]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched/rt.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-kernels.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6
7 #include "sched.h"
8
9 #include <linux/slab.h>
10 #include <linux/irq_work.h>
11
12 int sched_rr_timeslice = RR_TIMESLICE;
13 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
14
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17 struct rt_bandwidth def_rt_bandwidth;
18
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21 struct rt_bandwidth *rt_b =
22 container_of(timer, struct rt_bandwidth, rt_period_timer);
23 int idle = 0;
24 int overrun;
25
26 raw_spin_lock(&rt_b->rt_runtime_lock);
27 for (;;) {
28 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29 if (!overrun)
30 break;
31
32 raw_spin_unlock(&rt_b->rt_runtime_lock);
33 idle = do_sched_rt_period_timer(rt_b, overrun);
34 raw_spin_lock(&rt_b->rt_runtime_lock);
35 }
36 if (idle)
37 rt_b->rt_period_active = 0;
38 raw_spin_unlock(&rt_b->rt_runtime_lock);
39
40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45 rt_b->rt_period = ns_to_ktime(period);
46 rt_b->rt_runtime = runtime;
47
48 raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50 hrtimer_init(&rt_b->rt_period_timer,
51 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
52 rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54
55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58 return;
59
60 raw_spin_lock(&rt_b->rt_runtime_lock);
61 if (!rt_b->rt_period_active) {
62 rt_b->rt_period_active = 1;
63 /*
64 * SCHED_DEADLINE updates the bandwidth, as a run away
65 * RT task with a DL task could hog a CPU. But DL does
66 * not reset the period. If a deadline task was running
67 * without an RT task running, it can cause RT tasks to
68 * throttle when they start up. Kick the timer right away
69 * to update the period.
70 */
71 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
73 }
74 raw_spin_unlock(&rt_b->rt_runtime_lock);
75 }
76
77 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
78 static void push_irq_work_func(struct irq_work *work);
79 #endif
80
81 void init_rt_rq(struct rt_rq *rt_rq)
82 {
83 struct rt_prio_array *array;
84 int i;
85
86 array = &rt_rq->active;
87 for (i = 0; i < MAX_RT_PRIO; i++) {
88 INIT_LIST_HEAD(array->queue + i);
89 __clear_bit(i, array->bitmap);
90 }
91 /* delimiter for bitsearch: */
92 __set_bit(MAX_RT_PRIO, array->bitmap);
93
94 #if defined CONFIG_SMP
95 rt_rq->highest_prio.curr = MAX_RT_PRIO;
96 rt_rq->highest_prio.next = MAX_RT_PRIO;
97 rt_rq->rt_nr_migratory = 0;
98 rt_rq->overloaded = 0;
99 plist_head_init(&rt_rq->pushable_tasks);
100
101 #ifdef HAVE_RT_PUSH_IPI
102 rt_rq->push_flags = 0;
103 rt_rq->push_cpu = nr_cpu_ids;
104 raw_spin_lock_init(&rt_rq->push_lock);
105 init_irq_work(&rt_rq->push_work, push_irq_work_func);
106 #endif
107 #endif /* CONFIG_SMP */
108 /* We start is dequeued state, because no RT tasks are queued */
109 rt_rq->rt_queued = 0;
110
111 rt_rq->rt_time = 0;
112 rt_rq->rt_throttled = 0;
113 rt_rq->rt_runtime = 0;
114 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
115 }
116
117 #ifdef CONFIG_RT_GROUP_SCHED
118 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
119 {
120 hrtimer_cancel(&rt_b->rt_period_timer);
121 }
122
123 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
124
125 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
126 {
127 #ifdef CONFIG_SCHED_DEBUG
128 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
129 #endif
130 return container_of(rt_se, struct task_struct, rt);
131 }
132
133 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
134 {
135 return rt_rq->rq;
136 }
137
138 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
139 {
140 return rt_se->rt_rq;
141 }
142
143 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
144 {
145 struct rt_rq *rt_rq = rt_se->rt_rq;
146
147 return rt_rq->rq;
148 }
149
150 void free_rt_sched_group(struct task_group *tg)
151 {
152 int i;
153
154 if (tg->rt_se)
155 destroy_rt_bandwidth(&tg->rt_bandwidth);
156
157 for_each_possible_cpu(i) {
158 if (tg->rt_rq)
159 kfree(tg->rt_rq[i]);
160 if (tg->rt_se)
161 kfree(tg->rt_se[i]);
162 }
163
164 kfree(tg->rt_rq);
165 kfree(tg->rt_se);
166 }
167
168 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
169 struct sched_rt_entity *rt_se, int cpu,
170 struct sched_rt_entity *parent)
171 {
172 struct rq *rq = cpu_rq(cpu);
173
174 rt_rq->highest_prio.curr = MAX_RT_PRIO;
175 rt_rq->rt_nr_boosted = 0;
176 rt_rq->rq = rq;
177 rt_rq->tg = tg;
178
179 tg->rt_rq[cpu] = rt_rq;
180 tg->rt_se[cpu] = rt_se;
181
182 if (!rt_se)
183 return;
184
185 if (!parent)
186 rt_se->rt_rq = &rq->rt;
187 else
188 rt_se->rt_rq = parent->my_q;
189
190 rt_se->my_q = rt_rq;
191 rt_se->parent = parent;
192 INIT_LIST_HEAD(&rt_se->run_list);
193 }
194
195 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
196 {
197 struct rt_rq *rt_rq;
198 struct sched_rt_entity *rt_se;
199 int i;
200
201 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
202 if (!tg->rt_rq)
203 goto err;
204 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
205 if (!tg->rt_se)
206 goto err;
207
208 init_rt_bandwidth(&tg->rt_bandwidth,
209 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
210
211 for_each_possible_cpu(i) {
212 rt_rq = kzalloc_node(sizeof(struct rt_rq),
213 GFP_KERNEL, cpu_to_node(i));
214 if (!rt_rq)
215 goto err;
216
217 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
218 GFP_KERNEL, cpu_to_node(i));
219 if (!rt_se)
220 goto err_free_rq;
221
222 init_rt_rq(rt_rq);
223 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
224 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
225 }
226
227 return 1;
228
229 err_free_rq:
230 kfree(rt_rq);
231 err:
232 return 0;
233 }
234
235 #else /* CONFIG_RT_GROUP_SCHED */
236
237 #define rt_entity_is_task(rt_se) (1)
238
239 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
240 {
241 return container_of(rt_se, struct task_struct, rt);
242 }
243
244 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
245 {
246 return container_of(rt_rq, struct rq, rt);
247 }
248
249 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
250 {
251 struct task_struct *p = rt_task_of(rt_se);
252
253 return task_rq(p);
254 }
255
256 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
257 {
258 struct rq *rq = rq_of_rt_se(rt_se);
259
260 return &rq->rt;
261 }
262
263 void free_rt_sched_group(struct task_group *tg) { }
264
265 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
266 {
267 return 1;
268 }
269 #endif /* CONFIG_RT_GROUP_SCHED */
270
271 #ifdef CONFIG_SMP
272
273 static void pull_rt_task(struct rq *this_rq);
274
275 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
276 {
277 /* Try to pull RT tasks here if we lower this rq's prio */
278 return rq->rt.highest_prio.curr > prev->prio;
279 }
280
281 static inline int rt_overloaded(struct rq *rq)
282 {
283 return atomic_read(&rq->rd->rto_count);
284 }
285
286 static inline void rt_set_overload(struct rq *rq)
287 {
288 if (!rq->online)
289 return;
290
291 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
292 /*
293 * Make sure the mask is visible before we set
294 * the overload count. That is checked to determine
295 * if we should look at the mask. It would be a shame
296 * if we looked at the mask, but the mask was not
297 * updated yet.
298 *
299 * Matched by the barrier in pull_rt_task().
