]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/rt.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[mirror_ubuntu-artful-kernel.git] / kernel / sched / rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 int sched_rr_timeslice = RR_TIMESLICE;
12 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
13
14 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
15
16 struct rt_bandwidth def_rt_bandwidth;
17
18 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
19 {
20 struct rt_bandwidth *rt_b =
21 container_of(timer, struct rt_bandwidth, rt_period_timer);
22 int idle = 0;
23 int overrun;
24
25 raw_spin_lock(&rt_b->rt_runtime_lock);
26 for (;;) {
27 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
28 if (!overrun)
29 break;
30
31 raw_spin_unlock(&rt_b->rt_runtime_lock);
32 idle = do_sched_rt_period_timer(rt_b, overrun);
33 raw_spin_lock(&rt_b->rt_runtime_lock);
34 }
35 if (idle)
36 rt_b->rt_period_active = 0;
37 raw_spin_unlock(&rt_b->rt_runtime_lock);
38
39 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
40 }
41
42 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
43 {
44 rt_b->rt_period = ns_to_ktime(period);
45 rt_b->rt_runtime = runtime;
46
47 raw_spin_lock_init(&rt_b->rt_runtime_lock);
48
49 hrtimer_init(&rt_b->rt_period_timer,
50 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
51 rt_b->rt_period_timer.function = sched_rt_period_timer;
52 }
53
54 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
55 {
56 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
57 return;
58
59 raw_spin_lock(&rt_b->rt_runtime_lock);
60 if (!rt_b->rt_period_active) {
61 rt_b->rt_period_active = 1;
62 /*
63 * SCHED_DEADLINE updates the bandwidth, as a run away
64 * RT task with a DL task could hog a CPU. But DL does
65 * not reset the period. If a deadline task was running
66 * without an RT task running, it can cause RT tasks to
67 * throttle when they start up. Kick the timer right away
68 * to update the period.
69 */
70 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
71 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
72 }
73 raw_spin_unlock(&rt_b->rt_runtime_lock);
74 }
75
76 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
77 static void push_irq_work_func(struct irq_work *work);
78 #endif
79
80 void init_rt_rq(struct rt_rq *rt_rq)
81 {
82 struct rt_prio_array *array;
83 int i;
84
85 array = &rt_rq->active;
86 for (i = 0; i < MAX_RT_PRIO; i++) {
87 INIT_LIST_HEAD(array->queue + i);
88 __clear_bit(i, array->bitmap);
89 }
90 /* delimiter for bitsearch: */
91 __set_bit(MAX_RT_PRIO, array->bitmap);
92
93 #if defined CONFIG_SMP
94 rt_rq->highest_prio.curr = MAX_RT_PRIO;
95 rt_rq->highest_prio.next = MAX_RT_PRIO;
96 rt_rq->rt_nr_migratory = 0;
97 rt_rq->overloaded = 0;
98 plist_head_init(&rt_rq->pushable_tasks);
99
100 #ifdef HAVE_RT_PUSH_IPI
101 rt_rq->push_flags = 0;
102 rt_rq->push_cpu = nr_cpu_ids;
103 raw_spin_lock_init(&rt_rq->push_lock);
104 init_irq_work(&rt_rq->push_work, push_irq_work_func);
105 #endif
106 #endif /* CONFIG_SMP */
107 /* We start is dequeued state, because no RT tasks are queued */
108 rt_rq->rt_queued = 0;
109
110 rt_rq->rt_time = 0;
111 rt_rq->rt_throttled = 0;
112 rt_rq->rt_runtime = 0;
113 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
114 }
115
116 #ifdef CONFIG_RT_GROUP_SCHED
117 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
118 {
119 hrtimer_cancel(&rt_b->rt_period_timer);
120 }
121
122 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
123
124 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
125 {
126 #ifdef CONFIG_SCHED_DEBUG
127 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
128 #endif
129 return container_of(rt_se, struct task_struct, rt);
130 }
131
132 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
133 {
134 return rt_rq->rq;
135 }
136
137 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
138 {
139 return rt_se->rt_rq;
140 }
141
142 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
143 {
144 struct rt_rq *rt_rq = rt_se->rt_rq;
145
146 return rt_rq->rq;
147 }
148
149 void free_rt_sched_group(struct task_group *tg)
150 {
151 int i;
152
153 if (tg->rt_se)
154 destroy_rt_bandwidth(&tg->rt_bandwidth);
155
156 for_each_possible_cpu(i) {
157 if (tg->rt_rq)
158 kfree(tg->rt_rq[i]);
159 if (tg->rt_se)
160 kfree(tg->rt_se[i]);
161 }
162
163 kfree(tg->rt_rq);
164 kfree(tg->rt_se);
165 }
166
167 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
168 struct sched_rt_entity *rt_se, int cpu,
169 struct sched_rt_entity *parent)
170 {
171 struct rq *rq = cpu_rq(cpu);
172
173 rt_rq->highest_prio.curr = MAX_RT_PRIO;
174 rt_rq->rt_nr_boosted = 0;
175 rt_rq->rq = rq;
176 rt_rq->tg = tg;
177
178 tg->rt_rq[cpu] = rt_rq;
179 tg->rt_se[cpu] = rt_se;
180
181 if (!rt_se)
182 return;
183
184 if (!parent)
185 rt_se->rt_rq = &rq->rt;
186 else
187 rt_se->rt_rq = parent->my_q;
188
189 rt_se->my_q = rt_rq;
190 rt_se->parent = parent;
191 INIT_LIST_HEAD(&rt_se->run_list);
192 }
193
194 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
195 {
196 struct rt_rq *rt_rq;
197 struct sched_rt_entity *rt_se;
198 int i;
199
200 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
201 if (!tg->rt_rq)
202 goto err;
203 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
204 if (!tg->rt_se)
205 goto err;
206
207 init_rt_bandwidth(&tg->rt_bandwidth,
208 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
209
210 for_each_possible_cpu(i) {
211 rt_rq = kzalloc_node(sizeof(struct rt_rq),
212 GFP_KERNEL, cpu_to_node(i));
213 if (!rt_rq)
214 goto err;
215
216 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
217 GFP_KERNEL, cpu_to_node(i));
218 if (!rt_se)
219 goto err_free_rq;
220
221 init_rt_rq(rt_rq);
222 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
223 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
224 }
225
226 return 1;
227
228 err_free_rq:
229 kfree(rt_rq);
230 err:
231 return 0;
232 }
233
234 #else /* CONFIG_RT_GROUP_SCHED */
235
236 #define rt_entity_is_task(rt_se) (1)
237
238 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
239 {
240 return container_of(rt_se, struct task_struct, rt);
241 }
242
243 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
244 {
245 return container_of(rt_rq, struct rq, rt);
246 }
247
248 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
249 {
250 struct task_struct *p = rt_task_of(rt_se);
251
252 return task_rq(p);
253 }
254
255 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
256 {
257 struct rq *rq = rq_of_rt_se(rt_se);
258
259 return &rq->rt;
260 }
261
262 void free_rt_sched_group(struct task_group *tg) { }
263
264 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
265 {
266 return 1;
267 }
268 #endif /* CONFIG_RT_GROUP_SCHED */
269
270 #ifdef CONFIG_SMP
271
272 static void pull_rt_task(struct rq *this_rq);
273
274 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
275 {
276 /* Try to pull RT tasks here if we lower this rq's prio */
277 return rq->rt.highest_prio.curr > prev->prio;
278 }
279
280 static inline int rt_overloaded(struct rq *rq)
281 {
282 return atomic_read(&rq->rd->rto_count);
283 }
284
285 static inline void rt_set_overload(struct rq *rq)
286 {
287 if (!rq->online)
288 return;
289
290 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
291 /*
292 * Make sure the mask is visible before we set
293 * the overload count. That is checked to determine
294 * if we should look at the mask. It would be a shame
295 * if we looked at the mask, but the mask was not
296 * updated yet.
297 *
298 * Matched by the barrier in pull_rt_task().
299 */
300 smp_wmb();
301 atomic_inc(&rq->rd->rto_count);
302 }
303
304 static inline void rt_clear_overload(struct rq *rq)
305 {
306 if (!rq->online)
307 return;
308
309 /* the order here really doesn't matter */
310 atomic_dec(&rq->rd->rto_count);
311 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
312 }
313
314 static void update_rt_migration(struct rt_rq *rt_rq)
315 {
316 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
317 if (!rt_rq->overloaded) {
318 rt_set_overload(rq_of_rt_rq(rt_rq));
319 rt_rq->overloaded = 1;
320 }
321 } else if (rt_rq->overloaded) {
322 rt_clear_overload(rq_of_rt_rq(rt_rq));
323 rt_rq->overloaded = 0;
324 }
325 }
326
327 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
328 {
329 struct task_struct *p;
330
331 if (!rt_entity_is_task(rt_se))
332 return;
333
334 p = rt_task_of(rt_se);
335 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
336
337 rt_rq->rt_nr_total++;
338 if (p->nr_cpus_allowed > 1)
339 rt_rq->rt_nr_migratory++;
340
341 update_rt_migration(rt_rq);
342 }
343
344 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
345 {
346 struct task_struct *p;
347
348 if (!rt_entity_is_task(rt_se))
349 return;
350
351 p = rt_task_of(rt_se);
352 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
353
354 rt_rq->rt_nr_total--;
355 if (p->nr_cpus_allowed > 1)
356 rt_rq->rt_nr_migratory--;
357
358 update_rt_migration(rt_rq);
359 }
360
361 static inline int has_pushable_tasks(struct rq *rq)
362 {
363 return !plist_head_empty(&rq->rt.pushable_tasks);
364 }
365
366 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
367 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
368
369 static void push_rt_tasks(struct rq *);
370 static void pull_rt_task(struct rq *);
371
372 static inline void queue_push_tasks(struct rq *rq)
373 {
374 if (!has_pushable_tasks(rq))
375 return;
376
377 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
378 }
379
380 static inline void queue_pull_task(struct rq *rq)
381 {
382 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
383 }
384
385 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
386 {
387 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
388 plist_node_init(&p->pushable_tasks, p->prio);
389 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
390
391 /* Update the highest prio pushable task */
392 if (p->prio < rq->rt.highest_prio.next)
393 rq->rt.highest_prio.next = p->prio;
394 }
395
396 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
397 {
398 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
399
400 /* Update the new highest prio pushable task */
401 if (has_pushable_tasks(rq)) {
402 p = plist_first_entry(&rq->rt.pushable_tasks,
403 struct task_struct, pushable_tasks);
404 rq->rt.highest_prio.next = p->prio;
405 } else
406 rq->rt.highest_prio.next = MAX_RT_PRIO;
407 }
408
409 #else
410
411 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
412 {
413 }
414
415 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
416 {
417 }
418
419 static inline
420 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
421 {
422 }
423
424 static inline
425 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
426 {
427 }
428
429 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
430 {
431 return false;
432 }
433
434 static inline void pull_rt_task(struct rq *this_rq)
435 {
436 }
437
438 static inline void queue_push_tasks(struct rq *rq)
439 {
440 }
441 #endif /* CONFIG_SMP */
442
443 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
444 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
445
446 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
447 {
448 return rt_se->on_rq;
449 }
450
451 #ifdef CONFIG_RT_GROUP_SCHED
452
453 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
454 {
455 if (!rt_rq->tg)
456 return RUNTIME_INF;
457
458 return rt_rq->rt_runtime;
459 }
460
461 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
462 {
463 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
464 }
465
466 typedef struct task_group *rt_rq_iter_t;
467
468 static inline struct task_group *next_task_group(struct task_group *tg)
469 {
470 do {
471 tg = list_entry_rcu(tg->list.next,
472 typeof(struct task_group), list);
473 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
474
475 if (&tg->list == &task_groups)
476 tg = NULL;
477
478 return tg;
479 }
480
481 #define for_each_rt_rq(rt_rq, iter, rq) \
482 for (iter = container_of(&task_groups, typeof(*iter), list); \
483 (iter = next_task_group(iter)) && \
484 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
485
486 #define for_each_sched_rt_entity(rt_se) \
487 for (; rt_se; rt_se = rt_se->parent)
488
489 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
490 {
491 return rt_se->my_q;
492 }
493
494 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
495 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
496
497 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
498 {
499 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
500 struct rq *rq = rq_of_rt_rq(rt_rq);
501 struct sched_rt_entity *rt_se;
502
503 int cpu = cpu_of(rq);
504
505 rt_se = rt_rq->tg->rt_se[cpu];
506
507 if (rt_rq->rt_nr_running) {
508 if (!rt_se)
509 enqueue_top_rt_rq(rt_rq);
510 else if (!on_rt_rq(rt_se))
511 enqueue_rt_entity(rt_se, 0);
512
513 if (rt_rq->highest_prio.curr < curr->prio)
514 resched_curr(rq);
515 }
516 }
517
518 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
519 {
520 struct sched_rt_entity *rt_se;
521 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
522
523 rt_se = rt_rq->tg->rt_se[cpu];
524
525 if (!rt_se)
526 dequeue_top_rt_rq(rt_rq);
527 else if (on_rt_rq(rt_se))
528 dequeue_rt_entity(rt_se, 0);
529 }
530
531 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
532 {
533 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
534 }
535
536 static int rt_se_boosted(struct sched_rt_entity *rt_se)
537 {
538 struct rt_rq *rt_rq = group_rt_rq(rt_se);
539 struct task_struct *p;
540
541 if (rt_rq)
542 return !!rt_rq->rt_nr_boosted;
543
544 p = rt_task_of(rt_se);
545 return p->prio != p->normal_prio;
546 }
547
548 #ifdef CONFIG_SMP
549 static inline const struct cpumask *sched_rt_period_mask(void)
550 {
551 return this_rq()->rd->span;
552 }
553 #else
554 static inline const struct cpumask *sched_rt_period_mask(void)
555 {
556 return cpu_online_mask;
557 }
558 #endif
559
560 static inline
561 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
562 {
563 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
564 }
565
566 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
567 {
568 return &rt_rq->tg->rt_bandwidth;
569 }
570
571 #else /* !CONFIG_RT_GROUP_SCHED */
572
573 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
574 {
575 return rt_rq->rt_runtime;
576 }
577
578 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
579 {
580 return ktime_to_ns(def_rt_bandwidth.rt_period);
581 }
582
583 typedef struct rt_rq *rt_rq_iter_t;
584
585 #define for_each_rt_rq(rt_rq, iter, rq) \
586 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
587
588 #define for_each_sched_rt_entity(rt_se) \
589 for (; rt_se; rt_se = NULL)
590
591 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
592 {
593 return NULL;
594 }
595
596 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
597 {
598 struct rq *rq = rq_of_rt_rq(rt_rq);
599
600 if (!rt_rq->rt_nr_running)
601 return;
602
603 enqueue_top_rt_rq(rt_rq);
604 resched_curr(rq);
605 }
606
607 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
608 {
609 dequeue_top_rt_rq(rt_rq);
610 }
611
612 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
613 {
614 return rt_rq->rt_throttled;
615 }
616
617 static inline const struct cpumask *sched_rt_period_mask(void)
618 {
619 return cpu_online_mask;
620 }
621
622 static inline
623 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
624 {
625 return &cpu_rq(cpu)->rt;
626 }
627
628 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
629 {
630 return &def_rt_bandwidth;
631 }
632
633 #endif /* CONFIG_RT_GROUP_SCHED */
634
635 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
636 {
637 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
638
639 return (hrtimer_active(&rt_b->rt_period_timer) ||
640 rt_rq->rt_time < rt_b->rt_runtime);
641 }
642
643 #ifdef CONFIG_SMP
644 /*
645 * We ran out of runtime, see if we can borrow some from our neighbours.
646 */
647 static void do_balance_runtime(struct rt_rq *rt_rq)
648 {
649 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
650 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
651 int i, weight;
652 u64 rt_period;
653
654 weight = cpumask_weight(rd->span);
655
656 raw_spin_lock(&rt_b->rt_runtime_lock);
657 rt_period = ktime_to_ns(rt_b->rt_period);
658 for_each_cpu(i, rd->span) {
659 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
660 s64 diff;
661
662 if (iter == rt_rq)
663 continue;
664
665 raw_spin_lock(&iter->rt_runtime_lock);
666 /*
667 * Either all rqs have inf runtime and there's nothing to steal
668 * or __disable_runtime() below sets a specific rq to inf to
669 * indicate its been disabled and disalow stealing.
670 */
671 if (iter->rt_runtime == RUNTIME_INF)
672 goto next;
673
674 /*
675 * From runqueues with spare time, take 1/n part of their
676 * spare time, but no more than our period.
677 */
678 diff = iter->rt_runtime - iter->rt_time;
679 if (diff > 0) {
680 diff = div_u64((u64)diff, weight);
681 if (rt_rq->rt_runtime + diff > rt_period)
682 diff = rt_period - rt_rq->rt_runtime;
683 iter->rt_runtime -= diff;
684 rt_rq->rt_runtime += diff;
685 if (rt_rq->rt_runtime == rt_period) {
686 raw_spin_unlock(&iter->rt_runtime_lock);
687 break;
688 }
689 }
690 next:
691 raw_spin_unlock(&iter->rt_runtime_lock);
692 }
693 raw_spin_unlock(&rt_b->rt_runtime_lock);
694 }
695
696 /*
697 * Ensure this RQ takes back all the runtime it lend to its neighbours.
698 */
699 static void __disable_runtime(struct rq *rq)
700 {
701 struct root_domain *rd = rq->rd;
702 rt_rq_iter_t iter;
703 struct rt_rq *rt_rq;
704
705 if (unlikely(!scheduler_running))
706 return;
707
708 for_each_rt_rq(rt_rq, iter, rq) {
709 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
710 s64 want;
711 int i;
712
713 raw_spin_lock(&rt_b->rt_runtime_lock);
714 raw_spin_lock(&rt_rq->rt_runtime_lock);
715 /*
716 * Either we're all inf and nobody needs to borrow, or we're
717 * already disabled and thus have nothing to do, or we have
718 * exactly the right amount of runtime to take out.
719 */
720 if (rt_rq->rt_runtime == RUNTIME_INF ||
721 rt_rq->rt_runtime == rt_b->rt_runtime)
722 goto balanced;
723 raw_spin_unlock(&rt_rq->rt_runtime_lock);
724
725 /*
726 * Calculate the difference between what we started out with
727 * and what we current have, that's the amount of runtime
728 * we lend and now have to reclaim.
729 */
730 want = rt_b->rt_runtime - rt_rq->rt_runtime;
731
732 /*
733 * Greedy reclaim, take back as much as we can.
734 */
735 for_each_cpu(i, rd->span) {
736 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
737 s64 diff;
738
739 /*
740 * Can't reclaim from ourselves or disabled runqueues.
741 */
742 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
743 continue;
744
745 raw_spin_lock(&iter->rt_runtime_lock);
746 if (want > 0) {
747 diff = min_t(s64, iter->rt_runtime, want);
748 iter->rt_runtime -= diff;
749 want -= diff;
750 } else {
751 iter->rt_runtime -= want;
752 want -= want;
753 }
754 raw_spin_unlock(&iter->rt_runtime_lock);
755
756 if (!want)
757 break;
758 }
759
760 raw_spin_lock(&rt_rq->rt_runtime_lock);
761 /*
762 * We cannot be left wanting - that would mean some runtime
763 * leaked out of the system.
764 */
765 BUG_ON(want);
766 balanced:
767 /*
768 * Disable all the borrow logic by pretending we have inf
769 * runtime - in which case borrowing doesn't make sense.
770 */
771 rt_rq->rt_runtime = RUNTIME_INF;
772 rt_rq->rt_throttled = 0;
773 raw_spin_unlock(&rt_rq->rt_runtime_lock);
774 raw_spin_unlock(&rt_b->rt_runtime_lock);
775
776 /* Make rt_rq available for pick_next_task() */
777 sched_rt_rq_enqueue(rt_rq);
778 }
779 }
780
781 static void __enable_runtime(struct rq *rq)
782 {
783 rt_rq_iter_t iter;
784 struct rt_rq *rt_rq;
785
786 if (unlikely(!scheduler_running))
787 return;
788
789 /*
790 * Reset each runqueue's bandwidth settings
791 */
792 for_each_rt_rq(rt_rq, iter, rq) {
793 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
794
795 raw_spin_lock(&rt_b->rt_runtime_lock);
796 raw_spin_lock(&rt_rq->rt_runtime_lock);
797 rt_rq->rt_runtime = rt_b->rt_runtime;
798 rt_rq->rt_time = 0;
799 rt_rq->rt_throttled = 0;
800 raw_spin_unlock(&rt_rq->rt_runtime_lock);
801 raw_spin_unlock(&rt_b->rt_runtime_lock);
802 }
803 }
804
805 static void balance_runtime(struct rt_rq *rt_rq)
806 {
807 if (!sched_feat(RT_RUNTIME_SHARE))
808 return;
809
810 if (rt_rq->rt_time > rt_rq->rt_runtime) {
811 raw_spin_unlock(&rt_rq->rt_runtime_lock);
812 do_balance_runtime(rt_rq);
813 raw_spin_lock(&rt_rq->rt_runtime_lock);
814 }
815 }
816 #else /* !CONFIG_SMP */
817 static inline void balance_runtime(struct rt_rq *rt_rq) {}
818 #endif /* CONFIG_SMP */
819
820 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
821 {
822 int i, idle = 1, throttled = 0;
823 const struct cpumask *span;
824
825 span = sched_rt_period_mask();
826 #ifdef CONFIG_RT_GROUP_SCHED
827 /*
828 * FIXME: isolated CPUs should really leave the root task group,
829 * whether they are isolcpus or were isolated via cpusets, lest
830 * the timer run on a CPU which does not service all runqueues,
831 * potentially leaving other CPUs indefinitely throttled. If
832 * isolation is really required, the user will turn the throttle
833 * off to kill the perturbations it causes anyway. Meanwhile,
834 * this maintains functionality for boot and/or troubleshooting.
835 */
836 if (rt_b == &root_task_group.rt_bandwidth)
837 span = cpu_online_mask;
838 #endif
839 for_each_cpu(i, span) {
840 int enqueue = 0;
841 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
842 struct rq *rq = rq_of_rt_rq(rt_rq);
843
844 raw_spin_lock(&rq->lock);
845 if (rt_rq->rt_time) {
846 u64 runtime;
847
848 raw_spin_lock(&rt_rq->rt_runtime_lock);
849 if (rt_rq->rt_throttled)
850 balance_runtime(rt_rq);
851 runtime = rt_rq->rt_runtime;
852 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
853 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
854 rt_rq->rt_throttled = 0;
855 enqueue = 1;
856
857 /*
858 * When we're idle and a woken (rt) task is
859 * throttled check_preempt_curr() will set
860 * skip_update and the time between the wakeup
861 * and this unthrottle will get accounted as
862 * 'runtime'.
863 */
864 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
865 rq_clock_skip_update(rq, false);
866 }
867 if (rt_rq->rt_time || rt_rq->rt_nr_running)
868 idle = 0;
869 raw_spin_unlock(&rt_rq->rt_runtime_lock);
870 } else if (rt_rq->rt_nr_running) {
871 idle = 0;
872 if (!rt_rq_throttled(rt_rq))
873 enqueue = 1;
874 }
875 if (rt_rq->rt_throttled)
876 throttled = 1;
877
878 if (enqueue)
879 sched_rt_rq_enqueue(rt_rq);
880 raw_spin_unlock(&rq->lock);
881 }
882
883 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
884 return 1;
885
886 return idle;
887 }
888
889 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
890 {
891 #ifdef CONFIG_RT_GROUP_SCHED
892 struct rt_rq *rt_rq = group_rt_rq(rt_se);
893
894 if (rt_rq)
895 return rt_rq->highest_prio.curr;
896 #endif
897
898 return rt_task_of(rt_se)->prio;
899 }
900
901 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
902 {
903 u64 runtime = sched_rt_runtime(rt_rq);
904
905 if (rt_rq->rt_throttled)
906 return rt_rq_throttled(rt_rq);
907
908 if (runtime >= sched_rt_period(rt_rq))
909 return 0;
910
911 balance_runtime(rt_rq);
912 runtime = sched_rt_runtime(rt_rq);
913 if (runtime == RUNTIME_INF)
914 return 0;
915
916 if (rt_rq->rt_time > runtime) {
917 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
918
919 /*
920 * Don't actually throttle groups that have no runtime assigned
921 * but accrue some time due to boosting.
922 */
923 if (likely(rt_b->rt_runtime)) {
924 rt_rq->rt_throttled = 1;
925 printk_deferred_once("sched: RT throttling activated\n");
926 } else {
927 /*
928 * In case we did anyway, make it go away,
929 * replenishment is a joke, since it will replenish us
930 * with exactly 0 ns.
931 */
932 rt_rq->rt_time = 0;
933 }
934
935 if (rt_rq_throttled(rt_rq)) {
936 sched_rt_rq_dequeue(rt_rq);
937 return 1;
938 }
939 }
940
941 return 0;
942 }
943
944 /*
945 * Update the current task's runtime statistics. Skip current tasks that
946 * are not in our scheduling class.
947 */
948 static void update_curr_rt(struct rq *rq)
949 {
950 struct task_struct *curr = rq->curr;
951 struct sched_rt_entity *rt_se = &curr->rt;
952 u64 delta_exec;
953
954 if (curr->sched_class != &rt_sched_class)
955 return;
956
957 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
958 if (unlikely((s64)delta_exec <= 0))
959 return;
960
961 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
962 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_RT);
963
964 schedstat_set(curr->se.statistics.exec_max,
965 max(curr->se.statistics.exec_max, delta_exec));
966
967 curr->se.sum_exec_runtime += delta_exec;
968 account_group_exec_runtime(curr, delta_exec);
969
970 curr->se.exec_start = rq_clock_task(rq);
971 cpuacct_charge(curr, delta_exec);
972
973 sched_rt_avg_update(rq, delta_exec);
974
975 if (!rt_bandwidth_enabled())
976 return;
977
978 for_each_sched_rt_entity(rt_se) {
979 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
980
981 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
982 raw_spin_lock(&rt_rq->rt_runtime_lock);
983 rt_rq->rt_time += delta_exec;
984 if (sched_rt_runtime_exceeded(rt_rq))
985 resched_curr(rq);
986 raw_spin_unlock(&rt_rq->rt_runtime_lock);
987 }
988 }
989 }
990
991 static void
992 dequeue_top_rt_rq(struct rt_rq *rt_rq)
993 {
994 struct rq *rq = rq_of_rt_rq(rt_rq);
995
996 BUG_ON(&rq->rt != rt_rq);
997
998 if (!rt_rq->rt_queued)
999 return;
1000
1001 BUG_ON(!rq->nr_running);
1002
1003 sub_nr_running(rq, rt_rq->rt_nr_running);
1004 rt_rq->rt_queued = 0;
1005 }
1006
1007 static void
1008 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1009 {
1010 struct rq *rq = rq_of_rt_rq(rt_rq);
1011
1012 BUG_ON(&rq->rt != rt_rq);
1013
1014 if (rt_rq->rt_queued)
1015 return;
1016 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1017 return;
1018
1019 add_nr_running(rq, rt_rq->rt_nr_running);
1020 rt_rq->rt_queued = 1;
1021 }
1022
1023 #if defined CONFIG_SMP
1024
1025 static void
1026 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1027 {
1028 struct rq *rq = rq_of_rt_rq(rt_rq);
1029
1030 #ifdef CONFIG_RT_GROUP_SCHED
1031 /*
1032 * Change rq's cpupri only if rt_rq is the top queue.
1033 */
1034 if (&rq->rt != rt_rq)
1035 return;
1036 #endif
1037 if (rq->online && prio < prev_prio)
1038 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1039 }
1040
1041 static void
1042 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1043 {
1044 struct rq *rq = rq_of_rt_rq(rt_rq);
1045
1046 #ifdef CONFIG_RT_GROUP_SCHED
1047 /*
1048 * Change rq's cpupri only if rt_rq is the top queue.
1049 */
1050 if (&rq->rt != rt_rq)
1051 return;
1052 #endif
1053 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1054 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1055 }
1056
1057 #else /* CONFIG_SMP */
1058
1059 static inline
1060 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1061 static inline
1062 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1063
1064 #endif /* CONFIG_SMP */
1065
1066 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1067 static void
1068 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1069 {
1070 int prev_prio = rt_rq->highest_prio.curr;
1071
1072 if (prio < prev_prio)
1073 rt_rq->highest_prio.curr = prio;
1074
1075 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1076 }
1077
1078 static void
1079 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1080 {
1081 int prev_prio = rt_rq->highest_prio.curr;
1082
1083 if (rt_rq->rt_nr_running) {
1084
1085 WARN_ON(prio < prev_prio);
1086
1087 /*
1088 * This may have been our highest task, and therefore
1089 * we may have some recomputation to do
1090 */
1091 if (prio == prev_prio) {
1092 struct rt_prio_array *array = &rt_rq->active;
1093
1094 rt_rq->highest_prio.curr =
1095 sched_find_first_bit(array->bitmap);
1096 }
1097
1098 } else
1099 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1100
1101 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1102 }
1103
1104 #else
1105
1106 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1107 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1108
1109 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1110
1111 #ifdef CONFIG_RT_GROUP_SCHED
1112
1113 static void
1114 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1115 {
1116 if (rt_se_boosted(rt_se))
1117 rt_rq->rt_nr_boosted++;
1118
1119 if (rt_rq->tg)
1120 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1121 }
1122
1123 static void
1124 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1125 {
1126 if (rt_se_boosted(rt_se))
1127 rt_rq->rt_nr_boosted--;
1128
1129 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1130 }
1131
1132 #else /* CONFIG_RT_GROUP_SCHED */
1133
1134 static void
1135 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1136 {
1137 start_rt_bandwidth(&def_rt_bandwidth);
1138 }
1139
1140 static inline
1141 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1142
1143 #endif /* CONFIG_RT_GROUP_SCHED */
1144
1145 static inline
1146 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1147 {
1148 struct rt_rq *group_rq = group_rt_rq(rt_se);
1149
1150 if (group_rq)
1151 return group_rq->rt_nr_running;
1152 else
1153 return 1;
1154 }
1155
1156 static inline
1157 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1158 {
1159 struct rt_rq *group_rq = group_rt_rq(rt_se);
1160 struct task_struct *tsk;
1161
1162 if (group_rq)
1163 return group_rq->rr_nr_running;
1164
1165 tsk = rt_task_of(rt_se);
1166
1167 return (tsk->policy == SCHED_RR) ? 1 : 0;
1168 }
1169
1170 static inline
1171 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1172 {
1173 int prio = rt_se_prio(rt_se);
1174
1175 WARN_ON(!rt_prio(prio));
1176 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1177 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1178
1179 inc_rt_prio(rt_rq, prio);
1180 inc_rt_migration(rt_se, rt_rq);
1181 inc_rt_group(rt_se, rt_rq);
1182 }
1183
1184 static inline
1185 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186 {
1187 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1188 WARN_ON(!rt_rq->rt_nr_running);
1189 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1190 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1191
1192 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1193 dec_rt_migration(rt_se, rt_rq);
1194 dec_rt_group(rt_se, rt_rq);
1195 }
1196
1197 /*
1198 * Change rt_se->run_list location unless SAVE && !MOVE
1199 *
1200 * assumes ENQUEUE/DEQUEUE flags match
1201 */
1202 static inline bool move_entity(unsigned int flags)
1203 {
1204 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1205 return false;
1206
1207 return true;
1208 }
1209
1210 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1211 {
1212 list_del_init(&rt_se->run_list);
1213
1214 if (list_empty(array->queue + rt_se_prio(rt_se)))
1215 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1216
1217 rt_se->on_list = 0;
1218 }
1219
1220 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1221 {
1222 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1223 struct rt_prio_array *array = &rt_rq->active;
1224 struct rt_rq *group_rq = group_rt_rq(rt_se);
1225 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1226
1227 /*
1228 * Don't enqueue the group if its throttled, or when empty.
1229 * The latter is a consequence of the former when a child group
1230 * get throttled and the current group doesn't have any other
1231 * active members.
1232 */
1233 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1234 if (rt_se->on_list)
1235 __delist_rt_entity(rt_se, array);
1236 return;
1237 }
1238
1239 if (move_entity(flags)) {
1240 WARN_ON_ONCE(rt_se->on_list);
1241 if (flags & ENQUEUE_HEAD)
1242 list_add(&rt_se->run_list, queue);
1243 else
1244 list_add_tail(&rt_se->run_list, queue);
1245
1246 __set_bit(rt_se_prio(rt_se), array->bitmap);
1247 rt_se->on_list = 1;
1248 }
1249 rt_se->on_rq = 1;
1250
1251 inc_rt_tasks(rt_se, rt_rq);
1252 }
1253
1254 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1255 {
1256 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1257 struct rt_prio_array *array = &rt_rq->active;
1258
1259 if (move_entity(flags)) {
1260 WARN_ON_ONCE(!rt_se->on_list);
1261 __delist_rt_entity(rt_se, array);
1262 }
1263 rt_se->on_rq = 0;
1264
1265 dec_rt_tasks(rt_se, rt_rq);
1266 }
1267
1268 /*
1269 * Because the prio of an upper entry depends on the lower
1270 * entries, we must remove entries top - down.
1271 */
1272 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1273 {
1274 struct sched_rt_entity *back = NULL;
1275
1276 for_each_sched_rt_entity(rt_se) {
1277 rt_se->back = back;
1278 back = rt_se;
1279 }
1280
1281 dequeue_top_rt_rq(rt_rq_of_se(back));
1282
1283 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1284 if (on_rt_rq(rt_se))
1285 __dequeue_rt_entity(rt_se, flags);
1286 }
1287 }
1288
1289 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1290 {
1291 struct rq *rq = rq_of_rt_se(rt_se);
1292
1293 dequeue_rt_stack(rt_se, flags);
1294 for_each_sched_rt_entity(rt_se)
1295 __enqueue_rt_entity(rt_se, flags);
1296 enqueue_top_rt_rq(&rq->rt);
1297 }
1298
1299 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1300 {
1301 struct rq *rq = rq_of_rt_se(rt_se);
1302
1303 dequeue_rt_stack(rt_se, flags);
1304
1305 for_each_sched_rt_entity(rt_se) {
1306 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1307
1308 if (rt_rq && rt_rq->rt_nr_running)
1309 __enqueue_rt_entity(rt_se, flags);
1310 }
1311 enqueue_top_rt_rq(&rq->rt);
1312 }
1313
1314 /*
1315 * Adding/removing a task to/from a priority array:
1316 */
1317 static void
1318 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1319 {
1320 struct sched_rt_entity *rt_se = &p->rt;
1321
1322 if (flags & ENQUEUE_WAKEUP)
1323 rt_se->timeout = 0;
1324
1325 enqueue_rt_entity(rt_se, flags);
1326
1327 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1328 enqueue_pushable_task(rq, p);
1329 }
1330
1331 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1332 {
1333 struct sched_rt_entity *rt_se = &p->rt;
1334
1335 update_curr_rt(rq);
1336 dequeue_rt_entity(rt_se, flags);
1337
1338 dequeue_pushable_task(rq, p);
1339 }
1340
1341 /*
1342 * Put task to the head or the end of the run list without the overhead of
1343 * dequeue followed by enqueue.
