]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/sched.h
sched/numa: Reschedule task on preferred NUMA node once selected
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/mutex.h>
6 #include <linux/spinlock.h>
7 #include <linux/stop_machine.h>
8 #include <linux/tick.h>
9 #include <linux/slab.h>
10
11 #include "cpupri.h"
12 #include "cpuacct.h"
13
14 struct rq;
15
16 extern __read_mostly int scheduler_running;
17
18 extern unsigned long calc_load_update;
19 extern atomic_long_t calc_load_tasks;
20
21 extern long calc_load_fold_active(struct rq *this_rq);
22 extern void update_cpu_load_active(struct rq *this_rq);
23
24 /*
25 * Convert user-nice values [ -20 ... 0 ... 19 ]
26 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
27 * and back.
28 */
29 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
30 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
31 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
32
33 /*
34 * 'User priority' is the nice value converted to something we
35 * can work with better when scaling various scheduler parameters,
36 * it's a [ 0 ... 39 ] range.
37 */
38 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
39 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
40 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
41
42 /*
43 * Helpers for converting nanosecond timing to jiffy resolution
44 */
45 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
46
47 /*
48 * Increase resolution of nice-level calculations for 64-bit architectures.
49 * The extra resolution improves shares distribution and load balancing of
50 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
51 * hierarchies, especially on larger systems. This is not a user-visible change
52 * and does not change the user-interface for setting shares/weights.
53 *
54 * We increase resolution only if we have enough bits to allow this increased
55 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
56 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
57 * increased costs.
58 */
59 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
60 # define SCHED_LOAD_RESOLUTION 10
61 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
62 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
63 #else
64 # define SCHED_LOAD_RESOLUTION 0
65 # define scale_load(w) (w)
66 # define scale_load_down(w) (w)
67 #endif
68
69 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
70 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
71
72 #define NICE_0_LOAD SCHED_LOAD_SCALE
73 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
74
75 /*
76 * These are the 'tuning knobs' of the scheduler:
77 */
78
79 /*
80 * single value that denotes runtime == period, ie unlimited time.
81 */
82 #define RUNTIME_INF ((u64)~0ULL)
83
84 static inline int rt_policy(int policy)
85 {
86 if (policy == SCHED_FIFO || policy == SCHED_RR)
87 return 1;
88 return 0;
89 }
90
91 static inline int task_has_rt_policy(struct task_struct *p)
92 {
93 return rt_policy(p->policy);
94 }
95
96 /*
97 * This is the priority-queue data structure of the RT scheduling class:
98 */
99 struct rt_prio_array {
100 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
101 struct list_head queue[MAX_RT_PRIO];
102 };
103
104 struct rt_bandwidth {
105 /* nests inside the rq lock: */
106 raw_spinlock_t rt_runtime_lock;
107 ktime_t rt_period;
108 u64 rt_runtime;
109 struct hrtimer rt_period_timer;
110 };
111
112 extern struct mutex sched_domains_mutex;
113
114 #ifdef CONFIG_CGROUP_SCHED
115
116 #include <linux/cgroup.h>
117
118 struct cfs_rq;
119 struct rt_rq;
120
121 extern struct list_head task_groups;
122
123 struct cfs_bandwidth {
124 #ifdef CONFIG_CFS_BANDWIDTH
125 raw_spinlock_t lock;
126 ktime_t period;
127 u64 quota, runtime;
128 s64 hierarchal_quota;
129 u64 runtime_expires;
130
131 int idle, timer_active;
132 struct hrtimer period_timer, slack_timer;
133 struct list_head throttled_cfs_rq;
134
135 /* statistics */
136 int nr_periods, nr_throttled;
137 u64 throttled_time;
138 #endif
139 };
140
141 /* task group related information */
142 struct task_group {
143 struct cgroup_subsys_state css;
144
145 #ifdef CONFIG_FAIR_GROUP_SCHED
146 /* schedulable entities of this group on each cpu */
147 struct sched_entity **se;
148 /* runqueue "owned" by this group on each cpu */
149 struct cfs_rq **cfs_rq;
150 unsigned long shares;
151
152 #ifdef CONFIG_SMP
153 atomic_long_t load_avg;
154 atomic_t runnable_avg;
155 #endif
156 #endif
157
158 #ifdef CONFIG_RT_GROUP_SCHED
159 struct sched_rt_entity **rt_se;
160 struct rt_rq **rt_rq;
161
162 struct rt_bandwidth rt_bandwidth;
163 #endif
164
165 struct rcu_head rcu;
166 struct list_head list;
167
168 struct task_group *parent;
169 struct list_head siblings;
170 struct list_head children;
171
172 #ifdef CONFIG_SCHED_AUTOGROUP
173 struct autogroup *autogroup;
174 #endif
175
176 struct cfs_bandwidth cfs_bandwidth;
177 };
178
179 #ifdef CONFIG_FAIR_GROUP_SCHED
180 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
181
182 /*
183 * A weight of 0 or 1 can cause arithmetics problems.
184 * A weight of a cfs_rq is the sum of weights of which entities
185 * are queued on this cfs_rq, so a weight of a entity should not be
186 * too large, so as the shares value of a task group.
187 * (The default weight is 1024 - so there's no practical
188 * limitation from this.)
189 */
190 #define MIN_SHARES (1UL << 1)
191 #define MAX_SHARES (1UL << 18)
192 #endif
193
194 typedef int (*tg_visitor)(struct task_group *, void *);
195
196 extern int walk_tg_tree_from(struct task_group *from,
197 tg_visitor down, tg_visitor up, void *data);
198
199 /*
200 * Iterate the full tree, calling @down when first entering a node and @up when
201 * leaving it for the final time.
202 *
203 * Caller must hold rcu_lock or sufficient equivalent.
204 */
205 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
206 {
207 return walk_tg_tree_from(&root_task_group, down, up, data);
208 }
209
210 extern int tg_nop(struct task_group *tg, void *data);
211
212 extern void free_fair_sched_group(struct task_group *tg);
213 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
214 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
215 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
216 struct sched_entity *se, int cpu,
217 struct sched_entity *parent);
218 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
219 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
220
221 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
222 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
223 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
224
225 extern void free_rt_sched_group(struct task_group *tg);
226 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
227 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
228 struct sched_rt_entity *rt_se, int cpu,
229 struct sched_rt_entity *parent);
230
231 extern struct task_group *sched_create_group(struct task_group *parent);
232 extern void sched_online_group(struct task_group *tg,
233 struct task_group *parent);
234 extern void sched_destroy_group(struct task_group *tg);
235 extern void sched_offline_group(struct task_group *tg);
236
237 extern void sched_move_task(struct task_struct *tsk);
238
239 #ifdef CONFIG_FAIR_GROUP_SCHED
240 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
241 #endif
242
243 #else /* CONFIG_CGROUP_SCHED */
244
245 struct cfs_bandwidth { };
246
247 #endif /* CONFIG_CGROUP_SCHED */
248
249 /* CFS-related fields in a runqueue */
250 struct cfs_rq {
251 struct load_weight load;
252 unsigned int nr_running, h_nr_running;
253
254 u64 exec_clock;
255 u64 min_vruntime;
256 #ifndef CONFIG_64BIT
257 u64 min_vruntime_copy;
258 #endif
259
260 struct rb_root tasks_timeline;
261 struct rb_node *rb_leftmost;
262
263 /*
264 * 'curr' points to currently running entity on this cfs_rq.
265 * It is set to NULL otherwise (i.e when none are currently running).
266 */
267 struct sched_entity *curr, *next, *last, *skip;
268
269 #ifdef CONFIG_SCHED_DEBUG
270 unsigned int nr_spread_over;
271 #endif
272
273 #ifdef CONFIG_SMP
274 /*
275 * CFS Load tracking
276 * Under CFS, load is tracked on a per-entity basis and aggregated up.
277 * This allows for the description of both thread and group usage (in
278 * the FAIR_GROUP_SCHED case).
279 */
280 unsigned long runnable_load_avg, blocked_load_avg;
281 atomic64_t decay_counter;
282 u64 last_decay;
283 atomic_long_t removed_load;
284
285 #ifdef CONFIG_FAIR_GROUP_SCHED
286 /* Required to track per-cpu representation of a task_group */
287 u32 tg_runnable_contrib;
288 unsigned long tg_load_contrib;
289
290 /*
291 * h_load = weight * f(tg)
292 *
293 * Where f(tg) is the recursive weight fraction assigned to
294 * this group.
295 */
296 unsigned long h_load;
297 u64 last_h_load_update;
298 struct sched_entity *h_load_next;
299 #endif /* CONFIG_FAIR_GROUP_SCHED */
300 #endif /* CONFIG_SMP */
301
302 #ifdef CONFIG_FAIR_GROUP_SCHED
303 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
304
305 /*
306 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
307 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
308 * (like users, containers etc.)
309 *
310 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
311 * list is used during load balance.
312 */
313 int on_list;
314 struct list_head leaf_cfs_rq_list;
315 struct task_group *tg; /* group that "owns" this runqueue */
316
317 #ifdef CONFIG_CFS_BANDWIDTH
318 int runtime_enabled;
319 u64 runtime_expires;
320 s64 runtime_remaining;
321
322 u64 throttled_clock, throttled_clock_task;
323 u64 throttled_clock_task_time;
324 int throttled, throttle_count;
325 struct list_head throttled_list;
326 #endif /* CONFIG_CFS_BANDWIDTH */
327 #endif /* CONFIG_FAIR_GROUP_SCHED */
328 };
329
330 static inline int rt_bandwidth_enabled(void)
331 {
332 return sysctl_sched_rt_runtime >= 0;
333 }
334
335 /* Real-Time classes' related field in a runqueue: */
336 struct rt_rq {
337 struct rt_prio_array active;
338 unsigned int rt_nr_running;
339 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
340 struct {
341 int curr; /* highest queued rt task prio */
342 #ifdef CONFIG_SMP
343 int next; /* next highest */
344 #endif
345 } highest_prio;
346 #endif
347 #ifdef CONFIG_SMP
348 unsigned long rt_nr_migratory;
349 unsigned long rt_nr_total;
350 int overloaded;
351 struct plist_head pushable_tasks;
352 #endif
353 int rt_throttled;
354 u64 rt_time;
355 u64 rt_runtime;
356 /* Nests inside the rq lock: */
357 raw_spinlock_t rt_runtime_lock;
358
359 #ifdef CONFIG_RT_GROUP_SCHED
360 unsigned long rt_nr_boosted;
361
362 struct rq *rq;
363 struct task_group *tg;
364 #endif
365 };
366
367 #ifdef CONFIG_SMP
368
369 /*
370 * We add the notion of a root-domain which will be used to define per-domain
371 * variables. Each exclusive cpuset essentially defines an island domain by
372 * fully partitioning the member cpus from any other cpuset. Whenever a new
373 * exclusive cpuset is created, we also create and attach a new root-domain
374 * object.
375 *
376 */
377 struct root_domain {
378 atomic_t refcount;
379 atomic_t rto_count;
380 struct rcu_head rcu;
381 cpumask_var_t span;
382 cpumask_var_t online;
383
384 /*
385 * The "RT overload" flag: it gets set if a CPU has more than
386 * one runnable RT task.
387 */
388 cpumask_var_t rto_mask;
389 struct cpupri cpupri;
390 };
391
392 extern struct root_domain def_root_domain;
393
394 #endif /* CONFIG_SMP */
395
396 /*
397 * This is the main, per-CPU runqueue data structure.
398 *
399 * Locking rule: those places that want to lock multiple runqueues
400 * (such as the load balancing or the thread migration code), lock
401 * acquire operations must be ordered by ascending &runqueue.
402 */
403 struct rq {
404 /* runqueue lock: */
405 raw_spinlock_t lock;
406
407 /*
408 * nr_running and cpu_load should be in the same cacheline because
409 * remote CPUs use both these fields when doing load calculation.
410 */
411 unsigned int nr_running;
412 #define CPU_LOAD_IDX_MAX 5
413 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
414 unsigned long last_load_update_tick;
415 #ifdef CONFIG_NO_HZ_COMMON
416 u64 nohz_stamp;
417 unsigned long nohz_flags;
418 #endif
419 #ifdef CONFIG_NO_HZ_FULL
420 unsigned long last_sched_tick;
421 #endif
422 int skip_clock_update;
423
424 /* capture load from *all* tasks on this cpu: */
425 struct load_weight load;
426 unsigned long nr_load_updates;
427 u64 nr_switches;
428
429 struct cfs_rq cfs;
430 struct rt_rq rt;
431
432 #ifdef CONFIG_FAIR_GROUP_SCHED
433 /* list of leaf cfs_rq on this cpu: */
434 struct list_head leaf_cfs_rq_list;
435 #endif /* CONFIG_FAIR_GROUP_SCHED */
436
437 #ifdef CONFIG_RT_GROUP_SCHED
438 struct list_head leaf_rt_rq_list;
439 #endif
440
441 /*
442 * This is part of a global counter where only the total sum
443 * over all CPUs matters. A task can increase this counter on
444 * one CPU and if it got migrated afterwards it may decrease
445 * it on another CPU. Always updated under the runqueue lock:
446 */
447 unsigned long nr_uninterruptible;
448
449 struct task_struct *curr, *idle, *stop;
450 unsigned long next_balance;
451 struct mm_struct *prev_mm;
452
453 u64 clock;
454 u64 clock_task;
455
456 atomic_t nr_iowait;
457
458 #ifdef CONFIG_SMP
459 struct root_domain *rd;
460 struct sched_domain *sd;
461
462 unsigned long cpu_power;
463
464 unsigned char idle_balance;
465 /* For active balancing */
466 int post_schedule;
467 int active_balance;
468 int push_cpu;
469 struct cpu_stop_work active_balance_work;
470 /* cpu of this runqueue: */
471 int cpu;
472 int online;
473
474 struct list_head cfs_tasks;
475
476 u64 rt_avg;
477 u64 age_stamp;
478 u64 idle_stamp;
479 u64 avg_idle;
480
481 /* This is used to determine avg_idle's max value */
482 u64 max_idle_balance_cost;
483 #endif
484
485 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
486 u64 prev_irq_time;
487 #endif
488 #ifdef CONFIG_PARAVIRT
489 u64 prev_steal_time;
490 #endif
491 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
492 u64 prev_steal_time_rq;
493 #endif
494
495 /* calc_load related fields */
496 unsigned long calc_load_update;
497 long calc_load_active;
498
499 #ifdef CONFIG_SCHED_HRTICK
500 #ifdef CONFIG_SMP
501 int hrtick_csd_pending;
502 struct call_single_data hrtick_csd;
503 #endif
504 struct hrtimer hrtick_timer;
505 #endif
506
507 #ifdef CONFIG_SCHEDSTATS
508 /* latency stats */
509 struct sched_info rq_sched_info;
510 unsigned long long rq_cpu_time;
511 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
512
513 /* sys_sched_yield() stats */
514 unsigned int yld_count;
515
516 /* schedule() stats */
517 unsigned int sched_count;
518 unsigned int sched_goidle;
519
520 /* try_to_wake_up() stats */
521 unsigned int ttwu_count;
522 unsigned int ttwu_local;
523 #endif
524
525 #ifdef CONFIG_SMP
526 struct llist_head wake_list;
527 #endif
528
529 struct sched_avg avg;
530 };
531
532 static inline int cpu_of(struct rq *rq)
533 {
534 #ifdef CONFIG_SMP
535 return rq->cpu;
536 #else
537 return 0;
538 #endif
539 }
540
541 DECLARE_PER_CPU(struct rq, runqueues);
542
543 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
544 #define this_rq() (&__get_cpu_var(runqueues))
545 #define task_rq(p) cpu_rq(task_cpu(p))
546 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
547 #define raw_rq() (&__raw_get_cpu_var(runqueues))
548
549 static inline u64 rq_clock(struct rq *rq)
550 {
551 return rq->clock;
552 }
553
554 static inline u64 rq_clock_task(struct rq *rq)
555 {
556 return rq->clock_task;
557 }
558
559 #ifdef CONFIG_NUMA_BALANCING
560 extern int migrate_task_to(struct task_struct *p, int cpu);
561 static inline void task_numa_free(struct task_struct *p)
562 {
563 kfree(p->numa_faults);
564 }
565 #else /* CONFIG_NUMA_BALANCING */
566 static inline void task_numa_free(struct task_struct *p)
567 {
568 }
569 #endif /* CONFIG_NUMA_BALANCING */
570
571 #ifdef CONFIG_SMP
572
573 #define rcu_dereference_check_sched_domain(p) \
574 rcu_dereference_check((p), \
575 lockdep_is_held(&sched_domains_mutex))
576
577 /*
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
579 * See detach_destroy_domains: synchronize_sched for details.
580 *
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
583 */
584 #define for_each_domain(cpu, __sd) \
585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
586 __sd; __sd = __sd->parent)
587
588 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
589
590 /**
591 * highest_flag_domain - Return highest sched_domain containing flag.
592 * @cpu: The cpu whose highest level of sched domain is to
593 * be returned.
594 * @flag: The flag to check for the highest sched_domain
595 * for the given cpu.
596 *
597 * Returns the highest sched_domain of a cpu which contains the given flag.
598 */
599 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
600 {
601 struct sched_domain *sd, *hsd = NULL;
602
603 for_each_domain(cpu, sd) {
604 if (!(sd->flags & flag))
605 break;
606 hsd = sd;
607 }
608
609 return hsd;
610 }
611
612 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
613 DECLARE_PER_CPU(int, sd_llc_size);
614 DECLARE_PER_CPU(int, sd_llc_id);
615
616 struct sched_group_power {
617 atomic_t ref;
618 /*
619 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
620 * single CPU.
621 */
622 unsigned int power, power_orig;
623 unsigned long next_update;
624 int imbalance; /* XXX unrelated to power but shared group state */
625 /*
626 * Number of busy cpus in this group.
627 */
628 atomic_t nr_busy_cpus;
629
630 unsigned long cpumask[0]; /* iteration mask */
631 };
632
633 struct sched_group {
634 struct sched_group *next; /* Must be a circular list */
635 atomic_t ref;
636
637 unsigned int group_weight;
638 struct sched_group_power *sgp;
639
640 /*
641 * The CPUs this group covers.
642 *
643 * NOTE: this field is variable length. (Allocated dynamically
644 * by attaching extra space to the end of the structure,
645 * depending on how many CPUs the kernel has booted up with)
646 */
647 unsigned long cpumask[0];
648 };
649
650 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
651 {
652 return to_cpumask(sg->cpumask);
653 }
654
655 /*
656 * cpumask masking which cpus in the group are allowed to iterate up the domain
657 * tree.
658 */
659 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
660 {
661 return to_cpumask(sg->sgp->cpumask);
662 }
663
664 /**
665 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
666 * @group: The group whose first cpu is to be returned.
667 */
668 static inline unsigned int group_first_cpu(struct sched_group *group)
669 {
670 return cpumask_first(sched_group_cpus(group));
671 }
672
673 extern int group_balance_cpu(struct sched_group *sg);
674
675 #endif /* CONFIG_SMP */
676
677 #include "stats.h"
678 #include "auto_group.h"
679
680 #ifdef CONFIG_CGROUP_SCHED
681
682 /*
683 * Return the group to which this tasks belongs.
684 *
685 * We cannot use task_css() and friends because the cgroup subsystem
686 * changes that value before the cgroup_subsys::attach() method is called,
687 * therefore we cannot pin it and might observe the wrong value.
688 *
689 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
690 * core changes this before calling sched_move_task().
691 *
692 * Instead we use a 'copy' which is updated from sched_move_task() while
693 * holding both task_struct::pi_lock and rq::lock.
694 */
695 static inline struct task_group *task_group(struct task_struct *p)
696 {
697 return p->sched_task_group;
698 }
699
700 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
701 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
702 {
703 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
704 struct task_group *tg = task_group(p);
705 #endif
706
707 #ifdef CONFIG_FAIR_GROUP_SCHED
708 p->se.cfs_rq = tg->cfs_rq[cpu];
709 p->se.parent = tg->se[cpu];
710 #endif
711
712 #ifdef CONFIG_RT_GROUP_SCHED
713 p->rt.rt_rq = tg->rt_rq[cpu];
714 p->rt.parent = tg->rt_se[cpu];
715 #endif
716 }
717
718 #else /* CONFIG_CGROUP_SCHED */
719
720 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
721 static inline struct task_group *task_group(struct task_struct *p)
722 {
723 return NULL;
724 }
725
726 #endif /* CONFIG_CGROUP_SCHED */
727
728 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
729 {
730 set_task_rq(p, cpu);
731 #ifdef CONFIG_SMP
732 /*
733 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
734 * successfuly executed on another CPU. We must ensure that updates of
735 * per-task data have been completed by this moment.
736 */
737 smp_wmb();
738 task_thread_info(p)->cpu = cpu;
739 #endif
740 }
741
742 /*
743 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
744 */
745 #ifdef CONFIG_SCHED_DEBUG
746 # include <linux/static_key.h>
747 # define const_debug __read_mostly
748 #else
749 # define const_debug const
750 #endif
751
752 extern const_debug unsigned int sysctl_sched_features;
753
754 #define SCHED_FEAT(name, enabled) \
755 __SCHED_FEAT_##name ,
756
757 enum {
758 #include "features.h"
759 __SCHED_FEAT_NR,
760 };
761
762 #undef SCHED_FEAT
763
764 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
765 static __always_inline bool static_branch__true(struct static_key *key)
766 {
767 return static_key_true(key); /* Not out of line branch. */
768 }
769
770 static __always_inline bool static_branch__false(struct static_key *key)
771 {
772 return static_key_false(key); /* Out of line branch. */
773 }
774
775 #define SCHED_FEAT(name, enabled) \
776 static __always_inline bool static_branch_##name(struct static_key *key) \
777 { \
778 return static_branch__##enabled(key); \
779 }
780
781 #include "features.h"
782
783 #undef SCHED_FEAT
784
785 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
786 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
787 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
788 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
790
791 #ifdef CONFIG_NUMA_BALANCING
792 #define sched_feat_numa(x) sched_feat(x)
793 #ifdef CONFIG_SCHED_DEBUG
794 #define numabalancing_enabled sched_feat_numa(NUMA)
795 #else
796 extern bool numabalancing_enabled;
797 #endif /* CONFIG_SCHED_DEBUG */
798 #else
799 #define sched_feat_numa(x) (0)
800 #define numabalancing_enabled (0)
801 #endif /* CONFIG_NUMA_BALANCING */
802
803 static inline u64 global_rt_period(void)
804 {
805 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
806 }
807
808 static inline u64 global_rt_runtime(void)
809 {
810 if (sysctl_sched_rt_runtime < 0)
811 return RUNTIME_INF;
812
813 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
814 }
815
816
817
818 static inline int task_current(struct rq *rq, struct task_struct *p)
819 {
820 return rq->curr == p;
821 }
822
823 static inline int task_running(struct rq *rq, struct task_struct *p)
824 {
825 #ifdef CONFIG_SMP
826 return p->on_cpu;
827 #else
828 return task_current(rq, p);
829 #endif
830 }
831
832
833 #ifndef prepare_arch_switch
834 # define prepare_arch_switch(next) do { } while (0)
835 #endif
836 #ifndef finish_arch_switch
837 # define finish_arch_switch(prev) do { } while (0)
838 #endif
839 #ifndef finish_arch_post_lock_switch
840 # define finish_arch_post_lock_switch() do { } while (0)
841 #endif
842
843 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
844 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
845 {
846 #ifdef CONFIG_SMP
847 /*
848 * We can optimise this out completely for !SMP, because the
849 * SMP rebalancing from interrupt is the only thing that cares
850 * here.
851 */
852 next->on_cpu = 1;
853 #endif
854 }
855
856 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857 {
858 #ifdef CONFIG_SMP
859 /*
860 * After ->on_cpu is cleared, the task can be moved to a different CPU.
861 * We must ensure this doesn't happen until the switch is completely
862 * finished.
863 */
864 smp_wmb();
865 prev->on_cpu = 0;
866 #endif
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq->lock.owner = current;
870 #endif
871 /*
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
874 * prev into current:
875 */
876 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
877
878 raw_spin_unlock_irq(&rq->lock);
879 }
880
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 {
884 #ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->on_cpu = 1;
891 #endif
892 raw_spin_unlock(&rq->lock);
893 }
894
895 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
896 {
897 #ifdef CONFIG_SMP
898 /*
899 * After ->on_cpu is cleared, the task can be moved to a different CPU.
900 * We must ensure this doesn't happen until the switch is completely
901 * finished.
902 */
903 smp_wmb();
904 prev->on_cpu = 0;
905 #endif
906 local_irq_enable();
907 }
908 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
909
910 /*
911 * wake flags
912 */
913 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
914 #define WF_FORK 0x02 /* child wakeup after fork */
915 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
916
917 /*
918 * To aid in avoiding the subversion of "niceness" due to uneven distribution
919 * of tasks with abnormal "nice" values across CPUs the contribution that
920 * each task makes to its run queue's load is weighted according to its
921 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
922 * scaled version of the new time slice allocation that they receive on time
923 * slice expiry etc.
924 */
925
926 #define WEIGHT_IDLEPRIO 3
927 #define WMULT_IDLEPRIO 1431655765
928
929 /*
930 * Nice levels are multiplicative, with a gentle 10% change for every
931 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
932 * nice 1, it will get ~10% less CPU time than another CPU-bound task
933 * that remained on nice 0.
934 *
935 * The "10% effect" is relative and cumulative: from _any_ nice level,
936 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
937 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
938 * If a task goes up by ~10% and another task goes down by ~10% then
939 * the relative distance between them is ~25%.)
940 */
941 static const int prio_to_weight[40] = {
942 /* -20 */ 88761, 71755, 56483, 46273, 36291,
943 /* -15 */ 29154, 23254, 18705, 14949, 11916,
944 /* -10 */ 9548, 7620, 6100, 4904, 3906,
945 /* -5 */ 3121, 2501, 1991, 1586, 1277,
946 /* 0 */ 1024, 820, 655, 526, 423,
947 /* 5 */ 335, 272, 215, 172, 137,
948 /* 10 */ 110, 87, 70, 56, 45,
949 /* 15 */ 36, 29, 23, 18, 15,
950 };
951
952 /*
953 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
954 *
955 * In cases where the weight does not change often, we can use the
956 * precalculated inverse to speed up arithmetics by turning divisions
957 * into multiplications:
958 */
959 static const u32 prio_to_wmult[40] = {
960 /* -20 */ 48388, 59856, 76040, 92818, 118348,
961 /* -15 */ 147320, 184698, 229616, 287308, 360437,
962 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
963 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
964 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
965 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
966 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
967 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
968 };
969
970 #define ENQUEUE_WAKEUP 1
971 #define ENQUEUE_HEAD 2
972 #ifdef CONFIG_SMP
973 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
974 #else
975 #define ENQUEUE_WAKING 0
976 #endif
977
978 #define DEQUEUE_SLEEP 1
979
980 struct sched_class {
981 const struct sched_class *next;
982
983 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
984 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
985 void (*yield_task) (struct rq *rq);
986 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
987
988 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
989
990 struct task_struct * (*pick_next_task) (struct rq *rq);
991 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
992
993 #ifdef CONFIG_SMP
994 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
995 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
996
997 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
998 void (*post_schedule) (struct rq *this_rq);
999 void (*task_waking) (struct task_struct *task);
1000 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1001
1002 void (*set_cpus_allowed)(struct task_struct *p,
1003 const struct cpumask *newmask);
1004
1005 void (*rq_online)(struct rq *rq);
1006 void (*rq_offline)(struct rq *rq);
1007 #endif
1008
1009 void (*set_curr_task) (struct rq *rq);
1010 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1011 void (*task_fork) (struct task_struct *p);
1012
1013 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1014 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1015 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1016 int oldprio);
1017
1018 unsigned int (*get_rr_interval) (struct rq *rq,
1019 struct task_struct *task);
1020
1021 #ifdef CONFIG_FAIR_GROUP_SCHED
1022 void (*task_move_group) (struct task_struct *p, int on_rq);
1023 #endif
1024 };
1025
1026 #define sched_class_highest (&stop_sched_class)
1027 #define for_each_class(class) \
1028 for (class = sched_class_highest; class; class = class->next)
1029
1030 extern const struct sched_class stop_sched_class;
1031 extern const struct sched_class rt_sched_class;
1032 extern const struct sched_class fair_sched_class;
1033 extern const struct sched_class idle_sched_class;
1034
1035
1036 #ifdef CONFIG_SMP
1037
1038 extern void update_group_power(struct sched_domain *sd, int cpu);
1039
1040 extern void trigger_load_balance(struct rq *rq, int cpu);
1041 extern void idle_balance(int this_cpu, struct rq *this_rq);
1042
1043 extern void idle_enter_fair(struct rq *this_rq);
1044 extern void idle_exit_fair(struct rq *this_rq);
1045
1046 #else /* CONFIG_SMP */
1047
1048 static inline void idle_balance(int cpu, struct rq *rq)
1049 {
1050 }
1051
1052 #endif
1053
1054 extern void sysrq_sched_debug_show(void);
1055 extern void sched_init_granularity(void);
1056 extern void update_max_interval(void);
1057 extern void init_sched_rt_class(void);
1058 extern void init_sched_fair_class(void);
1059
1060 extern void resched_task(struct task_struct *p);
1061 extern void resched_cpu(int cpu);
1062
1063 extern struct rt_bandwidth def_rt_bandwidth;
1064 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1065
1066 extern void update_idle_cpu_load(struct rq *this_rq);
1067
1068 extern void init_task_runnable_average(struct task_struct *p);
1069
1070 #ifdef CONFIG_PARAVIRT
1071 static inline u64 steal_ticks(u64 steal)
1072 {
1073 if (unlikely(steal > NSEC_PER_SEC))
1074 return div_u64(steal, TICK_NSEC);
1075
1076 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1077 }
1078 #endif
1079
1080 static inline void inc_nr_running(struct rq *rq)
1081 {
1082 rq->nr_running++;
1083
1084 #ifdef CONFIG_NO_HZ_FULL
1085 if (rq->nr_running == 2) {
1086 if (tick_nohz_full_cpu(rq->cpu)) {
1087 /* Order rq->nr_running write against the IPI */
1088 smp_wmb();
1089 smp_send_reschedule(rq->cpu);
1090 }
1091 }
1092 #endif
1093 }
1094
1095 static inline void dec_nr_running(struct rq *rq)
1096 {
1097 rq->nr_running--;
1098 }
1099
1100 static inline void rq_last_tick_reset(struct rq *rq)
1101 {
1102 #ifdef CONFIG_NO_HZ_FULL
1103 rq->last_sched_tick = jiffies;
1104 #endif
1105 }
1106
1107 extern void update_rq_clock(struct rq *rq);
1108
1109 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1110 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1111
1112 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1113
1114 extern const_debug unsigned int sysctl_sched_time_avg;
1115 extern const_debug unsigned int sysctl_sched_nr_migrate;
1116 extern const_debug unsigned int sysctl_sched_migration_cost;
1117
1118 static inline u64 sched_avg_period(void)
1119 {
1120 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1121 }
1122
1123 #ifdef CONFIG_SCHED_HRTICK
1124
1125 /*
1126 * Use hrtick when:
1127 * - enabled by features
1128 * - hrtimer is actually high res
1129 */
1130 static inline int hrtick_enabled(struct rq *rq)
1131 {
1132 if (!sched_feat(HRTICK))
1133 return 0;
1134 if (!cpu_active(cpu_of(rq)))
1135 return 0;
1136 return hrtimer_is_hres_active(&rq->hrtick_timer);
1137 }
1138
1139 void hrtick_start(struct rq *rq, u64 delay);
1140
1141 #else
1142
1143 static inline int hrtick_enabled(struct rq *rq)
1144 {
1145 return 0;
1146 }
1147
1148 #endif /* CONFIG_SCHED_HRTICK */
1149
1150 #ifdef CONFIG_SMP
1151 extern void sched_avg_update(struct rq *rq);
1152 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1153 {
1154 rq->rt_avg += rt_delta;
1155 sched_avg_update(rq);
1156 }
1157 #else
1158 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1159 static inline void sched_avg_update(struct rq *rq) { }
1160 #endif
1161
1162 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1163
1164 #ifdef CONFIG_SMP
1165 #ifdef CONFIG_PREEMPT
1166
1167 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1168
1169 /*
1170 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1171 * way at the expense of forcing extra atomic operations in all
1172 * invocations. This assures that the double_lock is acquired using the
1173 * same underlying policy as the spinlock_t on this architecture, which
1174 * reduces latency compared to the unfair variant below. However, it
1175 * also adds more overhead and therefore may reduce throughput.
1176 */
1177 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1178 __releases(this_rq->lock)
1179 __acquires(busiest->lock)
1180 __acquires(this_rq->lock)
1181 {
1182 raw_spin_unlock(&this_rq->lock);
1183 double_rq_lock(this_rq, busiest);
1184
1185 return 1;
1186 }
1187
1188 #else
1189 /*
1190 * Unfair double_lock_balance: Optimizes throughput at the expense of
1191 * latency by eliminating extra atomic operations when the locks are
1192 * already in proper order on entry. This favors lower cpu-ids and will
1193 * grant the double lock to lower cpus over higher ids under contention,
1194 * regardless of entry order into the function.
1195 */
1196 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1197 __releases(this_rq->lock)
1198 __acquires(busiest->lock)
1199 __acquires(this_rq->lock)
1200 {
1201 int ret = 0;
1202
1203 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1204 if (busiest < this_rq) {
1205 raw_spin_unlock(&this_rq->lock);
1206 raw_spin_lock(&busiest->lock);
1207 raw_spin_lock_nested(&this_rq->lock,
1208 SINGLE_DEPTH_NESTING);
1209 ret = 1;
1210 } else
1211 raw_spin_lock_nested(&busiest->lock,
1212 SINGLE_DEPTH_NESTING);
1213 }
1214 return ret;
1215 }
1216
1217 #endif /* CONFIG_PREEMPT */
1218
1219 /*
1220 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1221 */
1222 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1223 {
1224 if (unlikely(!irqs_disabled())) {
1225 /* printk() doesn't work good under rq->lock */
1226 raw_spin_unlock(&this_rq->lock);
1227 BUG_ON(1);
1228 }
1229
1230 return _double_lock_balance(this_rq, busiest);
1231 }
1232
1233 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1234 __releases(busiest->lock)
1235 {
1236 raw_spin_unlock(&busiest->lock);
1237 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1238 }
1239
1240 /*
1241 * double_rq_lock - safely lock two runqueues
1242 *
1243 * Note this does not disable interrupts like task_rq_lock,
1244 * you need to do so manually before calling.
1245 */
1246 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1247 __acquires(rq1->lock)
1248 __acquires(rq2->lock)
1249 {
1250 BUG_ON(!irqs_disabled());
1251 if (rq1 == rq2) {
1252 raw_spin_lock(&rq1->lock);
1253 __acquire(rq2->lock); /* Fake it out ;) */
1254 } else {
1255 if (rq1 < rq2) {
1256 raw_spin_lock(&rq1->lock);
1257 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1258 } else {
1259 raw_spin_lock(&rq2->lock);
1260 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1261 }
1262 }
1263 }
1264
1265 /*
1266 * double_rq_unlock - safely unlock two runqueues
1267 *
1268 * Note this does not restore interrupts like task_rq_unlock,
1269 * you need to do so manually after calling.
1270 */
1271 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1272 __releases(rq1->lock)
1273 __releases(rq2->lock)
1274 {
1275 raw_spin_unlock(&rq1->lock);
1276 if (rq1 != rq2)
1277 raw_spin_unlock(&rq2->lock);
1278 else
1279 __release(rq2->lock);
1280 }
1281
1282 #else /* CONFIG_SMP */
1283
1284 /*
1285 * double_rq_lock - safely lock two runqueues
1286 *
1287 * Note this does not disable interrupts like task_rq_lock,
1288 * you need to do so manually before calling.
1289 */
1290 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1291 __acquires(rq1->lock)
1292 __acquires(rq2->lock)
1293 {
1294 BUG_ON(!irqs_disabled());
1295 BUG_ON(rq1 != rq2);
1296 raw_spin_lock(&rq1->lock);
1297 __acquire(rq2->lock); /* Fake it out ;) */
1298 }
1299
1300 /*
1301 * double_rq_unlock - safely unlock two runqueues
1302 *
1303 * Note this does not restore interrupts like task_rq_unlock,
1304 * you need to do so manually after calling.
1305 */
1306 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1307 __releases(rq1->lock)
1308 __releases(rq2->lock)
1309 {
1310 BUG_ON(rq1 != rq2);
1311 raw_spin_unlock(&rq1->lock);
1312 __release(rq2->lock);
1313 }
1314
1315 #endif
1316
1317 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1318 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1319 extern void print_cfs_stats(struct seq_file *m, int cpu);
1320 extern void print_rt_stats(struct seq_file *m, int cpu);
1321
1322 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1323 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1324
1325 extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1326
1327 #ifdef CONFIG_NO_HZ_COMMON
1328 enum rq_nohz_flag_bits {
1329 NOHZ_TICK_STOPPED,
1330 NOHZ_BALANCE_KICK,
1331 };
1332
1333 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1334 #endif
1335
1336 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1337
1338 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1339 DECLARE_PER_CPU(u64, cpu_softirq_time);
1340
1341 #ifndef CONFIG_64BIT
1342 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1343
1344 static inline void irq_time_write_begin(void)
1345 {
1346 __this_cpu_inc(irq_time_seq.sequence);
1347 smp_wmb();
1348 }
1349
1350 static inline void irq_time_write_end(void)
1351 {
1352 smp_wmb();
1353 __this_cpu_inc(irq_time_seq.sequence);
1354 }
1355
1356 static inline u64 irq_time_read(int cpu)
1357 {
1358 u64 irq_time;
1359 unsigned seq;
1360
1361 do {
1362 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1363 irq_time = per_cpu(cpu_softirq_time, cpu) +
1364 per_cpu(cpu_hardirq_time, cpu);
1365 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1366
1367 return irq_time;
1368 }
1369 #else /* CONFIG_64BIT */
1370 static inline void irq_time_write_begin(void)
1371 {
1372 }
1373
1374 static inline void irq_time_write_end(void)
1375 {
1376 }
1377
1378 static inline u64 irq_time_read(int cpu)
1379 {
1380 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1381 }
1382 #endif /* CONFIG_64BIT */
1383 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */