]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/rt.c
facc824334fb0f2894faac43d4b755beab19c3ed
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14 struct rt_bandwidth def_rt_bandwidth;
15
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75 #if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82
83 rt_rq->rt_time = 0;
84 rt_rq->rt_throttled = 0;
85 rt_rq->rt_runtime = 0;
86 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87 }
88
89 #ifdef CONFIG_RT_GROUP_SCHED
90 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91 {
92 hrtimer_cancel(&rt_b->rt_period_timer);
93 }
94
95 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96
97 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98 {
99 #ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101 #endif
102 return container_of(rt_se, struct task_struct, rt);
103 }
104
105 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106 {
107 return rt_rq->rq;
108 }
109
110 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111 {
112 return rt_se->rt_rq;
113 }
114
115 void free_rt_sched_group(struct task_group *tg)
116 {
117 int i;
118
119 if (tg->rt_se)
120 destroy_rt_bandwidth(&tg->rt_bandwidth);
121
122 for_each_possible_cpu(i) {
123 if (tg->rt_rq)
124 kfree(tg->rt_rq[i]);
125 if (tg->rt_se)
126 kfree(tg->rt_se[i]);
127 }
128
129 kfree(tg->rt_rq);
130 kfree(tg->rt_se);
131 }
132
133 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 struct sched_rt_entity *rt_se, int cpu,
135 struct sched_rt_entity *parent)
136 {
137 struct rq *rq = cpu_rq(cpu);
138
139 rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 rt_rq->rt_nr_boosted = 0;
141 rt_rq->rq = rq;
142 rt_rq->tg = tg;
143
144 tg->rt_rq[cpu] = rt_rq;
145 tg->rt_se[cpu] = rt_se;
146
147 if (!rt_se)
148 return;
149
150 if (!parent)
151 rt_se->rt_rq = &rq->rt;
152 else
153 rt_se->rt_rq = parent->my_q;
154
155 rt_se->my_q = rt_rq;
156 rt_se->parent = parent;
157 INIT_LIST_HEAD(&rt_se->run_list);
158 }
159
160 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161 {
162 struct rt_rq *rt_rq;
163 struct sched_rt_entity *rt_se;
164 int i;
165
166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 if (!tg->rt_rq)
168 goto err;
169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 if (!tg->rt_se)
171 goto err;
172
173 init_rt_bandwidth(&tg->rt_bandwidth,
174 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175
176 for_each_possible_cpu(i) {
177 rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 GFP_KERNEL, cpu_to_node(i));
179 if (!rt_rq)
180 goto err;
181
182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 GFP_KERNEL, cpu_to_node(i));
184 if (!rt_se)
185 goto err_free_rq;
186
187 init_rt_rq(rt_rq, cpu_rq(i));
188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 }
191
192 return 1;
193
194 err_free_rq:
195 kfree(rt_rq);
196 err:
197 return 0;
198 }
199
200 #else /* CONFIG_RT_GROUP_SCHED */
201
202 #define rt_entity_is_task(rt_se) (1)
203
204 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205 {
206 return container_of(rt_se, struct task_struct, rt);
207 }
208
209 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210 {
211 return container_of(rt_rq, struct rq, rt);
212 }
213
214 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215 {
216 struct task_struct *p = rt_task_of(rt_se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->rt;
220 }
221
222 void free_rt_sched_group(struct task_group *tg) { }
223
224 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225 {
226 return 1;
227 }
228 #endif /* CONFIG_RT_GROUP_SCHED */
229
230 #ifdef CONFIG_SMP
231
232 static int pull_rt_task(struct rq *this_rq);
233
234 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
235 {
236 /* Try to pull RT tasks here if we lower this rq's prio */
237 return rq->rt.highest_prio.curr > prev->prio;
238 }
239
240 static inline int rt_overloaded(struct rq *rq)
241 {
242 return atomic_read(&rq->rd->rto_count);
243 }
244
245 static inline void rt_set_overload(struct rq *rq)
246 {
247 if (!rq->online)
248 return;
249
250 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
251 /*
252 * Make sure the mask is visible before we set
253 * the overload count. That is checked to determine
254 * if we should look at the mask. It would be a shame
255 * if we looked at the mask, but the mask was not
256 * updated yet.
257 *
258 * Matched by the barrier in pull_rt_task().
259 */
260 smp_wmb();
261 atomic_inc(&rq->rd->rto_count);
262 }
263
264 static inline void rt_clear_overload(struct rq *rq)
265 {
266 if (!rq->online)
267 return;
268
269 /* the order here really doesn't matter */
270 atomic_dec(&rq->rd->rto_count);
271 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
272 }
273
274 static void update_rt_migration(struct rt_rq *rt_rq)
275 {
276 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
277 if (!rt_rq->overloaded) {
278 rt_set_overload(rq_of_rt_rq(rt_rq));
279 rt_rq->overloaded = 1;
280 }
281 } else if (rt_rq->overloaded) {
282 rt_clear_overload(rq_of_rt_rq(rt_rq));
283 rt_rq->overloaded = 0;
284 }
285 }
286
287 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
288 {
289 struct task_struct *p;
290
291 if (!rt_entity_is_task(rt_se))
292 return;
293
294 p = rt_task_of(rt_se);
295 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
296
297 rt_rq->rt_nr_total++;
298 if (p->nr_cpus_allowed > 1)
299 rt_rq->rt_nr_migratory++;
300
301 update_rt_migration(rt_rq);
302 }
303
304 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
305 {
306 struct task_struct *p;
307
308 if (!rt_entity_is_task(rt_se))
309 return;
310
311 p = rt_task_of(rt_se);
312 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
313
314 rt_rq->rt_nr_total--;
315 if (p->nr_cpus_allowed > 1)
316 rt_rq->rt_nr_migratory--;
317
318 update_rt_migration(rt_rq);
319 }
320
321 static inline int has_pushable_tasks(struct rq *rq)
322 {
323 return !plist_head_empty(&rq->rt.pushable_tasks);
324 }
325
326 static inline void set_post_schedule(struct rq *rq)
327 {
328 /*
329 * We detect this state here so that we can avoid taking the RQ
330 * lock again later if there is no need to push
331 */
332 rq->post_schedule = has_pushable_tasks(rq);
333 }
334
335 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
336 {
337 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
338 plist_node_init(&p->pushable_tasks, p->prio);
339 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
340
341 /* Update the highest prio pushable task */
342 if (p->prio < rq->rt.highest_prio.next)
343 rq->rt.highest_prio.next = p->prio;
344 }
345
346 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
347 {
348 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
349
350 /* Update the new highest prio pushable task */
351 if (has_pushable_tasks(rq)) {
352 p = plist_first_entry(&rq->rt.pushable_tasks,
353 struct task_struct, pushable_tasks);
354 rq->rt.highest_prio.next = p->prio;
355 } else
356 rq->rt.highest_prio.next = MAX_RT_PRIO;
357 }
358
359 #else
360
361 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
362 {
363 }
364
365 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
366 {
367 }
368
369 static inline
370 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
371 {
372 }
373
374 static inline
375 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
376 {
377 }
378
379 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
380 {
381 return false;
382 }
383
384 static inline int pull_rt_task(struct rq *this_rq)
385 {
386 return 0;
387 }
388
389 static inline void set_post_schedule(struct rq *rq)
390 {
391 }
392 #endif /* CONFIG_SMP */
393
394 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
395 {
396 return !list_empty(&rt_se->run_list);
397 }
398
399 #ifdef CONFIG_RT_GROUP_SCHED
400
401 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
402 {
403 if (!rt_rq->tg)
404 return RUNTIME_INF;
405
406 return rt_rq->rt_runtime;
407 }
408
409 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
410 {
411 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
412 }
413
414 typedef struct task_group *rt_rq_iter_t;
415
416 static inline struct task_group *next_task_group(struct task_group *tg)
417 {
418 do {
419 tg = list_entry_rcu(tg->list.next,
420 typeof(struct task_group), list);
421 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
422
423 if (&tg->list == &task_groups)
424 tg = NULL;
425
426 return tg;
427 }
428
429 #define for_each_rt_rq(rt_rq, iter, rq) \
430 for (iter = container_of(&task_groups, typeof(*iter), list); \
431 (iter = next_task_group(iter)) && \
432 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
433
434 #define for_each_sched_rt_entity(rt_se) \
435 for (; rt_se; rt_se = rt_se->parent)
436
437 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
438 {
439 return rt_se->my_q;
440 }
441
442 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
443 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
444
445 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
446 {
447 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
448 struct sched_rt_entity *rt_se;
449
450 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
451
452 rt_se = rt_rq->tg->rt_se[cpu];
453
454 if (rt_rq->rt_nr_running) {
455 if (rt_se && !on_rt_rq(rt_se))
456 enqueue_rt_entity(rt_se, false);
457 if (rt_rq->highest_prio.curr < curr->prio)
458 resched_task(curr);
459 }
460 }
461
462 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
463 {
464 struct sched_rt_entity *rt_se;
465 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
466
467 rt_se = rt_rq->tg->rt_se[cpu];
468
469 if (rt_se && on_rt_rq(rt_se))
470 dequeue_rt_entity(rt_se);
471 }
472
473 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
474 {
475 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
476 }
477
478 static int rt_se_boosted(struct sched_rt_entity *rt_se)
479 {
480 struct rt_rq *rt_rq = group_rt_rq(rt_se);
481 struct task_struct *p;
482
483 if (rt_rq)
484 return !!rt_rq->rt_nr_boosted;
485
486 p = rt_task_of(rt_se);
487 return p->prio != p->normal_prio;
488 }
489
490 #ifdef CONFIG_SMP
491 static inline const struct cpumask *sched_rt_period_mask(void)
492 {
493 return this_rq()->rd->span;
494 }
495 #else
496 static inline const struct cpumask *sched_rt_period_mask(void)
497 {
498 return cpu_online_mask;
499 }
500 #endif
501
502 static inline
503 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
504 {
505 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
506 }
507
508 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
509 {
510 return &rt_rq->tg->rt_bandwidth;
511 }
512
513 #else /* !CONFIG_RT_GROUP_SCHED */
514
515 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
516 {
517 return rt_rq->rt_runtime;
518 }
519
520 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
521 {
522 return ktime_to_ns(def_rt_bandwidth.rt_period);
523 }
524
525 typedef struct rt_rq *rt_rq_iter_t;
526
527 #define for_each_rt_rq(rt_rq, iter, rq) \
528 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
529
530 #define for_each_sched_rt_entity(rt_se) \
531 for (; rt_se; rt_se = NULL)
532
533 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
534 {
535 return NULL;
536 }
537
538 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
539 {
540 if (rt_rq->rt_nr_running)
541 resched_task(rq_of_rt_rq(rt_rq)->curr);
542 }
543
544 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
545 {
546 }
547
548 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
549 {
550 return rt_rq->rt_throttled;
551 }
552
553 static inline const struct cpumask *sched_rt_period_mask(void)
554 {
555 return cpu_online_mask;
556 }
557
558 static inline
559 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
560 {
561 return &cpu_rq(cpu)->rt;
562 }
563
564 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
565 {
566 return &def_rt_bandwidth;
567 }
568
569 #endif /* CONFIG_RT_GROUP_SCHED */
570
571 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
572 {
573 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
574
575 return (hrtimer_active(&rt_b->rt_period_timer) ||
576 rt_rq->rt_time < rt_b->rt_runtime);
577 }
578
579 #ifdef CONFIG_SMP
580 /*
581 * We ran out of runtime, see if we can borrow some from our neighbours.
582 */
583 static int do_balance_runtime(struct rt_rq *rt_rq)
584 {
585 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
586 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
587 int i, weight, more = 0;
588 u64 rt_period;
589
590 weight = cpumask_weight(rd->span);
591
592 raw_spin_lock(&rt_b->rt_runtime_lock);
593 rt_period = ktime_to_ns(rt_b->rt_period);
594 for_each_cpu(i, rd->span) {
595 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
596 s64 diff;
597
598 if (iter == rt_rq)
599 continue;
600
601 raw_spin_lock(&iter->rt_runtime_lock);
602 /*
603 * Either all rqs have inf runtime and there's nothing to steal
604 * or __disable_runtime() below sets a specific rq to inf to
605 * indicate its been disabled and disalow stealing.
606 */
607 if (iter->rt_runtime == RUNTIME_INF)
608 goto next;
609
610 /*
611 * From runqueues with spare time, take 1/n part of their
612 * spare time, but no more than our period.
613 */
614 diff = iter->rt_runtime - iter->rt_time;
615 if (diff > 0) {
616 diff = div_u64((u64)diff, weight);
617 if (rt_rq->rt_runtime + diff > rt_period)
618 diff = rt_period - rt_rq->rt_runtime;
619 iter->rt_runtime -= diff;
620 rt_rq->rt_runtime += diff;
621 more = 1;
622 if (rt_rq->rt_runtime == rt_period) {
623 raw_spin_unlock(&iter->rt_runtime_lock);
624 break;
625 }
626 }
627 next:
628 raw_spin_unlock(&iter->rt_runtime_lock);
629 }
630 raw_spin_unlock(&rt_b->rt_runtime_lock);
631
632 return more;
633 }
634
635 /*
636 * Ensure this RQ takes back all the runtime it lend to its neighbours.
