]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/rt.c
sched/rt: Plug rt_mutex_setprio() vs push_rt_task() race
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime = MAX_BW;
14
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17 struct rt_bandwidth def_rt_bandwidth;
18
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21 struct rt_bandwidth *rt_b =
22 container_of(timer, struct rt_bandwidth, rt_period_timer);
23 int idle = 0;
24 int overrun;
25
26 raw_spin_lock(&rt_b->rt_runtime_lock);
27 for (;;) {
28 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29 if (!overrun)
30 break;
31
32 raw_spin_unlock(&rt_b->rt_runtime_lock);
33 idle = do_sched_rt_period_timer(rt_b, overrun);
34 raw_spin_lock(&rt_b->rt_runtime_lock);
35 }
36 if (idle)
37 rt_b->rt_period_active = 0;
38 raw_spin_unlock(&rt_b->rt_runtime_lock);
39
40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45 rt_b->rt_period = ns_to_ktime(period);
46 rt_b->rt_runtime = runtime;
47
48 raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
51 HRTIMER_MODE_REL_HARD);
52 rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54
55 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 if (!rt_b->rt_period_active) {
59 rt_b->rt_period_active = 1;
60 /*
61 * SCHED_DEADLINE updates the bandwidth, as a run away
62 * RT task with a DL task could hog a CPU. But DL does
63 * not reset the period. If a deadline task was running
64 * without an RT task running, it can cause RT tasks to
65 * throttle when they start up. Kick the timer right away
66 * to update the period.
67 */
68 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
69 hrtimer_start_expires(&rt_b->rt_period_timer,
70 HRTIMER_MODE_ABS_PINNED_HARD);
71 }
72 raw_spin_unlock(&rt_b->rt_runtime_lock);
73 }
74
75 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
76 {
77 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
78 return;
79
80 do_start_rt_bandwidth(rt_b);
81 }
82
83 void init_rt_rq(struct rt_rq *rt_rq)
84 {
85 struct rt_prio_array *array;
86 int i;
87
88 array = &rt_rq->active;
89 for (i = 0; i < MAX_RT_PRIO; i++) {
90 INIT_LIST_HEAD(array->queue + i);
91 __clear_bit(i, array->bitmap);
92 }
93 /* delimiter for bitsearch: */
94 __set_bit(MAX_RT_PRIO, array->bitmap);
95
96 #if defined CONFIG_SMP
97 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
98 rt_rq->highest_prio.next = MAX_RT_PRIO-1;
99 rt_rq->rt_nr_migratory = 0;
100 rt_rq->overloaded = 0;
101 plist_head_init(&rt_rq->pushable_tasks);
102 #endif /* CONFIG_SMP */
103 /* We start is dequeued state, because no RT tasks are queued */
104 rt_rq->rt_queued = 0;
105
106 rt_rq->rt_time = 0;
107 rt_rq->rt_throttled = 0;
108 rt_rq->rt_runtime = 0;
109 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
110 }
111
112 #ifdef CONFIG_RT_GROUP_SCHED
113 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
114 {
115 hrtimer_cancel(&rt_b->rt_period_timer);
116 }
117
118 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
119
120 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
121 {
122 #ifdef CONFIG_SCHED_DEBUG
123 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
124 #endif
125 return container_of(rt_se, struct task_struct, rt);
126 }
127
128 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
129 {
130 return rt_rq->rq;
131 }
132
133 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
134 {
135 return rt_se->rt_rq;
136 }
137
138 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
139 {
140 struct rt_rq *rt_rq = rt_se->rt_rq;
141
142 return rt_rq->rq;
143 }
144
145 void unregister_rt_sched_group(struct task_group *tg)
146 {
147 if (tg->rt_se)
148 destroy_rt_bandwidth(&tg->rt_bandwidth);
149
150 }
151
152 void free_rt_sched_group(struct task_group *tg)
153 {
154 int i;
155
156 for_each_possible_cpu(i) {
157 if (tg->rt_rq)
158 kfree(tg->rt_rq[i]);
159 if (tg->rt_se)
160 kfree(tg->rt_se[i]);
161 }
162
163 kfree(tg->rt_rq);
164 kfree(tg->rt_se);
165 }
166
167 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
168 struct sched_rt_entity *rt_se, int cpu,
169 struct sched_rt_entity *parent)
170 {
171 struct rq *rq = cpu_rq(cpu);
172
173 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
174 rt_rq->rt_nr_boosted = 0;
175 rt_rq->rq = rq;
176 rt_rq->tg = tg;
177
178 tg->rt_rq[cpu] = rt_rq;
179 tg->rt_se[cpu] = rt_se;
180
181 if (!rt_se)
182 return;
183
184 if (!parent)
185 rt_se->rt_rq = &rq->rt;
186 else
187 rt_se->rt_rq = parent->my_q;
188
189 rt_se->my_q = rt_rq;
190 rt_se->parent = parent;
191 INIT_LIST_HEAD(&rt_se->run_list);
192 }
193
194 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
195 {
196 struct rt_rq *rt_rq;
197 struct sched_rt_entity *rt_se;
198 int i;
199
200 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
201 if (!tg->rt_rq)
202 goto err;
203 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
204 if (!tg->rt_se)
205 goto err;
206
207 init_rt_bandwidth(&tg->rt_bandwidth,
208 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
209
210 for_each_possible_cpu(i) {
211 rt_rq = kzalloc_node(sizeof(struct rt_rq),
212 GFP_KERNEL, cpu_to_node(i));
213 if (!rt_rq)
214 goto err;
215
216 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
217 GFP_KERNEL, cpu_to_node(i));
218 if (!rt_se)
219 goto err_free_rq;
220
221 init_rt_rq(rt_rq);
222 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
223 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
224 }
225
226 return 1;
227
228 err_free_rq:
229 kfree(rt_rq);
230 err:
231 return 0;
232 }
233
234 #else /* CONFIG_RT_GROUP_SCHED */
235
236 #define rt_entity_is_task(rt_se) (1)
237
238 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
239 {
240 return container_of(rt_se, struct task_struct, rt);
241 }
242
243 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
244 {
245 return container_of(rt_rq, struct rq, rt);
246 }
247
248 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
249 {
250 struct task_struct *p = rt_task_of(rt_se);
251
252 return task_rq(p);
253 }
254
255 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
256 {
257 struct rq *rq = rq_of_rt_se(rt_se);
258
259 return &rq->rt;
260 }
261
262 void unregister_rt_sched_group(struct task_group *tg) { }
263
264 void free_rt_sched_group(struct task_group *tg) { }
265
266 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
267 {
268 return 1;
269 }
270 #endif /* CONFIG_RT_GROUP_SCHED */
271
272 #ifdef CONFIG_SMP
273
274 static void pull_rt_task(struct rq *this_rq);
275
276 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
277 {
278 /* Try to pull RT tasks here if we lower this rq's prio */
279 return rq->online && rq->rt.highest_prio.curr > prev->prio;
280 }
281
282 static inline int rt_overloaded(struct rq *rq)
283 {
284 return atomic_read(&rq->rd->rto_count);
285 }
286
287 static inline void rt_set_overload(struct rq *rq)
288 {
289 if (!rq->online)
290 return;
291
292 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
293 /*
294 * Make sure the mask is visible before we set
295 * the overload count. That is checked to determine
296 * if we should look at the mask. It would be a shame
297 * if we looked at the mask, but the mask was not
298 * updated yet.
299 *
300 * Matched by the barrier in pull_rt_task().
301 */
302 smp_wmb();
303 atomic_inc(&rq->rd->rto_count);
304 }
305
306 static inline void rt_clear_overload(struct rq *rq)
307 {
308 if (!rq->online)
309 return;
310
311 /* the order here really doesn't matter */
312 atomic_dec(&rq->rd->rto_count);
313 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
314 }
315
316 static void update_rt_migration(struct rt_rq *rt_rq)
317 {
318 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
319 if (!rt_rq->overloaded) {
320 rt_set_overload(rq_of_rt_rq(rt_rq));
321 rt_rq->overloaded = 1;
322 }
323 } else if (rt_rq->overloaded) {
324 rt_clear_overload(rq_of_rt_rq(rt_rq));
325 rt_rq->overloaded = 0;
326 }
327 }
328
329 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
330 {
331 struct task_struct *p;
332
333 if (!rt_entity_is_task(rt_se))
334 return;
335
336 p = rt_task_of(rt_se);
337 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
338
339 rt_rq->rt_nr_total++;
340 if (p->nr_cpus_allowed > 1)
341 rt_rq->rt_nr_migratory++;
342
343 update_rt_migration(rt_rq);
344 }
345
346 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
347 {
348 struct task_struct *p;
349
350 if (!rt_entity_is_task(rt_se))
351 return;
352
353 p = rt_task_of(rt_se);
354 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
355
356 rt_rq->rt_nr_total--;
357 if (p->nr_cpus_allowed > 1)
358 rt_rq->rt_nr_migratory--;
359
360 update_rt_migration(rt_rq);
361 }
362
363 static inline int has_pushable_tasks(struct rq *rq)
364 {
365 return !plist_head_empty(&rq->rt.pushable_tasks);
366 }
367
368 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
369 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
370
371 static void push_rt_tasks(struct rq *);
372 static void pull_rt_task(struct rq *);
373
374 static inline void rt_queue_push_tasks(struct rq *rq)
375 {
376 if (!has_pushable_tasks(rq))
377 return;
378
379 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
380 }
381
382 static inline void rt_queue_pull_task(struct rq *rq)
383 {
384 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
385 }
386
387 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
388 {
389 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390 plist_node_init(&p->pushable_tasks, p->prio);
391 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
392
393 /* Update the highest prio pushable task */
394 if (p->prio < rq->rt.highest_prio.next)
395 rq->rt.highest_prio.next = p->prio;
396 }
397
398 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
399 {
400 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
401
402 /* Update the new highest prio pushable task */
403 if (has_pushable_tasks(rq)) {
404 p = plist_first_entry(&rq->rt.pushable_tasks,
405 struct task_struct, pushable_tasks);
406 rq->rt.highest_prio.next = p->prio;
407 } else {
408 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
409 }
410 }
411
412 #else
413
414 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
415 {
416 }
417
418 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
419 {
420 }
421
422 static inline
423 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
424 {
425 }
426
427 static inline
428 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
429 {
430 }
431
432 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
433 {
434 return false;
435 }
436
437 static inline void pull_rt_task(struct rq *this_rq)
438 {
439 }
440
441 static inline void rt_queue_push_tasks(struct rq *rq)
442 {
443 }
444 #endif /* CONFIG_SMP */
445
446 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
447 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
448
449 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
450 {
451 return rt_se->on_rq;
452 }
453
454 #ifdef CONFIG_UCLAMP_TASK
455 /*
456 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
457 * settings.
