]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/sched.h
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/autogroup.h>
4 #include <linux/sched/sysctl.h>
5 #include <linux/sched/topology.h>
6 #include <linux/sched/rt.h>
7 #include <linux/sched/deadline.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/wake_q.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/sched/mm.h>
13 #include <linux/sched/cpufreq.h>
14 #include <linux/sched/stat.h>
15 #include <linux/sched/nohz.h>
16 #include <linux/sched/debug.h>
17 #include <linux/sched/hotplug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/cputime.h>
21 #include <linux/sched/init.h>
22
23 #include <linux/u64_stats_sync.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/binfmts.h>
26 #include <linux/mutex.h>
27 #include <linux/spinlock.h>
28 #include <linux/stop_machine.h>
29 #include <linux/irq_work.h>
30 #include <linux/tick.h>
31 #include <linux/slab.h>
32
33 #ifdef CONFIG_PARAVIRT
34 #include <asm/paravirt.h>
35 #endif
36
37 #include "cpupri.h"
38 #include "cpudeadline.h"
39 #include "cpuacct.h"
40
41 #ifdef CONFIG_SCHED_DEBUG
42 #define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
43 #else
44 #define SCHED_WARN_ON(x) ((void)(x))
45 #endif
46
47 struct rq;
48 struct cpuidle_state;
49
50 /* task_struct::on_rq states: */
51 #define TASK_ON_RQ_QUEUED 1
52 #define TASK_ON_RQ_MIGRATING 2
53
54 extern __read_mostly int scheduler_running;
55
56 extern unsigned long calc_load_update;
57 extern atomic_long_t calc_load_tasks;
58
59 extern void calc_global_load_tick(struct rq *this_rq);
60 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
61
62 #ifdef CONFIG_SMP
63 extern void cpu_load_update_active(struct rq *this_rq);
64 #else
65 static inline void cpu_load_update_active(struct rq *this_rq) { }
66 #endif
67
68 /*
69 * Helpers for converting nanosecond timing to jiffy resolution
70 */
71 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
72
73 /*
74 * Increase resolution of nice-level calculations for 64-bit architectures.
75 * The extra resolution improves shares distribution and load balancing of
76 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
77 * hierarchies, especially on larger systems. This is not a user-visible change
78 * and does not change the user-interface for setting shares/weights.
79 *
80 * We increase resolution only if we have enough bits to allow this increased
81 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
82 * pretty high and the returns do not justify the increased costs.
83 *
84 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
85 * increase coverage and consistency always enable it on 64bit platforms.
86 */
87 #ifdef CONFIG_64BIT
88 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
89 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
90 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
91 #else
92 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
93 # define scale_load(w) (w)
94 # define scale_load_down(w) (w)
95 #endif
96
97 /*
98 * Task weight (visible to users) and its load (invisible to users) have
99 * independent resolution, but they should be well calibrated. We use
100 * scale_load() and scale_load_down(w) to convert between them. The
101 * following must be true:
102 *
103 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
104 *
105 */
106 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
107
108 /*
109 * Single value that decides SCHED_DEADLINE internal math precision.
110 * 10 -> just above 1us
111 * 9 -> just above 0.5us
112 */
113 #define DL_SCALE (10)
114
115 /*
116 * These are the 'tuning knobs' of the scheduler:
117 */
118
119 /*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122 #define RUNTIME_INF ((u64)~0ULL)
123
124 static inline int idle_policy(int policy)
125 {
126 return policy == SCHED_IDLE;
127 }
128 static inline int fair_policy(int policy)
129 {
130 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
131 }
132
133 static inline int rt_policy(int policy)
134 {
135 return policy == SCHED_FIFO || policy == SCHED_RR;
136 }
137
138 static inline int dl_policy(int policy)
139 {
140 return policy == SCHED_DEADLINE;
141 }
142 static inline bool valid_policy(int policy)
143 {
144 return idle_policy(policy) || fair_policy(policy) ||
145 rt_policy(policy) || dl_policy(policy);
146 }
147
148 static inline int task_has_rt_policy(struct task_struct *p)
149 {
150 return rt_policy(p->policy);
151 }
152
153 static inline int task_has_dl_policy(struct task_struct *p)
154 {
155 return dl_policy(p->policy);
156 }
157
158 /*
159 * Tells if entity @a should preempt entity @b.
160 */
161 static inline bool
162 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
163 {
164 return dl_time_before(a->deadline, b->deadline);
165 }
166
167 /*
168 * This is the priority-queue data structure of the RT scheduling class:
169 */
170 struct rt_prio_array {
171 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
172 struct list_head queue[MAX_RT_PRIO];
173 };
174
175 struct rt_bandwidth {
176 /* nests inside the rq lock: */
177 raw_spinlock_t rt_runtime_lock;
178 ktime_t rt_period;
179 u64 rt_runtime;
180 struct hrtimer rt_period_timer;
181 unsigned int rt_period_active;
182 };
183
184 void __dl_clear_params(struct task_struct *p);
185
186 /*
187 * To keep the bandwidth of -deadline tasks and groups under control
188 * we need some place where:
189 * - store the maximum -deadline bandwidth of the system (the group);
190 * - cache the fraction of that bandwidth that is currently allocated.
191 *
192 * This is all done in the data structure below. It is similar to the
193 * one used for RT-throttling (rt_bandwidth), with the main difference
194 * that, since here we are only interested in admission control, we
195 * do not decrease any runtime while the group "executes", neither we
196 * need a timer to replenish it.
197 *
198 * With respect to SMP, the bandwidth is given on a per-CPU basis,
199 * meaning that:
200 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
201 * - dl_total_bw array contains, in the i-eth element, the currently
202 * allocated bandwidth on the i-eth CPU.
203 * Moreover, groups consume bandwidth on each CPU, while tasks only
204 * consume bandwidth on the CPU they're running on.
205 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
206 * that will be shown the next time the proc or cgroup controls will
207 * be red. It on its turn can be changed by writing on its own
208 * control.
209 */
210 struct dl_bandwidth {
211 raw_spinlock_t dl_runtime_lock;
212 u64 dl_runtime;
213 u64 dl_period;
214 };
215
216 static inline int dl_bandwidth_enabled(void)
217 {
218 return sysctl_sched_rt_runtime >= 0;
219 }
220
221 extern struct dl_bw *dl_bw_of(int i);
222
223 struct dl_bw {
224 raw_spinlock_t lock;
225 u64 bw, total_bw;
226 };
227
228 static inline
229 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
230 {
231 dl_b->total_bw -= tsk_bw;
232 }
233
234 static inline
235 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
236 {
237 dl_b->total_bw += tsk_bw;
238 }
239
240 static inline
241 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
242 {
243 return dl_b->bw != -1 &&
244 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
245 }
246
247 extern void init_dl_bw(struct dl_bw *dl_b);
248
249 #ifdef CONFIG_CGROUP_SCHED
250
251 #include <linux/cgroup.h>
252
253 struct cfs_rq;
254 struct rt_rq;
255
256 extern struct list_head task_groups;
257
258 struct cfs_bandwidth {
259 #ifdef CONFIG_CFS_BANDWIDTH
260 raw_spinlock_t lock;
261 ktime_t period;
262 u64 quota, runtime;
263 s64 hierarchical_quota;
264 u64 runtime_expires;
265
266 int idle, period_active;
267 struct hrtimer period_timer, slack_timer;
268 struct list_head throttled_cfs_rq;
269
270 /* statistics */
271 int nr_periods, nr_throttled;
272 u64 throttled_time;
273 #endif
274 };
275
276 /* task group related information */
277 struct task_group {
278 struct cgroup_subsys_state css;
279
280 #ifdef CONFIG_FAIR_GROUP_SCHED
281 /* schedulable entities of this group on each cpu */
282 struct sched_entity **se;
283 /* runqueue "owned" by this group on each cpu */
284 struct cfs_rq **cfs_rq;
285 unsigned long shares;
286
287 #ifdef CONFIG_SMP
288 /*
289 * load_avg can be heavily contended at clock tick time, so put
290 * it in its own cacheline separated from the fields above which
291 * will also be accessed at each tick.
292 */
293 atomic_long_t load_avg ____cacheline_aligned;
294 #endif
295 #endif
296
297 #ifdef CONFIG_RT_GROUP_SCHED
298 struct sched_rt_entity **rt_se;
299 struct rt_rq **rt_rq;
300
301 struct rt_bandwidth rt_bandwidth;
302 #endif
303
304 struct rcu_head rcu;
305 struct list_head list;
306
307 struct task_group *parent;
308 struct list_head siblings;
309 struct list_head children;
310
311 #ifdef CONFIG_SCHED_AUTOGROUP
312 struct autogroup *autogroup;
313 #endif
314
315 struct cfs_bandwidth cfs_bandwidth;
316 };
317
318 #ifdef CONFIG_FAIR_GROUP_SCHED
319 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
320
321 /*
322 * A weight of 0 or 1 can cause arithmetics problems.
323 * A weight of a cfs_rq is the sum of weights of which entities
324 * are queued on this cfs_rq, so a weight of a entity should not be
325 * too large, so as the shares value of a task group.
326 * (The default weight is 1024 - so there's no practical
327 * limitation from this.)
328 */
329 #define MIN_SHARES (1UL << 1)
330 #define MAX_SHARES (1UL << 18)
331 #endif
332
333 typedef int (*tg_visitor)(struct task_group *, void *);
334
335 extern int walk_tg_tree_from(struct task_group *from,
336 tg_visitor down, tg_visitor up, void *data);
337
338 /*
339 * Iterate the full tree, calling @down when first entering a node and @up when
340 * leaving it for the final time.
341 *
342 * Caller must hold rcu_lock or sufficient equivalent.
343 */
344 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
345 {
346 return walk_tg_tree_from(&root_task_group, down, up, data);
347 }
348
349 extern int tg_nop(struct task_group *tg, void *data);
350
351 extern void free_fair_sched_group(struct task_group *tg);
352 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
353 extern void online_fair_sched_group(struct task_group *tg);
354 extern void unregister_fair_sched_group(struct task_group *tg);
355 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
356 struct sched_entity *se, int cpu,
357 struct sched_entity *parent);
358 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
359
360 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
361 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
362 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
363
364 extern void free_rt_sched_group(struct task_group *tg);
365 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
366 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
367 struct sched_rt_entity *rt_se, int cpu,
368 struct sched_rt_entity *parent);
369
370 extern struct task_group *sched_create_group(struct task_group *parent);
371 extern void sched_online_group(struct task_group *tg,
372 struct task_group *parent);
373 extern void sched_destroy_group(struct task_group *tg);
374 extern void sched_offline_group(struct task_group *tg);
375
376 extern void sched_move_task(struct task_struct *tsk);
377
378 #ifdef CONFIG_FAIR_GROUP_SCHED
379 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
380
381 #ifdef CONFIG_SMP
382 extern void set_task_rq_fair(struct sched_entity *se,
383 struct cfs_rq *prev, struct cfs_rq *next);
384 #else /* !CONFIG_SMP */
385 static inline void set_task_rq_fair(struct sched_entity *se,
386 struct cfs_rq *prev, struct cfs_rq *next) { }
387 #endif /* CONFIG_SMP */
388 #endif /* CONFIG_FAIR_GROUP_SCHED */
389
390 #else /* CONFIG_CGROUP_SCHED */
391
392 struct cfs_bandwidth { };
393
394 #endif /* CONFIG_CGROUP_SCHED */
395
396 /* CFS-related fields in a runqueue */
397 struct cfs_rq {
398 struct load_weight load;
399 unsigned int nr_running, h_nr_running;
400
401 u64 exec_clock;
402 u64 min_vruntime;
403 #ifndef CONFIG_64BIT
404 u64 min_vruntime_copy;
405 #endif
406
407 struct rb_root tasks_timeline;
408 struct rb_node *rb_leftmost;
409
410 /*
411 * 'curr' points to currently running entity on this cfs_rq.
412 * It is set to NULL otherwise (i.e when none are currently running).
413 */
414 struct sched_entity *curr, *next, *last, *skip;
415
416 #ifdef CONFIG_SCHED_DEBUG
417 unsigned int nr_spread_over;
418 #endif
419
420 #ifdef CONFIG_SMP
421 /*
422 * CFS load tracking
423 */
424 struct sched_avg avg;
425 u64 runnable_load_sum;
426 unsigned long runnable_load_avg;
427 #ifdef CONFIG_FAIR_GROUP_SCHED
428 unsigned long tg_load_avg_contrib;
429 unsigned long propagate_avg;
430 #endif
431 atomic_long_t removed_load_avg, removed_util_avg;
432 #ifndef CONFIG_64BIT
433 u64 load_last_update_time_copy;
434 #endif
435
436 #ifdef CONFIG_FAIR_GROUP_SCHED
437 /*
438 * h_load = weight * f(tg)
439 *
440 * Where f(tg) is the recursive weight fraction assigned to
441 * this group.
442 */
443 unsigned long h_load;
444 u64 last_h_load_update;
445 struct sched_entity *h_load_next;
446 #endif /* CONFIG_FAIR_GROUP_SCHED */
447 #endif /* CONFIG_SMP */
448
449 #ifdef CONFIG_FAIR_GROUP_SCHED
450 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
451
452 /*
453 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
454 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
455 * (like users, containers etc.)
456 *
457 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
458 * list is used during load balance.
459 */
460 int on_list;
461 struct list_head leaf_cfs_rq_list;
462 struct task_group *tg; /* group that "owns" this runqueue */
463
464 #ifdef CONFIG_CFS_BANDWIDTH
465 int runtime_enabled;
466 u64 runtime_expires;
467 s64 runtime_remaining;
468
469 u64 throttled_clock, throttled_clock_task;
470 u64 throttled_clock_task_time;
471 int throttled, throttle_count;
472 struct list_head throttled_list;
473 #endif /* CONFIG_CFS_BANDWIDTH */
474 #endif /* CONFIG_FAIR_GROUP_SCHED */
475 };
476
477 static inline int rt_bandwidth_enabled(void)
478 {
479 return sysctl_sched_rt_runtime >= 0;
480 }
481
482 /* RT IPI pull logic requires IRQ_WORK */
483 #ifdef CONFIG_IRQ_WORK
484 # define HAVE_RT_PUSH_IPI
485 #endif
486
487 /* Real-Time classes' related field in a runqueue: */
488 struct rt_rq {
489 struct rt_prio_array active;
490 unsigned int rt_nr_running;
491 unsigned int rr_nr_running;
492 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
493 struct {
494 int curr; /* highest queued rt task prio */
495 #ifdef CONFIG_SMP
496 int next; /* next highest */
497 #endif
498 } highest_prio;
499 #endif
500 #ifdef CONFIG_SMP
501 unsigned long rt_nr_migratory;
502 unsigned long rt_nr_total;
503 int overloaded;
504 struct plist_head pushable_tasks;
505 #ifdef HAVE_RT_PUSH_IPI
506 int push_flags;
507 int push_cpu;
508 struct irq_work push_work;
509 raw_spinlock_t push_lock;
510 #endif
511 #endif /* CONFIG_SMP */
512 int rt_queued;
513
514 int rt_throttled;
515 u64 rt_time;
516 u64 rt_runtime;
517 /* Nests inside the rq lock: */
518 raw_spinlock_t rt_runtime_lock;
519
520 #ifdef CONFIG_RT_GROUP_SCHED
521 unsigned long rt_nr_boosted;
522
523 struct rq *rq;
524 struct task_group *tg;
525 #endif
526 };
527
528 /* Deadline class' related fields in a runqueue */
529 struct dl_rq {
530 /* runqueue is an rbtree, ordered by deadline */
531 struct rb_root rb_root;
532 struct rb_node *rb_leftmost;
533
534 unsigned long dl_nr_running;
535
536 #ifdef CONFIG_SMP
537 /*
538 * Deadline values of the currently executing and the
539 * earliest ready task on this rq. Caching these facilitates
540 * the decision wether or not a ready but not running task
541 * should migrate somewhere else.
542 */
543 struct {
544 u64 curr;
545 u64 next;
546 } earliest_dl;
547
548 unsigned long dl_nr_migratory;
549 int overloaded;
550
551 /*
552 * Tasks on this rq that can be pushed away. They are kept in
553 * an rb-tree, ordered by tasks' deadlines, with caching
554 * of the leftmost (earliest deadline) element.
555 */
556 struct rb_root pushable_dl_tasks_root;
557 struct rb_node *pushable_dl_tasks_leftmost;
558 #else
559 struct dl_bw dl_bw;
560 #endif
561 };
562
563 #ifdef CONFIG_SMP
564
565 static inline bool sched_asym_prefer(int a, int b)
566 {
567 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
568 }
569
570 /*
571 * We add the notion of a root-domain which will be used to define per-domain
572 * variables. Each exclusive cpuset essentially defines an island domain by
573 * fully partitioning the member cpus from any other cpuset. Whenever a new
574 * exclusive cpuset is created, we also create and attach a new root-domain
575 * object.
576 *
577 */
578 struct root_domain {
579 atomic_t refcount;
580 atomic_t rto_count;
581 struct rcu_head rcu;
582 cpumask_var_t span;
583 cpumask_var_t online;
584
585 /* Indicate more than one runnable task for any CPU */
586 bool overload;
587
588 /*
589 * The bit corresponding to a CPU gets set here if such CPU has more
590 * than one runnable -deadline task (as it is below for RT tasks).
591 */
592 cpumask_var_t dlo_mask;
593 atomic_t dlo_count;
594 struct dl_bw dl_bw;
595 struct cpudl cpudl;
596
597 /*
598 * The "RT overload" flag: it gets set if a CPU has more than
599 * one runnable RT task.
600 */
601 cpumask_var_t rto_mask;
602 struct cpupri cpupri;
603
604 unsigned long max_cpu_capacity;
605 };
606
607 extern struct root_domain def_root_domain;
608 extern struct mutex sched_domains_mutex;
609 extern cpumask_var_t fallback_doms;
610 extern cpumask_var_t sched_domains_tmpmask;
611
612 extern void init_defrootdomain(void);
613 extern int init_sched_domains(const struct cpumask *cpu_map);
614 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
615
616 #endif /* CONFIG_SMP */
617
618 /*
619 * This is the main, per-CPU runqueue data structure.
620 *
621 * Locking rule: those places that want to lock multiple runqueues
622 * (such as the load balancing or the thread migration code), lock
623 * acquire operations must be ordered by ascending &runqueue.
624 */
625 struct rq {
626 /* runqueue lock: */
627 raw_spinlock_t lock;
628
629 /*
630 * nr_running and cpu_load should be in the same cacheline because
631 * remote CPUs use both these fields when doing load calculation.
632 */
633 unsigned int nr_running;
634 #ifdef CONFIG_NUMA_BALANCING
635 unsigned int nr_numa_running;
636 unsigned int nr_preferred_running;
637 #endif
638 #define CPU_LOAD_IDX_MAX 5
639 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
640 #ifdef CONFIG_NO_HZ_COMMON
641 #ifdef CONFIG_SMP
642 unsigned long last_load_update_tick;
643 #endif /* CONFIG_SMP */
644 unsigned long nohz_flags;
645 #endif /* CONFIG_NO_HZ_COMMON */
646 #ifdef CONFIG_NO_HZ_FULL
647 unsigned long last_sched_tick;
648 #endif
649 /* capture load from *all* tasks on this cpu: */
650 struct load_weight load;
651 unsigned long nr_load_updates;
652 u64 nr_switches;
653
654 struct cfs_rq cfs;
655 struct rt_rq rt;
656 struct dl_rq dl;
657
658 #ifdef CONFIG_FAIR_GROUP_SCHED
659 /* list of leaf cfs_rq on this cpu: */
660 struct list_head leaf_cfs_rq_list;
661 struct list_head *tmp_alone_branch;
662 #endif /* CONFIG_FAIR_GROUP_SCHED */
663
664 /*
665 * This is part of a global counter where only the total sum
666 * over all CPUs matters. A task can increase this counter on
667 * one CPU and if it got migrated afterwards it may decrease
668 * it on another CPU. Always updated under the runqueue lock:
669 */
670 unsigned long nr_uninterruptible;
671
672 struct task_struct *curr, *idle, *stop;
673 unsigned long next_balance;
674 struct mm_struct *prev_mm;
675
676 unsigned int clock_update_flags;
677 u64 clock;
678 u64 clock_task;
679
680 atomic_t nr_iowait;
681
682 #ifdef CONFIG_SMP
683 struct root_domain *rd;
684 struct sched_domain *sd;
685
686 unsigned long cpu_capacity;
687 unsigned long cpu_capacity_orig;
688
689 struct callback_head *balance_callback;
690
691 unsigned char idle_balance;
692 /* For active balancing */
693 int active_balance;
694 int push_cpu;
695 struct cpu_stop_work active_balance_work;
696 /* cpu of this runqueue: */
697 int cpu;
698 int online;
699
700 struct list_head cfs_tasks;
701
702 u64 rt_avg;
703 u64 age_stamp;
704 u64 idle_stamp;
705 u64 avg_idle;
706
707 /* This is used to determine avg_idle's max value */
708 u64 max_idle_balance_cost;
709 #endif
710
711 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
712 u64 prev_irq_time;
713 #endif
714 #ifdef CONFIG_PARAVIRT
715 u64 prev_steal_time;
716 #endif
717 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
718 u64 prev_steal_time_rq;
719 #endif
720
721 /* calc_load related fields */
722 unsigned long calc_load_update;
723 long calc_load_active;
724
725 #ifdef CONFIG_SCHED_HRTICK
726 #ifdef CONFIG_SMP
727 int hrtick_csd_pending;
728 struct call_single_data hrtick_csd;
729 #endif
730 struct hrtimer hrtick_timer;
731 #endif
732
733 #ifdef CONFIG_SCHEDSTATS
734 /* latency stats */
735 struct sched_info rq_sched_info;
736 unsigned long long rq_cpu_time;
737 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
738
739 /* sys_sched_yield() stats */
740 unsigned int yld_count;
741
742 /* schedule() stats */
743 unsigned int sched_count;
744 unsigned int sched_goidle;
745
746 /* try_to_wake_up() stats */
747 unsigned int ttwu_count;
748 unsigned int ttwu_local;
749 #endif
750
751 #ifdef CONFIG_SMP
752 struct llist_head wake_list;
753 #endif
754
755 #ifdef CONFIG_CPU_IDLE
756 /* Must be inspected within a rcu lock section */
757 struct cpuidle_state *idle_state;
758 #endif
759 };
760
761 static inline int cpu_of(struct rq *rq)
762 {
763 #ifdef CONFIG_SMP
764 return rq->cpu;
765 #else
766 return 0;
767 #endif
768 }
769
770
771 #ifdef CONFIG_SCHED_SMT
772
773 extern struct static_key_false sched_smt_present;
774
775 extern void __update_idle_core(struct rq *rq);
776
777 static inline void update_idle_core(struct rq *rq)
778 {
779 if (static_branch_unlikely(&sched_smt_present))
780 __update_idle_core(rq);
781 }
782
783 #else
784 static inline void update_idle_core(struct rq *rq) { }
785 #endif
786
787 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
788
789 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
790 #define this_rq() this_cpu_ptr(&runqueues)
791 #define task_rq(p) cpu_rq(task_cpu(p))
792 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
793 #define raw_rq() raw_cpu_ptr(&runqueues)
794
795 static inline u64 __rq_clock_broken(struct rq *rq)
796 {
797 return READ_ONCE(rq->clock);
798 }
799
800 /*
801 * rq::clock_update_flags bits
802 *
803 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
804 * call to __schedule(). This is an optimisation to avoid
805 * neighbouring rq clock updates.
806 *
807 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
808 * in effect and calls to update_rq_clock() are being ignored.
809 *
810 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
811 * made to update_rq_clock() since the last time rq::lock was pinned.
812 *
813 * If inside of __schedule(), clock_update_flags will have been
814 * shifted left (a left shift is a cheap operation for the fast path
815 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
816 *
817 * if (rq-clock_update_flags >= RQCF_UPDATED)
818 *
819 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
820 * one position though, because the next rq_unpin_lock() will shift it
821 * back.
822 */
823 #define RQCF_REQ_SKIP 0x01
824 #define RQCF_ACT_SKIP 0x02
825 #define RQCF_UPDATED 0x04
826
827 static inline void assert_clock_updated(struct rq *rq)
828 {
829 /*
830 * The only reason for not seeing a clock update since the
831 * last rq_pin_lock() is if we're currently skipping updates.
832 */
833 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
834 }
835
836 static inline u64 rq_clock(struct rq *rq)
837 {
838 lockdep_assert_held(&rq->lock);
839 assert_clock_updated(rq);
840
841 return rq->clock;
842 }
843
844 static inline u64 rq_clock_task(struct rq *rq)
845 {
846 lockdep_assert_held(&rq->lock);
847 assert_clock_updated(rq);
848
849 return rq->clock_task;
850 }
851
852 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
853 {
854 lockdep_assert_held(&rq->lock);
855 if (skip)
856 rq->clock_update_flags |= RQCF_REQ_SKIP;
857 else
858 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
859 }
860
861 struct rq_flags {
862 unsigned long flags;
863 struct pin_cookie cookie;
864 #ifdef CONFIG_SCHED_DEBUG
865 /*
866 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
867 * current pin context is stashed here in case it needs to be
868 * restored in rq_repin_lock().
869 */
870 unsigned int clock_update_flags;
871 #endif
872 };
873
874 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
875 {
876 rf->cookie = lockdep_pin_lock(&rq->lock);
877
878 #ifdef CONFIG_SCHED_DEBUG
879 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
880 rf->clock_update_flags = 0;
881 #endif
882 }
883
884 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
885 {
886 #ifdef CONFIG_SCHED_DEBUG
887 if (rq->clock_update_flags > RQCF_ACT_SKIP)
888 rf->clock_update_flags = RQCF_UPDATED;
889 #endif
890
891 lockdep_unpin_lock(&rq->lock, rf->cookie);
892 }
893
894 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
895 {
896 lockdep_repin_lock(&rq->lock, rf->cookie);
897
898 #ifdef CONFIG_SCHED_DEBUG
899 /*
900 * Restore the value we stashed in @rf for this pin context.
901 */
902 rq->clock_update_flags |= rf->clock_update_flags;
903 #endif
904 }
905
906 #ifdef CONFIG_NUMA
907 enum numa_topology_type {
908 NUMA_DIRECT,
909 NUMA_GLUELESS_MESH,
910 NUMA_BACKPLANE,
911 };
912 extern enum numa_topology_type sched_numa_topology_type;
913 extern int sched_max_numa_distance;
914 extern bool find_numa_distance(int distance);
915 #endif
916
917 #ifdef CONFIG_NUMA
918 extern void sched_init_numa(void);
919 extern void sched_domains_numa_masks_set(unsigned int cpu);
920 extern void sched_domains_numa_masks_clear(unsigned int cpu);
921 #else
922 static inline void sched_init_numa(void) { }
923 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
924 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
925 #endif
926
927 #ifdef CONFIG_NUMA_BALANCING
928 /* The regions in numa_faults array from task_struct */
929 enum numa_faults_stats {
930 NUMA_MEM = 0,
931 NUMA_CPU,
932 NUMA_MEMBUF,
933 NUMA_CPUBUF
934 };
935 extern void sched_setnuma(struct task_struct *p, int node);
936 extern int migrate_task_to(struct task_struct *p, int cpu);
937 extern int migrate_swap(struct task_struct *, struct task_struct *);
938 #endif /* CONFIG_NUMA_BALANCING */
939
940 #ifdef CONFIG_SMP
941
942 static inline void
943 queue_balance_callback(struct rq *rq,
944 struct callback_head *head,
945 void (*func)(struct rq *rq))
946 {
947 lockdep_assert_held(&rq->lock);
948
949 if (unlikely(head->next))
950 return;
951
952 head->func = (void (*)(struct callback_head *))func;
953 head->next = rq->balance_callback;
954 rq->balance_callback = head;
955 }
956
957 extern void sched_ttwu_pending(void);
958
959 #define rcu_dereference_check_sched_domain(p) \
960 rcu_dereference_check((p), \
961 lockdep_is_held(&sched_domains_mutex))
962
963 /*
964 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
965 * See detach_destroy_domains: synchronize_sched for details.
966 *
967 * The domain tree of any CPU may only be accessed from within
968 * preempt-disabled sections.
969 */
970 #define for_each_domain(cpu, __sd) \
971 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
972 __sd; __sd = __sd->parent)
973
974 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
975
976 /**
977 * highest_flag_domain - Return highest sched_domain containing flag.
978 * @cpu: The cpu whose highest level of sched domain is to
979 * be returned.
980 * @flag: The flag to check for the highest sched_domain
981 * for the given cpu.
982 *
983 * Returns the highest sched_domain of a cpu which contains the given flag.
984 */
985 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
986 {
987 struct sched_domain *sd, *hsd = NULL;
988
989 for_each_domain(cpu, sd) {
990 if (!(sd->flags & flag))
991 break;
992 hsd = sd;
993 }
994
995 return hsd;
996 }
997
998 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
999 {
1000 struct sched_domain *sd;
1001
1002 for_each_domain(cpu, sd) {
1003 if (sd->flags & flag)
1004 break;
1005 }
1006
1007 return sd;
1008 }
1009
1010 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1011 DECLARE_PER_CPU(int, sd_llc_size);
1012 DECLARE_PER_CPU(int, sd_llc_id);
1013 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1014 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1015 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1016
1017 struct sched_group_capacity {
1018 atomic_t ref;
1019 /*
1020 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1021 * for a single CPU.
1022 */
1023 unsigned long capacity;
1024 unsigned long min_capacity; /* Min per-CPU capacity in group */
1025 unsigned long next_update;
1026 int imbalance; /* XXX unrelated to capacity but shared group state */
1027
1028 unsigned long cpumask[0]; /* iteration mask */
1029 };
1030
1031 struct sched_group {
1032 struct sched_group *next; /* Must be a circular list */
1033 atomic_t ref;
1034
1035 unsigned int group_weight;
1036 struct sched_group_capacity *sgc;
1037 int asym_prefer_cpu; /* cpu of highest priority in group */
1038
1039 /*
1040 * The CPUs this group covers.
1041 *
1042 * NOTE: this field is variable length. (Allocated dynamically
1043 * by attaching extra space to the end of the structure,
1044 * depending on how many CPUs the kernel has booted up with)
1045 */
1046 unsigned long cpumask[0];
1047 };
1048
1049 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
1050 {
1051 return to_cpumask(sg->cpumask);
1052 }
1053
1054 /*
1055 * cpumask masking which cpus in the group are allowed to iterate up the domain
1056 * tree.
1057 */
1058 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
1059 {
1060 return to_cpumask(sg->sgc->cpumask);
1061 }
1062
1063 /**
1064 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1065 * @group: The group whose first cpu is to be returned.
1066 */
1067 static inline unsigned int group_first_cpu(struct sched_group *group)
1068 {
1069 return cpumask_first(sched_group_cpus(group));
1070 }
1071
1072 extern int group_balance_cpu(struct sched_group *sg);
1073
1074 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1075 void register_sched_domain_sysctl(void);
1076 void unregister_sched_domain_sysctl(void);
1077 #else
1078 static inline void register_sched_domain_sysctl(void)
1079 {
1080 }
1081 static inline void unregister_sched_domain_sysctl(void)
1082 {
1083 }
1084 #endif
1085
1086 #else
1087
1088 static inline void sched_ttwu_pending(void) { }
1089
1090 #endif /* CONFIG_SMP */
1091
1092 #include "stats.h"
1093 #include "autogroup.h"
1094
1095 #ifdef CONFIG_CGROUP_SCHED
1096
1097 /*
1098 * Return the group to which this tasks belongs.
1099 *
1100 * We cannot use task_css() and friends because the cgroup subsystem
1101 * changes that value before the cgroup_subsys::attach() method is called,
1102 * therefore we cannot pin it and might observe the wrong value.
1103 *
1104 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1105 * core changes this before calling sched_move_task().
1106 *
1107 * Instead we use a 'copy' which is updated from sched_move_task() while
1108 * holding both task_struct::pi_lock and rq::lock.
1109 */
1110 static inline struct task_group *task_group(struct task_struct *p)
1111 {
1112 return p->sched_task_group;
1113 }
1114
1115 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1116 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1117 {
1118 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1119 struct task_group *tg = task_group(p);
1120 #endif
1121
1122 #ifdef CONFIG_FAIR_GROUP_SCHED
1123 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1124 p->se.cfs_rq = tg->cfs_rq[cpu];
1125 p->se.parent = tg->se[cpu];
1126 #endif
1127
1128 #ifdef CONFIG_RT_GROUP_SCHED
1129 p->rt.rt_rq = tg->rt_rq[cpu];
1130 p->rt.parent = tg->rt_se[cpu];
1131 #endif
1132 }
1133
1134 #else /* CONFIG_CGROUP_SCHED */
1135
1136 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1137 static inline struct task_group *task_group(struct task_struct *p)
1138 {
1139 return NULL;
1140 }
1141
1142 #endif /* CONFIG_CGROUP_SCHED */
1143
1144 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1145 {
1146 set_task_rq(p, cpu);
1147 #ifdef CONFIG_SMP
1148 /*
1149 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1150 * successfuly executed on another CPU. We must ensure that updates of
1151 * per-task data have been completed by this moment.
1152 */
1153 smp_wmb();
1154 #ifdef CONFIG_THREAD_INFO_IN_TASK
1155 p->cpu = cpu;
1156 #else
1157 task_thread_info(p)->cpu = cpu;
1158 #endif
1159 p->wake_cpu = cpu;
1160 #endif
1161 }
1162
1163 /*
1164 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1165 */
1166 #ifdef CONFIG_SCHED_DEBUG
1167 # include <linux/static_key.h>
1168 # define const_debug __read_mostly
1169 #else
1170 # define const_debug const
1171 #endif
1172
1173 extern const_debug unsigned int sysctl_sched_features;
1174
1175 #define SCHED_FEAT(name, enabled) \
1176 __SCHED_FEAT_##name ,
1177
1178 enum {
1179 #include "features.h"
1180 __SCHED_FEAT_NR,
1181 };
1182
1183 #undef SCHED_FEAT
1184
1185 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1186 #define SCHED_FEAT(name, enabled) \
1187 static __always_inline bool static_branch_##name(struct static_key *key) \
1188 { \
1189 return static_key_##enabled(key); \
1190 }
1191
1192 #include "features.h"
1193
1194 #undef SCHED_FEAT
1195
1196 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1197 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1198 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1199 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1200 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1201
1202 extern struct static_key_false sched_numa_balancing;
1203 extern struct static_key_false sched_schedstats;
1204
1205 static inline u64 global_rt_period(void)
1206 {
1207 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1208 }
1209
1210 static inline u64 global_rt_runtime(void)
1211 {
1212 if (sysctl_sched_rt_runtime < 0)
1213 return RUNTIME_INF;
1214
1215 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1216 }
1217
1218 static inline int task_current(struct rq *rq, struct task_struct *p)
1219 {
1220 return rq->curr == p;
1221 }
1222
1223 static inline int task_running(struct rq *rq, struct task_struct *p)
1224 {
1225 #ifdef CONFIG_SMP
1226 return p->on_cpu;
1227 #else
1228 return task_current(rq, p);
1229 #endif
1230 }
1231
1232 static inline int task_on_rq_queued(struct task_struct *p)
1233 {
1234 return p->on_rq == TASK_ON_RQ_QUEUED;
1235 }
1236
1237 static inline int task_on_rq_migrating(struct task_struct *p)
1238 {
1239 return p->on_rq == TASK_ON_RQ_MIGRATING;
1240 }
1241
1242 #ifndef prepare_arch_switch
1243 # define prepare_arch_switch(next) do { } while (0)
1244 #endif
1245 #ifndef finish_arch_post_lock_switch
1246 # define finish_arch_post_lock_switch() do { } while (0)
1247 #endif
1248
1249 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1250 {
1251 #ifdef CONFIG_SMP
1252 /*
1253 * We can optimise this out completely for !SMP, because the
1254 * SMP rebalancing from interrupt is the only thing that cares
1255 * here.
1256 */
1257 next->on_cpu = 1;
1258 #endif
1259 }
1260
1261 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1262 {
1263 #ifdef CONFIG_SMP
1264 /*
1265 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1266 * We must ensure this doesn't happen until the switch is completely
1267 * finished.
1268 *
1269 * In particular, the load of prev->state in finish_task_switch() must
1270 * happen before this.
1271 *
1272 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1273 */
1274 smp_store_release(&prev->on_cpu, 0);
1275 #endif
1276 #ifdef CONFIG_DEBUG_SPINLOCK
1277 /* this is a valid case when another task releases the spinlock */
1278 rq->lock.owner = current;
1279 #endif
1280 /*
1281 * If we are tracking spinlock dependencies then we have to
1282 * fix up the runqueue lock - which gets 'carried over' from
1283 * prev into current:
1284 */
1285 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1286
1287 raw_spin_unlock_irq(&rq->lock);
1288 }
1289
1290 /*
1291 * wake flags
1292 */
1293 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1294 #define WF_FORK 0x02 /* child wakeup after fork */
1295 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1296
1297 /*
1298 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1299 * of tasks with abnormal "nice" values across CPUs the contribution that
1300 * each task makes to its run queue's load is weighted according to its
1301 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1302 * scaled version of the new time slice allocation that they receive on time
1303 * slice expiry etc.
1304 */
1305
1306 #define WEIGHT_IDLEPRIO 3
1307 #define WMULT_IDLEPRIO 1431655765
1308
1309 extern const int sched_prio_to_weight[40];
1310 extern const u32 sched_prio_to_wmult[40];
1311
1312 /*
1313 * {de,en}queue flags:
1314 *
1315 * DEQUEUE_SLEEP - task is no longer runnable
1316 * ENQUEUE_WAKEUP - task just became runnable
1317 *
1318 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1319 * are in a known state which allows modification. Such pairs
1320 * should preserve as much state as possible.
1321 *
1322 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1323 * in the runqueue.
1324 *
1325 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1326 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1327 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1328 *
1329 */
1330
1331 #define DEQUEUE_SLEEP 0x01
1332 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1333 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1334 #define DEQUEUE_NOCLOCK 0x08 /* matches ENQUEUE_NOCLOCK */
1335
1336 #define ENQUEUE_WAKEUP 0x01
1337 #define ENQUEUE_RESTORE 0x02
1338 #define ENQUEUE_MOVE 0x04
1339 #define ENQUEUE_NOCLOCK 0x08
1340
1341 #define ENQUEUE_HEAD 0x10
1342 #define ENQUEUE_REPLENISH 0x20
1343 #ifdef CONFIG_SMP
1344 #define ENQUEUE_MIGRATED 0x40
1345 #else
1346 #define ENQUEUE_MIGRATED 0x00
1347 #endif
1348
1349 #define RETRY_TASK ((void *)-1UL)
1350
1351 struct sched_class {
1352 const struct sched_class *next;
1353
1354 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1355 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1356 void (*yield_task) (struct rq *rq);
1357 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1358
1359 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1360
1361 /*
1362 * It is the responsibility of the pick_next_task() method that will
1363 * return the next task to call put_prev_task() on the @prev task or
1364 * something equivalent.
1365 *
1366 * May return RETRY_TASK when it finds a higher prio class has runnable
1367 * tasks.
1368 */
1369 struct task_struct * (*pick_next_task) (struct rq *rq,
1370 struct task_struct *prev,
1371 struct rq_flags *rf);
1372 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1373
1374 #ifdef CONFIG_SMP
1375 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1376 void (*migrate_task_rq)(struct task_struct *p);
1377
1378 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1379
1380 void (*set_cpus_allowed)(struct task_struct *p,
1381 const struct cpumask *newmask);
1382
1383 void (*rq_online)(struct rq *rq);
1384 void (*rq_offline)(struct rq *rq);
1385 #endif
1386
1387 void (*set_curr_task) (struct rq *rq);
1388 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1389 void (*task_fork) (struct task_struct *p);
1390 void (*task_dead) (struct task_struct *p);
1391
1392 /*
1393 * The switched_from() call is allowed to drop rq->lock, therefore we
1394 * cannot assume the switched_from/switched_to pair is serliazed by
1395 * rq->lock. They are however serialized by p->pi_lock.
1396 */
1397 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1398 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1399 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1400 int oldprio);
1401
1402 unsigned int (*get_rr_interval) (struct rq *rq,
1403 struct task_struct *task);
1404
1405 void (*update_curr) (struct rq *rq);
1406
1407 #define TASK_SET_GROUP 0
1408 #define TASK_MOVE_GROUP 1
1409
1410 #ifdef CONFIG_FAIR_GROUP_SCHED
1411 void (*task_change_group) (struct task_struct *p, int type);
1412 #endif
1413 };
1414
1415 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1416 {
1417 prev->sched_class->put_prev_task(rq, prev);
1418 }
1419
1420 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1421 {
1422 curr->sched_class->set_curr_task(rq);
1423 }
1424
1425 #define sched_class_highest (&stop_sched_class)
1426 #define for_each_class(class) \
1427 for (class = sched_class_highest; class; class = class->next)
1428
1429 extern const struct sched_class stop_sched_class;
1430 extern const struct sched_class dl_sched_class;
1431 extern const struct sched_class rt_sched_class;
1432 extern const struct sched_class fair_sched_class;
1433 extern const struct sched_class idle_sched_class;
1434
1435
1436 #ifdef CONFIG_SMP
1437
1438 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1439
1440 extern void trigger_load_balance(struct rq *rq);
1441
1442 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1443
1444 #endif
1445
1446 #ifdef CONFIG_CPU_IDLE
1447 static inline void idle_set_state(struct rq *rq,
1448 struct cpuidle_state *idle_state)
1449 {
1450 rq->idle_state = idle_state;
1451 }
1452
1453 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1454 {
1455 SCHED_WARN_ON(!rcu_read_lock_held());
1456 return rq->idle_state;
1457 }
1458 #else
1459 static inline void idle_set_state(struct rq *rq,
1460 struct cpuidle_state *idle_state)
1461 {
1462 }
1463
1464 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1465 {
1466 return NULL;
1467 }
1468 #endif
1469
1470 extern void schedule_idle(void);
1471
1472 extern void sysrq_sched_debug_show(void);
1473 extern void sched_init_granularity(void);
1474 extern void update_max_interval(void);
1475
1476 extern void init_sched_dl_class(void);
1477 extern void init_sched_rt_class(void);
1478 extern void init_sched_fair_class(void);
1479
1480 extern void resched_curr(struct rq *rq);
1481 extern void resched_cpu(int cpu);
1482
1483 extern struct rt_bandwidth def_rt_bandwidth;
1484 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1485
1486 extern struct dl_bandwidth def_dl_bandwidth;
1487 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1488 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1489
1490 unsigned long to_ratio(u64 period, u64 runtime);
1491
1492 extern void init_entity_runnable_average(struct sched_entity *se);
1493 extern void post_init_entity_util_avg(struct sched_entity *se);
1494
1495 #ifdef CONFIG_NO_HZ_FULL
1496 extern bool sched_can_stop_tick(struct rq *rq);
1497
1498 /*
1499 * Tick may be needed by tasks in the runqueue depending on their policy and
1500 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1501 * nohz mode if necessary.
1502 */
1503 static inline void sched_update_tick_dependency(struct rq *rq)
1504 {
1505 int cpu;
1506
1507 if (!tick_nohz_full_enabled())
1508 return;
1509
1510 cpu = cpu_of(rq);
1511
1512 if (!tick_nohz_full_cpu(cpu))
1513 return;
1514
1515 if (sched_can_stop_tick(rq))
1516 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1517 else
1518 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1519 }
1520 #else
1521 static inline void sched_update_tick_dependency(struct rq *rq) { }
1522 #endif
1523
1524 static inline void add_nr_running(struct rq *rq, unsigned count)
1525 {
1526 unsigned prev_nr = rq->nr_running;
1527
1528 rq->nr_running = prev_nr + count;
1529
1530 if (prev_nr < 2 && rq->nr_running >= 2) {
1531 #ifdef CONFIG_SMP
1532 if (!rq->rd->overload)
1533 rq->rd->overload = true;
1534 #endif
1535 }
1536
1537 sched_update_tick_dependency(rq);
1538 }
1539
1540 static inline void sub_nr_running(struct rq *rq, unsigned count)
1541 {
1542 rq->nr_running -= count;
1543 /* Check if we still need preemption */
1544 sched_update_tick_dependency(rq);
1545 }
1546
1547 static inline void rq_last_tick_reset(struct rq *rq)
1548 {
1549 #ifdef CONFIG_NO_HZ_FULL
1550 rq->last_sched_tick = jiffies;
1551 #endif
1552 }
1553
1554 extern void update_rq_clock(struct rq *rq);
1555
1556 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1557 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1558
1559 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1560
1561 extern const_debug unsigned int sysctl_sched_time_avg;
1562 extern const_debug unsigned int sysctl_sched_nr_migrate;
1563 extern const_debug unsigned int sysctl_sched_migration_cost;
1564
1565 static inline u64 sched_avg_period(void)
1566 {
1567 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1568 }
1569
1570 #ifdef CONFIG_SCHED_HRTICK
1571
1572 /*
1573 * Use hrtick when:
1574 * - enabled by features
1575 * - hrtimer is actually high res
1576 */
1577 static inline int hrtick_enabled(struct rq *rq)
1578 {
1579 if (!sched_feat(HRTICK))
1580 return 0;
1581 if (!cpu_active(cpu_of(rq)))
1582 return 0;
1583 return hrtimer_is_hres_active(&rq->hrtick_timer);
1584 }
1585
1586 void hrtick_start(struct rq *rq, u64 delay);
1587
1588 #else
1589
1590 static inline int hrtick_enabled(struct rq *rq)
1591 {
1592 return 0;
1593 }
1594
1595 #endif /* CONFIG_SCHED_HRTICK */
1596
1597 #ifdef CONFIG_SMP
1598 extern void sched_avg_update(struct rq *rq);
1599
1600 #ifndef arch_scale_freq_capacity
1601 static __always_inline
1602 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1603 {
1604 return SCHED_CAPACITY_SCALE;
1605 }
1606 #endif
1607
1608 #ifndef arch_scale_cpu_capacity
1609 static __always_inline
1610 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1611 {
1612 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1613 return sd->smt_gain / sd->span_weight;
1614
1615 return SCHED_CAPACITY_SCALE;
1616 }
1617 #endif
1618
1619 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1620 {
1621 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1622 sched_avg_update(rq);
1623 }
1624 #else
1625 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1626 static inline void sched_avg_update(struct rq *rq) { }
1627 #endif
1628
1629 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1630 __acquires(rq->lock);
1631
1632 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1633 __acquires(p->pi_lock)
1634 __acquires(rq->lock);
1635
1636 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1637 __releases(rq->lock)
1638 {
1639 rq_unpin_lock(rq, rf);
1640 raw_spin_unlock(&rq->lock);
1641 }
1642
1643 static inline void
1644 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1645 __releases(rq->lock)
1646 __releases(p->pi_lock)
1647 {
1648 rq_unpin_lock(rq, rf);
1649 raw_spin_unlock(&rq->lock);
1650 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1651 }
1652
1653 static inline void
1654 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1655 __acquires(rq->lock)
1656 {
1657 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1658 rq_pin_lock(rq, rf);
1659 }
1660
1661 static inline void
1662 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1663 __acquires(rq->lock)
1664 {
1665 raw_spin_lock_irq(&rq->lock);
1666 rq_pin_lock(rq, rf);
1667 }
1668
1669 static inline void
1670 rq_lock(struct rq *rq, struct rq_flags *rf)
1671 __acquires(rq->lock)
1672 {
1673 raw_spin_lock(&rq->lock);
1674 rq_pin_lock(rq, rf);
1675 }
1676
1677 static inline void
1678 rq_relock(struct rq *rq, struct rq_flags *rf)
1679 __acquires(rq->lock)
1680 {
1681 raw_spin_lock(&rq->lock);
1682 rq_repin_lock(rq, rf);
1683 }
1684
1685 static inline void
1686 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1687 __releases(rq->lock)
1688 {
1689 rq_unpin_lock(rq, rf);
1690 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1691 }
1692
1693 static inline void
1694 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1695 __releases(rq->lock)
1696 {
1697 rq_unpin_lock(rq, rf);
1698 raw_spin_unlock_irq(&rq->lock);
1699 }
1700
1701 static inline void
1702 rq_unlock(struct rq *rq, struct rq_flags *rf)
1703 __releases(rq->lock)
1704 {
1705 rq_unpin_lock(rq, rf);
1706 raw_spin_unlock(&rq->lock);
1707 }
1708
1709 #ifdef CONFIG_SMP
1710 #ifdef CONFIG_PREEMPT
1711
1712 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1713
1714 /*
1715 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1716 * way at the expense of forcing extra atomic operations in all
1717 * invocations. This assures that the double_lock is acquired using the
1718 * same underlying policy as the spinlock_t on this architecture, which
1719 * reduces latency compared to the unfair variant below. However, it
1720 * also adds more overhead and therefore may reduce throughput.
1721 */
1722 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1723 __releases(this_rq->lock)
1724 __acquires(busiest->lock)
1725 __acquires(this_rq->lock)
1726 {
1727 raw_spin_unlock(&this_rq->lock);
1728 double_rq_lock(this_rq, busiest);
1729
1730 return 1;
1731 }
1732
1733 #else
1734 /*
1735 * Unfair double_lock_balance: Optimizes throughput at the expense of
1736 * latency by eliminating extra atomic operations when the locks are
1737 * already in proper order on entry. This favors lower cpu-ids and will
1738 * grant the double lock to lower cpus over higher ids under contention,
1739 * regardless of entry order into the function.
1740 */
1741 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1742 __releases(this_rq->lock)
1743 __acquires(busiest->lock)
1744 __acquires(this_rq->lock)
1745 {
1746 int ret = 0;
1747
1748 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1749 if (busiest < this_rq) {
1750 raw_spin_unlock(&this_rq->lock);
1751 raw_spin_lock(&busiest->lock);
1752 raw_spin_lock_nested(&this_rq->lock,
1753 SINGLE_DEPTH_NESTING);
1754 ret = 1;
1755 } else
1756 raw_spin_lock_nested(&busiest->lock,
1757 SINGLE_DEPTH_NESTING);
1758 }
1759 return ret;
1760 }
1761
1762 #endif /* CONFIG_PREEMPT */
1763
1764 /*
1765 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1766 */
1767 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1768 {
1769 if (unlikely(!irqs_disabled())) {
1770 /* printk() doesn't work good under rq->lock */
1771 raw_spin_unlock(&this_rq->lock);
1772 BUG_ON(1);
1773 }
1774
1775 return _double_lock_balance(this_rq, busiest);
1776 }
1777
1778 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1779 __releases(busiest->lock)
1780 {
1781 raw_spin_unlock(&busiest->lock);
1782 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1783 }
1784
1785 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1786 {
1787 if (l1 > l2)
1788 swap(l1, l2);
1789
1790 spin_lock(l1);
1791 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1792 }
1793
1794 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1795 {
1796 if (l1 > l2)
1797 swap(l1, l2);
1798
1799 spin_lock_irq(l1);
1800 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1801 }
1802
1803 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1804 {
1805 if (l1 > l2)
1806 swap(l1, l2);
1807
1808 raw_spin_lock(l1);
1809 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1810 }
1811
1812 /*
1813 * double_rq_lock - safely lock two runqueues
1814 *
1815 * Note this does not disable interrupts like task_rq_lock,
1816 * you need to do so manually before calling.
1817 */
1818 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1819 __acquires(rq1->lock)
1820 __acquires(rq2->lock)
1821 {
1822 BUG_ON(!irqs_disabled());
1823 if (rq1 == rq2) {
1824 raw_spin_lock(&rq1->lock);
1825 __acquire(rq2->lock); /* Fake it out ;) */
1826 } else {
1827 if (rq1 < rq2) {
1828 raw_spin_lock(&rq1->lock);
1829 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1830 } else {
1831 raw_spin_lock(&rq2->lock);
1832 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1833 }
1834 }
1835 }
1836
1837 /*
1838 * double_rq_unlock - safely unlock two runqueues
1839 *
1840 * Note this does not restore interrupts like task_rq_unlock,
1841 * you need to do so manually after calling.
1842 */
1843 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1844 __releases(rq1->lock)
1845 __releases(rq2->lock)
1846 {
1847 raw_spin_unlock(&rq1->lock);
1848 if (rq1 != rq2)
1849 raw_spin_unlock(&rq2->lock);
1850 else
1851 __release(rq2->lock);
1852 }
1853
1854 extern void set_rq_online (struct rq *rq);
1855 extern void set_rq_offline(struct rq *rq);
1856 extern bool sched_smp_initialized;
1857
1858 #else /* CONFIG_SMP */
1859
1860 /*
1861 * double_rq_lock - safely lock two runqueues
1862 *
1863 * Note this does not disable interrupts like task_rq_lock,
1864 * you need to do so manually before calling.
1865 */
1866 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1867 __acquires(rq1->lock)
1868 __acquires(rq2->lock)
1869 {
1870 BUG_ON(!irqs_disabled());
1871 BUG_ON(rq1 != rq2);
1872 raw_spin_lock(&rq1->lock);
1873 __acquire(rq2->lock); /* Fake it out ;) */
1874 }
1875
1876 /*
1877 * double_rq_unlock - safely unlock two runqueues
1878 *
1879 * Note this does not restore interrupts like task_rq_unlock,
1880 * you need to do so manually after calling.
1881 */
1882 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1883 __releases(rq1->lock)
1884 __releases(rq2->lock)
1885 {
1886 BUG_ON(rq1 != rq2);
1887 raw_spin_unlock(&rq1->lock);
1888 __release(rq2->lock);
1889 }
1890
1891 #endif
1892
1893 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1894 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1895
1896 #ifdef CONFIG_SCHED_DEBUG
1897 extern void print_cfs_stats(struct seq_file *m, int cpu);
1898 extern void print_rt_stats(struct seq_file *m, int cpu);
1899 extern void print_dl_stats(struct seq_file *m, int cpu);
1900 extern void
1901 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1902 #ifdef CONFIG_NUMA_BALANCING
1903 extern void
1904 show_numa_stats(struct task_struct *p, struct seq_file *m);
1905 extern void
1906 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1907 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1908 #endif /* CONFIG_NUMA_BALANCING */
1909 #endif /* CONFIG_SCHED_DEBUG */
1910
1911 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1912 extern void init_rt_rq(struct rt_rq *rt_rq);
1913 extern void init_dl_rq(struct dl_rq *dl_rq);
1914
1915 extern void cfs_bandwidth_usage_inc(void);
1916 extern void cfs_bandwidth_usage_dec(void);
1917
1918 #ifdef CONFIG_NO_HZ_COMMON
1919 enum rq_nohz_flag_bits {
1920 NOHZ_TICK_STOPPED,
1921 NOHZ_BALANCE_KICK,
1922 };
1923
1924 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1925
1926 extern void nohz_balance_exit_idle(unsigned int cpu);
1927 #else
1928 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1929 #endif
1930
1931 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1932 struct irqtime {
1933 u64 total;
1934 u64 tick_delta;
1935 u64 irq_start_time;
1936 struct u64_stats_sync sync;
1937 };
1938
1939 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
1940
1941 /*
1942 * Returns the irqtime minus the softirq time computed by ksoftirqd.
1943 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
1944 * and never move forward.
1945 */
1946 static inline u64 irq_time_read(int cpu)
1947 {
1948 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
1949 unsigned int seq;
1950 u64 total;
1951
1952 do {
1953 seq = __u64_stats_fetch_begin(&irqtime->sync);
1954 total = irqtime->total;
1955 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
1956
1957 return total;
1958 }
1959 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1960
1961 #ifdef CONFIG_CPU_FREQ
1962 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1963
1964 /**
1965 * cpufreq_update_util - Take a note about CPU utilization changes.
1966 * @rq: Runqueue to carry out the update for.
1967 * @flags: Update reason flags.
1968 *
1969 * This function is called by the scheduler on the CPU whose utilization is
1970 * being updated.
1971 *
1972 * It can only be called from RCU-sched read-side critical sections.
1973 *
1974 * The way cpufreq is currently arranged requires it to evaluate the CPU
1975 * performance state (frequency/voltage) on a regular basis to prevent it from
1976 * being stuck in a completely inadequate performance level for too long.
1977 * That is not guaranteed to happen if the updates are only triggered from CFS,
1978 * though, because they may not be coming in if RT or deadline tasks are active
1979 * all the time (or there are RT and DL tasks only).
1980 *
1981 * As a workaround for that issue, this function is called by the RT and DL
1982 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1983 * but that really is a band-aid. Going forward it should be replaced with
1984 * solutions targeted more specifically at RT and DL tasks.
1985 */
1986 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
1987 {
1988 struct update_util_data *data;
1989
1990 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1991 if (data)
1992 data->func(data, rq_clock(rq), flags);
1993 }
1994
1995 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1996 {
1997 if (cpu_of(rq) == smp_processor_id())
1998 cpufreq_update_util(rq, flags);
1999 }
2000 #else
2001 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2002 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
2003 #endif /* CONFIG_CPU_FREQ */
2004
2005 #ifdef arch_scale_freq_capacity
2006 #ifndef arch_scale_freq_invariant
2007 #define arch_scale_freq_invariant() (true)
2008 #endif
2009 #else /* arch_scale_freq_capacity */
2010 #define arch_scale_freq_invariant() (false)
2011 #endif