]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/sched.h
bpf: Allow to specify user-provided bpf_cookie for BPF perf links
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #include <linux/sched.h>
6
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35
36 #include <uapi/linux/sched/types.h>
37
38 #include <linux/binfmts.h>
39 #include <linux/bitops.h>
40 #include <linux/blkdev.h>
41 #include <linux/compat.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpufreq.h>
44 #include <linux/cpuidle.h>
45 #include <linux/cpuset.h>
46 #include <linux/ctype.h>
47 #include <linux/debugfs.h>
48 #include <linux/delayacct.h>
49 #include <linux/energy_model.h>
50 #include <linux/init_task.h>
51 #include <linux/kprobes.h>
52 #include <linux/kthread.h>
53 #include <linux/membarrier.h>
54 #include <linux/migrate.h>
55 #include <linux/mmu_context.h>
56 #include <linux/nmi.h>
57 #include <linux/proc_fs.h>
58 #include <linux/prefetch.h>
59 #include <linux/profile.h>
60 #include <linux/psi.h>
61 #include <linux/ratelimit.h>
62 #include <linux/rcupdate_wait.h>
63 #include <linux/security.h>
64 #include <linux/stop_machine.h>
65 #include <linux/suspend.h>
66 #include <linux/swait.h>
67 #include <linux/syscalls.h>
68 #include <linux/task_work.h>
69 #include <linux/tsacct_kern.h>
70
71 #include <asm/tlb.h>
72
73 #ifdef CONFIG_PARAVIRT
74 # include <asm/paravirt.h>
75 #endif
76
77 #include "cpupri.h"
78 #include "cpudeadline.h"
79
80 #include <trace/events/sched.h>
81
82 #ifdef CONFIG_SCHED_DEBUG
83 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
84 #else
85 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
86 #endif
87
88 struct rq;
89 struct cpuidle_state;
90
91 /* task_struct::on_rq states: */
92 #define TASK_ON_RQ_QUEUED 1
93 #define TASK_ON_RQ_MIGRATING 2
94
95 extern __read_mostly int scheduler_running;
96
97 extern unsigned long calc_load_update;
98 extern atomic_long_t calc_load_tasks;
99
100 extern void calc_global_load_tick(struct rq *this_rq);
101 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
102
103 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
104 /*
105 * Helpers for converting nanosecond timing to jiffy resolution
106 */
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108
109 /*
110 * Increase resolution of nice-level calculations for 64-bit architectures.
111 * The extra resolution improves shares distribution and load balancing of
112 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
113 * hierarchies, especially on larger systems. This is not a user-visible change
114 * and does not change the user-interface for setting shares/weights.
115 *
116 * We increase resolution only if we have enough bits to allow this increased
117 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
118 * are pretty high and the returns do not justify the increased costs.
119 *
120 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
121 * increase coverage and consistency always enable it on 64-bit platforms.
122 */
123 #ifdef CONFIG_64BIT
124 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
126 # define scale_load_down(w) \
127 ({ \
128 unsigned long __w = (w); \
129 if (__w) \
130 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
131 __w; \
132 })
133 #else
134 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
135 # define scale_load(w) (w)
136 # define scale_load_down(w) (w)
137 #endif
138
139 /*
140 * Task weight (visible to users) and its load (invisible to users) have
141 * independent resolution, but they should be well calibrated. We use
142 * scale_load() and scale_load_down(w) to convert between them. The
143 * following must be true:
144 *
145 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
146 *
147 */
148 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
149
150 /*
151 * Single value that decides SCHED_DEADLINE internal math precision.
152 * 10 -> just above 1us
153 * 9 -> just above 0.5us
154 */
155 #define DL_SCALE 10
156
157 /*
158 * Single value that denotes runtime == period, ie unlimited time.
159 */
160 #define RUNTIME_INF ((u64)~0ULL)
161
162 static inline int idle_policy(int policy)
163 {
164 return policy == SCHED_IDLE;
165 }
166 static inline int fair_policy(int policy)
167 {
168 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
169 }
170
171 static inline int rt_policy(int policy)
172 {
173 return policy == SCHED_FIFO || policy == SCHED_RR;
174 }
175
176 static inline int dl_policy(int policy)
177 {
178 return policy == SCHED_DEADLINE;
179 }
180 static inline bool valid_policy(int policy)
181 {
182 return idle_policy(policy) || fair_policy(policy) ||
183 rt_policy(policy) || dl_policy(policy);
184 }
185
186 static inline int task_has_idle_policy(struct task_struct *p)
187 {
188 return idle_policy(p->policy);
189 }
190
191 static inline int task_has_rt_policy(struct task_struct *p)
192 {
193 return rt_policy(p->policy);
194 }
195
196 static inline int task_has_dl_policy(struct task_struct *p)
197 {
198 return dl_policy(p->policy);
199 }
200
201 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
202
203 static inline void update_avg(u64 *avg, u64 sample)
204 {
205 s64 diff = sample - *avg;
206 *avg += diff / 8;
207 }
208
209 /*
210 * Shifting a value by an exponent greater *or equal* to the size of said value
211 * is UB; cap at size-1.
212 */
213 #define shr_bound(val, shift) \
214 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
215
216 /*
217 * !! For sched_setattr_nocheck() (kernel) only !!
218 *
219 * This is actually gross. :(
220 *
221 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
222 * tasks, but still be able to sleep. We need this on platforms that cannot
223 * atomically change clock frequency. Remove once fast switching will be
224 * available on such platforms.
225 *
226 * SUGOV stands for SchedUtil GOVernor.
227 */
228 #define SCHED_FLAG_SUGOV 0x10000000
229
230 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
231 {
232 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
233 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
234 #else
235 return false;
236 #endif
237 }
238
239 /*
240 * Tells if entity @a should preempt entity @b.
241 */
242 static inline bool
243 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
244 {
245 return dl_entity_is_special(a) ||
246 dl_time_before(a->deadline, b->deadline);
247 }
248
249 /*
250 * This is the priority-queue data structure of the RT scheduling class:
251 */
252 struct rt_prio_array {
253 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
254 struct list_head queue[MAX_RT_PRIO];
255 };
256
257 struct rt_bandwidth {
258 /* nests inside the rq lock: */
259 raw_spinlock_t rt_runtime_lock;
260 ktime_t rt_period;
261 u64 rt_runtime;
262 struct hrtimer rt_period_timer;
263 unsigned int rt_period_active;
264 };
265
266 void __dl_clear_params(struct task_struct *p);
267
268 struct dl_bandwidth {
269 raw_spinlock_t dl_runtime_lock;
270 u64 dl_runtime;
271 u64 dl_period;
272 };
273
274 static inline int dl_bandwidth_enabled(void)
275 {
276 return sysctl_sched_rt_runtime >= 0;
277 }
278
279 /*
280 * To keep the bandwidth of -deadline tasks under control
281 * we need some place where:
282 * - store the maximum -deadline bandwidth of each cpu;
283 * - cache the fraction of bandwidth that is currently allocated in
284 * each root domain;
285 *
286 * This is all done in the data structure below. It is similar to the
287 * one used for RT-throttling (rt_bandwidth), with the main difference
288 * that, since here we are only interested in admission control, we
289 * do not decrease any runtime while the group "executes", neither we
290 * need a timer to replenish it.
291 *
292 * With respect to SMP, bandwidth is given on a per root domain basis,
293 * meaning that:
294 * - bw (< 100%) is the deadline bandwidth of each CPU;
295 * - total_bw is the currently allocated bandwidth in each root domain;
296 */
297 struct dl_bw {
298 raw_spinlock_t lock;
299 u64 bw;
300 u64 total_bw;
301 };
302
303 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
304
305 static inline
306 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
307 {
308 dl_b->total_bw -= tsk_bw;
309 __dl_update(dl_b, (s32)tsk_bw / cpus);
310 }
311
312 static inline
313 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
314 {
315 dl_b->total_bw += tsk_bw;
316 __dl_update(dl_b, -((s32)tsk_bw / cpus));
317 }
318
319 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
320 u64 old_bw, u64 new_bw)
321 {
322 return dl_b->bw != -1 &&
323 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
324 }
325
326 /*
327 * Verify the fitness of task @p to run on @cpu taking into account the
328 * CPU original capacity and the runtime/deadline ratio of the task.
329 *
330 * The function will return true if the CPU original capacity of the
331 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
332 * task and false otherwise.
333 */
334 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
335 {
336 unsigned long cap = arch_scale_cpu_capacity(cpu);
337
338 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
339 }
340
341 extern void init_dl_bw(struct dl_bw *dl_b);
342 extern int sched_dl_global_validate(void);
343 extern void sched_dl_do_global(void);
344 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
345 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
346 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
347 extern bool __checkparam_dl(const struct sched_attr *attr);
348 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
349 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
350 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
351 extern bool dl_cpu_busy(unsigned int cpu);
352
353 #ifdef CONFIG_CGROUP_SCHED
354
355 #include <linux/cgroup.h>
356 #include <linux/psi.h>
357
358 struct cfs_rq;
359 struct rt_rq;
360
361 extern struct list_head task_groups;
362
363 struct cfs_bandwidth {
364 #ifdef CONFIG_CFS_BANDWIDTH
365 raw_spinlock_t lock;
366 ktime_t period;
367 u64 quota;
368 u64 runtime;
369 u64 burst;
370 s64 hierarchical_quota;
371
372 u8 idle;
373 u8 period_active;
374 u8 slack_started;
375 struct hrtimer period_timer;
376 struct hrtimer slack_timer;
377 struct list_head throttled_cfs_rq;
378
379 /* Statistics: */
380 int nr_periods;
381 int nr_throttled;
382 u64 throttled_time;
383 #endif
384 };
385
386 /* Task group related information */
387 struct task_group {
388 struct cgroup_subsys_state css;
389
390 #ifdef CONFIG_FAIR_GROUP_SCHED
391 /* schedulable entities of this group on each CPU */
392 struct sched_entity **se;
393 /* runqueue "owned" by this group on each CPU */
394 struct cfs_rq **cfs_rq;
395 unsigned long shares;
396
397 #ifdef CONFIG_SMP
398 /*
399 * load_avg can be heavily contended at clock tick time, so put
400 * it in its own cacheline separated from the fields above which
401 * will also be accessed at each tick.
402 */
403 atomic_long_t load_avg ____cacheline_aligned;
404 #endif
405 #endif
406
407 #ifdef CONFIG_RT_GROUP_SCHED
408 struct sched_rt_entity **rt_se;
409 struct rt_rq **rt_rq;
410
411 struct rt_bandwidth rt_bandwidth;
412 #endif
413
414 struct rcu_head rcu;
415 struct list_head list;
416
417 struct task_group *parent;
418 struct list_head siblings;
419 struct list_head children;
420
421 #ifdef CONFIG_SCHED_AUTOGROUP
422 struct autogroup *autogroup;
423 #endif
424
425 struct cfs_bandwidth cfs_bandwidth;
426
427 #ifdef CONFIG_UCLAMP_TASK_GROUP
428 /* The two decimal precision [%] value requested from user-space */
429 unsigned int uclamp_pct[UCLAMP_CNT];
430 /* Clamp values requested for a task group */
431 struct uclamp_se uclamp_req[UCLAMP_CNT];
432 /* Effective clamp values used for a task group */
433 struct uclamp_se uclamp[UCLAMP_CNT];
434 #endif
435
436 };
437
438 #ifdef CONFIG_FAIR_GROUP_SCHED
439 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
440
441 /*
442 * A weight of 0 or 1 can cause arithmetics problems.
443 * A weight of a cfs_rq is the sum of weights of which entities
444 * are queued on this cfs_rq, so a weight of a entity should not be
445 * too large, so as the shares value of a task group.
446 * (The default weight is 1024 - so there's no practical
447 * limitation from this.)
448 */
449 #define MIN_SHARES (1UL << 1)
450 #define MAX_SHARES (1UL << 18)
451 #endif
452
453 typedef int (*tg_visitor)(struct task_group *, void *);
454
455 extern int walk_tg_tree_from(struct task_group *from,
456 tg_visitor down, tg_visitor up, void *data);
457
458 /*
459 * Iterate the full tree, calling @down when first entering a node and @up when
460 * leaving it for the final time.
461 *
462 * Caller must hold rcu_lock or sufficient equivalent.
463 */
464 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
465 {
466 return walk_tg_tree_from(&root_task_group, down, up, data);
467 }
468
469 extern int tg_nop(struct task_group *tg, void *data);
470
471 extern void free_fair_sched_group(struct task_group *tg);
472 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
473 extern void online_fair_sched_group(struct task_group *tg);
474 extern void unregister_fair_sched_group(struct task_group *tg);
475 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
476 struct sched_entity *se, int cpu,
477 struct sched_entity *parent);
478 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
479
480 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
481 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
482 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
483
484 extern void free_rt_sched_group(struct task_group *tg);
485 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
486 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
487 struct sched_rt_entity *rt_se, int cpu,
488 struct sched_rt_entity *parent);
489 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
490 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
491 extern long sched_group_rt_runtime(struct task_group *tg);
492 extern long sched_group_rt_period(struct task_group *tg);
493 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
494
495 extern struct task_group *sched_create_group(struct task_group *parent);
496 extern void sched_online_group(struct task_group *tg,
497 struct task_group *parent);
498 extern void sched_destroy_group(struct task_group *tg);
499 extern void sched_offline_group(struct task_group *tg);
500
501 extern void sched_move_task(struct task_struct *tsk);
502
503 #ifdef CONFIG_FAIR_GROUP_SCHED
504 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
505
506 #ifdef CONFIG_SMP
507 extern void set_task_rq_fair(struct sched_entity *se,
508 struct cfs_rq *prev, struct cfs_rq *next);
509 #else /* !CONFIG_SMP */
510 static inline void set_task_rq_fair(struct sched_entity *se,
511 struct cfs_rq *prev, struct cfs_rq *next) { }
512 #endif /* CONFIG_SMP */
513 #endif /* CONFIG_FAIR_GROUP_SCHED */
514
515 #else /* CONFIG_CGROUP_SCHED */
516
517 struct cfs_bandwidth { };
518
519 #endif /* CONFIG_CGROUP_SCHED */
520
521 /* CFS-related fields in a runqueue */
522 struct cfs_rq {
523 struct load_weight load;
524 unsigned int nr_running;
525 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
526 unsigned int idle_h_nr_running; /* SCHED_IDLE */
527
528 u64 exec_clock;
529 u64 min_vruntime;
530 #ifdef CONFIG_SCHED_CORE
531 unsigned int forceidle_seq;
532 u64 min_vruntime_fi;
533 #endif
534
535 #ifndef CONFIG_64BIT
536 u64 min_vruntime_copy;
537 #endif
538
539 struct rb_root_cached tasks_timeline;
540
541 /*
542 * 'curr' points to currently running entity on this cfs_rq.
543 * It is set to NULL otherwise (i.e when none are currently running).
544 */
545 struct sched_entity *curr;
546 struct sched_entity *next;
547 struct sched_entity *last;
548 struct sched_entity *skip;
549
550 #ifdef CONFIG_SCHED_DEBUG
551 unsigned int nr_spread_over;
552 #endif
553
554 #ifdef CONFIG_SMP
555 /*
556 * CFS load tracking
557 */
558 struct sched_avg avg;
559 #ifndef CONFIG_64BIT
560 u64 load_last_update_time_copy;
561 #endif
562 struct {
563 raw_spinlock_t lock ____cacheline_aligned;
564 int nr;
565 unsigned long load_avg;
566 unsigned long util_avg;
567 unsigned long runnable_avg;
568 } removed;
569
570 #ifdef CONFIG_FAIR_GROUP_SCHED
571 unsigned long tg_load_avg_contrib;
572 long propagate;
573 long prop_runnable_sum;
574
575 /*
576 * h_load = weight * f(tg)
577 *
578 * Where f(tg) is the recursive weight fraction assigned to
579 * this group.
580 */
581 unsigned long h_load;
582 u64 last_h_load_update;
583 struct sched_entity *h_load_next;
584 #endif /* CONFIG_FAIR_GROUP_SCHED */
585 #endif /* CONFIG_SMP */
586
587 #ifdef CONFIG_FAIR_GROUP_SCHED
588 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
589
590 /*
591 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
592 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
593 * (like users, containers etc.)
594 *
595 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
596 * This list is used during load balance.
597 */
598 int on_list;
599 struct list_head leaf_cfs_rq_list;
600 struct task_group *tg; /* group that "owns" this runqueue */
601
602 #ifdef CONFIG_CFS_BANDWIDTH
603 int runtime_enabled;
604 s64 runtime_remaining;
605
606 u64 throttled_clock;
607 u64 throttled_clock_task;
608 u64 throttled_clock_task_time;
609 int throttled;
610 int throttle_count;
611 struct list_head throttled_list;
612 #endif /* CONFIG_CFS_BANDWIDTH */
613 #endif /* CONFIG_FAIR_GROUP_SCHED */
614 };
615
616 static inline int rt_bandwidth_enabled(void)
617 {
618 return sysctl_sched_rt_runtime >= 0;
619 }
620
621 /* RT IPI pull logic requires IRQ_WORK */
622 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
623 # define HAVE_RT_PUSH_IPI
624 #endif
625
626 /* Real-Time classes' related field in a runqueue: */
627 struct rt_rq {
628 struct rt_prio_array active;
629 unsigned int rt_nr_running;
630 unsigned int rr_nr_running;
631 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
632 struct {
633 int curr; /* highest queued rt task prio */
634 #ifdef CONFIG_SMP
635 int next; /* next highest */
636 #endif
637 } highest_prio;
638 #endif
639 #ifdef CONFIG_SMP
640 unsigned int rt_nr_migratory;
641 unsigned int rt_nr_total;
642 int overloaded;
643 struct plist_head pushable_tasks;
644
645 #endif /* CONFIG_SMP */
646 int rt_queued;
647
648 int rt_throttled;
649 u64 rt_time;
650 u64 rt_runtime;
651 /* Nests inside the rq lock: */
652 raw_spinlock_t rt_runtime_lock;
653
654 #ifdef CONFIG_RT_GROUP_SCHED
655 unsigned int rt_nr_boosted;
656
657 struct rq *rq;
658 struct task_group *tg;
659 #endif
660 };
661
662 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
663 {
664 return rt_rq->rt_queued && rt_rq->rt_nr_running;
665 }
666
667 /* Deadline class' related fields in a runqueue */
668 struct dl_rq {
669 /* runqueue is an rbtree, ordered by deadline */
670 struct rb_root_cached root;
671
672 unsigned int dl_nr_running;
673
674 #ifdef CONFIG_SMP
675 /*
676 * Deadline values of the currently executing and the
677 * earliest ready task on this rq. Caching these facilitates
678 * the decision whether or not a ready but not running task
679 * should migrate somewhere else.
680 */
681 struct {
682 u64 curr;
683 u64 next;
684 } earliest_dl;
685
686 unsigned int dl_nr_migratory;
687 int overloaded;
688
689 /*
690 * Tasks on this rq that can be pushed away. They are kept in
691 * an rb-tree, ordered by tasks' deadlines, with caching
692 * of the leftmost (earliest deadline) element.
693 */
694 struct rb_root_cached pushable_dl_tasks_root;
695 #else
696 struct dl_bw dl_bw;
697 #endif
698 /*
699 * "Active utilization" for this runqueue: increased when a
700 * task wakes up (becomes TASK_RUNNING) and decreased when a
701 * task blocks
702 */
703 u64 running_bw;
704
705 /*
706 * Utilization of the tasks "assigned" to this runqueue (including
707 * the tasks that are in runqueue and the tasks that executed on this
708 * CPU and blocked). Increased when a task moves to this runqueue, and
709 * decreased when the task moves away (migrates, changes scheduling
710 * policy, or terminates).
711 * This is needed to compute the "inactive utilization" for the
712 * runqueue (inactive utilization = this_bw - running_bw).
713 */
714 u64 this_bw;
715 u64 extra_bw;
716
717 /*
718 * Inverse of the fraction of CPU utilization that can be reclaimed
719 * by the GRUB algorithm.
720 */
721 u64 bw_ratio;
722 };
723
724 #ifdef CONFIG_FAIR_GROUP_SCHED
725 /* An entity is a task if it doesn't "own" a runqueue */
726 #define entity_is_task(se) (!se->my_q)
727
728 static inline void se_update_runnable(struct sched_entity *se)
729 {
730 if (!entity_is_task(se))
731 se->runnable_weight = se->my_q->h_nr_running;
732 }
733
734 static inline long se_runnable(struct sched_entity *se)
735 {
736 if (entity_is_task(se))
737 return !!se->on_rq;
738 else
739 return se->runnable_weight;
740 }
741
742 #else
743 #define entity_is_task(se) 1
744
745 static inline void se_update_runnable(struct sched_entity *se) {}
746
747 static inline long se_runnable(struct sched_entity *se)
748 {
749 return !!se->on_rq;
750 }
751 #endif
752
753 #ifdef CONFIG_SMP
754 /*
755 * XXX we want to get rid of these helpers and use the full load resolution.
756 */
757 static inline long se_weight(struct sched_entity *se)
758 {
759 return scale_load_down(se->load.weight);
760 }
761
762
763 static inline bool sched_asym_prefer(int a, int b)
764 {
765 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
766 }
767
768 struct perf_domain {
769 struct em_perf_domain *em_pd;
770 struct perf_domain *next;
771 struct rcu_head rcu;
772 };
773
774 /* Scheduling group status flags */
775 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
776 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
777
778 /*
779 * We add the notion of a root-domain which will be used to define per-domain
780 * variables. Each exclusive cpuset essentially defines an island domain by
781 * fully partitioning the member CPUs from any other cpuset. Whenever a new
782 * exclusive cpuset is created, we also create and attach a new root-domain
783 * object.
784 *
785 */
786 struct root_domain {
787 atomic_t refcount;
788 atomic_t rto_count;
789 struct rcu_head rcu;
790 cpumask_var_t span;
791 cpumask_var_t online;
792
793 /*
794 * Indicate pullable load on at least one CPU, e.g:
795 * - More than one runnable task
796 * - Running task is misfit
797 */
798 int overload;
799
800 /* Indicate one or more cpus over-utilized (tipping point) */
801 int overutilized;
802
803 /*
804 * The bit corresponding to a CPU gets set here if such CPU has more
805 * than one runnable -deadline task (as it is below for RT tasks).
806 */
807 cpumask_var_t dlo_mask;
808 atomic_t dlo_count;
809 struct dl_bw dl_bw;
810 struct cpudl cpudl;
811
812 /*
813 * Indicate whether a root_domain's dl_bw has been checked or
814 * updated. It's monotonously increasing value.
815 *
816 * Also, some corner cases, like 'wrap around' is dangerous, but given
817 * that u64 is 'big enough'. So that shouldn't be a concern.
818 */
819 u64 visit_gen;
820
821 #ifdef HAVE_RT_PUSH_IPI
822 /*
823 * For IPI pull requests, loop across the rto_mask.
824 */
825 struct irq_work rto_push_work;
826 raw_spinlock_t rto_lock;
827 /* These are only updated and read within rto_lock */
828 int rto_loop;
829 int rto_cpu;
830 /* These atomics are updated outside of a lock */
831 atomic_t rto_loop_next;
832 atomic_t rto_loop_start;
833 #endif
834 /*
835 * The "RT overload" flag: it gets set if a CPU has more than
836 * one runnable RT task.
837 */
838 cpumask_var_t rto_mask;
839 struct cpupri cpupri;
840
841 unsigned long max_cpu_capacity;
842
843 /*
844 * NULL-terminated list of performance domains intersecting with the
845 * CPUs of the rd. Protected by RCU.
846 */
847 struct perf_domain __rcu *pd;
848 };
849
850 extern void init_defrootdomain(void);
851 extern int sched_init_domains(const struct cpumask *cpu_map);
852 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
853 extern void sched_get_rd(struct root_domain *rd);
854 extern void sched_put_rd(struct root_domain *rd);
855
856 #ifdef HAVE_RT_PUSH_IPI
857 extern void rto_push_irq_work_func(struct irq_work *work);
858 #endif
859 #endif /* CONFIG_SMP */
860
861 #ifdef CONFIG_UCLAMP_TASK
862 /*
863 * struct uclamp_bucket - Utilization clamp bucket
864 * @value: utilization clamp value for tasks on this clamp bucket
865 * @tasks: number of RUNNABLE tasks on this clamp bucket
866 *
867 * Keep track of how many tasks are RUNNABLE for a given utilization
868 * clamp value.
869 */
870 struct uclamp_bucket {
871 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
872 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
873 };
874
875 /*
876 * struct uclamp_rq - rq's utilization clamp
877 * @value: currently active clamp values for a rq
878 * @bucket: utilization clamp buckets affecting a rq
879 *
880 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
881 * A clamp value is affecting a rq when there is at least one task RUNNABLE
882 * (or actually running) with that value.
883 *
884 * There are up to UCLAMP_CNT possible different clamp values, currently there
885 * are only two: minimum utilization and maximum utilization.
886 *
887 * All utilization clamping values are MAX aggregated, since:
888 * - for util_min: we want to run the CPU at least at the max of the minimum
889 * utilization required by its currently RUNNABLE tasks.
890 * - for util_max: we want to allow the CPU to run up to the max of the
891 * maximum utilization allowed by its currently RUNNABLE tasks.
892 *
893 * Since on each system we expect only a limited number of different
894 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
895 * the metrics required to compute all the per-rq utilization clamp values.
896 */
897 struct uclamp_rq {
898 unsigned int value;
899 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
900 };
901
902 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
903 #endif /* CONFIG_UCLAMP_TASK */
904
905 /*
906 * This is the main, per-CPU runqueue data structure.
907 *
908 * Locking rule: those places that want to lock multiple runqueues
909 * (such as the load balancing or the thread migration code), lock
910 * acquire operations must be ordered by ascending &runqueue.
911 */
912 struct rq {
913 /* runqueue lock: */
914 raw_spinlock_t __lock;
915
916 /*
917 * nr_running and cpu_load should be in the same cacheline because
918 * remote CPUs use both these fields when doing load calculation.
919 */
920 unsigned int nr_running;
921 #ifdef CONFIG_NUMA_BALANCING
922 unsigned int nr_numa_running;
923 unsigned int nr_preferred_running;
924 unsigned int numa_migrate_on;
925 #endif
926 #ifdef CONFIG_NO_HZ_COMMON
927 #ifdef CONFIG_SMP
928 unsigned long last_blocked_load_update_tick;
929 unsigned int has_blocked_load;
930 call_single_data_t nohz_csd;
931 #endif /* CONFIG_SMP */
932 unsigned int nohz_tick_stopped;
933 atomic_t nohz_flags;
934 #endif /* CONFIG_NO_HZ_COMMON */
935
936 #ifdef CONFIG_SMP
937 unsigned int ttwu_pending;
938 #endif
939 u64 nr_switches;
940
941 #ifdef CONFIG_UCLAMP_TASK
942 /* Utilization clamp values based on CPU's RUNNABLE tasks */
943 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
944 unsigned int uclamp_flags;
945 #define UCLAMP_FLAG_IDLE 0x01
946 #endif
947
948 struct cfs_rq cfs;
949 struct rt_rq rt;
950 struct dl_rq dl;
951
952 #ifdef CONFIG_FAIR_GROUP_SCHED
953 /* list of leaf cfs_rq on this CPU: */
954 struct list_head leaf_cfs_rq_list;
955 struct list_head *tmp_alone_branch;
956 #endif /* CONFIG_FAIR_GROUP_SCHED */
957
958 /*
959 * This is part of a global counter where only the total sum
960 * over all CPUs matters. A task can increase this counter on
961 * one CPU and if it got migrated afterwards it may decrease
962 * it on another CPU. Always updated under the runqueue lock:
963 */
964 unsigned int nr_uninterruptible;
965
966 struct task_struct __rcu *curr;
967 struct task_struct *idle;
968 struct task_struct *stop;
969 unsigned long next_balance;
970 struct mm_struct *prev_mm;
971
972 unsigned int clock_update_flags;
973 u64 clock;
974 /* Ensure that all clocks are in the same cache line */
975 u64 clock_task ____cacheline_aligned;
976 u64 clock_pelt;
977 unsigned long lost_idle_time;
978
979 atomic_t nr_iowait;
980
981 #ifdef CONFIG_SCHED_DEBUG
982 u64 last_seen_need_resched_ns;
983 int ticks_without_resched;
984 #endif
985
986 #ifdef CONFIG_MEMBARRIER
987 int membarrier_state;
988 #endif
989
990 #ifdef CONFIG_SMP
991 struct root_domain *rd;
992 struct sched_domain __rcu *sd;
993
994 unsigned long cpu_capacity;
995 unsigned long cpu_capacity_orig;
996
997 struct callback_head *balance_callback;
998
999 unsigned char nohz_idle_balance;
1000 unsigned char idle_balance;
1001
1002 unsigned long misfit_task_load;
1003
1004 /* For active balancing */
1005 int active_balance;
1006 int push_cpu;
1007 struct cpu_stop_work active_balance_work;
1008
1009 /* CPU of this runqueue: */
1010 int cpu;
1011 int online;
1012
1013 struct list_head cfs_tasks;
1014
1015 struct sched_avg avg_rt;
1016 struct sched_avg avg_dl;
1017 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1018 struct sched_avg avg_irq;
1019 #endif
1020 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1021 struct sched_avg avg_thermal;
1022 #endif
1023 u64 idle_stamp;
1024 u64 avg_idle;
1025
1026 unsigned long wake_stamp;
1027 u64 wake_avg_idle;
1028
1029 /* This is used to determine avg_idle's max value */
1030 u64 max_idle_balance_cost;
1031
1032 #ifdef CONFIG_HOTPLUG_CPU
1033 struct rcuwait hotplug_wait;
1034 #endif
1035 #endif /* CONFIG_SMP */
1036
1037 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1038 u64 prev_irq_time;
1039 #endif
1040 #ifdef CONFIG_PARAVIRT
1041 u64 prev_steal_time;
1042 #endif
1043 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1044 u64 prev_steal_time_rq;
1045 #endif
1046
1047 /* calc_load related fields */
1048 unsigned long calc_load_update;
1049 long calc_load_active;
1050
1051 #ifdef CONFIG_SCHED_HRTICK
1052 #ifdef CONFIG_SMP
1053 call_single_data_t hrtick_csd;
1054 #endif
1055 struct hrtimer hrtick_timer;
1056 ktime_t hrtick_time;
1057 #endif
1058
1059 #ifdef CONFIG_SCHEDSTATS
1060 /* latency stats */
1061 struct sched_info rq_sched_info;
1062 unsigned long long rq_cpu_time;
1063 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1064
1065 /* sys_sched_yield() stats */
1066 unsigned int yld_count;
1067
1068 /* schedule() stats */
1069 unsigned int sched_count;
1070 unsigned int sched_goidle;
1071
1072 /* try_to_wake_up() stats */
1073 unsigned int ttwu_count;
1074 unsigned int ttwu_local;
1075 #endif
1076
1077 #ifdef CONFIG_CPU_IDLE
1078 /* Must be inspected within a rcu lock section */
1079 struct cpuidle_state *idle_state;
1080 #endif
1081
1082 #ifdef CONFIG_SMP
1083 unsigned int nr_pinned;
1084 #endif
1085 unsigned int push_busy;
1086 struct cpu_stop_work push_work;
1087
1088 #ifdef CONFIG_SCHED_CORE
1089 /* per rq */
1090 struct rq *core;
1091 struct task_struct *core_pick;
1092 unsigned int core_enabled;
1093 unsigned int core_sched_seq;
1094 struct rb_root core_tree;
1095
1096 /* shared state */
1097 unsigned int core_task_seq;
1098 unsigned int core_pick_seq;
1099 unsigned long core_cookie;
1100 unsigned char core_forceidle;
1101 unsigned int core_forceidle_seq;
1102 #endif
1103 };
1104
1105 #ifdef CONFIG_FAIR_GROUP_SCHED
1106
1107 /* CPU runqueue to which this cfs_rq is attached */
1108 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1109 {
1110 return cfs_rq->rq;
1111 }
1112
1113 #else
1114
1115 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1116 {
1117 return container_of(cfs_rq, struct rq, cfs);
1118 }
1119 #endif
1120
1121 static inline int cpu_of(struct rq *rq)
1122 {
1123 #ifdef CONFIG_SMP
1124 return rq->cpu;
1125 #else
1126 return 0;
1127 #endif
1128 }
1129
1130 #define MDF_PUSH 0x01
1131
1132 static inline bool is_migration_disabled(struct task_struct *p)
1133 {
1134 #ifdef CONFIG_SMP
1135 return p->migration_disabled;
1136 #else
1137 return false;
1138 #endif
1139 }
1140
1141 struct sched_group;
1142 #ifdef CONFIG_SCHED_CORE
1143 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1144
1145 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1146
1147 static inline bool sched_core_enabled(struct rq *rq)
1148 {
1149 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1150 }
1151
1152 static inline bool sched_core_disabled(void)
1153 {
1154 return !static_branch_unlikely(&__sched_core_enabled);
1155 }
1156
1157 /*
1158 * Be careful with this function; not for general use. The return value isn't
1159 * stable unless you actually hold a relevant rq->__lock.
1160 */
1161 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1162 {
1163 if (sched_core_enabled(rq))
1164 return &rq->core->__lock;
1165
1166 return &rq->__lock;
1167 }
1168
1169 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1170 {
1171 if (rq->core_enabled)
1172 return &rq->core->__lock;
1173
1174 return &rq->__lock;
1175 }
1176
1177 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1178
1179 /*
1180 * Helpers to check if the CPU's core cookie matches with the task's cookie
1181 * when core scheduling is enabled.
1182 * A special case is that the task's cookie always matches with CPU's core
1183 * cookie if the CPU is in an idle core.
1184 */
1185 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1186 {
1187 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1188 if (!sched_core_enabled(rq))
1189 return true;
1190
1191 return rq->core->core_cookie == p->core_cookie;
1192 }
1193
1194 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1195 {
1196 bool idle_core = true;
1197 int cpu;
1198
1199 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1200 if (!sched_core_enabled(rq))
1201 return true;
1202
1203 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1204 if (!available_idle_cpu(cpu)) {
1205 idle_core = false;
1206 break;
1207 }
1208 }
1209
1210 /*
1211 * A CPU in an idle core is always the best choice for tasks with
1212 * cookies.
1213 */
1214 return idle_core || rq->core->core_cookie == p->core_cookie;
1215 }
1216
1217 static inline bool sched_group_cookie_match(struct rq *rq,
1218 struct task_struct *p,
1219 struct sched_group *group)
1220 {
1221 int cpu;
1222
1223 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1224 if (!sched_core_enabled(rq))
1225 return true;
1226
1227 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1228 if (sched_core_cookie_match(rq, p))
1229 return true;
1230 }
1231 return false;
1232 }
1233
1234 extern void queue_core_balance(struct rq *rq);
1235
1236 static inline bool sched_core_enqueued(struct task_struct *p)
1237 {
1238 return !RB_EMPTY_NODE(&p->core_node);
1239 }
1240
1241 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1242 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p);
1243
1244 extern void sched_core_get(void);
1245 extern void sched_core_put(void);
1246
1247 extern unsigned long sched_core_alloc_cookie(void);
1248 extern void sched_core_put_cookie(unsigned long cookie);
1249 extern unsigned long sched_core_get_cookie(unsigned long cookie);
1250 extern unsigned long sched_core_update_cookie(struct task_struct *p, unsigned long cookie);
1251
1252 #else /* !CONFIG_SCHED_CORE */
1253
1254 static inline bool sched_core_enabled(struct rq *rq)
1255 {
1256 return false;
1257 }
1258
1259 static inline bool sched_core_disabled(void)
1260 {
1261 return true;
1262 }
1263
1264 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1265 {
1266 return &rq->__lock;
1267 }
1268
1269 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1270 {
1271 return &rq->__lock;
1272 }
1273
1274 static inline void queue_core_balance(struct rq *rq)
1275 {
1276 }
1277
1278 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1279 {
1280 return true;
1281 }
1282
1283 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1284 {
1285 return true;
1286 }
1287
1288 static inline bool sched_group_cookie_match(struct rq *rq,
1289 struct task_struct *p,
1290 struct sched_group *group)
1291 {
1292 return true;
1293 }
1294 #endif /* CONFIG_SCHED_CORE */
1295
1296 static inline void lockdep_assert_rq_held(struct rq *rq)
1297 {
1298 lockdep_assert_held(__rq_lockp(rq));
1299 }
1300
1301 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1302 extern bool raw_spin_rq_trylock(struct rq *rq);
1303 extern void raw_spin_rq_unlock(struct rq *rq);
1304
1305 static inline void raw_spin_rq_lock(struct rq *rq)
1306 {
1307 raw_spin_rq_lock_nested(rq, 0);
1308 }
1309
1310 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1311 {
1312 local_irq_disable();
1313 raw_spin_rq_lock(rq);
1314 }
1315
1316 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1317 {
1318 raw_spin_rq_unlock(rq);
1319 local_irq_enable();
1320 }
1321
1322 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1323 {
1324 unsigned long flags;
1325 local_irq_save(flags);
1326 raw_spin_rq_lock(rq);
1327 return flags;
1328 }
1329
1330 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1331 {
1332 raw_spin_rq_unlock(rq);
1333 local_irq_restore(flags);
1334 }
1335
1336 #define raw_spin_rq_lock_irqsave(rq, flags) \
1337 do { \
1338 flags = _raw_spin_rq_lock_irqsave(rq); \
1339 } while (0)
1340
1341 #ifdef CONFIG_SCHED_SMT
1342 extern void __update_idle_core(struct rq *rq);
1343
1344 static inline void update_idle_core(struct rq *rq)
1345 {
1346 if (static_branch_unlikely(&sched_smt_present))
1347 __update_idle_core(rq);
1348 }
1349
1350 #else
1351 static inline void update_idle_core(struct rq *rq) { }
1352 #endif
1353
1354 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1355
1356 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1357 #define this_rq() this_cpu_ptr(&runqueues)
1358 #define task_rq(p) cpu_rq(task_cpu(p))
1359 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1360 #define raw_rq() raw_cpu_ptr(&runqueues)
1361
1362 #ifdef CONFIG_FAIR_GROUP_SCHED
1363 static inline struct task_struct *task_of(struct sched_entity *se)
1364 {
1365 SCHED_WARN_ON(!entity_is_task(se));
1366 return container_of(se, struct task_struct, se);
1367 }
1368
1369 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1370 {
1371 return p->se.cfs_rq;
1372 }
1373
1374 /* runqueue on which this entity is (to be) queued */
1375 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1376 {
1377 return se->cfs_rq;
1378 }
1379
1380 /* runqueue "owned" by this group */
1381 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1382 {
1383 return grp->my_q;
1384 }
1385
1386 #else
1387
1388 static inline struct task_struct *task_of(struct sched_entity *se)
1389 {
1390 return container_of(se, struct task_struct, se);
1391 }
1392
1393 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1394 {
1395 return &task_rq(p)->cfs;
1396 }
1397
1398 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1399 {
1400 struct task_struct *p = task_of(se);
1401 struct rq *rq = task_rq(p);
1402
1403 return &rq->cfs;
1404 }
1405
1406 /* runqueue "owned" by this group */
1407 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1408 {
1409 return NULL;
1410 }
1411 #endif
1412
1413 extern void update_rq_clock(struct rq *rq);
1414
1415 static inline u64 __rq_clock_broken(struct rq *rq)
1416 {
1417 return READ_ONCE(rq->clock);
1418 }
1419
1420 /*
1421 * rq::clock_update_flags bits
1422 *
1423 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1424 * call to __schedule(). This is an optimisation to avoid
1425 * neighbouring rq clock updates.
1426 *
1427 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1428 * in effect and calls to update_rq_clock() are being ignored.
1429 *
1430 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1431 * made to update_rq_clock() since the last time rq::lock was pinned.
1432 *
1433 * If inside of __schedule(), clock_update_flags will have been
1434 * shifted left (a left shift is a cheap operation for the fast path
1435 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1436 *
1437 * if (rq-clock_update_flags >= RQCF_UPDATED)
1438 *
1439 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1440 * one position though, because the next rq_unpin_lock() will shift it
1441 * back.
1442 */
1443 #define RQCF_REQ_SKIP 0x01
1444 #define RQCF_ACT_SKIP 0x02
1445 #define RQCF_UPDATED 0x04
1446
1447 static inline void assert_clock_updated(struct rq *rq)
1448 {
1449 /*
1450 * The only reason for not seeing a clock update since the
1451 * last rq_pin_lock() is if we're currently skipping updates.
1452 */
1453 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1454 }
1455
1456 static inline u64 rq_clock(struct rq *rq)
1457 {
1458 lockdep_assert_rq_held(rq);
1459 assert_clock_updated(rq);
1460
1461 return rq->clock;
1462 }
1463
1464 static inline u64 rq_clock_task(struct rq *rq)
1465 {
1466 lockdep_assert_rq_held(rq);
1467 assert_clock_updated(rq);
1468
1469 return rq->clock_task;
1470 }
1471
1472 /**
1473 * By default the decay is the default pelt decay period.
1474 * The decay shift can change the decay period in
1475 * multiples of 32.
1476 * Decay shift Decay period(ms)
1477 * 0 32
1478 * 1 64
1479 * 2 128
1480 * 3 256
1481 * 4 512
1482 */
1483 extern int sched_thermal_decay_shift;
1484
1485 static inline u64 rq_clock_thermal(struct rq *rq)
1486 {
1487 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1488 }
1489
1490 static inline void rq_clock_skip_update(struct rq *rq)
1491 {
1492 lockdep_assert_rq_held(rq);
1493 rq->clock_update_flags |= RQCF_REQ_SKIP;
1494 }
1495
1496 /*
1497 * See rt task throttling, which is the only time a skip
1498 * request is canceled.
1499 */
1500 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1501 {
1502 lockdep_assert_rq_held(rq);
1503 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1504 }
1505
1506 struct rq_flags {
1507 unsigned long flags;
1508 struct pin_cookie cookie;
1509 #ifdef CONFIG_SCHED_DEBUG
1510 /*
1511 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1512 * current pin context is stashed here in case it needs to be
1513 * restored in rq_repin_lock().
1514 */
1515 unsigned int clock_update_flags;
1516 #endif
1517 };
1518
1519 extern struct callback_head balance_push_callback;
1520
1521 /*
1522 * Lockdep annotation that avoids accidental unlocks; it's like a
1523 * sticky/continuous lockdep_assert_held().
1524 *
1525 * This avoids code that has access to 'struct rq *rq' (basically everything in
1526 * the scheduler) from accidentally unlocking the rq if they do not also have a
1527 * copy of the (on-stack) 'struct rq_flags rf'.
1528 *
1529 * Also see Documentation/locking/lockdep-design.rst.
1530 */
1531 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1532 {
1533 rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1534
1535 #ifdef CONFIG_SCHED_DEBUG
1536 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1537 rf->clock_update_flags = 0;
1538 #ifdef CONFIG_SMP
1539 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1540 #endif
1541 #endif
1542 }
1543
1544 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1545 {
1546 #ifdef CONFIG_SCHED_DEBUG
1547 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1548 rf->clock_update_flags = RQCF_UPDATED;
1549 #endif
1550
1551 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1552 }
1553
1554 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1555 {
1556 lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1557
1558 #ifdef CONFIG_SCHED_DEBUG
1559 /*
1560 * Restore the value we stashed in @rf for this pin context.
1561 */
1562 rq->clock_update_flags |= rf->clock_update_flags;
1563 #endif
1564 }
1565
1566 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1567 __acquires(rq->lock);
1568
1569 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1570 __acquires(p->pi_lock)
1571 __acquires(rq->lock);
1572
1573 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1574 __releases(rq->lock)
1575 {
1576 rq_unpin_lock(rq, rf);
1577 raw_spin_rq_unlock(rq);
1578 }
1579
1580 static inline void
1581 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1582 __releases(rq->lock)
1583 __releases(p->pi_lock)
1584 {
1585 rq_unpin_lock(rq, rf);
1586 raw_spin_rq_unlock(rq);
1587 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1588 }
1589
1590 static inline void
1591 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1592 __acquires(rq->lock)
1593 {
1594 raw_spin_rq_lock_irqsave(rq, rf->flags);
1595 rq_pin_lock(rq, rf);
1596 }
1597
1598 static inline void
1599 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1600 __acquires(rq->lock)
1601 {
1602 raw_spin_rq_lock_irq(rq);
1603 rq_pin_lock(rq, rf);
1604 }
1605
1606 static inline void
1607 rq_lock(struct rq *rq, struct rq_flags *rf)
1608 __acquires(rq->lock)
1609 {
1610 raw_spin_rq_lock(rq);
1611 rq_pin_lock(rq, rf);
1612 }
1613
1614 static inline void
1615 rq_relock(struct rq *rq, struct rq_flags *rf)
1616 __acquires(rq->lock)
1617 {
1618 raw_spin_rq_lock(rq);
1619 rq_repin_lock(rq, rf);
1620 }
1621
1622 static inline void
1623 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1624 __releases(rq->lock)
1625 {
1626 rq_unpin_lock(rq, rf);
1627 raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1628 }
1629
1630 static inline void
1631 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1632 __releases(rq->lock)
1633 {
1634 rq_unpin_lock(rq, rf);
1635 raw_spin_rq_unlock_irq(rq);
1636 }
1637
1638 static inline void
1639 rq_unlock(struct rq *rq, struct rq_flags *rf)
1640 __releases(rq->lock)
1641 {
1642 rq_unpin_lock(rq, rf);
1643 raw_spin_rq_unlock(rq);
1644 }
1645
1646 static inline struct rq *
1647 this_rq_lock_irq(struct rq_flags *rf)
1648 __acquires(rq->lock)
1649 {
1650 struct rq *rq;
1651
1652 local_irq_disable();
1653 rq = this_rq();
1654 rq_lock(rq, rf);
1655 return rq;
1656 }
1657
1658 #ifdef CONFIG_NUMA
1659 enum numa_topology_type {
1660 NUMA_DIRECT,
1661 NUMA_GLUELESS_MESH,
1662 NUMA_BACKPLANE,
1663 };
1664 extern enum numa_topology_type sched_numa_topology_type;
1665 extern int sched_max_numa_distance;
1666 extern bool find_numa_distance(int distance);
1667 extern void sched_init_numa(void);
1668 extern void sched_domains_numa_masks_set(unsigned int cpu);
1669 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1670 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1671 #else
1672 static inline void sched_init_numa(void) { }
1673 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1674 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1675 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1676 {
1677 return nr_cpu_ids;
1678 }
1679 #endif
1680
1681 #ifdef CONFIG_NUMA_BALANCING
1682 /* The regions in numa_faults array from task_struct */
1683 enum numa_faults_stats {
1684 NUMA_MEM = 0,
1685 NUMA_CPU,
1686 NUMA_MEMBUF,
1687 NUMA_CPUBUF
1688 };
1689 extern void sched_setnuma(struct task_struct *p, int node);
1690 extern int migrate_task_to(struct task_struct *p, int cpu);
1691 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1692 int cpu, int scpu);
1693 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1694 #else
1695 static inline void
1696 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1697 {
1698 }
1699 #endif /* CONFIG_NUMA_BALANCING */
1700
1701 #ifdef CONFIG_SMP
1702
1703 static inline void
1704 queue_balance_callback(struct rq *rq,
1705 struct callback_head *head,
1706 void (*func)(struct rq *rq))
1707 {
1708 lockdep_assert_rq_held(rq);
1709
1710 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1711 return;
1712
1713 head->func = (void (*)(struct callback_head *))func;
1714 head->next = rq->balance_callback;
1715 rq->balance_callback = head;
1716 }
1717
1718 #define rcu_dereference_check_sched_domain(p) \
1719 rcu_dereference_check((p), \
1720 lockdep_is_held(&sched_domains_mutex))
1721
1722 /*
1723 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1724 * See destroy_sched_domains: call_rcu for details.
1725 *
1726 * The domain tree of any CPU may only be accessed from within
1727 * preempt-disabled sections.
1728 */
1729 #define for_each_domain(cpu, __sd) \
1730 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1731 __sd; __sd = __sd->parent)
1732
1733 /**
1734 * highest_flag_domain - Return highest sched_domain containing flag.
1735 * @cpu: The CPU whose highest level of sched domain is to
1736 * be returned.
1737 * @flag: The flag to check for the highest sched_domain
1738 * for the given CPU.
1739 *
1740 * Returns the highest sched_domain of a CPU which contains the given flag.
1741 */
1742 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1743 {
1744 struct sched_domain *sd, *hsd = NULL;
1745
1746 for_each_domain(cpu, sd) {
1747 if (!(sd->flags & flag))
1748 break;
1749 hsd = sd;
1750 }
1751
1752 return hsd;
1753 }
1754
1755 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1756 {
1757 struct sched_domain *sd;
1758
1759 for_each_domain(cpu, sd) {
1760 if (sd->flags & flag)
1761 break;
1762 }
1763
1764 return sd;
1765 }
1766
1767 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1768 DECLARE_PER_CPU(int, sd_llc_size);
1769 DECLARE_PER_CPU(int, sd_llc_id);
1770 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1771 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1772 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1773 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1774 extern struct static_key_false sched_asym_cpucapacity;
1775
1776 struct sched_group_capacity {
1777 atomic_t ref;
1778 /*
1779 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1780 * for a single CPU.
1781 */
1782 unsigned long capacity;
1783 unsigned long min_capacity; /* Min per-CPU capacity in group */
1784 unsigned long max_capacity; /* Max per-CPU capacity in group */
1785 unsigned long next_update;
1786 int imbalance; /* XXX unrelated to capacity but shared group state */
1787
1788 #ifdef CONFIG_SCHED_DEBUG
1789 int id;
1790 #endif
1791
1792 unsigned long cpumask[]; /* Balance mask */
1793 };
1794
1795 struct sched_group {
1796 struct sched_group *next; /* Must be a circular list */
1797 atomic_t ref;
1798
1799 unsigned int group_weight;
1800 struct sched_group_capacity *sgc;
1801 int asym_prefer_cpu; /* CPU of highest priority in group */
1802
1803 /*
1804 * The CPUs this group covers.
1805 *
1806 * NOTE: this field is variable length. (Allocated dynamically
1807 * by attaching extra space to the end of the structure,
1808 * depending on how many CPUs the kernel has booted up with)
1809 */
1810 unsigned long cpumask[];
1811 };
1812
1813 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1814 {
1815 return to_cpumask(sg->cpumask);
1816 }
1817
1818 /*
1819 * See build_balance_mask().
1820 */
1821 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1822 {
1823 return to_cpumask(sg->sgc->cpumask);
1824 }
1825
1826 /**
1827 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1828 * @group: The group whose first CPU is to be returned.
1829 */
1830 static inline unsigned int group_first_cpu(struct sched_group *group)
1831 {
1832 return cpumask_first(sched_group_span(group));
1833 }
1834
1835 extern int group_balance_cpu(struct sched_group *sg);
1836
1837 #ifdef CONFIG_SCHED_DEBUG
1838 void update_sched_domain_debugfs(void);
1839 void dirty_sched_domain_sysctl(int cpu);
1840 #else
1841 static inline void update_sched_domain_debugfs(void)
1842 {
1843 }
1844 static inline void dirty_sched_domain_sysctl(int cpu)
1845 {
1846 }
1847 #endif
1848
1849 extern int sched_update_scaling(void);
1850
1851 extern void flush_smp_call_function_from_idle(void);
1852
1853 #else /* !CONFIG_SMP: */
1854 static inline void flush_smp_call_function_from_idle(void) { }
1855 #endif
1856
1857 #include "stats.h"
1858 #include "autogroup.h"
1859
1860 #ifdef CONFIG_CGROUP_SCHED
1861
1862 /*
1863 * Return the group to which this tasks belongs.
1864 *
1865 * We cannot use task_css() and friends because the cgroup subsystem
1866 * changes that value before the cgroup_subsys::attach() method is called,
1867 * therefore we cannot pin it and might observe the wrong value.
1868 *
1869 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1870 * core changes this before calling sched_move_task().
1871 *
1872 * Instead we use a 'copy' which is updated from sched_move_task() while
1873 * holding both task_struct::pi_lock and rq::lock.
1874 */
1875 static inline struct task_group *task_group(struct task_struct *p)
1876 {
1877 return p->sched_task_group;
1878 }
1879
1880 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1881 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1882 {
1883 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1884 struct task_group *tg = task_group(p);
1885 #endif
1886
1887 #ifdef CONFIG_FAIR_GROUP_SCHED
1888 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1889 p->se.cfs_rq = tg->cfs_rq[cpu];
1890 p->se.parent = tg->se[cpu];
1891 #endif
1892
1893 #ifdef CONFIG_RT_GROUP_SCHED
1894 p->rt.rt_rq = tg->rt_rq[cpu];
1895 p->rt.parent = tg->rt_se[cpu];
1896 #endif
1897 }
1898
1899 #else /* CONFIG_CGROUP_SCHED */
1900
1901 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1902 static inline struct task_group *task_group(struct task_struct *p)
1903 {
1904 return NULL;
1905 }
1906
1907 #endif /* CONFIG_CGROUP_SCHED */
1908
1909 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1910 {
1911 set_task_rq(p, cpu);
1912 #ifdef CONFIG_SMP
1913 /*
1914 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1915 * successfully executed on another CPU. We must ensure that updates of
1916 * per-task data have been completed by this moment.
1917 */
1918 smp_wmb();
1919 #ifdef CONFIG_THREAD_INFO_IN_TASK
1920 WRITE_ONCE(p->cpu, cpu);
1921 #else
1922 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1923 #endif
1924 p->wake_cpu = cpu;
1925 #endif
1926 }
1927
1928 /*
1929 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1930 */
1931 #ifdef CONFIG_SCHED_DEBUG
1932 # include <linux/static_key.h>
1933 # define const_debug __read_mostly
1934 #else
1935 # define const_debug const
1936 #endif
1937
1938 #define SCHED_FEAT(name, enabled) \
1939 __SCHED_FEAT_##name ,
1940
1941 enum {
1942 #include "features.h"
1943 __SCHED_FEAT_NR,
1944 };
1945
1946 #undef SCHED_FEAT
1947
1948 #ifdef CONFIG_SCHED_DEBUG
1949
1950 /*
1951 * To support run-time toggling of sched features, all the translation units
1952 * (but core.c) reference the sysctl_sched_features defined in core.c.
1953 */
1954 extern const_debug unsigned int sysctl_sched_features;
1955
1956 #ifdef CONFIG_JUMP_LABEL
1957 #define SCHED_FEAT(name, enabled) \
1958 static __always_inline bool static_branch_##name(struct static_key *key) \
1959 { \
1960 return static_key_##enabled(key); \
1961 }
1962
1963 #include "features.h"
1964 #undef SCHED_FEAT
1965
1966 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1967 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1968
1969 #else /* !CONFIG_JUMP_LABEL */
1970
1971 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1972
1973 #endif /* CONFIG_JUMP_LABEL */
1974
1975 #else /* !SCHED_DEBUG */
1976
1977 /*
1978 * Each translation unit has its own copy of sysctl_sched_features to allow
1979 * constants propagation at compile time and compiler optimization based on
1980 * features default.
1981 */
1982 #define SCHED_FEAT(name, enabled) \
1983 (1UL << __SCHED_FEAT_##name) * enabled |
1984 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1985 #include "features.h"
1986 0;
1987 #undef SCHED_FEAT
1988
1989 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1990
1991 #endif /* SCHED_DEBUG */
1992
1993 extern struct static_key_false sched_numa_balancing;
1994 extern struct static_key_false sched_schedstats;
1995
1996 static inline u64 global_rt_period(void)
1997 {
1998 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1999 }
2000
2001 static inline u64 global_rt_runtime(void)
2002 {
2003 if (sysctl_sched_rt_runtime < 0)
2004 return RUNTIME_INF;
2005
2006 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2007 }
2008
2009 static inline int task_current(struct rq *rq, struct task_struct *p)
2010 {
2011 return rq->curr == p;
2012 }
2013
2014 static inline int task_running(struct rq *rq, struct task_struct *p)
2015 {
2016 #ifdef CONFIG_SMP
2017 return p->on_cpu;
2018 #else
2019 return task_current(rq, p);
2020 #endif
2021 }
2022
2023 static inline int task_on_rq_queued(struct task_struct *p)
2024 {
2025 return p->on_rq == TASK_ON_RQ_QUEUED;
2026 }
2027
2028 static inline int task_on_rq_migrating(struct task_struct *p)
2029 {
2030 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2031 }
2032
2033 /* Wake flags. The first three directly map to some SD flag value */
2034 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2035 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2036 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
2037
2038 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
2039 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2040 #define WF_ON_CPU 0x40 /* Wakee is on_cpu */
2041
2042 #ifdef CONFIG_SMP
2043 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2044 static_assert(WF_FORK == SD_BALANCE_FORK);
2045 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2046 #endif
2047
2048 /*
2049 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2050 * of tasks with abnormal "nice" values across CPUs the contribution that
2051 * each task makes to its run queue's load is weighted according to its
2052 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2053 * scaled version of the new time slice allocation that they receive on time
2054 * slice expiry etc.
2055 */
2056
2057 #define WEIGHT_IDLEPRIO 3
2058 #define WMULT_IDLEPRIO 1431655765
2059
2060 extern const int sched_prio_to_weight[40];
2061 extern const u32 sched_prio_to_wmult[40];
2062
2063 /*
2064 * {de,en}queue flags:
2065 *
2066 * DEQUEUE_SLEEP - task is no longer runnable
2067 * ENQUEUE_WAKEUP - task just became runnable
2068 *
2069 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2070 * are in a known state which allows modification. Such pairs
2071 * should preserve as much state as possible.
2072 *
2073 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2074 * in the runqueue.
2075 *
2076 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
2077 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2078 * ENQUEUE_MIGRATED - the task was migrated during wakeup
2079 *
2080 */
2081
2082 #define DEQUEUE_SLEEP 0x01
2083 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
2084 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
2085 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
2086
2087 #define ENQUEUE_WAKEUP 0x01
2088 #define ENQUEUE_RESTORE 0x02
2089 #define ENQUEUE_MOVE 0x04
2090 #define ENQUEUE_NOCLOCK 0x08
2091
2092 #define ENQUEUE_HEAD 0x10
2093 #define ENQUEUE_REPLENISH 0x20
2094 #ifdef CONFIG_SMP
2095 #define ENQUEUE_MIGRATED 0x40
2096 #else
2097 #define ENQUEUE_MIGRATED 0x00
2098 #endif
2099
2100 #define RETRY_TASK ((void *)-1UL)
2101
2102 struct sched_class {
2103
2104 #ifdef CONFIG_UCLAMP_TASK
2105 int uclamp_enabled;
2106 #endif
2107
2108 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2109 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2110 void (*yield_task) (struct rq *rq);
2111 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2112
2113 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2114
2115 struct task_struct *(*pick_next_task)(struct rq *rq);
2116
2117 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2118 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2119
2120 #ifdef CONFIG_SMP
2121 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2122 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2123
2124 struct task_struct * (*pick_task)(struct rq *rq);
2125
2126 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2127
2128 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2129
2130 void (*set_cpus_allowed)(struct task_struct *p,
2131 const struct cpumask *newmask,
2132 u32 flags);
2133
2134 void (*rq_online)(struct rq *rq);
2135 void (*rq_offline)(struct rq *rq);
2136
2137 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2138 #endif
2139
2140 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2141 void (*task_fork)(struct task_struct *p);
2142 void (*task_dead)(struct task_struct *p);
2143
2144 /*
2145 * The switched_from() call is allowed to drop rq->lock, therefore we
2146 * cannot assume the switched_from/switched_to pair is serialized by
2147 * rq->lock. They are however serialized by p->pi_lock.
2148 */
2149 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2150 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
2151 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2152 int oldprio);
2153
2154 unsigned int (*get_rr_interval)(struct rq *rq,
2155 struct task_struct *task);
2156
2157 void (*update_curr)(struct rq *rq);
2158
2159 #define TASK_SET_GROUP 0
2160 #define TASK_MOVE_GROUP 1
2161
2162 #ifdef CONFIG_FAIR_GROUP_SCHED
2163 void (*task_change_group)(struct task_struct *p, int type);
2164 #endif
2165 };
2166
2167 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2168 {
2169 WARN_ON_ONCE(rq->curr != prev);
2170 prev->sched_class->put_prev_task(rq, prev);
2171 }
2172
2173 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2174 {
2175 next->sched_class->set_next_task(rq, next, false);
2176 }
2177
2178
2179 /*
2180 * Helper to define a sched_class instance; each one is placed in a separate
2181 * section which is ordered by the linker script:
2182 *
2183 * include/asm-generic/vmlinux.lds.h
2184 *
2185 * Also enforce alignment on the instance, not the type, to guarantee layout.
2186 */
2187 #define DEFINE_SCHED_CLASS(name) \
2188 const struct sched_class name##_sched_class \
2189 __aligned(__alignof__(struct sched_class)) \
2190 __section("__" #name "_sched_class")
2191
2192 /* Defined in include/asm-generic/vmlinux.lds.h */
2193 extern struct sched_class __begin_sched_classes[];
2194 extern struct sched_class __end_sched_classes[];
2195
2196 #define sched_class_highest (__end_sched_classes - 1)
2197 #define sched_class_lowest (__begin_sched_classes - 1)
2198
2199 #define for_class_range(class, _from, _to) \
2200 for (class = (_from); class != (_to); class--)
2201
2202 #define for_each_class(class) \
2203 for_class_range(class, sched_class_highest, sched_class_lowest)
2204
2205 extern const struct sched_class stop_sched_class;
2206 extern const struct sched_class dl_sched_class;
2207 extern const struct sched_class rt_sched_class;
2208 extern const struct sched_class fair_sched_class;
2209 extern const struct sched_class idle_sched_class;
2210
2211 static inline bool sched_stop_runnable(struct rq *rq)
2212 {
2213 return rq->stop && task_on_rq_queued(rq->stop);
2214 }
2215
2216 static inline bool sched_dl_runnable(struct rq *rq)
2217 {
2218 return rq->dl.dl_nr_running > 0;
2219 }
2220
2221 static inline bool sched_rt_runnable(struct rq *rq)
2222 {
2223 return rq->rt.rt_queued > 0;
2224 }
2225
2226 static inline bool sched_fair_runnable(struct rq *rq)
2227 {
2228 return rq->cfs.nr_running > 0;
2229 }
2230
2231 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2232 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2233
2234 #define SCA_CHECK 0x01
2235 #define SCA_MIGRATE_DISABLE 0x02
2236 #define SCA_MIGRATE_ENABLE 0x04
2237
2238 #ifdef CONFIG_SMP
2239
2240 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2241
2242 extern void trigger_load_balance(struct rq *rq);
2243
2244 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2245
2246 static inline struct task_struct *get_push_task(struct rq *rq)
2247 {
2248 struct task_struct *p = rq->curr;
2249
2250 lockdep_assert_rq_held(rq);
2251
2252 if (rq->push_busy)
2253 return NULL;
2254
2255 if (p->nr_cpus_allowed == 1)
2256 return NULL;
2257
2258 rq->push_busy = true;
2259 return get_task_struct(p);
2260 }
2261
2262 extern int push_cpu_stop(void *arg);
2263
2264 #endif
2265
2266 #ifdef CONFIG_CPU_IDLE
2267 static inline void idle_set_state(struct rq *rq,
2268 struct cpuidle_state *idle_state)
2269 {
2270 rq->idle_state = idle_state;
2271 }
2272
2273 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2274 {
2275 SCHED_WARN_ON(!rcu_read_lock_held());
2276
2277 return rq->idle_state;
2278 }
2279 #else
2280 static inline void idle_set_state(struct rq *rq,
2281 struct cpuidle_state *idle_state)
2282 {
2283 }
2284
2285 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2286 {
2287 return NULL;
2288 }
2289 #endif
2290
2291 extern void schedule_idle(void);
2292
2293 extern void sysrq_sched_debug_show(void);
2294 extern void sched_init_granularity(void);
2295 extern void update_max_interval(void);
2296
2297 extern void init_sched_dl_class(void);
2298 extern void init_sched_rt_class(void);
2299 extern void init_sched_fair_class(void);
2300
2301 extern void reweight_task(struct task_struct *p, int prio);
2302
2303 extern void resched_curr(struct rq *rq);
2304 extern void resched_cpu(int cpu);
2305
2306 extern struct rt_bandwidth def_rt_bandwidth;
2307 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2308
2309 extern struct dl_bandwidth def_dl_bandwidth;
2310 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2311 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2312 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2313
2314 #define BW_SHIFT 20
2315 #define BW_UNIT (1 << BW_SHIFT)
2316 #define RATIO_SHIFT 8
2317 #define MAX_BW_BITS (64 - BW_SHIFT)
2318 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2319 unsigned long to_ratio(u64 period, u64 runtime);
2320
2321 extern void init_entity_runnable_average(struct sched_entity *se);
2322 extern void post_init_entity_util_avg(struct task_struct *p);
2323
2324 #ifdef CONFIG_NO_HZ_FULL
2325 extern bool sched_can_stop_tick(struct rq *rq);
2326 extern int __init sched_tick_offload_init(void);
2327
2328 /*
2329 * Tick may be needed by tasks in the runqueue depending on their policy and
2330 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2331 * nohz mode if necessary.
2332 */
2333 static inline void sched_update_tick_dependency(struct rq *rq)
2334 {
2335 int cpu = cpu_of(rq);
2336
2337 if (!tick_nohz_full_cpu(cpu))
2338 return;
2339
2340 if (sched_can_stop_tick(rq))
2341 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2342 else
2343 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2344 }
2345 #else
2346 static inline int sched_tick_offload_init(void) { return 0; }
2347 static inline void sched_update_tick_dependency(struct rq *rq) { }
2348 #endif
2349
2350 static inline void add_nr_running(struct rq *rq, unsigned count)
2351 {
2352 unsigned prev_nr = rq->nr_running;
2353
2354 rq->nr_running = prev_nr + count;
2355 if (trace_sched_update_nr_running_tp_enabled()) {
2356 call_trace_sched_update_nr_running(rq, count);
2357 }
2358
2359 #ifdef CONFIG_SMP
2360 if (prev_nr < 2 && rq->nr_running >= 2) {
2361 if (!READ_ONCE(rq->rd->overload))
2362 WRITE_ONCE(rq->rd->overload, 1);
2363 }
2364 #endif
2365
2366 sched_update_tick_dependency(rq);
2367 }
2368
2369 static inline void sub_nr_running(struct rq *rq, unsigned count)
2370 {
2371 rq->nr_running -= count;
2372 if (trace_sched_update_nr_running_tp_enabled()) {
2373 call_trace_sched_update_nr_running(rq, -count);
2374 }
2375
2376 /* Check if we still need preemption */
2377 sched_update_tick_dependency(rq);
2378 }
2379
2380 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2381 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2382
2383 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2384
2385 extern const_debug unsigned int sysctl_sched_nr_migrate;
2386 extern const_debug unsigned int sysctl_sched_migration_cost;
2387
2388 #ifdef CONFIG_SCHED_HRTICK
2389
2390 /*
2391 * Use hrtick when:
2392 * - enabled by features
2393 * - hrtimer is actually high res
2394 */
2395 static inline int hrtick_enabled(struct rq *rq)
2396 {
2397 if (!cpu_active(cpu_of(rq)))
2398 return 0;
2399 return hrtimer_is_hres_active(&rq->hrtick_timer);
2400 }
2401
2402 static inline int hrtick_enabled_fair(struct rq *rq)
2403 {
2404 if (!sched_feat(HRTICK))
2405 return 0;
2406 return hrtick_enabled(rq);
2407 }
2408
2409 static inline int hrtick_enabled_dl(struct rq *rq)
2410 {
2411 if (!sched_feat(HRTICK_DL))
2412 return 0;
2413 return hrtick_enabled(rq);
2414 }
2415
2416 void hrtick_start(struct rq *rq, u64 delay);
2417
2418 #else
2419
2420 static inline int hrtick_enabled_fair(struct rq *rq)
2421 {
2422 return 0;
2423 }
2424
2425 static inline int hrtick_enabled_dl(struct rq *rq)
2426 {
2427 return 0;
2428 }
2429
2430 static inline int hrtick_enabled(struct rq *rq)
2431 {
2432 return 0;
2433 }
2434
2435 #endif /* CONFIG_SCHED_HRTICK */
2436
2437 #ifndef arch_scale_freq_tick
2438 static __always_inline
2439 void arch_scale_freq_tick(void)
2440 {
2441 }
2442 #endif
2443
2444 #ifndef arch_scale_freq_capacity
2445 /**
2446 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2447 * @cpu: the CPU in question.
2448 *
2449 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2450 *
2451 * f_curr
2452 * ------ * SCHED_CAPACITY_SCALE
2453 * f_max
2454 */
2455 static __always_inline
2456 unsigned long arch_scale_freq_capacity(int cpu)
2457 {
2458 return SCHED_CAPACITY_SCALE;
2459 }
2460 #endif
2461
2462
2463 #ifdef CONFIG_SMP
2464
2465 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2466 {
2467 #ifdef CONFIG_SCHED_CORE
2468 /*
2469 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2470 * order by core-id first and cpu-id second.
2471 *
2472 * Notably:
2473 *
2474 * double_rq_lock(0,3); will take core-0, core-1 lock
2475 * double_rq_lock(1,2); will take core-1, core-0 lock
2476 *
2477 * when only cpu-id is considered.
2478 */
2479 if (rq1->core->cpu < rq2->core->cpu)
2480 return true;
2481 if (rq1->core->cpu > rq2->core->cpu)
2482 return false;
2483
2484 /*
2485 * __sched_core_flip() relies on SMT having cpu-id lock order.
2486 */
2487 #endif
2488 return rq1->cpu < rq2->cpu;
2489 }
2490
2491 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2492
2493 #ifdef CONFIG_PREEMPTION
2494
2495 /*
2496 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2497 * way at the expense of forcing extra atomic operations in all
2498 * invocations. This assures that the double_lock is acquired using the
2499 * same underlying policy as the spinlock_t on this architecture, which
2500 * reduces latency compared to the unfair variant below. However, it
2501 * also adds more overhead and therefore may reduce throughput.
2502 */
2503 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2504 __releases(this_rq->lock)
2505 __acquires(busiest->lock)
2506 __acquires(this_rq->lock)
2507 {
2508 raw_spin_rq_unlock(this_rq);
2509 double_rq_lock(this_rq, busiest);
2510
2511 return 1;
2512 }
2513
2514 #else
2515 /*
2516 * Unfair double_lock_balance: Optimizes throughput at the expense of
2517 * latency by eliminating extra atomic operations when the locks are
2518 * already in proper order on entry. This favors lower CPU-ids and will
2519 * grant the double lock to lower CPUs over higher ids under contention,
2520 * regardless of entry order into the function.
2521 */
2522 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2523 __releases(this_rq->lock)
2524 __acquires(busiest->lock)
2525 __acquires(this_rq->lock)
2526 {
2527 if (__rq_lockp(this_rq) == __rq_lockp(busiest))
2528 return 0;
2529
2530 if (likely(raw_spin_rq_trylock(busiest)))
2531 return 0;
2532
2533 if (rq_order_less(this_rq, busiest)) {
2534 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2535 return 0;
2536 }
2537
2538 raw_spin_rq_unlock(this_rq);
2539 double_rq_lock(this_rq, busiest);
2540
2541 return 1;
2542 }
2543
2544 #endif /* CONFIG_PREEMPTION */
2545
2546 /*
2547 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2548 */
2549 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2550 {
2551 lockdep_assert_irqs_disabled();
2552
2553 return _double_lock_balance(this_rq, busiest);
2554 }
2555
2556 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2557 __releases(busiest->lock)
2558 {
2559 if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2560 raw_spin_rq_unlock(busiest);
2561 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2562 }
2563
2564 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2565 {
2566 if (l1 > l2)
2567 swap(l1, l2);
2568
2569 spin_lock(l1);
2570 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2571 }
2572
2573 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2574 {
2575 if (l1 > l2)
2576 swap(l1, l2);
2577
2578 spin_lock_irq(l1);
2579 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2580 }
2581
2582 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2583 {
2584 if (l1 > l2)
2585 swap(l1, l2);
2586
2587 raw_spin_lock(l1);
2588 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2589 }
2590
2591 /*
2592 * double_rq_unlock - safely unlock two runqueues
2593 *
2594 * Note this does not restore interrupts like task_rq_unlock,
2595 * you need to do so manually after calling.
2596 */
2597 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2598 __releases(rq1->lock)
2599 __releases(rq2->lock)
2600 {
2601 if (__rq_lockp(rq1) != __rq_lockp(rq2))
2602 raw_spin_rq_unlock(rq2);
2603 else
2604 __release(rq2->lock);
2605 raw_spin_rq_unlock(rq1);
2606 }
2607
2608 extern void set_rq_online (struct rq *rq);
2609 extern void set_rq_offline(struct rq *rq);
2610 extern bool sched_smp_initialized;
2611
2612 #else /* CONFIG_SMP */
2613
2614 /*
2615 * double_rq_lock - safely lock two runqueues
2616 *
2617 * Note this does not disable interrupts like task_rq_lock,
2618 * you need to do so manually before calling.
2619 */
2620 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2621 __acquires(rq1->lock)
2622 __acquires(rq2->lock)
2623 {
2624 BUG_ON(!irqs_disabled());
2625 BUG_ON(rq1 != rq2);
2626 raw_spin_rq_lock(rq1);
2627 __acquire(rq2->lock); /* Fake it out ;) */
2628 }
2629
2630 /*
2631 * double_rq_unlock - safely unlock two runqueues
2632 *
2633 * Note this does not restore interrupts like task_rq_unlock,
2634 * you need to do so manually after calling.
2635 */
2636 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2637 __releases(rq1->lock)
2638 __releases(rq2->lock)
2639 {
2640 BUG_ON(rq1 != rq2);
2641 raw_spin_rq_unlock(rq1);
2642 __release(rq2->lock);
2643 }
2644
2645 #endif
2646
2647 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2648 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2649
2650 #ifdef CONFIG_SCHED_DEBUG
2651 extern bool sched_debug_verbose;
2652
2653 extern void print_cfs_stats(struct seq_file *m, int cpu);
2654 extern void print_rt_stats(struct seq_file *m, int cpu);
2655 extern void print_dl_stats(struct seq_file *m, int cpu);
2656 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2657 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2658 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2659
2660 extern void resched_latency_warn(int cpu, u64 latency);
2661 #ifdef CONFIG_NUMA_BALANCING
2662 extern void
2663 show_numa_stats(struct task_struct *p, struct seq_file *m);
2664 extern void
2665 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2666 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2667 #endif /* CONFIG_NUMA_BALANCING */
2668 #else
2669 static inline void resched_latency_warn(int cpu, u64 latency) {}
2670 #endif /* CONFIG_SCHED_DEBUG */
2671
2672 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2673 extern void init_rt_rq(struct rt_rq *rt_rq);
2674 extern void init_dl_rq(struct dl_rq *dl_rq);
2675
2676 extern void cfs_bandwidth_usage_inc(void);
2677 extern void cfs_bandwidth_usage_dec(void);
2678
2679 #ifdef CONFIG_NO_HZ_COMMON
2680 #define NOHZ_BALANCE_KICK_BIT 0
2681 #define NOHZ_STATS_KICK_BIT 1
2682 #define NOHZ_NEWILB_KICK_BIT 2
2683
2684 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2685 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2686 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
2687
2688 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2689
2690 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2691
2692 extern void nohz_balance_exit_idle(struct rq *rq);
2693 #else
2694 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2695 #endif
2696
2697 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2698 extern void nohz_run_idle_balance(int cpu);
2699 #else
2700 static inline void nohz_run_idle_balance(int cpu) { }
2701 #endif
2702
2703 #ifdef CONFIG_SMP
2704 static inline
2705 void __dl_update(struct dl_bw *dl_b, s64 bw)
2706 {
2707 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2708 int i;
2709
2710 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2711 "sched RCU must be held");
2712 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2713 struct rq *rq = cpu_rq(i);
2714
2715 rq->dl.extra_bw += bw;
2716 }
2717 }
2718 #else
2719 static inline
2720 void __dl_update(struct dl_bw *dl_b, s64 bw)
2721 {
2722 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2723
2724 dl->extra_bw += bw;
2725 }
2726 #endif
2727
2728
2729 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2730 struct irqtime {
2731 u64 total;
2732 u64 tick_delta;
2733 u64 irq_start_time;
2734 struct u64_stats_sync sync;
2735 };
2736
2737 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2738
2739 /*
2740 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2741 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2742 * and never move forward.
2743 */
2744 static inline u64 irq_time_read(int cpu)
2745 {
2746 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2747 unsigned int seq;
2748 u64 total;
2749
2750 do {
2751 seq = __u64_stats_fetch_begin(&irqtime->sync);
2752 total = irqtime->total;
2753 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2754
2755 return total;
2756 }
2757 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2758
2759 #ifdef CONFIG_CPU_FREQ
2760 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2761
2762 /**
2763 * cpufreq_update_util - Take a note about CPU utilization changes.
2764 * @rq: Runqueue to carry out the update for.
2765 * @flags: Update reason flags.
2766 *
2767 * This function is called by the scheduler on the CPU whose utilization is
2768 * being updated.
2769 *
2770 * It can only be called from RCU-sched read-side critical sections.
2771 *
2772 * The way cpufreq is currently arranged requires it to evaluate the CPU
2773 * performance state (frequency/voltage) on a regular basis to prevent it from
2774 * being stuck in a completely inadequate performance level for too long.
2775 * That is not guaranteed to happen if the updates are only triggered from CFS
2776 * and DL, though, because they may not be coming in if only RT tasks are
2777 * active all the time (or there are RT tasks only).
2778 *
2779 * As a workaround for that issue, this function is called periodically by the
2780 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2781 * but that really is a band-aid. Going forward it should be replaced with
2782 * solutions targeted more specifically at RT tasks.
2783 */
2784 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2785 {
2786 struct update_util_data *data;
2787
2788 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2789 cpu_of(rq)));
2790 if (data)
2791 data->func(data, rq_clock(rq), flags);
2792 }
2793 #else
2794 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2795 #endif /* CONFIG_CPU_FREQ */
2796
2797 #ifdef CONFIG_UCLAMP_TASK
2798 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2799
2800 /**
2801 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2802 * @rq: The rq to clamp against. Must not be NULL.
2803 * @util: The util value to clamp.
2804 * @p: The task to clamp against. Can be NULL if you want to clamp
2805 * against @rq only.
2806 *
2807 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2808 *
2809 * If sched_uclamp_used static key is disabled, then just return the util
2810 * without any clamping since uclamp aggregation at the rq level in the fast
2811 * path is disabled, rendering this operation a NOP.
2812 *
2813 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2814 * will return the correct effective uclamp value of the task even if the
2815 * static key is disabled.
2816 */
2817 static __always_inline
2818 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2819 struct task_struct *p)
2820 {
2821 unsigned long min_util = 0;
2822 unsigned long max_util = 0;
2823
2824 if (!static_branch_likely(&sched_uclamp_used))
2825 return util;
2826
2827 if (p) {
2828 min_util = uclamp_eff_value(p, UCLAMP_MIN);
2829 max_util = uclamp_eff_value(p, UCLAMP_MAX);
2830
2831 /*
2832 * Ignore last runnable task's max clamp, as this task will
2833 * reset it. Similarly, no need to read the rq's min clamp.
2834 */
2835 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2836 goto out;
2837 }
2838
2839 min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2840 max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2841 out:
2842 /*
2843 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2844 * RUNNABLE tasks with _different_ clamps, we can end up with an
2845 * inversion. Fix it now when the clamps are applied.
2846 */
2847 if (unlikely(min_util >= max_util))
2848 return min_util;
2849
2850 return clamp(util, min_util, max_util);
2851 }
2852
2853 /*
2854 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2855 * by default in the fast path and only gets turned on once userspace performs
2856 * an operation that requires it.
2857 *
2858 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2859 * hence is active.
2860 */
2861 static inline bool uclamp_is_used(void)
2862 {
2863 return static_branch_likely(&sched_uclamp_used);
2864 }
2865 #else /* CONFIG_UCLAMP_TASK */
2866 static inline
2867 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2868 struct task_struct *p)
2869 {
2870 return util;
2871 }
2872
2873 static inline bool uclamp_is_used(void)
2874 {
2875 return false;
2876 }
2877 #endif /* CONFIG_UCLAMP_TASK */
2878
2879 #ifdef arch_scale_freq_capacity
2880 # ifndef arch_scale_freq_invariant
2881 # define arch_scale_freq_invariant() true
2882 # endif
2883 #else
2884 # define arch_scale_freq_invariant() false
2885 #endif
2886
2887 #ifdef CONFIG_SMP
2888 static inline unsigned long capacity_orig_of(int cpu)
2889 {
2890 return cpu_rq(cpu)->cpu_capacity_orig;
2891 }
2892
2893 /**
2894 * enum cpu_util_type - CPU utilization type
2895 * @FREQUENCY_UTIL: Utilization used to select frequency
2896 * @ENERGY_UTIL: Utilization used during energy calculation
2897 *
2898 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2899 * need to be aggregated differently depending on the usage made of them. This
2900 * enum is used within effective_cpu_util() to differentiate the types of
2901 * utilization expected by the callers, and adjust the aggregation accordingly.
2902 */
2903 enum cpu_util_type {
2904 FREQUENCY_UTIL,
2905 ENERGY_UTIL,
2906 };
2907
2908 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2909 unsigned long max, enum cpu_util_type type,
2910 struct task_struct *p);
2911
2912 static inline unsigned long cpu_bw_dl(struct rq *rq)
2913 {
2914 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2915 }
2916
2917 static inline unsigned long cpu_util_dl(struct rq *rq)
2918 {
2919 return READ_ONCE(rq->avg_dl.util_avg);
2920 }
2921
2922 static inline unsigned long cpu_util_cfs(struct rq *rq)
2923 {
2924 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2925
2926 if (sched_feat(UTIL_EST)) {
2927 util = max_t(unsigned long, util,
2928 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2929 }
2930
2931 return util;
2932 }
2933
2934 static inline unsigned long cpu_util_rt(struct rq *rq)
2935 {
2936 return READ_ONCE(rq->avg_rt.util_avg);
2937 }
2938 #endif
2939
2940 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2941 static inline unsigned long cpu_util_irq(struct rq *rq)
2942 {
2943 return rq->avg_irq.util_avg;
2944 }
2945
2946 static inline
2947 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2948 {
2949 util *= (max - irq);
2950 util /= max;
2951
2952 return util;
2953
2954 }
2955 #else
2956 static inline unsigned long cpu_util_irq(struct rq *rq)
2957 {
2958 return 0;
2959 }
2960
2961 static inline
2962 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2963 {
2964 return util;
2965 }
2966 #endif
2967
2968 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2969
2970 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2971
2972 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2973
2974 static inline bool sched_energy_enabled(void)
2975 {
2976 return static_branch_unlikely(&sched_energy_present);
2977 }
2978
2979 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2980
2981 #define perf_domain_span(pd) NULL
2982 static inline bool sched_energy_enabled(void) { return false; }
2983
2984 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2985
2986 #ifdef CONFIG_MEMBARRIER
2987 /*
2988 * The scheduler provides memory barriers required by membarrier between:
2989 * - prior user-space memory accesses and store to rq->membarrier_state,
2990 * - store to rq->membarrier_state and following user-space memory accesses.
2991 * In the same way it provides those guarantees around store to rq->curr.
2992 */
2993 static inline void membarrier_switch_mm(struct rq *rq,
2994 struct mm_struct *prev_mm,
2995 struct mm_struct *next_mm)
2996 {
2997 int membarrier_state;
2998
2999 if (prev_mm == next_mm)
3000 return;
3001
3002 membarrier_state = atomic_read(&next_mm->membarrier_state);
3003 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3004 return;
3005
3006 WRITE_ONCE(rq->membarrier_state, membarrier_state);
3007 }
3008 #else
3009 static inline void membarrier_switch_mm(struct rq *rq,
3010 struct mm_struct *prev_mm,
3011 struct mm_struct *next_mm)
3012 {
3013 }
3014 #endif
3015
3016 #ifdef CONFIG_SMP
3017 static inline bool is_per_cpu_kthread(struct task_struct *p)
3018 {
3019 if (!(p->flags & PF_KTHREAD))
3020 return false;
3021
3022 if (p->nr_cpus_allowed != 1)
3023 return false;
3024
3025 return true;
3026 }
3027 #endif
3028
3029 extern void swake_up_all_locked(struct swait_queue_head *q);
3030 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3031
3032 #ifdef CONFIG_PREEMPT_DYNAMIC
3033 extern int preempt_dynamic_mode;
3034 extern int sched_dynamic_mode(const char *str);
3035 extern void sched_dynamic_update(int mode);
3036 #endif
3037