300 */
301 smp_wmb();
302 atomic_inc(&rq->rd->rto_count);
303 }
304
305 static inline void rt_clear_overload(struct rq *rq)
306 {
307 if (!rq->online)
308 return;
309
310 /* the order here really doesn't matter */
311 atomic_dec(&rq->rd->rto_count);
312 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
313 }
314
315 static void update_rt_migration(struct rt_rq *rt_rq)
316 {
317 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
318 if (!rt_rq->overloaded) {
319 rt_set_overload(rq_of_rt_rq(rt_rq));
320 rt_rq->overloaded = 1;
321 }
322 } else if (rt_rq->overloaded) {
323 rt_clear_overload(rq_of_rt_rq(rt_rq));
324 rt_rq->overloaded = 0;
325 }
326 }
327
328 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
329 {
330 struct task_struct *p;
331
332 if (!rt_entity_is_task(rt_se))
333 return;
334
335 p = rt_task_of(rt_se);
336 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
337
338 rt_rq->rt_nr_total++;
339 if (p->nr_cpus_allowed > 1)
340 rt_rq->rt_nr_migratory++;
341
342 update_rt_migration(rt_rq);
343 }
344
345 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
346 {
347 struct task_struct *p;
348
349 if (!rt_entity_is_task(rt_se))
350 return;
351
352 p = rt_task_of(rt_se);
353 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
354
355 rt_rq->rt_nr_total--;
356 if (p->nr_cpus_allowed > 1)
357 rt_rq->rt_nr_migratory--;
358
359 update_rt_migration(rt_rq);
360 }
361
362 static inline int has_pushable_tasks(struct rq *rq)
363 {
364 return !plist_head_empty(&rq->rt.pushable_tasks);
365 }
366
367 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
368 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
369
370 static void push_rt_tasks(struct rq *);
371 static void pull_rt_task(struct rq *);
372
373 static inline void queue_push_tasks(struct rq *rq)
374 {
375 if (!has_pushable_tasks(rq))
376 return;
377
378 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
379 }
380
381 static inline void queue_pull_task(struct rq *rq)
382 {
383 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
384 }
385
386 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
387 {
388 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
389 plist_node_init(&p->pushable_tasks, p->prio);
390 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
391
392 /* Update the highest prio pushable task */
393 if (p->prio < rq->rt.highest_prio.next)
394 rq->rt.highest_prio.next = p->prio;
395 }
396
397 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
398 {
399 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
400
401 /* Update the new highest prio pushable task */
402 if (has_pushable_tasks(rq)) {
403 p = plist_first_entry(&rq->rt.pushable_tasks,
404 struct task_struct, pushable_tasks);
405 rq->rt.highest_prio.next = p->prio;
406 } else
407 rq->rt.highest_prio.next = MAX_RT_PRIO;
408 }
409
410 #else
411
412 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
413 {
414 }
415
416 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
417 {
418 }
419
420 static inline
421 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
422 {
423 }
424
425 static inline
426 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
427 {
428 }
429
430 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
431 {
432 return false;
433 }
434
435 static inline void pull_rt_task(struct rq *this_rq)
436 {
437 }
438
439 static inline void queue_push_tasks(struct rq *rq)
440 {
441 }
442 #endif /* CONFIG_SMP */
443
444 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
445 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
446
447 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
448 {
449 return rt_se->on_rq;
450 }
451
452 #ifdef CONFIG_RT_GROUP_SCHED
453
454 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
455 {
456 if (!rt_rq->tg)
457 return RUNTIME_INF;
458
459 return rt_rq->rt_runtime;
460 }
461
462 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
463 {
464 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
465 }
466
467 typedef struct task_group *rt_rq_iter_t;
468
469 static inline struct task_group *next_task_group(struct task_group *tg)
470 {
471 do {
472 tg = list_entry_rcu(tg->list.next,
473 typeof(struct task_group), list);
474 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
475
476 if (&tg->list == &task_groups)
477 tg = NULL;
478
479 return tg;
480 }
481
482 #define for_each_rt_rq(rt_rq, iter, rq) \
483 for (iter = container_of(&task_groups, typeof(*iter), list); \
484 (iter = next_task_group(iter)) && \
485 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
486
487 #define for_each_sched_rt_entity(rt_se) \
488 for (; rt_se; rt_se = rt_se->parent)
489
490 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
491 {
492 return rt_se->my_q;
493 }
494
495 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
496 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
497
498 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
499 {
500 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
501 struct rq *rq = rq_of_rt_rq(rt_rq);
502 struct sched_rt_entity *rt_se;
503
504 int cpu = cpu_of(rq);
505
506 rt_se = rt_rq->tg->rt_se[cpu];
507
508 if (rt_rq->rt_nr_running) {
509 if (!rt_se)
510 enqueue_top_rt_rq(rt_rq);
511 else if (!on_rt_rq(rt_se))
512 enqueue_rt_entity(rt_se, 0);
513
514 if (rt_rq->highest_prio.curr < curr->prio)
515 resched_curr(rq);
516 }
517 }
518
519 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
520 {
521 struct sched_rt_entity *rt_se;
522 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
523
524 rt_se = rt_rq->tg->rt_se[cpu];
525
526 if (!rt_se)
527 dequeue_top_rt_rq(rt_rq);
528 else if (on_rt_rq(rt_se))
529 dequeue_rt_entity(rt_se, 0);
530 }
531
532 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
533 {
534 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
535 }
536
537 static int rt_se_boosted(struct sched_rt_entity *rt_se)
538 {
539 struct rt_rq *rt_rq = group_rt_rq(rt_se);
540 struct task_struct *p;
541
542 if (rt_rq)
543 return !!rt_rq->rt_nr_boosted;
544
545 p = rt_task_of(rt_se);
546 return p->prio != p->normal_prio;
547 }
548
549 #ifdef CONFIG_SMP
550 static inline const struct cpumask *sched_rt_period_mask(void)
551 {
552 return this_rq()->rd->span;
553 }
554 #else
555 static inline const struct cpumask *sched_rt_period_mask(void)
556 {
557 return cpu_online_mask;
558 }
559 #endif
560
561 static inline
562 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
563 {
564 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
565 }
566
567 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
568 {
569 return &rt_rq->tg->rt_bandwidth;
570 }
571
572 #else /* !CONFIG_RT_GROUP_SCHED */
573
574 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
575 {
576 return rt_rq->rt_runtime;
577 }
578
579 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
580 {
581 return ktime_to_ns(def_rt_bandwidth.rt_period);
582 }
583
584 typedef struct rt_rq *rt_rq_iter_t;
585
586 #define for_each_rt_rq(rt_rq, iter, rq) \
587 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
588
589 #define for_each_sched_rt_entity(rt_se) \
590 for (; rt_se; rt_se = NULL)
591
592 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
593 {
594 return NULL;
595 }
596
597 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
598 {
599 struct rq *rq = rq_of_rt_rq(rt_rq);
600
601 if (!rt_rq->rt_nr_running)
602 return;
603
604 enqueue_top_rt_rq(rt_rq);
605 resched_curr(rq);
606 }
607
608 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
609 {
610 dequeue_top_rt_rq(rt_rq);
611 }
612
613 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
614 {
615 return rt_rq->rt_throttled;
616 }
617
618 static inline const struct cpumask *sched_rt_period_mask(void)
619 {
620 return cpu_online_mask;
621 }
622
623 static inline
624 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
625 {
626 return &cpu_rq(cpu)->rt;
627 }
628
629 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
630 {
631 return &def_rt_bandwidth;
632 }
633
634 #endif /* CONFIG_RT_GROUP_SCHED */
635
636 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
637 {
638 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
639
640 return (hrtimer_active(&rt_b->rt_period_timer) ||
641 rt_rq->rt_time < rt_b->rt_runtime);
642 }
643
644 #ifdef CONFIG_SMP
645 /*
646 * We ran out of runtime, see if we can borrow some from our neighbours.
647 */
648 static void do_balance_runtime(struct rt_rq *rt_rq)
649 {
650 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
651 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
652 int i, weight;
653 u64 rt_period;
654
655 weight = cpumask_weight(rd->span);
656
657 raw_spin_lock(&rt_b->rt_runtime_lock);
658 rt_period = ktime_to_ns(rt_b->rt_period);
659 for_each_cpu(i, rd->span) {
660 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
661 s64 diff;
662
663 if (iter == rt_rq)
664 continue;
665
666 raw_spin_lock(&iter->rt_runtime_lock);
667 /*
668 * Either all rqs have inf runtime and there's nothing to steal
669 * or __disable_runtime() below sets a specific rq to inf to
670 * indicate its been disabled and disalow stealing.
671 */
672 if (iter->rt_runtime == RUNTIME_INF)
673 goto next;
674
675 /*
676 * From runqueues with spare time, take 1/n part of their
677 * spare time, but no more than our period.
678 */
679 diff = iter->rt_runtime - iter->rt_time;
680 if (diff > 0) {
681 diff = div_u64((u64)diff, weight);
682 if (rt_rq->rt_runtime + diff > rt_period)
683 diff = rt_period - rt_rq->rt_runtime;
684 iter->rt_runtime -= diff;
685 rt_rq->rt_runtime += diff;
686 if (rt_rq->rt_runtime == rt_period) {
687 raw_spin_unlock(&iter->rt_runtime_lock);
688 break;
689 }
690 }
691 next:
692 raw_spin_unlock(&iter->rt_runtime_lock);
693 }
694 raw_spin_unlock(&rt_b->rt_runtime_lock);
695 }
696
697 /*
698 * Ensure this RQ takes back all the runtime it lend to its neighbours.
699 */
700 static void __disable_runtime(struct rq *rq)
701 {
702 struct root_domain *rd = rq->rd;
703 rt_rq_iter_t iter;
704 struct rt_rq *rt_rq;
705
706 if (unlikely(!scheduler_running))
707 return;
708
709 for_each_rt_rq(rt_rq, iter, rq) {
710 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
711 s64 want;
712 int i;
713
714 raw_spin_lock(&rt_b->rt_runtime_lock);
715 raw_spin_lock(&rt_rq->rt_runtime_lock);
716 /*
717 * Either we're all inf and nobody needs to borrow, or we're
718 * already disabled and thus have nothing to do, or we have
719 * exactly the right amount of runtime to take out.
720 */
721 if (rt_rq->rt_runtime == RUNTIME_INF ||
722 rt_rq->rt_runtime == rt_b->rt_runtime)
723 goto balanced;
724 raw_spin_unlock(&rt_rq->rt_runtime_lock);
725
726 /*
727 * Calculate the difference between what we started out with
728 * and what we current have, that's the amount of runtime
729 * we lend and now have to reclaim.
730 */
731 want = rt_b->rt_runtime - rt_rq->rt_runtime;
732
733 /*
734 * Greedy reclaim, take back as much as we can.
735 */
736 for_each_cpu(i, rd->span) {
737 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
738 s64 diff;
739
740 /*
741 * Can't reclaim from ourselves or disabled runqueues.
742 */
743 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
744 continue;
745
746 raw_spin_lock(&iter->rt_runtime_lock);
747 if (want > 0) {
748 diff = min_t(s64, iter->rt_runtime, want);
749 iter->rt_runtime -= diff;
750 want -= diff;
751 } else {
752 iter->rt_runtime -= want;
753 want -= want;
754 }
755 raw_spin_unlock(&iter->rt_runtime_lock);
756
757 if (!want)
758 break;
759 }
760
761 raw_spin_lock(&rt_rq->rt_runtime_lock);
762 /*
763 * We cannot be left wanting - that would mean some runtime
764 * leaked out of the system.
765 */
766 BUG_ON(want);
767 balanced:
768 /*
769 * Disable all the borrow logic by pretending we have inf
770 * runtime - in which case borrowing doesn't make sense.
771 */
772 rt_rq->rt_runtime = RUNTIME_INF;
773 rt_rq->rt_throttled = 0;
774 raw_spin_unlock(&rt_rq->rt_runtime_lock);
775 raw_spin_unlock(&rt_b->rt_runtime_lock);
776
777 /* Make rt_rq available for pick_next_task() */
778 sched_rt_rq_enqueue(rt_rq);
779 }
780 }
781
782 static void __enable_runtime(struct rq *rq)
783 {
784 rt_rq_iter_t iter;
785 struct rt_rq *rt_rq;
786
787 if (unlikely(!scheduler_running))
788 return;
789
790 /*
791 * Reset each runqueue's bandwidth settings
792 */
793 for_each_rt_rq(rt_rq, iter, rq) {
794 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
795
796 raw_spin_lock(&rt_b->rt_runtime_lock);
797 raw_spin_lock(&rt_rq->rt_runtime_lock);
798 rt_rq->rt_runtime = rt_b->rt_runtime;
799 rt_rq->rt_time = 0;
800 rt_rq->rt_throttled = 0;
801 raw_spin_unlock(&rt_rq->rt_runtime_lock);
802 raw_spin_unlock(&rt_b->rt_runtime_lock);
803 }
804 }
805
806 static void balance_runtime(struct rt_rq *rt_rq)
807 {
808 if (!sched_feat(RT_RUNTIME_SHARE))
809 return;
810
811 if (rt_rq->rt_time > rt_rq->rt_runtime) {
812 raw_spin_unlock(&rt_rq->rt_runtime_lock);
813 do_balance_runtime(rt_rq);
814 raw_spin_lock(&rt_rq->rt_runtime_lock);
815 }
816 }
817 #else /* !CONFIG_SMP */
818 static inline void balance_runtime(struct rt_rq *rt_rq) {}
819 #endif /* CONFIG_SMP */
820
821 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
822 {
823 int i, idle = 1, throttled = 0;
824 const struct cpumask *span;
825
826 span = sched_rt_period_mask();
827 #ifdef CONFIG_RT_GROUP_SCHED
828 /*
829 * FIXME: isolated CPUs should really leave the root task group,
830 * whether they are isolcpus or were isolated via cpusets, lest
831 * the timer run on a CPU which does not service all runqueues,
832 * potentially leaving other CPUs indefinitely throttled. If
833 * isolation is really required, the user will turn the throttle
834 * off to kill the perturbations it causes anyway. Meanwhile,
835 * this maintains functionality for boot and/or troubleshooting.
836 */
837 if (rt_b == &root_task_group.rt_bandwidth)
838 span = cpu_online_mask;
839 #endif
840 for_each_cpu(i, span) {
841 int enqueue = 0;
842 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
843 struct rq *rq = rq_of_rt_rq(rt_rq);
844 int skip;
845
846 /*
847 * When span == cpu_online_mask, taking each rq->lock
848 * can be time-consuming. Try to avoid it when possible.
849 */
850 raw_spin_lock(&rt_rq->rt_runtime_lock);
851 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
852 raw_spin_unlock(&rt_rq->rt_runtime_lock);
853 if (skip)
854 continue;
855
856 raw_spin_lock(&rq->lock);
857 if (rt_rq->rt_time) {
858 u64 runtime;
859
860 raw_spin_lock(&rt_rq->rt_runtime_lock);
861 if (rt_rq->rt_throttled)
862 balance_runtime(rt_rq);
863 runtime = rt_rq->rt_runtime;
864 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
865 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
866 rt_rq->rt_throttled = 0;
867 enqueue = 1;
868
869 /*
870 * When we're idle and a woken (rt) task is
871 * throttled check_preempt_curr() will set
872 * skip_update and the time between the wakeup
873 * and this unthrottle will get accounted as
874 * 'runtime'.
875 */
876 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
877 rq_clock_skip_update(rq, false);
878 }
879 if (rt_rq->rt_time || rt_rq->rt_nr_running)
880 idle = 0;
881 raw_spin_unlock(&rt_rq->rt_runtime_lock);
882 } else if (rt_rq->rt_nr_running) {
883 idle = 0;
884 if (!rt_rq_throttled(rt_rq))
885 enqueue = 1;
886 }
887 if (rt_rq->rt_throttled)
888 throttled = 1;
889
890 if (enqueue)
891 sched_rt_rq_enqueue(rt_rq);
892 raw_spin_unlock(&rq->lock);
893 }
894
895 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
896 return 1;
897
898 return idle;
899 }
900
901 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
902 {
903 #ifdef CONFIG_RT_GROUP_SCHED
904 struct rt_rq *rt_rq = group_rt_rq(rt_se);
905
906 if (rt_rq)
907 return rt_rq->highest_prio.curr;
908 #endif
909
910 return rt_task_of(rt_se)->prio;
911 }
912
913 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
914 {
915 u64 runtime = sched_rt_runtime(rt_rq);
916
917 if (rt_rq->rt_throttled)
918 return rt_rq_throttled(rt_rq);
919
920 if (runtime >= sched_rt_period(rt_rq))
921 return 0;
922
923 balance_runtime(rt_rq);
924 runtime = sched_rt_runtime(rt_rq);
925 if (runtime == RUNTIME_INF)
926 return 0;
927
928 if (rt_rq->rt_time > runtime) {
929 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
930
931 /*
932 * Don't actually throttle groups that have no runtime assigned
933 * but accrue some time due to boosting.
934 */
935 if (likely(rt_b->rt_runtime)) {
936 rt_rq->rt_throttled = 1;
937 printk_deferred_once("sched: RT throttling activated\n");
938 } else {
939 /*
940 * In case we did anyway, make it go away,
941 * replenishment is a joke, since it will replenish us
942 * with exactly 0 ns.
943 */
944 rt_rq->rt_time = 0;
945 }
946
947 if (rt_rq_throttled(rt_rq)) {
948 sched_rt_rq_dequeue(rt_rq);
949 return 1;
950 }
951 }
952
953 return 0;
954 }
955
956 /*
957 * Update the current task's runtime statistics. Skip current tasks that
958 * are not in our scheduling class.
959 */
960 static void update_curr_rt(struct rq *rq)
961 {
962 struct task_struct *curr = rq->curr;
963 struct sched_rt_entity *rt_se = &curr->rt;
964 u64 delta_exec;
965
966 if (curr->sched_class != &rt_sched_class)
967 return;
968
969 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
970 if (unlikely((s64)delta_exec <= 0))
971 return;
972
973 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
974 cpufreq_update_util(rq, SCHED_CPUFREQ_RT);
975
976 schedstat_set(curr->se.statistics.exec_max,
977 max(curr->se.statistics.exec_max, delta_exec));
978
979 curr->se.sum_exec_runtime += delta_exec;
980 account_group_exec_runtime(curr, delta_exec);
981
982 curr->se.exec_start = rq_clock_task(rq);
983 cpuacct_charge(curr, delta_exec);
984
985 sched_rt_avg_update(rq, delta_exec);
986
987 if (!rt_bandwidth_enabled())
988 return;
989
990 for_each_sched_rt_entity(rt_se) {
991 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
992
993 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
994 raw_spin_lock(&rt_rq->rt_runtime_lock);
995 rt_rq->rt_time += delta_exec;
996 if (sched_rt_runtime_exceeded(rt_rq))
997 resched_curr(rq);
998 raw_spin_unlock(&rt_rq->rt_runtime_lock);
999 }
1000 }
1001 }
1002
1003 static void
1004 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1005 {
1006 struct rq *rq = rq_of_rt_rq(rt_rq);
1007
1008 BUG_ON(&rq->rt != rt_rq);
1009
1010 if (!rt_rq->rt_queued)
1011 return;
1012
1013 BUG_ON(!rq->nr_running);
1014
1015 sub_nr_running(rq, rt_rq->rt_nr_running);
1016 rt_rq->rt_queued = 0;
1017 }
1018
1019 static void
1020 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1021 {
1022 struct rq *rq = rq_of_rt_rq(rt_rq);
1023
1024 BUG_ON(&rq->rt != rt_rq);
1025
1026 if (rt_rq->rt_queued)
1027 return;
1028 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1029 return;
1030
1031 add_nr_running(rq, rt_rq->rt_nr_running);
1032 rt_rq->rt_queued = 1;
1033 }
1034
1035 #if defined CONFIG_SMP
1036
1037 static void
1038 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1039 {
1040 struct rq *rq = rq_of_rt_rq(rt_rq);
1041
1042 #ifdef CONFIG_RT_GROUP_SCHED
1043 /*
1044 * Change rq's cpupri only if rt_rq is the top queue.
1045 */
1046 if (&rq->rt != rt_rq)
1047 return;
1048 #endif
1049 if (rq->online && prio < prev_prio)
1050 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1051 }
1052
1053 static void
1054 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1055 {
1056 struct rq *rq = rq_of_rt_rq(rt_rq);
1057
1058 #ifdef CONFIG_RT_GROUP_SCHED
1059 /*
1060 * Change rq's cpupri only if rt_rq is the top queue.
1061 */
1062 if (&rq->rt != rt_rq)
1063 return;
1064 #endif
1065 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1066 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1067 }
1068
1069 #else /* CONFIG_SMP */
1070
1071 static inline
1072 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1073 static inline
1074 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1075
1076 #endif /* CONFIG_SMP */
1077
1078 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1079 static void
1080 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1081 {
1082 int prev_prio = rt_rq->highest_prio.curr;
1083
1084 if (prio < prev_prio)
1085 rt_rq->highest_prio.curr = prio;
1086
1087 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1088 }
1089
1090 static void
1091 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1092 {
1093 int prev_prio = rt_rq->highest_prio.curr;
1094
1095 if (rt_rq->rt_nr_running) {
1096
1097 WARN_ON(prio < prev_prio);
1098
1099 /*
1100 * This may have been our highest task, and therefore
1101 * we may have some recomputation to do
1102 */
1103 if (prio == prev_prio) {
1104 struct rt_prio_array *array = &rt_rq->active;
1105
1106 rt_rq->highest_prio.curr =
1107 sched_find_first_bit(array->bitmap);
1108 }
1109
1110 } else
1111 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1112
1113 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1114 }
1115
1116 #else
1117
1118 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1119 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1120
1121 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1122
1123 #ifdef CONFIG_RT_GROUP_SCHED
1124
1125 static void
1126 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1127 {
1128 if (rt_se_boosted(rt_se))
1129 rt_rq->rt_nr_boosted++;
1130
1131 if (rt_rq->tg)
1132 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1133 }
1134
1135 static void
1136 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1137 {
1138 if (rt_se_boosted(rt_se))
1139 rt_rq->rt_nr_boosted--;
1140
1141 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1142 }
1143
1144 #else /* CONFIG_RT_GROUP_SCHED */
1145
1146 static void
1147 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1148 {
1149 start_rt_bandwidth(&def_rt_bandwidth);
1150 }
1151
1152 static inline
1153 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1154
1155 #endif /* CONFIG_RT_GROUP_SCHED */
1156
1157 static inline
1158 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1159 {
1160 struct rt_rq *group_rq = group_rt_rq(rt_se);
1161
1162 if (group_rq)
1163 return group_rq->rt_nr_running;
1164 else
1165 return 1;
1166 }
1167
1168 static inline
1169 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1170 {
1171 struct rt_rq *group_rq = group_rt_rq(rt_se);
1172 struct task_struct *tsk;
1173
1174 if (group_rq)
1175 return group_rq->rr_nr_running;
1176
1177 tsk = rt_task_of(rt_se);
1178
1179 return (tsk->policy == SCHED_RR) ? 1 : 0;
1180 }
1181
1182 static inline
1183 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1184 {
1185 int prio = rt_se_prio(rt_se);
1186
1187 WARN_ON(!rt_prio(prio));
1188 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1189 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1190
1191 inc_rt_prio(rt_rq, prio);
1192 inc_rt_migration(rt_se, rt_rq);
1193 inc_rt_group(rt_se, rt_rq);
1194 }
1195
1196 static inline
1197 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1198 {
1199 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1200 WARN_ON(!rt_rq->rt_nr_running);
1201 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1202 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1203
1204 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1205 dec_rt_migration(rt_se, rt_rq);
1206 dec_rt_group(rt_se, rt_rq);
1207 }
1208
1209 /*
1210 * Change rt_se->run_list location unless SAVE && !MOVE
1211 *
1212 * assumes ENQUEUE/DEQUEUE flags match
1213 */
1214 static inline bool move_entity(unsigned int flags)
1215 {
1216 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1217 return false;
1218
1219 return true;
1220 }
1221
1222 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1223 {
1224 list_del_init(&rt_se->run_list);
1225
1226 if (list_empty(array->queue + rt_se_prio(rt_se)))
1227 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1228
1229 rt_se->on_list = 0;
1230 }
1231
1232 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1233 {
1234 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1235 struct rt_prio_array *array = &rt_rq->active;
1236 struct rt_rq *group_rq = group_rt_rq(rt_se);
1237 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1238
1239 /*
1240 * Don't enqueue the group if its throttled, or when empty.
1241 * The latter is a consequence of the former when a child group
1242 * get throttled and the current group doesn't have any other
1243 * active members.
1244 */
1245 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1246 if (rt_se->on_list)
1247 __delist_rt_entity(rt_se, array);
1248 return;
1249 }
1250
1251 if (move_entity(flags)) {
1252 WARN_ON_ONCE(rt_se->on_list);
1253 if (flags & ENQUEUE_HEAD)
1254 list_add(&rt_se->run_list, queue);
1255 else
1256 list_add_tail(&rt_se->run_list, queue);
1257
1258 __set_bit(rt_se_prio(rt_se), array->bitmap);
1259 rt_se->on_list = 1;
1260 }
1261 rt_se->on_rq = 1;
1262
1263 inc_rt_tasks(rt_se, rt_rq);
1264 }
1265
1266 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1267 {
1268 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1269 struct rt_prio_array *array = &rt_rq->active;
1270
1271 if (move_entity(flags)) {
1272 WARN_ON_ONCE(!rt_se->on_list);
1273 __delist_rt_entity(rt_se, array);
1274 }
1275 rt_se->on_rq = 0;
1276
1277 dec_rt_tasks(rt_se, rt_rq);
1278 }
1279
1280 /*
1281 * Because the prio of an upper entry depends on the lower
1282 * entries, we must remove entries top - down.
1283 */
1284 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1285 {
1286 struct sched_rt_entity *back = NULL;
1287
1288 for_each_sched_rt_entity(rt_se) {
1289 rt_se->back = back;
1290 back = rt_se;
1291 }
1292
1293 dequeue_top_rt_rq(rt_rq_of_se(back));
1294
1295 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1296 if (on_rt_rq(rt_se))
1297 __dequeue_rt_entity(rt_se, flags);
1298 }
1299 }
1300
1301 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1302 {
1303 struct rq *rq = rq_of_rt_se(rt_se);
1304
1305 dequeue_rt_stack(rt_se, flags);
1306 for_each_sched_rt_entity(rt_se)
1307 __enqueue_rt_entity(rt_se, flags);
1308 enqueue_top_rt_rq(&rq->rt);
1309 }
1310
1311 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1312 {
1313 struct rq *rq = rq_of_rt_se(rt_se);
1314
1315 dequeue_rt_stack(rt_se, flags);
1316
1317 for_each_sched_rt_entity(rt_se) {
1318 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1319
1320 if (rt_rq && rt_rq->rt_nr_running)
1321 __enqueue_rt_entity(rt_se, flags);
1322 }
1323 enqueue_top_rt_rq(&rq->rt);
1324 }
1325
1326 /*
1327 * Adding/removing a task to/from a priority array:
1328 */
1329 static void
1330 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1331 {
1332 struct sched_rt_entity *rt_se = &p->rt;
1333
1334 if (flags & ENQUEUE_WAKEUP)
1335 rt_se->timeout = 0;
1336
1337 enqueue_rt_entity(rt_se, flags);
1338
1339 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1340 enqueue_pushable_task(rq, p);
1341 }
1342
1343 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1344 {
1345 struct sched_rt_entity *rt_se = &p->rt;
1346
1347 update_curr_rt(rq);
1348 dequeue_rt_entity(rt_se, flags);
1349
1350 dequeue_pushable_task(rq, p);
1351 }
1352
1353 /*
1354 * Put task to the head or the end of the run list without the overhead of
1355 * dequeue followed by enqueue.
1356 */
1357 static void
1358 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1359 {
1360 if (on_rt_rq(rt_se)) {
1361 struct rt_prio_array *array = &rt_rq->active;
1362 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1363
1364 if (head)
1365 list_move(&rt_se->run_list, queue);
1366 else
1367 list_move_tail(&rt_se->run_list, queue);
1368 }
1369 }
1370
1371 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1372 {
1373 struct sched_rt_entity *rt_se = &p->rt;
1374 struct rt_rq *rt_rq;
1375
1376 for_each_sched_rt_entity(rt_se) {
1377 rt_rq = rt_rq_of_se(rt_se);
1378 requeue_rt_entity(rt_rq, rt_se, head);
1379 }
1380 }
1381
1382 static void yield_task_rt(struct rq *rq)
1383 {
1384 requeue_task_rt(rq, rq->curr, 0);
1385 }
1386
1387 #ifdef CONFIG_SMP
1388 static int find_lowest_rq(struct task_struct *task);
1389
1390 static int
1391 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1392 {
1393 struct task_struct *curr;
1394 struct rq *rq;
1395
1396 /* For anything but wake ups, just return the task_cpu */
1397 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1398 goto out;
1399
1400 rq = cpu_rq(cpu);
1401
1402 rcu_read_lock();
1403 curr = READ_ONCE(rq->curr); /* unlocked access */
1404
1405 /*
1406 * If the current task on @p's runqueue is an RT task, then
1407 * try to see if we can wake this RT task up on another
1408 * runqueue. Otherwise simply start this RT task
1409 * on its current runqueue.
1410 *
1411 * We want to avoid overloading runqueues. If the woken
1412 * task is a higher priority, then it will stay on this CPU
1413 * and the lower prio task should be moved to another CPU.
1414 * Even though this will probably make the lower prio task
1415 * lose its cache, we do not want to bounce a higher task
1416 * around just because it gave up its CPU, perhaps for a
1417 * lock?
1418 *
1419 * For equal prio tasks, we just let the scheduler sort it out.
1420 *
1421 * Otherwise, just let it ride on the affined RQ and the
1422 * post-schedule router will push the preempted task away
1423 *
1424 * This test is optimistic, if we get it wrong the load-balancer
1425 * will have to sort it out.
1426 */
1427 if (curr && unlikely(rt_task(curr)) &&
1428 (curr->nr_cpus_allowed < 2 ||
1429 curr->prio <= p->prio)) {
1430 int target = find_lowest_rq(p);
1431
1432 /*
1433 * Don't bother moving it if the destination CPU is
1434 * not running a lower priority task.
1435 */
1436 if (target != -1 &&
1437 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1438 cpu = target;
1439 }
1440 rcu_read_unlock();
1441
1442 out:
1443 return cpu;
1444 }
1445
1446 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1447 {
1448 /*
1449 * Current can't be migrated, useless to reschedule,
1450 * let's hope p can move out.
1451 */
1452 if (rq->curr->nr_cpus_allowed == 1 ||
1453 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1454 return;
1455
1456 /*
1457 * p is migratable, so let's not schedule it and
1458 * see if it is pushed or pulled somewhere else.
1459 */
1460 if (p->nr_cpus_allowed != 1
1461 && cpupri_find(&rq->rd->cpupri, p, NULL))
1462 return;
1463
1464 /*
1465 * There appears to be other cpus that can accept
1466 * current and none to run 'p', so lets reschedule
1467 * to try and push current away:
1468 */
1469 requeue_task_rt(rq, p, 1);
1470 resched_curr(rq);
1471 }
1472
1473 #endif /* CONFIG_SMP */
1474
1475 /*
1476 * Preempt the current task with a newly woken task if needed:
1477 */
1478 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1479 {
1480 if (p->prio < rq->curr->prio) {
1481 resched_curr(rq);
1482 return;
1483 }
1484
1485 #ifdef CONFIG_SMP
1486 /*
1487 * If:
1488 *
1489 * - the newly woken task is of equal priority to the current task
1490 * - the newly woken task is non-migratable while current is migratable
1491 * - current will be preempted on the next reschedule
1492 *
1493 * we should check to see if current can readily move to a different
1494 * cpu. If so, we will reschedule to allow the push logic to try
1495 * to move current somewhere else, making room for our non-migratable
1496 * task.
1497 */
1498 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1499 check_preempt_equal_prio(rq, p);
1500 #endif
1501 }
1502
1503 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1504 struct rt_rq *rt_rq)
1505 {
1506 struct rt_prio_array *array = &rt_rq->active;
1507 struct sched_rt_entity *next = NULL;
1508 struct list_head *queue;
1509 int idx;
1510
1511 idx = sched_find_first_bit(array->bitmap);
1512 BUG_ON(idx >= MAX_RT_PRIO);
1513
1514 queue = array->queue + idx;
1515 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1516
1517 return next;
1518 }
1519
1520 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1521 {
1522 struct sched_rt_entity *rt_se;
1523 struct task_struct *p;
1524 struct rt_rq *rt_rq = &rq->rt;
1525
1526 do {
1527 rt_se = pick_next_rt_entity(rq, rt_rq);
1528 BUG_ON(!rt_se);
1529 rt_rq = group_rt_rq(rt_se);
1530 } while (rt_rq);
1531
1532 p = rt_task_of(rt_se);
1533 p->se.exec_start = rq_clock_task(rq);
1534
1535 return p;
1536 }
1537
1538 static struct task_struct *
1539 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1540 {
1541 struct task_struct *p;
1542 struct rt_rq *rt_rq = &rq->rt;
1543
1544 if (need_pull_rt_task(rq, prev)) {
1545 /*
1546 * This is OK, because current is on_cpu, which avoids it being
1547 * picked for load-balance and preemption/IRQs are still
1548 * disabled avoiding further scheduler activity on it and we're
1549 * being very careful to re-start the picking loop.
1550 */
1551 rq_unpin_lock(rq, rf);
1552 pull_rt_task(rq);
1553 rq_repin_lock(rq, rf);
1554 /*
1555 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1556 * means a dl or stop task can slip in, in which case we need
1557 * to re-start task selection.
1558 */
1559 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1560 rq->dl.dl_nr_running))
1561 return RETRY_TASK;
1562 }
1563
1564 /*
1565 * We may dequeue prev's rt_rq in put_prev_task().
1566 * So, we update time before rt_nr_running check.
1567 */
1568 if (prev->sched_class == &rt_sched_class)
1569 update_curr_rt(rq);
1570
1571 if (!rt_rq->rt_queued)
1572 return NULL;
1573
1574 put_prev_task(rq, prev);
1575
1576 p = _pick_next_task_rt(rq);
1577
1578 /* The running task is never eligible for pushing */
1579 dequeue_pushable_task(rq, p);
1580
1581 queue_push_tasks(rq);
1582
1583 return p;
1584 }
1585
1586 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1587 {
1588 update_curr_rt(rq);
1589
1590 /*
1591 * The previous task needs to be made eligible for pushing
1592 * if it is still active
1593 */
1594 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1595 enqueue_pushable_task(rq, p);
1596 }
1597
1598 #ifdef CONFIG_SMP
1599
1600 /* Only try algorithms three times */
1601 #define RT_MAX_TRIES 3
1602
1603 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1604 {
1605 if (!task_running(rq, p) &&
1606 cpumask_test_cpu(cpu, &p->cpus_allowed))
1607 return 1;
1608 return 0;
1609 }
1610
1611 /*
1612 * Return the highest pushable rq's task, which is suitable to be executed
1613 * on the cpu, NULL otherwise
1614 */
1615 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1616 {
1617 struct plist_head *head = &rq->rt.pushable_tasks;
1618 struct task_struct *p;
1619
1620 if (!has_pushable_tasks(rq))
1621 return NULL;
1622
1623 plist_for_each_entry(p, head, pushable_tasks) {
1624 if (pick_rt_task(rq, p, cpu))
1625 return p;
1626 }
1627
1628 return NULL;
1629 }
1630
1631 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1632
1633 static int find_lowest_rq(struct task_struct *task)
1634 {
1635 struct sched_domain *sd;
1636 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1637 int this_cpu = smp_processor_id();
1638 int cpu = task_cpu(task);
1639
1640 /* Make sure the mask is initialized first */
1641 if (unlikely(!lowest_mask))
1642 return -1;
1643
1644 if (task->nr_cpus_allowed == 1)
1645 return -1; /* No other targets possible */
1646
1647 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1648 return -1; /* No targets found */
1649
1650 /*
1651 * At this point we have built a mask of cpus representing the
1652 * lowest priority tasks in the system. Now we want to elect
1653 * the best one based on our affinity and topology.
1654 *
1655 * We prioritize the last cpu that the task executed on since
1656 * it is most likely cache-hot in that location.
1657 */
1658 if (cpumask_test_cpu(cpu, lowest_mask))
1659 return cpu;
1660
1661 /*
1662 * Otherwise, we consult the sched_domains span maps to figure
1663 * out which cpu is logically closest to our hot cache data.
1664 */
1665 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1666 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1667
1668 rcu_read_lock();
1669 for_each_domain(cpu, sd) {
1670 if (sd->flags & SD_WAKE_AFFINE) {
1671 int best_cpu;
1672
1673 /*
1674 * "this_cpu" is cheaper to preempt than a
1675 * remote processor.
1676 */
1677 if (this_cpu != -1 &&
1678 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1679 rcu_read_unlock();
1680 return this_cpu;
1681 }
1682
1683 best_cpu = cpumask_first_and(lowest_mask,
1684 sched_domain_span(sd));
1685 if (best_cpu < nr_cpu_ids) {
1686 rcu_read_unlock();
1687 return best_cpu;
1688 }
1689 }
1690 }
1691 rcu_read_unlock();
1692
1693 /*
1694 * And finally, if there were no matches within the domains
1695 * just give the caller *something* to work with from the compatible
1696 * locations.
1697 */
1698 if (this_cpu != -1)
1699 return this_cpu;
1700
1701 cpu = cpumask_any(lowest_mask);
1702 if (cpu < nr_cpu_ids)
1703 return cpu;
1704 return -1;
1705 }
1706
1707 /* Will lock the rq it finds */
1708 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1709 {
1710 struct rq *lowest_rq = NULL;
1711 int tries;
1712 int cpu;
1713
1714 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1715 cpu = find_lowest_rq(task);
1716
1717 if ((cpu == -1) || (cpu == rq->cpu))
1718 break;
1719
1720 lowest_rq = cpu_rq(cpu);
1721
1722 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1723 /*
1724 * Target rq has tasks of equal or higher priority,
1725 * retrying does not release any lock and is unlikely
1726 * to yield a different result.
1727 */
1728 lowest_rq = NULL;
1729 break;
1730 }
1731
1732 /* if the prio of this runqueue changed, try again */
1733 if (double_lock_balance(rq, lowest_rq)) {
1734 /*
1735 * We had to unlock the run queue. In
1736 * the mean time, task could have
1737 * migrated already or had its affinity changed.
1738 * Also make sure that it wasn't scheduled on its rq.
1739 */
1740 if (unlikely(task_rq(task) != rq ||
1741 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1742 task_running(rq, task) ||
1743 !rt_task(task) ||
1744 !task_on_rq_queued(task))) {
1745
1746 double_unlock_balance(rq, lowest_rq);
1747 lowest_rq = NULL;
1748 break;
1749 }
1750 }
1751
1752 /* If this rq is still suitable use it. */
1753 if (lowest_rq->rt.highest_prio.curr > task->prio)
1754 break;
1755
1756 /* try again */
1757 double_unlock_balance(rq, lowest_rq);
1758 lowest_rq = NULL;
1759 }
1760
1761 return lowest_rq;
1762 }
1763
1764 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1765 {
1766 struct task_struct *p;
1767
1768 if (!has_pushable_tasks(rq))
1769 return NULL;
1770
1771 p = plist_first_entry(&rq->rt.pushable_tasks,
1772 struct task_struct, pushable_tasks);
1773
1774 BUG_ON(rq->cpu != task_cpu(p));
1775 BUG_ON(task_current(rq, p));
1776 BUG_ON(p->nr_cpus_allowed <= 1);
1777
1778 BUG_ON(!task_on_rq_queued(p));
1779 BUG_ON(!rt_task(p));
1780
1781 return p;
1782 }
1783
1784 /*
1785 * If the current CPU has more than one RT task, see if the non
1786 * running task can migrate over to a CPU that is running a task
1787 * of lesser priority.
1788 */
1789 static int push_rt_task(struct rq *rq)
1790 {
1791 struct task_struct *next_task;
1792 struct rq *lowest_rq;
1793 int ret = 0;
1794
1795 if (!rq->rt.overloaded)
1796 return 0;
1797
1798 next_task = pick_next_pushable_task(rq);
1799 if (!next_task)
1800 return 0;
1801
1802 retry:
1803 if (unlikely(next_task == rq->curr)) {
1804 WARN_ON(1);
1805 return 0;
1806 }
1807
1808 /*
1809 * It's possible that the next_task slipped in of
1810 * higher priority than current. If that's the case
1811 * just reschedule current.
1812 */
1813 if (unlikely(next_task->prio < rq->curr->prio)) {
1814 resched_curr(rq);
1815 return 0;
1816 }
1817
1818 /* We might release rq lock */
1819 get_task_struct(next_task);
1820
1821 /* find_lock_lowest_rq locks the rq if found */
1822 lowest_rq = find_lock_lowest_rq(next_task, rq);
1823 if (!lowest_rq) {
1824 struct task_struct *task;
1825 /*
1826 * find_lock_lowest_rq releases rq->lock
1827 * so it is possible that next_task has migrated.
1828 *
1829 * We need to make sure that the task is still on the same
1830 * run-queue and is also still the next task eligible for
1831 * pushing.
1832 */
1833 task = pick_next_pushable_task(rq);
1834 if (task == next_task) {
1835 /*
1836 * The task hasn't migrated, and is still the next
1837 * eligible task, but we failed to find a run-queue
1838 * to push it to. Do not retry in this case, since
1839 * other cpus will pull from us when ready.
1840 */
1841 goto out;
1842 }
1843
1844 if (!task)
1845 /* No more tasks, just exit */
1846 goto out;
1847
1848 /*
1849 * Something has shifted, try again.
1850 */
1851 put_task_struct(next_task);
1852 next_task = task;
1853 goto retry;
1854 }
1855
1856 deactivate_task(rq, next_task, 0);
1857 set_task_cpu(next_task, lowest_rq->cpu);
1858 activate_task(lowest_rq, next_task, 0);
1859 ret = 1;
1860
1861 resched_curr(lowest_rq);
1862
1863 double_unlock_balance(rq, lowest_rq);
1864
1865 out:
1866 put_task_struct(next_task);
1867
1868 return ret;
1869 }
1870
1871 static void push_rt_tasks(struct rq *rq)
1872 {
1873 /* push_rt_task will return true if it moved an RT */
1874 while (push_rt_task(rq))
1875 ;
1876 }
1877
1878 #ifdef HAVE_RT_PUSH_IPI
1879 /*
1880 * The search for the next cpu always starts at rq->cpu and ends
1881 * when we reach rq->cpu again. It will never return rq->cpu.
1882 * This returns the next cpu to check, or nr_cpu_ids if the loop
1883 * is complete.
1884 *
1885 * rq->rt.push_cpu holds the last cpu returned by this function,
1886 * or if this is the first instance, it must hold rq->cpu.
1887 */
1888 static int rto_next_cpu(struct rq *rq)
1889 {
1890 int prev_cpu = rq->rt.push_cpu;
1891 int cpu;
1892
1893 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1894
1895 /*
1896 * If the previous cpu is less than the rq's CPU, then it already
1897 * passed the end of the mask, and has started from the beginning.
1898 * We end if the next CPU is greater or equal to rq's CPU.
1899 */
1900 if (prev_cpu < rq->cpu) {
1901 if (cpu >= rq->cpu)
1902 return nr_cpu_ids;
1903
1904 } else if (cpu >= nr_cpu_ids) {
1905 /*
1906 * We passed the end of the mask, start at the beginning.
1907 * If the result is greater or equal to the rq's CPU, then
1908 * the loop is finished.
1909 */
1910 cpu = cpumask_first(rq->rd->rto_mask);
1911 if (cpu >= rq->cpu)
1912 return nr_cpu_ids;
1913 }
1914 rq->rt.push_cpu = cpu;
1915
1916 /* Return cpu to let the caller know if the loop is finished or not */
1917 return cpu;
1918 }
1919
1920 static int find_next_push_cpu(struct rq *rq)
1921 {
1922 struct rq *next_rq;
1923 int cpu;
1924
1925 while (1) {
1926 cpu = rto_next_cpu(rq);
1927 if (cpu >= nr_cpu_ids)
1928 break;
1929 next_rq = cpu_rq(cpu);
1930
1931 /* Make sure the next rq can push to this rq */
1932 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1933 break;
1934 }
1935
1936 return cpu;
1937 }
1938
1939 #define RT_PUSH_IPI_EXECUTING 1
1940 #define RT_PUSH_IPI_RESTART 2
1941
1942 /*
1943 * When a high priority task schedules out from a CPU and a lower priority
1944 * task is scheduled in, a check is made to see if there's any RT tasks
1945 * on other CPUs that are waiting to run because a higher priority RT task
1946 * is currently running on its CPU. In this case, the CPU with multiple RT
1947 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1948 * up that may be able to run one of its non-running queued RT tasks.
1949 *
1950 * On large CPU boxes, there's the case that several CPUs could schedule
1951 * a lower priority task at the same time, in which case it will look for
1952 * any overloaded CPUs that it could pull a task from. To do this, the runqueue
1953 * lock must be taken from that overloaded CPU. Having 10s of CPUs all fighting
1954 * for a single overloaded CPU's runqueue lock can produce a large latency.
1955 * (This has actually been observed on large boxes running cyclictest).
1956 * Instead of taking the runqueue lock of the overloaded CPU, each of the
1957 * CPUs that scheduled a lower priority task simply sends an IPI to the
1958 * overloaded CPU. An IPI is much cheaper than taking an runqueue lock with
1959 * lots of contention. The overloaded CPU will look to push its non-running
1960 * RT task off, and if it does, it can then ignore the other IPIs coming
1961 * in, and just pass those IPIs off to any other overloaded CPU.
1962 *
1963 * When a CPU schedules a lower priority task, it only sends an IPI to
1964 * the "next" CPU that has overloaded RT tasks. This prevents IPI storms,
1965 * as having 10 CPUs scheduling lower priority tasks and 10 CPUs with
1966 * RT overloaded tasks, would cause 100 IPIs to go out at once.
1967 *
1968 * The overloaded RT CPU, when receiving an IPI, will try to push off its
1969 * overloaded RT tasks and then send an IPI to the next CPU that has
1970 * overloaded RT tasks. This stops when all CPUs with overloaded RT tasks
1971 * have completed. Just because a CPU may have pushed off its own overloaded
1972 * RT task does not mean it should stop sending the IPI around to other
1973 * overloaded CPUs. There may be another RT task waiting to run on one of
1974 * those CPUs that are of higher priority than the one that was just
1975 * pushed.
1976 *
1977 * An optimization that could possibly be made is to make a CPU array similar
1978 * to the cpupri array mask of all running RT tasks, but for the overloaded
1979 * case, then the IPI could be sent to only the CPU with the highest priority
1980 * RT task waiting, and that CPU could send off further IPIs to the CPU with
1981 * the next highest waiting task. Since the overloaded case is much less likely
1982 * to happen, the complexity of this implementation may not be worth it.
1983 * Instead, just send an IPI around to all overloaded CPUs.
1984 *
1985 * The rq->rt.push_flags holds the status of the IPI that is going around.
1986 * A run queue can only send out a single IPI at a time. The possible flags
1987 * for rq->rt.push_flags are:
1988 *
1989 * (None or zero): No IPI is going around for the current rq
1990 * RT_PUSH_IPI_EXECUTING: An IPI for the rq is being passed around
1991 * RT_PUSH_IPI_RESTART: The priority of the running task for the rq
1992 * has changed, and the IPI should restart
1993 * circulating the overloaded CPUs again.
1994 *
1995 * rq->rt.push_cpu contains the CPU that is being sent the IPI. It is updated
1996 * before sending to the next CPU.
1997 *
1998 * Instead of having all CPUs that schedule a lower priority task send
1999 * an IPI to the same "first" CPU in the RT overload mask, they send it
2000 * to the next overloaded CPU after their own CPU. This helps distribute
2001 * the work when there's more than one overloaded CPU and multiple CPUs
2002 * scheduling in lower priority tasks.
2003 *
2004 * When a rq schedules a lower priority task than what was currently
2005 * running, the next CPU with overloaded RT tasks is examined first.
2006 * That is, if CPU 1 and 5 are overloaded, and CPU 3 schedules a lower
2007 * priority task, it will send an IPI first to CPU 5, then CPU 5 will
2008 * send to CPU 1 if it is still overloaded. CPU 1 will clear the
2009 * rq->rt.push_flags if RT_PUSH_IPI_RESTART is not set.
2010 *
2011 * The first CPU to notice IPI_RESTART is set, will clear that flag and then
2012 * send an IPI to the next overloaded CPU after the rq->cpu and not the next
2013 * CPU after push_cpu. That is, if CPU 1, 4 and 5 are overloaded when CPU 3
2014 * schedules a lower priority task, and the IPI_RESTART gets set while the
2015 * handling is being done on CPU 5, it will clear the flag and send it back to
2016 * CPU 4 instead of CPU 1.
2017 *
2018 * Note, the above logic can be disabled by turning off the sched_feature
2019 * RT_PUSH_IPI. Then the rq lock of the overloaded CPU will simply be
2020 * taken by the CPU requesting a pull and the waiting RT task will be pulled
2021 * by that CPU. This may be fine for machines with few CPUs.
2022 */
2023 static void tell_cpu_to_push(struct rq *rq)
2024 {
2025 int cpu;
2026
2027 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
2028 raw_spin_lock(&rq->rt.push_lock);
2029 /* Make sure it's still executing */
2030 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
2031 /*
2032 * Tell the IPI to restart the loop as things have
2033 * changed since it started.
2034 */
2035 rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
2036 raw_spin_unlock(&rq->rt.push_lock);
2037 return;
2038 }
2039 raw_spin_unlock(&rq->rt.push_lock);
2040 }
2041
2042 /* When here, there's no IPI going around */
2043
2044 rq->rt.push_cpu = rq->cpu;
2045 cpu = find_next_push_cpu(rq);
2046 if (cpu >= nr_cpu_ids)
2047 return;
2048
2049 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
2050
2051 irq_work_queue_on(&rq->rt.push_work, cpu);
2052 }
2053
2054 /* Called from hardirq context */
2055 static void try_to_push_tasks(void *arg)
2056 {
2057 struct rt_rq *rt_rq = arg;
2058 struct rq *rq, *src_rq;
2059 int this_cpu;
2060 int cpu;
2061
2062 this_cpu = rt_rq->push_cpu;
2063
2064 /* Paranoid check */
2065 BUG_ON(this_cpu != smp_processor_id());
2066
2067 rq = cpu_rq(this_cpu);
2068 src_rq = rq_of_rt_rq(rt_rq);
2069
2070 again:
2071 if (has_pushable_tasks(rq)) {
2072 raw_spin_lock(&rq->lock);
2073 push_rt_task(rq);
2074 raw_spin_unlock(&rq->lock);
2075 }
2076
2077 /* Pass the IPI to the next rt overloaded queue */
2078 raw_spin_lock(&rt_rq->push_lock);
2079 /*
2080 * If the source queue changed since the IPI went out,
2081 * we need to restart the search from that CPU again.