637 */
638 static void __disable_runtime(struct rq *rq)
639 {
640 struct root_domain *rd = rq->rd;
641 rt_rq_iter_t iter;
642 struct rt_rq *rt_rq;
643
644 if (unlikely(!scheduler_running))
645 return;
646
647 for_each_rt_rq(rt_rq, iter, rq) {
648 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
649 s64 want;
650 int i;
651
652 raw_spin_lock(&rt_b->rt_runtime_lock);
653 raw_spin_lock(&rt_rq->rt_runtime_lock);
654 /*
655 * Either we're all inf and nobody needs to borrow, or we're
656 * already disabled and thus have nothing to do, or we have
657 * exactly the right amount of runtime to take out.
658 */
659 if (rt_rq->rt_runtime == RUNTIME_INF ||
660 rt_rq->rt_runtime == rt_b->rt_runtime)
661 goto balanced;
662 raw_spin_unlock(&rt_rq->rt_runtime_lock);
663
664 /*
665 * Calculate the difference between what we started out with
666 * and what we current have, that's the amount of runtime
667 * we lend and now have to reclaim.
668 */
669 want = rt_b->rt_runtime - rt_rq->rt_runtime;
670
671 /*
672 * Greedy reclaim, take back as much as we can.
673 */
674 for_each_cpu(i, rd->span) {
675 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
676 s64 diff;
677
678 /*
679 * Can't reclaim from ourselves or disabled runqueues.
680 */
681 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
682 continue;
683
684 raw_spin_lock(&iter->rt_runtime_lock);
685 if (want > 0) {
686 diff = min_t(s64, iter->rt_runtime, want);
687 iter->rt_runtime -= diff;
688 want -= diff;
689 } else {
690 iter->rt_runtime -= want;
691 want -= want;
692 }
693 raw_spin_unlock(&iter->rt_runtime_lock);
694
695 if (!want)
696 break;
697 }
698
699 raw_spin_lock(&rt_rq->rt_runtime_lock);
700 /*
701 * We cannot be left wanting - that would mean some runtime
702 * leaked out of the system.
703 */
704 BUG_ON(want);
705 balanced:
706 /*
707 * Disable all the borrow logic by pretending we have inf
708 * runtime - in which case borrowing doesn't make sense.
709 */
710 rt_rq->rt_runtime = RUNTIME_INF;
711 rt_rq->rt_throttled = 0;
712 raw_spin_unlock(&rt_rq->rt_runtime_lock);
713 raw_spin_unlock(&rt_b->rt_runtime_lock);
714 }
715 }
716
717 static void __enable_runtime(struct rq *rq)
718 {
719 rt_rq_iter_t iter;
720 struct rt_rq *rt_rq;
721
722 if (unlikely(!scheduler_running))
723 return;
724
725 /*
726 * Reset each runqueue's bandwidth settings
727 */
728 for_each_rt_rq(rt_rq, iter, rq) {
729 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
730
731 raw_spin_lock(&rt_b->rt_runtime_lock);
732 raw_spin_lock(&rt_rq->rt_runtime_lock);
733 rt_rq->rt_runtime = rt_b->rt_runtime;
734 rt_rq->rt_time = 0;
735 rt_rq->rt_throttled = 0;
736 raw_spin_unlock(&rt_rq->rt_runtime_lock);
737 raw_spin_unlock(&rt_b->rt_runtime_lock);
738 }
739 }
740
741 static int balance_runtime(struct rt_rq *rt_rq)
742 {
743 int more = 0;
744
745 if (!sched_feat(RT_RUNTIME_SHARE))
746 return more;
747
748 if (rt_rq->rt_time > rt_rq->rt_runtime) {
749 raw_spin_unlock(&rt_rq->rt_runtime_lock);
750 more = do_balance_runtime(rt_rq);
751 raw_spin_lock(&rt_rq->rt_runtime_lock);
752 }
753
754 return more;
755 }
756 #else /* !CONFIG_SMP */
757 static inline int balance_runtime(struct rt_rq *rt_rq)
758 {
759 return 0;
760 }
761 #endif /* CONFIG_SMP */
762
763 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
764 {
765 int i, idle = 1, throttled = 0;
766 const struct cpumask *span;
767
768 span = sched_rt_period_mask();
769 #ifdef CONFIG_RT_GROUP_SCHED
770 /*
771 * FIXME: isolated CPUs should really leave the root task group,
772 * whether they are isolcpus or were isolated via cpusets, lest
773 * the timer run on a CPU which does not service all runqueues,
774 * potentially leaving other CPUs indefinitely throttled. If
775 * isolation is really required, the user will turn the throttle
776 * off to kill the perturbations it causes anyway. Meanwhile,
777 * this maintains functionality for boot and/or troubleshooting.
778 */
779 if (rt_b == &root_task_group.rt_bandwidth)
780 span = cpu_online_mask;
781 #endif
782 for_each_cpu(i, span) {
783 int enqueue = 0;
784 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
785 struct rq *rq = rq_of_rt_rq(rt_rq);
786
787 raw_spin_lock(&rq->lock);
788 if (rt_rq->rt_time) {
789 u64 runtime;
790
791 raw_spin_lock(&rt_rq->rt_runtime_lock);
792 if (rt_rq->rt_throttled)
793 balance_runtime(rt_rq);
794 runtime = rt_rq->rt_runtime;
795 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
796 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
797 rt_rq->rt_throttled = 0;
798 enqueue = 1;
799
800 /*
801 * Force a clock update if the CPU was idle,
802 * lest wakeup -> unthrottle time accumulate.
803 */
804 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
805 rq->skip_clock_update = -1;
806 }
807 if (rt_rq->rt_time || rt_rq->rt_nr_running)
808 idle = 0;
809 raw_spin_unlock(&rt_rq->rt_runtime_lock);
810 } else if (rt_rq->rt_nr_running) {
811 idle = 0;
812 if (!rt_rq_throttled(rt_rq))
813 enqueue = 1;
814 }
815 if (rt_rq->rt_throttled)
816 throttled = 1;
817
818 if (enqueue)
819 sched_rt_rq_enqueue(rt_rq);
820 raw_spin_unlock(&rq->lock);
821 }
822
823 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
824 return 1;
825
826 return idle;
827 }
828
829 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
830 {
831 #ifdef CONFIG_RT_GROUP_SCHED
832 struct rt_rq *rt_rq = group_rt_rq(rt_se);
833
834 if (rt_rq)
835 return rt_rq->highest_prio.curr;
836 #endif
837
838 return rt_task_of(rt_se)->prio;
839 }
840
841 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
842 {
843 u64 runtime = sched_rt_runtime(rt_rq);
844
845 if (rt_rq->rt_throttled)
846 return rt_rq_throttled(rt_rq);
847
848 if (runtime >= sched_rt_period(rt_rq))
849 return 0;
850
851 balance_runtime(rt_rq);
852 runtime = sched_rt_runtime(rt_rq);
853 if (runtime == RUNTIME_INF)
854 return 0;
855
856 if (rt_rq->rt_time > runtime) {
857 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
858
859 /*
860 * Don't actually throttle groups that have no runtime assigned
861 * but accrue some time due to boosting.
862 */
863 if (likely(rt_b->rt_runtime)) {
864 static bool once = false;
865
866 rt_rq->rt_throttled = 1;
867
868 if (!once) {
869 once = true;
870 printk_sched("sched: RT throttling activated\n");
871 }
872 } else {
873 /*
874 * In case we did anyway, make it go away,
875 * replenishment is a joke, since it will replenish us
876 * with exactly 0 ns.
877 */
878 rt_rq->rt_time = 0;
879 }
880
881 if (rt_rq_throttled(rt_rq)) {
882 sched_rt_rq_dequeue(rt_rq);
883 return 1;
884 }
885 }
886
887 return 0;
888 }
889
890 /*
891 * Update the current task's runtime statistics. Skip current tasks that
892 * are not in our scheduling class.
893 */
894 static void update_curr_rt(struct rq *rq)
895 {
896 struct task_struct *curr = rq->curr;
897 struct sched_rt_entity *rt_se = &curr->rt;
898 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
899 u64 delta_exec;
900
901 if (curr->sched_class != &rt_sched_class)
902 return;
903
904 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
905 if (unlikely((s64)delta_exec <= 0))
906 return;
907
908 schedstat_set(curr->se.statistics.exec_max,
909 max(curr->se.statistics.exec_max, delta_exec));
910
911 curr->se.sum_exec_runtime += delta_exec;
912 account_group_exec_runtime(curr, delta_exec);
913
914 curr->se.exec_start = rq_clock_task(rq);
915 cpuacct_charge(curr, delta_exec);
916
917 sched_rt_avg_update(rq, delta_exec);
918
919 if (!rt_bandwidth_enabled())
920 return;
921
922 for_each_sched_rt_entity(rt_se) {
923 rt_rq = rt_rq_of_se(rt_se);
924
925 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
926 raw_spin_lock(&rt_rq->rt_runtime_lock);
927 rt_rq->rt_time += delta_exec;
928 if (sched_rt_runtime_exceeded(rt_rq))
929 resched_task(curr);
930 raw_spin_unlock(&rt_rq->rt_runtime_lock);
931 }
932 }
933 }
934
935 #if defined CONFIG_SMP
936
937 static void
938 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
939 {
940 struct rq *rq = rq_of_rt_rq(rt_rq);
941
942 #ifdef CONFIG_RT_GROUP_SCHED
943 /*
944 * Change rq's cpupri only if rt_rq is the top queue.
945 */
946 if (&rq->rt != rt_rq)
947 return;
948 #endif
949 if (rq->online && prio < prev_prio)
950 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
951 }
952
953 static void
954 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
955 {
956 struct rq *rq = rq_of_rt_rq(rt_rq);
957
958 #ifdef CONFIG_RT_GROUP_SCHED
959 /*
960 * Change rq's cpupri only if rt_rq is the top queue.
961 */
962 if (&rq->rt != rt_rq)
963 return;
964 #endif
965 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
966 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
967 }
968
969 #else /* CONFIG_SMP */
970
971 static inline
972 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
973 static inline
974 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
975
976 #endif /* CONFIG_SMP */
977
978 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
979 static void
980 inc_rt_prio(struct rt_rq *rt_rq, int prio)
981 {
982 int prev_prio = rt_rq->highest_prio.curr;
983
984 if (prio < prev_prio)
985 rt_rq->highest_prio.curr = prio;
986
987 inc_rt_prio_smp(rt_rq, prio, prev_prio);
988 }
989
990 static void
991 dec_rt_prio(struct rt_rq *rt_rq, int prio)
992 {
993 int prev_prio = rt_rq->highest_prio.curr;
994
995 if (rt_rq->rt_nr_running) {
996
997 WARN_ON(prio < prev_prio);
998
999 /*
1000 * This may have been our highest task, and therefore
1001 * we may have some recomputation to do
1002 */
1003 if (prio == prev_prio) {
1004 struct rt_prio_array *array = &rt_rq->active;
1005
1006 rt_rq->highest_prio.curr =
1007 sched_find_first_bit(array->bitmap);
1008 }
1009
1010 } else
1011 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1012
1013 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1014 }
1015
1016 #else
1017
1018 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1019 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1020
1021 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1022
1023 #ifdef CONFIG_RT_GROUP_SCHED
1024
1025 static void
1026 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1027 {
1028 if (rt_se_boosted(rt_se))
1029 rt_rq->rt_nr_boosted++;
1030
1031 if (rt_rq->tg)
1032 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1033 }
1034
1035 static void
1036 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1037 {
1038 if (rt_se_boosted(rt_se))
1039 rt_rq->rt_nr_boosted--;
1040
1041 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1042 }
1043
1044 #else /* CONFIG_RT_GROUP_SCHED */
1045
1046 static void
1047 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1048 {
1049 start_rt_bandwidth(&def_rt_bandwidth);
1050 }
1051
1052 static inline
1053 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1054
1055 #endif /* CONFIG_RT_GROUP_SCHED */
1056
1057 static inline
1058 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1059 {
1060 int prio = rt_se_prio(rt_se);
1061
1062 WARN_ON(!rt_prio(prio));
1063 rt_rq->rt_nr_running++;
1064
1065 inc_rt_prio(rt_rq, prio);
1066 inc_rt_migration(rt_se, rt_rq);
1067 inc_rt_group(rt_se, rt_rq);
1068 }
1069
1070 static inline
1071 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1072 {
1073 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1074 WARN_ON(!rt_rq->rt_nr_running);
1075 rt_rq->rt_nr_running--;
1076
1077 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1078 dec_rt_migration(rt_se, rt_rq);
1079 dec_rt_group(rt_se, rt_rq);
1080 }
1081
1082 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1083 {
1084 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1085 struct rt_prio_array *array = &rt_rq->active;
1086 struct rt_rq *group_rq = group_rt_rq(rt_se);
1087 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1088
1089 /*
1090 * Don't enqueue the group if its throttled, or when empty.
1091 * The latter is a consequence of the former when a child group
1092 * get throttled and the current group doesn't have any other
1093 * active members.
1094 */
1095 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1096 return;
1097
1098 if (head)
1099 list_add(&rt_se->run_list, queue);
1100 else
1101 list_add_tail(&rt_se->run_list, queue);
1102 __set_bit(rt_se_prio(rt_se), array->bitmap);
1103
1104 inc_rt_tasks(rt_se, rt_rq);
1105 }
1106
1107 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1108 {
1109 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1110 struct rt_prio_array *array = &rt_rq->active;
1111
1112 list_del_init(&rt_se->run_list);
1113 if (list_empty(array->queue + rt_se_prio(rt_se)))
1114 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1115
1116 dec_rt_tasks(rt_se, rt_rq);
1117 }
1118
1119 /*
1120 * Because the prio of an upper entry depends on the lower
1121 * entries, we must remove entries top - down.
1122 */
1123 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1124 {
1125 struct sched_rt_entity *back = NULL;
1126
1127 for_each_sched_rt_entity(rt_se) {
1128 rt_se->back = back;
1129 back = rt_se;
1130 }
1131
1132 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1133 if (on_rt_rq(rt_se))
1134 __dequeue_rt_entity(rt_se);
1135 }
1136 }
1137
1138 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1139 {
1140 dequeue_rt_stack(rt_se);
1141 for_each_sched_rt_entity(rt_se)
1142 __enqueue_rt_entity(rt_se, head);
1143 }
1144
1145 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1146 {
1147 dequeue_rt_stack(rt_se);
1148
1149 for_each_sched_rt_entity(rt_se) {
1150 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1151
1152 if (rt_rq && rt_rq->rt_nr_running)
1153 __enqueue_rt_entity(rt_se, false);
1154 }
1155 }
1156
1157 /*
1158 * Adding/removing a task to/from a priority array:
1159 */
1160 static void
1161 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1162 {
1163 struct sched_rt_entity *rt_se = &p->rt;
1164
1165 if (flags & ENQUEUE_WAKEUP)
1166 rt_se->timeout = 0;
1167
1168 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1169
1170 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1171 enqueue_pushable_task(rq, p);
1172
1173 inc_nr_running(rq);
1174 }
1175
1176 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1177 {
1178 struct sched_rt_entity *rt_se = &p->rt;
1179
1180 update_curr_rt(rq);
1181 dequeue_rt_entity(rt_se);
1182
1183 dequeue_pushable_task(rq, p);
1184
1185 dec_nr_running(rq);
1186 }
1187
1188 /*
1189 * Put task to the head or the end of the run list without the overhead of
1190 * dequeue followed by enqueue.
1191 */
1192 static void
1193 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1194 {
1195 if (on_rt_rq(rt_se)) {
1196 struct rt_prio_array *array = &rt_rq->active;
1197 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1198
1199 if (head)
1200 list_move(&rt_se->run_list, queue);
1201 else
1202 list_move_tail(&rt_se->run_list, queue);
1203 }
1204 }
1205
1206 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1207 {
1208 struct sched_rt_entity *rt_se = &p->rt;
1209 struct rt_rq *rt_rq;
1210
1211 for_each_sched_rt_entity(rt_se) {
1212 rt_rq = rt_rq_of_se(rt_se);
1213 requeue_rt_entity(rt_rq, rt_se, head);
1214 }
1215 }
1216
1217 static void yield_task_rt(struct rq *rq)
1218 {
1219 requeue_task_rt(rq, rq->curr, 0);
1220 }
1221
1222 #ifdef CONFIG_SMP
1223 static int find_lowest_rq(struct task_struct *task);
1224
1225 static int
1226 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1227 {
1228 struct task_struct *curr;
1229 struct rq *rq;
1230
1231 if (p->nr_cpus_allowed == 1)
1232 goto out;
1233
1234 /* For anything but wake ups, just return the task_cpu */
1235 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1236 goto out;
1237
1238 rq = cpu_rq(cpu);
1239
1240 rcu_read_lock();
1241 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1242
1243 /*
1244 * If the current task on @p's runqueue is an RT task, then
1245 * try to see if we can wake this RT task up on another
1246 * runqueue. Otherwise simply start this RT task
1247 * on its current runqueue.
1248 *
1249 * We want to avoid overloading runqueues. If the woken
1250 * task is a higher priority, then it will stay on this CPU
1251 * and the lower prio task should be moved to another CPU.
1252 * Even though this will probably make the lower prio task
1253 * lose its cache, we do not want to bounce a higher task
1254 * around just because it gave up its CPU, perhaps for a
1255 * lock?
1256 *
1257 * For equal prio tasks, we just let the scheduler sort it out.
1258 *
1259 * Otherwise, just let it ride on the affined RQ and the
1260 * post-schedule router will push the preempted task away
1261 *
1262 * This test is optimistic, if we get it wrong the load-balancer
1263 * will have to sort it out.
1264 */
1265 if (curr && unlikely(rt_task(curr)) &&
1266 (curr->nr_cpus_allowed < 2 ||
1267 curr->prio <= p->prio)) {
1268 int target = find_lowest_rq(p);
1269
1270 if (target != -1)
1271 cpu = target;
1272 }
1273 rcu_read_unlock();
1274
1275 out:
1276 return cpu;
1277 }
1278
1279 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1280 {
1281 if (rq->curr->nr_cpus_allowed == 1)
1282 return;
1283
1284 if (p->nr_cpus_allowed != 1
1285 && cpupri_find(&rq->rd->cpupri, p, NULL))
1286 return;
1287
1288 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1289 return;
1290
1291 /*
1292 * There appears to be other cpus that can accept
1293 * current and none to run 'p', so lets reschedule
1294 * to try and push current away:
1295 */
1296 requeue_task_rt(rq, p, 1);
1297 resched_task(rq->curr);
1298 }
1299
1300 #endif /* CONFIG_SMP */
1301
1302 /*
1303 * Preempt the current task with a newly woken task if needed:
1304 */
1305 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1306 {
1307 if (p->prio < rq->curr->prio) {
1308 resched_task(rq->curr);
1309 return;
1310 }
1311
1312 #ifdef CONFIG_SMP
1313 /*
1314 * If:
1315 *
1316 * - the newly woken task is of equal priority to the current task
1317 * - the newly woken task is non-migratable while current is migratable
1318 * - current will be preempted on the next reschedule
1319 *
1320 * we should check to see if current can readily move to a different
1321 * cpu. If so, we will reschedule to allow the push logic to try
1322 * to move current somewhere else, making room for our non-migratable
1323 * task.
1324 */
1325 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1326 check_preempt_equal_prio(rq, p);
1327 #endif
1328 }
1329
1330 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1331 struct rt_rq *rt_rq)
1332 {
1333 struct rt_prio_array *array = &rt_rq->active;
1334 struct sched_rt_entity *next = NULL;
1335 struct list_head *queue;
1336 int idx;
1337
1338 idx = sched_find_first_bit(array->bitmap);
1339 BUG_ON(idx >= MAX_RT_PRIO);
1340
1341 queue = array->queue + idx;
1342 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1343
1344 return next;
1345 }
1346
1347 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1348 {
1349 struct sched_rt_entity *rt_se;
1350 struct task_struct *p;
1351 struct rt_rq *rt_rq = &rq->rt;
1352
1353 do {
1354 rt_se = pick_next_rt_entity(rq, rt_rq);
1355 BUG_ON(!rt_se);
1356 rt_rq = group_rt_rq(rt_se);
1357 } while (rt_rq);
1358
1359 p = rt_task_of(rt_se);
1360 p->se.exec_start = rq_clock_task(rq);
1361
1362 return p;
1363 }
1364
1365 static struct task_struct *
1366 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1367 {
1368 struct task_struct *p;
1369 struct rt_rq *rt_rq = &rq->rt;
1370
1371 if (need_pull_rt_task(rq, prev)) {
1372 pull_rt_task(rq);
1373 /*
1374 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1375 * means a dl task can slip in, in which case we need to
1376 * re-start task selection.
1377 */
1378 if (unlikely(rq->dl.dl_nr_running))
1379 return RETRY_TASK;
1380 }
1381
1382 if (!rt_rq->rt_nr_running)
1383 return NULL;
1384
1385 if (rt_rq_throttled(rt_rq))
1386 return NULL;
1387
1388 put_prev_task(rq, prev);
1389
1390 p = _pick_next_task_rt(rq);
1391
1392 /* The running task is never eligible for pushing */
1393 if (p)
1394 dequeue_pushable_task(rq, p);
1395
1396 set_post_schedule(rq);
1397
1398 return p;
1399 }
1400
1401 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1402 {
1403 update_curr_rt(rq);
1404
1405 /*
1406 * The previous task needs to be made eligible for pushing
1407 * if it is still active
1408 */
1409 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1410 enqueue_pushable_task(rq, p);
1411 }
1412
1413 #ifdef CONFIG_SMP
1414
1415 /* Only try algorithms three times */
1416 #define RT_MAX_TRIES 3
1417
1418 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1419 {
1420 if (!task_running(rq, p) &&
1421 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1422 return 1;
1423 return 0;
1424 }
1425
1426 /*
1427 * Return the highest pushable rq's task, which is suitable to be executed
1428 * on the cpu, NULL otherwise
1429 */
1430 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1431 {
1432 struct plist_head *head = &rq->rt.pushable_tasks;
1433 struct task_struct *p;
1434
1435 if (!has_pushable_tasks(rq))
1436 return NULL;
1437
1438 plist_for_each_entry(p, head, pushable_tasks) {
1439 if (pick_rt_task(rq, p, cpu))
1440 return p;
1441 }
1442
1443 return NULL;
1444 }
1445
1446 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1447
1448 static int find_lowest_rq(struct task_struct *task)
1449 {
1450 struct sched_domain *sd;
1451 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1452 int this_cpu = smp_processor_id();
1453 int cpu = task_cpu(task);
1454
1455 /* Make sure the mask is initialized first */
1456 if (unlikely(!lowest_mask))
1457 return -1;
1458
1459 if (task->nr_cpus_allowed == 1)
1460 return -1; /* No other targets possible */
1461
1462 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1463 return -1; /* No targets found */
1464
1465 /*
1466 * At this point we have built a mask of cpus representing the
1467 * lowest priority tasks in the system. Now we want to elect
1468 * the best one based on our affinity and topology.
1469 *
1470 * We prioritize the last cpu that the task executed on since
1471 * it is most likely cache-hot in that location.
1472 */
1473 if (cpumask_test_cpu(cpu, lowest_mask))
1474 return cpu;
1475
1476 /*
1477 * Otherwise, we consult the sched_domains span maps to figure
1478 * out which cpu is logically closest to our hot cache data.
1479 */
1480 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1481 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1482
1483 rcu_read_lock();
1484 for_each_domain(cpu, sd) {
1485 if (sd->flags & SD_WAKE_AFFINE) {
1486 int best_cpu;
1487
1488 /*
1489 * "this_cpu" is cheaper to preempt than a
1490 * remote processor.
1491 */
1492 if (this_cpu != -1 &&
1493 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1494 rcu_read_unlock();
1495 return this_cpu;
1496 }
1497
1498 best_cpu = cpumask_first_and(lowest_mask,
1499 sched_domain_span(sd));
1500 if (best_cpu < nr_cpu_ids) {
1501 rcu_read_unlock();
1502 return best_cpu;
1503 }
1504 }
1505 }
1506 rcu_read_unlock();
1507
1508 /*
1509 * And finally, if there were no matches within the domains
1510 * just give the caller *something* to work with from the compatible
1511 * locations.
1512 */
1513 if (this_cpu != -1)
1514 return this_cpu;
1515
1516 cpu = cpumask_any(lowest_mask);
1517 if (cpu < nr_cpu_ids)
1518 return cpu;
1519 return -1;
1520 }
1521
1522 /* Will lock the rq it finds */
1523 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1524 {
1525 struct rq *lowest_rq = NULL;
1526 int tries;
1527 int cpu;
1528
1529 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1530 cpu = find_lowest_rq(task);
1531
1532 if ((cpu == -1) || (cpu == rq->cpu))
1533 break;
1534
1535 lowest_rq = cpu_rq(cpu);
1536
1537 /* if the prio of this runqueue changed, try again */
1538 if (double_lock_balance(rq, lowest_rq)) {
1539 /*
1540 * We had to unlock the run queue. In
1541 * the mean time, task could have
1542 * migrated already or had its affinity changed.
1543 * Also make sure that it wasn't scheduled on its rq.
1544 */
1545 if (unlikely(task_rq(task) != rq ||
1546 !cpumask_test_cpu(lowest_rq->cpu,
1547 tsk_cpus_allowed(task)) ||
1548 task_running(rq, task) ||
1549 !task->on_rq)) {
1550
1551 double_unlock_balance(rq, lowest_rq);
1552 lowest_rq = NULL;
1553 break;
1554 }
1555 }
1556
1557 /* If this rq is still suitable use it. */
1558 if (lowest_rq->rt.highest_prio.curr > task->prio)
1559 break;
1560
1561 /* try again */
1562 double_unlock_balance(rq, lowest_rq);
1563 lowest_rq = NULL;
1564 }
1565
1566 return lowest_rq;
1567 }
1568
1569 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1570 {
1571 struct task_struct *p;
1572
1573 if (!has_pushable_tasks(rq))
1574 return NULL;
1575
1576 p = plist_first_entry(&rq->rt.pushable_tasks,
1577 struct task_struct, pushable_tasks);
1578
1579 BUG_ON(rq->cpu != task_cpu(p));
1580 BUG_ON(task_current(rq, p));
1581 BUG_ON(p->nr_cpus_allowed <= 1);
1582
1583 BUG_ON(!p->on_rq);
1584 BUG_ON(!rt_task(p));
1585
1586 return p;
1587 }
1588
1589 /*
1590 * If the current CPU has more than one RT task, see if the non
1591 * running task can migrate over to a CPU that is running a task
1592 * of lesser priority.
1593 */
1594 static int push_rt_task(struct rq *rq)
1595 {
1596 struct task_struct *next_task;
1597 struct rq *lowest_rq;
1598 int ret = 0;
1599
1600 if (!rq->rt.overloaded)
1601 return 0;
1602
1603 next_task = pick_next_pushable_task(rq);
1604 if (!next_task)
1605 return 0;
1606
1607 retry:
1608 if (unlikely(next_task == rq->curr)) {
1609 WARN_ON(1);
1610 return 0;
1611 }
1612
1613 /*
1614 * It's possible that the next_task slipped in of
1615 * higher priority than current. If that's the case
1616 * just reschedule current.
1617 */
1618 if (unlikely(next_task->prio < rq->curr->prio)) {
1619 resched_task(rq->curr);
1620 return 0;
1621 }
1622
1623 /* We might release rq lock */
1624 get_task_struct(next_task);
1625
1626 /* find_lock_lowest_rq locks the rq if found */
1627 lowest_rq = find_lock_lowest_rq(next_task, rq);
1628 if (!lowest_rq) {
1629 struct task_struct *task;
1630 /*
1631 * find_lock_lowest_rq releases rq->lock
1632 * so it is possible that next_task has migrated.
1633 *
1634 * We need to make sure that the task is still on the same
1635 * run-queue and is also still the next task eligible for
1636 * pushing.
1637 */
1638 task = pick_next_pushable_task(rq);
1639 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1640 /*
1641 * The task hasn't migrated, and is still the next
1642 * eligible task, but we failed to find a run-queue
1643 * to push it to. Do not retry in this case, since
1644 * other cpus will pull from us when ready.
1645 */
1646 goto out;
1647 }
1648
1649 if (!task)
1650 /* No more tasks, just exit */
1651 goto out;
1652
1653 /*
1654 * Something has shifted, try again.
1655 */
1656 put_task_struct(next_task);
1657 next_task = task;
1658 goto retry;
1659 }
1660
1661 deactivate_task(rq, next_task, 0);
1662 set_task_cpu(next_task, lowest_rq->cpu);
1663 activate_task(lowest_rq, next_task, 0);
1664 ret = 1;
1665
1666 resched_task(lowest_rq->curr);
1667
1668 double_unlock_balance(rq, lowest_rq);
1669
1670 out:
1671 put_task_struct(next_task);
1672
1673 return ret;
1674 }
1675
1676 static void push_rt_tasks(struct rq *rq)
1677 {
1678 /* push_rt_task will return true if it moved an RT */
1679 while (push_rt_task(rq))
1680 ;
1681 }
1682
1683 static int pull_rt_task(struct rq *this_rq)
1684 {
1685 int this_cpu = this_rq->cpu, ret = 0, cpu;
1686 struct task_struct *p;
1687 struct rq *src_rq;
1688
1689 if (likely(!rt_overloaded(this_rq)))
1690 return 0;
1691
1692 /*
1693 * Match the barrier from rt_set_overloaded; this guarantees that if we
1694 * see overloaded we must also see the rto_mask bit.
1695 */
1696 smp_rmb();
1697
1698 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1699 if (this_cpu == cpu)
1700 continue;
1701
1702 src_rq = cpu_rq(cpu);
1703
1704 /*
1705 * Don't bother taking the src_rq->lock if the next highest
1706 * task is known to be lower-priority than our current task.
1707 * This may look racy, but if this value is about to go
1708 * logically higher, the src_rq will push this task away.
1709 * And if its going logically lower, we do not care
1710 */
1711 if (src_rq->rt.highest_prio.next >=
1712 this_rq->rt.highest_prio.curr)
1713 continue;
1714
1715 /*
1716 * We can potentially drop this_rq's lock in
1717 * double_lock_balance, and another CPU could
1718 * alter this_rq
1719 */
1720 double_lock_balance(this_rq, src_rq);
1721
1722 /*
1723 * We can pull only a task, which is pushable
1724 * on its rq, and no others.
1725 */
1726 p = pick_highest_pushable_task(src_rq, this_cpu);
1727
1728 /*
1729 * Do we have an RT task that preempts
1730 * the to-be-scheduled task?
1731 */
1732 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1733 WARN_ON(p == src_rq->curr);
1734 WARN_ON(!p->on_rq);
1735
1736 /*
1737 * There's a chance that p is higher in priority
1738 * than what's currently running on its cpu.
1739 * This is just that p is wakeing up and hasn't
1740 * had a chance to schedule. We only pull
1741 * p if it is lower in priority than the
1742 * current task on the run queue
1743 */
1744 if (p->prio < src_rq->curr->prio)
1745 goto skip;
1746
1747 ret = 1;
1748
1749 deactivate_task(src_rq, p, 0);
1750 set_task_cpu(p, this_cpu);
1751 activate_task(this_rq, p, 0);
1752 /*
1753 * We continue with the search, just in
1754 * case there's an even higher prio task
1755 * in another runqueue. (low likelihood
1756 * but possible)
1757 */
1758 }
1759 skip:
1760 double_unlock_balance(this_rq, src_rq);
1761 }
1762
1763 return ret;
1764 }
1765
1766 static void post_schedule_rt(struct rq *rq)
1767 {
1768 push_rt_tasks(rq);
1769 }
1770
1771 /*
1772 * If we are not running and we are not going to reschedule soon, we should
1773 * try to push tasks away now
1774 */
1775 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1776 {
1777 if (!task_running(rq, p) &&
1778 !test_tsk_need_resched(rq->curr) &&
1779 has_pushable_tasks(rq) &&
1780 p->nr_cpus_allowed > 1 &&
1781 (dl_task(rq->curr) || rt_task(rq->curr)) &&
1782 (rq->curr->nr_cpus_allowed < 2 ||
1783 rq->curr->prio <= p->prio))
1784 push_rt_tasks(rq);
1785 }
1786
1787 static void set_cpus_allowed_rt(struct task_struct *p,
1788 const struct cpumask *new_mask)
1789 {
1790 struct rq *rq;
1791 int weight;
1792
1793 BUG_ON(!rt_task(p));
1794
1795 if (!p->on_rq)
1796 return;
1797
1798 weight = cpumask_weight(new_mask);
1799
1800 /*
1801 * Only update if the process changes its state from whether it
1802 * can migrate or not.
1803 */
1804 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1805 return;
1806
1807 rq = task_rq(p);
1808
1809 /*
1810 * The process used to be able to migrate OR it can now migrate
1811 */
1812 if (weight <= 1) {
1813 if (!task_current(rq, p))
1814 dequeue_pushable_task(rq, p);
1815 BUG_ON(!rq->rt.rt_nr_migratory);
1816 rq->rt.rt_nr_migratory--;
1817 } else {
1818 if (!task_current(rq, p))
1819 enqueue_pushable_task(rq, p);
1820 rq->rt.rt_nr_migratory++;
1821 }
1822
1823 update_rt_migration(&rq->rt);
1824 }
1825
1826 /* Assumes rq->lock is held */
1827 static void rq_online_rt(struct rq *rq)
1828 {
1829 if (rq->rt.overloaded)
1830 rt_set_overload(rq);
1831
1832 __enable_runtime(rq);
1833
1834 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1835 }
1836
1837 /* Assumes rq->lock is held */
1838 static void rq_offline_rt(struct rq *rq)
1839 {
1840 if (rq->rt.overloaded)
1841 rt_clear_overload(rq);
1842
1843 __disable_runtime(rq);
1844
1845 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1846 }
1847
1848 /*
1849 * When switch from the rt queue, we bring ourselves to a position
1850 * that we might want to pull RT tasks from other runqueues.
1851 */
1852 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1853 {
1854 /*
1855 * If there are other RT tasks then we will reschedule
1856 * and the scheduling of the other RT tasks will handle
1857 * the balancing. But if we are the last RT task
1858 * we may need to handle the pulling of RT tasks
1859 * now.
1860 */
1861 if (!p->on_rq || rq->rt.rt_nr_running)
1862 return;
1863
1864 if (pull_rt_task(rq))
1865 resched_task(rq->curr);
1866 }
1867
1868 void __init init_sched_rt_class(void)
1869 {
1870 unsigned int i;
1871
1872 for_each_possible_cpu(i) {
1873 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1874 GFP_KERNEL, cpu_to_node(i));
1875 }
1876 }
1877 #endif /* CONFIG_SMP */
1878
1879 /*
1880 * When switching a task to RT, we may overload the runqueue
1881 * with RT tasks. In this case we try to push them off to
1882 * other runqueues.
1883 */
1884 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1885 {
1886 int check_resched = 1;
1887
1888 /*
1889 * If we are already running, then there's nothing
1890 * that needs to be done. But if we are not running
1891 * we may need to preempt the current running task.
1892 * If that current running task is also an RT task
1893 * then see if we can move to another run queue.
1894 */
1895 if (p->on_rq && rq->curr != p) {
1896 #ifdef CONFIG_SMP
1897 if (rq->rt.overloaded && push_rt_task(rq) &&
1898 /* Don't resched if we changed runqueues */
1899 rq != task_rq(p))
1900 check_resched = 0;
1901 #endif /* CONFIG_SMP */
1902 if (check_resched && p->prio < rq->curr->prio)
1903 resched_task(rq->curr);
1904 }
1905 }
1906
1907 /*
1908 * Priority of the task has changed. This may cause
1909 * us to initiate a push or pull.
1910 */
1911 static void
1912 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1913 {
1914 if (!p->on_rq)
1915 return;
1916
1917 if (rq->curr == p) {
1918 #ifdef CONFIG_SMP
1919 /*
1920 * If our priority decreases while running, we
1921 * may need to pull tasks to this runqueue.
1922 */
1923 if (oldprio < p->prio)
1924 pull_rt_task(rq);
1925 /*
1926 * If there's a higher priority task waiting to run
1927 * then reschedule. Note, the above pull_rt_task
1928 * can release the rq lock and p could migrate.
1929 * Only reschedule if p is still on the same runqueue.
1930 */
1931 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1932 resched_task(p);
1933 #else
1934 /* For UP simply resched on drop of prio */
1935 if (oldprio < p->prio)
1936 resched_task(p);
1937 #endif /* CONFIG_SMP */
1938 } else {
1939 /*
1940 * This task is not running, but if it is
1941 * greater than the current running task
1942 * then reschedule.
1943 */
1944 if (p->prio < rq->curr->prio)
1945 resched_task(rq->curr);
1946 }
1947 }
1948
1949 static void watchdog(struct rq *rq, struct task_struct *p)
1950 {
1951 unsigned long soft, hard;
1952
1953 /* max may change after cur was read, this will be fixed next tick */
1954 soft = task_rlimit(p, RLIMIT_RTTIME);
1955 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1956
1957 if (soft != RLIM_INFINITY) {
1958 unsigned long next;
1959
1960 if (p->rt.watchdog_stamp != jiffies) {
1961 p->rt.timeout++;
1962 p->rt.watchdog_stamp = jiffies;
1963 }
1964
1965 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1966 if (p->rt.timeout > next)
1967 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1968 }
1969 }
1970
1971 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1972 {
1973 struct sched_rt_entity *rt_se = &p->rt;
1974
1975 update_curr_rt(rq);
1976
1977 watchdog(rq, p);
1978
1979 /*
1980 * RR tasks need a special form of timeslice management.
1981 * FIFO tasks have no timeslices.
1982 */
1983 if (p->policy != SCHED_RR)
1984 return;
1985
1986 if (--p->rt.time_slice)
1987 return;
1988
1989 p->rt.time_slice = sched_rr_timeslice;
1990
1991 /*
1992 * Requeue to the end of queue if we (and all of our ancestors) are not
1993 * the only element on the queue
1994 */
1995 for_each_sched_rt_entity(rt_se) {
1996 if (rt_se->run_list.prev != rt_se->run_list.next) {
1997 requeue_task_rt(rq, p, 0);
1998 set_tsk_need_resched(p);
1999 return;
2000 }
2001 }
2002 }
2003
2004 static void set_curr_task_rt(struct rq *rq)
2005 {
2006 struct task_struct *p = rq->curr;
2007
2008 p->se.exec_start = rq_clock_task(rq);
2009
2010 /* The running task is never eligible for pushing */
2011 dequeue_pushable_task(rq, p);
2012 }
2013
2014 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2015 {
2016 /*
2017 * Time slice is 0 for SCHED_FIFO tasks
2018 */
2019 if (task->policy == SCHED_RR)
2020 return sched_rr_timeslice;
2021 else
2022 return 0;
2023 }
2024
2025 const struct sched_class rt_sched_class = {
2026 .next = &fair_sched_class,
2027 .enqueue_task = enqueue_task_rt,
2028 .dequeue_task = dequeue_task_rt,
2029 .yield_task = yield_task_rt,
2030
2031 .check_preempt_curr = check_preempt_curr_rt,
2032
2033 .pick_next_task = pick_next_task_rt,
2034 .put_prev_task = put_prev_task_rt,
2035
2036 #ifdef CONFIG_SMP
2037 .select_task_rq = select_task_rq_rt,
2038
2039 .set_cpus_allowed = set_cpus_allowed_rt,
2040 .rq_online = rq_online_rt,
2041 .rq_offline = rq_offline_rt,
2042 .post_schedule = post_schedule_rt,
2043 .task_woken = task_woken_rt,
2044 .switched_from = switched_from_rt,
2045 #endif
2046
2047 .set_curr_task = set_curr_task_rt,
2048 .task_tick = task_tick_rt,
2049
2050 .get_rr_interval = get_rr_interval_rt,
2051
2052 .prio_changed = prio_changed_rt,
2053 .switched_to = switched_to_rt,
2054 };
2055
2056 #ifdef CONFIG_SCHED_DEBUG
2057 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2058
2059 void print_rt_stats(struct seq_file *m, int cpu)
2060 {
2061 rt_rq_iter_t iter;
2062 struct rt_rq *rt_rq;
2063
2064 rcu_read_lock();
2065 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2066 print_rt_rq(m, cpu, rt_rq);
2067 rcu_read_unlock();
2068 }
2069 #endif /* CONFIG_SCHED_DEBUG */