]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/sched.h
sched/core: Allow putting thread_info into task_struct
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/binfmts.h>
7 #include <linux/mutex.h>
8 #include <linux/spinlock.h>
9 #include <linux/stop_machine.h>
10 #include <linux/irq_work.h>
11 #include <linux/tick.h>
12 #include <linux/slab.h>
13
14 #include "cpupri.h"
15 #include "cpudeadline.h"
16 #include "cpuacct.h"
17
18 struct rq;
19 struct cpuidle_state;
20
21 /* task_struct::on_rq states: */
22 #define TASK_ON_RQ_QUEUED 1
23 #define TASK_ON_RQ_MIGRATING 2
24
25 extern __read_mostly int scheduler_running;
26
27 extern unsigned long calc_load_update;
28 extern atomic_long_t calc_load_tasks;
29
30 extern void calc_global_load_tick(struct rq *this_rq);
31 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
32
33 #ifdef CONFIG_SMP
34 extern void cpu_load_update_active(struct rq *this_rq);
35 #else
36 static inline void cpu_load_update_active(struct rq *this_rq) { }
37 #endif
38
39 /*
40 * Helpers for converting nanosecond timing to jiffy resolution
41 */
42 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
43
44 /*
45 * Increase resolution of nice-level calculations for 64-bit architectures.
46 * The extra resolution improves shares distribution and load balancing of
47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
48 * hierarchies, especially on larger systems. This is not a user-visible change
49 * and does not change the user-interface for setting shares/weights.
50 *
51 * We increase resolution only if we have enough bits to allow this increased
52 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
53 * pretty high and the returns do not justify the increased costs.
54 *
55 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
56 * increase coverage and consistency always enable it on 64bit platforms.
57 */
58 #ifdef CONFIG_64BIT
59 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
60 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
61 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
62 #else
63 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
64 # define scale_load(w) (w)
65 # define scale_load_down(w) (w)
66 #endif
67
68 /*
69 * Task weight (visible to users) and its load (invisible to users) have
70 * independent resolution, but they should be well calibrated. We use
71 * scale_load() and scale_load_down(w) to convert between them. The
72 * following must be true:
73 *
74 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
75 *
76 */
77 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
78
79 /*
80 * Single value that decides SCHED_DEADLINE internal math precision.
81 * 10 -> just above 1us
82 * 9 -> just above 0.5us
83 */
84 #define DL_SCALE (10)
85
86 /*
87 * These are the 'tuning knobs' of the scheduler:
88 */
89
90 /*
91 * single value that denotes runtime == period, ie unlimited time.
92 */
93 #define RUNTIME_INF ((u64)~0ULL)
94
95 static inline int idle_policy(int policy)
96 {
97 return policy == SCHED_IDLE;
98 }
99 static inline int fair_policy(int policy)
100 {
101 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
102 }
103
104 static inline int rt_policy(int policy)
105 {
106 return policy == SCHED_FIFO || policy == SCHED_RR;
107 }
108
109 static inline int dl_policy(int policy)
110 {
111 return policy == SCHED_DEADLINE;
112 }
113 static inline bool valid_policy(int policy)
114 {
115 return idle_policy(policy) || fair_policy(policy) ||
116 rt_policy(policy) || dl_policy(policy);
117 }
118
119 static inline int task_has_rt_policy(struct task_struct *p)
120 {
121 return rt_policy(p->policy);
122 }
123
124 static inline int task_has_dl_policy(struct task_struct *p)
125 {
126 return dl_policy(p->policy);
127 }
128
129 /*
130 * Tells if entity @a should preempt entity @b.
131 */
132 static inline bool
133 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
134 {
135 return dl_time_before(a->deadline, b->deadline);
136 }
137
138 /*
139 * This is the priority-queue data structure of the RT scheduling class:
140 */
141 struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144 };
145
146 struct rt_bandwidth {
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock;
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
152 unsigned int rt_period_active;
153 };
154
155 void __dl_clear_params(struct task_struct *p);
156
157 /*
158 * To keep the bandwidth of -deadline tasks and groups under control
159 * we need some place where:
160 * - store the maximum -deadline bandwidth of the system (the group);
161 * - cache the fraction of that bandwidth that is currently allocated.
162 *
163 * This is all done in the data structure below. It is similar to the
164 * one used for RT-throttling (rt_bandwidth), with the main difference
165 * that, since here we are only interested in admission control, we
166 * do not decrease any runtime while the group "executes", neither we
167 * need a timer to replenish it.
168 *
169 * With respect to SMP, the bandwidth is given on a per-CPU basis,
170 * meaning that:
171 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
172 * - dl_total_bw array contains, in the i-eth element, the currently
173 * allocated bandwidth on the i-eth CPU.
174 * Moreover, groups consume bandwidth on each CPU, while tasks only
175 * consume bandwidth on the CPU they're running on.
176 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
177 * that will be shown the next time the proc or cgroup controls will
178 * be red. It on its turn can be changed by writing on its own
179 * control.
180 */
181 struct dl_bandwidth {
182 raw_spinlock_t dl_runtime_lock;
183 u64 dl_runtime;
184 u64 dl_period;
185 };
186
187 static inline int dl_bandwidth_enabled(void)
188 {
189 return sysctl_sched_rt_runtime >= 0;
190 }
191
192 extern struct dl_bw *dl_bw_of(int i);
193
194 struct dl_bw {
195 raw_spinlock_t lock;
196 u64 bw, total_bw;
197 };
198
199 static inline
200 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
201 {
202 dl_b->total_bw -= tsk_bw;
203 }
204
205 static inline
206 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
207 {
208 dl_b->total_bw += tsk_bw;
209 }
210
211 static inline
212 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
213 {
214 return dl_b->bw != -1 &&
215 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
216 }
217
218 extern struct mutex sched_domains_mutex;
219
220 #ifdef CONFIG_CGROUP_SCHED
221
222 #include <linux/cgroup.h>
223
224 struct cfs_rq;
225 struct rt_rq;
226
227 extern struct list_head task_groups;
228
229 struct cfs_bandwidth {
230 #ifdef CONFIG_CFS_BANDWIDTH
231 raw_spinlock_t lock;
232 ktime_t period;
233 u64 quota, runtime;
234 s64 hierarchical_quota;
235 u64 runtime_expires;
236
237 int idle, period_active;
238 struct hrtimer period_timer, slack_timer;
239 struct list_head throttled_cfs_rq;
240
241 /* statistics */
242 int nr_periods, nr_throttled;
243 u64 throttled_time;
244 #endif
245 };
246
247 /* task group related information */
248 struct task_group {
249 struct cgroup_subsys_state css;
250
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
258 #ifdef CONFIG_SMP
259 /*
260 * load_avg can be heavily contended at clock tick time, so put
261 * it in its own cacheline separated from the fields above which
262 * will also be accessed at each tick.
263 */
264 atomic_long_t load_avg ____cacheline_aligned;
265 #endif
266 #endif
267
268 #ifdef CONFIG_RT_GROUP_SCHED
269 struct sched_rt_entity **rt_se;
270 struct rt_rq **rt_rq;
271
272 struct rt_bandwidth rt_bandwidth;
273 #endif
274
275 struct rcu_head rcu;
276 struct list_head list;
277
278 struct task_group *parent;
279 struct list_head siblings;
280 struct list_head children;
281
282 #ifdef CONFIG_SCHED_AUTOGROUP
283 struct autogroup *autogroup;
284 #endif
285
286 struct cfs_bandwidth cfs_bandwidth;
287 };
288
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
291
292 /*
293 * A weight of 0 or 1 can cause arithmetics problems.
294 * A weight of a cfs_rq is the sum of weights of which entities
295 * are queued on this cfs_rq, so a weight of a entity should not be
296 * too large, so as the shares value of a task group.
297 * (The default weight is 1024 - so there's no practical
298 * limitation from this.)
299 */
300 #define MIN_SHARES (1UL << 1)
301 #define MAX_SHARES (1UL << 18)
302 #endif
303
304 typedef int (*tg_visitor)(struct task_group *, void *);
305
306 extern int walk_tg_tree_from(struct task_group *from,
307 tg_visitor down, tg_visitor up, void *data);
308
309 /*
310 * Iterate the full tree, calling @down when first entering a node and @up when
311 * leaving it for the final time.
312 *
313 * Caller must hold rcu_lock or sufficient equivalent.
314 */
315 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
316 {
317 return walk_tg_tree_from(&root_task_group, down, up, data);
318 }
319
320 extern int tg_nop(struct task_group *tg, void *data);
321
322 extern void free_fair_sched_group(struct task_group *tg);
323 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
324 extern void online_fair_sched_group(struct task_group *tg);
325 extern void unregister_fair_sched_group(struct task_group *tg);
326 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
327 struct sched_entity *se, int cpu,
328 struct sched_entity *parent);
329 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
330
331 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
332 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
333 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
334
335 extern void free_rt_sched_group(struct task_group *tg);
336 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
337 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
338 struct sched_rt_entity *rt_se, int cpu,
339 struct sched_rt_entity *parent);
340
341 extern struct task_group *sched_create_group(struct task_group *parent);
342 extern void sched_online_group(struct task_group *tg,
343 struct task_group *parent);
344 extern void sched_destroy_group(struct task_group *tg);
345 extern void sched_offline_group(struct task_group *tg);
346
347 extern void sched_move_task(struct task_struct *tsk);
348
349 #ifdef CONFIG_FAIR_GROUP_SCHED
350 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
351
352 #ifdef CONFIG_SMP
353 extern void set_task_rq_fair(struct sched_entity *se,
354 struct cfs_rq *prev, struct cfs_rq *next);
355 #else /* !CONFIG_SMP */
356 static inline void set_task_rq_fair(struct sched_entity *se,
357 struct cfs_rq *prev, struct cfs_rq *next) { }
358 #endif /* CONFIG_SMP */
359 #endif /* CONFIG_FAIR_GROUP_SCHED */
360
361 #else /* CONFIG_CGROUP_SCHED */
362
363 struct cfs_bandwidth { };
364
365 #endif /* CONFIG_CGROUP_SCHED */
366
367 /* CFS-related fields in a runqueue */
368 struct cfs_rq {
369 struct load_weight load;
370 unsigned int nr_running, h_nr_running;
371
372 u64 exec_clock;
373 u64 min_vruntime;
374 #ifndef CONFIG_64BIT
375 u64 min_vruntime_copy;
376 #endif
377
378 struct rb_root tasks_timeline;
379 struct rb_node *rb_leftmost;
380
381 /*
382 * 'curr' points to currently running entity on this cfs_rq.
383 * It is set to NULL otherwise (i.e when none are currently running).
384 */
385 struct sched_entity *curr, *next, *last, *skip;
386
387 #ifdef CONFIG_SCHED_DEBUG
388 unsigned int nr_spread_over;
389 #endif
390
391 #ifdef CONFIG_SMP
392 /*
393 * CFS load tracking
394 */
395 struct sched_avg avg;
396 u64 runnable_load_sum;
397 unsigned long runnable_load_avg;
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 unsigned long tg_load_avg_contrib;
400 #endif
401 atomic_long_t removed_load_avg, removed_util_avg;
402 #ifndef CONFIG_64BIT
403 u64 load_last_update_time_copy;
404 #endif
405
406 #ifdef CONFIG_FAIR_GROUP_SCHED
407 /*
408 * h_load = weight * f(tg)
409 *
410 * Where f(tg) is the recursive weight fraction assigned to
411 * this group.
412 */
413 unsigned long h_load;
414 u64 last_h_load_update;
415 struct sched_entity *h_load_next;
416 #endif /* CONFIG_FAIR_GROUP_SCHED */
417 #endif /* CONFIG_SMP */
418
419 #ifdef CONFIG_FAIR_GROUP_SCHED
420 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
421
422 /*
423 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
424 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
425 * (like users, containers etc.)
426 *
427 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
428 * list is used during load balance.
429 */
430 int on_list;
431 struct list_head leaf_cfs_rq_list;
432 struct task_group *tg; /* group that "owns" this runqueue */
433
434 #ifdef CONFIG_CFS_BANDWIDTH
435 int runtime_enabled;
436 u64 runtime_expires;
437 s64 runtime_remaining;
438
439 u64 throttled_clock, throttled_clock_task;
440 u64 throttled_clock_task_time;
441 int throttled, throttle_count;
442 struct list_head throttled_list;
443 #endif /* CONFIG_CFS_BANDWIDTH */
444 #endif /* CONFIG_FAIR_GROUP_SCHED */
445 };
446
447 static inline int rt_bandwidth_enabled(void)
448 {
449 return sysctl_sched_rt_runtime >= 0;
450 }
451
452 /* RT IPI pull logic requires IRQ_WORK */
453 #ifdef CONFIG_IRQ_WORK
454 # define HAVE_RT_PUSH_IPI
455 #endif
456
457 /* Real-Time classes' related field in a runqueue: */
458 struct rt_rq {
459 struct rt_prio_array active;
460 unsigned int rt_nr_running;
461 unsigned int rr_nr_running;
462 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
463 struct {
464 int curr; /* highest queued rt task prio */
465 #ifdef CONFIG_SMP
466 int next; /* next highest */
467 #endif
468 } highest_prio;
469 #endif
470 #ifdef CONFIG_SMP
471 unsigned long rt_nr_migratory;
472 unsigned long rt_nr_total;
473 int overloaded;
474 struct plist_head pushable_tasks;
475 #ifdef HAVE_RT_PUSH_IPI
476 int push_flags;
477 int push_cpu;
478 struct irq_work push_work;
479 raw_spinlock_t push_lock;
480 #endif
481 #endif /* CONFIG_SMP */
482 int rt_queued;
483
484 int rt_throttled;
485 u64 rt_time;
486 u64 rt_runtime;
487 /* Nests inside the rq lock: */
488 raw_spinlock_t rt_runtime_lock;
489
490 #ifdef CONFIG_RT_GROUP_SCHED
491 unsigned long rt_nr_boosted;
492
493 struct rq *rq;
494 struct task_group *tg;
495 #endif
496 };
497
498 /* Deadline class' related fields in a runqueue */
499 struct dl_rq {
500 /* runqueue is an rbtree, ordered by deadline */
501 struct rb_root rb_root;
502 struct rb_node *rb_leftmost;
503
504 unsigned long dl_nr_running;
505
506 #ifdef CONFIG_SMP
507 /*
508 * Deadline values of the currently executing and the
509 * earliest ready task on this rq. Caching these facilitates
510 * the decision wether or not a ready but not running task
511 * should migrate somewhere else.
512 */
513 struct {
514 u64 curr;
515 u64 next;
516 } earliest_dl;
517
518 unsigned long dl_nr_migratory;
519 int overloaded;
520
521 /*
522 * Tasks on this rq that can be pushed away. They are kept in
523 * an rb-tree, ordered by tasks' deadlines, with caching
524 * of the leftmost (earliest deadline) element.
525 */
526 struct rb_root pushable_dl_tasks_root;
527 struct rb_node *pushable_dl_tasks_leftmost;
528 #else
529 struct dl_bw dl_bw;
530 #endif
531 };
532
533 #ifdef CONFIG_SMP
534
535 /*
536 * We add the notion of a root-domain which will be used to define per-domain
537 * variables. Each exclusive cpuset essentially defines an island domain by
538 * fully partitioning the member cpus from any other cpuset. Whenever a new
539 * exclusive cpuset is created, we also create and attach a new root-domain
540 * object.
541 *
542 */
543 struct root_domain {
544 atomic_t refcount;
545 atomic_t rto_count;
546 struct rcu_head rcu;
547 cpumask_var_t span;
548 cpumask_var_t online;
549
550 /* Indicate more than one runnable task for any CPU */
551 bool overload;
552
553 /*
554 * The bit corresponding to a CPU gets set here if such CPU has more
555 * than one runnable -deadline task (as it is below for RT tasks).
556 */
557 cpumask_var_t dlo_mask;
558 atomic_t dlo_count;
559 struct dl_bw dl_bw;
560 struct cpudl cpudl;
561
562 /*
563 * The "RT overload" flag: it gets set if a CPU has more than
564 * one runnable RT task.
565 */
566 cpumask_var_t rto_mask;
567 struct cpupri cpupri;
568 };
569
570 extern struct root_domain def_root_domain;
571
572 #endif /* CONFIG_SMP */
573
574 /*
575 * This is the main, per-CPU runqueue data structure.
576 *
577 * Locking rule: those places that want to lock multiple runqueues
578 * (such as the load balancing or the thread migration code), lock
579 * acquire operations must be ordered by ascending &runqueue.
580 */
581 struct rq {
582 /* runqueue lock: */
583 raw_spinlock_t lock;
584
585 /*
586 * nr_running and cpu_load should be in the same cacheline because
587 * remote CPUs use both these fields when doing load calculation.
588 */
589 unsigned int nr_running;
590 #ifdef CONFIG_NUMA_BALANCING
591 unsigned int nr_numa_running;
592 unsigned int nr_preferred_running;
593 #endif
594 #define CPU_LOAD_IDX_MAX 5
595 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
596 #ifdef CONFIG_NO_HZ_COMMON
597 #ifdef CONFIG_SMP
598 unsigned long last_load_update_tick;
599 #endif /* CONFIG_SMP */
600 u64 nohz_stamp;
601 unsigned long nohz_flags;
602 #endif /* CONFIG_NO_HZ_COMMON */
603 #ifdef CONFIG_NO_HZ_FULL
604 unsigned long last_sched_tick;
605 #endif
606 /* capture load from *all* tasks on this cpu: */
607 struct load_weight load;
608 unsigned long nr_load_updates;
609 u64 nr_switches;
610
611 struct cfs_rq cfs;
612 struct rt_rq rt;
613 struct dl_rq dl;
614
615 #ifdef CONFIG_FAIR_GROUP_SCHED
616 /* list of leaf cfs_rq on this cpu: */
617 struct list_head leaf_cfs_rq_list;
618 #endif /* CONFIG_FAIR_GROUP_SCHED */
619
620 /*
621 * This is part of a global counter where only the total sum
622 * over all CPUs matters. A task can increase this counter on
623 * one CPU and if it got migrated afterwards it may decrease
624 * it on another CPU. Always updated under the runqueue lock:
625 */
626 unsigned long nr_uninterruptible;
627
628 struct task_struct *curr, *idle, *stop;
629 unsigned long next_balance;
630 struct mm_struct *prev_mm;
631
632 unsigned int clock_skip_update;
633 u64 clock;
634 u64 clock_task;
635
636 atomic_t nr_iowait;
637
638 #ifdef CONFIG_SMP
639 struct root_domain *rd;
640 struct sched_domain *sd;
641
642 unsigned long cpu_capacity;
643 unsigned long cpu_capacity_orig;
644
645 struct callback_head *balance_callback;
646
647 unsigned char idle_balance;
648 /* For active balancing */
649 int active_balance;
650 int push_cpu;
651 struct cpu_stop_work active_balance_work;
652 /* cpu of this runqueue: */
653 int cpu;
654 int online;
655
656 struct list_head cfs_tasks;
657
658 u64 rt_avg;
659 u64 age_stamp;
660 u64 idle_stamp;
661 u64 avg_idle;
662
663 /* This is used to determine avg_idle's max value */
664 u64 max_idle_balance_cost;
665 #endif
666
667 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
668 u64 prev_irq_time;
669 #endif
670 #ifdef CONFIG_PARAVIRT
671 u64 prev_steal_time;
672 #endif
673 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
674 u64 prev_steal_time_rq;
675 #endif
676
677 /* calc_load related fields */
678 unsigned long calc_load_update;
679 long calc_load_active;
680
681 #ifdef CONFIG_SCHED_HRTICK
682 #ifdef CONFIG_SMP
683 int hrtick_csd_pending;
684 struct call_single_data hrtick_csd;
685 #endif
686 struct hrtimer hrtick_timer;
687 #endif
688
689 #ifdef CONFIG_SCHEDSTATS
690 /* latency stats */
691 struct sched_info rq_sched_info;
692 unsigned long long rq_cpu_time;
693 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
694
695 /* sys_sched_yield() stats */
696 unsigned int yld_count;
697
698 /* schedule() stats */
699 unsigned int sched_count;
700 unsigned int sched_goidle;
701
702 /* try_to_wake_up() stats */
703 unsigned int ttwu_count;
704 unsigned int ttwu_local;
705 #endif
706
707 #ifdef CONFIG_SMP
708 struct llist_head wake_list;
709 #endif
710
711 #ifdef CONFIG_CPU_IDLE
712 /* Must be inspected within a rcu lock section */
713 struct cpuidle_state *idle_state;
714 #endif
715 };
716
717 static inline int cpu_of(struct rq *rq)
718 {
719 #ifdef CONFIG_SMP
720 return rq->cpu;
721 #else
722 return 0;
723 #endif
724 }
725
726 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
727
728 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
729 #define this_rq() this_cpu_ptr(&runqueues)
730 #define task_rq(p) cpu_rq(task_cpu(p))
731 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
732 #define raw_rq() raw_cpu_ptr(&runqueues)
733
734 static inline u64 __rq_clock_broken(struct rq *rq)
735 {
736 return READ_ONCE(rq->clock);
737 }
738
739 static inline u64 rq_clock(struct rq *rq)
740 {
741 lockdep_assert_held(&rq->lock);
742 return rq->clock;
743 }
744
745 static inline u64 rq_clock_task(struct rq *rq)
746 {
747 lockdep_assert_held(&rq->lock);
748 return rq->clock_task;
749 }
750
751 #define RQCF_REQ_SKIP 0x01
752 #define RQCF_ACT_SKIP 0x02
753
754 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
755 {
756 lockdep_assert_held(&rq->lock);
757 if (skip)
758 rq->clock_skip_update |= RQCF_REQ_SKIP;
759 else
760 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
761 }
762
763 #ifdef CONFIG_NUMA
764 enum numa_topology_type {
765 NUMA_DIRECT,
766 NUMA_GLUELESS_MESH,
767 NUMA_BACKPLANE,
768 };
769 extern enum numa_topology_type sched_numa_topology_type;
770 extern int sched_max_numa_distance;
771 extern bool find_numa_distance(int distance);
772 #endif
773
774 #ifdef CONFIG_NUMA_BALANCING
775 /* The regions in numa_faults array from task_struct */
776 enum numa_faults_stats {
777 NUMA_MEM = 0,
778 NUMA_CPU,
779 NUMA_MEMBUF,
780 NUMA_CPUBUF
781 };
782 extern void sched_setnuma(struct task_struct *p, int node);
783 extern int migrate_task_to(struct task_struct *p, int cpu);
784 extern int migrate_swap(struct task_struct *, struct task_struct *);
785 #endif /* CONFIG_NUMA_BALANCING */
786
787 #ifdef CONFIG_SMP
788
789 static inline void
790 queue_balance_callback(struct rq *rq,
791 struct callback_head *head,
792 void (*func)(struct rq *rq))
793 {
794 lockdep_assert_held(&rq->lock);
795
796 if (unlikely(head->next))
797 return;
798
799 head->func = (void (*)(struct callback_head *))func;
800 head->next = rq->balance_callback;
801 rq->balance_callback = head;
802 }
803
804 extern void sched_ttwu_pending(void);
805
806 #define rcu_dereference_check_sched_domain(p) \
807 rcu_dereference_check((p), \
808 lockdep_is_held(&sched_domains_mutex))
809
810 /*
811 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
812 * See detach_destroy_domains: synchronize_sched for details.
813 *
814 * The domain tree of any CPU may only be accessed from within
815 * preempt-disabled sections.
816 */
817 #define for_each_domain(cpu, __sd) \
818 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
819 __sd; __sd = __sd->parent)
820
821 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
822
823 /**
824 * highest_flag_domain - Return highest sched_domain containing flag.
825 * @cpu: The cpu whose highest level of sched domain is to
826 * be returned.
827 * @flag: The flag to check for the highest sched_domain
828 * for the given cpu.
829 *
830 * Returns the highest sched_domain of a cpu which contains the given flag.
831 */
832 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
833 {
834 struct sched_domain *sd, *hsd = NULL;
835
836 for_each_domain(cpu, sd) {
837 if (!(sd->flags & flag))
838 break;
839 hsd = sd;
840 }
841
842 return hsd;
843 }
844
845 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
846 {
847 struct sched_domain *sd;
848
849 for_each_domain(cpu, sd) {
850 if (sd->flags & flag)
851 break;
852 }
853
854 return sd;
855 }
856
857 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
858 DECLARE_PER_CPU(int, sd_llc_size);
859 DECLARE_PER_CPU(int, sd_llc_id);
860 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
861 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
862 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
863
864 struct sched_group_capacity {
865 atomic_t ref;
866 /*
867 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
868 * for a single CPU.
869 */
870 unsigned int capacity;
871 unsigned long next_update;
872 int imbalance; /* XXX unrelated to capacity but shared group state */
873 /*
874 * Number of busy cpus in this group.
875 */
876 atomic_t nr_busy_cpus;
877
878 unsigned long cpumask[0]; /* iteration mask */
879 };
880
881 struct sched_group {
882 struct sched_group *next; /* Must be a circular list */
883 atomic_t ref;
884
885 unsigned int group_weight;
886 struct sched_group_capacity *sgc;
887
888 /*
889 * The CPUs this group covers.
890 *
891 * NOTE: this field is variable length. (Allocated dynamically
892 * by attaching extra space to the end of the structure,
893 * depending on how many CPUs the kernel has booted up with)
894 */
895 unsigned long cpumask[0];
896 };
897
898 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
899 {
900 return to_cpumask(sg->cpumask);
901 }
902
903 /*
904 * cpumask masking which cpus in the group are allowed to iterate up the domain
905 * tree.
906 */
907 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
908 {
909 return to_cpumask(sg->sgc->cpumask);
910 }
911
912 /**
913 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
914 * @group: The group whose first cpu is to be returned.
915 */
916 static inline unsigned int group_first_cpu(struct sched_group *group)
917 {
918 return cpumask_first(sched_group_cpus(group));
919 }
920
921 extern int group_balance_cpu(struct sched_group *sg);
922
923 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
924 void register_sched_domain_sysctl(void);
925 void unregister_sched_domain_sysctl(void);
926 #else
927 static inline void register_sched_domain_sysctl(void)
928 {
929 }
930 static inline void unregister_sched_domain_sysctl(void)
931 {
932 }
933 #endif
934
935 #else
936
937 static inline void sched_ttwu_pending(void) { }
938
939 #endif /* CONFIG_SMP */
940
941 #include "stats.h"
942 #include "auto_group.h"
943
944 #ifdef CONFIG_CGROUP_SCHED
945
946 /*
947 * Return the group to which this tasks belongs.
948 *
949 * We cannot use task_css() and friends because the cgroup subsystem
950 * changes that value before the cgroup_subsys::attach() method is called,
951 * therefore we cannot pin it and might observe the wrong value.
952 *
953 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
954 * core changes this before calling sched_move_task().
955 *
956 * Instead we use a 'copy' which is updated from sched_move_task() while
957 * holding both task_struct::pi_lock and rq::lock.
958 */
959 static inline struct task_group *task_group(struct task_struct *p)
960 {
961 return p->sched_task_group;
962 }
963
964 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
965 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
966 {
967 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
968 struct task_group *tg = task_group(p);
969 #endif
970
971 #ifdef CONFIG_FAIR_GROUP_SCHED
972 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
973 p->se.cfs_rq = tg->cfs_rq[cpu];
974 p->se.parent = tg->se[cpu];
975 #endif
976
977 #ifdef CONFIG_RT_GROUP_SCHED
978 p->rt.rt_rq = tg->rt_rq[cpu];
979 p->rt.parent = tg->rt_se[cpu];
980 #endif
981 }
982
983 #else /* CONFIG_CGROUP_SCHED */
984
985 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
986 static inline struct task_group *task_group(struct task_struct *p)
987 {
988 return NULL;
989 }
990
991 #endif /* CONFIG_CGROUP_SCHED */
992
993 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
994 {
995 set_task_rq(p, cpu);
996 #ifdef CONFIG_SMP
997 /*
998 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
999 * successfuly executed on another CPU. We must ensure that updates of
1000 * per-task data have been completed by this moment.
1001 */
1002 smp_wmb();
1003 #ifdef CONFIG_THREAD_INFO_IN_TASK
1004 p->cpu = cpu;
1005 #else
1006 task_thread_info(p)->cpu = cpu;
1007 #endif
1008 p->wake_cpu = cpu;
1009 #endif
1010 }
1011
1012 /*
1013 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1014 */
1015 #ifdef CONFIG_SCHED_DEBUG
1016 # include <linux/static_key.h>
1017 # define const_debug __read_mostly
1018 #else
1019 # define const_debug const
1020 #endif
1021
1022 extern const_debug unsigned int sysctl_sched_features;
1023
1024 #define SCHED_FEAT(name, enabled) \
1025 __SCHED_FEAT_##name ,
1026
1027 enum {
1028 #include "features.h"
1029 __SCHED_FEAT_NR,
1030 };
1031
1032 #undef SCHED_FEAT
1033
1034 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1035 #define SCHED_FEAT(name, enabled) \
1036 static __always_inline bool static_branch_##name(struct static_key *key) \
1037 { \
1038 return static_key_##enabled(key); \
1039 }
1040
1041 #include "features.h"
1042
1043 #undef SCHED_FEAT
1044
1045 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1046 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1047 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1048 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1049 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1050
1051 extern struct static_key_false sched_numa_balancing;
1052 extern struct static_key_false sched_schedstats;
1053
1054 static inline u64 global_rt_period(void)
1055 {
1056 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1057 }
1058
1059 static inline u64 global_rt_runtime(void)
1060 {
1061 if (sysctl_sched_rt_runtime < 0)
1062 return RUNTIME_INF;
1063
1064 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1065 }
1066
1067 static inline int task_current(struct rq *rq, struct task_struct *p)
1068 {
1069 return rq->curr == p;
1070 }
1071
1072 static inline int task_running(struct rq *rq, struct task_struct *p)
1073 {
1074 #ifdef CONFIG_SMP
1075 return p->on_cpu;
1076 #else
1077 return task_current(rq, p);
1078 #endif
1079 }
1080
1081 static inline int task_on_rq_queued(struct task_struct *p)
1082 {
1083 return p->on_rq == TASK_ON_RQ_QUEUED;
1084 }
1085
1086 static inline int task_on_rq_migrating(struct task_struct *p)
1087 {
1088 return p->on_rq == TASK_ON_RQ_MIGRATING;
1089 }
1090
1091 #ifndef prepare_arch_switch
1092 # define prepare_arch_switch(next) do { } while (0)
1093 #endif
1094 #ifndef finish_arch_post_lock_switch
1095 # define finish_arch_post_lock_switch() do { } while (0)
1096 #endif
1097
1098 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1099 {
1100 #ifdef CONFIG_SMP
1101 /*
1102 * We can optimise this out completely for !SMP, because the
1103 * SMP rebalancing from interrupt is the only thing that cares
1104 * here.
1105 */
1106 next->on_cpu = 1;
1107 #endif
1108 }
1109
1110 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1111 {
1112 #ifdef CONFIG_SMP
1113 /*
1114 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1115 * We must ensure this doesn't happen until the switch is completely
1116 * finished.
1117 *
1118 * In particular, the load of prev->state in finish_task_switch() must
1119 * happen before this.
1120 *
1121 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1122 */
1123 smp_store_release(&prev->on_cpu, 0);
1124 #endif
1125 #ifdef CONFIG_DEBUG_SPINLOCK
1126 /* this is a valid case when another task releases the spinlock */
1127 rq->lock.owner = current;
1128 #endif
1129 /*
1130 * If we are tracking spinlock dependencies then we have to
1131 * fix up the runqueue lock - which gets 'carried over' from
1132 * prev into current:
1133 */
1134 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1135
1136 raw_spin_unlock_irq(&rq->lock);
1137 }
1138
1139 /*
1140 * wake flags
1141 */
1142 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1143 #define WF_FORK 0x02 /* child wakeup after fork */
1144 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1145
1146 /*
1147 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1148 * of tasks with abnormal "nice" values across CPUs the contribution that
1149 * each task makes to its run queue's load is weighted according to its
1150 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1151 * scaled version of the new time slice allocation that they receive on time
1152 * slice expiry etc.
1153 */
1154
1155 #define WEIGHT_IDLEPRIO 3
1156 #define WMULT_IDLEPRIO 1431655765
1157
1158 extern const int sched_prio_to_weight[40];
1159 extern const u32 sched_prio_to_wmult[40];
1160
1161 /*
1162 * {de,en}queue flags:
1163 *
1164 * DEQUEUE_SLEEP - task is no longer runnable
1165 * ENQUEUE_WAKEUP - task just became runnable
1166 *
1167 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1168 * are in a known state which allows modification. Such pairs
1169 * should preserve as much state as possible.
1170 *
1171 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1172 * in the runqueue.
1173 *
1174 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1175 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1176 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1177 *
1178 */
1179
1180 #define DEQUEUE_SLEEP 0x01
1181 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1182 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1183
1184 #define ENQUEUE_WAKEUP 0x01
1185 #define ENQUEUE_RESTORE 0x02
1186 #define ENQUEUE_MOVE 0x04
1187
1188 #define ENQUEUE_HEAD 0x08
1189 #define ENQUEUE_REPLENISH 0x10
1190 #ifdef CONFIG_SMP
1191 #define ENQUEUE_MIGRATED 0x20
1192 #else
1193 #define ENQUEUE_MIGRATED 0x00
1194 #endif
1195
1196 #define RETRY_TASK ((void *)-1UL)
1197
1198 struct sched_class {
1199 const struct sched_class *next;
1200
1201 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1202 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1203 void (*yield_task) (struct rq *rq);
1204 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1205
1206 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1207
1208 /*
1209 * It is the responsibility of the pick_next_task() method that will
1210 * return the next task to call put_prev_task() on the @prev task or
1211 * something equivalent.
1212 *
1213 * May return RETRY_TASK when it finds a higher prio class has runnable
1214 * tasks.
1215 */
1216 struct task_struct * (*pick_next_task) (struct rq *rq,
1217 struct task_struct *prev,
1218 struct pin_cookie cookie);
1219 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1220
1221 #ifdef CONFIG_SMP
1222 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1223 void (*migrate_task_rq)(struct task_struct *p);
1224
1225 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1226
1227 void (*set_cpus_allowed)(struct task_struct *p,
1228 const struct cpumask *newmask);
1229
1230 void (*rq_online)(struct rq *rq);
1231 void (*rq_offline)(struct rq *rq);
1232 #endif
1233
1234 void (*set_curr_task) (struct rq *rq);
1235 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1236 void (*task_fork) (struct task_struct *p);
1237 void (*task_dead) (struct task_struct *p);
1238
1239 /*
1240 * The switched_from() call is allowed to drop rq->lock, therefore we
1241 * cannot assume the switched_from/switched_to pair is serliazed by
1242 * rq->lock. They are however serialized by p->pi_lock.
1243 */
1244 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1245 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1246 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1247 int oldprio);
1248
1249 unsigned int (*get_rr_interval) (struct rq *rq,
1250 struct task_struct *task);
1251
1252 void (*update_curr) (struct rq *rq);
1253
1254 #define TASK_SET_GROUP 0
1255 #define TASK_MOVE_GROUP 1
1256
1257 #ifdef CONFIG_FAIR_GROUP_SCHED
1258 void (*task_change_group) (struct task_struct *p, int type);
1259 #endif
1260 };
1261
1262 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1263 {
1264 prev->sched_class->put_prev_task(rq, prev);
1265 }
1266
1267 #define sched_class_highest (&stop_sched_class)
1268 #define for_each_class(class) \
1269 for (class = sched_class_highest; class; class = class->next)
1270
1271 extern const struct sched_class stop_sched_class;
1272 extern const struct sched_class dl_sched_class;
1273 extern const struct sched_class rt_sched_class;
1274 extern const struct sched_class fair_sched_class;
1275 extern const struct sched_class idle_sched_class;
1276
1277
1278 #ifdef CONFIG_SMP
1279
1280 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1281
1282 extern void trigger_load_balance(struct rq *rq);
1283
1284 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1285
1286 #endif
1287
1288 #ifdef CONFIG_CPU_IDLE
1289 static inline void idle_set_state(struct rq *rq,
1290 struct cpuidle_state *idle_state)
1291 {
1292 rq->idle_state = idle_state;
1293 }
1294
1295 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1296 {
1297 WARN_ON(!rcu_read_lock_held());
1298 return rq->idle_state;
1299 }
1300 #else
1301 static inline void idle_set_state(struct rq *rq,
1302 struct cpuidle_state *idle_state)
1303 {
1304 }
1305
1306 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1307 {
1308 return NULL;
1309 }
1310 #endif
1311
1312 extern void sysrq_sched_debug_show(void);
1313 extern void sched_init_granularity(void);
1314 extern void update_max_interval(void);
1315
1316 extern void init_sched_dl_class(void);
1317 extern void init_sched_rt_class(void);
1318 extern void init_sched_fair_class(void);
1319
1320 extern void resched_curr(struct rq *rq);
1321 extern void resched_cpu(int cpu);
1322
1323 extern struct rt_bandwidth def_rt_bandwidth;
1324 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1325
1326 extern struct dl_bandwidth def_dl_bandwidth;
1327 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1328 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1329
1330 unsigned long to_ratio(u64 period, u64 runtime);
1331
1332 extern void init_entity_runnable_average(struct sched_entity *se);
1333 extern void post_init_entity_util_avg(struct sched_entity *se);
1334
1335 #ifdef CONFIG_NO_HZ_FULL
1336 extern bool sched_can_stop_tick(struct rq *rq);
1337
1338 /*
1339 * Tick may be needed by tasks in the runqueue depending on their policy and
1340 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1341 * nohz mode if necessary.
1342 */
1343 static inline void sched_update_tick_dependency(struct rq *rq)
1344 {
1345 int cpu;
1346
1347 if (!tick_nohz_full_enabled())
1348 return;
1349
1350 cpu = cpu_of(rq);
1351
1352 if (!tick_nohz_full_cpu(cpu))
1353 return;
1354
1355 if (sched_can_stop_tick(rq))
1356 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1357 else
1358 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1359 }
1360 #else
1361 static inline void sched_update_tick_dependency(struct rq *rq) { }
1362 #endif
1363
1364 static inline void add_nr_running(struct rq *rq, unsigned count)
1365 {
1366 unsigned prev_nr = rq->nr_running;
1367
1368 rq->nr_running = prev_nr + count;
1369
1370 if (prev_nr < 2 && rq->nr_running >= 2) {
1371 #ifdef CONFIG_SMP
1372 if (!rq->rd->overload)
1373 rq->rd->overload = true;
1374 #endif
1375 }
1376
1377 sched_update_tick_dependency(rq);
1378 }
1379
1380 static inline void sub_nr_running(struct rq *rq, unsigned count)
1381 {
1382 rq->nr_running -= count;
1383 /* Check if we still need preemption */
1384 sched_update_tick_dependency(rq);
1385 }
1386
1387 static inline void rq_last_tick_reset(struct rq *rq)
1388 {
1389 #ifdef CONFIG_NO_HZ_FULL
1390 rq->last_sched_tick = jiffies;
1391 #endif
1392 }
1393
1394 extern void update_rq_clock(struct rq *rq);
1395
1396 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1397 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1398
1399 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1400
1401 extern const_debug unsigned int sysctl_sched_time_avg;
1402 extern const_debug unsigned int sysctl_sched_nr_migrate;
1403 extern const_debug unsigned int sysctl_sched_migration_cost;
1404
1405 static inline u64 sched_avg_period(void)
1406 {
1407 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1408 }
1409
1410 #ifdef CONFIG_SCHED_HRTICK
1411
1412 /*
1413 * Use hrtick when:
1414 * - enabled by features
1415 * - hrtimer is actually high res
1416 */
1417 static inline int hrtick_enabled(struct rq *rq)
1418 {
1419 if (!sched_feat(HRTICK))
1420 return 0;
1421 if (!cpu_active(cpu_of(rq)))
1422 return 0;
1423 return hrtimer_is_hres_active(&rq->hrtick_timer);
1424 }
1425
1426 void hrtick_start(struct rq *rq, u64 delay);
1427
1428 #else
1429
1430 static inline int hrtick_enabled(struct rq *rq)
1431 {
1432 return 0;
1433 }
1434
1435 #endif /* CONFIG_SCHED_HRTICK */
1436
1437 #ifdef CONFIG_SMP
1438 extern void sched_avg_update(struct rq *rq);
1439
1440 #ifndef arch_scale_freq_capacity
1441 static __always_inline
1442 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1443 {
1444 return SCHED_CAPACITY_SCALE;
1445 }
1446 #endif
1447
1448 #ifndef arch_scale_cpu_capacity
1449 static __always_inline
1450 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1451 {
1452 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1453 return sd->smt_gain / sd->span_weight;
1454
1455 return SCHED_CAPACITY_SCALE;
1456 }
1457 #endif
1458
1459 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1460 {
1461 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1462 sched_avg_update(rq);
1463 }
1464 #else
1465 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1466 static inline void sched_avg_update(struct rq *rq) { }
1467 #endif
1468
1469 struct rq_flags {
1470 unsigned long flags;
1471 struct pin_cookie cookie;
1472 };
1473
1474 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1475 __acquires(rq->lock);
1476 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1477 __acquires(p->pi_lock)
1478 __acquires(rq->lock);
1479
1480 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1481 __releases(rq->lock)
1482 {
1483 lockdep_unpin_lock(&rq->lock, rf->cookie);
1484 raw_spin_unlock(&rq->lock);
1485 }
1486
1487 static inline void
1488 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1489 __releases(rq->lock)
1490 __releases(p->pi_lock)
1491 {
1492 lockdep_unpin_lock(&rq->lock, rf->cookie);
1493 raw_spin_unlock(&rq->lock);
1494 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1495 }
1496
1497 #ifdef CONFIG_SMP
1498 #ifdef CONFIG_PREEMPT
1499
1500 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1501
1502 /*
1503 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1504 * way at the expense of forcing extra atomic operations in all
1505 * invocations. This assures that the double_lock is acquired using the
1506 * same underlying policy as the spinlock_t on this architecture, which
1507 * reduces latency compared to the unfair variant below. However, it
1508 * also adds more overhead and therefore may reduce throughput.
1509 */
1510 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1511 __releases(this_rq->lock)
1512 __acquires(busiest->lock)
1513 __acquires(this_rq->lock)
1514 {
1515 raw_spin_unlock(&this_rq->lock);
1516 double_rq_lock(this_rq, busiest);
1517
1518 return 1;
1519 }
1520
1521 #else
1522 /*
1523 * Unfair double_lock_balance: Optimizes throughput at the expense of
1524 * latency by eliminating extra atomic operations when the locks are
1525 * already in proper order on entry. This favors lower cpu-ids and will
1526 * grant the double lock to lower cpus over higher ids under contention,
1527 * regardless of entry order into the function.
1528 */
1529 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1530 __releases(this_rq->lock)
1531 __acquires(busiest->lock)
1532 __acquires(this_rq->lock)
1533 {
1534 int ret = 0;
1535
1536 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1537 if (busiest < this_rq) {
1538 raw_spin_unlock(&this_rq->lock);
1539 raw_spin_lock(&busiest->lock);
1540 raw_spin_lock_nested(&this_rq->lock,
1541 SINGLE_DEPTH_NESTING);
1542 ret = 1;
1543 } else
1544 raw_spin_lock_nested(&busiest->lock,
1545 SINGLE_DEPTH_NESTING);
1546 }
1547 return ret;
1548 }
1549
1550 #endif /* CONFIG_PREEMPT */
1551
1552 /*
1553 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1554 */
1555 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1556 {
1557 if (unlikely(!irqs_disabled())) {
1558 /* printk() doesn't work good under rq->lock */
1559 raw_spin_unlock(&this_rq->lock);
1560 BUG_ON(1);
1561 }
1562
1563 return _double_lock_balance(this_rq, busiest);
1564 }
1565
1566 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1567 __releases(busiest->lock)
1568 {
1569 raw_spin_unlock(&busiest->lock);
1570 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1571 }
1572
1573 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1574 {
1575 if (l1 > l2)
1576 swap(l1, l2);
1577
1578 spin_lock(l1);
1579 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1580 }
1581
1582 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1583 {
1584 if (l1 > l2)
1585 swap(l1, l2);
1586
1587 spin_lock_irq(l1);
1588 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1589 }
1590
1591 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1592 {
1593 if (l1 > l2)
1594 swap(l1, l2);
1595
1596 raw_spin_lock(l1);
1597 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1598 }
1599
1600 /*
1601 * double_rq_lock - safely lock two runqueues
1602 *
1603 * Note this does not disable interrupts like task_rq_lock,
1604 * you need to do so manually before calling.
1605 */
1606 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1607 __acquires(rq1->lock)
1608 __acquires(rq2->lock)
1609 {
1610 BUG_ON(!irqs_disabled());
1611 if (rq1 == rq2) {
1612 raw_spin_lock(&rq1->lock);
1613 __acquire(rq2->lock); /* Fake it out ;) */
1614 } else {
1615 if (rq1 < rq2) {
1616 raw_spin_lock(&rq1->lock);
1617 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1618 } else {
1619 raw_spin_lock(&rq2->lock);
1620 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1621 }
1622 }
1623 }
1624
1625 /*
1626 * double_rq_unlock - safely unlock two runqueues
1627 *
1628 * Note this does not restore interrupts like task_rq_unlock,
1629 * you need to do so manually after calling.
1630 */
1631 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1632 __releases(rq1->lock)
1633 __releases(rq2->lock)
1634 {
1635 raw_spin_unlock(&rq1->lock);
1636 if (rq1 != rq2)
1637 raw_spin_unlock(&rq2->lock);
1638 else
1639 __release(rq2->lock);
1640 }
1641
1642 #else /* CONFIG_SMP */
1643
1644 /*
1645 * double_rq_lock - safely lock two runqueues
1646 *
1647 * Note this does not disable interrupts like task_rq_lock,
1648 * you need to do so manually before calling.
1649 */
1650 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1651 __acquires(rq1->lock)
1652 __acquires(rq2->lock)
1653 {
1654 BUG_ON(!irqs_disabled());
1655 BUG_ON(rq1 != rq2);
1656 raw_spin_lock(&rq1->lock);
1657 __acquire(rq2->lock); /* Fake it out ;) */
1658 }
1659
1660 /*
1661 * double_rq_unlock - safely unlock two runqueues
1662 *
1663 * Note this does not restore interrupts like task_rq_unlock,
1664 * you need to do so manually after calling.
1665 */
1666 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1667 __releases(rq1->lock)
1668 __releases(rq2->lock)
1669 {
1670 BUG_ON(rq1 != rq2);
1671 raw_spin_unlock(&rq1->lock);
1672 __release(rq2->lock);
1673 }
1674
1675 #endif
1676
1677 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1678 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1679
1680 #ifdef CONFIG_SCHED_DEBUG
1681 extern void print_cfs_stats(struct seq_file *m, int cpu);
1682 extern void print_rt_stats(struct seq_file *m, int cpu);
1683 extern void print_dl_stats(struct seq_file *m, int cpu);
1684 extern void
1685 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1686
1687 #ifdef CONFIG_NUMA_BALANCING
1688 extern void
1689 show_numa_stats(struct task_struct *p, struct seq_file *m);
1690 extern void
1691 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1692 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1693 #endif /* CONFIG_NUMA_BALANCING */
1694 #endif /* CONFIG_SCHED_DEBUG */
1695
1696 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1697 extern void init_rt_rq(struct rt_rq *rt_rq);
1698 extern void init_dl_rq(struct dl_rq *dl_rq);
1699
1700 extern void cfs_bandwidth_usage_inc(void);
1701 extern void cfs_bandwidth_usage_dec(void);
1702
1703 #ifdef CONFIG_NO_HZ_COMMON
1704 enum rq_nohz_flag_bits {
1705 NOHZ_TICK_STOPPED,
1706 NOHZ_BALANCE_KICK,
1707 };
1708
1709 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1710
1711 extern void nohz_balance_exit_idle(unsigned int cpu);
1712 #else
1713 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1714 #endif
1715
1716 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1717
1718 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1719 DECLARE_PER_CPU(u64, cpu_softirq_time);
1720
1721 #ifndef CONFIG_64BIT
1722 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1723
1724 static inline void irq_time_write_begin(void)
1725 {
1726 __this_cpu_inc(irq_time_seq.sequence);
1727 smp_wmb();
1728 }
1729
1730 static inline void irq_time_write_end(void)
1731 {
1732 smp_wmb();
1733 __this_cpu_inc(irq_time_seq.sequence);
1734 }
1735
1736 static inline u64 irq_time_read(int cpu)
1737 {
1738 u64 irq_time;
1739 unsigned seq;
1740
1741 do {
1742 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1743 irq_time = per_cpu(cpu_softirq_time, cpu) +
1744 per_cpu(cpu_hardirq_time, cpu);
1745 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1746
1747 return irq_time;
1748 }
1749 #else /* CONFIG_64BIT */
1750 static inline void irq_time_write_begin(void)
1751 {
1752 }
1753
1754 static inline void irq_time_write_end(void)
1755 {
1756 }
1757
1758 static inline u64 irq_time_read(int cpu)
1759 {
1760 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1761 }
1762 #endif /* CONFIG_64BIT */
1763 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1764
1765 #ifdef CONFIG_CPU_FREQ
1766 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1767
1768 /**
1769 * cpufreq_update_util - Take a note about CPU utilization changes.
1770 * @time: Current time.
1771 * @util: Current utilization.
1772 * @max: Utilization ceiling.
1773 *
1774 * This function is called by the scheduler on every invocation of
1775 * update_load_avg() on the CPU whose utilization is being updated.
1776 *
1777 * It can only be called from RCU-sched read-side critical sections.
1778 */
1779 static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
1780 {
1781 struct update_util_data *data;
1782
1783 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1784 if (data)
1785 data->func(data, time, util, max);
1786 }
1787
1788 /**
1789 * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
1790 * @time: Current time.
1791 *
1792 * The way cpufreq is currently arranged requires it to evaluate the CPU
1793 * performance state (frequency/voltage) on a regular basis to prevent it from
1794 * being stuck in a completely inadequate performance level for too long.
1795 * That is not guaranteed to happen if the updates are only triggered from CFS,
1796 * though, because they may not be coming in if RT or deadline tasks are active
1797 * all the time (or there are RT and DL tasks only).
1798 *
1799 * As a workaround for that issue, this function is called by the RT and DL
1800 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1801 * but that really is a band-aid. Going forward it should be replaced with
1802 * solutions targeted more specifically at RT and DL tasks.
1803 */
1804 static inline void cpufreq_trigger_update(u64 time)
1805 {
1806 cpufreq_update_util(time, ULONG_MAX, 0);
1807 }
1808 #else
1809 static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
1810 static inline void cpufreq_trigger_update(u64 time) {}
1811 #endif /* CONFIG_CPU_FREQ */
1812
1813 #ifdef arch_scale_freq_capacity
1814 #ifndef arch_scale_freq_invariant
1815 #define arch_scale_freq_invariant() (true)
1816 #endif
1817 #else /* arch_scale_freq_capacity */
1818 #define arch_scale_freq_invariant() (false)
1819 #endif