requires
1725 * searching down the hierarchy of node groups, recursively searching
1726 * inside the highest scoring group of nodes. The nodemask tricks
1727 * keep the complexity of the search down.
1728 */
1729 nodes = node_online_map;
1730 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1731 unsigned long max_faults = 0;
1732 nodemask_t max_group = NODE_MASK_NONE;
1733 int a, b;
1734
1735 /* Are there nodes at this distance from each other? */
1736 if (!find_numa_distance(dist))
1737 continue;
1738
1739 for_each_node_mask(a, nodes) {
1740 unsigned long faults = 0;
1741 nodemask_t this_group;
1742 nodes_clear(this_group);
1743
1744 /* Sum group's NUMA faults; includes a==b case. */
1745 for_each_node_mask(b, nodes) {
1746 if (node_distance(a, b) < dist) {
1747 faults += group_faults(p, b);
1748 node_set(b, this_group);
1749 node_clear(b, nodes);
1750 }
1751 }
1752
1753 /* Remember the top group. */
1754 if (faults > max_faults) {
1755 max_faults = faults;
1756 max_group = this_group;
1757 /*
1758 * subtle: at the smallest distance there is
1759 * just one node left in each "group", the
1760 * winner is the preferred nid.
1761 */
1762 nid = a;
1763 }
1764 }
1765 /* Next round, evaluate the nodes within max_group. */
1766 nodes = max_group;
1767 }
1768 return nid;
1769 }
1770
1771 static void task_numa_placement(struct task_struct *p)
1772 {
1773 int seq, nid, max_nid = -1, max_group_nid = -1;
1774 unsigned long max_faults = 0, max_group_faults = 0;
1775 unsigned long fault_types[2] = { 0, 0 };
1776 unsigned long total_faults;
1777 u64 runtime, period;
1778 spinlock_t *group_lock = NULL;
1779
1780 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1781 if (p->numa_scan_seq == seq)
1782 return;
1783 p->numa_scan_seq = seq;
1784 p->numa_scan_period_max = task_scan_max(p);
1785
1786 total_faults = p->numa_faults_locality[0] +
1787 p->numa_faults_locality[1];
1788 runtime = numa_get_avg_runtime(p, &period);
1789
1790 /* If the task is part of a group prevent parallel updates to group stats */
1791 if (p->numa_group) {
1792 group_lock = &p->numa_group->lock;
1793 spin_lock_irq(group_lock);
1794 }
1795
1796 /* Find the node with the highest number of faults */
1797 for_each_online_node(nid) {
1798 /* Keep track of the offsets in numa_faults array */
1799 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1800 unsigned long faults = 0, group_faults = 0;
1801 int priv;
1802
1803 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1804 long diff, f_diff, f_weight;
1805
1806 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1807 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1808 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1809 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1810
1811 /* Decay existing window, copy faults since last scan */
1812 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1813 fault_types[priv] += p->numa_faults[membuf_idx];
1814 p->numa_faults[membuf_idx] = 0;
1815
1816 /*
1817 * Normalize the faults_from, so all tasks in a group
1818 * count according to CPU use, instead of by the raw
1819 * number of faults. Tasks with little runtime have
1820 * little over-all impact on throughput, and thus their
1821 * faults are less important.
1822 */
1823 f_weight = div64_u64(runtime << 16, period + 1);
1824 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1825 (total_faults + 1);
1826 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1827 p->numa_faults[cpubuf_idx] = 0;
1828
1829 p->numa_faults[mem_idx] += diff;
1830 p->numa_faults[cpu_idx] += f_diff;
1831 faults += p->numa_faults[mem_idx];
1832 p->total_numa_faults += diff;
1833 if (p->numa_group) {
1834 /*
1835 * safe because we can only change our own group
1836 *
1837 * mem_idx represents the offset for a given
1838 * nid and priv in a specific region because it
1839 * is at the beginning of the numa_faults array.
1840 */
1841 p->numa_group->faults[mem_idx] += diff;
1842 p->numa_group->faults_cpu[mem_idx] += f_diff;
1843 p->numa_group->total_faults += diff;
1844 group_faults += p->numa_group->faults[mem_idx];
1845 }
1846 }
1847
1848 if (faults > max_faults) {
1849 max_faults = faults;
1850 max_nid = nid;
1851 }
1852
1853 if (group_faults > max_group_faults) {
1854 max_group_faults = group_faults;
1855 max_group_nid = nid;
1856 }
1857 }
1858
1859 update_task_scan_period(p, fault_types[0], fault_types[1]);
1860
1861 if (p->numa_group) {
1862 update_numa_active_node_mask(p->numa_group);
1863 spin_unlock_irq(group_lock);
1864 max_nid = preferred_group_nid(p, max_group_nid);
1865 }
1866
1867 if (max_faults) {
1868 /* Set the new preferred node */
1869 if (max_nid != p->numa_preferred_nid)
1870 sched_setnuma(p, max_nid);
1871
1872 if (task_node(p) != p->numa_preferred_nid)
1873 numa_migrate_preferred(p);
1874 }
1875 }
1876
1877 static inline int get_numa_group(struct numa_group *grp)
1878 {
1879 return atomic_inc_not_zero(&grp->refcount);
1880 }
1881
1882 static inline void put_numa_group(struct numa_group *grp)
1883 {
1884 if (atomic_dec_and_test(&grp->refcount))
1885 kfree_rcu(grp, rcu);
1886 }
1887
1888 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1889 int *priv)
1890 {
1891 struct numa_group *grp, *my_grp;
1892 struct task_struct *tsk;
1893 bool join = false;
1894 int cpu = cpupid_to_cpu(cpupid);
1895 int i;
1896
1897 if (unlikely(!p->numa_group)) {
1898 unsigned int size = sizeof(struct numa_group) +
1899 4*nr_node_ids*sizeof(unsigned long);
1900
1901 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1902 if (!grp)
1903 return;
1904
1905 atomic_set(&grp->refcount, 1);
1906 spin_lock_init(&grp->lock);
1907 grp->gid = p->pid;
1908 /* Second half of the array tracks nids where faults happen */
1909 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1910 nr_node_ids;
1911
1912 node_set(task_node(current), grp->active_nodes);
1913
1914 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1915 grp->faults[i] = p->numa_faults[i];
1916
1917 grp->total_faults = p->total_numa_faults;
1918
1919 grp->nr_tasks++;
1920 rcu_assign_pointer(p->numa_group, grp);
1921 }
1922
1923 rcu_read_lock();
1924 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1925
1926 if (!cpupid_match_pid(tsk, cpupid))
1927 goto no_join;
1928
1929 grp = rcu_dereference(tsk->numa_group);
1930 if (!grp)
1931 goto no_join;
1932
1933 my_grp = p->numa_group;
1934 if (grp == my_grp)
1935 goto no_join;
1936
1937 /*
1938 * Only join the other group if its bigger; if we're the bigger group,
1939 * the other task will join us.
1940 */
1941 if (my_grp->nr_tasks > grp->nr_tasks)
1942 goto no_join;
1943
1944 /*
1945 * Tie-break on the grp address.
1946 */
1947 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1948 goto no_join;
1949
1950 /* Always join threads in the same process. */
1951 if (tsk->mm == current->mm)
1952 join = true;
1953
1954 /* Simple filter to avoid false positives due to PID collisions */
1955 if (flags & TNF_SHARED)
1956 join = true;
1957
1958 /* Update priv based on whether false sharing was detected */
1959 *priv = !join;
1960
1961 if (join && !get_numa_group(grp))
1962 goto no_join;
1963
1964 rcu_read_unlock();
1965
1966 if (!join)
1967 return;
1968
1969 BUG_ON(irqs_disabled());
1970 double_lock_irq(&my_grp->lock, &grp->lock);
1971
1972 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1973 my_grp->faults[i] -= p->numa_faults[i];
1974 grp->faults[i] += p->numa_faults[i];
1975 }
1976 my_grp->total_faults -= p->total_numa_faults;
1977 grp->total_faults += p->total_numa_faults;
1978
1979 my_grp->nr_tasks--;
1980 grp->nr_tasks++;
1981
1982 spin_unlock(&my_grp->lock);
1983 spin_unlock_irq(&grp->lock);
1984
1985 rcu_assign_pointer(p->numa_group, grp);
1986
1987 put_numa_group(my_grp);
1988 return;
1989
1990 no_join:
1991 rcu_read_unlock();
1992 return;
1993 }
1994
1995 void task_numa_free(struct task_struct *p)
1996 {
1997 struct numa_group *grp = p->numa_group;
1998 void *numa_faults = p->numa_faults;
1999 unsigned long flags;
2000 int i;
2001
2002 if (grp) {
2003 spin_lock_irqsave(&grp->lock, flags);
2004 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2005 grp->faults[i] -= p->numa_faults[i];
2006 grp->total_faults -= p->total_numa_faults;
2007
2008 grp->nr_tasks--;
2009 spin_unlock_irqrestore(&grp->lock, flags);
2010 RCU_INIT_POINTER(p->numa_group, NULL);
2011 put_numa_group(grp);
2012 }
2013
2014 p->numa_faults = NULL;
2015 kfree(numa_faults);
2016 }
2017
2018 /*
2019 * Got a PROT_NONE fault for a page on @node.
2020 */
2021 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2022 {
2023 struct task_struct *p = current;
2024 bool migrated = flags & TNF_MIGRATED;
2025 int cpu_node = task_node(current);
2026 int local = !!(flags & TNF_FAULT_LOCAL);
2027 int priv;
2028
2029 if (!numabalancing_enabled)
2030 return;
2031
2032 /* for example, ksmd faulting in a user's mm */
2033 if (!p->mm)
2034 return;
2035
2036 /* Allocate buffer to track faults on a per-node basis */
2037 if (unlikely(!p->numa_faults)) {
2038 int size = sizeof(*p->numa_faults) *
2039 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2040
2041 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2042 if (!p->numa_faults)
2043 return;
2044
2045 p->total_numa_faults = 0;
2046 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2047 }
2048
2049 /*
2050 * First accesses are treated as private, otherwise consider accesses
2051 * to be private if the accessing pid has not changed
2052 */
2053 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2054 priv = 1;
2055 } else {
2056 priv = cpupid_match_pid(p, last_cpupid);
2057 if (!priv && !(flags & TNF_NO_GROUP))
2058 task_numa_group(p, last_cpupid, flags, &priv);
2059 }
2060
2061 /*
2062 * If a workload spans multiple NUMA nodes, a shared fault that
2063 * occurs wholly within the set of nodes that the workload is
2064 * actively using should be counted as local. This allows the
2065 * scan rate to slow down when a workload has settled down.
2066 */
2067 if (!priv && !local && p->numa_group &&
2068 node_isset(cpu_node, p->numa_group->active_nodes) &&
2069 node_isset(mem_node, p->numa_group->active_nodes))
2070 local = 1;
2071
2072 task_numa_placement(p);
2073
2074 /*
2075 * Retry task to preferred node migration periodically, in case it
2076 * case it previously failed, or the scheduler moved us.
2077 */
2078 if (time_after(jiffies, p->numa_migrate_retry))
2079 numa_migrate_preferred(p);
2080
2081 if (migrated)
2082 p->numa_pages_migrated += pages;
2083
2084 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2085 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2086 p->numa_faults_locality[local] += pages;
2087 }
2088
2089 static void reset_ptenuma_scan(struct task_struct *p)
2090 {
2091 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2092 p->mm->numa_scan_offset = 0;
2093 }
2094
2095 /*
2096 * The expensive part of numa migration is done from task_work context.
2097 * Triggered from task_tick_numa().
2098 */
2099 void task_numa_work(struct callback_head *work)
2100 {
2101 unsigned long migrate, next_scan, now = jiffies;
2102 struct task_struct *p = current;
2103 struct mm_struct *mm = p->mm;
2104 struct vm_area_struct *vma;
2105 unsigned long start, end;
2106 unsigned long nr_pte_updates = 0;
2107 long pages;
2108
2109 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2110
2111 work->next = work; /* protect against double add */
2112 /*
2113 * Who cares about NUMA placement when they're dying.
2114 *
2115 * NOTE: make sure not to dereference p->mm before this check,
2116 * exit_task_work() happens _after_ exit_mm() so we could be called
2117 * without p->mm even though we still had it when we enqueued this
2118 * work.
2119 */
2120 if (p->flags & PF_EXITING)
2121 return;
2122
2123 if (!mm->numa_next_scan) {
2124 mm->numa_next_scan = now +
2125 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2126 }
2127
2128 /*
2129 * Enforce maximal scan/migration frequency..
2130 */
2131 migrate = mm->numa_next_scan;
2132 if (time_before(now, migrate))
2133 return;
2134
2135 if (p->numa_scan_period == 0) {
2136 p->numa_scan_period_max = task_scan_max(p);
2137 p->numa_scan_period = task_scan_min(p);
2138 }
2139
2140 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2141 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2142 return;
2143
2144 /*
2145 * Delay this task enough that another task of this mm will likely win
2146 * the next time around.
2147 */
2148 p->node_stamp += 2 * TICK_NSEC;
2149
2150 start = mm->numa_scan_offset;
2151 pages = sysctl_numa_balancing_scan_size;
2152 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2153 if (!pages)
2154 return;
2155
2156 down_read(&mm->mmap_sem);
2157 vma = find_vma(mm, start);
2158 if (!vma) {
2159 reset_ptenuma_scan(p);
2160 start = 0;
2161 vma = mm->mmap;
2162 }
2163 for (; vma; vma = vma->vm_next) {
2164 if (!vma_migratable(vma) || !vma_policy_mof(vma))
2165 continue;
2166
2167 /*
2168 * Shared library pages mapped by multiple processes are not
2169 * migrated as it is expected they are cache replicated. Avoid
2170 * hinting faults in read-only file-backed mappings or the vdso
2171 * as migrating the pages will be of marginal benefit.
2172 */
2173 if (!vma->vm_mm ||
2174 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2175 continue;
2176
2177 /*
2178 * Skip inaccessible VMAs to avoid any confusion between
2179 * PROT_NONE and NUMA hinting ptes
2180 */
2181 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2182 continue;
2183
2184 do {
2185 start = max(start, vma->vm_start);
2186 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2187 end = min(end, vma->vm_end);
2188 nr_pte_updates += change_prot_numa(vma, start, end);
2189
2190 /*
2191 * Scan sysctl_numa_balancing_scan_size but ensure that
2192 * at least one PTE is updated so that unused virtual
2193 * address space is quickly skipped.
2194 */
2195 if (nr_pte_updates)
2196 pages -= (end - start) >> PAGE_SHIFT;
2197
2198 start = end;
2199 if (pages <= 0)
2200 goto out;
2201
2202 cond_resched();
2203 } while (end != vma->vm_end);
2204 }
2205
2206 out:
2207 /*
2208 * It is possible to reach the end of the VMA list but the last few
2209 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2210 * would find the !migratable VMA on the next scan but not reset the
2211 * scanner to the start so check it now.
2212 */
2213 if (vma)
2214 mm->numa_scan_offset = start;
2215 else
2216 reset_ptenuma_scan(p);
2217 up_read(&mm->mmap_sem);
2218 }
2219
2220 /*
2221 * Drive the periodic memory faults..
2222 */
2223 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2224 {
2225 struct callback_head *work = &curr->numa_work;
2226 u64 period, now;
2227
2228 /*
2229 * We don't care about NUMA placement if we don't have memory.
2230 */
2231 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2232 return;
2233
2234 /*
2235 * Using runtime rather than walltime has the dual advantage that
2236 * we (mostly) drive the selection from busy threads and that the
2237 * task needs to have done some actual work before we bother with
2238 * NUMA placement.
2239 */
2240 now = curr->se.sum_exec_runtime;
2241 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2242
2243 if (now - curr->node_stamp > period) {
2244 if (!curr->node_stamp)
2245 curr->numa_scan_period = task_scan_min(curr);
2246 curr->node_stamp += period;
2247
2248 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2249 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2250 task_work_add(curr, work, true);
2251 }
2252 }
2253 }
2254 #else
2255 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2256 {
2257 }
2258
2259 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2260 {
2261 }
2262
2263 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2264 {
2265 }
2266 #endif /* CONFIG_NUMA_BALANCING */
2267
2268 static void
2269 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2270 {
2271 update_load_add(&cfs_rq->load, se->load.weight);
2272 if (!parent_entity(se))
2273 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2274 #ifdef CONFIG_SMP
2275 if (entity_is_task(se)) {
2276 struct rq *rq = rq_of(cfs_rq);
2277
2278 account_numa_enqueue(rq, task_of(se));
2279 list_add(&se->group_node, &rq->cfs_tasks);
2280 }
2281 #endif
2282 cfs_rq->nr_running++;
2283 }
2284
2285 static void
2286 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2287 {
2288 update_load_sub(&cfs_rq->load, se->load.weight);
2289 if (!parent_entity(se))
2290 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2291 if (entity_is_task(se)) {
2292 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2293 list_del_init(&se->group_node);
2294 }
2295 cfs_rq->nr_running--;
2296 }
2297
2298 #ifdef CONFIG_FAIR_GROUP_SCHED
2299 # ifdef CONFIG_SMP
2300 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2301 {
2302 long tg_weight;
2303
2304 /*
2305 * Use this CPU's actual weight instead of the last load_contribution
2306 * to gain a more accurate current total weight. See
2307 * update_cfs_rq_load_contribution().
2308 */
2309 tg_weight = atomic_long_read(&tg->load_avg);
2310 tg_weight -= cfs_rq->tg_load_contrib;
2311 tg_weight += cfs_rq->load.weight;
2312
2313 return tg_weight;
2314 }
2315
2316 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2317 {
2318 long tg_weight, load, shares;
2319
2320 tg_weight = calc_tg_weight(tg, cfs_rq);
2321 load = cfs_rq->load.weight;
2322
2323 shares = (tg->shares * load);
2324 if (tg_weight)
2325 shares /= tg_weight;
2326
2327 if (shares < MIN_SHARES)
2328 shares = MIN_SHARES;
2329 if (shares > tg->shares)
2330 shares = tg->shares;
2331
2332 return shares;
2333 }
2334 # else /* CONFIG_SMP */
2335 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2336 {
2337 return tg->shares;
2338 }
2339 # endif /* CONFIG_SMP */
2340 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2341 unsigned long weight)
2342 {
2343 if (se->on_rq) {
2344 /* commit outstanding execution time */
2345 if (cfs_rq->curr == se)
2346 update_curr(cfs_rq);
2347 account_entity_dequeue(cfs_rq, se);
2348 }
2349
2350 update_load_set(&se->load, weight);
2351
2352 if (se->on_rq)
2353 account_entity_enqueue(cfs_rq, se);
2354 }
2355
2356 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2357
2358 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2359 {
2360 struct task_group *tg;
2361 struct sched_entity *se;
2362 long shares;
2363
2364 tg = cfs_rq->tg;
2365 se = tg->se[cpu_of(rq_of(cfs_rq))];
2366 if (!se || throttled_hierarchy(cfs_rq))
2367 return;
2368 #ifndef CONFIG_SMP
2369 if (likely(se->load.weight == tg->shares))
2370 return;
2371 #endif
2372 shares = calc_cfs_shares(cfs_rq, tg);
2373
2374 reweight_entity(cfs_rq_of(se), se, shares);
2375 }
2376 #else /* CONFIG_FAIR_GROUP_SCHED */
2377 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2378 {
2379 }
2380 #endif /* CONFIG_FAIR_GROUP_SCHED */
2381
2382 #ifdef CONFIG_SMP
2383 /*
2384 * We choose a half-life close to 1 scheduling period.
2385 * Note: The tables below are dependent on this value.
2386 */
2387 #define LOAD_AVG_PERIOD 32
2388 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2389 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2390
2391 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2392 static const u32 runnable_avg_yN_inv[] = {
2393 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2394 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2395 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2396 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2397 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2398 0x85aac367, 0x82cd8698,
2399 };
2400
2401 /*
2402 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2403 * over-estimates when re-combining.
2404 */
2405 static const u32 runnable_avg_yN_sum[] = {
2406 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2407 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2408 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2409 };
2410
2411 /*
2412 * Approximate:
2413 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2414 */
2415 static __always_inline u64 decay_load(u64 val, u64 n)
2416 {
2417 unsigned int local_n;
2418
2419 if (!n)
2420 return val;
2421 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2422 return 0;
2423
2424 /* after bounds checking we can collapse to 32-bit */
2425 local_n = n;
2426
2427 /*
2428 * As y^PERIOD = 1/2, we can combine
2429 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2430 * With a look-up table which covers y^n (n<PERIOD)
2431 *
2432 * To achieve constant time decay_load.
2433 */
2434 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2435 val >>= local_n / LOAD_AVG_PERIOD;
2436 local_n %= LOAD_AVG_PERIOD;
2437 }
2438
2439 val *= runnable_avg_yN_inv[local_n];
2440 /* We don't use SRR here since we always want to round down. */
2441 return val >> 32;
2442 }
2443
2444 /*
2445 * For updates fully spanning n periods, the contribution to runnable
2446 * average will be: \Sum 1024*y^n
2447 *
2448 * We can compute this reasonably efficiently by combining:
2449 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2450 */
2451 static u32 __compute_runnable_contrib(u64 n)
2452 {
2453 u32 contrib = 0;
2454
2455 if (likely(n <= LOAD_AVG_PERIOD))
2456 return runnable_avg_yN_sum[n];
2457 else if (unlikely(n >= LOAD_AVG_MAX_N))
2458 return LOAD_AVG_MAX;
2459
2460 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2461 do {
2462 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2463 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2464
2465 n -= LOAD_AVG_PERIOD;
2466 } while (n > LOAD_AVG_PERIOD);
2467
2468 contrib = decay_load(contrib, n);
2469 return contrib + runnable_avg_yN_sum[n];
2470 }
2471
2472 /*
2473 * We can represent the historical contribution to runnable average as the
2474 * coefficients of a geometric series. To do this we sub-divide our runnable
2475 * history into segments of approximately 1ms (1024us); label the segment that
2476 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2477 *
2478 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2479 * p0 p1 p2
2480 * (now) (~1ms ago) (~2ms ago)
2481 *
2482 * Let u_i denote the fraction of p_i that the entity was runnable.
2483 *
2484 * We then designate the fractions u_i as our co-efficients, yielding the
2485 * following representation of historical load:
2486 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2487 *
2488 * We choose y based on the with of a reasonably scheduling period, fixing:
2489 * y^32 = 0.5
2490 *
2491 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2492 * approximately half as much as the contribution to load within the last ms
2493 * (u_0).
2494 *
2495 * When a period "rolls over" and we have new u_0`, multiplying the previous
2496 * sum again by y is sufficient to update:
2497 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2498 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2499 */
2500 static __always_inline int __update_entity_runnable_avg(u64 now,
2501 struct sched_avg *sa,
2502 int runnable)
2503 {
2504 u64 delta, periods;
2505 u32 runnable_contrib;
2506 int delta_w, decayed = 0;
2507
2508 delta = now - sa->last_runnable_update;
2509 /*
2510 * This should only happen when time goes backwards, which it
2511 * unfortunately does during sched clock init when we swap over to TSC.
2512 */
2513 if ((s64)delta < 0) {
2514 sa->last_runnable_update = now;
2515 return 0;
2516 }
2517
2518 /*
2519 * Use 1024ns as the unit of measurement since it's a reasonable
2520 * approximation of 1us and fast to compute.
2521 */
2522 delta >>= 10;
2523 if (!delta)
2524 return 0;
2525 sa->last_runnable_update = now;
2526
2527 /* delta_w is the amount already accumulated against our next period */
2528 delta_w = sa->runnable_avg_period % 1024;
2529 if (delta + delta_w >= 1024) {
2530 /* period roll-over */
2531 decayed = 1;
2532
2533 /*
2534 * Now that we know we're crossing a period boundary, figure
2535 * out how much from delta we need to complete the current
2536 * period and accrue it.
2537 */
2538 delta_w = 1024 - delta_w;
2539 if (runnable)
2540 sa->runnable_avg_sum += delta_w;
2541 sa->runnable_avg_period += delta_w;
2542
2543 delta -= delta_w;
2544
2545 /* Figure out how many additional periods this update spans */
2546 periods = delta / 1024;
2547 delta %= 1024;
2548
2549 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2550 periods + 1);
2551 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2552 periods + 1);
2553
2554 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2555 runnable_contrib = __compute_runnable_contrib(periods);
2556 if (runnable)
2557 sa->runnable_avg_sum += runnable_contrib;
2558 sa->runnable_avg_period += runnable_contrib;
2559 }
2560
2561 /* Remainder of delta accrued against u_0` */
2562 if (runnable)
2563 sa->runnable_avg_sum += delta;
2564 sa->runnable_avg_period += delta;
2565
2566 return decayed;
2567 }
2568
2569 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2570 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2571 {
2572 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2573 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2574
2575 decays -= se->avg.decay_count;
2576 se->avg.decay_count = 0;
2577 if (!decays)
2578 return 0;
2579
2580 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2581
2582 return decays;
2583 }
2584
2585 #ifdef CONFIG_FAIR_GROUP_SCHED
2586 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2587 int force_update)
2588 {
2589 struct task_group *tg = cfs_rq->tg;
2590 long tg_contrib;
2591
2592 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2593 tg_contrib -= cfs_rq->tg_load_contrib;
2594
2595 if (!tg_contrib)
2596 return;
2597
2598 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2599 atomic_long_add(tg_contrib, &tg->load_avg);
2600 cfs_rq->tg_load_contrib += tg_contrib;
2601 }
2602 }
2603
2604 /*
2605 * Aggregate cfs_rq runnable averages into an equivalent task_group
2606 * representation for computing load contributions.
2607 */
2608 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2609 struct cfs_rq *cfs_rq)
2610 {
2611 struct task_group *tg = cfs_rq->tg;
2612 long contrib;
2613
2614 /* The fraction of a cpu used by this cfs_rq */
2615 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2616 sa->runnable_avg_period + 1);
2617 contrib -= cfs_rq->tg_runnable_contrib;
2618
2619 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2620 atomic_add(contrib, &tg->runnable_avg);
2621 cfs_rq->tg_runnable_contrib += contrib;
2622 }
2623 }
2624
2625 static inline void __update_group_entity_contrib(struct sched_entity *se)
2626 {
2627 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2628 struct task_group *tg = cfs_rq->tg;
2629 int runnable_avg;
2630
2631 u64 contrib;
2632
2633 contrib = cfs_rq->tg_load_contrib * tg->shares;
2634 se->avg.load_avg_contrib = div_u64(contrib,
2635 atomic_long_read(&tg->load_avg) + 1);
2636
2637 /*
2638 * For group entities we need to compute a correction term in the case
2639 * that they are consuming <1 cpu so that we would contribute the same
2640 * load as a task of equal weight.
2641 *
2642 * Explicitly co-ordinating this measurement would be expensive, but
2643 * fortunately the sum of each cpus contribution forms a usable
2644 * lower-bound on the true value.
2645 *
2646 * Consider the aggregate of 2 contributions. Either they are disjoint
2647 * (and the sum represents true value) or they are disjoint and we are
2648 * understating by the aggregate of their overlap.
2649 *
2650 * Extending this to N cpus, for a given overlap, the maximum amount we
2651 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2652 * cpus that overlap for this interval and w_i is the interval width.
2653 *
2654 * On a small machine; the first term is well-bounded which bounds the
2655 * total error since w_i is a subset of the period. Whereas on a
2656 * larger machine, while this first term can be larger, if w_i is the
2657 * of consequential size guaranteed to see n_i*w_i quickly converge to
2658 * our upper bound of 1-cpu.
2659 */
2660 runnable_avg = atomic_read(&tg->runnable_avg);
2661 if (runnable_avg < NICE_0_LOAD) {
2662 se->avg.load_avg_contrib *= runnable_avg;
2663 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2664 }
2665 }
2666
2667 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2668 {
2669 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2670 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2671 }
2672 #else /* CONFIG_FAIR_GROUP_SCHED */
2673 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2674 int force_update) {}
2675 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2676 struct cfs_rq *cfs_rq) {}
2677 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2678 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2679 #endif /* CONFIG_FAIR_GROUP_SCHED */
2680
2681 static inline void __update_task_entity_contrib(struct sched_entity *se)
2682 {
2683 u32 contrib;
2684
2685 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2686 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2687 contrib /= (se->avg.runnable_avg_period + 1);
2688 se->avg.load_avg_contrib = scale_load(contrib);
2689 }
2690
2691 /* Compute the current contribution to load_avg by se, return any delta */
2692 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2693 {
2694 long old_contrib = se->avg.load_avg_contrib;
2695
2696 if (entity_is_task(se)) {
2697 __update_task_entity_contrib(se);
2698 } else {
2699 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2700 __update_group_entity_contrib(se);
2701 }
2702
2703 return se->avg.load_avg_contrib - old_contrib;
2704 }
2705
2706 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2707 long load_contrib)
2708 {
2709 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2710 cfs_rq->blocked_load_avg -= load_contrib;
2711 else
2712 cfs_rq->blocked_load_avg = 0;
2713 }
2714
2715 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2716
2717 /* Update a sched_entity's runnable average */
2718 static inline void update_entity_load_avg(struct sched_entity *se,
2719 int update_cfs_rq)
2720 {
2721 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2722 long contrib_delta;
2723 u64 now;
2724
2725 /*
2726 * For a group entity we need to use their owned cfs_rq_clock_task() in
2727 * case they are the parent of a throttled hierarchy.
2728 */
2729 if (entity_is_task(se))
2730 now = cfs_rq_clock_task(cfs_rq);
2731 else
2732 now = cfs_rq_clock_task(group_cfs_rq(se));
2733
2734 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2735 return;
2736
2737 contrib_delta = __update_entity_load_avg_contrib(se);
2738
2739 if (!update_cfs_rq)
2740 return;
2741
2742 if (se->on_rq)
2743 cfs_rq->runnable_load_avg += contrib_delta;
2744 else
2745 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2746 }
2747
2748 /*
2749 * Decay the load contributed by all blocked children and account this so that
2750 * their contribution may appropriately discounted when they wake up.
2751 */
2752 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2753 {
2754 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2755 u64 decays;
2756
2757 decays = now - cfs_rq->last_decay;
2758 if (!decays && !force_update)
2759 return;
2760
2761 if (atomic_long_read(&cfs_rq->removed_load)) {
2762 unsigned long removed_load;
2763 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2764 subtract_blocked_load_contrib(cfs_rq, removed_load);
2765 }
2766
2767 if (decays) {
2768 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2769 decays);
2770 atomic64_add(decays, &cfs_rq->decay_counter);
2771 cfs_rq->last_decay = now;
2772 }
2773
2774 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2775 }
2776
2777 /* Add the load generated by se into cfs_rq's child load-average */
2778 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2779 struct sched_entity *se,
2780 int wakeup)
2781 {
2782 /*
2783 * We track migrations using entity decay_count <= 0, on a wake-up
2784 * migration we use a negative decay count to track the remote decays
2785 * accumulated while sleeping.
2786 *
2787 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2788 * are seen by enqueue_entity_load_avg() as a migration with an already
2789 * constructed load_avg_contrib.
2790 */
2791 if (unlikely(se->avg.decay_count <= 0)) {
2792 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2793 if (se->avg.decay_count) {
2794 /*
2795 * In a wake-up migration we have to approximate the
2796 * time sleeping. This is because we can't synchronize
2797 * clock_task between the two cpus, and it is not
2798 * guaranteed to be read-safe. Instead, we can
2799 * approximate this using our carried decays, which are
2800 * explicitly atomically readable.
2801 */
2802 se->avg.last_runnable_update -= (-se->avg.decay_count)
2803 << 20;
2804 update_entity_load_avg(se, 0);
2805 /* Indicate that we're now synchronized and on-rq */
2806 se->avg.decay_count = 0;
2807 }
2808 wakeup = 0;
2809 } else {
2810 __synchronize_entity_decay(se);
2811 }
2812
2813 /* migrated tasks did not contribute to our blocked load */
2814 if (wakeup) {
2815 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2816 update_entity_load_avg(se, 0);
2817 }
2818
2819 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2820 /* we force update consideration on load-balancer moves */
2821 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2822 }
2823
2824 /*
2825 * Remove se's load from this cfs_rq child load-average, if the entity is
2826 * transitioning to a blocked state we track its projected decay using
2827 * blocked_load_avg.
2828 */
2829 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2830 struct sched_entity *se,
2831 int sleep)
2832 {
2833 update_entity_load_avg(se, 1);
2834 /* we force update consideration on load-balancer moves */
2835 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2836
2837 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2838 if (sleep) {
2839 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2840 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2841 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2842 }
2843
2844 /*
2845 * Update the rq's load with the elapsed running time before entering
2846 * idle. if the last scheduled task is not a CFS task, idle_enter will
2847 * be the only way to update the runnable statistic.
2848 */
2849 void idle_enter_fair(struct rq *this_rq)
2850 {
2851 update_rq_runnable_avg(this_rq, 1);
2852 }
2853
2854 /*
2855 * Update the rq's load with the elapsed idle time before a task is
2856 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2857 * be the only way to update the runnable statistic.
2858 */
2859 void idle_exit_fair(struct rq *this_rq)
2860 {
2861 update_rq_runnable_avg(this_rq, 0);
2862 }
2863
2864 static int idle_balance(struct rq *this_rq);
2865
2866 #else /* CONFIG_SMP */
2867
2868 static inline void update_entity_load_avg(struct sched_entity *se,
2869 int update_cfs_rq) {}
2870 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2871 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2872 struct sched_entity *se,
2873 int wakeup) {}
2874 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2875 struct sched_entity *se,
2876 int sleep) {}
2877 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2878 int force_update) {}
2879
2880 static inline int idle_balance(struct rq *rq)
2881 {
2882 return 0;
2883 }
2884
2885 #endif /* CONFIG_SMP */
2886
2887 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2888 {
2889 #ifdef CONFIG_SCHEDSTATS
2890 struct task_struct *tsk = NULL;
2891
2892 if (entity_is_task(se))
2893 tsk = task_of(se);
2894
2895 if (se->statistics.sleep_start) {
2896 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2897
2898 if ((s64)delta < 0)
2899 delta = 0;
2900
2901 if (unlikely(delta > se->statistics.sleep_max))
2902 se->statistics.sleep_max = delta;
2903
2904 se->statistics.sleep_start = 0;
2905 se->statistics.sum_sleep_runtime += delta;
2906
2907 if (tsk) {
2908 account_scheduler_latency(tsk, delta >> 10, 1);
2909 trace_sched_stat_sleep(tsk, delta);
2910 }
2911 }
2912 if (se->statistics.block_start) {
2913 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2914
2915 if ((s64)delta < 0)
2916 delta = 0;
2917
2918 if (unlikely(delta > se->statistics.block_max))
2919 se->statistics.block_max = delta;
2920
2921 se->statistics.block_start = 0;
2922 se->statistics.sum_sleep_runtime += delta;
2923
2924 if (tsk) {
2925 if (tsk->in_iowait) {
2926 se->statistics.iowait_sum += delta;
2927 se->statistics.iowait_count++;
2928 trace_sched_stat_iowait(tsk, delta);
2929 }
2930
2931 trace_sched_stat_blocked(tsk, delta);
2932
2933 /*
2934 * Blocking time is in units of nanosecs, so shift by
2935 * 20 to get a milliseconds-range estimation of the
2936 * amount of time that the task spent sleeping:
2937 */
2938 if (unlikely(prof_on == SLEEP_PROFILING)) {
2939 profile_hits(SLEEP_PROFILING,
2940 (void *)get_wchan(tsk),
2941 delta >> 20);
2942 }
2943 account_scheduler_latency(tsk, delta >> 10, 0);
2944 }
2945 }
2946 #endif
2947 }
2948
2949 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2950 {
2951 #ifdef CONFIG_SCHED_DEBUG
2952 s64 d = se->vruntime - cfs_rq->min_vruntime;
2953
2954 if (d < 0)
2955 d = -d;
2956
2957 if (d > 3*sysctl_sched_latency)
2958 schedstat_inc(cfs_rq, nr_spread_over);
2959 #endif
2960 }
2961
2962 static void
2963 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2964 {
2965 u64 vruntime = cfs_rq->min_vruntime;
2966
2967 /*
2968 * The 'current' period is already promised to the current tasks,
2969 * however the extra weight of the new task will slow them down a
2970 * little, place the new task so that it fits in the slot that
2971 * stays open at the end.
2972 */
2973 if (initial && sched_feat(START_DEBIT))
2974 vruntime += sched_vslice(cfs_rq, se);
2975
2976 /* sleeps up to a single latency don't count. */
2977 if (!initial) {
2978 unsigned long thresh = sysctl_sched_latency;
2979
2980 /*
2981 * Halve their sleep time's effect, to allow
2982 * for a gentler effect of sleepers:
2983 */
2984 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2985 thresh >>= 1;
2986
2987 vruntime -= thresh;
2988 }
2989
2990 /* ensure we never gain time by being placed backwards. */
2991 se->vruntime = max_vruntime(se->vruntime, vruntime);
2992 }
2993
2994 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2995
2996 static void
2997 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2998 {
2999 /*
3000 * Update the normalized vruntime before updating min_vruntime
3001 * through calling update_curr().
3002 */
3003 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3004 se->vruntime += cfs_rq->min_vruntime;
3005
3006 /*
3007 * Update run-time statistics of the 'current'.
3008 */
3009 update_curr(cfs_rq);
3010 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3011 account_entity_enqueue(cfs_rq, se);
3012 update_cfs_shares(cfs_rq);
3013
3014 if (flags & ENQUEUE_WAKEUP) {
3015 place_entity(cfs_rq, se, 0);
3016 enqueue_sleeper(cfs_rq, se);
3017 }
3018
3019 update_stats_enqueue(cfs_rq, se);
3020 check_spread(cfs_rq, se);
3021 if (se != cfs_rq->curr)
3022 __enqueue_entity(cfs_rq, se);
3023 se->on_rq = 1;
3024
3025 if (cfs_rq->nr_running == 1) {
3026 list_add_leaf_cfs_rq(cfs_rq);
3027 check_enqueue_throttle(cfs_rq);
3028 }
3029 }
3030
3031 static void __clear_buddies_last(struct sched_entity *se)
3032 {
3033 for_each_sched_entity(se) {
3034 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3035 if (cfs_rq->last != se)
3036 break;
3037
3038 cfs_rq->last = NULL;
3039 }
3040 }
3041
3042 static void __clear_buddies_next(struct sched_entity *se)
3043 {
3044 for_each_sched_entity(se) {
3045 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3046 if (cfs_rq->next != se)
3047 break;
3048
3049 cfs_rq->next = NULL;
3050 }
3051 }
3052
3053 static void __clear_buddies_skip(struct sched_entity *se)
3054 {
3055 for_each_sched_entity(se) {
3056 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3057 if (cfs_rq->skip != se)
3058 break;
3059
3060 cfs_rq->skip = NULL;
3061 }
3062 }
3063
3064 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3065 {
3066 if (cfs_rq->last == se)
3067 __clear_buddies_last(se);
3068
3069 if (cfs_rq->next == se)
3070 __clear_buddies_next(se);
3071
3072 if (cfs_rq->skip == se)
3073 __clear_buddies_skip(se);
3074 }
3075
3076 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3077
3078 static void
3079 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3080 {
3081 /*
3082 * Update run-time statistics of the 'current'.
3083 */
3084 update_curr(cfs_rq);
3085 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3086
3087 update_stats_dequeue(cfs_rq, se);
3088 if (flags & DEQUEUE_SLEEP) {
3089 #ifdef CONFIG_SCHEDSTATS
3090 if (entity_is_task(se)) {
3091 struct task_struct *tsk = task_of(se);
3092
3093 if (tsk->state & TASK_INTERRUPTIBLE)
3094 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3095 if (tsk->state & TASK_UNINTERRUPTIBLE)
3096 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3097 }
3098 #endif
3099 }
3100
3101 clear_buddies(cfs_rq, se);
3102
3103 if (se != cfs_rq->curr)
3104 __dequeue_entity(cfs_rq, se);
3105 se->on_rq = 0;
3106 account_entity_dequeue(cfs_rq, se);
3107
3108 /*
3109 * Normalize the entity after updating the min_vruntime because the
3110 * update can refer to the ->curr item and we need to reflect this
3111 * movement in our normalized position.
3112 */
3113 if (!(flags & DEQUEUE_SLEEP))
3114 se->vruntime -= cfs_rq->min_vruntime;
3115
3116 /* return excess runtime on last dequeue */
3117 return_cfs_rq_runtime(cfs_rq);
3118
3119 update_min_vruntime(cfs_rq);
3120 update_cfs_shares(cfs_rq);
3121 }
3122
3123 /*
3124 * Preempt the current task with a newly woken task if needed:
3125 */
3126 static void
3127 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3128 {
3129 unsigned long ideal_runtime, delta_exec;
3130 struct sched_entity *se;
3131 s64 delta;
3132
3133 ideal_runtime = sched_slice(cfs_rq, curr);
3134 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3135 if (delta_exec > ideal_runtime) {
3136 resched_curr(rq_of(cfs_rq));
3137 /*
3138 * The current task ran long enough, ensure it doesn't get
3139 * re-elected due to buddy favours.
3140 */
3141 clear_buddies(cfs_rq, curr);
3142 return;
3143 }
3144
3145 /*
3146 * Ensure that a task that missed wakeup preemption by a
3147 * narrow margin doesn't have to wait for a full slice.
3148 * This also mitigates buddy induced latencies under load.
3149 */
3150 if (delta_exec < sysctl_sched_min_granularity)
3151 return;
3152
3153 se = __pick_first_entity(cfs_rq);
3154 delta = curr->vruntime - se->vruntime;
3155
3156 if (delta < 0)
3157 return;
3158
3159 if (delta > ideal_runtime)
3160 resched_curr(rq_of(cfs_rq));
3161 }
3162
3163 static void
3164 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3165 {
3166 /* 'current' is not kept within the tree. */
3167 if (se->on_rq) {
3168 /*
3169 * Any task has to be enqueued before it get to execute on
3170 * a CPU. So account for the time it spent waiting on the
3171 * runqueue.
3172 */
3173 update_stats_wait_end(cfs_rq, se);
3174 __dequeue_entity(cfs_rq, se);
3175 }
3176
3177 update_stats_curr_start(cfs_rq, se);
3178 cfs_rq->curr = se;
3179 #ifdef CONFIG_SCHEDSTATS
3180 /*
3181 * Track our maximum slice length, if the CPU's load is at
3182 * least twice that of our own weight (i.e. dont track it
3183 * when there are only lesser-weight tasks around):
3184 */
3185 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3186 se->statistics.slice_max = max(se->statistics.slice_max,
3187 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3188 }
3189 #endif
3190 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3191 }
3192
3193 static int
3194 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3195
3196 /*
3197 * Pick the next process, keeping these things in mind, in this order:
3198 * 1) keep things fair between processes/task groups
3199 * 2) pick the "next" process, since someone really wants that to run
3200 * 3) pick the "last" process, for cache locality
3201 * 4) do not run the "skip" process, if something else is available
3202 */
3203 static struct sched_entity *
3204 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3205 {
3206 struct sched_entity *left = __pick_first_entity(cfs_rq);
3207 struct sched_entity *se;
3208
3209 /*
3210 * If curr is set we have to see if its left of the leftmost entity
3211 * still in the tree, provided there was anything in the tree at all.
3212 */
3213 if (!left || (curr && entity_before(curr, left)))
3214 left = curr;
3215
3216 se = left; /* ideally we run the leftmost entity */
3217
3218 /*
3219 * Avoid running the skip buddy, if running something else can
3220 * be done without getting too unfair.
3221 */
3222 if (cfs_rq->skip == se) {
3223 struct sched_entity *second;
3224
3225 if (se == curr) {
3226 second = __pick_first_entity(cfs_rq);
3227 } else {
3228 second = __pick_next_entity(se);
3229 if (!second || (curr && entity_before(curr, second)))
3230 second = curr;
3231 }
3232
3233 if (second && wakeup_preempt_entity(second, left) < 1)
3234 se = second;
3235 }
3236
3237 /*
3238 * Prefer last buddy, try to return the CPU to a preempted task.
3239 */
3240 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3241 se = cfs_rq->last;
3242
3243 /*
3244 * Someone really wants this to run. If it's not unfair, run it.
3245 */
3246 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3247 se = cfs_rq->next;
3248
3249 clear_buddies(cfs_rq, se);
3250
3251 return se;
3252 }
3253
3254 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3255
3256 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3257 {
3258 /*
3259 * If still on the runqueue then deactivate_task()
3260 * was not called and update_curr() has to be done:
3261 */
3262 if (prev->on_rq)
3263 update_curr(cfs_rq);
3264
3265 /* throttle cfs_rqs exceeding runtime */
3266 check_cfs_rq_runtime(cfs_rq);
3267
3268 check_spread(cfs_rq, prev);
3269 if (prev->on_rq) {
3270 update_stats_wait_start(cfs_rq, prev);
3271 /* Put 'current' back into the tree. */
3272 __enqueue_entity(cfs_rq, prev);
3273 /* in !on_rq case, update occurred at dequeue */
3274 update_entity_load_avg(prev, 1);
3275 }
3276 cfs_rq->curr = NULL;
3277 }
3278
3279 static void
3280 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3281 {
3282 /*
3283 * Update run-time statistics of the 'current'.
3284 */
3285 update_curr(cfs_rq);
3286
3287 /*
3288 * Ensure that runnable average is periodically updated.
3289 */
3290 update_entity_load_avg(curr, 1);
3291 update_cfs_rq_blocked_load(cfs_rq, 1);
3292 update_cfs_shares(cfs_rq);
3293
3294 #ifdef CONFIG_SCHED_HRTICK
3295 /*
3296 * queued ticks are scheduled to match the slice, so don't bother
3297 * validating it and just reschedule.
3298 */
3299 if (queued) {
3300 resched_curr(rq_of(cfs_rq));
3301 return;
3302 }
3303 /*
3304 * don't let the period tick interfere with the hrtick preemption
3305 */
3306 if (!sched_feat(DOUBLE_TICK) &&
3307 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3308 return;
3309 #endif
3310
3311 if (cfs_rq->nr_running > 1)
3312 check_preempt_tick(cfs_rq, curr);
3313 }
3314
3315
3316 /**************************************************
3317 * CFS bandwidth control machinery
3318 */
3319
3320 #ifdef CONFIG_CFS_BANDWIDTH
3321
3322 #ifdef HAVE_JUMP_LABEL
3323 static struct static_key __cfs_bandwidth_used;
3324
3325 static inline bool cfs_bandwidth_used(void)
3326 {
3327 return static_key_false(&__cfs_bandwidth_used);
3328 }
3329
3330 void cfs_bandwidth_usage_inc(void)
3331 {
3332 static_key_slow_inc(&__cfs_bandwidth_used);
3333 }
3334
3335 void cfs_bandwidth_usage_dec(void)
3336 {
3337 static_key_slow_dec(&__cfs_bandwidth_used);
3338 }
3339 #else /* HAVE_JUMP_LABEL */
3340 static bool cfs_bandwidth_used(void)
3341 {
3342 return true;
3343 }
3344
3345 void cfs_bandwidth_usage_inc(void) {}
3346 void cfs_bandwidth_usage_dec(void) {}
3347 #endif /* HAVE_JUMP_LABEL */
3348
3349 /*
3350 * default period for cfs group bandwidth.
3351 * default: 0.1s, units: nanoseconds
3352 */
3353 static inline u64 default_cfs_period(void)
3354 {
3355 return 100000000ULL;
3356 }
3357
3358 static inline u64 sched_cfs_bandwidth_slice(void)
3359 {
3360 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3361 }
3362
3363 /*
3364 * Replenish runtime according to assigned quota and update expiration time.
3365 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3366 * additional synchronization around rq->lock.
3367 *
3368 * requires cfs_b->lock
3369 */
3370 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3371 {
3372 u64 now;
3373
3374 if (cfs_b->quota == RUNTIME_INF)
3375 return;
3376
3377 now = sched_clock_cpu(smp_processor_id());
3378 cfs_b->runtime = cfs_b->quota;
3379 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3380 }
3381
3382 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3383 {
3384 return &tg->cfs_bandwidth;
3385 }
3386
3387 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3388 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3389 {
3390 if (unlikely(cfs_rq->throttle_count))
3391 return cfs_rq->throttled_clock_task;
3392
3393 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3394 }
3395
3396 /* returns 0 on failure to allocate runtime */
3397 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3398 {
3399 struct task_group *tg = cfs_rq->tg;
3400 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3401 u64 amount = 0, min_amount, expires;
3402
3403 /* note: this is a positive sum as runtime_remaining <= 0 */
3404 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3405
3406 raw_spin_lock(&cfs_b->lock);
3407 if (cfs_b->quota == RUNTIME_INF)
3408 amount = min_amount;
3409 else {
3410 /*
3411 * If the bandwidth pool has become inactive, then at least one
3412 * period must have elapsed since the last consumption.
3413 * Refresh the global state and ensure bandwidth timer becomes
3414 * active.
3415 */
3416 if (!cfs_b->timer_active) {
3417 __refill_cfs_bandwidth_runtime(cfs_b);
3418 __start_cfs_bandwidth(cfs_b, false);
3419 }
3420
3421 if (cfs_b->runtime > 0) {
3422 amount = min(cfs_b->runtime, min_amount);
3423 cfs_b->runtime -= amount;
3424 cfs_b->idle = 0;
3425 }
3426 }
3427 expires = cfs_b->runtime_expires;
3428 raw_spin_unlock(&cfs_b->lock);
3429
3430 cfs_rq->runtime_remaining += amount;
3431 /*
3432 * we may have advanced our local expiration to account for allowed
3433 * spread between our sched_clock and the one on which runtime was
3434 * issued.
3435 */
3436 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3437 cfs_rq->runtime_expires = expires;
3438
3439 return cfs_rq->runtime_remaining > 0;
3440 }
3441
3442 /*
3443 * Note: This depends on the synchronization provided by sched_clock and the
3444 * fact that rq->clock snapshots this value.
3445 */
3446 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3447 {
3448 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3449
3450 /* if the deadline is ahead of our clock, nothing to do */
3451 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3452 return;
3453
3454 if (cfs_rq->runtime_remaining < 0)
3455 return;
3456
3457 /*
3458 * If the local deadline has passed we have to consider the
3459 * possibility that our sched_clock is 'fast' and the global deadline
3460 * has not truly expired.
3461 *
3462 * Fortunately we can check determine whether this the case by checking
3463 * whether the global deadline has advanced. It is valid to compare
3464 * cfs_b->runtime_expires without any locks since we only care about
3465 * exact equality, so a partial write will still work.
3466 */
3467
3468 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3469 /* extend local deadline, drift is bounded above by 2 ticks */
3470 cfs_rq->runtime_expires += TICK_NSEC;
3471 } else {
3472 /* global deadline is ahead, expiration has passed */
3473 cfs_rq->runtime_remaining = 0;
3474 }
3475 }
3476
3477 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3478 {
3479 /* dock delta_exec before expiring quota (as it could span periods) */
3480 cfs_rq->runtime_remaining -= delta_exec;
3481 expire_cfs_rq_runtime(cfs_rq);
3482
3483 if (likely(cfs_rq->runtime_remaining > 0))
3484 return;
3485
3486 /*
3487 * if we're unable to extend our runtime we resched so that the active
3488 * hierarchy can be throttled
3489 */
3490 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3491 resched_curr(rq_of(cfs_rq));
3492 }
3493
3494 static __always_inline
3495 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3496 {
3497 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3498 return;
3499
3500 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3501 }
3502
3503 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3504 {
3505 return cfs_bandwidth_used() && cfs_rq->throttled;
3506 }
3507
3508 /* check whether cfs_rq, or any parent, is throttled */
3509 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3510 {
3511 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3512 }
3513
3514 /*
3515 * Ensure that neither of the group entities corresponding to src_cpu or
3516 * dest_cpu are members of a throttled hierarchy when performing group
3517 * load-balance operations.
3518 */
3519 static inline int throttled_lb_pair(struct task_group *tg,
3520 int src_cpu, int dest_cpu)
3521 {
3522 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3523
3524 src_cfs_rq = tg->cfs_rq[src_cpu];
3525 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3526
3527 return throttled_hierarchy(src_cfs_rq) ||
3528 throttled_hierarchy(dest_cfs_rq);
3529 }
3530
3531 /* updated child weight may affect parent so we have to do this bottom up */
3532 static int tg_unthrottle_up(struct task_group *tg, void *data)
3533 {
3534 struct rq *rq = data;
3535 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3536
3537 cfs_rq->throttle_count--;
3538 #ifdef CONFIG_SMP
3539 if (!cfs_rq->throttle_count) {
3540 /* adjust cfs_rq_clock_task() */
3541 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3542 cfs_rq->throttled_clock_task;
3543 }
3544 #endif
3545
3546 return 0;
3547 }
3548
3549 static int tg_throttle_down(struct task_group *tg, void *data)
3550 {
3551 struct rq *rq = data;
3552 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3553
3554 /* group is entering throttled state, stop time */
3555 if (!cfs_rq->throttle_count)
3556 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3557 cfs_rq->throttle_count++;
3558
3559 return 0;
3560 }
3561
3562 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3563 {
3564 struct rq *rq = rq_of(cfs_rq);
3565 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3566 struct sched_entity *se;
3567 long task_delta, dequeue = 1;
3568
3569 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3570
3571 /* freeze hierarchy runnable averages while throttled */
3572 rcu_read_lock();
3573 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3574 rcu_read_unlock();
3575
3576 task_delta = cfs_rq->h_nr_running;
3577 for_each_sched_entity(se) {
3578 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3579 /* throttled entity or throttle-on-deactivate */
3580 if (!se->on_rq)
3581 break;
3582
3583 if (dequeue)
3584 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3585 qcfs_rq->h_nr_running -= task_delta;
3586
3587 if (qcfs_rq->load.weight)
3588 dequeue = 0;
3589 }
3590
3591 if (!se)
3592 sub_nr_running(rq, task_delta);
3593
3594 cfs_rq->throttled = 1;
3595 cfs_rq->throttled_clock = rq_clock(rq);
3596 raw_spin_lock(&cfs_b->lock);
3597 /*
3598 * Add to the _head_ of the list, so that an already-started
3599 * distribute_cfs_runtime will not see us
3600 */
3601 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3602 if (!cfs_b->timer_active)
3603 __start_cfs_bandwidth(cfs_b, false);
3604 raw_spin_unlock(&cfs_b->lock);
3605 }
3606
3607 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3608 {
3609 struct rq *rq = rq_of(cfs_rq);
3610 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3611 struct sched_entity *se;
3612 int enqueue = 1;
3613 long task_delta;
3614
3615 se = cfs_rq->tg->se[cpu_of(rq)];
3616
3617 cfs_rq->throttled = 0;
3618
3619 update_rq_clock(rq);
3620
3621 raw_spin_lock(&cfs_b->lock);
3622 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3623 list_del_rcu(&cfs_rq->throttled_list);
3624 raw_spin_unlock(&cfs_b->lock);
3625
3626 /* update hierarchical throttle state */
3627 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3628
3629 if (!cfs_rq->load.weight)
3630 return;
3631
3632 task_delta = cfs_rq->h_nr_running;
3633 for_each_sched_entity(se) {
3634 if (se->on_rq)
3635 enqueue = 0;
3636
3637 cfs_rq = cfs_rq_of(se);
3638 if (enqueue)
3639 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3640 cfs_rq->h_nr_running += task_delta;
3641
3642 if (cfs_rq_throttled(cfs_rq))
3643 break;
3644 }
3645
3646 if (!se)
3647 add_nr_running(rq, task_delta);
3648
3649 /* determine whether we need to wake up potentially idle cpu */
3650 if (rq->curr == rq->idle && rq->cfs.nr_running)
3651 resched_curr(rq);
3652 }
3653
3654 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3655 u64 remaining, u64 expires)
3656 {
3657 struct cfs_rq *cfs_rq;
3658 u64 runtime;
3659 u64 starting_runtime = remaining;
3660
3661 rcu_read_lock();
3662 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3663 throttled_list) {
3664 struct rq *rq = rq_of(cfs_rq);
3665
3666 raw_spin_lock(&rq->lock);
3667 if (!cfs_rq_throttled(cfs_rq))
3668 goto next;
3669
3670 runtime = -cfs_rq->runtime_remaining + 1;
3671 if (runtime > remaining)
3672 runtime = remaining;
3673 remaining -= runtime;
3674
3675 cfs_rq->runtime_remaining += runtime;
3676 cfs_rq->runtime_expires = expires;
3677
3678 /* we check whether we're throttled above */
3679 if (cfs_rq->runtime_remaining > 0)
3680 unthrottle_cfs_rq(cfs_rq);
3681
3682 next:
3683 raw_spin_unlock(&rq->lock);
3684
3685 if (!remaining)
3686 break;
3687 }
3688 rcu_read_unlock();
3689
3690 return starting_runtime - remaining;
3691 }
3692
3693 /*
3694 * Responsible for refilling a task_group's bandwidth and unthrottling its
3695 * cfs_rqs as appropriate. If there has been no activity within the last
3696 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3697 * used to track this state.
3698 */
3699 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3700 {
3701 u64 runtime, runtime_expires;
3702 int throttled;
3703
3704 /* no need to continue the timer with no bandwidth constraint */
3705 if (cfs_b->quota == RUNTIME_INF)
3706 goto out_deactivate;
3707
3708 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3709 cfs_b->nr_periods += overrun;
3710
3711 /*
3712 * idle depends on !throttled (for the case of a large deficit), and if
3713 * we're going inactive then everything else can be deferred
3714 */
3715 if (cfs_b->idle && !throttled)
3716 goto out_deactivate;
3717
3718 /*
3719 * if we have relooped after returning idle once, we need to update our
3720 * status as actually running, so that other cpus doing
3721 * __start_cfs_bandwidth will stop trying to cancel us.
3722 */
3723 cfs_b->timer_active = 1;
3724
3725 __refill_cfs_bandwidth_runtime(cfs_b);
3726
3727 if (!throttled) {
3728 /* mark as potentially idle for the upcoming period */
3729 cfs_b->idle = 1;
3730 return 0;
3731 }
3732
3733 /* account preceding periods in which throttling occurred */
3734 cfs_b->nr_throttled += overrun;
3735
3736 runtime_expires = cfs_b->runtime_expires;
3737
3738 /*
3739 * This check is repeated as we are holding onto the new bandwidth while
3740 * we unthrottle. This can potentially race with an unthrottled group
3741 * trying to acquire new bandwidth from the global pool. This can result
3742 * in us over-using our runtime if it is all used during this loop, but
3743 * only by limited amounts in that extreme case.
3744 */
3745 while (throttled && cfs_b->runtime > 0) {
3746 runtime = cfs_b->runtime;
3747 raw_spin_unlock(&cfs_b->lock);
3748 /* we can't nest cfs_b->lock while distributing bandwidth */
3749 runtime = distribute_cfs_runtime(cfs_b, runtime,
3750 runtime_expires);
3751 raw_spin_lock(&cfs_b->lock);
3752
3753 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3754
3755 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3756 }
3757
3758 /*
3759 * While we are ensured activity in the period following an
3760 * unthrottle, this also covers the case in which the new bandwidth is
3761 * insufficient to cover the existing bandwidth deficit. (Forcing the
3762 * timer to remain active while there are any throttled entities.)
3763 */
3764 cfs_b->idle = 0;
3765
3766 return 0;
3767
3768 out_deactivate:
3769 cfs_b->timer_active = 0;
3770 return 1;
3771 }
3772
3773 /* a cfs_rq won't donate quota below this amount */
3774 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3775 /* minimum remaining period time to redistribute slack quota */
3776 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3777 /* how long we wait to gather additional slack before distributing */
3778 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3779
3780 /*
3781 * Are we near the end of the current quota period?
3782 *
3783 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3784 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3785 * migrate_hrtimers, base is never cleared, so we are fine.
3786 */
3787 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3788 {
3789 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3790 u64 remaining;
3791
3792 /* if the call-back is running a quota refresh is already occurring */
3793 if (hrtimer_callback_running(refresh_timer))
3794 return 1;
3795
3796 /* is a quota refresh about to occur? */
3797 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3798 if (remaining < min_expire)
3799 return 1;
3800
3801 return 0;
3802 }
3803
3804 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3805 {
3806 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3807
3808 /* if there's a quota refresh soon don't bother with slack */
3809 if (runtime_refresh_within(cfs_b, min_left))
3810 return;
3811
3812 start_bandwidth_timer(&cfs_b->slack_timer,
3813 ns_to_ktime(cfs_bandwidth_slack_period));
3814 }
3815
3816 /* we know any runtime found here is valid as update_curr() precedes return */
3817 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3818 {
3819 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3820 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3821
3822 if (slack_runtime <= 0)
3823 return;
3824
3825 raw_spin_lock(&cfs_b->lock);
3826 if (cfs_b->quota != RUNTIME_INF &&
3827 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3828 cfs_b->runtime += slack_runtime;
3829
3830 /* we are under rq->lock, defer unthrottling using a timer */
3831 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3832 !list_empty(&cfs_b->throttled_cfs_rq))
3833 start_cfs_slack_bandwidth(cfs_b);
3834 }
3835 raw_spin_unlock(&cfs_b->lock);
3836
3837 /* even if it's not valid for return we don't want to try again */
3838 cfs_rq->runtime_remaining -= slack_runtime;
3839 }
3840
3841 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3842 {
3843 if (!cfs_bandwidth_used())
3844 return;
3845
3846 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3847 return;
3848
3849 __return_cfs_rq_runtime(cfs_rq);
3850 }
3851
3852 /*
3853 * This is done with a timer (instead of inline with bandwidth return) since
3854 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3855 */
3856 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3857 {
3858 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3859 u64 expires;
3860
3861 /* confirm we're still not at a refresh boundary */
3862 raw_spin_lock(&cfs_b->lock);
3863 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3864 raw_spin_unlock(&cfs_b->lock);
3865 return;
3866 }
3867
3868 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3869 runtime = cfs_b->runtime;
3870
3871 expires = cfs_b->runtime_expires;
3872 raw_spin_unlock(&cfs_b->lock);
3873
3874 if (!runtime)
3875 return;
3876
3877 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3878
3879 raw_spin_lock(&cfs_b->lock);
3880 if (expires == cfs_b->runtime_expires)
3881 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3882 raw_spin_unlock(&cfs_b->lock);
3883 }
3884
3885 /*
3886 * When a group wakes up we want to make sure that its quota is not already
3887 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3888 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3889 */
3890 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3891 {
3892 if (!cfs_bandwidth_used())
3893 return;
3894
3895 /* an active group must be handled by the update_curr()->put() path */
3896 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3897 return;
3898
3899 /* ensure the group is not already throttled */
3900 if (cfs_rq_throttled(cfs_rq))
3901 return;
3902
3903 /* update runtime allocation */
3904 account_cfs_rq_runtime(cfs_rq, 0);
3905 if (cfs_rq->runtime_remaining <= 0)
3906 throttle_cfs_rq(cfs_rq);
3907 }
3908
3909 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3910 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3911 {
3912 if (!cfs_bandwidth_used())
3913 return false;
3914
3915 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3916 return false;
3917
3918 /*
3919 * it's possible for a throttled entity to be forced into a running
3920 * state (e.g. set_curr_task), in this case we're finished.
3921 */
3922 if (cfs_rq_throttled(cfs_rq))
3923 return true;
3924
3925 throttle_cfs_rq(cfs_rq);
3926 return true;
3927 }
3928
3929 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3930 {
3931 struct cfs_bandwidth *cfs_b =
3932 container_of(timer, struct cfs_bandwidth, slack_timer);
3933 do_sched_cfs_slack_timer(cfs_b);
3934
3935 return HRTIMER_NORESTART;
3936 }
3937
3938 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3939 {
3940 struct cfs_bandwidth *cfs_b =
3941 container_of(timer, struct cfs_bandwidth, period_timer);
3942 ktime_t now;
3943 int overrun;
3944 int idle = 0;
3945
3946 raw_spin_lock(&cfs_b->lock);
3947 for (;;) {
3948 now = hrtimer_cb_get_time(timer);
3949 overrun = hrtimer_forward(timer, now, cfs_b->period);
3950
3951 if (!overrun)
3952 break;
3953
3954 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3955 }
3956 raw_spin_unlock(&cfs_b->lock);
3957
3958 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3959 }
3960
3961 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3962 {
3963 raw_spin_lock_init(&cfs_b->lock);
3964 cfs_b->runtime = 0;
3965 cfs_b->quota = RUNTIME_INF;
3966 cfs_b->period = ns_to_ktime(default_cfs_period());
3967
3968 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3969 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3970 cfs_b->period_timer.function = sched_cfs_period_timer;
3971 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3972 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3973 }
3974
3975 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3976 {
3977 cfs_rq->runtime_enabled = 0;
3978 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3979 }
3980
3981 /* requires cfs_b->lock, may release to reprogram timer */
3982 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3983 {
3984 /*
3985 * The timer may be active because we're trying to set a new bandwidth
3986 * period or because we're racing with the tear-down path
3987 * (timer_active==0 becomes visible before the hrtimer call-back
3988 * terminates). In either case we ensure that it's re-programmed
3989 */
3990 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3991 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3992 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3993 raw_spin_unlock(&cfs_b->lock);
3994 cpu_relax();
3995 raw_spin_lock(&cfs_b->lock);
3996 /* if someone else restarted the timer then we're done */
3997 if (!force && cfs_b->timer_active)
3998 return;
3999 }
4000
4001 cfs_b->timer_active = 1;
4002 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4003 }
4004
4005 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4006 {
4007 /* init_cfs_bandwidth() was not called */
4008 if (!cfs_b->throttled_cfs_rq.next)
4009 return;
4010
4011 hrtimer_cancel(&cfs_b->period_timer);
4012 hrtimer_cancel(&cfs_b->slack_timer);
4013 }
4014
4015 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4016 {
4017 struct cfs_rq *cfs_rq;
4018
4019 for_each_leaf_cfs_rq(rq, cfs_rq) {
4020 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4021
4022 raw_spin_lock(&cfs_b->lock);
4023 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4024 raw_spin_unlock(&cfs_b->lock);
4025 }
4026 }
4027
4028 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4029 {
4030 struct cfs_rq *cfs_rq;
4031
4032 for_each_leaf_cfs_rq(rq, cfs_rq) {
4033 if (!cfs_rq->runtime_enabled)
4034 continue;
4035
4036 /*
4037 * clock_task is not advancing so we just need to make sure
4038 * there's some valid quota amount
4039 */
4040 cfs_rq->runtime_remaining = 1;
4041 /*
4042 * Offline rq is schedulable till cpu is completely disabled
4043 * in take_cpu_down(), so we prevent new cfs throttling here.
4044 */
4045 cfs_rq->runtime_enabled = 0;
4046
4047 if (cfs_rq_throttled(cfs_rq))
4048 unthrottle_cfs_rq(cfs_rq);
4049 }
4050 }
4051
4052 #else /* CONFIG_CFS_BANDWIDTH */
4053 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4054 {
4055 return rq_clock_task(rq_of(cfs_rq));
4056 }
4057
4058 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4059 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4060 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4061 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4062
4063 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4064 {
4065 return 0;
4066 }
4067
4068 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4069 {
4070 return 0;
4071 }
4072
4073 static inline int throttled_lb_pair(struct task_group *tg,
4074 int src_cpu, int dest_cpu)
4075 {
4076 return 0;
4077 }
4078
4079 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4080
4081 #ifdef CONFIG_FAIR_GROUP_SCHED
4082 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4083 #endif
4084
4085 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4086 {
4087 return NULL;
4088 }
4089 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4090 static inline void update_runtime_enabled(struct rq *rq) {}
4091 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4092
4093 #endif /* CONFIG_CFS_BANDWIDTH */
4094
4095 /**************************************************
4096 * CFS operations on tasks:
4097 */
4098
4099 #ifdef CONFIG_SCHED_HRTICK
4100 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4101 {
4102 struct sched_entity *se = &p->se;
4103 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4104
4105 WARN_ON(task_rq(p) != rq);
4106
4107 if (cfs_rq->nr_running > 1) {
4108 u64 slice = sched_slice(cfs_rq, se);
4109 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4110 s64 delta = slice - ran;
4111
4112 if (delta < 0) {
4113 if (rq->curr == p)
4114 resched_curr(rq);
4115 return;
4116 }
4117 hrtick_start(rq, delta);
4118 }
4119 }
4120
4121 /*
4122 * called from enqueue/dequeue and updates the hrtick when the
4123 * current task is from our class and nr_running is low enough
4124 * to matter.
4125 */
4126 static void hrtick_update(struct rq *rq)
4127 {
4128 struct task_struct *curr = rq->curr;
4129
4130 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4131 return;
4132
4133 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4134 hrtick_start_fair(rq, curr);
4135 }
4136 #else /* !CONFIG_SCHED_HRTICK */
4137 static inline void
4138 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4139 {
4140 }
4141
4142 static inline void hrtick_update(struct rq *rq)
4143 {
4144 }
4145 #endif
4146
4147 /*
4148 * The enqueue_task method is called before nr_running is
4149 * increased. Here we update the fair scheduling stats and
4150 * then put the task into the rbtree:
4151 */
4152 static void
4153 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4154 {
4155 struct cfs_rq *cfs_rq;
4156 struct sched_entity *se = &p->se;
4157
4158 for_each_sched_entity(se) {
4159 if (se->on_rq)
4160 break;
4161 cfs_rq = cfs_rq_of(se);
4162 enqueue_entity(cfs_rq, se, flags);
4163
4164 /*
4165 * end evaluation on encountering a throttled cfs_rq
4166 *
4167 * note: in the case of encountering a throttled cfs_rq we will
4168 * post the final h_nr_running increment below.
4169 */
4170 if (cfs_rq_throttled(cfs_rq))
4171 break;
4172 cfs_rq->h_nr_running++;
4173
4174 flags = ENQUEUE_WAKEUP;
4175 }
4176
4177 for_each_sched_entity(se) {
4178 cfs_rq = cfs_rq_of(se);
4179 cfs_rq->h_nr_running++;
4180
4181 if (cfs_rq_throttled(cfs_rq))
4182 break;
4183
4184 update_cfs_shares(cfs_rq);
4185 update_entity_load_avg(se, 1);
4186 }
4187
4188 if (!se) {
4189 update_rq_runnable_avg(rq, rq->nr_running);
4190 add_nr_running(rq, 1);
4191 }
4192 hrtick_update(rq);
4193 }
4194
4195 static void set_next_buddy(struct sched_entity *se);
4196
4197 /*
4198 * The dequeue_task method is called before nr_running is
4199 * decreased. We remove the task from the rbtree and
4200 * update the fair scheduling stats:
4201 */
4202 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4203 {
4204 struct cfs_rq *cfs_rq;
4205 struct sched_entity *se = &p->se;
4206 int task_sleep = flags & DEQUEUE_SLEEP;
4207
4208 for_each_sched_entity(se) {
4209 cfs_rq = cfs_rq_of(se);
4210 dequeue_entity(cfs_rq, se, flags);
4211
4212 /*
4213 * end evaluation on encountering a throttled cfs_rq
4214 *
4215 * note: in the case of encountering a throttled cfs_rq we will
4216 * post the final h_nr_running decrement below.
4217 */
4218 if (cfs_rq_throttled(cfs_rq))
4219 break;
4220 cfs_rq->h_nr_running--;
4221
4222 /* Don't dequeue parent if it has other entities besides us */
4223 if (cfs_rq->load.weight) {
4224 /*
4225 * Bias pick_next to pick a task from this cfs_rq, as
4226 * p is sleeping when it is within its sched_slice.
4227 */
4228 if (task_sleep && parent_entity(se))
4229 set_next_buddy(parent_entity(se));
4230
4231 /* avoid re-evaluating load for this entity */
4232 se = parent_entity(se);
4233 break;
4234 }
4235 flags |= DEQUEUE_SLEEP;
4236 }
4237
4238 for_each_sched_entity(se) {
4239 cfs_rq = cfs_rq_of(se);
4240 cfs_rq->h_nr_running--;
4241
4242 if (cfs_rq_throttled(cfs_rq))
4243 break;
4244
4245 update_cfs_shares(cfs_rq);
4246 update_entity_load_avg(se, 1);
4247 }
4248
4249 if (!se) {
4250 sub_nr_running(rq, 1);
4251 update_rq_runnable_avg(rq, 1);
4252 }
4253 hrtick_update(rq);
4254 }
4255
4256 #ifdef CONFIG_SMP
4257 /* Used instead of source_load when we know the type == 0 */
4258 static unsigned long weighted_cpuload(const int cpu)
4259 {
4260 return cpu_rq(cpu)->cfs.runnable_load_avg;
4261 }
4262
4263 /*
4264 * Return a low guess at the load of a migration-source cpu weighted
4265 * according to the scheduling class and "nice" value.
4266 *
4267 * We want to under-estimate the load of migration sources, to
4268 * balance conservatively.
4269 */
4270 static unsigned long source_load(int cpu, int type)
4271 {
4272 struct rq *rq = cpu_rq(cpu);
4273 unsigned long total = weighted_cpuload(cpu);
4274
4275 if (type == 0 || !sched_feat(LB_BIAS))
4276 return total;
4277
4278 return min(rq->cpu_load[type-1], total);
4279 }
4280
4281 /*
4282 * Return a high guess at the load of a migration-target cpu weighted
4283 * according to the scheduling class and "nice" value.
4284 */
4285 static unsigned long target_load(int cpu, int type)
4286 {
4287 struct rq *rq = cpu_rq(cpu);
4288 unsigned long total = weighted_cpuload(cpu);
4289
4290 if (type == 0 || !sched_feat(LB_BIAS))
4291 return total;
4292
4293 return max(rq->cpu_load[type-1], total);
4294 }
4295
4296 static unsigned long capacity_of(int cpu)
4297 {
4298 return cpu_rq(cpu)->cpu_capacity;
4299 }
4300
4301 static unsigned long cpu_avg_load_per_task(int cpu)
4302 {
4303 struct rq *rq = cpu_rq(cpu);
4304 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4305 unsigned long load_avg = rq->cfs.runnable_load_avg;
4306
4307 if (nr_running)
4308 return load_avg / nr_running;
4309
4310 return 0;
4311 }
4312
4313 static void record_wakee(struct task_struct *p)
4314 {
4315 /*
4316 * Rough decay (wiping) for cost saving, don't worry
4317 * about the boundary, really active task won't care
4318 * about the loss.
4319 */
4320 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4321 current->wakee_flips >>= 1;
4322 current->wakee_flip_decay_ts = jiffies;
4323 }
4324
4325 if (current->last_wakee != p) {
4326 current->last_wakee = p;
4327 current->wakee_flips++;
4328 }
4329 }
4330
4331 static void task_waking_fair(struct task_struct *p)
4332 {
4333 struct sched_entity *se = &p->se;
4334 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4335 u64 min_vruntime;
4336
4337 #ifndef CONFIG_64BIT
4338 u64 min_vruntime_copy;
4339
4340 do {
4341 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4342 smp_rmb();
4343 min_vruntime = cfs_rq->min_vruntime;
4344 } while (min_vruntime != min_vruntime_copy);
4345 #else
4346 min_vruntime = cfs_rq->min_vruntime;
4347 #endif
4348
4349 se->vruntime -= min_vruntime;
4350 record_wakee(p);
4351 }
4352
4353 #ifdef CONFIG_FAIR_GROUP_SCHED
4354 /*
4355 * effective_load() calculates the load change as seen from the root_task_group
4356 *
4357 * Adding load to a group doesn't make a group heavier, but can cause movement
4358 * of group shares between cpus. Assuming the shares were perfectly aligned one
4359 * can calculate the shift in shares.
4360 *
4361 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4362 * on this @cpu and results in a total addition (subtraction) of @wg to the
4363 * total group weight.
4364 *
4365 * Given a runqueue weight distribution (rw_i) we can compute a shares
4366 * distribution (s_i) using:
4367 *
4368 * s_i = rw_i / \Sum rw_j (1)
4369 *
4370 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4371 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4372 * shares distribution (s_i):
4373 *
4374 * rw_i = { 2, 4, 1, 0 }
4375 * s_i = { 2/7, 4/7, 1/7, 0 }
4376 *
4377 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4378 * task used to run on and the CPU the waker is running on), we need to
4379 * compute the effect of waking a task on either CPU and, in case of a sync
4380 * wakeup, compute the effect of the current task going to sleep.
4381 *
4382 * So for a change of @wl to the local @cpu with an overall group weight change
4383 * of @wl we can compute the new shares distribution (s'_i) using:
4384 *
4385 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4386 *
4387 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4388 * differences in waking a task to CPU 0. The additional task changes the
4389 * weight and shares distributions like:
4390 *
4391 * rw'_i = { 3, 4, 1, 0 }
4392 * s'_i = { 3/8, 4/8, 1/8, 0 }
4393 *
4394 * We can then compute the difference in effective weight by using:
4395 *
4396 * dw_i = S * (s'_i - s_i) (3)
4397 *
4398 * Where 'S' is the group weight as seen by its parent.
4399 *
4400 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4401 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4402 * 4/7) times the weight of the group.
4403 */
4404 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4405 {
4406 struct sched_entity *se = tg->se[cpu];
4407
4408 if (!tg->parent) /* the trivial, non-cgroup case */
4409 return wl;
4410
4411 for_each_sched_entity(se) {
4412 long w, W;
4413
4414 tg = se->my_q->tg;
4415
4416 /*
4417 * W = @wg + \Sum rw_j
4418 */
4419 W = wg + calc_tg_weight(tg, se->my_q);
4420
4421 /*
4422 * w = rw_i + @wl
4423 */
4424 w = se->my_q->load.weight + wl;
4425
4426 /*
4427 * wl = S * s'_i; see (2)
4428 */
4429 if (W > 0 && w < W)
4430 wl = (w * (long)tg->shares) / W;
4431 else
4432 wl = tg->shares;
4433
4434 /*
4435 * Per the above, wl is the new se->load.weight value; since
4436 * those are clipped to [MIN_SHARES, ...) do so now. See
4437 * calc_cfs_shares().
4438 */
4439 if (wl < MIN_SHARES)
4440 wl = MIN_SHARES;
4441
4442 /*
4443 * wl = dw_i = S * (s'_i - s_i); see (3)
4444 */
4445 wl -= se->load.weight;
4446
4447 /*
4448 * Recursively apply this logic to all parent groups to compute
4449 * the final effective load change on the root group. Since
4450 * only the @tg group gets extra weight, all parent groups can
4451 * only redistribute existing shares. @wl is the shift in shares
4452 * resulting from this level per the above.
4453 */
4454 wg = 0;
4455 }
4456
4457 return wl;
4458 }
4459 #else
4460
4461 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4462 {
4463 return wl;
4464 }
4465
4466 #endif
4467
4468 static int wake_wide(struct task_struct *p)
4469 {
4470 int factor = this_cpu_read(sd_llc_size);
4471
4472 /*
4473 * Yeah, it's the switching-frequency, could means many wakee or
4474 * rapidly switch, use factor here will just help to automatically
4475 * adjust the loose-degree, so bigger node will lead to more pull.
4476 */
4477 if (p->wakee_flips > factor) {
4478 /*
4479 * wakee is somewhat hot, it needs certain amount of cpu
4480 * resource, so if waker is far more hot, prefer to leave
4481 * it alone.
4482 */
4483 if (current->wakee_flips > (factor * p->wakee_flips))
4484 return 1;
4485 }
4486
4487 return 0;
4488 }
4489
4490 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4491 {
4492 s64 this_load, load;
4493 s64 this_eff_load, prev_eff_load;
4494 int idx, this_cpu, prev_cpu;
4495 struct task_group *tg;
4496 unsigned long weight;
4497 int balanced;
4498
4499 /*
4500 * If we wake multiple tasks be careful to not bounce
4501 * ourselves around too much.
4502 */
4503 if (wake_wide(p))
4504 return 0;
4505
4506 idx = sd->wake_idx;
4507 this_cpu = smp_processor_id();
4508 prev_cpu = task_cpu(p);
4509 load = source_load(prev_cpu, idx);
4510 this_load = target_load(this_cpu, idx);
4511
4512 /*
4513 * If sync wakeup then subtract the (maximum possible)
4514 * effect of the currently running task from the load
4515 * of the current CPU:
4516 */
4517 if (sync) {
4518 tg = task_group(current);
4519 weight = current->se.load.weight;
4520
4521 this_load += effective_load(tg, this_cpu, -weight, -weight);
4522 load += effective_load(tg, prev_cpu, 0, -weight);
4523 }
4524
4525 tg = task_group(p);
4526 weight = p->se.load.weight;
4527
4528 /*
4529 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4530 * due to the sync cause above having dropped this_load to 0, we'll
4531 * always have an imbalance, but there's really nothing you can do
4532 * about that, so that's good too.
4533 *
4534 * Otherwise check if either cpus are near enough in load to allow this
4535 * task to be woken on this_cpu.
4536 */
4537 this_eff_load = 100;
4538 this_eff_load *= capacity_of(prev_cpu);
4539
4540 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4541 prev_eff_load *= capacity_of(this_cpu);
4542
4543 if (this_load > 0) {
4544 this_eff_load *= this_load +
4545 effective_load(tg, this_cpu, weight, weight);
4546
4547 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4548 }
4549
4550 balanced = this_eff_load <= prev_eff_load;
4551
4552 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4553
4554 if (!balanced)
4555 return 0;
4556
4557 schedstat_inc(sd, ttwu_move_affine);
4558 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4559
4560 return 1;
4561 }
4562
4563 /*
4564 * find_idlest_group finds and returns the least busy CPU group within the
4565 * domain.
4566 */
4567 static struct sched_group *
4568 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4569 int this_cpu, int sd_flag)
4570 {
4571 struct sched_group *idlest = NULL, *group = sd->groups;
4572 unsigned long min_load = ULONG_MAX, this_load = 0;
4573 int load_idx = sd->forkexec_idx;
4574 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4575
4576 if (sd_flag & SD_BALANCE_WAKE)
4577 load_idx = sd->wake_idx;
4578
4579 do {
4580 unsigned long load, avg_load;
4581 int local_group;
4582 int i;
4583
4584 /* Skip over this group if it has no CPUs allowed */
4585 if (!cpumask_intersects(sched_group_cpus(group),
4586 tsk_cpus_allowed(p)))
4587 continue;
4588
4589 local_group = cpumask_test_cpu(this_cpu,
4590 sched_group_cpus(group));
4591
4592 /* Tally up the load of all CPUs in the group */
4593 avg_load = 0;
4594
4595 for_each_cpu(i, sched_group_cpus(group)) {
4596 /* Bias balancing toward cpus of our domain */
4597 if (local_group)
4598 load = source_load(i, load_idx);
4599 else
4600 load = target_load(i, load_idx);
4601
4602 avg_load += load;
4603 }
4604
4605 /* Adjust by relative CPU capacity of the group */
4606 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4607
4608 if (local_group) {
4609 this_load = avg_load;
4610 } else if (avg_load < min_load) {
4611 min_load = avg_load;
4612 idlest = group;
4613 }
4614 } while (group = group->next, group != sd->groups);
4615
4616 if (!idlest || 100*this_load < imbalance*min_load)
4617 return NULL;
4618 return idlest;
4619 }
4620
4621 /*
4622 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4623 */
4624 static int
4625 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4626 {
4627 unsigned long load, min_load = ULONG_MAX;
4628 unsigned int min_exit_latency = UINT_MAX;
4629 u64 latest_idle_timestamp = 0;
4630 int least_loaded_cpu = this_cpu;
4631 int shallowest_idle_cpu = -1;
4632 int i;
4633
4634 /* Traverse only the allowed CPUs */
4635 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4636 if (idle_cpu(i)) {
4637 struct rq *rq = cpu_rq(i);
4638 struct cpuidle_state *idle = idle_get_state(rq);
4639 if (idle && idle->exit_latency < min_exit_latency) {
4640 /*
4641 * We give priority to a CPU whose idle state
4642 * has the smallest exit latency irrespective
4643 * of any idle timestamp.
4644 */
4645 min_exit_latency = idle->exit_latency;
4646 latest_idle_timestamp = rq->idle_stamp;
4647 shallowest_idle_cpu = i;
4648 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4649 rq->idle_stamp > latest_idle_timestamp) {
4650 /*
4651 * If equal or no active idle state, then
4652 * the most recently idled CPU might have
4653 * a warmer cache.
4654 */
4655 latest_idle_timestamp = rq->idle_stamp;
4656 shallowest_idle_cpu = i;
4657 }
4658 } else if (shallowest_idle_cpu == -1) {
4659 load = weighted_cpuload(i);
4660 if (load < min_load || (load == min_load && i == this_cpu)) {
4661 min_load = load;
4662 least_loaded_cpu = i;
4663 }
4664 }
4665 }
4666
4667 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4668 }
4669
4670 /*
4671 * Try and locate an idle CPU in the sched_domain.
4672 */
4673 static int select_idle_sibling(struct task_struct *p, int target)
4674 {
4675 struct sched_domain *sd;
4676 struct sched_group *sg;
4677 int i = task_cpu(p);
4678
4679 if (idle_cpu(target))
4680 return target;
4681
4682 /*
4683 * If the prevous cpu is cache affine and idle, don't be stupid.
4684 */
4685 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4686 return i;
4687
4688 /*
4689 * Otherwise, iterate the domains and find an elegible idle cpu.
4690 */
4691 sd = rcu_dereference(per_cpu(sd_llc, target));
4692 for_each_lower_domain(sd) {
4693 sg = sd->groups;
4694 do {
4695 if (!cpumask_intersects(sched_group_cpus(sg),
4696 tsk_cpus_allowed(p)))
4697 goto next;
4698
4699 for_each_cpu(i, sched_group_cpus(sg)) {
4700 if (i == target || !idle_cpu(i))
4701 goto next;
4702 }
4703
4704 target = cpumask_first_and(sched_group_cpus(sg),
4705 tsk_cpus_allowed(p));
4706 goto done;
4707 next:
4708 sg = sg->next;
4709 } while (sg != sd->groups);
4710 }
4711 done:
4712 return target;
4713 }
4714
4715 /*
4716 * select_task_rq_fair: Select target runqueue for the waking task in domains
4717 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4718 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4719 *
4720 * Balances load by selecting the idlest cpu in the idlest group, or under
4721 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4722 *
4723 * Returns the target cpu number.
4724 *
4725 * preempt must be disabled.
4726 */
4727 static int
4728 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4729 {
4730 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4731 int cpu = smp_processor_id();
4732 int new_cpu = cpu;
4733 int want_affine = 0;
4734 int sync = wake_flags & WF_SYNC;
4735
4736 if (sd_flag & SD_BALANCE_WAKE)
4737 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4738
4739 rcu_read_lock();
4740 for_each_domain(cpu, tmp) {
4741 if (!(tmp->flags & SD_LOAD_BALANCE))
4742 continue;
4743
4744 /*
4745 * If both cpu and prev_cpu are part of this domain,
4746 * cpu is a valid SD_WAKE_AFFINE target.
4747 */
4748 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4749 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4750 affine_sd = tmp;
4751 break;
4752 }
4753
4754 if (tmp->flags & sd_flag)
4755 sd = tmp;
4756 }
4757
4758 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4759 prev_cpu = cpu;
4760
4761 if (sd_flag & SD_BALANCE_WAKE) {
4762 new_cpu = select_idle_sibling(p, prev_cpu);
4763 goto unlock;
4764 }
4765
4766 while (sd) {
4767 struct sched_group *group;
4768 int weight;
4769
4770 if (!(sd->flags & sd_flag)) {
4771 sd = sd->child;
4772 continue;
4773 }
4774
4775 group = find_idlest_group(sd, p, cpu, sd_flag);
4776 if (!group) {
4777 sd = sd->child;
4778 continue;
4779 }
4780
4781 new_cpu = find_idlest_cpu(group, p, cpu);
4782 if (new_cpu == -1 || new_cpu == cpu) {
4783 /* Now try balancing at a lower domain level of cpu */
4784 sd = sd->child;
4785 continue;
4786 }
4787
4788 /* Now try balancing at a lower domain level of new_cpu */
4789 cpu = new_cpu;
4790 weight = sd->span_weight;
4791 sd = NULL;
4792 for_each_domain(cpu, tmp) {
4793 if (weight <= tmp->span_weight)
4794 break;
4795 if (tmp->flags & sd_flag)
4796 sd = tmp;
4797 }
4798 /* while loop will break here if sd == NULL */
4799 }
4800 unlock:
4801 rcu_read_unlock();
4802
4803 return new_cpu;
4804 }
4805
4806 /*
4807 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4808 * cfs_rq_of(p) references at time of call are still valid and identify the
4809 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4810 * other assumptions, including the state of rq->lock, should be made.
4811 */
4812 static void
4813 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4814 {
4815 struct sched_entity *se = &p->se;
4816 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4817
4818 /*
4819 * Load tracking: accumulate removed load so that it can be processed
4820 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4821 * to blocked load iff they have a positive decay-count. It can never
4822 * be negative here since on-rq tasks have decay-count == 0.
4823 */
4824 if (se->avg.decay_count) {
4825 se->avg.decay_count = -__synchronize_entity_decay(se);
4826 atomic_long_add(se->avg.load_avg_contrib,
4827 &cfs_rq->removed_load);
4828 }
4829
4830 /* We have migrated, no longer consider this task hot */
4831 se->exec_start = 0;
4832 }
4833 #endif /* CONFIG_SMP */
4834
4835 static unsigned long
4836 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4837 {
4838 unsigned long gran = sysctl_sched_wakeup_granularity;
4839
4840 /*
4841 * Since its curr running now, convert the gran from real-time
4842 * to virtual-time in his units.
4843 *
4844 * By using 'se' instead of 'curr' we penalize light tasks, so
4845 * they get preempted easier. That is, if 'se' < 'curr' then
4846 * the resulting gran will be larger, therefore penalizing the
4847 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4848 * be smaller, again penalizing the lighter task.
4849 *
4850 * This is especially important for buddies when the leftmost
4851 * task is higher priority than the buddy.
4852 */
4853 return calc_delta_fair(gran, se);
4854 }
4855
4856 /*
4857 * Should 'se' preempt 'curr'.
4858 *
4859 * |s1
4860 * |s2
4861 * |s3
4862 * g
4863 * |<--->|c
4864 *
4865 * w(c, s1) = -1
4866 * w(c, s2) = 0
4867 * w(c, s3) = 1
4868 *
4869 */
4870 static int
4871 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4872 {
4873 s64 gran, vdiff = curr->vruntime - se->vruntime;
4874
4875 if (vdiff <= 0)
4876 return -1;
4877
4878 gran = wakeup_gran(curr, se);
4879 if (vdiff > gran)
4880 return 1;
4881
4882 return 0;
4883 }
4884
4885 static void set_last_buddy(struct sched_entity *se)
4886 {
4887 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4888 return;
4889
4890 for_each_sched_entity(se)
4891 cfs_rq_of(se)->last = se;
4892 }
4893
4894 static void set_next_buddy(struct sched_entity *se)
4895 {
4896 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4897 return;
4898
4899 for_each_sched_entity(se)
4900 cfs_rq_of(se)->next = se;
4901 }
4902
4903 static void set_skip_buddy(struct sched_entity *se)
4904 {
4905 for_each_sched_entity(se)
4906 cfs_rq_of(se)->skip = se;
4907 }
4908
4909 /*
4910 * Preempt the current task with a newly woken task if needed:
4911 */
4912 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4913 {
4914 struct task_struct *curr = rq->curr;
4915 struct sched_entity *se = &curr->se, *pse = &p->se;
4916 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4917 int scale = cfs_rq->nr_running >= sched_nr_latency;
4918 int next_buddy_marked = 0;
4919
4920 if (unlikely(se == pse))
4921 return;
4922
4923 /*
4924 * This is possible from callers such as attach_tasks(), in which we
4925 * unconditionally check_prempt_curr() after an enqueue (which may have
4926 * lead to a throttle). This both saves work and prevents false
4927 * next-buddy nomination below.
4928 */
4929 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4930 return;
4931
4932 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4933 set_next_buddy(pse);
4934 next_buddy_marked = 1;
4935 }
4936
4937 /*
4938 * We can come here with TIF_NEED_RESCHED already set from new task
4939 * wake up path.
4940 *
4941 * Note: this also catches the edge-case of curr being in a throttled
4942 * group (e.g. via set_curr_task), since update_curr() (in the
4943 * enqueue of curr) will have resulted in resched being set. This
4944 * prevents us from potentially nominating it as a false LAST_BUDDY
4945 * below.
4946 */
4947 if (test_tsk_need_resched(curr))
4948 return;
4949
4950 /* Idle tasks are by definition preempted by non-idle tasks. */
4951 if (unlikely(curr->policy == SCHED_IDLE) &&
4952 likely(p->policy != SCHED_IDLE))
4953 goto preempt;
4954
4955 /*
4956 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4957 * is driven by the tick):
4958 */
4959 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4960 return;
4961
4962 find_matching_se(&se, &pse);
4963 update_curr(cfs_rq_of(se));
4964 BUG_ON(!pse);
4965 if (wakeup_preempt_entity(se, pse) == 1) {
4966 /*
4967 * Bias pick_next to pick the sched entity that is
4968 * triggering this preemption.
4969 */
4970 if (!next_buddy_marked)
4971 set_next_buddy(pse);
4972 goto preempt;
4973 }
4974
4975 return;
4976
4977 preempt:
4978 resched_curr(rq);
4979 /*
4980 * Only set the backward buddy when the current task is still
4981 * on the rq. This can happen when a wakeup gets interleaved
4982 * with schedule on the ->pre_schedule() or idle_balance()
4983 * point, either of which can * drop the rq lock.
4984 *
4985 * Also, during early boot the idle thread is in the fair class,
4986 * for obvious reasons its a bad idea to schedule back to it.
4987 */
4988 if (unlikely(!se->on_rq || curr == rq->idle))
4989 return;
4990
4991 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4992 set_last_buddy(se);
4993 }
4994
4995 static struct task_struct *
4996 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4997 {
4998 struct cfs_rq *cfs_rq = &rq->cfs;
4999 struct sched_entity *se;
5000 struct task_struct *p;
5001 int new_tasks;
5002
5003 again:
5004 #ifdef CONFIG_FAIR_GROUP_SCHED
5005 if (!cfs_rq->nr_running)
5006 goto idle;
5007
5008 if (prev->sched_class != &fair_sched_class)
5009 goto simple;
5010
5011 /*
5012 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5013 * likely that a next task is from the same cgroup as the current.
5014 *
5015 * Therefore attempt to avoid putting and setting the entire cgroup
5016 * hierarchy, only change the part that actually changes.
5017 */
5018
5019 do {
5020 struct sched_entity *curr = cfs_rq->curr;
5021
5022 /*
5023 * Since we got here without doing put_prev_entity() we also
5024 * have to consider cfs_rq->curr. If it is still a runnable
5025 * entity, update_curr() will update its vruntime, otherwise
5026 * forget we've ever seen it.
5027 */
5028 if (curr && curr->on_rq)
5029 update_curr(cfs_rq);
5030 else
5031 curr = NULL;
5032
5033 /*
5034 * This call to check_cfs_rq_runtime() will do the throttle and
5035 * dequeue its entity in the parent(s). Therefore the 'simple'
5036 * nr_running test will indeed be correct.
5037 */
5038 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5039 goto simple;
5040
5041 se = pick_next_entity(cfs_rq, curr);
5042 cfs_rq = group_cfs_rq(se);
5043 } while (cfs_rq);
5044
5045 p = task_of(se);
5046
5047 /*
5048 * Since we haven't yet done put_prev_entity and if the selected task
5049 * is a different task than we started out with, try and touch the
5050 * least amount of cfs_rqs.
5051 */
5052 if (prev != p) {
5053 struct sched_entity *pse = &prev->se;
5054
5055 while (!(cfs_rq = is_same_group(se, pse))) {
5056 int se_depth = se->depth;
5057 int pse_depth = pse->depth;
5058
5059 if (se_depth <= pse_depth) {
5060 put_prev_entity(cfs_rq_of(pse), pse);
5061 pse = parent_entity(pse);
5062 }
5063 if (se_depth >= pse_depth) {
5064 set_next_entity(cfs_rq_of(se), se);
5065 se = parent_entity(se);
5066 }
5067 }
5068
5069 put_prev_entity(cfs_rq, pse);
5070 set_next_entity(cfs_rq, se);
5071 }
5072
5073 if (hrtick_enabled(rq))
5074 hrtick_start_fair(rq, p);
5075
5076 return p;
5077 simple:
5078 cfs_rq = &rq->cfs;
5079 #endif
5080
5081 if (!cfs_rq->nr_running)
5082 goto idle;
5083
5084 put_prev_task(rq, prev);
5085
5086 do {
5087 se = pick_next_entity(cfs_rq, NULL);
5088 set_next_entity(cfs_rq, se);
5089 cfs_rq = group_cfs_rq(se);
5090 } while (cfs_rq);
5091
5092 p = task_of(se);
5093
5094 if (hrtick_enabled(rq))
5095 hrtick_start_fair(rq, p);
5096
5097 return p;
5098
5099 idle:
5100 new_tasks = idle_balance(rq);
5101 /*
5102 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5103 * possible for any higher priority task to appear. In that case we
5104 * must re-start the pick_next_entity() loop.
5105 */
5106 if (new_tasks < 0)
5107 return RETRY_TASK;
5108
5109 if (new_tasks > 0)
5110 goto again;
5111
5112 return NULL;
5113 }
5114
5115 /*
5116 * Account for a descheduled task:
5117 */
5118 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5119 {
5120 struct sched_entity *se = &prev->se;
5121 struct cfs_rq *cfs_rq;
5122
5123 for_each_sched_entity(se) {
5124 cfs_rq = cfs_rq_of(se);
5125 put_prev_entity(cfs_rq, se);
5126 }
5127 }
5128
5129 /*
5130 * sched_yield() is very simple
5131 *
5132 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5133 */
5134 static void yield_task_fair(struct rq *rq)
5135 {
5136 struct task_struct *curr = rq->curr;
5137 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5138 struct sched_entity *se = &curr->se;
5139
5140 /*
5141 * Are we the only task in the tree?
5142 */
5143 if (unlikely(rq->nr_running == 1))
5144 return;
5145
5146 clear_buddies(cfs_rq, se);
5147
5148 if (curr->policy != SCHED_BATCH) {
5149 update_rq_clock(rq);
5150 /*
5151 * Update run-time statistics of the 'current'.
5152 */
5153 update_curr(cfs_rq);
5154 /*
5155 * Tell update_rq_clock() that we've just updated,
5156 * so we don't do microscopic update in schedule()
5157 * and double the fastpath cost.
5158 */
5159 rq_clock_skip_update(rq, true);
5160 }
5161
5162 set_skip_buddy(se);
5163 }
5164
5165 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5166 {
5167 struct sched_entity *se = &p->se;
5168
5169 /* throttled hierarchies are not runnable */
5170 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5171 return false;
5172
5173 /* Tell the scheduler that we'd really like pse to run next. */
5174 set_next_buddy(se);
5175
5176 yield_task_fair(rq);
5177
5178 return true;
5179 }
5180
5181 #ifdef CONFIG_SMP
5182 /**************************************************
5183 * Fair scheduling class load-balancing methods.
5184 *
5185 * BASICS
5186 *
5187 * The purpose of load-balancing is to achieve the same basic fairness the
5188 * per-cpu scheduler provides, namely provide a proportional amount of compute
5189 * time to each task. This is expressed in the following equation:
5190 *
5191 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5192 *
5193 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5194 * W_i,0 is defined as:
5195 *
5196 * W_i,0 = \Sum_j w_i,j (2)
5197 *
5198 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5199 * is derived from the nice value as per prio_to_weight[].
5200 *
5201 * The weight average is an exponential decay average of the instantaneous
5202 * weight:
5203 *
5204 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5205 *
5206 * C_i is the compute capacity of cpu i, typically it is the
5207 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5208 * can also include other factors [XXX].
5209 *
5210 * To achieve this balance we define a measure of imbalance which follows
5211 * directly from (1):
5212 *
5213 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5214 *
5215 * We them move tasks around to minimize the imbalance. In the continuous
5216 * function space it is obvious this converges, in the discrete case we get
5217 * a few fun cases generally called infeasible weight scenarios.
5218 *
5219 * [XXX expand on:
5220 * - infeasible weights;
5221 * - local vs global optima in the discrete case. ]
5222 *
5223 *
5224 * SCHED DOMAINS
5225 *
5226 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5227 * for all i,j solution, we create a tree of cpus that follows the hardware
5228 * topology where each level pairs two lower groups (or better). This results
5229 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5230 * tree to only the first of the previous level and we decrease the frequency
5231 * of load-balance at each level inv. proportional to the number of cpus in
5232 * the groups.
5233 *
5234 * This yields:
5235 *
5236 * log_2 n 1 n
5237 * \Sum { --- * --- * 2^i } = O(n) (5)
5238 * i = 0 2^i 2^i
5239 * `- size of each group
5240 * | | `- number of cpus doing load-balance
5241 * | `- freq
5242 * `- sum over all levels
5243 *
5244 * Coupled with a limit on how many tasks we can migrate every balance pass,
5245 * this makes (5) the runtime complexity of the balancer.
5246 *
5247 * An important property here is that each CPU is still (indirectly) connected
5248 * to every other cpu in at most O(log n) steps:
5249 *
5250 * The adjacency matrix of the resulting graph is given by:
5251 *
5252 * log_2 n
5253 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5254 * k = 0
5255 *
5256 * And you'll find that:
5257 *
5258 * A^(log_2 n)_i,j != 0 for all i,j (7)
5259 *
5260 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5261 * The task movement gives a factor of O(m), giving a convergence complexity
5262 * of:
5263 *
5264 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5265 *
5266 *
5267 * WORK CONSERVING
5268 *
5269 * In order to avoid CPUs going idle while there's still work to do, new idle
5270 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5271 * tree itself instead of relying on other CPUs to bring it work.
5272 *
5273 * This adds some complexity to both (5) and (8) but it reduces the total idle
5274 * time.
5275 *
5276 * [XXX more?]
5277 *
5278 *
5279 * CGROUPS
5280 *
5281 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5282 *
5283 * s_k,i
5284 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5285 * S_k
5286 *
5287 * Where
5288 *
5289 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5290 *
5291 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5292 *
5293 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5294 * property.
5295 *
5296 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5297 * rewrite all of this once again.]
5298 */
5299
5300 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5301
5302 enum fbq_type { regular, remote, all };
5303
5304 #define LBF_ALL_PINNED 0x01
5305 #define LBF_NEED_BREAK 0x02
5306 #define LBF_DST_PINNED 0x04
5307 #define LBF_SOME_PINNED 0x08
5308
5309 struct lb_env {
5310 struct sched_domain *sd;
5311
5312 struct rq *src_rq;
5313 int src_cpu;
5314
5315 int dst_cpu;
5316 struct rq *dst_rq;
5317
5318 struct cpumask *dst_grpmask;
5319 int new_dst_cpu;
5320 enum cpu_idle_type idle;
5321 long imbalance;
5322 /* The set of CPUs under consideration for load-balancing */
5323 struct cpumask *cpus;
5324
5325 unsigned int flags;
5326
5327 unsigned int loop;
5328 unsigned int loop_break;
5329 unsigned int loop_max;
5330
5331 enum fbq_type fbq_type;
5332 struct list_head tasks;
5333 };
5334
5335 /*
5336 * Is this task likely cache-hot:
5337 */
5338 static int task_hot(struct task_struct *p, struct lb_env *env)
5339 {
5340 s64 delta;
5341
5342 lockdep_assert_held(&env->src_rq->lock);
5343
5344 if (p->sched_class != &fair_sched_class)
5345 return 0;
5346
5347 if (unlikely(p->policy == SCHED_IDLE))
5348 return 0;
5349
5350 /*
5351 * Buddy candidates are cache hot:
5352 */
5353 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5354 (&p->se == cfs_rq_of(&p->se)->next ||
5355 &p->se == cfs_rq_of(&p->se)->last))
5356 return 1;
5357
5358 if (sysctl_sched_migration_cost == -1)
5359 return 1;
5360 if (sysctl_sched_migration_cost == 0)
5361 return 0;
5362
5363 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5364
5365 return delta < (s64)sysctl_sched_migration_cost;
5366 }
5367
5368 #ifdef CONFIG_NUMA_BALANCING
5369 /* Returns true if the destination node has incurred more faults */
5370 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5371 {
5372 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5373 int src_nid, dst_nid;
5374
5375 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5376 !(env->sd->flags & SD_NUMA)) {
5377 return false;
5378 }
5379
5380 src_nid = cpu_to_node(env->src_cpu);
5381 dst_nid = cpu_to_node(env->dst_cpu);
5382
5383 if (src_nid == dst_nid)
5384 return false;
5385
5386 if (numa_group) {
5387 /* Task is already in the group's interleave set. */
5388 if (node_isset(src_nid, numa_group->active_nodes))
5389 return false;
5390
5391 /* Task is moving into the group's interleave set. */
5392 if (node_isset(dst_nid, numa_group->active_nodes))
5393 return true;
5394
5395 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5396 }
5397
5398 /* Encourage migration to the preferred node. */
5399 if (dst_nid == p->numa_preferred_nid)
5400 return true;
5401
5402 return task_faults(p, dst_nid) > task_faults(p, src_nid);
5403 }
5404
5405
5406 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5407 {
5408 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5409 int src_nid, dst_nid;
5410
5411 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5412 return false;
5413
5414 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5415 return false;
5416
5417 src_nid = cpu_to_node(env->src_cpu);
5418 dst_nid = cpu_to_node(env->dst_cpu);
5419
5420 if (src_nid == dst_nid)
5421 return false;
5422
5423 if (numa_group) {
5424 /* Task is moving within/into the group's interleave set. */
5425 if (node_isset(dst_nid, numa_group->active_nodes))
5426 return false;
5427
5428 /* Task is moving out of the group's interleave set. */
5429 if (node_isset(src_nid, numa_group->active_nodes))
5430 return true;
5431
5432 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5433 }
5434
5435 /* Migrating away from the preferred node is always bad. */
5436 if (src_nid == p->numa_preferred_nid)
5437 return true;
5438
5439 return task_faults(p, dst_nid) < task_faults(p, src_nid);
5440 }
5441
5442 #else
5443 static inline bool migrate_improves_locality(struct task_struct *p,
5444 struct lb_env *env)
5445 {
5446 return false;
5447 }
5448
5449 static inline bool migrate_degrades_locality(struct task_struct *p,
5450 struct lb_env *env)
5451 {
5452 return false;
5453 }
5454 #endif
5455
5456 /*
5457 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5458 */
5459 static
5460 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5461 {
5462 int tsk_cache_hot = 0;
5463
5464 lockdep_assert_held(&env->src_rq->lock);
5465
5466 /*
5467 * We do not migrate tasks that are:
5468 * 1) throttled_lb_pair, or
5469 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5470 * 3) running (obviously), or
5471 * 4) are cache-hot on their current CPU.
5472 */
5473 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5474 return 0;
5475
5476 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5477 int cpu;
5478
5479 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5480
5481 env->flags |= LBF_SOME_PINNED;
5482
5483 /*
5484 * Remember if this task can be migrated to any other cpu in
5485 * our sched_group. We may want to revisit it if we couldn't
5486 * meet load balance goals by pulling other tasks on src_cpu.
5487 *
5488 * Also avoid computing new_dst_cpu if we have already computed
5489 * one in current iteration.
5490 */
5491 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5492 return 0;
5493
5494 /* Prevent to re-select dst_cpu via env's cpus */
5495 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5496 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5497 env->flags |= LBF_DST_PINNED;
5498 env->new_dst_cpu = cpu;
5499 break;
5500 }
5501 }
5502
5503 return 0;
5504 }
5505
5506 /* Record that we found atleast one task that could run on dst_cpu */
5507 env->flags &= ~LBF_ALL_PINNED;
5508
5509 if (task_running(env->src_rq, p)) {
5510 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5511 return 0;
5512 }
5513
5514 /*
5515 * Aggressive migration if:
5516 * 1) destination numa is preferred
5517 * 2) task is cache cold, or
5518 * 3) too many balance attempts have failed.
5519 */
5520 tsk_cache_hot = task_hot(p, env);
5521 if (!tsk_cache_hot)
5522 tsk_cache_hot = migrate_degrades_locality(p, env);
5523
5524 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5525 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5526 if (tsk_cache_hot) {
5527 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5528 schedstat_inc(p, se.statistics.nr_forced_migrations);
5529 }
5530 return 1;
5531 }
5532
5533 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5534 return 0;
5535 }
5536
5537 /*
5538 * detach_task() -- detach the task for the migration specified in env
5539 */
5540 static void detach_task(struct task_struct *p, struct lb_env *env)
5541 {
5542 lockdep_assert_held(&env->src_rq->lock);
5543
5544 deactivate_task(env->src_rq, p, 0);
5545 p->on_rq = TASK_ON_RQ_MIGRATING;
5546 set_task_cpu(p, env->dst_cpu);
5547 }
5548
5549 /*
5550 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5551 * part of active balancing operations within "domain".
5552 *
5553 * Returns a task if successful and NULL otherwise.
5554 */
5555 static struct task_struct *detach_one_task(struct lb_env *env)
5556 {
5557 struct task_struct *p, *n;
5558
5559 lockdep_assert_held(&env->src_rq->lock);
5560
5561 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5562 if (!can_migrate_task(p, env))
5563 continue;
5564
5565 detach_task(p, env);
5566
5567 /*
5568 * Right now, this is only the second place where
5569 * lb_gained[env->idle] is updated (other is detach_tasks)
5570 * so we can safely collect stats here rather than
5571 * inside detach_tasks().
5572 */
5573 schedstat_inc(env->sd, lb_gained[env->idle]);
5574 return p;
5575 }
5576 return NULL;
5577 }
5578
5579 static const unsigned int sched_nr_migrate_break = 32;
5580
5581 /*
5582 * detach_tasks() -- tries to detach up to imbalance weighted load from
5583 * busiest_rq, as part of a balancing operation within domain "sd".
5584 *
5585 * Returns number of detached tasks if successful and 0 otherwise.
5586 */
5587 static int detach_tasks(struct lb_env *env)
5588 {
5589 struct list_head *tasks = &env->src_rq->cfs_tasks;
5590 struct task_struct *p;
5591 unsigned long load;
5592 int detached = 0;
5593
5594 lockdep_assert_held(&env->src_rq->lock);
5595
5596 if (env->imbalance <= 0)
5597 return 0;
5598
5599 while (!list_empty(tasks)) {
5600 p = list_first_entry(tasks, struct task_struct, se.group_node);
5601
5602 env->loop++;
5603 /* We've more or less seen every task there is, call it quits */
5604 if (env->loop > env->loop_max)
5605 break;
5606
5607 /* take a breather every nr_migrate tasks */
5608 if (env->loop > env->loop_break) {
5609 env->loop_break += sched_nr_migrate_break;
5610 env->flags |= LBF_NEED_BREAK;
5611 break;
5612 }
5613
5614 if (!can_migrate_task(p, env))
5615 goto next;
5616
5617 load = task_h_load(p);
5618
5619 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5620 goto next;
5621
5622 if ((load / 2) > env->imbalance)
5623 goto next;
5624
5625 detach_task(p, env);
5626 list_add(&p->se.group_node, &env->tasks);
5627
5628 detached++;
5629 env->imbalance -= load;
5630
5631 #ifdef CONFIG_PREEMPT
5632 /*
5633 * NEWIDLE balancing is a source of latency, so preemptible
5634 * kernels will stop after the first task is detached to minimize
5635 * the critical section.
5636 */
5637 if (env->idle == CPU_NEWLY_IDLE)
5638 break;
5639 #endif
5640
5641 /*
5642 * We only want to steal up to the prescribed amount of
5643 * weighted load.
5644 */
5645 if (env->imbalance <= 0)
5646 break;
5647
5648 continue;
5649 next:
5650 list_move_tail(&p->se.group_node, tasks);
5651 }
5652
5653 /*
5654 * Right now, this is one of only two places we collect this stat
5655 * so we can safely collect detach_one_task() stats here rather
5656 * than inside detach_one_task().
5657 */
5658 schedstat_add(env->sd, lb_gained[env->idle], detached);
5659
5660 return detached;
5661 }
5662
5663 /*
5664 * attach_task() -- attach the task detached by detach_task() to its new rq.
5665 */
5666 static void attach_task(struct rq *rq, struct task_struct *p)
5667 {
5668 lockdep_assert_held(&rq->lock);
5669
5670 BUG_ON(task_rq(p) != rq);
5671 p->on_rq = TASK_ON_RQ_QUEUED;
5672 activate_task(rq, p, 0);
5673 check_preempt_curr(rq, p, 0);
5674 }
5675
5676 /*
5677 * attach_one_task() -- attaches the task returned from detach_one_task() to
5678 * its new rq.
5679 */
5680 static void attach_one_task(struct rq *rq, struct task_struct *p)
5681 {
5682 raw_spin_lock(&rq->lock);
5683 attach_task(rq, p);
5684 raw_spin_unlock(&rq->lock);
5685 }
5686
5687 /*
5688 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5689 * new rq.
5690 */
5691 static void attach_tasks(struct lb_env *env)
5692 {
5693 struct list_head *tasks = &env->tasks;
5694 struct task_struct *p;
5695
5696 raw_spin_lock(&env->dst_rq->lock);
5697
5698 while (!list_empty(tasks)) {
5699 p = list_first_entry(tasks, struct task_struct, se.group_node);
5700 list_del_init(&p->se.group_node);
5701
5702 attach_task(env->dst_rq, p);
5703 }
5704
5705 raw_spin_unlock(&env->dst_rq->lock);
5706 }
5707
5708 #ifdef CONFIG_FAIR_GROUP_SCHED
5709 /*
5710 * update tg->load_weight by folding this cpu's load_avg
5711 */
5712 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5713 {
5714 struct sched_entity *se = tg->se[cpu];
5715 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5716
5717 /* throttled entities do not contribute to load */
5718 if (throttled_hierarchy(cfs_rq))
5719 return;
5720
5721 update_cfs_rq_blocked_load(cfs_rq, 1);
5722
5723 if (se) {
5724 update_entity_load_avg(se, 1);
5725 /*
5726 * We pivot on our runnable average having decayed to zero for
5727 * list removal. This generally implies that all our children
5728 * have also been removed (modulo rounding error or bandwidth
5729 * control); however, such cases are rare and we can fix these
5730 * at enqueue.
5731 *
5732 * TODO: fix up out-of-order children on enqueue.
5733 */
5734 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5735 list_del_leaf_cfs_rq(cfs_rq);
5736 } else {
5737 struct rq *rq = rq_of(cfs_rq);
5738 update_rq_runnable_avg(rq, rq->nr_running);
5739 }
5740 }
5741
5742 static void update_blocked_averages(int cpu)
5743 {
5744 struct rq *rq = cpu_rq(cpu);
5745 struct cfs_rq *cfs_rq;
5746 unsigned long flags;
5747
5748 raw_spin_lock_irqsave(&rq->lock, flags);
5749 update_rq_clock(rq);
5750 /*
5751 * Iterates the task_group tree in a bottom up fashion, see
5752 * list_add_leaf_cfs_rq() for details.
5753 */
5754 for_each_leaf_cfs_rq(rq, cfs_rq) {
5755 /*
5756 * Note: We may want to consider periodically releasing
5757 * rq->lock about these updates so that creating many task
5758 * groups does not result in continually extending hold time.
5759 */
5760 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5761 }
5762
5763 raw_spin_unlock_irqrestore(&rq->lock, flags);
5764 }
5765
5766 /*
5767 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5768 * This needs to be done in a top-down fashion because the load of a child
5769 * group is a fraction of its parents load.
5770 */
5771 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5772 {
5773 struct rq *rq = rq_of(cfs_rq);
5774 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5775 unsigned long now = jiffies;
5776 unsigned long load;
5777
5778 if (cfs_rq->last_h_load_update == now)
5779 return;
5780
5781 cfs_rq->h_load_next = NULL;
5782 for_each_sched_entity(se) {
5783 cfs_rq = cfs_rq_of(se);
5784 cfs_rq->h_load_next = se;
5785 if (cfs_rq->last_h_load_update == now)
5786 break;
5787 }
5788
5789 if (!se) {
5790 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5791 cfs_rq->last_h_load_update = now;
5792 }
5793
5794 while ((se = cfs_rq->h_load_next) != NULL) {
5795 load = cfs_rq->h_load;
5796 load = div64_ul(load * se->avg.load_avg_contrib,
5797 cfs_rq->runnable_load_avg + 1);
5798 cfs_rq = group_cfs_rq(se);
5799 cfs_rq->h_load = load;
5800 cfs_rq->last_h_load_update = now;
5801 }
5802 }
5803
5804 static unsigned long task_h_load(struct task_struct *p)
5805 {
5806 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5807
5808 update_cfs_rq_h_load(cfs_rq);
5809 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5810 cfs_rq->runnable_load_avg + 1);
5811 }
5812 #else
5813 static inline void update_blocked_averages(int cpu)
5814 {
5815 }
5816
5817 static unsigned long task_h_load(struct task_struct *p)
5818 {
5819 return p->se.avg.load_avg_contrib;
5820 }
5821 #endif
5822
5823 /********** Helpers for find_busiest_group ************************/
5824
5825 enum group_type {
5826 group_other = 0,
5827 group_imbalanced,
5828 group_overloaded,
5829 };
5830
5831 /*
5832 * sg_lb_stats - stats of a sched_group required for load_balancing
5833 */
5834 struct sg_lb_stats {
5835 unsigned long avg_load; /*Avg load across the CPUs of the group */
5836 unsigned long group_load; /* Total load over the CPUs of the group */
5837 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5838 unsigned long load_per_task;
5839 unsigned long group_capacity;
5840 unsigned int sum_nr_running; /* Nr tasks running in the group */
5841 unsigned int group_capacity_factor;
5842 unsigned int idle_cpus;
5843 unsigned int group_weight;
5844 enum group_type group_type;
5845 int group_has_free_capacity;
5846 #ifdef CONFIG_NUMA_BALANCING
5847 unsigned int nr_numa_running;
5848 unsigned int nr_preferred_running;
5849 #endif
5850 };
5851
5852 /*
5853 * sd_lb_stats - Structure to store the statistics of a sched_domain
5854 * during load balancing.
5855 */
5856 struct sd_lb_stats {
5857 struct sched_group *busiest; /* Busiest group in this sd */
5858 struct sched_group *local; /* Local group in this sd */
5859 unsigned long total_load; /* Total load of all groups in sd */
5860 unsigned long total_capacity; /* Total capacity of all groups in sd */
5861 unsigned long avg_load; /* Average load across all groups in sd */
5862
5863 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5864 struct sg_lb_stats local_stat; /* Statistics of the local group */
5865 };
5866
5867 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5868 {
5869 /*
5870 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5871 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5872 * We must however clear busiest_stat::avg_load because
5873 * update_sd_pick_busiest() reads this before assignment.
5874 */
5875 *sds = (struct sd_lb_stats){
5876 .busiest = NULL,
5877 .local = NULL,
5878 .total_load = 0UL,
5879 .total_capacity = 0UL,
5880 .busiest_stat = {
5881 .avg_load = 0UL,
5882 .sum_nr_running = 0,
5883 .group_type = group_other,
5884 },
5885 };
5886 }
5887
5888 /**
5889 * get_sd_load_idx - Obtain the load index for a given sched domain.
5890 * @sd: The sched_domain whose load_idx is to be obtained.
5891 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5892 *
5893 * Return: The load index.
5894 */
5895 static inline int get_sd_load_idx(struct sched_domain *sd,
5896 enum cpu_idle_type idle)
5897 {
5898 int load_idx;
5899
5900 switch (idle) {
5901 case CPU_NOT_IDLE:
5902 load_idx = sd->busy_idx;
5903 break;
5904
5905 case CPU_NEWLY_IDLE:
5906 load_idx = sd->newidle_idx;
5907 break;
5908 default:
5909 load_idx = sd->idle_idx;
5910 break;
5911 }
5912
5913 return load_idx;
5914 }
5915
5916 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5917 {
5918 return SCHED_CAPACITY_SCALE;
5919 }
5920
5921 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5922 {
5923 return default_scale_capacity(sd, cpu);
5924 }
5925
5926 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5927 {
5928 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5929 return sd->smt_gain / sd->span_weight;
5930
5931 return SCHED_CAPACITY_SCALE;
5932 }
5933
5934 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5935 {
5936 return default_scale_cpu_capacity(sd, cpu);
5937 }
5938
5939 static unsigned long scale_rt_capacity(int cpu)
5940 {
5941 struct rq *rq = cpu_rq(cpu);
5942 u64 total, available, age_stamp, avg;
5943 s64 delta;
5944
5945 /*
5946 * Since we're reading these variables without serialization make sure
5947 * we read them once before doing sanity checks on them.
5948 */
5949 age_stamp = ACCESS_ONCE(rq->age_stamp);
5950 avg = ACCESS_ONCE(rq->rt_avg);
5951 delta = __rq_clock_broken(rq) - age_stamp;
5952
5953 if (unlikely(delta < 0))
5954 delta = 0;
5955
5956 total = sched_avg_period() + delta;
5957
5958 if (unlikely(total < avg)) {
5959 /* Ensures that capacity won't end up being negative */
5960 available = 0;
5961 } else {
5962 available = total - avg;
5963 }
5964
5965 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5966 total = SCHED_CAPACITY_SCALE;
5967
5968 total >>= SCHED_CAPACITY_SHIFT;
5969
5970 return div_u64(available, total);
5971 }
5972
5973 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5974 {
5975 unsigned long capacity = SCHED_CAPACITY_SCALE;
5976 struct sched_group *sdg = sd->groups;
5977
5978 if (sched_feat(ARCH_CAPACITY))
5979 capacity *= arch_scale_cpu_capacity(sd, cpu);
5980 else
5981 capacity *= default_scale_cpu_capacity(sd, cpu);
5982
5983 capacity >>= SCHED_CAPACITY_SHIFT;
5984
5985 sdg->sgc->capacity_orig = capacity;
5986
5987 if (sched_feat(ARCH_CAPACITY))
5988 capacity *= arch_scale_freq_capacity(sd, cpu);
5989 else
5990 capacity *= default_scale_capacity(sd, cpu);
5991
5992 capacity >>= SCHED_CAPACITY_SHIFT;
5993
5994 capacity *= scale_rt_capacity(cpu);
5995 capacity >>= SCHED_CAPACITY_SHIFT;
5996
5997 if (!capacity)
5998 capacity = 1;
5999
6000 cpu_rq(cpu)->cpu_capacity = capacity;
6001 sdg->sgc->capacity = capacity;
6002 }
6003
6004 void update_group_capacity(struct sched_domain *sd, int cpu)
6005 {
6006 struct sched_domain *child = sd->child;
6007 struct sched_group *group, *sdg = sd->groups;
6008 unsigned long capacity, capacity_orig;
6009 unsigned long interval;
6010
6011 interval = msecs_to_jiffies(sd->balance_interval);
6012 interval = clamp(interval, 1UL, max_load_balance_interval);
6013 sdg->sgc->next_update = jiffies + interval;
6014
6015 if (!child) {
6016 update_cpu_capacity(sd, cpu);
6017 return;
6018 }
6019
6020 capacity_orig = capacity = 0;
6021
6022 if (child->flags & SD_OVERLAP) {
6023 /*
6024 * SD_OVERLAP domains cannot assume that child groups
6025 * span the current group.
6026 */
6027
6028 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6029 struct sched_group_capacity *sgc;
6030 struct rq *rq = cpu_rq(cpu);
6031
6032 /*
6033 * build_sched_domains() -> init_sched_groups_capacity()
6034 * gets here before we've attached the domains to the
6035 * runqueues.
6036 *
6037 * Use capacity_of(), which is set irrespective of domains
6038 * in update_cpu_capacity().
6039 *
6040 * This avoids capacity/capacity_orig from being 0 and
6041 * causing divide-by-zero issues on boot.
6042 *
6043 * Runtime updates will correct capacity_orig.
6044 */
6045 if (unlikely(!rq->sd)) {
6046 capacity_orig += capacity_of(cpu);
6047 capacity += capacity_of(cpu);
6048 continue;
6049 }
6050
6051 sgc = rq->sd->groups->sgc;
6052 capacity_orig += sgc->capacity_orig;
6053 capacity += sgc->capacity;
6054 }
6055 } else {
6056 /*
6057 * !SD_OVERLAP domains can assume that child groups
6058 * span the current group.
6059 */
6060
6061 group = child->groups;
6062 do {
6063 capacity_orig += group->sgc->capacity_orig;
6064 capacity += group->sgc->capacity;
6065 group = group->next;
6066 } while (group != child->groups);
6067 }
6068
6069 sdg->sgc->capacity_orig = capacity_orig;
6070 sdg->sgc->capacity = capacity;
6071 }
6072
6073 /*
6074 * Try and fix up capacity for tiny siblings, this is needed when
6075 * things like SD_ASYM_PACKING need f_b_g to select another sibling
6076 * which on its own isn't powerful enough.
6077 *
6078 * See update_sd_pick_busiest() and check_asym_packing().
6079 */
6080 static inline int
6081 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
6082 {
6083 /*
6084 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
6085 */
6086 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
6087 return 0;
6088
6089 /*
6090 * If ~90% of the cpu_capacity is still there, we're good.
6091 */
6092 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
6093 return 1;
6094
6095 return 0;
6096 }
6097
6098 /*
6099 * Group imbalance indicates (and tries to solve) the problem where balancing
6100 * groups is inadequate due to tsk_cpus_allowed() constraints.
6101 *
6102 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6103 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6104 * Something like:
6105 *
6106 * { 0 1 2 3 } { 4 5 6 7 }
6107 * * * * *
6108 *
6109 * If we were to balance group-wise we'd place two tasks in the first group and
6110 * two tasks in the second group. Clearly this is undesired as it will overload
6111 * cpu 3 and leave one of the cpus in the second group unused.
6112 *
6113 * The current solution to this issue is detecting the skew in the first group
6114 * by noticing the lower domain failed to reach balance and had difficulty
6115 * moving tasks due to affinity constraints.
6116 *
6117 * When this is so detected; this group becomes a candidate for busiest; see
6118 * update_sd_pick_busiest(). And calculate_imbalance() and
6119 * find_busiest_group() avoid some of the usual balance conditions to allow it
6120 * to create an effective group imbalance.
6121 *
6122 * This is a somewhat tricky proposition since the next run might not find the
6123 * group imbalance and decide the groups need to be balanced again. A most
6124 * subtle and fragile situation.
6125 */
6126
6127 static inline int sg_imbalanced(struct sched_group *group)
6128 {
6129 return group->sgc->imbalance;
6130 }
6131
6132 /*
6133 * Compute the group capacity factor.
6134 *
6135 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
6136 * first dividing out the smt factor and computing the actual number of cores
6137 * and limit unit capacity with that.
6138 */
6139 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
6140 {
6141 unsigned int capacity_factor, smt, cpus;
6142 unsigned int capacity, capacity_orig;
6143
6144 capacity = group->sgc->capacity;
6145 capacity_orig = group->sgc->capacity_orig;
6146 cpus = group->group_weight;
6147
6148 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
6149 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
6150 capacity_factor = cpus / smt; /* cores */
6151
6152 capacity_factor = min_t(unsigned,
6153 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
6154 if (!capacity_factor)
6155 capacity_factor = fix_small_capacity(env->sd, group);
6156
6157 return capacity_factor;
6158 }
6159
6160 static enum group_type
6161 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
6162 {
6163 if (sgs->sum_nr_running > sgs->group_capacity_factor)
6164 return group_overloaded;
6165
6166 if (sg_imbalanced(group))
6167 return group_imbalanced;
6168
6169 return group_other;
6170 }
6171
6172 /**
6173 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6174 * @env: The load balancing environment.
6175 * @group: sched_group whose statistics are to be updated.
6176 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6177 * @local_group: Does group contain this_cpu.
6178 * @sgs: variable to hold the statistics for this group.
6179 * @overload: Indicate more than one runnable task for any CPU.
6180 */
6181 static inline void update_sg_lb_stats(struct lb_env *env,
6182 struct sched_group *group, int load_idx,
6183 int local_group, struct sg_lb_stats *sgs,
6184 bool *overload)
6185 {
6186 unsigned long load;
6187 int i;
6188
6189 memset(sgs, 0, sizeof(*sgs));
6190
6191 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6192 struct rq *rq = cpu_rq(i);
6193
6194 /* Bias balancing toward cpus of our domain */
6195 if (local_group)
6196 load = target_load(i, load_idx);
6197 else
6198 load = source_load(i, load_idx);
6199
6200 sgs->group_load += load;
6201 sgs->sum_nr_running += rq->cfs.h_nr_running;
6202
6203 if (rq->nr_running > 1)
6204 *overload = true;
6205
6206 #ifdef CONFIG_NUMA_BALANCING
6207 sgs->nr_numa_running += rq->nr_numa_running;
6208 sgs->nr_preferred_running += rq->nr_preferred_running;
6209 #endif
6210 sgs->sum_weighted_load += weighted_cpuload(i);
6211 if (idle_cpu(i))
6212 sgs->idle_cpus++;
6213 }
6214
6215 /* Adjust by relative CPU capacity of the group */
6216 sgs->group_capacity = group->sgc->capacity;
6217 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6218
6219 if (sgs->sum_nr_running)
6220 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6221
6222 sgs->group_weight = group->group_weight;
6223 sgs->group_capacity_factor = sg_capacity_factor(env, group);
6224 sgs->group_type = group_classify(group, sgs);
6225
6226 if (sgs->group_capacity_factor > sgs->sum_nr_running)
6227 sgs->group_has_free_capacity = 1;
6228 }
6229
6230 /**
6231 * update_sd_pick_busiest - return 1 on busiest group
6232 * @env: The load balancing environment.
6233 * @sds: sched_domain statistics
6234 * @sg: sched_group candidate to be checked for being the busiest
6235 * @sgs: sched_group statistics
6236 *
6237 * Determine if @sg is a busier group than the previously selected
6238 * busiest group.
6239 *
6240 * Return: %true if @sg is a busier group than the previously selected
6241 * busiest group. %false otherwise.
6242 */
6243 static bool update_sd_pick_busiest(struct lb_env *env,
6244 struct sd_lb_stats *sds,
6245 struct sched_group *sg,
6246 struct sg_lb_stats *sgs)
6247 {
6248 struct sg_lb_stats *busiest = &sds->busiest_stat;
6249
6250 if (sgs->group_type > busiest->group_type)
6251 return true;
6252
6253 if (sgs->group_type < busiest->group_type)
6254 return false;
6255
6256 if (sgs->avg_load <= busiest->avg_load)
6257 return false;
6258
6259 /* This is the busiest node in its class. */
6260 if (!(env->sd->flags & SD_ASYM_PACKING))
6261 return true;
6262
6263 /*
6264 * ASYM_PACKING needs to move all the work to the lowest
6265 * numbered CPUs in the group, therefore mark all groups
6266 * higher than ourself as busy.
6267 */
6268 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6269 if (!sds->busiest)
6270 return true;
6271
6272 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6273 return true;
6274 }
6275
6276 return false;
6277 }
6278
6279 #ifdef CONFIG_NUMA_BALANCING
6280 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6281 {
6282 if (sgs->sum_nr_running > sgs->nr_numa_running)
6283 return regular;
6284 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6285 return remote;
6286 return all;
6287 }
6288
6289 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6290 {
6291 if (rq->nr_running > rq->nr_numa_running)
6292 return regular;
6293 if (rq->nr_running > rq->nr_preferred_running)
6294 return remote;
6295 return all;
6296 }
6297 #else
6298 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6299 {
6300 return all;
6301 }
6302
6303 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6304 {
6305 return regular;
6306 }
6307 #endif /* CONFIG_NUMA_BALANCING */
6308
6309 /**
6310 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6311 * @env: The load balancing environment.
6312 * @sds: variable to hold the statistics for this sched_domain.
6313 */
6314 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6315 {
6316 struct sched_domain *child = env->sd->child;
6317 struct sched_group *sg = env->sd->groups;
6318 struct sg_lb_stats tmp_sgs;
6319 int load_idx, prefer_sibling = 0;
6320 bool overload = false;
6321
6322 if (child && child->flags & SD_PREFER_SIBLING)
6323 prefer_sibling = 1;
6324
6325 load_idx = get_sd_load_idx(env->sd, env->idle);
6326
6327 do {
6328 struct sg_lb_stats *sgs = &tmp_sgs;
6329 int local_group;
6330
6331 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6332 if (local_group) {
6333 sds->local = sg;
6334 sgs = &sds->local_stat;
6335
6336 if (env->idle != CPU_NEWLY_IDLE ||
6337 time_after_eq(jiffies, sg->sgc->next_update))
6338 update_group_capacity(env->sd, env->dst_cpu);
6339 }
6340
6341 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6342 &overload);
6343
6344 if (local_group)
6345 goto next_group;
6346
6347 /*
6348 * In case the child domain prefers tasks go to siblings
6349 * first, lower the sg capacity factor to one so that we'll try
6350 * and move all the excess tasks away. We lower the capacity
6351 * of a group only if the local group has the capacity to fit
6352 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6353 * extra check prevents the case where you always pull from the
6354 * heaviest group when it is already under-utilized (possible
6355 * with a large weight task outweighs the tasks on the system).
6356 */
6357 if (prefer_sibling && sds->local &&
6358 sds->local_stat.group_has_free_capacity) {
6359 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6360 sgs->group_type = group_classify(sg, sgs);
6361 }
6362
6363 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6364 sds->busiest = sg;
6365 sds->busiest_stat = *sgs;
6366 }
6367
6368 next_group:
6369 /* Now, start updating sd_lb_stats */
6370 sds->total_load += sgs->group_load;
6371 sds->total_capacity += sgs->group_capacity;
6372
6373 sg = sg->next;
6374 } while (sg != env->sd->groups);
6375
6376 if (env->sd->flags & SD_NUMA)
6377 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6378
6379 if (!env->sd->parent) {
6380 /* update overload indicator if we are at root domain */
6381 if (env->dst_rq->rd->overload != overload)
6382 env->dst_rq->rd->overload = overload;
6383 }
6384
6385 }
6386
6387 /**
6388 * check_asym_packing - Check to see if the group is packed into the
6389 * sched doman.
6390 *
6391 * This is primarily intended to used at the sibling level. Some
6392 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6393 * case of POWER7, it can move to lower SMT modes only when higher
6394 * threads are idle. When in lower SMT modes, the threads will
6395 * perform better since they share less core resources. Hence when we
6396 * have idle threads, we want them to be the higher ones.
6397 *
6398 * This packing function is run on idle threads. It checks to see if
6399 * the busiest CPU in this domain (core in the P7 case) has a higher
6400 * CPU number than the packing function is being run on. Here we are
6401 * assuming lower CPU number will be equivalent to lower a SMT thread
6402 * number.
6403 *
6404 * Return: 1 when packing is required and a task should be moved to
6405 * this CPU. The amount of the imbalance is returned in *imbalance.
6406 *
6407 * @env: The load balancing environment.
6408 * @sds: Statistics of the sched_domain which is to be packed
6409 */
6410 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6411 {
6412 int busiest_cpu;
6413
6414 if (!(env->sd->flags & SD_ASYM_PACKING))
6415 return 0;
6416
6417 if (!sds->busiest)
6418 return 0;
6419
6420 busiest_cpu = group_first_cpu(sds->busiest);
6421 if (env->dst_cpu > busiest_cpu)
6422 return 0;
6423
6424 env->imbalance = DIV_ROUND_CLOSEST(
6425 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6426 SCHED_CAPACITY_SCALE);
6427
6428 return 1;
6429 }
6430
6431 /**
6432 * fix_small_imbalance - Calculate the minor imbalance that exists
6433 * amongst the groups of a sched_domain, during
6434 * load balancing.
6435 * @env: The load balancing environment.
6436 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6437 */
6438 static inline
6439 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6440 {
6441 unsigned long tmp, capa_now = 0, capa_move = 0;
6442 unsigned int imbn = 2;
6443 unsigned long scaled_busy_load_per_task;
6444 struct sg_lb_stats *local, *busiest;
6445
6446 local = &sds->local_stat;
6447 busiest = &sds->busiest_stat;
6448
6449 if (!local->sum_nr_running)
6450 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6451 else if (busiest->load_per_task > local->load_per_task)
6452 imbn = 1;
6453
6454 scaled_busy_load_per_task =
6455 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6456 busiest->group_capacity;
6457
6458 if (busiest->avg_load + scaled_busy_load_per_task >=
6459 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6460 env->imbalance = busiest->load_per_task;
6461 return;
6462 }
6463
6464 /*
6465 * OK, we don't have enough imbalance to justify moving tasks,
6466 * however we may be able to increase total CPU capacity used by
6467 * moving them.
6468 */
6469
6470 capa_now += busiest->group_capacity *
6471 min(busiest->load_per_task, busiest->avg_load);
6472 capa_now += local->group_capacity *
6473 min(local->load_per_task, local->avg_load);
6474 capa_now /= SCHED_CAPACITY_SCALE;
6475
6476 /* Amount of load we'd subtract */
6477 if (busiest->avg_load > scaled_busy_load_per_task) {
6478 capa_move += busiest->group_capacity *
6479 min(busiest->load_per_task,
6480 busiest->avg_load - scaled_busy_load_per_task);
6481 }
6482
6483 /* Amount of load we'd add */
6484 if (busiest->avg_load * busiest->group_capacity <
6485 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6486 tmp = (busiest->avg_load * busiest->group_capacity) /
6487 local->group_capacity;
6488 } else {
6489 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6490 local->group_capacity;
6491 }
6492 capa_move += local->group_capacity *
6493 min(local->load_per_task, local->avg_load + tmp);
6494 capa_move /= SCHED_CAPACITY_SCALE;
6495
6496 /* Move if we gain throughput */
6497 if (capa_move > capa_now)
6498 env->imbalance = busiest->load_per_task;
6499 }
6500
6501 /**
6502 * calculate_imbalance - Calculate the amount of imbalance present within the
6503 * groups of a given sched_domain during load balance.
6504 * @env: load balance environment
6505 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6506 */
6507 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6508 {
6509 unsigned long max_pull, load_above_capacity = ~0UL;
6510 struct sg_lb_stats *local, *busiest;
6511
6512 local = &sds->local_stat;
6513 busiest = &sds->busiest_stat;
6514
6515 if (busiest->group_type == group_imbalanced) {
6516 /*
6517 * In the group_imb case we cannot rely on group-wide averages
6518 * to ensure cpu-load equilibrium, look at wider averages. XXX
6519 */
6520 busiest->load_per_task =
6521 min(busiest->load_per_task, sds->avg_load);
6522 }
6523
6524 /*
6525 * In the presence of smp nice balancing, certain scenarios can have
6526 * max load less than avg load(as we skip the groups at or below
6527 * its cpu_capacity, while calculating max_load..)
6528 */
6529 if (busiest->avg_load <= sds->avg_load ||
6530 local->avg_load >= sds->avg_load) {
6531 env->imbalance = 0;
6532 return fix_small_imbalance(env, sds);
6533 }
6534
6535 /*
6536 * If there aren't any idle cpus, avoid creating some.
6537 */
6538 if (busiest->group_type == group_overloaded &&
6539 local->group_type == group_overloaded) {
6540 load_above_capacity =
6541 (busiest->sum_nr_running - busiest->group_capacity_factor);
6542
6543 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6544 load_above_capacity /= busiest->group_capacity;
6545 }
6546
6547 /*
6548 * We're trying to get all the cpus to the average_load, so we don't
6549 * want to push ourselves above the average load, nor do we wish to
6550 * reduce the max loaded cpu below the average load. At the same time,
6551 * we also don't want to reduce the group load below the group capacity
6552 * (so that we can implement power-savings policies etc). Thus we look
6553 * for the minimum possible imbalance.
6554 */
6555 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6556
6557 /* How much load to actually move to equalise the imbalance */
6558 env->imbalance = min(
6559 max_pull * busiest->group_capacity,
6560 (sds->avg_load - local->avg_load) * local->group_capacity
6561 ) / SCHED_CAPACITY_SCALE;
6562
6563 /*
6564 * if *imbalance is less than the average load per runnable task
6565 * there is no guarantee that any tasks will be moved so we'll have
6566 * a think about bumping its value to force at least one task to be
6567 * moved
6568 */
6569 if (env->imbalance < busiest->load_per_task)
6570 return fix_small_imbalance(env, sds);
6571 }
6572
6573 /******* find_busiest_group() helpers end here *********************/
6574
6575 /**
6576 * find_busiest_group - Returns the busiest group within the sched_domain
6577 * if there is an imbalance. If there isn't an imbalance, and
6578 * the user has opted for power-savings, it returns a group whose
6579 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6580 * such a group exists.
6581 *
6582 * Also calculates the amount of weighted load which should be moved
6583 * to restore balance.
6584 *
6585 * @env: The load balancing environment.
6586 *
6587 * Return: - The busiest group if imbalance exists.
6588 * - If no imbalance and user has opted for power-savings balance,
6589 * return the least loaded group whose CPUs can be
6590 * put to idle by rebalancing its tasks onto our group.
6591 */
6592 static struct sched_group *find_busiest_group(struct lb_env *env)
6593 {
6594 struct sg_lb_stats *local, *busiest;
6595 struct sd_lb_stats sds;
6596
6597 init_sd_lb_stats(&sds);
6598
6599 /*
6600 * Compute the various statistics relavent for load balancing at
6601 * this level.
6602 */
6603 update_sd_lb_stats(env, &sds);
6604 local = &sds.local_stat;
6605 busiest = &sds.busiest_stat;
6606
6607 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6608 check_asym_packing(env, &sds))
6609 return sds.busiest;
6610
6611 /* There is no busy sibling group to pull tasks from */
6612 if (!sds.busiest || busiest->sum_nr_running == 0)
6613 goto out_balanced;
6614
6615 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6616 / sds.total_capacity;
6617
6618 /*
6619 * If the busiest group is imbalanced the below checks don't
6620 * work because they assume all things are equal, which typically
6621 * isn't true due to cpus_allowed constraints and the like.
6622 */
6623 if (busiest->group_type == group_imbalanced)
6624 goto force_balance;
6625
6626 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6627 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6628 !busiest->group_has_free_capacity)
6629 goto force_balance;
6630
6631 /*
6632 * If the local group is busier than the selected busiest group
6633 * don't try and pull any tasks.
6634 */
6635 if (local->avg_load >= busiest->avg_load)
6636 goto out_balanced;
6637
6638 /*
6639 * Don't pull any tasks if this group is already above the domain
6640 * average load.
6641 */
6642 if (local->avg_load >= sds.avg_load)
6643 goto out_balanced;
6644
6645 if (env->idle == CPU_IDLE) {
6646 /*
6647 * This cpu is idle. If the busiest group is not overloaded
6648 * and there is no imbalance between this and busiest group
6649 * wrt idle cpus, it is balanced. The imbalance becomes
6650 * significant if the diff is greater than 1 otherwise we
6651 * might end up to just move the imbalance on another group
6652 */
6653 if ((busiest->group_type != group_overloaded) &&
6654 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6655 goto out_balanced;
6656 } else {
6657 /*
6658 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6659 * imbalance_pct to be conservative.
6660 */
6661 if (100 * busiest->avg_load <=
6662 env->sd->imbalance_pct * local->avg_load)
6663 goto out_balanced;
6664 }
6665
6666 force_balance:
6667 /* Looks like there is an imbalance. Compute it */
6668 calculate_imbalance(env, &sds);
6669 return sds.busiest;
6670
6671 out_balanced:
6672 env->imbalance = 0;
6673 return NULL;
6674 }
6675
6676 /*
6677 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6678 */
6679 static struct rq *find_busiest_queue(struct lb_env *env,
6680 struct sched_group *group)
6681 {
6682 struct rq *busiest = NULL, *rq;
6683 unsigned long busiest_load = 0, busiest_capacity = 1;
6684 int i;
6685
6686 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6687 unsigned long capacity, capacity_factor, wl;
6688 enum fbq_type rt;
6689
6690 rq = cpu_rq(i);
6691 rt = fbq_classify_rq(rq);
6692
6693 /*
6694 * We classify groups/runqueues into three groups:
6695 * - regular: there are !numa tasks
6696 * - remote: there are numa tasks that run on the 'wrong' node
6697 * - all: there is no distinction
6698 *
6699 * In order to avoid migrating ideally placed numa tasks,
6700 * ignore those when there's better options.
6701 *
6702 * If we ignore the actual busiest queue to migrate another
6703 * task, the next balance pass can still reduce the busiest
6704 * queue by moving tasks around inside the node.
6705 *
6706 * If we cannot move enough load due to this classification
6707 * the next pass will adjust the group classification and
6708 * allow migration of more tasks.
6709 *
6710 * Both cases only affect the total convergence complexity.
6711 */
6712 if (rt > env->fbq_type)
6713 continue;
6714
6715 capacity = capacity_of(i);
6716 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6717 if (!capacity_factor)
6718 capacity_factor = fix_small_capacity(env->sd, group);
6719
6720 wl = weighted_cpuload(i);
6721
6722 /*
6723 * When comparing with imbalance, use weighted_cpuload()
6724 * which is not scaled with the cpu capacity.
6725 */
6726 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6727 continue;
6728
6729 /*
6730 * For the load comparisons with the other cpu's, consider
6731 * the weighted_cpuload() scaled with the cpu capacity, so
6732 * that the load can be moved away from the cpu that is
6733 * potentially running at a lower capacity.
6734 *
6735 * Thus we're looking for max(wl_i / capacity_i), crosswise
6736 * multiplication to rid ourselves of the division works out
6737 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6738 * our previous maximum.
6739 */
6740 if (wl * busiest_capacity > busiest_load * capacity) {
6741 busiest_load = wl;
6742 busiest_capacity = capacity;
6743 busiest = rq;
6744 }
6745 }
6746
6747 return busiest;
6748 }
6749
6750 /*
6751 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6752 * so long as it is large enough.
6753 */
6754 #define MAX_PINNED_INTERVAL 512
6755
6756 /* Working cpumask for load_balance and load_balance_newidle. */
6757 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6758
6759 static int need_active_balance(struct lb_env *env)
6760 {
6761 struct sched_domain *sd = env->sd;
6762
6763 if (env->idle == CPU_NEWLY_IDLE) {
6764
6765 /*
6766 * ASYM_PACKING needs to force migrate tasks from busy but
6767 * higher numbered CPUs in order to pack all tasks in the
6768 * lowest numbered CPUs.
6769 */
6770 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6771 return 1;
6772 }
6773
6774 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6775 }
6776
6777 static int active_load_balance_cpu_stop(void *data);
6778
6779 static int should_we_balance(struct lb_env *env)
6780 {
6781 struct sched_group *sg = env->sd->groups;
6782 struct cpumask *sg_cpus, *sg_mask;
6783 int cpu, balance_cpu = -1;
6784
6785 /*
6786 * In the newly idle case, we will allow all the cpu's
6787 * to do the newly idle load balance.
6788 */
6789 if (env->idle == CPU_NEWLY_IDLE)
6790 return 1;
6791
6792 sg_cpus = sched_group_cpus(sg);
6793 sg_mask = sched_group_mask(sg);
6794 /* Try to find first idle cpu */
6795 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6796 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6797 continue;
6798
6799 balance_cpu = cpu;
6800 break;
6801 }
6802
6803 if (balance_cpu == -1)
6804 balance_cpu = group_balance_cpu(sg);
6805
6806 /*
6807 * First idle cpu or the first cpu(busiest) in this sched group
6808 * is eligible for doing load balancing at this and above domains.
6809 */
6810 return balance_cpu == env->dst_cpu;
6811 }
6812
6813 /*
6814 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6815 * tasks if there is an imbalance.
6816 */
6817 static int load_balance(int this_cpu, struct rq *this_rq,
6818 struct sched_domain *sd, enum cpu_idle_type idle,
6819 int *continue_balancing)
6820 {
6821 int ld_moved, cur_ld_moved, active_balance = 0;
6822 struct sched_domain *sd_parent = sd->parent;
6823 struct sched_group *group;
6824 struct rq *busiest;
6825 unsigned long flags;
6826 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6827
6828 struct lb_env env = {
6829 .sd = sd,
6830 .dst_cpu = this_cpu,
6831 .dst_rq = this_rq,
6832 .dst_grpmask = sched_group_cpus(sd->groups),
6833 .idle = idle,
6834 .loop_break = sched_nr_migrate_break,
6835 .cpus = cpus,
6836 .fbq_type = all,
6837 .tasks = LIST_HEAD_INIT(env.tasks),
6838 };
6839
6840 /*
6841 * For NEWLY_IDLE load_balancing, we don't need to consider
6842 * other cpus in our group
6843 */
6844 if (idle == CPU_NEWLY_IDLE)
6845 env.dst_grpmask = NULL;
6846
6847 cpumask_copy(cpus, cpu_active_mask);
6848
6849 schedstat_inc(sd, lb_count[idle]);
6850
6851 redo:
6852 if (!should_we_balance(&env)) {
6853 *continue_balancing = 0;
6854 goto out_balanced;
6855 }
6856
6857 group = find_busiest_group(&env);
6858 if (!group) {
6859 schedstat_inc(sd, lb_nobusyg[idle]);
6860 goto out_balanced;
6861 }
6862
6863 busiest = find_busiest_queue(&env, group);
6864 if (!busiest) {
6865 schedstat_inc(sd, lb_nobusyq[idle]);
6866 goto out_balanced;
6867 }
6868
6869 BUG_ON(busiest == env.dst_rq);
6870
6871 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6872
6873 ld_moved = 0;
6874 if (busiest->nr_running > 1) {
6875 /*
6876 * Attempt to move tasks. If find_busiest_group has found
6877 * an imbalance but busiest->nr_running <= 1, the group is
6878 * still unbalanced. ld_moved simply stays zero, so it is
6879 * correctly treated as an imbalance.
6880 */
6881 env.flags |= LBF_ALL_PINNED;
6882 env.src_cpu = busiest->cpu;
6883 env.src_rq = busiest;
6884 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6885
6886 more_balance:
6887 raw_spin_lock_irqsave(&busiest->lock, flags);
6888
6889 /*
6890 * cur_ld_moved - load moved in current iteration
6891 * ld_moved - cumulative load moved across iterations
6892 */
6893 cur_ld_moved = detach_tasks(&env);
6894
6895 /*
6896 * We've detached some tasks from busiest_rq. Every
6897 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6898 * unlock busiest->lock, and we are able to be sure
6899 * that nobody can manipulate the tasks in parallel.
6900 * See task_rq_lock() family for the details.
6901 */
6902
6903 raw_spin_unlock(&busiest->lock);
6904
6905 if (cur_ld_moved) {
6906 attach_tasks(&env);
6907 ld_moved += cur_ld_moved;
6908 }
6909
6910 local_irq_restore(flags);
6911
6912 if (env.flags & LBF_NEED_BREAK) {
6913 env.flags &= ~LBF_NEED_BREAK;
6914 goto more_balance;
6915 }
6916
6917 /*
6918 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6919 * us and move them to an alternate dst_cpu in our sched_group
6920 * where they can run. The upper limit on how many times we
6921 * iterate on same src_cpu is dependent on number of cpus in our
6922 * sched_group.
6923 *
6924 * This changes load balance semantics a bit on who can move
6925 * load to a given_cpu. In addition to the given_cpu itself
6926 * (or a ilb_cpu acting on its behalf where given_cpu is
6927 * nohz-idle), we now have balance_cpu in a position to move
6928 * load to given_cpu. In rare situations, this may cause
6929 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6930 * _independently_ and at _same_ time to move some load to
6931 * given_cpu) causing exceess load to be moved to given_cpu.
6932 * This however should not happen so much in practice and
6933 * moreover subsequent load balance cycles should correct the
6934 * excess load moved.
6935 */
6936 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6937
6938 /* Prevent to re-select dst_cpu via env's cpus */
6939 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6940
6941 env.dst_rq = cpu_rq(env.new_dst_cpu);
6942 env.dst_cpu = env.new_dst_cpu;
6943 env.flags &= ~LBF_DST_PINNED;
6944 env.loop = 0;
6945 env.loop_break = sched_nr_migrate_break;
6946
6947 /*
6948 * Go back to "more_balance" rather than "redo" since we
6949 * need to continue with same src_cpu.
6950 */
6951 goto more_balance;
6952 }
6953
6954 /*
6955 * We failed to reach balance because of affinity.
6956 */
6957 if (sd_parent) {
6958 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6959
6960 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6961 *group_imbalance = 1;
6962 }
6963
6964 /* All tasks on this runqueue were pinned by CPU affinity */
6965 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6966 cpumask_clear_cpu(cpu_of(busiest), cpus);
6967 if (!cpumask_empty(cpus)) {
6968 env.loop = 0;
6969 env.loop_break = sched_nr_migrate_break;
6970 goto redo;
6971 }
6972 goto out_all_pinned;
6973 }
6974 }
6975
6976 if (!ld_moved) {
6977 schedstat_inc(sd, lb_failed[idle]);
6978 /*
6979 * Increment the failure counter only on periodic balance.
6980 * We do not want newidle balance, which can be very
6981 * frequent, pollute the failure counter causing
6982 * excessive cache_hot migrations and active balances.
6983 */
6984 if (idle != CPU_NEWLY_IDLE)
6985 sd->nr_balance_failed++;
6986
6987 if (need_active_balance(&env)) {
6988 raw_spin_lock_irqsave(&busiest->lock, flags);
6989
6990 /* don't kick the active_load_balance_cpu_stop,
6991 * if the curr task on busiest cpu can't be
6992 * moved to this_cpu
6993 */
6994 if (!cpumask_test_cpu(this_cpu,
6995 tsk_cpus_allowed(busiest->curr))) {
6996 raw_spin_unlock_irqrestore(&busiest->lock,
6997 flags);
6998 env.flags |= LBF_ALL_PINNED;
6999 goto out_one_pinned;
7000 }
7001
7002 /*
7003 * ->active_balance synchronizes accesses to
7004 * ->active_balance_work. Once set, it's cleared
7005 * only after active load balance is finished.
7006 */
7007 if (!busiest->active_balance) {
7008 busiest->active_balance = 1;
7009 busiest->push_cpu = this_cpu;
7010 active_balance = 1;
7011 }
7012 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7013
7014 if (active_balance) {
7015 stop_one_cpu_nowait(cpu_of(busiest),
7016 active_load_balance_cpu_stop, busiest,
7017 &busiest->active_balance_work);
7018 }
7019
7020 /*
7021 * We've kicked active balancing, reset the failure
7022 * counter.
7023 */
7024 sd->nr_balance_failed = sd->cache_nice_tries+1;
7025 }
7026 } else
7027 sd->nr_balance_failed = 0;
7028
7029 if (likely(!active_balance)) {
7030 /* We were unbalanced, so reset the balancing interval */
7031 sd->balance_interval = sd->min_interval;
7032 } else {
7033 /*
7034 * If we've begun active balancing, start to back off. This
7035 * case may not be covered by the all_pinned logic if there
7036 * is only 1 task on the busy runqueue (because we don't call
7037 * detach_tasks).
7038 */
7039 if (sd->balance_interval < sd->max_interval)
7040 sd->balance_interval *= 2;
7041 }
7042
7043 goto out;
7044
7045 out_balanced:
7046 /*
7047 * We reach balance although we may have faced some affinity
7048 * constraints. Clear the imbalance flag if it was set.
7049 */
7050 if (sd_parent) {
7051 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7052
7053 if (*group_imbalance)
7054 *group_imbalance = 0;
7055 }
7056
7057 out_all_pinned:
7058 /*
7059 * We reach balance because all tasks are pinned at this level so
7060 * we can't migrate them. Let the imbalance flag set so parent level
7061 * can try to migrate them.
7062 */
7063 schedstat_inc(sd, lb_balanced[idle]);
7064
7065 sd->nr_balance_failed = 0;
7066
7067 out_one_pinned:
7068 /* tune up the balancing interval */
7069 if (((env.flags & LBF_ALL_PINNED) &&
7070 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7071 (sd->balance_interval < sd->max_interval))
7072 sd->balance_interval *= 2;
7073
7074 ld_moved = 0;
7075 out:
7076 return ld_moved;
7077 }
7078
7079 static inline unsigned long
7080 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7081 {
7082 unsigned long interval = sd->balance_interval;
7083
7084 if (cpu_busy)
7085 interval *= sd->busy_factor;
7086
7087 /* scale ms to jiffies */
7088 interval = msecs_to_jiffies(interval);
7089 interval = clamp(interval, 1UL, max_load_balance_interval);
7090
7091 return interval;
7092 }
7093
7094 static inline void
7095 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7096 {
7097 unsigned long interval, next;
7098
7099 interval = get_sd_balance_interval(sd, cpu_busy);
7100 next = sd->last_balance + interval;
7101
7102 if (time_after(*next_balance, next))
7103 *next_balance = next;
7104 }
7105
7106 /*
7107 * idle_balance is called by schedule() if this_cpu is about to become
7108 * idle. Attempts to pull tasks from other CPUs.
7109 */
7110 static int idle_balance(struct rq *this_rq)
7111 {
7112 unsigned long next_balance = jiffies + HZ;
7113 int this_cpu = this_rq->cpu;
7114 struct sched_domain *sd;
7115 int pulled_task = 0;
7116 u64 curr_cost = 0;
7117
7118 idle_enter_fair(this_rq);
7119
7120 /*
7121 * We must set idle_stamp _before_ calling idle_balance(), such that we
7122 * measure the duration of idle_balance() as idle time.
7123 */
7124 this_rq->idle_stamp = rq_clock(this_rq);
7125
7126 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7127 !this_rq->rd->overload) {
7128 rcu_read_lock();
7129 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7130 if (sd)
7131 update_next_balance(sd, 0, &next_balance);
7132 rcu_read_unlock();
7133
7134 goto out;
7135 }
7136
7137 /*
7138 * Drop the rq->lock, but keep IRQ/preempt disabled.
7139 */
7140 raw_spin_unlock(&this_rq->lock);
7141
7142 update_blocked_averages(this_cpu);
7143 rcu_read_lock();
7144 for_each_domain(this_cpu, sd) {
7145 int continue_balancing = 1;
7146 u64 t0, domain_cost;
7147
7148 if (!(sd->flags & SD_LOAD_BALANCE))
7149 continue;
7150
7151 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7152 update_next_balance(sd, 0, &next_balance);
7153 break;
7154 }
7155
7156 if (sd->flags & SD_BALANCE_NEWIDLE) {
7157 t0 = sched_clock_cpu(this_cpu);
7158
7159 pulled_task = load_balance(this_cpu, this_rq,
7160 sd, CPU_NEWLY_IDLE,
7161 &continue_balancing);
7162
7163 domain_cost = sched_clock_cpu(this_cpu) - t0;
7164 if (domain_cost > sd->max_newidle_lb_cost)
7165 sd->max_newidle_lb_cost = domain_cost;
7166
7167 curr_cost += domain_cost;
7168 }
7169
7170 update_next_balance(sd, 0, &next_balance);
7171
7172 /*
7173 * Stop searching for tasks to pull if there are
7174 * now runnable tasks on this rq.
7175 */
7176 if (pulled_task || this_rq->nr_running > 0)
7177 break;
7178 }
7179 rcu_read_unlock();
7180
7181 raw_spin_lock(&this_rq->lock);
7182
7183 if (curr_cost > this_rq->max_idle_balance_cost)
7184 this_rq->max_idle_balance_cost = curr_cost;
7185
7186 /*
7187 * While browsing the domains, we released the rq lock, a task could
7188 * have been enqueued in the meantime. Since we're not going idle,
7189 * pretend we pulled a task.
7190 */
7191 if (this_rq->cfs.h_nr_running && !pulled_task)
7192 pulled_task = 1;
7193
7194 out:
7195 /* Move the next balance forward */
7196 if (time_after(this_rq->next_balance, next_balance))
7197 this_rq->next_balance = next_balance;
7198
7199 /* Is there a task of a high priority class? */
7200 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7201 pulled_task = -1;
7202
7203 if (pulled_task) {
7204 idle_exit_fair(this_rq);
7205 this_rq->idle_stamp = 0;
7206 }
7207
7208 return pulled_task;
7209 }
7210
7211 /*
7212 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7213 * running tasks off the busiest CPU onto idle CPUs. It requires at
7214 * least 1 task to be running on each physical CPU where possible, and
7215 * avoids physical / logical imbalances.
7216 */
7217 static int active_load_balance_cpu_stop(void *data)
7218 {
7219 struct rq *busiest_rq = data;
7220 int busiest_cpu = cpu_of(busiest_rq);
7221 int target_cpu = busiest_rq->push_cpu;
7222 struct rq *target_rq = cpu_rq(target_cpu);
7223 struct sched_domain *sd;
7224 struct task_struct *p = NULL;
7225
7226 raw_spin_lock_irq(&busiest_rq->lock);
7227
7228 /* make sure the requested cpu hasn't gone down in the meantime */
7229 if (unlikely(busiest_cpu != smp_processor_id() ||
7230 !busiest_rq->active_balance))
7231 goto out_unlock;
7232
7233 /* Is there any task to move? */
7234 if (busiest_rq->nr_running <= 1)
7235 goto out_unlock;
7236
7237 /*
7238 * This condition is "impossible", if it occurs
7239 * we need to fix it. Originally reported by
7240 * Bjorn Helgaas on a 128-cpu setup.
7241 */
7242 BUG_ON(busiest_rq == target_rq);
7243
7244 /* Search for an sd spanning us and the target CPU. */
7245 rcu_read_lock();
7246 for_each_domain(target_cpu, sd) {
7247 if ((sd->flags & SD_LOAD_BALANCE) &&
7248 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7249 break;
7250 }
7251
7252 if (likely(sd)) {
7253 struct lb_env env = {
7254 .sd = sd,
7255 .dst_cpu = target_cpu,
7256 .dst_rq = target_rq,
7257 .src_cpu = busiest_rq->cpu,
7258 .src_rq = busiest_rq,
7259 .idle = CPU_IDLE,
7260 };
7261
7262 schedstat_inc(sd, alb_count);
7263
7264 p = detach_one_task(&env);
7265 if (p)
7266 schedstat_inc(sd, alb_pushed);
7267 else
7268 schedstat_inc(sd, alb_failed);
7269 }
7270 rcu_read_unlock();
7271 out_unlock:
7272 busiest_rq->active_balance = 0;
7273 raw_spin_unlock(&busiest_rq->lock);
7274
7275 if (p)
7276 attach_one_task(target_rq, p);
7277
7278 local_irq_enable();
7279
7280 return 0;
7281 }
7282
7283 static inline int on_null_domain(struct rq *rq)
7284 {
7285 return unlikely(!rcu_dereference_sched(rq->sd));
7286 }
7287
7288 #ifdef CONFIG_NO_HZ_COMMON
7289 /*
7290 * idle load balancing details
7291 * - When one of the busy CPUs notice that there may be an idle rebalancing
7292 * needed, they will kick the idle load balancer, which then does idle
7293 * load balancing for all the idle CPUs.
7294 */
7295 static struct {
7296 cpumask_var_t idle_cpus_mask;
7297 atomic_t nr_cpus;
7298 unsigned long next_balance; /* in jiffy units */
7299 } nohz ____cacheline_aligned;
7300
7301 static inline int find_new_ilb(void)
7302 {
7303 int ilb = cpumask_first(nohz.idle_cpus_mask);
7304
7305 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7306 return ilb;
7307
7308 return nr_cpu_ids;
7309 }
7310
7311 /*
7312 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7313 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7314 * CPU (if there is one).
7315 */
7316 static void nohz_balancer_kick(void)
7317 {
7318 int ilb_cpu;
7319
7320 nohz.next_balance++;
7321
7322 ilb_cpu = find_new_ilb();
7323
7324 if (ilb_cpu >= nr_cpu_ids)
7325 return;
7326
7327 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7328 return;
7329 /*
7330 * Use smp_send_reschedule() instead of resched_cpu().
7331 * This way we generate a sched IPI on the target cpu which
7332 * is idle. And the softirq performing nohz idle load balance
7333 * will be run before returning from the IPI.
7334 */
7335 smp_send_reschedule(ilb_cpu);
7336 return;
7337 }
7338
7339 static inline void nohz_balance_exit_idle(int cpu)
7340 {
7341 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7342 /*
7343 * Completely isolated CPUs don't ever set, so we must test.
7344 */
7345 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7346 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7347 atomic_dec(&nohz.nr_cpus);
7348 }
7349 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7350 }
7351 }
7352
7353 static inline void set_cpu_sd_state_busy(void)
7354 {
7355 struct sched_domain *sd;
7356 int cpu = smp_processor_id();
7357
7358 rcu_read_lock();
7359 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7360
7361 if (!sd || !sd->nohz_idle)
7362 goto unlock;
7363 sd->nohz_idle = 0;
7364
7365 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7366 unlock:
7367 rcu_read_unlock();
7368 }
7369
7370 void set_cpu_sd_state_idle(void)
7371 {
7372 struct sched_domain *sd;
7373 int cpu = smp_processor_id();
7374
7375 rcu_read_lock();
7376 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7377
7378 if (!sd || sd->nohz_idle)
7379 goto unlock;
7380 sd->nohz_idle = 1;
7381
7382 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7383 unlock:
7384 rcu_read_unlock();
7385 }
7386
7387 /*
7388 * This routine will record that the cpu is going idle with tick stopped.
7389 * This info will be used in performing idle load balancing in the future.
7390 */
7391 void nohz_balance_enter_idle(int cpu)
7392 {
7393 /*
7394 * If this cpu is going down, then nothing needs to be done.
7395 */
7396 if (!cpu_active(cpu))
7397 return;
7398
7399 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7400 return;
7401
7402 /*
7403 * If we're a completely isolated CPU, we don't play.
7404 */
7405 if (on_null_domain(cpu_rq(cpu)))
7406 return;
7407
7408 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7409 atomic_inc(&nohz.nr_cpus);
7410 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7411 }
7412
7413 static int sched_ilb_notifier(struct notifier_block *nfb,
7414 unsigned long action, void *hcpu)
7415 {
7416 switch (action & ~CPU_TASKS_FROZEN) {
7417 case CPU_DYING:
7418 nohz_balance_exit_idle(smp_processor_id());
7419 return NOTIFY_OK;
7420 default:
7421 return NOTIFY_DONE;
7422 }
7423 }
7424 #endif
7425
7426 static DEFINE_SPINLOCK(balancing);
7427
7428 /*
7429 * Scale the max load_balance interval with the number of CPUs in the system.
7430 * This trades load-balance latency on larger machines for less cross talk.
7431 */
7432 void update_max_interval(void)
7433 {
7434 max_load_balance_interval = HZ*num_online_cpus()/10;
7435 }
7436
7437 /*
7438 * It checks each scheduling domain to see if it is due to be balanced,
7439 * and initiates a balancing operation if so.
7440 *
7441 * Balancing parameters are set up in init_sched_domains.
7442 */
7443 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7444 {
7445 int continue_balancing = 1;
7446 int cpu = rq->cpu;
7447 unsigned long interval;
7448 struct sched_domain *sd;
7449 /* Earliest time when we have to do rebalance again */
7450 unsigned long next_balance = jiffies + 60*HZ;
7451 int update_next_balance = 0;
7452 int need_serialize, need_decay = 0;
7453 u64 max_cost = 0;
7454
7455 update_blocked_averages(cpu);
7456
7457 rcu_read_lock();
7458 for_each_domain(cpu, sd) {
7459 /*
7460 * Decay the newidle max times here because this is a regular
7461 * visit to all the domains. Decay ~1% per second.
7462 */
7463 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7464 sd->max_newidle_lb_cost =
7465 (sd->max_newidle_lb_cost * 253) / 256;
7466 sd->next_decay_max_lb_cost = jiffies + HZ;
7467 need_decay = 1;
7468 }
7469 max_cost += sd->max_newidle_lb_cost;
7470
7471 if (!(sd->flags & SD_LOAD_BALANCE))
7472 continue;
7473
7474 /*
7475 * Stop the load balance at this level. There is another
7476 * CPU in our sched group which is doing load balancing more
7477 * actively.
7478 */
7479 if (!continue_balancing) {
7480 if (need_decay)
7481 continue;
7482 break;
7483 }
7484
7485 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7486
7487 need_serialize = sd->flags & SD_SERIALIZE;
7488 if (need_serialize) {
7489 if (!spin_trylock(&balancing))
7490 goto out;
7491 }
7492
7493 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7494 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7495 /*
7496 * The LBF_DST_PINNED logic could have changed
7497 * env->dst_cpu, so we can't know our idle
7498 * state even if we migrated tasks. Update it.
7499 */
7500 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7501 }
7502 sd->last_balance = jiffies;
7503 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7504 }
7505 if (need_serialize)
7506 spin_unlock(&balancing);
7507 out:
7508 if (time_after(next_balance, sd->last_balance + interval)) {
7509 next_balance = sd->last_balance + interval;
7510 update_next_balance = 1;
7511 }
7512 }
7513 if (need_decay) {
7514 /*
7515 * Ensure the rq-wide value also decays but keep it at a
7516 * reasonable floor to avoid funnies with rq->avg_idle.
7517 */
7518 rq->max_idle_balance_cost =
7519 max((u64)sysctl_sched_migration_cost, max_cost);
7520 }
7521 rcu_read_unlock();
7522
7523 /*
7524 * next_balance will be updated only when there is a need.
7525 * When the cpu is attached to null domain for ex, it will not be
7526 * updated.
7527 */
7528 if (likely(update_next_balance))
7529 rq->next_balance = next_balance;
7530 }
7531
7532 #ifdef CONFIG_NO_HZ_COMMON
7533 /*
7534 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7535 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7536 */
7537 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7538 {
7539 int this_cpu = this_rq->cpu;
7540 struct rq *rq;
7541 int balance_cpu;
7542
7543 if (idle != CPU_IDLE ||
7544 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7545 goto end;
7546
7547 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7548 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7549 continue;
7550
7551 /*
7552 * If this cpu gets work to do, stop the load balancing
7553 * work being done for other cpus. Next load
7554 * balancing owner will pick it up.
7555 */
7556 if (need_resched())
7557 break;
7558
7559 rq = cpu_rq(balance_cpu);
7560
7561 /*
7562 * If time for next balance is due,
7563 * do the balance.
7564 */
7565 if (time_after_eq(jiffies, rq->next_balance)) {
7566 raw_spin_lock_irq(&rq->lock);
7567 update_rq_clock(rq);
7568 update_idle_cpu_load(rq);
7569 raw_spin_unlock_irq(&rq->lock);
7570 rebalance_domains(rq, CPU_IDLE);
7571 }
7572
7573 if (time_after(this_rq->next_balance, rq->next_balance))
7574 this_rq->next_balance = rq->next_balance;
7575 }
7576 nohz.next_balance = this_rq->next_balance;
7577 end:
7578 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7579 }
7580
7581 /*
7582 * Current heuristic for kicking the idle load balancer in the presence
7583 * of an idle cpu is the system.
7584 * - This rq has more than one task.
7585 * - At any scheduler domain level, this cpu's scheduler group has multiple
7586 * busy cpu's exceeding the group's capacity.
7587 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7588 * domain span are idle.
7589 */
7590 static inline int nohz_kick_needed(struct rq *rq)
7591 {
7592 unsigned long now = jiffies;
7593 struct sched_domain *sd;
7594 struct sched_group_capacity *sgc;
7595 int nr_busy, cpu = rq->cpu;
7596
7597 if (unlikely(rq->idle_balance))
7598 return 0;
7599
7600 /*
7601 * We may be recently in ticked or tickless idle mode. At the first
7602 * busy tick after returning from idle, we will update the busy stats.
7603 */
7604 set_cpu_sd_state_busy();
7605 nohz_balance_exit_idle(cpu);
7606
7607 /*
7608 * None are in tickless mode and hence no need for NOHZ idle load
7609 * balancing.
7610 */
7611 if (likely(!atomic_read(&nohz.nr_cpus)))
7612 return 0;
7613
7614 if (time_before(now, nohz.next_balance))
7615 return 0;
7616
7617 if (rq->nr_running >= 2)
7618 goto need_kick;
7619
7620 rcu_read_lock();
7621 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7622
7623 if (sd) {
7624 sgc = sd->groups->sgc;
7625 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7626
7627 if (nr_busy > 1)
7628 goto need_kick_unlock;
7629 }
7630
7631 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7632
7633 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7634 sched_domain_span(sd)) < cpu))
7635 goto need_kick_unlock;
7636
7637 rcu_read_unlock();
7638 return 0;
7639
7640 need_kick_unlock:
7641 rcu_read_unlock();
7642 need_kick:
7643 return 1;
7644 }
7645 #else
7646 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7647 #endif
7648
7649 /*
7650 * run_rebalance_domains is triggered when needed from the scheduler tick.
7651 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7652 */
7653 static void run_rebalance_domains(struct softirq_action *h)
7654 {
7655 struct rq *this_rq = this_rq();
7656 enum cpu_idle_type idle = this_rq->idle_balance ?
7657 CPU_IDLE : CPU_NOT_IDLE;
7658
7659 rebalance_domains(this_rq, idle);
7660
7661 /*
7662 * If this cpu has a pending nohz_balance_kick, then do the
7663 * balancing on behalf of the other idle cpus whose ticks are
7664 * stopped.
7665 */
7666 nohz_idle_balance(this_rq, idle);
7667 }
7668
7669 /*
7670 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7671 */
7672 void trigger_load_balance(struct rq *rq)
7673 {
7674 /* Don't need to rebalance while attached to NULL domain */
7675 if (unlikely(on_null_domain(rq)))
7676 return;
7677
7678 if (time_after_eq(jiffies, rq->next_balance))
7679 raise_softirq(SCHED_SOFTIRQ);
7680 #ifdef CONFIG_NO_HZ_COMMON
7681 if (nohz_kick_needed(rq))
7682 nohz_balancer_kick();
7683 #endif
7684 }
7685
7686 static void rq_online_fair(struct rq *rq)
7687 {
7688 update_sysctl();
7689
7690 update_runtime_enabled(rq);
7691 }
7692
7693 static void rq_offline_fair(struct rq *rq)
7694 {
7695 update_sysctl();
7696
7697 /* Ensure any throttled groups are reachable by pick_next_task */
7698 unthrottle_offline_cfs_rqs(rq);
7699 }
7700
7701 #endif /* CONFIG_SMP */
7702
7703 /*
7704 * scheduler tick hitting a task of our scheduling class:
7705 */
7706 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7707 {
7708 struct cfs_rq *cfs_rq;
7709 struct sched_entity *se = &curr->se;
7710
7711 for_each_sched_entity(se) {
7712 cfs_rq = cfs_rq_of(se);
7713 entity_tick(cfs_rq, se, queued);
7714 }
7715
7716 if (numabalancing_enabled)
7717 task_tick_numa(rq, curr);
7718
7719 update_rq_runnable_avg(rq, 1);
7720 }
7721
7722 /*
7723 * called on fork with the child task as argument from the parent's context
7724 * - child not yet on the tasklist
7725 * - preemption disabled
7726 */
7727 static void task_fork_fair(struct task_struct *p)
7728 {
7729 struct cfs_rq *cfs_rq;
7730 struct sched_entity *se = &p->se, *curr;
7731 int this_cpu = smp_processor_id();
7732 struct rq *rq = this_rq();
7733 unsigned long flags;
7734
7735 raw_spin_lock_irqsave(&rq->lock, flags);
7736
7737 update_rq_clock(rq);
7738
7739 cfs_rq = task_cfs_rq(current);
7740 curr = cfs_rq->curr;
7741
7742 /*
7743 * Not only the cpu but also the task_group of the parent might have
7744 * been changed after parent->se.parent,cfs_rq were copied to
7745 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7746 * of child point to valid ones.
7747 */
7748 rcu_read_lock();
7749 __set_task_cpu(p, this_cpu);
7750 rcu_read_unlock();
7751
7752 update_curr(cfs_rq);
7753
7754 if (curr)
7755 se->vruntime = curr->vruntime;
7756 place_entity(cfs_rq, se, 1);
7757
7758 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7759 /*
7760 * Upon rescheduling, sched_class::put_prev_task() will place
7761 * 'current' within the tree based on its new key value.
7762 */
7763 swap(curr->vruntime, se->vruntime);
7764 resched_curr(rq);
7765 }
7766
7767 se->vruntime -= cfs_rq->min_vruntime;
7768
7769 raw_spin_unlock_irqrestore(&rq->lock, flags);
7770 }
7771
7772 /*
7773 * Priority of the task has changed. Check to see if we preempt
7774 * the current task.
7775 */
7776 static void
7777 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7778 {
7779 if (!task_on_rq_queued(p))
7780 return;
7781
7782 /*
7783 * Reschedule if we are currently running on this runqueue and
7784 * our priority decreased, or if we are not currently running on
7785 * this runqueue and our priority is higher than the current's
7786 */
7787 if (rq->curr == p) {
7788 if (p->prio > oldprio)
7789 resched_curr(rq);
7790 } else
7791 check_preempt_curr(rq, p, 0);
7792 }
7793
7794 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7795 {
7796 struct sched_entity *se = &p->se;
7797 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7798
7799 /*
7800 * Ensure the task's vruntime is normalized, so that when it's
7801 * switched back to the fair class the enqueue_entity(.flags=0) will
7802 * do the right thing.
7803 *
7804 * If it's queued, then the dequeue_entity(.flags=0) will already
7805 * have normalized the vruntime, if it's !queued, then only when
7806 * the task is sleeping will it still have non-normalized vruntime.
7807 */
7808 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7809 /*
7810 * Fix up our vruntime so that the current sleep doesn't
7811 * cause 'unlimited' sleep bonus.
7812 */
7813 place_entity(cfs_rq, se, 0);
7814 se->vruntime -= cfs_rq->min_vruntime;
7815 }
7816
7817 #ifdef CONFIG_SMP
7818 /*
7819 * Remove our load from contribution when we leave sched_fair
7820 * and ensure we don't carry in an old decay_count if we
7821 * switch back.
7822 */
7823 if (se->avg.decay_count) {
7824 __synchronize_entity_decay(se);
7825 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7826 }
7827 #endif
7828 }
7829
7830 /*
7831 * We switched to the sched_fair class.
7832 */
7833 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7834 {
7835 #ifdef CONFIG_FAIR_GROUP_SCHED
7836 struct sched_entity *se = &p->se;
7837 /*
7838 * Since the real-depth could have been changed (only FAIR
7839 * class maintain depth value), reset depth properly.
7840 */
7841 se->depth = se->parent ? se->parent->depth + 1 : 0;
7842 #endif
7843 if (!task_on_rq_queued(p))
7844 return;
7845
7846 /*
7847 * We were most likely switched from sched_rt, so
7848 * kick off the schedule if running, otherwise just see
7849 * if we can still preempt the current task.
7850 */
7851 if (rq->curr == p)
7852 resched_curr(rq);
7853 else
7854 check_preempt_curr(rq, p, 0);
7855 }
7856
7857 /* Account for a task changing its policy or group.
7858 *
7859 * This routine is mostly called to set cfs_rq->curr field when a task
7860 * migrates between groups/classes.
7861 */
7862 static void set_curr_task_fair(struct rq *rq)
7863 {
7864 struct sched_entity *se = &rq->curr->se;
7865
7866 for_each_sched_entity(se) {
7867 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7868
7869 set_next_entity(cfs_rq, se);
7870 /* ensure bandwidth has been allocated on our new cfs_rq */
7871 account_cfs_rq_runtime(cfs_rq, 0);
7872 }
7873 }
7874
7875 void init_cfs_rq(struct cfs_rq *cfs_rq)
7876 {
7877 cfs_rq->tasks_timeline = RB_ROOT;
7878 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7879 #ifndef CONFIG_64BIT
7880 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7881 #endif
7882 #ifdef CONFIG_SMP
7883 atomic64_set(&cfs_rq->decay_counter, 1);
7884 atomic_long_set(&cfs_rq->removed_load, 0);
7885 #endif
7886 }
7887
7888 #ifdef CONFIG_FAIR_GROUP_SCHED
7889 static void task_move_group_fair(struct task_struct *p, int queued)
7890 {
7891 struct sched_entity *se = &p->se;
7892 struct cfs_rq *cfs_rq;
7893
7894 /*
7895 * If the task was not on the rq at the time of this cgroup movement
7896 * it must have been asleep, sleeping tasks keep their ->vruntime
7897 * absolute on their old rq until wakeup (needed for the fair sleeper
7898 * bonus in place_entity()).
7899 *
7900 * If it was on the rq, we've just 'preempted' it, which does convert
7901 * ->vruntime to a relative base.
7902 *
7903 * Make sure both cases convert their relative position when migrating
7904 * to another cgroup's rq. This does somewhat interfere with the
7905 * fair sleeper stuff for the first placement, but who cares.
7906 */
7907 /*
7908 * When !queued, vruntime of the task has usually NOT been normalized.
7909 * But there are some cases where it has already been normalized:
7910 *
7911 * - Moving a forked child which is waiting for being woken up by
7912 * wake_up_new_task().
7913 * - Moving a task which has been woken up by try_to_wake_up() and
7914 * waiting for actually being woken up by sched_ttwu_pending().
7915 *
7916 * To prevent boost or penalty in the new cfs_rq caused by delta
7917 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7918 */
7919 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7920 queued = 1;
7921
7922 if (!queued)
7923 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7924 set_task_rq(p, task_cpu(p));
7925 se->depth = se->parent ? se->parent->depth + 1 : 0;
7926 if (!queued) {
7927 cfs_rq = cfs_rq_of(se);
7928 se->vruntime += cfs_rq->min_vruntime;
7929 #ifdef CONFIG_SMP
7930 /*
7931 * migrate_task_rq_fair() will have removed our previous
7932 * contribution, but we must synchronize for ongoing future
7933 * decay.
7934 */
7935 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7936 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7937 #endif
7938 }
7939 }
7940
7941 void free_fair_sched_group(struct task_group *tg)
7942 {
7943 int i;
7944
7945 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7946
7947 for_each_possible_cpu(i) {
7948 if (tg->cfs_rq)
7949 kfree(tg->cfs_rq[i]);
7950 if (tg->se)
7951 kfree(tg->se[i]);
7952 }
7953
7954 kfree(tg->cfs_rq);
7955 kfree(tg->se);
7956 }
7957
7958 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7959 {
7960 struct cfs_rq *cfs_rq;
7961 struct sched_entity *se;
7962 int i;
7963
7964 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7965 if (!tg->cfs_rq)
7966 goto err;
7967 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7968 if (!tg->se)
7969 goto err;
7970
7971 tg->shares = NICE_0_LOAD;
7972
7973 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7974
7975 for_each_possible_cpu(i) {
7976 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7977 GFP_KERNEL, cpu_to_node(i));
7978 if (!cfs_rq)
7979 goto err;
7980
7981 se = kzalloc_node(sizeof(struct sched_entity),
7982 GFP_KERNEL, cpu_to_node(i));
7983 if (!se)
7984 goto err_free_rq;
7985
7986 init_cfs_rq(cfs_rq);
7987 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7988 }
7989
7990 return 1;
7991
7992 err_free_rq:
7993 kfree(cfs_rq);
7994 err:
7995 return 0;
7996 }
7997
7998 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7999 {
8000 struct rq *rq = cpu_rq(cpu);
8001 unsigned long flags;
8002
8003 /*
8004 * Only empty task groups can be destroyed; so we can speculatively
8005 * check on_list without danger of it being re-added.
8006 */
8007 if (!tg->cfs_rq[cpu]->on_list)
8008 return;
8009
8010 raw_spin_lock_irqsave(&rq->lock, flags);
8011 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8012 raw_spin_unlock_irqrestore(&rq->lock, flags);
8013 }
8014
8015 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8016 struct sched_entity *se, int cpu,
8017 struct sched_entity *parent)
8018 {
8019 struct rq *rq = cpu_rq(cpu);
8020
8021 cfs_rq->tg = tg;
8022 cfs_rq->rq = rq;
8023 init_cfs_rq_runtime(cfs_rq);
8024
8025 tg->cfs_rq[cpu] = cfs_rq;
8026 tg->se[cpu] = se;
8027
8028 /* se could be NULL for root_task_group */
8029 if (!se)
8030 return;
8031
8032 if (!parent) {
8033 se->cfs_rq = &rq->cfs;
8034 se->depth = 0;
8035 } else {
8036 se->cfs_rq = parent->my_q;
8037 se->depth = parent->depth + 1;
8038 }
8039
8040 se->my_q = cfs_rq;
8041 /* guarantee group entities always have weight */
8042 update_load_set(&se->load, NICE_0_LOAD);
8043 se->parent = parent;
8044 }
8045
8046 static DEFINE_MUTEX(shares_mutex);
8047
8048 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8049 {
8050 int i;
8051 unsigned long flags;
8052
8053 /*
8054 * We can't change the weight of the root cgroup.
8055 */
8056 if (!tg->se[0])
8057 return -EINVAL;
8058
8059 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8060
8061 mutex_lock(&shares_mutex);
8062 if (tg->shares == shares)
8063 goto done;
8064
8065 tg->shares = shares;
8066 for_each_possible_cpu(i) {
8067 struct rq *rq = cpu_rq(i);
8068 struct sched_entity *se;
8069
8070 se = tg->se[i];
8071 /* Propagate contribution to hierarchy */
8072 raw_spin_lock_irqsave(&rq->lock, flags);
8073
8074 /* Possible calls to update_curr() need rq clock */
8075 update_rq_clock(rq);
8076 for_each_sched_entity(se)
8077 update_cfs_shares(group_cfs_rq(se));
8078 raw_spin_unlock_irqrestore(&rq->lock, flags);
8079 }
8080
8081 done:
8082 mutex_unlock(&shares_mutex);
8083 return 0;
8084 }
8085 #else /* CONFIG_FAIR_GROUP_SCHED */
8086
8087 void free_fair_sched_group(struct task_group *tg) { }
8088
8089 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8090 {
8091 return 1;
8092 }
8093
8094 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8095
8096 #endif /* CONFIG_FAIR_GROUP_SCHED */
8097
8098
8099 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8100 {
8101 struct sched_entity *se = &task->se;
8102 unsigned int rr_interval = 0;
8103
8104 /*
8105 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8106 * idle runqueue:
8107 */
8108 if (rq->cfs.load.weight)
8109 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8110
8111 return rr_interval;
8112 }
8113
8114 /*
8115 * All the scheduling class methods:
8116 */
8117 const struct sched_class fair_sched_class = {
8118 .next = &idle_sched_class,
8119 .enqueue_task = enqueue_task_fair,
8120 .dequeue_task = dequeue_task_fair,
8121 .yield_task = yield_task_fair,
8122 .yield_to_task = yield_to_task_fair,
8123
8124 .check_preempt_curr = check_preempt_wakeup,
8125
8126 .pick_next_task = pick_next_task_fair,
8127 .put_prev_task = put_prev_task_fair,
8128
8129 #ifdef CONFIG_SMP
8130 .select_task_rq = select_task_rq_fair,
8131 .migrate_task_rq = migrate_task_rq_fair,
8132
8133 .rq_online = rq_online_fair,
8134 .rq_offline = rq_offline_fair,
8135
8136 .task_waking = task_waking_fair,
8137 #endif
8138
8139 .set_curr_task = set_curr_task_fair,
8140 .task_tick = task_tick_fair,
8141 .task_fork = task_fork_fair,
8142
8143 .prio_changed = prio_changed_fair,
8144 .switched_from = switched_from_fair,
8145 .switched_to = switched_to_fair,
8146
8147 .get_rr_interval = get_rr_interval_fair,
8148
8149 .update_curr = update_curr_fair,
8150
8151 #ifdef CONFIG_FAIR_GROUP_SCHED
8152 .task_move_group = task_move_group_fair,
8153 #endif
8154 };
8155
8156 #ifdef CONFIG_SCHED_DEBUG
8157 void print_cfs_stats(struct seq_file *m, int cpu)
8158 {
8159 struct cfs_rq *cfs_rq;
8160
8161 rcu_read_lock();
8162 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8163 print_cfs_rq(m, cpu, cfs_rq);
8164 rcu_read_unlock();
8165 }
8166 #endif
8167
8168 __init void init_sched_fair_class(void)
8169 {
8170 #ifdef CONFIG_SMP
8171 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8172
8173 #ifdef CONFIG_NO_HZ_COMMON
8174 nohz.next_balance = jiffies;
8175 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8176 cpu_notifier(sched_ilb_notifier, 0);
8177 #endif
8178 #endif /* SMP */
8179
8180 }