]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/sched.h
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/topology.h>
5 #include <linux/sched/rt.h>
6 #include <linux/sched/wake_q.h>
7 #include <linux/u64_stats_sync.h>
8 #include <linux/sched/deadline.h>
9 #include <linux/kernel_stat.h>
10 #include <linux/binfmts.h>
11 #include <linux/mutex.h>
12 #include <linux/spinlock.h>
13 #include <linux/stop_machine.h>
14 #include <linux/irq_work.h>
15 #include <linux/tick.h>
16 #include <linux/slab.h>
17
18 #include "cpupri.h"
19 #include "cpudeadline.h"
20 #include "cpuacct.h"
21
22 #ifdef CONFIG_SCHED_DEBUG
23 #define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
24 #else
25 #define SCHED_WARN_ON(x) ((void)(x))
26 #endif
27
28 struct rq;
29 struct cpuidle_state;
30
31 /* task_struct::on_rq states: */
32 #define TASK_ON_RQ_QUEUED 1
33 #define TASK_ON_RQ_MIGRATING 2
34
35 extern __read_mostly int scheduler_running;
36
37 extern unsigned long calc_load_update;
38 extern atomic_long_t calc_load_tasks;
39
40 extern void calc_global_load_tick(struct rq *this_rq);
41 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
42
43 #ifdef CONFIG_SMP
44 extern void cpu_load_update_active(struct rq *this_rq);
45 #else
46 static inline void cpu_load_update_active(struct rq *this_rq) { }
47 #endif
48
49 /*
50 * Helpers for converting nanosecond timing to jiffy resolution
51 */
52 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
53
54 /*
55 * Increase resolution of nice-level calculations for 64-bit architectures.
56 * The extra resolution improves shares distribution and load balancing of
57 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
58 * hierarchies, especially on larger systems. This is not a user-visible change
59 * and does not change the user-interface for setting shares/weights.
60 *
61 * We increase resolution only if we have enough bits to allow this increased
62 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
63 * pretty high and the returns do not justify the increased costs.
64 *
65 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
66 * increase coverage and consistency always enable it on 64bit platforms.
67 */
68 #ifdef CONFIG_64BIT
69 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
70 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
71 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
72 #else
73 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
74 # define scale_load(w) (w)
75 # define scale_load_down(w) (w)
76 #endif
77
78 /*
79 * Task weight (visible to users) and its load (invisible to users) have
80 * independent resolution, but they should be well calibrated. We use
81 * scale_load() and scale_load_down(w) to convert between them. The
82 * following must be true:
83 *
84 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
85 *
86 */
87 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
88
89 /*
90 * Single value that decides SCHED_DEADLINE internal math precision.
91 * 10 -> just above 1us
92 * 9 -> just above 0.5us
93 */
94 #define DL_SCALE (10)
95
96 /*
97 * These are the 'tuning knobs' of the scheduler:
98 */
99
100 /*
101 * single value that denotes runtime == period, ie unlimited time.
102 */
103 #define RUNTIME_INF ((u64)~0ULL)
104
105 static inline int idle_policy(int policy)
106 {
107 return policy == SCHED_IDLE;
108 }
109 static inline int fair_policy(int policy)
110 {
111 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
112 }
113
114 static inline int rt_policy(int policy)
115 {
116 return policy == SCHED_FIFO || policy == SCHED_RR;
117 }
118
119 static inline int dl_policy(int policy)
120 {
121 return policy == SCHED_DEADLINE;
122 }
123 static inline bool valid_policy(int policy)
124 {
125 return idle_policy(policy) || fair_policy(policy) ||
126 rt_policy(policy) || dl_policy(policy);
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 static inline int task_has_dl_policy(struct task_struct *p)
135 {
136 return dl_policy(p->policy);
137 }
138
139 /*
140 * Tells if entity @a should preempt entity @b.
141 */
142 static inline bool
143 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
144 {
145 return dl_time_before(a->deadline, b->deadline);
146 }
147
148 /*
149 * This is the priority-queue data structure of the RT scheduling class:
150 */
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154 };
155
156 struct rt_bandwidth {
157 /* nests inside the rq lock: */
158 raw_spinlock_t rt_runtime_lock;
159 ktime_t rt_period;
160 u64 rt_runtime;
161 struct hrtimer rt_period_timer;
162 unsigned int rt_period_active;
163 };
164
165 void __dl_clear_params(struct task_struct *p);
166
167 /*
168 * To keep the bandwidth of -deadline tasks and groups under control
169 * we need some place where:
170 * - store the maximum -deadline bandwidth of the system (the group);
171 * - cache the fraction of that bandwidth that is currently allocated.
172 *
173 * This is all done in the data structure below. It is similar to the
174 * one used for RT-throttling (rt_bandwidth), with the main difference
175 * that, since here we are only interested in admission control, we
176 * do not decrease any runtime while the group "executes", neither we
177 * need a timer to replenish it.
178 *
179 * With respect to SMP, the bandwidth is given on a per-CPU basis,
180 * meaning that:
181 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
182 * - dl_total_bw array contains, in the i-eth element, the currently
183 * allocated bandwidth on the i-eth CPU.
184 * Moreover, groups consume bandwidth on each CPU, while tasks only
185 * consume bandwidth on the CPU they're running on.
186 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
187 * that will be shown the next time the proc or cgroup controls will
188 * be red. It on its turn can be changed by writing on its own
189 * control.
190 */
191 struct dl_bandwidth {
192 raw_spinlock_t dl_runtime_lock;
193 u64 dl_runtime;
194 u64 dl_period;
195 };
196
197 static inline int dl_bandwidth_enabled(void)
198 {
199 return sysctl_sched_rt_runtime >= 0;
200 }
201
202 extern struct dl_bw *dl_bw_of(int i);
203
204 struct dl_bw {
205 raw_spinlock_t lock;
206 u64 bw, total_bw;
207 };
208
209 static inline
210 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
211 {
212 dl_b->total_bw -= tsk_bw;
213 }
214
215 static inline
216 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
217 {
218 dl_b->total_bw += tsk_bw;
219 }
220
221 static inline
222 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
223 {
224 return dl_b->bw != -1 &&
225 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
226 }
227
228 extern void init_dl_bw(struct dl_bw *dl_b);
229
230 #ifdef CONFIG_CGROUP_SCHED
231
232 #include <linux/cgroup.h>
233
234 struct cfs_rq;
235 struct rt_rq;
236
237 extern struct list_head task_groups;
238
239 struct cfs_bandwidth {
240 #ifdef CONFIG_CFS_BANDWIDTH
241 raw_spinlock_t lock;
242 ktime_t period;
243 u64 quota, runtime;
244 s64 hierarchical_quota;
245 u64 runtime_expires;
246
247 int idle, period_active;
248 struct hrtimer period_timer, slack_timer;
249 struct list_head throttled_cfs_rq;
250
251 /* statistics */
252 int nr_periods, nr_throttled;
253 u64 throttled_time;
254 #endif
255 };
256
257 /* task group related information */
258 struct task_group {
259 struct cgroup_subsys_state css;
260
261 #ifdef CONFIG_FAIR_GROUP_SCHED
262 /* schedulable entities of this group on each cpu */
263 struct sched_entity **se;
264 /* runqueue "owned" by this group on each cpu */
265 struct cfs_rq **cfs_rq;
266 unsigned long shares;
267
268 #ifdef CONFIG_SMP
269 /*
270 * load_avg can be heavily contended at clock tick time, so put
271 * it in its own cacheline separated from the fields above which
272 * will also be accessed at each tick.
273 */
274 atomic_long_t load_avg ____cacheline_aligned;
275 #endif
276 #endif
277
278 #ifdef CONFIG_RT_GROUP_SCHED
279 struct sched_rt_entity **rt_se;
280 struct rt_rq **rt_rq;
281
282 struct rt_bandwidth rt_bandwidth;
283 #endif
284
285 struct rcu_head rcu;
286 struct list_head list;
287
288 struct task_group *parent;
289 struct list_head siblings;
290 struct list_head children;
291
292 #ifdef CONFIG_SCHED_AUTOGROUP
293 struct autogroup *autogroup;
294 #endif
295
296 struct cfs_bandwidth cfs_bandwidth;
297 };
298
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
301
302 /*
303 * A weight of 0 or 1 can cause arithmetics problems.
304 * A weight of a cfs_rq is the sum of weights of which entities
305 * are queued on this cfs_rq, so a weight of a entity should not be
306 * too large, so as the shares value of a task group.
307 * (The default weight is 1024 - so there's no practical
308 * limitation from this.)
309 */
310 #define MIN_SHARES (1UL << 1)
311 #define MAX_SHARES (1UL << 18)
312 #endif
313
314 typedef int (*tg_visitor)(struct task_group *, void *);
315
316 extern int walk_tg_tree_from(struct task_group *from,
317 tg_visitor down, tg_visitor up, void *data);
318
319 /*
320 * Iterate the full tree, calling @down when first entering a node and @up when
321 * leaving it for the final time.
322 *
323 * Caller must hold rcu_lock or sufficient equivalent.
324 */
325 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
326 {
327 return walk_tg_tree_from(&root_task_group, down, up, data);
328 }
329
330 extern int tg_nop(struct task_group *tg, void *data);
331
332 extern void free_fair_sched_group(struct task_group *tg);
333 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
334 extern void online_fair_sched_group(struct task_group *tg);
335 extern void unregister_fair_sched_group(struct task_group *tg);
336 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
337 struct sched_entity *se, int cpu,
338 struct sched_entity *parent);
339 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
340
341 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
342 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
343 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
344
345 extern void free_rt_sched_group(struct task_group *tg);
346 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
347 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
348 struct sched_rt_entity *rt_se, int cpu,
349 struct sched_rt_entity *parent);
350
351 extern struct task_group *sched_create_group(struct task_group *parent);
352 extern void sched_online_group(struct task_group *tg,
353 struct task_group *parent);
354 extern void sched_destroy_group(struct task_group *tg);
355 extern void sched_offline_group(struct task_group *tg);
356
357 extern void sched_move_task(struct task_struct *tsk);
358
359 #ifdef CONFIG_FAIR_GROUP_SCHED
360 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
361
362 #ifdef CONFIG_SMP
363 extern void set_task_rq_fair(struct sched_entity *se,
364 struct cfs_rq *prev, struct cfs_rq *next);
365 #else /* !CONFIG_SMP */
366 static inline void set_task_rq_fair(struct sched_entity *se,
367 struct cfs_rq *prev, struct cfs_rq *next) { }
368 #endif /* CONFIG_SMP */
369 #endif /* CONFIG_FAIR_GROUP_SCHED */
370
371 #else /* CONFIG_CGROUP_SCHED */
372
373 struct cfs_bandwidth { };
374
375 #endif /* CONFIG_CGROUP_SCHED */
376
377 /* CFS-related fields in a runqueue */
378 struct cfs_rq {
379 struct load_weight load;
380 unsigned int nr_running, h_nr_running;
381
382 u64 exec_clock;
383 u64 min_vruntime;
384 #ifndef CONFIG_64BIT
385 u64 min_vruntime_copy;
386 #endif
387
388 struct rb_root tasks_timeline;
389 struct rb_node *rb_leftmost;
390
391 /*
392 * 'curr' points to currently running entity on this cfs_rq.
393 * It is set to NULL otherwise (i.e when none are currently running).
394 */
395 struct sched_entity *curr, *next, *last, *skip;
396
397 #ifdef CONFIG_SCHED_DEBUG
398 unsigned int nr_spread_over;
399 #endif
400
401 #ifdef CONFIG_SMP
402 /*
403 * CFS load tracking
404 */
405 struct sched_avg avg;
406 u64 runnable_load_sum;
407 unsigned long runnable_load_avg;
408 #ifdef CONFIG_FAIR_GROUP_SCHED
409 unsigned long tg_load_avg_contrib;
410 unsigned long propagate_avg;
411 #endif
412 atomic_long_t removed_load_avg, removed_util_avg;
413 #ifndef CONFIG_64BIT
414 u64 load_last_update_time_copy;
415 #endif
416
417 #ifdef CONFIG_FAIR_GROUP_SCHED
418 /*
419 * h_load = weight * f(tg)
420 *
421 * Where f(tg) is the recursive weight fraction assigned to
422 * this group.
423 */
424 unsigned long h_load;
425 u64 last_h_load_update;
426 struct sched_entity *h_load_next;
427 #endif /* CONFIG_FAIR_GROUP_SCHED */
428 #endif /* CONFIG_SMP */
429
430 #ifdef CONFIG_FAIR_GROUP_SCHED
431 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
432
433 /*
434 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
435 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
436 * (like users, containers etc.)
437 *
438 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
439 * list is used during load balance.
440 */
441 int on_list;
442 struct list_head leaf_cfs_rq_list;
443 struct task_group *tg; /* group that "owns" this runqueue */
444
445 #ifdef CONFIG_CFS_BANDWIDTH
446 int runtime_enabled;
447 u64 runtime_expires;
448 s64 runtime_remaining;
449
450 u64 throttled_clock, throttled_clock_task;
451 u64 throttled_clock_task_time;
452 int throttled, throttle_count;
453 struct list_head throttled_list;
454 #endif /* CONFIG_CFS_BANDWIDTH */
455 #endif /* CONFIG_FAIR_GROUP_SCHED */
456 };
457
458 static inline int rt_bandwidth_enabled(void)
459 {
460 return sysctl_sched_rt_runtime >= 0;
461 }
462
463 /* RT IPI pull logic requires IRQ_WORK */
464 #ifdef CONFIG_IRQ_WORK
465 # define HAVE_RT_PUSH_IPI
466 #endif
467
468 /* Real-Time classes' related field in a runqueue: */
469 struct rt_rq {
470 struct rt_prio_array active;
471 unsigned int rt_nr_running;
472 unsigned int rr_nr_running;
473 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
474 struct {
475 int curr; /* highest queued rt task prio */
476 #ifdef CONFIG_SMP
477 int next; /* next highest */
478 #endif
479 } highest_prio;
480 #endif
481 #ifdef CONFIG_SMP
482 unsigned long rt_nr_migratory;
483 unsigned long rt_nr_total;
484 int overloaded;
485 struct plist_head pushable_tasks;
486 #ifdef HAVE_RT_PUSH_IPI
487 int push_flags;
488 int push_cpu;
489 struct irq_work push_work;
490 raw_spinlock_t push_lock;
491 #endif
492 #endif /* CONFIG_SMP */
493 int rt_queued;
494
495 int rt_throttled;
496 u64 rt_time;
497 u64 rt_runtime;
498 /* Nests inside the rq lock: */
499 raw_spinlock_t rt_runtime_lock;
500
501 #ifdef CONFIG_RT_GROUP_SCHED
502 unsigned long rt_nr_boosted;
503
504 struct rq *rq;
505 struct task_group *tg;
506 #endif
507 };
508
509 /* Deadline class' related fields in a runqueue */
510 struct dl_rq {
511 /* runqueue is an rbtree, ordered by deadline */
512 struct rb_root rb_root;
513 struct rb_node *rb_leftmost;
514
515 unsigned long dl_nr_running;
516
517 #ifdef CONFIG_SMP
518 /*
519 * Deadline values of the currently executing and the
520 * earliest ready task on this rq. Caching these facilitates
521 * the decision wether or not a ready but not running task
522 * should migrate somewhere else.
523 */
524 struct {
525 u64 curr;
526 u64 next;
527 } earliest_dl;
528
529 unsigned long dl_nr_migratory;
530 int overloaded;
531
532 /*
533 * Tasks on this rq that can be pushed away. They are kept in
534 * an rb-tree, ordered by tasks' deadlines, with caching
535 * of the leftmost (earliest deadline) element.
536 */
537 struct rb_root pushable_dl_tasks_root;
538 struct rb_node *pushable_dl_tasks_leftmost;
539 #else
540 struct dl_bw dl_bw;
541 #endif
542 };
543
544 #ifdef CONFIG_SMP
545
546 static inline bool sched_asym_prefer(int a, int b)
547 {
548 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
549 }
550
551 /*
552 * We add the notion of a root-domain which will be used to define per-domain
553 * variables. Each exclusive cpuset essentially defines an island domain by
554 * fully partitioning the member cpus from any other cpuset. Whenever a new
555 * exclusive cpuset is created, we also create and attach a new root-domain
556 * object.
557 *
558 */
559 struct root_domain {
560 atomic_t refcount;
561 atomic_t rto_count;
562 struct rcu_head rcu;
563 cpumask_var_t span;
564 cpumask_var_t online;
565
566 /* Indicate more than one runnable task for any CPU */
567 bool overload;
568
569 /*
570 * The bit corresponding to a CPU gets set here if such CPU has more
571 * than one runnable -deadline task (as it is below for RT tasks).
572 */
573 cpumask_var_t dlo_mask;
574 atomic_t dlo_count;
575 struct dl_bw dl_bw;
576 struct cpudl cpudl;
577
578 /*
579 * The "RT overload" flag: it gets set if a CPU has more than
580 * one runnable RT task.
581 */
582 cpumask_var_t rto_mask;
583 struct cpupri cpupri;
584
585 unsigned long max_cpu_capacity;
586 };
587
588 extern struct root_domain def_root_domain;
589 extern struct mutex sched_domains_mutex;
590 extern cpumask_var_t fallback_doms;
591 extern cpumask_var_t sched_domains_tmpmask;
592
593 extern void init_defrootdomain(void);
594 extern int init_sched_domains(const struct cpumask *cpu_map);
595 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
596
597 #endif /* CONFIG_SMP */
598
599 /*
600 * This is the main, per-CPU runqueue data structure.
601 *
602 * Locking rule: those places that want to lock multiple runqueues
603 * (such as the load balancing or the thread migration code), lock
604 * acquire operations must be ordered by ascending &runqueue.
605 */
606 struct rq {
607 /* runqueue lock: */
608 raw_spinlock_t lock;
609
610 /*
611 * nr_running and cpu_load should be in the same cacheline because
612 * remote CPUs use both these fields when doing load calculation.
613 */
614 unsigned int nr_running;
615 #ifdef CONFIG_NUMA_BALANCING
616 unsigned int nr_numa_running;
617 unsigned int nr_preferred_running;
618 #endif
619 #define CPU_LOAD_IDX_MAX 5
620 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
621 #ifdef CONFIG_NO_HZ_COMMON
622 #ifdef CONFIG_SMP
623 unsigned long last_load_update_tick;
624 #endif /* CONFIG_SMP */
625 unsigned long nohz_flags;
626 #endif /* CONFIG_NO_HZ_COMMON */
627 #ifdef CONFIG_NO_HZ_FULL
628 unsigned long last_sched_tick;
629 #endif
630 /* capture load from *all* tasks on this cpu: */
631 struct load_weight load;
632 unsigned long nr_load_updates;
633 u64 nr_switches;
634
635 struct cfs_rq cfs;
636 struct rt_rq rt;
637 struct dl_rq dl;
638
639 #ifdef CONFIG_FAIR_GROUP_SCHED
640 /* list of leaf cfs_rq on this cpu: */
641 struct list_head leaf_cfs_rq_list;
642 struct list_head *tmp_alone_branch;
643 #endif /* CONFIG_FAIR_GROUP_SCHED */
644
645 /*
646 * This is part of a global counter where only the total sum
647 * over all CPUs matters. A task can increase this counter on
648 * one CPU and if it got migrated afterwards it may decrease
649 * it on another CPU. Always updated under the runqueue lock:
650 */
651 unsigned long nr_uninterruptible;
652
653 struct task_struct *curr, *idle, *stop;
654 unsigned long next_balance;
655 struct mm_struct *prev_mm;
656
657 unsigned int clock_update_flags;
658 u64 clock;
659 u64 clock_task;
660
661 atomic_t nr_iowait;
662
663 #ifdef CONFIG_SMP
664 struct root_domain *rd;
665 struct sched_domain *sd;
666
667 unsigned long cpu_capacity;
668 unsigned long cpu_capacity_orig;
669
670 struct callback_head *balance_callback;
671
672 unsigned char idle_balance;
673 /* For active balancing */
674 int active_balance;
675 int push_cpu;
676 struct cpu_stop_work active_balance_work;
677 /* cpu of this runqueue: */
678 int cpu;
679 int online;
680
681 struct list_head cfs_tasks;
682
683 u64 rt_avg;
684 u64 age_stamp;
685 u64 idle_stamp;
686 u64 avg_idle;
687
688 /* This is used to determine avg_idle's max value */
689 u64 max_idle_balance_cost;
690 #endif
691
692 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
693 u64 prev_irq_time;
694 #endif
695 #ifdef CONFIG_PARAVIRT
696 u64 prev_steal_time;
697 #endif
698 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
699 u64 prev_steal_time_rq;
700 #endif
701
702 /* calc_load related fields */
703 unsigned long calc_load_update;
704 long calc_load_active;
705
706 #ifdef CONFIG_SCHED_HRTICK
707 #ifdef CONFIG_SMP
708 int hrtick_csd_pending;
709 struct call_single_data hrtick_csd;
710 #endif
711 struct hrtimer hrtick_timer;
712 #endif
713
714 #ifdef CONFIG_SCHEDSTATS
715 /* latency stats */
716 struct sched_info rq_sched_info;
717 unsigned long long rq_cpu_time;
718 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
719
720 /* sys_sched_yield() stats */
721 unsigned int yld_count;
722
723 /* schedule() stats */
724 unsigned int sched_count;
725 unsigned int sched_goidle;
726
727 /* try_to_wake_up() stats */
728 unsigned int ttwu_count;
729 unsigned int ttwu_local;
730 #endif
731
732 #ifdef CONFIG_SMP
733 struct llist_head wake_list;
734 #endif
735
736 #ifdef CONFIG_CPU_IDLE
737 /* Must be inspected within a rcu lock section */
738 struct cpuidle_state *idle_state;
739 #endif
740 };
741
742 static inline int cpu_of(struct rq *rq)
743 {
744 #ifdef CONFIG_SMP
745 return rq->cpu;
746 #else
747 return 0;
748 #endif
749 }
750
751
752 #ifdef CONFIG_SCHED_SMT
753
754 extern struct static_key_false sched_smt_present;
755
756 extern void __update_idle_core(struct rq *rq);
757
758 static inline void update_idle_core(struct rq *rq)
759 {
760 if (static_branch_unlikely(&sched_smt_present))
761 __update_idle_core(rq);
762 }
763
764 #else
765 static inline void update_idle_core(struct rq *rq) { }
766 #endif
767
768 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
769
770 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
771 #define this_rq() this_cpu_ptr(&runqueues)
772 #define task_rq(p) cpu_rq(task_cpu(p))
773 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
774 #define raw_rq() raw_cpu_ptr(&runqueues)
775
776 static inline u64 __rq_clock_broken(struct rq *rq)
777 {
778 return READ_ONCE(rq->clock);
779 }
780
781 /*
782 * rq::clock_update_flags bits
783 *
784 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
785 * call to __schedule(). This is an optimisation to avoid
786 * neighbouring rq clock updates.
787 *
788 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
789 * in effect and calls to update_rq_clock() are being ignored.
790 *
791 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
792 * made to update_rq_clock() since the last time rq::lock was pinned.
793 *
794 * If inside of __schedule(), clock_update_flags will have been
795 * shifted left (a left shift is a cheap operation for the fast path
796 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
797 *
798 * if (rq-clock_update_flags >= RQCF_UPDATED)
799 *
800 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
801 * one position though, because the next rq_unpin_lock() will shift it
802 * back.
803 */
804 #define RQCF_REQ_SKIP 0x01
805 #define RQCF_ACT_SKIP 0x02
806 #define RQCF_UPDATED 0x04
807
808 static inline void assert_clock_updated(struct rq *rq)
809 {
810 /*
811 * The only reason for not seeing a clock update since the
812 * last rq_pin_lock() is if we're currently skipping updates.
813 */
814 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
815 }
816
817 static inline u64 rq_clock(struct rq *rq)
818 {
819 lockdep_assert_held(&rq->lock);
820 assert_clock_updated(rq);
821
822 return rq->clock;
823 }
824
825 static inline u64 rq_clock_task(struct rq *rq)
826 {
827 lockdep_assert_held(&rq->lock);
828 assert_clock_updated(rq);
829
830 return rq->clock_task;
831 }
832
833 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
834 {
835 lockdep_assert_held(&rq->lock);
836 if (skip)
837 rq->clock_update_flags |= RQCF_REQ_SKIP;
838 else
839 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
840 }
841
842 struct rq_flags {
843 unsigned long flags;
844 struct pin_cookie cookie;
845 #ifdef CONFIG_SCHED_DEBUG
846 /*
847 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
848 * current pin context is stashed here in case it needs to be
849 * restored in rq_repin_lock().
850 */
851 unsigned int clock_update_flags;
852 #endif
853 };
854
855 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
856 {
857 rf->cookie = lockdep_pin_lock(&rq->lock);
858
859 #ifdef CONFIG_SCHED_DEBUG
860 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
861 rf->clock_update_flags = 0;
862 #endif
863 }
864
865 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
866 {
867 #ifdef CONFIG_SCHED_DEBUG
868 if (rq->clock_update_flags > RQCF_ACT_SKIP)
869 rf->clock_update_flags = RQCF_UPDATED;
870 #endif
871
872 lockdep_unpin_lock(&rq->lock, rf->cookie);
873 }
874
875 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
876 {
877 lockdep_repin_lock(&rq->lock, rf->cookie);
878
879 #ifdef CONFIG_SCHED_DEBUG
880 /*
881 * Restore the value we stashed in @rf for this pin context.
882 */
883 rq->clock_update_flags |= rf->clock_update_flags;
884 #endif
885 }
886
887 #ifdef CONFIG_NUMA
888 enum numa_topology_type {
889 NUMA_DIRECT,
890 NUMA_GLUELESS_MESH,
891 NUMA_BACKPLANE,
892 };
893 extern enum numa_topology_type sched_numa_topology_type;
894 extern int sched_max_numa_distance;
895 extern bool find_numa_distance(int distance);
896 #endif
897
898 #ifdef CONFIG_NUMA
899 extern void sched_init_numa(void);
900 extern void sched_domains_numa_masks_set(unsigned int cpu);
901 extern void sched_domains_numa_masks_clear(unsigned int cpu);
902 #else
903 static inline void sched_init_numa(void) { }
904 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
905 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
906 #endif
907
908 #ifdef CONFIG_NUMA_BALANCING
909 /* The regions in numa_faults array from task_struct */
910 enum numa_faults_stats {
911 NUMA_MEM = 0,
912 NUMA_CPU,
913 NUMA_MEMBUF,
914 NUMA_CPUBUF
915 };
916 extern void sched_setnuma(struct task_struct *p, int node);
917 extern int migrate_task_to(struct task_struct *p, int cpu);
918 extern int migrate_swap(struct task_struct *, struct task_struct *);
919 #endif /* CONFIG_NUMA_BALANCING */
920
921 #ifdef CONFIG_SMP
922
923 static inline void
924 queue_balance_callback(struct rq *rq,
925 struct callback_head *head,
926 void (*func)(struct rq *rq))
927 {
928 lockdep_assert_held(&rq->lock);
929
930 if (unlikely(head->next))
931 return;
932
933 head->func = (void (*)(struct callback_head *))func;
934 head->next = rq->balance_callback;
935 rq->balance_callback = head;
936 }
937
938 extern void sched_ttwu_pending(void);
939
940 #define rcu_dereference_check_sched_domain(p) \
941 rcu_dereference_check((p), \
942 lockdep_is_held(&sched_domains_mutex))
943
944 /*
945 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
946 * See detach_destroy_domains: synchronize_sched for details.
947 *
948 * The domain tree of any CPU may only be accessed from within
949 * preempt-disabled sections.
950 */
951 #define for_each_domain(cpu, __sd) \
952 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
953 __sd; __sd = __sd->parent)
954
955 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
956
957 /**
958 * highest_flag_domain - Return highest sched_domain containing flag.
959 * @cpu: The cpu whose highest level of sched domain is to
960 * be returned.
961 * @flag: The flag to check for the highest sched_domain
962 * for the given cpu.
963 *
964 * Returns the highest sched_domain of a cpu which contains the given flag.
965 */
966 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
967 {
968 struct sched_domain *sd, *hsd = NULL;
969
970 for_each_domain(cpu, sd) {
971 if (!(sd->flags & flag))
972 break;
973 hsd = sd;
974 }
975
976 return hsd;
977 }
978
979 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
980 {
981 struct sched_domain *sd;
982
983 for_each_domain(cpu, sd) {
984 if (sd->flags & flag)
985 break;
986 }
987
988 return sd;
989 }
990
991 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
992 DECLARE_PER_CPU(int, sd_llc_size);
993 DECLARE_PER_CPU(int, sd_llc_id);
994 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
995 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
996 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
997
998 struct sched_group_capacity {
999 atomic_t ref;
1000 /*
1001 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1002 * for a single CPU.
1003 */
1004 unsigned long capacity;
1005 unsigned long min_capacity; /* Min per-CPU capacity in group */
1006 unsigned long next_update;
1007 int imbalance; /* XXX unrelated to capacity but shared group state */
1008
1009 unsigned long cpumask[0]; /* iteration mask */
1010 };
1011
1012 struct sched_group {
1013 struct sched_group *next; /* Must be a circular list */
1014 atomic_t ref;
1015
1016 unsigned int group_weight;
1017 struct sched_group_capacity *sgc;
1018 int asym_prefer_cpu; /* cpu of highest priority in group */
1019
1020 /*
1021 * The CPUs this group covers.
1022 *
1023 * NOTE: this field is variable length. (Allocated dynamically
1024 * by attaching extra space to the end of the structure,
1025 * depending on how many CPUs the kernel has booted up with)
1026 */
1027 unsigned long cpumask[0];
1028 };
1029
1030 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
1031 {
1032 return to_cpumask(sg->cpumask);
1033 }
1034
1035 /*
1036 * cpumask masking which cpus in the group are allowed to iterate up the domain
1037 * tree.
1038 */
1039 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
1040 {
1041 return to_cpumask(sg->sgc->cpumask);
1042 }
1043
1044 /**
1045 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1046 * @group: The group whose first cpu is to be returned.
1047 */
1048 static inline unsigned int group_first_cpu(struct sched_group *group)
1049 {
1050 return cpumask_first(sched_group_cpus(group));
1051 }
1052
1053 extern int group_balance_cpu(struct sched_group *sg);
1054
1055 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1056 void register_sched_domain_sysctl(void);
1057 void unregister_sched_domain_sysctl(void);
1058 #else
1059 static inline void register_sched_domain_sysctl(void)
1060 {
1061 }
1062 static inline void unregister_sched_domain_sysctl(void)
1063 {
1064 }
1065 #endif
1066
1067 #else
1068
1069 static inline void sched_ttwu_pending(void) { }
1070
1071 #endif /* CONFIG_SMP */
1072
1073 #include "stats.h"
1074 #include "autogroup.h"
1075
1076 #ifdef CONFIG_CGROUP_SCHED
1077
1078 /*
1079 * Return the group to which this tasks belongs.
1080 *
1081 * We cannot use task_css() and friends because the cgroup subsystem
1082 * changes that value before the cgroup_subsys::attach() method is called,
1083 * therefore we cannot pin it and might observe the wrong value.
1084 *
1085 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1086 * core changes this before calling sched_move_task().
1087 *
1088 * Instead we use a 'copy' which is updated from sched_move_task() while
1089 * holding both task_struct::pi_lock and rq::lock.
1090 */
1091 static inline struct task_group *task_group(struct task_struct *p)
1092 {
1093 return p->sched_task_group;
1094 }
1095
1096 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1097 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1098 {
1099 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1100 struct task_group *tg = task_group(p);
1101 #endif
1102
1103 #ifdef CONFIG_FAIR_GROUP_SCHED
1104 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1105 p->se.cfs_rq = tg->cfs_rq[cpu];
1106 p->se.parent = tg->se[cpu];
1107 #endif
1108
1109 #ifdef CONFIG_RT_GROUP_SCHED
1110 p->rt.rt_rq = tg->rt_rq[cpu];
1111 p->rt.parent = tg->rt_se[cpu];
1112 #endif
1113 }
1114
1115 #else /* CONFIG_CGROUP_SCHED */
1116
1117 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1118 static inline struct task_group *task_group(struct task_struct *p)
1119 {
1120 return NULL;
1121 }
1122
1123 #endif /* CONFIG_CGROUP_SCHED */
1124
1125 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1126 {
1127 set_task_rq(p, cpu);
1128 #ifdef CONFIG_SMP
1129 /*
1130 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1131 * successfuly executed on another CPU. We must ensure that updates of
1132 * per-task data have been completed by this moment.
1133 */
1134 smp_wmb();
1135 #ifdef CONFIG_THREAD_INFO_IN_TASK
1136 p->cpu = cpu;
1137 #else
1138 task_thread_info(p)->cpu = cpu;
1139 #endif
1140 p->wake_cpu = cpu;
1141 #endif
1142 }
1143
1144 /*
1145 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1146 */
1147 #ifdef CONFIG_SCHED_DEBUG
1148 # include <linux/static_key.h>
1149 # define const_debug __read_mostly
1150 #else
1151 # define const_debug const
1152 #endif
1153
1154 extern const_debug unsigned int sysctl_sched_features;
1155
1156 #define SCHED_FEAT(name, enabled) \
1157 __SCHED_FEAT_##name ,
1158
1159 enum {
1160 #include "features.h"
1161 __SCHED_FEAT_NR,
1162 };
1163
1164 #undef SCHED_FEAT
1165
1166 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1167 #define SCHED_FEAT(name, enabled) \
1168 static __always_inline bool static_branch_##name(struct static_key *key) \
1169 { \
1170 return static_key_##enabled(key); \
1171 }
1172
1173 #include "features.h"
1174
1175 #undef SCHED_FEAT
1176
1177 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1178 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1179 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1180 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1181 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1182
1183 extern struct static_key_false sched_numa_balancing;
1184 extern struct static_key_false sched_schedstats;
1185
1186 static inline u64 global_rt_period(void)
1187 {
1188 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1189 }
1190
1191 static inline u64 global_rt_runtime(void)
1192 {
1193 if (sysctl_sched_rt_runtime < 0)
1194 return RUNTIME_INF;
1195
1196 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1197 }
1198
1199 static inline int task_current(struct rq *rq, struct task_struct *p)
1200 {
1201 return rq->curr == p;
1202 }
1203
1204 static inline int task_running(struct rq *rq, struct task_struct *p)
1205 {
1206 #ifdef CONFIG_SMP
1207 return p->on_cpu;
1208 #else
1209 return task_current(rq, p);
1210 #endif
1211 }
1212
1213 static inline int task_on_rq_queued(struct task_struct *p)
1214 {
1215 return p->on_rq == TASK_ON_RQ_QUEUED;
1216 }
1217
1218 static inline int task_on_rq_migrating(struct task_struct *p)
1219 {
1220 return p->on_rq == TASK_ON_RQ_MIGRATING;
1221 }
1222
1223 #ifndef prepare_arch_switch
1224 # define prepare_arch_switch(next) do { } while (0)
1225 #endif
1226 #ifndef finish_arch_post_lock_switch
1227 # define finish_arch_post_lock_switch() do { } while (0)
1228 #endif
1229
1230 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1231 {
1232 #ifdef CONFIG_SMP
1233 /*
1234 * We can optimise this out completely for !SMP, because the
1235 * SMP rebalancing from interrupt is the only thing that cares
1236 * here.
1237 */
1238 next->on_cpu = 1;
1239 #endif
1240 }
1241
1242 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1243 {
1244 #ifdef CONFIG_SMP
1245 /*
1246 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1247 * We must ensure this doesn't happen until the switch is completely
1248 * finished.
1249 *
1250 * In particular, the load of prev->state in finish_task_switch() must
1251 * happen before this.
1252 *
1253 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1254 */
1255 smp_store_release(&prev->on_cpu, 0);
1256 #endif
1257 #ifdef CONFIG_DEBUG_SPINLOCK
1258 /* this is a valid case when another task releases the spinlock */
1259 rq->lock.owner = current;
1260 #endif
1261 /*
1262 * If we are tracking spinlock dependencies then we have to
1263 * fix up the runqueue lock - which gets 'carried over' from
1264 * prev into current:
1265 */
1266 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1267
1268 raw_spin_unlock_irq(&rq->lock);
1269 }
1270
1271 /*
1272 * wake flags
1273 */
1274 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1275 #define WF_FORK 0x02 /* child wakeup after fork */
1276 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1277
1278 /*
1279 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1280 * of tasks with abnormal "nice" values across CPUs the contribution that
1281 * each task makes to its run queue's load is weighted according to its
1282 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1283 * scaled version of the new time slice allocation that they receive on time
1284 * slice expiry etc.
1285 */
1286
1287 #define WEIGHT_IDLEPRIO 3
1288 #define WMULT_IDLEPRIO 1431655765
1289
1290 extern const int sched_prio_to_weight[40];
1291 extern const u32 sched_prio_to_wmult[40];
1292
1293 /*
1294 * {de,en}queue flags:
1295 *
1296 * DEQUEUE_SLEEP - task is no longer runnable
1297 * ENQUEUE_WAKEUP - task just became runnable
1298 *
1299 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1300 * are in a known state which allows modification. Such pairs
1301 * should preserve as much state as possible.
1302 *
1303 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1304 * in the runqueue.
1305 *
1306 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1307 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1308 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1309 *
1310 */
1311
1312 #define DEQUEUE_SLEEP 0x01
1313 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1314 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1315
1316 #define ENQUEUE_WAKEUP 0x01
1317 #define ENQUEUE_RESTORE 0x02
1318 #define ENQUEUE_MOVE 0x04
1319
1320 #define ENQUEUE_HEAD 0x08
1321 #define ENQUEUE_REPLENISH 0x10
1322 #ifdef CONFIG_SMP
1323 #define ENQUEUE_MIGRATED 0x20
1324 #else
1325 #define ENQUEUE_MIGRATED 0x00
1326 #endif
1327
1328 #define RETRY_TASK ((void *)-1UL)
1329
1330 struct sched_class {
1331 const struct sched_class *next;
1332
1333 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1334 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1335 void (*yield_task) (struct rq *rq);
1336 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1337
1338 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1339
1340 /*
1341 * It is the responsibility of the pick_next_task() method that will
1342 * return the next task to call put_prev_task() on the @prev task or
1343 * something equivalent.
1344 *
1345 * May return RETRY_TASK when it finds a higher prio class has runnable
1346 * tasks.
1347 */
1348 struct task_struct * (*pick_next_task) (struct rq *rq,
1349 struct task_struct *prev,
1350 struct rq_flags *rf);
1351 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1352
1353 #ifdef CONFIG_SMP
1354 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1355 void (*migrate_task_rq)(struct task_struct *p);
1356
1357 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1358
1359 void (*set_cpus_allowed)(struct task_struct *p,
1360 const struct cpumask *newmask);
1361
1362 void (*rq_online)(struct rq *rq);
1363 void (*rq_offline)(struct rq *rq);
1364 #endif
1365
1366 void (*set_curr_task) (struct rq *rq);
1367 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1368 void (*task_fork) (struct task_struct *p);
1369 void (*task_dead) (struct task_struct *p);
1370
1371 /*
1372 * The switched_from() call is allowed to drop rq->lock, therefore we
1373 * cannot assume the switched_from/switched_to pair is serliazed by
1374 * rq->lock. They are however serialized by p->pi_lock.
1375 */
1376 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1377 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1378 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1379 int oldprio);
1380
1381 unsigned int (*get_rr_interval) (struct rq *rq,
1382 struct task_struct *task);
1383
1384 void (*update_curr) (struct rq *rq);
1385
1386 #define TASK_SET_GROUP 0
1387 #define TASK_MOVE_GROUP 1
1388
1389 #ifdef CONFIG_FAIR_GROUP_SCHED
1390 void (*task_change_group) (struct task_struct *p, int type);
1391 #endif
1392 };
1393
1394 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1395 {
1396 prev->sched_class->put_prev_task(rq, prev);
1397 }
1398
1399 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1400 {
1401 curr->sched_class->set_curr_task(rq);
1402 }
1403
1404 #define sched_class_highest (&stop_sched_class)
1405 #define for_each_class(class) \
1406 for (class = sched_class_highest; class; class = class->next)
1407
1408 extern const struct sched_class stop_sched_class;
1409 extern const struct sched_class dl_sched_class;
1410 extern const struct sched_class rt_sched_class;
1411 extern const struct sched_class fair_sched_class;
1412 extern const struct sched_class idle_sched_class;
1413
1414
1415 #ifdef CONFIG_SMP
1416
1417 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1418
1419 extern void trigger_load_balance(struct rq *rq);
1420
1421 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1422
1423 #endif
1424
1425 #ifdef CONFIG_CPU_IDLE
1426 static inline void idle_set_state(struct rq *rq,
1427 struct cpuidle_state *idle_state)
1428 {
1429 rq->idle_state = idle_state;
1430 }
1431
1432 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1433 {
1434 SCHED_WARN_ON(!rcu_read_lock_held());
1435 return rq->idle_state;
1436 }
1437 #else
1438 static inline void idle_set_state(struct rq *rq,
1439 struct cpuidle_state *idle_state)
1440 {
1441 }
1442
1443 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1444 {
1445 return NULL;
1446 }
1447 #endif
1448
1449 extern void sysrq_sched_debug_show(void);
1450 extern void sched_init_granularity(void);
1451 extern void update_max_interval(void);
1452
1453 extern void init_sched_dl_class(void);
1454 extern void init_sched_rt_class(void);
1455 extern void init_sched_fair_class(void);
1456
1457 extern void resched_curr(struct rq *rq);
1458 extern void resched_cpu(int cpu);
1459
1460 extern struct rt_bandwidth def_rt_bandwidth;
1461 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1462
1463 extern struct dl_bandwidth def_dl_bandwidth;
1464 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1465 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1466
1467 unsigned long to_ratio(u64 period, u64 runtime);
1468
1469 extern void init_entity_runnable_average(struct sched_entity *se);
1470 extern void post_init_entity_util_avg(struct sched_entity *se);
1471
1472 #ifdef CONFIG_NO_HZ_FULL
1473 extern bool sched_can_stop_tick(struct rq *rq);
1474
1475 /*
1476 * Tick may be needed by tasks in the runqueue depending on their policy and
1477 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1478 * nohz mode if necessary.
1479 */
1480 static inline void sched_update_tick_dependency(struct rq *rq)
1481 {
1482 int cpu;
1483
1484 if (!tick_nohz_full_enabled())
1485 return;
1486
1487 cpu = cpu_of(rq);
1488
1489 if (!tick_nohz_full_cpu(cpu))
1490 return;
1491
1492 if (sched_can_stop_tick(rq))
1493 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1494 else
1495 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1496 }
1497 #else
1498 static inline void sched_update_tick_dependency(struct rq *rq) { }
1499 #endif
1500
1501 static inline void add_nr_running(struct rq *rq, unsigned count)
1502 {
1503 unsigned prev_nr = rq->nr_running;
1504
1505 rq->nr_running = prev_nr + count;
1506
1507 if (prev_nr < 2 && rq->nr_running >= 2) {
1508 #ifdef CONFIG_SMP
1509 if (!rq->rd->overload)
1510 rq->rd->overload = true;
1511 #endif
1512 }
1513
1514 sched_update_tick_dependency(rq);
1515 }
1516
1517 static inline void sub_nr_running(struct rq *rq, unsigned count)
1518 {
1519 rq->nr_running -= count;
1520 /* Check if we still need preemption */
1521 sched_update_tick_dependency(rq);
1522 }
1523
1524 static inline void rq_last_tick_reset(struct rq *rq)
1525 {
1526 #ifdef CONFIG_NO_HZ_FULL
1527 rq->last_sched_tick = jiffies;
1528 #endif
1529 }
1530
1531 extern void update_rq_clock(struct rq *rq);
1532
1533 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1534 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1535
1536 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1537
1538 extern const_debug unsigned int sysctl_sched_time_avg;
1539 extern const_debug unsigned int sysctl_sched_nr_migrate;
1540 extern const_debug unsigned int sysctl_sched_migration_cost;
1541
1542 static inline u64 sched_avg_period(void)
1543 {
1544 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1545 }
1546
1547 #ifdef CONFIG_SCHED_HRTICK
1548
1549 /*
1550 * Use hrtick when:
1551 * - enabled by features
1552 * - hrtimer is actually high res
1553 */
1554 static inline int hrtick_enabled(struct rq *rq)
1555 {
1556 if (!sched_feat(HRTICK))
1557 return 0;
1558 if (!cpu_active(cpu_of(rq)))
1559 return 0;
1560 return hrtimer_is_hres_active(&rq->hrtick_timer);
1561 }
1562
1563 void hrtick_start(struct rq *rq, u64 delay);
1564
1565 #else
1566
1567 static inline int hrtick_enabled(struct rq *rq)
1568 {
1569 return 0;
1570 }
1571
1572 #endif /* CONFIG_SCHED_HRTICK */
1573
1574 #ifdef CONFIG_SMP
1575 extern void sched_avg_update(struct rq *rq);
1576
1577 #ifndef arch_scale_freq_capacity
1578 static __always_inline
1579 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1580 {
1581 return SCHED_CAPACITY_SCALE;
1582 }
1583 #endif
1584
1585 #ifndef arch_scale_cpu_capacity
1586 static __always_inline
1587 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1588 {
1589 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1590 return sd->smt_gain / sd->span_weight;
1591
1592 return SCHED_CAPACITY_SCALE;
1593 }
1594 #endif
1595
1596 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1597 {
1598 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1599 sched_avg_update(rq);
1600 }
1601 #else
1602 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1603 static inline void sched_avg_update(struct rq *rq) { }
1604 #endif
1605
1606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1607 __acquires(rq->lock);
1608 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1609 __acquires(p->pi_lock)
1610 __acquires(rq->lock);
1611
1612 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1613 __releases(rq->lock)
1614 {
1615 rq_unpin_lock(rq, rf);
1616 raw_spin_unlock(&rq->lock);
1617 }
1618
1619 static inline void
1620 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1621 __releases(rq->lock)
1622 __releases(p->pi_lock)
1623 {
1624 rq_unpin_lock(rq, rf);
1625 raw_spin_unlock(&rq->lock);
1626 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1627 }
1628
1629 #ifdef CONFIG_SMP
1630 #ifdef CONFIG_PREEMPT
1631
1632 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1633
1634 /*
1635 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1636 * way at the expense of forcing extra atomic operations in all
1637 * invocations. This assures that the double_lock is acquired using the
1638 * same underlying policy as the spinlock_t on this architecture, which
1639 * reduces latency compared to the unfair variant below. However, it
1640 * also adds more overhead and therefore may reduce throughput.
1641 */
1642 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1643 __releases(this_rq->lock)
1644 __acquires(busiest->lock)
1645 __acquires(this_rq->lock)
1646 {
1647 raw_spin_unlock(&this_rq->lock);
1648 double_rq_lock(this_rq, busiest);
1649
1650 return 1;
1651 }
1652
1653 #else
1654 /*
1655 * Unfair double_lock_balance: Optimizes throughput at the expense of
1656 * latency by eliminating extra atomic operations when the locks are
1657 * already in proper order on entry. This favors lower cpu-ids and will
1658 * grant the double lock to lower cpus over higher ids under contention,
1659 * regardless of entry order into the function.
1660 */
1661 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1665 {
1666 int ret = 0;
1667
1668 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1669 if (busiest < this_rq) {
1670 raw_spin_unlock(&this_rq->lock);
1671 raw_spin_lock(&busiest->lock);
1672 raw_spin_lock_nested(&this_rq->lock,
1673 SINGLE_DEPTH_NESTING);
1674 ret = 1;
1675 } else
1676 raw_spin_lock_nested(&busiest->lock,
1677 SINGLE_DEPTH_NESTING);
1678 }
1679 return ret;
1680 }
1681
1682 #endif /* CONFIG_PREEMPT */
1683
1684 /*
1685 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1686 */
1687 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1688 {
1689 if (unlikely(!irqs_disabled())) {
1690 /* printk() doesn't work good under rq->lock */
1691 raw_spin_unlock(&this_rq->lock);
1692 BUG_ON(1);
1693 }
1694
1695 return _double_lock_balance(this_rq, busiest);
1696 }
1697
1698 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1699 __releases(busiest->lock)
1700 {
1701 raw_spin_unlock(&busiest->lock);
1702 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1703 }
1704
1705 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1706 {
1707 if (l1 > l2)
1708 swap(l1, l2);
1709
1710 spin_lock(l1);
1711 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1712 }
1713
1714 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1715 {
1716 if (l1 > l2)
1717 swap(l1, l2);
1718
1719 spin_lock_irq(l1);
1720 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1721 }
1722
1723 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1724 {
1725 if (l1 > l2)
1726 swap(l1, l2);
1727
1728 raw_spin_lock(l1);
1729 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1730 }
1731
1732 /*
1733 * double_rq_lock - safely lock two runqueues
1734 *
1735 * Note this does not disable interrupts like task_rq_lock,
1736 * you need to do so manually before calling.
1737 */
1738 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1739 __acquires(rq1->lock)
1740 __acquires(rq2->lock)
1741 {
1742 BUG_ON(!irqs_disabled());
1743 if (rq1 == rq2) {
1744 raw_spin_lock(&rq1->lock);
1745 __acquire(rq2->lock); /* Fake it out ;) */
1746 } else {
1747 if (rq1 < rq2) {
1748 raw_spin_lock(&rq1->lock);
1749 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1750 } else {
1751 raw_spin_lock(&rq2->lock);
1752 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1753 }
1754 }
1755 }
1756
1757 /*
1758 * double_rq_unlock - safely unlock two runqueues
1759 *
1760 * Note this does not restore interrupts like task_rq_unlock,
1761 * you need to do so manually after calling.
1762 */
1763 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1764 __releases(rq1->lock)
1765 __releases(rq2->lock)
1766 {
1767 raw_spin_unlock(&rq1->lock);
1768 if (rq1 != rq2)
1769 raw_spin_unlock(&rq2->lock);
1770 else
1771 __release(rq2->lock);
1772 }
1773
1774 extern void set_rq_online (struct rq *rq);
1775 extern void set_rq_offline(struct rq *rq);
1776 extern bool sched_smp_initialized;
1777
1778 #else /* CONFIG_SMP */
1779
1780 /*
1781 * double_rq_lock - safely lock two runqueues
1782 *
1783 * Note this does not disable interrupts like task_rq_lock,
1784 * you need to do so manually before calling.
1785 */
1786 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1787 __acquires(rq1->lock)
1788 __acquires(rq2->lock)
1789 {
1790 BUG_ON(!irqs_disabled());
1791 BUG_ON(rq1 != rq2);
1792 raw_spin_lock(&rq1->lock);
1793 __acquire(rq2->lock); /* Fake it out ;) */
1794 }
1795
1796 /*
1797 * double_rq_unlock - safely unlock two runqueues
1798 *
1799 * Note this does not restore interrupts like task_rq_unlock,
1800 * you need to do so manually after calling.
1801 */
1802 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1803 __releases(rq1->lock)
1804 __releases(rq2->lock)
1805 {
1806 BUG_ON(rq1 != rq2);
1807 raw_spin_unlock(&rq1->lock);
1808 __release(rq2->lock);
1809 }
1810
1811 #endif
1812
1813 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1814 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1815
1816 #ifdef CONFIG_SCHED_DEBUG
1817 extern void print_cfs_stats(struct seq_file *m, int cpu);
1818 extern void print_rt_stats(struct seq_file *m, int cpu);
1819 extern void print_dl_stats(struct seq_file *m, int cpu);
1820 extern void
1821 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1822
1823 #ifdef CONFIG_NUMA_BALANCING
1824 extern void
1825 show_numa_stats(struct task_struct *p, struct seq_file *m);
1826 extern void
1827 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1828 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1829 #endif /* CONFIG_NUMA_BALANCING */
1830 #endif /* CONFIG_SCHED_DEBUG */
1831
1832 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1833 extern void init_rt_rq(struct rt_rq *rt_rq);
1834 extern void init_dl_rq(struct dl_rq *dl_rq);
1835
1836 extern void cfs_bandwidth_usage_inc(void);
1837 extern void cfs_bandwidth_usage_dec(void);
1838
1839 #ifdef CONFIG_NO_HZ_COMMON
1840 enum rq_nohz_flag_bits {
1841 NOHZ_TICK_STOPPED,
1842 NOHZ_BALANCE_KICK,
1843 };
1844
1845 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1846
1847 extern void nohz_balance_exit_idle(unsigned int cpu);
1848 #else
1849 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1850 #endif
1851
1852 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1853 struct irqtime {
1854 u64 tick_delta;
1855 u64 irq_start_time;
1856 struct u64_stats_sync sync;
1857 };
1858
1859 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
1860
1861 static inline u64 irq_time_read(int cpu)
1862 {
1863 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
1864 u64 *cpustat = kcpustat_cpu(cpu).cpustat;
1865 unsigned int seq;
1866 u64 total;
1867
1868 do {
1869 seq = __u64_stats_fetch_begin(&irqtime->sync);
1870 total = cpustat[CPUTIME_SOFTIRQ] + cpustat[CPUTIME_IRQ];
1871 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
1872
1873 return total;
1874 }
1875 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1876
1877 #ifdef CONFIG_CPU_FREQ
1878 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1879
1880 /**
1881 * cpufreq_update_util - Take a note about CPU utilization changes.
1882 * @rq: Runqueue to carry out the update for.
1883 * @flags: Update reason flags.
1884 *
1885 * This function is called by the scheduler on the CPU whose utilization is
1886 * being updated.
1887 *
1888 * It can only be called from RCU-sched read-side critical sections.
1889 *
1890 * The way cpufreq is currently arranged requires it to evaluate the CPU
1891 * performance state (frequency/voltage) on a regular basis to prevent it from
1892 * being stuck in a completely inadequate performance level for too long.
1893 * That is not guaranteed to happen if the updates are only triggered from CFS,
1894 * though, because they may not be coming in if RT or deadline tasks are active
1895 * all the time (or there are RT and DL tasks only).
1896 *
1897 * As a workaround for that issue, this function is called by the RT and DL
1898 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1899 * but that really is a band-aid. Going forward it should be replaced with
1900 * solutions targeted more specifically at RT and DL tasks.
1901 */
1902 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
1903 {
1904 struct update_util_data *data;
1905
1906 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1907 if (data)
1908 data->func(data, rq_clock(rq), flags);
1909 }
1910
1911 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1912 {
1913 if (cpu_of(rq) == smp_processor_id())
1914 cpufreq_update_util(rq, flags);
1915 }
1916 #else
1917 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
1918 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
1919 #endif /* CONFIG_CPU_FREQ */
1920
1921 #ifdef arch_scale_freq_capacity
1922 #ifndef arch_scale_freq_invariant
1923 #define arch_scale_freq_invariant() (true)
1924 #endif
1925 #else /* arch_scale_freq_capacity */
1926 #define arch_scale_freq_invariant() (false)
1927 #endif