2082 */
2083 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
2084 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
2085 rt_rq->push_cpu = src_rq->cpu;
2086 }
2087
2088 cpu = find_next_push_cpu(src_rq);
2089
2090 if (cpu >= nr_cpu_ids)
2091 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
2092 raw_spin_unlock(&rt_rq->push_lock);
2093
2094 if (cpu >= nr_cpu_ids)
2095 return;
2096
2097 /*
2098 * It is possible that a restart caused this CPU to be
2099 * chosen again. Don't bother with an IPI, just see if we
2100 * have more to push.
2101 */
2102 if (unlikely(cpu == rq->cpu))
2103 goto again;
2104
2105 /* Try the next RT overloaded CPU */
2106 irq_work_queue_on(&rt_rq->push_work, cpu);
2107 }
2108
2109 static void push_irq_work_func(struct irq_work *work)
2110 {
2111 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2112
2113 try_to_push_tasks(rt_rq);
2114 }
2115 #endif /* HAVE_RT_PUSH_IPI */
2116
2117 static void pull_rt_task(struct rq *this_rq)
2118 {
2119 int this_cpu = this_rq->cpu, cpu;
2120 bool resched = false;
2121 struct task_struct *p;
2122 struct rq *src_rq;
2123
2124 if (likely(!rt_overloaded(this_rq)))
2125 return;
2126
2127 /*
2128 * Match the barrier from rt_set_overloaded; this guarantees that if we
2129 * see overloaded we must also see the rto_mask bit.
2130 */
2131 smp_rmb();
2132
2133 #ifdef HAVE_RT_PUSH_IPI
2134 if (sched_feat(RT_PUSH_IPI)) {
2135 tell_cpu_to_push(this_rq);
2136 return;
2137 }
2138 #endif
2139
2140 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2141 if (this_cpu == cpu)
2142 continue;
2143
2144 src_rq = cpu_rq(cpu);
2145
2146 /*
2147 * Don't bother taking the src_rq->lock if the next highest
2148 * task is known to be lower-priority than our current task.
2149 * This may look racy, but if this value is about to go
2150 * logically higher, the src_rq will push this task away.
2151 * And if its going logically lower, we do not care
2152 */
2153 if (src_rq->rt.highest_prio.next >=
2154 this_rq->rt.highest_prio.curr)
2155 continue;
2156
2157 /*
2158 * We can potentially drop this_rq's lock in
2159 * double_lock_balance, and another CPU could
2160 * alter this_rq
2161 */
2162 double_lock_balance(this_rq, src_rq);
2163
2164 /*
2165 * We can pull only a task, which is pushable
2166 * on its rq, and no others.
2167 */
2168 p = pick_highest_pushable_task(src_rq, this_cpu);
2169
2170 /*
2171 * Do we have an RT task that preempts
2172 * the to-be-scheduled task?
2173 */
2174 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2175 WARN_ON(p == src_rq->curr);
2176 WARN_ON(!task_on_rq_queued(p));
2177
2178 /*
2179 * There's a chance that p is higher in priority
2180 * than what's currently running on its cpu.
2181 * This is just that p is wakeing up and hasn't
2182 * had a chance to schedule. We only pull
2183 * p if it is lower in priority than the
2184 * current task on the run queue
2185 */
2186 if (p->prio < src_rq->curr->prio)
2187 goto skip;
2188
2189 resched = true;
2190
2191 deactivate_task(src_rq, p, 0);
2192 set_task_cpu(p, this_cpu);
2193 activate_task(this_rq, p, 0);
2194 /*
2195 * We continue with the search, just in
2196 * case there's an even higher prio task
2197 * in another runqueue. (low likelihood
2198 * but possible)
2199 */
2200 }
2201 skip:
2202 double_unlock_balance(this_rq, src_rq);
2203 }
2204
2205 if (resched)
2206 resched_curr(this_rq);
2207 }
2208
2209 /*
2210 * If we are not running and we are not going to reschedule soon, we should
2211 * try to push tasks away now
2212 */
2213 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2214 {
2215 if (!task_running(rq, p) &&
2216 !test_tsk_need_resched(rq->curr) &&
2217 p->nr_cpus_allowed > 1 &&
2218 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2219 (rq->curr->nr_cpus_allowed < 2 ||
2220 rq->curr->prio <= p->prio))
2221 push_rt_tasks(rq);
2222 }
2223
2224 /* Assumes rq->lock is held */
2225 static void rq_online_rt(struct rq *rq)
2226 {
2227 if (rq->rt.overloaded)
2228 rt_set_overload(rq);
2229
2230 __enable_runtime(rq);
2231
2232 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2233 }
2234
2235 /* Assumes rq->lock is held */
2236 static void rq_offline_rt(struct rq *rq)
2237 {
2238 if (rq->rt.overloaded)
2239 rt_clear_overload(rq);
2240
2241 __disable_runtime(rq);
2242
2243 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2244 }
2245
2246 /*
2247 * When switch from the rt queue, we bring ourselves to a position
2248 * that we might want to pull RT tasks from other runqueues.
2249 */
2250 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2251 {
2252 /*
2253 * If there are other RT tasks then we will reschedule
2254 * and the scheduling of the other RT tasks will handle
2255 * the balancing. But if we are the last RT task
2256 * we may need to handle the pulling of RT tasks
2257 * now.
2258 */
2259 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2260 return;
2261
2262 queue_pull_task(rq);
2263 }
2264
2265 void __init init_sched_rt_class(void)
2266 {
2267 unsigned int i;
2268
2269 for_each_possible_cpu(i) {
2270 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2271 GFP_KERNEL, cpu_to_node(i));
2272 }
2273 }
2274 #endif /* CONFIG_SMP */
2275
2276 /*
2277 * When switching a task to RT, we may overload the runqueue
2278 * with RT tasks. In this case we try to push them off to
2279 * other runqueues.
2280 */
2281 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2282 {
2283 /*
2284 * If we are already running, then there's nothing
2285 * that needs to be done. But if we are not running
2286 * we may need to preempt the current running task.
2287 * If that current running task is also an RT task
2288 * then see if we can move to another run queue.
2289 */
2290 if (task_on_rq_queued(p) && rq->curr != p) {
2291 #ifdef CONFIG_SMP
2292 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2293 queue_push_tasks(rq);
2294 #endif /* CONFIG_SMP */
2295 if (p->prio < rq->curr->prio)
2296 resched_curr(rq);
2297 }
2298 }
2299
2300 /*
2301 * Priority of the task has changed. This may cause
2302 * us to initiate a push or pull.
2303 */
2304 static void
2305 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2306 {
2307 if (!task_on_rq_queued(p))
2308 return;
2309
2310 if (rq->curr == p) {
2311 #ifdef CONFIG_SMP
2312 /*
2313 * If our priority decreases while running, we
2314 * may need to pull tasks to this runqueue.
2315 */
2316 if (oldprio < p->prio)
2317 queue_pull_task(rq);
2318
2319 /*
2320 * If there's a higher priority task waiting to run
2321 * then reschedule.
2322 */
2323 if (p->prio > rq->rt.highest_prio.curr)
2324 resched_curr(rq);
2325 #else
2326 /* For UP simply resched on drop of prio */
2327 if (oldprio < p->prio)
2328 resched_curr(rq);
2329 #endif /* CONFIG_SMP */
2330 } else {
2331 /*
2332 * This task is not running, but if it is
2333 * greater than the current running task
2334 * then reschedule.
2335 */
2336 if (p->prio < rq->curr->prio)
2337 resched_curr(rq);
2338 }
2339 }
2340
2341 #ifdef CONFIG_POSIX_TIMERS
2342 static void watchdog(struct rq *rq, struct task_struct *p)
2343 {
2344 unsigned long soft, hard;
2345
2346 /* max may change after cur was read, this will be fixed next tick */
2347 soft = task_rlimit(p, RLIMIT_RTTIME);
2348 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2349
2350 if (soft != RLIM_INFINITY) {
2351 unsigned long next;
2352
2353 if (p->rt.watchdog_stamp != jiffies) {
2354 p->rt.timeout++;
2355 p->rt.watchdog_stamp = jiffies;
2356 }
2357
2358 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2359 if (p->rt.timeout > next)
2360 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2361 }
2362 }
2363 #else
2364 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2365 #endif
2366
2367 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2368 {
2369 struct sched_rt_entity *rt_se = &p->rt;
2370
2371 update_curr_rt(rq);
2372
2373 watchdog(rq, p);
2374
2375 /*
2376 * RR tasks need a special form of timeslice management.
2377 * FIFO tasks have no timeslices.