1344 */
1345 static void
1346 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1347 {
1348 if (on_rt_rq(rt_se)) {
1349 struct rt_prio_array *array = &rt_rq->active;
1350 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1351
1352 if (head)
1353 list_move(&rt_se->run_list, queue);
1354 else
1355 list_move_tail(&rt_se->run_list, queue);
1356 }
1357 }
1358
1359 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1360 {
1361 struct sched_rt_entity *rt_se = &p->rt;
1362 struct rt_rq *rt_rq;
1363
1364 for_each_sched_rt_entity(rt_se) {
1365 rt_rq = rt_rq_of_se(rt_se);
1366 requeue_rt_entity(rt_rq, rt_se, head);
1367 }
1368 }
1369
1370 static void yield_task_rt(struct rq *rq)
1371 {
1372 requeue_task_rt(rq, rq->curr, 0);
1373 }
1374
1375 #ifdef CONFIG_SMP
1376 static int find_lowest_rq(struct task_struct *task);
1377
1378 static int
1379 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1380 {
1381 struct task_struct *curr;
1382 struct rq *rq;
1383
1384 /* For anything but wake ups, just return the task_cpu */
1385 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1386 goto out;
1387
1388 rq = cpu_rq(cpu);
1389
1390 rcu_read_lock();
1391 curr = READ_ONCE(rq->curr); /* unlocked access */
1392
1393 /*
1394 * If the current task on @p's runqueue is an RT task, then
1395 * try to see if we can wake this RT task up on another
1396 * runqueue. Otherwise simply start this RT task
1397 * on its current runqueue.
1398 *
1399 * We want to avoid overloading runqueues. If the woken
1400 * task is a higher priority, then it will stay on this CPU
1401 * and the lower prio task should be moved to another CPU.
1402 * Even though this will probably make the lower prio task
1403 * lose its cache, we do not want to bounce a higher task
1404 * around just because it gave up its CPU, perhaps for a
1405 * lock?
1406 *
1407 * For equal prio tasks, we just let the scheduler sort it out.
1408 *
1409 * Otherwise, just let it ride on the affined RQ and the
1410 * post-schedule router will push the preempted task away
1411 *
1412 * This test is optimistic, if we get it wrong the load-balancer
1413 * will have to sort it out.
1414 */
1415 if (curr && unlikely(rt_task(curr)) &&
1416 (curr->nr_cpus_allowed < 2 ||
1417 curr->prio <= p->prio)) {
1418 int target = find_lowest_rq(p);
1419
1420 /*
1421 * Don't bother moving it if the destination CPU is
1422 * not running a lower priority task.
1423 */
1424 if (target != -1 &&
1425 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1426 cpu = target;
1427 }
1428 rcu_read_unlock();
1429
1430 out:
1431 return cpu;
1432 }
1433
1434 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1435 {
1436 /*
1437 * Current can't be migrated, useless to reschedule,
1438 * let's hope p can move out.
1439 */
1440 if (rq->curr->nr_cpus_allowed == 1 ||
1441 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1442 return;
1443
1444 /*
1445 * p is migratable, so let's not schedule it and
1446 * see if it is pushed or pulled somewhere else.
1447 */
1448 if (p->nr_cpus_allowed != 1
1449 && cpupri_find(&rq->rd->cpupri, p, NULL))
1450 return;
1451
1452 /*
1453 * There appears to be other cpus that can accept
1454 * current and none to run 'p', so lets reschedule
1455 * to try and push current away:
1456 */
1457 requeue_task_rt(rq, p, 1);
1458 resched_curr(rq);
1459 }
1460
1461 #endif /* CONFIG_SMP */
1462
1463 /*
1464 * Preempt the current task with a newly woken task if needed:
1465 */
1466 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1467 {
1468 if (p->prio < rq->curr->prio) {
1469 resched_curr(rq);
1470 return;
1471 }
1472
1473 #ifdef CONFIG_SMP
1474 /*
1475 * If:
1476 *
1477 * - the newly woken task is of equal priority to the current task
1478 * - the newly woken task is non-migratable while current is migratable
1479 * - current will be preempted on the next reschedule
1480 *
1481 * we should check to see if current can readily move to a different
1482 * cpu. If so, we will reschedule to allow the push logic to try
1483 * to move current somewhere else, making room for our non-migratable
1484 * task.
1485 */
1486 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1487 check_preempt_equal_prio(rq, p);
1488 #endif
1489 }
1490
1491 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1492 struct rt_rq *rt_rq)
1493 {
1494 struct rt_prio_array *array = &rt_rq->active;
1495 struct sched_rt_entity *next = NULL;
1496 struct list_head *queue;
1497 int idx;
1498
1499 idx = sched_find_first_bit(array->bitmap);
1500 BUG_ON(idx >= MAX_RT_PRIO);
1501
1502 queue = array->queue + idx;
1503 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1504
1505 return next;
1506 }
1507
1508 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1509 {
1510 struct sched_rt_entity *rt_se;
1511 struct task_struct *p;
1512 struct rt_rq *rt_rq = &rq->rt;
1513
1514 do {
1515 rt_se = pick_next_rt_entity(rq, rt_rq);
1516 BUG_ON(!rt_se);
1517 rt_rq = group_rt_rq(rt_se);
1518 } while (rt_rq);
1519
1520 p = rt_task_of(rt_se);
1521 p->se.exec_start = rq_clock_task(rq);
1522
1523 return p;
1524 }
1525
1526 static struct task_struct *
1527 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1528 {
1529 struct task_struct *p;
1530 struct rt_rq *rt_rq = &rq->rt;
1531
1532 if (need_pull_rt_task(rq, prev)) {
1533 /*
1534 * This is OK, because current is on_cpu, which avoids it being
1535 * picked for load-balance and preemption/IRQs are still
1536 * disabled avoiding further scheduler activity on it and we're
1537 * being very careful to re-start the picking loop.
1538 */
1539 rq_unpin_lock(rq, rf);
1540 pull_rt_task(rq);
1541 rq_repin_lock(rq, rf);
1542 /*
1543 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1544 * means a dl or stop task can slip in, in which case we need
1545 * to re-start task selection.
1546 */
1547 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1548 rq->dl.dl_nr_running))
1549 return RETRY_TASK;
1550 }
1551
1552 /*
1553 * We may dequeue prev's rt_rq in put_prev_task().
1554 * So, we update time before rt_nr_running check.
1555 */
1556 if (prev->sched_class == &rt_sched_class)
1557 update_curr_rt(rq);
1558
1559 if (!rt_rq->rt_queued)
1560 return NULL;
1561
1562 put_prev_task(rq, prev);
1563
1564 p = _pick_next_task_rt(rq);
1565
1566 /* The running task is never eligible for pushing */
1567 dequeue_pushable_task(rq, p);
1568
1569 queue_push_tasks(rq);
1570
1571 return p;
1572 }
1573
1574 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1575 {
1576 update_curr_rt(rq);
1577
1578 /*
1579 * The previous task needs to be made eligible for pushing
1580 * if it is still active
1581 */
1582 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1583 enqueue_pushable_task(rq, p);
1584 }
1585
1586 #ifdef CONFIG_SMP
1587
1588 /* Only try algorithms three times */
1589 #define RT_MAX_TRIES 3
1590
1591 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1592 {
1593 if (!task_running(rq, p) &&
1594 cpumask_test_cpu(cpu, &p->cpus_allowed))
1595 return 1;
1596 return 0;
1597 }
1598
1599 /*
1600 * Return the highest pushable rq's task, which is suitable to be executed
1601 * on the cpu, NULL otherwise
1602 */
1603 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1604 {
1605 struct plist_head *head = &rq->rt.pushable_tasks;
1606 struct task_struct *p;
1607
1608 if (!has_pushable_tasks(rq))
1609 return NULL;
1610
1611 plist_for_each_entry(p, head, pushable_tasks) {
1612 if (pick_rt_task(rq, p, cpu))
1613 return p;
1614 }
1615
1616 return NULL;
1617 }
1618
1619 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1620
1621 static int find_lowest_rq(struct task_struct *task)
1622 {
1623 struct sched_domain *sd;
1624 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1625 int this_cpu = smp_processor_id();
1626 int cpu = task_cpu(task);
1627
1628 /* Make sure the mask is initialized first */
1629 if (unlikely(!lowest_mask))
1630 return -1;
1631
1632 if (task->nr_cpus_allowed == 1)
1633 return -1; /* No other targets possible */
1634
1635 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1636 return -1; /* No targets found */
1637
1638 /*
1639 * At this point we have built a mask of cpus representing the
1640 * lowest priority tasks in the system. Now we want to elect
1641 * the best one based on our affinity and topology.
1642 *
1643 * We prioritize the last cpu that the task executed on since
1644 * it is most likely cache-hot in that location.
1645 */
1646 if (cpumask_test_cpu(cpu, lowest_mask))
1647 return cpu;
1648
1649 /*
1650 * Otherwise, we consult the sched_domains span maps to figure
1651 * out which cpu is logically closest to our hot cache data.
1652 */
1653 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1654 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1655
1656 rcu_read_lock();
1657 for_each_domain(cpu, sd) {
1658 if (sd->flags & SD_WAKE_AFFINE) {
1659 int best_cpu;
1660
1661 /*
1662 * "this_cpu" is cheaper to preempt than a
1663 * remote processor.
1664 */
1665 if (this_cpu != -1 &&
1666 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1667 rcu_read_unlock();
1668 return this_cpu;
1669 }
1670
1671 best_cpu = cpumask_first_and(lowest_mask,
1672 sched_domain_span(sd));
1673 if (best_cpu < nr_cpu_ids) {
1674 rcu_read_unlock();
1675 return best_cpu;
1676 }
1677 }
1678 }
1679 rcu_read_unlock();
1680
1681 /*
1682 * And finally, if there were no matches within the domains
1683 * just give the caller *something* to work with from the compatible
1684 * locations.
1685 */
1686 if (this_cpu != -1)
1687 return this_cpu;
1688
1689 cpu = cpumask_any(lowest_mask);
1690 if (cpu < nr_cpu_ids)
1691 return cpu;
1692 return -1;
1693 }
1694
1695 /* Will lock the rq it finds */
1696 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1697 {
1698 struct rq *lowest_rq = NULL;
1699 int tries;
1700 int cpu;
1701
1702 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1703 cpu = find_lowest_rq(task);
1704
1705 if ((cpu == -1) || (cpu == rq->cpu))
1706 break;
1707
1708 lowest_rq = cpu_rq(cpu);
1709
1710 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1711 /*
1712 * Target rq has tasks of equal or higher priority,
1713 * retrying does not release any lock and is unlikely
1714 * to yield a different result.
1715 */
1716 lowest_rq = NULL;
1717 break;
1718 }
1719
1720 /* if the prio of this runqueue changed, try again */
1721 if (double_lock_balance(rq, lowest_rq)) {
1722 /*
1723 * We had to unlock the run queue. In
1724 * the mean time, task could have
1725 * migrated already or had its affinity changed.
1726 * Also make sure that it wasn't scheduled on its rq.
1727 */
1728 if (unlikely(task_rq(task) != rq ||
1729 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1730 task_running(rq, task) ||
1731 !rt_task(task) ||
1732 !task_on_rq_queued(task))) {
1733
1734 double_unlock_balance(rq, lowest_rq);
1735 lowest_rq = NULL;
1736 break;
1737 }
1738 }
1739
1740 /* If this rq is still suitable use it. */
1741 if (lowest_rq->rt.highest_prio.curr > task->prio)
1742 break;
1743
1744 /* try again */
1745 double_unlock_balance(rq, lowest_rq);
1746 lowest_rq = NULL;
1747 }
1748
1749 return lowest_rq;
1750 }
1751
1752 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1753 {
1754 struct task_struct *p;
1755
1756 if (!has_pushable_tasks(rq))
1757 return NULL;
1758
1759 p = plist_first_entry(&rq->rt.pushable_tasks,
1760 struct task_struct, pushable_tasks);
1761
1762 BUG_ON(rq->cpu != task_cpu(p));
1763 BUG_ON(task_current(rq, p));
1764 BUG_ON(p->nr_cpus_allowed <= 1);
1765
1766 BUG_ON(!task_on_rq_queued(p));
1767 BUG_ON(!rt_task(p));
1768
1769 return p;
1770 }
1771
1772 /*
1773 * If the current CPU has more than one RT task, see if the non
1774 * running task can migrate over to a CPU that is running a task
1775 * of lesser priority.
1776 */
1777 static int push_rt_task(struct rq *rq)
1778 {
1779 struct task_struct *next_task;
1780 struct rq *lowest_rq;
1781 int ret = 0;
1782
1783 if (!rq->rt.overloaded)
1784 return 0;
1785
1786 next_task = pick_next_pushable_task(rq);
1787 if (!next_task)
1788 return 0;
1789
1790 retry:
1791 if (unlikely(next_task == rq->curr)) {
1792 WARN_ON(1);
1793 return 0;
1794 }
1795
1796 /*
1797 * It's possible that the next_task slipped in of
1798 * higher priority than current. If that's the case
1799 * just reschedule current.
1800 */
1801 if (unlikely(next_task->prio < rq->curr->prio)) {
1802 resched_curr(rq);
1803 return 0;
1804 }
1805
1806 /* We might release rq lock */
1807 get_task_struct(next_task);
1808
1809 /* find_lock_lowest_rq locks the rq if found */
1810 lowest_rq = find_lock_lowest_rq(next_task, rq);
1811 if (!lowest_rq) {
1812 struct task_struct *task;
1813 /*
1814 * find_lock_lowest_rq releases rq->lock
1815 * so it is possible that next_task has migrated.
1816 *
1817 * We need to make sure that the task is still on the same
1818 * run-queue and is also still the next task eligible for
1819 * pushing.
1820 */
1821 task = pick_next_pushable_task(rq);
1822 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1823 /*
1824 * The task hasn't migrated, and is still the next
1825 * eligible task, but we failed to find a run-queue
1826 * to push it to. Do not retry in this case, since
1827 * other cpus will pull from us when ready.
1828 */
1829 goto out;
1830 }
1831
1832 if (!task)
1833 /* No more tasks, just exit */
1834 goto out;
1835
1836 /*
1837 * Something has shifted, try again.
1838 */
1839 put_task_struct(next_task);
1840 next_task = task;
1841 goto retry;
1842 }
1843
1844 deactivate_task(rq, next_task, 0);
1845 set_task_cpu(next_task, lowest_rq->cpu);
1846 activate_task(lowest_rq, next_task, 0);
1847 ret = 1;
1848
1849 resched_curr(lowest_rq);
1850
1851 double_unlock_balance(rq, lowest_rq);
1852
1853 out:
1854 put_task_struct(next_task);
1855
1856 return ret;
1857 }
1858
1859 static void push_rt_tasks(struct rq *rq)
1860 {
1861 /* push_rt_task will return true if it moved an RT */
1862 while (push_rt_task(rq))
1863 ;
1864 }
1865
1866 #ifdef HAVE_RT_PUSH_IPI
1867 /*
1868 * The search for the next cpu always starts at rq->cpu and ends
1869 * when we reach rq->cpu again. It will never return rq->cpu.
1870 * This returns the next cpu to check, or nr_cpu_ids if the loop
1871 * is complete.
1872 *
1873 * rq->rt.push_cpu holds the last cpu returned by this function,
1874 * or if this is the first instance, it must hold rq->cpu.
1875 */
1876 static int rto_next_cpu(struct rq *rq)
1877 {
1878 int prev_cpu = rq->rt.push_cpu;
1879 int cpu;
1880
1881 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1882
1883 /*
1884 * If the previous cpu is less than the rq's CPU, then it already
1885 * passed the end of the mask, and has started from the beginning.
1886 * We end if the next CPU is greater or equal to rq's CPU.
1887 */
1888 if (prev_cpu < rq->cpu) {
1889 if (cpu >= rq->cpu)
1890 return nr_cpu_ids;
1891
1892 } else if (cpu >= nr_cpu_ids) {
1893 /*
1894 * We passed the end of the mask, start at the beginning.
1895 * If the result is greater or equal to the rq's CPU, then
1896 * the loop is finished.
1897 */
1898 cpu = cpumask_first(rq->rd->rto_mask);
1899 if (cpu >= rq->cpu)
1900 return nr_cpu_ids;
1901 }
1902 rq->rt.push_cpu = cpu;
1903
1904 /* Return cpu to let the caller know if the loop is finished or not */
1905 return cpu;
1906 }
1907
1908 static int find_next_push_cpu(struct rq *rq)
1909 {
1910 struct rq *next_rq;
1911 int cpu;
1912
1913 while (1) {
1914 cpu = rto_next_cpu(rq);
1915 if (cpu >= nr_cpu_ids)
1916 break;
1917 next_rq = cpu_rq(cpu);
1918
1919 /* Make sure the next rq can push to this rq */
1920 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1921 break;
1922 }
1923
1924 return cpu;
1925 }
1926
1927 #define RT_PUSH_IPI_EXECUTING 1
1928 #define RT_PUSH_IPI_RESTART 2
1929
1930 /*
1931 * When a high priority task schedules out from a CPU and a lower priority
1932 * task is scheduled in, a check is made to see if there's any RT tasks
1933 * on other CPUs that are waiting to run because a higher priority RT task
1934 * is currently running on its CPU. In this case, the CPU with multiple RT
1935 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1936 * up that may be able to run one of its non-running queued RT tasks.
