]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched/rt.c
Merge tag 's390-5.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
21 int idle = 0;
22 int overrun;
23
24 raw_spin_lock(&rt_b->rt_runtime_lock);
25 for (;;) {
26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 if (!overrun)
28 break;
29
30 raw_spin_unlock(&rt_b->rt_runtime_lock);
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 raw_spin_lock(&rt_b->rt_runtime_lock);
33 }
34 if (idle)
35 rt_b->rt_period_active = 0;
36 raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
45
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
49 HRTIMER_MODE_REL_HARD);
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
57
58 raw_spin_lock(&rt_b->rt_runtime_lock);
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
61 /*
62 * SCHED_DEADLINE updates the bandwidth, as a run away
63 * RT task with a DL task could hog a CPU. But DL does
64 * not reset the period. If a deadline task was running
65 * without an RT task running, it can cause RT tasks to
66 * throttle when they start up. Kick the timer right away
67 * to update the period.
68 */
69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70 hrtimer_start_expires(&rt_b->rt_period_timer,
71 HRTIMER_MODE_ABS_PINNED_HARD);
72 }
73 raw_spin_unlock(&rt_b->rt_runtime_lock);
74 }
75
76 void init_rt_rq(struct rt_rq *rt_rq)
77 {
78 struct rt_prio_array *array;
79 int i;
80
81 array = &rt_rq->active;
82 for (i = 0; i < MAX_RT_PRIO; i++) {
83 INIT_LIST_HEAD(array->queue + i);
84 __clear_bit(i, array->bitmap);
85 }
86 /* delimiter for bitsearch: */
87 __set_bit(MAX_RT_PRIO, array->bitmap);
88
89 #if defined CONFIG_SMP
90 rt_rq->highest_prio.curr = MAX_RT_PRIO;
91 rt_rq->highest_prio.next = MAX_RT_PRIO;
92 rt_rq->rt_nr_migratory = 0;
93 rt_rq->overloaded = 0;
94 plist_head_init(&rt_rq->pushable_tasks);
95 #endif /* CONFIG_SMP */
96 /* We start is dequeued state, because no RT tasks are queued */
97 rt_rq->rt_queued = 0;
98
99 rt_rq->rt_time = 0;
100 rt_rq->rt_throttled = 0;
101 rt_rq->rt_runtime = 0;
102 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
103 }
104
105 #ifdef CONFIG_RT_GROUP_SCHED
106 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
107 {
108 hrtimer_cancel(&rt_b->rt_period_timer);
109 }
110
111 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
112
113 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
114 {
115 #ifdef CONFIG_SCHED_DEBUG
116 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
117 #endif
118 return container_of(rt_se, struct task_struct, rt);
119 }
120
121 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
122 {
123 return rt_rq->rq;
124 }
125
126 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
127 {
128 return rt_se->rt_rq;
129 }
130
131 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
132 {
133 struct rt_rq *rt_rq = rt_se->rt_rq;
134
135 return rt_rq->rq;
136 }
137
138 void free_rt_sched_group(struct task_group *tg)
139 {
140 int i;
141
142 if (tg->rt_se)
143 destroy_rt_bandwidth(&tg->rt_bandwidth);
144
145 for_each_possible_cpu(i) {
146 if (tg->rt_rq)
147 kfree(tg->rt_rq[i]);
148 if (tg->rt_se)
149 kfree(tg->rt_se[i]);
150 }
151
152 kfree(tg->rt_rq);
153 kfree(tg->rt_se);
154 }
155
156 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
157 struct sched_rt_entity *rt_se, int cpu,
158 struct sched_rt_entity *parent)
159 {
160 struct rq *rq = cpu_rq(cpu);
161
162 rt_rq->highest_prio.curr = MAX_RT_PRIO;
163 rt_rq->rt_nr_boosted = 0;
164 rt_rq->rq = rq;
165 rt_rq->tg = tg;
166
167 tg->rt_rq[cpu] = rt_rq;
168 tg->rt_se[cpu] = rt_se;
169
170 if (!rt_se)
171 return;
172
173 if (!parent)
174 rt_se->rt_rq = &rq->rt;
175 else
176 rt_se->rt_rq = parent->my_q;
177
178 rt_se->my_q = rt_rq;
179 rt_se->parent = parent;
180 INIT_LIST_HEAD(&rt_se->run_list);
181 }
182
183 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
184 {
185 struct rt_rq *rt_rq;
186 struct sched_rt_entity *rt_se;
187 int i;
188
189 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
190 if (!tg->rt_rq)
191 goto err;
192 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
193 if (!tg->rt_se)
194 goto err;
195
196 init_rt_bandwidth(&tg->rt_bandwidth,
197 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
198
199 for_each_possible_cpu(i) {
200 rt_rq = kzalloc_node(sizeof(struct rt_rq),
201 GFP_KERNEL, cpu_to_node(i));
202 if (!rt_rq)
203 goto err;
204
205 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
206 GFP_KERNEL, cpu_to_node(i));
207 if (!rt_se)
208 goto err_free_rq;
209
210 init_rt_rq(rt_rq);
211 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
212 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
213 }
214
215 return 1;
216
217 err_free_rq:
218 kfree(rt_rq);
219 err:
220 return 0;
221 }
222
223 #else /* CONFIG_RT_GROUP_SCHED */
224
225 #define rt_entity_is_task(rt_se) (1)
226
227 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
228 {
229 return container_of(rt_se, struct task_struct, rt);
230 }
231
232 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
233 {
234 return container_of(rt_rq, struct rq, rt);
235 }
236
237 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
238 {
239 struct task_struct *p = rt_task_of(rt_se);
240
241 return task_rq(p);
242 }
243
244 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
245 {
246 struct rq *rq = rq_of_rt_se(rt_se);
247
248 return &rq->rt;
249 }
250
251 void free_rt_sched_group(struct task_group *tg) { }
252
253 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
254 {
255 return 1;
256 }
257 #endif /* CONFIG_RT_GROUP_SCHED */
258
259 #ifdef CONFIG_SMP
260
261 static void pull_rt_task(struct rq *this_rq);
262
263 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
264 {
265 /* Try to pull RT tasks here if we lower this rq's prio */
266 return rq->rt.highest_prio.curr > prev->prio;
267 }
268
269 static inline int rt_overloaded(struct rq *rq)
270 {
271 return atomic_read(&rq->rd->rto_count);
272 }
273
274 static inline void rt_set_overload(struct rq *rq)
275 {
276 if (!rq->online)
277 return;
278
279 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
280 /*
281 * Make sure the mask is visible before we set
282 * the overload count. That is checked to determine
283 * if we should look at the mask. It would be a shame
284 * if we looked at the mask, but the mask was not
285 * updated yet.
286 *
287 * Matched by the barrier in pull_rt_task().
288 */
289 smp_wmb();
290 atomic_inc(&rq->rd->rto_count);
291 }
292
293 static inline void rt_clear_overload(struct rq *rq)
294 {
295 if (!rq->online)
296 return;
297
298 /* the order here really doesn't matter */
299 atomic_dec(&rq->rd->rto_count);
300 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
301 }
302
303 static void update_rt_migration(struct rt_rq *rt_rq)
304 {
305 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
306 if (!rt_rq->overloaded) {
307 rt_set_overload(rq_of_rt_rq(rt_rq));
308 rt_rq->overloaded = 1;
309 }
310 } else if (rt_rq->overloaded) {
311 rt_clear_overload(rq_of_rt_rq(rt_rq));
312 rt_rq->overloaded = 0;
313 }
314 }
315
316 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
317 {
318 struct task_struct *p;
319
320 if (!rt_entity_is_task(rt_se))
321 return;
322
323 p = rt_task_of(rt_se);
324 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
325
326 rt_rq->rt_nr_total++;
327 if (p->nr_cpus_allowed > 1)
328 rt_rq->rt_nr_migratory++;
329
330 update_rt_migration(rt_rq);
331 }
332
333 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
334 {
335 struct task_struct *p;
336
337 if (!rt_entity_is_task(rt_se))
338 return;
339
340 p = rt_task_of(rt_se);
341 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
342
343 rt_rq->rt_nr_total--;
344 if (p->nr_cpus_allowed > 1)
345 rt_rq->rt_nr_migratory--;
346
347 update_rt_migration(rt_rq);
348 }
349
350 static inline int has_pushable_tasks(struct rq *rq)
351 {
352 return !plist_head_empty(&rq->rt.pushable_tasks);
353 }
354
355 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
356 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
357
358 static void push_rt_tasks(struct rq *);
359 static void pull_rt_task(struct rq *);
360
361 static inline void rt_queue_push_tasks(struct rq *rq)
362 {
363 if (!has_pushable_tasks(rq))
364 return;
365
366 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
367 }
368
369 static inline void rt_queue_pull_task(struct rq *rq)
370 {
371 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
372 }
373
374 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
375 {
376 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
377 plist_node_init(&p->pushable_tasks, p->prio);
378 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
379
380 /* Update the highest prio pushable task */
381 if (p->prio < rq->rt.highest_prio.next)
382 rq->rt.highest_prio.next = p->prio;
383 }
384
385 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
386 {
387 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
388
389 /* Update the new highest prio pushable task */
390 if (has_pushable_tasks(rq)) {
391 p = plist_first_entry(&rq->rt.pushable_tasks,
392 struct task_struct, pushable_tasks);
393 rq->rt.highest_prio.next = p->prio;
394 } else
395 rq->rt.highest_prio.next = MAX_RT_PRIO;
396 }
397
398 #else
399
400 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
401 {
402 }
403
404 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 }
407
408 static inline
409 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
410 {
411 }
412
413 static inline
414 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
415 {
416 }
417
418 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
419 {
420 return false;
421 }
422
423 static inline void pull_rt_task(struct rq *this_rq)
424 {
425 }
426
427 static inline void rt_queue_push_tasks(struct rq *rq)
428 {
429 }
430 #endif /* CONFIG_SMP */
431
432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
434
435 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
436 {
437 return rt_se->on_rq;
438 }
439
440 #ifdef CONFIG_UCLAMP_TASK
441 /*
442 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
443 * settings.
444 *
445 * This check is only important for heterogeneous systems where uclamp_min value
446 * is higher than the capacity of a @cpu. For non-heterogeneous system this
447 * function will always return true.
448 *
449 * The function will return true if the capacity of the @cpu is >= the
450 * uclamp_min and false otherwise.
451 *
452 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
453 * > uclamp_max.
454 */
455 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
456 {
457 unsigned int min_cap;
458 unsigned int max_cap;
459 unsigned int cpu_cap;
460
461 /* Only heterogeneous systems can benefit from this check */
462 if (!static_branch_unlikely(&sched_asym_cpucapacity))
463 return true;
464
465 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
466 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
467
468 cpu_cap = capacity_orig_of(cpu);
469
470 return cpu_cap >= min(min_cap, max_cap);
471 }
472 #else
473 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
474 {
475 return true;
476 }
477 #endif
478
479 #ifdef CONFIG_RT_GROUP_SCHED
480
481 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
482 {
483 if (!rt_rq->tg)
484 return RUNTIME_INF;
485
486 return rt_rq->rt_runtime;
487 }
488
489 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
490 {
491 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
492 }
493
494 typedef struct task_group *rt_rq_iter_t;
495
496 static inline struct task_group *next_task_group(struct task_group *tg)
497 {
498 do {
499 tg = list_entry_rcu(tg->list.next,
500 typeof(struct task_group), list);
501 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
502
503 if (&tg->list == &task_groups)
504 tg = NULL;
505
506 return tg;
507 }
508
509 #define for_each_rt_rq(rt_rq, iter, rq) \
510 for (iter = container_of(&task_groups, typeof(*iter), list); \
511 (iter = next_task_group(iter)) && \
512 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
513
514 #define for_each_sched_rt_entity(rt_se) \
515 for (; rt_se; rt_se = rt_se->parent)
516
517 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
518 {
519 return rt_se->my_q;
520 }
521
522 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
523 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
524
525 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
526 {
527 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
528 struct rq *rq = rq_of_rt_rq(rt_rq);
529 struct sched_rt_entity *rt_se;
530
531 int cpu = cpu_of(rq);
532
533 rt_se = rt_rq->tg->rt_se[cpu];
534
535 if (rt_rq->rt_nr_running) {
536 if (!rt_se)
537 enqueue_top_rt_rq(rt_rq);
538 else if (!on_rt_rq(rt_se))
539 enqueue_rt_entity(rt_se, 0);
540
541 if (rt_rq->highest_prio.curr < curr->prio)
542 resched_curr(rq);
543 }
544 }
545
546 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
547 {
548 struct sched_rt_entity *rt_se;
549 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
550
551 rt_se = rt_rq->tg->rt_se[cpu];
552
553 if (!rt_se) {
554 dequeue_top_rt_rq(rt_rq);
555 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
556 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
557 }
558 else if (on_rt_rq(rt_se))
559 dequeue_rt_entity(rt_se, 0);
560 }
561
562 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
563 {
564 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
565 }
566
567 static int rt_se_boosted(struct sched_rt_entity *rt_se)
568 {
569 struct rt_rq *rt_rq = group_rt_rq(rt_se);
570 struct task_struct *p;
571
572 if (rt_rq)
573 return !!rt_rq->rt_nr_boosted;
574
575 p = rt_task_of(rt_se);
576 return p->prio != p->normal_prio;
577 }
578
579 #ifdef CONFIG_SMP
580 static inline const struct cpumask *sched_rt_period_mask(void)
581 {
582 return this_rq()->rd->span;
583 }
584 #else
585 static inline const struct cpumask *sched_rt_period_mask(void)
586 {
587 return cpu_online_mask;
588 }
589 #endif
590
591 static inline
592 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
593 {
594 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
595 }
596
597 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
598 {
599 return &rt_rq->tg->rt_bandwidth;
600 }
601
602 #else /* !CONFIG_RT_GROUP_SCHED */
603
604 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
605 {
606 return rt_rq->rt_runtime;
607 }
608
609 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
610 {
611 return ktime_to_ns(def_rt_bandwidth.rt_period);
612 }
613
614 typedef struct rt_rq *rt_rq_iter_t;
615
616 #define for_each_rt_rq(rt_rq, iter, rq) \
617 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
618
619 #define for_each_sched_rt_entity(rt_se) \
620 for (; rt_se; rt_se = NULL)
621
622 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
623 {
624 return NULL;
625 }
626
627 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
628 {
629 struct rq *rq = rq_of_rt_rq(rt_rq);
630
631 if (!rt_rq->rt_nr_running)
632 return;
633
634 enqueue_top_rt_rq(rt_rq);
635 resched_curr(rq);
636 }
637
638 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
639 {
640 dequeue_top_rt_rq(rt_rq);
641 }
642
643 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
644 {
645 return rt_rq->rt_throttled;
646 }
647
648 static inline const struct cpumask *sched_rt_period_mask(void)
649 {
650 return cpu_online_mask;
651 }
652
653 static inline
654 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
655 {
656 return &cpu_rq(cpu)->rt;
657 }
658
659 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
660 {
661 return &def_rt_bandwidth;
662 }
663
664 #endif /* CONFIG_RT_GROUP_SCHED */
665
666 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
667 {
668 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
669
670 return (hrtimer_active(&rt_b->rt_period_timer) ||
671 rt_rq->rt_time < rt_b->rt_runtime);
672 }
673
674 #ifdef CONFIG_SMP
675 /*
676 * We ran out of runtime, see if we can borrow some from our neighbours.
677 */
678 static void do_balance_runtime(struct rt_rq *rt_rq)
679 {
680 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
681 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
682 int i, weight;
683 u64 rt_period;
684
685 weight = cpumask_weight(rd->span);
686
687 raw_spin_lock(&rt_b->rt_runtime_lock);
688 rt_period = ktime_to_ns(rt_b->rt_period);
689 for_each_cpu(i, rd->span) {
690 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
691 s64 diff;
692
693 if (iter == rt_rq)
694 continue;
695
696 raw_spin_lock(&iter->rt_runtime_lock);
697 /*
698 * Either all rqs have inf runtime and there's nothing to steal
699 * or __disable_runtime() below sets a specific rq to inf to
700 * indicate its been disabled and disalow stealing.
701 */
702 if (iter->rt_runtime == RUNTIME_INF)
703 goto next;
704
705 /*
706 * From runqueues with spare time, take 1/n part of their
707 * spare time, but no more than our period.
708 */
709 diff = iter->rt_runtime - iter->rt_time;
710 if (diff > 0) {
711 diff = div_u64((u64)diff, weight);
712 if (rt_rq->rt_runtime + diff > rt_period)
713 diff = rt_period - rt_rq->rt_runtime;
714 iter->rt_runtime -= diff;
715 rt_rq->rt_runtime += diff;
716 if (rt_rq->rt_runtime == rt_period) {
717 raw_spin_unlock(&iter->rt_runtime_lock);
718 break;
719 }
720 }
721 next:
722 raw_spin_unlock(&iter->rt_runtime_lock);
723 }
724 raw_spin_unlock(&rt_b->rt_runtime_lock);
725 }
726
727 /*
728 * Ensure this RQ takes back all the runtime it lend to its neighbours.
729 */
730 static void __disable_runtime(struct rq *rq)
731 {
732 struct root_domain *rd = rq->rd;
733 rt_rq_iter_t iter;
734 struct rt_rq *rt_rq;
735
736 if (unlikely(!scheduler_running))
737 return;
738
739 for_each_rt_rq(rt_rq, iter, rq) {
740 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
741 s64 want;
742 int i;
743
744 raw_spin_lock(&rt_b->rt_runtime_lock);
745 raw_spin_lock(&rt_rq->rt_runtime_lock);
746 /*
747 * Either we're all inf and nobody needs to borrow, or we're
748 * already disabled and thus have nothing to do, or we have
749 * exactly the right amount of runtime to take out.
750 */
751 if (rt_rq->rt_runtime == RUNTIME_INF ||
752 rt_rq->rt_runtime == rt_b->rt_runtime)
753 goto balanced;
754 raw_spin_unlock(&rt_rq->rt_runtime_lock);
755
756 /*
757 * Calculate the difference between what we started out with
758 * and what we current have, that's the amount of runtime
759 * we lend and now have to reclaim.
760 */
761 want = rt_b->rt_runtime - rt_rq->rt_runtime;
762
763 /*
764 * Greedy reclaim, take back as much as we can.
765 */
766 for_each_cpu(i, rd->span) {
767 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
768 s64 diff;
769
770 /*
771 * Can't reclaim from ourselves or disabled runqueues.
772 */
773 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
774 continue;
775
776 raw_spin_lock(&iter->rt_runtime_lock);
777 if (want > 0) {
778 diff = min_t(s64, iter->rt_runtime, want);
779 iter->rt_runtime -= diff;
780 want -= diff;
781 } else {
782 iter->rt_runtime -= want;
783 want -= want;
784 }
785 raw_spin_unlock(&iter->rt_runtime_lock);
786
787 if (!want)
788 break;
789 }
790
791 raw_spin_lock(&rt_rq->rt_runtime_lock);
792 /*
793 * We cannot be left wanting - that would mean some runtime
794 * leaked out of the system.
795 */
796 BUG_ON(want);
797 balanced:
798 /*
799 * Disable all the borrow logic by pretending we have inf
800 * runtime - in which case borrowing doesn't make sense.
801 */
802 rt_rq->rt_runtime = RUNTIME_INF;
803 rt_rq->rt_throttled = 0;
804 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805 raw_spin_unlock(&rt_b->rt_runtime_lock);
806
807 /* Make rt_rq available for pick_next_task() */
808 sched_rt_rq_enqueue(rt_rq);
809 }
810 }
811
812 static void __enable_runtime(struct rq *rq)
813 {
814 rt_rq_iter_t iter;
815 struct rt_rq *rt_rq;
816
817 if (unlikely(!scheduler_running))
818 return;
819
820 /*
821 * Reset each runqueue's bandwidth settings
822 */
823 for_each_rt_rq(rt_rq, iter, rq) {
824 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
825
826 raw_spin_lock(&rt_b->rt_runtime_lock);
827 raw_spin_lock(&rt_rq->rt_runtime_lock);
828 rt_rq->rt_runtime = rt_b->rt_runtime;
829 rt_rq->rt_time = 0;
830 rt_rq->rt_throttled = 0;
831 raw_spin_unlock(&rt_rq->rt_runtime_lock);
832 raw_spin_unlock(&rt_b->rt_runtime_lock);
833 }
834 }
835
836 static void balance_runtime(struct rt_rq *rt_rq)
837 {
838 if (!sched_feat(RT_RUNTIME_SHARE))
839 return;
840
841 if (rt_rq->rt_time > rt_rq->rt_runtime) {
842 raw_spin_unlock(&rt_rq->rt_runtime_lock);
843 do_balance_runtime(rt_rq);
844 raw_spin_lock(&rt_rq->rt_runtime_lock);
845 }
846 }
847 #else /* !CONFIG_SMP */
848 static inline void balance_runtime(struct rt_rq *rt_rq) {}
849 #endif /* CONFIG_SMP */
850
851 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
852 {
853 int i, idle = 1, throttled = 0;
854 const struct cpumask *span;
855
856 span = sched_rt_period_mask();
857 #ifdef CONFIG_RT_GROUP_SCHED
858 /*
859 * FIXME: isolated CPUs should really leave the root task group,
860 * whether they are isolcpus or were isolated via cpusets, lest
861 * the timer run on a CPU which does not service all runqueues,
862 * potentially leaving other CPUs indefinitely throttled. If
863 * isolation is really required, the user will turn the throttle
864 * off to kill the perturbations it causes anyway. Meanwhile,
865 * this maintains functionality for boot and/or troubleshooting.
866 */
867 if (rt_b == &root_task_group.rt_bandwidth)
868 span = cpu_online_mask;
869 #endif
870 for_each_cpu(i, span) {
871 int enqueue = 0;
872 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
873 struct rq *rq = rq_of_rt_rq(rt_rq);
874 int skip;
875
876 /*
877 * When span == cpu_online_mask, taking each rq->lock
878 * can be time-consuming. Try to avoid it when possible.
879 */
880 raw_spin_lock(&rt_rq->rt_runtime_lock);
881 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
882 rt_rq->rt_runtime = rt_b->rt_runtime;
883 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
884 raw_spin_unlock(&rt_rq->rt_runtime_lock);
885 if (skip)
886 continue;
887
888 raw_spin_lock(&rq->lock);
889 update_rq_clock(rq);
890
891 if (rt_rq->rt_time) {
892 u64 runtime;
893
894 raw_spin_lock(&rt_rq->rt_runtime_lock);
895 if (rt_rq->rt_throttled)
896 balance_runtime(rt_rq);
897 runtime = rt_rq->rt_runtime;
898 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
899 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
900 rt_rq->rt_throttled = 0;
901 enqueue = 1;
902
903 /*
904 * When we're idle and a woken (rt) task is
905 * throttled check_preempt_curr() will set
906 * skip_update and the time between the wakeup
907 * and this unthrottle will get accounted as
908 * 'runtime'.
909 */
910 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
911 rq_clock_cancel_skipupdate(rq);
912 }
913 if (rt_rq->rt_time || rt_rq->rt_nr_running)
914 idle = 0;
915 raw_spin_unlock(&rt_rq->rt_runtime_lock);
916 } else if (rt_rq->rt_nr_running) {
917 idle = 0;
918 if (!rt_rq_throttled(rt_rq))
919 enqueue = 1;
920 }
921 if (rt_rq->rt_throttled)
922 throttled = 1;
923
924 if (enqueue)
925 sched_rt_rq_enqueue(rt_rq);
926 raw_spin_unlock(&rq->lock);
927 }
928
929 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
930 return 1;
931
932 return idle;
933 }
934
935 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
936 {
937 #ifdef CONFIG_RT_GROUP_SCHED
938 struct rt_rq *rt_rq = group_rt_rq(rt_se);
939
940 if (rt_rq)
941 return rt_rq->highest_prio.curr;
942 #endif
943
944 return rt_task_of(rt_se)->prio;
945 }
946
947 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
948 {
949 u64 runtime = sched_rt_runtime(rt_rq);
950
951 if (rt_rq->rt_throttled)
952 return rt_rq_throttled(rt_rq);
953
954 if (runtime >= sched_rt_period(rt_rq))
955 return 0;
956
957 balance_runtime(rt_rq);
958 runtime = sched_rt_runtime(rt_rq);
959 if (runtime == RUNTIME_INF)
960 return 0;
961
962 if (rt_rq->rt_time > runtime) {
963 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
964
965 /*
966 * Don't actually throttle groups that have no runtime assigned
967 * but accrue some time due to boosting.
968 */
969 if (likely(rt_b->rt_runtime)) {
970 rt_rq->rt_throttled = 1;
971 printk_deferred_once("sched: RT throttling activated\n");
972 } else {
973 /*
974 * In case we did anyway, make it go away,
975 * replenishment is a joke, since it will replenish us
976 * with exactly 0 ns.
977 */
978 rt_rq->rt_time = 0;
979 }
980
981 if (rt_rq_throttled(rt_rq)) {
982 sched_rt_rq_dequeue(rt_rq);
983 return 1;
984 }
985 }
986
987 return 0;
988 }
989
990 /*
991 * Update the current task's runtime statistics. Skip current tasks that
992 * are not in our scheduling class.
993 */
994 static void update_curr_rt(struct rq *rq)
995 {
996 struct task_struct *curr = rq->curr;
997 struct sched_rt_entity *rt_se = &curr->rt;
998 u64 delta_exec;
999 u64 now;
1000
1001 if (curr->sched_class != &rt_sched_class)
1002 return;
1003
1004 now = rq_clock_task(rq);
1005 delta_exec = now - curr->se.exec_start;
1006 if (unlikely((s64)delta_exec <= 0))
1007 return;
1008
1009 schedstat_set(curr->se.statistics.exec_max,
1010 max(curr->se.statistics.exec_max, delta_exec));
1011
1012 curr->se.sum_exec_runtime += delta_exec;
1013 account_group_exec_runtime(curr, delta_exec);
1014
1015 curr->se.exec_start = now;
1016 cgroup_account_cputime(curr, delta_exec);
1017
1018 if (!rt_bandwidth_enabled())
1019 return;
1020
1021 for_each_sched_rt_entity(rt_se) {
1022 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1023
1024 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1025 raw_spin_lock(&rt_rq->rt_runtime_lock);
1026 rt_rq->rt_time += delta_exec;
1027 if (sched_rt_runtime_exceeded(rt_rq))
1028 resched_curr(rq);
1029 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1030 }
1031 }
1032 }
1033
1034 static void
1035 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1036 {
1037 struct rq *rq = rq_of_rt_rq(rt_rq);
1038
1039 BUG_ON(&rq->rt != rt_rq);
1040
1041 if (!rt_rq->rt_queued)
1042 return;
1043
1044 BUG_ON(!rq->nr_running);
1045
1046 sub_nr_running(rq, rt_rq->rt_nr_running);
1047 rt_rq->rt_queued = 0;
1048
1049 }
1050
1051 static void
1052 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1053 {
1054 struct rq *rq = rq_of_rt_rq(rt_rq);
1055
1056 BUG_ON(&rq->rt != rt_rq);
1057
1058 if (rt_rq->rt_queued)
1059 return;
1060
1061 if (rt_rq_throttled(rt_rq))
1062 return;
1063
1064 if (rt_rq->rt_nr_running) {
1065 add_nr_running(rq, rt_rq->rt_nr_running);
1066 rt_rq->rt_queued = 1;
1067 }
1068
1069 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070 cpufreq_update_util(rq, 0);
1071 }
1072
1073 #if defined CONFIG_SMP
1074
1075 static void
1076 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1077 {
1078 struct rq *rq = rq_of_rt_rq(rt_rq);
1079
1080 #ifdef CONFIG_RT_GROUP_SCHED
1081 /*
1082 * Change rq's cpupri only if rt_rq is the top queue.
1083 */
1084 if (&rq->rt != rt_rq)
1085 return;
1086 #endif
1087 if (rq->online && prio < prev_prio)
1088 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1089 }
1090
1091 static void
1092 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1093 {
1094 struct rq *rq = rq_of_rt_rq(rt_rq);
1095
1096 #ifdef CONFIG_RT_GROUP_SCHED
1097 /*
1098 * Change rq's cpupri only if rt_rq is the top queue.
1099 */
1100 if (&rq->rt != rt_rq)
1101 return;
1102 #endif
1103 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1104 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1105 }
1106
1107 #else /* CONFIG_SMP */
1108
1109 static inline
1110 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1111 static inline
1112 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113
1114 #endif /* CONFIG_SMP */
1115
1116 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1117 static void
1118 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1119 {
1120 int prev_prio = rt_rq->highest_prio.curr;
1121
1122 if (prio < prev_prio)
1123 rt_rq->highest_prio.curr = prio;
1124
1125 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1126 }
1127
1128 static void
1129 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1130 {
1131 int prev_prio = rt_rq->highest_prio.curr;
1132
1133 if (rt_rq->rt_nr_running) {
1134
1135 WARN_ON(prio < prev_prio);
1136
1137 /*
1138 * This may have been our highest task, and therefore
1139 * we may have some recomputation to do
1140 */
1141 if (prio == prev_prio) {
1142 struct rt_prio_array *array = &rt_rq->active;
1143
1144 rt_rq->highest_prio.curr =
1145 sched_find_first_bit(array->bitmap);
1146 }
1147
1148 } else
1149 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1150
1151 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1152 }
1153
1154 #else
1155
1156 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1157 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1158
1159 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1160
1161 #ifdef CONFIG_RT_GROUP_SCHED
1162
1163 static void
1164 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1165 {
1166 if (rt_se_boosted(rt_se))
1167 rt_rq->rt_nr_boosted++;
1168
1169 if (rt_rq->tg)
1170 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1171 }
1172
1173 static void
1174 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1175 {
1176 if (rt_se_boosted(rt_se))
1177 rt_rq->rt_nr_boosted--;
1178
1179 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1180 }
1181
1182 #else /* CONFIG_RT_GROUP_SCHED */
1183
1184 static void
1185 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186 {
1187 start_rt_bandwidth(&def_rt_bandwidth);
1188 }
1189
1190 static inline
1191 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1192
1193 #endif /* CONFIG_RT_GROUP_SCHED */
1194
1195 static inline
1196 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1197 {
1198 struct rt_rq *group_rq = group_rt_rq(rt_se);
1199
1200 if (group_rq)
1201 return group_rq->rt_nr_running;
1202 else
1203 return 1;
1204 }
1205
1206 static inline
1207 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1208 {
1209 struct rt_rq *group_rq = group_rt_rq(rt_se);
1210 struct task_struct *tsk;
1211
1212 if (group_rq)
1213 return group_rq->rr_nr_running;
1214
1215 tsk = rt_task_of(rt_se);
1216
1217 return (tsk->policy == SCHED_RR) ? 1 : 0;
1218 }
1219
1220 static inline
1221 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1222 {
1223 int prio = rt_se_prio(rt_se);
1224
1225 WARN_ON(!rt_prio(prio));
1226 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1227 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1228
1229 inc_rt_prio(rt_rq, prio);
1230 inc_rt_migration(rt_se, rt_rq);
1231 inc_rt_group(rt_se, rt_rq);
1232 }
1233
1234 static inline
1235 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1236 {
1237 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1238 WARN_ON(!rt_rq->rt_nr_running);
1239 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1240 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1241
1242 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1243 dec_rt_migration(rt_se, rt_rq);
1244 dec_rt_group(rt_se, rt_rq);
1245 }
1246
1247 /*
1248 * Change rt_se->run_list location unless SAVE && !MOVE
1249 *
1250 * assumes ENQUEUE/DEQUEUE flags match
1251 */
1252 static inline bool move_entity(unsigned int flags)
1253 {
1254 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1255 return false;
1256
1257 return true;
1258 }
1259
1260 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1261 {
1262 list_del_init(&rt_se->run_list);
1263
1264 if (list_empty(array->queue + rt_se_prio(rt_se)))
1265 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1266
1267 rt_se->on_list = 0;
1268 }
1269
1270 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1271 {
1272 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1273 struct rt_prio_array *array = &rt_rq->active;
1274 struct rt_rq *group_rq = group_rt_rq(rt_se);
1275 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1276
1277 /*
1278 * Don't enqueue the group if its throttled, or when empty.
1279 * The latter is a consequence of the former when a child group
1280 * get throttled and the current group doesn't have any other
1281 * active members.
1282 */
1283 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1284 if (rt_se->on_list)
1285 __delist_rt_entity(rt_se, array);
1286 return;
1287 }
1288
1289 if (move_entity(flags)) {
1290 WARN_ON_ONCE(rt_se->on_list);
1291 if (flags & ENQUEUE_HEAD)
1292 list_add(&rt_se->run_list, queue);
1293 else
1294 list_add_tail(&rt_se->run_list, queue);
1295
1296 __set_bit(rt_se_prio(rt_se), array->bitmap);
1297 rt_se->on_list = 1;
1298 }
1299 rt_se->on_rq = 1;
1300
1301 inc_rt_tasks(rt_se, rt_rq);
1302 }
1303
1304 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1305 {
1306 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1307 struct rt_prio_array *array = &rt_rq->active;
1308
1309 if (move_entity(flags)) {
1310 WARN_ON_ONCE(!rt_se->on_list);
1311 __delist_rt_entity(rt_se, array);
1312 }
1313 rt_se->on_rq = 0;
1314
1315 dec_rt_tasks(rt_se, rt_rq);
1316 }
1317
1318 /*
1319 * Because the prio of an upper entry depends on the lower
1320 * entries, we must remove entries top - down.
1321 */
1322 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1323 {
1324 struct sched_rt_entity *back = NULL;
1325
1326 for_each_sched_rt_entity(rt_se) {
1327 rt_se->back = back;
1328 back = rt_se;
1329 }
1330
1331 dequeue_top_rt_rq(rt_rq_of_se(back));
1332
1333 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1334 if (on_rt_rq(rt_se))
1335 __dequeue_rt_entity(rt_se, flags);
1336 }
1337 }
1338
1339 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1340 {
1341 struct rq *rq = rq_of_rt_se(rt_se);
1342
1343 dequeue_rt_stack(rt_se, flags);
1344 for_each_sched_rt_entity(rt_se)
1345 __enqueue_rt_entity(rt_se, flags);
1346 enqueue_top_rt_rq(&rq->rt);
1347 }
1348
1349 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1350 {
1351 struct rq *rq = rq_of_rt_se(rt_se);
1352
1353 dequeue_rt_stack(rt_se, flags);
1354
1355 for_each_sched_rt_entity(rt_se) {
1356 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1357
1358 if (rt_rq && rt_rq->rt_nr_running)
1359 __enqueue_rt_entity(rt_se, flags);
1360 }
1361 enqueue_top_rt_rq(&rq->rt);
1362 }
1363
1364 /*
1365 * Adding/removing a task to/from a priority array:
1366 */
1367 static void
1368 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1369 {
1370 struct sched_rt_entity *rt_se = &p->rt;
1371
1372 if (flags & ENQUEUE_WAKEUP)
1373 rt_se->timeout = 0;
1374
1375 enqueue_rt_entity(rt_se, flags);
1376
1377 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1378 enqueue_pushable_task(rq, p);
1379 }
1380
1381 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1382 {
1383 struct sched_rt_entity *rt_se = &p->rt;
1384
1385 update_curr_rt(rq);
1386 dequeue_rt_entity(rt_se, flags);
1387
1388 dequeue_pushable_task(rq, p);
1389 }
1390
1391 /*
1392 * Put task to the head or the end of the run list without the overhead of
1393 * dequeue followed by enqueue.
1394 */
1395 static void
1396 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1397 {
1398 if (on_rt_rq(rt_se)) {
1399 struct rt_prio_array *array = &rt_rq->active;
1400 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1401
1402 if (head)
1403 list_move(&rt_se->run_list, queue);
1404 else
1405 list_move_tail(&rt_se->run_list, queue);
1406 }
1407 }
1408
1409 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1410 {
1411 struct sched_rt_entity *rt_se = &p->rt;
1412 struct rt_rq *rt_rq;
1413
1414 for_each_sched_rt_entity(rt_se) {
1415 rt_rq = rt_rq_of_se(rt_se);
1416 requeue_rt_entity(rt_rq, rt_se, head);
1417 }
1418 }
1419
1420 static void yield_task_rt(struct rq *rq)
1421 {
1422 requeue_task_rt(rq, rq->curr, 0);
1423 }
1424
1425 #ifdef CONFIG_SMP
1426 static int find_lowest_rq(struct task_struct *task);
1427
1428 static int
1429 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1430 {
1431 struct task_struct *curr;
1432 struct rq *rq;
1433 bool test;
1434
1435 /* For anything but wake ups, just return the task_cpu */
1436 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1437 goto out;
1438
1439 rq = cpu_rq(cpu);
1440
1441 rcu_read_lock();
1442 curr = READ_ONCE(rq->curr); /* unlocked access */
1443
1444 /*
1445 * If the current task on @p's runqueue is an RT task, then
1446 * try to see if we can wake this RT task up on another
1447 * runqueue. Otherwise simply start this RT task
1448 * on its current runqueue.
1449 *
1450 * We want to avoid overloading runqueues. If the woken
1451 * task is a higher priority, then it will stay on this CPU
1452 * and the lower prio task should be moved to another CPU.
1453 * Even though this will probably make the lower prio task
1454 * lose its cache, we do not want to bounce a higher task
1455 * around just because it gave up its CPU, perhaps for a
1456 * lock?
1457 *
1458 * For equal prio tasks, we just let the scheduler sort it out.
1459 *
1460 * Otherwise, just let it ride on the affined RQ and the
1461 * post-schedule router will push the preempted task away
1462 *
1463 * This test is optimistic, if we get it wrong the load-balancer
1464 * will have to sort it out.
1465 *
1466 * We take into account the capacity of the CPU to ensure it fits the
1467 * requirement of the task - which is only important on heterogeneous
1468 * systems like big.LITTLE.
1469 */
1470 test = curr &&
1471 unlikely(rt_task(curr)) &&
1472 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1473
1474 if (test || !rt_task_fits_capacity(p, cpu)) {
1475 int target = find_lowest_rq(p);
1476
1477 /*
1478 * Bail out if we were forcing a migration to find a better
1479 * fitting CPU but our search failed.
1480 */
1481 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1482 goto out_unlock;
1483
1484 /*
1485 * Don't bother moving it if the destination CPU is
1486 * not running a lower priority task.
1487 */
1488 if (target != -1 &&
1489 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1490 cpu = target;
1491 }
1492
1493 out_unlock:
1494 rcu_read_unlock();
1495
1496 out:
1497 return cpu;
1498 }
1499
1500 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1501 {
1502 /*
1503 * Current can't be migrated, useless to reschedule,
1504 * let's hope p can move out.
1505 */
1506 if (rq->curr->nr_cpus_allowed == 1 ||
1507 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1508 return;
1509
1510 /*
1511 * p is migratable, so let's not schedule it and
1512 * see if it is pushed or pulled somewhere else.
1513 */
1514 if (p->nr_cpus_allowed != 1 &&
1515 cpupri_find(&rq->rd->cpupri, p, NULL))
1516 return;
1517
1518 /*
1519 * There appear to be other CPUs that can accept
1520 * the current task but none can run 'p', so lets reschedule
1521 * to try and push the current task away:
1522 */
1523 requeue_task_rt(rq, p, 1);
1524 resched_curr(rq);
1525 }
1526
1527 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1528 {
1529 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1530 /*
1531 * This is OK, because current is on_cpu, which avoids it being
1532 * picked for load-balance and preemption/IRQs are still
1533 * disabled avoiding further scheduler activity on it and we've
1534 * not yet started the picking loop.
1535 */
1536 rq_unpin_lock(rq, rf);
1537 pull_rt_task(rq);
1538 rq_repin_lock(rq, rf);
1539 }
1540
1541 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1542 }
1543 #endif /* CONFIG_SMP */
1544
1545 /*
1546 * Preempt the current task with a newly woken task if needed:
1547 */
1548 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1549 {
1550 if (p->prio < rq->curr->prio) {
1551 resched_curr(rq);
1552 return;
1553 }
1554
1555 #ifdef CONFIG_SMP
1556 /*
1557 * If:
1558 *
1559 * - the newly woken task is of equal priority to the current task
1560 * - the newly woken task is non-migratable while current is migratable
1561 * - current will be preempted on the next reschedule
1562 *
1563 * we should check to see if current can readily move to a different
1564 * cpu. If so, we will reschedule to allow the push logic to try
1565 * to move current somewhere else, making room for our non-migratable
1566 * task.
1567 */
1568 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1569 check_preempt_equal_prio(rq, p);
1570 #endif
1571 }
1572
1573 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1574 {
1575 p->se.exec_start = rq_clock_task(rq);
1576
1577 /* The running task is never eligible for pushing */
1578 dequeue_pushable_task(rq, p);
1579
1580 if (!first)
1581 return;
1582
1583 /*
1584 * If prev task was rt, put_prev_task() has already updated the
1585 * utilization. We only care of the case where we start to schedule a
1586 * rt task
1587 */
1588 if (rq->curr->sched_class != &rt_sched_class)
1589 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1590
1591 rt_queue_push_tasks(rq);
1592 }
1593
1594 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1595 struct rt_rq *rt_rq)
1596 {
1597 struct rt_prio_array *array = &rt_rq->active;
1598 struct sched_rt_entity *next = NULL;
1599 struct list_head *queue;
1600 int idx;
1601
1602 idx = sched_find_first_bit(array->bitmap);
1603 BUG_ON(idx >= MAX_RT_PRIO);
1604
1605 queue = array->queue + idx;
1606 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1607
1608 return next;
1609 }
1610
1611 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1612 {
1613 struct sched_rt_entity *rt_se;
1614 struct rt_rq *rt_rq = &rq->rt;
1615
1616 do {
1617 rt_se = pick_next_rt_entity(rq, rt_rq);
1618 BUG_ON(!rt_se);
1619 rt_rq = group_rt_rq(rt_se);
1620 } while (rt_rq);
1621
1622 return rt_task_of(rt_se);
1623 }
1624
1625 static struct task_struct *pick_next_task_rt(struct rq *rq)
1626 {
1627 struct task_struct *p;
1628
1629 if (!sched_rt_runnable(rq))
1630 return NULL;
1631
1632 p = _pick_next_task_rt(rq);
1633 set_next_task_rt(rq, p, true);
1634 return p;
1635 }
1636
1637 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1638 {
1639 update_curr_rt(rq);
1640
1641 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1642
1643 /*
1644 * The previous task needs to be made eligible for pushing
1645 * if it is still active
1646 */
1647 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1648 enqueue_pushable_task(rq, p);
1649 }
1650
1651 #ifdef CONFIG_SMP
1652
1653 /* Only try algorithms three times */
1654 #define RT_MAX_TRIES 3
1655
1656 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1657 {
1658 if (!task_running(rq, p) &&
1659 cpumask_test_cpu(cpu, p->cpus_ptr))
1660 return 1;
1661
1662 return 0;
1663 }
1664
1665 /*
1666 * Return the highest pushable rq's task, which is suitable to be executed
1667 * on the CPU, NULL otherwise
1668 */
1669 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1670 {
1671 struct plist_head *head = &rq->rt.pushable_tasks;
1672 struct task_struct *p;
1673
1674 if (!has_pushable_tasks(rq))
1675 return NULL;
1676
1677 plist_for_each_entry(p, head, pushable_tasks) {
1678 if (pick_rt_task(rq, p, cpu))
1679 return p;
1680 }
1681
1682 return NULL;
1683 }
1684
1685 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1686
1687 static int find_lowest_rq(struct task_struct *task)
1688 {
1689 struct sched_domain *sd;
1690 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1691 int this_cpu = smp_processor_id();
1692 int cpu = task_cpu(task);
1693 int ret;
1694
1695 /* Make sure the mask is initialized first */
1696 if (unlikely(!lowest_mask))
1697 return -1;
1698
1699 if (task->nr_cpus_allowed == 1)
1700 return -1; /* No other targets possible */
1701
1702 /*
1703 * If we're on asym system ensure we consider the different capacities
1704 * of the CPUs when searching for the lowest_mask.
1705 */
1706 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1707
1708 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1709 task, lowest_mask,
1710 rt_task_fits_capacity);
1711 } else {
1712
1713 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1714 task, lowest_mask);
1715 }
1716
1717 if (!ret)
1718 return -1; /* No targets found */
1719
1720 /*
1721 * At this point we have built a mask of CPUs representing the
1722 * lowest priority tasks in the system. Now we want to elect
1723 * the best one based on our affinity and topology.
1724 *
1725 * We prioritize the last CPU that the task executed on since
1726 * it is most likely cache-hot in that location.
1727 */
1728 if (cpumask_test_cpu(cpu, lowest_mask))
1729 return cpu;
1730
1731 /*
1732 * Otherwise, we consult the sched_domains span maps to figure
1733 * out which CPU is logically closest to our hot cache data.
1734 */
1735 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1736 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1737
1738 rcu_read_lock();
1739 for_each_domain(cpu, sd) {
1740 if (sd->flags & SD_WAKE_AFFINE) {
1741 int best_cpu;
1742
1743 /*
1744 * "this_cpu" is cheaper to preempt than a
1745 * remote processor.
1746 */
1747 if (this_cpu != -1 &&
1748 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1749 rcu_read_unlock();
1750 return this_cpu;
1751 }
1752
1753 best_cpu = cpumask_first_and(lowest_mask,
1754 sched_domain_span(sd));
1755 if (best_cpu < nr_cpu_ids) {
1756 rcu_read_unlock();
1757 return best_cpu;
1758 }
1759 }
1760 }
1761 rcu_read_unlock();
1762
1763 /*
1764 * And finally, if there were no matches within the domains
1765 * just give the caller *something* to work with from the compatible
1766 * locations.
1767 */
1768 if (this_cpu != -1)
1769 return this_cpu;
1770
1771 cpu = cpumask_any(lowest_mask);
1772 if (cpu < nr_cpu_ids)
1773 return cpu;
1774
1775 return -1;
1776 }
1777
1778 /* Will lock the rq it finds */
1779 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1780 {
1781 struct rq *lowest_rq = NULL;
1782 int tries;
1783 int cpu;
1784
1785 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1786 cpu = find_lowest_rq(task);
1787
1788 if ((cpu == -1) || (cpu == rq->cpu))
1789 break;
1790
1791 lowest_rq = cpu_rq(cpu);
1792
1793 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1794 /*
1795 * Target rq has tasks of equal or higher priority,
1796 * retrying does not release any lock and is unlikely
1797 * to yield a different result.
1798 */
1799 lowest_rq = NULL;
1800 break;
1801 }
1802
1803 /* if the prio of this runqueue changed, try again */
1804 if (double_lock_balance(rq, lowest_rq)) {
1805 /*
1806 * We had to unlock the run queue. In
1807 * the mean time, task could have
1808 * migrated already or had its affinity changed.
1809 * Also make sure that it wasn't scheduled on its rq.
1810 */
1811 if (unlikely(task_rq(task) != rq ||
1812 !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1813 task_running(rq, task) ||
1814 !rt_task(task) ||
1815 !task_on_rq_queued(task))) {
1816
1817 double_unlock_balance(rq, lowest_rq);
1818 lowest_rq = NULL;
1819 break;
1820 }
1821 }
1822
1823 /* If this rq is still suitable use it. */
1824 if (lowest_rq->rt.highest_prio.curr > task->prio)
1825 break;
1826
1827 /* try again */
1828 double_unlock_balance(rq, lowest_rq);
1829 lowest_rq = NULL;
1830 }
1831
1832 return lowest_rq;
1833 }
1834
1835 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1836 {
1837 struct task_struct *p;
1838
1839 if (!has_pushable_tasks(rq))
1840 return NULL;
1841
1842 p = plist_first_entry(&rq->rt.pushable_tasks,
1843 struct task_struct, pushable_tasks);
1844
1845 BUG_ON(rq->cpu != task_cpu(p));
1846 BUG_ON(task_current(rq, p));
1847 BUG_ON(p->nr_cpus_allowed <= 1);
1848
1849 BUG_ON(!task_on_rq_queued(p));
1850 BUG_ON(!rt_task(p));
1851
1852 return p;
1853 }
1854
1855 /*
1856 * If the current CPU has more than one RT task, see if the non
1857 * running task can migrate over to a CPU that is running a task
1858 * of lesser priority.
1859 */
1860 static int push_rt_task(struct rq *rq)
1861 {
1862 struct task_struct *next_task;
1863 struct rq *lowest_rq;
1864 int ret = 0;
1865
1866 if (!rq->rt.overloaded)
1867 return 0;
1868
1869 next_task = pick_next_pushable_task(rq);
1870 if (!next_task)
1871 return 0;
1872
1873 retry:
1874 if (WARN_ON(next_task == rq->curr))
1875 return 0;
1876
1877 /*
1878 * It's possible that the next_task slipped in of
1879 * higher priority than current. If that's the case
1880 * just reschedule current.
1881 */
1882 if (unlikely(next_task->prio < rq->curr->prio)) {
1883 resched_curr(rq);
1884 return 0;
1885 }
1886
1887 /* We might release rq lock */
1888 get_task_struct(next_task);
1889
1890 /* find_lock_lowest_rq locks the rq if found */
1891 lowest_rq = find_lock_lowest_rq(next_task, rq);
1892 if (!lowest_rq) {
1893 struct task_struct *task;
1894 /*
1895 * find_lock_lowest_rq releases rq->lock
1896 * so it is possible that next_task has migrated.
1897 *
1898 * We need to make sure that the task is still on the same
1899 * run-queue and is also still the next task eligible for
1900 * pushing.
1901 */
1902 task = pick_next_pushable_task(rq);
1903 if (task == next_task) {
1904 /*
1905 * The task hasn't migrated, and is still the next
1906 * eligible task, but we failed to find a run-queue
1907 * to push it to. Do not retry in this case, since
1908 * other CPUs will pull from us when ready.
1909 */
1910 goto out;
1911 }
1912
1913 if (!task)
1914 /* No more tasks, just exit */
1915 goto out;
1916
1917 /*
1918 * Something has shifted, try again.
1919 */
1920 put_task_struct(next_task);
1921 next_task = task;
1922 goto retry;
1923 }
1924
1925 deactivate_task(rq, next_task, 0);
1926 set_task_cpu(next_task, lowest_rq->cpu);
1927 activate_task(lowest_rq, next_task, 0);
1928 ret = 1;
1929
1930 resched_curr(lowest_rq);
1931
1932 double_unlock_balance(rq, lowest_rq);
1933
1934 out:
1935 put_task_struct(next_task);
1936
1937 return ret;
1938 }
1939
1940 static void push_rt_tasks(struct rq *rq)
1941 {
1942 /* push_rt_task will return true if it moved an RT */
1943 while (push_rt_task(rq))
1944 ;
1945 }
1946
1947 #ifdef HAVE_RT_PUSH_IPI
1948
1949 /*
1950 * When a high priority task schedules out from a CPU and a lower priority
1951 * task is scheduled in, a check is made to see if there's any RT tasks
1952 * on other CPUs that are waiting to run because a higher priority RT task
1953 * is currently running on its CPU. In this case, the CPU with multiple RT
1954 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1955 * up that may be able to run one of its non-running queued RT tasks.
1956 *
1957 * All CPUs with overloaded RT tasks need to be notified as there is currently
1958 * no way to know which of these CPUs have the highest priority task waiting
1959 * to run. Instead of trying to take a spinlock on each of these CPUs,
1960 * which has shown to cause large latency when done on machines with many
1961 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1962 * RT tasks waiting to run.
1963 *
1964 * Just sending an IPI to each of the CPUs is also an issue, as on large
1965 * count CPU machines, this can cause an IPI storm on a CPU, especially
1966 * if its the only CPU with multiple RT tasks queued, and a large number
1967 * of CPUs scheduling a lower priority task at the same time.
1968 *
1969 * Each root domain has its own irq work function that can iterate over
1970 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1971 * tassk must be checked if there's one or many CPUs that are lowering
1972 * their priority, there's a single irq work iterator that will try to
1973 * push off RT tasks that are waiting to run.
1974 *
1975 * When a CPU schedules a lower priority task, it will kick off the
1976 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1977 * As it only takes the first CPU that schedules a lower priority task
1978 * to start the process, the rto_start variable is incremented and if
1979 * the atomic result is one, then that CPU will try to take the rto_lock.
1980 * This prevents high contention on the lock as the process handles all
1981 * CPUs scheduling lower priority tasks.
1982 *
1983 * All CPUs that are scheduling a lower priority task will increment the
1984 * rt_loop_next variable. This will make sure that the irq work iterator
1985 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1986 * priority task, even if the iterator is in the middle of a scan. Incrementing
1987 * the rt_loop_next will cause the iterator to perform another scan.
1988 *
1989 */
1990 static int rto_next_cpu(struct root_domain *rd)
1991 {
1992 int next;
1993 int cpu;
1994
1995 /*
1996 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1997 * rt_next_cpu() will simply return the first CPU found in
1998 * the rto_mask.
1999 *
2000 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2001 * will return the next CPU found in the rto_mask.
2002 *
2003 * If there are no more CPUs left in the rto_mask, then a check is made
2004 * against rto_loop and rto_loop_next. rto_loop is only updated with
2005 * the rto_lock held, but any CPU may increment the rto_loop_next
2006 * without any locking.
2007 */
2008 for (;;) {
2009
2010 /* When rto_cpu is -1 this acts like cpumask_first() */
2011 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2012
2013 rd->rto_cpu = cpu;
2014
2015 if (cpu < nr_cpu_ids)
2016 return cpu;
2017
2018 rd->rto_cpu = -1;
2019
2020 /*
2021 * ACQUIRE ensures we see the @rto_mask changes
2022 * made prior to the @next value observed.
2023 *
2024 * Matches WMB in rt_set_overload().
2025 */
2026 next = atomic_read_acquire(&rd->rto_loop_next);
2027
2028 if (rd->rto_loop == next)
2029 break;
2030
2031 rd->rto_loop = next;
2032 }
2033
2034 return -1;
2035 }
2036
2037 static inline bool rto_start_trylock(atomic_t *v)
2038 {
2039 return !atomic_cmpxchg_acquire(v, 0, 1);
2040 }
2041
2042 static inline void rto_start_unlock(atomic_t *v)
2043 {
2044 atomic_set_release(v, 0);
2045 }
2046
2047 static void tell_cpu_to_push(struct rq *rq)
2048 {
2049 int cpu = -1;
2050
2051 /* Keep the loop going if the IPI is currently active */
2052 atomic_inc(&rq->rd->rto_loop_next);
2053
2054 /* Only one CPU can initiate a loop at a time */
2055 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2056 return;
2057
2058 raw_spin_lock(&rq->rd->rto_lock);
2059
2060 /*
2061 * The rto_cpu is updated under the lock, if it has a valid CPU
2062 * then the IPI is still running and will continue due to the
2063 * update to loop_next, and nothing needs to be done here.
2064 * Otherwise it is finishing up and an ipi needs to be sent.
2065 */
2066 if (rq->rd->rto_cpu < 0)
2067 cpu = rto_next_cpu(rq->rd);
2068
2069 raw_spin_unlock(&rq->rd->rto_lock);
2070
2071 rto_start_unlock(&rq->rd->rto_loop_start);
2072
2073 if (cpu >= 0) {
2074 /* Make sure the rd does not get freed while pushing */
2075 sched_get_rd(rq->rd);
2076 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2077 }
2078 }
2079
2080 /* Called from hardirq context */
2081 void rto_push_irq_work_func(struct irq_work *work)
2082 {
2083 struct root_domain *rd =
2084 container_of(work, struct root_domain, rto_push_work);
2085 struct rq *rq;
2086 int cpu;
2087
2088 rq = this_rq();
2089
2090 /*
2091 * We do not need to grab the lock to check for has_pushable_tasks.
2092 * When it gets updated, a check is made if a push is possible.
2093 */
2094 if (has_pushable_tasks(rq)) {
2095 raw_spin_lock(&rq->lock);
2096 push_rt_tasks(rq);
2097 raw_spin_unlock(&rq->lock);
2098 }
2099
2100 raw_spin_lock(&rd->rto_lock);
2101
2102 /* Pass the IPI to the next rt overloaded queue */
2103 cpu = rto_next_cpu(rd);
2104
2105 raw_spin_unlock(&rd->rto_lock);
2106
2107 if (cpu < 0) {
2108 sched_put_rd(rd);
2109 return;
2110 }
2111
2112 /* Try the next RT overloaded CPU */
2113 irq_work_queue_on(&rd->rto_push_work, cpu);
2114 }
2115 #endif /* HAVE_RT_PUSH_IPI */
2116
2117 static void pull_rt_task(struct rq *this_rq)
2118 {
2119 int this_cpu = this_rq->cpu, cpu;
2120 bool resched = false;
2121 struct task_struct *p;
2122 struct rq *src_rq;
2123 int rt_overload_count = rt_overloaded(this_rq);
2124
2125 if (likely(!rt_overload_count))
2126 return;
2127
2128 /*
2129 * Match the barrier from rt_set_overloaded; this guarantees that if we
2130 * see overloaded we must also see the rto_mask bit.
2131 */
2132 smp_rmb();
2133
2134 /* If we are the only overloaded CPU do nothing */
2135 if (rt_overload_count == 1 &&
2136 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2137 return;
2138
2139 #ifdef HAVE_RT_PUSH_IPI
2140 if (sched_feat(RT_PUSH_IPI)) {
2141 tell_cpu_to_push(this_rq);
2142 return;
2143 }
2144 #endif
2145
2146 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2147 if (this_cpu == cpu)
2148 continue;
2149
2150 src_rq = cpu_rq(cpu);
2151
2152 /*
2153 * Don't bother taking the src_rq->lock if the next highest
2154 * task is known to be lower-priority than our current task.
2155 * This may look racy, but if this value is about to go
2156 * logically higher, the src_rq will push this task away.
2157 * And if its going logically lower, we do not care
2158 */
2159 if (src_rq->rt.highest_prio.next >=
2160 this_rq->rt.highest_prio.curr)
2161 continue;
2162
2163 /*
2164 * We can potentially drop this_rq's lock in
2165 * double_lock_balance, and another CPU could
2166 * alter this_rq
2167 */
2168 double_lock_balance(this_rq, src_rq);
2169
2170 /*
2171 * We can pull only a task, which is pushable
2172 * on its rq, and no others.
2173 */
2174 p = pick_highest_pushable_task(src_rq, this_cpu);
2175
2176 /*
2177 * Do we have an RT task that preempts
2178 * the to-be-scheduled task?
2179 */
2180 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2181 WARN_ON(p == src_rq->curr);
2182 WARN_ON(!task_on_rq_queued(p));
2183
2184 /*
2185 * There's a chance that p is higher in priority
2186 * than what's currently running on its CPU.
2187 * This is just that p is wakeing up and hasn't
2188 * had a chance to schedule. We only pull
2189 * p if it is lower in priority than the
2190 * current task on the run queue
2191 */
2192 if (p->prio < src_rq->curr->prio)
2193 goto skip;
2194
2195 resched = true;
2196
2197 deactivate_task(src_rq, p, 0);
2198 set_task_cpu(p, this_cpu);
2199 activate_task(this_rq, p, 0);
2200 /*
2201 * We continue with the search, just in
2202 * case there's an even higher prio task
2203 * in another runqueue. (low likelihood
2204 * but possible)
2205 */
2206 }
2207 skip:
2208 double_unlock_balance(this_rq, src_rq);
2209 }
2210
2211 if (resched)
2212 resched_curr(this_rq);
2213 }
2214
2215 /*
2216 * If we are not running and we are not going to reschedule soon, we should
2217 * try to push tasks away now
2218 */
2219 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2220 {
2221 bool need_to_push = !task_running(rq, p) &&
2222 !test_tsk_need_resched(rq->curr) &&
2223 p->nr_cpus_allowed > 1 &&
2224 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2225 (rq->curr->nr_cpus_allowed < 2 ||
2226 rq->curr->prio <= p->prio);
2227
2228 if (need_to_push)
2229 push_rt_tasks(rq);
2230 }
2231
2232 /* Assumes rq->lock is held */
2233 static void rq_online_rt(struct rq *rq)
2234 {
2235 if (rq->rt.overloaded)
2236 rt_set_overload(rq);
2237
2238 __enable_runtime(rq);
2239
2240 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2241 }
2242
2243 /* Assumes rq->lock is held */
2244 static void rq_offline_rt(struct rq *rq)
2245 {
2246 if (rq->rt.overloaded)
2247 rt_clear_overload(rq);
2248
2249 __disable_runtime(rq);
2250
2251 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2252 }
2253
2254 /*
2255 * When switch from the rt queue, we bring ourselves to a position
2256 * that we might want to pull RT tasks from other runqueues.
2257 */
2258 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2259 {
2260 /*
2261 * If there are other RT tasks then we will reschedule
2262 * and the scheduling of the other RT tasks will handle
2263 * the balancing. But if we are the last RT task
2264 * we may need to handle the pulling of RT tasks
2265 * now.
2266 */
2267 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2268 return;
2269
2270 rt_queue_pull_task(rq);
2271 }
2272
2273 void __init init_sched_rt_class(void)
2274 {
2275 unsigned int i;
2276
2277 for_each_possible_cpu(i) {
2278 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2279 GFP_KERNEL, cpu_to_node(i));
2280 }
2281 }
2282 #endif /* CONFIG_SMP */
2283
2284 /*
2285 * When switching a task to RT, we may overload the runqueue
2286 * with RT tasks. In this case we try to push them off to
2287 * other runqueues.
2288 */
2289 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2290 {
2291 /*
2292 * If we are already running, then there's nothing
2293 * that needs to be done. But if we are not running
2294 * we may need to preempt the current running task.
2295 * If that current running task is also an RT task
2296 * then see if we can move to another run queue.
2297 */
2298 if (task_on_rq_queued(p) && rq->curr != p) {
2299 #ifdef CONFIG_SMP
2300 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2301 rt_queue_push_tasks(rq);
2302 #endif /* CONFIG_SMP */
2303 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2304 resched_curr(rq);
2305 }
2306 }
2307
2308 /*
2309 * Priority of the task has changed. This may cause
2310 * us to initiate a push or pull.
2311 */
2312 static void
2313 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2314 {
2315 if (!task_on_rq_queued(p))
2316 return;
2317
2318 if (rq->curr == p) {
2319 #ifdef CONFIG_SMP
2320 /*
2321 * If our priority decreases while running, we
2322 * may need to pull tasks to this runqueue.
2323 */
2324 if (oldprio < p->prio)
2325 rt_queue_pull_task(rq);
2326
2327 /*
2328 * If there's a higher priority task waiting to run
2329 * then reschedule.
2330 */
2331 if (p->prio > rq->rt.highest_prio.curr)
2332 resched_curr(rq);
2333 #else
2334 /* For UP simply resched on drop of prio */
2335 if (oldprio < p->prio)
2336 resched_curr(rq);
2337 #endif /* CONFIG_SMP */
2338 } else {
2339 /*
2340 * This task is not running, but if it is
2341 * greater than the current running task
2342 * then reschedule.
2343 */
2344 if (p->prio < rq->curr->prio)
2345 resched_curr(rq);
2346 }
2347 }
2348
2349 #ifdef CONFIG_POSIX_TIMERS
2350 static void watchdog(struct rq *rq, struct task_struct *p)
2351 {
2352 unsigned long soft, hard;
2353
2354 /* max may change after cur was read, this will be fixed next tick */
2355 soft = task_rlimit(p, RLIMIT_RTTIME);
2356 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2357
2358 if (soft != RLIM_INFINITY) {
2359 unsigned long next;
2360
2361 if (p->rt.watchdog_stamp != jiffies) {
2362 p->rt.timeout++;
2363 p->rt.watchdog_stamp = jiffies;
2364 }
2365
2366 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2367 if (p->rt.timeout > next) {
2368 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2369 p->se.sum_exec_runtime);
2370 }
2371 }
2372 }
2373 #else
2374 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2375 #endif
2376
2377 /*
2378 * scheduler tick hitting a task of our scheduling class.
2379 *
2380 * NOTE: This function can be called remotely by the tick offload that
2381 * goes along full dynticks. Therefore no local assumption can be made
2382 * and everything must be accessed through the @rq and @curr passed in
2383 * parameters.
2384 */
2385 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2386 {
2387 struct sched_rt_entity *rt_se = &p->rt;
2388
2389 update_curr_rt(rq);
2390 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2391
2392 watchdog(rq, p);
2393
2394 /*
2395 * RR tasks need a special form of timeslice management.
2396 * FIFO tasks have no timeslices.
2397 */
2398 if (p->policy != SCHED_RR)
2399 return;
2400
2401 if (--p->rt.time_slice)
2402 return;
2403
2404 p->rt.time_slice = sched_rr_timeslice;
2405
2406 /*
2407 * Requeue to the end of queue if we (and all of our ancestors) are not
2408 * the only element on the queue
2409 */
2410 for_each_sched_rt_entity(rt_se) {
2411 if (rt_se->run_list.prev != rt_se->run_list.next) {
2412 requeue_task_rt(rq, p, 0);
2413 resched_curr(rq);
2414 return;
2415 }
2416 }
2417 }
2418
2419 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2420 {
2421 /*
2422 * Time slice is 0 for SCHED_FIFO tasks
2423 */
2424 if (task->policy == SCHED_RR)
2425 return sched_rr_timeslice;
2426 else
2427 return 0;
2428 }
2429
2430 const struct sched_class rt_sched_class = {
2431 .next = &fair_sched_class,
2432 .enqueue_task = enqueue_task_rt,
2433 .dequeue_task = dequeue_task_rt,
2434 .yield_task = yield_task_rt,
2435
2436 .check_preempt_curr = check_preempt_curr_rt,
2437
2438 .pick_next_task = pick_next_task_rt,
2439 .put_prev_task = put_prev_task_rt,
2440 .set_next_task = set_next_task_rt,
2441
2442 #ifdef CONFIG_SMP
2443 .balance = balance_rt,
2444 .select_task_rq = select_task_rq_rt,
2445 .set_cpus_allowed = set_cpus_allowed_common,
2446 .rq_online = rq_online_rt,
2447 .rq_offline = rq_offline_rt,
2448 .task_woken = task_woken_rt,
2449 .switched_from = switched_from_rt,
2450 #endif
2451
2452 .task_tick = task_tick_rt,
2453
2454 .get_rr_interval = get_rr_interval_rt,
2455
2456 .prio_changed = prio_changed_rt,
2457 .switched_to = switched_to_rt,
2458
2459 .update_curr = update_curr_rt,
2460
2461 #ifdef CONFIG_UCLAMP_TASK
2462 .uclamp_enabled = 1,
2463 #endif
2464 };
2465
2466 #ifdef CONFIG_RT_GROUP_SCHED
2467 /*
2468 * Ensure that the real time constraints are schedulable.