2378 */
2379 if (p->policy != SCHED_RR)
2380 return;
2381
2382 if (--p->rt.time_slice)
2383 return;
2384
2385 p->rt.time_slice = sched_rr_timeslice;
2386
2387 /*
2388 * Requeue to the end of queue if we (and all of our ancestors) are not
2389 * the only element on the queue
2390 */
2391 for_each_sched_rt_entity(rt_se) {
2392 if (rt_se->run_list.prev != rt_se->run_list.next) {
2393 requeue_task_rt(rq, p, 0);
2394 resched_curr(rq);
2395 return;
2396 }
2397 }
2398 }
2399
2400 static void set_curr_task_rt(struct rq *rq)
2401 {
2402 struct task_struct *p = rq->curr;
2403
2404 p->se.exec_start = rq_clock_task(rq);
2405
2406 /* The running task is never eligible for pushing */
2407 dequeue_pushable_task(rq, p);
2408 }
2409
2410 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2411 {
2412 /*
2413 * Time slice is 0 for SCHED_FIFO tasks
2414 */
2415 if (task->policy == SCHED_RR)
2416 return sched_rr_timeslice;
2417 else
2418 return 0;
2419 }
2420
2421 const struct sched_class rt_sched_class = {
2422 .next = &fair_sched_class,
2423 .enqueue_task = enqueue_task_rt,
2424 .dequeue_task = dequeue_task_rt,
2425 .yield_task = yield_task_rt,
2426
2427 .check_preempt_curr = check_preempt_curr_rt,
2428
2429 .pick_next_task = pick_next_task_rt,
2430 .put_prev_task = put_prev_task_rt,
2431
2432 #ifdef CONFIG_SMP
2433 .select_task_rq = select_task_rq_rt,
2434
2435 .set_cpus_allowed = set_cpus_allowed_common,
2436 .rq_online = rq_online_rt,
2437 .rq_offline = rq_offline_rt,
2438 .task_woken = task_woken_rt,
2439 .switched_from = switched_from_rt,
2440 #endif
2441
2442 .set_curr_task = set_curr_task_rt,
2443 .task_tick = task_tick_rt,
2444
2445 .get_rr_interval = get_rr_interval_rt,
2446
2447 .prio_changed = prio_changed_rt,
2448 .switched_to = switched_to_rt,
2449
2450 .update_curr = update_curr_rt,
2451 };
2452
2453 #ifdef CONFIG_RT_GROUP_SCHED
2454 /*
2455 * Ensure that the real time constraints are schedulable.
2456 */
2457 static DEFINE_MUTEX(rt_constraints_mutex);
2458
2459 /* Must be called with tasklist_lock held */
2460 static inline int tg_has_rt_tasks(struct task_group *tg)
2461 {
2462 struct task_struct *g, *p;
2463
2464 /*
2465 * Autogroups do not have RT tasks; see autogroup_create().
2466 */
2467 if (task_group_is_autogroup(tg))
2468 return 0;
2469
2470 for_each_process_thread(g, p) {
2471 if (rt_task(p) && task_group(p) == tg)
2472 return 1;
2473 }
2474
2475 return 0;
2476 }
2477
2478 struct rt_schedulable_data {
2479 struct task_group *tg;
2480 u64 rt_period;
2481 u64 rt_runtime;
2482 };
2483
2484 static int tg_rt_schedulable(struct task_group *tg, void *data)
2485 {
2486 struct rt_schedulable_data *d = data;
2487 struct task_group *child;
2488 unsigned long total, sum = 0;
2489 u64 period, runtime;
2490
2491 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2492 runtime = tg->rt_bandwidth.rt_runtime;
2493
2494 if (tg == d->tg) {
2495 period = d->rt_period;
2496 runtime = d->rt_runtime;
2497 }
2498
2499 /*
2500 * Cannot have more runtime than the period.
2501 */
2502 if (runtime > period && runtime != RUNTIME_INF)
2503 return -EINVAL;
2504
2505 /*
2506 * Ensure we don't starve existing RT tasks.
2507 */
2508 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2509 return -EBUSY;
2510
2511 total = to_ratio(period, runtime);
2512
2513 /*
2514 * Nobody can have more than the global setting allows.
2515 */
2516 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2517 return -EINVAL;
2518
2519 /*
2520 * The sum of our children's runtime should not exceed our own.
2521 */
2522 list_for_each_entry_rcu(child, &tg->children, siblings) {
2523 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2524 runtime = child->rt_bandwidth.rt_runtime;
2525
2526 if (child == d->tg) {
2527 period = d->rt_period;
2528 runtime = d->rt_runtime;
2529 }
2530
2531 sum += to_ratio(period, runtime);
2532 }
2533
2534 if (sum > total)
2535 return -EINVAL;
2536
2537 return 0;
2538 }
2539
2540 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2541 {
2542 int ret;
2543
2544 struct rt_schedulable_data data = {
2545 .tg = tg,
2546 .rt_period = period,
2547 .rt_runtime = runtime,
2548 };
2549
2550 rcu_read_lock();
2551 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2552 rcu_read_unlock();
2553
2554 return ret;
2555 }
2556
2557 static int tg_set_rt_bandwidth(struct task_group *tg,
2558 u64 rt_period, u64 rt_runtime)
2559 {
2560 int i, err = 0;
2561
2562 /*
2563 * Disallowing the root group RT runtime is BAD, it would disallow the
2564 * kernel creating (and or operating) RT threads.
2565 */
2566 if (tg == &root_task_group && rt_runtime == 0)
2567 return -EINVAL;
2568
2569 /* No period doesn't make any sense. */
2570 if (rt_period == 0)
2571 return -EINVAL;
2572
2573 mutex_lock(&rt_constraints_mutex);
2574 read_lock(&tasklist_lock);
2575 err = __rt_schedulable(tg, rt_period, rt_runtime);
2576 if (err)
2577 goto unlock;
2578
2579 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2580 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2581 tg->rt_bandwidth.rt_runtime = rt_runtime;
2582
2583 for_each_possible_cpu(i) {
2584 struct rt_rq *rt_rq = tg->rt_rq[i];
2585
2586 raw_spin_lock(&rt_rq->rt_runtime_lock);
2587 rt_rq->rt_runtime = rt_runtime;
2588 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2589 }
2590 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2591 unlock:
2592 read_unlock(&tasklist_lock);
2593 mutex_unlock(&rt_constraints_mutex);
2594
2595 return err;
2596 }
2597
2598 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2599 {
2600 u64 rt_runtime, rt_period;
2601
2602 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2603 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2604 if (rt_runtime_us < 0)
2605 rt_runtime = RUNTIME_INF;
2606
2607 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2608 }
2609
2610 long sched_group_rt_runtime(struct task_group *tg)
2611 {
2612 u64 rt_runtime_us;
2613
2614 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2615 return -1;
2616
2617 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2618 do_div(rt_runtime_us, NSEC_PER_USEC);
2619 return rt_runtime_us;
2620 }
2621
2622 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2623 {
2624 u64 rt_runtime, rt_period;
2625
2626 rt_period = rt_period_us * NSEC_PER_USEC;
2627 rt_runtime = tg->rt_bandwidth.rt_runtime;
2628
2629 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2630 }
2631
2632 long sched_group_rt_period(struct task_group *tg)
2633 {
2634 u64 rt_period_us;
2635
2636 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2637 do_div(rt_period_us, NSEC_PER_USEC);
2638 return rt_period_us;
2639 }
2640
2641 static int sched_rt_global_constraints(void)
2642 {
2643 int ret = 0;
2644
2645 mutex_lock(&rt_constraints_mutex);
2646 read_lock(&tasklist_lock);
2647 ret = __rt_schedulable(NULL, 0, 0);
2648 read_unlock(&tasklist_lock);
2649 mutex_unlock(&rt_constraints_mutex);
2650
2651 return ret;
2652 }
2653
2654 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2655 {
2656 /* Don't accept realtime tasks when there is no way for them to run */
2657 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2658 return 0;
2659
2660 return 1;
2661 }
2662
2663 #else /* !CONFIG_RT_GROUP_SCHED */
2664 static int sched_rt_global_constraints(void)
2665 {
2666 unsigned long flags;
2667 int i;
2668
2669 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2670 for_each_possible_cpu(i) {
2671 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2672
2673 raw_spin_lock(&rt_rq->rt_runtime_lock);
2674 rt_rq->rt_runtime = global_rt_runtime();
2675 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2676 }
2677 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2678
2679 return 0;
2680 }
2681 #endif /* CONFIG_RT_GROUP_SCHED */
2682
2683 static int sched_rt_global_validate(void)
2684 {
2685 if (sysctl_sched_rt_period <= 0)
2686 return -EINVAL;
2687
2688 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2689 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2690 return -EINVAL;
2691
2692 return 0;
2693 }
2694
2695 static void sched_rt_do_global(void)
2696 {
2697 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2698 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2699 }
2700
2701 int sched_rt_handler(struct ctl_table *table, int write,
2702 void __user *buffer, size_t *lenp,
2703 loff_t *ppos)
2704 {
2705 int old_period, old_runtime;
2706 static DEFINE_MUTEX(mutex);
2707 int ret;
2708
2709 mutex_lock(&mutex);
2710 old_period = sysctl_sched_rt_period;
2711 old_runtime = sysctl_sched_rt_runtime;
2712
2713 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2714
2715 if (!ret && write) {
2716 ret = sched_rt_global_validate();
2717 if (ret)
2718 goto undo;
2719
2720 ret = sched_dl_global_validate();
2721 if (ret)
2722 goto undo;
2723
2724 ret = sched_rt_global_constraints();
2725 if (ret)
2726 goto undo;
2727
2728 sched_rt_do_global();
2729 sched_dl_do_global();
2730 }
2731 if (0) {
2732 undo:
2733 sysctl_sched_rt_period = old_period;
2734 sysctl_sched_rt_runtime = old_runtime;
2735 }
2736 mutex_unlock(&mutex);
2737
2738 return ret;
2739 }
2740
2741 int sched_rr_handler(struct ctl_table *table, int write,
2742 void __user *buffer, size_t *lenp,
2743 loff_t *ppos)
2744 {
2745 int ret;
2746 static DEFINE_MUTEX(mutex);
2747
2748 mutex_lock(&mutex);
2749 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2750 /*
2751 * Make sure that internally we keep jiffies.
2752 * Also, writing zero resets the timeslice to default:
2753 */
2754 if (!ret && write) {
2755 sched_rr_timeslice =
2756 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2757 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2758 }
2759 mutex_unlock(&mutex);
2760 return ret;
2761 }
2762
2763 #ifdef CONFIG_SCHED_DEBUG
2764 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2765
2766 void print_rt_stats(struct seq_file *m, int cpu)
2767 {
2768 rt_rq_iter_t iter;
2769 struct rt_rq *rt_rq;
2770
2771 rcu_read_lock();
2772 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2773 print_rt_rq(m, cpu, rt_rq);
2774 rcu_read_unlock();
2775 }
2776 #endif /* CONFIG_SCHED_DEBUG */