2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 #include <linux/slab.h>
10 int sched_rr_timeslice
= RR_TIMESLICE
;
12 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
14 struct rt_bandwidth def_rt_bandwidth
;
16 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
18 struct rt_bandwidth
*rt_b
=
19 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
25 now
= hrtimer_cb_get_time(timer
);
26 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
31 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
34 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
37 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
39 rt_b
->rt_period
= ns_to_ktime(period
);
40 rt_b
->rt_runtime
= runtime
;
42 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
44 hrtimer_init(&rt_b
->rt_period_timer
,
45 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
46 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
49 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
51 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
54 if (hrtimer_active(&rt_b
->rt_period_timer
))
57 raw_spin_lock(&rt_b
->rt_runtime_lock
);
58 start_bandwidth_timer(&rt_b
->rt_period_timer
, rt_b
->rt_period
);
59 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
62 void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
64 struct rt_prio_array
*array
;
67 array
= &rt_rq
->active
;
68 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
69 INIT_LIST_HEAD(array
->queue
+ i
);
70 __clear_bit(i
, array
->bitmap
);
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
75 #if defined CONFIG_SMP
76 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
77 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
78 rt_rq
->rt_nr_migratory
= 0;
79 rt_rq
->overloaded
= 0;
80 plist_head_init(&rt_rq
->pushable_tasks
);
82 /* We start is dequeued state, because no RT tasks are queued */
86 rt_rq
->rt_throttled
= 0;
87 rt_rq
->rt_runtime
= 0;
88 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
91 #ifdef CONFIG_RT_GROUP_SCHED
92 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
94 hrtimer_cancel(&rt_b
->rt_period_timer
);
97 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
99 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
101 #ifdef CONFIG_SCHED_DEBUG
102 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
104 return container_of(rt_se
, struct task_struct
, rt
);
107 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
112 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
117 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
119 struct rt_rq
*rt_rq
= rt_se
->rt_rq
;
124 void free_rt_sched_group(struct task_group
*tg
)
129 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
131 for_each_possible_cpu(i
) {
142 void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
143 struct sched_rt_entity
*rt_se
, int cpu
,
144 struct sched_rt_entity
*parent
)
146 struct rq
*rq
= cpu_rq(cpu
);
148 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
149 rt_rq
->rt_nr_boosted
= 0;
153 tg
->rt_rq
[cpu
] = rt_rq
;
154 tg
->rt_se
[cpu
] = rt_se
;
160 rt_se
->rt_rq
= &rq
->rt
;
162 rt_se
->rt_rq
= parent
->my_q
;
165 rt_se
->parent
= parent
;
166 INIT_LIST_HEAD(&rt_se
->run_list
);
169 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
172 struct sched_rt_entity
*rt_se
;
175 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
178 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
182 init_rt_bandwidth(&tg
->rt_bandwidth
,
183 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
185 for_each_possible_cpu(i
) {
186 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
187 GFP_KERNEL
, cpu_to_node(i
));
191 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
192 GFP_KERNEL
, cpu_to_node(i
));
196 init_rt_rq(rt_rq
, cpu_rq(i
));
197 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
198 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
209 #else /* CONFIG_RT_GROUP_SCHED */
211 #define rt_entity_is_task(rt_se) (1)
213 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
215 return container_of(rt_se
, struct task_struct
, rt
);
218 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
220 return container_of(rt_rq
, struct rq
, rt
);
223 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
225 struct task_struct
*p
= rt_task_of(rt_se
);
230 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
232 struct rq
*rq
= rq_of_rt_se(rt_se
);
237 void free_rt_sched_group(struct task_group
*tg
) { }
239 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
243 #endif /* CONFIG_RT_GROUP_SCHED */
247 static int pull_rt_task(struct rq
*this_rq
);
249 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
251 /* Try to pull RT tasks here if we lower this rq's prio */
252 return rq
->rt
.highest_prio
.curr
> prev
->prio
;
255 static inline int rt_overloaded(struct rq
*rq
)
257 return atomic_read(&rq
->rd
->rto_count
);
260 static inline void rt_set_overload(struct rq
*rq
)
265 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
267 * Make sure the mask is visible before we set
268 * the overload count. That is checked to determine
269 * if we should look at the mask. It would be a shame
270 * if we looked at the mask, but the mask was not
273 * Matched by the barrier in pull_rt_task().
276 atomic_inc(&rq
->rd
->rto_count
);
279 static inline void rt_clear_overload(struct rq
*rq
)
284 /* the order here really doesn't matter */
285 atomic_dec(&rq
->rd
->rto_count
);
286 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
289 static void update_rt_migration(struct rt_rq
*rt_rq
)
291 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
292 if (!rt_rq
->overloaded
) {
293 rt_set_overload(rq_of_rt_rq(rt_rq
));
294 rt_rq
->overloaded
= 1;
296 } else if (rt_rq
->overloaded
) {
297 rt_clear_overload(rq_of_rt_rq(rt_rq
));
298 rt_rq
->overloaded
= 0;
302 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
304 struct task_struct
*p
;
306 if (!rt_entity_is_task(rt_se
))
309 p
= rt_task_of(rt_se
);
310 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
312 rt_rq
->rt_nr_total
++;
313 if (p
->nr_cpus_allowed
> 1)
314 rt_rq
->rt_nr_migratory
++;
316 update_rt_migration(rt_rq
);
319 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
321 struct task_struct
*p
;
323 if (!rt_entity_is_task(rt_se
))
326 p
= rt_task_of(rt_se
);
327 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
329 rt_rq
->rt_nr_total
--;
330 if (p
->nr_cpus_allowed
> 1)
331 rt_rq
->rt_nr_migratory
--;
333 update_rt_migration(rt_rq
);
336 static inline int has_pushable_tasks(struct rq
*rq
)
338 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
341 static inline void set_post_schedule(struct rq
*rq
)
344 * We detect this state here so that we can avoid taking the RQ
345 * lock again later if there is no need to push
347 rq
->post_schedule
= has_pushable_tasks(rq
);
350 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
352 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
353 plist_node_init(&p
->pushable_tasks
, p
->prio
);
354 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
356 /* Update the highest prio pushable task */
357 if (p
->prio
< rq
->rt
.highest_prio
.next
)
358 rq
->rt
.highest_prio
.next
= p
->prio
;
361 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
363 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
365 /* Update the new highest prio pushable task */
366 if (has_pushable_tasks(rq
)) {
367 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
368 struct task_struct
, pushable_tasks
);
369 rq
->rt
.highest_prio
.next
= p
->prio
;
371 rq
->rt
.highest_prio
.next
= MAX_RT_PRIO
;
376 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
380 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
385 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
390 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
394 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
399 static inline int pull_rt_task(struct rq
*this_rq
)
404 static inline void set_post_schedule(struct rq
*rq
)
407 #endif /* CONFIG_SMP */
409 static void enqueue_top_rt_rq(struct rt_rq
*rt_rq
);
410 static void dequeue_top_rt_rq(struct rt_rq
*rt_rq
);
412 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
414 return !list_empty(&rt_se
->run_list
);
417 #ifdef CONFIG_RT_GROUP_SCHED
419 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
424 return rt_rq
->rt_runtime
;
427 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
429 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
432 typedef struct task_group
*rt_rq_iter_t
;
434 static inline struct task_group
*next_task_group(struct task_group
*tg
)
437 tg
= list_entry_rcu(tg
->list
.next
,
438 typeof(struct task_group
), list
);
439 } while (&tg
->list
!= &task_groups
&& task_group_is_autogroup(tg
));
441 if (&tg
->list
== &task_groups
)
447 #define for_each_rt_rq(rt_rq, iter, rq) \
448 for (iter = container_of(&task_groups, typeof(*iter), list); \
449 (iter = next_task_group(iter)) && \
450 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
452 #define for_each_sched_rt_entity(rt_se) \
453 for (; rt_se; rt_se = rt_se->parent)
455 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
460 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
);
461 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
463 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
465 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
466 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
467 struct sched_rt_entity
*rt_se
;
469 int cpu
= cpu_of(rq
);
471 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
473 if (rt_rq
->rt_nr_running
) {
475 enqueue_top_rt_rq(rt_rq
);
476 else if (!on_rt_rq(rt_se
))
477 enqueue_rt_entity(rt_se
, false);
479 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
484 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
486 struct sched_rt_entity
*rt_se
;
487 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
489 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
492 dequeue_top_rt_rq(rt_rq
);
493 else if (on_rt_rq(rt_se
))
494 dequeue_rt_entity(rt_se
);
497 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
499 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
502 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
504 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
505 struct task_struct
*p
;
508 return !!rt_rq
->rt_nr_boosted
;
510 p
= rt_task_of(rt_se
);
511 return p
->prio
!= p
->normal_prio
;
515 static inline const struct cpumask
*sched_rt_period_mask(void)
517 return this_rq()->rd
->span
;
520 static inline const struct cpumask
*sched_rt_period_mask(void)
522 return cpu_online_mask
;
527 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
529 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
532 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
534 return &rt_rq
->tg
->rt_bandwidth
;
537 #else /* !CONFIG_RT_GROUP_SCHED */
539 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
541 return rt_rq
->rt_runtime
;
544 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
546 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
549 typedef struct rt_rq
*rt_rq_iter_t
;
551 #define for_each_rt_rq(rt_rq, iter, rq) \
552 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
554 #define for_each_sched_rt_entity(rt_se) \
555 for (; rt_se; rt_se = NULL)
557 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
562 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
564 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
566 if (!rt_rq
->rt_nr_running
)
569 enqueue_top_rt_rq(rt_rq
);
573 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
575 dequeue_top_rt_rq(rt_rq
);
578 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
580 return rt_rq
->rt_throttled
;
583 static inline const struct cpumask
*sched_rt_period_mask(void)
585 return cpu_online_mask
;
589 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
591 return &cpu_rq(cpu
)->rt
;
594 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
596 return &def_rt_bandwidth
;
599 #endif /* CONFIG_RT_GROUP_SCHED */
601 bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
)
603 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
605 return (hrtimer_active(&rt_b
->rt_period_timer
) ||
606 rt_rq
->rt_time
< rt_b
->rt_runtime
);
611 * We ran out of runtime, see if we can borrow some from our neighbours.
613 static int do_balance_runtime(struct rt_rq
*rt_rq
)
615 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
616 struct root_domain
*rd
= rq_of_rt_rq(rt_rq
)->rd
;
617 int i
, weight
, more
= 0;
620 weight
= cpumask_weight(rd
->span
);
622 raw_spin_lock(&rt_b
->rt_runtime_lock
);
623 rt_period
= ktime_to_ns(rt_b
->rt_period
);
624 for_each_cpu(i
, rd
->span
) {
625 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
631 raw_spin_lock(&iter
->rt_runtime_lock
);
633 * Either all rqs have inf runtime and there's nothing to steal
634 * or __disable_runtime() below sets a specific rq to inf to
635 * indicate its been disabled and disalow stealing.
637 if (iter
->rt_runtime
== RUNTIME_INF
)
641 * From runqueues with spare time, take 1/n part of their
642 * spare time, but no more than our period.
644 diff
= iter
->rt_runtime
- iter
->rt_time
;
646 diff
= div_u64((u64
)diff
, weight
);
647 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
648 diff
= rt_period
- rt_rq
->rt_runtime
;
649 iter
->rt_runtime
-= diff
;
650 rt_rq
->rt_runtime
+= diff
;
652 if (rt_rq
->rt_runtime
== rt_period
) {
653 raw_spin_unlock(&iter
->rt_runtime_lock
);
658 raw_spin_unlock(&iter
->rt_runtime_lock
);
660 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
666 * Ensure this RQ takes back all the runtime it lend to its neighbours.
668 static void __disable_runtime(struct rq
*rq
)
670 struct root_domain
*rd
= rq
->rd
;
674 if (unlikely(!scheduler_running
))
677 for_each_rt_rq(rt_rq
, iter
, rq
) {
678 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
682 raw_spin_lock(&rt_b
->rt_runtime_lock
);
683 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
685 * Either we're all inf and nobody needs to borrow, or we're
686 * already disabled and thus have nothing to do, or we have
687 * exactly the right amount of runtime to take out.
689 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
690 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
692 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
695 * Calculate the difference between what we started out with
696 * and what we current have, that's the amount of runtime
697 * we lend and now have to reclaim.
699 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
702 * Greedy reclaim, take back as much as we can.
704 for_each_cpu(i
, rd
->span
) {
705 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
709 * Can't reclaim from ourselves or disabled runqueues.
711 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
714 raw_spin_lock(&iter
->rt_runtime_lock
);
716 diff
= min_t(s64
, iter
->rt_runtime
, want
);
717 iter
->rt_runtime
-= diff
;
720 iter
->rt_runtime
-= want
;
723 raw_spin_unlock(&iter
->rt_runtime_lock
);
729 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
731 * We cannot be left wanting - that would mean some runtime
732 * leaked out of the system.
737 * Disable all the borrow logic by pretending we have inf
738 * runtime - in which case borrowing doesn't make sense.
740 rt_rq
->rt_runtime
= RUNTIME_INF
;
741 rt_rq
->rt_throttled
= 0;
742 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
743 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
745 /* Make rt_rq available for pick_next_task() */
746 sched_rt_rq_enqueue(rt_rq
);
750 static void __enable_runtime(struct rq
*rq
)
755 if (unlikely(!scheduler_running
))
759 * Reset each runqueue's bandwidth settings
761 for_each_rt_rq(rt_rq
, iter
, rq
) {
762 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
764 raw_spin_lock(&rt_b
->rt_runtime_lock
);
765 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
766 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
768 rt_rq
->rt_throttled
= 0;
769 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
770 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
774 static int balance_runtime(struct rt_rq
*rt_rq
)
778 if (!sched_feat(RT_RUNTIME_SHARE
))
781 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
782 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
783 more
= do_balance_runtime(rt_rq
);
784 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
789 #else /* !CONFIG_SMP */
790 static inline int balance_runtime(struct rt_rq
*rt_rq
)
794 #endif /* CONFIG_SMP */
796 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
798 int i
, idle
= 1, throttled
= 0;
799 const struct cpumask
*span
;
801 span
= sched_rt_period_mask();
802 #ifdef CONFIG_RT_GROUP_SCHED
804 * FIXME: isolated CPUs should really leave the root task group,
805 * whether they are isolcpus or were isolated via cpusets, lest
806 * the timer run on a CPU which does not service all runqueues,
807 * potentially leaving other CPUs indefinitely throttled. If
808 * isolation is really required, the user will turn the throttle
809 * off to kill the perturbations it causes anyway. Meanwhile,
810 * this maintains functionality for boot and/or troubleshooting.
812 if (rt_b
== &root_task_group
.rt_bandwidth
)
813 span
= cpu_online_mask
;
815 for_each_cpu(i
, span
) {
817 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
818 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
820 raw_spin_lock(&rq
->lock
);
821 if (rt_rq
->rt_time
) {
824 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
825 if (rt_rq
->rt_throttled
)
826 balance_runtime(rt_rq
);
827 runtime
= rt_rq
->rt_runtime
;
828 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
829 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
830 rt_rq
->rt_throttled
= 0;
834 * Force a clock update if the CPU was idle,
835 * lest wakeup -> unthrottle time accumulate.
837 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
838 rq
->skip_clock_update
= -1;
840 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
842 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
843 } else if (rt_rq
->rt_nr_running
) {
845 if (!rt_rq_throttled(rt_rq
))
848 if (rt_rq
->rt_throttled
)
852 sched_rt_rq_enqueue(rt_rq
);
853 raw_spin_unlock(&rq
->lock
);
856 if (!throttled
&& (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
))
862 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
864 #ifdef CONFIG_RT_GROUP_SCHED
865 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
868 return rt_rq
->highest_prio
.curr
;
871 return rt_task_of(rt_se
)->prio
;
874 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
876 u64 runtime
= sched_rt_runtime(rt_rq
);
878 if (rt_rq
->rt_throttled
)
879 return rt_rq_throttled(rt_rq
);
881 if (runtime
>= sched_rt_period(rt_rq
))
884 balance_runtime(rt_rq
);
885 runtime
= sched_rt_runtime(rt_rq
);
886 if (runtime
== RUNTIME_INF
)
889 if (rt_rq
->rt_time
> runtime
) {
890 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
893 * Don't actually throttle groups that have no runtime assigned
894 * but accrue some time due to boosting.
896 if (likely(rt_b
->rt_runtime
)) {
897 rt_rq
->rt_throttled
= 1;
898 printk_deferred_once("sched: RT throttling activated\n");
901 * In case we did anyway, make it go away,
902 * replenishment is a joke, since it will replenish us
908 if (rt_rq_throttled(rt_rq
)) {
909 sched_rt_rq_dequeue(rt_rq
);
918 * Update the current task's runtime statistics. Skip current tasks that
919 * are not in our scheduling class.
921 static void update_curr_rt(struct rq
*rq
)
923 struct task_struct
*curr
= rq
->curr
;
924 struct sched_rt_entity
*rt_se
= &curr
->rt
;
927 if (curr
->sched_class
!= &rt_sched_class
)
930 delta_exec
= rq_clock_task(rq
) - curr
->se
.exec_start
;
931 if (unlikely((s64
)delta_exec
<= 0))
934 schedstat_set(curr
->se
.statistics
.exec_max
,
935 max(curr
->se
.statistics
.exec_max
, delta_exec
));
937 curr
->se
.sum_exec_runtime
+= delta_exec
;
938 account_group_exec_runtime(curr
, delta_exec
);
940 curr
->se
.exec_start
= rq_clock_task(rq
);
941 cpuacct_charge(curr
, delta_exec
);
943 sched_rt_avg_update(rq
, delta_exec
);
945 if (!rt_bandwidth_enabled())
948 for_each_sched_rt_entity(rt_se
) {
949 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
951 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
952 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
953 rt_rq
->rt_time
+= delta_exec
;
954 if (sched_rt_runtime_exceeded(rt_rq
))
956 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
962 dequeue_top_rt_rq(struct rt_rq
*rt_rq
)
964 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
966 BUG_ON(&rq
->rt
!= rt_rq
);
968 if (!rt_rq
->rt_queued
)
971 BUG_ON(!rq
->nr_running
);
973 sub_nr_running(rq
, rt_rq
->rt_nr_running
);
974 rt_rq
->rt_queued
= 0;
978 enqueue_top_rt_rq(struct rt_rq
*rt_rq
)
980 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
982 BUG_ON(&rq
->rt
!= rt_rq
);
984 if (rt_rq
->rt_queued
)
986 if (rt_rq_throttled(rt_rq
) || !rt_rq
->rt_nr_running
)
989 add_nr_running(rq
, rt_rq
->rt_nr_running
);
990 rt_rq
->rt_queued
= 1;
993 #if defined CONFIG_SMP
996 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
998 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1000 #ifdef CONFIG_RT_GROUP_SCHED
1002 * Change rq's cpupri only if rt_rq is the top queue.
1004 if (&rq
->rt
!= rt_rq
)
1007 if (rq
->online
&& prio
< prev_prio
)
1008 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
1012 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1014 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1016 #ifdef CONFIG_RT_GROUP_SCHED
1018 * Change rq's cpupri only if rt_rq is the top queue.
1020 if (&rq
->rt
!= rt_rq
)
1023 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
1024 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
1027 #else /* CONFIG_SMP */
1030 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1032 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1034 #endif /* CONFIG_SMP */
1036 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1038 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1040 int prev_prio
= rt_rq
->highest_prio
.curr
;
1042 if (prio
< prev_prio
)
1043 rt_rq
->highest_prio
.curr
= prio
;
1045 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1049 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1051 int prev_prio
= rt_rq
->highest_prio
.curr
;
1053 if (rt_rq
->rt_nr_running
) {
1055 WARN_ON(prio
< prev_prio
);
1058 * This may have been our highest task, and therefore
1059 * we may have some recomputation to do
1061 if (prio
== prev_prio
) {
1062 struct rt_prio_array
*array
= &rt_rq
->active
;
1064 rt_rq
->highest_prio
.curr
=
1065 sched_find_first_bit(array
->bitmap
);
1069 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
1071 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1076 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1077 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1079 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1081 #ifdef CONFIG_RT_GROUP_SCHED
1084 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1086 if (rt_se_boosted(rt_se
))
1087 rt_rq
->rt_nr_boosted
++;
1090 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
1094 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1096 if (rt_se_boosted(rt_se
))
1097 rt_rq
->rt_nr_boosted
--;
1099 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
1102 #else /* CONFIG_RT_GROUP_SCHED */
1105 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1107 start_rt_bandwidth(&def_rt_bandwidth
);
1111 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
1113 #endif /* CONFIG_RT_GROUP_SCHED */
1116 unsigned int rt_se_nr_running(struct sched_rt_entity
*rt_se
)
1118 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1121 return group_rq
->rt_nr_running
;
1127 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1129 int prio
= rt_se_prio(rt_se
);
1131 WARN_ON(!rt_prio(prio
));
1132 rt_rq
->rt_nr_running
+= rt_se_nr_running(rt_se
);
1134 inc_rt_prio(rt_rq
, prio
);
1135 inc_rt_migration(rt_se
, rt_rq
);
1136 inc_rt_group(rt_se
, rt_rq
);
1140 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1142 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
1143 WARN_ON(!rt_rq
->rt_nr_running
);
1144 rt_rq
->rt_nr_running
-= rt_se_nr_running(rt_se
);
1146 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
1147 dec_rt_migration(rt_se
, rt_rq
);
1148 dec_rt_group(rt_se
, rt_rq
);
1151 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
1153 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1154 struct rt_prio_array
*array
= &rt_rq
->active
;
1155 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1156 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1159 * Don't enqueue the group if its throttled, or when empty.
1160 * The latter is a consequence of the former when a child group
1161 * get throttled and the current group doesn't have any other
1164 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
1168 list_add(&rt_se
->run_list
, queue
);
1170 list_add_tail(&rt_se
->run_list
, queue
);
1171 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
1173 inc_rt_tasks(rt_se
, rt_rq
);
1176 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
1178 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1179 struct rt_prio_array
*array
= &rt_rq
->active
;
1181 list_del_init(&rt_se
->run_list
);
1182 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
1183 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
1185 dec_rt_tasks(rt_se
, rt_rq
);
1189 * Because the prio of an upper entry depends on the lower
1190 * entries, we must remove entries top - down.
1192 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
1194 struct sched_rt_entity
*back
= NULL
;
1196 for_each_sched_rt_entity(rt_se
) {
1201 dequeue_top_rt_rq(rt_rq_of_se(back
));
1203 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
1204 if (on_rt_rq(rt_se
))
1205 __dequeue_rt_entity(rt_se
);
1209 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
1211 struct rq
*rq
= rq_of_rt_se(rt_se
);
1213 dequeue_rt_stack(rt_se
);
1214 for_each_sched_rt_entity(rt_se
)
1215 __enqueue_rt_entity(rt_se
, head
);
1216 enqueue_top_rt_rq(&rq
->rt
);
1219 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
1221 struct rq
*rq
= rq_of_rt_se(rt_se
);
1223 dequeue_rt_stack(rt_se
);
1225 for_each_sched_rt_entity(rt_se
) {
1226 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
1228 if (rt_rq
&& rt_rq
->rt_nr_running
)
1229 __enqueue_rt_entity(rt_se
, false);
1231 enqueue_top_rt_rq(&rq
->rt
);
1235 * Adding/removing a task to/from a priority array:
1238 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1240 struct sched_rt_entity
*rt_se
= &p
->rt
;
1242 if (flags
& ENQUEUE_WAKEUP
)
1245 enqueue_rt_entity(rt_se
, flags
& ENQUEUE_HEAD
);
1247 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1248 enqueue_pushable_task(rq
, p
);
1251 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1253 struct sched_rt_entity
*rt_se
= &p
->rt
;
1256 dequeue_rt_entity(rt_se
);
1258 dequeue_pushable_task(rq
, p
);
1262 * Put task to the head or the end of the run list without the overhead of
1263 * dequeue followed by enqueue.
1266 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
1268 if (on_rt_rq(rt_se
)) {
1269 struct rt_prio_array
*array
= &rt_rq
->active
;
1270 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1273 list_move(&rt_se
->run_list
, queue
);
1275 list_move_tail(&rt_se
->run_list
, queue
);
1279 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
1281 struct sched_rt_entity
*rt_se
= &p
->rt
;
1282 struct rt_rq
*rt_rq
;
1284 for_each_sched_rt_entity(rt_se
) {
1285 rt_rq
= rt_rq_of_se(rt_se
);
1286 requeue_rt_entity(rt_rq
, rt_se
, head
);
1290 static void yield_task_rt(struct rq
*rq
)
1292 requeue_task_rt(rq
, rq
->curr
, 0);
1296 static int find_lowest_rq(struct task_struct
*task
);
1299 select_task_rq_rt(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1301 struct task_struct
*curr
;
1304 if (p
->nr_cpus_allowed
== 1)
1307 /* For anything but wake ups, just return the task_cpu */
1308 if (sd_flag
!= SD_BALANCE_WAKE
&& sd_flag
!= SD_BALANCE_FORK
)
1314 curr
= ACCESS_ONCE(rq
->curr
); /* unlocked access */
1317 * If the current task on @p's runqueue is an RT task, then
1318 * try to see if we can wake this RT task up on another
1319 * runqueue. Otherwise simply start this RT task
1320 * on its current runqueue.
1322 * We want to avoid overloading runqueues. If the woken
1323 * task is a higher priority, then it will stay on this CPU
1324 * and the lower prio task should be moved to another CPU.
1325 * Even though this will probably make the lower prio task
1326 * lose its cache, we do not want to bounce a higher task
1327 * around just because it gave up its CPU, perhaps for a
1330 * For equal prio tasks, we just let the scheduler sort it out.
1332 * Otherwise, just let it ride on the affined RQ and the
1333 * post-schedule router will push the preempted task away
1335 * This test is optimistic, if we get it wrong the load-balancer
1336 * will have to sort it out.
1338 if (curr
&& unlikely(rt_task(curr
)) &&
1339 (curr
->nr_cpus_allowed
< 2 ||
1340 curr
->prio
<= p
->prio
)) {
1341 int target
= find_lowest_rq(p
);
1352 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1354 if (rq
->curr
->nr_cpus_allowed
== 1)
1357 if (p
->nr_cpus_allowed
!= 1
1358 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1361 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1365 * There appears to be other cpus that can accept
1366 * current and none to run 'p', so lets reschedule
1367 * to try and push current away:
1369 requeue_task_rt(rq
, p
, 1);
1373 #endif /* CONFIG_SMP */
1376 * Preempt the current task with a newly woken task if needed:
1378 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1380 if (p
->prio
< rq
->curr
->prio
) {
1389 * - the newly woken task is of equal priority to the current task
1390 * - the newly woken task is non-migratable while current is migratable
1391 * - current will be preempted on the next reschedule
1393 * we should check to see if current can readily move to a different
1394 * cpu. If so, we will reschedule to allow the push logic to try
1395 * to move current somewhere else, making room for our non-migratable
1398 if (p
->prio
== rq
->curr
->prio
&& !test_tsk_need_resched(rq
->curr
))
1399 check_preempt_equal_prio(rq
, p
);
1403 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1404 struct rt_rq
*rt_rq
)
1406 struct rt_prio_array
*array
= &rt_rq
->active
;
1407 struct sched_rt_entity
*next
= NULL
;
1408 struct list_head
*queue
;
1411 idx
= sched_find_first_bit(array
->bitmap
);
1412 BUG_ON(idx
>= MAX_RT_PRIO
);
1414 queue
= array
->queue
+ idx
;
1415 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1420 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1422 struct sched_rt_entity
*rt_se
;
1423 struct task_struct
*p
;
1424 struct rt_rq
*rt_rq
= &rq
->rt
;
1427 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1429 rt_rq
= group_rt_rq(rt_se
);
1432 p
= rt_task_of(rt_se
);
1433 p
->se
.exec_start
= rq_clock_task(rq
);
1438 static struct task_struct
*
1439 pick_next_task_rt(struct rq
*rq
, struct task_struct
*prev
)
1441 struct task_struct
*p
;
1442 struct rt_rq
*rt_rq
= &rq
->rt
;
1444 if (need_pull_rt_task(rq
, prev
)) {
1447 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1448 * means a dl or stop task can slip in, in which case we need
1449 * to re-start task selection.
1451 if (unlikely((rq
->stop
&& rq
->stop
->on_rq
) ||
1452 rq
->dl
.dl_nr_running
))
1457 * We may dequeue prev's rt_rq in put_prev_task().
1458 * So, we update time before rt_nr_running check.
1460 if (prev
->sched_class
== &rt_sched_class
)
1463 if (!rt_rq
->rt_queued
)
1466 put_prev_task(rq
, prev
);
1468 p
= _pick_next_task_rt(rq
);
1470 /* The running task is never eligible for pushing */
1472 dequeue_pushable_task(rq
, p
);
1474 set_post_schedule(rq
);
1479 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1484 * The previous task needs to be made eligible for pushing
1485 * if it is still active
1487 if (on_rt_rq(&p
->rt
) && p
->nr_cpus_allowed
> 1)
1488 enqueue_pushable_task(rq
, p
);
1493 /* Only try algorithms three times */
1494 #define RT_MAX_TRIES 3
1496 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1498 if (!task_running(rq
, p
) &&
1499 cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
1505 * Return the highest pushable rq's task, which is suitable to be executed
1506 * on the cpu, NULL otherwise
1508 static struct task_struct
*pick_highest_pushable_task(struct rq
*rq
, int cpu
)
1510 struct plist_head
*head
= &rq
->rt
.pushable_tasks
;
1511 struct task_struct
*p
;
1513 if (!has_pushable_tasks(rq
))
1516 plist_for_each_entry(p
, head
, pushable_tasks
) {
1517 if (pick_rt_task(rq
, p
, cpu
))
1524 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1526 static int find_lowest_rq(struct task_struct
*task
)
1528 struct sched_domain
*sd
;
1529 struct cpumask
*lowest_mask
= __get_cpu_var(local_cpu_mask
);
1530 int this_cpu
= smp_processor_id();
1531 int cpu
= task_cpu(task
);
1533 /* Make sure the mask is initialized first */
1534 if (unlikely(!lowest_mask
))
1537 if (task
->nr_cpus_allowed
== 1)
1538 return -1; /* No other targets possible */
1540 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1541 return -1; /* No targets found */
1544 * At this point we have built a mask of cpus representing the
1545 * lowest priority tasks in the system. Now we want to elect
1546 * the best one based on our affinity and topology.
1548 * We prioritize the last cpu that the task executed on since
1549 * it is most likely cache-hot in that location.
1551 if (cpumask_test_cpu(cpu
, lowest_mask
))
1555 * Otherwise, we consult the sched_domains span maps to figure
1556 * out which cpu is logically closest to our hot cache data.
1558 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1559 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1562 for_each_domain(cpu
, sd
) {
1563 if (sd
->flags
& SD_WAKE_AFFINE
) {
1567 * "this_cpu" is cheaper to preempt than a
1570 if (this_cpu
!= -1 &&
1571 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1576 best_cpu
= cpumask_first_and(lowest_mask
,
1577 sched_domain_span(sd
));
1578 if (best_cpu
< nr_cpu_ids
) {
1587 * And finally, if there were no matches within the domains
1588 * just give the caller *something* to work with from the compatible
1594 cpu
= cpumask_any(lowest_mask
);
1595 if (cpu
< nr_cpu_ids
)
1600 /* Will lock the rq it finds */
1601 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1603 struct rq
*lowest_rq
= NULL
;
1607 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1608 cpu
= find_lowest_rq(task
);
1610 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1613 lowest_rq
= cpu_rq(cpu
);
1615 /* if the prio of this runqueue changed, try again */
1616 if (double_lock_balance(rq
, lowest_rq
)) {
1618 * We had to unlock the run queue. In
1619 * the mean time, task could have
1620 * migrated already or had its affinity changed.
1621 * Also make sure that it wasn't scheduled on its rq.
1623 if (unlikely(task_rq(task
) != rq
||
1624 !cpumask_test_cpu(lowest_rq
->cpu
,
1625 tsk_cpus_allowed(task
)) ||
1626 task_running(rq
, task
) ||
1629 double_unlock_balance(rq
, lowest_rq
);
1635 /* If this rq is still suitable use it. */
1636 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1640 double_unlock_balance(rq
, lowest_rq
);
1647 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1649 struct task_struct
*p
;
1651 if (!has_pushable_tasks(rq
))
1654 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1655 struct task_struct
, pushable_tasks
);
1657 BUG_ON(rq
->cpu
!= task_cpu(p
));
1658 BUG_ON(task_current(rq
, p
));
1659 BUG_ON(p
->nr_cpus_allowed
<= 1);
1662 BUG_ON(!rt_task(p
));
1668 * If the current CPU has more than one RT task, see if the non
1669 * running task can migrate over to a CPU that is running a task
1670 * of lesser priority.
1672 static int push_rt_task(struct rq
*rq
)
1674 struct task_struct
*next_task
;
1675 struct rq
*lowest_rq
;
1678 if (!rq
->rt
.overloaded
)
1681 next_task
= pick_next_pushable_task(rq
);
1686 if (unlikely(next_task
== rq
->curr
)) {
1692 * It's possible that the next_task slipped in of
1693 * higher priority than current. If that's the case
1694 * just reschedule current.
1696 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1701 /* We might release rq lock */
1702 get_task_struct(next_task
);
1704 /* find_lock_lowest_rq locks the rq if found */
1705 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1707 struct task_struct
*task
;
1709 * find_lock_lowest_rq releases rq->lock
1710 * so it is possible that next_task has migrated.
1712 * We need to make sure that the task is still on the same
1713 * run-queue and is also still the next task eligible for
1716 task
= pick_next_pushable_task(rq
);
1717 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1719 * The task hasn't migrated, and is still the next
1720 * eligible task, but we failed to find a run-queue
1721 * to push it to. Do not retry in this case, since
1722 * other cpus will pull from us when ready.
1728 /* No more tasks, just exit */
1732 * Something has shifted, try again.
1734 put_task_struct(next_task
);
1739 deactivate_task(rq
, next_task
, 0);
1740 set_task_cpu(next_task
, lowest_rq
->cpu
);
1741 activate_task(lowest_rq
, next_task
, 0);
1744 resched_curr(lowest_rq
);
1746 double_unlock_balance(rq
, lowest_rq
);
1749 put_task_struct(next_task
);
1754 static void push_rt_tasks(struct rq
*rq
)
1756 /* push_rt_task will return true if it moved an RT */
1757 while (push_rt_task(rq
))
1761 static int pull_rt_task(struct rq
*this_rq
)
1763 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1764 struct task_struct
*p
;
1767 if (likely(!rt_overloaded(this_rq
)))
1771 * Match the barrier from rt_set_overloaded; this guarantees that if we
1772 * see overloaded we must also see the rto_mask bit.
1776 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
1777 if (this_cpu
== cpu
)
1780 src_rq
= cpu_rq(cpu
);
1783 * Don't bother taking the src_rq->lock if the next highest
1784 * task is known to be lower-priority than our current task.
1785 * This may look racy, but if this value is about to go
1786 * logically higher, the src_rq will push this task away.
1787 * And if its going logically lower, we do not care
1789 if (src_rq
->rt
.highest_prio
.next
>=
1790 this_rq
->rt
.highest_prio
.curr
)
1794 * We can potentially drop this_rq's lock in
1795 * double_lock_balance, and another CPU could
1798 double_lock_balance(this_rq
, src_rq
);
1801 * We can pull only a task, which is pushable
1802 * on its rq, and no others.
1804 p
= pick_highest_pushable_task(src_rq
, this_cpu
);
1807 * Do we have an RT task that preempts
1808 * the to-be-scheduled task?
1810 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
1811 WARN_ON(p
== src_rq
->curr
);
1815 * There's a chance that p is higher in priority
1816 * than what's currently running on its cpu.
1817 * This is just that p is wakeing up and hasn't
1818 * had a chance to schedule. We only pull
1819 * p if it is lower in priority than the
1820 * current task on the run queue
1822 if (p
->prio
< src_rq
->curr
->prio
)
1827 deactivate_task(src_rq
, p
, 0);
1828 set_task_cpu(p
, this_cpu
);
1829 activate_task(this_rq
, p
, 0);
1831 * We continue with the search, just in
1832 * case there's an even higher prio task
1833 * in another runqueue. (low likelihood
1838 double_unlock_balance(this_rq
, src_rq
);
1844 static void post_schedule_rt(struct rq
*rq
)
1850 * If we are not running and we are not going to reschedule soon, we should
1851 * try to push tasks away now
1853 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
1855 if (!task_running(rq
, p
) &&
1856 !test_tsk_need_resched(rq
->curr
) &&
1857 has_pushable_tasks(rq
) &&
1858 p
->nr_cpus_allowed
> 1 &&
1859 (dl_task(rq
->curr
) || rt_task(rq
->curr
)) &&
1860 (rq
->curr
->nr_cpus_allowed
< 2 ||
1861 rq
->curr
->prio
<= p
->prio
))
1865 static void set_cpus_allowed_rt(struct task_struct
*p
,
1866 const struct cpumask
*new_mask
)
1871 BUG_ON(!rt_task(p
));
1876 weight
= cpumask_weight(new_mask
);
1879 * Only update if the process changes its state from whether it
1880 * can migrate or not.
1882 if ((p
->nr_cpus_allowed
> 1) == (weight
> 1))
1888 * The process used to be able to migrate OR it can now migrate
1891 if (!task_current(rq
, p
))
1892 dequeue_pushable_task(rq
, p
);
1893 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1894 rq
->rt
.rt_nr_migratory
--;
1896 if (!task_current(rq
, p
))
1897 enqueue_pushable_task(rq
, p
);
1898 rq
->rt
.rt_nr_migratory
++;
1901 update_rt_migration(&rq
->rt
);
1904 /* Assumes rq->lock is held */
1905 static void rq_online_rt(struct rq
*rq
)
1907 if (rq
->rt
.overloaded
)
1908 rt_set_overload(rq
);
1910 __enable_runtime(rq
);
1912 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1915 /* Assumes rq->lock is held */
1916 static void rq_offline_rt(struct rq
*rq
)
1918 if (rq
->rt
.overloaded
)
1919 rt_clear_overload(rq
);
1921 __disable_runtime(rq
);
1923 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1927 * When switch from the rt queue, we bring ourselves to a position
1928 * that we might want to pull RT tasks from other runqueues.
1930 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
1933 * If there are other RT tasks then we will reschedule
1934 * and the scheduling of the other RT tasks will handle
1935 * the balancing. But if we are the last RT task
1936 * we may need to handle the pulling of RT tasks
1939 if (!p
->on_rq
|| rq
->rt
.rt_nr_running
)
1942 if (pull_rt_task(rq
))
1946 void __init
init_sched_rt_class(void)
1950 for_each_possible_cpu(i
) {
1951 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
1952 GFP_KERNEL
, cpu_to_node(i
));
1955 #endif /* CONFIG_SMP */
1958 * When switching a task to RT, we may overload the runqueue
1959 * with RT tasks. In this case we try to push them off to
1962 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
1964 int check_resched
= 1;
1967 * If we are already running, then there's nothing
1968 * that needs to be done. But if we are not running
1969 * we may need to preempt the current running task.
1970 * If that current running task is also an RT task
1971 * then see if we can move to another run queue.
1973 if (p
->on_rq
&& rq
->curr
!= p
) {
1975 if (p
->nr_cpus_allowed
> 1 && rq
->rt
.overloaded
&&
1976 /* Don't resched if we changed runqueues */
1977 push_rt_task(rq
) && rq
!= task_rq(p
))
1979 #endif /* CONFIG_SMP */
1980 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1986 * Priority of the task has changed. This may cause
1987 * us to initiate a push or pull.
1990 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
1995 if (rq
->curr
== p
) {
1998 * If our priority decreases while running, we
1999 * may need to pull tasks to this runqueue.
2001 if (oldprio
< p
->prio
)
2004 * If there's a higher priority task waiting to run
2005 * then reschedule. Note, the above pull_rt_task
2006 * can release the rq lock and p could migrate.
2007 * Only reschedule if p is still on the same runqueue.
2009 if (p
->prio
> rq
->rt
.highest_prio
.curr
&& rq
->curr
== p
)
2012 /* For UP simply resched on drop of prio */
2013 if (oldprio
< p
->prio
)
2015 #endif /* CONFIG_SMP */
2018 * This task is not running, but if it is
2019 * greater than the current running task
2022 if (p
->prio
< rq
->curr
->prio
)
2027 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
2029 unsigned long soft
, hard
;
2031 /* max may change after cur was read, this will be fixed next tick */
2032 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
2033 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
2035 if (soft
!= RLIM_INFINITY
) {
2038 if (p
->rt
.watchdog_stamp
!= jiffies
) {
2040 p
->rt
.watchdog_stamp
= jiffies
;
2043 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
2044 if (p
->rt
.timeout
> next
)
2045 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
2049 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
2051 struct sched_rt_entity
*rt_se
= &p
->rt
;
2058 * RR tasks need a special form of timeslice management.
2059 * FIFO tasks have no timeslices.
2061 if (p
->policy
!= SCHED_RR
)
2064 if (--p
->rt
.time_slice
)
2067 p
->rt
.time_slice
= sched_rr_timeslice
;
2070 * Requeue to the end of queue if we (and all of our ancestors) are not
2071 * the only element on the queue
2073 for_each_sched_rt_entity(rt_se
) {
2074 if (rt_se
->run_list
.prev
!= rt_se
->run_list
.next
) {
2075 requeue_task_rt(rq
, p
, 0);
2076 set_tsk_need_resched(p
);
2082 static void set_curr_task_rt(struct rq
*rq
)
2084 struct task_struct
*p
= rq
->curr
;
2086 p
->se
.exec_start
= rq_clock_task(rq
);
2088 /* The running task is never eligible for pushing */
2089 dequeue_pushable_task(rq
, p
);
2092 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
2095 * Time slice is 0 for SCHED_FIFO tasks
2097 if (task
->policy
== SCHED_RR
)
2098 return sched_rr_timeslice
;
2103 const struct sched_class rt_sched_class
= {
2104 .next
= &fair_sched_class
,
2105 .enqueue_task
= enqueue_task_rt
,
2106 .dequeue_task
= dequeue_task_rt
,
2107 .yield_task
= yield_task_rt
,
2109 .check_preempt_curr
= check_preempt_curr_rt
,
2111 .pick_next_task
= pick_next_task_rt
,
2112 .put_prev_task
= put_prev_task_rt
,
2115 .select_task_rq
= select_task_rq_rt
,
2117 .set_cpus_allowed
= set_cpus_allowed_rt
,
2118 .rq_online
= rq_online_rt
,
2119 .rq_offline
= rq_offline_rt
,
2120 .post_schedule
= post_schedule_rt
,
2121 .task_woken
= task_woken_rt
,
2122 .switched_from
= switched_from_rt
,
2125 .set_curr_task
= set_curr_task_rt
,
2126 .task_tick
= task_tick_rt
,
2128 .get_rr_interval
= get_rr_interval_rt
,
2130 .prio_changed
= prio_changed_rt
,
2131 .switched_to
= switched_to_rt
,
2134 #ifdef CONFIG_SCHED_DEBUG
2135 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
2137 void print_rt_stats(struct seq_file
*m
, int cpu
)
2140 struct rt_rq
*rt_rq
;
2143 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
2144 print_rt_rq(m
, cpu
, rt_rq
);
2147 #endif /* CONFIG_SCHED_DEBUG */