]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched/sched.h
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/u64_stats_sync.h>
6 #include <linux/sched/deadline.h>
7 #include <linux/binfmts.h>
8 #include <linux/mutex.h>
9 #include <linux/spinlock.h>
10 #include <linux/stop_machine.h>
11 #include <linux/irq_work.h>
12 #include <linux/tick.h>
13 #include <linux/slab.h>
14
15 #include "cpupri.h"
16 #include "cpudeadline.h"
17 #include "cpuacct.h"
18
19 #ifdef CONFIG_SCHED_DEBUG
20 #define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
21 #else
22 #define SCHED_WARN_ON(x) ((void)(x))
23 #endif
24
25 struct rq;
26 struct cpuidle_state;
27
28 /* task_struct::on_rq states: */
29 #define TASK_ON_RQ_QUEUED 1
30 #define TASK_ON_RQ_MIGRATING 2
31
32 extern __read_mostly int scheduler_running;
33
34 extern unsigned long calc_load_update;
35 extern atomic_long_t calc_load_tasks;
36
37 extern void calc_global_load_tick(struct rq *this_rq);
38 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
39
40 #ifdef CONFIG_SMP
41 extern void cpu_load_update_active(struct rq *this_rq);
42 #else
43 static inline void cpu_load_update_active(struct rq *this_rq) { }
44 #endif
45
46 /*
47 * Helpers for converting nanosecond timing to jiffy resolution
48 */
49 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
50
51 /*
52 * Increase resolution of nice-level calculations for 64-bit architectures.
53 * The extra resolution improves shares distribution and load balancing of
54 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
55 * hierarchies, especially on larger systems. This is not a user-visible change
56 * and does not change the user-interface for setting shares/weights.
57 *
58 * We increase resolution only if we have enough bits to allow this increased
59 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
60 * pretty high and the returns do not justify the increased costs.
61 *
62 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
63 * increase coverage and consistency always enable it on 64bit platforms.
64 */
65 #ifdef CONFIG_64BIT
66 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
67 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
68 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
69 #else
70 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
71 # define scale_load(w) (w)
72 # define scale_load_down(w) (w)
73 #endif
74
75 /*
76 * Task weight (visible to users) and its load (invisible to users) have
77 * independent resolution, but they should be well calibrated. We use
78 * scale_load() and scale_load_down(w) to convert between them. The
79 * following must be true:
80 *
81 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
82 *
83 */
84 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
85
86 /*
87 * Single value that decides SCHED_DEADLINE internal math precision.
88 * 10 -> just above 1us
89 * 9 -> just above 0.5us
90 */
91 #define DL_SCALE (10)
92
93 /*
94 * These are the 'tuning knobs' of the scheduler:
95 */
96
97 /*
98 * single value that denotes runtime == period, ie unlimited time.
99 */
100 #define RUNTIME_INF ((u64)~0ULL)
101
102 static inline int idle_policy(int policy)
103 {
104 return policy == SCHED_IDLE;
105 }
106 static inline int fair_policy(int policy)
107 {
108 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
109 }
110
111 static inline int rt_policy(int policy)
112 {
113 return policy == SCHED_FIFO || policy == SCHED_RR;
114 }
115
116 static inline int dl_policy(int policy)
117 {
118 return policy == SCHED_DEADLINE;
119 }
120 static inline bool valid_policy(int policy)
121 {
122 return idle_policy(policy) || fair_policy(policy) ||
123 rt_policy(policy) || dl_policy(policy);
124 }
125
126 static inline int task_has_rt_policy(struct task_struct *p)
127 {
128 return rt_policy(p->policy);
129 }
130
131 static inline int task_has_dl_policy(struct task_struct *p)
132 {
133 return dl_policy(p->policy);
134 }
135
136 /*
137 * Tells if entity @a should preempt entity @b.
138 */
139 static inline bool
140 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
141 {
142 return dl_time_before(a->deadline, b->deadline);
143 }
144
145 /*
146 * This is the priority-queue data structure of the RT scheduling class:
147 */
148 struct rt_prio_array {
149 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
150 struct list_head queue[MAX_RT_PRIO];
151 };
152
153 struct rt_bandwidth {
154 /* nests inside the rq lock: */
155 raw_spinlock_t rt_runtime_lock;
156 ktime_t rt_period;
157 u64 rt_runtime;
158 struct hrtimer rt_period_timer;
159 unsigned int rt_period_active;
160 };
161
162 void __dl_clear_params(struct task_struct *p);
163
164 /*
165 * To keep the bandwidth of -deadline tasks and groups under control
166 * we need some place where:
167 * - store the maximum -deadline bandwidth of the system (the group);
168 * - cache the fraction of that bandwidth that is currently allocated.
169 *
170 * This is all done in the data structure below. It is similar to the
171 * one used for RT-throttling (rt_bandwidth), with the main difference
172 * that, since here we are only interested in admission control, we
173 * do not decrease any runtime while the group "executes", neither we
174 * need a timer to replenish it.
175 *
176 * With respect to SMP, the bandwidth is given on a per-CPU basis,
177 * meaning that:
178 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
179 * - dl_total_bw array contains, in the i-eth element, the currently
180 * allocated bandwidth on the i-eth CPU.
181 * Moreover, groups consume bandwidth on each CPU, while tasks only
182 * consume bandwidth on the CPU they're running on.
183 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
184 * that will be shown the next time the proc or cgroup controls will
185 * be red. It on its turn can be changed by writing on its own
186 * control.
187 */
188 struct dl_bandwidth {
189 raw_spinlock_t dl_runtime_lock;
190 u64 dl_runtime;
191 u64 dl_period;
192 };
193
194 static inline int dl_bandwidth_enabled(void)
195 {
196 return sysctl_sched_rt_runtime >= 0;
197 }
198
199 extern struct dl_bw *dl_bw_of(int i);
200
201 struct dl_bw {
202 raw_spinlock_t lock;
203 u64 bw, total_bw;
204 };
205
206 static inline
207 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
208 {
209 dl_b->total_bw -= tsk_bw;
210 }
211
212 static inline
213 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
214 {
215 dl_b->total_bw += tsk_bw;
216 }
217
218 static inline
219 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
220 {
221 return dl_b->bw != -1 &&
222 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
223 }
224
225 extern struct mutex sched_domains_mutex;
226
227 #ifdef CONFIG_CGROUP_SCHED
228
229 #include <linux/cgroup.h>
230
231 struct cfs_rq;
232 struct rt_rq;
233
234 extern struct list_head task_groups;
235
236 struct cfs_bandwidth {
237 #ifdef CONFIG_CFS_BANDWIDTH
238 raw_spinlock_t lock;
239 ktime_t period;
240 u64 quota, runtime;
241 s64 hierarchical_quota;
242 u64 runtime_expires;
243
244 int idle, period_active;
245 struct hrtimer period_timer, slack_timer;
246 struct list_head throttled_cfs_rq;
247
248 /* statistics */
249 int nr_periods, nr_throttled;
250 u64 throttled_time;
251 #endif
252 };
253
254 /* task group related information */
255 struct task_group {
256 struct cgroup_subsys_state css;
257
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
264
265 #ifdef CONFIG_SMP
266 /*
267 * load_avg can be heavily contended at clock tick time, so put
268 * it in its own cacheline separated from the fields above which
269 * will also be accessed at each tick.
270 */
271 atomic_long_t load_avg ____cacheline_aligned;
272 #endif
273 #endif
274
275 #ifdef CONFIG_RT_GROUP_SCHED
276 struct sched_rt_entity **rt_se;
277 struct rt_rq **rt_rq;
278
279 struct rt_bandwidth rt_bandwidth;
280 #endif
281
282 struct rcu_head rcu;
283 struct list_head list;
284
285 struct task_group *parent;
286 struct list_head siblings;
287 struct list_head children;
288
289 #ifdef CONFIG_SCHED_AUTOGROUP
290 struct autogroup *autogroup;
291 #endif
292
293 struct cfs_bandwidth cfs_bandwidth;
294 };
295
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
298
299 /*
300 * A weight of 0 or 1 can cause arithmetics problems.
301 * A weight of a cfs_rq is the sum of weights of which entities
302 * are queued on this cfs_rq, so a weight of a entity should not be
303 * too large, so as the shares value of a task group.
304 * (The default weight is 1024 - so there's no practical
305 * limitation from this.)
306 */
307 #define MIN_SHARES (1UL << 1)
308 #define MAX_SHARES (1UL << 18)
309 #endif
310
311 typedef int (*tg_visitor)(struct task_group *, void *);
312
313 extern int walk_tg_tree_from(struct task_group *from,
314 tg_visitor down, tg_visitor up, void *data);
315
316 /*
317 * Iterate the full tree, calling @down when first entering a node and @up when
318 * leaving it for the final time.
319 *
320 * Caller must hold rcu_lock or sufficient equivalent.
321 */
322 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
323 {
324 return walk_tg_tree_from(&root_task_group, down, up, data);
325 }
326
327 extern int tg_nop(struct task_group *tg, void *data);
328
329 extern void free_fair_sched_group(struct task_group *tg);
330 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
331 extern void online_fair_sched_group(struct task_group *tg);
332 extern void unregister_fair_sched_group(struct task_group *tg);
333 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
334 struct sched_entity *se, int cpu,
335 struct sched_entity *parent);
336 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
337
338 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
339 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
340 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
341
342 extern void free_rt_sched_group(struct task_group *tg);
343 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
344 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
345 struct sched_rt_entity *rt_se, int cpu,
346 struct sched_rt_entity *parent);
347
348 extern struct task_group *sched_create_group(struct task_group *parent);
349 extern void sched_online_group(struct task_group *tg,
350 struct task_group *parent);
351 extern void sched_destroy_group(struct task_group *tg);
352 extern void sched_offline_group(struct task_group *tg);
353
354 extern void sched_move_task(struct task_struct *tsk);
355
356 #ifdef CONFIG_FAIR_GROUP_SCHED
357 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
358
359 #ifdef CONFIG_SMP
360 extern void set_task_rq_fair(struct sched_entity *se,
361 struct cfs_rq *prev, struct cfs_rq *next);
362 #else /* !CONFIG_SMP */
363 static inline void set_task_rq_fair(struct sched_entity *se,
364 struct cfs_rq *prev, struct cfs_rq *next) { }
365 #endif /* CONFIG_SMP */
366 #endif /* CONFIG_FAIR_GROUP_SCHED */
367
368 #else /* CONFIG_CGROUP_SCHED */
369
370 struct cfs_bandwidth { };
371
372 #endif /* CONFIG_CGROUP_SCHED */
373
374 /* CFS-related fields in a runqueue */
375 struct cfs_rq {
376 struct load_weight load;
377 unsigned int nr_running, h_nr_running;
378
379 u64 exec_clock;
380 u64 min_vruntime;
381 #ifndef CONFIG_64BIT
382 u64 min_vruntime_copy;
383 #endif
384
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
387
388 /*
389 * 'curr' points to currently running entity on this cfs_rq.
390 * It is set to NULL otherwise (i.e when none are currently running).
391 */
392 struct sched_entity *curr, *next, *last, *skip;
393
394 #ifdef CONFIG_SCHED_DEBUG
395 unsigned int nr_spread_over;
396 #endif
397
398 #ifdef CONFIG_SMP
399 /*
400 * CFS load tracking
401 */
402 struct sched_avg avg;
403 u64 runnable_load_sum;
404 unsigned long runnable_load_avg;
405 #ifdef CONFIG_FAIR_GROUP_SCHED
406 unsigned long tg_load_avg_contrib;
407 #endif
408 atomic_long_t removed_load_avg, removed_util_avg;
409 #ifndef CONFIG_64BIT
410 u64 load_last_update_time_copy;
411 #endif
412
413 #ifdef CONFIG_FAIR_GROUP_SCHED
414 /*
415 * h_load = weight * f(tg)
416 *
417 * Where f(tg) is the recursive weight fraction assigned to
418 * this group.
419 */
420 unsigned long h_load;
421 u64 last_h_load_update;
422 struct sched_entity *h_load_next;
423 #endif /* CONFIG_FAIR_GROUP_SCHED */
424 #endif /* CONFIG_SMP */
425
426 #ifdef CONFIG_FAIR_GROUP_SCHED
427 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
428
429 /*
430 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
431 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
432 * (like users, containers etc.)
433 *
434 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
435 * list is used during load balance.
436 */
437 int on_list;
438 struct list_head leaf_cfs_rq_list;
439 struct task_group *tg; /* group that "owns" this runqueue */
440
441 #ifdef CONFIG_CFS_BANDWIDTH
442 int runtime_enabled;
443 u64 runtime_expires;
444 s64 runtime_remaining;
445
446 u64 throttled_clock, throttled_clock_task;
447 u64 throttled_clock_task_time;
448 int throttled, throttle_count;
449 struct list_head throttled_list;
450 #endif /* CONFIG_CFS_BANDWIDTH */
451 #endif /* CONFIG_FAIR_GROUP_SCHED */
452 };
453
454 static inline int rt_bandwidth_enabled(void)
455 {
456 return sysctl_sched_rt_runtime >= 0;
457 }
458
459 /* RT IPI pull logic requires IRQ_WORK */
460 #ifdef CONFIG_IRQ_WORK
461 # define HAVE_RT_PUSH_IPI
462 #endif
463
464 /* Real-Time classes' related field in a runqueue: */
465 struct rt_rq {
466 struct rt_prio_array active;
467 unsigned int rt_nr_running;
468 unsigned int rr_nr_running;
469 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 struct {
471 int curr; /* highest queued rt task prio */
472 #ifdef CONFIG_SMP
473 int next; /* next highest */
474 #endif
475 } highest_prio;
476 #endif
477 #ifdef CONFIG_SMP
478 unsigned long rt_nr_migratory;
479 unsigned long rt_nr_total;
480 int overloaded;
481 struct plist_head pushable_tasks;
482 #ifdef HAVE_RT_PUSH_IPI
483 int push_flags;
484 int push_cpu;
485 struct irq_work push_work;
486 raw_spinlock_t push_lock;
487 #endif
488 #endif /* CONFIG_SMP */
489 int rt_queued;
490
491 int rt_throttled;
492 u64 rt_time;
493 u64 rt_runtime;
494 /* Nests inside the rq lock: */
495 raw_spinlock_t rt_runtime_lock;
496
497 #ifdef CONFIG_RT_GROUP_SCHED
498 unsigned long rt_nr_boosted;
499
500 struct rq *rq;
501 struct task_group *tg;
502 #endif
503 };
504
505 /* Deadline class' related fields in a runqueue */
506 struct dl_rq {
507 /* runqueue is an rbtree, ordered by deadline */
508 struct rb_root rb_root;
509 struct rb_node *rb_leftmost;
510
511 unsigned long dl_nr_running;
512
513 #ifdef CONFIG_SMP
514 /*
515 * Deadline values of the currently executing and the
516 * earliest ready task on this rq. Caching these facilitates
517 * the decision wether or not a ready but not running task
518 * should migrate somewhere else.
519 */
520 struct {
521 u64 curr;
522 u64 next;
523 } earliest_dl;
524
525 unsigned long dl_nr_migratory;
526 int overloaded;
527
528 /*
529 * Tasks on this rq that can be pushed away. They are kept in
530 * an rb-tree, ordered by tasks' deadlines, with caching
531 * of the leftmost (earliest deadline) element.
532 */
533 struct rb_root pushable_dl_tasks_root;
534 struct rb_node *pushable_dl_tasks_leftmost;
535 #else
536 struct dl_bw dl_bw;
537 #endif
538 };
539
540 #ifdef CONFIG_SMP
541
542 /*
543 * We add the notion of a root-domain which will be used to define per-domain
544 * variables. Each exclusive cpuset essentially defines an island domain by
545 * fully partitioning the member cpus from any other cpuset. Whenever a new
546 * exclusive cpuset is created, we also create and attach a new root-domain
547 * object.
548 *
549 */
550 struct root_domain {
551 atomic_t refcount;
552 atomic_t rto_count;
553 struct rcu_head rcu;
554 cpumask_var_t span;
555 cpumask_var_t online;
556
557 /* Indicate more than one runnable task for any CPU */
558 bool overload;
559
560 /*
561 * The bit corresponding to a CPU gets set here if such CPU has more
562 * than one runnable -deadline task (as it is below for RT tasks).
563 */
564 cpumask_var_t dlo_mask;
565 atomic_t dlo_count;
566 struct dl_bw dl_bw;
567 struct cpudl cpudl;
568
569 /*
570 * The "RT overload" flag: it gets set if a CPU has more than
571 * one runnable RT task.
572 */
573 cpumask_var_t rto_mask;
574 struct cpupri cpupri;
575
576 unsigned long max_cpu_capacity;
577 };
578
579 extern struct root_domain def_root_domain;
580
581 #endif /* CONFIG_SMP */
582
583 /*
584 * This is the main, per-CPU runqueue data structure.
585 *
586 * Locking rule: those places that want to lock multiple runqueues
587 * (such as the load balancing or the thread migration code), lock
588 * acquire operations must be ordered by ascending &runqueue.
589 */
590 struct rq {
591 /* runqueue lock: */
592 raw_spinlock_t lock;
593
594 /*
595 * nr_running and cpu_load should be in the same cacheline because
596 * remote CPUs use both these fields when doing load calculation.
597 */
598 unsigned int nr_running;
599 #ifdef CONFIG_NUMA_BALANCING
600 unsigned int nr_numa_running;
601 unsigned int nr_preferred_running;
602 #endif
603 #define CPU_LOAD_IDX_MAX 5
604 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
605 #ifdef CONFIG_NO_HZ_COMMON
606 #ifdef CONFIG_SMP
607 unsigned long last_load_update_tick;
608 #endif /* CONFIG_SMP */
609 unsigned long nohz_flags;
610 #endif /* CONFIG_NO_HZ_COMMON */
611 #ifdef CONFIG_NO_HZ_FULL
612 unsigned long last_sched_tick;
613 #endif
614 /* capture load from *all* tasks on this cpu: */
615 struct load_weight load;
616 unsigned long nr_load_updates;
617 u64 nr_switches;
618
619 struct cfs_rq cfs;
620 struct rt_rq rt;
621 struct dl_rq dl;
622
623 #ifdef CONFIG_FAIR_GROUP_SCHED
624 /* list of leaf cfs_rq on this cpu: */
625 struct list_head leaf_cfs_rq_list;
626 #endif /* CONFIG_FAIR_GROUP_SCHED */
627
628 /*
629 * This is part of a global counter where only the total sum
630 * over all CPUs matters. A task can increase this counter on
631 * one CPU and if it got migrated afterwards it may decrease
632 * it on another CPU. Always updated under the runqueue lock:
633 */
634 unsigned long nr_uninterruptible;
635
636 struct task_struct *curr, *idle, *stop;
637 unsigned long next_balance;
638 struct mm_struct *prev_mm;
639
640 unsigned int clock_skip_update;
641 u64 clock;
642 u64 clock_task;
643
644 atomic_t nr_iowait;
645
646 #ifdef CONFIG_SMP
647 struct root_domain *rd;
648 struct sched_domain *sd;
649
650 unsigned long cpu_capacity;
651 unsigned long cpu_capacity_orig;
652
653 struct callback_head *balance_callback;
654
655 unsigned char idle_balance;
656 /* For active balancing */
657 int active_balance;
658 int push_cpu;
659 struct cpu_stop_work active_balance_work;
660 /* cpu of this runqueue: */
661 int cpu;
662 int online;
663
664 struct list_head cfs_tasks;
665
666 u64 rt_avg;
667 u64 age_stamp;
668 u64 idle_stamp;
669 u64 avg_idle;
670
671 /* This is used to determine avg_idle's max value */
672 u64 max_idle_balance_cost;
673 #endif
674
675 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
676 u64 prev_irq_time;
677 #endif
678 #ifdef CONFIG_PARAVIRT
679 u64 prev_steal_time;
680 #endif
681 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
682 u64 prev_steal_time_rq;
683 #endif
684
685 /* calc_load related fields */
686 unsigned long calc_load_update;
687 long calc_load_active;
688
689 #ifdef CONFIG_SCHED_HRTICK
690 #ifdef CONFIG_SMP
691 int hrtick_csd_pending;
692 struct call_single_data hrtick_csd;
693 #endif
694 struct hrtimer hrtick_timer;
695 #endif
696
697 #ifdef CONFIG_SCHEDSTATS
698 /* latency stats */
699 struct sched_info rq_sched_info;
700 unsigned long long rq_cpu_time;
701 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
702
703 /* sys_sched_yield() stats */
704 unsigned int yld_count;
705
706 /* schedule() stats */
707 unsigned int sched_count;
708 unsigned int sched_goidle;
709
710 /* try_to_wake_up() stats */
711 unsigned int ttwu_count;
712 unsigned int ttwu_local;
713 #endif
714
715 #ifdef CONFIG_SMP
716 struct llist_head wake_list;
717 #endif
718
719 #ifdef CONFIG_CPU_IDLE
720 /* Must be inspected within a rcu lock section */
721 struct cpuidle_state *idle_state;
722 #endif
723 };
724
725 static inline int cpu_of(struct rq *rq)
726 {
727 #ifdef CONFIG_SMP
728 return rq->cpu;
729 #else
730 return 0;
731 #endif
732 }
733
734
735 #ifdef CONFIG_SCHED_SMT
736
737 extern struct static_key_false sched_smt_present;
738
739 extern void __update_idle_core(struct rq *rq);
740
741 static inline void update_idle_core(struct rq *rq)
742 {
743 if (static_branch_unlikely(&sched_smt_present))
744 __update_idle_core(rq);
745 }
746
747 #else
748 static inline void update_idle_core(struct rq *rq) { }
749 #endif
750
751 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
752
753 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
754 #define this_rq() this_cpu_ptr(&runqueues)
755 #define task_rq(p) cpu_rq(task_cpu(p))
756 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
757 #define raw_rq() raw_cpu_ptr(&runqueues)
758
759 static inline u64 __rq_clock_broken(struct rq *rq)
760 {
761 return READ_ONCE(rq->clock);
762 }
763
764 static inline u64 rq_clock(struct rq *rq)
765 {
766 lockdep_assert_held(&rq->lock);
767 return rq->clock;
768 }
769
770 static inline u64 rq_clock_task(struct rq *rq)
771 {
772 lockdep_assert_held(&rq->lock);
773 return rq->clock_task;
774 }
775
776 #define RQCF_REQ_SKIP 0x01
777 #define RQCF_ACT_SKIP 0x02
778
779 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
780 {
781 lockdep_assert_held(&rq->lock);
782 if (skip)
783 rq->clock_skip_update |= RQCF_REQ_SKIP;
784 else
785 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
786 }
787
788 #ifdef CONFIG_NUMA
789 enum numa_topology_type {
790 NUMA_DIRECT,
791 NUMA_GLUELESS_MESH,
792 NUMA_BACKPLANE,
793 };
794 extern enum numa_topology_type sched_numa_topology_type;
795 extern int sched_max_numa_distance;
796 extern bool find_numa_distance(int distance);
797 #endif
798
799 #ifdef CONFIG_NUMA_BALANCING
800 /* The regions in numa_faults array from task_struct */
801 enum numa_faults_stats {
802 NUMA_MEM = 0,
803 NUMA_CPU,
804 NUMA_MEMBUF,
805 NUMA_CPUBUF
806 };
807 extern void sched_setnuma(struct task_struct *p, int node);
808 extern int migrate_task_to(struct task_struct *p, int cpu);
809 extern int migrate_swap(struct task_struct *, struct task_struct *);
810 #endif /* CONFIG_NUMA_BALANCING */
811
812 #ifdef CONFIG_SMP
813
814 static inline void
815 queue_balance_callback(struct rq *rq,
816 struct callback_head *head,
817 void (*func)(struct rq *rq))
818 {
819 lockdep_assert_held(&rq->lock);
820
821 if (unlikely(head->next))
822 return;
823
824 head->func = (void (*)(struct callback_head *))func;
825 head->next = rq->balance_callback;
826 rq->balance_callback = head;
827 }
828
829 extern void sched_ttwu_pending(void);
830
831 #define rcu_dereference_check_sched_domain(p) \
832 rcu_dereference_check((p), \
833 lockdep_is_held(&sched_domains_mutex))
834
835 /*
836 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
837 * See detach_destroy_domains: synchronize_sched for details.
838 *
839 * The domain tree of any CPU may only be accessed from within
840 * preempt-disabled sections.
841 */
842 #define for_each_domain(cpu, __sd) \
843 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
844 __sd; __sd = __sd->parent)
845
846 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
847
848 /**
849 * highest_flag_domain - Return highest sched_domain containing flag.
850 * @cpu: The cpu whose highest level of sched domain is to
851 * be returned.
852 * @flag: The flag to check for the highest sched_domain
853 * for the given cpu.
854 *
855 * Returns the highest sched_domain of a cpu which contains the given flag.
856 */
857 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
858 {
859 struct sched_domain *sd, *hsd = NULL;
860
861 for_each_domain(cpu, sd) {
862 if (!(sd->flags & flag))
863 break;
864 hsd = sd;
865 }
866
867 return hsd;
868 }
869
870 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
871 {
872 struct sched_domain *sd;
873
874 for_each_domain(cpu, sd) {
875 if (sd->flags & flag)
876 break;
877 }
878
879 return sd;
880 }
881
882 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
883 DECLARE_PER_CPU(int, sd_llc_size);
884 DECLARE_PER_CPU(int, sd_llc_id);
885 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
886 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
887 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
888
889 struct sched_group_capacity {
890 atomic_t ref;
891 /*
892 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
893 * for a single CPU.
894 */
895 unsigned int capacity;
896 unsigned long next_update;
897 int imbalance; /* XXX unrelated to capacity but shared group state */
898
899 unsigned long cpumask[0]; /* iteration mask */
900 };
901
902 struct sched_group {
903 struct sched_group *next; /* Must be a circular list */
904 atomic_t ref;
905
906 unsigned int group_weight;
907 struct sched_group_capacity *sgc;
908
909 /*
910 * The CPUs this group covers.
911 *
912 * NOTE: this field is variable length. (Allocated dynamically
913 * by attaching extra space to the end of the structure,
914 * depending on how many CPUs the kernel has booted up with)
915 */
916 unsigned long cpumask[0];
917 };
918
919 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
920 {
921 return to_cpumask(sg->cpumask);
922 }
923
924 /*
925 * cpumask masking which cpus in the group are allowed to iterate up the domain
926 * tree.
927 */
928 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
929 {
930 return to_cpumask(sg->sgc->cpumask);
931 }
932
933 /**
934 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
935 * @group: The group whose first cpu is to be returned.
936 */
937 static inline unsigned int group_first_cpu(struct sched_group *group)
938 {
939 return cpumask_first(sched_group_cpus(group));
940 }
941
942 extern int group_balance_cpu(struct sched_group *sg);
943
944 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
945 void register_sched_domain_sysctl(void);
946 void unregister_sched_domain_sysctl(void);
947 #else
948 static inline void register_sched_domain_sysctl(void)
949 {
950 }
951 static inline void unregister_sched_domain_sysctl(void)
952 {
953 }
954 #endif
955
956 #else
957
958 static inline void sched_ttwu_pending(void) { }
959
960 #endif /* CONFIG_SMP */
961
962 #include "stats.h"
963 #include "auto_group.h"
964
965 #ifdef CONFIG_CGROUP_SCHED
966
967 /*
968 * Return the group to which this tasks belongs.
969 *
970 * We cannot use task_css() and friends because the cgroup subsystem
971 * changes that value before the cgroup_subsys::attach() method is called,
972 * therefore we cannot pin it and might observe the wrong value.
973 *
974 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
975 * core changes this before calling sched_move_task().
976 *
977 * Instead we use a 'copy' which is updated from sched_move_task() while
978 * holding both task_struct::pi_lock and rq::lock.
979 */
980 static inline struct task_group *task_group(struct task_struct *p)
981 {
982 return p->sched_task_group;
983 }
984
985 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
986 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
987 {
988 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
989 struct task_group *tg = task_group(p);
990 #endif
991
992 #ifdef CONFIG_FAIR_GROUP_SCHED
993 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
994 p->se.cfs_rq = tg->cfs_rq[cpu];
995 p->se.parent = tg->se[cpu];
996 #endif
997
998 #ifdef CONFIG_RT_GROUP_SCHED
999 p->rt.rt_rq = tg->rt_rq[cpu];
1000 p->rt.parent = tg->rt_se[cpu];
1001 #endif
1002 }
1003
1004 #else /* CONFIG_CGROUP_SCHED */
1005
1006 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1007 static inline struct task_group *task_group(struct task_struct *p)
1008 {
1009 return NULL;
1010 }
1011
1012 #endif /* CONFIG_CGROUP_SCHED */
1013
1014 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1015 {
1016 set_task_rq(p, cpu);
1017 #ifdef CONFIG_SMP
1018 /*
1019 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1020 * successfuly executed on another CPU. We must ensure that updates of
1021 * per-task data have been completed by this moment.
1022 */
1023 smp_wmb();
1024 task_thread_info(p)->cpu = cpu;
1025 p->wake_cpu = cpu;
1026 #endif
1027 }
1028
1029 /*
1030 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1031 */
1032 #ifdef CONFIG_SCHED_DEBUG
1033 # include <linux/static_key.h>
1034 # define const_debug __read_mostly
1035 #else
1036 # define const_debug const
1037 #endif
1038
1039 extern const_debug unsigned int sysctl_sched_features;
1040
1041 #define SCHED_FEAT(name, enabled) \
1042 __SCHED_FEAT_##name ,
1043
1044 enum {
1045 #include "features.h"
1046 __SCHED_FEAT_NR,
1047 };
1048
1049 #undef SCHED_FEAT
1050
1051 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1052 #define SCHED_FEAT(name, enabled) \
1053 static __always_inline bool static_branch_##name(struct static_key *key) \
1054 { \
1055 return static_key_##enabled(key); \
1056 }
1057
1058 #include "features.h"
1059
1060 #undef SCHED_FEAT
1061
1062 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1063 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1064 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1065 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1066 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1067
1068 extern struct static_key_false sched_numa_balancing;
1069 extern struct static_key_false sched_schedstats;
1070
1071 static inline u64 global_rt_period(void)
1072 {
1073 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1074 }
1075
1076 static inline u64 global_rt_runtime(void)
1077 {
1078 if (sysctl_sched_rt_runtime < 0)
1079 return RUNTIME_INF;
1080
1081 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1082 }
1083
1084 static inline int task_current(struct rq *rq, struct task_struct *p)
1085 {
1086 return rq->curr == p;
1087 }
1088
1089 static inline int task_running(struct rq *rq, struct task_struct *p)
1090 {
1091 #ifdef CONFIG_SMP
1092 return p->on_cpu;
1093 #else
1094 return task_current(rq, p);
1095 #endif
1096 }
1097
1098 static inline int task_on_rq_queued(struct task_struct *p)
1099 {
1100 return p->on_rq == TASK_ON_RQ_QUEUED;
1101 }
1102
1103 static inline int task_on_rq_migrating(struct task_struct *p)
1104 {
1105 return p->on_rq == TASK_ON_RQ_MIGRATING;
1106 }
1107
1108 #ifndef prepare_arch_switch
1109 # define prepare_arch_switch(next) do { } while (0)
1110 #endif
1111 #ifndef finish_arch_post_lock_switch
1112 # define finish_arch_post_lock_switch() do { } while (0)
1113 #endif
1114
1115 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1116 {
1117 #ifdef CONFIG_SMP
1118 /*
1119 * We can optimise this out completely for !SMP, because the
1120 * SMP rebalancing from interrupt is the only thing that cares
1121 * here.
1122 */
1123 next->on_cpu = 1;
1124 #endif
1125 }
1126
1127 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1128 {
1129 #ifdef CONFIG_SMP
1130 /*
1131 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1132 * We must ensure this doesn't happen until the switch is completely
1133 * finished.
1134 *
1135 * In particular, the load of prev->state in finish_task_switch() must
1136 * happen before this.
1137 *
1138 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1139 */
1140 smp_store_release(&prev->on_cpu, 0);
1141 #endif
1142 #ifdef CONFIG_DEBUG_SPINLOCK
1143 /* this is a valid case when another task releases the spinlock */
1144 rq->lock.owner = current;
1145 #endif
1146 /*
1147 * If we are tracking spinlock dependencies then we have to
1148 * fix up the runqueue lock - which gets 'carried over' from
1149 * prev into current:
1150 */
1151 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1152
1153 raw_spin_unlock_irq(&rq->lock);
1154 }
1155
1156 /*
1157 * wake flags
1158 */
1159 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1160 #define WF_FORK 0x02 /* child wakeup after fork */
1161 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1162
1163 /*
1164 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1165 * of tasks with abnormal "nice" values across CPUs the contribution that
1166 * each task makes to its run queue's load is weighted according to its
1167 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1168 * scaled version of the new time slice allocation that they receive on time
1169 * slice expiry etc.
1170 */
1171
1172 #define WEIGHT_IDLEPRIO 3
1173 #define WMULT_IDLEPRIO 1431655765
1174
1175 extern const int sched_prio_to_weight[40];
1176 extern const u32 sched_prio_to_wmult[40];
1177
1178 /*
1179 * {de,en}queue flags:
1180 *
1181 * DEQUEUE_SLEEP - task is no longer runnable
1182 * ENQUEUE_WAKEUP - task just became runnable
1183 *
1184 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1185 * are in a known state which allows modification. Such pairs
1186 * should preserve as much state as possible.
1187 *
1188 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1189 * in the runqueue.
1190 *
1191 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1192 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1193 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1194 *
1195 */
1196
1197 #define DEQUEUE_SLEEP 0x01
1198 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1199 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1200
1201 #define ENQUEUE_WAKEUP 0x01
1202 #define ENQUEUE_RESTORE 0x02
1203 #define ENQUEUE_MOVE 0x04
1204
1205 #define ENQUEUE_HEAD 0x08
1206 #define ENQUEUE_REPLENISH 0x10
1207 #ifdef CONFIG_SMP
1208 #define ENQUEUE_MIGRATED 0x20
1209 #else
1210 #define ENQUEUE_MIGRATED 0x00
1211 #endif
1212
1213 #define RETRY_TASK ((void *)-1UL)
1214
1215 struct sched_class {
1216 const struct sched_class *next;
1217
1218 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1219 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1220 void (*yield_task) (struct rq *rq);
1221 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1222
1223 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1224
1225 /*
1226 * It is the responsibility of the pick_next_task() method that will
1227 * return the next task to call put_prev_task() on the @prev task or
1228 * something equivalent.
1229 *
1230 * May return RETRY_TASK when it finds a higher prio class has runnable
1231 * tasks.
1232 */
1233 struct task_struct * (*pick_next_task) (struct rq *rq,
1234 struct task_struct *prev,
1235 struct pin_cookie cookie);
1236 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1237
1238 #ifdef CONFIG_SMP
1239 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1240 void (*migrate_task_rq)(struct task_struct *p);
1241
1242 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1243
1244 void (*set_cpus_allowed)(struct task_struct *p,
1245 const struct cpumask *newmask);
1246
1247 void (*rq_online)(struct rq *rq);
1248 void (*rq_offline)(struct rq *rq);
1249 #endif
1250
1251 void (*set_curr_task) (struct rq *rq);
1252 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1253 void (*task_fork) (struct task_struct *p);
1254 void (*task_dead) (struct task_struct *p);
1255
1256 /*
1257 * The switched_from() call is allowed to drop rq->lock, therefore we
1258 * cannot assume the switched_from/switched_to pair is serliazed by
1259 * rq->lock. They are however serialized by p->pi_lock.
1260 */
1261 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1262 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1263 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1264 int oldprio);
1265
1266 unsigned int (*get_rr_interval) (struct rq *rq,
1267 struct task_struct *task);
1268
1269 void (*update_curr) (struct rq *rq);
1270
1271 #define TASK_SET_GROUP 0
1272 #define TASK_MOVE_GROUP 1
1273
1274 #ifdef CONFIG_FAIR_GROUP_SCHED
1275 void (*task_change_group) (struct task_struct *p, int type);
1276 #endif
1277 };
1278
1279 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1280 {
1281 prev->sched_class->put_prev_task(rq, prev);
1282 }
1283
1284 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1285 {
1286 curr->sched_class->set_curr_task(rq);
1287 }
1288
1289 #define sched_class_highest (&stop_sched_class)
1290 #define for_each_class(class) \
1291 for (class = sched_class_highest; class; class = class->next)
1292
1293 extern const struct sched_class stop_sched_class;
1294 extern const struct sched_class dl_sched_class;
1295 extern const struct sched_class rt_sched_class;
1296 extern const struct sched_class fair_sched_class;
1297 extern const struct sched_class idle_sched_class;
1298
1299
1300 #ifdef CONFIG_SMP
1301
1302 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1303
1304 extern void trigger_load_balance(struct rq *rq);
1305
1306 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1307
1308 #endif
1309
1310 #ifdef CONFIG_CPU_IDLE
1311 static inline void idle_set_state(struct rq *rq,
1312 struct cpuidle_state *idle_state)
1313 {
1314 rq->idle_state = idle_state;
1315 }
1316
1317 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1318 {
1319 SCHED_WARN_ON(!rcu_read_lock_held());
1320 return rq->idle_state;
1321 }
1322 #else
1323 static inline void idle_set_state(struct rq *rq,
1324 struct cpuidle_state *idle_state)
1325 {
1326 }
1327
1328 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1329 {
1330 return NULL;
1331 }
1332 #endif
1333
1334 extern void sysrq_sched_debug_show(void);
1335 extern void sched_init_granularity(void);
1336 extern void update_max_interval(void);
1337
1338 extern void init_sched_dl_class(void);
1339 extern void init_sched_rt_class(void);
1340 extern void init_sched_fair_class(void);
1341
1342 extern void resched_curr(struct rq *rq);
1343 extern void resched_cpu(int cpu);
1344
1345 extern struct rt_bandwidth def_rt_bandwidth;
1346 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1347
1348 extern struct dl_bandwidth def_dl_bandwidth;
1349 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1350 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1351
1352 unsigned long to_ratio(u64 period, u64 runtime);
1353
1354 extern void init_entity_runnable_average(struct sched_entity *se);
1355 extern void post_init_entity_util_avg(struct sched_entity *se);
1356
1357 #ifdef CONFIG_NO_HZ_FULL
1358 extern bool sched_can_stop_tick(struct rq *rq);
1359
1360 /*
1361 * Tick may be needed by tasks in the runqueue depending on their policy and
1362 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1363 * nohz mode if necessary.
1364 */
1365 static inline void sched_update_tick_dependency(struct rq *rq)
1366 {
1367 int cpu;
1368
1369 if (!tick_nohz_full_enabled())
1370 return;
1371
1372 cpu = cpu_of(rq);
1373
1374 if (!tick_nohz_full_cpu(cpu))
1375 return;
1376
1377 if (sched_can_stop_tick(rq))
1378 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1379 else
1380 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1381 }
1382 #else
1383 static inline void sched_update_tick_dependency(struct rq *rq) { }
1384 #endif
1385
1386 static inline void add_nr_running(struct rq *rq, unsigned count)
1387 {
1388 unsigned prev_nr = rq->nr_running;
1389
1390 rq->nr_running = prev_nr + count;
1391
1392 if (prev_nr < 2 && rq->nr_running >= 2) {
1393 #ifdef CONFIG_SMP
1394 if (!rq->rd->overload)
1395 rq->rd->overload = true;
1396 #endif
1397 }
1398
1399 sched_update_tick_dependency(rq);
1400 }
1401
1402 static inline void sub_nr_running(struct rq *rq, unsigned count)
1403 {
1404 rq->nr_running -= count;
1405 /* Check if we still need preemption */
1406 sched_update_tick_dependency(rq);
1407 }
1408
1409 static inline void rq_last_tick_reset(struct rq *rq)
1410 {
1411 #ifdef CONFIG_NO_HZ_FULL
1412 rq->last_sched_tick = jiffies;
1413 #endif
1414 }
1415
1416 extern void update_rq_clock(struct rq *rq);
1417
1418 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1419 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1420
1421 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1422
1423 extern const_debug unsigned int sysctl_sched_time_avg;
1424 extern const_debug unsigned int sysctl_sched_nr_migrate;
1425 extern const_debug unsigned int sysctl_sched_migration_cost;
1426
1427 static inline u64 sched_avg_period(void)
1428 {
1429 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1430 }
1431
1432 #ifdef CONFIG_SCHED_HRTICK
1433
1434 /*
1435 * Use hrtick when:
1436 * - enabled by features
1437 * - hrtimer is actually high res
1438 */
1439 static inline int hrtick_enabled(struct rq *rq)
1440 {
1441 if (!sched_feat(HRTICK))
1442 return 0;
1443 if (!cpu_active(cpu_of(rq)))
1444 return 0;
1445 return hrtimer_is_hres_active(&rq->hrtick_timer);
1446 }
1447
1448 void hrtick_start(struct rq *rq, u64 delay);
1449
1450 #else
1451
1452 static inline int hrtick_enabled(struct rq *rq)
1453 {
1454 return 0;
1455 }
1456
1457 #endif /* CONFIG_SCHED_HRTICK */
1458
1459 #ifdef CONFIG_SMP
1460 extern void sched_avg_update(struct rq *rq);
1461
1462 #ifndef arch_scale_freq_capacity
1463 static __always_inline
1464 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1465 {
1466 return SCHED_CAPACITY_SCALE;
1467 }
1468 #endif
1469
1470 #ifndef arch_scale_cpu_capacity
1471 static __always_inline
1472 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1473 {
1474 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1475 return sd->smt_gain / sd->span_weight;
1476
1477 return SCHED_CAPACITY_SCALE;
1478 }
1479 #endif
1480
1481 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1482 {
1483 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1484 sched_avg_update(rq);
1485 }
1486 #else
1487 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1488 static inline void sched_avg_update(struct rq *rq) { }
1489 #endif
1490
1491 struct rq_flags {
1492 unsigned long flags;
1493 struct pin_cookie cookie;
1494 };
1495
1496 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1497 __acquires(rq->lock);
1498 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1499 __acquires(p->pi_lock)
1500 __acquires(rq->lock);
1501
1502 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1503 __releases(rq->lock)
1504 {
1505 lockdep_unpin_lock(&rq->lock, rf->cookie);
1506 raw_spin_unlock(&rq->lock);
1507 }
1508
1509 static inline void
1510 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1511 __releases(rq->lock)
1512 __releases(p->pi_lock)
1513 {
1514 lockdep_unpin_lock(&rq->lock, rf->cookie);
1515 raw_spin_unlock(&rq->lock);
1516 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1517 }
1518
1519 #ifdef CONFIG_SMP
1520 #ifdef CONFIG_PREEMPT
1521
1522 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1523
1524 /*
1525 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1526 * way at the expense of forcing extra atomic operations in all
1527 * invocations. This assures that the double_lock is acquired using the
1528 * same underlying policy as the spinlock_t on this architecture, which
1529 * reduces latency compared to the unfair variant below. However, it
1530 * also adds more overhead and therefore may reduce throughput.
1531 */
1532 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1533 __releases(this_rq->lock)
1534 __acquires(busiest->lock)
1535 __acquires(this_rq->lock)
1536 {
1537 raw_spin_unlock(&this_rq->lock);
1538 double_rq_lock(this_rq, busiest);
1539
1540 return 1;
1541 }
1542
1543 #else
1544 /*
1545 * Unfair double_lock_balance: Optimizes throughput at the expense of
1546 * latency by eliminating extra atomic operations when the locks are
1547 * already in proper order on entry. This favors lower cpu-ids and will
1548 * grant the double lock to lower cpus over higher ids under contention,
1549 * regardless of entry order into the function.
1550 */
1551 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1552 __releases(this_rq->lock)
1553 __acquires(busiest->lock)
1554 __acquires(this_rq->lock)
1555 {
1556 int ret = 0;
1557
1558 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1559 if (busiest < this_rq) {
1560 raw_spin_unlock(&this_rq->lock);
1561 raw_spin_lock(&busiest->lock);
1562 raw_spin_lock_nested(&this_rq->lock,
1563 SINGLE_DEPTH_NESTING);
1564 ret = 1;
1565 } else
1566 raw_spin_lock_nested(&busiest->lock,
1567 SINGLE_DEPTH_NESTING);
1568 }
1569 return ret;
1570 }
1571
1572 #endif /* CONFIG_PREEMPT */
1573
1574 /*
1575 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1576 */
1577 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1578 {
1579 if (unlikely(!irqs_disabled())) {
1580 /* printk() doesn't work good under rq->lock */
1581 raw_spin_unlock(&this_rq->lock);
1582 BUG_ON(1);
1583 }
1584
1585 return _double_lock_balance(this_rq, busiest);
1586 }
1587
1588 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1589 __releases(busiest->lock)
1590 {
1591 raw_spin_unlock(&busiest->lock);
1592 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1593 }
1594
1595 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1596 {
1597 if (l1 > l2)
1598 swap(l1, l2);
1599
1600 spin_lock(l1);
1601 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1602 }
1603
1604 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1605 {
1606 if (l1 > l2)
1607 swap(l1, l2);
1608
1609 spin_lock_irq(l1);
1610 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1611 }
1612
1613 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1614 {
1615 if (l1 > l2)
1616 swap(l1, l2);
1617
1618 raw_spin_lock(l1);
1619 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1620 }
1621
1622 /*
1623 * double_rq_lock - safely lock two runqueues
1624 *
1625 * Note this does not disable interrupts like task_rq_lock,
1626 * you need to do so manually before calling.
1627 */
1628 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1629 __acquires(rq1->lock)
1630 __acquires(rq2->lock)
1631 {
1632 BUG_ON(!irqs_disabled());
1633 if (rq1 == rq2) {
1634 raw_spin_lock(&rq1->lock);
1635 __acquire(rq2->lock); /* Fake it out ;) */
1636 } else {
1637 if (rq1 < rq2) {
1638 raw_spin_lock(&rq1->lock);
1639 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1640 } else {
1641 raw_spin_lock(&rq2->lock);
1642 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1643 }
1644 }
1645 }
1646
1647 /*
1648 * double_rq_unlock - safely unlock two runqueues
1649 *
1650 * Note this does not restore interrupts like task_rq_unlock,
1651 * you need to do so manually after calling.
1652 */
1653 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1654 __releases(rq1->lock)
1655 __releases(rq2->lock)
1656 {
1657 raw_spin_unlock(&rq1->lock);
1658 if (rq1 != rq2)
1659 raw_spin_unlock(&rq2->lock);
1660 else
1661 __release(rq2->lock);
1662 }
1663
1664 #else /* CONFIG_SMP */
1665
1666 /*
1667 * double_rq_lock - safely lock two runqueues
1668 *
1669 * Note this does not disable interrupts like task_rq_lock,
1670 * you need to do so manually before calling.
1671 */
1672 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1673 __acquires(rq1->lock)
1674 __acquires(rq2->lock)
1675 {
1676 BUG_ON(!irqs_disabled());
1677 BUG_ON(rq1 != rq2);
1678 raw_spin_lock(&rq1->lock);
1679 __acquire(rq2->lock); /* Fake it out ;) */
1680 }
1681
1682 /*
1683 * double_rq_unlock - safely unlock two runqueues
1684 *
1685 * Note this does not restore interrupts like task_rq_unlock,
1686 * you need to do so manually after calling.
1687 */
1688 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1689 __releases(rq1->lock)
1690 __releases(rq2->lock)
1691 {
1692 BUG_ON(rq1 != rq2);
1693 raw_spin_unlock(&rq1->lock);
1694 __release(rq2->lock);
1695 }
1696
1697 #endif
1698
1699 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1700 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1701
1702 #ifdef CONFIG_SCHED_DEBUG
1703 extern void print_cfs_stats(struct seq_file *m, int cpu);
1704 extern void print_rt_stats(struct seq_file *m, int cpu);
1705 extern void print_dl_stats(struct seq_file *m, int cpu);
1706 extern void
1707 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1708
1709 #ifdef CONFIG_NUMA_BALANCING
1710 extern void
1711 show_numa_stats(struct task_struct *p, struct seq_file *m);
1712 extern void
1713 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1714 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1715 #endif /* CONFIG_NUMA_BALANCING */
1716 #endif /* CONFIG_SCHED_DEBUG */
1717
1718 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1719 extern void init_rt_rq(struct rt_rq *rt_rq);
1720 extern void init_dl_rq(struct dl_rq *dl_rq);
1721
1722 extern void cfs_bandwidth_usage_inc(void);
1723 extern void cfs_bandwidth_usage_dec(void);
1724
1725 #ifdef CONFIG_NO_HZ_COMMON
1726 enum rq_nohz_flag_bits {
1727 NOHZ_TICK_STOPPED,
1728 NOHZ_BALANCE_KICK,
1729 };
1730
1731 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1732
1733 extern void nohz_balance_exit_idle(unsigned int cpu);
1734 #else
1735 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1736 #endif
1737
1738 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1739 struct irqtime {
1740 u64 hardirq_time;
1741 u64 softirq_time;
1742 u64 irq_start_time;
1743 struct u64_stats_sync sync;
1744 };
1745
1746 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
1747
1748 static inline u64 irq_time_read(int cpu)
1749 {
1750 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
1751 unsigned int seq;
1752 u64 total;
1753
1754 do {
1755 seq = __u64_stats_fetch_begin(&irqtime->sync);
1756 total = irqtime->softirq_time + irqtime->hardirq_time;
1757 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
1758
1759 return total;
1760 }
1761 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1762
1763 #ifdef CONFIG_CPU_FREQ
1764 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1765
1766 /**
1767 * cpufreq_update_util - Take a note about CPU utilization changes.
1768 * @rq: Runqueue to carry out the update for.
1769 * @flags: Update reason flags.
1770 *
1771 * This function is called by the scheduler on the CPU whose utilization is
1772 * being updated.
1773 *
1774 * It can only be called from RCU-sched read-side critical sections.
1775 *
1776 * The way cpufreq is currently arranged requires it to evaluate the CPU
1777 * performance state (frequency/voltage) on a regular basis to prevent it from
1778 * being stuck in a completely inadequate performance level for too long.
1779 * That is not guaranteed to happen if the updates are only triggered from CFS,
1780 * though, because they may not be coming in if RT or deadline tasks are active
1781 * all the time (or there are RT and DL tasks only).
1782 *
1783 * As a workaround for that issue, this function is called by the RT and DL
1784 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1785 * but that really is a band-aid. Going forward it should be replaced with
1786 * solutions targeted more specifically at RT and DL tasks.
1787 */
1788 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
1789 {
1790 struct update_util_data *data;
1791
1792 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1793 if (data)
1794 data->func(data, rq_clock(rq), flags);
1795 }
1796
1797 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1798 {
1799 if (cpu_of(rq) == smp_processor_id())
1800 cpufreq_update_util(rq, flags);
1801 }
1802 #else
1803 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
1804 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
1805 #endif /* CONFIG_CPU_FREQ */
1806
1807 #ifdef arch_scale_freq_capacity
1808 #ifndef arch_scale_freq_invariant
1809 #define arch_scale_freq_invariant() (true)
1810 #endif
1811 #else /* arch_scale_freq_capacity */
1812 #define arch_scale_freq_invariant() (false)
1813 #endif