]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched/fair.c
Merge tag 'irq-msi-2022-01-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 *
28 * NOTE: this latency value is not the same as the concept of
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
32 *
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 *
44 * Options are:
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51 */
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53
54 /*
55 * Minimal preemption granularity for CPU-bound tasks:
56 *
57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 */
59 unsigned int sysctl_sched_min_granularity = 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61
62 /*
63 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
64 * Applies only when SCHED_IDLE tasks compete with normal tasks.
65 *
66 * (default: 0.75 msec)
67 */
68 unsigned int sysctl_sched_idle_min_granularity = 750000ULL;
69
70 /*
71 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
72 */
73 static unsigned int sched_nr_latency = 8;
74
75 /*
76 * After fork, child runs first. If set to 0 (default) then
77 * parent will (try to) run first.
78 */
79 unsigned int sysctl_sched_child_runs_first __read_mostly;
80
81 /*
82 * SCHED_OTHER wake-up granularity.
83 *
84 * This option delays the preemption effects of decoupled workloads
85 * and reduces their over-scheduling. Synchronous workloads will still
86 * have immediate wakeup/sleep latencies.
87 *
88 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 int sched_thermal_decay_shift;
96 static int __init setup_sched_thermal_decay_shift(char *str)
97 {
98 int _shift = 0;
99
100 if (kstrtoint(str, 0, &_shift))
101 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
102
103 sched_thermal_decay_shift = clamp(_shift, 0, 10);
104 return 1;
105 }
106 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
107
108 #ifdef CONFIG_SMP
109 /*
110 * For asym packing, by default the lower numbered CPU has higher priority.
111 */
112 int __weak arch_asym_cpu_priority(int cpu)
113 {
114 return -cpu;
115 }
116
117 /*
118 * The margin used when comparing utilization with CPU capacity.
119 *
120 * (default: ~20%)
121 */
122 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
123
124 /*
125 * The margin used when comparing CPU capacities.
126 * is 'cap1' noticeably greater than 'cap2'
127 *
128 * (default: ~5%)
129 */
130 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
131 #endif
132
133 #ifdef CONFIG_CFS_BANDWIDTH
134 /*
135 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
136 * each time a cfs_rq requests quota.
137 *
138 * Note: in the case that the slice exceeds the runtime remaining (either due
139 * to consumption or the quota being specified to be smaller than the slice)
140 * we will always only issue the remaining available time.
141 *
142 * (default: 5 msec, units: microseconds)
143 */
144 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
145 #endif
146
147 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
148 {
149 lw->weight += inc;
150 lw->inv_weight = 0;
151 }
152
153 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
154 {
155 lw->weight -= dec;
156 lw->inv_weight = 0;
157 }
158
159 static inline void update_load_set(struct load_weight *lw, unsigned long w)
160 {
161 lw->weight = w;
162 lw->inv_weight = 0;
163 }
164
165 /*
166 * Increase the granularity value when there are more CPUs,
167 * because with more CPUs the 'effective latency' as visible
168 * to users decreases. But the relationship is not linear,
169 * so pick a second-best guess by going with the log2 of the
170 * number of CPUs.
171 *
172 * This idea comes from the SD scheduler of Con Kolivas:
173 */
174 static unsigned int get_update_sysctl_factor(void)
175 {
176 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
177 unsigned int factor;
178
179 switch (sysctl_sched_tunable_scaling) {
180 case SCHED_TUNABLESCALING_NONE:
181 factor = 1;
182 break;
183 case SCHED_TUNABLESCALING_LINEAR:
184 factor = cpus;
185 break;
186 case SCHED_TUNABLESCALING_LOG:
187 default:
188 factor = 1 + ilog2(cpus);
189 break;
190 }
191
192 return factor;
193 }
194
195 static void update_sysctl(void)
196 {
197 unsigned int factor = get_update_sysctl_factor();
198
199 #define SET_SYSCTL(name) \
200 (sysctl_##name = (factor) * normalized_sysctl_##name)
201 SET_SYSCTL(sched_min_granularity);
202 SET_SYSCTL(sched_latency);
203 SET_SYSCTL(sched_wakeup_granularity);
204 #undef SET_SYSCTL
205 }
206
207 void __init sched_init_granularity(void)
208 {
209 update_sysctl();
210 }
211
212 #define WMULT_CONST (~0U)
213 #define WMULT_SHIFT 32
214
215 static void __update_inv_weight(struct load_weight *lw)
216 {
217 unsigned long w;
218
219 if (likely(lw->inv_weight))
220 return;
221
222 w = scale_load_down(lw->weight);
223
224 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
225 lw->inv_weight = 1;
226 else if (unlikely(!w))
227 lw->inv_weight = WMULT_CONST;
228 else
229 lw->inv_weight = WMULT_CONST / w;
230 }
231
232 /*
233 * delta_exec * weight / lw.weight
234 * OR
235 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
236 *
237 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
238 * we're guaranteed shift stays positive because inv_weight is guaranteed to
239 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
240 *
241 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
242 * weight/lw.weight <= 1, and therefore our shift will also be positive.
243 */
244 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
245 {
246 u64 fact = scale_load_down(weight);
247 u32 fact_hi = (u32)(fact >> 32);
248 int shift = WMULT_SHIFT;
249 int fs;
250
251 __update_inv_weight(lw);
252
253 if (unlikely(fact_hi)) {
254 fs = fls(fact_hi);
255 shift -= fs;
256 fact >>= fs;
257 }
258
259 fact = mul_u32_u32(fact, lw->inv_weight);
260
261 fact_hi = (u32)(fact >> 32);
262 if (fact_hi) {
263 fs = fls(fact_hi);
264 shift -= fs;
265 fact >>= fs;
266 }
267
268 return mul_u64_u32_shr(delta_exec, fact, shift);
269 }
270
271
272 const struct sched_class fair_sched_class;
273
274 /**************************************************************
275 * CFS operations on generic schedulable entities:
276 */
277
278 #ifdef CONFIG_FAIR_GROUP_SCHED
279
280 /* Walk up scheduling entities hierarchy */
281 #define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
285 {
286 if (!path)
287 return;
288
289 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
290 autogroup_path(cfs_rq->tg, path, len);
291 else if (cfs_rq && cfs_rq->tg->css.cgroup)
292 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
293 else
294 strlcpy(path, "(null)", len);
295 }
296
297 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
298 {
299 struct rq *rq = rq_of(cfs_rq);
300 int cpu = cpu_of(rq);
301
302 if (cfs_rq->on_list)
303 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
304
305 cfs_rq->on_list = 1;
306
307 /*
308 * Ensure we either appear before our parent (if already
309 * enqueued) or force our parent to appear after us when it is
310 * enqueued. The fact that we always enqueue bottom-up
311 * reduces this to two cases and a special case for the root
312 * cfs_rq. Furthermore, it also means that we will always reset
313 * tmp_alone_branch either when the branch is connected
314 * to a tree or when we reach the top of the tree
315 */
316 if (cfs_rq->tg->parent &&
317 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
318 /*
319 * If parent is already on the list, we add the child
320 * just before. Thanks to circular linked property of
321 * the list, this means to put the child at the tail
322 * of the list that starts by parent.
323 */
324 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
325 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
326 /*
327 * The branch is now connected to its tree so we can
328 * reset tmp_alone_branch to the beginning of the
329 * list.
330 */
331 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
332 return true;
333 }
334
335 if (!cfs_rq->tg->parent) {
336 /*
337 * cfs rq without parent should be put
338 * at the tail of the list.
339 */
340 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
341 &rq->leaf_cfs_rq_list);
342 /*
343 * We have reach the top of a tree so we can reset
344 * tmp_alone_branch to the beginning of the list.
345 */
346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
347 return true;
348 }
349
350 /*
351 * The parent has not already been added so we want to
352 * make sure that it will be put after us.
353 * tmp_alone_branch points to the begin of the branch
354 * where we will add parent.
355 */
356 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
357 /*
358 * update tmp_alone_branch to points to the new begin
359 * of the branch
360 */
361 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
362 return false;
363 }
364
365 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
366 {
367 if (cfs_rq->on_list) {
368 struct rq *rq = rq_of(cfs_rq);
369
370 /*
371 * With cfs_rq being unthrottled/throttled during an enqueue,
372 * it can happen the tmp_alone_branch points the a leaf that
373 * we finally want to del. In this case, tmp_alone_branch moves
374 * to the prev element but it will point to rq->leaf_cfs_rq_list
375 * at the end of the enqueue.
376 */
377 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
378 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
379
380 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
381 cfs_rq->on_list = 0;
382 }
383 }
384
385 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
386 {
387 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
388 }
389
390 /* Iterate thr' all leaf cfs_rq's on a runqueue */
391 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
392 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
393 leaf_cfs_rq_list)
394
395 /* Do the two (enqueued) entities belong to the same group ? */
396 static inline struct cfs_rq *
397 is_same_group(struct sched_entity *se, struct sched_entity *pse)
398 {
399 if (se->cfs_rq == pse->cfs_rq)
400 return se->cfs_rq;
401
402 return NULL;
403 }
404
405 static inline struct sched_entity *parent_entity(struct sched_entity *se)
406 {
407 return se->parent;
408 }
409
410 static void
411 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
412 {
413 int se_depth, pse_depth;
414
415 /*
416 * preemption test can be made between sibling entities who are in the
417 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
418 * both tasks until we find their ancestors who are siblings of common
419 * parent.
420 */
421
422 /* First walk up until both entities are at same depth */
423 se_depth = (*se)->depth;
424 pse_depth = (*pse)->depth;
425
426 while (se_depth > pse_depth) {
427 se_depth--;
428 *se = parent_entity(*se);
429 }
430
431 while (pse_depth > se_depth) {
432 pse_depth--;
433 *pse = parent_entity(*pse);
434 }
435
436 while (!is_same_group(*se, *pse)) {
437 *se = parent_entity(*se);
438 *pse = parent_entity(*pse);
439 }
440 }
441
442 static int tg_is_idle(struct task_group *tg)
443 {
444 return tg->idle > 0;
445 }
446
447 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
448 {
449 return cfs_rq->idle > 0;
450 }
451
452 static int se_is_idle(struct sched_entity *se)
453 {
454 if (entity_is_task(se))
455 return task_has_idle_policy(task_of(se));
456 return cfs_rq_is_idle(group_cfs_rq(se));
457 }
458
459 #else /* !CONFIG_FAIR_GROUP_SCHED */
460
461 #define for_each_sched_entity(se) \
462 for (; se; se = NULL)
463
464 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
465 {
466 if (path)
467 strlcpy(path, "(null)", len);
468 }
469
470 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
471 {
472 return true;
473 }
474
475 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
476 {
477 }
478
479 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
480 {
481 }
482
483 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
484 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
485
486 static inline struct sched_entity *parent_entity(struct sched_entity *se)
487 {
488 return NULL;
489 }
490
491 static inline void
492 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
493 {
494 }
495
496 static inline int tg_is_idle(struct task_group *tg)
497 {
498 return 0;
499 }
500
501 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
502 {
503 return 0;
504 }
505
506 static int se_is_idle(struct sched_entity *se)
507 {
508 return 0;
509 }
510
511 #endif /* CONFIG_FAIR_GROUP_SCHED */
512
513 static __always_inline
514 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
515
516 /**************************************************************
517 * Scheduling class tree data structure manipulation methods:
518 */
519
520 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
521 {
522 s64 delta = (s64)(vruntime - max_vruntime);
523 if (delta > 0)
524 max_vruntime = vruntime;
525
526 return max_vruntime;
527 }
528
529 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
530 {
531 s64 delta = (s64)(vruntime - min_vruntime);
532 if (delta < 0)
533 min_vruntime = vruntime;
534
535 return min_vruntime;
536 }
537
538 static inline bool entity_before(struct sched_entity *a,
539 struct sched_entity *b)
540 {
541 return (s64)(a->vruntime - b->vruntime) < 0;
542 }
543
544 #define __node_2_se(node) \
545 rb_entry((node), struct sched_entity, run_node)
546
547 static void update_min_vruntime(struct cfs_rq *cfs_rq)
548 {
549 struct sched_entity *curr = cfs_rq->curr;
550 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
551
552 u64 vruntime = cfs_rq->min_vruntime;
553
554 if (curr) {
555 if (curr->on_rq)
556 vruntime = curr->vruntime;
557 else
558 curr = NULL;
559 }
560
561 if (leftmost) { /* non-empty tree */
562 struct sched_entity *se = __node_2_se(leftmost);
563
564 if (!curr)
565 vruntime = se->vruntime;
566 else
567 vruntime = min_vruntime(vruntime, se->vruntime);
568 }
569
570 /* ensure we never gain time by being placed backwards. */
571 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
572 #ifndef CONFIG_64BIT
573 smp_wmb();
574 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
575 #endif
576 }
577
578 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
579 {
580 return entity_before(__node_2_se(a), __node_2_se(b));
581 }
582
583 /*
584 * Enqueue an entity into the rb-tree:
585 */
586 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 {
588 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
589 }
590
591 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
592 {
593 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
594 }
595
596 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
597 {
598 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
599
600 if (!left)
601 return NULL;
602
603 return __node_2_se(left);
604 }
605
606 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607 {
608 struct rb_node *next = rb_next(&se->run_node);
609
610 if (!next)
611 return NULL;
612
613 return __node_2_se(next);
614 }
615
616 #ifdef CONFIG_SCHED_DEBUG
617 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
618 {
619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
620
621 if (!last)
622 return NULL;
623
624 return __node_2_se(last);
625 }
626
627 /**************************************************************
628 * Scheduling class statistics methods:
629 */
630
631 int sched_update_scaling(void)
632 {
633 unsigned int factor = get_update_sysctl_factor();
634
635 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
636 sysctl_sched_min_granularity);
637
638 #define WRT_SYSCTL(name) \
639 (normalized_sysctl_##name = sysctl_##name / (factor))
640 WRT_SYSCTL(sched_min_granularity);
641 WRT_SYSCTL(sched_latency);
642 WRT_SYSCTL(sched_wakeup_granularity);
643 #undef WRT_SYSCTL
644
645 return 0;
646 }
647 #endif
648
649 /*
650 * delta /= w
651 */
652 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
653 {
654 if (unlikely(se->load.weight != NICE_0_LOAD))
655 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
656
657 return delta;
658 }
659
660 /*
661 * The idea is to set a period in which each task runs once.
662 *
663 * When there are too many tasks (sched_nr_latency) we have to stretch
664 * this period because otherwise the slices get too small.
665 *
666 * p = (nr <= nl) ? l : l*nr/nl
667 */
668 static u64 __sched_period(unsigned long nr_running)
669 {
670 if (unlikely(nr_running > sched_nr_latency))
671 return nr_running * sysctl_sched_min_granularity;
672 else
673 return sysctl_sched_latency;
674 }
675
676 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
677
678 /*
679 * We calculate the wall-time slice from the period by taking a part
680 * proportional to the weight.
681 *
682 * s = p*P[w/rw]
683 */
684 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
685 {
686 unsigned int nr_running = cfs_rq->nr_running;
687 struct sched_entity *init_se = se;
688 unsigned int min_gran;
689 u64 slice;
690
691 if (sched_feat(ALT_PERIOD))
692 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
693
694 slice = __sched_period(nr_running + !se->on_rq);
695
696 for_each_sched_entity(se) {
697 struct load_weight *load;
698 struct load_weight lw;
699 struct cfs_rq *qcfs_rq;
700
701 qcfs_rq = cfs_rq_of(se);
702 load = &qcfs_rq->load;
703
704 if (unlikely(!se->on_rq)) {
705 lw = qcfs_rq->load;
706
707 update_load_add(&lw, se->load.weight);
708 load = &lw;
709 }
710 slice = __calc_delta(slice, se->load.weight, load);
711 }
712
713 if (sched_feat(BASE_SLICE)) {
714 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
715 min_gran = sysctl_sched_idle_min_granularity;
716 else
717 min_gran = sysctl_sched_min_granularity;
718
719 slice = max_t(u64, slice, min_gran);
720 }
721
722 return slice;
723 }
724
725 /*
726 * We calculate the vruntime slice of a to-be-inserted task.
727 *
728 * vs = s/w
729 */
730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
731 {
732 return calc_delta_fair(sched_slice(cfs_rq, se), se);
733 }
734
735 #include "pelt.h"
736 #ifdef CONFIG_SMP
737
738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
739 static unsigned long task_h_load(struct task_struct *p);
740 static unsigned long capacity_of(int cpu);
741
742 /* Give new sched_entity start runnable values to heavy its load in infant time */
743 void init_entity_runnable_average(struct sched_entity *se)
744 {
745 struct sched_avg *sa = &se->avg;
746
747 memset(sa, 0, sizeof(*sa));
748
749 /*
750 * Tasks are initialized with full load to be seen as heavy tasks until
751 * they get a chance to stabilize to their real load level.
752 * Group entities are initialized with zero load to reflect the fact that
753 * nothing has been attached to the task group yet.
754 */
755 if (entity_is_task(se))
756 sa->load_avg = scale_load_down(se->load.weight);
757
758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
759 }
760
761 static void attach_entity_cfs_rq(struct sched_entity *se);
762
763 /*
764 * With new tasks being created, their initial util_avgs are extrapolated
765 * based on the cfs_rq's current util_avg:
766 *
767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
768 *
769 * However, in many cases, the above util_avg does not give a desired
770 * value. Moreover, the sum of the util_avgs may be divergent, such
771 * as when the series is a harmonic series.
772 *
773 * To solve this problem, we also cap the util_avg of successive tasks to
774 * only 1/2 of the left utilization budget:
775 *
776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
777 *
778 * where n denotes the nth task and cpu_scale the CPU capacity.
779 *
780 * For example, for a CPU with 1024 of capacity, a simplest series from
781 * the beginning would be like:
782 *
783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
785 *
786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787 * if util_avg > util_avg_cap.
788 */
789 void post_init_entity_util_avg(struct task_struct *p)
790 {
791 struct sched_entity *se = &p->se;
792 struct cfs_rq *cfs_rq = cfs_rq_of(se);
793 struct sched_avg *sa = &se->avg;
794 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
795 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
796
797 if (cap > 0) {
798 if (cfs_rq->avg.util_avg != 0) {
799 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
800 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
801
802 if (sa->util_avg > cap)
803 sa->util_avg = cap;
804 } else {
805 sa->util_avg = cap;
806 }
807 }
808
809 sa->runnable_avg = sa->util_avg;
810
811 if (p->sched_class != &fair_sched_class) {
812 /*
813 * For !fair tasks do:
814 *
815 update_cfs_rq_load_avg(now, cfs_rq);
816 attach_entity_load_avg(cfs_rq, se);
817 switched_from_fair(rq, p);
818 *
819 * such that the next switched_to_fair() has the
820 * expected state.
821 */
822 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
823 return;
824 }
825
826 attach_entity_cfs_rq(se);
827 }
828
829 #else /* !CONFIG_SMP */
830 void init_entity_runnable_average(struct sched_entity *se)
831 {
832 }
833 void post_init_entity_util_avg(struct task_struct *p)
834 {
835 }
836 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
837 {
838 }
839 #endif /* CONFIG_SMP */
840
841 /*
842 * Update the current task's runtime statistics.
843 */
844 static void update_curr(struct cfs_rq *cfs_rq)
845 {
846 struct sched_entity *curr = cfs_rq->curr;
847 u64 now = rq_clock_task(rq_of(cfs_rq));
848 u64 delta_exec;
849
850 if (unlikely(!curr))
851 return;
852
853 delta_exec = now - curr->exec_start;
854 if (unlikely((s64)delta_exec <= 0))
855 return;
856
857 curr->exec_start = now;
858
859 if (schedstat_enabled()) {
860 struct sched_statistics *stats;
861
862 stats = __schedstats_from_se(curr);
863 __schedstat_set(stats->exec_max,
864 max(delta_exec, stats->exec_max));
865 }
866
867 curr->sum_exec_runtime += delta_exec;
868 schedstat_add(cfs_rq->exec_clock, delta_exec);
869
870 curr->vruntime += calc_delta_fair(delta_exec, curr);
871 update_min_vruntime(cfs_rq);
872
873 if (entity_is_task(curr)) {
874 struct task_struct *curtask = task_of(curr);
875
876 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
877 cgroup_account_cputime(curtask, delta_exec);
878 account_group_exec_runtime(curtask, delta_exec);
879 }
880
881 account_cfs_rq_runtime(cfs_rq, delta_exec);
882 }
883
884 static void update_curr_fair(struct rq *rq)
885 {
886 update_curr(cfs_rq_of(&rq->curr->se));
887 }
888
889 static inline void
890 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
891 {
892 struct sched_statistics *stats;
893 struct task_struct *p = NULL;
894
895 if (!schedstat_enabled())
896 return;
897
898 stats = __schedstats_from_se(se);
899
900 if (entity_is_task(se))
901 p = task_of(se);
902
903 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
904 }
905
906 static inline void
907 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
908 {
909 struct sched_statistics *stats;
910 struct task_struct *p = NULL;
911
912 if (!schedstat_enabled())
913 return;
914
915 stats = __schedstats_from_se(se);
916
917 /*
918 * When the sched_schedstat changes from 0 to 1, some sched se
919 * maybe already in the runqueue, the se->statistics.wait_start
920 * will be 0.So it will let the delta wrong. We need to avoid this
921 * scenario.
922 */
923 if (unlikely(!schedstat_val(stats->wait_start)))
924 return;
925
926 if (entity_is_task(se))
927 p = task_of(se);
928
929 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
930 }
931
932 static inline void
933 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
934 {
935 struct sched_statistics *stats;
936 struct task_struct *tsk = NULL;
937
938 if (!schedstat_enabled())
939 return;
940
941 stats = __schedstats_from_se(se);
942
943 if (entity_is_task(se))
944 tsk = task_of(se);
945
946 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
947 }
948
949 /*
950 * Task is being enqueued - update stats:
951 */
952 static inline void
953 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
954 {
955 if (!schedstat_enabled())
956 return;
957
958 /*
959 * Are we enqueueing a waiting task? (for current tasks
960 * a dequeue/enqueue event is a NOP)
961 */
962 if (se != cfs_rq->curr)
963 update_stats_wait_start_fair(cfs_rq, se);
964
965 if (flags & ENQUEUE_WAKEUP)
966 update_stats_enqueue_sleeper_fair(cfs_rq, se);
967 }
968
969 static inline void
970 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
971 {
972
973 if (!schedstat_enabled())
974 return;
975
976 /*
977 * Mark the end of the wait period if dequeueing a
978 * waiting task:
979 */
980 if (se != cfs_rq->curr)
981 update_stats_wait_end_fair(cfs_rq, se);
982
983 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
984 struct task_struct *tsk = task_of(se);
985 unsigned int state;
986
987 /* XXX racy against TTWU */
988 state = READ_ONCE(tsk->__state);
989 if (state & TASK_INTERRUPTIBLE)
990 __schedstat_set(tsk->stats.sleep_start,
991 rq_clock(rq_of(cfs_rq)));
992 if (state & TASK_UNINTERRUPTIBLE)
993 __schedstat_set(tsk->stats.block_start,
994 rq_clock(rq_of(cfs_rq)));
995 }
996 }
997
998 /*
999 * We are picking a new current task - update its stats:
1000 */
1001 static inline void
1002 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1003 {
1004 /*
1005 * We are starting a new run period:
1006 */
1007 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1008 }
1009
1010 /**************************************************
1011 * Scheduling class queueing methods:
1012 */
1013
1014 #ifdef CONFIG_NUMA_BALANCING
1015 /*
1016 * Approximate time to scan a full NUMA task in ms. The task scan period is
1017 * calculated based on the tasks virtual memory size and
1018 * numa_balancing_scan_size.
1019 */
1020 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1021 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1022
1023 /* Portion of address space to scan in MB */
1024 unsigned int sysctl_numa_balancing_scan_size = 256;
1025
1026 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1027 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1028
1029 struct numa_group {
1030 refcount_t refcount;
1031
1032 spinlock_t lock; /* nr_tasks, tasks */
1033 int nr_tasks;
1034 pid_t gid;
1035 int active_nodes;
1036
1037 struct rcu_head rcu;
1038 unsigned long total_faults;
1039 unsigned long max_faults_cpu;
1040 /*
1041 * faults[] array is split into two regions: faults_mem and faults_cpu.
1042 *
1043 * Faults_cpu is used to decide whether memory should move
1044 * towards the CPU. As a consequence, these stats are weighted
1045 * more by CPU use than by memory faults.
1046 */
1047 unsigned long faults[];
1048 };
1049
1050 /*
1051 * For functions that can be called in multiple contexts that permit reading
1052 * ->numa_group (see struct task_struct for locking rules).
1053 */
1054 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1055 {
1056 return rcu_dereference_check(p->numa_group, p == current ||
1057 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1058 }
1059
1060 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1061 {
1062 return rcu_dereference_protected(p->numa_group, p == current);
1063 }
1064
1065 static inline unsigned long group_faults_priv(struct numa_group *ng);
1066 static inline unsigned long group_faults_shared(struct numa_group *ng);
1067
1068 static unsigned int task_nr_scan_windows(struct task_struct *p)
1069 {
1070 unsigned long rss = 0;
1071 unsigned long nr_scan_pages;
1072
1073 /*
1074 * Calculations based on RSS as non-present and empty pages are skipped
1075 * by the PTE scanner and NUMA hinting faults should be trapped based
1076 * on resident pages
1077 */
1078 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1079 rss = get_mm_rss(p->mm);
1080 if (!rss)
1081 rss = nr_scan_pages;
1082
1083 rss = round_up(rss, nr_scan_pages);
1084 return rss / nr_scan_pages;
1085 }
1086
1087 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1088 #define MAX_SCAN_WINDOW 2560
1089
1090 static unsigned int task_scan_min(struct task_struct *p)
1091 {
1092 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1093 unsigned int scan, floor;
1094 unsigned int windows = 1;
1095
1096 if (scan_size < MAX_SCAN_WINDOW)
1097 windows = MAX_SCAN_WINDOW / scan_size;
1098 floor = 1000 / windows;
1099
1100 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1101 return max_t(unsigned int, floor, scan);
1102 }
1103
1104 static unsigned int task_scan_start(struct task_struct *p)
1105 {
1106 unsigned long smin = task_scan_min(p);
1107 unsigned long period = smin;
1108 struct numa_group *ng;
1109
1110 /* Scale the maximum scan period with the amount of shared memory. */
1111 rcu_read_lock();
1112 ng = rcu_dereference(p->numa_group);
1113 if (ng) {
1114 unsigned long shared = group_faults_shared(ng);
1115 unsigned long private = group_faults_priv(ng);
1116
1117 period *= refcount_read(&ng->refcount);
1118 period *= shared + 1;
1119 period /= private + shared + 1;
1120 }
1121 rcu_read_unlock();
1122
1123 return max(smin, period);
1124 }
1125
1126 static unsigned int task_scan_max(struct task_struct *p)
1127 {
1128 unsigned long smin = task_scan_min(p);
1129 unsigned long smax;
1130 struct numa_group *ng;
1131
1132 /* Watch for min being lower than max due to floor calculations */
1133 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1134
1135 /* Scale the maximum scan period with the amount of shared memory. */
1136 ng = deref_curr_numa_group(p);
1137 if (ng) {
1138 unsigned long shared = group_faults_shared(ng);
1139 unsigned long private = group_faults_priv(ng);
1140 unsigned long period = smax;
1141
1142 period *= refcount_read(&ng->refcount);
1143 period *= shared + 1;
1144 period /= private + shared + 1;
1145
1146 smax = max(smax, period);
1147 }
1148
1149 return max(smin, smax);
1150 }
1151
1152 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1153 {
1154 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1155 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1156 }
1157
1158 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1159 {
1160 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1161 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1162 }
1163
1164 /* Shared or private faults. */
1165 #define NR_NUMA_HINT_FAULT_TYPES 2
1166
1167 /* Memory and CPU locality */
1168 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1169
1170 /* Averaged statistics, and temporary buffers. */
1171 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1172
1173 pid_t task_numa_group_id(struct task_struct *p)
1174 {
1175 struct numa_group *ng;
1176 pid_t gid = 0;
1177
1178 rcu_read_lock();
1179 ng = rcu_dereference(p->numa_group);
1180 if (ng)
1181 gid = ng->gid;
1182 rcu_read_unlock();
1183
1184 return gid;
1185 }
1186
1187 /*
1188 * The averaged statistics, shared & private, memory & CPU,
1189 * occupy the first half of the array. The second half of the
1190 * array is for current counters, which are averaged into the
1191 * first set by task_numa_placement.
1192 */
1193 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1194 {
1195 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1196 }
1197
1198 static inline unsigned long task_faults(struct task_struct *p, int nid)
1199 {
1200 if (!p->numa_faults)
1201 return 0;
1202
1203 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1204 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1205 }
1206
1207 static inline unsigned long group_faults(struct task_struct *p, int nid)
1208 {
1209 struct numa_group *ng = deref_task_numa_group(p);
1210
1211 if (!ng)
1212 return 0;
1213
1214 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1215 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1216 }
1217
1218 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1219 {
1220 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1221 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1222 }
1223
1224 static inline unsigned long group_faults_priv(struct numa_group *ng)
1225 {
1226 unsigned long faults = 0;
1227 int node;
1228
1229 for_each_online_node(node) {
1230 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1231 }
1232
1233 return faults;
1234 }
1235
1236 static inline unsigned long group_faults_shared(struct numa_group *ng)
1237 {
1238 unsigned long faults = 0;
1239 int node;
1240
1241 for_each_online_node(node) {
1242 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1243 }
1244
1245 return faults;
1246 }
1247
1248 /*
1249 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1250 * considered part of a numa group's pseudo-interleaving set. Migrations
1251 * between these nodes are slowed down, to allow things to settle down.
1252 */
1253 #define ACTIVE_NODE_FRACTION 3
1254
1255 static bool numa_is_active_node(int nid, struct numa_group *ng)
1256 {
1257 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1258 }
1259
1260 /* Handle placement on systems where not all nodes are directly connected. */
1261 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1262 int maxdist, bool task)
1263 {
1264 unsigned long score = 0;
1265 int node;
1266
1267 /*
1268 * All nodes are directly connected, and the same distance
1269 * from each other. No need for fancy placement algorithms.
1270 */
1271 if (sched_numa_topology_type == NUMA_DIRECT)
1272 return 0;
1273
1274 /*
1275 * This code is called for each node, introducing N^2 complexity,
1276 * which should be ok given the number of nodes rarely exceeds 8.
1277 */
1278 for_each_online_node(node) {
1279 unsigned long faults;
1280 int dist = node_distance(nid, node);
1281
1282 /*
1283 * The furthest away nodes in the system are not interesting
1284 * for placement; nid was already counted.
1285 */
1286 if (dist == sched_max_numa_distance || node == nid)
1287 continue;
1288
1289 /*
1290 * On systems with a backplane NUMA topology, compare groups
1291 * of nodes, and move tasks towards the group with the most
1292 * memory accesses. When comparing two nodes at distance
1293 * "hoplimit", only nodes closer by than "hoplimit" are part
1294 * of each group. Skip other nodes.
1295 */
1296 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1297 dist >= maxdist)
1298 continue;
1299
1300 /* Add up the faults from nearby nodes. */
1301 if (task)
1302 faults = task_faults(p, node);
1303 else
1304 faults = group_faults(p, node);
1305
1306 /*
1307 * On systems with a glueless mesh NUMA topology, there are
1308 * no fixed "groups of nodes". Instead, nodes that are not
1309 * directly connected bounce traffic through intermediate
1310 * nodes; a numa_group can occupy any set of nodes.
1311 * The further away a node is, the less the faults count.
1312 * This seems to result in good task placement.
1313 */
1314 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1315 faults *= (sched_max_numa_distance - dist);
1316 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1317 }
1318
1319 score += faults;
1320 }
1321
1322 return score;
1323 }
1324
1325 /*
1326 * These return the fraction of accesses done by a particular task, or
1327 * task group, on a particular numa node. The group weight is given a
1328 * larger multiplier, in order to group tasks together that are almost
1329 * evenly spread out between numa nodes.
1330 */
1331 static inline unsigned long task_weight(struct task_struct *p, int nid,
1332 int dist)
1333 {
1334 unsigned long faults, total_faults;
1335
1336 if (!p->numa_faults)
1337 return 0;
1338
1339 total_faults = p->total_numa_faults;
1340
1341 if (!total_faults)
1342 return 0;
1343
1344 faults = task_faults(p, nid);
1345 faults += score_nearby_nodes(p, nid, dist, true);
1346
1347 return 1000 * faults / total_faults;
1348 }
1349
1350 static inline unsigned long group_weight(struct task_struct *p, int nid,
1351 int dist)
1352 {
1353 struct numa_group *ng = deref_task_numa_group(p);
1354 unsigned long faults, total_faults;
1355
1356 if (!ng)
1357 return 0;
1358
1359 total_faults = ng->total_faults;
1360
1361 if (!total_faults)
1362 return 0;
1363
1364 faults = group_faults(p, nid);
1365 faults += score_nearby_nodes(p, nid, dist, false);
1366
1367 return 1000 * faults / total_faults;
1368 }
1369
1370 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1371 int src_nid, int dst_cpu)
1372 {
1373 struct numa_group *ng = deref_curr_numa_group(p);
1374 int dst_nid = cpu_to_node(dst_cpu);
1375 int last_cpupid, this_cpupid;
1376
1377 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1378 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1379
1380 /*
1381 * Allow first faults or private faults to migrate immediately early in
1382 * the lifetime of a task. The magic number 4 is based on waiting for
1383 * two full passes of the "multi-stage node selection" test that is
1384 * executed below.
1385 */
1386 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1387 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1388 return true;
1389
1390 /*
1391 * Multi-stage node selection is used in conjunction with a periodic
1392 * migration fault to build a temporal task<->page relation. By using
1393 * a two-stage filter we remove short/unlikely relations.
1394 *
1395 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1396 * a task's usage of a particular page (n_p) per total usage of this
1397 * page (n_t) (in a given time-span) to a probability.
1398 *
1399 * Our periodic faults will sample this probability and getting the
1400 * same result twice in a row, given these samples are fully
1401 * independent, is then given by P(n)^2, provided our sample period
1402 * is sufficiently short compared to the usage pattern.
1403 *
1404 * This quadric squishes small probabilities, making it less likely we
1405 * act on an unlikely task<->page relation.
1406 */
1407 if (!cpupid_pid_unset(last_cpupid) &&
1408 cpupid_to_nid(last_cpupid) != dst_nid)
1409 return false;
1410
1411 /* Always allow migrate on private faults */
1412 if (cpupid_match_pid(p, last_cpupid))
1413 return true;
1414
1415 /* A shared fault, but p->numa_group has not been set up yet. */
1416 if (!ng)
1417 return true;
1418
1419 /*
1420 * Destination node is much more heavily used than the source
1421 * node? Allow migration.
1422 */
1423 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1424 ACTIVE_NODE_FRACTION)
1425 return true;
1426
1427 /*
1428 * Distribute memory according to CPU & memory use on each node,
1429 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1430 *
1431 * faults_cpu(dst) 3 faults_cpu(src)
1432 * --------------- * - > ---------------
1433 * faults_mem(dst) 4 faults_mem(src)
1434 */
1435 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1436 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1437 }
1438
1439 /*
1440 * 'numa_type' describes the node at the moment of load balancing.
1441 */
1442 enum numa_type {
1443 /* The node has spare capacity that can be used to run more tasks. */
1444 node_has_spare = 0,
1445 /*
1446 * The node is fully used and the tasks don't compete for more CPU
1447 * cycles. Nevertheless, some tasks might wait before running.
1448 */
1449 node_fully_busy,
1450 /*
1451 * The node is overloaded and can't provide expected CPU cycles to all
1452 * tasks.
1453 */
1454 node_overloaded
1455 };
1456
1457 /* Cached statistics for all CPUs within a node */
1458 struct numa_stats {
1459 unsigned long load;
1460 unsigned long runnable;
1461 unsigned long util;
1462 /* Total compute capacity of CPUs on a node */
1463 unsigned long compute_capacity;
1464 unsigned int nr_running;
1465 unsigned int weight;
1466 enum numa_type node_type;
1467 int idle_cpu;
1468 };
1469
1470 static inline bool is_core_idle(int cpu)
1471 {
1472 #ifdef CONFIG_SCHED_SMT
1473 int sibling;
1474
1475 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1476 if (cpu == sibling)
1477 continue;
1478
1479 if (!idle_cpu(sibling))
1480 return false;
1481 }
1482 #endif
1483
1484 return true;
1485 }
1486
1487 struct task_numa_env {
1488 struct task_struct *p;
1489
1490 int src_cpu, src_nid;
1491 int dst_cpu, dst_nid;
1492
1493 struct numa_stats src_stats, dst_stats;
1494
1495 int imbalance_pct;
1496 int dist;
1497
1498 struct task_struct *best_task;
1499 long best_imp;
1500 int best_cpu;
1501 };
1502
1503 static unsigned long cpu_load(struct rq *rq);
1504 static unsigned long cpu_runnable(struct rq *rq);
1505 static inline long adjust_numa_imbalance(int imbalance,
1506 int dst_running, int dst_weight);
1507
1508 static inline enum
1509 numa_type numa_classify(unsigned int imbalance_pct,
1510 struct numa_stats *ns)
1511 {
1512 if ((ns->nr_running > ns->weight) &&
1513 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1514 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1515 return node_overloaded;
1516
1517 if ((ns->nr_running < ns->weight) ||
1518 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1519 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1520 return node_has_spare;
1521
1522 return node_fully_busy;
1523 }
1524
1525 #ifdef CONFIG_SCHED_SMT
1526 /* Forward declarations of select_idle_sibling helpers */
1527 static inline bool test_idle_cores(int cpu, bool def);
1528 static inline int numa_idle_core(int idle_core, int cpu)
1529 {
1530 if (!static_branch_likely(&sched_smt_present) ||
1531 idle_core >= 0 || !test_idle_cores(cpu, false))
1532 return idle_core;
1533
1534 /*
1535 * Prefer cores instead of packing HT siblings
1536 * and triggering future load balancing.
1537 */
1538 if (is_core_idle(cpu))
1539 idle_core = cpu;
1540
1541 return idle_core;
1542 }
1543 #else
1544 static inline int numa_idle_core(int idle_core, int cpu)
1545 {
1546 return idle_core;
1547 }
1548 #endif
1549
1550 /*
1551 * Gather all necessary information to make NUMA balancing placement
1552 * decisions that are compatible with standard load balancer. This
1553 * borrows code and logic from update_sg_lb_stats but sharing a
1554 * common implementation is impractical.
1555 */
1556 static void update_numa_stats(struct task_numa_env *env,
1557 struct numa_stats *ns, int nid,
1558 bool find_idle)
1559 {
1560 int cpu, idle_core = -1;
1561
1562 memset(ns, 0, sizeof(*ns));
1563 ns->idle_cpu = -1;
1564
1565 rcu_read_lock();
1566 for_each_cpu(cpu, cpumask_of_node(nid)) {
1567 struct rq *rq = cpu_rq(cpu);
1568
1569 ns->load += cpu_load(rq);
1570 ns->runnable += cpu_runnable(rq);
1571 ns->util += cpu_util_cfs(cpu);
1572 ns->nr_running += rq->cfs.h_nr_running;
1573 ns->compute_capacity += capacity_of(cpu);
1574
1575 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1576 if (READ_ONCE(rq->numa_migrate_on) ||
1577 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1578 continue;
1579
1580 if (ns->idle_cpu == -1)
1581 ns->idle_cpu = cpu;
1582
1583 idle_core = numa_idle_core(idle_core, cpu);
1584 }
1585 }
1586 rcu_read_unlock();
1587
1588 ns->weight = cpumask_weight(cpumask_of_node(nid));
1589
1590 ns->node_type = numa_classify(env->imbalance_pct, ns);
1591
1592 if (idle_core >= 0)
1593 ns->idle_cpu = idle_core;
1594 }
1595
1596 static void task_numa_assign(struct task_numa_env *env,
1597 struct task_struct *p, long imp)
1598 {
1599 struct rq *rq = cpu_rq(env->dst_cpu);
1600
1601 /* Check if run-queue part of active NUMA balance. */
1602 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1603 int cpu;
1604 int start = env->dst_cpu;
1605
1606 /* Find alternative idle CPU. */
1607 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1608 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1609 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1610 continue;
1611 }
1612
1613 env->dst_cpu = cpu;
1614 rq = cpu_rq(env->dst_cpu);
1615 if (!xchg(&rq->numa_migrate_on, 1))
1616 goto assign;
1617 }
1618
1619 /* Failed to find an alternative idle CPU */
1620 return;
1621 }
1622
1623 assign:
1624 /*
1625 * Clear previous best_cpu/rq numa-migrate flag, since task now
1626 * found a better CPU to move/swap.
1627 */
1628 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1629 rq = cpu_rq(env->best_cpu);
1630 WRITE_ONCE(rq->numa_migrate_on, 0);
1631 }
1632
1633 if (env->best_task)
1634 put_task_struct(env->best_task);
1635 if (p)
1636 get_task_struct(p);
1637
1638 env->best_task = p;
1639 env->best_imp = imp;
1640 env->best_cpu = env->dst_cpu;
1641 }
1642
1643 static bool load_too_imbalanced(long src_load, long dst_load,
1644 struct task_numa_env *env)
1645 {
1646 long imb, old_imb;
1647 long orig_src_load, orig_dst_load;
1648 long src_capacity, dst_capacity;
1649
1650 /*
1651 * The load is corrected for the CPU capacity available on each node.
1652 *
1653 * src_load dst_load
1654 * ------------ vs ---------
1655 * src_capacity dst_capacity
1656 */
1657 src_capacity = env->src_stats.compute_capacity;
1658 dst_capacity = env->dst_stats.compute_capacity;
1659
1660 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1661
1662 orig_src_load = env->src_stats.load;
1663 orig_dst_load = env->dst_stats.load;
1664
1665 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1666
1667 /* Would this change make things worse? */
1668 return (imb > old_imb);
1669 }
1670
1671 /*
1672 * Maximum NUMA importance can be 1998 (2*999);
1673 * SMALLIMP @ 30 would be close to 1998/64.
1674 * Used to deter task migration.
1675 */
1676 #define SMALLIMP 30
1677
1678 /*
1679 * This checks if the overall compute and NUMA accesses of the system would
1680 * be improved if the source tasks was migrated to the target dst_cpu taking
1681 * into account that it might be best if task running on the dst_cpu should
1682 * be exchanged with the source task
1683 */
1684 static bool task_numa_compare(struct task_numa_env *env,
1685 long taskimp, long groupimp, bool maymove)
1686 {
1687 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1688 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1689 long imp = p_ng ? groupimp : taskimp;
1690 struct task_struct *cur;
1691 long src_load, dst_load;
1692 int dist = env->dist;
1693 long moveimp = imp;
1694 long load;
1695 bool stopsearch = false;
1696
1697 if (READ_ONCE(dst_rq->numa_migrate_on))
1698 return false;
1699
1700 rcu_read_lock();
1701 cur = rcu_dereference(dst_rq->curr);
1702 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1703 cur = NULL;
1704
1705 /*
1706 * Because we have preemption enabled we can get migrated around and
1707 * end try selecting ourselves (current == env->p) as a swap candidate.
1708 */
1709 if (cur == env->p) {
1710 stopsearch = true;
1711 goto unlock;
1712 }
1713
1714 if (!cur) {
1715 if (maymove && moveimp >= env->best_imp)
1716 goto assign;
1717 else
1718 goto unlock;
1719 }
1720
1721 /* Skip this swap candidate if cannot move to the source cpu. */
1722 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1723 goto unlock;
1724
1725 /*
1726 * Skip this swap candidate if it is not moving to its preferred
1727 * node and the best task is.
1728 */
1729 if (env->best_task &&
1730 env->best_task->numa_preferred_nid == env->src_nid &&
1731 cur->numa_preferred_nid != env->src_nid) {
1732 goto unlock;
1733 }
1734
1735 /*
1736 * "imp" is the fault differential for the source task between the
1737 * source and destination node. Calculate the total differential for
1738 * the source task and potential destination task. The more negative
1739 * the value is, the more remote accesses that would be expected to
1740 * be incurred if the tasks were swapped.
1741 *
1742 * If dst and source tasks are in the same NUMA group, or not
1743 * in any group then look only at task weights.
1744 */
1745 cur_ng = rcu_dereference(cur->numa_group);
1746 if (cur_ng == p_ng) {
1747 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1748 task_weight(cur, env->dst_nid, dist);
1749 /*
1750 * Add some hysteresis to prevent swapping the
1751 * tasks within a group over tiny differences.
1752 */
1753 if (cur_ng)
1754 imp -= imp / 16;
1755 } else {
1756 /*
1757 * Compare the group weights. If a task is all by itself
1758 * (not part of a group), use the task weight instead.
1759 */
1760 if (cur_ng && p_ng)
1761 imp += group_weight(cur, env->src_nid, dist) -
1762 group_weight(cur, env->dst_nid, dist);
1763 else
1764 imp += task_weight(cur, env->src_nid, dist) -
1765 task_weight(cur, env->dst_nid, dist);
1766 }
1767
1768 /* Discourage picking a task already on its preferred node */
1769 if (cur->numa_preferred_nid == env->dst_nid)
1770 imp -= imp / 16;
1771
1772 /*
1773 * Encourage picking a task that moves to its preferred node.
1774 * This potentially makes imp larger than it's maximum of
1775 * 1998 (see SMALLIMP and task_weight for why) but in this
1776 * case, it does not matter.
1777 */
1778 if (cur->numa_preferred_nid == env->src_nid)
1779 imp += imp / 8;
1780
1781 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1782 imp = moveimp;
1783 cur = NULL;
1784 goto assign;
1785 }
1786
1787 /*
1788 * Prefer swapping with a task moving to its preferred node over a
1789 * task that is not.
1790 */
1791 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1792 env->best_task->numa_preferred_nid != env->src_nid) {
1793 goto assign;
1794 }
1795
1796 /*
1797 * If the NUMA importance is less than SMALLIMP,
1798 * task migration might only result in ping pong
1799 * of tasks and also hurt performance due to cache
1800 * misses.
1801 */
1802 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1803 goto unlock;
1804
1805 /*
1806 * In the overloaded case, try and keep the load balanced.
1807 */
1808 load = task_h_load(env->p) - task_h_load(cur);
1809 if (!load)
1810 goto assign;
1811
1812 dst_load = env->dst_stats.load + load;
1813 src_load = env->src_stats.load - load;
1814
1815 if (load_too_imbalanced(src_load, dst_load, env))
1816 goto unlock;
1817
1818 assign:
1819 /* Evaluate an idle CPU for a task numa move. */
1820 if (!cur) {
1821 int cpu = env->dst_stats.idle_cpu;
1822
1823 /* Nothing cached so current CPU went idle since the search. */
1824 if (cpu < 0)
1825 cpu = env->dst_cpu;
1826
1827 /*
1828 * If the CPU is no longer truly idle and the previous best CPU
1829 * is, keep using it.
1830 */
1831 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1832 idle_cpu(env->best_cpu)) {
1833 cpu = env->best_cpu;
1834 }
1835
1836 env->dst_cpu = cpu;
1837 }
1838
1839 task_numa_assign(env, cur, imp);
1840
1841 /*
1842 * If a move to idle is allowed because there is capacity or load
1843 * balance improves then stop the search. While a better swap
1844 * candidate may exist, a search is not free.
1845 */
1846 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1847 stopsearch = true;
1848
1849 /*
1850 * If a swap candidate must be identified and the current best task
1851 * moves its preferred node then stop the search.
1852 */
1853 if (!maymove && env->best_task &&
1854 env->best_task->numa_preferred_nid == env->src_nid) {
1855 stopsearch = true;
1856 }
1857 unlock:
1858 rcu_read_unlock();
1859
1860 return stopsearch;
1861 }
1862
1863 static void task_numa_find_cpu(struct task_numa_env *env,
1864 long taskimp, long groupimp)
1865 {
1866 bool maymove = false;
1867 int cpu;
1868
1869 /*
1870 * If dst node has spare capacity, then check if there is an
1871 * imbalance that would be overruled by the load balancer.
1872 */
1873 if (env->dst_stats.node_type == node_has_spare) {
1874 unsigned int imbalance;
1875 int src_running, dst_running;
1876
1877 /*
1878 * Would movement cause an imbalance? Note that if src has
1879 * more running tasks that the imbalance is ignored as the
1880 * move improves the imbalance from the perspective of the
1881 * CPU load balancer.
1882 * */
1883 src_running = env->src_stats.nr_running - 1;
1884 dst_running = env->dst_stats.nr_running + 1;
1885 imbalance = max(0, dst_running - src_running);
1886 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1887 env->dst_stats.weight);
1888
1889 /* Use idle CPU if there is no imbalance */
1890 if (!imbalance) {
1891 maymove = true;
1892 if (env->dst_stats.idle_cpu >= 0) {
1893 env->dst_cpu = env->dst_stats.idle_cpu;
1894 task_numa_assign(env, NULL, 0);
1895 return;
1896 }
1897 }
1898 } else {
1899 long src_load, dst_load, load;
1900 /*
1901 * If the improvement from just moving env->p direction is better
1902 * than swapping tasks around, check if a move is possible.
1903 */
1904 load = task_h_load(env->p);
1905 dst_load = env->dst_stats.load + load;
1906 src_load = env->src_stats.load - load;
1907 maymove = !load_too_imbalanced(src_load, dst_load, env);
1908 }
1909
1910 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1911 /* Skip this CPU if the source task cannot migrate */
1912 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1913 continue;
1914
1915 env->dst_cpu = cpu;
1916 if (task_numa_compare(env, taskimp, groupimp, maymove))
1917 break;
1918 }
1919 }
1920
1921 static int task_numa_migrate(struct task_struct *p)
1922 {
1923 struct task_numa_env env = {
1924 .p = p,
1925
1926 .src_cpu = task_cpu(p),
1927 .src_nid = task_node(p),
1928
1929 .imbalance_pct = 112,
1930
1931 .best_task = NULL,
1932 .best_imp = 0,
1933 .best_cpu = -1,
1934 };
1935 unsigned long taskweight, groupweight;
1936 struct sched_domain *sd;
1937 long taskimp, groupimp;
1938 struct numa_group *ng;
1939 struct rq *best_rq;
1940 int nid, ret, dist;
1941
1942 /*
1943 * Pick the lowest SD_NUMA domain, as that would have the smallest
1944 * imbalance and would be the first to start moving tasks about.
1945 *
1946 * And we want to avoid any moving of tasks about, as that would create
1947 * random movement of tasks -- counter the numa conditions we're trying
1948 * to satisfy here.
1949 */
1950 rcu_read_lock();
1951 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1952 if (sd)
1953 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1954 rcu_read_unlock();
1955
1956 /*
1957 * Cpusets can break the scheduler domain tree into smaller
1958 * balance domains, some of which do not cross NUMA boundaries.
1959 * Tasks that are "trapped" in such domains cannot be migrated
1960 * elsewhere, so there is no point in (re)trying.
1961 */
1962 if (unlikely(!sd)) {
1963 sched_setnuma(p, task_node(p));
1964 return -EINVAL;
1965 }
1966
1967 env.dst_nid = p->numa_preferred_nid;
1968 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1969 taskweight = task_weight(p, env.src_nid, dist);
1970 groupweight = group_weight(p, env.src_nid, dist);
1971 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
1972 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1973 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1974 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
1975
1976 /* Try to find a spot on the preferred nid. */
1977 task_numa_find_cpu(&env, taskimp, groupimp);
1978
1979 /*
1980 * Look at other nodes in these cases:
1981 * - there is no space available on the preferred_nid
1982 * - the task is part of a numa_group that is interleaved across
1983 * multiple NUMA nodes; in order to better consolidate the group,
1984 * we need to check other locations.
1985 */
1986 ng = deref_curr_numa_group(p);
1987 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1988 for_each_online_node(nid) {
1989 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1990 continue;
1991
1992 dist = node_distance(env.src_nid, env.dst_nid);
1993 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1994 dist != env.dist) {
1995 taskweight = task_weight(p, env.src_nid, dist);
1996 groupweight = group_weight(p, env.src_nid, dist);
1997 }
1998
1999 /* Only consider nodes where both task and groups benefit */
2000 taskimp = task_weight(p, nid, dist) - taskweight;
2001 groupimp = group_weight(p, nid, dist) - groupweight;
2002 if (taskimp < 0 && groupimp < 0)
2003 continue;
2004
2005 env.dist = dist;
2006 env.dst_nid = nid;
2007 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2008 task_numa_find_cpu(&env, taskimp, groupimp);
2009 }
2010 }
2011
2012 /*
2013 * If the task is part of a workload that spans multiple NUMA nodes,
2014 * and is migrating into one of the workload's active nodes, remember
2015 * this node as the task's preferred numa node, so the workload can
2016 * settle down.
2017 * A task that migrated to a second choice node will be better off
2018 * trying for a better one later. Do not set the preferred node here.
2019 */
2020 if (ng) {
2021 if (env.best_cpu == -1)
2022 nid = env.src_nid;
2023 else
2024 nid = cpu_to_node(env.best_cpu);
2025
2026 if (nid != p->numa_preferred_nid)
2027 sched_setnuma(p, nid);
2028 }
2029
2030 /* No better CPU than the current one was found. */
2031 if (env.best_cpu == -1) {
2032 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2033 return -EAGAIN;
2034 }
2035
2036 best_rq = cpu_rq(env.best_cpu);
2037 if (env.best_task == NULL) {
2038 ret = migrate_task_to(p, env.best_cpu);
2039 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2040 if (ret != 0)
2041 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2042 return ret;
2043 }
2044
2045 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2046 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2047
2048 if (ret != 0)
2049 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2050 put_task_struct(env.best_task);
2051 return ret;
2052 }
2053
2054 /* Attempt to migrate a task to a CPU on the preferred node. */
2055 static void numa_migrate_preferred(struct task_struct *p)
2056 {
2057 unsigned long interval = HZ;
2058
2059 /* This task has no NUMA fault statistics yet */
2060 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2061 return;
2062
2063 /* Periodically retry migrating the task to the preferred node */
2064 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2065 p->numa_migrate_retry = jiffies + interval;
2066
2067 /* Success if task is already running on preferred CPU */
2068 if (task_node(p) == p->numa_preferred_nid)
2069 return;
2070
2071 /* Otherwise, try migrate to a CPU on the preferred node */
2072 task_numa_migrate(p);
2073 }
2074
2075 /*
2076 * Find out how many nodes the workload is actively running on. Do this by
2077 * tracking the nodes from which NUMA hinting faults are triggered. This can
2078 * be different from the set of nodes where the workload's memory is currently
2079 * located.
2080 */
2081 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2082 {
2083 unsigned long faults, max_faults = 0;
2084 int nid, active_nodes = 0;
2085
2086 for_each_online_node(nid) {
2087 faults = group_faults_cpu(numa_group, nid);
2088 if (faults > max_faults)
2089 max_faults = faults;
2090 }
2091
2092 for_each_online_node(nid) {
2093 faults = group_faults_cpu(numa_group, nid);
2094 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2095 active_nodes++;
2096 }
2097
2098 numa_group->max_faults_cpu = max_faults;
2099 numa_group->active_nodes = active_nodes;
2100 }
2101
2102 /*
2103 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2104 * increments. The more local the fault statistics are, the higher the scan
2105 * period will be for the next scan window. If local/(local+remote) ratio is
2106 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2107 * the scan period will decrease. Aim for 70% local accesses.
2108 */
2109 #define NUMA_PERIOD_SLOTS 10
2110 #define NUMA_PERIOD_THRESHOLD 7
2111
2112 /*
2113 * Increase the scan period (slow down scanning) if the majority of
2114 * our memory is already on our local node, or if the majority of
2115 * the page accesses are shared with other processes.
2116 * Otherwise, decrease the scan period.
2117 */
2118 static void update_task_scan_period(struct task_struct *p,
2119 unsigned long shared, unsigned long private)
2120 {
2121 unsigned int period_slot;
2122 int lr_ratio, ps_ratio;
2123 int diff;
2124
2125 unsigned long remote = p->numa_faults_locality[0];
2126 unsigned long local = p->numa_faults_locality[1];
2127
2128 /*
2129 * If there were no record hinting faults then either the task is
2130 * completely idle or all activity is in areas that are not of interest
2131 * to automatic numa balancing. Related to that, if there were failed
2132 * migration then it implies we are migrating too quickly or the local
2133 * node is overloaded. In either case, scan slower
2134 */
2135 if (local + shared == 0 || p->numa_faults_locality[2]) {
2136 p->numa_scan_period = min(p->numa_scan_period_max,
2137 p->numa_scan_period << 1);
2138
2139 p->mm->numa_next_scan = jiffies +
2140 msecs_to_jiffies(p->numa_scan_period);
2141
2142 return;
2143 }
2144
2145 /*
2146 * Prepare to scale scan period relative to the current period.
2147 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2148 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2149 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2150 */
2151 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2152 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2153 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2154
2155 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2156 /*
2157 * Most memory accesses are local. There is no need to
2158 * do fast NUMA scanning, since memory is already local.
2159 */
2160 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2161 if (!slot)
2162 slot = 1;
2163 diff = slot * period_slot;
2164 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2165 /*
2166 * Most memory accesses are shared with other tasks.
2167 * There is no point in continuing fast NUMA scanning,
2168 * since other tasks may just move the memory elsewhere.
2169 */
2170 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2171 if (!slot)
2172 slot = 1;
2173 diff = slot * period_slot;
2174 } else {
2175 /*
2176 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2177 * yet they are not on the local NUMA node. Speed up
2178 * NUMA scanning to get the memory moved over.
2179 */
2180 int ratio = max(lr_ratio, ps_ratio);
2181 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2182 }
2183
2184 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2185 task_scan_min(p), task_scan_max(p));
2186 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2187 }
2188
2189 /*
2190 * Get the fraction of time the task has been running since the last
2191 * NUMA placement cycle. The scheduler keeps similar statistics, but
2192 * decays those on a 32ms period, which is orders of magnitude off
2193 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2194 * stats only if the task is so new there are no NUMA statistics yet.
2195 */
2196 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2197 {
2198 u64 runtime, delta, now;
2199 /* Use the start of this time slice to avoid calculations. */
2200 now = p->se.exec_start;
2201 runtime = p->se.sum_exec_runtime;
2202
2203 if (p->last_task_numa_placement) {
2204 delta = runtime - p->last_sum_exec_runtime;
2205 *period = now - p->last_task_numa_placement;
2206
2207 /* Avoid time going backwards, prevent potential divide error: */
2208 if (unlikely((s64)*period < 0))
2209 *period = 0;
2210 } else {
2211 delta = p->se.avg.load_sum;
2212 *period = LOAD_AVG_MAX;
2213 }
2214
2215 p->last_sum_exec_runtime = runtime;
2216 p->last_task_numa_placement = now;
2217
2218 return delta;
2219 }
2220
2221 /*
2222 * Determine the preferred nid for a task in a numa_group. This needs to
2223 * be done in a way that produces consistent results with group_weight,
2224 * otherwise workloads might not converge.
2225 */
2226 static int preferred_group_nid(struct task_struct *p, int nid)
2227 {
2228 nodemask_t nodes;
2229 int dist;
2230
2231 /* Direct connections between all NUMA nodes. */
2232 if (sched_numa_topology_type == NUMA_DIRECT)
2233 return nid;
2234
2235 /*
2236 * On a system with glueless mesh NUMA topology, group_weight
2237 * scores nodes according to the number of NUMA hinting faults on
2238 * both the node itself, and on nearby nodes.
2239 */
2240 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2241 unsigned long score, max_score = 0;
2242 int node, max_node = nid;
2243
2244 dist = sched_max_numa_distance;
2245
2246 for_each_online_node(node) {
2247 score = group_weight(p, node, dist);
2248 if (score > max_score) {
2249 max_score = score;
2250 max_node = node;
2251 }
2252 }
2253 return max_node;
2254 }
2255
2256 /*
2257 * Finding the preferred nid in a system with NUMA backplane
2258 * interconnect topology is more involved. The goal is to locate
2259 * tasks from numa_groups near each other in the system, and
2260 * untangle workloads from different sides of the system. This requires
2261 * searching down the hierarchy of node groups, recursively searching
2262 * inside the highest scoring group of nodes. The nodemask tricks
2263 * keep the complexity of the search down.
2264 */
2265 nodes = node_online_map;
2266 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2267 unsigned long max_faults = 0;
2268 nodemask_t max_group = NODE_MASK_NONE;
2269 int a, b;
2270
2271 /* Are there nodes at this distance from each other? */
2272 if (!find_numa_distance(dist))
2273 continue;
2274
2275 for_each_node_mask(a, nodes) {
2276 unsigned long faults = 0;
2277 nodemask_t this_group;
2278 nodes_clear(this_group);
2279
2280 /* Sum group's NUMA faults; includes a==b case. */
2281 for_each_node_mask(b, nodes) {
2282 if (node_distance(a, b) < dist) {
2283 faults += group_faults(p, b);
2284 node_set(b, this_group);
2285 node_clear(b, nodes);
2286 }
2287 }
2288
2289 /* Remember the top group. */
2290 if (faults > max_faults) {
2291 max_faults = faults;
2292 max_group = this_group;
2293 /*
2294 * subtle: at the smallest distance there is
2295 * just one node left in each "group", the
2296 * winner is the preferred nid.
2297 */
2298 nid = a;
2299 }
2300 }
2301 /* Next round, evaluate the nodes within max_group. */
2302 if (!max_faults)
2303 break;
2304 nodes = max_group;
2305 }
2306 return nid;
2307 }
2308
2309 static void task_numa_placement(struct task_struct *p)
2310 {
2311 int seq, nid, max_nid = NUMA_NO_NODE;
2312 unsigned long max_faults = 0;
2313 unsigned long fault_types[2] = { 0, 0 };
2314 unsigned long total_faults;
2315 u64 runtime, period;
2316 spinlock_t *group_lock = NULL;
2317 struct numa_group *ng;
2318
2319 /*
2320 * The p->mm->numa_scan_seq field gets updated without
2321 * exclusive access. Use READ_ONCE() here to ensure
2322 * that the field is read in a single access:
2323 */
2324 seq = READ_ONCE(p->mm->numa_scan_seq);
2325 if (p->numa_scan_seq == seq)
2326 return;
2327 p->numa_scan_seq = seq;
2328 p->numa_scan_period_max = task_scan_max(p);
2329
2330 total_faults = p->numa_faults_locality[0] +
2331 p->numa_faults_locality[1];
2332 runtime = numa_get_avg_runtime(p, &period);
2333
2334 /* If the task is part of a group prevent parallel updates to group stats */
2335 ng = deref_curr_numa_group(p);
2336 if (ng) {
2337 group_lock = &ng->lock;
2338 spin_lock_irq(group_lock);
2339 }
2340
2341 /* Find the node with the highest number of faults */
2342 for_each_online_node(nid) {
2343 /* Keep track of the offsets in numa_faults array */
2344 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2345 unsigned long faults = 0, group_faults = 0;
2346 int priv;
2347
2348 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2349 long diff, f_diff, f_weight;
2350
2351 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2352 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2353 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2354 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2355
2356 /* Decay existing window, copy faults since last scan */
2357 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2358 fault_types[priv] += p->numa_faults[membuf_idx];
2359 p->numa_faults[membuf_idx] = 0;
2360
2361 /*
2362 * Normalize the faults_from, so all tasks in a group
2363 * count according to CPU use, instead of by the raw
2364 * number of faults. Tasks with little runtime have
2365 * little over-all impact on throughput, and thus their
2366 * faults are less important.
2367 */
2368 f_weight = div64_u64(runtime << 16, period + 1);
2369 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2370 (total_faults + 1);
2371 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2372 p->numa_faults[cpubuf_idx] = 0;
2373
2374 p->numa_faults[mem_idx] += diff;
2375 p->numa_faults[cpu_idx] += f_diff;
2376 faults += p->numa_faults[mem_idx];
2377 p->total_numa_faults += diff;
2378 if (ng) {
2379 /*
2380 * safe because we can only change our own group
2381 *
2382 * mem_idx represents the offset for a given
2383 * nid and priv in a specific region because it
2384 * is at the beginning of the numa_faults array.
2385 */
2386 ng->faults[mem_idx] += diff;
2387 ng->faults[cpu_idx] += f_diff;
2388 ng->total_faults += diff;
2389 group_faults += ng->faults[mem_idx];
2390 }
2391 }
2392
2393 if (!ng) {
2394 if (faults > max_faults) {
2395 max_faults = faults;
2396 max_nid = nid;
2397 }
2398 } else if (group_faults > max_faults) {
2399 max_faults = group_faults;
2400 max_nid = nid;
2401 }
2402 }
2403
2404 if (ng) {
2405 numa_group_count_active_nodes(ng);
2406 spin_unlock_irq(group_lock);
2407 max_nid = preferred_group_nid(p, max_nid);
2408 }
2409
2410 if (max_faults) {
2411 /* Set the new preferred node */
2412 if (max_nid != p->numa_preferred_nid)
2413 sched_setnuma(p, max_nid);
2414 }
2415
2416 update_task_scan_period(p, fault_types[0], fault_types[1]);
2417 }
2418
2419 static inline int get_numa_group(struct numa_group *grp)
2420 {
2421 return refcount_inc_not_zero(&grp->refcount);
2422 }
2423
2424 static inline void put_numa_group(struct numa_group *grp)
2425 {
2426 if (refcount_dec_and_test(&grp->refcount))
2427 kfree_rcu(grp, rcu);
2428 }
2429
2430 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2431 int *priv)
2432 {
2433 struct numa_group *grp, *my_grp;
2434 struct task_struct *tsk;
2435 bool join = false;
2436 int cpu = cpupid_to_cpu(cpupid);
2437 int i;
2438
2439 if (unlikely(!deref_curr_numa_group(p))) {
2440 unsigned int size = sizeof(struct numa_group) +
2441 NR_NUMA_HINT_FAULT_STATS *
2442 nr_node_ids * sizeof(unsigned long);
2443
2444 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2445 if (!grp)
2446 return;
2447
2448 refcount_set(&grp->refcount, 1);
2449 grp->active_nodes = 1;
2450 grp->max_faults_cpu = 0;
2451 spin_lock_init(&grp->lock);
2452 grp->gid = p->pid;
2453
2454 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2455 grp->faults[i] = p->numa_faults[i];
2456
2457 grp->total_faults = p->total_numa_faults;
2458
2459 grp->nr_tasks++;
2460 rcu_assign_pointer(p->numa_group, grp);
2461 }
2462
2463 rcu_read_lock();
2464 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2465
2466 if (!cpupid_match_pid(tsk, cpupid))
2467 goto no_join;
2468
2469 grp = rcu_dereference(tsk->numa_group);
2470 if (!grp)
2471 goto no_join;
2472
2473 my_grp = deref_curr_numa_group(p);
2474 if (grp == my_grp)
2475 goto no_join;
2476
2477 /*
2478 * Only join the other group if its bigger; if we're the bigger group,
2479 * the other task will join us.
2480 */
2481 if (my_grp->nr_tasks > grp->nr_tasks)
2482 goto no_join;
2483
2484 /*
2485 * Tie-break on the grp address.
2486 */
2487 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2488 goto no_join;
2489
2490 /* Always join threads in the same process. */
2491 if (tsk->mm == current->mm)
2492 join = true;
2493
2494 /* Simple filter to avoid false positives due to PID collisions */
2495 if (flags & TNF_SHARED)
2496 join = true;
2497
2498 /* Update priv based on whether false sharing was detected */
2499 *priv = !join;
2500
2501 if (join && !get_numa_group(grp))
2502 goto no_join;
2503
2504 rcu_read_unlock();
2505
2506 if (!join)
2507 return;
2508
2509 BUG_ON(irqs_disabled());
2510 double_lock_irq(&my_grp->lock, &grp->lock);
2511
2512 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2513 my_grp->faults[i] -= p->numa_faults[i];
2514 grp->faults[i] += p->numa_faults[i];
2515 }
2516 my_grp->total_faults -= p->total_numa_faults;
2517 grp->total_faults += p->total_numa_faults;
2518
2519 my_grp->nr_tasks--;
2520 grp->nr_tasks++;
2521
2522 spin_unlock(&my_grp->lock);
2523 spin_unlock_irq(&grp->lock);
2524
2525 rcu_assign_pointer(p->numa_group, grp);
2526
2527 put_numa_group(my_grp);
2528 return;
2529
2530 no_join:
2531 rcu_read_unlock();
2532 return;
2533 }
2534
2535 /*
2536 * Get rid of NUMA statistics associated with a task (either current or dead).
2537 * If @final is set, the task is dead and has reached refcount zero, so we can
2538 * safely free all relevant data structures. Otherwise, there might be
2539 * concurrent reads from places like load balancing and procfs, and we should
2540 * reset the data back to default state without freeing ->numa_faults.
2541 */
2542 void task_numa_free(struct task_struct *p, bool final)
2543 {
2544 /* safe: p either is current or is being freed by current */
2545 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2546 unsigned long *numa_faults = p->numa_faults;
2547 unsigned long flags;
2548 int i;
2549
2550 if (!numa_faults)
2551 return;
2552
2553 if (grp) {
2554 spin_lock_irqsave(&grp->lock, flags);
2555 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2556 grp->faults[i] -= p->numa_faults[i];
2557 grp->total_faults -= p->total_numa_faults;
2558
2559 grp->nr_tasks--;
2560 spin_unlock_irqrestore(&grp->lock, flags);
2561 RCU_INIT_POINTER(p->numa_group, NULL);
2562 put_numa_group(grp);
2563 }
2564
2565 if (final) {
2566 p->numa_faults = NULL;
2567 kfree(numa_faults);
2568 } else {
2569 p->total_numa_faults = 0;
2570 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2571 numa_faults[i] = 0;
2572 }
2573 }
2574
2575 /*
2576 * Got a PROT_NONE fault for a page on @node.
2577 */
2578 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2579 {
2580 struct task_struct *p = current;
2581 bool migrated = flags & TNF_MIGRATED;
2582 int cpu_node = task_node(current);
2583 int local = !!(flags & TNF_FAULT_LOCAL);
2584 struct numa_group *ng;
2585 int priv;
2586
2587 if (!static_branch_likely(&sched_numa_balancing))
2588 return;
2589
2590 /* for example, ksmd faulting in a user's mm */
2591 if (!p->mm)
2592 return;
2593
2594 /* Allocate buffer to track faults on a per-node basis */
2595 if (unlikely(!p->numa_faults)) {
2596 int size = sizeof(*p->numa_faults) *
2597 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2598
2599 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2600 if (!p->numa_faults)
2601 return;
2602
2603 p->total_numa_faults = 0;
2604 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2605 }
2606
2607 /*
2608 * First accesses are treated as private, otherwise consider accesses
2609 * to be private if the accessing pid has not changed
2610 */
2611 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2612 priv = 1;
2613 } else {
2614 priv = cpupid_match_pid(p, last_cpupid);
2615 if (!priv && !(flags & TNF_NO_GROUP))
2616 task_numa_group(p, last_cpupid, flags, &priv);
2617 }
2618
2619 /*
2620 * If a workload spans multiple NUMA nodes, a shared fault that
2621 * occurs wholly within the set of nodes that the workload is
2622 * actively using should be counted as local. This allows the
2623 * scan rate to slow down when a workload has settled down.
2624 */
2625 ng = deref_curr_numa_group(p);
2626 if (!priv && !local && ng && ng->active_nodes > 1 &&
2627 numa_is_active_node(cpu_node, ng) &&
2628 numa_is_active_node(mem_node, ng))
2629 local = 1;
2630
2631 /*
2632 * Retry to migrate task to preferred node periodically, in case it
2633 * previously failed, or the scheduler moved us.
2634 */
2635 if (time_after(jiffies, p->numa_migrate_retry)) {
2636 task_numa_placement(p);
2637 numa_migrate_preferred(p);
2638 }
2639
2640 if (migrated)
2641 p->numa_pages_migrated += pages;
2642 if (flags & TNF_MIGRATE_FAIL)
2643 p->numa_faults_locality[2] += pages;
2644
2645 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2646 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2647 p->numa_faults_locality[local] += pages;
2648 }
2649
2650 static void reset_ptenuma_scan(struct task_struct *p)
2651 {
2652 /*
2653 * We only did a read acquisition of the mmap sem, so
2654 * p->mm->numa_scan_seq is written to without exclusive access
2655 * and the update is not guaranteed to be atomic. That's not
2656 * much of an issue though, since this is just used for
2657 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2658 * expensive, to avoid any form of compiler optimizations:
2659 */
2660 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2661 p->mm->numa_scan_offset = 0;
2662 }
2663
2664 /*
2665 * The expensive part of numa migration is done from task_work context.
2666 * Triggered from task_tick_numa().
2667 */
2668 static void task_numa_work(struct callback_head *work)
2669 {
2670 unsigned long migrate, next_scan, now = jiffies;
2671 struct task_struct *p = current;
2672 struct mm_struct *mm = p->mm;
2673 u64 runtime = p->se.sum_exec_runtime;
2674 struct vm_area_struct *vma;
2675 unsigned long start, end;
2676 unsigned long nr_pte_updates = 0;
2677 long pages, virtpages;
2678
2679 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2680
2681 work->next = work;
2682 /*
2683 * Who cares about NUMA placement when they're dying.
2684 *
2685 * NOTE: make sure not to dereference p->mm before this check,
2686 * exit_task_work() happens _after_ exit_mm() so we could be called
2687 * without p->mm even though we still had it when we enqueued this
2688 * work.
2689 */
2690 if (p->flags & PF_EXITING)
2691 return;
2692
2693 if (!mm->numa_next_scan) {
2694 mm->numa_next_scan = now +
2695 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2696 }
2697
2698 /*
2699 * Enforce maximal scan/migration frequency..
2700 */
2701 migrate = mm->numa_next_scan;
2702 if (time_before(now, migrate))
2703 return;
2704
2705 if (p->numa_scan_period == 0) {
2706 p->numa_scan_period_max = task_scan_max(p);
2707 p->numa_scan_period = task_scan_start(p);
2708 }
2709
2710 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2711 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2712 return;
2713
2714 /*
2715 * Delay this task enough that another task of this mm will likely win
2716 * the next time around.
2717 */
2718 p->node_stamp += 2 * TICK_NSEC;
2719
2720 start = mm->numa_scan_offset;
2721 pages = sysctl_numa_balancing_scan_size;
2722 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2723 virtpages = pages * 8; /* Scan up to this much virtual space */
2724 if (!pages)
2725 return;
2726
2727
2728 if (!mmap_read_trylock(mm))
2729 return;
2730 vma = find_vma(mm, start);
2731 if (!vma) {
2732 reset_ptenuma_scan(p);
2733 start = 0;
2734 vma = mm->mmap;
2735 }
2736 for (; vma; vma = vma->vm_next) {
2737 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2738 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2739 continue;
2740 }
2741
2742 /*
2743 * Shared library pages mapped by multiple processes are not
2744 * migrated as it is expected they are cache replicated. Avoid
2745 * hinting faults in read-only file-backed mappings or the vdso
2746 * as migrating the pages will be of marginal benefit.
2747 */
2748 if (!vma->vm_mm ||
2749 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2750 continue;
2751
2752 /*
2753 * Skip inaccessible VMAs to avoid any confusion between
2754 * PROT_NONE and NUMA hinting ptes
2755 */
2756 if (!vma_is_accessible(vma))
2757 continue;
2758
2759 do {
2760 start = max(start, vma->vm_start);
2761 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2762 end = min(end, vma->vm_end);
2763 nr_pte_updates = change_prot_numa(vma, start, end);
2764
2765 /*
2766 * Try to scan sysctl_numa_balancing_size worth of
2767 * hpages that have at least one present PTE that
2768 * is not already pte-numa. If the VMA contains
2769 * areas that are unused or already full of prot_numa
2770 * PTEs, scan up to virtpages, to skip through those
2771 * areas faster.
2772 */
2773 if (nr_pte_updates)
2774 pages -= (end - start) >> PAGE_SHIFT;
2775 virtpages -= (end - start) >> PAGE_SHIFT;
2776
2777 start = end;
2778 if (pages <= 0 || virtpages <= 0)
2779 goto out;
2780
2781 cond_resched();
2782 } while (end != vma->vm_end);
2783 }
2784
2785 out:
2786 /*
2787 * It is possible to reach the end of the VMA list but the last few
2788 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2789 * would find the !migratable VMA on the next scan but not reset the
2790 * scanner to the start so check it now.
2791 */
2792 if (vma)
2793 mm->numa_scan_offset = start;
2794 else
2795 reset_ptenuma_scan(p);
2796 mmap_read_unlock(mm);
2797
2798 /*
2799 * Make sure tasks use at least 32x as much time to run other code
2800 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2801 * Usually update_task_scan_period slows down scanning enough; on an
2802 * overloaded system we need to limit overhead on a per task basis.
2803 */
2804 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2805 u64 diff = p->se.sum_exec_runtime - runtime;
2806 p->node_stamp += 32 * diff;
2807 }
2808 }
2809
2810 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2811 {
2812 int mm_users = 0;
2813 struct mm_struct *mm = p->mm;
2814
2815 if (mm) {
2816 mm_users = atomic_read(&mm->mm_users);
2817 if (mm_users == 1) {
2818 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2819 mm->numa_scan_seq = 0;
2820 }
2821 }
2822 p->node_stamp = 0;
2823 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2824 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2825 /* Protect against double add, see task_tick_numa and task_numa_work */
2826 p->numa_work.next = &p->numa_work;
2827 p->numa_faults = NULL;
2828 RCU_INIT_POINTER(p->numa_group, NULL);
2829 p->last_task_numa_placement = 0;
2830 p->last_sum_exec_runtime = 0;
2831
2832 init_task_work(&p->numa_work, task_numa_work);
2833
2834 /* New address space, reset the preferred nid */
2835 if (!(clone_flags & CLONE_VM)) {
2836 p->numa_preferred_nid = NUMA_NO_NODE;
2837 return;
2838 }
2839
2840 /*
2841 * New thread, keep existing numa_preferred_nid which should be copied
2842 * already by arch_dup_task_struct but stagger when scans start.
2843 */
2844 if (mm) {
2845 unsigned int delay;
2846
2847 delay = min_t(unsigned int, task_scan_max(current),
2848 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2849 delay += 2 * TICK_NSEC;
2850 p->node_stamp = delay;
2851 }
2852 }
2853
2854 /*
2855 * Drive the periodic memory faults..
2856 */
2857 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2858 {
2859 struct callback_head *work = &curr->numa_work;
2860 u64 period, now;
2861
2862 /*
2863 * We don't care about NUMA placement if we don't have memory.
2864 */
2865 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2866 return;
2867
2868 /*
2869 * Using runtime rather than walltime has the dual advantage that
2870 * we (mostly) drive the selection from busy threads and that the
2871 * task needs to have done some actual work before we bother with
2872 * NUMA placement.
2873 */
2874 now = curr->se.sum_exec_runtime;
2875 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2876
2877 if (now > curr->node_stamp + period) {
2878 if (!curr->node_stamp)
2879 curr->numa_scan_period = task_scan_start(curr);
2880 curr->node_stamp += period;
2881
2882 if (!time_before(jiffies, curr->mm->numa_next_scan))
2883 task_work_add(curr, work, TWA_RESUME);
2884 }
2885 }
2886
2887 static void update_scan_period(struct task_struct *p, int new_cpu)
2888 {
2889 int src_nid = cpu_to_node(task_cpu(p));
2890 int dst_nid = cpu_to_node(new_cpu);
2891
2892 if (!static_branch_likely(&sched_numa_balancing))
2893 return;
2894
2895 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2896 return;
2897
2898 if (src_nid == dst_nid)
2899 return;
2900
2901 /*
2902 * Allow resets if faults have been trapped before one scan
2903 * has completed. This is most likely due to a new task that
2904 * is pulled cross-node due to wakeups or load balancing.
2905 */
2906 if (p->numa_scan_seq) {
2907 /*
2908 * Avoid scan adjustments if moving to the preferred
2909 * node or if the task was not previously running on
2910 * the preferred node.
2911 */
2912 if (dst_nid == p->numa_preferred_nid ||
2913 (p->numa_preferred_nid != NUMA_NO_NODE &&
2914 src_nid != p->numa_preferred_nid))
2915 return;
2916 }
2917
2918 p->numa_scan_period = task_scan_start(p);
2919 }
2920
2921 #else
2922 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2923 {
2924 }
2925
2926 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2927 {
2928 }
2929
2930 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2931 {
2932 }
2933
2934 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2935 {
2936 }
2937
2938 #endif /* CONFIG_NUMA_BALANCING */
2939
2940 static void
2941 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2942 {
2943 update_load_add(&cfs_rq->load, se->load.weight);
2944 #ifdef CONFIG_SMP
2945 if (entity_is_task(se)) {
2946 struct rq *rq = rq_of(cfs_rq);
2947
2948 account_numa_enqueue(rq, task_of(se));
2949 list_add(&se->group_node, &rq->cfs_tasks);
2950 }
2951 #endif
2952 cfs_rq->nr_running++;
2953 if (se_is_idle(se))
2954 cfs_rq->idle_nr_running++;
2955 }
2956
2957 static void
2958 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2959 {
2960 update_load_sub(&cfs_rq->load, se->load.weight);
2961 #ifdef CONFIG_SMP
2962 if (entity_is_task(se)) {
2963 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2964 list_del_init(&se->group_node);
2965 }
2966 #endif
2967 cfs_rq->nr_running--;
2968 if (se_is_idle(se))
2969 cfs_rq->idle_nr_running--;
2970 }
2971
2972 /*
2973 * Signed add and clamp on underflow.
2974 *
2975 * Explicitly do a load-store to ensure the intermediate value never hits
2976 * memory. This allows lockless observations without ever seeing the negative
2977 * values.
2978 */
2979 #define add_positive(_ptr, _val) do { \
2980 typeof(_ptr) ptr = (_ptr); \
2981 typeof(_val) val = (_val); \
2982 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2983 \
2984 res = var + val; \
2985 \
2986 if (val < 0 && res > var) \
2987 res = 0; \
2988 \
2989 WRITE_ONCE(*ptr, res); \
2990 } while (0)
2991
2992 /*
2993 * Unsigned subtract and clamp on underflow.
2994 *
2995 * Explicitly do a load-store to ensure the intermediate value never hits
2996 * memory. This allows lockless observations without ever seeing the negative
2997 * values.
2998 */
2999 #define sub_positive(_ptr, _val) do { \
3000 typeof(_ptr) ptr = (_ptr); \
3001 typeof(*ptr) val = (_val); \
3002 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3003 res = var - val; \
3004 if (res > var) \
3005 res = 0; \
3006 WRITE_ONCE(*ptr, res); \
3007 } while (0)
3008
3009 /*
3010 * Remove and clamp on negative, from a local variable.
3011 *
3012 * A variant of sub_positive(), which does not use explicit load-store
3013 * and is thus optimized for local variable updates.
3014 */
3015 #define lsub_positive(_ptr, _val) do { \
3016 typeof(_ptr) ptr = (_ptr); \
3017 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3018 } while (0)
3019
3020 #ifdef CONFIG_SMP
3021 static inline void
3022 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3023 {
3024 cfs_rq->avg.load_avg += se->avg.load_avg;
3025 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3026 }
3027
3028 static inline void
3029 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3030 {
3031 u32 divider = get_pelt_divider(&se->avg);
3032 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3033 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3034 }
3035 #else
3036 static inline void
3037 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3038 static inline void
3039 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3040 #endif
3041
3042 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3043 unsigned long weight)
3044 {
3045 if (se->on_rq) {
3046 /* commit outstanding execution time */
3047 if (cfs_rq->curr == se)
3048 update_curr(cfs_rq);
3049 update_load_sub(&cfs_rq->load, se->load.weight);
3050 }
3051 dequeue_load_avg(cfs_rq, se);
3052
3053 update_load_set(&se->load, weight);
3054
3055 #ifdef CONFIG_SMP
3056 do {
3057 u32 divider = get_pelt_divider(&se->avg);
3058
3059 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3060 } while (0);
3061 #endif
3062
3063 enqueue_load_avg(cfs_rq, se);
3064 if (se->on_rq)
3065 update_load_add(&cfs_rq->load, se->load.weight);
3066
3067 }
3068
3069 void reweight_task(struct task_struct *p, int prio)
3070 {
3071 struct sched_entity *se = &p->se;
3072 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3073 struct load_weight *load = &se->load;
3074 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3075
3076 reweight_entity(cfs_rq, se, weight);
3077 load->inv_weight = sched_prio_to_wmult[prio];
3078 }
3079
3080 #ifdef CONFIG_FAIR_GROUP_SCHED
3081 #ifdef CONFIG_SMP
3082 /*
3083 * All this does is approximate the hierarchical proportion which includes that
3084 * global sum we all love to hate.
3085 *
3086 * That is, the weight of a group entity, is the proportional share of the
3087 * group weight based on the group runqueue weights. That is:
3088 *
3089 * tg->weight * grq->load.weight
3090 * ge->load.weight = ----------------------------- (1)
3091 * \Sum grq->load.weight
3092 *
3093 * Now, because computing that sum is prohibitively expensive to compute (been
3094 * there, done that) we approximate it with this average stuff. The average
3095 * moves slower and therefore the approximation is cheaper and more stable.
3096 *
3097 * So instead of the above, we substitute:
3098 *
3099 * grq->load.weight -> grq->avg.load_avg (2)
3100 *
3101 * which yields the following:
3102 *
3103 * tg->weight * grq->avg.load_avg
3104 * ge->load.weight = ------------------------------ (3)
3105 * tg->load_avg
3106 *
3107 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3108 *
3109 * That is shares_avg, and it is right (given the approximation (2)).
3110 *
3111 * The problem with it is that because the average is slow -- it was designed
3112 * to be exactly that of course -- this leads to transients in boundary
3113 * conditions. In specific, the case where the group was idle and we start the
3114 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3115 * yielding bad latency etc..
3116 *
3117 * Now, in that special case (1) reduces to:
3118 *
3119 * tg->weight * grq->load.weight
3120 * ge->load.weight = ----------------------------- = tg->weight (4)
3121 * grp->load.weight
3122 *
3123 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3124 *
3125 * So what we do is modify our approximation (3) to approach (4) in the (near)
3126 * UP case, like:
3127 *
3128 * ge->load.weight =
3129 *
3130 * tg->weight * grq->load.weight
3131 * --------------------------------------------------- (5)
3132 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3133 *
3134 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3135 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3136 *
3137 *
3138 * tg->weight * grq->load.weight
3139 * ge->load.weight = ----------------------------- (6)
3140 * tg_load_avg'
3141 *
3142 * Where:
3143 *
3144 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3145 * max(grq->load.weight, grq->avg.load_avg)
3146 *
3147 * And that is shares_weight and is icky. In the (near) UP case it approaches
3148 * (4) while in the normal case it approaches (3). It consistently
3149 * overestimates the ge->load.weight and therefore:
3150 *
3151 * \Sum ge->load.weight >= tg->weight
3152 *
3153 * hence icky!
3154 */
3155 static long calc_group_shares(struct cfs_rq *cfs_rq)
3156 {
3157 long tg_weight, tg_shares, load, shares;
3158 struct task_group *tg = cfs_rq->tg;
3159
3160 tg_shares = READ_ONCE(tg->shares);
3161
3162 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3163
3164 tg_weight = atomic_long_read(&tg->load_avg);
3165
3166 /* Ensure tg_weight >= load */
3167 tg_weight -= cfs_rq->tg_load_avg_contrib;
3168 tg_weight += load;
3169
3170 shares = (tg_shares * load);
3171 if (tg_weight)
3172 shares /= tg_weight;
3173
3174 /*
3175 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3176 * of a group with small tg->shares value. It is a floor value which is
3177 * assigned as a minimum load.weight to the sched_entity representing
3178 * the group on a CPU.
3179 *
3180 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3181 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3182 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3183 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3184 * instead of 0.
3185 */
3186 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3187 }
3188 #endif /* CONFIG_SMP */
3189
3190 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3191
3192 /*
3193 * Recomputes the group entity based on the current state of its group
3194 * runqueue.
3195 */
3196 static void update_cfs_group(struct sched_entity *se)
3197 {
3198 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3199 long shares;
3200
3201 if (!gcfs_rq)
3202 return;
3203
3204 if (throttled_hierarchy(gcfs_rq))
3205 return;
3206
3207 #ifndef CONFIG_SMP
3208 shares = READ_ONCE(gcfs_rq->tg->shares);
3209
3210 if (likely(se->load.weight == shares))
3211 return;
3212 #else
3213 shares = calc_group_shares(gcfs_rq);
3214 #endif
3215
3216 reweight_entity(cfs_rq_of(se), se, shares);
3217 }
3218
3219 #else /* CONFIG_FAIR_GROUP_SCHED */
3220 static inline void update_cfs_group(struct sched_entity *se)
3221 {
3222 }
3223 #endif /* CONFIG_FAIR_GROUP_SCHED */
3224
3225 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3226 {
3227 struct rq *rq = rq_of(cfs_rq);
3228
3229 if (&rq->cfs == cfs_rq) {
3230 /*
3231 * There are a few boundary cases this might miss but it should
3232 * get called often enough that that should (hopefully) not be
3233 * a real problem.
3234 *
3235 * It will not get called when we go idle, because the idle
3236 * thread is a different class (!fair), nor will the utilization
3237 * number include things like RT tasks.
3238 *
3239 * As is, the util number is not freq-invariant (we'd have to
3240 * implement arch_scale_freq_capacity() for that).
3241 *
3242 * See cpu_util_cfs().
3243 */
3244 cpufreq_update_util(rq, flags);
3245 }
3246 }
3247
3248 #ifdef CONFIG_SMP
3249 #ifdef CONFIG_FAIR_GROUP_SCHED
3250 /*
3251 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3252 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3253 * bottom-up, we only have to test whether the cfs_rq before us on the list
3254 * is our child.
3255 * If cfs_rq is not on the list, test whether a child needs its to be added to
3256 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3257 */
3258 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3259 {
3260 struct cfs_rq *prev_cfs_rq;
3261 struct list_head *prev;
3262
3263 if (cfs_rq->on_list) {
3264 prev = cfs_rq->leaf_cfs_rq_list.prev;
3265 } else {
3266 struct rq *rq = rq_of(cfs_rq);
3267
3268 prev = rq->tmp_alone_branch;
3269 }
3270
3271 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3272
3273 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3274 }
3275
3276 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3277 {
3278 if (cfs_rq->load.weight)
3279 return false;
3280
3281 if (cfs_rq->avg.load_sum)
3282 return false;
3283
3284 if (cfs_rq->avg.util_sum)
3285 return false;
3286
3287 if (cfs_rq->avg.runnable_sum)
3288 return false;
3289
3290 if (child_cfs_rq_on_list(cfs_rq))
3291 return false;
3292
3293 /*
3294 * _avg must be null when _sum are null because _avg = _sum / divider
3295 * Make sure that rounding and/or propagation of PELT values never
3296 * break this.
3297 */
3298 SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3299 cfs_rq->avg.util_avg ||
3300 cfs_rq->avg.runnable_avg);
3301
3302 return true;
3303 }
3304
3305 /**
3306 * update_tg_load_avg - update the tg's load avg
3307 * @cfs_rq: the cfs_rq whose avg changed
3308 *
3309 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3310 * However, because tg->load_avg is a global value there are performance
3311 * considerations.
3312 *
3313 * In order to avoid having to look at the other cfs_rq's, we use a
3314 * differential update where we store the last value we propagated. This in
3315 * turn allows skipping updates if the differential is 'small'.
3316 *
3317 * Updating tg's load_avg is necessary before update_cfs_share().
3318 */
3319 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3320 {
3321 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3322
3323 /*
3324 * No need to update load_avg for root_task_group as it is not used.
3325 */
3326 if (cfs_rq->tg == &root_task_group)
3327 return;
3328
3329 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3330 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3331 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3332 }
3333 }
3334
3335 /*
3336 * Called within set_task_rq() right before setting a task's CPU. The
3337 * caller only guarantees p->pi_lock is held; no other assumptions,
3338 * including the state of rq->lock, should be made.
3339 */
3340 void set_task_rq_fair(struct sched_entity *se,
3341 struct cfs_rq *prev, struct cfs_rq *next)
3342 {
3343 u64 p_last_update_time;
3344 u64 n_last_update_time;
3345
3346 if (!sched_feat(ATTACH_AGE_LOAD))
3347 return;
3348
3349 /*
3350 * We are supposed to update the task to "current" time, then its up to
3351 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3352 * getting what current time is, so simply throw away the out-of-date
3353 * time. This will result in the wakee task is less decayed, but giving
3354 * the wakee more load sounds not bad.
3355 */
3356 if (!(se->avg.last_update_time && prev))
3357 return;
3358
3359 #ifndef CONFIG_64BIT
3360 {
3361 u64 p_last_update_time_copy;
3362 u64 n_last_update_time_copy;
3363
3364 do {
3365 p_last_update_time_copy = prev->load_last_update_time_copy;
3366 n_last_update_time_copy = next->load_last_update_time_copy;
3367
3368 smp_rmb();
3369
3370 p_last_update_time = prev->avg.last_update_time;
3371 n_last_update_time = next->avg.last_update_time;
3372
3373 } while (p_last_update_time != p_last_update_time_copy ||
3374 n_last_update_time != n_last_update_time_copy);
3375 }
3376 #else
3377 p_last_update_time = prev->avg.last_update_time;
3378 n_last_update_time = next->avg.last_update_time;
3379 #endif
3380 __update_load_avg_blocked_se(p_last_update_time, se);
3381 se->avg.last_update_time = n_last_update_time;
3382 }
3383
3384
3385 /*
3386 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3387 * propagate its contribution. The key to this propagation is the invariant
3388 * that for each group:
3389 *
3390 * ge->avg == grq->avg (1)
3391 *
3392 * _IFF_ we look at the pure running and runnable sums. Because they
3393 * represent the very same entity, just at different points in the hierarchy.
3394 *
3395 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3396 * and simply copies the running/runnable sum over (but still wrong, because
3397 * the group entity and group rq do not have their PELT windows aligned).
3398 *
3399 * However, update_tg_cfs_load() is more complex. So we have:
3400 *
3401 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3402 *
3403 * And since, like util, the runnable part should be directly transferable,
3404 * the following would _appear_ to be the straight forward approach:
3405 *
3406 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3407 *
3408 * And per (1) we have:
3409 *
3410 * ge->avg.runnable_avg == grq->avg.runnable_avg
3411 *
3412 * Which gives:
3413 *
3414 * ge->load.weight * grq->avg.load_avg
3415 * ge->avg.load_avg = ----------------------------------- (4)
3416 * grq->load.weight
3417 *
3418 * Except that is wrong!
3419 *
3420 * Because while for entities historical weight is not important and we
3421 * really only care about our future and therefore can consider a pure
3422 * runnable sum, runqueues can NOT do this.
3423 *
3424 * We specifically want runqueues to have a load_avg that includes
3425 * historical weights. Those represent the blocked load, the load we expect
3426 * to (shortly) return to us. This only works by keeping the weights as
3427 * integral part of the sum. We therefore cannot decompose as per (3).
3428 *
3429 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3430 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3431 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3432 * runnable section of these tasks overlap (or not). If they were to perfectly
3433 * align the rq as a whole would be runnable 2/3 of the time. If however we
3434 * always have at least 1 runnable task, the rq as a whole is always runnable.
3435 *
3436 * So we'll have to approximate.. :/
3437 *
3438 * Given the constraint:
3439 *
3440 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3441 *
3442 * We can construct a rule that adds runnable to a rq by assuming minimal
3443 * overlap.
3444 *
3445 * On removal, we'll assume each task is equally runnable; which yields:
3446 *
3447 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3448 *
3449 * XXX: only do this for the part of runnable > running ?
3450 *
3451 */
3452
3453 static inline void
3454 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3455 {
3456 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3457 u32 divider;
3458
3459 /* Nothing to update */
3460 if (!delta)
3461 return;
3462
3463 /*
3464 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3465 * See ___update_load_avg() for details.
3466 */
3467 divider = get_pelt_divider(&cfs_rq->avg);
3468
3469 /* Set new sched_entity's utilization */
3470 se->avg.util_avg = gcfs_rq->avg.util_avg;
3471 se->avg.util_sum = se->avg.util_avg * divider;
3472
3473 /* Update parent cfs_rq utilization */
3474 add_positive(&cfs_rq->avg.util_avg, delta);
3475 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3476 }
3477
3478 static inline void
3479 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3480 {
3481 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3482 u32 divider;
3483
3484 /* Nothing to update */
3485 if (!delta)
3486 return;
3487
3488 /*
3489 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3490 * See ___update_load_avg() for details.
3491 */
3492 divider = get_pelt_divider(&cfs_rq->avg);
3493
3494 /* Set new sched_entity's runnable */
3495 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3496 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3497
3498 /* Update parent cfs_rq runnable */
3499 add_positive(&cfs_rq->avg.runnable_avg, delta);
3500 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3501 }
3502
3503 static inline void
3504 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3505 {
3506 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3507 unsigned long load_avg;
3508 u64 load_sum = 0;
3509 u32 divider;
3510
3511 if (!runnable_sum)
3512 return;
3513
3514 gcfs_rq->prop_runnable_sum = 0;
3515
3516 /*
3517 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3518 * See ___update_load_avg() for details.
3519 */
3520 divider = get_pelt_divider(&cfs_rq->avg);
3521
3522 if (runnable_sum >= 0) {
3523 /*
3524 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3525 * the CPU is saturated running == runnable.
3526 */
3527 runnable_sum += se->avg.load_sum;
3528 runnable_sum = min_t(long, runnable_sum, divider);
3529 } else {
3530 /*
3531 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3532 * assuming all tasks are equally runnable.
3533 */
3534 if (scale_load_down(gcfs_rq->load.weight)) {
3535 load_sum = div_s64(gcfs_rq->avg.load_sum,
3536 scale_load_down(gcfs_rq->load.weight));
3537 }
3538
3539 /* But make sure to not inflate se's runnable */
3540 runnable_sum = min(se->avg.load_sum, load_sum);
3541 }
3542
3543 /*
3544 * runnable_sum can't be lower than running_sum
3545 * Rescale running sum to be in the same range as runnable sum
3546 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3547 * runnable_sum is in [0 : LOAD_AVG_MAX]
3548 */
3549 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3550 runnable_sum = max(runnable_sum, running_sum);
3551
3552 load_sum = (s64)se_weight(se) * runnable_sum;
3553 load_avg = div_s64(load_sum, divider);
3554
3555 se->avg.load_sum = runnable_sum;
3556
3557 delta = load_avg - se->avg.load_avg;
3558 if (!delta)
3559 return;
3560
3561 se->avg.load_avg = load_avg;
3562
3563 add_positive(&cfs_rq->avg.load_avg, delta);
3564 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3565 }
3566
3567 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3568 {
3569 cfs_rq->propagate = 1;
3570 cfs_rq->prop_runnable_sum += runnable_sum;
3571 }
3572
3573 /* Update task and its cfs_rq load average */
3574 static inline int propagate_entity_load_avg(struct sched_entity *se)
3575 {
3576 struct cfs_rq *cfs_rq, *gcfs_rq;
3577
3578 if (entity_is_task(se))
3579 return 0;
3580
3581 gcfs_rq = group_cfs_rq(se);
3582 if (!gcfs_rq->propagate)
3583 return 0;
3584
3585 gcfs_rq->propagate = 0;
3586
3587 cfs_rq = cfs_rq_of(se);
3588
3589 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3590
3591 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3592 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3593 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3594
3595 trace_pelt_cfs_tp(cfs_rq);
3596 trace_pelt_se_tp(se);
3597
3598 return 1;
3599 }
3600
3601 /*
3602 * Check if we need to update the load and the utilization of a blocked
3603 * group_entity:
3604 */
3605 static inline bool skip_blocked_update(struct sched_entity *se)
3606 {
3607 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3608
3609 /*
3610 * If sched_entity still have not zero load or utilization, we have to
3611 * decay it:
3612 */
3613 if (se->avg.load_avg || se->avg.util_avg)
3614 return false;
3615
3616 /*
3617 * If there is a pending propagation, we have to update the load and
3618 * the utilization of the sched_entity:
3619 */
3620 if (gcfs_rq->propagate)
3621 return false;
3622
3623 /*
3624 * Otherwise, the load and the utilization of the sched_entity is
3625 * already zero and there is no pending propagation, so it will be a
3626 * waste of time to try to decay it:
3627 */
3628 return true;
3629 }
3630
3631 #else /* CONFIG_FAIR_GROUP_SCHED */
3632
3633 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3634
3635 static inline int propagate_entity_load_avg(struct sched_entity *se)
3636 {
3637 return 0;
3638 }
3639
3640 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3641
3642 #endif /* CONFIG_FAIR_GROUP_SCHED */
3643
3644 /**
3645 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3646 * @now: current time, as per cfs_rq_clock_pelt()
3647 * @cfs_rq: cfs_rq to update
3648 *
3649 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3650 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3651 * post_init_entity_util_avg().
3652 *
3653 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3654 *
3655 * Returns true if the load decayed or we removed load.
3656 *
3657 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3658 * call update_tg_load_avg() when this function returns true.
3659 */
3660 static inline int
3661 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3662 {
3663 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3664 struct sched_avg *sa = &cfs_rq->avg;
3665 int decayed = 0;
3666
3667 if (cfs_rq->removed.nr) {
3668 unsigned long r;
3669 u32 divider = get_pelt_divider(&cfs_rq->avg);
3670
3671 raw_spin_lock(&cfs_rq->removed.lock);
3672 swap(cfs_rq->removed.util_avg, removed_util);
3673 swap(cfs_rq->removed.load_avg, removed_load);
3674 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3675 cfs_rq->removed.nr = 0;
3676 raw_spin_unlock(&cfs_rq->removed.lock);
3677
3678 r = removed_load;
3679 sub_positive(&sa->load_avg, r);
3680 sa->load_sum = sa->load_avg * divider;
3681
3682 r = removed_util;
3683 sub_positive(&sa->util_avg, r);
3684 sa->util_sum = sa->util_avg * divider;
3685
3686 r = removed_runnable;
3687 sub_positive(&sa->runnable_avg, r);
3688 sa->runnable_sum = sa->runnable_avg * divider;
3689
3690 /*
3691 * removed_runnable is the unweighted version of removed_load so we
3692 * can use it to estimate removed_load_sum.
3693 */
3694 add_tg_cfs_propagate(cfs_rq,
3695 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3696
3697 decayed = 1;
3698 }
3699
3700 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3701
3702 #ifndef CONFIG_64BIT
3703 smp_wmb();
3704 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3705 #endif
3706
3707 return decayed;
3708 }
3709
3710 /**
3711 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3712 * @cfs_rq: cfs_rq to attach to
3713 * @se: sched_entity to attach
3714 *
3715 * Must call update_cfs_rq_load_avg() before this, since we rely on
3716 * cfs_rq->avg.last_update_time being current.
3717 */
3718 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3719 {
3720 /*
3721 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3722 * See ___update_load_avg() for details.
3723 */
3724 u32 divider = get_pelt_divider(&cfs_rq->avg);
3725
3726 /*
3727 * When we attach the @se to the @cfs_rq, we must align the decay
3728 * window because without that, really weird and wonderful things can
3729 * happen.
3730 *
3731 * XXX illustrate
3732 */
3733 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3734 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3735
3736 /*
3737 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3738 * period_contrib. This isn't strictly correct, but since we're
3739 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3740 * _sum a little.
3741 */
3742 se->avg.util_sum = se->avg.util_avg * divider;
3743
3744 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3745
3746 se->avg.load_sum = divider;
3747 if (se_weight(se)) {
3748 se->avg.load_sum =
3749 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3750 }
3751
3752 enqueue_load_avg(cfs_rq, se);
3753 cfs_rq->avg.util_avg += se->avg.util_avg;
3754 cfs_rq->avg.util_sum += se->avg.util_sum;
3755 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3756 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3757
3758 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3759
3760 cfs_rq_util_change(cfs_rq, 0);
3761
3762 trace_pelt_cfs_tp(cfs_rq);
3763 }
3764
3765 /**
3766 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3767 * @cfs_rq: cfs_rq to detach from
3768 * @se: sched_entity to detach
3769 *
3770 * Must call update_cfs_rq_load_avg() before this, since we rely on
3771 * cfs_rq->avg.last_update_time being current.
3772 */
3773 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3774 {
3775 /*
3776 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3777 * See ___update_load_avg() for details.
3778 */
3779 u32 divider = get_pelt_divider(&cfs_rq->avg);
3780
3781 dequeue_load_avg(cfs_rq, se);
3782 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3783 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3784 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3785 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3786
3787 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3788
3789 cfs_rq_util_change(cfs_rq, 0);
3790
3791 trace_pelt_cfs_tp(cfs_rq);
3792 }
3793
3794 /*
3795 * Optional action to be done while updating the load average
3796 */
3797 #define UPDATE_TG 0x1
3798 #define SKIP_AGE_LOAD 0x2
3799 #define DO_ATTACH 0x4
3800
3801 /* Update task and its cfs_rq load average */
3802 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3803 {
3804 u64 now = cfs_rq_clock_pelt(cfs_rq);
3805 int decayed;
3806
3807 /*
3808 * Track task load average for carrying it to new CPU after migrated, and
3809 * track group sched_entity load average for task_h_load calc in migration
3810 */
3811 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3812 __update_load_avg_se(now, cfs_rq, se);
3813
3814 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3815 decayed |= propagate_entity_load_avg(se);
3816
3817 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3818
3819 /*
3820 * DO_ATTACH means we're here from enqueue_entity().
3821 * !last_update_time means we've passed through
3822 * migrate_task_rq_fair() indicating we migrated.
3823 *
3824 * IOW we're enqueueing a task on a new CPU.
3825 */
3826 attach_entity_load_avg(cfs_rq, se);
3827 update_tg_load_avg(cfs_rq);
3828
3829 } else if (decayed) {
3830 cfs_rq_util_change(cfs_rq, 0);
3831
3832 if (flags & UPDATE_TG)
3833 update_tg_load_avg(cfs_rq);
3834 }
3835 }
3836
3837 #ifndef CONFIG_64BIT
3838 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3839 {
3840 u64 last_update_time_copy;
3841 u64 last_update_time;
3842
3843 do {
3844 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3845 smp_rmb();
3846 last_update_time = cfs_rq->avg.last_update_time;
3847 } while (last_update_time != last_update_time_copy);
3848
3849 return last_update_time;
3850 }
3851 #else
3852 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3853 {
3854 return cfs_rq->avg.last_update_time;
3855 }
3856 #endif
3857
3858 /*
3859 * Synchronize entity load avg of dequeued entity without locking
3860 * the previous rq.
3861 */
3862 static void sync_entity_load_avg(struct sched_entity *se)
3863 {
3864 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3865 u64 last_update_time;
3866
3867 last_update_time = cfs_rq_last_update_time(cfs_rq);
3868 __update_load_avg_blocked_se(last_update_time, se);
3869 }
3870
3871 /*
3872 * Task first catches up with cfs_rq, and then subtract
3873 * itself from the cfs_rq (task must be off the queue now).
3874 */
3875 static void remove_entity_load_avg(struct sched_entity *se)
3876 {
3877 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3878 unsigned long flags;
3879
3880 /*
3881 * tasks cannot exit without having gone through wake_up_new_task() ->
3882 * post_init_entity_util_avg() which will have added things to the
3883 * cfs_rq, so we can remove unconditionally.
3884 */
3885
3886 sync_entity_load_avg(se);
3887
3888 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3889 ++cfs_rq->removed.nr;
3890 cfs_rq->removed.util_avg += se->avg.util_avg;
3891 cfs_rq->removed.load_avg += se->avg.load_avg;
3892 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3893 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3894 }
3895
3896 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3897 {
3898 return cfs_rq->avg.runnable_avg;
3899 }
3900
3901 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3902 {
3903 return cfs_rq->avg.load_avg;
3904 }
3905
3906 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3907
3908 static inline unsigned long task_util(struct task_struct *p)
3909 {
3910 return READ_ONCE(p->se.avg.util_avg);
3911 }
3912
3913 static inline unsigned long _task_util_est(struct task_struct *p)
3914 {
3915 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3916
3917 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3918 }
3919
3920 static inline unsigned long task_util_est(struct task_struct *p)
3921 {
3922 return max(task_util(p), _task_util_est(p));
3923 }
3924
3925 #ifdef CONFIG_UCLAMP_TASK
3926 static inline unsigned long uclamp_task_util(struct task_struct *p)
3927 {
3928 return clamp(task_util_est(p),
3929 uclamp_eff_value(p, UCLAMP_MIN),
3930 uclamp_eff_value(p, UCLAMP_MAX));
3931 }
3932 #else
3933 static inline unsigned long uclamp_task_util(struct task_struct *p)
3934 {
3935 return task_util_est(p);
3936 }
3937 #endif
3938
3939 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3940 struct task_struct *p)
3941 {
3942 unsigned int enqueued;
3943
3944 if (!sched_feat(UTIL_EST))
3945 return;
3946
3947 /* Update root cfs_rq's estimated utilization */
3948 enqueued = cfs_rq->avg.util_est.enqueued;
3949 enqueued += _task_util_est(p);
3950 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3951
3952 trace_sched_util_est_cfs_tp(cfs_rq);
3953 }
3954
3955 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3956 struct task_struct *p)
3957 {
3958 unsigned int enqueued;
3959
3960 if (!sched_feat(UTIL_EST))
3961 return;
3962
3963 /* Update root cfs_rq's estimated utilization */
3964 enqueued = cfs_rq->avg.util_est.enqueued;
3965 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3966 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3967
3968 trace_sched_util_est_cfs_tp(cfs_rq);
3969 }
3970
3971 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3972
3973 /*
3974 * Check if a (signed) value is within a specified (unsigned) margin,
3975 * based on the observation that:
3976 *
3977 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3978 *
3979 * NOTE: this only works when value + margin < INT_MAX.
3980 */
3981 static inline bool within_margin(int value, int margin)
3982 {
3983 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3984 }
3985
3986 static inline void util_est_update(struct cfs_rq *cfs_rq,
3987 struct task_struct *p,
3988 bool task_sleep)
3989 {
3990 long last_ewma_diff, last_enqueued_diff;
3991 struct util_est ue;
3992
3993 if (!sched_feat(UTIL_EST))
3994 return;
3995
3996 /*
3997 * Skip update of task's estimated utilization when the task has not
3998 * yet completed an activation, e.g. being migrated.
3999 */
4000 if (!task_sleep)
4001 return;
4002
4003 /*
4004 * If the PELT values haven't changed since enqueue time,
4005 * skip the util_est update.
4006 */
4007 ue = p->se.avg.util_est;
4008 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4009 return;
4010
4011 last_enqueued_diff = ue.enqueued;
4012
4013 /*
4014 * Reset EWMA on utilization increases, the moving average is used only
4015 * to smooth utilization decreases.
4016 */
4017 ue.enqueued = task_util(p);
4018 if (sched_feat(UTIL_EST_FASTUP)) {
4019 if (ue.ewma < ue.enqueued) {
4020 ue.ewma = ue.enqueued;
4021 goto done;
4022 }
4023 }
4024
4025 /*
4026 * Skip update of task's estimated utilization when its members are
4027 * already ~1% close to its last activation value.
4028 */
4029 last_ewma_diff = ue.enqueued - ue.ewma;
4030 last_enqueued_diff -= ue.enqueued;
4031 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4032 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4033 goto done;
4034
4035 return;
4036 }
4037
4038 /*
4039 * To avoid overestimation of actual task utilization, skip updates if
4040 * we cannot grant there is idle time in this CPU.
4041 */
4042 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4043 return;
4044
4045 /*
4046 * Update Task's estimated utilization
4047 *
4048 * When *p completes an activation we can consolidate another sample
4049 * of the task size. This is done by storing the current PELT value
4050 * as ue.enqueued and by using this value to update the Exponential
4051 * Weighted Moving Average (EWMA):
4052 *
4053 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4054 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4055 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4056 * = w * ( last_ewma_diff ) + ewma(t-1)
4057 * = w * (last_ewma_diff + ewma(t-1) / w)
4058 *
4059 * Where 'w' is the weight of new samples, which is configured to be
4060 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4061 */
4062 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4063 ue.ewma += last_ewma_diff;
4064 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4065 done:
4066 ue.enqueued |= UTIL_AVG_UNCHANGED;
4067 WRITE_ONCE(p->se.avg.util_est, ue);
4068
4069 trace_sched_util_est_se_tp(&p->se);
4070 }
4071
4072 static inline int task_fits_capacity(struct task_struct *p,
4073 unsigned long capacity)
4074 {
4075 return fits_capacity(uclamp_task_util(p), capacity);
4076 }
4077
4078 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4079 {
4080 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4081 return;
4082
4083 if (!p || p->nr_cpus_allowed == 1) {
4084 rq->misfit_task_load = 0;
4085 return;
4086 }
4087
4088 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4089 rq->misfit_task_load = 0;
4090 return;
4091 }
4092
4093 /*
4094 * Make sure that misfit_task_load will not be null even if
4095 * task_h_load() returns 0.
4096 */
4097 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4098 }
4099
4100 #else /* CONFIG_SMP */
4101
4102 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4103 {
4104 return true;
4105 }
4106
4107 #define UPDATE_TG 0x0
4108 #define SKIP_AGE_LOAD 0x0
4109 #define DO_ATTACH 0x0
4110
4111 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4112 {
4113 cfs_rq_util_change(cfs_rq, 0);
4114 }
4115
4116 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4117
4118 static inline void
4119 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4120 static inline void
4121 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4122
4123 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4124 {
4125 return 0;
4126 }
4127
4128 static inline void
4129 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4130
4131 static inline void
4132 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4133
4134 static inline void
4135 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4136 bool task_sleep) {}
4137 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4138
4139 #endif /* CONFIG_SMP */
4140
4141 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4142 {
4143 #ifdef CONFIG_SCHED_DEBUG
4144 s64 d = se->vruntime - cfs_rq->min_vruntime;
4145
4146 if (d < 0)
4147 d = -d;
4148
4149 if (d > 3*sysctl_sched_latency)
4150 schedstat_inc(cfs_rq->nr_spread_over);
4151 #endif
4152 }
4153
4154 static void
4155 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4156 {
4157 u64 vruntime = cfs_rq->min_vruntime;
4158
4159 /*
4160 * The 'current' period is already promised to the current tasks,
4161 * however the extra weight of the new task will slow them down a
4162 * little, place the new task so that it fits in the slot that
4163 * stays open at the end.
4164 */
4165 if (initial && sched_feat(START_DEBIT))
4166 vruntime += sched_vslice(cfs_rq, se);
4167
4168 /* sleeps up to a single latency don't count. */
4169 if (!initial) {
4170 unsigned long thresh;
4171
4172 if (se_is_idle(se))
4173 thresh = sysctl_sched_min_granularity;
4174 else
4175 thresh = sysctl_sched_latency;
4176
4177 /*
4178 * Halve their sleep time's effect, to allow
4179 * for a gentler effect of sleepers:
4180 */
4181 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4182 thresh >>= 1;
4183
4184 vruntime -= thresh;
4185 }
4186
4187 /* ensure we never gain time by being placed backwards. */
4188 se->vruntime = max_vruntime(se->vruntime, vruntime);
4189 }
4190
4191 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4192
4193 static inline bool cfs_bandwidth_used(void);
4194
4195 /*
4196 * MIGRATION
4197 *
4198 * dequeue
4199 * update_curr()
4200 * update_min_vruntime()
4201 * vruntime -= min_vruntime
4202 *
4203 * enqueue
4204 * update_curr()
4205 * update_min_vruntime()
4206 * vruntime += min_vruntime
4207 *
4208 * this way the vruntime transition between RQs is done when both
4209 * min_vruntime are up-to-date.
4210 *
4211 * WAKEUP (remote)
4212 *
4213 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4214 * vruntime -= min_vruntime
4215 *
4216 * enqueue
4217 * update_curr()
4218 * update_min_vruntime()
4219 * vruntime += min_vruntime
4220 *
4221 * this way we don't have the most up-to-date min_vruntime on the originating
4222 * CPU and an up-to-date min_vruntime on the destination CPU.
4223 */
4224
4225 static void
4226 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4227 {
4228 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4229 bool curr = cfs_rq->curr == se;
4230
4231 /*
4232 * If we're the current task, we must renormalise before calling
4233 * update_curr().
4234 */
4235 if (renorm && curr)
4236 se->vruntime += cfs_rq->min_vruntime;
4237
4238 update_curr(cfs_rq);
4239
4240 /*
4241 * Otherwise, renormalise after, such that we're placed at the current
4242 * moment in time, instead of some random moment in the past. Being
4243 * placed in the past could significantly boost this task to the
4244 * fairness detriment of existing tasks.
4245 */
4246 if (renorm && !curr)
4247 se->vruntime += cfs_rq->min_vruntime;
4248
4249 /*
4250 * When enqueuing a sched_entity, we must:
4251 * - Update loads to have both entity and cfs_rq synced with now.
4252 * - Add its load to cfs_rq->runnable_avg
4253 * - For group_entity, update its weight to reflect the new share of
4254 * its group cfs_rq
4255 * - Add its new weight to cfs_rq->load.weight
4256 */
4257 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4258 se_update_runnable(se);
4259 update_cfs_group(se);
4260 account_entity_enqueue(cfs_rq, se);
4261
4262 if (flags & ENQUEUE_WAKEUP)
4263 place_entity(cfs_rq, se, 0);
4264
4265 check_schedstat_required();
4266 update_stats_enqueue_fair(cfs_rq, se, flags);
4267 check_spread(cfs_rq, se);
4268 if (!curr)
4269 __enqueue_entity(cfs_rq, se);
4270 se->on_rq = 1;
4271
4272 /*
4273 * When bandwidth control is enabled, cfs might have been removed
4274 * because of a parent been throttled but cfs->nr_running > 1. Try to
4275 * add it unconditionally.
4276 */
4277 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4278 list_add_leaf_cfs_rq(cfs_rq);
4279
4280 if (cfs_rq->nr_running == 1)
4281 check_enqueue_throttle(cfs_rq);
4282 }
4283
4284 static void __clear_buddies_last(struct sched_entity *se)
4285 {
4286 for_each_sched_entity(se) {
4287 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4288 if (cfs_rq->last != se)
4289 break;
4290
4291 cfs_rq->last = NULL;
4292 }
4293 }
4294
4295 static void __clear_buddies_next(struct sched_entity *se)
4296 {
4297 for_each_sched_entity(se) {
4298 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4299 if (cfs_rq->next != se)
4300 break;
4301
4302 cfs_rq->next = NULL;
4303 }
4304 }
4305
4306 static void __clear_buddies_skip(struct sched_entity *se)
4307 {
4308 for_each_sched_entity(se) {
4309 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4310 if (cfs_rq->skip != se)
4311 break;
4312
4313 cfs_rq->skip = NULL;
4314 }
4315 }
4316
4317 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4318 {
4319 if (cfs_rq->last == se)
4320 __clear_buddies_last(se);
4321
4322 if (cfs_rq->next == se)
4323 __clear_buddies_next(se);
4324
4325 if (cfs_rq->skip == se)
4326 __clear_buddies_skip(se);
4327 }
4328
4329 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4330
4331 static void
4332 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4333 {
4334 /*
4335 * Update run-time statistics of the 'current'.
4336 */
4337 update_curr(cfs_rq);
4338
4339 /*
4340 * When dequeuing a sched_entity, we must:
4341 * - Update loads to have both entity and cfs_rq synced with now.
4342 * - Subtract its load from the cfs_rq->runnable_avg.
4343 * - Subtract its previous weight from cfs_rq->load.weight.
4344 * - For group entity, update its weight to reflect the new share
4345 * of its group cfs_rq.
4346 */
4347 update_load_avg(cfs_rq, se, UPDATE_TG);
4348 se_update_runnable(se);
4349
4350 update_stats_dequeue_fair(cfs_rq, se, flags);
4351
4352 clear_buddies(cfs_rq, se);
4353
4354 if (se != cfs_rq->curr)
4355 __dequeue_entity(cfs_rq, se);
4356 se->on_rq = 0;
4357 account_entity_dequeue(cfs_rq, se);
4358
4359 /*
4360 * Normalize after update_curr(); which will also have moved
4361 * min_vruntime if @se is the one holding it back. But before doing
4362 * update_min_vruntime() again, which will discount @se's position and
4363 * can move min_vruntime forward still more.
4364 */
4365 if (!(flags & DEQUEUE_SLEEP))
4366 se->vruntime -= cfs_rq->min_vruntime;
4367
4368 /* return excess runtime on last dequeue */
4369 return_cfs_rq_runtime(cfs_rq);
4370
4371 update_cfs_group(se);
4372
4373 /*
4374 * Now advance min_vruntime if @se was the entity holding it back,
4375 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4376 * put back on, and if we advance min_vruntime, we'll be placed back
4377 * further than we started -- ie. we'll be penalized.
4378 */
4379 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4380 update_min_vruntime(cfs_rq);
4381 }
4382
4383 /*
4384 * Preempt the current task with a newly woken task if needed:
4385 */
4386 static void
4387 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4388 {
4389 unsigned long ideal_runtime, delta_exec;
4390 struct sched_entity *se;
4391 s64 delta;
4392
4393 ideal_runtime = sched_slice(cfs_rq, curr);
4394 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4395 if (delta_exec > ideal_runtime) {
4396 resched_curr(rq_of(cfs_rq));
4397 /*
4398 * The current task ran long enough, ensure it doesn't get
4399 * re-elected due to buddy favours.
4400 */
4401 clear_buddies(cfs_rq, curr);
4402 return;
4403 }
4404
4405 /*
4406 * Ensure that a task that missed wakeup preemption by a
4407 * narrow margin doesn't have to wait for a full slice.
4408 * This also mitigates buddy induced latencies under load.
4409 */
4410 if (delta_exec < sysctl_sched_min_granularity)
4411 return;
4412
4413 se = __pick_first_entity(cfs_rq);
4414 delta = curr->vruntime - se->vruntime;
4415
4416 if (delta < 0)
4417 return;
4418
4419 if (delta > ideal_runtime)
4420 resched_curr(rq_of(cfs_rq));
4421 }
4422
4423 static void
4424 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4425 {
4426 clear_buddies(cfs_rq, se);
4427
4428 /* 'current' is not kept within the tree. */
4429 if (se->on_rq) {
4430 /*
4431 * Any task has to be enqueued before it get to execute on
4432 * a CPU. So account for the time it spent waiting on the
4433 * runqueue.
4434 */
4435 update_stats_wait_end_fair(cfs_rq, se);
4436 __dequeue_entity(cfs_rq, se);
4437 update_load_avg(cfs_rq, se, UPDATE_TG);
4438 }
4439
4440 update_stats_curr_start(cfs_rq, se);
4441 cfs_rq->curr = se;
4442
4443 /*
4444 * Track our maximum slice length, if the CPU's load is at
4445 * least twice that of our own weight (i.e. dont track it
4446 * when there are only lesser-weight tasks around):
4447 */
4448 if (schedstat_enabled() &&
4449 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4450 struct sched_statistics *stats;
4451
4452 stats = __schedstats_from_se(se);
4453 __schedstat_set(stats->slice_max,
4454 max((u64)stats->slice_max,
4455 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4456 }
4457
4458 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4459 }
4460
4461 static int
4462 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4463
4464 /*
4465 * Pick the next process, keeping these things in mind, in this order:
4466 * 1) keep things fair between processes/task groups
4467 * 2) pick the "next" process, since someone really wants that to run
4468 * 3) pick the "last" process, for cache locality
4469 * 4) do not run the "skip" process, if something else is available
4470 */
4471 static struct sched_entity *
4472 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4473 {
4474 struct sched_entity *left = __pick_first_entity(cfs_rq);
4475 struct sched_entity *se;
4476
4477 /*
4478 * If curr is set we have to see if its left of the leftmost entity
4479 * still in the tree, provided there was anything in the tree at all.
4480 */
4481 if (!left || (curr && entity_before(curr, left)))
4482 left = curr;
4483
4484 se = left; /* ideally we run the leftmost entity */
4485
4486 /*
4487 * Avoid running the skip buddy, if running something else can
4488 * be done without getting too unfair.
4489 */
4490 if (cfs_rq->skip && cfs_rq->skip == se) {
4491 struct sched_entity *second;
4492
4493 if (se == curr) {
4494 second = __pick_first_entity(cfs_rq);
4495 } else {
4496 second = __pick_next_entity(se);
4497 if (!second || (curr && entity_before(curr, second)))
4498 second = curr;
4499 }
4500
4501 if (second && wakeup_preempt_entity(second, left) < 1)
4502 se = second;
4503 }
4504
4505 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4506 /*
4507 * Someone really wants this to run. If it's not unfair, run it.
4508 */
4509 se = cfs_rq->next;
4510 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4511 /*
4512 * Prefer last buddy, try to return the CPU to a preempted task.
4513 */
4514 se = cfs_rq->last;
4515 }
4516
4517 return se;
4518 }
4519
4520 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4521
4522 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4523 {
4524 /*
4525 * If still on the runqueue then deactivate_task()
4526 * was not called and update_curr() has to be done:
4527 */
4528 if (prev->on_rq)
4529 update_curr(cfs_rq);
4530
4531 /* throttle cfs_rqs exceeding runtime */
4532 check_cfs_rq_runtime(cfs_rq);
4533
4534 check_spread(cfs_rq, prev);
4535
4536 if (prev->on_rq) {
4537 update_stats_wait_start_fair(cfs_rq, prev);
4538 /* Put 'current' back into the tree. */
4539 __enqueue_entity(cfs_rq, prev);
4540 /* in !on_rq case, update occurred at dequeue */
4541 update_load_avg(cfs_rq, prev, 0);
4542 }
4543 cfs_rq->curr = NULL;
4544 }
4545
4546 static void
4547 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4548 {
4549 /*
4550 * Update run-time statistics of the 'current'.
4551 */
4552 update_curr(cfs_rq);
4553
4554 /*
4555 * Ensure that runnable average is periodically updated.
4556 */
4557 update_load_avg(cfs_rq, curr, UPDATE_TG);
4558 update_cfs_group(curr);
4559
4560 #ifdef CONFIG_SCHED_HRTICK
4561 /*
4562 * queued ticks are scheduled to match the slice, so don't bother
4563 * validating it and just reschedule.
4564 */
4565 if (queued) {
4566 resched_curr(rq_of(cfs_rq));
4567 return;
4568 }
4569 /*
4570 * don't let the period tick interfere with the hrtick preemption
4571 */
4572 if (!sched_feat(DOUBLE_TICK) &&
4573 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4574 return;
4575 #endif
4576
4577 if (cfs_rq->nr_running > 1)
4578 check_preempt_tick(cfs_rq, curr);
4579 }
4580
4581
4582 /**************************************************
4583 * CFS bandwidth control machinery
4584 */
4585
4586 #ifdef CONFIG_CFS_BANDWIDTH
4587
4588 #ifdef CONFIG_JUMP_LABEL
4589 static struct static_key __cfs_bandwidth_used;
4590
4591 static inline bool cfs_bandwidth_used(void)
4592 {
4593 return static_key_false(&__cfs_bandwidth_used);
4594 }
4595
4596 void cfs_bandwidth_usage_inc(void)
4597 {
4598 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4599 }
4600
4601 void cfs_bandwidth_usage_dec(void)
4602 {
4603 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4604 }
4605 #else /* CONFIG_JUMP_LABEL */
4606 static bool cfs_bandwidth_used(void)
4607 {
4608 return true;
4609 }
4610
4611 void cfs_bandwidth_usage_inc(void) {}
4612 void cfs_bandwidth_usage_dec(void) {}
4613 #endif /* CONFIG_JUMP_LABEL */
4614
4615 /*
4616 * default period for cfs group bandwidth.
4617 * default: 0.1s, units: nanoseconds
4618 */
4619 static inline u64 default_cfs_period(void)
4620 {
4621 return 100000000ULL;
4622 }
4623
4624 static inline u64 sched_cfs_bandwidth_slice(void)
4625 {
4626 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4627 }
4628
4629 /*
4630 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4631 * directly instead of rq->clock to avoid adding additional synchronization
4632 * around rq->lock.
4633 *
4634 * requires cfs_b->lock
4635 */
4636 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4637 {
4638 s64 runtime;
4639
4640 if (unlikely(cfs_b->quota == RUNTIME_INF))
4641 return;
4642
4643 cfs_b->runtime += cfs_b->quota;
4644 runtime = cfs_b->runtime_snap - cfs_b->runtime;
4645 if (runtime > 0) {
4646 cfs_b->burst_time += runtime;
4647 cfs_b->nr_burst++;
4648 }
4649
4650 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4651 cfs_b->runtime_snap = cfs_b->runtime;
4652 }
4653
4654 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4655 {
4656 return &tg->cfs_bandwidth;
4657 }
4658
4659 /* returns 0 on failure to allocate runtime */
4660 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4661 struct cfs_rq *cfs_rq, u64 target_runtime)
4662 {
4663 u64 min_amount, amount = 0;
4664
4665 lockdep_assert_held(&cfs_b->lock);
4666
4667 /* note: this is a positive sum as runtime_remaining <= 0 */
4668 min_amount = target_runtime - cfs_rq->runtime_remaining;
4669
4670 if (cfs_b->quota == RUNTIME_INF)
4671 amount = min_amount;
4672 else {
4673 start_cfs_bandwidth(cfs_b);
4674
4675 if (cfs_b->runtime > 0) {
4676 amount = min(cfs_b->runtime, min_amount);
4677 cfs_b->runtime -= amount;
4678 cfs_b->idle = 0;
4679 }
4680 }
4681
4682 cfs_rq->runtime_remaining += amount;
4683
4684 return cfs_rq->runtime_remaining > 0;
4685 }
4686
4687 /* returns 0 on failure to allocate runtime */
4688 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4689 {
4690 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4691 int ret;
4692
4693 raw_spin_lock(&cfs_b->lock);
4694 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4695 raw_spin_unlock(&cfs_b->lock);
4696
4697 return ret;
4698 }
4699
4700 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4701 {
4702 /* dock delta_exec before expiring quota (as it could span periods) */
4703 cfs_rq->runtime_remaining -= delta_exec;
4704
4705 if (likely(cfs_rq->runtime_remaining > 0))
4706 return;
4707
4708 if (cfs_rq->throttled)
4709 return;
4710 /*
4711 * if we're unable to extend our runtime we resched so that the active
4712 * hierarchy can be throttled
4713 */
4714 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4715 resched_curr(rq_of(cfs_rq));
4716 }
4717
4718 static __always_inline
4719 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4720 {
4721 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4722 return;
4723
4724 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4725 }
4726
4727 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4728 {
4729 return cfs_bandwidth_used() && cfs_rq->throttled;
4730 }
4731
4732 /* check whether cfs_rq, or any parent, is throttled */
4733 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4734 {
4735 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4736 }
4737
4738 /*
4739 * Ensure that neither of the group entities corresponding to src_cpu or
4740 * dest_cpu are members of a throttled hierarchy when performing group
4741 * load-balance operations.
4742 */
4743 static inline int throttled_lb_pair(struct task_group *tg,
4744 int src_cpu, int dest_cpu)
4745 {
4746 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4747
4748 src_cfs_rq = tg->cfs_rq[src_cpu];
4749 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4750
4751 return throttled_hierarchy(src_cfs_rq) ||
4752 throttled_hierarchy(dest_cfs_rq);
4753 }
4754
4755 static int tg_unthrottle_up(struct task_group *tg, void *data)
4756 {
4757 struct rq *rq = data;
4758 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4759
4760 cfs_rq->throttle_count--;
4761 if (!cfs_rq->throttle_count) {
4762 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4763 cfs_rq->throttled_clock_task;
4764
4765 /* Add cfs_rq with load or one or more already running entities to the list */
4766 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4767 list_add_leaf_cfs_rq(cfs_rq);
4768 }
4769
4770 return 0;
4771 }
4772
4773 static int tg_throttle_down(struct task_group *tg, void *data)
4774 {
4775 struct rq *rq = data;
4776 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4777
4778 /* group is entering throttled state, stop time */
4779 if (!cfs_rq->throttle_count) {
4780 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4781 list_del_leaf_cfs_rq(cfs_rq);
4782 }
4783 cfs_rq->throttle_count++;
4784
4785 return 0;
4786 }
4787
4788 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4789 {
4790 struct rq *rq = rq_of(cfs_rq);
4791 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4792 struct sched_entity *se;
4793 long task_delta, idle_task_delta, dequeue = 1;
4794
4795 raw_spin_lock(&cfs_b->lock);
4796 /* This will start the period timer if necessary */
4797 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4798 /*
4799 * We have raced with bandwidth becoming available, and if we
4800 * actually throttled the timer might not unthrottle us for an
4801 * entire period. We additionally needed to make sure that any
4802 * subsequent check_cfs_rq_runtime calls agree not to throttle
4803 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4804 * for 1ns of runtime rather than just check cfs_b.
4805 */
4806 dequeue = 0;
4807 } else {
4808 list_add_tail_rcu(&cfs_rq->throttled_list,
4809 &cfs_b->throttled_cfs_rq);
4810 }
4811 raw_spin_unlock(&cfs_b->lock);
4812
4813 if (!dequeue)
4814 return false; /* Throttle no longer required. */
4815
4816 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4817
4818 /* freeze hierarchy runnable averages while throttled */
4819 rcu_read_lock();
4820 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4821 rcu_read_unlock();
4822
4823 task_delta = cfs_rq->h_nr_running;
4824 idle_task_delta = cfs_rq->idle_h_nr_running;
4825 for_each_sched_entity(se) {
4826 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4827 /* throttled entity or throttle-on-deactivate */
4828 if (!se->on_rq)
4829 goto done;
4830
4831 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4832
4833 if (cfs_rq_is_idle(group_cfs_rq(se)))
4834 idle_task_delta = cfs_rq->h_nr_running;
4835
4836 qcfs_rq->h_nr_running -= task_delta;
4837 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4838
4839 if (qcfs_rq->load.weight) {
4840 /* Avoid re-evaluating load for this entity: */
4841 se = parent_entity(se);
4842 break;
4843 }
4844 }
4845
4846 for_each_sched_entity(se) {
4847 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4848 /* throttled entity or throttle-on-deactivate */
4849 if (!se->on_rq)
4850 goto done;
4851
4852 update_load_avg(qcfs_rq, se, 0);
4853 se_update_runnable(se);
4854
4855 if (cfs_rq_is_idle(group_cfs_rq(se)))
4856 idle_task_delta = cfs_rq->h_nr_running;
4857
4858 qcfs_rq->h_nr_running -= task_delta;
4859 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4860 }
4861
4862 /* At this point se is NULL and we are at root level*/
4863 sub_nr_running(rq, task_delta);
4864
4865 done:
4866 /*
4867 * Note: distribution will already see us throttled via the
4868 * throttled-list. rq->lock protects completion.
4869 */
4870 cfs_rq->throttled = 1;
4871 cfs_rq->throttled_clock = rq_clock(rq);
4872 return true;
4873 }
4874
4875 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4876 {
4877 struct rq *rq = rq_of(cfs_rq);
4878 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4879 struct sched_entity *se;
4880 long task_delta, idle_task_delta;
4881
4882 se = cfs_rq->tg->se[cpu_of(rq)];
4883
4884 cfs_rq->throttled = 0;
4885
4886 update_rq_clock(rq);
4887
4888 raw_spin_lock(&cfs_b->lock);
4889 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4890 list_del_rcu(&cfs_rq->throttled_list);
4891 raw_spin_unlock(&cfs_b->lock);
4892
4893 /* update hierarchical throttle state */
4894 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4895
4896 /* Nothing to run but something to decay (on_list)? Complete the branch */
4897 if (!cfs_rq->load.weight) {
4898 if (cfs_rq->on_list)
4899 goto unthrottle_throttle;
4900 return;
4901 }
4902
4903 task_delta = cfs_rq->h_nr_running;
4904 idle_task_delta = cfs_rq->idle_h_nr_running;
4905 for_each_sched_entity(se) {
4906 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4907
4908 if (se->on_rq)
4909 break;
4910 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
4911
4912 if (cfs_rq_is_idle(group_cfs_rq(se)))
4913 idle_task_delta = cfs_rq->h_nr_running;
4914
4915 qcfs_rq->h_nr_running += task_delta;
4916 qcfs_rq->idle_h_nr_running += idle_task_delta;
4917
4918 /* end evaluation on encountering a throttled cfs_rq */
4919 if (cfs_rq_throttled(qcfs_rq))
4920 goto unthrottle_throttle;
4921 }
4922
4923 for_each_sched_entity(se) {
4924 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4925
4926 update_load_avg(qcfs_rq, se, UPDATE_TG);
4927 se_update_runnable(se);
4928
4929 if (cfs_rq_is_idle(group_cfs_rq(se)))
4930 idle_task_delta = cfs_rq->h_nr_running;
4931
4932 qcfs_rq->h_nr_running += task_delta;
4933 qcfs_rq->idle_h_nr_running += idle_task_delta;
4934
4935 /* end evaluation on encountering a throttled cfs_rq */
4936 if (cfs_rq_throttled(qcfs_rq))
4937 goto unthrottle_throttle;
4938
4939 /*
4940 * One parent has been throttled and cfs_rq removed from the
4941 * list. Add it back to not break the leaf list.
4942 */
4943 if (throttled_hierarchy(qcfs_rq))
4944 list_add_leaf_cfs_rq(qcfs_rq);
4945 }
4946
4947 /* At this point se is NULL and we are at root level*/
4948 add_nr_running(rq, task_delta);
4949
4950 unthrottle_throttle:
4951 /*
4952 * The cfs_rq_throttled() breaks in the above iteration can result in
4953 * incomplete leaf list maintenance, resulting in triggering the
4954 * assertion below.
4955 */
4956 for_each_sched_entity(se) {
4957 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4958
4959 if (list_add_leaf_cfs_rq(qcfs_rq))
4960 break;
4961 }
4962
4963 assert_list_leaf_cfs_rq(rq);
4964
4965 /* Determine whether we need to wake up potentially idle CPU: */
4966 if (rq->curr == rq->idle && rq->cfs.nr_running)
4967 resched_curr(rq);
4968 }
4969
4970 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4971 {
4972 struct cfs_rq *cfs_rq;
4973 u64 runtime, remaining = 1;
4974
4975 rcu_read_lock();
4976 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4977 throttled_list) {
4978 struct rq *rq = rq_of(cfs_rq);
4979 struct rq_flags rf;
4980
4981 rq_lock_irqsave(rq, &rf);
4982 if (!cfs_rq_throttled(cfs_rq))
4983 goto next;
4984
4985 /* By the above check, this should never be true */
4986 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4987
4988 raw_spin_lock(&cfs_b->lock);
4989 runtime = -cfs_rq->runtime_remaining + 1;
4990 if (runtime > cfs_b->runtime)
4991 runtime = cfs_b->runtime;
4992 cfs_b->runtime -= runtime;
4993 remaining = cfs_b->runtime;
4994 raw_spin_unlock(&cfs_b->lock);
4995
4996 cfs_rq->runtime_remaining += runtime;
4997
4998 /* we check whether we're throttled above */
4999 if (cfs_rq->runtime_remaining > 0)
5000 unthrottle_cfs_rq(cfs_rq);
5001
5002 next:
5003 rq_unlock_irqrestore(rq, &rf);
5004
5005 if (!remaining)
5006 break;
5007 }
5008 rcu_read_unlock();
5009 }
5010
5011 /*
5012 * Responsible for refilling a task_group's bandwidth and unthrottling its
5013 * cfs_rqs as appropriate. If there has been no activity within the last
5014 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5015 * used to track this state.
5016 */
5017 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5018 {
5019 int throttled;
5020
5021 /* no need to continue the timer with no bandwidth constraint */
5022 if (cfs_b->quota == RUNTIME_INF)
5023 goto out_deactivate;
5024
5025 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5026 cfs_b->nr_periods += overrun;
5027
5028 /* Refill extra burst quota even if cfs_b->idle */
5029 __refill_cfs_bandwidth_runtime(cfs_b);
5030
5031 /*
5032 * idle depends on !throttled (for the case of a large deficit), and if
5033 * we're going inactive then everything else can be deferred
5034 */
5035 if (cfs_b->idle && !throttled)
5036 goto out_deactivate;
5037
5038 if (!throttled) {
5039 /* mark as potentially idle for the upcoming period */
5040 cfs_b->idle = 1;
5041 return 0;
5042 }
5043
5044 /* account preceding periods in which throttling occurred */
5045 cfs_b->nr_throttled += overrun;
5046
5047 /*
5048 * This check is repeated as we release cfs_b->lock while we unthrottle.
5049 */
5050 while (throttled && cfs_b->runtime > 0) {
5051 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5052 /* we can't nest cfs_b->lock while distributing bandwidth */
5053 distribute_cfs_runtime(cfs_b);
5054 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5055
5056 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5057 }
5058
5059 /*
5060 * While we are ensured activity in the period following an
5061 * unthrottle, this also covers the case in which the new bandwidth is
5062 * insufficient to cover the existing bandwidth deficit. (Forcing the
5063 * timer to remain active while there are any throttled entities.)
5064 */
5065 cfs_b->idle = 0;
5066
5067 return 0;
5068
5069 out_deactivate:
5070 return 1;
5071 }
5072
5073 /* a cfs_rq won't donate quota below this amount */
5074 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5075 /* minimum remaining period time to redistribute slack quota */
5076 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5077 /* how long we wait to gather additional slack before distributing */
5078 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5079
5080 /*
5081 * Are we near the end of the current quota period?
5082 *
5083 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5084 * hrtimer base being cleared by hrtimer_start. In the case of
5085 * migrate_hrtimers, base is never cleared, so we are fine.
5086 */
5087 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5088 {
5089 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5090 s64 remaining;
5091
5092 /* if the call-back is running a quota refresh is already occurring */
5093 if (hrtimer_callback_running(refresh_timer))
5094 return 1;
5095
5096 /* is a quota refresh about to occur? */
5097 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5098 if (remaining < (s64)min_expire)
5099 return 1;
5100
5101 return 0;
5102 }
5103
5104 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5105 {
5106 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5107
5108 /* if there's a quota refresh soon don't bother with slack */
5109 if (runtime_refresh_within(cfs_b, min_left))
5110 return;
5111
5112 /* don't push forwards an existing deferred unthrottle */
5113 if (cfs_b->slack_started)
5114 return;
5115 cfs_b->slack_started = true;
5116
5117 hrtimer_start(&cfs_b->slack_timer,
5118 ns_to_ktime(cfs_bandwidth_slack_period),
5119 HRTIMER_MODE_REL);
5120 }
5121
5122 /* we know any runtime found here is valid as update_curr() precedes return */
5123 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5124 {
5125 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5126 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5127
5128 if (slack_runtime <= 0)
5129 return;
5130
5131 raw_spin_lock(&cfs_b->lock);
5132 if (cfs_b->quota != RUNTIME_INF) {
5133 cfs_b->runtime += slack_runtime;
5134
5135 /* we are under rq->lock, defer unthrottling using a timer */
5136 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5137 !list_empty(&cfs_b->throttled_cfs_rq))
5138 start_cfs_slack_bandwidth(cfs_b);
5139 }
5140 raw_spin_unlock(&cfs_b->lock);
5141
5142 /* even if it's not valid for return we don't want to try again */
5143 cfs_rq->runtime_remaining -= slack_runtime;
5144 }
5145
5146 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5147 {
5148 if (!cfs_bandwidth_used())
5149 return;
5150
5151 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5152 return;
5153
5154 __return_cfs_rq_runtime(cfs_rq);
5155 }
5156
5157 /*
5158 * This is done with a timer (instead of inline with bandwidth return) since
5159 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5160 */
5161 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5162 {
5163 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5164 unsigned long flags;
5165
5166 /* confirm we're still not at a refresh boundary */
5167 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5168 cfs_b->slack_started = false;
5169
5170 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5171 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5172 return;
5173 }
5174
5175 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5176 runtime = cfs_b->runtime;
5177
5178 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5179
5180 if (!runtime)
5181 return;
5182
5183 distribute_cfs_runtime(cfs_b);
5184 }
5185
5186 /*
5187 * When a group wakes up we want to make sure that its quota is not already
5188 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5189 * runtime as update_curr() throttling can not trigger until it's on-rq.
5190 */
5191 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5192 {
5193 if (!cfs_bandwidth_used())
5194 return;
5195
5196 /* an active group must be handled by the update_curr()->put() path */
5197 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5198 return;
5199
5200 /* ensure the group is not already throttled */
5201 if (cfs_rq_throttled(cfs_rq))
5202 return;
5203
5204 /* update runtime allocation */
5205 account_cfs_rq_runtime(cfs_rq, 0);
5206 if (cfs_rq->runtime_remaining <= 0)
5207 throttle_cfs_rq(cfs_rq);
5208 }
5209
5210 static void sync_throttle(struct task_group *tg, int cpu)
5211 {
5212 struct cfs_rq *pcfs_rq, *cfs_rq;
5213
5214 if (!cfs_bandwidth_used())
5215 return;
5216
5217 if (!tg->parent)
5218 return;
5219
5220 cfs_rq = tg->cfs_rq[cpu];
5221 pcfs_rq = tg->parent->cfs_rq[cpu];
5222
5223 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5224 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5225 }
5226
5227 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5228 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5229 {
5230 if (!cfs_bandwidth_used())
5231 return false;
5232
5233 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5234 return false;
5235
5236 /*
5237 * it's possible for a throttled entity to be forced into a running
5238 * state (e.g. set_curr_task), in this case we're finished.
5239 */
5240 if (cfs_rq_throttled(cfs_rq))
5241 return true;
5242
5243 return throttle_cfs_rq(cfs_rq);
5244 }
5245
5246 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5247 {
5248 struct cfs_bandwidth *cfs_b =
5249 container_of(timer, struct cfs_bandwidth, slack_timer);
5250
5251 do_sched_cfs_slack_timer(cfs_b);
5252
5253 return HRTIMER_NORESTART;
5254 }
5255
5256 extern const u64 max_cfs_quota_period;
5257
5258 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5259 {
5260 struct cfs_bandwidth *cfs_b =
5261 container_of(timer, struct cfs_bandwidth, period_timer);
5262 unsigned long flags;
5263 int overrun;
5264 int idle = 0;
5265 int count = 0;
5266
5267 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5268 for (;;) {
5269 overrun = hrtimer_forward_now(timer, cfs_b->period);
5270 if (!overrun)
5271 break;
5272
5273 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5274
5275 if (++count > 3) {
5276 u64 new, old = ktime_to_ns(cfs_b->period);
5277
5278 /*
5279 * Grow period by a factor of 2 to avoid losing precision.
5280 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5281 * to fail.
5282 */
5283 new = old * 2;
5284 if (new < max_cfs_quota_period) {
5285 cfs_b->period = ns_to_ktime(new);
5286 cfs_b->quota *= 2;
5287 cfs_b->burst *= 2;
5288
5289 pr_warn_ratelimited(
5290 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5291 smp_processor_id(),
5292 div_u64(new, NSEC_PER_USEC),
5293 div_u64(cfs_b->quota, NSEC_PER_USEC));
5294 } else {
5295 pr_warn_ratelimited(
5296 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5297 smp_processor_id(),
5298 div_u64(old, NSEC_PER_USEC),
5299 div_u64(cfs_b->quota, NSEC_PER_USEC));
5300 }
5301
5302 /* reset count so we don't come right back in here */
5303 count = 0;
5304 }
5305 }
5306 if (idle)
5307 cfs_b->period_active = 0;
5308 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5309
5310 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5311 }
5312
5313 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5314 {
5315 raw_spin_lock_init(&cfs_b->lock);
5316 cfs_b->runtime = 0;
5317 cfs_b->quota = RUNTIME_INF;
5318 cfs_b->period = ns_to_ktime(default_cfs_period());
5319 cfs_b->burst = 0;
5320
5321 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5322 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5323 cfs_b->period_timer.function = sched_cfs_period_timer;
5324 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5325 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5326 cfs_b->slack_started = false;
5327 }
5328
5329 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5330 {
5331 cfs_rq->runtime_enabled = 0;
5332 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5333 }
5334
5335 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5336 {
5337 lockdep_assert_held(&cfs_b->lock);
5338
5339 if (cfs_b->period_active)
5340 return;
5341
5342 cfs_b->period_active = 1;
5343 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5344 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5345 }
5346
5347 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5348 {
5349 /* init_cfs_bandwidth() was not called */
5350 if (!cfs_b->throttled_cfs_rq.next)
5351 return;
5352
5353 hrtimer_cancel(&cfs_b->period_timer);
5354 hrtimer_cancel(&cfs_b->slack_timer);
5355 }
5356
5357 /*
5358 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5359 *
5360 * The race is harmless, since modifying bandwidth settings of unhooked group
5361 * bits doesn't do much.
5362 */
5363
5364 /* cpu online callback */
5365 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5366 {
5367 struct task_group *tg;
5368
5369 lockdep_assert_rq_held(rq);
5370
5371 rcu_read_lock();
5372 list_for_each_entry_rcu(tg, &task_groups, list) {
5373 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5374 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5375
5376 raw_spin_lock(&cfs_b->lock);
5377 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5378 raw_spin_unlock(&cfs_b->lock);
5379 }
5380 rcu_read_unlock();
5381 }
5382
5383 /* cpu offline callback */
5384 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5385 {
5386 struct task_group *tg;
5387
5388 lockdep_assert_rq_held(rq);
5389
5390 rcu_read_lock();
5391 list_for_each_entry_rcu(tg, &task_groups, list) {
5392 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5393
5394 if (!cfs_rq->runtime_enabled)
5395 continue;
5396
5397 /*
5398 * clock_task is not advancing so we just need to make sure
5399 * there's some valid quota amount
5400 */
5401 cfs_rq->runtime_remaining = 1;
5402 /*
5403 * Offline rq is schedulable till CPU is completely disabled
5404 * in take_cpu_down(), so we prevent new cfs throttling here.
5405 */
5406 cfs_rq->runtime_enabled = 0;
5407
5408 if (cfs_rq_throttled(cfs_rq))
5409 unthrottle_cfs_rq(cfs_rq);
5410 }
5411 rcu_read_unlock();
5412 }
5413
5414 #else /* CONFIG_CFS_BANDWIDTH */
5415
5416 static inline bool cfs_bandwidth_used(void)
5417 {
5418 return false;
5419 }
5420
5421 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5422 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5423 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5424 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5425 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5426
5427 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5428 {
5429 return 0;
5430 }
5431
5432 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5433 {
5434 return 0;
5435 }
5436
5437 static inline int throttled_lb_pair(struct task_group *tg,
5438 int src_cpu, int dest_cpu)
5439 {
5440 return 0;
5441 }
5442
5443 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5444
5445 #ifdef CONFIG_FAIR_GROUP_SCHED
5446 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5447 #endif
5448
5449 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5450 {
5451 return NULL;
5452 }
5453 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5454 static inline void update_runtime_enabled(struct rq *rq) {}
5455 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5456
5457 #endif /* CONFIG_CFS_BANDWIDTH */
5458
5459 /**************************************************
5460 * CFS operations on tasks:
5461 */
5462
5463 #ifdef CONFIG_SCHED_HRTICK
5464 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5465 {
5466 struct sched_entity *se = &p->se;
5467 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5468
5469 SCHED_WARN_ON(task_rq(p) != rq);
5470
5471 if (rq->cfs.h_nr_running > 1) {
5472 u64 slice = sched_slice(cfs_rq, se);
5473 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5474 s64 delta = slice - ran;
5475
5476 if (delta < 0) {
5477 if (task_current(rq, p))
5478 resched_curr(rq);
5479 return;
5480 }
5481 hrtick_start(rq, delta);
5482 }
5483 }
5484
5485 /*
5486 * called from enqueue/dequeue and updates the hrtick when the
5487 * current task is from our class and nr_running is low enough
5488 * to matter.
5489 */
5490 static void hrtick_update(struct rq *rq)
5491 {
5492 struct task_struct *curr = rq->curr;
5493
5494 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5495 return;
5496
5497 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5498 hrtick_start_fair(rq, curr);
5499 }
5500 #else /* !CONFIG_SCHED_HRTICK */
5501 static inline void
5502 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5503 {
5504 }
5505
5506 static inline void hrtick_update(struct rq *rq)
5507 {
5508 }
5509 #endif
5510
5511 #ifdef CONFIG_SMP
5512 static inline bool cpu_overutilized(int cpu)
5513 {
5514 return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
5515 }
5516
5517 static inline void update_overutilized_status(struct rq *rq)
5518 {
5519 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5520 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5521 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5522 }
5523 }
5524 #else
5525 static inline void update_overutilized_status(struct rq *rq) { }
5526 #endif
5527
5528 /* Runqueue only has SCHED_IDLE tasks enqueued */
5529 static int sched_idle_rq(struct rq *rq)
5530 {
5531 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5532 rq->nr_running);
5533 }
5534
5535 /*
5536 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5537 * of idle_nr_running, which does not consider idle descendants of normal
5538 * entities.
5539 */
5540 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5541 {
5542 return cfs_rq->nr_running &&
5543 cfs_rq->nr_running == cfs_rq->idle_nr_running;
5544 }
5545
5546 #ifdef CONFIG_SMP
5547 static int sched_idle_cpu(int cpu)
5548 {
5549 return sched_idle_rq(cpu_rq(cpu));
5550 }
5551 #endif
5552
5553 /*
5554 * The enqueue_task method is called before nr_running is
5555 * increased. Here we update the fair scheduling stats and
5556 * then put the task into the rbtree:
5557 */
5558 static void
5559 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5560 {
5561 struct cfs_rq *cfs_rq;
5562 struct sched_entity *se = &p->se;
5563 int idle_h_nr_running = task_has_idle_policy(p);
5564 int task_new = !(flags & ENQUEUE_WAKEUP);
5565
5566 /*
5567 * The code below (indirectly) updates schedutil which looks at
5568 * the cfs_rq utilization to select a frequency.
5569 * Let's add the task's estimated utilization to the cfs_rq's
5570 * estimated utilization, before we update schedutil.
5571 */
5572 util_est_enqueue(&rq->cfs, p);
5573
5574 /*
5575 * If in_iowait is set, the code below may not trigger any cpufreq
5576 * utilization updates, so do it here explicitly with the IOWAIT flag
5577 * passed.
5578 */
5579 if (p->in_iowait)
5580 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5581
5582 for_each_sched_entity(se) {
5583 if (se->on_rq)
5584 break;
5585 cfs_rq = cfs_rq_of(se);
5586 enqueue_entity(cfs_rq, se, flags);
5587
5588 cfs_rq->h_nr_running++;
5589 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5590
5591 if (cfs_rq_is_idle(cfs_rq))
5592 idle_h_nr_running = 1;
5593
5594 /* end evaluation on encountering a throttled cfs_rq */
5595 if (cfs_rq_throttled(cfs_rq))
5596 goto enqueue_throttle;
5597
5598 flags = ENQUEUE_WAKEUP;
5599 }
5600
5601 for_each_sched_entity(se) {
5602 cfs_rq = cfs_rq_of(se);
5603
5604 update_load_avg(cfs_rq, se, UPDATE_TG);
5605 se_update_runnable(se);
5606 update_cfs_group(se);
5607
5608 cfs_rq->h_nr_running++;
5609 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5610
5611 if (cfs_rq_is_idle(cfs_rq))
5612 idle_h_nr_running = 1;
5613
5614 /* end evaluation on encountering a throttled cfs_rq */
5615 if (cfs_rq_throttled(cfs_rq))
5616 goto enqueue_throttle;
5617
5618 /*
5619 * One parent has been throttled and cfs_rq removed from the
5620 * list. Add it back to not break the leaf list.
5621 */
5622 if (throttled_hierarchy(cfs_rq))
5623 list_add_leaf_cfs_rq(cfs_rq);
5624 }
5625
5626 /* At this point se is NULL and we are at root level*/
5627 add_nr_running(rq, 1);
5628
5629 /*
5630 * Since new tasks are assigned an initial util_avg equal to
5631 * half of the spare capacity of their CPU, tiny tasks have the
5632 * ability to cross the overutilized threshold, which will
5633 * result in the load balancer ruining all the task placement
5634 * done by EAS. As a way to mitigate that effect, do not account
5635 * for the first enqueue operation of new tasks during the
5636 * overutilized flag detection.
5637 *
5638 * A better way of solving this problem would be to wait for
5639 * the PELT signals of tasks to converge before taking them
5640 * into account, but that is not straightforward to implement,
5641 * and the following generally works well enough in practice.
5642 */
5643 if (!task_new)
5644 update_overutilized_status(rq);
5645
5646 enqueue_throttle:
5647 if (cfs_bandwidth_used()) {
5648 /*
5649 * When bandwidth control is enabled; the cfs_rq_throttled()
5650 * breaks in the above iteration can result in incomplete
5651 * leaf list maintenance, resulting in triggering the assertion
5652 * below.
5653 */
5654 for_each_sched_entity(se) {
5655 cfs_rq = cfs_rq_of(se);
5656
5657 if (list_add_leaf_cfs_rq(cfs_rq))
5658 break;
5659 }
5660 }
5661
5662 assert_list_leaf_cfs_rq(rq);
5663
5664 hrtick_update(rq);
5665 }
5666
5667 static void set_next_buddy(struct sched_entity *se);
5668
5669 /*
5670 * The dequeue_task method is called before nr_running is
5671 * decreased. We remove the task from the rbtree and
5672 * update the fair scheduling stats:
5673 */
5674 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5675 {
5676 struct cfs_rq *cfs_rq;
5677 struct sched_entity *se = &p->se;
5678 int task_sleep = flags & DEQUEUE_SLEEP;
5679 int idle_h_nr_running = task_has_idle_policy(p);
5680 bool was_sched_idle = sched_idle_rq(rq);
5681
5682 util_est_dequeue(&rq->cfs, p);
5683
5684 for_each_sched_entity(se) {
5685 cfs_rq = cfs_rq_of(se);
5686 dequeue_entity(cfs_rq, se, flags);
5687
5688 cfs_rq->h_nr_running--;
5689 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5690
5691 if (cfs_rq_is_idle(cfs_rq))
5692 idle_h_nr_running = 1;
5693
5694 /* end evaluation on encountering a throttled cfs_rq */
5695 if (cfs_rq_throttled(cfs_rq))
5696 goto dequeue_throttle;
5697
5698 /* Don't dequeue parent if it has other entities besides us */
5699 if (cfs_rq->load.weight) {
5700 /* Avoid re-evaluating load for this entity: */
5701 se = parent_entity(se);
5702 /*
5703 * Bias pick_next to pick a task from this cfs_rq, as
5704 * p is sleeping when it is within its sched_slice.
5705 */
5706 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5707 set_next_buddy(se);
5708 break;
5709 }
5710 flags |= DEQUEUE_SLEEP;
5711 }
5712
5713 for_each_sched_entity(se) {
5714 cfs_rq = cfs_rq_of(se);
5715
5716 update_load_avg(cfs_rq, se, UPDATE_TG);
5717 se_update_runnable(se);
5718 update_cfs_group(se);
5719
5720 cfs_rq->h_nr_running--;
5721 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5722
5723 if (cfs_rq_is_idle(cfs_rq))
5724 idle_h_nr_running = 1;
5725
5726 /* end evaluation on encountering a throttled cfs_rq */
5727 if (cfs_rq_throttled(cfs_rq))
5728 goto dequeue_throttle;
5729
5730 }
5731
5732 /* At this point se is NULL and we are at root level*/
5733 sub_nr_running(rq, 1);
5734
5735 /* balance early to pull high priority tasks */
5736 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5737 rq->next_balance = jiffies;
5738
5739 dequeue_throttle:
5740 util_est_update(&rq->cfs, p, task_sleep);
5741 hrtick_update(rq);
5742 }
5743
5744 #ifdef CONFIG_SMP
5745
5746 /* Working cpumask for: load_balance, load_balance_newidle. */
5747 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5748 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5749
5750 #ifdef CONFIG_NO_HZ_COMMON
5751
5752 static struct {
5753 cpumask_var_t idle_cpus_mask;
5754 atomic_t nr_cpus;
5755 int has_blocked; /* Idle CPUS has blocked load */
5756 int needs_update; /* Newly idle CPUs need their next_balance collated */
5757 unsigned long next_balance; /* in jiffy units */
5758 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5759 } nohz ____cacheline_aligned;
5760
5761 #endif /* CONFIG_NO_HZ_COMMON */
5762
5763 static unsigned long cpu_load(struct rq *rq)
5764 {
5765 return cfs_rq_load_avg(&rq->cfs);
5766 }
5767
5768 /*
5769 * cpu_load_without - compute CPU load without any contributions from *p
5770 * @cpu: the CPU which load is requested
5771 * @p: the task which load should be discounted
5772 *
5773 * The load of a CPU is defined by the load of tasks currently enqueued on that
5774 * CPU as well as tasks which are currently sleeping after an execution on that
5775 * CPU.
5776 *
5777 * This method returns the load of the specified CPU by discounting the load of
5778 * the specified task, whenever the task is currently contributing to the CPU
5779 * load.
5780 */
5781 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5782 {
5783 struct cfs_rq *cfs_rq;
5784 unsigned int load;
5785
5786 /* Task has no contribution or is new */
5787 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5788 return cpu_load(rq);
5789
5790 cfs_rq = &rq->cfs;
5791 load = READ_ONCE(cfs_rq->avg.load_avg);
5792
5793 /* Discount task's util from CPU's util */
5794 lsub_positive(&load, task_h_load(p));
5795
5796 return load;
5797 }
5798
5799 static unsigned long cpu_runnable(struct rq *rq)
5800 {
5801 return cfs_rq_runnable_avg(&rq->cfs);
5802 }
5803
5804 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5805 {
5806 struct cfs_rq *cfs_rq;
5807 unsigned int runnable;
5808
5809 /* Task has no contribution or is new */
5810 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5811 return cpu_runnable(rq);
5812
5813 cfs_rq = &rq->cfs;
5814 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5815
5816 /* Discount task's runnable from CPU's runnable */
5817 lsub_positive(&runnable, p->se.avg.runnable_avg);
5818
5819 return runnable;
5820 }
5821
5822 static unsigned long capacity_of(int cpu)
5823 {
5824 return cpu_rq(cpu)->cpu_capacity;
5825 }
5826
5827 static void record_wakee(struct task_struct *p)
5828 {
5829 /*
5830 * Only decay a single time; tasks that have less then 1 wakeup per
5831 * jiffy will not have built up many flips.
5832 */
5833 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5834 current->wakee_flips >>= 1;
5835 current->wakee_flip_decay_ts = jiffies;
5836 }
5837
5838 if (current->last_wakee != p) {
5839 current->last_wakee = p;
5840 current->wakee_flips++;
5841 }
5842 }
5843
5844 /*
5845 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5846 *
5847 * A waker of many should wake a different task than the one last awakened
5848 * at a frequency roughly N times higher than one of its wakees.
5849 *
5850 * In order to determine whether we should let the load spread vs consolidating
5851 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5852 * partner, and a factor of lls_size higher frequency in the other.
5853 *
5854 * With both conditions met, we can be relatively sure that the relationship is
5855 * non-monogamous, with partner count exceeding socket size.
5856 *
5857 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5858 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5859 * socket size.
5860 */
5861 static int wake_wide(struct task_struct *p)
5862 {
5863 unsigned int master = current->wakee_flips;
5864 unsigned int slave = p->wakee_flips;
5865 int factor = __this_cpu_read(sd_llc_size);
5866
5867 if (master < slave)
5868 swap(master, slave);
5869 if (slave < factor || master < slave * factor)
5870 return 0;
5871 return 1;
5872 }
5873
5874 /*
5875 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5876 * soonest. For the purpose of speed we only consider the waking and previous
5877 * CPU.
5878 *
5879 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5880 * cache-affine and is (or will be) idle.
5881 *
5882 * wake_affine_weight() - considers the weight to reflect the average
5883 * scheduling latency of the CPUs. This seems to work
5884 * for the overloaded case.
5885 */
5886 static int
5887 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5888 {
5889 /*
5890 * If this_cpu is idle, it implies the wakeup is from interrupt
5891 * context. Only allow the move if cache is shared. Otherwise an
5892 * interrupt intensive workload could force all tasks onto one
5893 * node depending on the IO topology or IRQ affinity settings.
5894 *
5895 * If the prev_cpu is idle and cache affine then avoid a migration.
5896 * There is no guarantee that the cache hot data from an interrupt
5897 * is more important than cache hot data on the prev_cpu and from
5898 * a cpufreq perspective, it's better to have higher utilisation
5899 * on one CPU.
5900 */
5901 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5902 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5903
5904 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5905 return this_cpu;
5906
5907 if (available_idle_cpu(prev_cpu))
5908 return prev_cpu;
5909
5910 return nr_cpumask_bits;
5911 }
5912
5913 static int
5914 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5915 int this_cpu, int prev_cpu, int sync)
5916 {
5917 s64 this_eff_load, prev_eff_load;
5918 unsigned long task_load;
5919
5920 this_eff_load = cpu_load(cpu_rq(this_cpu));
5921
5922 if (sync) {
5923 unsigned long current_load = task_h_load(current);
5924
5925 if (current_load > this_eff_load)
5926 return this_cpu;
5927
5928 this_eff_load -= current_load;
5929 }
5930
5931 task_load = task_h_load(p);
5932
5933 this_eff_load += task_load;
5934 if (sched_feat(WA_BIAS))
5935 this_eff_load *= 100;
5936 this_eff_load *= capacity_of(prev_cpu);
5937
5938 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5939 prev_eff_load -= task_load;
5940 if (sched_feat(WA_BIAS))
5941 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5942 prev_eff_load *= capacity_of(this_cpu);
5943
5944 /*
5945 * If sync, adjust the weight of prev_eff_load such that if
5946 * prev_eff == this_eff that select_idle_sibling() will consider
5947 * stacking the wakee on top of the waker if no other CPU is
5948 * idle.
5949 */
5950 if (sync)
5951 prev_eff_load += 1;
5952
5953 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5954 }
5955
5956 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5957 int this_cpu, int prev_cpu, int sync)
5958 {
5959 int target = nr_cpumask_bits;
5960
5961 if (sched_feat(WA_IDLE))
5962 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5963
5964 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5965 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5966
5967 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
5968 if (target == nr_cpumask_bits)
5969 return prev_cpu;
5970
5971 schedstat_inc(sd->ttwu_move_affine);
5972 schedstat_inc(p->stats.nr_wakeups_affine);
5973 return target;
5974 }
5975
5976 static struct sched_group *
5977 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5978
5979 /*
5980 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5981 */
5982 static int
5983 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5984 {
5985 unsigned long load, min_load = ULONG_MAX;
5986 unsigned int min_exit_latency = UINT_MAX;
5987 u64 latest_idle_timestamp = 0;
5988 int least_loaded_cpu = this_cpu;
5989 int shallowest_idle_cpu = -1;
5990 int i;
5991
5992 /* Check if we have any choice: */
5993 if (group->group_weight == 1)
5994 return cpumask_first(sched_group_span(group));
5995
5996 /* Traverse only the allowed CPUs */
5997 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5998 struct rq *rq = cpu_rq(i);
5999
6000 if (!sched_core_cookie_match(rq, p))
6001 continue;
6002
6003 if (sched_idle_cpu(i))
6004 return i;
6005
6006 if (available_idle_cpu(i)) {
6007 struct cpuidle_state *idle = idle_get_state(rq);
6008 if (idle && idle->exit_latency < min_exit_latency) {
6009 /*
6010 * We give priority to a CPU whose idle state
6011 * has the smallest exit latency irrespective
6012 * of any idle timestamp.
6013 */
6014 min_exit_latency = idle->exit_latency;
6015 latest_idle_timestamp = rq->idle_stamp;
6016 shallowest_idle_cpu = i;
6017 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6018 rq->idle_stamp > latest_idle_timestamp) {
6019 /*
6020 * If equal or no active idle state, then
6021 * the most recently idled CPU might have
6022 * a warmer cache.
6023 */
6024 latest_idle_timestamp = rq->idle_stamp;
6025 shallowest_idle_cpu = i;
6026 }
6027 } else if (shallowest_idle_cpu == -1) {
6028 load = cpu_load(cpu_rq(i));
6029 if (load < min_load) {
6030 min_load = load;
6031 least_loaded_cpu = i;
6032 }
6033 }
6034 }
6035
6036 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6037 }
6038
6039 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6040 int cpu, int prev_cpu, int sd_flag)
6041 {
6042 int new_cpu = cpu;
6043
6044 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6045 return prev_cpu;
6046
6047 /*
6048 * We need task's util for cpu_util_without, sync it up to
6049 * prev_cpu's last_update_time.
6050 */
6051 if (!(sd_flag & SD_BALANCE_FORK))
6052 sync_entity_load_avg(&p->se);
6053
6054 while (sd) {
6055 struct sched_group *group;
6056 struct sched_domain *tmp;
6057 int weight;
6058
6059 if (!(sd->flags & sd_flag)) {
6060 sd = sd->child;
6061 continue;
6062 }
6063
6064 group = find_idlest_group(sd, p, cpu);
6065 if (!group) {
6066 sd = sd->child;
6067 continue;
6068 }
6069
6070 new_cpu = find_idlest_group_cpu(group, p, cpu);
6071 if (new_cpu == cpu) {
6072 /* Now try balancing at a lower domain level of 'cpu': */
6073 sd = sd->child;
6074 continue;
6075 }
6076
6077 /* Now try balancing at a lower domain level of 'new_cpu': */
6078 cpu = new_cpu;
6079 weight = sd->span_weight;
6080 sd = NULL;
6081 for_each_domain(cpu, tmp) {
6082 if (weight <= tmp->span_weight)
6083 break;
6084 if (tmp->flags & sd_flag)
6085 sd = tmp;
6086 }
6087 }
6088
6089 return new_cpu;
6090 }
6091
6092 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6093 {
6094 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6095 sched_cpu_cookie_match(cpu_rq(cpu), p))
6096 return cpu;
6097
6098 return -1;
6099 }
6100
6101 #ifdef CONFIG_SCHED_SMT
6102 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6103 EXPORT_SYMBOL_GPL(sched_smt_present);
6104
6105 static inline void set_idle_cores(int cpu, int val)
6106 {
6107 struct sched_domain_shared *sds;
6108
6109 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6110 if (sds)
6111 WRITE_ONCE(sds->has_idle_cores, val);
6112 }
6113
6114 static inline bool test_idle_cores(int cpu, bool def)
6115 {
6116 struct sched_domain_shared *sds;
6117
6118 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6119 if (sds)
6120 return READ_ONCE(sds->has_idle_cores);
6121
6122 return def;
6123 }
6124
6125 /*
6126 * Scans the local SMT mask to see if the entire core is idle, and records this
6127 * information in sd_llc_shared->has_idle_cores.
6128 *
6129 * Since SMT siblings share all cache levels, inspecting this limited remote
6130 * state should be fairly cheap.
6131 */
6132 void __update_idle_core(struct rq *rq)
6133 {
6134 int core = cpu_of(rq);
6135 int cpu;
6136
6137 rcu_read_lock();
6138 if (test_idle_cores(core, true))
6139 goto unlock;
6140
6141 for_each_cpu(cpu, cpu_smt_mask(core)) {
6142 if (cpu == core)
6143 continue;
6144
6145 if (!available_idle_cpu(cpu))
6146 goto unlock;
6147 }
6148
6149 set_idle_cores(core, 1);
6150 unlock:
6151 rcu_read_unlock();
6152 }
6153
6154 /*
6155 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6156 * there are no idle cores left in the system; tracked through
6157 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6158 */
6159 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6160 {
6161 bool idle = true;
6162 int cpu;
6163
6164 if (!static_branch_likely(&sched_smt_present))
6165 return __select_idle_cpu(core, p);
6166
6167 for_each_cpu(cpu, cpu_smt_mask(core)) {
6168 if (!available_idle_cpu(cpu)) {
6169 idle = false;
6170 if (*idle_cpu == -1) {
6171 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6172 *idle_cpu = cpu;
6173 break;
6174 }
6175 continue;
6176 }
6177 break;
6178 }
6179 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6180 *idle_cpu = cpu;
6181 }
6182
6183 if (idle)
6184 return core;
6185
6186 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6187 return -1;
6188 }
6189
6190 /*
6191 * Scan the local SMT mask for idle CPUs.
6192 */
6193 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6194 {
6195 int cpu;
6196
6197 for_each_cpu(cpu, cpu_smt_mask(target)) {
6198 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6199 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6200 continue;
6201 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6202 return cpu;
6203 }
6204
6205 return -1;
6206 }
6207
6208 #else /* CONFIG_SCHED_SMT */
6209
6210 static inline void set_idle_cores(int cpu, int val)
6211 {
6212 }
6213
6214 static inline bool test_idle_cores(int cpu, bool def)
6215 {
6216 return def;
6217 }
6218
6219 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6220 {
6221 return __select_idle_cpu(core, p);
6222 }
6223
6224 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6225 {
6226 return -1;
6227 }
6228
6229 #endif /* CONFIG_SCHED_SMT */
6230
6231 /*
6232 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6233 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6234 * average idle time for this rq (as found in rq->avg_idle).
6235 */
6236 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6237 {
6238 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6239 int i, cpu, idle_cpu = -1, nr = INT_MAX;
6240 struct rq *this_rq = this_rq();
6241 int this = smp_processor_id();
6242 struct sched_domain *this_sd;
6243 u64 time = 0;
6244
6245 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6246 if (!this_sd)
6247 return -1;
6248
6249 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6250
6251 if (sched_feat(SIS_PROP) && !has_idle_core) {
6252 u64 avg_cost, avg_idle, span_avg;
6253 unsigned long now = jiffies;
6254
6255 /*
6256 * If we're busy, the assumption that the last idle period
6257 * predicts the future is flawed; age away the remaining
6258 * predicted idle time.
6259 */
6260 if (unlikely(this_rq->wake_stamp < now)) {
6261 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6262 this_rq->wake_stamp++;
6263 this_rq->wake_avg_idle >>= 1;
6264 }
6265 }
6266
6267 avg_idle = this_rq->wake_avg_idle;
6268 avg_cost = this_sd->avg_scan_cost + 1;
6269
6270 span_avg = sd->span_weight * avg_idle;
6271 if (span_avg > 4*avg_cost)
6272 nr = div_u64(span_avg, avg_cost);
6273 else
6274 nr = 4;
6275
6276 time = cpu_clock(this);
6277 }
6278
6279 for_each_cpu_wrap(cpu, cpus, target + 1) {
6280 if (has_idle_core) {
6281 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6282 if ((unsigned int)i < nr_cpumask_bits)
6283 return i;
6284
6285 } else {
6286 if (!--nr)
6287 return -1;
6288 idle_cpu = __select_idle_cpu(cpu, p);
6289 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6290 break;
6291 }
6292 }
6293
6294 if (has_idle_core)
6295 set_idle_cores(target, false);
6296
6297 if (sched_feat(SIS_PROP) && !has_idle_core) {
6298 time = cpu_clock(this) - time;
6299
6300 /*
6301 * Account for the scan cost of wakeups against the average
6302 * idle time.
6303 */
6304 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6305
6306 update_avg(&this_sd->avg_scan_cost, time);
6307 }
6308
6309 return idle_cpu;
6310 }
6311
6312 /*
6313 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6314 * the task fits. If no CPU is big enough, but there are idle ones, try to
6315 * maximize capacity.
6316 */
6317 static int
6318 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6319 {
6320 unsigned long task_util, best_cap = 0;
6321 int cpu, best_cpu = -1;
6322 struct cpumask *cpus;
6323
6324 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6325 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6326
6327 task_util = uclamp_task_util(p);
6328
6329 for_each_cpu_wrap(cpu, cpus, target) {
6330 unsigned long cpu_cap = capacity_of(cpu);
6331
6332 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6333 continue;
6334 if (fits_capacity(task_util, cpu_cap))
6335 return cpu;
6336
6337 if (cpu_cap > best_cap) {
6338 best_cap = cpu_cap;
6339 best_cpu = cpu;
6340 }
6341 }
6342
6343 return best_cpu;
6344 }
6345
6346 static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
6347 {
6348 if (static_branch_unlikely(&sched_asym_cpucapacity))
6349 return fits_capacity(task_util, capacity_of(cpu));
6350
6351 return true;
6352 }
6353
6354 /*
6355 * Try and locate an idle core/thread in the LLC cache domain.
6356 */
6357 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6358 {
6359 bool has_idle_core = false;
6360 struct sched_domain *sd;
6361 unsigned long task_util;
6362 int i, recent_used_cpu;
6363
6364 /*
6365 * On asymmetric system, update task utilization because we will check
6366 * that the task fits with cpu's capacity.
6367 */
6368 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6369 sync_entity_load_avg(&p->se);
6370 task_util = uclamp_task_util(p);
6371 }
6372
6373 /*
6374 * per-cpu select_idle_mask usage
6375 */
6376 lockdep_assert_irqs_disabled();
6377
6378 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6379 asym_fits_capacity(task_util, target))
6380 return target;
6381
6382 /*
6383 * If the previous CPU is cache affine and idle, don't be stupid:
6384 */
6385 if (prev != target && cpus_share_cache(prev, target) &&
6386 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6387 asym_fits_capacity(task_util, prev))
6388 return prev;
6389
6390 /*
6391 * Allow a per-cpu kthread to stack with the wakee if the
6392 * kworker thread and the tasks previous CPUs are the same.
6393 * The assumption is that the wakee queued work for the
6394 * per-cpu kthread that is now complete and the wakeup is
6395 * essentially a sync wakeup. An obvious example of this
6396 * pattern is IO completions.
6397 */
6398 if (is_per_cpu_kthread(current) &&
6399 in_task() &&
6400 prev == smp_processor_id() &&
6401 this_rq()->nr_running <= 1 &&
6402 asym_fits_capacity(task_util, prev)) {
6403 return prev;
6404 }
6405
6406 /* Check a recently used CPU as a potential idle candidate: */
6407 recent_used_cpu = p->recent_used_cpu;
6408 p->recent_used_cpu = prev;
6409 if (recent_used_cpu != prev &&
6410 recent_used_cpu != target &&
6411 cpus_share_cache(recent_used_cpu, target) &&
6412 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6413 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6414 asym_fits_capacity(task_util, recent_used_cpu)) {
6415 return recent_used_cpu;
6416 }
6417
6418 /*
6419 * For asymmetric CPU capacity systems, our domain of interest is
6420 * sd_asym_cpucapacity rather than sd_llc.
6421 */
6422 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6423 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6424 /*
6425 * On an asymmetric CPU capacity system where an exclusive
6426 * cpuset defines a symmetric island (i.e. one unique
6427 * capacity_orig value through the cpuset), the key will be set
6428 * but the CPUs within that cpuset will not have a domain with
6429 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6430 * capacity path.
6431 */
6432 if (sd) {
6433 i = select_idle_capacity(p, sd, target);
6434 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6435 }
6436 }
6437
6438 sd = rcu_dereference(per_cpu(sd_llc, target));
6439 if (!sd)
6440 return target;
6441
6442 if (sched_smt_active()) {
6443 has_idle_core = test_idle_cores(target, false);
6444
6445 if (!has_idle_core && cpus_share_cache(prev, target)) {
6446 i = select_idle_smt(p, sd, prev);
6447 if ((unsigned int)i < nr_cpumask_bits)
6448 return i;
6449 }
6450 }
6451
6452 i = select_idle_cpu(p, sd, has_idle_core, target);
6453 if ((unsigned)i < nr_cpumask_bits)
6454 return i;
6455
6456 return target;
6457 }
6458
6459 /*
6460 * cpu_util_without: compute cpu utilization without any contributions from *p
6461 * @cpu: the CPU which utilization is requested
6462 * @p: the task which utilization should be discounted
6463 *
6464 * The utilization of a CPU is defined by the utilization of tasks currently
6465 * enqueued on that CPU as well as tasks which are currently sleeping after an
6466 * execution on that CPU.
6467 *
6468 * This method returns the utilization of the specified CPU by discounting the
6469 * utilization of the specified task, whenever the task is currently
6470 * contributing to the CPU utilization.
6471 */
6472 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6473 {
6474 struct cfs_rq *cfs_rq;
6475 unsigned int util;
6476
6477 /* Task has no contribution or is new */
6478 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6479 return cpu_util_cfs(cpu);
6480
6481 cfs_rq = &cpu_rq(cpu)->cfs;
6482 util = READ_ONCE(cfs_rq->avg.util_avg);
6483
6484 /* Discount task's util from CPU's util */
6485 lsub_positive(&util, task_util(p));
6486
6487 /*
6488 * Covered cases:
6489 *
6490 * a) if *p is the only task sleeping on this CPU, then:
6491 * cpu_util (== task_util) > util_est (== 0)
6492 * and thus we return:
6493 * cpu_util_without = (cpu_util - task_util) = 0
6494 *
6495 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6496 * IDLE, then:
6497 * cpu_util >= task_util
6498 * cpu_util > util_est (== 0)
6499 * and thus we discount *p's blocked utilization to return:
6500 * cpu_util_without = (cpu_util - task_util) >= 0
6501 *
6502 * c) if other tasks are RUNNABLE on that CPU and
6503 * util_est > cpu_util
6504 * then we use util_est since it returns a more restrictive
6505 * estimation of the spare capacity on that CPU, by just
6506 * considering the expected utilization of tasks already
6507 * runnable on that CPU.
6508 *
6509 * Cases a) and b) are covered by the above code, while case c) is
6510 * covered by the following code when estimated utilization is
6511 * enabled.
6512 */
6513 if (sched_feat(UTIL_EST)) {
6514 unsigned int estimated =
6515 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6516
6517 /*
6518 * Despite the following checks we still have a small window
6519 * for a possible race, when an execl's select_task_rq_fair()
6520 * races with LB's detach_task():
6521 *
6522 * detach_task()
6523 * p->on_rq = TASK_ON_RQ_MIGRATING;
6524 * ---------------------------------- A
6525 * deactivate_task() \
6526 * dequeue_task() + RaceTime
6527 * util_est_dequeue() /
6528 * ---------------------------------- B
6529 *
6530 * The additional check on "current == p" it's required to
6531 * properly fix the execl regression and it helps in further
6532 * reducing the chances for the above race.
6533 */
6534 if (unlikely(task_on_rq_queued(p) || current == p))
6535 lsub_positive(&estimated, _task_util_est(p));
6536
6537 util = max(util, estimated);
6538 }
6539
6540 /*
6541 * Utilization (estimated) can exceed the CPU capacity, thus let's
6542 * clamp to the maximum CPU capacity to ensure consistency with
6543 * cpu_util.
6544 */
6545 return min_t(unsigned long, util, capacity_orig_of(cpu));
6546 }
6547
6548 /*
6549 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6550 * to @dst_cpu.
6551 */
6552 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6553 {
6554 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6555 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6556
6557 /*
6558 * If @p migrates from @cpu to another, remove its contribution. Or,
6559 * if @p migrates from another CPU to @cpu, add its contribution. In
6560 * the other cases, @cpu is not impacted by the migration, so the
6561 * util_avg should already be correct.
6562 */
6563 if (task_cpu(p) == cpu && dst_cpu != cpu)
6564 lsub_positive(&util, task_util(p));
6565 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6566 util += task_util(p);
6567
6568 if (sched_feat(UTIL_EST)) {
6569 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6570
6571 /*
6572 * During wake-up, the task isn't enqueued yet and doesn't
6573 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6574 * so just add it (if needed) to "simulate" what will be
6575 * cpu_util after the task has been enqueued.
6576 */
6577 if (dst_cpu == cpu)
6578 util_est += _task_util_est(p);
6579
6580 util = max(util, util_est);
6581 }
6582
6583 return min(util, capacity_orig_of(cpu));
6584 }
6585
6586 /*
6587 * compute_energy(): Estimates the energy that @pd would consume if @p was
6588 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6589 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6590 * to compute what would be the energy if we decided to actually migrate that
6591 * task.
6592 */
6593 static long
6594 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6595 {
6596 struct cpumask *pd_mask = perf_domain_span(pd);
6597 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6598 unsigned long max_util = 0, sum_util = 0;
6599 unsigned long _cpu_cap = cpu_cap;
6600 int cpu;
6601
6602 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6603
6604 /*
6605 * The capacity state of CPUs of the current rd can be driven by CPUs
6606 * of another rd if they belong to the same pd. So, account for the
6607 * utilization of these CPUs too by masking pd with cpu_online_mask
6608 * instead of the rd span.
6609 *
6610 * If an entire pd is outside of the current rd, it will not appear in
6611 * its pd list and will not be accounted by compute_energy().
6612 */
6613 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6614 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6615 unsigned long cpu_util, util_running = util_freq;
6616 struct task_struct *tsk = NULL;
6617
6618 /*
6619 * When @p is placed on @cpu:
6620 *
6621 * util_running = max(cpu_util, cpu_util_est) +
6622 * max(task_util, _task_util_est)
6623 *
6624 * while cpu_util_next is: max(cpu_util + task_util,
6625 * cpu_util_est + _task_util_est)
6626 */
6627 if (cpu == dst_cpu) {
6628 tsk = p;
6629 util_running =
6630 cpu_util_next(cpu, p, -1) + task_util_est(p);
6631 }
6632
6633 /*
6634 * Busy time computation: utilization clamping is not
6635 * required since the ratio (sum_util / cpu_capacity)
6636 * is already enough to scale the EM reported power
6637 * consumption at the (eventually clamped) cpu_capacity.
6638 */
6639 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6640 ENERGY_UTIL, NULL);
6641
6642 sum_util += min(cpu_util, _cpu_cap);
6643
6644 /*
6645 * Performance domain frequency: utilization clamping
6646 * must be considered since it affects the selection
6647 * of the performance domain frequency.
6648 * NOTE: in case RT tasks are running, by default the
6649 * FREQUENCY_UTIL's utilization can be max OPP.
6650 */
6651 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6652 FREQUENCY_UTIL, tsk);
6653 max_util = max(max_util, min(cpu_util, _cpu_cap));
6654 }
6655
6656 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6657 }
6658
6659 /*
6660 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6661 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6662 * spare capacity in each performance domain and uses it as a potential
6663 * candidate to execute the task. Then, it uses the Energy Model to figure
6664 * out which of the CPU candidates is the most energy-efficient.
6665 *
6666 * The rationale for this heuristic is as follows. In a performance domain,
6667 * all the most energy efficient CPU candidates (according to the Energy
6668 * Model) are those for which we'll request a low frequency. When there are
6669 * several CPUs for which the frequency request will be the same, we don't
6670 * have enough data to break the tie between them, because the Energy Model
6671 * only includes active power costs. With this model, if we assume that
6672 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6673 * the maximum spare capacity in a performance domain is guaranteed to be among
6674 * the best candidates of the performance domain.
6675 *
6676 * In practice, it could be preferable from an energy standpoint to pack
6677 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6678 * but that could also hurt our chances to go cluster idle, and we have no
6679 * ways to tell with the current Energy Model if this is actually a good
6680 * idea or not. So, find_energy_efficient_cpu() basically favors
6681 * cluster-packing, and spreading inside a cluster. That should at least be
6682 * a good thing for latency, and this is consistent with the idea that most
6683 * of the energy savings of EAS come from the asymmetry of the system, and
6684 * not so much from breaking the tie between identical CPUs. That's also the
6685 * reason why EAS is enabled in the topology code only for systems where
6686 * SD_ASYM_CPUCAPACITY is set.
6687 *
6688 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6689 * they don't have any useful utilization data yet and it's not possible to
6690 * forecast their impact on energy consumption. Consequently, they will be
6691 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6692 * to be energy-inefficient in some use-cases. The alternative would be to
6693 * bias new tasks towards specific types of CPUs first, or to try to infer
6694 * their util_avg from the parent task, but those heuristics could hurt
6695 * other use-cases too. So, until someone finds a better way to solve this,
6696 * let's keep things simple by re-using the existing slow path.
6697 */
6698 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6699 {
6700 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6701 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6702 int cpu, best_energy_cpu = prev_cpu, target = -1;
6703 unsigned long cpu_cap, util, base_energy = 0;
6704 struct sched_domain *sd;
6705 struct perf_domain *pd;
6706
6707 rcu_read_lock();
6708 pd = rcu_dereference(rd->pd);
6709 if (!pd || READ_ONCE(rd->overutilized))
6710 goto unlock;
6711
6712 /*
6713 * Energy-aware wake-up happens on the lowest sched_domain starting
6714 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6715 */
6716 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6717 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6718 sd = sd->parent;
6719 if (!sd)
6720 goto unlock;
6721
6722 target = prev_cpu;
6723
6724 sync_entity_load_avg(&p->se);
6725 if (!task_util_est(p))
6726 goto unlock;
6727
6728 for (; pd; pd = pd->next) {
6729 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6730 bool compute_prev_delta = false;
6731 unsigned long base_energy_pd;
6732 int max_spare_cap_cpu = -1;
6733
6734 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6735 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6736 continue;
6737
6738 util = cpu_util_next(cpu, p, cpu);
6739 cpu_cap = capacity_of(cpu);
6740 spare_cap = cpu_cap;
6741 lsub_positive(&spare_cap, util);
6742
6743 /*
6744 * Skip CPUs that cannot satisfy the capacity request.
6745 * IOW, placing the task there would make the CPU
6746 * overutilized. Take uclamp into account to see how
6747 * much capacity we can get out of the CPU; this is
6748 * aligned with sched_cpu_util().
6749 */
6750 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6751 if (!fits_capacity(util, cpu_cap))
6752 continue;
6753
6754 if (cpu == prev_cpu) {
6755 /* Always use prev_cpu as a candidate. */
6756 compute_prev_delta = true;
6757 } else if (spare_cap > max_spare_cap) {
6758 /*
6759 * Find the CPU with the maximum spare capacity
6760 * in the performance domain.
6761 */
6762 max_spare_cap = spare_cap;
6763 max_spare_cap_cpu = cpu;
6764 }
6765 }
6766
6767 if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6768 continue;
6769
6770 /* Compute the 'base' energy of the pd, without @p */
6771 base_energy_pd = compute_energy(p, -1, pd);
6772 base_energy += base_energy_pd;
6773
6774 /* Evaluate the energy impact of using prev_cpu. */
6775 if (compute_prev_delta) {
6776 prev_delta = compute_energy(p, prev_cpu, pd);
6777 if (prev_delta < base_energy_pd)
6778 goto unlock;
6779 prev_delta -= base_energy_pd;
6780 best_delta = min(best_delta, prev_delta);
6781 }
6782
6783 /* Evaluate the energy impact of using max_spare_cap_cpu. */
6784 if (max_spare_cap_cpu >= 0) {
6785 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6786 if (cur_delta < base_energy_pd)
6787 goto unlock;
6788 cur_delta -= base_energy_pd;
6789 if (cur_delta < best_delta) {
6790 best_delta = cur_delta;
6791 best_energy_cpu = max_spare_cap_cpu;
6792 }
6793 }
6794 }
6795 rcu_read_unlock();
6796
6797 /*
6798 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6799 * least 6% of the energy used by prev_cpu.
6800 */
6801 if ((prev_delta == ULONG_MAX) ||
6802 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6803 target = best_energy_cpu;
6804
6805 return target;
6806
6807 unlock:
6808 rcu_read_unlock();
6809
6810 return target;
6811 }
6812
6813 /*
6814 * select_task_rq_fair: Select target runqueue for the waking task in domains
6815 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6816 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6817 *
6818 * Balances load by selecting the idlest CPU in the idlest group, or under
6819 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6820 *
6821 * Returns the target CPU number.
6822 */
6823 static int
6824 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6825 {
6826 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6827 struct sched_domain *tmp, *sd = NULL;
6828 int cpu = smp_processor_id();
6829 int new_cpu = prev_cpu;
6830 int want_affine = 0;
6831 /* SD_flags and WF_flags share the first nibble */
6832 int sd_flag = wake_flags & 0xF;
6833
6834 /*
6835 * required for stable ->cpus_allowed
6836 */
6837 lockdep_assert_held(&p->pi_lock);
6838 if (wake_flags & WF_TTWU) {
6839 record_wakee(p);
6840
6841 if (sched_energy_enabled()) {
6842 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6843 if (new_cpu >= 0)
6844 return new_cpu;
6845 new_cpu = prev_cpu;
6846 }
6847
6848 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6849 }
6850
6851 rcu_read_lock();
6852 for_each_domain(cpu, tmp) {
6853 /*
6854 * If both 'cpu' and 'prev_cpu' are part of this domain,
6855 * cpu is a valid SD_WAKE_AFFINE target.
6856 */
6857 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6858 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6859 if (cpu != prev_cpu)
6860 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6861
6862 sd = NULL; /* Prefer wake_affine over balance flags */
6863 break;
6864 }
6865
6866 /*
6867 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
6868 * usually do not have SD_BALANCE_WAKE set. That means wakeup
6869 * will usually go to the fast path.
6870 */
6871 if (tmp->flags & sd_flag)
6872 sd = tmp;
6873 else if (!want_affine)
6874 break;
6875 }
6876
6877 if (unlikely(sd)) {
6878 /* Slow path */
6879 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6880 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
6881 /* Fast path */
6882 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6883 }
6884 rcu_read_unlock();
6885
6886 return new_cpu;
6887 }
6888
6889 static void detach_entity_cfs_rq(struct sched_entity *se);
6890
6891 /*
6892 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6893 * cfs_rq_of(p) references at time of call are still valid and identify the
6894 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6895 */
6896 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6897 {
6898 /*
6899 * As blocked tasks retain absolute vruntime the migration needs to
6900 * deal with this by subtracting the old and adding the new
6901 * min_vruntime -- the latter is done by enqueue_entity() when placing
6902 * the task on the new runqueue.
6903 */
6904 if (READ_ONCE(p->__state) == TASK_WAKING) {
6905 struct sched_entity *se = &p->se;
6906 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6907 u64 min_vruntime;
6908
6909 #ifndef CONFIG_64BIT
6910 u64 min_vruntime_copy;
6911
6912 do {
6913 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6914 smp_rmb();
6915 min_vruntime = cfs_rq->min_vruntime;
6916 } while (min_vruntime != min_vruntime_copy);
6917 #else
6918 min_vruntime = cfs_rq->min_vruntime;
6919 #endif
6920
6921 se->vruntime -= min_vruntime;
6922 }
6923
6924 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6925 /*
6926 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6927 * rq->lock and can modify state directly.
6928 */
6929 lockdep_assert_rq_held(task_rq(p));
6930 detach_entity_cfs_rq(&p->se);
6931
6932 } else {
6933 /*
6934 * We are supposed to update the task to "current" time, then
6935 * its up to date and ready to go to new CPU/cfs_rq. But we
6936 * have difficulty in getting what current time is, so simply
6937 * throw away the out-of-date time. This will result in the
6938 * wakee task is less decayed, but giving the wakee more load
6939 * sounds not bad.
6940 */
6941 remove_entity_load_avg(&p->se);
6942 }
6943
6944 /* Tell new CPU we are migrated */
6945 p->se.avg.last_update_time = 0;
6946
6947 /* We have migrated, no longer consider this task hot */
6948 p->se.exec_start = 0;
6949
6950 update_scan_period(p, new_cpu);
6951 }
6952
6953 static void task_dead_fair(struct task_struct *p)
6954 {
6955 remove_entity_load_avg(&p->se);
6956 }
6957
6958 static int
6959 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6960 {
6961 if (rq->nr_running)
6962 return 1;
6963
6964 return newidle_balance(rq, rf) != 0;
6965 }
6966 #endif /* CONFIG_SMP */
6967
6968 static unsigned long wakeup_gran(struct sched_entity *se)
6969 {
6970 unsigned long gran = sysctl_sched_wakeup_granularity;
6971
6972 /*
6973 * Since its curr running now, convert the gran from real-time
6974 * to virtual-time in his units.
6975 *
6976 * By using 'se' instead of 'curr' we penalize light tasks, so
6977 * they get preempted easier. That is, if 'se' < 'curr' then
6978 * the resulting gran will be larger, therefore penalizing the
6979 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6980 * be smaller, again penalizing the lighter task.
6981 *
6982 * This is especially important for buddies when the leftmost
6983 * task is higher priority than the buddy.
6984 */
6985 return calc_delta_fair(gran, se);
6986 }
6987
6988 /*
6989 * Should 'se' preempt 'curr'.
6990 *
6991 * |s1
6992 * |s2
6993 * |s3
6994 * g
6995 * |<--->|c
6996 *
6997 * w(c, s1) = -1
6998 * w(c, s2) = 0
6999 * w(c, s3) = 1
7000 *
7001 */
7002 static int
7003 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7004 {
7005 s64 gran, vdiff = curr->vruntime - se->vruntime;
7006
7007 if (vdiff <= 0)
7008 return -1;
7009
7010 gran = wakeup_gran(se);
7011 if (vdiff > gran)
7012 return 1;
7013
7014 return 0;
7015 }
7016
7017 static void set_last_buddy(struct sched_entity *se)
7018 {
7019 for_each_sched_entity(se) {
7020 if (SCHED_WARN_ON(!se->on_rq))
7021 return;
7022 if (se_is_idle(se))
7023 return;
7024 cfs_rq_of(se)->last = se;
7025 }
7026 }
7027
7028 static void set_next_buddy(struct sched_entity *se)
7029 {
7030 for_each_sched_entity(se) {
7031 if (SCHED_WARN_ON(!se->on_rq))
7032 return;
7033 if (se_is_idle(se))
7034 return;
7035 cfs_rq_of(se)->next = se;
7036 }
7037 }
7038
7039 static void set_skip_buddy(struct sched_entity *se)
7040 {
7041 for_each_sched_entity(se)
7042 cfs_rq_of(se)->skip = se;
7043 }
7044
7045 /*
7046 * Preempt the current task with a newly woken task if needed:
7047 */
7048 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7049 {
7050 struct task_struct *curr = rq->curr;
7051 struct sched_entity *se = &curr->se, *pse = &p->se;
7052 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7053 int scale = cfs_rq->nr_running >= sched_nr_latency;
7054 int next_buddy_marked = 0;
7055 int cse_is_idle, pse_is_idle;
7056
7057 if (unlikely(se == pse))
7058 return;
7059
7060 /*
7061 * This is possible from callers such as attach_tasks(), in which we
7062 * unconditionally check_preempt_curr() after an enqueue (which may have
7063 * lead to a throttle). This both saves work and prevents false
7064 * next-buddy nomination below.
7065 */
7066 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7067 return;
7068
7069 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7070 set_next_buddy(pse);
7071 next_buddy_marked = 1;
7072 }
7073
7074 /*
7075 * We can come here with TIF_NEED_RESCHED already set from new task
7076 * wake up path.
7077 *
7078 * Note: this also catches the edge-case of curr being in a throttled
7079 * group (e.g. via set_curr_task), since update_curr() (in the
7080 * enqueue of curr) will have resulted in resched being set. This
7081 * prevents us from potentially nominating it as a false LAST_BUDDY
7082 * below.
7083 */
7084 if (test_tsk_need_resched(curr))
7085 return;
7086
7087 /* Idle tasks are by definition preempted by non-idle tasks. */
7088 if (unlikely(task_has_idle_policy(curr)) &&
7089 likely(!task_has_idle_policy(p)))
7090 goto preempt;
7091
7092 /*
7093 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7094 * is driven by the tick):
7095 */
7096 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7097 return;
7098
7099 find_matching_se(&se, &pse);
7100 BUG_ON(!pse);
7101
7102 cse_is_idle = se_is_idle(se);
7103 pse_is_idle = se_is_idle(pse);
7104
7105 /*
7106 * Preempt an idle group in favor of a non-idle group (and don't preempt
7107 * in the inverse case).
7108 */
7109 if (cse_is_idle && !pse_is_idle)
7110 goto preempt;
7111 if (cse_is_idle != pse_is_idle)
7112 return;
7113
7114 update_curr(cfs_rq_of(se));
7115 if (wakeup_preempt_entity(se, pse) == 1) {
7116 /*
7117 * Bias pick_next to pick the sched entity that is
7118 * triggering this preemption.
7119 */
7120 if (!next_buddy_marked)
7121 set_next_buddy(pse);
7122 goto preempt;
7123 }
7124
7125 return;
7126
7127 preempt:
7128 resched_curr(rq);
7129 /*
7130 * Only set the backward buddy when the current task is still
7131 * on the rq. This can happen when a wakeup gets interleaved
7132 * with schedule on the ->pre_schedule() or idle_balance()
7133 * point, either of which can * drop the rq lock.
7134 *
7135 * Also, during early boot the idle thread is in the fair class,
7136 * for obvious reasons its a bad idea to schedule back to it.
7137 */
7138 if (unlikely(!se->on_rq || curr == rq->idle))
7139 return;
7140
7141 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7142 set_last_buddy(se);
7143 }
7144
7145 #ifdef CONFIG_SMP
7146 static struct task_struct *pick_task_fair(struct rq *rq)
7147 {
7148 struct sched_entity *se;
7149 struct cfs_rq *cfs_rq;
7150
7151 again:
7152 cfs_rq = &rq->cfs;
7153 if (!cfs_rq->nr_running)
7154 return NULL;
7155
7156 do {
7157 struct sched_entity *curr = cfs_rq->curr;
7158
7159 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7160 if (curr) {
7161 if (curr->on_rq)
7162 update_curr(cfs_rq);
7163 else
7164 curr = NULL;
7165
7166 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7167 goto again;
7168 }
7169
7170 se = pick_next_entity(cfs_rq, curr);
7171 cfs_rq = group_cfs_rq(se);
7172 } while (cfs_rq);
7173
7174 return task_of(se);
7175 }
7176 #endif
7177
7178 struct task_struct *
7179 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7180 {
7181 struct cfs_rq *cfs_rq = &rq->cfs;
7182 struct sched_entity *se;
7183 struct task_struct *p;
7184 int new_tasks;
7185
7186 again:
7187 if (!sched_fair_runnable(rq))
7188 goto idle;
7189
7190 #ifdef CONFIG_FAIR_GROUP_SCHED
7191 if (!prev || prev->sched_class != &fair_sched_class)
7192 goto simple;
7193
7194 /*
7195 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7196 * likely that a next task is from the same cgroup as the current.
7197 *
7198 * Therefore attempt to avoid putting and setting the entire cgroup
7199 * hierarchy, only change the part that actually changes.
7200 */
7201
7202 do {
7203 struct sched_entity *curr = cfs_rq->curr;
7204
7205 /*
7206 * Since we got here without doing put_prev_entity() we also
7207 * have to consider cfs_rq->curr. If it is still a runnable
7208 * entity, update_curr() will update its vruntime, otherwise
7209 * forget we've ever seen it.
7210 */
7211 if (curr) {
7212 if (curr->on_rq)
7213 update_curr(cfs_rq);
7214 else
7215 curr = NULL;
7216
7217 /*
7218 * This call to check_cfs_rq_runtime() will do the
7219 * throttle and dequeue its entity in the parent(s).
7220 * Therefore the nr_running test will indeed
7221 * be correct.
7222 */
7223 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7224 cfs_rq = &rq->cfs;
7225
7226 if (!cfs_rq->nr_running)
7227 goto idle;
7228
7229 goto simple;
7230 }
7231 }
7232
7233 se = pick_next_entity(cfs_rq, curr);
7234 cfs_rq = group_cfs_rq(se);
7235 } while (cfs_rq);
7236
7237 p = task_of(se);
7238
7239 /*
7240 * Since we haven't yet done put_prev_entity and if the selected task
7241 * is a different task than we started out with, try and touch the
7242 * least amount of cfs_rqs.
7243 */
7244 if (prev != p) {
7245 struct sched_entity *pse = &prev->se;
7246
7247 while (!(cfs_rq = is_same_group(se, pse))) {
7248 int se_depth = se->depth;
7249 int pse_depth = pse->depth;
7250
7251 if (se_depth <= pse_depth) {
7252 put_prev_entity(cfs_rq_of(pse), pse);
7253 pse = parent_entity(pse);
7254 }
7255 if (se_depth >= pse_depth) {
7256 set_next_entity(cfs_rq_of(se), se);
7257 se = parent_entity(se);
7258 }
7259 }
7260
7261 put_prev_entity(cfs_rq, pse);
7262 set_next_entity(cfs_rq, se);
7263 }
7264
7265 goto done;
7266 simple:
7267 #endif
7268 if (prev)
7269 put_prev_task(rq, prev);
7270
7271 do {
7272 se = pick_next_entity(cfs_rq, NULL);
7273 set_next_entity(cfs_rq, se);
7274 cfs_rq = group_cfs_rq(se);
7275 } while (cfs_rq);
7276
7277 p = task_of(se);
7278
7279 done: __maybe_unused;
7280 #ifdef CONFIG_SMP
7281 /*
7282 * Move the next running task to the front of
7283 * the list, so our cfs_tasks list becomes MRU
7284 * one.
7285 */
7286 list_move(&p->se.group_node, &rq->cfs_tasks);
7287 #endif
7288
7289 if (hrtick_enabled_fair(rq))
7290 hrtick_start_fair(rq, p);
7291
7292 update_misfit_status(p, rq);
7293
7294 return p;
7295
7296 idle:
7297 if (!rf)
7298 return NULL;
7299
7300 new_tasks = newidle_balance(rq, rf);
7301
7302 /*
7303 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7304 * possible for any higher priority task to appear. In that case we
7305 * must re-start the pick_next_entity() loop.
7306 */
7307 if (new_tasks < 0)
7308 return RETRY_TASK;
7309
7310 if (new_tasks > 0)
7311 goto again;
7312
7313 /*
7314 * rq is about to be idle, check if we need to update the
7315 * lost_idle_time of clock_pelt
7316 */
7317 update_idle_rq_clock_pelt(rq);
7318
7319 return NULL;
7320 }
7321
7322 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7323 {
7324 return pick_next_task_fair(rq, NULL, NULL);
7325 }
7326
7327 /*
7328 * Account for a descheduled task:
7329 */
7330 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7331 {
7332 struct sched_entity *se = &prev->se;
7333 struct cfs_rq *cfs_rq;
7334
7335 for_each_sched_entity(se) {
7336 cfs_rq = cfs_rq_of(se);
7337 put_prev_entity(cfs_rq, se);
7338 }
7339 }
7340
7341 /*
7342 * sched_yield() is very simple
7343 *
7344 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7345 */
7346 static void yield_task_fair(struct rq *rq)
7347 {
7348 struct task_struct *curr = rq->curr;
7349 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7350 struct sched_entity *se = &curr->se;
7351
7352 /*
7353 * Are we the only task in the tree?
7354 */
7355 if (unlikely(rq->nr_running == 1))
7356 return;
7357
7358 clear_buddies(cfs_rq, se);
7359
7360 if (curr->policy != SCHED_BATCH) {
7361 update_rq_clock(rq);
7362 /*
7363 * Update run-time statistics of the 'current'.
7364 */
7365 update_curr(cfs_rq);
7366 /*
7367 * Tell update_rq_clock() that we've just updated,
7368 * so we don't do microscopic update in schedule()
7369 * and double the fastpath cost.
7370 */
7371 rq_clock_skip_update(rq);
7372 }
7373
7374 set_skip_buddy(se);
7375 }
7376
7377 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7378 {
7379 struct sched_entity *se = &p->se;
7380
7381 /* throttled hierarchies are not runnable */
7382 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7383 return false;
7384
7385 /* Tell the scheduler that we'd really like pse to run next. */
7386 set_next_buddy(se);
7387
7388 yield_task_fair(rq);
7389
7390 return true;
7391 }
7392
7393 #ifdef CONFIG_SMP
7394 /**************************************************
7395 * Fair scheduling class load-balancing methods.
7396 *
7397 * BASICS
7398 *
7399 * The purpose of load-balancing is to achieve the same basic fairness the
7400 * per-CPU scheduler provides, namely provide a proportional amount of compute
7401 * time to each task. This is expressed in the following equation:
7402 *
7403 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7404 *
7405 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7406 * W_i,0 is defined as:
7407 *
7408 * W_i,0 = \Sum_j w_i,j (2)
7409 *
7410 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7411 * is derived from the nice value as per sched_prio_to_weight[].
7412 *
7413 * The weight average is an exponential decay average of the instantaneous
7414 * weight:
7415 *
7416 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7417 *
7418 * C_i is the compute capacity of CPU i, typically it is the
7419 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7420 * can also include other factors [XXX].
7421 *
7422 * To achieve this balance we define a measure of imbalance which follows
7423 * directly from (1):
7424 *
7425 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7426 *
7427 * We them move tasks around to minimize the imbalance. In the continuous
7428 * function space it is obvious this converges, in the discrete case we get
7429 * a few fun cases generally called infeasible weight scenarios.
7430 *
7431 * [XXX expand on:
7432 * - infeasible weights;
7433 * - local vs global optima in the discrete case. ]
7434 *
7435 *
7436 * SCHED DOMAINS
7437 *
7438 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7439 * for all i,j solution, we create a tree of CPUs that follows the hardware
7440 * topology where each level pairs two lower groups (or better). This results
7441 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7442 * tree to only the first of the previous level and we decrease the frequency
7443 * of load-balance at each level inv. proportional to the number of CPUs in
7444 * the groups.
7445 *
7446 * This yields:
7447 *
7448 * log_2 n 1 n
7449 * \Sum { --- * --- * 2^i } = O(n) (5)
7450 * i = 0 2^i 2^i
7451 * `- size of each group
7452 * | | `- number of CPUs doing load-balance
7453 * | `- freq
7454 * `- sum over all levels
7455 *
7456 * Coupled with a limit on how many tasks we can migrate every balance pass,
7457 * this makes (5) the runtime complexity of the balancer.
7458 *
7459 * An important property here is that each CPU is still (indirectly) connected
7460 * to every other CPU in at most O(log n) steps:
7461 *
7462 * The adjacency matrix of the resulting graph is given by:
7463 *
7464 * log_2 n
7465 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7466 * k = 0
7467 *
7468 * And you'll find that:
7469 *
7470 * A^(log_2 n)_i,j != 0 for all i,j (7)
7471 *
7472 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7473 * The task movement gives a factor of O(m), giving a convergence complexity
7474 * of:
7475 *
7476 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7477 *
7478 *
7479 * WORK CONSERVING
7480 *
7481 * In order to avoid CPUs going idle while there's still work to do, new idle
7482 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7483 * tree itself instead of relying on other CPUs to bring it work.
7484 *
7485 * This adds some complexity to both (5) and (8) but it reduces the total idle
7486 * time.
7487 *
7488 * [XXX more?]
7489 *
7490 *
7491 * CGROUPS
7492 *
7493 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7494 *
7495 * s_k,i
7496 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7497 * S_k
7498 *
7499 * Where
7500 *
7501 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7502 *
7503 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7504 *
7505 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7506 * property.
7507 *
7508 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7509 * rewrite all of this once again.]
7510 */
7511
7512 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7513
7514 enum fbq_type { regular, remote, all };
7515
7516 /*
7517 * 'group_type' describes the group of CPUs at the moment of load balancing.
7518 *
7519 * The enum is ordered by pulling priority, with the group with lowest priority
7520 * first so the group_type can simply be compared when selecting the busiest
7521 * group. See update_sd_pick_busiest().
7522 */
7523 enum group_type {
7524 /* The group has spare capacity that can be used to run more tasks. */
7525 group_has_spare = 0,
7526 /*
7527 * The group is fully used and the tasks don't compete for more CPU
7528 * cycles. Nevertheless, some tasks might wait before running.
7529 */
7530 group_fully_busy,
7531 /*
7532 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7533 * and must be migrated to a more powerful CPU.
7534 */
7535 group_misfit_task,
7536 /*
7537 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7538 * and the task should be migrated to it instead of running on the
7539 * current CPU.
7540 */
7541 group_asym_packing,
7542 /*
7543 * The tasks' affinity constraints previously prevented the scheduler
7544 * from balancing the load across the system.
7545 */
7546 group_imbalanced,
7547 /*
7548 * The CPU is overloaded and can't provide expected CPU cycles to all
7549 * tasks.
7550 */
7551 group_overloaded
7552 };
7553
7554 enum migration_type {
7555 migrate_load = 0,
7556 migrate_util,
7557 migrate_task,
7558 migrate_misfit
7559 };
7560
7561 #define LBF_ALL_PINNED 0x01
7562 #define LBF_NEED_BREAK 0x02
7563 #define LBF_DST_PINNED 0x04
7564 #define LBF_SOME_PINNED 0x08
7565 #define LBF_ACTIVE_LB 0x10
7566
7567 struct lb_env {
7568 struct sched_domain *sd;
7569
7570 struct rq *src_rq;
7571 int src_cpu;
7572
7573 int dst_cpu;
7574 struct rq *dst_rq;
7575
7576 struct cpumask *dst_grpmask;
7577 int new_dst_cpu;
7578 enum cpu_idle_type idle;
7579 long imbalance;
7580 /* The set of CPUs under consideration for load-balancing */
7581 struct cpumask *cpus;
7582
7583 unsigned int flags;
7584
7585 unsigned int loop;
7586 unsigned int loop_break;
7587 unsigned int loop_max;
7588
7589 enum fbq_type fbq_type;
7590 enum migration_type migration_type;
7591 struct list_head tasks;
7592 };
7593
7594 /*
7595 * Is this task likely cache-hot:
7596 */
7597 static int task_hot(struct task_struct *p, struct lb_env *env)
7598 {
7599 s64 delta;
7600
7601 lockdep_assert_rq_held(env->src_rq);
7602
7603 if (p->sched_class != &fair_sched_class)
7604 return 0;
7605
7606 if (unlikely(task_has_idle_policy(p)))
7607 return 0;
7608
7609 /* SMT siblings share cache */
7610 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7611 return 0;
7612
7613 /*
7614 * Buddy candidates are cache hot:
7615 */
7616 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7617 (&p->se == cfs_rq_of(&p->se)->next ||
7618 &p->se == cfs_rq_of(&p->se)->last))
7619 return 1;
7620
7621 if (sysctl_sched_migration_cost == -1)
7622 return 1;
7623
7624 /*
7625 * Don't migrate task if the task's cookie does not match
7626 * with the destination CPU's core cookie.
7627 */
7628 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7629 return 1;
7630
7631 if (sysctl_sched_migration_cost == 0)
7632 return 0;
7633
7634 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7635
7636 return delta < (s64)sysctl_sched_migration_cost;
7637 }
7638
7639 #ifdef CONFIG_NUMA_BALANCING
7640 /*
7641 * Returns 1, if task migration degrades locality
7642 * Returns 0, if task migration improves locality i.e migration preferred.
7643 * Returns -1, if task migration is not affected by locality.
7644 */
7645 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7646 {
7647 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7648 unsigned long src_weight, dst_weight;
7649 int src_nid, dst_nid, dist;
7650
7651 if (!static_branch_likely(&sched_numa_balancing))
7652 return -1;
7653
7654 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7655 return -1;
7656
7657 src_nid = cpu_to_node(env->src_cpu);
7658 dst_nid = cpu_to_node(env->dst_cpu);
7659
7660 if (src_nid == dst_nid)
7661 return -1;
7662
7663 /* Migrating away from the preferred node is always bad. */
7664 if (src_nid == p->numa_preferred_nid) {
7665 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7666 return 1;
7667 else
7668 return -1;
7669 }
7670
7671 /* Encourage migration to the preferred node. */
7672 if (dst_nid == p->numa_preferred_nid)
7673 return 0;
7674
7675 /* Leaving a core idle is often worse than degrading locality. */
7676 if (env->idle == CPU_IDLE)
7677 return -1;
7678
7679 dist = node_distance(src_nid, dst_nid);
7680 if (numa_group) {
7681 src_weight = group_weight(p, src_nid, dist);
7682 dst_weight = group_weight(p, dst_nid, dist);
7683 } else {
7684 src_weight = task_weight(p, src_nid, dist);
7685 dst_weight = task_weight(p, dst_nid, dist);
7686 }
7687
7688 return dst_weight < src_weight;
7689 }
7690
7691 #else
7692 static inline int migrate_degrades_locality(struct task_struct *p,
7693 struct lb_env *env)
7694 {
7695 return -1;
7696 }
7697 #endif
7698
7699 /*
7700 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7701 */
7702 static
7703 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7704 {
7705 int tsk_cache_hot;
7706
7707 lockdep_assert_rq_held(env->src_rq);
7708
7709 /*
7710 * We do not migrate tasks that are:
7711 * 1) throttled_lb_pair, or
7712 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7713 * 3) running (obviously), or
7714 * 4) are cache-hot on their current CPU.
7715 */
7716 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7717 return 0;
7718
7719 /* Disregard pcpu kthreads; they are where they need to be. */
7720 if (kthread_is_per_cpu(p))
7721 return 0;
7722
7723 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7724 int cpu;
7725
7726 schedstat_inc(p->stats.nr_failed_migrations_affine);
7727
7728 env->flags |= LBF_SOME_PINNED;
7729
7730 /*
7731 * Remember if this task can be migrated to any other CPU in
7732 * our sched_group. We may want to revisit it if we couldn't
7733 * meet load balance goals by pulling other tasks on src_cpu.
7734 *
7735 * Avoid computing new_dst_cpu
7736 * - for NEWLY_IDLE
7737 * - if we have already computed one in current iteration
7738 * - if it's an active balance
7739 */
7740 if (env->idle == CPU_NEWLY_IDLE ||
7741 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7742 return 0;
7743
7744 /* Prevent to re-select dst_cpu via env's CPUs: */
7745 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7746 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7747 env->flags |= LBF_DST_PINNED;
7748 env->new_dst_cpu = cpu;
7749 break;
7750 }
7751 }
7752
7753 return 0;
7754 }
7755
7756 /* Record that we found at least one task that could run on dst_cpu */
7757 env->flags &= ~LBF_ALL_PINNED;
7758
7759 if (task_running(env->src_rq, p)) {
7760 schedstat_inc(p->stats.nr_failed_migrations_running);
7761 return 0;
7762 }
7763
7764 /*
7765 * Aggressive migration if:
7766 * 1) active balance
7767 * 2) destination numa is preferred
7768 * 3) task is cache cold, or
7769 * 4) too many balance attempts have failed.
7770 */
7771 if (env->flags & LBF_ACTIVE_LB)
7772 return 1;
7773
7774 tsk_cache_hot = migrate_degrades_locality(p, env);
7775 if (tsk_cache_hot == -1)
7776 tsk_cache_hot = task_hot(p, env);
7777
7778 if (tsk_cache_hot <= 0 ||
7779 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7780 if (tsk_cache_hot == 1) {
7781 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7782 schedstat_inc(p->stats.nr_forced_migrations);
7783 }
7784 return 1;
7785 }
7786
7787 schedstat_inc(p->stats.nr_failed_migrations_hot);
7788 return 0;
7789 }
7790
7791 /*
7792 * detach_task() -- detach the task for the migration specified in env
7793 */
7794 static void detach_task(struct task_struct *p, struct lb_env *env)
7795 {
7796 lockdep_assert_rq_held(env->src_rq);
7797
7798 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7799 set_task_cpu(p, env->dst_cpu);
7800 }
7801
7802 /*
7803 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7804 * part of active balancing operations within "domain".
7805 *
7806 * Returns a task if successful and NULL otherwise.
7807 */
7808 static struct task_struct *detach_one_task(struct lb_env *env)
7809 {
7810 struct task_struct *p;
7811
7812 lockdep_assert_rq_held(env->src_rq);
7813
7814 list_for_each_entry_reverse(p,
7815 &env->src_rq->cfs_tasks, se.group_node) {
7816 if (!can_migrate_task(p, env))
7817 continue;
7818
7819 detach_task(p, env);
7820
7821 /*
7822 * Right now, this is only the second place where
7823 * lb_gained[env->idle] is updated (other is detach_tasks)
7824 * so we can safely collect stats here rather than
7825 * inside detach_tasks().
7826 */
7827 schedstat_inc(env->sd->lb_gained[env->idle]);
7828 return p;
7829 }
7830 return NULL;
7831 }
7832
7833 static const unsigned int sched_nr_migrate_break = 32;
7834
7835 /*
7836 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7837 * busiest_rq, as part of a balancing operation within domain "sd".
7838 *
7839 * Returns number of detached tasks if successful and 0 otherwise.
7840 */
7841 static int detach_tasks(struct lb_env *env)
7842 {
7843 struct list_head *tasks = &env->src_rq->cfs_tasks;
7844 unsigned long util, load;
7845 struct task_struct *p;
7846 int detached = 0;
7847
7848 lockdep_assert_rq_held(env->src_rq);
7849
7850 /*
7851 * Source run queue has been emptied by another CPU, clear
7852 * LBF_ALL_PINNED flag as we will not test any task.
7853 */
7854 if (env->src_rq->nr_running <= 1) {
7855 env->flags &= ~LBF_ALL_PINNED;
7856 return 0;
7857 }
7858
7859 if (env->imbalance <= 0)
7860 return 0;
7861
7862 while (!list_empty(tasks)) {
7863 /*
7864 * We don't want to steal all, otherwise we may be treated likewise,
7865 * which could at worst lead to a livelock crash.
7866 */
7867 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7868 break;
7869
7870 p = list_last_entry(tasks, struct task_struct, se.group_node);
7871
7872 env->loop++;
7873 /* We've more or less seen every task there is, call it quits */
7874 if (env->loop > env->loop_max)
7875 break;
7876
7877 /* take a breather every nr_migrate tasks */
7878 if (env->loop > env->loop_break) {
7879 env->loop_break += sched_nr_migrate_break;
7880 env->flags |= LBF_NEED_BREAK;
7881 break;
7882 }
7883
7884 if (!can_migrate_task(p, env))
7885 goto next;
7886
7887 switch (env->migration_type) {
7888 case migrate_load:
7889 /*
7890 * Depending of the number of CPUs and tasks and the
7891 * cgroup hierarchy, task_h_load() can return a null
7892 * value. Make sure that env->imbalance decreases
7893 * otherwise detach_tasks() will stop only after
7894 * detaching up to loop_max tasks.
7895 */
7896 load = max_t(unsigned long, task_h_load(p), 1);
7897
7898 if (sched_feat(LB_MIN) &&
7899 load < 16 && !env->sd->nr_balance_failed)
7900 goto next;
7901
7902 /*
7903 * Make sure that we don't migrate too much load.
7904 * Nevertheless, let relax the constraint if
7905 * scheduler fails to find a good waiting task to
7906 * migrate.
7907 */
7908 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7909 goto next;
7910
7911 env->imbalance -= load;
7912 break;
7913
7914 case migrate_util:
7915 util = task_util_est(p);
7916
7917 if (util > env->imbalance)
7918 goto next;
7919
7920 env->imbalance -= util;
7921 break;
7922
7923 case migrate_task:
7924 env->imbalance--;
7925 break;
7926
7927 case migrate_misfit:
7928 /* This is not a misfit task */
7929 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7930 goto next;
7931
7932 env->imbalance = 0;
7933 break;
7934 }
7935
7936 detach_task(p, env);
7937 list_add(&p->se.group_node, &env->tasks);
7938
7939 detached++;
7940
7941 #ifdef CONFIG_PREEMPTION
7942 /*
7943 * NEWIDLE balancing is a source of latency, so preemptible
7944 * kernels will stop after the first task is detached to minimize
7945 * the critical section.
7946 */
7947 if (env->idle == CPU_NEWLY_IDLE)
7948 break;
7949 #endif
7950
7951 /*
7952 * We only want to steal up to the prescribed amount of
7953 * load/util/tasks.
7954 */
7955 if (env->imbalance <= 0)
7956 break;
7957
7958 continue;
7959 next:
7960 list_move(&p->se.group_node, tasks);
7961 }
7962
7963 /*
7964 * Right now, this is one of only two places we collect this stat
7965 * so we can safely collect detach_one_task() stats here rather
7966 * than inside detach_one_task().
7967 */
7968 schedstat_add(env->sd->lb_gained[env->idle], detached);
7969
7970 return detached;
7971 }
7972
7973 /*
7974 * attach_task() -- attach the task detached by detach_task() to its new rq.
7975 */
7976 static void attach_task(struct rq *rq, struct task_struct *p)
7977 {
7978 lockdep_assert_rq_held(rq);
7979
7980 BUG_ON(task_rq(p) != rq);
7981 activate_task(rq, p, ENQUEUE_NOCLOCK);
7982 check_preempt_curr(rq, p, 0);
7983 }
7984
7985 /*
7986 * attach_one_task() -- attaches the task returned from detach_one_task() to
7987 * its new rq.
7988 */
7989 static void attach_one_task(struct rq *rq, struct task_struct *p)
7990 {
7991 struct rq_flags rf;
7992
7993 rq_lock(rq, &rf);
7994 update_rq_clock(rq);
7995 attach_task(rq, p);
7996 rq_unlock(rq, &rf);
7997 }
7998
7999 /*
8000 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8001 * new rq.
8002 */
8003 static void attach_tasks(struct lb_env *env)
8004 {
8005 struct list_head *tasks = &env->tasks;
8006 struct task_struct *p;
8007 struct rq_flags rf;
8008
8009 rq_lock(env->dst_rq, &rf);
8010 update_rq_clock(env->dst_rq);
8011
8012 while (!list_empty(tasks)) {
8013 p = list_first_entry(tasks, struct task_struct, se.group_node);
8014 list_del_init(&p->se.group_node);
8015
8016 attach_task(env->dst_rq, p);
8017 }
8018
8019 rq_unlock(env->dst_rq, &rf);
8020 }
8021
8022 #ifdef CONFIG_NO_HZ_COMMON
8023 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8024 {
8025 if (cfs_rq->avg.load_avg)
8026 return true;
8027
8028 if (cfs_rq->avg.util_avg)
8029 return true;
8030
8031 return false;
8032 }
8033
8034 static inline bool others_have_blocked(struct rq *rq)
8035 {
8036 if (READ_ONCE(rq->avg_rt.util_avg))
8037 return true;
8038
8039 if (READ_ONCE(rq->avg_dl.util_avg))
8040 return true;
8041
8042 if (thermal_load_avg(rq))
8043 return true;
8044
8045 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8046 if (READ_ONCE(rq->avg_irq.util_avg))
8047 return true;
8048 #endif
8049
8050 return false;
8051 }
8052
8053 static inline void update_blocked_load_tick(struct rq *rq)
8054 {
8055 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8056 }
8057
8058 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8059 {
8060 if (!has_blocked)
8061 rq->has_blocked_load = 0;
8062 }
8063 #else
8064 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8065 static inline bool others_have_blocked(struct rq *rq) { return false; }
8066 static inline void update_blocked_load_tick(struct rq *rq) {}
8067 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8068 #endif
8069
8070 static bool __update_blocked_others(struct rq *rq, bool *done)
8071 {
8072 const struct sched_class *curr_class;
8073 u64 now = rq_clock_pelt(rq);
8074 unsigned long thermal_pressure;
8075 bool decayed;
8076
8077 /*
8078 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8079 * DL and IRQ signals have been updated before updating CFS.
8080 */
8081 curr_class = rq->curr->sched_class;
8082
8083 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8084
8085 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8086 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8087 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8088 update_irq_load_avg(rq, 0);
8089
8090 if (others_have_blocked(rq))
8091 *done = false;
8092
8093 return decayed;
8094 }
8095
8096 #ifdef CONFIG_FAIR_GROUP_SCHED
8097
8098 static bool __update_blocked_fair(struct rq *rq, bool *done)
8099 {
8100 struct cfs_rq *cfs_rq, *pos;
8101 bool decayed = false;
8102 int cpu = cpu_of(rq);
8103
8104 /*
8105 * Iterates the task_group tree in a bottom up fashion, see
8106 * list_add_leaf_cfs_rq() for details.
8107 */
8108 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8109 struct sched_entity *se;
8110
8111 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8112 update_tg_load_avg(cfs_rq);
8113
8114 if (cfs_rq == &rq->cfs)
8115 decayed = true;
8116 }
8117
8118 /* Propagate pending load changes to the parent, if any: */
8119 se = cfs_rq->tg->se[cpu];
8120 if (se && !skip_blocked_update(se))
8121 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8122
8123 /*
8124 * There can be a lot of idle CPU cgroups. Don't let fully
8125 * decayed cfs_rqs linger on the list.
8126 */
8127 if (cfs_rq_is_decayed(cfs_rq))
8128 list_del_leaf_cfs_rq(cfs_rq);
8129
8130 /* Don't need periodic decay once load/util_avg are null */
8131 if (cfs_rq_has_blocked(cfs_rq))
8132 *done = false;
8133 }
8134
8135 return decayed;
8136 }
8137
8138 /*
8139 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8140 * This needs to be done in a top-down fashion because the load of a child
8141 * group is a fraction of its parents load.
8142 */
8143 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8144 {
8145 struct rq *rq = rq_of(cfs_rq);
8146 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8147 unsigned long now = jiffies;
8148 unsigned long load;
8149
8150 if (cfs_rq->last_h_load_update == now)
8151 return;
8152
8153 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8154 for_each_sched_entity(se) {
8155 cfs_rq = cfs_rq_of(se);
8156 WRITE_ONCE(cfs_rq->h_load_next, se);
8157 if (cfs_rq->last_h_load_update == now)
8158 break;
8159 }
8160
8161 if (!se) {
8162 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8163 cfs_rq->last_h_load_update = now;
8164 }
8165
8166 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8167 load = cfs_rq->h_load;
8168 load = div64_ul(load * se->avg.load_avg,
8169 cfs_rq_load_avg(cfs_rq) + 1);
8170 cfs_rq = group_cfs_rq(se);
8171 cfs_rq->h_load = load;
8172 cfs_rq->last_h_load_update = now;
8173 }
8174 }
8175
8176 static unsigned long task_h_load(struct task_struct *p)
8177 {
8178 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8179
8180 update_cfs_rq_h_load(cfs_rq);
8181 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8182 cfs_rq_load_avg(cfs_rq) + 1);
8183 }
8184 #else
8185 static bool __update_blocked_fair(struct rq *rq, bool *done)
8186 {
8187 struct cfs_rq *cfs_rq = &rq->cfs;
8188 bool decayed;
8189
8190 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8191 if (cfs_rq_has_blocked(cfs_rq))
8192 *done = false;
8193
8194 return decayed;
8195 }
8196
8197 static unsigned long task_h_load(struct task_struct *p)
8198 {
8199 return p->se.avg.load_avg;
8200 }
8201 #endif
8202
8203 static void update_blocked_averages(int cpu)
8204 {
8205 bool decayed = false, done = true;
8206 struct rq *rq = cpu_rq(cpu);
8207 struct rq_flags rf;
8208
8209 rq_lock_irqsave(rq, &rf);
8210 update_blocked_load_tick(rq);
8211 update_rq_clock(rq);
8212
8213 decayed |= __update_blocked_others(rq, &done);
8214 decayed |= __update_blocked_fair(rq, &done);
8215
8216 update_blocked_load_status(rq, !done);
8217 if (decayed)
8218 cpufreq_update_util(rq, 0);
8219 rq_unlock_irqrestore(rq, &rf);
8220 }
8221
8222 /********** Helpers for find_busiest_group ************************/
8223
8224 /*
8225 * sg_lb_stats - stats of a sched_group required for load_balancing
8226 */
8227 struct sg_lb_stats {
8228 unsigned long avg_load; /*Avg load across the CPUs of the group */
8229 unsigned long group_load; /* Total load over the CPUs of the group */
8230 unsigned long group_capacity;
8231 unsigned long group_util; /* Total utilization over the CPUs of the group */
8232 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8233 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8234 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8235 unsigned int idle_cpus;
8236 unsigned int group_weight;
8237 enum group_type group_type;
8238 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8239 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8240 #ifdef CONFIG_NUMA_BALANCING
8241 unsigned int nr_numa_running;
8242 unsigned int nr_preferred_running;
8243 #endif
8244 };
8245
8246 /*
8247 * sd_lb_stats - Structure to store the statistics of a sched_domain
8248 * during load balancing.
8249 */
8250 struct sd_lb_stats {
8251 struct sched_group *busiest; /* Busiest group in this sd */
8252 struct sched_group *local; /* Local group in this sd */
8253 unsigned long total_load; /* Total load of all groups in sd */
8254 unsigned long total_capacity; /* Total capacity of all groups in sd */
8255 unsigned long avg_load; /* Average load across all groups in sd */
8256 unsigned int prefer_sibling; /* tasks should go to sibling first */
8257
8258 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8259 struct sg_lb_stats local_stat; /* Statistics of the local group */
8260 };
8261
8262 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8263 {
8264 /*
8265 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8266 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8267 * We must however set busiest_stat::group_type and
8268 * busiest_stat::idle_cpus to the worst busiest group because
8269 * update_sd_pick_busiest() reads these before assignment.
8270 */
8271 *sds = (struct sd_lb_stats){
8272 .busiest = NULL,
8273 .local = NULL,
8274 .total_load = 0UL,
8275 .total_capacity = 0UL,
8276 .busiest_stat = {
8277 .idle_cpus = UINT_MAX,
8278 .group_type = group_has_spare,
8279 },
8280 };
8281 }
8282
8283 static unsigned long scale_rt_capacity(int cpu)
8284 {
8285 struct rq *rq = cpu_rq(cpu);
8286 unsigned long max = arch_scale_cpu_capacity(cpu);
8287 unsigned long used, free;
8288 unsigned long irq;
8289
8290 irq = cpu_util_irq(rq);
8291
8292 if (unlikely(irq >= max))
8293 return 1;
8294
8295 /*
8296 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8297 * (running and not running) with weights 0 and 1024 respectively.
8298 * avg_thermal.load_avg tracks thermal pressure and the weighted
8299 * average uses the actual delta max capacity(load).
8300 */
8301 used = READ_ONCE(rq->avg_rt.util_avg);
8302 used += READ_ONCE(rq->avg_dl.util_avg);
8303 used += thermal_load_avg(rq);
8304
8305 if (unlikely(used >= max))
8306 return 1;
8307
8308 free = max - used;
8309
8310 return scale_irq_capacity(free, irq, max);
8311 }
8312
8313 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8314 {
8315 unsigned long capacity = scale_rt_capacity(cpu);
8316 struct sched_group *sdg = sd->groups;
8317
8318 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8319
8320 if (!capacity)
8321 capacity = 1;
8322
8323 cpu_rq(cpu)->cpu_capacity = capacity;
8324 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8325
8326 sdg->sgc->capacity = capacity;
8327 sdg->sgc->min_capacity = capacity;
8328 sdg->sgc->max_capacity = capacity;
8329 }
8330
8331 void update_group_capacity(struct sched_domain *sd, int cpu)
8332 {
8333 struct sched_domain *child = sd->child;
8334 struct sched_group *group, *sdg = sd->groups;
8335 unsigned long capacity, min_capacity, max_capacity;
8336 unsigned long interval;
8337
8338 interval = msecs_to_jiffies(sd->balance_interval);
8339 interval = clamp(interval, 1UL, max_load_balance_interval);
8340 sdg->sgc->next_update = jiffies + interval;
8341
8342 if (!child) {
8343 update_cpu_capacity(sd, cpu);
8344 return;
8345 }
8346
8347 capacity = 0;
8348 min_capacity = ULONG_MAX;
8349 max_capacity = 0;
8350
8351 if (child->flags & SD_OVERLAP) {
8352 /*
8353 * SD_OVERLAP domains cannot assume that child groups
8354 * span the current group.
8355 */
8356
8357 for_each_cpu(cpu, sched_group_span(sdg)) {
8358 unsigned long cpu_cap = capacity_of(cpu);
8359
8360 capacity += cpu_cap;
8361 min_capacity = min(cpu_cap, min_capacity);
8362 max_capacity = max(cpu_cap, max_capacity);
8363 }
8364 } else {
8365 /*
8366 * !SD_OVERLAP domains can assume that child groups
8367 * span the current group.
8368 */
8369
8370 group = child->groups;
8371 do {
8372 struct sched_group_capacity *sgc = group->sgc;
8373
8374 capacity += sgc->capacity;
8375 min_capacity = min(sgc->min_capacity, min_capacity);
8376 max_capacity = max(sgc->max_capacity, max_capacity);
8377 group = group->next;
8378 } while (group != child->groups);
8379 }
8380
8381 sdg->sgc->capacity = capacity;
8382 sdg->sgc->min_capacity = min_capacity;
8383 sdg->sgc->max_capacity = max_capacity;
8384 }
8385
8386 /*
8387 * Check whether the capacity of the rq has been noticeably reduced by side
8388 * activity. The imbalance_pct is used for the threshold.
8389 * Return true is the capacity is reduced
8390 */
8391 static inline int
8392 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8393 {
8394 return ((rq->cpu_capacity * sd->imbalance_pct) <
8395 (rq->cpu_capacity_orig * 100));
8396 }
8397
8398 /*
8399 * Check whether a rq has a misfit task and if it looks like we can actually
8400 * help that task: we can migrate the task to a CPU of higher capacity, or
8401 * the task's current CPU is heavily pressured.
8402 */
8403 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8404 {
8405 return rq->misfit_task_load &&
8406 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8407 check_cpu_capacity(rq, sd));
8408 }
8409
8410 /*
8411 * Group imbalance indicates (and tries to solve) the problem where balancing
8412 * groups is inadequate due to ->cpus_ptr constraints.
8413 *
8414 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8415 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8416 * Something like:
8417 *
8418 * { 0 1 2 3 } { 4 5 6 7 }
8419 * * * * *
8420 *
8421 * If we were to balance group-wise we'd place two tasks in the first group and
8422 * two tasks in the second group. Clearly this is undesired as it will overload
8423 * cpu 3 and leave one of the CPUs in the second group unused.
8424 *
8425 * The current solution to this issue is detecting the skew in the first group
8426 * by noticing the lower domain failed to reach balance and had difficulty
8427 * moving tasks due to affinity constraints.
8428 *
8429 * When this is so detected; this group becomes a candidate for busiest; see
8430 * update_sd_pick_busiest(). And calculate_imbalance() and
8431 * find_busiest_group() avoid some of the usual balance conditions to allow it
8432 * to create an effective group imbalance.
8433 *
8434 * This is a somewhat tricky proposition since the next run might not find the
8435 * group imbalance and decide the groups need to be balanced again. A most
8436 * subtle and fragile situation.
8437 */
8438
8439 static inline int sg_imbalanced(struct sched_group *group)
8440 {
8441 return group->sgc->imbalance;
8442 }
8443
8444 /*
8445 * group_has_capacity returns true if the group has spare capacity that could
8446 * be used by some tasks.
8447 * We consider that a group has spare capacity if the * number of task is
8448 * smaller than the number of CPUs or if the utilization is lower than the
8449 * available capacity for CFS tasks.
8450 * For the latter, we use a threshold to stabilize the state, to take into
8451 * account the variance of the tasks' load and to return true if the available
8452 * capacity in meaningful for the load balancer.
8453 * As an example, an available capacity of 1% can appear but it doesn't make
8454 * any benefit for the load balance.
8455 */
8456 static inline bool
8457 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8458 {
8459 if (sgs->sum_nr_running < sgs->group_weight)
8460 return true;
8461
8462 if ((sgs->group_capacity * imbalance_pct) <
8463 (sgs->group_runnable * 100))
8464 return false;
8465
8466 if ((sgs->group_capacity * 100) >
8467 (sgs->group_util * imbalance_pct))
8468 return true;
8469
8470 return false;
8471 }
8472
8473 /*
8474 * group_is_overloaded returns true if the group has more tasks than it can
8475 * handle.
8476 * group_is_overloaded is not equals to !group_has_capacity because a group
8477 * with the exact right number of tasks, has no more spare capacity but is not
8478 * overloaded so both group_has_capacity and group_is_overloaded return
8479 * false.
8480 */
8481 static inline bool
8482 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8483 {
8484 if (sgs->sum_nr_running <= sgs->group_weight)
8485 return false;
8486
8487 if ((sgs->group_capacity * 100) <
8488 (sgs->group_util * imbalance_pct))
8489 return true;
8490
8491 if ((sgs->group_capacity * imbalance_pct) <
8492 (sgs->group_runnable * 100))
8493 return true;
8494
8495 return false;
8496 }
8497
8498 static inline enum
8499 group_type group_classify(unsigned int imbalance_pct,
8500 struct sched_group *group,
8501 struct sg_lb_stats *sgs)
8502 {
8503 if (group_is_overloaded(imbalance_pct, sgs))
8504 return group_overloaded;
8505
8506 if (sg_imbalanced(group))
8507 return group_imbalanced;
8508
8509 if (sgs->group_asym_packing)
8510 return group_asym_packing;
8511
8512 if (sgs->group_misfit_task_load)
8513 return group_misfit_task;
8514
8515 if (!group_has_capacity(imbalance_pct, sgs))
8516 return group_fully_busy;
8517
8518 return group_has_spare;
8519 }
8520
8521 /**
8522 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8523 * @dst_cpu: Destination CPU of the load balancing
8524 * @sds: Load-balancing data with statistics of the local group
8525 * @sgs: Load-balancing statistics of the candidate busiest group
8526 * @sg: The candidate busiest group
8527 *
8528 * Check the state of the SMT siblings of both @sds::local and @sg and decide
8529 * if @dst_cpu can pull tasks.
8530 *
8531 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8532 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8533 * only if @dst_cpu has higher priority.
8534 *
8535 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8536 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8537 * Bigger imbalances in the number of busy CPUs will be dealt with in
8538 * update_sd_pick_busiest().
8539 *
8540 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8541 * of @dst_cpu are idle and @sg has lower priority.
8542 */
8543 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8544 struct sg_lb_stats *sgs,
8545 struct sched_group *sg)
8546 {
8547 #ifdef CONFIG_SCHED_SMT
8548 bool local_is_smt, sg_is_smt;
8549 int sg_busy_cpus;
8550
8551 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8552 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8553
8554 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8555
8556 if (!local_is_smt) {
8557 /*
8558 * If we are here, @dst_cpu is idle and does not have SMT
8559 * siblings. Pull tasks if candidate group has two or more
8560 * busy CPUs.
8561 */
8562 if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8563 return true;
8564
8565 /*
8566 * @dst_cpu does not have SMT siblings. @sg may have SMT
8567 * siblings and only one is busy. In such case, @dst_cpu
8568 * can help if it has higher priority and is idle (i.e.,
8569 * it has no running tasks).
8570 */
8571 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8572 }
8573
8574 /* @dst_cpu has SMT siblings. */
8575
8576 if (sg_is_smt) {
8577 int local_busy_cpus = sds->local->group_weight -
8578 sds->local_stat.idle_cpus;
8579 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8580
8581 if (busy_cpus_delta == 1)
8582 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8583
8584 return false;
8585 }
8586
8587 /*
8588 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8589 * up with more than one busy SMT sibling and only pull tasks if there
8590 * are not busy CPUs (i.e., no CPU has running tasks).
8591 */
8592 if (!sds->local_stat.sum_nr_running)
8593 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8594
8595 return false;
8596 #else
8597 /* Always return false so that callers deal with non-SMT cases. */
8598 return false;
8599 #endif
8600 }
8601
8602 static inline bool
8603 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
8604 struct sched_group *group)
8605 {
8606 /* Only do SMT checks if either local or candidate have SMT siblings */
8607 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8608 (group->flags & SD_SHARE_CPUCAPACITY))
8609 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8610
8611 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8612 }
8613
8614 /**
8615 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8616 * @env: The load balancing environment.
8617 * @group: sched_group whose statistics are to be updated.
8618 * @sgs: variable to hold the statistics for this group.
8619 * @sg_status: Holds flag indicating the status of the sched_group
8620 */
8621 static inline void update_sg_lb_stats(struct lb_env *env,
8622 struct sd_lb_stats *sds,
8623 struct sched_group *group,
8624 struct sg_lb_stats *sgs,
8625 int *sg_status)
8626 {
8627 int i, nr_running, local_group;
8628
8629 memset(sgs, 0, sizeof(*sgs));
8630
8631 local_group = group == sds->local;
8632
8633 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8634 struct rq *rq = cpu_rq(i);
8635
8636 sgs->group_load += cpu_load(rq);
8637 sgs->group_util += cpu_util_cfs(i);
8638 sgs->group_runnable += cpu_runnable(rq);
8639 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8640
8641 nr_running = rq->nr_running;
8642 sgs->sum_nr_running += nr_running;
8643
8644 if (nr_running > 1)
8645 *sg_status |= SG_OVERLOAD;
8646
8647 if (cpu_overutilized(i))
8648 *sg_status |= SG_OVERUTILIZED;
8649
8650 #ifdef CONFIG_NUMA_BALANCING
8651 sgs->nr_numa_running += rq->nr_numa_running;
8652 sgs->nr_preferred_running += rq->nr_preferred_running;
8653 #endif
8654 /*
8655 * No need to call idle_cpu() if nr_running is not 0
8656 */
8657 if (!nr_running && idle_cpu(i)) {
8658 sgs->idle_cpus++;
8659 /* Idle cpu can't have misfit task */
8660 continue;
8661 }
8662
8663 if (local_group)
8664 continue;
8665
8666 /* Check for a misfit task on the cpu */
8667 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8668 sgs->group_misfit_task_load < rq->misfit_task_load) {
8669 sgs->group_misfit_task_load = rq->misfit_task_load;
8670 *sg_status |= SG_OVERLOAD;
8671 }
8672 }
8673
8674 sgs->group_capacity = group->sgc->capacity;
8675
8676 sgs->group_weight = group->group_weight;
8677
8678 /* Check if dst CPU is idle and preferred to this group */
8679 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
8680 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8681 sched_asym(env, sds, sgs, group)) {
8682 sgs->group_asym_packing = 1;
8683 }
8684
8685 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8686
8687 /* Computing avg_load makes sense only when group is overloaded */
8688 if (sgs->group_type == group_overloaded)
8689 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8690 sgs->group_capacity;
8691 }
8692
8693 /**
8694 * update_sd_pick_busiest - return 1 on busiest group
8695 * @env: The load balancing environment.
8696 * @sds: sched_domain statistics
8697 * @sg: sched_group candidate to be checked for being the busiest
8698 * @sgs: sched_group statistics
8699 *
8700 * Determine if @sg is a busier group than the previously selected
8701 * busiest group.
8702 *
8703 * Return: %true if @sg is a busier group than the previously selected
8704 * busiest group. %false otherwise.
8705 */
8706 static bool update_sd_pick_busiest(struct lb_env *env,
8707 struct sd_lb_stats *sds,
8708 struct sched_group *sg,
8709 struct sg_lb_stats *sgs)
8710 {
8711 struct sg_lb_stats *busiest = &sds->busiest_stat;
8712
8713 /* Make sure that there is at least one task to pull */
8714 if (!sgs->sum_h_nr_running)
8715 return false;
8716
8717 /*
8718 * Don't try to pull misfit tasks we can't help.
8719 * We can use max_capacity here as reduction in capacity on some
8720 * CPUs in the group should either be possible to resolve
8721 * internally or be covered by avg_load imbalance (eventually).
8722 */
8723 if (sgs->group_type == group_misfit_task &&
8724 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8725 sds->local_stat.group_type != group_has_spare))
8726 return false;
8727
8728 if (sgs->group_type > busiest->group_type)
8729 return true;
8730
8731 if (sgs->group_type < busiest->group_type)
8732 return false;
8733
8734 /*
8735 * The candidate and the current busiest group are the same type of
8736 * group. Let check which one is the busiest according to the type.
8737 */
8738
8739 switch (sgs->group_type) {
8740 case group_overloaded:
8741 /* Select the overloaded group with highest avg_load. */
8742 if (sgs->avg_load <= busiest->avg_load)
8743 return false;
8744 break;
8745
8746 case group_imbalanced:
8747 /*
8748 * Select the 1st imbalanced group as we don't have any way to
8749 * choose one more than another.
8750 */
8751 return false;
8752
8753 case group_asym_packing:
8754 /* Prefer to move from lowest priority CPU's work */
8755 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8756 return false;
8757 break;
8758
8759 case group_misfit_task:
8760 /*
8761 * If we have more than one misfit sg go with the biggest
8762 * misfit.
8763 */
8764 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8765 return false;
8766 break;
8767
8768 case group_fully_busy:
8769 /*
8770 * Select the fully busy group with highest avg_load. In
8771 * theory, there is no need to pull task from such kind of
8772 * group because tasks have all compute capacity that they need
8773 * but we can still improve the overall throughput by reducing
8774 * contention when accessing shared HW resources.
8775 *
8776 * XXX for now avg_load is not computed and always 0 so we
8777 * select the 1st one.
8778 */
8779 if (sgs->avg_load <= busiest->avg_load)
8780 return false;
8781 break;
8782
8783 case group_has_spare:
8784 /*
8785 * Select not overloaded group with lowest number of idle cpus
8786 * and highest number of running tasks. We could also compare
8787 * the spare capacity which is more stable but it can end up
8788 * that the group has less spare capacity but finally more idle
8789 * CPUs which means less opportunity to pull tasks.
8790 */
8791 if (sgs->idle_cpus > busiest->idle_cpus)
8792 return false;
8793 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8794 (sgs->sum_nr_running <= busiest->sum_nr_running))
8795 return false;
8796
8797 break;
8798 }
8799
8800 /*
8801 * Candidate sg has no more than one task per CPU and has higher
8802 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8803 * throughput. Maximize throughput, power/energy consequences are not
8804 * considered.
8805 */
8806 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8807 (sgs->group_type <= group_fully_busy) &&
8808 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8809 return false;
8810
8811 return true;
8812 }
8813
8814 #ifdef CONFIG_NUMA_BALANCING
8815 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8816 {
8817 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8818 return regular;
8819 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8820 return remote;
8821 return all;
8822 }
8823
8824 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8825 {
8826 if (rq->nr_running > rq->nr_numa_running)
8827 return regular;
8828 if (rq->nr_running > rq->nr_preferred_running)
8829 return remote;
8830 return all;
8831 }
8832 #else
8833 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8834 {
8835 return all;
8836 }
8837
8838 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8839 {
8840 return regular;
8841 }
8842 #endif /* CONFIG_NUMA_BALANCING */
8843
8844
8845 struct sg_lb_stats;
8846
8847 /*
8848 * task_running_on_cpu - return 1 if @p is running on @cpu.
8849 */
8850
8851 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8852 {
8853 /* Task has no contribution or is new */
8854 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8855 return 0;
8856
8857 if (task_on_rq_queued(p))
8858 return 1;
8859
8860 return 0;
8861 }
8862
8863 /**
8864 * idle_cpu_without - would a given CPU be idle without p ?
8865 * @cpu: the processor on which idleness is tested.
8866 * @p: task which should be ignored.
8867 *
8868 * Return: 1 if the CPU would be idle. 0 otherwise.
8869 */
8870 static int idle_cpu_without(int cpu, struct task_struct *p)
8871 {
8872 struct rq *rq = cpu_rq(cpu);
8873
8874 if (rq->curr != rq->idle && rq->curr != p)
8875 return 0;
8876
8877 /*
8878 * rq->nr_running can't be used but an updated version without the
8879 * impact of p on cpu must be used instead. The updated nr_running
8880 * be computed and tested before calling idle_cpu_without().
8881 */
8882
8883 #ifdef CONFIG_SMP
8884 if (rq->ttwu_pending)
8885 return 0;
8886 #endif
8887
8888 return 1;
8889 }
8890
8891 /*
8892 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8893 * @sd: The sched_domain level to look for idlest group.
8894 * @group: sched_group whose statistics are to be updated.
8895 * @sgs: variable to hold the statistics for this group.
8896 * @p: The task for which we look for the idlest group/CPU.
8897 */
8898 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8899 struct sched_group *group,
8900 struct sg_lb_stats *sgs,
8901 struct task_struct *p)
8902 {
8903 int i, nr_running;
8904
8905 memset(sgs, 0, sizeof(*sgs));
8906
8907 for_each_cpu(i, sched_group_span(group)) {
8908 struct rq *rq = cpu_rq(i);
8909 unsigned int local;
8910
8911 sgs->group_load += cpu_load_without(rq, p);
8912 sgs->group_util += cpu_util_without(i, p);
8913 sgs->group_runnable += cpu_runnable_without(rq, p);
8914 local = task_running_on_cpu(i, p);
8915 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8916
8917 nr_running = rq->nr_running - local;
8918 sgs->sum_nr_running += nr_running;
8919
8920 /*
8921 * No need to call idle_cpu_without() if nr_running is not 0
8922 */
8923 if (!nr_running && idle_cpu_without(i, p))
8924 sgs->idle_cpus++;
8925
8926 }
8927
8928 /* Check if task fits in the group */
8929 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8930 !task_fits_capacity(p, group->sgc->max_capacity)) {
8931 sgs->group_misfit_task_load = 1;
8932 }
8933
8934 sgs->group_capacity = group->sgc->capacity;
8935
8936 sgs->group_weight = group->group_weight;
8937
8938 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8939
8940 /*
8941 * Computing avg_load makes sense only when group is fully busy or
8942 * overloaded
8943 */
8944 if (sgs->group_type == group_fully_busy ||
8945 sgs->group_type == group_overloaded)
8946 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8947 sgs->group_capacity;
8948 }
8949
8950 static bool update_pick_idlest(struct sched_group *idlest,
8951 struct sg_lb_stats *idlest_sgs,
8952 struct sched_group *group,
8953 struct sg_lb_stats *sgs)
8954 {
8955 if (sgs->group_type < idlest_sgs->group_type)
8956 return true;
8957
8958 if (sgs->group_type > idlest_sgs->group_type)
8959 return false;
8960
8961 /*
8962 * The candidate and the current idlest group are the same type of
8963 * group. Let check which one is the idlest according to the type.
8964 */
8965
8966 switch (sgs->group_type) {
8967 case group_overloaded:
8968 case group_fully_busy:
8969 /* Select the group with lowest avg_load. */
8970 if (idlest_sgs->avg_load <= sgs->avg_load)
8971 return false;
8972 break;
8973
8974 case group_imbalanced:
8975 case group_asym_packing:
8976 /* Those types are not used in the slow wakeup path */
8977 return false;
8978
8979 case group_misfit_task:
8980 /* Select group with the highest max capacity */
8981 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8982 return false;
8983 break;
8984
8985 case group_has_spare:
8986 /* Select group with most idle CPUs */
8987 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8988 return false;
8989
8990 /* Select group with lowest group_util */
8991 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8992 idlest_sgs->group_util <= sgs->group_util)
8993 return false;
8994
8995 break;
8996 }
8997
8998 return true;
8999 }
9000
9001 /*
9002 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9003 * This is an approximation as the number of running tasks may not be
9004 * related to the number of busy CPUs due to sched_setaffinity.
9005 */
9006 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
9007 {
9008 return (dst_running < (dst_weight >> 2));
9009 }
9010
9011 /*
9012 * find_idlest_group() finds and returns the least busy CPU group within the
9013 * domain.
9014 *
9015 * Assumes p is allowed on at least one CPU in sd.
9016 */
9017 static struct sched_group *
9018 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9019 {
9020 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9021 struct sg_lb_stats local_sgs, tmp_sgs;
9022 struct sg_lb_stats *sgs;
9023 unsigned long imbalance;
9024 struct sg_lb_stats idlest_sgs = {
9025 .avg_load = UINT_MAX,
9026 .group_type = group_overloaded,
9027 };
9028
9029 do {
9030 int local_group;
9031
9032 /* Skip over this group if it has no CPUs allowed */
9033 if (!cpumask_intersects(sched_group_span(group),
9034 p->cpus_ptr))
9035 continue;
9036
9037 /* Skip over this group if no cookie matched */
9038 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9039 continue;
9040
9041 local_group = cpumask_test_cpu(this_cpu,
9042 sched_group_span(group));
9043
9044 if (local_group) {
9045 sgs = &local_sgs;
9046 local = group;
9047 } else {
9048 sgs = &tmp_sgs;
9049 }
9050
9051 update_sg_wakeup_stats(sd, group, sgs, p);
9052
9053 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9054 idlest = group;
9055 idlest_sgs = *sgs;
9056 }
9057
9058 } while (group = group->next, group != sd->groups);
9059
9060
9061 /* There is no idlest group to push tasks to */
9062 if (!idlest)
9063 return NULL;
9064
9065 /* The local group has been skipped because of CPU affinity */
9066 if (!local)
9067 return idlest;
9068
9069 /*
9070 * If the local group is idler than the selected idlest group
9071 * don't try and push the task.
9072 */
9073 if (local_sgs.group_type < idlest_sgs.group_type)
9074 return NULL;
9075
9076 /*
9077 * If the local group is busier than the selected idlest group
9078 * try and push the task.
9079 */
9080 if (local_sgs.group_type > idlest_sgs.group_type)
9081 return idlest;
9082
9083 switch (local_sgs.group_type) {
9084 case group_overloaded:
9085 case group_fully_busy:
9086
9087 /* Calculate allowed imbalance based on load */
9088 imbalance = scale_load_down(NICE_0_LOAD) *
9089 (sd->imbalance_pct-100) / 100;
9090
9091 /*
9092 * When comparing groups across NUMA domains, it's possible for
9093 * the local domain to be very lightly loaded relative to the
9094 * remote domains but "imbalance" skews the comparison making
9095 * remote CPUs look much more favourable. When considering
9096 * cross-domain, add imbalance to the load on the remote node
9097 * and consider staying local.
9098 */
9099
9100 if ((sd->flags & SD_NUMA) &&
9101 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9102 return NULL;
9103
9104 /*
9105 * If the local group is less loaded than the selected
9106 * idlest group don't try and push any tasks.
9107 */
9108 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9109 return NULL;
9110
9111 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9112 return NULL;
9113 break;
9114
9115 case group_imbalanced:
9116 case group_asym_packing:
9117 /* Those type are not used in the slow wakeup path */
9118 return NULL;
9119
9120 case group_misfit_task:
9121 /* Select group with the highest max capacity */
9122 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9123 return NULL;
9124 break;
9125
9126 case group_has_spare:
9127 if (sd->flags & SD_NUMA) {
9128 #ifdef CONFIG_NUMA_BALANCING
9129 int idlest_cpu;
9130 /*
9131 * If there is spare capacity at NUMA, try to select
9132 * the preferred node
9133 */
9134 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9135 return NULL;
9136
9137 idlest_cpu = cpumask_first(sched_group_span(idlest));
9138 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9139 return idlest;
9140 #endif
9141 /*
9142 * Otherwise, keep the task on this node to stay close
9143 * its wakeup source and improve locality. If there is
9144 * a real need of migration, periodic load balance will
9145 * take care of it.
9146 */
9147 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
9148 return NULL;
9149 }
9150
9151 /*
9152 * Select group with highest number of idle CPUs. We could also
9153 * compare the utilization which is more stable but it can end
9154 * up that the group has less spare capacity but finally more
9155 * idle CPUs which means more opportunity to run task.
9156 */
9157 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9158 return NULL;
9159 break;
9160 }
9161
9162 return idlest;
9163 }
9164
9165 /**
9166 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9167 * @env: The load balancing environment.
9168 * @sds: variable to hold the statistics for this sched_domain.
9169 */
9170
9171 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9172 {
9173 struct sched_domain *child = env->sd->child;
9174 struct sched_group *sg = env->sd->groups;
9175 struct sg_lb_stats *local = &sds->local_stat;
9176 struct sg_lb_stats tmp_sgs;
9177 int sg_status = 0;
9178
9179 do {
9180 struct sg_lb_stats *sgs = &tmp_sgs;
9181 int local_group;
9182
9183 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9184 if (local_group) {
9185 sds->local = sg;
9186 sgs = local;
9187
9188 if (env->idle != CPU_NEWLY_IDLE ||
9189 time_after_eq(jiffies, sg->sgc->next_update))
9190 update_group_capacity(env->sd, env->dst_cpu);
9191 }
9192
9193 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9194
9195 if (local_group)
9196 goto next_group;
9197
9198
9199 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9200 sds->busiest = sg;
9201 sds->busiest_stat = *sgs;
9202 }
9203
9204 next_group:
9205 /* Now, start updating sd_lb_stats */
9206 sds->total_load += sgs->group_load;
9207 sds->total_capacity += sgs->group_capacity;
9208
9209 sg = sg->next;
9210 } while (sg != env->sd->groups);
9211
9212 /* Tag domain that child domain prefers tasks go to siblings first */
9213 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9214
9215
9216 if (env->sd->flags & SD_NUMA)
9217 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9218
9219 if (!env->sd->parent) {
9220 struct root_domain *rd = env->dst_rq->rd;
9221
9222 /* update overload indicator if we are at root domain */
9223 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9224
9225 /* Update over-utilization (tipping point, U >= 0) indicator */
9226 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9227 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9228 } else if (sg_status & SG_OVERUTILIZED) {
9229 struct root_domain *rd = env->dst_rq->rd;
9230
9231 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9232 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9233 }
9234 }
9235
9236 #define NUMA_IMBALANCE_MIN 2
9237
9238 static inline long adjust_numa_imbalance(int imbalance,
9239 int dst_running, int dst_weight)
9240 {
9241 if (!allow_numa_imbalance(dst_running, dst_weight))
9242 return imbalance;
9243
9244 /*
9245 * Allow a small imbalance based on a simple pair of communicating
9246 * tasks that remain local when the destination is lightly loaded.
9247 */
9248 if (imbalance <= NUMA_IMBALANCE_MIN)
9249 return 0;
9250
9251 return imbalance;
9252 }
9253
9254 /**
9255 * calculate_imbalance - Calculate the amount of imbalance present within the
9256 * groups of a given sched_domain during load balance.
9257 * @env: load balance environment
9258 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9259 */
9260 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9261 {
9262 struct sg_lb_stats *local, *busiest;
9263
9264 local = &sds->local_stat;
9265 busiest = &sds->busiest_stat;
9266
9267 if (busiest->group_type == group_misfit_task) {
9268 /* Set imbalance to allow misfit tasks to be balanced. */
9269 env->migration_type = migrate_misfit;
9270 env->imbalance = 1;
9271 return;
9272 }
9273
9274 if (busiest->group_type == group_asym_packing) {
9275 /*
9276 * In case of asym capacity, we will try to migrate all load to
9277 * the preferred CPU.
9278 */
9279 env->migration_type = migrate_task;
9280 env->imbalance = busiest->sum_h_nr_running;
9281 return;
9282 }
9283
9284 if (busiest->group_type == group_imbalanced) {
9285 /*
9286 * In the group_imb case we cannot rely on group-wide averages
9287 * to ensure CPU-load equilibrium, try to move any task to fix
9288 * the imbalance. The next load balance will take care of
9289 * balancing back the system.
9290 */
9291 env->migration_type = migrate_task;
9292 env->imbalance = 1;
9293 return;
9294 }
9295
9296 /*
9297 * Try to use spare capacity of local group without overloading it or
9298 * emptying busiest.
9299 */
9300 if (local->group_type == group_has_spare) {
9301 if ((busiest->group_type > group_fully_busy) &&
9302 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9303 /*
9304 * If busiest is overloaded, try to fill spare
9305 * capacity. This might end up creating spare capacity
9306 * in busiest or busiest still being overloaded but
9307 * there is no simple way to directly compute the
9308 * amount of load to migrate in order to balance the
9309 * system.
9310 */
9311 env->migration_type = migrate_util;
9312 env->imbalance = max(local->group_capacity, local->group_util) -
9313 local->group_util;
9314
9315 /*
9316 * In some cases, the group's utilization is max or even
9317 * higher than capacity because of migrations but the
9318 * local CPU is (newly) idle. There is at least one
9319 * waiting task in this overloaded busiest group. Let's
9320 * try to pull it.
9321 */
9322 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9323 env->migration_type = migrate_task;
9324 env->imbalance = 1;
9325 }
9326
9327 return;
9328 }
9329
9330 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9331 unsigned int nr_diff = busiest->sum_nr_running;
9332 /*
9333 * When prefer sibling, evenly spread running tasks on
9334 * groups.
9335 */
9336 env->migration_type = migrate_task;
9337 lsub_positive(&nr_diff, local->sum_nr_running);
9338 env->imbalance = nr_diff >> 1;
9339 } else {
9340
9341 /*
9342 * If there is no overload, we just want to even the number of
9343 * idle cpus.
9344 */
9345 env->migration_type = migrate_task;
9346 env->imbalance = max_t(long, 0, (local->idle_cpus -
9347 busiest->idle_cpus) >> 1);
9348 }
9349
9350 /* Consider allowing a small imbalance between NUMA groups */
9351 if (env->sd->flags & SD_NUMA) {
9352 env->imbalance = adjust_numa_imbalance(env->imbalance,
9353 busiest->sum_nr_running, busiest->group_weight);
9354 }
9355
9356 return;
9357 }
9358
9359 /*
9360 * Local is fully busy but has to take more load to relieve the
9361 * busiest group
9362 */
9363 if (local->group_type < group_overloaded) {
9364 /*
9365 * Local will become overloaded so the avg_load metrics are
9366 * finally needed.
9367 */
9368
9369 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9370 local->group_capacity;
9371
9372 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9373 sds->total_capacity;
9374 /*
9375 * If the local group is more loaded than the selected
9376 * busiest group don't try to pull any tasks.
9377 */
9378 if (local->avg_load >= busiest->avg_load) {
9379 env->imbalance = 0;
9380 return;
9381 }
9382 }
9383
9384 /*
9385 * Both group are or will become overloaded and we're trying to get all
9386 * the CPUs to the average_load, so we don't want to push ourselves
9387 * above the average load, nor do we wish to reduce the max loaded CPU
9388 * below the average load. At the same time, we also don't want to
9389 * reduce the group load below the group capacity. Thus we look for
9390 * the minimum possible imbalance.
9391 */
9392 env->migration_type = migrate_load;
9393 env->imbalance = min(
9394 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9395 (sds->avg_load - local->avg_load) * local->group_capacity
9396 ) / SCHED_CAPACITY_SCALE;
9397 }
9398
9399 /******* find_busiest_group() helpers end here *********************/
9400
9401 /*
9402 * Decision matrix according to the local and busiest group type:
9403 *
9404 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9405 * has_spare nr_idle balanced N/A N/A balanced balanced
9406 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9407 * misfit_task force N/A N/A N/A force force
9408 * asym_packing force force N/A N/A force force
9409 * imbalanced force force N/A N/A force force
9410 * overloaded force force N/A N/A force avg_load
9411 *
9412 * N/A : Not Applicable because already filtered while updating
9413 * statistics.
9414 * balanced : The system is balanced for these 2 groups.
9415 * force : Calculate the imbalance as load migration is probably needed.
9416 * avg_load : Only if imbalance is significant enough.
9417 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9418 * different in groups.
9419 */
9420
9421 /**
9422 * find_busiest_group - Returns the busiest group within the sched_domain
9423 * if there is an imbalance.
9424 *
9425 * Also calculates the amount of runnable load which should be moved
9426 * to restore balance.
9427 *
9428 * @env: The load balancing environment.
9429 *
9430 * Return: - The busiest group if imbalance exists.
9431 */
9432 static struct sched_group *find_busiest_group(struct lb_env *env)
9433 {
9434 struct sg_lb_stats *local, *busiest;
9435 struct sd_lb_stats sds;
9436
9437 init_sd_lb_stats(&sds);
9438
9439 /*
9440 * Compute the various statistics relevant for load balancing at
9441 * this level.
9442 */
9443 update_sd_lb_stats(env, &sds);
9444
9445 if (sched_energy_enabled()) {
9446 struct root_domain *rd = env->dst_rq->rd;
9447
9448 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9449 goto out_balanced;
9450 }
9451
9452 local = &sds.local_stat;
9453 busiest = &sds.busiest_stat;
9454
9455 /* There is no busy sibling group to pull tasks from */
9456 if (!sds.busiest)
9457 goto out_balanced;
9458
9459 /* Misfit tasks should be dealt with regardless of the avg load */
9460 if (busiest->group_type == group_misfit_task)
9461 goto force_balance;
9462
9463 /* ASYM feature bypasses nice load balance check */
9464 if (busiest->group_type == group_asym_packing)
9465 goto force_balance;
9466
9467 /*
9468 * If the busiest group is imbalanced the below checks don't
9469 * work because they assume all things are equal, which typically
9470 * isn't true due to cpus_ptr constraints and the like.
9471 */
9472 if (busiest->group_type == group_imbalanced)
9473 goto force_balance;
9474
9475 /*
9476 * If the local group is busier than the selected busiest group
9477 * don't try and pull any tasks.
9478 */
9479 if (local->group_type > busiest->group_type)
9480 goto out_balanced;
9481
9482 /*
9483 * When groups are overloaded, use the avg_load to ensure fairness
9484 * between tasks.
9485 */
9486 if (local->group_type == group_overloaded) {
9487 /*
9488 * If the local group is more loaded than the selected
9489 * busiest group don't try to pull any tasks.
9490 */
9491 if (local->avg_load >= busiest->avg_load)
9492 goto out_balanced;
9493
9494 /* XXX broken for overlapping NUMA groups */
9495 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9496 sds.total_capacity;
9497
9498 /*
9499 * Don't pull any tasks if this group is already above the
9500 * domain average load.
9501 */
9502 if (local->avg_load >= sds.avg_load)
9503 goto out_balanced;
9504
9505 /*
9506 * If the busiest group is more loaded, use imbalance_pct to be
9507 * conservative.
9508 */
9509 if (100 * busiest->avg_load <=
9510 env->sd->imbalance_pct * local->avg_load)
9511 goto out_balanced;
9512 }
9513
9514 /* Try to move all excess tasks to child's sibling domain */
9515 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9516 busiest->sum_nr_running > local->sum_nr_running + 1)
9517 goto force_balance;
9518
9519 if (busiest->group_type != group_overloaded) {
9520 if (env->idle == CPU_NOT_IDLE)
9521 /*
9522 * If the busiest group is not overloaded (and as a
9523 * result the local one too) but this CPU is already
9524 * busy, let another idle CPU try to pull task.
9525 */
9526 goto out_balanced;
9527
9528 if (busiest->group_weight > 1 &&
9529 local->idle_cpus <= (busiest->idle_cpus + 1))
9530 /*
9531 * If the busiest group is not overloaded
9532 * and there is no imbalance between this and busiest
9533 * group wrt idle CPUs, it is balanced. The imbalance
9534 * becomes significant if the diff is greater than 1
9535 * otherwise we might end up to just move the imbalance
9536 * on another group. Of course this applies only if
9537 * there is more than 1 CPU per group.
9538 */
9539 goto out_balanced;
9540
9541 if (busiest->sum_h_nr_running == 1)
9542 /*
9543 * busiest doesn't have any tasks waiting to run
9544 */
9545 goto out_balanced;
9546 }
9547
9548 force_balance:
9549 /* Looks like there is an imbalance. Compute it */
9550 calculate_imbalance(env, &sds);
9551 return env->imbalance ? sds.busiest : NULL;
9552
9553 out_balanced:
9554 env->imbalance = 0;
9555 return NULL;
9556 }
9557
9558 /*
9559 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9560 */
9561 static struct rq *find_busiest_queue(struct lb_env *env,
9562 struct sched_group *group)
9563 {
9564 struct rq *busiest = NULL, *rq;
9565 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9566 unsigned int busiest_nr = 0;
9567 int i;
9568
9569 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9570 unsigned long capacity, load, util;
9571 unsigned int nr_running;
9572 enum fbq_type rt;
9573
9574 rq = cpu_rq(i);
9575 rt = fbq_classify_rq(rq);
9576
9577 /*
9578 * We classify groups/runqueues into three groups:
9579 * - regular: there are !numa tasks
9580 * - remote: there are numa tasks that run on the 'wrong' node
9581 * - all: there is no distinction
9582 *
9583 * In order to avoid migrating ideally placed numa tasks,
9584 * ignore those when there's better options.
9585 *
9586 * If we ignore the actual busiest queue to migrate another
9587 * task, the next balance pass can still reduce the busiest
9588 * queue by moving tasks around inside the node.
9589 *
9590 * If we cannot move enough load due to this classification
9591 * the next pass will adjust the group classification and
9592 * allow migration of more tasks.
9593 *
9594 * Both cases only affect the total convergence complexity.
9595 */
9596 if (rt > env->fbq_type)
9597 continue;
9598
9599 nr_running = rq->cfs.h_nr_running;
9600 if (!nr_running)
9601 continue;
9602
9603 capacity = capacity_of(i);
9604
9605 /*
9606 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9607 * eventually lead to active_balancing high->low capacity.
9608 * Higher per-CPU capacity is considered better than balancing
9609 * average load.
9610 */
9611 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9612 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9613 nr_running == 1)
9614 continue;
9615
9616 /* Make sure we only pull tasks from a CPU of lower priority */
9617 if ((env->sd->flags & SD_ASYM_PACKING) &&
9618 sched_asym_prefer(i, env->dst_cpu) &&
9619 nr_running == 1)
9620 continue;
9621
9622 switch (env->migration_type) {
9623 case migrate_load:
9624 /*
9625 * When comparing with load imbalance, use cpu_load()
9626 * which is not scaled with the CPU capacity.
9627 */
9628 load = cpu_load(rq);
9629
9630 if (nr_running == 1 && load > env->imbalance &&
9631 !check_cpu_capacity(rq, env->sd))
9632 break;
9633
9634 /*
9635 * For the load comparisons with the other CPUs,
9636 * consider the cpu_load() scaled with the CPU
9637 * capacity, so that the load can be moved away
9638 * from the CPU that is potentially running at a
9639 * lower capacity.
9640 *
9641 * Thus we're looking for max(load_i / capacity_i),
9642 * crosswise multiplication to rid ourselves of the
9643 * division works out to:
9644 * load_i * capacity_j > load_j * capacity_i;
9645 * where j is our previous maximum.
9646 */
9647 if (load * busiest_capacity > busiest_load * capacity) {
9648 busiest_load = load;
9649 busiest_capacity = capacity;
9650 busiest = rq;
9651 }
9652 break;
9653
9654 case migrate_util:
9655 util = cpu_util_cfs(i);
9656
9657 /*
9658 * Don't try to pull utilization from a CPU with one
9659 * running task. Whatever its utilization, we will fail
9660 * detach the task.
9661 */
9662 if (nr_running <= 1)
9663 continue;
9664
9665 if (busiest_util < util) {
9666 busiest_util = util;
9667 busiest = rq;
9668 }
9669 break;
9670
9671 case migrate_task:
9672 if (busiest_nr < nr_running) {
9673 busiest_nr = nr_running;
9674 busiest = rq;
9675 }
9676 break;
9677
9678 case migrate_misfit:
9679 /*
9680 * For ASYM_CPUCAPACITY domains with misfit tasks we
9681 * simply seek the "biggest" misfit task.
9682 */
9683 if (rq->misfit_task_load > busiest_load) {
9684 busiest_load = rq->misfit_task_load;
9685 busiest = rq;
9686 }
9687
9688 break;
9689
9690 }
9691 }
9692
9693 return busiest;
9694 }
9695
9696 /*
9697 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9698 * so long as it is large enough.
9699 */
9700 #define MAX_PINNED_INTERVAL 512
9701
9702 static inline bool
9703 asym_active_balance(struct lb_env *env)
9704 {
9705 /*
9706 * ASYM_PACKING needs to force migrate tasks from busy but
9707 * lower priority CPUs in order to pack all tasks in the
9708 * highest priority CPUs.
9709 */
9710 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9711 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9712 }
9713
9714 static inline bool
9715 imbalanced_active_balance(struct lb_env *env)
9716 {
9717 struct sched_domain *sd = env->sd;
9718
9719 /*
9720 * The imbalanced case includes the case of pinned tasks preventing a fair
9721 * distribution of the load on the system but also the even distribution of the
9722 * threads on a system with spare capacity
9723 */
9724 if ((env->migration_type == migrate_task) &&
9725 (sd->nr_balance_failed > sd->cache_nice_tries+2))
9726 return 1;
9727
9728 return 0;
9729 }
9730
9731 static int need_active_balance(struct lb_env *env)
9732 {
9733 struct sched_domain *sd = env->sd;
9734
9735 if (asym_active_balance(env))
9736 return 1;
9737
9738 if (imbalanced_active_balance(env))
9739 return 1;
9740
9741 /*
9742 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9743 * It's worth migrating the task if the src_cpu's capacity is reduced
9744 * because of other sched_class or IRQs if more capacity stays
9745 * available on dst_cpu.
9746 */
9747 if ((env->idle != CPU_NOT_IDLE) &&
9748 (env->src_rq->cfs.h_nr_running == 1)) {
9749 if ((check_cpu_capacity(env->src_rq, sd)) &&
9750 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9751 return 1;
9752 }
9753
9754 if (env->migration_type == migrate_misfit)
9755 return 1;
9756
9757 return 0;
9758 }
9759
9760 static int active_load_balance_cpu_stop(void *data);
9761
9762 static int should_we_balance(struct lb_env *env)
9763 {
9764 struct sched_group *sg = env->sd->groups;
9765 int cpu;
9766
9767 /*
9768 * Ensure the balancing environment is consistent; can happen
9769 * when the softirq triggers 'during' hotplug.
9770 */
9771 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9772 return 0;
9773
9774 /*
9775 * In the newly idle case, we will allow all the CPUs
9776 * to do the newly idle load balance.
9777 */
9778 if (env->idle == CPU_NEWLY_IDLE)
9779 return 1;
9780
9781 /* Try to find first idle CPU */
9782 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9783 if (!idle_cpu(cpu))
9784 continue;
9785
9786 /* Are we the first idle CPU? */
9787 return cpu == env->dst_cpu;
9788 }
9789
9790 /* Are we the first CPU of this group ? */
9791 return group_balance_cpu(sg) == env->dst_cpu;
9792 }
9793
9794 /*
9795 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9796 * tasks if there is an imbalance.
9797 */
9798 static int load_balance(int this_cpu, struct rq *this_rq,
9799 struct sched_domain *sd, enum cpu_idle_type idle,
9800 int *continue_balancing)
9801 {
9802 int ld_moved, cur_ld_moved, active_balance = 0;
9803 struct sched_domain *sd_parent = sd->parent;
9804 struct sched_group *group;
9805 struct rq *busiest;
9806 struct rq_flags rf;
9807 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9808
9809 struct lb_env env = {
9810 .sd = sd,
9811 .dst_cpu = this_cpu,
9812 .dst_rq = this_rq,
9813 .dst_grpmask = sched_group_span(sd->groups),
9814 .idle = idle,
9815 .loop_break = sched_nr_migrate_break,
9816 .cpus = cpus,
9817 .fbq_type = all,
9818 .tasks = LIST_HEAD_INIT(env.tasks),
9819 };
9820
9821 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9822
9823 schedstat_inc(sd->lb_count[idle]);
9824
9825 redo:
9826 if (!should_we_balance(&env)) {
9827 *continue_balancing = 0;
9828 goto out_balanced;
9829 }
9830
9831 group = find_busiest_group(&env);
9832 if (!group) {
9833 schedstat_inc(sd->lb_nobusyg[idle]);
9834 goto out_balanced;
9835 }
9836
9837 busiest = find_busiest_queue(&env, group);
9838 if (!busiest) {
9839 schedstat_inc(sd->lb_nobusyq[idle]);
9840 goto out_balanced;
9841 }
9842
9843 BUG_ON(busiest == env.dst_rq);
9844
9845 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9846
9847 env.src_cpu = busiest->cpu;
9848 env.src_rq = busiest;
9849
9850 ld_moved = 0;
9851 /* Clear this flag as soon as we find a pullable task */
9852 env.flags |= LBF_ALL_PINNED;
9853 if (busiest->nr_running > 1) {
9854 /*
9855 * Attempt to move tasks. If find_busiest_group has found
9856 * an imbalance but busiest->nr_running <= 1, the group is
9857 * still unbalanced. ld_moved simply stays zero, so it is
9858 * correctly treated as an imbalance.
9859 */
9860 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9861
9862 more_balance:
9863 rq_lock_irqsave(busiest, &rf);
9864 update_rq_clock(busiest);
9865
9866 /*
9867 * cur_ld_moved - load moved in current iteration
9868 * ld_moved - cumulative load moved across iterations
9869 */
9870 cur_ld_moved = detach_tasks(&env);
9871
9872 /*
9873 * We've detached some tasks from busiest_rq. Every
9874 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9875 * unlock busiest->lock, and we are able to be sure
9876 * that nobody can manipulate the tasks in parallel.
9877 * See task_rq_lock() family for the details.
9878 */
9879
9880 rq_unlock(busiest, &rf);
9881
9882 if (cur_ld_moved) {
9883 attach_tasks(&env);
9884 ld_moved += cur_ld_moved;
9885 }
9886
9887 local_irq_restore(rf.flags);
9888
9889 if (env.flags & LBF_NEED_BREAK) {
9890 env.flags &= ~LBF_NEED_BREAK;
9891 goto more_balance;
9892 }
9893
9894 /*
9895 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9896 * us and move them to an alternate dst_cpu in our sched_group
9897 * where they can run. The upper limit on how many times we
9898 * iterate on same src_cpu is dependent on number of CPUs in our
9899 * sched_group.
9900 *
9901 * This changes load balance semantics a bit on who can move
9902 * load to a given_cpu. In addition to the given_cpu itself
9903 * (or a ilb_cpu acting on its behalf where given_cpu is
9904 * nohz-idle), we now have balance_cpu in a position to move
9905 * load to given_cpu. In rare situations, this may cause
9906 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9907 * _independently_ and at _same_ time to move some load to
9908 * given_cpu) causing excess load to be moved to given_cpu.
9909 * This however should not happen so much in practice and
9910 * moreover subsequent load balance cycles should correct the
9911 * excess load moved.
9912 */
9913 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9914
9915 /* Prevent to re-select dst_cpu via env's CPUs */
9916 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9917
9918 env.dst_rq = cpu_rq(env.new_dst_cpu);
9919 env.dst_cpu = env.new_dst_cpu;
9920 env.flags &= ~LBF_DST_PINNED;
9921 env.loop = 0;
9922 env.loop_break = sched_nr_migrate_break;
9923
9924 /*
9925 * Go back to "more_balance" rather than "redo" since we
9926 * need to continue with same src_cpu.
9927 */
9928 goto more_balance;
9929 }
9930
9931 /*
9932 * We failed to reach balance because of affinity.
9933 */
9934 if (sd_parent) {
9935 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9936
9937 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9938 *group_imbalance = 1;
9939 }
9940
9941 /* All tasks on this runqueue were pinned by CPU affinity */
9942 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9943 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9944 /*
9945 * Attempting to continue load balancing at the current
9946 * sched_domain level only makes sense if there are
9947 * active CPUs remaining as possible busiest CPUs to
9948 * pull load from which are not contained within the
9949 * destination group that is receiving any migrated
9950 * load.
9951 */
9952 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9953 env.loop = 0;
9954 env.loop_break = sched_nr_migrate_break;
9955 goto redo;
9956 }
9957 goto out_all_pinned;
9958 }
9959 }
9960
9961 if (!ld_moved) {
9962 schedstat_inc(sd->lb_failed[idle]);
9963 /*
9964 * Increment the failure counter only on periodic balance.
9965 * We do not want newidle balance, which can be very
9966 * frequent, pollute the failure counter causing
9967 * excessive cache_hot migrations and active balances.
9968 */
9969 if (idle != CPU_NEWLY_IDLE)
9970 sd->nr_balance_failed++;
9971
9972 if (need_active_balance(&env)) {
9973 unsigned long flags;
9974
9975 raw_spin_rq_lock_irqsave(busiest, flags);
9976
9977 /*
9978 * Don't kick the active_load_balance_cpu_stop,
9979 * if the curr task on busiest CPU can't be
9980 * moved to this_cpu:
9981 */
9982 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9983 raw_spin_rq_unlock_irqrestore(busiest, flags);
9984 goto out_one_pinned;
9985 }
9986
9987 /* Record that we found at least one task that could run on this_cpu */
9988 env.flags &= ~LBF_ALL_PINNED;
9989
9990 /*
9991 * ->active_balance synchronizes accesses to
9992 * ->active_balance_work. Once set, it's cleared
9993 * only after active load balance is finished.
9994 */
9995 if (!busiest->active_balance) {
9996 busiest->active_balance = 1;
9997 busiest->push_cpu = this_cpu;
9998 active_balance = 1;
9999 }
10000 raw_spin_rq_unlock_irqrestore(busiest, flags);
10001
10002 if (active_balance) {
10003 stop_one_cpu_nowait(cpu_of(busiest),
10004 active_load_balance_cpu_stop, busiest,
10005 &busiest->active_balance_work);
10006 }
10007 }
10008 } else {
10009 sd->nr_balance_failed = 0;
10010 }
10011
10012 if (likely(!active_balance) || need_active_balance(&env)) {
10013 /* We were unbalanced, so reset the balancing interval */
10014 sd->balance_interval = sd->min_interval;
10015 }
10016
10017 goto out;
10018
10019 out_balanced:
10020 /*
10021 * We reach balance although we may have faced some affinity
10022 * constraints. Clear the imbalance flag only if other tasks got
10023 * a chance to move and fix the imbalance.
10024 */
10025 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10026 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10027
10028 if (*group_imbalance)
10029 *group_imbalance = 0;
10030 }
10031
10032 out_all_pinned:
10033 /*
10034 * We reach balance because all tasks are pinned at this level so
10035 * we can't migrate them. Let the imbalance flag set so parent level
10036 * can try to migrate them.
10037 */
10038 schedstat_inc(sd->lb_balanced[idle]);
10039
10040 sd->nr_balance_failed = 0;
10041
10042 out_one_pinned:
10043 ld_moved = 0;
10044
10045 /*
10046 * newidle_balance() disregards balance intervals, so we could
10047 * repeatedly reach this code, which would lead to balance_interval
10048 * skyrocketing in a short amount of time. Skip the balance_interval
10049 * increase logic to avoid that.
10050 */
10051 if (env.idle == CPU_NEWLY_IDLE)
10052 goto out;
10053
10054 /* tune up the balancing interval */
10055 if ((env.flags & LBF_ALL_PINNED &&
10056 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10057 sd->balance_interval < sd->max_interval)
10058 sd->balance_interval *= 2;
10059 out:
10060 return ld_moved;
10061 }
10062
10063 static inline unsigned long
10064 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10065 {
10066 unsigned long interval = sd->balance_interval;
10067
10068 if (cpu_busy)
10069 interval *= sd->busy_factor;
10070
10071 /* scale ms to jiffies */
10072 interval = msecs_to_jiffies(interval);
10073
10074 /*
10075 * Reduce likelihood of busy balancing at higher domains racing with
10076 * balancing at lower domains by preventing their balancing periods
10077 * from being multiples of each other.
10078 */
10079 if (cpu_busy)
10080 interval -= 1;
10081
10082 interval = clamp(interval, 1UL, max_load_balance_interval);
10083
10084 return interval;
10085 }
10086
10087 static inline void
10088 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10089 {
10090 unsigned long interval, next;
10091
10092 /* used by idle balance, so cpu_busy = 0 */
10093 interval = get_sd_balance_interval(sd, 0);
10094 next = sd->last_balance + interval;
10095
10096 if (time_after(*next_balance, next))
10097 *next_balance = next;
10098 }
10099
10100 /*
10101 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10102 * running tasks off the busiest CPU onto idle CPUs. It requires at
10103 * least 1 task to be running on each physical CPU where possible, and
10104 * avoids physical / logical imbalances.
10105 */
10106 static int active_load_balance_cpu_stop(void *data)
10107 {
10108 struct rq *busiest_rq = data;
10109 int busiest_cpu = cpu_of(busiest_rq);
10110 int target_cpu = busiest_rq->push_cpu;
10111 struct rq *target_rq = cpu_rq(target_cpu);
10112 struct sched_domain *sd;
10113 struct task_struct *p = NULL;
10114 struct rq_flags rf;
10115
10116 rq_lock_irq(busiest_rq, &rf);
10117 /*
10118 * Between queueing the stop-work and running it is a hole in which
10119 * CPUs can become inactive. We should not move tasks from or to
10120 * inactive CPUs.
10121 */
10122 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10123 goto out_unlock;
10124
10125 /* Make sure the requested CPU hasn't gone down in the meantime: */
10126 if (unlikely(busiest_cpu != smp_processor_id() ||
10127 !busiest_rq->active_balance))
10128 goto out_unlock;
10129
10130 /* Is there any task to move? */
10131 if (busiest_rq->nr_running <= 1)
10132 goto out_unlock;
10133
10134 /*
10135 * This condition is "impossible", if it occurs
10136 * we need to fix it. Originally reported by
10137 * Bjorn Helgaas on a 128-CPU setup.
10138 */
10139 BUG_ON(busiest_rq == target_rq);
10140
10141 /* Search for an sd spanning us and the target CPU. */
10142 rcu_read_lock();
10143 for_each_domain(target_cpu, sd) {
10144 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10145 break;
10146 }
10147
10148 if (likely(sd)) {
10149 struct lb_env env = {
10150 .sd = sd,
10151 .dst_cpu = target_cpu,
10152 .dst_rq = target_rq,
10153 .src_cpu = busiest_rq->cpu,
10154 .src_rq = busiest_rq,
10155 .idle = CPU_IDLE,
10156 .flags = LBF_ACTIVE_LB,
10157 };
10158
10159 schedstat_inc(sd->alb_count);
10160 update_rq_clock(busiest_rq);
10161
10162 p = detach_one_task(&env);
10163 if (p) {
10164 schedstat_inc(sd->alb_pushed);
10165 /* Active balancing done, reset the failure counter. */
10166 sd->nr_balance_failed = 0;
10167 } else {
10168 schedstat_inc(sd->alb_failed);
10169 }
10170 }
10171 rcu_read_unlock();
10172 out_unlock:
10173 busiest_rq->active_balance = 0;
10174 rq_unlock(busiest_rq, &rf);
10175
10176 if (p)
10177 attach_one_task(target_rq, p);
10178
10179 local_irq_enable();
10180
10181 return 0;
10182 }
10183
10184 static DEFINE_SPINLOCK(balancing);
10185
10186 /*
10187 * Scale the max load_balance interval with the number of CPUs in the system.
10188 * This trades load-balance latency on larger machines for less cross talk.
10189 */
10190 void update_max_interval(void)
10191 {
10192 max_load_balance_interval = HZ*num_online_cpus()/10;
10193 }
10194
10195 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10196 {
10197 if (cost > sd->max_newidle_lb_cost) {
10198 /*
10199 * Track max cost of a domain to make sure to not delay the
10200 * next wakeup on the CPU.
10201 */
10202 sd->max_newidle_lb_cost = cost;
10203 sd->last_decay_max_lb_cost = jiffies;
10204 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10205 /*
10206 * Decay the newidle max times by ~1% per second to ensure that
10207 * it is not outdated and the current max cost is actually
10208 * shorter.
10209 */
10210 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10211 sd->last_decay_max_lb_cost = jiffies;
10212
10213 return true;
10214 }
10215
10216 return false;
10217 }
10218
10219 /*
10220 * It checks each scheduling domain to see if it is due to be balanced,
10221 * and initiates a balancing operation if so.
10222 *
10223 * Balancing parameters are set up in init_sched_domains.
10224 */
10225 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10226 {
10227 int continue_balancing = 1;
10228 int cpu = rq->cpu;
10229 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10230 unsigned long interval;
10231 struct sched_domain *sd;
10232 /* Earliest time when we have to do rebalance again */
10233 unsigned long next_balance = jiffies + 60*HZ;
10234 int update_next_balance = 0;
10235 int need_serialize, need_decay = 0;
10236 u64 max_cost = 0;
10237
10238 rcu_read_lock();
10239 for_each_domain(cpu, sd) {
10240 /*
10241 * Decay the newidle max times here because this is a regular
10242 * visit to all the domains.
10243 */
10244 need_decay = update_newidle_cost(sd, 0);
10245 max_cost += sd->max_newidle_lb_cost;
10246
10247 /*
10248 * Stop the load balance at this level. There is another
10249 * CPU in our sched group which is doing load balancing more
10250 * actively.
10251 */
10252 if (!continue_balancing) {
10253 if (need_decay)
10254 continue;
10255 break;
10256 }
10257
10258 interval = get_sd_balance_interval(sd, busy);
10259
10260 need_serialize = sd->flags & SD_SERIALIZE;
10261 if (need_serialize) {
10262 if (!spin_trylock(&balancing))
10263 goto out;
10264 }
10265
10266 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10267 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10268 /*
10269 * The LBF_DST_PINNED logic could have changed
10270 * env->dst_cpu, so we can't know our idle
10271 * state even if we migrated tasks. Update it.
10272 */
10273 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10274 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10275 }
10276 sd->last_balance = jiffies;
10277 interval = get_sd_balance_interval(sd, busy);
10278 }
10279 if (need_serialize)
10280 spin_unlock(&balancing);
10281 out:
10282 if (time_after(next_balance, sd->last_balance + interval)) {
10283 next_balance = sd->last_balance + interval;
10284 update_next_balance = 1;
10285 }
10286 }
10287 if (need_decay) {
10288 /*
10289 * Ensure the rq-wide value also decays but keep it at a
10290 * reasonable floor to avoid funnies with rq->avg_idle.
10291 */
10292 rq->max_idle_balance_cost =
10293 max((u64)sysctl_sched_migration_cost, max_cost);
10294 }
10295 rcu_read_unlock();
10296
10297 /*
10298 * next_balance will be updated only when there is a need.
10299 * When the cpu is attached to null domain for ex, it will not be
10300 * updated.
10301 */
10302 if (likely(update_next_balance))
10303 rq->next_balance = next_balance;
10304
10305 }
10306
10307 static inline int on_null_domain(struct rq *rq)
10308 {
10309 return unlikely(!rcu_dereference_sched(rq->sd));
10310 }
10311
10312 #ifdef CONFIG_NO_HZ_COMMON
10313 /*
10314 * idle load balancing details
10315 * - When one of the busy CPUs notice that there may be an idle rebalancing
10316 * needed, they will kick the idle load balancer, which then does idle
10317 * load balancing for all the idle CPUs.
10318 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10319 * anywhere yet.
10320 */
10321
10322 static inline int find_new_ilb(void)
10323 {
10324 int ilb;
10325 const struct cpumask *hk_mask;
10326
10327 hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
10328
10329 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10330
10331 if (ilb == smp_processor_id())
10332 continue;
10333
10334 if (idle_cpu(ilb))
10335 return ilb;
10336 }
10337
10338 return nr_cpu_ids;
10339 }
10340
10341 /*
10342 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10343 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10344 */
10345 static void kick_ilb(unsigned int flags)
10346 {
10347 int ilb_cpu;
10348
10349 /*
10350 * Increase nohz.next_balance only when if full ilb is triggered but
10351 * not if we only update stats.
10352 */
10353 if (flags & NOHZ_BALANCE_KICK)
10354 nohz.next_balance = jiffies+1;
10355
10356 ilb_cpu = find_new_ilb();
10357
10358 if (ilb_cpu >= nr_cpu_ids)
10359 return;
10360
10361 /*
10362 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10363 * the first flag owns it; cleared by nohz_csd_func().
10364 */
10365 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10366 if (flags & NOHZ_KICK_MASK)
10367 return;
10368
10369 /*
10370 * This way we generate an IPI on the target CPU which
10371 * is idle. And the softirq performing nohz idle load balance
10372 * will be run before returning from the IPI.
10373 */
10374 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10375 }
10376
10377 /*
10378 * Current decision point for kicking the idle load balancer in the presence
10379 * of idle CPUs in the system.
10380 */
10381 static void nohz_balancer_kick(struct rq *rq)
10382 {
10383 unsigned long now = jiffies;
10384 struct sched_domain_shared *sds;
10385 struct sched_domain *sd;
10386 int nr_busy, i, cpu = rq->cpu;
10387 unsigned int flags = 0;
10388
10389 if (unlikely(rq->idle_balance))
10390 return;
10391
10392 /*
10393 * We may be recently in ticked or tickless idle mode. At the first
10394 * busy tick after returning from idle, we will update the busy stats.
10395 */
10396 nohz_balance_exit_idle(rq);
10397
10398 /*
10399 * None are in tickless mode and hence no need for NOHZ idle load
10400 * balancing.
10401 */
10402 if (likely(!atomic_read(&nohz.nr_cpus)))
10403 return;
10404
10405 if (READ_ONCE(nohz.has_blocked) &&
10406 time_after(now, READ_ONCE(nohz.next_blocked)))
10407 flags = NOHZ_STATS_KICK;
10408
10409 if (time_before(now, nohz.next_balance))
10410 goto out;
10411
10412 if (rq->nr_running >= 2) {
10413 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10414 goto out;
10415 }
10416
10417 rcu_read_lock();
10418
10419 sd = rcu_dereference(rq->sd);
10420 if (sd) {
10421 /*
10422 * If there's a CFS task and the current CPU has reduced
10423 * capacity; kick the ILB to see if there's a better CPU to run
10424 * on.
10425 */
10426 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10427 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10428 goto unlock;
10429 }
10430 }
10431
10432 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10433 if (sd) {
10434 /*
10435 * When ASYM_PACKING; see if there's a more preferred CPU
10436 * currently idle; in which case, kick the ILB to move tasks
10437 * around.
10438 */
10439 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10440 if (sched_asym_prefer(i, cpu)) {
10441 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10442 goto unlock;
10443 }
10444 }
10445 }
10446
10447 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10448 if (sd) {
10449 /*
10450 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10451 * to run the misfit task on.
10452 */
10453 if (check_misfit_status(rq, sd)) {
10454 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10455 goto unlock;
10456 }
10457
10458 /*
10459 * For asymmetric systems, we do not want to nicely balance
10460 * cache use, instead we want to embrace asymmetry and only
10461 * ensure tasks have enough CPU capacity.
10462 *
10463 * Skip the LLC logic because it's not relevant in that case.
10464 */
10465 goto unlock;
10466 }
10467
10468 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10469 if (sds) {
10470 /*
10471 * If there is an imbalance between LLC domains (IOW we could
10472 * increase the overall cache use), we need some less-loaded LLC
10473 * domain to pull some load. Likewise, we may need to spread
10474 * load within the current LLC domain (e.g. packed SMT cores but
10475 * other CPUs are idle). We can't really know from here how busy
10476 * the others are - so just get a nohz balance going if it looks
10477 * like this LLC domain has tasks we could move.
10478 */
10479 nr_busy = atomic_read(&sds->nr_busy_cpus);
10480 if (nr_busy > 1) {
10481 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10482 goto unlock;
10483 }
10484 }
10485 unlock:
10486 rcu_read_unlock();
10487 out:
10488 if (READ_ONCE(nohz.needs_update))
10489 flags |= NOHZ_NEXT_KICK;
10490
10491 if (flags)
10492 kick_ilb(flags);
10493 }
10494
10495 static void set_cpu_sd_state_busy(int cpu)
10496 {
10497 struct sched_domain *sd;
10498
10499 rcu_read_lock();
10500 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10501
10502 if (!sd || !sd->nohz_idle)
10503 goto unlock;
10504 sd->nohz_idle = 0;
10505
10506 atomic_inc(&sd->shared->nr_busy_cpus);
10507 unlock:
10508 rcu_read_unlock();
10509 }
10510
10511 void nohz_balance_exit_idle(struct rq *rq)
10512 {
10513 SCHED_WARN_ON(rq != this_rq());
10514
10515 if (likely(!rq->nohz_tick_stopped))
10516 return;
10517
10518 rq->nohz_tick_stopped = 0;
10519 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10520 atomic_dec(&nohz.nr_cpus);
10521
10522 set_cpu_sd_state_busy(rq->cpu);
10523 }
10524
10525 static void set_cpu_sd_state_idle(int cpu)
10526 {
10527 struct sched_domain *sd;
10528
10529 rcu_read_lock();
10530 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10531
10532 if (!sd || sd->nohz_idle)
10533 goto unlock;
10534 sd->nohz_idle = 1;
10535
10536 atomic_dec(&sd->shared->nr_busy_cpus);
10537 unlock:
10538 rcu_read_unlock();
10539 }
10540
10541 /*
10542 * This routine will record that the CPU is going idle with tick stopped.
10543 * This info will be used in performing idle load balancing in the future.
10544 */
10545 void nohz_balance_enter_idle(int cpu)
10546 {
10547 struct rq *rq = cpu_rq(cpu);
10548
10549 SCHED_WARN_ON(cpu != smp_processor_id());
10550
10551 /* If this CPU is going down, then nothing needs to be done: */
10552 if (!cpu_active(cpu))
10553 return;
10554
10555 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10556 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10557 return;
10558
10559 /*
10560 * Can be set safely without rq->lock held
10561 * If a clear happens, it will have evaluated last additions because
10562 * rq->lock is held during the check and the clear
10563 */
10564 rq->has_blocked_load = 1;
10565
10566 /*
10567 * The tick is still stopped but load could have been added in the
10568 * meantime. We set the nohz.has_blocked flag to trig a check of the
10569 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10570 * of nohz.has_blocked can only happen after checking the new load
10571 */
10572 if (rq->nohz_tick_stopped)
10573 goto out;
10574
10575 /* If we're a completely isolated CPU, we don't play: */
10576 if (on_null_domain(rq))
10577 return;
10578
10579 rq->nohz_tick_stopped = 1;
10580
10581 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10582 atomic_inc(&nohz.nr_cpus);
10583
10584 /*
10585 * Ensures that if nohz_idle_balance() fails to observe our
10586 * @idle_cpus_mask store, it must observe the @has_blocked
10587 * and @needs_update stores.
10588 */
10589 smp_mb__after_atomic();
10590
10591 set_cpu_sd_state_idle(cpu);
10592
10593 WRITE_ONCE(nohz.needs_update, 1);
10594 out:
10595 /*
10596 * Each time a cpu enter idle, we assume that it has blocked load and
10597 * enable the periodic update of the load of idle cpus
10598 */
10599 WRITE_ONCE(nohz.has_blocked, 1);
10600 }
10601
10602 static bool update_nohz_stats(struct rq *rq)
10603 {
10604 unsigned int cpu = rq->cpu;
10605
10606 if (!rq->has_blocked_load)
10607 return false;
10608
10609 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10610 return false;
10611
10612 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10613 return true;
10614
10615 update_blocked_averages(cpu);
10616
10617 return rq->has_blocked_load;
10618 }
10619
10620 /*
10621 * Internal function that runs load balance for all idle cpus. The load balance
10622 * can be a simple update of blocked load or a complete load balance with
10623 * tasks movement depending of flags.
10624 */
10625 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10626 enum cpu_idle_type idle)
10627 {
10628 /* Earliest time when we have to do rebalance again */
10629 unsigned long now = jiffies;
10630 unsigned long next_balance = now + 60*HZ;
10631 bool has_blocked_load = false;
10632 int update_next_balance = 0;
10633 int this_cpu = this_rq->cpu;
10634 int balance_cpu;
10635 struct rq *rq;
10636
10637 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10638
10639 /*
10640 * We assume there will be no idle load after this update and clear
10641 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10642 * set the has_blocked flag and trigger another update of idle load.
10643 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10644 * setting the flag, we are sure to not clear the state and not
10645 * check the load of an idle cpu.
10646 *
10647 * Same applies to idle_cpus_mask vs needs_update.
10648 */
10649 if (flags & NOHZ_STATS_KICK)
10650 WRITE_ONCE(nohz.has_blocked, 0);
10651 if (flags & NOHZ_NEXT_KICK)
10652 WRITE_ONCE(nohz.needs_update, 0);
10653
10654 /*
10655 * Ensures that if we miss the CPU, we must see the has_blocked
10656 * store from nohz_balance_enter_idle().
10657 */
10658 smp_mb();
10659
10660 /*
10661 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10662 * chance for other idle cpu to pull load.
10663 */
10664 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10665 if (!idle_cpu(balance_cpu))
10666 continue;
10667
10668 /*
10669 * If this CPU gets work to do, stop the load balancing
10670 * work being done for other CPUs. Next load
10671 * balancing owner will pick it up.
10672 */
10673 if (need_resched()) {
10674 if (flags & NOHZ_STATS_KICK)
10675 has_blocked_load = true;
10676 if (flags & NOHZ_NEXT_KICK)
10677 WRITE_ONCE(nohz.needs_update, 1);
10678 goto abort;
10679 }
10680
10681 rq = cpu_rq(balance_cpu);
10682
10683 if (flags & NOHZ_STATS_KICK)
10684 has_blocked_load |= update_nohz_stats(rq);
10685
10686 /*
10687 * If time for next balance is due,
10688 * do the balance.
10689 */
10690 if (time_after_eq(jiffies, rq->next_balance)) {
10691 struct rq_flags rf;
10692
10693 rq_lock_irqsave(rq, &rf);
10694 update_rq_clock(rq);
10695 rq_unlock_irqrestore(rq, &rf);
10696
10697 if (flags & NOHZ_BALANCE_KICK)
10698 rebalance_domains(rq, CPU_IDLE);
10699 }
10700
10701 if (time_after(next_balance, rq->next_balance)) {
10702 next_balance = rq->next_balance;
10703 update_next_balance = 1;
10704 }
10705 }
10706
10707 /*
10708 * next_balance will be updated only when there is a need.
10709 * When the CPU is attached to null domain for ex, it will not be
10710 * updated.
10711 */
10712 if (likely(update_next_balance))
10713 nohz.next_balance = next_balance;
10714
10715 if (flags & NOHZ_STATS_KICK)
10716 WRITE_ONCE(nohz.next_blocked,
10717 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10718
10719 abort:
10720 /* There is still blocked load, enable periodic update */
10721 if (has_blocked_load)
10722 WRITE_ONCE(nohz.has_blocked, 1);
10723 }
10724
10725 /*
10726 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10727 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10728 */
10729 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10730 {
10731 unsigned int flags = this_rq->nohz_idle_balance;
10732
10733 if (!flags)
10734 return false;
10735
10736 this_rq->nohz_idle_balance = 0;
10737
10738 if (idle != CPU_IDLE)
10739 return false;
10740
10741 _nohz_idle_balance(this_rq, flags, idle);
10742
10743 return true;
10744 }
10745
10746 /*
10747 * Check if we need to run the ILB for updating blocked load before entering
10748 * idle state.
10749 */
10750 void nohz_run_idle_balance(int cpu)
10751 {
10752 unsigned int flags;
10753
10754 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10755
10756 /*
10757 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10758 * (ie NOHZ_STATS_KICK set) and will do the same.
10759 */
10760 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10761 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10762 }
10763
10764 static void nohz_newidle_balance(struct rq *this_rq)
10765 {
10766 int this_cpu = this_rq->cpu;
10767
10768 /*
10769 * This CPU doesn't want to be disturbed by scheduler
10770 * housekeeping
10771 */
10772 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10773 return;
10774
10775 /* Will wake up very soon. No time for doing anything else*/
10776 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10777 return;
10778
10779 /* Don't need to update blocked load of idle CPUs*/
10780 if (!READ_ONCE(nohz.has_blocked) ||
10781 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10782 return;
10783
10784 /*
10785 * Set the need to trigger ILB in order to update blocked load
10786 * before entering idle state.
10787 */
10788 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10789 }
10790
10791 #else /* !CONFIG_NO_HZ_COMMON */
10792 static inline void nohz_balancer_kick(struct rq *rq) { }
10793
10794 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10795 {
10796 return false;
10797 }
10798
10799 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10800 #endif /* CONFIG_NO_HZ_COMMON */
10801
10802 /*
10803 * newidle_balance is called by schedule() if this_cpu is about to become
10804 * idle. Attempts to pull tasks from other CPUs.
10805 *
10806 * Returns:
10807 * < 0 - we released the lock and there are !fair tasks present
10808 * 0 - failed, no new tasks
10809 * > 0 - success, new (fair) tasks present
10810 */
10811 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10812 {
10813 unsigned long next_balance = jiffies + HZ;
10814 int this_cpu = this_rq->cpu;
10815 u64 t0, t1, curr_cost = 0;
10816 struct sched_domain *sd;
10817 int pulled_task = 0;
10818
10819 update_misfit_status(NULL, this_rq);
10820
10821 /*
10822 * There is a task waiting to run. No need to search for one.
10823 * Return 0; the task will be enqueued when switching to idle.
10824 */
10825 if (this_rq->ttwu_pending)
10826 return 0;
10827
10828 /*
10829 * We must set idle_stamp _before_ calling idle_balance(), such that we
10830 * measure the duration of idle_balance() as idle time.
10831 */
10832 this_rq->idle_stamp = rq_clock(this_rq);
10833
10834 /*
10835 * Do not pull tasks towards !active CPUs...
10836 */
10837 if (!cpu_active(this_cpu))
10838 return 0;
10839
10840 /*
10841 * This is OK, because current is on_cpu, which avoids it being picked
10842 * for load-balance and preemption/IRQs are still disabled avoiding
10843 * further scheduler activity on it and we're being very careful to
10844 * re-start the picking loop.
10845 */
10846 rq_unpin_lock(this_rq, rf);
10847
10848 rcu_read_lock();
10849 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10850
10851 if (!READ_ONCE(this_rq->rd->overload) ||
10852 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
10853
10854 if (sd)
10855 update_next_balance(sd, &next_balance);
10856 rcu_read_unlock();
10857
10858 goto out;
10859 }
10860 rcu_read_unlock();
10861
10862 raw_spin_rq_unlock(this_rq);
10863
10864 t0 = sched_clock_cpu(this_cpu);
10865 update_blocked_averages(this_cpu);
10866
10867 rcu_read_lock();
10868 for_each_domain(this_cpu, sd) {
10869 int continue_balancing = 1;
10870 u64 domain_cost;
10871
10872 update_next_balance(sd, &next_balance);
10873
10874 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
10875 break;
10876
10877 if (sd->flags & SD_BALANCE_NEWIDLE) {
10878
10879 pulled_task = load_balance(this_cpu, this_rq,
10880 sd, CPU_NEWLY_IDLE,
10881 &continue_balancing);
10882
10883 t1 = sched_clock_cpu(this_cpu);
10884 domain_cost = t1 - t0;
10885 update_newidle_cost(sd, domain_cost);
10886
10887 curr_cost += domain_cost;
10888 t0 = t1;
10889 }
10890
10891 /*
10892 * Stop searching for tasks to pull if there are
10893 * now runnable tasks on this rq.
10894 */
10895 if (pulled_task || this_rq->nr_running > 0 ||
10896 this_rq->ttwu_pending)
10897 break;
10898 }
10899 rcu_read_unlock();
10900
10901 raw_spin_rq_lock(this_rq);
10902
10903 if (curr_cost > this_rq->max_idle_balance_cost)
10904 this_rq->max_idle_balance_cost = curr_cost;
10905
10906 /*
10907 * While browsing the domains, we released the rq lock, a task could
10908 * have been enqueued in the meantime. Since we're not going idle,
10909 * pretend we pulled a task.
10910 */
10911 if (this_rq->cfs.h_nr_running && !pulled_task)
10912 pulled_task = 1;
10913
10914 /* Is there a task of a high priority class? */
10915 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10916 pulled_task = -1;
10917
10918 out:
10919 /* Move the next balance forward */
10920 if (time_after(this_rq->next_balance, next_balance))
10921 this_rq->next_balance = next_balance;
10922
10923 if (pulled_task)
10924 this_rq->idle_stamp = 0;
10925 else
10926 nohz_newidle_balance(this_rq);
10927
10928 rq_repin_lock(this_rq, rf);
10929
10930 return pulled_task;
10931 }
10932
10933 /*
10934 * run_rebalance_domains is triggered when needed from the scheduler tick.
10935 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10936 */
10937 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10938 {
10939 struct rq *this_rq = this_rq();
10940 enum cpu_idle_type idle = this_rq->idle_balance ?
10941 CPU_IDLE : CPU_NOT_IDLE;
10942
10943 /*
10944 * If this CPU has a pending nohz_balance_kick, then do the
10945 * balancing on behalf of the other idle CPUs whose ticks are
10946 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10947 * give the idle CPUs a chance to load balance. Else we may
10948 * load balance only within the local sched_domain hierarchy
10949 * and abort nohz_idle_balance altogether if we pull some load.
10950 */
10951 if (nohz_idle_balance(this_rq, idle))
10952 return;
10953
10954 /* normal load balance */
10955 update_blocked_averages(this_rq->cpu);
10956 rebalance_domains(this_rq, idle);
10957 }
10958
10959 /*
10960 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10961 */
10962 void trigger_load_balance(struct rq *rq)
10963 {
10964 /*
10965 * Don't need to rebalance while attached to NULL domain or
10966 * runqueue CPU is not active
10967 */
10968 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10969 return;
10970
10971 if (time_after_eq(jiffies, rq->next_balance))
10972 raise_softirq(SCHED_SOFTIRQ);
10973
10974 nohz_balancer_kick(rq);
10975 }
10976
10977 static void rq_online_fair(struct rq *rq)
10978 {
10979 update_sysctl();
10980
10981 update_runtime_enabled(rq);
10982 }
10983
10984 static void rq_offline_fair(struct rq *rq)
10985 {
10986 update_sysctl();
10987
10988 /* Ensure any throttled groups are reachable by pick_next_task */
10989 unthrottle_offline_cfs_rqs(rq);
10990 }
10991
10992 #endif /* CONFIG_SMP */
10993
10994 #ifdef CONFIG_SCHED_CORE
10995 static inline bool
10996 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
10997 {
10998 u64 slice = sched_slice(cfs_rq_of(se), se);
10999 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11000
11001 return (rtime * min_nr_tasks > slice);
11002 }
11003
11004 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
11005 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11006 {
11007 if (!sched_core_enabled(rq))
11008 return;
11009
11010 /*
11011 * If runqueue has only one task which used up its slice and
11012 * if the sibling is forced idle, then trigger schedule to
11013 * give forced idle task a chance.
11014 *
11015 * sched_slice() considers only this active rq and it gets the
11016 * whole slice. But during force idle, we have siblings acting
11017 * like a single runqueue and hence we need to consider runnable
11018 * tasks on this CPU and the forced idle CPU. Ideally, we should
11019 * go through the forced idle rq, but that would be a perf hit.
11020 * We can assume that the forced idle CPU has at least
11021 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11022 * if we need to give up the CPU.
11023 */
11024 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11025 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11026 resched_curr(rq);
11027 }
11028
11029 /*
11030 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11031 */
11032 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11033 {
11034 for_each_sched_entity(se) {
11035 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11036
11037 if (forceidle) {
11038 if (cfs_rq->forceidle_seq == fi_seq)
11039 break;
11040 cfs_rq->forceidle_seq = fi_seq;
11041 }
11042
11043 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11044 }
11045 }
11046
11047 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11048 {
11049 struct sched_entity *se = &p->se;
11050
11051 if (p->sched_class != &fair_sched_class)
11052 return;
11053
11054 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11055 }
11056
11057 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11058 {
11059 struct rq *rq = task_rq(a);
11060 struct sched_entity *sea = &a->se;
11061 struct sched_entity *seb = &b->se;
11062 struct cfs_rq *cfs_rqa;
11063 struct cfs_rq *cfs_rqb;
11064 s64 delta;
11065
11066 SCHED_WARN_ON(task_rq(b)->core != rq->core);
11067
11068 #ifdef CONFIG_FAIR_GROUP_SCHED
11069 /*
11070 * Find an se in the hierarchy for tasks a and b, such that the se's
11071 * are immediate siblings.
11072 */
11073 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11074 int sea_depth = sea->depth;
11075 int seb_depth = seb->depth;
11076
11077 if (sea_depth >= seb_depth)
11078 sea = parent_entity(sea);
11079 if (sea_depth <= seb_depth)
11080 seb = parent_entity(seb);
11081 }
11082
11083 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11084 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11085
11086 cfs_rqa = sea->cfs_rq;
11087 cfs_rqb = seb->cfs_rq;
11088 #else
11089 cfs_rqa = &task_rq(a)->cfs;
11090 cfs_rqb = &task_rq(b)->cfs;
11091 #endif
11092
11093 /*
11094 * Find delta after normalizing se's vruntime with its cfs_rq's
11095 * min_vruntime_fi, which would have been updated in prior calls
11096 * to se_fi_update().
11097 */
11098 delta = (s64)(sea->vruntime - seb->vruntime) +
11099 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11100
11101 return delta > 0;
11102 }
11103 #else
11104 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11105 #endif
11106
11107 /*
11108 * scheduler tick hitting a task of our scheduling class.
11109 *
11110 * NOTE: This function can be called remotely by the tick offload that
11111 * goes along full dynticks. Therefore no local assumption can be made
11112 * and everything must be accessed through the @rq and @curr passed in
11113 * parameters.
11114 */
11115 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11116 {
11117 struct cfs_rq *cfs_rq;
11118 struct sched_entity *se = &curr->se;
11119
11120 for_each_sched_entity(se) {
11121 cfs_rq = cfs_rq_of(se);
11122 entity_tick(cfs_rq, se, queued);
11123 }
11124
11125 if (static_branch_unlikely(&sched_numa_balancing))
11126 task_tick_numa(rq, curr);
11127
11128 update_misfit_status(curr, rq);
11129 update_overutilized_status(task_rq(curr));
11130
11131 task_tick_core(rq, curr);
11132 }
11133
11134 /*
11135 * called on fork with the child task as argument from the parent's context
11136 * - child not yet on the tasklist
11137 * - preemption disabled
11138 */
11139 static void task_fork_fair(struct task_struct *p)
11140 {
11141 struct cfs_rq *cfs_rq;
11142 struct sched_entity *se = &p->se, *curr;
11143 struct rq *rq = this_rq();
11144 struct rq_flags rf;
11145
11146 rq_lock(rq, &rf);
11147 update_rq_clock(rq);
11148
11149 cfs_rq = task_cfs_rq(current);
11150 curr = cfs_rq->curr;
11151 if (curr) {
11152 update_curr(cfs_rq);
11153 se->vruntime = curr->vruntime;
11154 }
11155 place_entity(cfs_rq, se, 1);
11156
11157 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11158 /*
11159 * Upon rescheduling, sched_class::put_prev_task() will place
11160 * 'current' within the tree based on its new key value.
11161 */
11162 swap(curr->vruntime, se->vruntime);
11163 resched_curr(rq);
11164 }
11165
11166 se->vruntime -= cfs_rq->min_vruntime;
11167 rq_unlock(rq, &rf);
11168 }
11169
11170 /*
11171 * Priority of the task has changed. Check to see if we preempt
11172 * the current task.
11173 */
11174 static void
11175 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11176 {
11177 if (!task_on_rq_queued(p))
11178 return;
11179
11180 if (rq->cfs.nr_running == 1)
11181 return;
11182
11183 /*
11184 * Reschedule if we are currently running on this runqueue and
11185 * our priority decreased, or if we are not currently running on
11186 * this runqueue and our priority is higher than the current's
11187 */
11188 if (task_current(rq, p)) {
11189 if (p->prio > oldprio)
11190 resched_curr(rq);
11191 } else
11192 check_preempt_curr(rq, p, 0);
11193 }
11194
11195 static inline bool vruntime_normalized(struct task_struct *p)
11196 {
11197 struct sched_entity *se = &p->se;
11198
11199 /*
11200 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11201 * the dequeue_entity(.flags=0) will already have normalized the
11202 * vruntime.
11203 */
11204 if (p->on_rq)
11205 return true;
11206
11207 /*
11208 * When !on_rq, vruntime of the task has usually NOT been normalized.
11209 * But there are some cases where it has already been normalized:
11210 *
11211 * - A forked child which is waiting for being woken up by
11212 * wake_up_new_task().
11213 * - A task which has been woken up by try_to_wake_up() and
11214 * waiting for actually being woken up by sched_ttwu_pending().
11215 */
11216 if (!se->sum_exec_runtime ||
11217 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11218 return true;
11219
11220 return false;
11221 }
11222
11223 #ifdef CONFIG_FAIR_GROUP_SCHED
11224 /*
11225 * Propagate the changes of the sched_entity across the tg tree to make it
11226 * visible to the root
11227 */
11228 static void propagate_entity_cfs_rq(struct sched_entity *se)
11229 {
11230 struct cfs_rq *cfs_rq;
11231
11232 list_add_leaf_cfs_rq(cfs_rq_of(se));
11233
11234 /* Start to propagate at parent */
11235 se = se->parent;
11236
11237 for_each_sched_entity(se) {
11238 cfs_rq = cfs_rq_of(se);
11239
11240 if (!cfs_rq_throttled(cfs_rq)){
11241 update_load_avg(cfs_rq, se, UPDATE_TG);
11242 list_add_leaf_cfs_rq(cfs_rq);
11243 continue;
11244 }
11245
11246 if (list_add_leaf_cfs_rq(cfs_rq))
11247 break;
11248 }
11249 }
11250 #else
11251 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11252 #endif
11253
11254 static void detach_entity_cfs_rq(struct sched_entity *se)
11255 {
11256 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11257
11258 /* Catch up with the cfs_rq and remove our load when we leave */
11259 update_load_avg(cfs_rq, se, 0);
11260 detach_entity_load_avg(cfs_rq, se);
11261 update_tg_load_avg(cfs_rq);
11262 propagate_entity_cfs_rq(se);
11263 }
11264
11265 static void attach_entity_cfs_rq(struct sched_entity *se)
11266 {
11267 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11268
11269 #ifdef CONFIG_FAIR_GROUP_SCHED
11270 /*
11271 * Since the real-depth could have been changed (only FAIR
11272 * class maintain depth value), reset depth properly.
11273 */
11274 se->depth = se->parent ? se->parent->depth + 1 : 0;
11275 #endif
11276
11277 /* Synchronize entity with its cfs_rq */
11278 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11279 attach_entity_load_avg(cfs_rq, se);
11280 update_tg_load_avg(cfs_rq);
11281 propagate_entity_cfs_rq(se);
11282 }
11283
11284 static void detach_task_cfs_rq(struct task_struct *p)
11285 {
11286 struct sched_entity *se = &p->se;
11287 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11288
11289 if (!vruntime_normalized(p)) {
11290 /*
11291 * Fix up our vruntime so that the current sleep doesn't
11292 * cause 'unlimited' sleep bonus.
11293 */
11294 place_entity(cfs_rq, se, 0);
11295 se->vruntime -= cfs_rq->min_vruntime;
11296 }
11297
11298 detach_entity_cfs_rq(se);
11299 }
11300
11301 static void attach_task_cfs_rq(struct task_struct *p)
11302 {
11303 struct sched_entity *se = &p->se;
11304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11305
11306 attach_entity_cfs_rq(se);
11307
11308 if (!vruntime_normalized(p))
11309 se->vruntime += cfs_rq->min_vruntime;
11310 }
11311
11312 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11313 {
11314 detach_task_cfs_rq(p);
11315 }
11316
11317 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11318 {
11319 attach_task_cfs_rq(p);
11320
11321 if (task_on_rq_queued(p)) {
11322 /*
11323 * We were most likely switched from sched_rt, so
11324 * kick off the schedule if running, otherwise just see
11325 * if we can still preempt the current task.
11326 */
11327 if (task_current(rq, p))
11328 resched_curr(rq);
11329 else
11330 check_preempt_curr(rq, p, 0);
11331 }
11332 }
11333
11334 /* Account for a task changing its policy or group.
11335 *
11336 * This routine is mostly called to set cfs_rq->curr field when a task
11337 * migrates between groups/classes.
11338 */
11339 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11340 {
11341 struct sched_entity *se = &p->se;
11342
11343 #ifdef CONFIG_SMP
11344 if (task_on_rq_queued(p)) {
11345 /*
11346 * Move the next running task to the front of the list, so our
11347 * cfs_tasks list becomes MRU one.
11348 */
11349 list_move(&se->group_node, &rq->cfs_tasks);
11350 }
11351 #endif
11352
11353 for_each_sched_entity(se) {
11354 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11355
11356 set_next_entity(cfs_rq, se);
11357 /* ensure bandwidth has been allocated on our new cfs_rq */
11358 account_cfs_rq_runtime(cfs_rq, 0);
11359 }
11360 }
11361
11362 void init_cfs_rq(struct cfs_rq *cfs_rq)
11363 {
11364 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11365 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11366 #ifndef CONFIG_64BIT
11367 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11368 #endif
11369 #ifdef CONFIG_SMP
11370 raw_spin_lock_init(&cfs_rq->removed.lock);
11371 #endif
11372 }
11373
11374 #ifdef CONFIG_FAIR_GROUP_SCHED
11375 static void task_set_group_fair(struct task_struct *p)
11376 {
11377 struct sched_entity *se = &p->se;
11378
11379 set_task_rq(p, task_cpu(p));
11380 se->depth = se->parent ? se->parent->depth + 1 : 0;
11381 }
11382
11383 static void task_move_group_fair(struct task_struct *p)
11384 {
11385 detach_task_cfs_rq(p);
11386 set_task_rq(p, task_cpu(p));
11387
11388 #ifdef CONFIG_SMP
11389 /* Tell se's cfs_rq has been changed -- migrated */
11390 p->se.avg.last_update_time = 0;
11391 #endif
11392 attach_task_cfs_rq(p);
11393 }
11394
11395 static void task_change_group_fair(struct task_struct *p, int type)
11396 {
11397 switch (type) {
11398 case TASK_SET_GROUP:
11399 task_set_group_fair(p);
11400 break;
11401
11402 case TASK_MOVE_GROUP:
11403 task_move_group_fair(p);
11404 break;
11405 }
11406 }
11407
11408 void free_fair_sched_group(struct task_group *tg)
11409 {
11410 int i;
11411
11412 for_each_possible_cpu(i) {
11413 if (tg->cfs_rq)
11414 kfree(tg->cfs_rq[i]);
11415 if (tg->se)
11416 kfree(tg->se[i]);
11417 }
11418
11419 kfree(tg->cfs_rq);
11420 kfree(tg->se);
11421 }
11422
11423 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11424 {
11425 struct sched_entity *se;
11426 struct cfs_rq *cfs_rq;
11427 int i;
11428
11429 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11430 if (!tg->cfs_rq)
11431 goto err;
11432 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11433 if (!tg->se)
11434 goto err;
11435
11436 tg->shares = NICE_0_LOAD;
11437
11438 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11439
11440 for_each_possible_cpu(i) {
11441 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11442 GFP_KERNEL, cpu_to_node(i));
11443 if (!cfs_rq)
11444 goto err;
11445
11446 se = kzalloc_node(sizeof(struct sched_entity_stats),
11447 GFP_KERNEL, cpu_to_node(i));
11448 if (!se)
11449 goto err_free_rq;
11450
11451 init_cfs_rq(cfs_rq);
11452 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11453 init_entity_runnable_average(se);
11454 }
11455
11456 return 1;
11457
11458 err_free_rq:
11459 kfree(cfs_rq);
11460 err:
11461 return 0;
11462 }
11463
11464 void online_fair_sched_group(struct task_group *tg)
11465 {
11466 struct sched_entity *se;
11467 struct rq_flags rf;
11468 struct rq *rq;
11469 int i;
11470
11471 for_each_possible_cpu(i) {
11472 rq = cpu_rq(i);
11473 se = tg->se[i];
11474 rq_lock_irq(rq, &rf);
11475 update_rq_clock(rq);
11476 attach_entity_cfs_rq(se);
11477 sync_throttle(tg, i);
11478 rq_unlock_irq(rq, &rf);
11479 }
11480 }
11481
11482 void unregister_fair_sched_group(struct task_group *tg)
11483 {
11484 unsigned long flags;
11485 struct rq *rq;
11486 int cpu;
11487
11488 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11489
11490 for_each_possible_cpu(cpu) {
11491 if (tg->se[cpu])
11492 remove_entity_load_avg(tg->se[cpu]);
11493
11494 /*
11495 * Only empty task groups can be destroyed; so we can speculatively
11496 * check on_list without danger of it being re-added.
11497 */
11498 if (!tg->cfs_rq[cpu]->on_list)
11499 continue;
11500
11501 rq = cpu_rq(cpu);
11502
11503 raw_spin_rq_lock_irqsave(rq, flags);
11504 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11505 raw_spin_rq_unlock_irqrestore(rq, flags);
11506 }
11507 }
11508
11509 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11510 struct sched_entity *se, int cpu,
11511 struct sched_entity *parent)
11512 {
11513 struct rq *rq = cpu_rq(cpu);
11514
11515 cfs_rq->tg = tg;
11516 cfs_rq->rq = rq;
11517 init_cfs_rq_runtime(cfs_rq);
11518
11519 tg->cfs_rq[cpu] = cfs_rq;
11520 tg->se[cpu] = se;
11521
11522 /* se could be NULL for root_task_group */
11523 if (!se)
11524 return;
11525
11526 if (!parent) {
11527 se->cfs_rq = &rq->cfs;
11528 se->depth = 0;
11529 } else {
11530 se->cfs_rq = parent->my_q;
11531 se->depth = parent->depth + 1;
11532 }
11533
11534 se->my_q = cfs_rq;
11535 /* guarantee group entities always have weight */
11536 update_load_set(&se->load, NICE_0_LOAD);
11537 se->parent = parent;
11538 }
11539
11540 static DEFINE_MUTEX(shares_mutex);
11541
11542 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11543 {
11544 int i;
11545
11546 lockdep_assert_held(&shares_mutex);
11547
11548 /*
11549 * We can't change the weight of the root cgroup.
11550 */
11551 if (!tg->se[0])
11552 return -EINVAL;
11553
11554 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11555
11556 if (tg->shares == shares)
11557 return 0;
11558
11559 tg->shares = shares;
11560 for_each_possible_cpu(i) {
11561 struct rq *rq = cpu_rq(i);
11562 struct sched_entity *se = tg->se[i];
11563 struct rq_flags rf;
11564
11565 /* Propagate contribution to hierarchy */
11566 rq_lock_irqsave(rq, &rf);
11567 update_rq_clock(rq);
11568 for_each_sched_entity(se) {
11569 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11570 update_cfs_group(se);
11571 }
11572 rq_unlock_irqrestore(rq, &rf);
11573 }
11574
11575 return 0;
11576 }
11577
11578 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11579 {
11580 int ret;
11581
11582 mutex_lock(&shares_mutex);
11583 if (tg_is_idle(tg))
11584 ret = -EINVAL;
11585 else
11586 ret = __sched_group_set_shares(tg, shares);
11587 mutex_unlock(&shares_mutex);
11588
11589 return ret;
11590 }
11591
11592 int sched_group_set_idle(struct task_group *tg, long idle)
11593 {
11594 int i;
11595
11596 if (tg == &root_task_group)
11597 return -EINVAL;
11598
11599 if (idle < 0 || idle > 1)
11600 return -EINVAL;
11601
11602 mutex_lock(&shares_mutex);
11603
11604 if (tg->idle == idle) {
11605 mutex_unlock(&shares_mutex);
11606 return 0;
11607 }
11608
11609 tg->idle = idle;
11610
11611 for_each_possible_cpu(i) {
11612 struct rq *rq = cpu_rq(i);
11613 struct sched_entity *se = tg->se[i];
11614 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
11615 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11616 long idle_task_delta;
11617 struct rq_flags rf;
11618
11619 rq_lock_irqsave(rq, &rf);
11620
11621 grp_cfs_rq->idle = idle;
11622 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11623 goto next_cpu;
11624
11625 if (se->on_rq) {
11626 parent_cfs_rq = cfs_rq_of(se);
11627 if (cfs_rq_is_idle(grp_cfs_rq))
11628 parent_cfs_rq->idle_nr_running++;
11629 else
11630 parent_cfs_rq->idle_nr_running--;
11631 }
11632
11633 idle_task_delta = grp_cfs_rq->h_nr_running -
11634 grp_cfs_rq->idle_h_nr_running;
11635 if (!cfs_rq_is_idle(grp_cfs_rq))
11636 idle_task_delta *= -1;
11637
11638 for_each_sched_entity(se) {
11639 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11640
11641 if (!se->on_rq)
11642 break;
11643
11644 cfs_rq->idle_h_nr_running += idle_task_delta;
11645
11646 /* Already accounted at parent level and above. */
11647 if (cfs_rq_is_idle(cfs_rq))
11648 break;
11649 }
11650
11651 next_cpu:
11652 rq_unlock_irqrestore(rq, &rf);
11653 }
11654
11655 /* Idle groups have minimum weight. */
11656 if (tg_is_idle(tg))
11657 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11658 else
11659 __sched_group_set_shares(tg, NICE_0_LOAD);
11660
11661 mutex_unlock(&shares_mutex);
11662 return 0;
11663 }
11664
11665 #else /* CONFIG_FAIR_GROUP_SCHED */
11666
11667 void free_fair_sched_group(struct task_group *tg) { }
11668
11669 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11670 {
11671 return 1;
11672 }
11673
11674 void online_fair_sched_group(struct task_group *tg) { }
11675
11676 void unregister_fair_sched_group(struct task_group *tg) { }
11677
11678 #endif /* CONFIG_FAIR_GROUP_SCHED */
11679
11680
11681 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11682 {
11683 struct sched_entity *se = &task->se;
11684 unsigned int rr_interval = 0;
11685
11686 /*
11687 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11688 * idle runqueue:
11689 */
11690 if (rq->cfs.load.weight)
11691 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11692
11693 return rr_interval;
11694 }
11695
11696 /*
11697 * All the scheduling class methods:
11698 */
11699 DEFINE_SCHED_CLASS(fair) = {
11700
11701 .enqueue_task = enqueue_task_fair,
11702 .dequeue_task = dequeue_task_fair,
11703 .yield_task = yield_task_fair,
11704 .yield_to_task = yield_to_task_fair,
11705
11706 .check_preempt_curr = check_preempt_wakeup,
11707
11708 .pick_next_task = __pick_next_task_fair,
11709 .put_prev_task = put_prev_task_fair,
11710 .set_next_task = set_next_task_fair,
11711
11712 #ifdef CONFIG_SMP
11713 .balance = balance_fair,
11714 .pick_task = pick_task_fair,
11715 .select_task_rq = select_task_rq_fair,
11716 .migrate_task_rq = migrate_task_rq_fair,
11717
11718 .rq_online = rq_online_fair,
11719 .rq_offline = rq_offline_fair,
11720
11721 .task_dead = task_dead_fair,
11722 .set_cpus_allowed = set_cpus_allowed_common,
11723 #endif
11724
11725 .task_tick = task_tick_fair,
11726 .task_fork = task_fork_fair,
11727
11728 .prio_changed = prio_changed_fair,
11729 .switched_from = switched_from_fair,
11730 .switched_to = switched_to_fair,
11731
11732 .get_rr_interval = get_rr_interval_fair,
11733
11734 .update_curr = update_curr_fair,
11735
11736 #ifdef CONFIG_FAIR_GROUP_SCHED
11737 .task_change_group = task_change_group_fair,
11738 #endif
11739
11740 #ifdef CONFIG_UCLAMP_TASK
11741 .uclamp_enabled = 1,
11742 #endif
11743 };
11744
11745 #ifdef CONFIG_SCHED_DEBUG
11746 void print_cfs_stats(struct seq_file *m, int cpu)
11747 {
11748 struct cfs_rq *cfs_rq, *pos;
11749
11750 rcu_read_lock();
11751 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11752 print_cfs_rq(m, cpu, cfs_rq);
11753 rcu_read_unlock();
11754 }
11755
11756 #ifdef CONFIG_NUMA_BALANCING
11757 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11758 {
11759 int node;
11760 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11761 struct numa_group *ng;
11762
11763 rcu_read_lock();
11764 ng = rcu_dereference(p->numa_group);
11765 for_each_online_node(node) {
11766 if (p->numa_faults) {
11767 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11768 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11769 }
11770 if (ng) {
11771 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11772 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11773 }
11774 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11775 }
11776 rcu_read_unlock();
11777 }
11778 #endif /* CONFIG_NUMA_BALANCING */
11779 #endif /* CONFIG_SCHED_DEBUG */
11780
11781 __init void init_sched_fair_class(void)
11782 {
11783 #ifdef CONFIG_SMP
11784 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11785
11786 #ifdef CONFIG_NO_HZ_COMMON
11787 nohz.next_balance = jiffies;
11788 nohz.next_blocked = jiffies;
11789 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11790 #endif
11791 #endif /* SMP */
11792
11793 }
11794
11795 /*
11796 * Helper functions to facilitate extracting info from tracepoints.
11797 */
11798
11799 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11800 {
11801 #ifdef CONFIG_SMP
11802 return cfs_rq ? &cfs_rq->avg : NULL;
11803 #else
11804 return NULL;
11805 #endif
11806 }
11807 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11808
11809 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11810 {
11811 if (!cfs_rq) {
11812 if (str)
11813 strlcpy(str, "(null)", len);
11814 else
11815 return NULL;
11816 }
11817
11818 cfs_rq_tg_path(cfs_rq, str, len);
11819 return str;
11820 }
11821 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11822
11823 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11824 {
11825 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11826 }
11827 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11828
11829 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11830 {
11831 #ifdef CONFIG_SMP
11832 return rq ? &rq->avg_rt : NULL;
11833 #else
11834 return NULL;
11835 #endif
11836 }
11837 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11838
11839 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11840 {
11841 #ifdef CONFIG_SMP
11842 return rq ? &rq->avg_dl : NULL;
11843 #else
11844 return NULL;
11845 #endif
11846 }
11847 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11848
11849 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11850 {
11851 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11852 return rq ? &rq->avg_irq : NULL;
11853 #else
11854 return NULL;
11855 #endif
11856 }
11857 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11858
11859 int sched_trace_rq_cpu(struct rq *rq)
11860 {
11861 return rq ? cpu_of(rq) : -1;
11862 }
11863 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11864
11865 int sched_trace_rq_cpu_capacity(struct rq *rq)
11866 {
11867 return rq ?
11868 #ifdef CONFIG_SMP
11869 rq->cpu_capacity
11870 #else
11871 SCHED_CAPACITY_SCALE
11872 #endif
11873 : -1;
11874 }
11875 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11876
11877 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11878 {
11879 #ifdef CONFIG_SMP
11880 return rd ? rd->span : NULL;
11881 #else
11882 return NULL;
11883 #endif
11884 }
11885 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11886
11887 int sched_trace_rq_nr_running(struct rq *rq)
11888 {
11889 return rq ? rq->nr_running : -1;
11890 }
11891 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);