1937 *
1938 * On large CPU boxes, there's the case that several CPUs could schedule
1939 * a lower priority task at the same time, in which case it will look for
1940 * any overloaded CPUs that it could pull a task from. To do this, the runqueue
1941 * lock must be taken from that overloaded CPU. Having 10s of CPUs all fighting
1942 * for a single overloaded CPU's runqueue lock can produce a large latency.
1943 * (This has actually been observed on large boxes running cyclictest).
1944 * Instead of taking the runqueue lock of the overloaded CPU, each of the
1945 * CPUs that scheduled a lower priority task simply sends an IPI to the
1946 * overloaded CPU. An IPI is much cheaper than taking an runqueue lock with
1947 * lots of contention. The overloaded CPU will look to push its non-running
1948 * RT task off, and if it does, it can then ignore the other IPIs coming
1949 * in, and just pass those IPIs off to any other overloaded CPU.
1950 *
1951 * When a CPU schedules a lower priority task, it only sends an IPI to
1952 * the "next" CPU that has overloaded RT tasks. This prevents IPI storms,
1953 * as having 10 CPUs scheduling lower priority tasks and 10 CPUs with
1954 * RT overloaded tasks, would cause 100 IPIs to go out at once.
1955 *
1956 * The overloaded RT CPU, when receiving an IPI, will try to push off its
1957 * overloaded RT tasks and then send an IPI to the next CPU that has
1958 * overloaded RT tasks. This stops when all CPUs with overloaded RT tasks
1959 * have completed. Just because a CPU may have pushed off its own overloaded
1960 * RT task does not mean it should stop sending the IPI around to other
1961 * overloaded CPUs. There may be another RT task waiting to run on one of
1962 * those CPUs that are of higher priority than the one that was just
1963 * pushed.
1964 *
1965 * An optimization that could possibly be made is to make a CPU array similar
1966 * to the cpupri array mask of all running RT tasks, but for the overloaded
1967 * case, then the IPI could be sent to only the CPU with the highest priority
1968 * RT task waiting, and that CPU could send off further IPIs to the CPU with
1969 * the next highest waiting task. Since the overloaded case is much less likely
1970 * to happen, the complexity of this implementation may not be worth it.
1971 * Instead, just send an IPI around to all overloaded CPUs.
1972 *
1973 * The rq->rt.push_flags holds the status of the IPI that is going around.
1974 * A run queue can only send out a single IPI at a time. The possible flags
1975 * for rq->rt.push_flags are:
1976 *
1977 * (None or zero): No IPI is going around for the current rq
1978 * RT_PUSH_IPI_EXECUTING: An IPI for the rq is being passed around
1979 * RT_PUSH_IPI_RESTART: The priority of the running task for the rq
1980 * has changed, and the IPI should restart
1981 * circulating the overloaded CPUs again.
1982 *
1983 * rq->rt.push_cpu contains the CPU that is being sent the IPI. It is updated
1984 * before sending to the next CPU.
1985 *
1986 * Instead of having all CPUs that schedule a lower priority task send
1987 * an IPI to the same "first" CPU in the RT overload mask, they send it
1988 * to the next overloaded CPU after their own CPU. This helps distribute
1989 * the work when there's more than one overloaded CPU and multiple CPUs
1990 * scheduling in lower priority tasks.
1991 *
1992 * When a rq schedules a lower priority task than what was currently
1993 * running, the next CPU with overloaded RT tasks is examined first.
1994 * That is, if CPU 1 and 5 are overloaded, and CPU 3 schedules a lower
1995 * priority task, it will send an IPI first to CPU 5, then CPU 5 will
1996 * send to CPU 1 if it is still overloaded. CPU 1 will clear the
1997 * rq->rt.push_flags if RT_PUSH_IPI_RESTART is not set.
1998 *
1999 * The first CPU to notice IPI_RESTART is set, will clear that flag and then
2000 * send an IPI to the next overloaded CPU after the rq->cpu and not the next
2001 * CPU after push_cpu. That is, if CPU 1, 4 and 5 are overloaded when CPU 3
2002 * schedules a lower priority task, and the IPI_RESTART gets set while the
2003 * handling is being done on CPU 5, it will clear the flag and send it back to
2004 * CPU 4 instead of CPU 1.
2005 *
2006 * Note, the above logic can be disabled by turning off the sched_feature
2007 * RT_PUSH_IPI. Then the rq lock of the overloaded CPU will simply be
2008 * taken by the CPU requesting a pull and the waiting RT task will be pulled
2009 * by that CPU. This may be fine for machines with few CPUs.
2010 */
2011 static void tell_cpu_to_push(struct rq *rq)
2012 {
2013 int cpu;
2014
2015 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
2016 raw_spin_lock(&rq->rt.push_lock);
2017 /* Make sure it's still executing */
2018 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
2019 /*
2020 * Tell the IPI to restart the loop as things have
2021 * changed since it started.
2022 */
2023 rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
2024 raw_spin_unlock(&rq->rt.push_lock);
2025 return;
2026 }
2027 raw_spin_unlock(&rq->rt.push_lock);
2028 }
2029
2030 /* When here, there's no IPI going around */
2031
2032 rq->rt.push_cpu = rq->cpu;
2033 cpu = find_next_push_cpu(rq);
2034 if (cpu >= nr_cpu_ids)
2035 return;
2036
2037 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
2038
2039 irq_work_queue_on(&rq->rt.push_work, cpu);
2040 }
2041
2042 /* Called from hardirq context */
2043 static void try_to_push_tasks(void *arg)
2044 {
2045 struct rt_rq *rt_rq = arg;
2046 struct rq *rq, *src_rq;
2047 int this_cpu;
2048 int cpu;
2049
2050 this_cpu = rt_rq->push_cpu;
2051
2052 /* Paranoid check */
2053 BUG_ON(this_cpu != smp_processor_id());
2054
2055 rq = cpu_rq(this_cpu);
2056 src_rq = rq_of_rt_rq(rt_rq);
2057
2058 again:
2059 if (has_pushable_tasks(rq)) {
2060 raw_spin_lock(&rq->lock);
2061 push_rt_task(rq);
2062 raw_spin_unlock(&rq->lock);
2063 }
2064
2065 /* Pass the IPI to the next rt overloaded queue */
2066 raw_spin_lock(&rt_rq->push_lock);
2067 /*
2068 * If the source queue changed since the IPI went out,
2069 * we need to restart the search from that CPU again.
2070 */
2071 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
2072 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
2073 rt_rq->push_cpu = src_rq->cpu;
2074 }
2075
2076 cpu = find_next_push_cpu(src_rq);
2077
2078 if (cpu >= nr_cpu_ids)
2079 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
2080 raw_spin_unlock(&rt_rq->push_lock);
2081
2082 if (cpu >= nr_cpu_ids)
2083 return;
2084
2085 /*
2086 * It is possible that a restart caused this CPU to be
2087 * chosen again. Don't bother with an IPI, just see if we
2088 * have more to push.
2089 */
2090 if (unlikely(cpu == rq->cpu))
2091 goto again;
2092
2093 /* Try the next RT overloaded CPU */
2094 irq_work_queue_on(&rt_rq->push_work, cpu);
2095 }
2096
2097 static void push_irq_work_func(struct irq_work *work)
2098 {
2099 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2100
2101 try_to_push_tasks(rt_rq);
2102 }
2103 #endif /* HAVE_RT_PUSH_IPI */
2104
2105 static void pull_rt_task(struct rq *this_rq)
2106 {
2107 int this_cpu = this_rq->cpu, cpu;
2108 bool resched = false;
2109 struct task_struct *p;
2110 struct rq *src_rq;
2111
2112 if (likely(!rt_overloaded(this_rq)))
2113 return;
2114
2115 /*
2116 * Match the barrier from rt_set_overloaded; this guarantees that if we
2117 * see overloaded we must also see the rto_mask bit.
2118 */
2119 smp_rmb();
2120
2121 #ifdef HAVE_RT_PUSH_IPI
2122 if (sched_feat(RT_PUSH_IPI)) {
2123 tell_cpu_to_push(this_rq);
2124 return;
2125 }
2126 #endif
2127
2128 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2129 if (this_cpu == cpu)
2130 continue;
2131
2132 src_rq = cpu_rq(cpu);
2133
2134 /*
2135 * Don't bother taking the src_rq->lock if the next highest
2136 * task is known to be lower-priority than our current task.
2137 * This may look racy, but if this value is about to go
2138 * logically higher, the src_rq will push this task away.
2139 * And if its going logically lower, we do not care
2140 */
2141 if (src_rq->rt.highest_prio.next >=
2142 this_rq->rt.highest_prio.curr)
2143 continue;
2144
2145 /*
2146 * We can potentially drop this_rq's lock in
2147 * double_lock_balance, and another CPU could
2148 * alter this_rq
2149 */
2150 double_lock_balance(this_rq, src_rq);
2151
2152 /*
2153 * We can pull only a task, which is pushable
2154 * on its rq, and no others.
2155 */
2156 p = pick_highest_pushable_task(src_rq, this_cpu);
2157
2158 /*
2159 * Do we have an RT task that preempts
2160 * the to-be-scheduled task?
2161 */
2162 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2163 WARN_ON(p == src_rq->curr);
2164 WARN_ON(!task_on_rq_queued(p));
2165
2166 /*
2167 * There's a chance that p is higher in priority
2168 * than what's currently running on its cpu.
2169 * This is just that p is wakeing up and hasn't
2170 * had a chance to schedule. We only pull
2171 * p if it is lower in priority than the
2172 * current task on the run queue
2173 */
2174 if (p->prio < src_rq->curr->prio)
2175 goto skip;
2176
2177 resched = true;
2178
2179 deactivate_task(src_rq, p, 0);
2180 set_task_cpu(p, this_cpu);
2181 activate_task(this_rq, p, 0);
2182 /*
2183 * We continue with the search, just in
2184 * case there's an even higher prio task
2185 * in another runqueue. (low likelihood
2186 * but possible)
2187 */
2188 }
2189 skip:
2190 double_unlock_balance(this_rq, src_rq);
2191 }
2192
2193 if (resched)
2194 resched_curr(this_rq);
2195 }
2196
2197 /*
2198 * If we are not running and we are not going to reschedule soon, we should
2199 * try to push tasks away now
2200 */
2201 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2202 {
2203 if (!task_running(rq, p) &&
2204 !test_tsk_need_resched(rq->curr) &&
2205 p->nr_cpus_allowed > 1 &&
2206 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2207 (rq->curr->nr_cpus_allowed < 2 ||
2208 rq->curr->prio <= p->prio))
2209 push_rt_tasks(rq);
2210 }
2211
2212 /* Assumes rq->lock is held */
2213 static void rq_online_rt(struct rq *rq)
2214 {
2215 if (rq->rt.overloaded)
2216 rt_set_overload(rq);
2217
2218 __enable_runtime(rq);
2219
2220 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2221 }
2222
2223 /* Assumes rq->lock is held */
2224 static void rq_offline_rt(struct rq *rq)
2225 {
2226 if (rq->rt.overloaded)
2227 rt_clear_overload(rq);
2228
2229 __disable_runtime(rq);
2230
2231 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2232 }
2233
2234 /*
2235 * When switch from the rt queue, we bring ourselves to a position
2236 * that we might want to pull RT tasks from other runqueues.
2237 */
2238 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2239 {
2240 /*
2241 * If there are other RT tasks then we will reschedule
2242 * and the scheduling of the other RT tasks will handle
2243 * the balancing. But if we are the last RT task
2244 * we may need to handle the pulling of RT tasks
2245 * now.
2246 */
2247 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2248 return;
2249
2250 queue_pull_task(rq);
2251 }
2252
2253 void __init init_sched_rt_class(void)
2254 {
2255 unsigned int i;
2256
2257 for_each_possible_cpu(i) {
2258 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2259 GFP_KERNEL, cpu_to_node(i));
2260 }
2261 }
2262 #endif /* CONFIG_SMP */
2263
2264 /*
2265 * When switching a task to RT, we may overload the runqueue
2266 * with RT tasks. In this case we try to push them off to
2267 * other runqueues.
2268 */
2269 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2270 {
2271 /*
2272 * If we are already running, then there's nothing
2273 * that needs to be done. But if we are not running
2274 * we may need to preempt the current running task.
2275 * If that current running task is also an RT task
2276 * then see if we can move to another run queue.
2277 */
2278 if (task_on_rq_queued(p) && rq->curr != p) {
2279 #ifdef CONFIG_SMP
2280 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2281 queue_push_tasks(rq);
2282 #endif /* CONFIG_SMP */
2283 if (p->prio < rq->curr->prio)
2284 resched_curr(rq);
2285 }
2286 }
2287
2288 /*
2289 * Priority of the task has changed. This may cause
2290 * us to initiate a push or pull.
2291 */
2292 static void
2293 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2294 {
2295 if (!task_on_rq_queued(p))
2296 return;
2297
2298 if (rq->curr == p) {
2299 #ifdef CONFIG_SMP
2300 /*
2301 * If our priority decreases while running, we
2302 * may need to pull tasks to this runqueue.
2303 */
2304 if (oldprio < p->prio)
2305 queue_pull_task(rq);
2306
2307 /*
2308 * If there's a higher priority task waiting to run
2309 * then reschedule.
2310 */
2311 if (p->prio > rq->rt.highest_prio.curr)
2312 resched_curr(rq);
2313 #else
2314 /* For UP simply resched on drop of prio */
2315 if (oldprio < p->prio)
2316 resched_curr(rq);
2317 #endif /* CONFIG_SMP */
2318 } else {
2319 /*
2320 * This task is not running, but if it is
2321 * greater than the current running task
2322 * then reschedule.
2323 */
2324 if (p->prio < rq->curr->prio)
2325 resched_curr(rq);
2326 }
2327 }
2328
2329 #ifdef CONFIG_POSIX_TIMERS
2330 static void watchdog(struct rq *rq, struct task_struct *p)
2331 {
2332 unsigned long soft, hard;
2333
2334 /* max may change after cur was read, this will be fixed next tick */
2335 soft = task_rlimit(p, RLIMIT_RTTIME);
2336 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2337
2338 if (soft != RLIM_INFINITY) {
2339 unsigned long next;
2340
2341 if (p->rt.watchdog_stamp != jiffies) {
2342 p->rt.timeout++;
2343 p->rt.watchdog_stamp = jiffies;
2344 }
2345
2346 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2347 if (p->rt.timeout > next)
2348 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2349 }
2350 }
2351 #else
2352 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2353 #endif
2354
2355 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2356 {
2357 struct sched_rt_entity *rt_se = &p->rt;
2358
2359 update_curr_rt(rq);
2360
2361 watchdog(rq, p);
2362
2363 /*
2364 * RR tasks need a special form of timeslice management.
2365 * FIFO tasks have no timeslices.
2366 */
2367 if (p->policy != SCHED_RR)
2368 return;
2369
2370 if (--p->rt.time_slice)
2371 return;
2372
2373 p->rt.time_slice = sched_rr_timeslice;
2374
2375 /*
2376 * Requeue to the end of queue if we (and all of our ancestors) are not
2377 * the only element on the queue
2378 */
2379 for_each_sched_rt_entity(rt_se) {
2380 if (rt_se->run_list.prev != rt_se->run_list.next) {
2381 requeue_task_rt(rq, p, 0);
2382 resched_curr(rq);
2383 return;
2384 }
2385 }
2386 }
2387
2388 static void set_curr_task_rt(struct rq *rq)
2389 {
2390 struct task_struct *p = rq->curr;
2391
2392 p->se.exec_start = rq_clock_task(rq);
2393
2394 /* The running task is never eligible for pushing */
2395 dequeue_pushable_task(rq, p);
2396 }
2397
2398 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2399 {
2400 /*
2401 * Time slice is 0 for SCHED_FIFO tasks
2402 */
2403 if (task->policy == SCHED_RR)
2404 return sched_rr_timeslice;
2405 else
2406 return 0;
2407 }
2408
2409 const struct sched_class rt_sched_class = {
2410 .next = &fair_sched_class,
2411 .enqueue_task = enqueue_task_rt,
2412 .dequeue_task = dequeue_task_rt,
2413 .yield_task = yield_task_rt,
2414
2415 .check_preempt_curr = check_preempt_curr_rt,
2416
2417 .pick_next_task = pick_next_task_rt,
2418 .put_prev_task = put_prev_task_rt,
2419
2420 #ifdef CONFIG_SMP
2421 .select_task_rq = select_task_rq_rt,
2422
2423 .set_cpus_allowed = set_cpus_allowed_common,
2424 .rq_online = rq_online_rt,
2425 .rq_offline = rq_offline_rt,
2426 .task_woken = task_woken_rt,
2427 .switched_from = switched_from_rt,
2428 #endif
2429
2430 .set_curr_task = set_curr_task_rt,
2431 .task_tick = task_tick_rt,
2432
2433 .get_rr_interval = get_rr_interval_rt,
2434
2435 .prio_changed = prio_changed_rt,
2436 .switched_to = switched_to_rt,
2437
2438 .update_curr = update_curr_rt,
2439 };
2440
2441 #ifdef CONFIG_SCHED_DEBUG
2442 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2443
2444 void print_rt_stats(struct seq_file *m, int cpu)
2445 {
2446 rt_rq_iter_t iter;
2447 struct rt_rq *rt_rq;
2448
2449 rcu_read_lock();
2450 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2451 print_rt_rq(m, cpu, rt_rq);
2452 rcu_read_unlock();
2453 }
2454 #endif /* CONFIG_SCHED_DEBUG */