458 *
459 * This check is only important for heterogeneous systems where uclamp_min value
460 * is higher than the capacity of a @cpu. For non-heterogeneous system this
461 * function will always return true.
462 *
463 * The function will return true if the capacity of the @cpu is >= the
464 * uclamp_min and false otherwise.
465 *
466 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
467 * > uclamp_max.
468 */
469 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
470 {
471 unsigned int min_cap;
472 unsigned int max_cap;
473 unsigned int cpu_cap;
474
475 /* Only heterogeneous systems can benefit from this check */
476 if (!static_branch_unlikely(&sched_asym_cpucapacity))
477 return true;
478
479 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
480 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
481
482 cpu_cap = capacity_orig_of(cpu);
483
484 return cpu_cap >= min(min_cap, max_cap);
485 }
486 #else
487 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
488 {
489 return true;
490 }
491 #endif
492
493 #ifdef CONFIG_RT_GROUP_SCHED
494
495 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
496 {
497 if (!rt_rq->tg)
498 return RUNTIME_INF;
499
500 return rt_rq->rt_runtime;
501 }
502
503 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
504 {
505 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
506 }
507
508 typedef struct task_group *rt_rq_iter_t;
509
510 static inline struct task_group *next_task_group(struct task_group *tg)
511 {
512 do {
513 tg = list_entry_rcu(tg->list.next,
514 typeof(struct task_group), list);
515 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
516
517 if (&tg->list == &task_groups)
518 tg = NULL;
519
520 return tg;
521 }
522
523 #define for_each_rt_rq(rt_rq, iter, rq) \
524 for (iter = container_of(&task_groups, typeof(*iter), list); \
525 (iter = next_task_group(iter)) && \
526 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
527
528 #define for_each_sched_rt_entity(rt_se) \
529 for (; rt_se; rt_se = rt_se->parent)
530
531 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
532 {
533 return rt_se->my_q;
534 }
535
536 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
537 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
538
539 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
540 {
541 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
542 struct rq *rq = rq_of_rt_rq(rt_rq);
543 struct sched_rt_entity *rt_se;
544
545 int cpu = cpu_of(rq);
546
547 rt_se = rt_rq->tg->rt_se[cpu];
548
549 if (rt_rq->rt_nr_running) {
550 if (!rt_se)
551 enqueue_top_rt_rq(rt_rq);
552 else if (!on_rt_rq(rt_se))
553 enqueue_rt_entity(rt_se, 0);
554
555 if (rt_rq->highest_prio.curr < curr->prio)
556 resched_curr(rq);
557 }
558 }
559
560 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
561 {
562 struct sched_rt_entity *rt_se;
563 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
564
565 rt_se = rt_rq->tg->rt_se[cpu];
566
567 if (!rt_se) {
568 dequeue_top_rt_rq(rt_rq);
569 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
570 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
571 }
572 else if (on_rt_rq(rt_se))
573 dequeue_rt_entity(rt_se, 0);
574 }
575
576 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
577 {
578 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
579 }
580
581 static int rt_se_boosted(struct sched_rt_entity *rt_se)
582 {
583 struct rt_rq *rt_rq = group_rt_rq(rt_se);
584 struct task_struct *p;
585
586 if (rt_rq)
587 return !!rt_rq->rt_nr_boosted;
588
589 p = rt_task_of(rt_se);
590 return p->prio != p->normal_prio;
591 }
592
593 #ifdef CONFIG_SMP
594 static inline const struct cpumask *sched_rt_period_mask(void)
595 {
596 return this_rq()->rd->span;
597 }
598 #else
599 static inline const struct cpumask *sched_rt_period_mask(void)
600 {
601 return cpu_online_mask;
602 }
603 #endif
604
605 static inline
606 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
607 {
608 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
609 }
610
611 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
612 {
613 return &rt_rq->tg->rt_bandwidth;
614 }
615
616 #else /* !CONFIG_RT_GROUP_SCHED */
617
618 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
619 {
620 return rt_rq->rt_runtime;
621 }
622
623 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
624 {
625 return ktime_to_ns(def_rt_bandwidth.rt_period);
626 }
627
628 typedef struct rt_rq *rt_rq_iter_t;
629
630 #define for_each_rt_rq(rt_rq, iter, rq) \
631 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
632
633 #define for_each_sched_rt_entity(rt_se) \
634 for (; rt_se; rt_se = NULL)
635
636 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
637 {
638 return NULL;
639 }
640
641 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
642 {
643 struct rq *rq = rq_of_rt_rq(rt_rq);
644
645 if (!rt_rq->rt_nr_running)
646 return;
647
648 enqueue_top_rt_rq(rt_rq);
649 resched_curr(rq);
650 }
651
652 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
653 {
654 dequeue_top_rt_rq(rt_rq);
655 }
656
657 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
658 {
659 return rt_rq->rt_throttled;
660 }
661
662 static inline const struct cpumask *sched_rt_period_mask(void)
663 {
664 return cpu_online_mask;
665 }
666
667 static inline
668 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
669 {
670 return &cpu_rq(cpu)->rt;
671 }
672
673 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
674 {
675 return &def_rt_bandwidth;
676 }
677
678 #endif /* CONFIG_RT_GROUP_SCHED */
679
680 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
681 {
682 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
683
684 return (hrtimer_active(&rt_b->rt_period_timer) ||
685 rt_rq->rt_time < rt_b->rt_runtime);
686 }
687
688 #ifdef CONFIG_SMP
689 /*
690 * We ran out of runtime, see if we can borrow some from our neighbours.
691 */
692 static void do_balance_runtime(struct rt_rq *rt_rq)
693 {
694 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
695 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
696 int i, weight;
697 u64 rt_period;
698
699 weight = cpumask_weight(rd->span);
700
701 raw_spin_lock(&rt_b->rt_runtime_lock);
702 rt_period = ktime_to_ns(rt_b->rt_period);
703 for_each_cpu(i, rd->span) {
704 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
705 s64 diff;
706
707 if (iter == rt_rq)
708 continue;
709
710 raw_spin_lock(&iter->rt_runtime_lock);
711 /*
712 * Either all rqs have inf runtime and there's nothing to steal
713 * or __disable_runtime() below sets a specific rq to inf to
714 * indicate its been disabled and disallow stealing.
715 */
716 if (iter->rt_runtime == RUNTIME_INF)
717 goto next;
718
719 /*
720 * From runqueues with spare time, take 1/n part of their
721 * spare time, but no more than our period.
722 */
723 diff = iter->rt_runtime - iter->rt_time;
724 if (diff > 0) {
725 diff = div_u64((u64)diff, weight);
726 if (rt_rq->rt_runtime + diff > rt_period)
727 diff = rt_period - rt_rq->rt_runtime;
728 iter->rt_runtime -= diff;
729 rt_rq->rt_runtime += diff;
730 if (rt_rq->rt_runtime == rt_period) {
731 raw_spin_unlock(&iter->rt_runtime_lock);
732 break;
733 }
734 }
735 next:
736 raw_spin_unlock(&iter->rt_runtime_lock);
737 }
738 raw_spin_unlock(&rt_b->rt_runtime_lock);
739 }
740
741 /*
742 * Ensure this RQ takes back all the runtime it lend to its neighbours.
743 */
744 static void __disable_runtime(struct rq *rq)
745 {
746 struct root_domain *rd = rq->rd;
747 rt_rq_iter_t iter;
748 struct rt_rq *rt_rq;
749
750 if (unlikely(!scheduler_running))
751 return;
752
753 for_each_rt_rq(rt_rq, iter, rq) {
754 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
755 s64 want;
756 int i;
757
758 raw_spin_lock(&rt_b->rt_runtime_lock);
759 raw_spin_lock(&rt_rq->rt_runtime_lock);
760 /*
761 * Either we're all inf and nobody needs to borrow, or we're
762 * already disabled and thus have nothing to do, or we have
763 * exactly the right amount of runtime to take out.
764 */
765 if (rt_rq->rt_runtime == RUNTIME_INF ||
766 rt_rq->rt_runtime == rt_b->rt_runtime)
767 goto balanced;
768 raw_spin_unlock(&rt_rq->rt_runtime_lock);
769
770 /*
771 * Calculate the difference between what we started out with
772 * and what we current have, that's the amount of runtime
773 * we lend and now have to reclaim.
774 */
775 want = rt_b->rt_runtime - rt_rq->rt_runtime;
776
777 /*
778 * Greedy reclaim, take back as much as we can.
779 */
780 for_each_cpu(i, rd->span) {
781 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
782 s64 diff;
783
784 /*
785 * Can't reclaim from ourselves or disabled runqueues.
786 */
787 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
788 continue;
789
790 raw_spin_lock(&iter->rt_runtime_lock);
791 if (want > 0) {
792 diff = min_t(s64, iter->rt_runtime, want);
793 iter->rt_runtime -= diff;
794 want -= diff;
795 } else {
796 iter->rt_runtime -= want;
797 want -= want;
798 }
799 raw_spin_unlock(&iter->rt_runtime_lock);
800
801 if (!want)
802 break;
803 }
804
805 raw_spin_lock(&rt_rq->rt_runtime_lock);
806 /*
807 * We cannot be left wanting - that would mean some runtime
808 * leaked out of the system.
809 */
810 BUG_ON(want);
811 balanced:
812 /*
813 * Disable all the borrow logic by pretending we have inf
814 * runtime - in which case borrowing doesn't make sense.
815 */
816 rt_rq->rt_runtime = RUNTIME_INF;
817 rt_rq->rt_throttled = 0;
818 raw_spin_unlock(&rt_rq->rt_runtime_lock);
819 raw_spin_unlock(&rt_b->rt_runtime_lock);
820
821 /* Make rt_rq available for pick_next_task() */
822 sched_rt_rq_enqueue(rt_rq);
823 }
824 }
825
826 static void __enable_runtime(struct rq *rq)
827 {
828 rt_rq_iter_t iter;
829 struct rt_rq *rt_rq;
830
831 if (unlikely(!scheduler_running))
832 return;
833
834 /*
835 * Reset each runqueue's bandwidth settings
836 */
837 for_each_rt_rq(rt_rq, iter, rq) {
838 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
839
840 raw_spin_lock(&rt_b->rt_runtime_lock);
841 raw_spin_lock(&rt_rq->rt_runtime_lock);
842 rt_rq->rt_runtime = rt_b->rt_runtime;
843 rt_rq->rt_time = 0;
844 rt_rq->rt_throttled = 0;
845 raw_spin_unlock(&rt_rq->rt_runtime_lock);
846 raw_spin_unlock(&rt_b->rt_runtime_lock);
847 }
848 }
849
850 static void balance_runtime(struct rt_rq *rt_rq)
851 {
852 if (!sched_feat(RT_RUNTIME_SHARE))
853 return;
854
855 if (rt_rq->rt_time > rt_rq->rt_runtime) {
856 raw_spin_unlock(&rt_rq->rt_runtime_lock);
857 do_balance_runtime(rt_rq);
858 raw_spin_lock(&rt_rq->rt_runtime_lock);
859 }
860 }
861 #else /* !CONFIG_SMP */
862 static inline void balance_runtime(struct rt_rq *rt_rq) {}
863 #endif /* CONFIG_SMP */
864
865 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
866 {
867 int i, idle = 1, throttled = 0;
868 const struct cpumask *span;
869
870 span = sched_rt_period_mask();
871 #ifdef CONFIG_RT_GROUP_SCHED
872 /*
873 * FIXME: isolated CPUs should really leave the root task group,
874 * whether they are isolcpus or were isolated via cpusets, lest
875 * the timer run on a CPU which does not service all runqueues,
876 * potentially leaving other CPUs indefinitely throttled. If
877 * isolation is really required, the user will turn the throttle
878 * off to kill the perturbations it causes anyway. Meanwhile,
879 * this maintains functionality for boot and/or troubleshooting.
880 */
881 if (rt_b == &root_task_group.rt_bandwidth)
882 span = cpu_online_mask;
883 #endif
884 for_each_cpu(i, span) {
885 int enqueue = 0;
886 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
887 struct rq *rq = rq_of_rt_rq(rt_rq);
888 int skip;
889
890 /*
891 * When span == cpu_online_mask, taking each rq->lock
892 * can be time-consuming. Try to avoid it when possible.
893 */
894 raw_spin_lock(&rt_rq->rt_runtime_lock);
895 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
896 rt_rq->rt_runtime = rt_b->rt_runtime;
897 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
898 raw_spin_unlock(&rt_rq->rt_runtime_lock);
899 if (skip)
900 continue;
901
902 raw_spin_rq_lock(rq);
903 update_rq_clock(rq);
904
905 if (rt_rq->rt_time) {
906 u64 runtime;
907
908 raw_spin_lock(&rt_rq->rt_runtime_lock);
909 if (rt_rq->rt_throttled)
910 balance_runtime(rt_rq);
911 runtime = rt_rq->rt_runtime;
912 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
913 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
914 rt_rq->rt_throttled = 0;
915 enqueue = 1;
916
917 /*
918 * When we're idle and a woken (rt) task is
919 * throttled check_preempt_curr() will set
920 * skip_update and the time between the wakeup
921 * and this unthrottle will get accounted as
922 * 'runtime'.
923 */
924 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
925 rq_clock_cancel_skipupdate(rq);
926 }
927 if (rt_rq->rt_time || rt_rq->rt_nr_running)
928 idle = 0;
929 raw_spin_unlock(&rt_rq->rt_runtime_lock);
930 } else if (rt_rq->rt_nr_running) {
931 idle = 0;
932 if (!rt_rq_throttled(rt_rq))
933 enqueue = 1;
934 }
935 if (rt_rq->rt_throttled)
936 throttled = 1;
937
938 if (enqueue)
939 sched_rt_rq_enqueue(rt_rq);
940 raw_spin_rq_unlock(rq);
941 }
942
943 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
944 return 1;
945
946 return idle;
947 }
948
949 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
950 {
951 #ifdef CONFIG_RT_GROUP_SCHED
952 struct rt_rq *rt_rq = group_rt_rq(rt_se);
953
954 if (rt_rq)
955 return rt_rq->highest_prio.curr;
956 #endif
957
958 return rt_task_of(rt_se)->prio;
959 }
960
961 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
962 {
963 u64 runtime = sched_rt_runtime(rt_rq);
964
965 if (rt_rq->rt_throttled)
966 return rt_rq_throttled(rt_rq);
967
968 if (runtime >= sched_rt_period(rt_rq))
969 return 0;
970
971 balance_runtime(rt_rq);
972 runtime = sched_rt_runtime(rt_rq);
973 if (runtime == RUNTIME_INF)
974 return 0;
975
976 if (rt_rq->rt_time > runtime) {
977 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
978
979 /*
980 * Don't actually throttle groups that have no runtime assigned
981 * but accrue some time due to boosting.
982 */
983 if (likely(rt_b->rt_runtime)) {
984 rt_rq->rt_throttled = 1;
985 printk_deferred_once("sched: RT throttling activated\n");
986 } else {
987 /*
988 * In case we did anyway, make it go away,
989 * replenishment is a joke, since it will replenish us
990 * with exactly 0 ns.
991 */
992 rt_rq->rt_time = 0;
993 }
994
995 if (rt_rq_throttled(rt_rq)) {
996 sched_rt_rq_dequeue(rt_rq);
997 return 1;
998 }
999 }
1000
1001 return 0;
1002 }
1003
1004 /*
1005 * Update the current task's runtime statistics. Skip current tasks that
1006 * are not in our scheduling class.
1007 */
1008 static void update_curr_rt(struct rq *rq)
1009 {
1010 struct task_struct *curr = rq->curr;
1011 struct sched_rt_entity *rt_se = &curr->rt;
1012 u64 delta_exec;
1013 u64 now;
1014
1015 if (curr->sched_class != &rt_sched_class)
1016 return;
1017
1018 now = rq_clock_task(rq);
1019 delta_exec = now - curr->se.exec_start;
1020 if (unlikely((s64)delta_exec <= 0))
1021 return;
1022
1023 schedstat_set(curr->se.statistics.exec_max,
1024 max(curr->se.statistics.exec_max, delta_exec));
1025
1026 curr->se.sum_exec_runtime += delta_exec;
1027 account_group_exec_runtime(curr, delta_exec);
1028
1029 curr->se.exec_start = now;
1030 cgroup_account_cputime(curr, delta_exec);
1031
1032 if (!rt_bandwidth_enabled())
1033 return;
1034
1035 for_each_sched_rt_entity(rt_se) {
1036 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1037 int exceeded;
1038
1039 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1040 raw_spin_lock(&rt_rq->rt_runtime_lock);
1041 rt_rq->rt_time += delta_exec;
1042 exceeded = sched_rt_runtime_exceeded(rt_rq);
1043 if (exceeded)
1044 resched_curr(rq);
1045 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1046 if (exceeded)
1047 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1048 }
1049 }
1050 }
1051
1052 static void
1053 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1054 {
1055 struct rq *rq = rq_of_rt_rq(rt_rq);
1056
1057 BUG_ON(&rq->rt != rt_rq);
1058
1059 if (!rt_rq->rt_queued)
1060 return;
1061
1062 BUG_ON(!rq->nr_running);
1063
1064 sub_nr_running(rq, rt_rq->rt_nr_running);
1065 rt_rq->rt_queued = 0;
1066
1067 }
1068
1069 static void
1070 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1071 {
1072 struct rq *rq = rq_of_rt_rq(rt_rq);
1073
1074 BUG_ON(&rq->rt != rt_rq);
1075
1076 if (rt_rq->rt_queued)
1077 return;
1078
1079 if (rt_rq_throttled(rt_rq))
1080 return;
1081
1082 if (rt_rq->rt_nr_running) {
1083 add_nr_running(rq, rt_rq->rt_nr_running);
1084 rt_rq->rt_queued = 1;
1085 }
1086
1087 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1088 cpufreq_update_util(rq, 0);
1089 }
1090
1091 #if defined CONFIG_SMP
1092
1093 static void
1094 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1095 {
1096 struct rq *rq = rq_of_rt_rq(rt_rq);
1097
1098 #ifdef CONFIG_RT_GROUP_SCHED
1099 /*
1100 * Change rq's cpupri only if rt_rq is the top queue.
1101 */
1102 if (&rq->rt != rt_rq)
1103 return;
1104 #endif
1105 if (rq->online && prio < prev_prio)
1106 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1107 }
1108
1109 static void
1110 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1111 {
1112 struct rq *rq = rq_of_rt_rq(rt_rq);
1113
1114 #ifdef CONFIG_RT_GROUP_SCHED
1115 /*
1116 * Change rq's cpupri only if rt_rq is the top queue.
1117 */
1118 if (&rq->rt != rt_rq)
1119 return;
1120 #endif
1121 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1122 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1123 }
1124
1125 #else /* CONFIG_SMP */
1126
1127 static inline
1128 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1129 static inline
1130 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1131
1132 #endif /* CONFIG_SMP */
1133
1134 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1135 static void
1136 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1137 {
1138 int prev_prio = rt_rq->highest_prio.curr;
1139
1140 if (prio < prev_prio)
1141 rt_rq->highest_prio.curr = prio;
1142
1143 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1144 }
1145
1146 static void
1147 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1148 {
1149 int prev_prio = rt_rq->highest_prio.curr;
1150
1151 if (rt_rq->rt_nr_running) {
1152
1153 WARN_ON(prio < prev_prio);
1154
1155 /*
1156 * This may have been our highest task, and therefore
1157 * we may have some recomputation to do
1158 */
1159 if (prio == prev_prio) {
1160 struct rt_prio_array *array = &rt_rq->active;
1161
1162 rt_rq->highest_prio.curr =
1163 sched_find_first_bit(array->bitmap);
1164 }
1165
1166 } else {
1167 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1168 }
1169
1170 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1171 }
1172
1173 #else
1174
1175 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1176 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1177
1178 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1179
1180 #ifdef CONFIG_RT_GROUP_SCHED
1181
1182 static void
1183 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1184 {
1185 if (rt_se_boosted(rt_se))
1186 rt_rq->rt_nr_boosted++;
1187
1188 if (rt_rq->tg)
1189 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1190 }
1191
1192 static void
1193 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1194 {
1195 if (rt_se_boosted(rt_se))
1196 rt_rq->rt_nr_boosted--;
1197
1198 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1199 }
1200
1201 #else /* CONFIG_RT_GROUP_SCHED */
1202
1203 static void
1204 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1205 {
1206 start_rt_bandwidth(&def_rt_bandwidth);
1207 }
1208
1209 static inline
1210 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1211
1212 #endif /* CONFIG_RT_GROUP_SCHED */
1213
1214 static inline
1215 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1216 {
1217 struct rt_rq *group_rq = group_rt_rq(rt_se);
1218
1219 if (group_rq)
1220 return group_rq->rt_nr_running;
1221 else
1222 return 1;
1223 }
1224
1225 static inline
1226 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1227 {
1228 struct rt_rq *group_rq = group_rt_rq(rt_se);
1229 struct task_struct *tsk;
1230
1231 if (group_rq)
1232 return group_rq->rr_nr_running;
1233
1234 tsk = rt_task_of(rt_se);
1235
1236 return (tsk->policy == SCHED_RR) ? 1 : 0;
1237 }
1238
1239 static inline
1240 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1241 {
1242 int prio = rt_se_prio(rt_se);
1243
1244 WARN_ON(!rt_prio(prio));
1245 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1246 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1247
1248 inc_rt_prio(rt_rq, prio);
1249 inc_rt_migration(rt_se, rt_rq);
1250 inc_rt_group(rt_se, rt_rq);
1251 }
1252
1253 static inline
1254 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1255 {
1256 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1257 WARN_ON(!rt_rq->rt_nr_running);
1258 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1259 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1260
1261 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1262 dec_rt_migration(rt_se, rt_rq);
1263 dec_rt_group(rt_se, rt_rq);
1264 }
1265
1266 /*
1267 * Change rt_se->run_list location unless SAVE && !MOVE
1268 *
1269 * assumes ENQUEUE/DEQUEUE flags match
1270 */
1271 static inline bool move_entity(unsigned int flags)
1272 {
1273 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1274 return false;
1275
1276 return true;
1277 }
1278
1279 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1280 {
1281 list_del_init(&rt_se->run_list);
1282
1283 if (list_empty(array->queue + rt_se_prio(rt_se)))
1284 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1285
1286 rt_se->on_list = 0;
1287 }
1288
1289 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1290 {
1291 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1292 struct rt_prio_array *array = &rt_rq->active;
1293 struct rt_rq *group_rq = group_rt_rq(rt_se);
1294 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1295
1296 /*
1297 * Don't enqueue the group if its throttled, or when empty.
1298 * The latter is a consequence of the former when a child group
1299 * get throttled and the current group doesn't have any other
1300 * active members.
1301 */
1302 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1303 if (rt_se->on_list)
1304 __delist_rt_entity(rt_se, array);
1305 return;
1306 }
1307
1308 if (move_entity(flags)) {
1309 WARN_ON_ONCE(rt_se->on_list);
1310 if (flags & ENQUEUE_HEAD)
1311 list_add(&rt_se->run_list, queue);
1312 else
1313 list_add_tail(&rt_se->run_list, queue);
1314
1315 __set_bit(rt_se_prio(rt_se), array->bitmap);
1316 rt_se->on_list = 1;
1317 }
1318 rt_se->on_rq = 1;
1319
1320 inc_rt_tasks(rt_se, rt_rq);
1321 }
1322
1323 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1324 {
1325 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1326 struct rt_prio_array *array = &rt_rq->active;
1327
1328 if (move_entity(flags)) {
1329 WARN_ON_ONCE(!rt_se->on_list);
1330 __delist_rt_entity(rt_se, array);
1331 }
1332 rt_se->on_rq = 0;
1333
1334 dec_rt_tasks(rt_se, rt_rq);
1335 }
1336
1337 /*
1338 * Because the prio of an upper entry depends on the lower
1339 * entries, we must remove entries top - down.
1340 */
1341 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1342 {
1343 struct sched_rt_entity *back = NULL;
1344
1345 for_each_sched_rt_entity(rt_se) {
1346 rt_se->back = back;
1347 back = rt_se;
1348 }
1349
1350 dequeue_top_rt_rq(rt_rq_of_se(back));
1351
1352 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1353 if (on_rt_rq(rt_se))
1354 __dequeue_rt_entity(rt_se, flags);
1355 }
1356 }
1357
1358 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1359 {
1360 struct rq *rq = rq_of_rt_se(rt_se);
1361
1362 dequeue_rt_stack(rt_se, flags);
1363 for_each_sched_rt_entity(rt_se)
1364 __enqueue_rt_entity(rt_se, flags);
1365 enqueue_top_rt_rq(&rq->rt);
1366 }
1367
1368 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1369 {
1370 struct rq *rq = rq_of_rt_se(rt_se);
1371
1372 dequeue_rt_stack(rt_se, flags);
1373
1374 for_each_sched_rt_entity(rt_se) {
1375 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1376
1377 if (rt_rq && rt_rq->rt_nr_running)
1378 __enqueue_rt_entity(rt_se, flags);
1379 }
1380 enqueue_top_rt_rq(&rq->rt);
1381 }
1382
1383 /*
1384 * Adding/removing a task to/from a priority array:
1385 */
1386 static void
1387 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1388 {
1389 struct sched_rt_entity *rt_se = &p->rt;
1390
1391 if (flags & ENQUEUE_WAKEUP)
1392 rt_se->timeout = 0;
1393
1394 enqueue_rt_entity(rt_se, flags);
1395
1396 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1397 enqueue_pushable_task(rq, p);
1398 }
1399
1400 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1401 {
1402 struct sched_rt_entity *rt_se = &p->rt;
1403
1404 update_curr_rt(rq);
1405 dequeue_rt_entity(rt_se, flags);
1406
1407 dequeue_pushable_task(rq, p);
1408 }
1409
1410 /*
1411 * Put task to the head or the end of the run list without the overhead of
1412 * dequeue followed by enqueue.
1413 */
1414 static void
1415 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1416 {
1417 if (on_rt_rq(rt_se)) {
1418 struct rt_prio_array *array = &rt_rq->active;
1419 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1420
1421 if (head)
1422 list_move(&rt_se->run_list, queue);
1423 else
1424 list_move_tail(&rt_se->run_list, queue);
1425 }
1426 }
1427
1428 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1429 {
1430 struct sched_rt_entity *rt_se = &p->rt;
1431 struct rt_rq *rt_rq;
1432
1433 for_each_sched_rt_entity(rt_se) {
1434 rt_rq = rt_rq_of_se(rt_se);
1435 requeue_rt_entity(rt_rq, rt_se, head);
1436 }
1437 }
1438
1439 static void yield_task_rt(struct rq *rq)
1440 {
1441 requeue_task_rt(rq, rq->curr, 0);
1442 }
1443
1444 #ifdef CONFIG_SMP
1445 static int find_lowest_rq(struct task_struct *task);
1446
1447 static int
1448 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1449 {
1450 struct task_struct *curr;
1451 struct rq *rq;
1452 bool test;
1453
1454 /* For anything but wake ups, just return the task_cpu */
1455 if (!(flags & (WF_TTWU | WF_FORK)))
1456 goto out;
1457
1458 rq = cpu_rq(cpu);
1459
1460 rcu_read_lock();
1461 curr = READ_ONCE(rq->curr); /* unlocked access */
1462
1463 /*
1464 * If the current task on @p's runqueue is an RT task, then
1465 * try to see if we can wake this RT task up on another
1466 * runqueue. Otherwise simply start this RT task
1467 * on its current runqueue.
1468 *
1469 * We want to avoid overloading runqueues. If the woken
1470 * task is a higher priority, then it will stay on this CPU
1471 * and the lower prio task should be moved to another CPU.
1472 * Even though this will probably make the lower prio task
1473 * lose its cache, we do not want to bounce a higher task
1474 * around just because it gave up its CPU, perhaps for a
1475 * lock?
1476 *
1477 * For equal prio tasks, we just let the scheduler sort it out.
1478 *
1479 * Otherwise, just let it ride on the affined RQ and the
1480 * post-schedule router will push the preempted task away
1481 *
1482 * This test is optimistic, if we get it wrong the load-balancer
1483 * will have to sort it out.
1484 *
1485 * We take into account the capacity of the CPU to ensure it fits the
1486 * requirement of the task - which is only important on heterogeneous
1487 * systems like big.LITTLE.
1488 */
1489 test = curr &&
1490 unlikely(rt_task(curr)) &&
1491 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1492
1493 if (test || !rt_task_fits_capacity(p, cpu)) {
1494 int target = find_lowest_rq(p);
1495
1496 /*
1497 * Bail out if we were forcing a migration to find a better
1498 * fitting CPU but our search failed.
1499 */
1500 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1501 goto out_unlock;
1502
1503 /*
1504 * Don't bother moving it if the destination CPU is
1505 * not running a lower priority task.
1506 */
1507 if (target != -1 &&
1508 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1509 cpu = target;
1510 }
1511
1512 out_unlock:
1513 rcu_read_unlock();
1514
1515 out:
1516 return cpu;
1517 }
1518
1519 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1520 {
1521 /*
1522 * Current can't be migrated, useless to reschedule,
1523 * let's hope p can move out.
1524 */
1525 if (rq->curr->nr_cpus_allowed == 1 ||
1526 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1527 return;
1528
1529 /*
1530 * p is migratable, so let's not schedule it and
1531 * see if it is pushed or pulled somewhere else.
1532 */
1533 if (p->nr_cpus_allowed != 1 &&
1534 cpupri_find(&rq->rd->cpupri, p, NULL))
1535 return;
1536
1537 /*
1538 * There appear to be other CPUs that can accept
1539 * the current task but none can run 'p', so lets reschedule
1540 * to try and push the current task away:
1541 */
1542 requeue_task_rt(rq, p, 1);
1543 resched_curr(rq);
1544 }
1545
1546 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1547 {
1548 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1549 /*
1550 * This is OK, because current is on_cpu, which avoids it being
1551 * picked for load-balance and preemption/IRQs are still
1552 * disabled avoiding further scheduler activity on it and we've
1553 * not yet started the picking loop.
1554 */
1555 rq_unpin_lock(rq, rf);
1556 pull_rt_task(rq);
1557 rq_repin_lock(rq, rf);
1558 }
1559
1560 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1561 }
1562 #endif /* CONFIG_SMP */
1563
1564 /*
1565 * Preempt the current task with a newly woken task if needed:
1566 */
1567 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1568 {
1569 if (p->prio < rq->curr->prio) {
1570 resched_curr(rq);
1571 return;
1572 }
1573
1574 #ifdef CONFIG_SMP
1575 /*
1576 * If:
1577 *
1578 * - the newly woken task is of equal priority to the current task
1579 * - the newly woken task is non-migratable while current is migratable
1580 * - current will be preempted on the next reschedule
1581 *
1582 * we should check to see if current can readily move to a different
1583 * cpu. If so, we will reschedule to allow the push logic to try
1584 * to move current somewhere else, making room for our non-migratable
1585 * task.
1586 */
1587 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1588 check_preempt_equal_prio(rq, p);
1589 #endif
1590 }
1591
1592 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1593 {
1594 p->se.exec_start = rq_clock_task(rq);
1595
1596 /* The running task is never eligible for pushing */
1597 dequeue_pushable_task(rq, p);
1598
1599 if (!first)
1600 return;
1601
1602 /*
1603 * If prev task was rt, put_prev_task() has already updated the
1604 * utilization. We only care of the case where we start to schedule a
1605 * rt task
1606 */
1607 if (rq->curr->sched_class != &rt_sched_class)
1608 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1609
1610 rt_queue_push_tasks(rq);
1611 }
1612
1613 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1614 struct rt_rq *rt_rq)
1615 {
1616 struct rt_prio_array *array = &rt_rq->active;
1617 struct sched_rt_entity *next = NULL;
1618 struct list_head *queue;
1619 int idx;
1620
1621 idx = sched_find_first_bit(array->bitmap);
1622 BUG_ON(idx >= MAX_RT_PRIO);
1623
1624 queue = array->queue + idx;
1625 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1626
1627 return next;
1628 }
1629
1630 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1631 {
1632 struct sched_rt_entity *rt_se;
1633 struct rt_rq *rt_rq = &rq->rt;
1634
1635 do {
1636 rt_se = pick_next_rt_entity(rq, rt_rq);
1637 BUG_ON(!rt_se);
1638 rt_rq = group_rt_rq(rt_se);
1639 } while (rt_rq);
1640
1641 return rt_task_of(rt_se);
1642 }
1643
1644 static struct task_struct *pick_task_rt(struct rq *rq)
1645 {
1646 struct task_struct *p;
1647
1648 if (!sched_rt_runnable(rq))
1649 return NULL;
1650
1651 p = _pick_next_task_rt(rq);
1652
1653 return p;
1654 }
1655
1656 static struct task_struct *pick_next_task_rt(struct rq *rq)
1657 {
1658 struct task_struct *p = pick_task_rt(rq);
1659
1660 if (p)
1661 set_next_task_rt(rq, p, true);
1662
1663 return p;
1664 }
1665
1666 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1667 {
1668 update_curr_rt(rq);
1669
1670 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1671
1672 /*
1673 * The previous task needs to be made eligible for pushing
1674 * if it is still active
1675 */
1676 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1677 enqueue_pushable_task(rq, p);
1678 }
1679
1680 #ifdef CONFIG_SMP
1681
1682 /* Only try algorithms three times */
1683 #define RT_MAX_TRIES 3
1684
1685 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1686 {
1687 if (!task_running(rq, p) &&
1688 cpumask_test_cpu(cpu, &p->cpus_mask))
1689 return 1;
1690
1691 return 0;
1692 }
1693
1694 /*
1695 * Return the highest pushable rq's task, which is suitable to be executed
1696 * on the CPU, NULL otherwise
1697 */
1698 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1699 {
1700 struct plist_head *head = &rq->rt.pushable_tasks;
1701 struct task_struct *p;
1702
1703 if (!has_pushable_tasks(rq))
1704 return NULL;
1705
1706 plist_for_each_entry(p, head, pushable_tasks) {
1707 if (pick_rt_task(rq, p, cpu))
1708 return p;
1709 }
1710
1711 return NULL;
1712 }
1713
1714 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1715
1716 static int find_lowest_rq(struct task_struct *task)
1717 {
1718 struct sched_domain *sd;
1719 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1720 int this_cpu = smp_processor_id();
1721 int cpu = task_cpu(task);
1722 int ret;
1723
1724 /* Make sure the mask is initialized first */
1725 if (unlikely(!lowest_mask))
1726 return -1;
1727
1728 if (task->nr_cpus_allowed == 1)
1729 return -1; /* No other targets possible */
1730
1731 /*
1732 * If we're on asym system ensure we consider the different capacities
1733 * of the CPUs when searching for the lowest_mask.
1734 */
1735 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1736
1737 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1738 task, lowest_mask,
1739 rt_task_fits_capacity);
1740 } else {
1741
1742 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1743 task, lowest_mask);
1744 }
1745
1746 if (!ret)
1747 return -1; /* No targets found */
1748
1749 /*
1750 * At this point we have built a mask of CPUs representing the
1751 * lowest priority tasks in the system. Now we want to elect
1752 * the best one based on our affinity and topology.
1753 *
1754 * We prioritize the last CPU that the task executed on since
1755 * it is most likely cache-hot in that location.
1756 */
1757 if (cpumask_test_cpu(cpu, lowest_mask))
1758 return cpu;
1759
1760 /*
1761 * Otherwise, we consult the sched_domains span maps to figure
1762 * out which CPU is logically closest to our hot cache data.
1763 */
1764 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1765 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1766
1767 rcu_read_lock();
1768 for_each_domain(cpu, sd) {
1769 if (sd->flags & SD_WAKE_AFFINE) {
1770 int best_cpu;
1771
1772 /*
1773 * "this_cpu" is cheaper to preempt than a
1774 * remote processor.
1775 */
1776 if (this_cpu != -1 &&
1777 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1778 rcu_read_unlock();
1779 return this_cpu;
1780 }
1781
1782 best_cpu = cpumask_any_and_distribute(lowest_mask,
1783 sched_domain_span(sd));
1784 if (best_cpu < nr_cpu_ids) {
1785 rcu_read_unlock();
1786 return best_cpu;
1787 }
1788 }
1789 }
1790 rcu_read_unlock();
1791
1792 /*
1793 * And finally, if there were no matches within the domains
1794 * just give the caller *something* to work with from the compatible
1795 * locations.
1796 */
1797 if (this_cpu != -1)
1798 return this_cpu;
1799
1800 cpu = cpumask_any_distribute(lowest_mask);
1801 if (cpu < nr_cpu_ids)
1802 return cpu;
1803
1804 return -1;
1805 }
1806
1807 /* Will lock the rq it finds */
1808 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1809 {
1810 struct rq *lowest_rq = NULL;
1811 int tries;
1812 int cpu;
1813
1814 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1815 cpu = find_lowest_rq(task);
1816
1817 if ((cpu == -1) || (cpu == rq->cpu))
1818 break;
1819
1820 lowest_rq = cpu_rq(cpu);
1821
1822 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1823 /*
1824 * Target rq has tasks of equal or higher priority,
1825 * retrying does not release any lock and is unlikely
1826 * to yield a different result.
1827 */
1828 lowest_rq = NULL;
1829 break;
1830 }
1831
1832 /* if the prio of this runqueue changed, try again */
1833 if (double_lock_balance(rq, lowest_rq)) {
1834 /*
1835 * We had to unlock the run queue. In
1836 * the mean time, task could have
1837 * migrated already or had its affinity changed.
1838 * Also make sure that it wasn't scheduled on its rq.
1839 */
1840 if (unlikely(task_rq(task) != rq ||
1841 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1842 task_running(rq, task) ||
1843 !rt_task(task) ||
1844 !task_on_rq_queued(task))) {
1845
1846 double_unlock_balance(rq, lowest_rq);
1847 lowest_rq = NULL;
1848 break;
1849 }
1850 }
1851
1852 /* If this rq is still suitable use it. */
1853 if (lowest_rq->rt.highest_prio.curr > task->prio)
1854 break;
1855
1856 /* try again */
1857 double_unlock_balance(rq, lowest_rq);
1858 lowest_rq = NULL;
1859 }
1860
1861 return lowest_rq;
1862 }
1863
1864 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1865 {
1866 struct task_struct *p;
1867
1868 if (!has_pushable_tasks(rq))
1869 return NULL;
1870
1871 p = plist_first_entry(&rq->rt.pushable_tasks,
1872 struct task_struct, pushable_tasks);
1873
1874 BUG_ON(rq->cpu != task_cpu(p));
1875 BUG_ON(task_current(rq, p));
1876 BUG_ON(p->nr_cpus_allowed <= 1);
1877
1878 BUG_ON(!task_on_rq_queued(p));
1879 BUG_ON(!rt_task(p));
1880
1881 return p;
1882 }
1883
1884 /*
1885 * If the current CPU has more than one RT task, see if the non
1886 * running task can migrate over to a CPU that is running a task
1887 * of lesser priority.
1888 */
1889 static int push_rt_task(struct rq *rq, bool pull)
1890 {
1891 struct task_struct *next_task;
1892 struct rq *lowest_rq;
1893 int ret = 0;
1894
1895 if (!rq->rt.overloaded)
1896 return 0;
1897
1898 next_task = pick_next_pushable_task(rq);
1899 if (!next_task)
1900 return 0;
1901
1902 retry:
1903 /*
1904 * It's possible that the next_task slipped in of
1905 * higher priority than current. If that's the case
1906 * just reschedule current.
1907 */
1908 if (unlikely(next_task->prio < rq->curr->prio)) {
1909 resched_curr(rq);
1910 return 0;
1911 }
1912
1913 if (is_migration_disabled(next_task)) {
1914 struct task_struct *push_task = NULL;
1915 int cpu;
1916
1917 if (!pull || rq->push_busy)
1918 return 0;
1919
1920 /*
1921 * Invoking find_lowest_rq() on anything but an RT task doesn't
1922 * make sense. Per the above priority check, curr has to
1923 * be of higher priority than next_task, so no need to
1924 * reschedule when bailing out.
1925 *
1926 * Note that the stoppers are masqueraded as SCHED_FIFO
1927 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
1928 */
1929 if (rq->curr->sched_class != &rt_sched_class)
1930 return 0;
1931
1932 cpu = find_lowest_rq(rq->curr);
1933 if (cpu == -1 || cpu == rq->cpu)
1934 return 0;
1935
1936 /*
1937 * Given we found a CPU with lower priority than @next_task,
1938 * therefore it should be running. However we cannot migrate it
1939 * to this other CPU, instead attempt to push the current
1940 * running task on this CPU away.
1941 */
1942 push_task = get_push_task(rq);
1943 if (push_task) {
1944 raw_spin_rq_unlock(rq);
1945 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
1946 push_task, &rq->push_work);
1947 raw_spin_rq_lock(rq);
1948 }
1949
1950 return 0;
1951 }
1952
1953 if (WARN_ON(next_task == rq->curr))
1954 return 0;
1955
1956 /* We might release rq lock */
1957 get_task_struct(next_task);
1958
1959 /* find_lock_lowest_rq locks the rq if found */
1960 lowest_rq = find_lock_lowest_rq(next_task, rq);
1961 if (!lowest_rq) {
1962 struct task_struct *task;
1963 /*
1964 * find_lock_lowest_rq releases rq->lock
1965 * so it is possible that next_task has migrated.
1966 *
1967 * We need to make sure that the task is still on the same
1968 * run-queue and is also still the next task eligible for
1969 * pushing.
1970 */
1971 task = pick_next_pushable_task(rq);
1972 if (task == next_task) {
1973 /*
1974 * The task hasn't migrated, and is still the next
1975 * eligible task, but we failed to find a run-queue
1976 * to push it to. Do not retry in this case, since
1977 * other CPUs will pull from us when ready.
1978 */
1979 goto out;
1980 }
1981
1982 if (!task)
1983 /* No more tasks, just exit */
1984 goto out;
1985
1986 /*
1987 * Something has shifted, try again.
1988 */
1989 put_task_struct(next_task);
1990 next_task = task;
1991 goto retry;
1992 }
1993
1994 deactivate_task(rq, next_task, 0);
1995 set_task_cpu(next_task, lowest_rq->cpu);
1996 activate_task(lowest_rq, next_task, 0);
1997 resched_curr(lowest_rq);
1998 ret = 1;
1999
2000 double_unlock_balance(rq, lowest_rq);
2001 out:
2002 put_task_struct(next_task);
2003
2004 return ret;
2005 }
2006
2007 static void push_rt_tasks(struct rq *rq)
2008 {
2009 /* push_rt_task will return true if it moved an RT */
2010 while (push_rt_task(rq, false))
2011 ;
2012 }
2013
2014 #ifdef HAVE_RT_PUSH_IPI
2015
2016 /*
2017 * When a high priority task schedules out from a CPU and a lower priority
2018 * task is scheduled in, a check is made to see if there's any RT tasks
2019 * on other CPUs that are waiting to run because a higher priority RT task
2020 * is currently running on its CPU. In this case, the CPU with multiple RT
2021 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2022 * up that may be able to run one of its non-running queued RT tasks.
2023 *
2024 * All CPUs with overloaded RT tasks need to be notified as there is currently
2025 * no way to know which of these CPUs have the highest priority task waiting
2026 * to run. Instead of trying to take a spinlock on each of these CPUs,
2027 * which has shown to cause large latency when done on machines with many
2028 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2029 * RT tasks waiting to run.
2030 *
2031 * Just sending an IPI to each of the CPUs is also an issue, as on large
2032 * count CPU machines, this can cause an IPI storm on a CPU, especially
2033 * if its the only CPU with multiple RT tasks queued, and a large number
2034 * of CPUs scheduling a lower priority task at the same time.
2035 *
2036 * Each root domain has its own irq work function that can iterate over
2037 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2038 * task must be checked if there's one or many CPUs that are lowering
2039 * their priority, there's a single irq work iterator that will try to
2040 * push off RT tasks that are waiting to run.
2041 *
2042 * When a CPU schedules a lower priority task, it will kick off the
2043 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2044 * As it only takes the first CPU that schedules a lower priority task
2045 * to start the process, the rto_start variable is incremented and if
2046 * the atomic result is one, then that CPU will try to take the rto_lock.
2047 * This prevents high contention on the lock as the process handles all
2048 * CPUs scheduling lower priority tasks.
2049 *
2050 * All CPUs that are scheduling a lower priority task will increment the
2051 * rt_loop_next variable. This will make sure that the irq work iterator
2052 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2053 * priority task, even if the iterator is in the middle of a scan. Incrementing
2054 * the rt_loop_next will cause the iterator to perform another scan.
2055 *
2056 */
2057 static int rto_next_cpu(struct root_domain *rd)
2058 {
2059 int next;
2060 int cpu;
2061
2062 /*
2063 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2064 * rt_next_cpu() will simply return the first CPU found in
2065 * the rto_mask.
2066 *
2067 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2068 * will return the next CPU found in the rto_mask.
2069 *
2070 * If there are no more CPUs left in the rto_mask, then a check is made
2071 * against rto_loop and rto_loop_next. rto_loop is only updated with
2072 * the rto_lock held, but any CPU may increment the rto_loop_next
2073 * without any locking.
2074 */
2075 for (;;) {
2076
2077 /* When rto_cpu is -1 this acts like cpumask_first() */
2078 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2079
2080 rd->rto_cpu = cpu;
2081
2082 if (cpu < nr_cpu_ids)
2083 return cpu;
2084
2085 rd->rto_cpu = -1;
2086
2087 /*
2088 * ACQUIRE ensures we see the @rto_mask changes
2089 * made prior to the @next value observed.
2090 *
2091 * Matches WMB in rt_set_overload().
2092 */
2093 next = atomic_read_acquire(&rd->rto_loop_next);
2094
2095 if (rd->rto_loop == next)
2096 break;
2097
2098 rd->rto_loop = next;
2099 }
2100
2101 return -1;
2102 }
2103
2104 static inline bool rto_start_trylock(atomic_t *v)
2105 {
2106 return !atomic_cmpxchg_acquire(v, 0, 1);
2107 }
2108
2109 static inline void rto_start_unlock(atomic_t *v)
2110 {
2111 atomic_set_release(v, 0);
2112 }
2113
2114 static void tell_cpu_to_push(struct rq *rq)
2115 {
2116 int cpu = -1;
2117
2118 /* Keep the loop going if the IPI is currently active */
2119 atomic_inc(&rq->rd->rto_loop_next);
2120
2121 /* Only one CPU can initiate a loop at a time */
2122 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2123 return;
2124
2125 raw_spin_lock(&rq->rd->rto_lock);
2126
2127 /*
2128 * The rto_cpu is updated under the lock, if it has a valid CPU
2129 * then the IPI is still running and will continue due to the
2130 * update to loop_next, and nothing needs to be done here.
2131 * Otherwise it is finishing up and an ipi needs to be sent.
2132 */
2133 if (rq->rd->rto_cpu < 0)
2134 cpu = rto_next_cpu(rq->rd);
2135
2136 raw_spin_unlock(&rq->rd->rto_lock);
2137
2138 rto_start_unlock(&rq->rd->rto_loop_start);
2139
2140 if (cpu >= 0) {
2141 /* Make sure the rd does not get freed while pushing */
2142 sched_get_rd(rq->rd);
2143 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2144 }
2145 }
2146
2147 /* Called from hardirq context */
2148 void rto_push_irq_work_func(struct irq_work *work)
2149 {
2150 struct root_domain *rd =
2151 container_of(work, struct root_domain, rto_push_work);
2152 struct rq *rq;
2153 int cpu;
2154
2155 rq = this_rq();
2156
2157 /*
2158 * We do not need to grab the lock to check for has_pushable_tasks.
2159 * When it gets updated, a check is made if a push is possible.
2160 */
2161 if (has_pushable_tasks(rq)) {
2162 raw_spin_rq_lock(rq);
2163 while (push_rt_task(rq, true))
2164 ;
2165 raw_spin_rq_unlock(rq);
2166 }
2167
2168 raw_spin_lock(&rd->rto_lock);
2169
2170 /* Pass the IPI to the next rt overloaded queue */
2171 cpu = rto_next_cpu(rd);
2172
2173 raw_spin_unlock(&rd->rto_lock);
2174
2175 if (cpu < 0) {
2176 sched_put_rd(rd);
2177 return;
2178 }
2179
2180 /* Try the next RT overloaded CPU */
2181 irq_work_queue_on(&rd->rto_push_work, cpu);
2182 }
2183 #endif /* HAVE_RT_PUSH_IPI */
2184
2185 static void pull_rt_task(struct rq *this_rq)
2186 {
2187 int this_cpu = this_rq->cpu, cpu;
2188 bool resched = false;
2189 struct task_struct *p, *push_task;
2190 struct rq *src_rq;
2191 int rt_overload_count = rt_overloaded(this_rq);
2192
2193 if (likely(!rt_overload_count))
2194 return;
2195
2196 /*
2197 * Match the barrier from rt_set_overloaded; this guarantees that if we
2198 * see overloaded we must also see the rto_mask bit.
2199 */
2200 smp_rmb();
2201
2202 /* If we are the only overloaded CPU do nothing */
2203 if (rt_overload_count == 1 &&
2204 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2205 return;
2206
2207 #ifdef HAVE_RT_PUSH_IPI
2208 if (sched_feat(RT_PUSH_IPI)) {
2209 tell_cpu_to_push(this_rq);
2210 return;
2211 }
2212 #endif
2213
2214 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2215 if (this_cpu == cpu)
2216 continue;
2217
2218 src_rq = cpu_rq(cpu);
2219
2220 /*
2221 * Don't bother taking the src_rq->lock if the next highest
2222 * task is known to be lower-priority than our current task.
2223 * This may look racy, but if this value is about to go
2224 * logically higher, the src_rq will push this task away.
2225 * And if its going logically lower, we do not care
2226 */
2227 if (src_rq->rt.highest_prio.next >=
2228 this_rq->rt.highest_prio.curr)
2229 continue;
2230
2231 /*
2232 * We can potentially drop this_rq's lock in
2233 * double_lock_balance, and another CPU could
2234 * alter this_rq
2235 */
2236 push_task = NULL;
2237 double_lock_balance(this_rq, src_rq);
2238
2239 /*
2240 * We can pull only a task, which is pushable
2241 * on its rq, and no others.
2242 */
2243 p = pick_highest_pushable_task(src_rq, this_cpu);
2244
2245 /*
2246 * Do we have an RT task that preempts
2247 * the to-be-scheduled task?
2248 */
2249 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2250 WARN_ON(p == src_rq->curr);
2251 WARN_ON(!task_on_rq_queued(p));
2252
2253 /*
2254 * There's a chance that p is higher in priority
2255 * than what's currently running on its CPU.
2256 * This is just that p is waking up and hasn't
2257 * had a chance to schedule. We only pull
2258 * p if it is lower in priority than the
2259 * current task on the run queue
2260 */
2261 if (p->prio < src_rq->curr->prio)
2262 goto skip;
2263
2264 if (is_migration_disabled(p)) {
2265 push_task = get_push_task(src_rq);
2266 } else {
2267 deactivate_task(src_rq, p, 0);
2268 set_task_cpu(p, this_cpu);
2269 activate_task(this_rq, p, 0);
2270 resched = true;
2271 }
2272 /*
2273 * We continue with the search, just in
2274 * case there's an even higher prio task
2275 * in another runqueue. (low likelihood
2276 * but possible)
2277 */
2278 }
2279 skip:
2280 double_unlock_balance(this_rq, src_rq);
2281
2282 if (push_task) {
2283 raw_spin_rq_unlock(this_rq);
2284 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2285 push_task, &src_rq->push_work);
2286 raw_spin_rq_lock(this_rq);
2287 }
2288 }
2289
2290 if (resched)
2291 resched_curr(this_rq);
2292 }
2293
2294 /*
2295 * If we are not running and we are not going to reschedule soon, we should
2296 * try to push tasks away now
2297 */
2298 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2299 {
2300 bool need_to_push = !task_running(rq, p) &&
2301 !test_tsk_need_resched(rq->curr) &&
2302 p->nr_cpus_allowed > 1 &&
2303 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2304 (rq->curr->nr_cpus_allowed < 2 ||
2305 rq->curr->prio <= p->prio);
2306
2307 if (need_to_push)
2308 push_rt_tasks(rq);
2309 }
2310
2311 /* Assumes rq->lock is held */
2312 static void rq_online_rt(struct rq *rq)
2313 {
2314 if (rq->rt.overloaded)
2315 rt_set_overload(rq);
2316
2317 __enable_runtime(rq);
2318
2319 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2320 }
2321
2322 /* Assumes rq->lock is held */
2323 static void rq_offline_rt(struct rq *rq)
2324 {
2325 if (rq->rt.overloaded)
2326 rt_clear_overload(rq);
2327
2328 __disable_runtime(rq);
2329
2330 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2331 }
2332
2333 /*
2334 * When switch from the rt queue, we bring ourselves to a position
2335 * that we might want to pull RT tasks from other runqueues.
2336 */
2337 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2338 {
2339 /*
2340 * If there are other RT tasks then we will reschedule
2341 * and the scheduling of the other RT tasks will handle
2342 * the balancing. But if we are the last RT task
2343 * we may need to handle the pulling of RT tasks
2344 * now.
2345 */
2346 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2347 return;
2348
2349 rt_queue_pull_task(rq);
2350 }
2351
2352 void __init init_sched_rt_class(void)
2353 {
2354 unsigned int i;
2355
2356 for_each_possible_cpu(i) {
2357 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2358 GFP_KERNEL, cpu_to_node(i));
2359 }
2360 }
2361 #endif /* CONFIG_SMP */
2362
2363 /*
2364 * When switching a task to RT, we may overload the runqueue
2365 * with RT tasks. In this case we try to push them off to
2366 * other runqueues.
2367 */
2368 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2369 {
2370 /*
2371 * If we are running, update the avg_rt tracking, as the running time
2372 * will now on be accounted into the latter.
2373 */
2374 if (task_current(rq, p)) {
2375 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2376 return;
2377 }
2378
2379 /*
2380 * If we are not running we may need to preempt the current
2381 * running task. If that current running task is also an RT task
2382 * then see if we can move to another run queue.
2383 */
2384 if (task_on_rq_queued(p)) {
2385 #ifdef CONFIG_SMP
2386 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2387 rt_queue_push_tasks(rq);
2388 #endif /* CONFIG_SMP */
2389 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2390 resched_curr(rq);
2391 }
2392 }
2393
2394 /*
2395 * Priority of the task has changed. This may cause
2396 * us to initiate a push or pull.
2397 */
2398 static void
2399 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2400 {
2401 if (!task_on_rq_queued(p))
2402 return;
2403
2404 if (task_current(rq, p)) {
2405 #ifdef CONFIG_SMP
2406 /*
2407 * If our priority decreases while running, we
2408 * may need to pull tasks to this runqueue.
2409 */
2410 if (oldprio < p->prio)
2411 rt_queue_pull_task(rq);
2412
2413 /*
2414 * If there's a higher priority task waiting to run
2415 * then reschedule.
2416 */
2417 if (p->prio > rq->rt.highest_prio.curr)
2418 resched_curr(rq);
2419 #else
2420 /* For UP simply resched on drop of prio */
2421 if (oldprio < p->prio)
2422 resched_curr(rq);
2423 #endif /* CONFIG_SMP */
2424 } else {
2425 /*
2426 * This task is not running, but if it is
2427 * greater than the current running task
2428 * then reschedule.
2429 */
2430 if (p->prio < rq->curr->prio)
2431 resched_curr(rq);
2432 }
2433 }
2434
2435 #ifdef CONFIG_POSIX_TIMERS
2436 static void watchdog(struct rq *rq, struct task_struct *p)
2437 {
2438 unsigned long soft, hard;
2439
2440 /* max may change after cur was read, this will be fixed next tick */
2441 soft = task_rlimit(p, RLIMIT_RTTIME);
2442 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2443
2444 if (soft != RLIM_INFINITY) {
2445 unsigned long next;
2446
2447 if (p->rt.watchdog_stamp != jiffies) {
2448 p->rt.timeout++;
2449 p->rt.watchdog_stamp = jiffies;
2450 }
2451
2452 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2453 if (p->rt.timeout > next) {
2454 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2455 p->se.sum_exec_runtime);
2456 }
2457 }
2458 }
2459 #else
2460 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2461 #endif
2462
2463 /*
2464 * scheduler tick hitting a task of our scheduling class.
2465 *
2466 * NOTE: This function can be called remotely by the tick offload that
2467 * goes along full dynticks. Therefore no local assumption can be made
2468 * and everything must be accessed through the @rq and @curr passed in
2469 * parameters.
2470 */
2471 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2472 {
2473 struct sched_rt_entity *rt_se = &p->rt;
2474
2475 update_curr_rt(rq);
2476 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2477
2478 watchdog(rq, p);
2479
2480 /*
2481 * RR tasks need a special form of timeslice management.
2482 * FIFO tasks have no timeslices.
2483 */
2484 if (p->policy != SCHED_RR)
2485 return;
2486
2487 if (--p->rt.time_slice)
2488 return;
2489
2490 p->rt.time_slice = sched_rr_timeslice;
2491
2492 /*
2493 * Requeue to the end of queue if we (and all of our ancestors) are not
2494 * the only element on the queue
2495 */
2496 for_each_sched_rt_entity(rt_se) {
2497 if (rt_se->run_list.prev != rt_se->run_list.next) {
2498 requeue_task_rt(rq, p, 0);
2499 resched_curr(rq);
2500 return;
2501 }
2502 }
2503 }
2504
2505 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2506 {
2507 /*
2508 * Time slice is 0 for SCHED_FIFO tasks
2509 */
2510 if (task->policy == SCHED_RR)
2511 return sched_rr_timeslice;
2512 else
2513 return 0;
2514 }
2515
2516 DEFINE_SCHED_CLASS(rt) = {
2517
2518 .enqueue_task = enqueue_task_rt,
2519 .dequeue_task = dequeue_task_rt,
2520 .yield_task = yield_task_rt,
2521
2522 .check_preempt_curr = check_preempt_curr_rt,
2523
2524 .pick_next_task = pick_next_task_rt,
2525 .put_prev_task = put_prev_task_rt,
2526 .set_next_task = set_next_task_rt,
2527
2528 #ifdef CONFIG_SMP
2529 .balance = balance_rt,
2530 .pick_task = pick_task_rt,
2531 .select_task_rq = select_task_rq_rt,
2532 .set_cpus_allowed = set_cpus_allowed_common,
2533 .rq_online = rq_online_rt,
2534 .rq_offline = rq_offline_rt,
2535 .task_woken = task_woken_rt,
2536 .switched_from = switched_from_rt,
2537 .find_lock_rq = find_lock_lowest_rq,
2538 #endif
2539
2540 .task_tick = task_tick_rt,
2541
2542 .get_rr_interval = get_rr_interval_rt,
2543
2544 .prio_changed = prio_changed_rt,
2545 .switched_to = switched_to_rt,
2546
2547 .update_curr = update_curr_rt,
2548
2549 #ifdef CONFIG_UCLAMP_TASK
2550 .uclamp_enabled = 1,
2551 #endif
2552 };
2553
2554 #ifdef CONFIG_RT_GROUP_SCHED
2555 /*
2556 * Ensure that the real time constraints are schedulable.
2557 */
2558 static DEFINE_MUTEX(rt_constraints_mutex);
2559
2560 static inline int tg_has_rt_tasks(struct task_group *tg)
2561 {
2562 struct task_struct *task;
2563 struct css_task_iter it;
2564 int ret = 0;
2565
2566 /*
2567 * Autogroups do not have RT tasks; see autogroup_create().
2568 */
2569 if (task_group_is_autogroup(tg))
2570 return 0;
2571
2572 css_task_iter_start(&tg->css, 0, &it);
2573 while (!ret && (task = css_task_iter_next(&it)))
2574 ret |= rt_task(task);
2575 css_task_iter_end(&it);
2576
2577 return ret;
2578 }
2579
2580 struct rt_schedulable_data {
2581 struct task_group *tg;
2582 u64 rt_period;
2583 u64 rt_runtime;
2584 };
2585
2586 static int tg_rt_schedulable(struct task_group *tg, void *data)
2587 {
2588 struct rt_schedulable_data *d = data;
2589 struct task_group *child;
2590 unsigned long total, sum = 0;
2591 u64 period, runtime;
2592
2593 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2594 runtime = tg->rt_bandwidth.rt_runtime;
2595
2596 if (tg == d->tg) {
2597 period = d->rt_period;
2598 runtime = d->rt_runtime;
2599 }
2600
2601 /*
2602 * Cannot have more runtime than the period.
2603 */
2604 if (runtime > period && runtime != RUNTIME_INF)
2605 return -EINVAL;
2606
2607 /*
2608 * Ensure we don't starve existing RT tasks if runtime turns zero.
2609 */
2610 if (rt_bandwidth_enabled() && !runtime &&
2611 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2612 return -EBUSY;
2613
2614 total = to_ratio(period, runtime);
2615
2616 /*
2617 * Nobody can have more than the global setting allows.
2618 */
2619 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2620 return -EINVAL;
2621
2622 /*
2623 * The sum of our children's runtime should not exceed our own.
2624 */
2625 list_for_each_entry_rcu(child, &tg->children, siblings) {
2626 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2627 runtime = child->rt_bandwidth.rt_runtime;
2628
2629 if (child == d->tg) {
2630 period = d->rt_period;
2631 runtime = d->rt_runtime;
2632 }
2633
2634 sum += to_ratio(period, runtime);
2635 }
2636
2637 if (sum > total)
2638 return -EINVAL;
2639
2640 return 0;
2641 }
2642
2643 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2644 {
2645 int ret;
2646
2647 struct rt_schedulable_data data = {
2648 .tg = tg,
2649 .rt_period = period,
2650 .rt_runtime = runtime,
2651 };
2652
2653 rcu_read_lock();
2654 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2655 rcu_read_unlock();
2656
2657 return ret;
2658 }
2659
2660 static int tg_set_rt_bandwidth(struct task_group *tg,
2661 u64 rt_period, u64 rt_runtime)
2662 {
2663 int i, err = 0;
2664
2665 /*
2666 * Disallowing the root group RT runtime is BAD, it would disallow the
2667 * kernel creating (and or operating) RT threads.
2668 */
2669 if (tg == &root_task_group && rt_runtime == 0)
2670 return -EINVAL;
2671
2672 /* No period doesn't make any sense. */
2673 if (rt_period == 0)
2674 return -EINVAL;
2675
2676 /*
2677 * Bound quota to defend quota against overflow during bandwidth shift.
2678 */
2679 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2680 return -EINVAL;
2681
2682 mutex_lock(&rt_constraints_mutex);
2683 err = __rt_schedulable(tg, rt_period, rt_runtime);
2684 if (err)
2685 goto unlock;
2686
2687 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2688 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2689 tg->rt_bandwidth.rt_runtime = rt_runtime;
2690
2691 for_each_possible_cpu(i) {
2692 struct rt_rq *rt_rq = tg->rt_rq[i];
2693
2694 raw_spin_lock(&rt_rq->rt_runtime_lock);
2695 rt_rq->rt_runtime = rt_runtime;
2696 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2697 }
2698 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2699 unlock:
2700 mutex_unlock(&rt_constraints_mutex);
2701
2702 return err;
2703 }
2704
2705 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2706 {
2707 u64 rt_runtime, rt_period;
2708
2709 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2710 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2711 if (rt_runtime_us < 0)
2712 rt_runtime = RUNTIME_INF;
2713 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2714 return -EINVAL;
2715
2716 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2717 }
2718
2719 long sched_group_rt_runtime(struct task_group *tg)
2720 {
2721 u64 rt_runtime_us;
2722
2723 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2724 return -1;
2725
2726 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2727 do_div(rt_runtime_us, NSEC_PER_USEC);
2728 return rt_runtime_us;
2729 }
2730
2731 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2732 {
2733 u64 rt_runtime, rt_period;
2734
2735 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2736 return -EINVAL;
2737
2738 rt_period = rt_period_us * NSEC_PER_USEC;
2739 rt_runtime = tg->rt_bandwidth.rt_runtime;
2740
2741 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2742 }
2743
2744 long sched_group_rt_period(struct task_group *tg)
2745 {
2746 u64 rt_period_us;
2747
2748 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2749 do_div(rt_period_us, NSEC_PER_USEC);
2750 return rt_period_us;
2751 }
2752
2753 static int sched_rt_global_constraints(void)
2754 {
2755 int ret = 0;
2756
2757 mutex_lock(&rt_constraints_mutex);
2758 ret = __rt_schedulable(NULL, 0, 0);
2759 mutex_unlock(&rt_constraints_mutex);
2760
2761 return ret;
2762 }
2763
2764 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2765 {
2766 /* Don't accept realtime tasks when there is no way for them to run */
2767 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2768 return 0;
2769
2770 return 1;
2771 }
2772
2773 #else /* !CONFIG_RT_GROUP_SCHED */
2774 static int sched_rt_global_constraints(void)
2775 {
2776 unsigned long flags;
2777 int i;
2778
2779 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2780 for_each_possible_cpu(i) {
2781 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2782
2783 raw_spin_lock(&rt_rq->rt_runtime_lock);
2784 rt_rq->rt_runtime = global_rt_runtime();
2785 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2786 }
2787 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2788
2789 return 0;
2790 }
2791 #endif /* CONFIG_RT_GROUP_SCHED */
2792
2793 static int sched_rt_global_validate(void)
2794 {
2795 if (sysctl_sched_rt_period <= 0)
2796 return -EINVAL;
2797
2798 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2799 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2800 ((u64)sysctl_sched_rt_runtime *
2801 NSEC_PER_USEC > max_rt_runtime)))
2802 return -EINVAL;
2803
2804 return 0;
2805 }
2806
2807 static void sched_rt_do_global(void)
2808 {
2809 unsigned long flags;
2810
2811 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2812 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2813 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2814 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2815 }
2816
2817 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2818 size_t *lenp, loff_t *ppos)
2819 {
2820 int old_period, old_runtime;
2821 static DEFINE_MUTEX(mutex);
2822 int ret;
2823
2824 mutex_lock(&mutex);
2825 old_period = sysctl_sched_rt_period;
2826 old_runtime = sysctl_sched_rt_runtime;
2827
2828 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2829
2830 if (!ret && write) {
2831 ret = sched_rt_global_validate();
2832 if (ret)
2833 goto undo;
2834
2835 ret = sched_dl_global_validate();
2836 if (ret)
2837 goto undo;
2838
2839 ret = sched_rt_global_constraints();
2840 if (ret)
2841 goto undo;
2842
2843 sched_rt_do_global();
2844 sched_dl_do_global();
2845 }
2846 if (0) {
2847 undo:
2848 sysctl_sched_rt_period = old_period;
2849 sysctl_sched_rt_runtime = old_runtime;
2850 }
2851 mutex_unlock(&mutex);
2852
2853 return ret;
2854 }
2855
2856 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2857 size_t *lenp, loff_t *ppos)
2858 {
2859 int ret;
2860 static DEFINE_MUTEX(mutex);
2861
2862 mutex_lock(&mutex);
2863 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2864 /*
2865 * Make sure that internally we keep jiffies.
2866 * Also, writing zero resets the timeslice to default:
2867 */
2868 if (!ret && write) {
2869 sched_rr_timeslice =
2870 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2871 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2872 }
2873 mutex_unlock(&mutex);
2874
2875 return ret;
2876 }
2877
2878 #ifdef CONFIG_SCHED_DEBUG
2879 void print_rt_stats(struct seq_file *m, int cpu)
2880 {
2881 rt_rq_iter_t iter;
2882 struct rt_rq *rt_rq;
2883
2884 rcu_read_lock();
2885 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2886 print_rt_rq(m, cpu, rt_rq);
2887 rcu_read_unlock();
2888 }
2889 #endif /* CONFIG_SCHED_DEBUG */