]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/sched.h
sched: Move SCHED_LOAD_SHIFT macros to kernel/sched/sched.h
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/mutex.h>
6 #include <linux/spinlock.h>
7 #include <linux/stop_machine.h>
8
9 #include "cpupri.h"
10
11 extern __read_mostly int scheduler_running;
12
13 /*
14 * Convert user-nice values [ -20 ... 0 ... 19 ]
15 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
16 * and back.
17 */
18 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
19 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
20 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
21
22 /*
23 * 'User priority' is the nice value converted to something we
24 * can work with better when scaling various scheduler parameters,
25 * it's a [ 0 ... 39 ] range.
26 */
27 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
28 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
29 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
30
31 /*
32 * Helpers for converting nanosecond timing to jiffy resolution
33 */
34 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
35
36 /*
37 * Increase resolution of nice-level calculations for 64-bit architectures.
38 * The extra resolution improves shares distribution and load balancing of
39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
40 * hierarchies, especially on larger systems. This is not a user-visible change
41 * and does not change the user-interface for setting shares/weights.
42 *
43 * We increase resolution only if we have enough bits to allow this increased
44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
46 * increased costs.
47 */
48 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
49 # define SCHED_LOAD_RESOLUTION 10
50 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
51 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
52 #else
53 # define SCHED_LOAD_RESOLUTION 0
54 # define scale_load(w) (w)
55 # define scale_load_down(w) (w)
56 #endif
57
58 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
59 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
60
61 #define NICE_0_LOAD SCHED_LOAD_SCALE
62 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
63
64 /*
65 * These are the 'tuning knobs' of the scheduler:
66 */
67
68 /*
69 * single value that denotes runtime == period, ie unlimited time.
70 */
71 #define RUNTIME_INF ((u64)~0ULL)
72
73 static inline int rt_policy(int policy)
74 {
75 if (policy == SCHED_FIFO || policy == SCHED_RR)
76 return 1;
77 return 0;
78 }
79
80 static inline int task_has_rt_policy(struct task_struct *p)
81 {
82 return rt_policy(p->policy);
83 }
84
85 /*
86 * This is the priority-queue data structure of the RT scheduling class:
87 */
88 struct rt_prio_array {
89 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
90 struct list_head queue[MAX_RT_PRIO];
91 };
92
93 struct rt_bandwidth {
94 /* nests inside the rq lock: */
95 raw_spinlock_t rt_runtime_lock;
96 ktime_t rt_period;
97 u64 rt_runtime;
98 struct hrtimer rt_period_timer;
99 };
100
101 extern struct mutex sched_domains_mutex;
102
103 #ifdef CONFIG_CGROUP_SCHED
104
105 #include <linux/cgroup.h>
106
107 struct cfs_rq;
108 struct rt_rq;
109
110 extern struct list_head task_groups;
111
112 struct cfs_bandwidth {
113 #ifdef CONFIG_CFS_BANDWIDTH
114 raw_spinlock_t lock;
115 ktime_t period;
116 u64 quota, runtime;
117 s64 hierarchal_quota;
118 u64 runtime_expires;
119
120 int idle, timer_active;
121 struct hrtimer period_timer, slack_timer;
122 struct list_head throttled_cfs_rq;
123
124 /* statistics */
125 int nr_periods, nr_throttled;
126 u64 throttled_time;
127 #endif
128 };
129
130 /* task group related information */
131 struct task_group {
132 struct cgroup_subsys_state css;
133
134 #ifdef CONFIG_FAIR_GROUP_SCHED
135 /* schedulable entities of this group on each cpu */
136 struct sched_entity **se;
137 /* runqueue "owned" by this group on each cpu */
138 struct cfs_rq **cfs_rq;
139 unsigned long shares;
140
141 atomic_t load_weight;
142 atomic64_t load_avg;
143 atomic_t runnable_avg;
144 #endif
145
146 #ifdef CONFIG_RT_GROUP_SCHED
147 struct sched_rt_entity **rt_se;
148 struct rt_rq **rt_rq;
149
150 struct rt_bandwidth rt_bandwidth;
151 #endif
152
153 struct rcu_head rcu;
154 struct list_head list;
155
156 struct task_group *parent;
157 struct list_head siblings;
158 struct list_head children;
159
160 #ifdef CONFIG_SCHED_AUTOGROUP
161 struct autogroup *autogroup;
162 #endif
163
164 struct cfs_bandwidth cfs_bandwidth;
165 };
166
167 #ifdef CONFIG_FAIR_GROUP_SCHED
168 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
169
170 /*
171 * A weight of 0 or 1 can cause arithmetics problems.
172 * A weight of a cfs_rq is the sum of weights of which entities
173 * are queued on this cfs_rq, so a weight of a entity should not be
174 * too large, so as the shares value of a task group.
175 * (The default weight is 1024 - so there's no practical
176 * limitation from this.)
177 */
178 #define MIN_SHARES (1UL << 1)
179 #define MAX_SHARES (1UL << 18)
180 #endif
181
182 /* Default task group.
183 * Every task in system belong to this group at bootup.
184 */
185 extern struct task_group root_task_group;
186
187 typedef int (*tg_visitor)(struct task_group *, void *);
188
189 extern int walk_tg_tree_from(struct task_group *from,
190 tg_visitor down, tg_visitor up, void *data);
191
192 /*
193 * Iterate the full tree, calling @down when first entering a node and @up when
194 * leaving it for the final time.
195 *
196 * Caller must hold rcu_lock or sufficient equivalent.
197 */
198 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
199 {
200 return walk_tg_tree_from(&root_task_group, down, up, data);
201 }
202
203 extern int tg_nop(struct task_group *tg, void *data);
204
205 extern void free_fair_sched_group(struct task_group *tg);
206 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
207 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
208 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
209 struct sched_entity *se, int cpu,
210 struct sched_entity *parent);
211 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
212 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
213
214 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
215 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
216 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
217
218 extern void free_rt_sched_group(struct task_group *tg);
219 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
220 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
221 struct sched_rt_entity *rt_se, int cpu,
222 struct sched_rt_entity *parent);
223
224 #else /* CONFIG_CGROUP_SCHED */
225
226 struct cfs_bandwidth { };
227
228 #endif /* CONFIG_CGROUP_SCHED */
229
230 /* CFS-related fields in a runqueue */
231 struct cfs_rq {
232 struct load_weight load;
233 unsigned int nr_running, h_nr_running;
234
235 u64 exec_clock;
236 u64 min_vruntime;
237 #ifndef CONFIG_64BIT
238 u64 min_vruntime_copy;
239 #endif
240
241 struct rb_root tasks_timeline;
242 struct rb_node *rb_leftmost;
243
244 /*
245 * 'curr' points to currently running entity on this cfs_rq.
246 * It is set to NULL otherwise (i.e when none are currently running).
247 */
248 struct sched_entity *curr, *next, *last, *skip;
249
250 #ifdef CONFIG_SCHED_DEBUG
251 unsigned int nr_spread_over;
252 #endif
253
254 #ifdef CONFIG_SMP
255 /*
256 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
257 * removed when useful for applications beyond shares distribution (e.g.
258 * load-balance).
259 */
260 #ifdef CONFIG_FAIR_GROUP_SCHED
261 /*
262 * CFS Load tracking
263 * Under CFS, load is tracked on a per-entity basis and aggregated up.
264 * This allows for the description of both thread and group usage (in
265 * the FAIR_GROUP_SCHED case).
266 */
267 u64 runnable_load_avg, blocked_load_avg;
268 atomic64_t decay_counter, removed_load;
269 u64 last_decay;
270 #endif /* CONFIG_FAIR_GROUP_SCHED */
271 /* These always depend on CONFIG_FAIR_GROUP_SCHED */
272 #ifdef CONFIG_FAIR_GROUP_SCHED
273 u32 tg_runnable_contrib;
274 u64 tg_load_contrib;
275 #endif /* CONFIG_FAIR_GROUP_SCHED */
276
277 /*
278 * h_load = weight * f(tg)
279 *
280 * Where f(tg) is the recursive weight fraction assigned to
281 * this group.
282 */
283 unsigned long h_load;
284 #endif /* CONFIG_SMP */
285
286 #ifdef CONFIG_FAIR_GROUP_SCHED
287 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
288
289 /*
290 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
291 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
292 * (like users, containers etc.)
293 *
294 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
295 * list is used during load balance.
296 */
297 int on_list;
298 struct list_head leaf_cfs_rq_list;
299 struct task_group *tg; /* group that "owns" this runqueue */
300
301 #ifdef CONFIG_CFS_BANDWIDTH
302 int runtime_enabled;
303 u64 runtime_expires;
304 s64 runtime_remaining;
305
306 u64 throttled_clock, throttled_clock_task;
307 u64 throttled_clock_task_time;
308 int throttled, throttle_count;
309 struct list_head throttled_list;
310 #endif /* CONFIG_CFS_BANDWIDTH */
311 #endif /* CONFIG_FAIR_GROUP_SCHED */
312 };
313
314 static inline int rt_bandwidth_enabled(void)
315 {
316 return sysctl_sched_rt_runtime >= 0;
317 }
318
319 /* Real-Time classes' related field in a runqueue: */
320 struct rt_rq {
321 struct rt_prio_array active;
322 unsigned int rt_nr_running;
323 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
324 struct {
325 int curr; /* highest queued rt task prio */
326 #ifdef CONFIG_SMP
327 int next; /* next highest */
328 #endif
329 } highest_prio;
330 #endif
331 #ifdef CONFIG_SMP
332 unsigned long rt_nr_migratory;
333 unsigned long rt_nr_total;
334 int overloaded;
335 struct plist_head pushable_tasks;
336 #endif
337 int rt_throttled;
338 u64 rt_time;
339 u64 rt_runtime;
340 /* Nests inside the rq lock: */
341 raw_spinlock_t rt_runtime_lock;
342
343 #ifdef CONFIG_RT_GROUP_SCHED
344 unsigned long rt_nr_boosted;
345
346 struct rq *rq;
347 struct list_head leaf_rt_rq_list;
348 struct task_group *tg;
349 #endif
350 };
351
352 #ifdef CONFIG_SMP
353
354 /*
355 * We add the notion of a root-domain which will be used to define per-domain
356 * variables. Each exclusive cpuset essentially defines an island domain by
357 * fully partitioning the member cpus from any other cpuset. Whenever a new
358 * exclusive cpuset is created, we also create and attach a new root-domain
359 * object.
360 *
361 */
362 struct root_domain {
363 atomic_t refcount;
364 atomic_t rto_count;
365 struct rcu_head rcu;
366 cpumask_var_t span;
367 cpumask_var_t online;
368
369 /*
370 * The "RT overload" flag: it gets set if a CPU has more than
371 * one runnable RT task.
372 */
373 cpumask_var_t rto_mask;
374 struct cpupri cpupri;
375 };
376
377 extern struct root_domain def_root_domain;
378
379 #endif /* CONFIG_SMP */
380
381 /*
382 * This is the main, per-CPU runqueue data structure.
383 *
384 * Locking rule: those places that want to lock multiple runqueues
385 * (such as the load balancing or the thread migration code), lock
386 * acquire operations must be ordered by ascending &runqueue.
387 */
388 struct rq {
389 /* runqueue lock: */
390 raw_spinlock_t lock;
391
392 /*
393 * nr_running and cpu_load should be in the same cacheline because
394 * remote CPUs use both these fields when doing load calculation.
395 */
396 unsigned int nr_running;
397 #define CPU_LOAD_IDX_MAX 5
398 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
399 unsigned long last_load_update_tick;
400 #ifdef CONFIG_NO_HZ
401 u64 nohz_stamp;
402 unsigned long nohz_flags;
403 #endif
404 int skip_clock_update;
405
406 /* capture load from *all* tasks on this cpu: */
407 struct load_weight load;
408 unsigned long nr_load_updates;
409 u64 nr_switches;
410
411 struct cfs_rq cfs;
412 struct rt_rq rt;
413
414 #ifdef CONFIG_FAIR_GROUP_SCHED
415 /* list of leaf cfs_rq on this cpu: */
416 struct list_head leaf_cfs_rq_list;
417 #ifdef CONFIG_SMP
418 unsigned long h_load_throttle;
419 #endif /* CONFIG_SMP */
420 #endif /* CONFIG_FAIR_GROUP_SCHED */
421
422 #ifdef CONFIG_RT_GROUP_SCHED
423 struct list_head leaf_rt_rq_list;
424 #endif
425
426 /*
427 * This is part of a global counter where only the total sum
428 * over all CPUs matters. A task can increase this counter on
429 * one CPU and if it got migrated afterwards it may decrease
430 * it on another CPU. Always updated under the runqueue lock:
431 */
432 unsigned long nr_uninterruptible;
433
434 struct task_struct *curr, *idle, *stop;
435 unsigned long next_balance;
436 struct mm_struct *prev_mm;
437
438 u64 clock;
439 u64 clock_task;
440
441 atomic_t nr_iowait;
442
443 #ifdef CONFIG_SMP
444 struct root_domain *rd;
445 struct sched_domain *sd;
446
447 unsigned long cpu_power;
448
449 unsigned char idle_balance;
450 /* For active balancing */
451 int post_schedule;
452 int active_balance;
453 int push_cpu;
454 struct cpu_stop_work active_balance_work;
455 /* cpu of this runqueue: */
456 int cpu;
457 int online;
458
459 struct list_head cfs_tasks;
460
461 u64 rt_avg;
462 u64 age_stamp;
463 u64 idle_stamp;
464 u64 avg_idle;
465 #endif
466
467 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
468 u64 prev_irq_time;
469 #endif
470 #ifdef CONFIG_PARAVIRT
471 u64 prev_steal_time;
472 #endif
473 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
474 u64 prev_steal_time_rq;
475 #endif
476
477 /* calc_load related fields */
478 unsigned long calc_load_update;
479 long calc_load_active;
480
481 #ifdef CONFIG_SCHED_HRTICK
482 #ifdef CONFIG_SMP
483 int hrtick_csd_pending;
484 struct call_single_data hrtick_csd;
485 #endif
486 struct hrtimer hrtick_timer;
487 #endif
488
489 #ifdef CONFIG_SCHEDSTATS
490 /* latency stats */
491 struct sched_info rq_sched_info;
492 unsigned long long rq_cpu_time;
493 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
494
495 /* sys_sched_yield() stats */
496 unsigned int yld_count;
497
498 /* schedule() stats */
499 unsigned int sched_count;
500 unsigned int sched_goidle;
501
502 /* try_to_wake_up() stats */
503 unsigned int ttwu_count;
504 unsigned int ttwu_local;
505 #endif
506
507 #ifdef CONFIG_SMP
508 struct llist_head wake_list;
509 #endif
510
511 struct sched_avg avg;
512 };
513
514 static inline int cpu_of(struct rq *rq)
515 {
516 #ifdef CONFIG_SMP
517 return rq->cpu;
518 #else
519 return 0;
520 #endif
521 }
522
523 DECLARE_PER_CPU(struct rq, runqueues);
524
525 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
526 #define this_rq() (&__get_cpu_var(runqueues))
527 #define task_rq(p) cpu_rq(task_cpu(p))
528 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
529 #define raw_rq() (&__raw_get_cpu_var(runqueues))
530
531 #ifdef CONFIG_SMP
532
533 #define rcu_dereference_check_sched_domain(p) \
534 rcu_dereference_check((p), \
535 lockdep_is_held(&sched_domains_mutex))
536
537 /*
538 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
539 * See detach_destroy_domains: synchronize_sched for details.
540 *
541 * The domain tree of any CPU may only be accessed from within
542 * preempt-disabled sections.
543 */
544 #define for_each_domain(cpu, __sd) \
545 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
546 __sd; __sd = __sd->parent)
547
548 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
549
550 /**
551 * highest_flag_domain - Return highest sched_domain containing flag.
552 * @cpu: The cpu whose highest level of sched domain is to
553 * be returned.
554 * @flag: The flag to check for the highest sched_domain
555 * for the given cpu.
556 *
557 * Returns the highest sched_domain of a cpu which contains the given flag.
558 */
559 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
560 {
561 struct sched_domain *sd, *hsd = NULL;
562
563 for_each_domain(cpu, sd) {
564 if (!(sd->flags & flag))
565 break;
566 hsd = sd;
567 }
568
569 return hsd;
570 }
571
572 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
573 DECLARE_PER_CPU(int, sd_llc_id);
574
575 extern int group_balance_cpu(struct sched_group *sg);
576
577 #endif /* CONFIG_SMP */
578
579 #include "stats.h"
580 #include "auto_group.h"
581
582 #ifdef CONFIG_CGROUP_SCHED
583
584 /*
585 * Return the group to which this tasks belongs.
586 *
587 * We cannot use task_subsys_state() and friends because the cgroup
588 * subsystem changes that value before the cgroup_subsys::attach() method
589 * is called, therefore we cannot pin it and might observe the wrong value.
590 *
591 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
592 * core changes this before calling sched_move_task().
593 *
594 * Instead we use a 'copy' which is updated from sched_move_task() while
595 * holding both task_struct::pi_lock and rq::lock.
596 */
597 static inline struct task_group *task_group(struct task_struct *p)
598 {
599 return p->sched_task_group;
600 }
601
602 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
603 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
604 {
605 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
606 struct task_group *tg = task_group(p);
607 #endif
608
609 #ifdef CONFIG_FAIR_GROUP_SCHED
610 p->se.cfs_rq = tg->cfs_rq[cpu];
611 p->se.parent = tg->se[cpu];
612 #endif
613
614 #ifdef CONFIG_RT_GROUP_SCHED
615 p->rt.rt_rq = tg->rt_rq[cpu];
616 p->rt.parent = tg->rt_se[cpu];
617 #endif
618 }
619
620 #else /* CONFIG_CGROUP_SCHED */
621
622 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
623 static inline struct task_group *task_group(struct task_struct *p)
624 {
625 return NULL;
626 }
627
628 #endif /* CONFIG_CGROUP_SCHED */
629
630 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
631 {
632 set_task_rq(p, cpu);
633 #ifdef CONFIG_SMP
634 /*
635 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
636 * successfuly executed on another CPU. We must ensure that updates of
637 * per-task data have been completed by this moment.
638 */
639 smp_wmb();
640 task_thread_info(p)->cpu = cpu;
641 #endif
642 }
643
644 /*
645 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
646 */
647 #ifdef CONFIG_SCHED_DEBUG
648 # include <linux/static_key.h>
649 # define const_debug __read_mostly
650 #else
651 # define const_debug const
652 #endif
653
654 extern const_debug unsigned int sysctl_sched_features;
655
656 #define SCHED_FEAT(name, enabled) \
657 __SCHED_FEAT_##name ,
658
659 enum {
660 #include "features.h"
661 __SCHED_FEAT_NR,
662 };
663
664 #undef SCHED_FEAT
665
666 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
667 static __always_inline bool static_branch__true(struct static_key *key)
668 {
669 return static_key_true(key); /* Not out of line branch. */
670 }
671
672 static __always_inline bool static_branch__false(struct static_key *key)
673 {
674 return static_key_false(key); /* Out of line branch. */
675 }
676
677 #define SCHED_FEAT(name, enabled) \
678 static __always_inline bool static_branch_##name(struct static_key *key) \
679 { \
680 return static_branch__##enabled(key); \
681 }
682
683 #include "features.h"
684
685 #undef SCHED_FEAT
686
687 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
688 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
689 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
690 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
691 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
692
693 #ifdef CONFIG_NUMA_BALANCING
694 #define sched_feat_numa(x) sched_feat(x)
695 #ifdef CONFIG_SCHED_DEBUG
696 #define numabalancing_enabled sched_feat_numa(NUMA)
697 #else
698 extern bool numabalancing_enabled;
699 #endif /* CONFIG_SCHED_DEBUG */
700 #else
701 #define sched_feat_numa(x) (0)
702 #define numabalancing_enabled (0)
703 #endif /* CONFIG_NUMA_BALANCING */
704
705 static inline u64 global_rt_period(void)
706 {
707 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
708 }
709
710 static inline u64 global_rt_runtime(void)
711 {
712 if (sysctl_sched_rt_runtime < 0)
713 return RUNTIME_INF;
714
715 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
716 }
717
718
719
720 static inline int task_current(struct rq *rq, struct task_struct *p)
721 {
722 return rq->curr == p;
723 }
724
725 static inline int task_running(struct rq *rq, struct task_struct *p)
726 {
727 #ifdef CONFIG_SMP
728 return p->on_cpu;
729 #else
730 return task_current(rq, p);
731 #endif
732 }
733
734
735 #ifndef prepare_arch_switch
736 # define prepare_arch_switch(next) do { } while (0)
737 #endif
738 #ifndef finish_arch_switch
739 # define finish_arch_switch(prev) do { } while (0)
740 #endif
741 #ifndef finish_arch_post_lock_switch
742 # define finish_arch_post_lock_switch() do { } while (0)
743 #endif
744
745 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
746 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
747 {
748 #ifdef CONFIG_SMP
749 /*
750 * We can optimise this out completely for !SMP, because the
751 * SMP rebalancing from interrupt is the only thing that cares
752 * here.
753 */
754 next->on_cpu = 1;
755 #endif
756 }
757
758 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
759 {
760 #ifdef CONFIG_SMP
761 /*
762 * After ->on_cpu is cleared, the task can be moved to a different CPU.
763 * We must ensure this doesn't happen until the switch is completely
764 * finished.
765 */
766 smp_wmb();
767 prev->on_cpu = 0;
768 #endif
769 #ifdef CONFIG_DEBUG_SPINLOCK
770 /* this is a valid case when another task releases the spinlock */
771 rq->lock.owner = current;
772 #endif
773 /*
774 * If we are tracking spinlock dependencies then we have to
775 * fix up the runqueue lock - which gets 'carried over' from
776 * prev into current:
777 */
778 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
779
780 raw_spin_unlock_irq(&rq->lock);
781 }
782
783 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
784 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
785 {
786 #ifdef CONFIG_SMP
787 /*
788 * We can optimise this out completely for !SMP, because the
789 * SMP rebalancing from interrupt is the only thing that cares
790 * here.
791 */
792 next->on_cpu = 1;
793 #endif
794 raw_spin_unlock(&rq->lock);
795 }
796
797 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
798 {
799 #ifdef CONFIG_SMP
800 /*
801 * After ->on_cpu is cleared, the task can be moved to a different CPU.
802 * We must ensure this doesn't happen until the switch is completely
803 * finished.
804 */
805 smp_wmb();
806 prev->on_cpu = 0;
807 #endif
808 local_irq_enable();
809 }
810 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
811
812 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
813 {
814 lw->weight += inc;
815 lw->inv_weight = 0;
816 }
817
818 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
819 {
820 lw->weight -= dec;
821 lw->inv_weight = 0;
822 }
823
824 static inline void update_load_set(struct load_weight *lw, unsigned long w)
825 {
826 lw->weight = w;
827 lw->inv_weight = 0;
828 }
829
830 /*
831 * To aid in avoiding the subversion of "niceness" due to uneven distribution
832 * of tasks with abnormal "nice" values across CPUs the contribution that
833 * each task makes to its run queue's load is weighted according to its
834 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
835 * scaled version of the new time slice allocation that they receive on time
836 * slice expiry etc.
837 */
838
839 #define WEIGHT_IDLEPRIO 3
840 #define WMULT_IDLEPRIO 1431655765
841
842 /*
843 * Nice levels are multiplicative, with a gentle 10% change for every
844 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
845 * nice 1, it will get ~10% less CPU time than another CPU-bound task
846 * that remained on nice 0.
847 *
848 * The "10% effect" is relative and cumulative: from _any_ nice level,
849 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
850 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
851 * If a task goes up by ~10% and another task goes down by ~10% then
852 * the relative distance between them is ~25%.)
853 */
854 static const int prio_to_weight[40] = {
855 /* -20 */ 88761, 71755, 56483, 46273, 36291,
856 /* -15 */ 29154, 23254, 18705, 14949, 11916,
857 /* -10 */ 9548, 7620, 6100, 4904, 3906,
858 /* -5 */ 3121, 2501, 1991, 1586, 1277,
859 /* 0 */ 1024, 820, 655, 526, 423,
860 /* 5 */ 335, 272, 215, 172, 137,
861 /* 10 */ 110, 87, 70, 56, 45,
862 /* 15 */ 36, 29, 23, 18, 15,
863 };
864
865 /*
866 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
867 *
868 * In cases where the weight does not change often, we can use the
869 * precalculated inverse to speed up arithmetics by turning divisions
870 * into multiplications:
871 */
872 static const u32 prio_to_wmult[40] = {
873 /* -20 */ 48388, 59856, 76040, 92818, 118348,
874 /* -15 */ 147320, 184698, 229616, 287308, 360437,
875 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
876 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
877 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
878 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
879 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
880 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
881 };
882
883 /* Time spent by the tasks of the cpu accounting group executing in ... */
884 enum cpuacct_stat_index {
885 CPUACCT_STAT_USER, /* ... user mode */
886 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
887
888 CPUACCT_STAT_NSTATS,
889 };
890
891
892 #define sched_class_highest (&stop_sched_class)
893 #define for_each_class(class) \
894 for (class = sched_class_highest; class; class = class->next)
895
896 extern const struct sched_class stop_sched_class;
897 extern const struct sched_class rt_sched_class;
898 extern const struct sched_class fair_sched_class;
899 extern const struct sched_class idle_sched_class;
900
901
902 #ifdef CONFIG_SMP
903
904 extern void trigger_load_balance(struct rq *rq, int cpu);
905 extern void idle_balance(int this_cpu, struct rq *this_rq);
906
907 #else /* CONFIG_SMP */
908
909 static inline void idle_balance(int cpu, struct rq *rq)
910 {
911 }
912
913 #endif
914
915 extern void sysrq_sched_debug_show(void);
916 extern void sched_init_granularity(void);
917 extern void update_max_interval(void);
918 extern void update_group_power(struct sched_domain *sd, int cpu);
919 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
920 extern void init_sched_rt_class(void);
921 extern void init_sched_fair_class(void);
922
923 extern void resched_task(struct task_struct *p);
924 extern void resched_cpu(int cpu);
925
926 extern struct rt_bandwidth def_rt_bandwidth;
927 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
928
929 extern void update_idle_cpu_load(struct rq *this_rq);
930
931 #ifdef CONFIG_CGROUP_CPUACCT
932 #include <linux/cgroup.h>
933 /* track cpu usage of a group of tasks and its child groups */
934 struct cpuacct {
935 struct cgroup_subsys_state css;
936 /* cpuusage holds pointer to a u64-type object on every cpu */
937 u64 __percpu *cpuusage;
938 struct kernel_cpustat __percpu *cpustat;
939 };
940
941 extern struct cgroup_subsys cpuacct_subsys;
942 extern struct cpuacct root_cpuacct;
943
944 /* return cpu accounting group corresponding to this container */
945 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
946 {
947 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
948 struct cpuacct, css);
949 }
950
951 /* return cpu accounting group to which this task belongs */
952 static inline struct cpuacct *task_ca(struct task_struct *tsk)
953 {
954 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
955 struct cpuacct, css);
956 }
957
958 static inline struct cpuacct *parent_ca(struct cpuacct *ca)
959 {
960 if (!ca || !ca->css.cgroup->parent)
961 return NULL;
962 return cgroup_ca(ca->css.cgroup->parent);
963 }
964
965 extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
966 #else
967 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
968 #endif
969
970 #ifdef CONFIG_PARAVIRT
971 static inline u64 steal_ticks(u64 steal)
972 {
973 if (unlikely(steal > NSEC_PER_SEC))
974 return div_u64(steal, TICK_NSEC);
975
976 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
977 }
978 #endif
979
980 static inline void inc_nr_running(struct rq *rq)
981 {
982 rq->nr_running++;
983 }
984
985 static inline void dec_nr_running(struct rq *rq)
986 {
987 rq->nr_running--;
988 }
989
990 extern void update_rq_clock(struct rq *rq);
991
992 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
993 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
994
995 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
996
997 extern const_debug unsigned int sysctl_sched_time_avg;
998 extern const_debug unsigned int sysctl_sched_nr_migrate;
999 extern const_debug unsigned int sysctl_sched_migration_cost;
1000
1001 static inline u64 sched_avg_period(void)
1002 {
1003 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1004 }
1005
1006 #ifdef CONFIG_SCHED_HRTICK
1007
1008 /*
1009 * Use hrtick when:
1010 * - enabled by features
1011 * - hrtimer is actually high res
1012 */
1013 static inline int hrtick_enabled(struct rq *rq)
1014 {
1015 if (!sched_feat(HRTICK))
1016 return 0;
1017 if (!cpu_active(cpu_of(rq)))
1018 return 0;
1019 return hrtimer_is_hres_active(&rq->hrtick_timer);
1020 }
1021
1022 void hrtick_start(struct rq *rq, u64 delay);
1023
1024 #else
1025
1026 static inline int hrtick_enabled(struct rq *rq)
1027 {
1028 return 0;
1029 }
1030
1031 #endif /* CONFIG_SCHED_HRTICK */
1032
1033 #ifdef CONFIG_SMP
1034 extern void sched_avg_update(struct rq *rq);
1035 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1036 {
1037 rq->rt_avg += rt_delta;
1038 sched_avg_update(rq);
1039 }
1040 #else
1041 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1042 static inline void sched_avg_update(struct rq *rq) { }
1043 #endif
1044
1045 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1046
1047 #ifdef CONFIG_SMP
1048 #ifdef CONFIG_PREEMPT
1049
1050 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1051
1052 /*
1053 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1054 * way at the expense of forcing extra atomic operations in all
1055 * invocations. This assures that the double_lock is acquired using the
1056 * same underlying policy as the spinlock_t on this architecture, which
1057 * reduces latency compared to the unfair variant below. However, it
1058 * also adds more overhead and therefore may reduce throughput.
1059 */
1060 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1061 __releases(this_rq->lock)
1062 __acquires(busiest->lock)
1063 __acquires(this_rq->lock)
1064 {
1065 raw_spin_unlock(&this_rq->lock);
1066 double_rq_lock(this_rq, busiest);
1067
1068 return 1;
1069 }
1070
1071 #else
1072 /*
1073 * Unfair double_lock_balance: Optimizes throughput at the expense of
1074 * latency by eliminating extra atomic operations when the locks are
1075 * already in proper order on entry. This favors lower cpu-ids and will
1076 * grant the double lock to lower cpus over higher ids under contention,
1077 * regardless of entry order into the function.
1078 */
1079 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1080 __releases(this_rq->lock)
1081 __acquires(busiest->lock)
1082 __acquires(this_rq->lock)
1083 {
1084 int ret = 0;
1085
1086 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1087 if (busiest < this_rq) {
1088 raw_spin_unlock(&this_rq->lock);
1089 raw_spin_lock(&busiest->lock);
1090 raw_spin_lock_nested(&this_rq->lock,
1091 SINGLE_DEPTH_NESTING);
1092 ret = 1;
1093 } else
1094 raw_spin_lock_nested(&busiest->lock,
1095 SINGLE_DEPTH_NESTING);
1096 }
1097 return ret;
1098 }
1099
1100 #endif /* CONFIG_PREEMPT */
1101
1102 /*
1103 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1104 */
1105 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1106 {
1107 if (unlikely(!irqs_disabled())) {
1108 /* printk() doesn't work good under rq->lock */
1109 raw_spin_unlock(&this_rq->lock);
1110 BUG_ON(1);
1111 }
1112
1113 return _double_lock_balance(this_rq, busiest);
1114 }
1115
1116 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1117 __releases(busiest->lock)
1118 {
1119 raw_spin_unlock(&busiest->lock);
1120 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1121 }
1122
1123 /*
1124 * double_rq_lock - safely lock two runqueues
1125 *
1126 * Note this does not disable interrupts like task_rq_lock,
1127 * you need to do so manually before calling.
1128 */
1129 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1130 __acquires(rq1->lock)
1131 __acquires(rq2->lock)
1132 {
1133 BUG_ON(!irqs_disabled());
1134 if (rq1 == rq2) {
1135 raw_spin_lock(&rq1->lock);
1136 __acquire(rq2->lock); /* Fake it out ;) */
1137 } else {
1138 if (rq1 < rq2) {
1139 raw_spin_lock(&rq1->lock);
1140 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1141 } else {
1142 raw_spin_lock(&rq2->lock);
1143 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1144 }
1145 }
1146 }
1147
1148 /*
1149 * double_rq_unlock - safely unlock two runqueues
1150 *
1151 * Note this does not restore interrupts like task_rq_unlock,
1152 * you need to do so manually after calling.
1153 */
1154 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1155 __releases(rq1->lock)
1156 __releases(rq2->lock)
1157 {
1158 raw_spin_unlock(&rq1->lock);
1159 if (rq1 != rq2)
1160 raw_spin_unlock(&rq2->lock);
1161 else
1162 __release(rq2->lock);
1163 }
1164
1165 #else /* CONFIG_SMP */
1166
1167 /*
1168 * double_rq_lock - safely lock two runqueues
1169 *
1170 * Note this does not disable interrupts like task_rq_lock,
1171 * you need to do so manually before calling.
1172 */
1173 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1174 __acquires(rq1->lock)
1175 __acquires(rq2->lock)
1176 {
1177 BUG_ON(!irqs_disabled());
1178 BUG_ON(rq1 != rq2);
1179 raw_spin_lock(&rq1->lock);
1180 __acquire(rq2->lock); /* Fake it out ;) */
1181 }
1182
1183 /*
1184 * double_rq_unlock - safely unlock two runqueues
1185 *
1186 * Note this does not restore interrupts like task_rq_unlock,
1187 * you need to do so manually after calling.
1188 */
1189 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1190 __releases(rq1->lock)
1191 __releases(rq2->lock)
1192 {
1193 BUG_ON(rq1 != rq2);
1194 raw_spin_unlock(&rq1->lock);
1195 __release(rq2->lock);
1196 }
1197
1198 #endif
1199
1200 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1201 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1202 extern void print_cfs_stats(struct seq_file *m, int cpu);
1203 extern void print_rt_stats(struct seq_file *m, int cpu);
1204
1205 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1206 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1207
1208 extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1209
1210 #ifdef CONFIG_NO_HZ
1211 enum rq_nohz_flag_bits {
1212 NOHZ_TICK_STOPPED,
1213 NOHZ_BALANCE_KICK,
1214 NOHZ_IDLE,
1215 };
1216
1217 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1218 #endif
1219
1220 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1221
1222 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1223 DECLARE_PER_CPU(u64, cpu_softirq_time);
1224
1225 #ifndef CONFIG_64BIT
1226 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1227
1228 static inline void irq_time_write_begin(void)
1229 {
1230 __this_cpu_inc(irq_time_seq.sequence);
1231 smp_wmb();
1232 }
1233
1234 static inline void irq_time_write_end(void)
1235 {
1236 smp_wmb();
1237 __this_cpu_inc(irq_time_seq.sequence);
1238 }
1239
1240 static inline u64 irq_time_read(int cpu)
1241 {
1242 u64 irq_time;
1243 unsigned seq;
1244
1245 do {
1246 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1247 irq_time = per_cpu(cpu_softirq_time, cpu) +
1248 per_cpu(cpu_hardirq_time, cpu);
1249 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1250
1251 return irq_time;
1252 }
1253 #else /* CONFIG_64BIT */
1254 static inline void irq_time_write_begin(void)
1255 {
1256 }
1257
1258 static inline void irq_time_write_end(void)
1259 {
1260 }
1261
1262 static inline u64 irq_time_read(int cpu)
1263 {
1264 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1265 }
1266 #endif /* CONFIG_64BIT */
1267 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */