]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched/sched.h
Merge remote-tracking branches 'regulator/topic/act8865', 'regulator/topic/anatop...
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/irq_work.h>
10 #include <linux/tick.h>
11 #include <linux/slab.h>
12
13 #include "cpupri.h"
14 #include "cpudeadline.h"
15 #include "cpuacct.h"
16
17 struct rq;
18 struct cpuidle_state;
19
20 /* task_struct::on_rq states: */
21 #define TASK_ON_RQ_QUEUED 1
22 #define TASK_ON_RQ_MIGRATING 2
23
24 extern __read_mostly int scheduler_running;
25
26 extern unsigned long calc_load_update;
27 extern atomic_long_t calc_load_tasks;
28
29 extern void calc_global_load_tick(struct rq *this_rq);
30 extern long calc_load_fold_active(struct rq *this_rq);
31
32 #ifdef CONFIG_SMP
33 extern void update_cpu_load_active(struct rq *this_rq);
34 #else
35 static inline void update_cpu_load_active(struct rq *this_rq) { }
36 #endif
37
38 /*
39 * Helpers for converting nanosecond timing to jiffy resolution
40 */
41 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
42
43 /*
44 * Increase resolution of nice-level calculations for 64-bit architectures.
45 * The extra resolution improves shares distribution and load balancing of
46 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
47 * hierarchies, especially on larger systems. This is not a user-visible change
48 * and does not change the user-interface for setting shares/weights.
49 *
50 * We increase resolution only if we have enough bits to allow this increased
51 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
52 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
53 * increased costs.
54 */
55 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
56 # define SCHED_LOAD_RESOLUTION 10
57 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
58 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
59 #else
60 # define SCHED_LOAD_RESOLUTION 0
61 # define scale_load(w) (w)
62 # define scale_load_down(w) (w)
63 #endif
64
65 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
66 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
67
68 #define NICE_0_LOAD SCHED_LOAD_SCALE
69 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
70
71 /*
72 * Single value that decides SCHED_DEADLINE internal math precision.
73 * 10 -> just above 1us
74 * 9 -> just above 0.5us
75 */
76 #define DL_SCALE (10)
77
78 /*
79 * These are the 'tuning knobs' of the scheduler:
80 */
81
82 /*
83 * single value that denotes runtime == period, ie unlimited time.
84 */
85 #define RUNTIME_INF ((u64)~0ULL)
86
87 static inline int fair_policy(int policy)
88 {
89 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
90 }
91
92 static inline int rt_policy(int policy)
93 {
94 return policy == SCHED_FIFO || policy == SCHED_RR;
95 }
96
97 static inline int dl_policy(int policy)
98 {
99 return policy == SCHED_DEADLINE;
100 }
101
102 static inline int task_has_rt_policy(struct task_struct *p)
103 {
104 return rt_policy(p->policy);
105 }
106
107 static inline int task_has_dl_policy(struct task_struct *p)
108 {
109 return dl_policy(p->policy);
110 }
111
112 static inline bool dl_time_before(u64 a, u64 b)
113 {
114 return (s64)(a - b) < 0;
115 }
116
117 /*
118 * Tells if entity @a should preempt entity @b.
119 */
120 static inline bool
121 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
122 {
123 return dl_time_before(a->deadline, b->deadline);
124 }
125
126 /*
127 * This is the priority-queue data structure of the RT scheduling class:
128 */
129 struct rt_prio_array {
130 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
131 struct list_head queue[MAX_RT_PRIO];
132 };
133
134 struct rt_bandwidth {
135 /* nests inside the rq lock: */
136 raw_spinlock_t rt_runtime_lock;
137 ktime_t rt_period;
138 u64 rt_runtime;
139 struct hrtimer rt_period_timer;
140 unsigned int rt_period_active;
141 };
142
143 void __dl_clear_params(struct task_struct *p);
144
145 /*
146 * To keep the bandwidth of -deadline tasks and groups under control
147 * we need some place where:
148 * - store the maximum -deadline bandwidth of the system (the group);
149 * - cache the fraction of that bandwidth that is currently allocated.
150 *
151 * This is all done in the data structure below. It is similar to the
152 * one used for RT-throttling (rt_bandwidth), with the main difference
153 * that, since here we are only interested in admission control, we
154 * do not decrease any runtime while the group "executes", neither we
155 * need a timer to replenish it.
156 *
157 * With respect to SMP, the bandwidth is given on a per-CPU basis,
158 * meaning that:
159 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
160 * - dl_total_bw array contains, in the i-eth element, the currently
161 * allocated bandwidth on the i-eth CPU.
162 * Moreover, groups consume bandwidth on each CPU, while tasks only
163 * consume bandwidth on the CPU they're running on.
164 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
165 * that will be shown the next time the proc or cgroup controls will
166 * be red. It on its turn can be changed by writing on its own
167 * control.
168 */
169 struct dl_bandwidth {
170 raw_spinlock_t dl_runtime_lock;
171 u64 dl_runtime;
172 u64 dl_period;
173 };
174
175 static inline int dl_bandwidth_enabled(void)
176 {
177 return sysctl_sched_rt_runtime >= 0;
178 }
179
180 extern struct dl_bw *dl_bw_of(int i);
181
182 struct dl_bw {
183 raw_spinlock_t lock;
184 u64 bw, total_bw;
185 };
186
187 static inline
188 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
189 {
190 dl_b->total_bw -= tsk_bw;
191 }
192
193 static inline
194 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
195 {
196 dl_b->total_bw += tsk_bw;
197 }
198
199 static inline
200 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
201 {
202 return dl_b->bw != -1 &&
203 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
204 }
205
206 extern struct mutex sched_domains_mutex;
207
208 #ifdef CONFIG_CGROUP_SCHED
209
210 #include <linux/cgroup.h>
211
212 struct cfs_rq;
213 struct rt_rq;
214
215 extern struct list_head task_groups;
216
217 struct cfs_bandwidth {
218 #ifdef CONFIG_CFS_BANDWIDTH
219 raw_spinlock_t lock;
220 ktime_t period;
221 u64 quota, runtime;
222 s64 hierarchical_quota;
223 u64 runtime_expires;
224
225 int idle, period_active;
226 struct hrtimer period_timer, slack_timer;
227 struct list_head throttled_cfs_rq;
228
229 /* statistics */
230 int nr_periods, nr_throttled;
231 u64 throttled_time;
232 #endif
233 };
234
235 /* task group related information */
236 struct task_group {
237 struct cgroup_subsys_state css;
238
239 #ifdef CONFIG_FAIR_GROUP_SCHED
240 /* schedulable entities of this group on each cpu */
241 struct sched_entity **se;
242 /* runqueue "owned" by this group on each cpu */
243 struct cfs_rq **cfs_rq;
244 unsigned long shares;
245
246 #ifdef CONFIG_SMP
247 atomic_long_t load_avg;
248 #endif
249 #endif
250
251 #ifdef CONFIG_RT_GROUP_SCHED
252 struct sched_rt_entity **rt_se;
253 struct rt_rq **rt_rq;
254
255 struct rt_bandwidth rt_bandwidth;
256 #endif
257
258 struct rcu_head rcu;
259 struct list_head list;
260
261 struct task_group *parent;
262 struct list_head siblings;
263 struct list_head children;
264
265 #ifdef CONFIG_SCHED_AUTOGROUP
266 struct autogroup *autogroup;
267 #endif
268
269 struct cfs_bandwidth cfs_bandwidth;
270 };
271
272 #ifdef CONFIG_FAIR_GROUP_SCHED
273 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
274
275 /*
276 * A weight of 0 or 1 can cause arithmetics problems.
277 * A weight of a cfs_rq is the sum of weights of which entities
278 * are queued on this cfs_rq, so a weight of a entity should not be
279 * too large, so as the shares value of a task group.
280 * (The default weight is 1024 - so there's no practical
281 * limitation from this.)
282 */
283 #define MIN_SHARES (1UL << 1)
284 #define MAX_SHARES (1UL << 18)
285 #endif
286
287 typedef int (*tg_visitor)(struct task_group *, void *);
288
289 extern int walk_tg_tree_from(struct task_group *from,
290 tg_visitor down, tg_visitor up, void *data);
291
292 /*
293 * Iterate the full tree, calling @down when first entering a node and @up when
294 * leaving it for the final time.
295 *
296 * Caller must hold rcu_lock or sufficient equivalent.
297 */
298 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
299 {
300 return walk_tg_tree_from(&root_task_group, down, up, data);
301 }
302
303 extern int tg_nop(struct task_group *tg, void *data);
304
305 extern void free_fair_sched_group(struct task_group *tg);
306 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
307 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
308 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
309 struct sched_entity *se, int cpu,
310 struct sched_entity *parent);
311 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
312 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
313
314 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
315 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
316 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
317
318 extern void free_rt_sched_group(struct task_group *tg);
319 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
320 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
321 struct sched_rt_entity *rt_se, int cpu,
322 struct sched_rt_entity *parent);
323
324 extern struct task_group *sched_create_group(struct task_group *parent);
325 extern void sched_online_group(struct task_group *tg,
326 struct task_group *parent);
327 extern void sched_destroy_group(struct task_group *tg);
328 extern void sched_offline_group(struct task_group *tg);
329
330 extern void sched_move_task(struct task_struct *tsk);
331
332 #ifdef CONFIG_FAIR_GROUP_SCHED
333 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
334 #endif
335
336 #else /* CONFIG_CGROUP_SCHED */
337
338 struct cfs_bandwidth { };
339
340 #endif /* CONFIG_CGROUP_SCHED */
341
342 /* CFS-related fields in a runqueue */
343 struct cfs_rq {
344 struct load_weight load;
345 unsigned int nr_running, h_nr_running;
346
347 u64 exec_clock;
348 u64 min_vruntime;
349 #ifndef CONFIG_64BIT
350 u64 min_vruntime_copy;
351 #endif
352
353 struct rb_root tasks_timeline;
354 struct rb_node *rb_leftmost;
355
356 /*
357 * 'curr' points to currently running entity on this cfs_rq.
358 * It is set to NULL otherwise (i.e when none are currently running).
359 */
360 struct sched_entity *curr, *next, *last, *skip;
361
362 #ifdef CONFIG_SCHED_DEBUG
363 unsigned int nr_spread_over;
364 #endif
365
366 #ifdef CONFIG_SMP
367 /*
368 * CFS load tracking
369 */
370 struct sched_avg avg;
371 u64 runnable_load_sum;
372 unsigned long runnable_load_avg;
373 #ifdef CONFIG_FAIR_GROUP_SCHED
374 unsigned long tg_load_avg_contrib;
375 #endif
376 atomic_long_t removed_load_avg, removed_util_avg;
377 #ifndef CONFIG_64BIT
378 u64 load_last_update_time_copy;
379 #endif
380
381 #ifdef CONFIG_FAIR_GROUP_SCHED
382 /*
383 * h_load = weight * f(tg)
384 *
385 * Where f(tg) is the recursive weight fraction assigned to
386 * this group.
387 */
388 unsigned long h_load;
389 u64 last_h_load_update;
390 struct sched_entity *h_load_next;
391 #endif /* CONFIG_FAIR_GROUP_SCHED */
392 #endif /* CONFIG_SMP */
393
394 #ifdef CONFIG_FAIR_GROUP_SCHED
395 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
396
397 /*
398 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
399 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
400 * (like users, containers etc.)
401 *
402 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
403 * list is used during load balance.
404 */
405 int on_list;
406 struct list_head leaf_cfs_rq_list;
407 struct task_group *tg; /* group that "owns" this runqueue */
408
409 #ifdef CONFIG_CFS_BANDWIDTH
410 int runtime_enabled;
411 u64 runtime_expires;
412 s64 runtime_remaining;
413
414 u64 throttled_clock, throttled_clock_task;
415 u64 throttled_clock_task_time;
416 int throttled, throttle_count;
417 struct list_head throttled_list;
418 #endif /* CONFIG_CFS_BANDWIDTH */
419 #endif /* CONFIG_FAIR_GROUP_SCHED */
420 };
421
422 static inline int rt_bandwidth_enabled(void)
423 {
424 return sysctl_sched_rt_runtime >= 0;
425 }
426
427 /* RT IPI pull logic requires IRQ_WORK */
428 #ifdef CONFIG_IRQ_WORK
429 # define HAVE_RT_PUSH_IPI
430 #endif
431
432 /* Real-Time classes' related field in a runqueue: */
433 struct rt_rq {
434 struct rt_prio_array active;
435 unsigned int rt_nr_running;
436 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
437 struct {
438 int curr; /* highest queued rt task prio */
439 #ifdef CONFIG_SMP
440 int next; /* next highest */
441 #endif
442 } highest_prio;
443 #endif
444 #ifdef CONFIG_SMP
445 unsigned long rt_nr_migratory;
446 unsigned long rt_nr_total;
447 int overloaded;
448 struct plist_head pushable_tasks;
449 #ifdef HAVE_RT_PUSH_IPI
450 int push_flags;
451 int push_cpu;
452 struct irq_work push_work;
453 raw_spinlock_t push_lock;
454 #endif
455 #endif /* CONFIG_SMP */
456 int rt_queued;
457
458 int rt_throttled;
459 u64 rt_time;
460 u64 rt_runtime;
461 /* Nests inside the rq lock: */
462 raw_spinlock_t rt_runtime_lock;
463
464 #ifdef CONFIG_RT_GROUP_SCHED
465 unsigned long rt_nr_boosted;
466
467 struct rq *rq;
468 struct task_group *tg;
469 #endif
470 };
471
472 /* Deadline class' related fields in a runqueue */
473 struct dl_rq {
474 /* runqueue is an rbtree, ordered by deadline */
475 struct rb_root rb_root;
476 struct rb_node *rb_leftmost;
477
478 unsigned long dl_nr_running;
479
480 #ifdef CONFIG_SMP
481 /*
482 * Deadline values of the currently executing and the
483 * earliest ready task on this rq. Caching these facilitates
484 * the decision wether or not a ready but not running task
485 * should migrate somewhere else.
486 */
487 struct {
488 u64 curr;
489 u64 next;
490 } earliest_dl;
491
492 unsigned long dl_nr_migratory;
493 int overloaded;
494
495 /*
496 * Tasks on this rq that can be pushed away. They are kept in
497 * an rb-tree, ordered by tasks' deadlines, with caching
498 * of the leftmost (earliest deadline) element.
499 */
500 struct rb_root pushable_dl_tasks_root;
501 struct rb_node *pushable_dl_tasks_leftmost;
502 #else
503 struct dl_bw dl_bw;
504 #endif
505 };
506
507 #ifdef CONFIG_SMP
508
509 /*
510 * We add the notion of a root-domain which will be used to define per-domain
511 * variables. Each exclusive cpuset essentially defines an island domain by
512 * fully partitioning the member cpus from any other cpuset. Whenever a new
513 * exclusive cpuset is created, we also create and attach a new root-domain
514 * object.
515 *
516 */
517 struct root_domain {
518 atomic_t refcount;
519 atomic_t rto_count;
520 struct rcu_head rcu;
521 cpumask_var_t span;
522 cpumask_var_t online;
523
524 /* Indicate more than one runnable task for any CPU */
525 bool overload;
526
527 /*
528 * The bit corresponding to a CPU gets set here if such CPU has more
529 * than one runnable -deadline task (as it is below for RT tasks).
530 */
531 cpumask_var_t dlo_mask;
532 atomic_t dlo_count;
533 struct dl_bw dl_bw;
534 struct cpudl cpudl;
535
536 /*
537 * The "RT overload" flag: it gets set if a CPU has more than
538 * one runnable RT task.
539 */
540 cpumask_var_t rto_mask;
541 struct cpupri cpupri;
542 };
543
544 extern struct root_domain def_root_domain;
545
546 #endif /* CONFIG_SMP */
547
548 /*
549 * This is the main, per-CPU runqueue data structure.
550 *
551 * Locking rule: those places that want to lock multiple runqueues
552 * (such as the load balancing or the thread migration code), lock
553 * acquire operations must be ordered by ascending &runqueue.
554 */
555 struct rq {
556 /* runqueue lock: */
557 raw_spinlock_t lock;
558
559 /*
560 * nr_running and cpu_load should be in the same cacheline because
561 * remote CPUs use both these fields when doing load calculation.
562 */
563 unsigned int nr_running;
564 #ifdef CONFIG_NUMA_BALANCING
565 unsigned int nr_numa_running;
566 unsigned int nr_preferred_running;
567 #endif
568 #define CPU_LOAD_IDX_MAX 5
569 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
570 unsigned long last_load_update_tick;
571 #ifdef CONFIG_NO_HZ_COMMON
572 u64 nohz_stamp;
573 unsigned long nohz_flags;
574 #endif
575 #ifdef CONFIG_NO_HZ_FULL
576 unsigned long last_sched_tick;
577 #endif
578 /* capture load from *all* tasks on this cpu: */
579 struct load_weight load;
580 unsigned long nr_load_updates;
581 u64 nr_switches;
582
583 struct cfs_rq cfs;
584 struct rt_rq rt;
585 struct dl_rq dl;
586
587 #ifdef CONFIG_FAIR_GROUP_SCHED
588 /* list of leaf cfs_rq on this cpu: */
589 struct list_head leaf_cfs_rq_list;
590 #endif /* CONFIG_FAIR_GROUP_SCHED */
591
592 /*
593 * This is part of a global counter where only the total sum
594 * over all CPUs matters. A task can increase this counter on
595 * one CPU and if it got migrated afterwards it may decrease
596 * it on another CPU. Always updated under the runqueue lock:
597 */
598 unsigned long nr_uninterruptible;
599
600 struct task_struct *curr, *idle, *stop;
601 unsigned long next_balance;
602 struct mm_struct *prev_mm;
603
604 unsigned int clock_skip_update;
605 u64 clock;
606 u64 clock_task;
607
608 atomic_t nr_iowait;
609
610 #ifdef CONFIG_SMP
611 struct root_domain *rd;
612 struct sched_domain *sd;
613
614 unsigned long cpu_capacity;
615 unsigned long cpu_capacity_orig;
616
617 struct callback_head *balance_callback;
618
619 unsigned char idle_balance;
620 /* For active balancing */
621 int active_balance;
622 int push_cpu;
623 struct cpu_stop_work active_balance_work;
624 /* cpu of this runqueue: */
625 int cpu;
626 int online;
627
628 struct list_head cfs_tasks;
629
630 u64 rt_avg;
631 u64 age_stamp;
632 u64 idle_stamp;
633 u64 avg_idle;
634
635 /* This is used to determine avg_idle's max value */
636 u64 max_idle_balance_cost;
637 #endif
638
639 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
640 u64 prev_irq_time;
641 #endif
642 #ifdef CONFIG_PARAVIRT
643 u64 prev_steal_time;
644 #endif
645 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
646 u64 prev_steal_time_rq;
647 #endif
648
649 /* calc_load related fields */
650 unsigned long calc_load_update;
651 long calc_load_active;
652
653 #ifdef CONFIG_SCHED_HRTICK
654 #ifdef CONFIG_SMP
655 int hrtick_csd_pending;
656 struct call_single_data hrtick_csd;
657 #endif
658 struct hrtimer hrtick_timer;
659 #endif
660
661 #ifdef CONFIG_SCHEDSTATS
662 /* latency stats */
663 struct sched_info rq_sched_info;
664 unsigned long long rq_cpu_time;
665 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
666
667 /* sys_sched_yield() stats */
668 unsigned int yld_count;
669
670 /* schedule() stats */
671 unsigned int sched_count;
672 unsigned int sched_goidle;
673
674 /* try_to_wake_up() stats */
675 unsigned int ttwu_count;
676 unsigned int ttwu_local;
677 #endif
678
679 #ifdef CONFIG_SMP
680 struct llist_head wake_list;
681 #endif
682
683 #ifdef CONFIG_CPU_IDLE
684 /* Must be inspected within a rcu lock section */
685 struct cpuidle_state *idle_state;
686 #endif
687 };
688
689 static inline int cpu_of(struct rq *rq)
690 {
691 #ifdef CONFIG_SMP
692 return rq->cpu;
693 #else
694 return 0;
695 #endif
696 }
697
698 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
699
700 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
701 #define this_rq() this_cpu_ptr(&runqueues)
702 #define task_rq(p) cpu_rq(task_cpu(p))
703 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
704 #define raw_rq() raw_cpu_ptr(&runqueues)
705
706 static inline u64 __rq_clock_broken(struct rq *rq)
707 {
708 return READ_ONCE(rq->clock);
709 }
710
711 static inline u64 rq_clock(struct rq *rq)
712 {
713 lockdep_assert_held(&rq->lock);
714 return rq->clock;
715 }
716
717 static inline u64 rq_clock_task(struct rq *rq)
718 {
719 lockdep_assert_held(&rq->lock);
720 return rq->clock_task;
721 }
722
723 #define RQCF_REQ_SKIP 0x01
724 #define RQCF_ACT_SKIP 0x02
725
726 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
727 {
728 lockdep_assert_held(&rq->lock);
729 if (skip)
730 rq->clock_skip_update |= RQCF_REQ_SKIP;
731 else
732 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
733 }
734
735 #ifdef CONFIG_NUMA
736 enum numa_topology_type {
737 NUMA_DIRECT,
738 NUMA_GLUELESS_MESH,
739 NUMA_BACKPLANE,
740 };
741 extern enum numa_topology_type sched_numa_topology_type;
742 extern int sched_max_numa_distance;
743 extern bool find_numa_distance(int distance);
744 #endif
745
746 #ifdef CONFIG_NUMA_BALANCING
747 /* The regions in numa_faults array from task_struct */
748 enum numa_faults_stats {
749 NUMA_MEM = 0,
750 NUMA_CPU,
751 NUMA_MEMBUF,
752 NUMA_CPUBUF
753 };
754 extern void sched_setnuma(struct task_struct *p, int node);
755 extern int migrate_task_to(struct task_struct *p, int cpu);
756 extern int migrate_swap(struct task_struct *, struct task_struct *);
757 #endif /* CONFIG_NUMA_BALANCING */
758
759 #ifdef CONFIG_SMP
760
761 static inline void
762 queue_balance_callback(struct rq *rq,
763 struct callback_head *head,
764 void (*func)(struct rq *rq))
765 {
766 lockdep_assert_held(&rq->lock);
767
768 if (unlikely(head->next))
769 return;
770
771 head->func = (void (*)(struct callback_head *))func;
772 head->next = rq->balance_callback;
773 rq->balance_callback = head;
774 }
775
776 extern void sched_ttwu_pending(void);
777
778 #define rcu_dereference_check_sched_domain(p) \
779 rcu_dereference_check((p), \
780 lockdep_is_held(&sched_domains_mutex))
781
782 /*
783 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
784 * See detach_destroy_domains: synchronize_sched for details.
785 *
786 * The domain tree of any CPU may only be accessed from within
787 * preempt-disabled sections.
788 */
789 #define for_each_domain(cpu, __sd) \
790 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
791 __sd; __sd = __sd->parent)
792
793 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
794
795 /**
796 * highest_flag_domain - Return highest sched_domain containing flag.
797 * @cpu: The cpu whose highest level of sched domain is to
798 * be returned.
799 * @flag: The flag to check for the highest sched_domain
800 * for the given cpu.
801 *
802 * Returns the highest sched_domain of a cpu which contains the given flag.
803 */
804 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
805 {
806 struct sched_domain *sd, *hsd = NULL;
807
808 for_each_domain(cpu, sd) {
809 if (!(sd->flags & flag))
810 break;
811 hsd = sd;
812 }
813
814 return hsd;
815 }
816
817 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
818 {
819 struct sched_domain *sd;
820
821 for_each_domain(cpu, sd) {
822 if (sd->flags & flag)
823 break;
824 }
825
826 return sd;
827 }
828
829 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
830 DECLARE_PER_CPU(int, sd_llc_size);
831 DECLARE_PER_CPU(int, sd_llc_id);
832 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
833 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
834 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
835
836 struct sched_group_capacity {
837 atomic_t ref;
838 /*
839 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
840 * for a single CPU.
841 */
842 unsigned int capacity;
843 unsigned long next_update;
844 int imbalance; /* XXX unrelated to capacity but shared group state */
845 /*
846 * Number of busy cpus in this group.
847 */
848 atomic_t nr_busy_cpus;
849
850 unsigned long cpumask[0]; /* iteration mask */
851 };
852
853 struct sched_group {
854 struct sched_group *next; /* Must be a circular list */
855 atomic_t ref;
856
857 unsigned int group_weight;
858 struct sched_group_capacity *sgc;
859
860 /*
861 * The CPUs this group covers.
862 *
863 * NOTE: this field is variable length. (Allocated dynamically
864 * by attaching extra space to the end of the structure,
865 * depending on how many CPUs the kernel has booted up with)
866 */
867 unsigned long cpumask[0];
868 };
869
870 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
871 {
872 return to_cpumask(sg->cpumask);
873 }
874
875 /*
876 * cpumask masking which cpus in the group are allowed to iterate up the domain
877 * tree.
878 */
879 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
880 {
881 return to_cpumask(sg->sgc->cpumask);
882 }
883
884 /**
885 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
886 * @group: The group whose first cpu is to be returned.
887 */
888 static inline unsigned int group_first_cpu(struct sched_group *group)
889 {
890 return cpumask_first(sched_group_cpus(group));
891 }
892
893 extern int group_balance_cpu(struct sched_group *sg);
894
895 #else
896
897 static inline void sched_ttwu_pending(void) { }
898
899 #endif /* CONFIG_SMP */
900
901 #include "stats.h"
902 #include "auto_group.h"
903
904 #ifdef CONFIG_CGROUP_SCHED
905
906 /*
907 * Return the group to which this tasks belongs.
908 *
909 * We cannot use task_css() and friends because the cgroup subsystem
910 * changes that value before the cgroup_subsys::attach() method is called,
911 * therefore we cannot pin it and might observe the wrong value.
912 *
913 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
914 * core changes this before calling sched_move_task().
915 *
916 * Instead we use a 'copy' which is updated from sched_move_task() while
917 * holding both task_struct::pi_lock and rq::lock.
918 */
919 static inline struct task_group *task_group(struct task_struct *p)
920 {
921 return p->sched_task_group;
922 }
923
924 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
925 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
926 {
927 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
928 struct task_group *tg = task_group(p);
929 #endif
930
931 #ifdef CONFIG_FAIR_GROUP_SCHED
932 p->se.cfs_rq = tg->cfs_rq[cpu];
933 p->se.parent = tg->se[cpu];
934 #endif
935
936 #ifdef CONFIG_RT_GROUP_SCHED
937 p->rt.rt_rq = tg->rt_rq[cpu];
938 p->rt.parent = tg->rt_se[cpu];
939 #endif
940 }
941
942 #else /* CONFIG_CGROUP_SCHED */
943
944 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
945 static inline struct task_group *task_group(struct task_struct *p)
946 {
947 return NULL;
948 }
949
950 #endif /* CONFIG_CGROUP_SCHED */
951
952 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
953 {
954 set_task_rq(p, cpu);
955 #ifdef CONFIG_SMP
956 /*
957 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
958 * successfuly executed on another CPU. We must ensure that updates of
959 * per-task data have been completed by this moment.
960 */
961 smp_wmb();
962 task_thread_info(p)->cpu = cpu;
963 p->wake_cpu = cpu;
964 #endif
965 }
966
967 /*
968 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
969 */
970 #ifdef CONFIG_SCHED_DEBUG
971 # include <linux/static_key.h>
972 # define const_debug __read_mostly
973 #else
974 # define const_debug const
975 #endif
976
977 extern const_debug unsigned int sysctl_sched_features;
978
979 #define SCHED_FEAT(name, enabled) \
980 __SCHED_FEAT_##name ,
981
982 enum {
983 #include "features.h"
984 __SCHED_FEAT_NR,
985 };
986
987 #undef SCHED_FEAT
988
989 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
990 #define SCHED_FEAT(name, enabled) \
991 static __always_inline bool static_branch_##name(struct static_key *key) \
992 { \
993 return static_key_##enabled(key); \
994 }
995
996 #include "features.h"
997
998 #undef SCHED_FEAT
999
1000 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1001 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1002 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1003 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1004 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1005
1006 #ifdef CONFIG_NUMA_BALANCING
1007 #define sched_feat_numa(x) sched_feat(x)
1008 #ifdef CONFIG_SCHED_DEBUG
1009 #define numabalancing_enabled sched_feat_numa(NUMA)
1010 #else
1011 extern bool numabalancing_enabled;
1012 #endif /* CONFIG_SCHED_DEBUG */
1013 #else
1014 #define sched_feat_numa(x) (0)
1015 #define numabalancing_enabled (0)
1016 #endif /* CONFIG_NUMA_BALANCING */
1017
1018 static inline u64 global_rt_period(void)
1019 {
1020 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1021 }
1022
1023 static inline u64 global_rt_runtime(void)
1024 {
1025 if (sysctl_sched_rt_runtime < 0)
1026 return RUNTIME_INF;
1027
1028 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1029 }
1030
1031 static inline int task_current(struct rq *rq, struct task_struct *p)
1032 {
1033 return rq->curr == p;
1034 }
1035
1036 static inline int task_running(struct rq *rq, struct task_struct *p)
1037 {
1038 #ifdef CONFIG_SMP
1039 return p->on_cpu;
1040 #else
1041 return task_current(rq, p);
1042 #endif
1043 }
1044
1045 static inline int task_on_rq_queued(struct task_struct *p)
1046 {
1047 return p->on_rq == TASK_ON_RQ_QUEUED;
1048 }
1049
1050 static inline int task_on_rq_migrating(struct task_struct *p)
1051 {
1052 return p->on_rq == TASK_ON_RQ_MIGRATING;
1053 }
1054
1055 #ifndef prepare_arch_switch
1056 # define prepare_arch_switch(next) do { } while (0)
1057 #endif
1058 #ifndef finish_arch_post_lock_switch
1059 # define finish_arch_post_lock_switch() do { } while (0)
1060 #endif
1061
1062 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1063 {
1064 #ifdef CONFIG_SMP
1065 /*
1066 * We can optimise this out completely for !SMP, because the
1067 * SMP rebalancing from interrupt is the only thing that cares
1068 * here.
1069 */
1070 next->on_cpu = 1;
1071 #endif
1072 }
1073
1074 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1075 {
1076 #ifdef CONFIG_SMP
1077 /*
1078 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1079 * We must ensure this doesn't happen until the switch is completely
1080 * finished.
1081 *
1082 * Pairs with the control dependency and rmb in try_to_wake_up().
1083 */
1084 smp_store_release(&prev->on_cpu, 0);
1085 #endif
1086 #ifdef CONFIG_DEBUG_SPINLOCK
1087 /* this is a valid case when another task releases the spinlock */
1088 rq->lock.owner = current;
1089 #endif
1090 /*
1091 * If we are tracking spinlock dependencies then we have to
1092 * fix up the runqueue lock - which gets 'carried over' from
1093 * prev into current:
1094 */
1095 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1096
1097 raw_spin_unlock_irq(&rq->lock);
1098 }
1099
1100 /*
1101 * wake flags
1102 */
1103 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1104 #define WF_FORK 0x02 /* child wakeup after fork */
1105 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1106
1107 /*
1108 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1109 * of tasks with abnormal "nice" values across CPUs the contribution that
1110 * each task makes to its run queue's load is weighted according to its
1111 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1112 * scaled version of the new time slice allocation that they receive on time
1113 * slice expiry etc.
1114 */
1115
1116 #define WEIGHT_IDLEPRIO 3
1117 #define WMULT_IDLEPRIO 1431655765
1118
1119 /*
1120 * Nice levels are multiplicative, with a gentle 10% change for every
1121 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1122 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1123 * that remained on nice 0.
1124 *
1125 * The "10% effect" is relative and cumulative: from _any_ nice level,
1126 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1127 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1128 * If a task goes up by ~10% and another task goes down by ~10% then
1129 * the relative distance between them is ~25%.)
1130 */
1131 static const int prio_to_weight[40] = {
1132 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1133 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1134 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1135 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1136 /* 0 */ 1024, 820, 655, 526, 423,
1137 /* 5 */ 335, 272, 215, 172, 137,
1138 /* 10 */ 110, 87, 70, 56, 45,
1139 /* 15 */ 36, 29, 23, 18, 15,
1140 };
1141
1142 /*
1143 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1144 *
1145 * In cases where the weight does not change often, we can use the
1146 * precalculated inverse to speed up arithmetics by turning divisions
1147 * into multiplications:
1148 */
1149 static const u32 prio_to_wmult[40] = {
1150 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1151 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1152 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1153 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1154 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1155 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1156 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1157 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1158 };
1159
1160 #define ENQUEUE_WAKEUP 1
1161 #define ENQUEUE_HEAD 2
1162 #ifdef CONFIG_SMP
1163 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1164 #else
1165 #define ENQUEUE_WAKING 0
1166 #endif
1167 #define ENQUEUE_REPLENISH 8
1168
1169 #define DEQUEUE_SLEEP 1
1170
1171 #define RETRY_TASK ((void *)-1UL)
1172
1173 struct sched_class {
1174 const struct sched_class *next;
1175
1176 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1177 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1178 void (*yield_task) (struct rq *rq);
1179 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1180
1181 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1182
1183 /*
1184 * It is the responsibility of the pick_next_task() method that will
1185 * return the next task to call put_prev_task() on the @prev task or
1186 * something equivalent.
1187 *
1188 * May return RETRY_TASK when it finds a higher prio class has runnable
1189 * tasks.
1190 */
1191 struct task_struct * (*pick_next_task) (struct rq *rq,
1192 struct task_struct *prev);
1193 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1194
1195 #ifdef CONFIG_SMP
1196 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1197 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1198
1199 void (*task_waking) (struct task_struct *task);
1200 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1201
1202 void (*set_cpus_allowed)(struct task_struct *p,
1203 const struct cpumask *newmask);
1204
1205 void (*rq_online)(struct rq *rq);
1206 void (*rq_offline)(struct rq *rq);
1207 #endif
1208
1209 void (*set_curr_task) (struct rq *rq);
1210 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1211 void (*task_fork) (struct task_struct *p);
1212 void (*task_dead) (struct task_struct *p);
1213
1214 /*
1215 * The switched_from() call is allowed to drop rq->lock, therefore we
1216 * cannot assume the switched_from/switched_to pair is serliazed by
1217 * rq->lock. They are however serialized by p->pi_lock.
1218 */
1219 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1220 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1221 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1222 int oldprio);
1223
1224 unsigned int (*get_rr_interval) (struct rq *rq,
1225 struct task_struct *task);
1226
1227 void (*update_curr) (struct rq *rq);
1228
1229 #ifdef CONFIG_FAIR_GROUP_SCHED
1230 void (*task_move_group) (struct task_struct *p, int on_rq);
1231 #endif
1232 };
1233
1234 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1235 {
1236 prev->sched_class->put_prev_task(rq, prev);
1237 }
1238
1239 #define sched_class_highest (&stop_sched_class)
1240 #define for_each_class(class) \
1241 for (class = sched_class_highest; class; class = class->next)
1242
1243 extern const struct sched_class stop_sched_class;
1244 extern const struct sched_class dl_sched_class;
1245 extern const struct sched_class rt_sched_class;
1246 extern const struct sched_class fair_sched_class;
1247 extern const struct sched_class idle_sched_class;
1248
1249
1250 #ifdef CONFIG_SMP
1251
1252 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1253
1254 extern void trigger_load_balance(struct rq *rq);
1255
1256 extern void idle_enter_fair(struct rq *this_rq);
1257 extern void idle_exit_fair(struct rq *this_rq);
1258
1259 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1260
1261 #else
1262
1263 static inline void idle_enter_fair(struct rq *rq) { }
1264 static inline void idle_exit_fair(struct rq *rq) { }
1265
1266 #endif
1267
1268 #ifdef CONFIG_CPU_IDLE
1269 static inline void idle_set_state(struct rq *rq,
1270 struct cpuidle_state *idle_state)
1271 {
1272 rq->idle_state = idle_state;
1273 }
1274
1275 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1276 {
1277 WARN_ON(!rcu_read_lock_held());
1278 return rq->idle_state;
1279 }
1280 #else
1281 static inline void idle_set_state(struct rq *rq,
1282 struct cpuidle_state *idle_state)
1283 {
1284 }
1285
1286 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1287 {
1288 return NULL;
1289 }
1290 #endif
1291
1292 extern void sysrq_sched_debug_show(void);
1293 extern void sched_init_granularity(void);
1294 extern void update_max_interval(void);
1295
1296 extern void init_sched_dl_class(void);
1297 extern void init_sched_rt_class(void);
1298 extern void init_sched_fair_class(void);
1299
1300 extern void resched_curr(struct rq *rq);
1301 extern void resched_cpu(int cpu);
1302
1303 extern struct rt_bandwidth def_rt_bandwidth;
1304 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1305
1306 extern struct dl_bandwidth def_dl_bandwidth;
1307 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1308 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1309
1310 unsigned long to_ratio(u64 period, u64 runtime);
1311
1312 extern void init_entity_runnable_average(struct sched_entity *se);
1313
1314 static inline void add_nr_running(struct rq *rq, unsigned count)
1315 {
1316 unsigned prev_nr = rq->nr_running;
1317
1318 rq->nr_running = prev_nr + count;
1319
1320 if (prev_nr < 2 && rq->nr_running >= 2) {
1321 #ifdef CONFIG_SMP
1322 if (!rq->rd->overload)
1323 rq->rd->overload = true;
1324 #endif
1325
1326 #ifdef CONFIG_NO_HZ_FULL
1327 if (tick_nohz_full_cpu(rq->cpu)) {
1328 /*
1329 * Tick is needed if more than one task runs on a CPU.
1330 * Send the target an IPI to kick it out of nohz mode.
1331 *
1332 * We assume that IPI implies full memory barrier and the
1333 * new value of rq->nr_running is visible on reception
1334 * from the target.
1335 */
1336 tick_nohz_full_kick_cpu(rq->cpu);
1337 }
1338 #endif
1339 }
1340 }
1341
1342 static inline void sub_nr_running(struct rq *rq, unsigned count)
1343 {
1344 rq->nr_running -= count;
1345 }
1346
1347 static inline void rq_last_tick_reset(struct rq *rq)
1348 {
1349 #ifdef CONFIG_NO_HZ_FULL
1350 rq->last_sched_tick = jiffies;
1351 #endif
1352 }
1353
1354 extern void update_rq_clock(struct rq *rq);
1355
1356 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1357 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1358
1359 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1360
1361 extern const_debug unsigned int sysctl_sched_time_avg;
1362 extern const_debug unsigned int sysctl_sched_nr_migrate;
1363 extern const_debug unsigned int sysctl_sched_migration_cost;
1364
1365 static inline u64 sched_avg_period(void)
1366 {
1367 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1368 }
1369
1370 #ifdef CONFIG_SCHED_HRTICK
1371
1372 /*
1373 * Use hrtick when:
1374 * - enabled by features
1375 * - hrtimer is actually high res
1376 */
1377 static inline int hrtick_enabled(struct rq *rq)
1378 {
1379 if (!sched_feat(HRTICK))
1380 return 0;
1381 if (!cpu_active(cpu_of(rq)))
1382 return 0;
1383 return hrtimer_is_hres_active(&rq->hrtick_timer);
1384 }
1385
1386 void hrtick_start(struct rq *rq, u64 delay);
1387
1388 #else
1389
1390 static inline int hrtick_enabled(struct rq *rq)
1391 {
1392 return 0;
1393 }
1394
1395 #endif /* CONFIG_SCHED_HRTICK */
1396
1397 #ifdef CONFIG_SMP
1398 extern void sched_avg_update(struct rq *rq);
1399
1400 #ifndef arch_scale_freq_capacity
1401 static __always_inline
1402 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1403 {
1404 return SCHED_CAPACITY_SCALE;
1405 }
1406 #endif
1407
1408 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1409 {
1410 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1411 sched_avg_update(rq);
1412 }
1413 #else
1414 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1415 static inline void sched_avg_update(struct rq *rq) { }
1416 #endif
1417
1418 /*
1419 * __task_rq_lock - lock the rq @p resides on.
1420 */
1421 static inline struct rq *__task_rq_lock(struct task_struct *p)
1422 __acquires(rq->lock)
1423 {
1424 struct rq *rq;
1425
1426 lockdep_assert_held(&p->pi_lock);
1427
1428 for (;;) {
1429 rq = task_rq(p);
1430 raw_spin_lock(&rq->lock);
1431 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1432 lockdep_pin_lock(&rq->lock);
1433 return rq;
1434 }
1435 raw_spin_unlock(&rq->lock);
1436
1437 while (unlikely(task_on_rq_migrating(p)))
1438 cpu_relax();
1439 }
1440 }
1441
1442 /*
1443 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1444 */
1445 static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1446 __acquires(p->pi_lock)
1447 __acquires(rq->lock)
1448 {
1449 struct rq *rq;
1450
1451 for (;;) {
1452 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1453 rq = task_rq(p);
1454 raw_spin_lock(&rq->lock);
1455 /*
1456 * move_queued_task() task_rq_lock()
1457 *
1458 * ACQUIRE (rq->lock)
1459 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1460 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1461 * [S] ->cpu = new_cpu [L] task_rq()
1462 * [L] ->on_rq
1463 * RELEASE (rq->lock)
1464 *
1465 * If we observe the old cpu in task_rq_lock, the acquire of
1466 * the old rq->lock will fully serialize against the stores.
1467 *
1468 * If we observe the new cpu in task_rq_lock, the acquire will
1469 * pair with the WMB to ensure we must then also see migrating.
1470 */
1471 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1472 lockdep_pin_lock(&rq->lock);
1473 return rq;
1474 }
1475 raw_spin_unlock(&rq->lock);
1476 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1477
1478 while (unlikely(task_on_rq_migrating(p)))
1479 cpu_relax();
1480 }
1481 }
1482
1483 static inline void __task_rq_unlock(struct rq *rq)
1484 __releases(rq->lock)
1485 {
1486 lockdep_unpin_lock(&rq->lock);
1487 raw_spin_unlock(&rq->lock);
1488 }
1489
1490 static inline void
1491 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1492 __releases(rq->lock)
1493 __releases(p->pi_lock)
1494 {
1495 lockdep_unpin_lock(&rq->lock);
1496 raw_spin_unlock(&rq->lock);
1497 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1498 }
1499
1500 #ifdef CONFIG_SMP
1501 #ifdef CONFIG_PREEMPT
1502
1503 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1504
1505 /*
1506 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1507 * way at the expense of forcing extra atomic operations in all
1508 * invocations. This assures that the double_lock is acquired using the
1509 * same underlying policy as the spinlock_t on this architecture, which
1510 * reduces latency compared to the unfair variant below. However, it
1511 * also adds more overhead and therefore may reduce throughput.
1512 */
1513 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1514 __releases(this_rq->lock)
1515 __acquires(busiest->lock)
1516 __acquires(this_rq->lock)
1517 {
1518 raw_spin_unlock(&this_rq->lock);
1519 double_rq_lock(this_rq, busiest);
1520
1521 return 1;
1522 }
1523
1524 #else
1525 /*
1526 * Unfair double_lock_balance: Optimizes throughput at the expense of
1527 * latency by eliminating extra atomic operations when the locks are
1528 * already in proper order on entry. This favors lower cpu-ids and will
1529 * grant the double lock to lower cpus over higher ids under contention,
1530 * regardless of entry order into the function.
1531 */
1532 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1533 __releases(this_rq->lock)
1534 __acquires(busiest->lock)
1535 __acquires(this_rq->lock)
1536 {
1537 int ret = 0;
1538
1539 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1540 if (busiest < this_rq) {
1541 raw_spin_unlock(&this_rq->lock);
1542 raw_spin_lock(&busiest->lock);
1543 raw_spin_lock_nested(&this_rq->lock,
1544 SINGLE_DEPTH_NESTING);
1545 ret = 1;
1546 } else
1547 raw_spin_lock_nested(&busiest->lock,
1548 SINGLE_DEPTH_NESTING);
1549 }
1550 return ret;
1551 }
1552
1553 #endif /* CONFIG_PREEMPT */
1554
1555 /*
1556 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1557 */
1558 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1559 {
1560 if (unlikely(!irqs_disabled())) {
1561 /* printk() doesn't work good under rq->lock */
1562 raw_spin_unlock(&this_rq->lock);
1563 BUG_ON(1);
1564 }
1565
1566 return _double_lock_balance(this_rq, busiest);
1567 }
1568
1569 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1570 __releases(busiest->lock)
1571 {
1572 raw_spin_unlock(&busiest->lock);
1573 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1574 }
1575
1576 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1577 {
1578 if (l1 > l2)
1579 swap(l1, l2);
1580
1581 spin_lock(l1);
1582 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1583 }
1584
1585 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1586 {
1587 if (l1 > l2)
1588 swap(l1, l2);
1589
1590 spin_lock_irq(l1);
1591 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1592 }
1593
1594 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1595 {
1596 if (l1 > l2)
1597 swap(l1, l2);
1598
1599 raw_spin_lock(l1);
1600 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1601 }
1602
1603 /*
1604 * double_rq_lock - safely lock two runqueues
1605 *
1606 * Note this does not disable interrupts like task_rq_lock,
1607 * you need to do so manually before calling.
1608 */
1609 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1610 __acquires(rq1->lock)
1611 __acquires(rq2->lock)
1612 {
1613 BUG_ON(!irqs_disabled());
1614 if (rq1 == rq2) {
1615 raw_spin_lock(&rq1->lock);
1616 __acquire(rq2->lock); /* Fake it out ;) */
1617 } else {
1618 if (rq1 < rq2) {
1619 raw_spin_lock(&rq1->lock);
1620 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1621 } else {
1622 raw_spin_lock(&rq2->lock);
1623 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1624 }
1625 }
1626 }
1627
1628 /*
1629 * double_rq_unlock - safely unlock two runqueues
1630 *
1631 * Note this does not restore interrupts like task_rq_unlock,
1632 * you need to do so manually after calling.
1633 */
1634 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1635 __releases(rq1->lock)
1636 __releases(rq2->lock)
1637 {
1638 raw_spin_unlock(&rq1->lock);
1639 if (rq1 != rq2)
1640 raw_spin_unlock(&rq2->lock);
1641 else
1642 __release(rq2->lock);
1643 }
1644
1645 #else /* CONFIG_SMP */
1646
1647 /*
1648 * double_rq_lock - safely lock two runqueues
1649 *
1650 * Note this does not disable interrupts like task_rq_lock,
1651 * you need to do so manually before calling.
1652 */
1653 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1654 __acquires(rq1->lock)
1655 __acquires(rq2->lock)
1656 {
1657 BUG_ON(!irqs_disabled());
1658 BUG_ON(rq1 != rq2);
1659 raw_spin_lock(&rq1->lock);
1660 __acquire(rq2->lock); /* Fake it out ;) */
1661 }
1662
1663 /*
1664 * double_rq_unlock - safely unlock two runqueues
1665 *
1666 * Note this does not restore interrupts like task_rq_unlock,
1667 * you need to do so manually after calling.
1668 */
1669 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1670 __releases(rq1->lock)
1671 __releases(rq2->lock)
1672 {
1673 BUG_ON(rq1 != rq2);
1674 raw_spin_unlock(&rq1->lock);
1675 __release(rq2->lock);
1676 }
1677
1678 #endif
1679
1680 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1681 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1682
1683 #ifdef CONFIG_SCHED_DEBUG
1684 extern void print_cfs_stats(struct seq_file *m, int cpu);
1685 extern void print_rt_stats(struct seq_file *m, int cpu);
1686 extern void print_dl_stats(struct seq_file *m, int cpu);
1687 extern void
1688 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1689
1690 #ifdef CONFIG_NUMA_BALANCING
1691 extern void
1692 show_numa_stats(struct task_struct *p, struct seq_file *m);
1693 extern void
1694 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1695 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1696 #endif /* CONFIG_NUMA_BALANCING */
1697 #endif /* CONFIG_SCHED_DEBUG */
1698
1699 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1700 extern void init_rt_rq(struct rt_rq *rt_rq);
1701 extern void init_dl_rq(struct dl_rq *dl_rq);
1702
1703 extern void cfs_bandwidth_usage_inc(void);
1704 extern void cfs_bandwidth_usage_dec(void);
1705
1706 #ifdef CONFIG_NO_HZ_COMMON
1707 enum rq_nohz_flag_bits {
1708 NOHZ_TICK_STOPPED,
1709 NOHZ_BALANCE_KICK,
1710 };
1711
1712 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1713 #endif
1714
1715 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1716
1717 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1718 DECLARE_PER_CPU(u64, cpu_softirq_time);
1719
1720 #ifndef CONFIG_64BIT
1721 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1722
1723 static inline void irq_time_write_begin(void)
1724 {
1725 __this_cpu_inc(irq_time_seq.sequence);
1726 smp_wmb();
1727 }
1728
1729 static inline void irq_time_write_end(void)
1730 {
1731 smp_wmb();
1732 __this_cpu_inc(irq_time_seq.sequence);
1733 }
1734
1735 static inline u64 irq_time_read(int cpu)
1736 {
1737 u64 irq_time;
1738 unsigned seq;
1739
1740 do {
1741 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1742 irq_time = per_cpu(cpu_softirq_time, cpu) +
1743 per_cpu(cpu_hardirq_time, cpu);
1744 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1745
1746 return irq_time;
1747 }
1748 #else /* CONFIG_64BIT */
1749 static inline void irq_time_write_begin(void)
1750 {
1751 }
1752
1753 static inline void irq_time_write_end(void)
1754 {
1755 }
1756
1757 static inline u64 irq_time_read(int cpu)
1758 {
1759 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1760 }
1761 #endif /* CONFIG_64BIT */
1762 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */