]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/sched.h
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 #include <linux/sched.h>
4 #include <linux/sched/autogroup.h>
5 #include <linux/sched/sysctl.h>
6 #include <linux/sched/topology.h>
7 #include <linux/sched/rt.h>
8 #include <linux/sched/deadline.h>
9 #include <linux/sched/clock.h>
10 #include <linux/sched/wake_q.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/cpufreq.h>
15 #include <linux/sched/stat.h>
16 #include <linux/sched/nohz.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/hotplug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/sched/init.h>
23
24 #include <linux/u64_stats_sync.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/binfmts.h>
27 #include <linux/mutex.h>
28 #include <linux/spinlock.h>
29 #include <linux/stop_machine.h>
30 #include <linux/irq_work.h>
31 #include <linux/tick.h>
32 #include <linux/slab.h>
33
34 #ifdef CONFIG_PARAVIRT
35 #include <asm/paravirt.h>
36 #endif
37
38 #include "cpupri.h"
39 #include "cpudeadline.h"
40 #include "cpuacct.h"
41
42 #ifdef CONFIG_SCHED_DEBUG
43 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
44 #else
45 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
46 #endif
47
48 struct rq;
49 struct cpuidle_state;
50
51 /* task_struct::on_rq states: */
52 #define TASK_ON_RQ_QUEUED 1
53 #define TASK_ON_RQ_MIGRATING 2
54
55 extern __read_mostly int scheduler_running;
56
57 extern unsigned long calc_load_update;
58 extern atomic_long_t calc_load_tasks;
59
60 extern void calc_global_load_tick(struct rq *this_rq);
61 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
62
63 #ifdef CONFIG_SMP
64 extern void cpu_load_update_active(struct rq *this_rq);
65 #else
66 static inline void cpu_load_update_active(struct rq *this_rq) { }
67 #endif
68
69 /*
70 * Helpers for converting nanosecond timing to jiffy resolution
71 */
72 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
73
74 /*
75 * Increase resolution of nice-level calculations for 64-bit architectures.
76 * The extra resolution improves shares distribution and load balancing of
77 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
78 * hierarchies, especially on larger systems. This is not a user-visible change
79 * and does not change the user-interface for setting shares/weights.
80 *
81 * We increase resolution only if we have enough bits to allow this increased
82 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
83 * pretty high and the returns do not justify the increased costs.
84 *
85 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
86 * increase coverage and consistency always enable it on 64bit platforms.
87 */
88 #ifdef CONFIG_64BIT
89 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
90 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
91 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
92 #else
93 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
94 # define scale_load(w) (w)
95 # define scale_load_down(w) (w)
96 #endif
97
98 /*
99 * Task weight (visible to users) and its load (invisible to users) have
100 * independent resolution, but they should be well calibrated. We use
101 * scale_load() and scale_load_down(w) to convert between them. The
102 * following must be true:
103 *
104 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
105 *
106 */
107 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
108
109 /*
110 * Single value that decides SCHED_DEADLINE internal math precision.
111 * 10 -> just above 1us
112 * 9 -> just above 0.5us
113 */
114 #define DL_SCALE (10)
115
116 /*
117 * These are the 'tuning knobs' of the scheduler:
118 */
119
120 /*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123 #define RUNTIME_INF ((u64)~0ULL)
124
125 static inline int idle_policy(int policy)
126 {
127 return policy == SCHED_IDLE;
128 }
129 static inline int fair_policy(int policy)
130 {
131 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
132 }
133
134 static inline int rt_policy(int policy)
135 {
136 return policy == SCHED_FIFO || policy == SCHED_RR;
137 }
138
139 static inline int dl_policy(int policy)
140 {
141 return policy == SCHED_DEADLINE;
142 }
143 static inline bool valid_policy(int policy)
144 {
145 return idle_policy(policy) || fair_policy(policy) ||
146 rt_policy(policy) || dl_policy(policy);
147 }
148
149 static inline int task_has_rt_policy(struct task_struct *p)
150 {
151 return rt_policy(p->policy);
152 }
153
154 static inline int task_has_dl_policy(struct task_struct *p)
155 {
156 return dl_policy(p->policy);
157 }
158
159 /*
160 * Tells if entity @a should preempt entity @b.
161 */
162 static inline bool
163 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
164 {
165 return dl_time_before(a->deadline, b->deadline);
166 }
167
168 /*
169 * This is the priority-queue data structure of the RT scheduling class:
170 */
171 struct rt_prio_array {
172 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
173 struct list_head queue[MAX_RT_PRIO];
174 };
175
176 struct rt_bandwidth {
177 /* nests inside the rq lock: */
178 raw_spinlock_t rt_runtime_lock;
179 ktime_t rt_period;
180 u64 rt_runtime;
181 struct hrtimer rt_period_timer;
182 unsigned int rt_period_active;
183 };
184
185 void __dl_clear_params(struct task_struct *p);
186
187 /*
188 * To keep the bandwidth of -deadline tasks and groups under control
189 * we need some place where:
190 * - store the maximum -deadline bandwidth of the system (the group);
191 * - cache the fraction of that bandwidth that is currently allocated.
192 *
193 * This is all done in the data structure below. It is similar to the
194 * one used for RT-throttling (rt_bandwidth), with the main difference
195 * that, since here we are only interested in admission control, we
196 * do not decrease any runtime while the group "executes", neither we
197 * need a timer to replenish it.
198 *
199 * With respect to SMP, the bandwidth is given on a per-CPU basis,
200 * meaning that:
201 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
202 * - dl_total_bw array contains, in the i-eth element, the currently
203 * allocated bandwidth on the i-eth CPU.
204 * Moreover, groups consume bandwidth on each CPU, while tasks only
205 * consume bandwidth on the CPU they're running on.
206 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
207 * that will be shown the next time the proc or cgroup controls will
208 * be red. It on its turn can be changed by writing on its own
209 * control.
210 */
211 struct dl_bandwidth {
212 raw_spinlock_t dl_runtime_lock;
213 u64 dl_runtime;
214 u64 dl_period;
215 };
216
217 static inline int dl_bandwidth_enabled(void)
218 {
219 return sysctl_sched_rt_runtime >= 0;
220 }
221
222 struct dl_bw {
223 raw_spinlock_t lock;
224 u64 bw, total_bw;
225 };
226
227 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
228
229 static inline
230 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
231 {
232 dl_b->total_bw -= tsk_bw;
233 __dl_update(dl_b, (s32)tsk_bw / cpus);
234 }
235
236 static inline
237 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
238 {
239 dl_b->total_bw += tsk_bw;
240 __dl_update(dl_b, -((s32)tsk_bw / cpus));
241 }
242
243 static inline
244 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
245 {
246 return dl_b->bw != -1 &&
247 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
248 }
249
250 void dl_change_utilization(struct task_struct *p, u64 new_bw);
251 extern void init_dl_bw(struct dl_bw *dl_b);
252 extern int sched_dl_global_validate(void);
253 extern void sched_dl_do_global(void);
254 extern int sched_dl_overflow(struct task_struct *p, int policy,
255 const struct sched_attr *attr);
256 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
257 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
258 extern bool __checkparam_dl(const struct sched_attr *attr);
259 extern void __dl_clear_params(struct task_struct *p);
260 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
261 extern int dl_task_can_attach(struct task_struct *p,
262 const struct cpumask *cs_cpus_allowed);
263 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
264 const struct cpumask *trial);
265 extern bool dl_cpu_busy(unsigned int cpu);
266
267 #ifdef CONFIG_CGROUP_SCHED
268
269 #include <linux/cgroup.h>
270
271 struct cfs_rq;
272 struct rt_rq;
273
274 extern struct list_head task_groups;
275
276 struct cfs_bandwidth {
277 #ifdef CONFIG_CFS_BANDWIDTH
278 raw_spinlock_t lock;
279 ktime_t period;
280 u64 quota, runtime;
281 s64 hierarchical_quota;
282 u64 runtime_expires;
283
284 int idle, period_active;
285 struct hrtimer period_timer, slack_timer;
286 struct list_head throttled_cfs_rq;
287
288 /* statistics */
289 int nr_periods, nr_throttled;
290 u64 throttled_time;
291 #endif
292 };
293
294 /* task group related information */
295 struct task_group {
296 struct cgroup_subsys_state css;
297
298 #ifdef CONFIG_FAIR_GROUP_SCHED
299 /* schedulable entities of this group on each cpu */
300 struct sched_entity **se;
301 /* runqueue "owned" by this group on each cpu */
302 struct cfs_rq **cfs_rq;
303 unsigned long shares;
304
305 #ifdef CONFIG_SMP
306 /*
307 * load_avg can be heavily contended at clock tick time, so put
308 * it in its own cacheline separated from the fields above which
309 * will also be accessed at each tick.
310 */
311 atomic_long_t load_avg ____cacheline_aligned;
312 #endif
313 #endif
314
315 #ifdef CONFIG_RT_GROUP_SCHED
316 struct sched_rt_entity **rt_se;
317 struct rt_rq **rt_rq;
318
319 struct rt_bandwidth rt_bandwidth;
320 #endif
321
322 struct rcu_head rcu;
323 struct list_head list;
324
325 struct task_group *parent;
326 struct list_head siblings;
327 struct list_head children;
328
329 #ifdef CONFIG_SCHED_AUTOGROUP
330 struct autogroup *autogroup;
331 #endif
332
333 struct cfs_bandwidth cfs_bandwidth;
334 };
335
336 #ifdef CONFIG_FAIR_GROUP_SCHED
337 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
338
339 /*
340 * A weight of 0 or 1 can cause arithmetics problems.
341 * A weight of a cfs_rq is the sum of weights of which entities
342 * are queued on this cfs_rq, so a weight of a entity should not be
343 * too large, so as the shares value of a task group.
344 * (The default weight is 1024 - so there's no practical
345 * limitation from this.)
346 */
347 #define MIN_SHARES (1UL << 1)
348 #define MAX_SHARES (1UL << 18)
349 #endif
350
351 typedef int (*tg_visitor)(struct task_group *, void *);
352
353 extern int walk_tg_tree_from(struct task_group *from,
354 tg_visitor down, tg_visitor up, void *data);
355
356 /*
357 * Iterate the full tree, calling @down when first entering a node and @up when
358 * leaving it for the final time.
359 *
360 * Caller must hold rcu_lock or sufficient equivalent.
361 */
362 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
363 {
364 return walk_tg_tree_from(&root_task_group, down, up, data);
365 }
366
367 extern int tg_nop(struct task_group *tg, void *data);
368
369 extern void free_fair_sched_group(struct task_group *tg);
370 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
371 extern void online_fair_sched_group(struct task_group *tg);
372 extern void unregister_fair_sched_group(struct task_group *tg);
373 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
374 struct sched_entity *se, int cpu,
375 struct sched_entity *parent);
376 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
377
378 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
379 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
380 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
381
382 extern void free_rt_sched_group(struct task_group *tg);
383 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
384 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
385 struct sched_rt_entity *rt_se, int cpu,
386 struct sched_rt_entity *parent);
387 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
388 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
389 extern long sched_group_rt_runtime(struct task_group *tg);
390 extern long sched_group_rt_period(struct task_group *tg);
391 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
392
393 extern struct task_group *sched_create_group(struct task_group *parent);
394 extern void sched_online_group(struct task_group *tg,
395 struct task_group *parent);
396 extern void sched_destroy_group(struct task_group *tg);
397 extern void sched_offline_group(struct task_group *tg);
398
399 extern void sched_move_task(struct task_struct *tsk);
400
401 #ifdef CONFIG_FAIR_GROUP_SCHED
402 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
403
404 #ifdef CONFIG_SMP
405 extern void set_task_rq_fair(struct sched_entity *se,
406 struct cfs_rq *prev, struct cfs_rq *next);
407 #else /* !CONFIG_SMP */
408 static inline void set_task_rq_fair(struct sched_entity *se,
409 struct cfs_rq *prev, struct cfs_rq *next) { }
410 #endif /* CONFIG_SMP */
411 #endif /* CONFIG_FAIR_GROUP_SCHED */
412
413 #else /* CONFIG_CGROUP_SCHED */
414
415 struct cfs_bandwidth { };
416
417 #endif /* CONFIG_CGROUP_SCHED */
418
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421 struct load_weight load;
422 unsigned int nr_running, h_nr_running;
423
424 u64 exec_clock;
425 u64 min_vruntime;
426 #ifndef CONFIG_64BIT
427 u64 min_vruntime_copy;
428 #endif
429
430 struct rb_root_cached tasks_timeline;
431
432 /*
433 * 'curr' points to currently running entity on this cfs_rq.
434 * It is set to NULL otherwise (i.e when none are currently running).
435 */
436 struct sched_entity *curr, *next, *last, *skip;
437
438 #ifdef CONFIG_SCHED_DEBUG
439 unsigned int nr_spread_over;
440 #endif
441
442 #ifdef CONFIG_SMP
443 /*
444 * CFS load tracking
445 */
446 struct sched_avg avg;
447 u64 runnable_load_sum;
448 unsigned long runnable_load_avg;
449 #ifdef CONFIG_FAIR_GROUP_SCHED
450 unsigned long tg_load_avg_contrib;
451 unsigned long propagate_avg;
452 #endif
453 atomic_long_t removed_load_avg, removed_util_avg;
454 #ifndef CONFIG_64BIT
455 u64 load_last_update_time_copy;
456 #endif
457
458 #ifdef CONFIG_FAIR_GROUP_SCHED
459 /*
460 * h_load = weight * f(tg)
461 *
462 * Where f(tg) is the recursive weight fraction assigned to
463 * this group.
464 */
465 unsigned long h_load;
466 u64 last_h_load_update;
467 struct sched_entity *h_load_next;
468 #endif /* CONFIG_FAIR_GROUP_SCHED */
469 #endif /* CONFIG_SMP */
470
471 #ifdef CONFIG_FAIR_GROUP_SCHED
472 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
473
474 /*
475 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
476 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
477 * (like users, containers etc.)
478 *
479 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
480 * list is used during load balance.
481 */
482 int on_list;
483 struct list_head leaf_cfs_rq_list;
484 struct task_group *tg; /* group that "owns" this runqueue */
485
486 #ifdef CONFIG_CFS_BANDWIDTH
487 int runtime_enabled;
488 u64 runtime_expires;
489 s64 runtime_remaining;
490
491 u64 throttled_clock, throttled_clock_task;
492 u64 throttled_clock_task_time;
493 int throttled, throttle_count;
494 struct list_head throttled_list;
495 #endif /* CONFIG_CFS_BANDWIDTH */
496 #endif /* CONFIG_FAIR_GROUP_SCHED */
497 };
498
499 static inline int rt_bandwidth_enabled(void)
500 {
501 return sysctl_sched_rt_runtime >= 0;
502 }
503
504 /* RT IPI pull logic requires IRQ_WORK */
505 #ifdef CONFIG_IRQ_WORK
506 # define HAVE_RT_PUSH_IPI
507 #endif
508
509 /* Real-Time classes' related field in a runqueue: */
510 struct rt_rq {
511 struct rt_prio_array active;
512 unsigned int rt_nr_running;
513 unsigned int rr_nr_running;
514 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
515 struct {
516 int curr; /* highest queued rt task prio */
517 #ifdef CONFIG_SMP
518 int next; /* next highest */
519 #endif
520 } highest_prio;
521 #endif
522 #ifdef CONFIG_SMP
523 unsigned long rt_nr_migratory;
524 unsigned long rt_nr_total;
525 int overloaded;
526 struct plist_head pushable_tasks;
527 #ifdef HAVE_RT_PUSH_IPI
528 int push_flags;
529 int push_cpu;
530 struct irq_work push_work;
531 raw_spinlock_t push_lock;
532 #endif
533 #endif /* CONFIG_SMP */
534 int rt_queued;
535
536 int rt_throttled;
537 u64 rt_time;
538 u64 rt_runtime;
539 /* Nests inside the rq lock: */
540 raw_spinlock_t rt_runtime_lock;
541
542 #ifdef CONFIG_RT_GROUP_SCHED
543 unsigned long rt_nr_boosted;
544
545 struct rq *rq;
546 struct task_group *tg;
547 #endif
548 };
549
550 /* Deadline class' related fields in a runqueue */
551 struct dl_rq {
552 /* runqueue is an rbtree, ordered by deadline */
553 struct rb_root_cached root;
554
555 unsigned long dl_nr_running;
556
557 #ifdef CONFIG_SMP
558 /*
559 * Deadline values of the currently executing and the
560 * earliest ready task on this rq. Caching these facilitates
561 * the decision wether or not a ready but not running task
562 * should migrate somewhere else.
563 */
564 struct {
565 u64 curr;
566 u64 next;
567 } earliest_dl;
568
569 unsigned long dl_nr_migratory;
570 int overloaded;
571
572 /*
573 * Tasks on this rq that can be pushed away. They are kept in
574 * an rb-tree, ordered by tasks' deadlines, with caching
575 * of the leftmost (earliest deadline) element.
576 */
577 struct rb_root_cached pushable_dl_tasks_root;
578 #else
579 struct dl_bw dl_bw;
580 #endif
581 /*
582 * "Active utilization" for this runqueue: increased when a
583 * task wakes up (becomes TASK_RUNNING) and decreased when a
584 * task blocks
585 */
586 u64 running_bw;
587
588 /*
589 * Utilization of the tasks "assigned" to this runqueue (including
590 * the tasks that are in runqueue and the tasks that executed on this
591 * CPU and blocked). Increased when a task moves to this runqueue, and
592 * decreased when the task moves away (migrates, changes scheduling
593 * policy, or terminates).
594 * This is needed to compute the "inactive utilization" for the
595 * runqueue (inactive utilization = this_bw - running_bw).
596 */
597 u64 this_bw;
598 u64 extra_bw;
599
600 /*
601 * Inverse of the fraction of CPU utilization that can be reclaimed
602 * by the GRUB algorithm.
603 */
604 u64 bw_ratio;
605 };
606
607 #ifdef CONFIG_SMP
608
609 static inline bool sched_asym_prefer(int a, int b)
610 {
611 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
612 }
613
614 /*
615 * We add the notion of a root-domain which will be used to define per-domain
616 * variables. Each exclusive cpuset essentially defines an island domain by
617 * fully partitioning the member cpus from any other cpuset. Whenever a new
618 * exclusive cpuset is created, we also create and attach a new root-domain
619 * object.
620 *
621 */
622 struct root_domain {
623 atomic_t refcount;
624 atomic_t rto_count;
625 struct rcu_head rcu;
626 cpumask_var_t span;
627 cpumask_var_t online;
628
629 /* Indicate more than one runnable task for any CPU */
630 bool overload;
631
632 /*
633 * The bit corresponding to a CPU gets set here if such CPU has more
634 * than one runnable -deadline task (as it is below for RT tasks).
635 */
636 cpumask_var_t dlo_mask;
637 atomic_t dlo_count;
638 struct dl_bw dl_bw;
639 struct cpudl cpudl;
640
641 /*
642 * The "RT overload" flag: it gets set if a CPU has more than
643 * one runnable RT task.
644 */
645 cpumask_var_t rto_mask;
646 struct cpupri cpupri;
647
648 unsigned long max_cpu_capacity;
649 };
650
651 extern struct root_domain def_root_domain;
652 extern struct mutex sched_domains_mutex;
653
654 extern void init_defrootdomain(void);
655 extern int sched_init_domains(const struct cpumask *cpu_map);
656 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
657
658 #endif /* CONFIG_SMP */
659
660 /*
661 * This is the main, per-CPU runqueue data structure.
662 *
663 * Locking rule: those places that want to lock multiple runqueues
664 * (such as the load balancing or the thread migration code), lock
665 * acquire operations must be ordered by ascending &runqueue.
666 */
667 struct rq {
668 /* runqueue lock: */
669 raw_spinlock_t lock;
670
671 /*
672 * nr_running and cpu_load should be in the same cacheline because
673 * remote CPUs use both these fields when doing load calculation.
674 */
675 unsigned int nr_running;
676 #ifdef CONFIG_NUMA_BALANCING
677 unsigned int nr_numa_running;
678 unsigned int nr_preferred_running;
679 #endif
680 #define CPU_LOAD_IDX_MAX 5
681 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
682 #ifdef CONFIG_NO_HZ_COMMON
683 #ifdef CONFIG_SMP
684 unsigned long last_load_update_tick;
685 #endif /* CONFIG_SMP */
686 unsigned long nohz_flags;
687 #endif /* CONFIG_NO_HZ_COMMON */
688 #ifdef CONFIG_NO_HZ_FULL
689 unsigned long last_sched_tick;
690 #endif
691 /* capture load from *all* tasks on this cpu: */
692 struct load_weight load;
693 unsigned long nr_load_updates;
694 u64 nr_switches;
695
696 struct cfs_rq cfs;
697 struct rt_rq rt;
698 struct dl_rq dl;
699
700 #ifdef CONFIG_FAIR_GROUP_SCHED
701 /* list of leaf cfs_rq on this cpu: */
702 struct list_head leaf_cfs_rq_list;
703 struct list_head *tmp_alone_branch;
704 #endif /* CONFIG_FAIR_GROUP_SCHED */
705
706 /*
707 * This is part of a global counter where only the total sum
708 * over all CPUs matters. A task can increase this counter on
709 * one CPU and if it got migrated afterwards it may decrease
710 * it on another CPU. Always updated under the runqueue lock:
711 */
712 unsigned long nr_uninterruptible;
713
714 struct task_struct *curr, *idle, *stop;
715 unsigned long next_balance;
716 struct mm_struct *prev_mm;
717
718 unsigned int clock_update_flags;
719 u64 clock;
720 u64 clock_task;
721
722 atomic_t nr_iowait;
723
724 #ifdef CONFIG_SMP
725 struct root_domain *rd;
726 struct sched_domain *sd;
727
728 unsigned long cpu_capacity;
729 unsigned long cpu_capacity_orig;
730
731 struct callback_head *balance_callback;
732
733 unsigned char idle_balance;
734 /* For active balancing */
735 int active_balance;
736 int push_cpu;
737 struct cpu_stop_work active_balance_work;
738 /* cpu of this runqueue: */
739 int cpu;
740 int online;
741
742 struct list_head cfs_tasks;
743
744 u64 rt_avg;
745 u64 age_stamp;
746 u64 idle_stamp;
747 u64 avg_idle;
748
749 /* This is used to determine avg_idle's max value */
750 u64 max_idle_balance_cost;
751 #endif
752
753 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
754 u64 prev_irq_time;
755 #endif
756 #ifdef CONFIG_PARAVIRT
757 u64 prev_steal_time;
758 #endif
759 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
760 u64 prev_steal_time_rq;
761 #endif
762
763 /* calc_load related fields */
764 unsigned long calc_load_update;
765 long calc_load_active;
766
767 #ifdef CONFIG_SCHED_HRTICK
768 #ifdef CONFIG_SMP
769 int hrtick_csd_pending;
770 call_single_data_t hrtick_csd;
771 #endif
772 struct hrtimer hrtick_timer;
773 #endif
774
775 #ifdef CONFIG_SCHEDSTATS
776 /* latency stats */
777 struct sched_info rq_sched_info;
778 unsigned long long rq_cpu_time;
779 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
780
781 /* sys_sched_yield() stats */
782 unsigned int yld_count;
783
784 /* schedule() stats */
785 unsigned int sched_count;
786 unsigned int sched_goidle;
787
788 /* try_to_wake_up() stats */
789 unsigned int ttwu_count;
790 unsigned int ttwu_local;
791 #endif
792
793 #ifdef CONFIG_SMP
794 struct llist_head wake_list;
795 #endif
796
797 #ifdef CONFIG_CPU_IDLE
798 /* Must be inspected within a rcu lock section */
799 struct cpuidle_state *idle_state;
800 #endif
801 };
802
803 static inline int cpu_of(struct rq *rq)
804 {
805 #ifdef CONFIG_SMP
806 return rq->cpu;
807 #else
808 return 0;
809 #endif
810 }
811
812
813 #ifdef CONFIG_SCHED_SMT
814
815 extern struct static_key_false sched_smt_present;
816
817 extern void __update_idle_core(struct rq *rq);
818
819 static inline void update_idle_core(struct rq *rq)
820 {
821 if (static_branch_unlikely(&sched_smt_present))
822 __update_idle_core(rq);
823 }
824
825 #else
826 static inline void update_idle_core(struct rq *rq) { }
827 #endif
828
829 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
830
831 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
832 #define this_rq() this_cpu_ptr(&runqueues)
833 #define task_rq(p) cpu_rq(task_cpu(p))
834 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
835 #define raw_rq() raw_cpu_ptr(&runqueues)
836
837 static inline u64 __rq_clock_broken(struct rq *rq)
838 {
839 return READ_ONCE(rq->clock);
840 }
841
842 /*
843 * rq::clock_update_flags bits
844 *
845 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
846 * call to __schedule(). This is an optimisation to avoid
847 * neighbouring rq clock updates.
848 *
849 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
850 * in effect and calls to update_rq_clock() are being ignored.
851 *
852 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
853 * made to update_rq_clock() since the last time rq::lock was pinned.
854 *
855 * If inside of __schedule(), clock_update_flags will have been
856 * shifted left (a left shift is a cheap operation for the fast path
857 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
858 *
859 * if (rq-clock_update_flags >= RQCF_UPDATED)
860 *
861 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
862 * one position though, because the next rq_unpin_lock() will shift it
863 * back.
864 */
865 #define RQCF_REQ_SKIP 0x01
866 #define RQCF_ACT_SKIP 0x02
867 #define RQCF_UPDATED 0x04
868
869 static inline void assert_clock_updated(struct rq *rq)
870 {
871 /*
872 * The only reason for not seeing a clock update since the
873 * last rq_pin_lock() is if we're currently skipping updates.
874 */
875 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
876 }
877
878 static inline u64 rq_clock(struct rq *rq)
879 {
880 lockdep_assert_held(&rq->lock);
881 assert_clock_updated(rq);
882
883 return rq->clock;
884 }
885
886 static inline u64 rq_clock_task(struct rq *rq)
887 {
888 lockdep_assert_held(&rq->lock);
889 assert_clock_updated(rq);
890
891 return rq->clock_task;
892 }
893
894 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
895 {
896 lockdep_assert_held(&rq->lock);
897 if (skip)
898 rq->clock_update_flags |= RQCF_REQ_SKIP;
899 else
900 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
901 }
902
903 struct rq_flags {
904 unsigned long flags;
905 struct pin_cookie cookie;
906 #ifdef CONFIG_SCHED_DEBUG
907 /*
908 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
909 * current pin context is stashed here in case it needs to be
910 * restored in rq_repin_lock().
911 */
912 unsigned int clock_update_flags;
913 #endif
914 };
915
916 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
917 {
918 rf->cookie = lockdep_pin_lock(&rq->lock);
919
920 #ifdef CONFIG_SCHED_DEBUG
921 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
922 rf->clock_update_flags = 0;
923 #endif
924 }
925
926 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
927 {
928 #ifdef CONFIG_SCHED_DEBUG
929 if (rq->clock_update_flags > RQCF_ACT_SKIP)
930 rf->clock_update_flags = RQCF_UPDATED;
931 #endif
932
933 lockdep_unpin_lock(&rq->lock, rf->cookie);
934 }
935
936 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
937 {
938 lockdep_repin_lock(&rq->lock, rf->cookie);
939
940 #ifdef CONFIG_SCHED_DEBUG
941 /*
942 * Restore the value we stashed in @rf for this pin context.
943 */
944 rq->clock_update_flags |= rf->clock_update_flags;
945 #endif
946 }
947
948 #ifdef CONFIG_NUMA
949 enum numa_topology_type {
950 NUMA_DIRECT,
951 NUMA_GLUELESS_MESH,
952 NUMA_BACKPLANE,
953 };
954 extern enum numa_topology_type sched_numa_topology_type;
955 extern int sched_max_numa_distance;
956 extern bool find_numa_distance(int distance);
957 #endif
958
959 #ifdef CONFIG_NUMA
960 extern void sched_init_numa(void);
961 extern void sched_domains_numa_masks_set(unsigned int cpu);
962 extern void sched_domains_numa_masks_clear(unsigned int cpu);
963 #else
964 static inline void sched_init_numa(void) { }
965 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
966 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
967 #endif
968
969 #ifdef CONFIG_NUMA_BALANCING
970 /* The regions in numa_faults array from task_struct */
971 enum numa_faults_stats {
972 NUMA_MEM = 0,
973 NUMA_CPU,
974 NUMA_MEMBUF,
975 NUMA_CPUBUF
976 };
977 extern void sched_setnuma(struct task_struct *p, int node);
978 extern int migrate_task_to(struct task_struct *p, int cpu);
979 extern int migrate_swap(struct task_struct *, struct task_struct *);
980 #endif /* CONFIG_NUMA_BALANCING */
981
982 #ifdef CONFIG_SMP
983
984 static inline void
985 queue_balance_callback(struct rq *rq,
986 struct callback_head *head,
987 void (*func)(struct rq *rq))
988 {
989 lockdep_assert_held(&rq->lock);
990
991 if (unlikely(head->next))
992 return;
993
994 head->func = (void (*)(struct callback_head *))func;
995 head->next = rq->balance_callback;
996 rq->balance_callback = head;
997 }
998
999 extern void sched_ttwu_pending(void);
1000
1001 #define rcu_dereference_check_sched_domain(p) \
1002 rcu_dereference_check((p), \
1003 lockdep_is_held(&sched_domains_mutex))
1004
1005 /*
1006 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1007 * See detach_destroy_domains: synchronize_sched for details.
1008 *
1009 * The domain tree of any CPU may only be accessed from within
1010 * preempt-disabled sections.
1011 */
1012 #define for_each_domain(cpu, __sd) \
1013 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1014 __sd; __sd = __sd->parent)
1015
1016 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1017
1018 /**
1019 * highest_flag_domain - Return highest sched_domain containing flag.
1020 * @cpu: The cpu whose highest level of sched domain is to
1021 * be returned.
1022 * @flag: The flag to check for the highest sched_domain
1023 * for the given cpu.
1024 *
1025 * Returns the highest sched_domain of a cpu which contains the given flag.
1026 */
1027 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1028 {
1029 struct sched_domain *sd, *hsd = NULL;
1030
1031 for_each_domain(cpu, sd) {
1032 if (!(sd->flags & flag))
1033 break;
1034 hsd = sd;
1035 }
1036
1037 return hsd;
1038 }
1039
1040 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1041 {
1042 struct sched_domain *sd;
1043
1044 for_each_domain(cpu, sd) {
1045 if (sd->flags & flag)
1046 break;
1047 }
1048
1049 return sd;
1050 }
1051
1052 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1053 DECLARE_PER_CPU(int, sd_llc_size);
1054 DECLARE_PER_CPU(int, sd_llc_id);
1055 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1056 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1057 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1058
1059 struct sched_group_capacity {
1060 atomic_t ref;
1061 /*
1062 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1063 * for a single CPU.
1064 */
1065 unsigned long capacity;
1066 unsigned long min_capacity; /* Min per-CPU capacity in group */
1067 unsigned long next_update;
1068 int imbalance; /* XXX unrelated to capacity but shared group state */
1069
1070 #ifdef CONFIG_SCHED_DEBUG
1071 int id;
1072 #endif
1073
1074 unsigned long cpumask[0]; /* balance mask */
1075 };
1076
1077 struct sched_group {
1078 struct sched_group *next; /* Must be a circular list */
1079 atomic_t ref;
1080
1081 unsigned int group_weight;
1082 struct sched_group_capacity *sgc;
1083 int asym_prefer_cpu; /* cpu of highest priority in group */
1084
1085 /*
1086 * The CPUs this group covers.
1087 *
1088 * NOTE: this field is variable length. (Allocated dynamically
1089 * by attaching extra space to the end of the structure,
1090 * depending on how many CPUs the kernel has booted up with)
1091 */
1092 unsigned long cpumask[0];
1093 };
1094
1095 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1096 {
1097 return to_cpumask(sg->cpumask);
1098 }
1099
1100 /*
1101 * See build_balance_mask().
1102 */
1103 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1104 {
1105 return to_cpumask(sg->sgc->cpumask);
1106 }
1107
1108 /**
1109 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1110 * @group: The group whose first cpu is to be returned.
1111 */
1112 static inline unsigned int group_first_cpu(struct sched_group *group)
1113 {
1114 return cpumask_first(sched_group_span(group));
1115 }
1116
1117 extern int group_balance_cpu(struct sched_group *sg);
1118
1119 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1120 void register_sched_domain_sysctl(void);
1121 void dirty_sched_domain_sysctl(int cpu);
1122 void unregister_sched_domain_sysctl(void);
1123 #else
1124 static inline void register_sched_domain_sysctl(void)
1125 {
1126 }
1127 static inline void dirty_sched_domain_sysctl(int cpu)
1128 {
1129 }
1130 static inline void unregister_sched_domain_sysctl(void)
1131 {
1132 }
1133 #endif
1134
1135 #else
1136
1137 static inline void sched_ttwu_pending(void) { }
1138
1139 #endif /* CONFIG_SMP */
1140
1141 #include "stats.h"
1142 #include "autogroup.h"
1143
1144 #ifdef CONFIG_CGROUP_SCHED
1145
1146 /*
1147 * Return the group to which this tasks belongs.
1148 *
1149 * We cannot use task_css() and friends because the cgroup subsystem
1150 * changes that value before the cgroup_subsys::attach() method is called,
1151 * therefore we cannot pin it and might observe the wrong value.
1152 *
1153 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1154 * core changes this before calling sched_move_task().
1155 *
1156 * Instead we use a 'copy' which is updated from sched_move_task() while
1157 * holding both task_struct::pi_lock and rq::lock.
1158 */
1159 static inline struct task_group *task_group(struct task_struct *p)
1160 {
1161 return p->sched_task_group;
1162 }
1163
1164 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1165 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1166 {
1167 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1168 struct task_group *tg = task_group(p);
1169 #endif
1170
1171 #ifdef CONFIG_FAIR_GROUP_SCHED
1172 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1173 p->se.cfs_rq = tg->cfs_rq[cpu];
1174 p->se.parent = tg->se[cpu];
1175 #endif
1176
1177 #ifdef CONFIG_RT_GROUP_SCHED
1178 p->rt.rt_rq = tg->rt_rq[cpu];
1179 p->rt.parent = tg->rt_se[cpu];
1180 #endif
1181 }
1182
1183 #else /* CONFIG_CGROUP_SCHED */
1184
1185 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1186 static inline struct task_group *task_group(struct task_struct *p)
1187 {
1188 return NULL;
1189 }
1190
1191 #endif /* CONFIG_CGROUP_SCHED */
1192
1193 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1194 {
1195 set_task_rq(p, cpu);
1196 #ifdef CONFIG_SMP
1197 /*
1198 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1199 * successfuly executed on another CPU. We must ensure that updates of
1200 * per-task data have been completed by this moment.
1201 */
1202 smp_wmb();
1203 #ifdef CONFIG_THREAD_INFO_IN_TASK
1204 p->cpu = cpu;
1205 #else
1206 task_thread_info(p)->cpu = cpu;
1207 #endif
1208 p->wake_cpu = cpu;
1209 #endif
1210 }
1211
1212 /*
1213 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1214 */
1215 #ifdef CONFIG_SCHED_DEBUG
1216 # include <linux/static_key.h>
1217 # define const_debug __read_mostly
1218 #else
1219 # define const_debug const
1220 #endif
1221
1222 extern const_debug unsigned int sysctl_sched_features;
1223
1224 #define SCHED_FEAT(name, enabled) \
1225 __SCHED_FEAT_##name ,
1226
1227 enum {
1228 #include "features.h"
1229 __SCHED_FEAT_NR,
1230 };
1231
1232 #undef SCHED_FEAT
1233
1234 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1235 #define SCHED_FEAT(name, enabled) \
1236 static __always_inline bool static_branch_##name(struct static_key *key) \
1237 { \
1238 return static_key_##enabled(key); \
1239 }
1240
1241 #include "features.h"
1242
1243 #undef SCHED_FEAT
1244
1245 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1246 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1247 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1248 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1249 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1250
1251 extern struct static_key_false sched_numa_balancing;
1252 extern struct static_key_false sched_schedstats;
1253
1254 static inline u64 global_rt_period(void)
1255 {
1256 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1257 }
1258
1259 static inline u64 global_rt_runtime(void)
1260 {
1261 if (sysctl_sched_rt_runtime < 0)
1262 return RUNTIME_INF;
1263
1264 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1265 }
1266
1267 static inline int task_current(struct rq *rq, struct task_struct *p)
1268 {
1269 return rq->curr == p;
1270 }
1271
1272 static inline int task_running(struct rq *rq, struct task_struct *p)
1273 {
1274 #ifdef CONFIG_SMP
1275 return p->on_cpu;
1276 #else
1277 return task_current(rq, p);
1278 #endif
1279 }
1280
1281 static inline int task_on_rq_queued(struct task_struct *p)
1282 {
1283 return p->on_rq == TASK_ON_RQ_QUEUED;
1284 }
1285
1286 static inline int task_on_rq_migrating(struct task_struct *p)
1287 {
1288 return p->on_rq == TASK_ON_RQ_MIGRATING;
1289 }
1290
1291 #ifndef prepare_arch_switch
1292 # define prepare_arch_switch(next) do { } while (0)
1293 #endif
1294 #ifndef finish_arch_post_lock_switch
1295 # define finish_arch_post_lock_switch() do { } while (0)
1296 #endif
1297
1298 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1299 {
1300 #ifdef CONFIG_SMP
1301 /*
1302 * We can optimise this out completely for !SMP, because the
1303 * SMP rebalancing from interrupt is the only thing that cares
1304 * here.
1305 */
1306 next->on_cpu = 1;
1307 #endif
1308 }
1309
1310 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1311 {
1312 #ifdef CONFIG_SMP
1313 /*
1314 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1315 * We must ensure this doesn't happen until the switch is completely
1316 * finished.
1317 *
1318 * In particular, the load of prev->state in finish_task_switch() must
1319 * happen before this.
1320 *
1321 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1322 */
1323 smp_store_release(&prev->on_cpu, 0);
1324 #endif
1325 #ifdef CONFIG_DEBUG_SPINLOCK
1326 /* this is a valid case when another task releases the spinlock */
1327 rq->lock.owner = current;
1328 #endif
1329 /*
1330 * If we are tracking spinlock dependencies then we have to
1331 * fix up the runqueue lock - which gets 'carried over' from
1332 * prev into current:
1333 */
1334 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1335
1336 raw_spin_unlock_irq(&rq->lock);
1337 }
1338
1339 /*
1340 * wake flags
1341 */
1342 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1343 #define WF_FORK 0x02 /* child wakeup after fork */
1344 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1345
1346 /*
1347 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348 * of tasks with abnormal "nice" values across CPUs the contribution that
1349 * each task makes to its run queue's load is weighted according to its
1350 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1351 * scaled version of the new time slice allocation that they receive on time
1352 * slice expiry etc.
1353 */
1354
1355 #define WEIGHT_IDLEPRIO 3
1356 #define WMULT_IDLEPRIO 1431655765
1357
1358 extern const int sched_prio_to_weight[40];
1359 extern const u32 sched_prio_to_wmult[40];
1360
1361 /*
1362 * {de,en}queue flags:
1363 *
1364 * DEQUEUE_SLEEP - task is no longer runnable
1365 * ENQUEUE_WAKEUP - task just became runnable
1366 *
1367 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1368 * are in a known state which allows modification. Such pairs
1369 * should preserve as much state as possible.
1370 *
1371 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1372 * in the runqueue.
1373 *
1374 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1375 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1376 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1377 *
1378 */
1379
1380 #define DEQUEUE_SLEEP 0x01
1381 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1382 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1383 #define DEQUEUE_NOCLOCK 0x08 /* matches ENQUEUE_NOCLOCK */
1384
1385 #define ENQUEUE_WAKEUP 0x01
1386 #define ENQUEUE_RESTORE 0x02
1387 #define ENQUEUE_MOVE 0x04
1388 #define ENQUEUE_NOCLOCK 0x08
1389
1390 #define ENQUEUE_HEAD 0x10
1391 #define ENQUEUE_REPLENISH 0x20
1392 #ifdef CONFIG_SMP
1393 #define ENQUEUE_MIGRATED 0x40
1394 #else
1395 #define ENQUEUE_MIGRATED 0x00
1396 #endif
1397
1398 #define RETRY_TASK ((void *)-1UL)
1399
1400 struct sched_class {
1401 const struct sched_class *next;
1402
1403 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1404 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1405 void (*yield_task) (struct rq *rq);
1406 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1407
1408 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1409
1410 /*
1411 * It is the responsibility of the pick_next_task() method that will
1412 * return the next task to call put_prev_task() on the @prev task or
1413 * something equivalent.
1414 *
1415 * May return RETRY_TASK when it finds a higher prio class has runnable
1416 * tasks.
1417 */
1418 struct task_struct * (*pick_next_task) (struct rq *rq,
1419 struct task_struct *prev,
1420 struct rq_flags *rf);
1421 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1422
1423 #ifdef CONFIG_SMP
1424 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1425 void (*migrate_task_rq)(struct task_struct *p);
1426
1427 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1428
1429 void (*set_cpus_allowed)(struct task_struct *p,
1430 const struct cpumask *newmask);
1431
1432 void (*rq_online)(struct rq *rq);
1433 void (*rq_offline)(struct rq *rq);
1434 #endif
1435
1436 void (*set_curr_task) (struct rq *rq);
1437 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1438 void (*task_fork) (struct task_struct *p);
1439 void (*task_dead) (struct task_struct *p);
1440
1441 /*
1442 * The switched_from() call is allowed to drop rq->lock, therefore we
1443 * cannot assume the switched_from/switched_to pair is serliazed by
1444 * rq->lock. They are however serialized by p->pi_lock.
1445 */
1446 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1447 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1448 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1449 int oldprio);
1450
1451 unsigned int (*get_rr_interval) (struct rq *rq,
1452 struct task_struct *task);
1453
1454 void (*update_curr) (struct rq *rq);
1455
1456 #define TASK_SET_GROUP 0
1457 #define TASK_MOVE_GROUP 1
1458
1459 #ifdef CONFIG_FAIR_GROUP_SCHED
1460 void (*task_change_group) (struct task_struct *p, int type);
1461 #endif
1462 };
1463
1464 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1465 {
1466 prev->sched_class->put_prev_task(rq, prev);
1467 }
1468
1469 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1470 {
1471 curr->sched_class->set_curr_task(rq);
1472 }
1473
1474 #ifdef CONFIG_SMP
1475 #define sched_class_highest (&stop_sched_class)
1476 #else
1477 #define sched_class_highest (&dl_sched_class)
1478 #endif
1479 #define for_each_class(class) \
1480 for (class = sched_class_highest; class; class = class->next)
1481
1482 extern const struct sched_class stop_sched_class;
1483 extern const struct sched_class dl_sched_class;
1484 extern const struct sched_class rt_sched_class;
1485 extern const struct sched_class fair_sched_class;
1486 extern const struct sched_class idle_sched_class;
1487
1488
1489 #ifdef CONFIG_SMP
1490
1491 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1492
1493 extern void trigger_load_balance(struct rq *rq);
1494
1495 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1496
1497 #endif
1498
1499 #ifdef CONFIG_CPU_IDLE
1500 static inline void idle_set_state(struct rq *rq,
1501 struct cpuidle_state *idle_state)
1502 {
1503 rq->idle_state = idle_state;
1504 }
1505
1506 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1507 {
1508 SCHED_WARN_ON(!rcu_read_lock_held());
1509 return rq->idle_state;
1510 }
1511 #else
1512 static inline void idle_set_state(struct rq *rq,
1513 struct cpuidle_state *idle_state)
1514 {
1515 }
1516
1517 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1518 {
1519 return NULL;
1520 }
1521 #endif
1522
1523 extern void schedule_idle(void);
1524
1525 extern void sysrq_sched_debug_show(void);
1526 extern void sched_init_granularity(void);
1527 extern void update_max_interval(void);
1528
1529 extern void init_sched_dl_class(void);
1530 extern void init_sched_rt_class(void);
1531 extern void init_sched_fair_class(void);
1532
1533 extern void resched_curr(struct rq *rq);
1534 extern void resched_cpu(int cpu);
1535
1536 extern struct rt_bandwidth def_rt_bandwidth;
1537 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1538
1539 extern struct dl_bandwidth def_dl_bandwidth;
1540 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1541 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1542 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1543 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1544
1545 #define BW_SHIFT 20
1546 #define BW_UNIT (1 << BW_SHIFT)
1547 #define RATIO_SHIFT 8
1548 unsigned long to_ratio(u64 period, u64 runtime);
1549
1550 extern void init_entity_runnable_average(struct sched_entity *se);
1551 extern void post_init_entity_util_avg(struct sched_entity *se);
1552
1553 #ifdef CONFIG_NO_HZ_FULL
1554 extern bool sched_can_stop_tick(struct rq *rq);
1555
1556 /*
1557 * Tick may be needed by tasks in the runqueue depending on their policy and
1558 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1559 * nohz mode if necessary.
1560 */
1561 static inline void sched_update_tick_dependency(struct rq *rq)
1562 {
1563 int cpu;
1564
1565 if (!tick_nohz_full_enabled())
1566 return;
1567
1568 cpu = cpu_of(rq);
1569
1570 if (!tick_nohz_full_cpu(cpu))
1571 return;
1572
1573 if (sched_can_stop_tick(rq))
1574 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1575 else
1576 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1577 }
1578 #else
1579 static inline void sched_update_tick_dependency(struct rq *rq) { }
1580 #endif
1581
1582 static inline void add_nr_running(struct rq *rq, unsigned count)
1583 {
1584 unsigned prev_nr = rq->nr_running;
1585
1586 rq->nr_running = prev_nr + count;
1587
1588 if (prev_nr < 2 && rq->nr_running >= 2) {
1589 #ifdef CONFIG_SMP
1590 if (!rq->rd->overload)
1591 rq->rd->overload = true;
1592 #endif
1593 }
1594
1595 sched_update_tick_dependency(rq);
1596 }
1597
1598 static inline void sub_nr_running(struct rq *rq, unsigned count)
1599 {
1600 rq->nr_running -= count;
1601 /* Check if we still need preemption */
1602 sched_update_tick_dependency(rq);
1603 }
1604
1605 static inline void rq_last_tick_reset(struct rq *rq)
1606 {
1607 #ifdef CONFIG_NO_HZ_FULL
1608 rq->last_sched_tick = jiffies;
1609 #endif
1610 }
1611
1612 extern void update_rq_clock(struct rq *rq);
1613
1614 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1615 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1616
1617 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1618
1619 extern const_debug unsigned int sysctl_sched_time_avg;
1620 extern const_debug unsigned int sysctl_sched_nr_migrate;
1621 extern const_debug unsigned int sysctl_sched_migration_cost;
1622
1623 static inline u64 sched_avg_period(void)
1624 {
1625 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1626 }
1627
1628 #ifdef CONFIG_SCHED_HRTICK
1629
1630 /*
1631 * Use hrtick when:
1632 * - enabled by features
1633 * - hrtimer is actually high res
1634 */
1635 static inline int hrtick_enabled(struct rq *rq)
1636 {
1637 if (!sched_feat(HRTICK))
1638 return 0;
1639 if (!cpu_active(cpu_of(rq)))
1640 return 0;
1641 return hrtimer_is_hres_active(&rq->hrtick_timer);
1642 }
1643
1644 void hrtick_start(struct rq *rq, u64 delay);
1645
1646 #else
1647
1648 static inline int hrtick_enabled(struct rq *rq)
1649 {
1650 return 0;
1651 }
1652
1653 #endif /* CONFIG_SCHED_HRTICK */
1654
1655 #ifdef CONFIG_SMP
1656 extern void sched_avg_update(struct rq *rq);
1657
1658 #ifndef arch_scale_freq_capacity
1659 static __always_inline
1660 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1661 {
1662 return SCHED_CAPACITY_SCALE;
1663 }
1664 #endif
1665
1666 #ifndef arch_scale_cpu_capacity
1667 static __always_inline
1668 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1669 {
1670 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1671 return sd->smt_gain / sd->span_weight;
1672
1673 return SCHED_CAPACITY_SCALE;
1674 }
1675 #endif
1676
1677 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1678 {
1679 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1680 sched_avg_update(rq);
1681 }
1682 #else
1683 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1684 static inline void sched_avg_update(struct rq *rq) { }
1685 #endif
1686
1687 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1688 __acquires(rq->lock);
1689
1690 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1691 __acquires(p->pi_lock)
1692 __acquires(rq->lock);
1693
1694 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1695 __releases(rq->lock)
1696 {
1697 rq_unpin_lock(rq, rf);
1698 raw_spin_unlock(&rq->lock);
1699 }
1700
1701 static inline void
1702 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1703 __releases(rq->lock)
1704 __releases(p->pi_lock)
1705 {
1706 rq_unpin_lock(rq, rf);
1707 raw_spin_unlock(&rq->lock);
1708 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1709 }
1710
1711 static inline void
1712 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1713 __acquires(rq->lock)
1714 {
1715 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1716 rq_pin_lock(rq, rf);
1717 }
1718
1719 static inline void
1720 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1721 __acquires(rq->lock)
1722 {
1723 raw_spin_lock_irq(&rq->lock);
1724 rq_pin_lock(rq, rf);
1725 }
1726
1727 static inline void
1728 rq_lock(struct rq *rq, struct rq_flags *rf)
1729 __acquires(rq->lock)
1730 {
1731 raw_spin_lock(&rq->lock);
1732 rq_pin_lock(rq, rf);
1733 }
1734
1735 static inline void
1736 rq_relock(struct rq *rq, struct rq_flags *rf)
1737 __acquires(rq->lock)
1738 {
1739 raw_spin_lock(&rq->lock);
1740 rq_repin_lock(rq, rf);
1741 }
1742
1743 static inline void
1744 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1745 __releases(rq->lock)
1746 {
1747 rq_unpin_lock(rq, rf);
1748 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1749 }
1750
1751 static inline void
1752 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1753 __releases(rq->lock)
1754 {
1755 rq_unpin_lock(rq, rf);
1756 raw_spin_unlock_irq(&rq->lock);
1757 }
1758
1759 static inline void
1760 rq_unlock(struct rq *rq, struct rq_flags *rf)
1761 __releases(rq->lock)
1762 {
1763 rq_unpin_lock(rq, rf);
1764 raw_spin_unlock(&rq->lock);
1765 }
1766
1767 #ifdef CONFIG_SMP
1768 #ifdef CONFIG_PREEMPT
1769
1770 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1771
1772 /*
1773 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1774 * way at the expense of forcing extra atomic operations in all
1775 * invocations. This assures that the double_lock is acquired using the
1776 * same underlying policy as the spinlock_t on this architecture, which
1777 * reduces latency compared to the unfair variant below. However, it
1778 * also adds more overhead and therefore may reduce throughput.
1779 */
1780 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1781 __releases(this_rq->lock)
1782 __acquires(busiest->lock)
1783 __acquires(this_rq->lock)
1784 {
1785 raw_spin_unlock(&this_rq->lock);
1786 double_rq_lock(this_rq, busiest);
1787
1788 return 1;
1789 }
1790
1791 #else
1792 /*
1793 * Unfair double_lock_balance: Optimizes throughput at the expense of
1794 * latency by eliminating extra atomic operations when the locks are
1795 * already in proper order on entry. This favors lower cpu-ids and will
1796 * grant the double lock to lower cpus over higher ids under contention,
1797 * regardless of entry order into the function.
1798 */
1799 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1800 __releases(this_rq->lock)
1801 __acquires(busiest->lock)
1802 __acquires(this_rq->lock)
1803 {
1804 int ret = 0;
1805
1806 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1807 if (busiest < this_rq) {
1808 raw_spin_unlock(&this_rq->lock);
1809 raw_spin_lock(&busiest->lock);
1810 raw_spin_lock_nested(&this_rq->lock,
1811 SINGLE_DEPTH_NESTING);
1812 ret = 1;
1813 } else
1814 raw_spin_lock_nested(&busiest->lock,
1815 SINGLE_DEPTH_NESTING);
1816 }
1817 return ret;
1818 }
1819
1820 #endif /* CONFIG_PREEMPT */
1821
1822 /*
1823 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1824 */
1825 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1826 {
1827 if (unlikely(!irqs_disabled())) {
1828 /* printk() doesn't work good under rq->lock */
1829 raw_spin_unlock(&this_rq->lock);
1830 BUG_ON(1);
1831 }
1832
1833 return _double_lock_balance(this_rq, busiest);
1834 }
1835
1836 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1837 __releases(busiest->lock)
1838 {
1839 raw_spin_unlock(&busiest->lock);
1840 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1841 }
1842
1843 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1844 {
1845 if (l1 > l2)
1846 swap(l1, l2);
1847
1848 spin_lock(l1);
1849 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1850 }
1851
1852 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1853 {
1854 if (l1 > l2)
1855 swap(l1, l2);
1856
1857 spin_lock_irq(l1);
1858 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1859 }
1860
1861 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1862 {
1863 if (l1 > l2)
1864 swap(l1, l2);
1865
1866 raw_spin_lock(l1);
1867 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1868 }
1869
1870 /*
1871 * double_rq_lock - safely lock two runqueues
1872 *
1873 * Note this does not disable interrupts like task_rq_lock,
1874 * you need to do so manually before calling.
1875 */
1876 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1877 __acquires(rq1->lock)
1878 __acquires(rq2->lock)
1879 {
1880 BUG_ON(!irqs_disabled());
1881 if (rq1 == rq2) {
1882 raw_spin_lock(&rq1->lock);
1883 __acquire(rq2->lock); /* Fake it out ;) */
1884 } else {
1885 if (rq1 < rq2) {
1886 raw_spin_lock(&rq1->lock);
1887 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1888 } else {
1889 raw_spin_lock(&rq2->lock);
1890 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1891 }
1892 }
1893 }
1894
1895 /*
1896 * double_rq_unlock - safely unlock two runqueues
1897 *
1898 * Note this does not restore interrupts like task_rq_unlock,
1899 * you need to do so manually after calling.
1900 */
1901 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1902 __releases(rq1->lock)
1903 __releases(rq2->lock)
1904 {
1905 raw_spin_unlock(&rq1->lock);
1906 if (rq1 != rq2)
1907 raw_spin_unlock(&rq2->lock);
1908 else
1909 __release(rq2->lock);
1910 }
1911
1912 extern void set_rq_online (struct rq *rq);
1913 extern void set_rq_offline(struct rq *rq);
1914 extern bool sched_smp_initialized;
1915
1916 #else /* CONFIG_SMP */
1917
1918 /*
1919 * double_rq_lock - safely lock two runqueues
1920 *
1921 * Note this does not disable interrupts like task_rq_lock,
1922 * you need to do so manually before calling.
1923 */
1924 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1925 __acquires(rq1->lock)
1926 __acquires(rq2->lock)
1927 {
1928 BUG_ON(!irqs_disabled());
1929 BUG_ON(rq1 != rq2);
1930 raw_spin_lock(&rq1->lock);
1931 __acquire(rq2->lock); /* Fake it out ;) */
1932 }
1933
1934 /*
1935 * double_rq_unlock - safely unlock two runqueues
1936 *
1937 * Note this does not restore interrupts like task_rq_unlock,
1938 * you need to do so manually after calling.
1939 */
1940 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1941 __releases(rq1->lock)
1942 __releases(rq2->lock)
1943 {
1944 BUG_ON(rq1 != rq2);
1945 raw_spin_unlock(&rq1->lock);
1946 __release(rq2->lock);
1947 }
1948
1949 #endif
1950
1951 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1952 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1953
1954 #ifdef CONFIG_SCHED_DEBUG
1955 extern bool sched_debug_enabled;
1956
1957 extern void print_cfs_stats(struct seq_file *m, int cpu);
1958 extern void print_rt_stats(struct seq_file *m, int cpu);
1959 extern void print_dl_stats(struct seq_file *m, int cpu);
1960 extern void
1961 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1962 #ifdef CONFIG_NUMA_BALANCING
1963 extern void
1964 show_numa_stats(struct task_struct *p, struct seq_file *m);
1965 extern void
1966 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1967 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1968 #endif /* CONFIG_NUMA_BALANCING */
1969 #endif /* CONFIG_SCHED_DEBUG */
1970
1971 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1972 extern void init_rt_rq(struct rt_rq *rt_rq);
1973 extern void init_dl_rq(struct dl_rq *dl_rq);
1974
1975 extern void cfs_bandwidth_usage_inc(void);
1976 extern void cfs_bandwidth_usage_dec(void);
1977
1978 #ifdef CONFIG_NO_HZ_COMMON
1979 enum rq_nohz_flag_bits {
1980 NOHZ_TICK_STOPPED,
1981 NOHZ_BALANCE_KICK,
1982 };
1983
1984 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1985
1986 extern void nohz_balance_exit_idle(unsigned int cpu);
1987 #else
1988 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1989 #endif
1990
1991
1992 #ifdef CONFIG_SMP
1993 static inline
1994 void __dl_update(struct dl_bw *dl_b, s64 bw)
1995 {
1996 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
1997 int i;
1998
1999 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2000 "sched RCU must be held");
2001 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2002 struct rq *rq = cpu_rq(i);
2003
2004 rq->dl.extra_bw += bw;
2005 }
2006 }
2007 #else
2008 static inline
2009 void __dl_update(struct dl_bw *dl_b, s64 bw)
2010 {
2011 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2012
2013 dl->extra_bw += bw;
2014 }
2015 #endif
2016
2017
2018 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2019 struct irqtime {
2020 u64 total;
2021 u64 tick_delta;
2022 u64 irq_start_time;
2023 struct u64_stats_sync sync;
2024 };
2025
2026 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2027
2028 /*
2029 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2030 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2031 * and never move forward.
2032 */
2033 static inline u64 irq_time_read(int cpu)
2034 {
2035 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2036 unsigned int seq;
2037 u64 total;
2038
2039 do {
2040 seq = __u64_stats_fetch_begin(&irqtime->sync);
2041 total = irqtime->total;
2042 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2043
2044 return total;
2045 }
2046 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2047
2048 #ifdef CONFIG_CPU_FREQ
2049 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2050
2051 /**
2052 * cpufreq_update_util - Take a note about CPU utilization changes.
2053 * @rq: Runqueue to carry out the update for.
2054 * @flags: Update reason flags.
2055 *
2056 * This function is called by the scheduler on the CPU whose utilization is
2057 * being updated.
2058 *
2059 * It can only be called from RCU-sched read-side critical sections.
2060 *
2061 * The way cpufreq is currently arranged requires it to evaluate the CPU
2062 * performance state (frequency/voltage) on a regular basis to prevent it from
2063 * being stuck in a completely inadequate performance level for too long.
2064 * That is not guaranteed to happen if the updates are only triggered from CFS,
2065 * though, because they may not be coming in if RT or deadline tasks are active
2066 * all the time (or there are RT and DL tasks only).
2067 *
2068 * As a workaround for that issue, this function is called by the RT and DL
2069 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
2070 * but that really is a band-aid. Going forward it should be replaced with
2071 * solutions targeted more specifically at RT and DL tasks.
2072 */
2073 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2074 {
2075 struct update_util_data *data;
2076
2077 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2078 cpu_of(rq)));
2079 if (data)
2080 data->func(data, rq_clock(rq), flags);
2081 }
2082 #else
2083 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2084 #endif /* CONFIG_CPU_FREQ */
2085
2086 #ifdef arch_scale_freq_capacity
2087 #ifndef arch_scale_freq_invariant
2088 #define arch_scale_freq_invariant() (true)
2089 #endif
2090 #else /* arch_scale_freq_capacity */
2091 #define arch_scale_freq_invariant() (false)
2092 #endif