2469 */
2470 static DEFINE_MUTEX(rt_constraints_mutex);
2471
2472 static inline int tg_has_rt_tasks(struct task_group *tg)
2473 {
2474 struct task_struct *task;
2475 struct css_task_iter it;
2476 int ret = 0;
2477
2478 /*
2479 * Autogroups do not have RT tasks; see autogroup_create().
2480 */
2481 if (task_group_is_autogroup(tg))
2482 return 0;
2483
2484 css_task_iter_start(&tg->css, 0, &it);
2485 while (!ret && (task = css_task_iter_next(&it)))
2486 ret |= rt_task(task);
2487 css_task_iter_end(&it);
2488
2489 return ret;
2490 }
2491
2492 struct rt_schedulable_data {
2493 struct task_group *tg;
2494 u64 rt_period;
2495 u64 rt_runtime;
2496 };
2497
2498 static int tg_rt_schedulable(struct task_group *tg, void *data)
2499 {
2500 struct rt_schedulable_data *d = data;
2501 struct task_group *child;
2502 unsigned long total, sum = 0;
2503 u64 period, runtime;
2504
2505 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2506 runtime = tg->rt_bandwidth.rt_runtime;
2507
2508 if (tg == d->tg) {
2509 period = d->rt_period;
2510 runtime = d->rt_runtime;
2511 }
2512
2513 /*
2514 * Cannot have more runtime than the period.
2515 */
2516 if (runtime > period && runtime != RUNTIME_INF)
2517 return -EINVAL;
2518
2519 /*
2520 * Ensure we don't starve existing RT tasks if runtime turns zero.
2521 */
2522 if (rt_bandwidth_enabled() && !runtime &&
2523 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2524 return -EBUSY;
2525
2526 total = to_ratio(period, runtime);
2527
2528 /*
2529 * Nobody can have more than the global setting allows.
2530 */
2531 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2532 return -EINVAL;
2533
2534 /*
2535 * The sum of our children's runtime should not exceed our own.
2536 */
2537 list_for_each_entry_rcu(child, &tg->children, siblings) {
2538 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2539 runtime = child->rt_bandwidth.rt_runtime;
2540
2541 if (child == d->tg) {
2542 period = d->rt_period;
2543 runtime = d->rt_runtime;
2544 }
2545
2546 sum += to_ratio(period, runtime);
2547 }
2548
2549 if (sum > total)
2550 return -EINVAL;
2551
2552 return 0;
2553 }
2554
2555 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2556 {
2557 int ret;
2558
2559 struct rt_schedulable_data data = {
2560 .tg = tg,
2561 .rt_period = period,
2562 .rt_runtime = runtime,
2563 };
2564
2565 rcu_read_lock();
2566 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2567 rcu_read_unlock();
2568
2569 return ret;
2570 }
2571
2572 static int tg_set_rt_bandwidth(struct task_group *tg,
2573 u64 rt_period, u64 rt_runtime)
2574 {
2575 int i, err = 0;
2576
2577 /*
2578 * Disallowing the root group RT runtime is BAD, it would disallow the
2579 * kernel creating (and or operating) RT threads.
2580 */
2581 if (tg == &root_task_group && rt_runtime == 0)
2582 return -EINVAL;
2583
2584 /* No period doesn't make any sense. */
2585 if (rt_period == 0)
2586 return -EINVAL;
2587
2588 mutex_lock(&rt_constraints_mutex);
2589 err = __rt_schedulable(tg, rt_period, rt_runtime);
2590 if (err)
2591 goto unlock;
2592
2593 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2594 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2595 tg->rt_bandwidth.rt_runtime = rt_runtime;
2596
2597 for_each_possible_cpu(i) {
2598 struct rt_rq *rt_rq = tg->rt_rq[i];
2599
2600 raw_spin_lock(&rt_rq->rt_runtime_lock);
2601 rt_rq->rt_runtime = rt_runtime;
2602 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2603 }
2604 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2605 unlock:
2606 mutex_unlock(&rt_constraints_mutex);
2607
2608 return err;
2609 }
2610
2611 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2612 {
2613 u64 rt_runtime, rt_period;
2614
2615 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2616 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2617 if (rt_runtime_us < 0)
2618 rt_runtime = RUNTIME_INF;
2619 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2620 return -EINVAL;
2621
2622 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2623 }
2624
2625 long sched_group_rt_runtime(struct task_group *tg)
2626 {
2627 u64 rt_runtime_us;
2628
2629 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2630 return -1;
2631
2632 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2633 do_div(rt_runtime_us, NSEC_PER_USEC);
2634 return rt_runtime_us;
2635 }
2636
2637 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2638 {
2639 u64 rt_runtime, rt_period;
2640
2641 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2642 return -EINVAL;
2643
2644 rt_period = rt_period_us * NSEC_PER_USEC;
2645 rt_runtime = tg->rt_bandwidth.rt_runtime;
2646
2647 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2648 }
2649
2650 long sched_group_rt_period(struct task_group *tg)
2651 {
2652 u64 rt_period_us;
2653
2654 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2655 do_div(rt_period_us, NSEC_PER_USEC);
2656 return rt_period_us;
2657 }
2658
2659 static int sched_rt_global_constraints(void)
2660 {
2661 int ret = 0;
2662
2663 mutex_lock(&rt_constraints_mutex);
2664 ret = __rt_schedulable(NULL, 0, 0);
2665 mutex_unlock(&rt_constraints_mutex);
2666
2667 return ret;
2668 }
2669
2670 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2671 {
2672 /* Don't accept realtime tasks when there is no way for them to run */
2673 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2674 return 0;
2675
2676 return 1;
2677 }
2678
2679 #else /* !CONFIG_RT_GROUP_SCHED */
2680 static int sched_rt_global_constraints(void)
2681 {
2682 unsigned long flags;
2683 int i;
2684
2685 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2686 for_each_possible_cpu(i) {
2687 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2688
2689 raw_spin_lock(&rt_rq->rt_runtime_lock);
2690 rt_rq->rt_runtime = global_rt_runtime();
2691 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2692 }
2693 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2694
2695 return 0;
2696 }
2697 #endif /* CONFIG_RT_GROUP_SCHED */
2698
2699 static int sched_rt_global_validate(void)
2700 {
2701 if (sysctl_sched_rt_period <= 0)
2702 return -EINVAL;
2703
2704 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2705 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2706 return -EINVAL;
2707
2708 return 0;
2709 }
2710
2711 static void sched_rt_do_global(void)
2712 {
2713 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2714 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2715 }
2716
2717 int sched_rt_handler(struct ctl_table *table, int write,
2718 void __user *buffer, size_t *lenp,
2719 loff_t *ppos)
2720 {
2721 int old_period, old_runtime;
2722 static DEFINE_MUTEX(mutex);
2723 int ret;
2724
2725 mutex_lock(&mutex);
2726 old_period = sysctl_sched_rt_period;
2727 old_runtime = sysctl_sched_rt_runtime;
2728
2729 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2730
2731 if (!ret && write) {
2732 ret = sched_rt_global_validate();
2733 if (ret)
2734 goto undo;
2735
2736 ret = sched_dl_global_validate();
2737 if (ret)
2738 goto undo;
2739
2740 ret = sched_rt_global_constraints();
2741 if (ret)
2742 goto undo;
2743
2744 sched_rt_do_global();
2745 sched_dl_do_global();
2746 }
2747 if (0) {
2748 undo:
2749 sysctl_sched_rt_period = old_period;
2750 sysctl_sched_rt_runtime = old_runtime;
2751 }
2752 mutex_unlock(&mutex);
2753
2754 return ret;
2755 }
2756
2757 int sched_rr_handler(struct ctl_table *table, int write,
2758 void __user *buffer, size_t *lenp,
2759 loff_t *ppos)
2760 {
2761 int ret;
2762 static DEFINE_MUTEX(mutex);
2763
2764 mutex_lock(&mutex);
2765 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2766 /*
2767 * Make sure that internally we keep jiffies.
2768 * Also, writing zero resets the timeslice to default:
2769 */
2770 if (!ret && write) {
2771 sched_rr_timeslice =
2772 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2773 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2774 }
2775 mutex_unlock(&mutex);
2776
2777 return ret;
2778 }
2779
2780 #ifdef CONFIG_SCHED_DEBUG
2781 void print_rt_stats(struct seq_file *m, int cpu)
2782 {
2783 rt_rq_iter_t iter;
2784 struct rt_rq *rt_rq;
2785
2786 rcu_read_lock();
2787 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2788 print_rt_rq(m, cpu, rt_rq);
2789 rcu_read_unlock();
2790 }
2791 #endif /* CONFIG_SCHED_DEBUG */