]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched/sched.h
Merge branch 'fixes-rc1' into omap-for-v4.2/fixes
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/irq_work.h>
10 #include <linux/tick.h>
11 #include <linux/slab.h>
12
13 #include "cpupri.h"
14 #include "cpudeadline.h"
15 #include "cpuacct.h"
16
17 struct rq;
18 struct cpuidle_state;
19
20 /* task_struct::on_rq states: */
21 #define TASK_ON_RQ_QUEUED 1
22 #define TASK_ON_RQ_MIGRATING 2
23
24 extern __read_mostly int scheduler_running;
25
26 extern unsigned long calc_load_update;
27 extern atomic_long_t calc_load_tasks;
28
29 extern void calc_global_load_tick(struct rq *this_rq);
30 extern long calc_load_fold_active(struct rq *this_rq);
31
32 #ifdef CONFIG_SMP
33 extern void update_cpu_load_active(struct rq *this_rq);
34 #else
35 static inline void update_cpu_load_active(struct rq *this_rq) { }
36 #endif
37
38 /*
39 * Helpers for converting nanosecond timing to jiffy resolution
40 */
41 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
42
43 /*
44 * Increase resolution of nice-level calculations for 64-bit architectures.
45 * The extra resolution improves shares distribution and load balancing of
46 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
47 * hierarchies, especially on larger systems. This is not a user-visible change
48 * and does not change the user-interface for setting shares/weights.
49 *
50 * We increase resolution only if we have enough bits to allow this increased
51 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
52 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
53 * increased costs.
54 */
55 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
56 # define SCHED_LOAD_RESOLUTION 10
57 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
58 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
59 #else
60 # define SCHED_LOAD_RESOLUTION 0
61 # define scale_load(w) (w)
62 # define scale_load_down(w) (w)
63 #endif
64
65 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
66 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
67
68 #define NICE_0_LOAD SCHED_LOAD_SCALE
69 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
70
71 /*
72 * Single value that decides SCHED_DEADLINE internal math precision.
73 * 10 -> just above 1us
74 * 9 -> just above 0.5us
75 */
76 #define DL_SCALE (10)
77
78 /*
79 * These are the 'tuning knobs' of the scheduler:
80 */
81
82 /*
83 * single value that denotes runtime == period, ie unlimited time.
84 */
85 #define RUNTIME_INF ((u64)~0ULL)
86
87 static inline int fair_policy(int policy)
88 {
89 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
90 }
91
92 static inline int rt_policy(int policy)
93 {
94 return policy == SCHED_FIFO || policy == SCHED_RR;
95 }
96
97 static inline int dl_policy(int policy)
98 {
99 return policy == SCHED_DEADLINE;
100 }
101
102 static inline int task_has_rt_policy(struct task_struct *p)
103 {
104 return rt_policy(p->policy);
105 }
106
107 static inline int task_has_dl_policy(struct task_struct *p)
108 {
109 return dl_policy(p->policy);
110 }
111
112 static inline bool dl_time_before(u64 a, u64 b)
113 {
114 return (s64)(a - b) < 0;
115 }
116
117 /*
118 * Tells if entity @a should preempt entity @b.
119 */
120 static inline bool
121 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
122 {
123 return dl_time_before(a->deadline, b->deadline);
124 }
125
126 /*
127 * This is the priority-queue data structure of the RT scheduling class:
128 */
129 struct rt_prio_array {
130 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
131 struct list_head queue[MAX_RT_PRIO];
132 };
133
134 struct rt_bandwidth {
135 /* nests inside the rq lock: */
136 raw_spinlock_t rt_runtime_lock;
137 ktime_t rt_period;
138 u64 rt_runtime;
139 struct hrtimer rt_period_timer;
140 unsigned int rt_period_active;
141 };
142
143 void __dl_clear_params(struct task_struct *p);
144
145 /*
146 * To keep the bandwidth of -deadline tasks and groups under control
147 * we need some place where:
148 * - store the maximum -deadline bandwidth of the system (the group);
149 * - cache the fraction of that bandwidth that is currently allocated.
150 *
151 * This is all done in the data structure below. It is similar to the
152 * one used for RT-throttling (rt_bandwidth), with the main difference
153 * that, since here we are only interested in admission control, we
154 * do not decrease any runtime while the group "executes", neither we
155 * need a timer to replenish it.
156 *
157 * With respect to SMP, the bandwidth is given on a per-CPU basis,
158 * meaning that:
159 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
160 * - dl_total_bw array contains, in the i-eth element, the currently
161 * allocated bandwidth on the i-eth CPU.
162 * Moreover, groups consume bandwidth on each CPU, while tasks only
163 * consume bandwidth on the CPU they're running on.
164 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
165 * that will be shown the next time the proc or cgroup controls will
166 * be red. It on its turn can be changed by writing on its own
167 * control.
168 */
169 struct dl_bandwidth {
170 raw_spinlock_t dl_runtime_lock;
171 u64 dl_runtime;
172 u64 dl_period;
173 };
174
175 static inline int dl_bandwidth_enabled(void)
176 {
177 return sysctl_sched_rt_runtime >= 0;
178 }
179
180 extern struct dl_bw *dl_bw_of(int i);
181
182 struct dl_bw {
183 raw_spinlock_t lock;
184 u64 bw, total_bw;
185 };
186
187 static inline
188 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
189 {
190 dl_b->total_bw -= tsk_bw;
191 }
192
193 static inline
194 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
195 {
196 dl_b->total_bw += tsk_bw;
197 }
198
199 static inline
200 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
201 {
202 return dl_b->bw != -1 &&
203 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
204 }
205
206 extern struct mutex sched_domains_mutex;
207
208 #ifdef CONFIG_CGROUP_SCHED
209
210 #include <linux/cgroup.h>
211
212 struct cfs_rq;
213 struct rt_rq;
214
215 extern struct list_head task_groups;
216
217 struct cfs_bandwidth {
218 #ifdef CONFIG_CFS_BANDWIDTH
219 raw_spinlock_t lock;
220 ktime_t period;
221 u64 quota, runtime;
222 s64 hierarchical_quota;
223 u64 runtime_expires;
224
225 int idle, period_active;
226 struct hrtimer period_timer, slack_timer;
227 struct list_head throttled_cfs_rq;
228
229 /* statistics */
230 int nr_periods, nr_throttled;
231 u64 throttled_time;
232 #endif
233 };
234
235 /* task group related information */
236 struct task_group {
237 struct cgroup_subsys_state css;
238
239 #ifdef CONFIG_FAIR_GROUP_SCHED
240 /* schedulable entities of this group on each cpu */
241 struct sched_entity **se;
242 /* runqueue "owned" by this group on each cpu */
243 struct cfs_rq **cfs_rq;
244 unsigned long shares;
245
246 #ifdef CONFIG_SMP
247 atomic_long_t load_avg;
248 atomic_t runnable_avg;
249 #endif
250 #endif
251
252 #ifdef CONFIG_RT_GROUP_SCHED
253 struct sched_rt_entity **rt_se;
254 struct rt_rq **rt_rq;
255
256 struct rt_bandwidth rt_bandwidth;
257 #endif
258
259 struct rcu_head rcu;
260 struct list_head list;
261
262 struct task_group *parent;
263 struct list_head siblings;
264 struct list_head children;
265
266 #ifdef CONFIG_SCHED_AUTOGROUP
267 struct autogroup *autogroup;
268 #endif
269
270 struct cfs_bandwidth cfs_bandwidth;
271 };
272
273 #ifdef CONFIG_FAIR_GROUP_SCHED
274 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
275
276 /*
277 * A weight of 0 or 1 can cause arithmetics problems.
278 * A weight of a cfs_rq is the sum of weights of which entities
279 * are queued on this cfs_rq, so a weight of a entity should not be
280 * too large, so as the shares value of a task group.
281 * (The default weight is 1024 - so there's no practical
282 * limitation from this.)
283 */
284 #define MIN_SHARES (1UL << 1)
285 #define MAX_SHARES (1UL << 18)
286 #endif
287
288 typedef int (*tg_visitor)(struct task_group *, void *);
289
290 extern int walk_tg_tree_from(struct task_group *from,
291 tg_visitor down, tg_visitor up, void *data);
292
293 /*
294 * Iterate the full tree, calling @down when first entering a node and @up when
295 * leaving it for the final time.
296 *
297 * Caller must hold rcu_lock or sufficient equivalent.
298 */
299 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
300 {
301 return walk_tg_tree_from(&root_task_group, down, up, data);
302 }
303
304 extern int tg_nop(struct task_group *tg, void *data);
305
306 extern void free_fair_sched_group(struct task_group *tg);
307 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
308 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
309 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
310 struct sched_entity *se, int cpu,
311 struct sched_entity *parent);
312 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
313 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
314
315 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
316 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
317 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
318
319 extern void free_rt_sched_group(struct task_group *tg);
320 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
321 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
322 struct sched_rt_entity *rt_se, int cpu,
323 struct sched_rt_entity *parent);
324
325 extern struct task_group *sched_create_group(struct task_group *parent);
326 extern void sched_online_group(struct task_group *tg,
327 struct task_group *parent);
328 extern void sched_destroy_group(struct task_group *tg);
329 extern void sched_offline_group(struct task_group *tg);
330
331 extern void sched_move_task(struct task_struct *tsk);
332
333 #ifdef CONFIG_FAIR_GROUP_SCHED
334 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
335 #endif
336
337 #else /* CONFIG_CGROUP_SCHED */
338
339 struct cfs_bandwidth { };
340
341 #endif /* CONFIG_CGROUP_SCHED */
342
343 /* CFS-related fields in a runqueue */
344 struct cfs_rq {
345 struct load_weight load;
346 unsigned int nr_running, h_nr_running;
347
348 u64 exec_clock;
349 u64 min_vruntime;
350 #ifndef CONFIG_64BIT
351 u64 min_vruntime_copy;
352 #endif
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
356
357 /*
358 * 'curr' points to currently running entity on this cfs_rq.
359 * It is set to NULL otherwise (i.e when none are currently running).
360 */
361 struct sched_entity *curr, *next, *last, *skip;
362
363 #ifdef CONFIG_SCHED_DEBUG
364 unsigned int nr_spread_over;
365 #endif
366
367 #ifdef CONFIG_SMP
368 /*
369 * CFS Load tracking
370 * Under CFS, load is tracked on a per-entity basis and aggregated up.
371 * This allows for the description of both thread and group usage (in
372 * the FAIR_GROUP_SCHED case).
373 * runnable_load_avg is the sum of the load_avg_contrib of the
374 * sched_entities on the rq.
375 * blocked_load_avg is similar to runnable_load_avg except that its
376 * the blocked sched_entities on the rq.
377 * utilization_load_avg is the sum of the average running time of the
378 * sched_entities on the rq.
379 */
380 unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
381 atomic64_t decay_counter;
382 u64 last_decay;
383 atomic_long_t removed_load;
384
385 #ifdef CONFIG_FAIR_GROUP_SCHED
386 /* Required to track per-cpu representation of a task_group */
387 u32 tg_runnable_contrib;
388 unsigned long tg_load_contrib;
389
390 /*
391 * h_load = weight * f(tg)
392 *
393 * Where f(tg) is the recursive weight fraction assigned to
394 * this group.
395 */
396 unsigned long h_load;
397 u64 last_h_load_update;
398 struct sched_entity *h_load_next;
399 #endif /* CONFIG_FAIR_GROUP_SCHED */
400 #endif /* CONFIG_SMP */
401
402 #ifdef CONFIG_FAIR_GROUP_SCHED
403 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
404
405 /*
406 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
407 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
408 * (like users, containers etc.)
409 *
410 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
411 * list is used during load balance.
412 */
413 int on_list;
414 struct list_head leaf_cfs_rq_list;
415 struct task_group *tg; /* group that "owns" this runqueue */
416
417 #ifdef CONFIG_CFS_BANDWIDTH
418 int runtime_enabled;
419 u64 runtime_expires;
420 s64 runtime_remaining;
421
422 u64 throttled_clock, throttled_clock_task;
423 u64 throttled_clock_task_time;
424 int throttled, throttle_count;
425 struct list_head throttled_list;
426 #endif /* CONFIG_CFS_BANDWIDTH */
427 #endif /* CONFIG_FAIR_GROUP_SCHED */
428 };
429
430 static inline int rt_bandwidth_enabled(void)
431 {
432 return sysctl_sched_rt_runtime >= 0;
433 }
434
435 /* RT IPI pull logic requires IRQ_WORK */
436 #ifdef CONFIG_IRQ_WORK
437 # define HAVE_RT_PUSH_IPI
438 #endif
439
440 /* Real-Time classes' related field in a runqueue: */
441 struct rt_rq {
442 struct rt_prio_array active;
443 unsigned int rt_nr_running;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445 struct {
446 int curr; /* highest queued rt task prio */
447 #ifdef CONFIG_SMP
448 int next; /* next highest */
449 #endif
450 } highest_prio;
451 #endif
452 #ifdef CONFIG_SMP
453 unsigned long rt_nr_migratory;
454 unsigned long rt_nr_total;
455 int overloaded;
456 struct plist_head pushable_tasks;
457 #ifdef HAVE_RT_PUSH_IPI
458 int push_flags;
459 int push_cpu;
460 struct irq_work push_work;
461 raw_spinlock_t push_lock;
462 #endif
463 #endif /* CONFIG_SMP */
464 int rt_queued;
465
466 int rt_throttled;
467 u64 rt_time;
468 u64 rt_runtime;
469 /* Nests inside the rq lock: */
470 raw_spinlock_t rt_runtime_lock;
471
472 #ifdef CONFIG_RT_GROUP_SCHED
473 unsigned long rt_nr_boosted;
474
475 struct rq *rq;
476 struct task_group *tg;
477 #endif
478 };
479
480 /* Deadline class' related fields in a runqueue */
481 struct dl_rq {
482 /* runqueue is an rbtree, ordered by deadline */
483 struct rb_root rb_root;
484 struct rb_node *rb_leftmost;
485
486 unsigned long dl_nr_running;
487
488 #ifdef CONFIG_SMP
489 /*
490 * Deadline values of the currently executing and the
491 * earliest ready task on this rq. Caching these facilitates
492 * the decision wether or not a ready but not running task
493 * should migrate somewhere else.
494 */
495 struct {
496 u64 curr;
497 u64 next;
498 } earliest_dl;
499
500 unsigned long dl_nr_migratory;
501 int overloaded;
502
503 /*
504 * Tasks on this rq that can be pushed away. They are kept in
505 * an rb-tree, ordered by tasks' deadlines, with caching
506 * of the leftmost (earliest deadline) element.
507 */
508 struct rb_root pushable_dl_tasks_root;
509 struct rb_node *pushable_dl_tasks_leftmost;
510 #else
511 struct dl_bw dl_bw;
512 #endif
513 };
514
515 #ifdef CONFIG_SMP
516
517 /*
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
524 */
525 struct root_domain {
526 atomic_t refcount;
527 atomic_t rto_count;
528 struct rcu_head rcu;
529 cpumask_var_t span;
530 cpumask_var_t online;
531
532 /* Indicate more than one runnable task for any CPU */
533 bool overload;
534
535 /*
536 * The bit corresponding to a CPU gets set here if such CPU has more
537 * than one runnable -deadline task (as it is below for RT tasks).
538 */
539 cpumask_var_t dlo_mask;
540 atomic_t dlo_count;
541 struct dl_bw dl_bw;
542 struct cpudl cpudl;
543
544 /*
545 * The "RT overload" flag: it gets set if a CPU has more than
546 * one runnable RT task.
547 */
548 cpumask_var_t rto_mask;
549 struct cpupri cpupri;
550 };
551
552 extern struct root_domain def_root_domain;
553
554 #endif /* CONFIG_SMP */
555
556 /*
557 * This is the main, per-CPU runqueue data structure.
558 *
559 * Locking rule: those places that want to lock multiple runqueues
560 * (such as the load balancing or the thread migration code), lock
561 * acquire operations must be ordered by ascending &runqueue.
562 */
563 struct rq {
564 /* runqueue lock: */
565 raw_spinlock_t lock;
566
567 /*
568 * nr_running and cpu_load should be in the same cacheline because
569 * remote CPUs use both these fields when doing load calculation.
570 */
571 unsigned int nr_running;
572 #ifdef CONFIG_NUMA_BALANCING
573 unsigned int nr_numa_running;
574 unsigned int nr_preferred_running;
575 #endif
576 #define CPU_LOAD_IDX_MAX 5
577 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
578 unsigned long last_load_update_tick;
579 #ifdef CONFIG_NO_HZ_COMMON
580 u64 nohz_stamp;
581 unsigned long nohz_flags;
582 #endif
583 #ifdef CONFIG_NO_HZ_FULL
584 unsigned long last_sched_tick;
585 #endif
586 /* capture load from *all* tasks on this cpu: */
587 struct load_weight load;
588 unsigned long nr_load_updates;
589 u64 nr_switches;
590
591 struct cfs_rq cfs;
592 struct rt_rq rt;
593 struct dl_rq dl;
594
595 #ifdef CONFIG_FAIR_GROUP_SCHED
596 /* list of leaf cfs_rq on this cpu: */
597 struct list_head leaf_cfs_rq_list;
598
599 struct sched_avg avg;
600 #endif /* CONFIG_FAIR_GROUP_SCHED */
601
602 /*
603 * This is part of a global counter where only the total sum
604 * over all CPUs matters. A task can increase this counter on
605 * one CPU and if it got migrated afterwards it may decrease
606 * it on another CPU. Always updated under the runqueue lock:
607 */
608 unsigned long nr_uninterruptible;
609
610 struct task_struct *curr, *idle, *stop;
611 unsigned long next_balance;
612 struct mm_struct *prev_mm;
613
614 unsigned int clock_skip_update;
615 u64 clock;
616 u64 clock_task;
617
618 atomic_t nr_iowait;
619
620 #ifdef CONFIG_SMP
621 struct root_domain *rd;
622 struct sched_domain *sd;
623
624 unsigned long cpu_capacity;
625 unsigned long cpu_capacity_orig;
626
627 struct callback_head *balance_callback;
628
629 unsigned char idle_balance;
630 /* For active balancing */
631 int active_balance;
632 int push_cpu;
633 struct cpu_stop_work active_balance_work;
634 /* cpu of this runqueue: */
635 int cpu;
636 int online;
637
638 struct list_head cfs_tasks;
639
640 u64 rt_avg;
641 u64 age_stamp;
642 u64 idle_stamp;
643 u64 avg_idle;
644
645 /* This is used to determine avg_idle's max value */
646 u64 max_idle_balance_cost;
647 #endif
648
649 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
650 u64 prev_irq_time;
651 #endif
652 #ifdef CONFIG_PARAVIRT
653 u64 prev_steal_time;
654 #endif
655 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
656 u64 prev_steal_time_rq;
657 #endif
658
659 /* calc_load related fields */
660 unsigned long calc_load_update;
661 long calc_load_active;
662
663 #ifdef CONFIG_SCHED_HRTICK
664 #ifdef CONFIG_SMP
665 int hrtick_csd_pending;
666 struct call_single_data hrtick_csd;
667 #endif
668 struct hrtimer hrtick_timer;
669 #endif
670
671 #ifdef CONFIG_SCHEDSTATS
672 /* latency stats */
673 struct sched_info rq_sched_info;
674 unsigned long long rq_cpu_time;
675 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
676
677 /* sys_sched_yield() stats */
678 unsigned int yld_count;
679
680 /* schedule() stats */
681 unsigned int sched_count;
682 unsigned int sched_goidle;
683
684 /* try_to_wake_up() stats */
685 unsigned int ttwu_count;
686 unsigned int ttwu_local;
687 #endif
688
689 #ifdef CONFIG_SMP
690 struct llist_head wake_list;
691 #endif
692
693 #ifdef CONFIG_CPU_IDLE
694 /* Must be inspected within a rcu lock section */
695 struct cpuidle_state *idle_state;
696 #endif
697 };
698
699 static inline int cpu_of(struct rq *rq)
700 {
701 #ifdef CONFIG_SMP
702 return rq->cpu;
703 #else
704 return 0;
705 #endif
706 }
707
708 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
709
710 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
711 #define this_rq() this_cpu_ptr(&runqueues)
712 #define task_rq(p) cpu_rq(task_cpu(p))
713 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
714 #define raw_rq() raw_cpu_ptr(&runqueues)
715
716 static inline u64 __rq_clock_broken(struct rq *rq)
717 {
718 return READ_ONCE(rq->clock);
719 }
720
721 static inline u64 rq_clock(struct rq *rq)
722 {
723 lockdep_assert_held(&rq->lock);
724 return rq->clock;
725 }
726
727 static inline u64 rq_clock_task(struct rq *rq)
728 {
729 lockdep_assert_held(&rq->lock);
730 return rq->clock_task;
731 }
732
733 #define RQCF_REQ_SKIP 0x01
734 #define RQCF_ACT_SKIP 0x02
735
736 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
737 {
738 lockdep_assert_held(&rq->lock);
739 if (skip)
740 rq->clock_skip_update |= RQCF_REQ_SKIP;
741 else
742 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
743 }
744
745 #ifdef CONFIG_NUMA
746 enum numa_topology_type {
747 NUMA_DIRECT,
748 NUMA_GLUELESS_MESH,
749 NUMA_BACKPLANE,
750 };
751 extern enum numa_topology_type sched_numa_topology_type;
752 extern int sched_max_numa_distance;
753 extern bool find_numa_distance(int distance);
754 #endif
755
756 #ifdef CONFIG_NUMA_BALANCING
757 /* The regions in numa_faults array from task_struct */
758 enum numa_faults_stats {
759 NUMA_MEM = 0,
760 NUMA_CPU,
761 NUMA_MEMBUF,
762 NUMA_CPUBUF
763 };
764 extern void sched_setnuma(struct task_struct *p, int node);
765 extern int migrate_task_to(struct task_struct *p, int cpu);
766 extern int migrate_swap(struct task_struct *, struct task_struct *);
767 #endif /* CONFIG_NUMA_BALANCING */
768
769 #ifdef CONFIG_SMP
770
771 static inline void
772 queue_balance_callback(struct rq *rq,
773 struct callback_head *head,
774 void (*func)(struct rq *rq))
775 {
776 lockdep_assert_held(&rq->lock);
777
778 if (unlikely(head->next))
779 return;
780
781 head->func = (void (*)(struct callback_head *))func;
782 head->next = rq->balance_callback;
783 rq->balance_callback = head;
784 }
785
786 extern void sched_ttwu_pending(void);
787
788 #define rcu_dereference_check_sched_domain(p) \
789 rcu_dereference_check((p), \
790 lockdep_is_held(&sched_domains_mutex))
791
792 /*
793 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
794 * See detach_destroy_domains: synchronize_sched for details.
795 *
796 * The domain tree of any CPU may only be accessed from within
797 * preempt-disabled sections.
798 */
799 #define for_each_domain(cpu, __sd) \
800 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
801 __sd; __sd = __sd->parent)
802
803 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
804
805 /**
806 * highest_flag_domain - Return highest sched_domain containing flag.
807 * @cpu: The cpu whose highest level of sched domain is to
808 * be returned.
809 * @flag: The flag to check for the highest sched_domain
810 * for the given cpu.
811 *
812 * Returns the highest sched_domain of a cpu which contains the given flag.
813 */
814 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
815 {
816 struct sched_domain *sd, *hsd = NULL;
817
818 for_each_domain(cpu, sd) {
819 if (!(sd->flags & flag))
820 break;
821 hsd = sd;
822 }
823
824 return hsd;
825 }
826
827 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
828 {
829 struct sched_domain *sd;
830
831 for_each_domain(cpu, sd) {
832 if (sd->flags & flag)
833 break;
834 }
835
836 return sd;
837 }
838
839 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
840 DECLARE_PER_CPU(int, sd_llc_size);
841 DECLARE_PER_CPU(int, sd_llc_id);
842 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
843 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
844 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
845
846 struct sched_group_capacity {
847 atomic_t ref;
848 /*
849 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
850 * for a single CPU.
851 */
852 unsigned int capacity;
853 unsigned long next_update;
854 int imbalance; /* XXX unrelated to capacity but shared group state */
855 /*
856 * Number of busy cpus in this group.
857 */
858 atomic_t nr_busy_cpus;
859
860 unsigned long cpumask[0]; /* iteration mask */
861 };
862
863 struct sched_group {
864 struct sched_group *next; /* Must be a circular list */
865 atomic_t ref;
866
867 unsigned int group_weight;
868 struct sched_group_capacity *sgc;
869
870 /*
871 * The CPUs this group covers.
872 *
873 * NOTE: this field is variable length. (Allocated dynamically
874 * by attaching extra space to the end of the structure,
875 * depending on how many CPUs the kernel has booted up with)
876 */
877 unsigned long cpumask[0];
878 };
879
880 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
881 {
882 return to_cpumask(sg->cpumask);
883 }
884
885 /*
886 * cpumask masking which cpus in the group are allowed to iterate up the domain
887 * tree.
888 */
889 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
890 {
891 return to_cpumask(sg->sgc->cpumask);
892 }
893
894 /**
895 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
896 * @group: The group whose first cpu is to be returned.
897 */
898 static inline unsigned int group_first_cpu(struct sched_group *group)
899 {
900 return cpumask_first(sched_group_cpus(group));
901 }
902
903 extern int group_balance_cpu(struct sched_group *sg);
904
905 #else
906
907 static inline void sched_ttwu_pending(void) { }
908
909 #endif /* CONFIG_SMP */
910
911 #include "stats.h"
912 #include "auto_group.h"
913
914 #ifdef CONFIG_CGROUP_SCHED
915
916 /*
917 * Return the group to which this tasks belongs.
918 *
919 * We cannot use task_css() and friends because the cgroup subsystem
920 * changes that value before the cgroup_subsys::attach() method is called,
921 * therefore we cannot pin it and might observe the wrong value.
922 *
923 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
924 * core changes this before calling sched_move_task().
925 *
926 * Instead we use a 'copy' which is updated from sched_move_task() while
927 * holding both task_struct::pi_lock and rq::lock.
928 */
929 static inline struct task_group *task_group(struct task_struct *p)
930 {
931 return p->sched_task_group;
932 }
933
934 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
935 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
936 {
937 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
938 struct task_group *tg = task_group(p);
939 #endif
940
941 #ifdef CONFIG_FAIR_GROUP_SCHED
942 p->se.cfs_rq = tg->cfs_rq[cpu];
943 p->se.parent = tg->se[cpu];
944 #endif
945
946 #ifdef CONFIG_RT_GROUP_SCHED
947 p->rt.rt_rq = tg->rt_rq[cpu];
948 p->rt.parent = tg->rt_se[cpu];
949 #endif
950 }
951
952 #else /* CONFIG_CGROUP_SCHED */
953
954 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
955 static inline struct task_group *task_group(struct task_struct *p)
956 {
957 return NULL;
958 }
959
960 #endif /* CONFIG_CGROUP_SCHED */
961
962 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
963 {
964 set_task_rq(p, cpu);
965 #ifdef CONFIG_SMP
966 /*
967 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
968 * successfuly executed on another CPU. We must ensure that updates of
969 * per-task data have been completed by this moment.
970 */
971 smp_wmb();
972 task_thread_info(p)->cpu = cpu;
973 p->wake_cpu = cpu;
974 #endif
975 }
976
977 /*
978 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
979 */
980 #ifdef CONFIG_SCHED_DEBUG
981 # include <linux/static_key.h>
982 # define const_debug __read_mostly
983 #else
984 # define const_debug const
985 #endif
986
987 extern const_debug unsigned int sysctl_sched_features;
988
989 #define SCHED_FEAT(name, enabled) \
990 __SCHED_FEAT_##name ,
991
992 enum {
993 #include "features.h"
994 __SCHED_FEAT_NR,
995 };
996
997 #undef SCHED_FEAT
998
999 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1000 #define SCHED_FEAT(name, enabled) \
1001 static __always_inline bool static_branch_##name(struct static_key *key) \
1002 { \
1003 return static_key_##enabled(key); \
1004 }
1005
1006 #include "features.h"
1007
1008 #undef SCHED_FEAT
1009
1010 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1011 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1012 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1013 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1014 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1015
1016 #ifdef CONFIG_NUMA_BALANCING
1017 #define sched_feat_numa(x) sched_feat(x)
1018 #ifdef CONFIG_SCHED_DEBUG
1019 #define numabalancing_enabled sched_feat_numa(NUMA)
1020 #else
1021 extern bool numabalancing_enabled;
1022 #endif /* CONFIG_SCHED_DEBUG */
1023 #else
1024 #define sched_feat_numa(x) (0)
1025 #define numabalancing_enabled (0)
1026 #endif /* CONFIG_NUMA_BALANCING */
1027
1028 static inline u64 global_rt_period(void)
1029 {
1030 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1031 }
1032
1033 static inline u64 global_rt_runtime(void)
1034 {
1035 if (sysctl_sched_rt_runtime < 0)
1036 return RUNTIME_INF;
1037
1038 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1039 }
1040
1041 static inline int task_current(struct rq *rq, struct task_struct *p)
1042 {
1043 return rq->curr == p;
1044 }
1045
1046 static inline int task_running(struct rq *rq, struct task_struct *p)
1047 {
1048 #ifdef CONFIG_SMP
1049 return p->on_cpu;
1050 #else
1051 return task_current(rq, p);
1052 #endif
1053 }
1054
1055 static inline int task_on_rq_queued(struct task_struct *p)
1056 {
1057 return p->on_rq == TASK_ON_RQ_QUEUED;
1058 }
1059
1060 static inline int task_on_rq_migrating(struct task_struct *p)
1061 {
1062 return p->on_rq == TASK_ON_RQ_MIGRATING;
1063 }
1064
1065 #ifndef prepare_arch_switch
1066 # define prepare_arch_switch(next) do { } while (0)
1067 #endif
1068 #ifndef finish_arch_switch
1069 # define finish_arch_switch(prev) do { } while (0)
1070 #endif
1071 #ifndef finish_arch_post_lock_switch
1072 # define finish_arch_post_lock_switch() do { } while (0)
1073 #endif
1074
1075 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1076 {
1077 #ifdef CONFIG_SMP
1078 /*
1079 * We can optimise this out completely for !SMP, because the
1080 * SMP rebalancing from interrupt is the only thing that cares
1081 * here.
1082 */
1083 next->on_cpu = 1;
1084 #endif
1085 }
1086
1087 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1088 {
1089 #ifdef CONFIG_SMP
1090 /*
1091 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1092 * We must ensure this doesn't happen until the switch is completely
1093 * finished.
1094 */
1095 smp_wmb();
1096 prev->on_cpu = 0;
1097 #endif
1098 #ifdef CONFIG_DEBUG_SPINLOCK
1099 /* this is a valid case when another task releases the spinlock */
1100 rq->lock.owner = current;
1101 #endif
1102 /*
1103 * If we are tracking spinlock dependencies then we have to
1104 * fix up the runqueue lock - which gets 'carried over' from
1105 * prev into current:
1106 */
1107 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1108
1109 raw_spin_unlock_irq(&rq->lock);
1110 }
1111
1112 /*
1113 * wake flags
1114 */
1115 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1116 #define WF_FORK 0x02 /* child wakeup after fork */
1117 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1118
1119 /*
1120 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1121 * of tasks with abnormal "nice" values across CPUs the contribution that
1122 * each task makes to its run queue's load is weighted according to its
1123 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1124 * scaled version of the new time slice allocation that they receive on time
1125 * slice expiry etc.
1126 */
1127
1128 #define WEIGHT_IDLEPRIO 3
1129 #define WMULT_IDLEPRIO 1431655765
1130
1131 /*
1132 * Nice levels are multiplicative, with a gentle 10% change for every
1133 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1134 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1135 * that remained on nice 0.
1136 *
1137 * The "10% effect" is relative and cumulative: from _any_ nice level,
1138 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1139 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1140 * If a task goes up by ~10% and another task goes down by ~10% then
1141 * the relative distance between them is ~25%.)
1142 */
1143 static const int prio_to_weight[40] = {
1144 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1145 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1146 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1147 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1148 /* 0 */ 1024, 820, 655, 526, 423,
1149 /* 5 */ 335, 272, 215, 172, 137,
1150 /* 10 */ 110, 87, 70, 56, 45,
1151 /* 15 */ 36, 29, 23, 18, 15,
1152 };
1153
1154 /*
1155 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1156 *
1157 * In cases where the weight does not change often, we can use the
1158 * precalculated inverse to speed up arithmetics by turning divisions
1159 * into multiplications:
1160 */
1161 static const u32 prio_to_wmult[40] = {
1162 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1163 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1164 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1165 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1166 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1167 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1168 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1169 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1170 };
1171
1172 #define ENQUEUE_WAKEUP 1
1173 #define ENQUEUE_HEAD 2
1174 #ifdef CONFIG_SMP
1175 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1176 #else
1177 #define ENQUEUE_WAKING 0
1178 #endif
1179 #define ENQUEUE_REPLENISH 8
1180
1181 #define DEQUEUE_SLEEP 1
1182
1183 #define RETRY_TASK ((void *)-1UL)
1184
1185 struct sched_class {
1186 const struct sched_class *next;
1187
1188 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1189 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1190 void (*yield_task) (struct rq *rq);
1191 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1192
1193 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1194
1195 /*
1196 * It is the responsibility of the pick_next_task() method that will
1197 * return the next task to call put_prev_task() on the @prev task or
1198 * something equivalent.
1199 *
1200 * May return RETRY_TASK when it finds a higher prio class has runnable
1201 * tasks.
1202 */
1203 struct task_struct * (*pick_next_task) (struct rq *rq,
1204 struct task_struct *prev);
1205 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1206
1207 #ifdef CONFIG_SMP
1208 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1209 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1210
1211 void (*task_waking) (struct task_struct *task);
1212 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1213
1214 void (*set_cpus_allowed)(struct task_struct *p,
1215 const struct cpumask *newmask);
1216
1217 void (*rq_online)(struct rq *rq);
1218 void (*rq_offline)(struct rq *rq);
1219 #endif
1220
1221 void (*set_curr_task) (struct rq *rq);
1222 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1223 void (*task_fork) (struct task_struct *p);
1224 void (*task_dead) (struct task_struct *p);
1225
1226 /*
1227 * The switched_from() call is allowed to drop rq->lock, therefore we
1228 * cannot assume the switched_from/switched_to pair is serliazed by
1229 * rq->lock. They are however serialized by p->pi_lock.
1230 */
1231 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1232 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1233 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1234 int oldprio);
1235
1236 unsigned int (*get_rr_interval) (struct rq *rq,
1237 struct task_struct *task);
1238
1239 void (*update_curr) (struct rq *rq);
1240
1241 #ifdef CONFIG_FAIR_GROUP_SCHED
1242 void (*task_move_group) (struct task_struct *p, int on_rq);
1243 #endif
1244 };
1245
1246 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1247 {
1248 prev->sched_class->put_prev_task(rq, prev);
1249 }
1250
1251 #define sched_class_highest (&stop_sched_class)
1252 #define for_each_class(class) \
1253 for (class = sched_class_highest; class; class = class->next)
1254
1255 extern const struct sched_class stop_sched_class;
1256 extern const struct sched_class dl_sched_class;
1257 extern const struct sched_class rt_sched_class;
1258 extern const struct sched_class fair_sched_class;
1259 extern const struct sched_class idle_sched_class;
1260
1261
1262 #ifdef CONFIG_SMP
1263
1264 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1265
1266 extern void trigger_load_balance(struct rq *rq);
1267
1268 extern void idle_enter_fair(struct rq *this_rq);
1269 extern void idle_exit_fair(struct rq *this_rq);
1270
1271 #else
1272
1273 static inline void idle_enter_fair(struct rq *rq) { }
1274 static inline void idle_exit_fair(struct rq *rq) { }
1275
1276 #endif
1277
1278 #ifdef CONFIG_CPU_IDLE
1279 static inline void idle_set_state(struct rq *rq,
1280 struct cpuidle_state *idle_state)
1281 {
1282 rq->idle_state = idle_state;
1283 }
1284
1285 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1286 {
1287 WARN_ON(!rcu_read_lock_held());
1288 return rq->idle_state;
1289 }
1290 #else
1291 static inline void idle_set_state(struct rq *rq,
1292 struct cpuidle_state *idle_state)
1293 {
1294 }
1295
1296 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1297 {
1298 return NULL;
1299 }
1300 #endif
1301
1302 extern void sysrq_sched_debug_show(void);
1303 extern void sched_init_granularity(void);
1304 extern void update_max_interval(void);
1305
1306 extern void init_sched_dl_class(void);
1307 extern void init_sched_rt_class(void);
1308 extern void init_sched_fair_class(void);
1309
1310 extern void resched_curr(struct rq *rq);
1311 extern void resched_cpu(int cpu);
1312
1313 extern struct rt_bandwidth def_rt_bandwidth;
1314 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1315
1316 extern struct dl_bandwidth def_dl_bandwidth;
1317 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1318 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1319
1320 unsigned long to_ratio(u64 period, u64 runtime);
1321
1322 extern void init_task_runnable_average(struct task_struct *p);
1323
1324 static inline void add_nr_running(struct rq *rq, unsigned count)
1325 {
1326 unsigned prev_nr = rq->nr_running;
1327
1328 rq->nr_running = prev_nr + count;
1329
1330 if (prev_nr < 2 && rq->nr_running >= 2) {
1331 #ifdef CONFIG_SMP
1332 if (!rq->rd->overload)
1333 rq->rd->overload = true;
1334 #endif
1335
1336 #ifdef CONFIG_NO_HZ_FULL
1337 if (tick_nohz_full_cpu(rq->cpu)) {
1338 /*
1339 * Tick is needed if more than one task runs on a CPU.
1340 * Send the target an IPI to kick it out of nohz mode.
1341 *
1342 * We assume that IPI implies full memory barrier and the
1343 * new value of rq->nr_running is visible on reception
1344 * from the target.
1345 */
1346 tick_nohz_full_kick_cpu(rq->cpu);
1347 }
1348 #endif
1349 }
1350 }
1351
1352 static inline void sub_nr_running(struct rq *rq, unsigned count)
1353 {
1354 rq->nr_running -= count;
1355 }
1356
1357 static inline void rq_last_tick_reset(struct rq *rq)
1358 {
1359 #ifdef CONFIG_NO_HZ_FULL
1360 rq->last_sched_tick = jiffies;
1361 #endif
1362 }
1363
1364 extern void update_rq_clock(struct rq *rq);
1365
1366 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1367 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1368
1369 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1370
1371 extern const_debug unsigned int sysctl_sched_time_avg;
1372 extern const_debug unsigned int sysctl_sched_nr_migrate;
1373 extern const_debug unsigned int sysctl_sched_migration_cost;
1374
1375 static inline u64 sched_avg_period(void)
1376 {
1377 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1378 }
1379
1380 #ifdef CONFIG_SCHED_HRTICK
1381
1382 /*
1383 * Use hrtick when:
1384 * - enabled by features
1385 * - hrtimer is actually high res
1386 */
1387 static inline int hrtick_enabled(struct rq *rq)
1388 {
1389 if (!sched_feat(HRTICK))
1390 return 0;
1391 if (!cpu_active(cpu_of(rq)))
1392 return 0;
1393 return hrtimer_is_hres_active(&rq->hrtick_timer);
1394 }
1395
1396 void hrtick_start(struct rq *rq, u64 delay);
1397
1398 #else
1399
1400 static inline int hrtick_enabled(struct rq *rq)
1401 {
1402 return 0;
1403 }
1404
1405 #endif /* CONFIG_SCHED_HRTICK */
1406
1407 #ifdef CONFIG_SMP
1408 extern void sched_avg_update(struct rq *rq);
1409
1410 #ifndef arch_scale_freq_capacity
1411 static __always_inline
1412 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1413 {
1414 return SCHED_CAPACITY_SCALE;
1415 }
1416 #endif
1417
1418 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1419 {
1420 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1421 sched_avg_update(rq);
1422 }
1423 #else
1424 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1425 static inline void sched_avg_update(struct rq *rq) { }
1426 #endif
1427
1428 /*
1429 * __task_rq_lock - lock the rq @p resides on.
1430 */
1431 static inline struct rq *__task_rq_lock(struct task_struct *p)
1432 __acquires(rq->lock)
1433 {
1434 struct rq *rq;
1435
1436 lockdep_assert_held(&p->pi_lock);
1437
1438 for (;;) {
1439 rq = task_rq(p);
1440 raw_spin_lock(&rq->lock);
1441 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1442 lockdep_pin_lock(&rq->lock);
1443 return rq;
1444 }
1445 raw_spin_unlock(&rq->lock);
1446
1447 while (unlikely(task_on_rq_migrating(p)))
1448 cpu_relax();
1449 }
1450 }
1451
1452 /*
1453 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1454 */
1455 static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1456 __acquires(p->pi_lock)
1457 __acquires(rq->lock)
1458 {
1459 struct rq *rq;
1460
1461 for (;;) {
1462 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1463 rq = task_rq(p);
1464 raw_spin_lock(&rq->lock);
1465 /*
1466 * move_queued_task() task_rq_lock()
1467 *
1468 * ACQUIRE (rq->lock)
1469 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1470 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1471 * [S] ->cpu = new_cpu [L] task_rq()
1472 * [L] ->on_rq
1473 * RELEASE (rq->lock)
1474 *
1475 * If we observe the old cpu in task_rq_lock, the acquire of
1476 * the old rq->lock will fully serialize against the stores.
1477 *
1478 * If we observe the new cpu in task_rq_lock, the acquire will
1479 * pair with the WMB to ensure we must then also see migrating.
1480 */
1481 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1482 lockdep_pin_lock(&rq->lock);
1483 return rq;
1484 }
1485 raw_spin_unlock(&rq->lock);
1486 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1487
1488 while (unlikely(task_on_rq_migrating(p)))
1489 cpu_relax();
1490 }
1491 }
1492
1493 static inline void __task_rq_unlock(struct rq *rq)
1494 __releases(rq->lock)
1495 {
1496 lockdep_unpin_lock(&rq->lock);
1497 raw_spin_unlock(&rq->lock);
1498 }
1499
1500 static inline void
1501 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1502 __releases(rq->lock)
1503 __releases(p->pi_lock)
1504 {
1505 lockdep_unpin_lock(&rq->lock);
1506 raw_spin_unlock(&rq->lock);
1507 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1508 }
1509
1510 #ifdef CONFIG_SMP
1511 #ifdef CONFIG_PREEMPT
1512
1513 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1514
1515 /*
1516 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1517 * way at the expense of forcing extra atomic operations in all
1518 * invocations. This assures that the double_lock is acquired using the
1519 * same underlying policy as the spinlock_t on this architecture, which
1520 * reduces latency compared to the unfair variant below. However, it
1521 * also adds more overhead and therefore may reduce throughput.
1522 */
1523 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1524 __releases(this_rq->lock)
1525 __acquires(busiest->lock)
1526 __acquires(this_rq->lock)
1527 {
1528 raw_spin_unlock(&this_rq->lock);
1529 double_rq_lock(this_rq, busiest);
1530
1531 return 1;
1532 }
1533
1534 #else
1535 /*
1536 * Unfair double_lock_balance: Optimizes throughput at the expense of
1537 * latency by eliminating extra atomic operations when the locks are
1538 * already in proper order on entry. This favors lower cpu-ids and will
1539 * grant the double lock to lower cpus over higher ids under contention,
1540 * regardless of entry order into the function.
1541 */
1542 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1543 __releases(this_rq->lock)
1544 __acquires(busiest->lock)
1545 __acquires(this_rq->lock)
1546 {
1547 int ret = 0;
1548
1549 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1550 if (busiest < this_rq) {
1551 raw_spin_unlock(&this_rq->lock);
1552 raw_spin_lock(&busiest->lock);
1553 raw_spin_lock_nested(&this_rq->lock,
1554 SINGLE_DEPTH_NESTING);
1555 ret = 1;
1556 } else
1557 raw_spin_lock_nested(&busiest->lock,
1558 SINGLE_DEPTH_NESTING);
1559 }
1560 return ret;
1561 }
1562
1563 #endif /* CONFIG_PREEMPT */
1564
1565 /*
1566 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1567 */
1568 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1569 {
1570 if (unlikely(!irqs_disabled())) {
1571 /* printk() doesn't work good under rq->lock */
1572 raw_spin_unlock(&this_rq->lock);
1573 BUG_ON(1);
1574 }
1575
1576 return _double_lock_balance(this_rq, busiest);
1577 }
1578
1579 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1580 __releases(busiest->lock)
1581 {
1582 raw_spin_unlock(&busiest->lock);
1583 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1584 }
1585
1586 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1587 {
1588 if (l1 > l2)
1589 swap(l1, l2);
1590
1591 spin_lock(l1);
1592 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1593 }
1594
1595 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1596 {
1597 if (l1 > l2)
1598 swap(l1, l2);
1599
1600 spin_lock_irq(l1);
1601 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1602 }
1603
1604 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1605 {
1606 if (l1 > l2)
1607 swap(l1, l2);
1608
1609 raw_spin_lock(l1);
1610 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1611 }
1612
1613 /*
1614 * double_rq_lock - safely lock two runqueues
1615 *
1616 * Note this does not disable interrupts like task_rq_lock,
1617 * you need to do so manually before calling.
1618 */
1619 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1620 __acquires(rq1->lock)
1621 __acquires(rq2->lock)
1622 {
1623 BUG_ON(!irqs_disabled());
1624 if (rq1 == rq2) {
1625 raw_spin_lock(&rq1->lock);
1626 __acquire(rq2->lock); /* Fake it out ;) */
1627 } else {
1628 if (rq1 < rq2) {
1629 raw_spin_lock(&rq1->lock);
1630 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1631 } else {
1632 raw_spin_lock(&rq2->lock);
1633 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1634 }
1635 }
1636 }
1637
1638 /*
1639 * double_rq_unlock - safely unlock two runqueues
1640 *
1641 * Note this does not restore interrupts like task_rq_unlock,
1642 * you need to do so manually after calling.
1643 */
1644 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1645 __releases(rq1->lock)
1646 __releases(rq2->lock)
1647 {
1648 raw_spin_unlock(&rq1->lock);
1649 if (rq1 != rq2)
1650 raw_spin_unlock(&rq2->lock);
1651 else
1652 __release(rq2->lock);
1653 }
1654
1655 #else /* CONFIG_SMP */
1656
1657 /*
1658 * double_rq_lock - safely lock two runqueues
1659 *
1660 * Note this does not disable interrupts like task_rq_lock,
1661 * you need to do so manually before calling.
1662 */
1663 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1664 __acquires(rq1->lock)
1665 __acquires(rq2->lock)
1666 {
1667 BUG_ON(!irqs_disabled());
1668 BUG_ON(rq1 != rq2);
1669 raw_spin_lock(&rq1->lock);
1670 __acquire(rq2->lock); /* Fake it out ;) */
1671 }
1672
1673 /*
1674 * double_rq_unlock - safely unlock two runqueues
1675 *
1676 * Note this does not restore interrupts like task_rq_unlock,
1677 * you need to do so manually after calling.
1678 */
1679 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1680 __releases(rq1->lock)
1681 __releases(rq2->lock)
1682 {
1683 BUG_ON(rq1 != rq2);
1684 raw_spin_unlock(&rq1->lock);
1685 __release(rq2->lock);
1686 }
1687
1688 #endif
1689
1690 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1691 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1692
1693 #ifdef CONFIG_SCHED_DEBUG
1694 extern void print_cfs_stats(struct seq_file *m, int cpu);
1695 extern void print_rt_stats(struct seq_file *m, int cpu);
1696 extern void print_dl_stats(struct seq_file *m, int cpu);
1697 extern void
1698 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1699
1700 #ifdef CONFIG_NUMA_BALANCING
1701 extern void
1702 show_numa_stats(struct task_struct *p, struct seq_file *m);
1703 extern void
1704 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1705 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1706 #endif /* CONFIG_NUMA_BALANCING */
1707 #endif /* CONFIG_SCHED_DEBUG */
1708
1709 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1710 extern void init_rt_rq(struct rt_rq *rt_rq);
1711 extern void init_dl_rq(struct dl_rq *dl_rq);
1712
1713 extern void cfs_bandwidth_usage_inc(void);
1714 extern void cfs_bandwidth_usage_dec(void);
1715
1716 #ifdef CONFIG_NO_HZ_COMMON
1717 enum rq_nohz_flag_bits {
1718 NOHZ_TICK_STOPPED,
1719 NOHZ_BALANCE_KICK,
1720 };
1721
1722 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1723 #endif
1724
1725 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1726
1727 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1728 DECLARE_PER_CPU(u64, cpu_softirq_time);
1729
1730 #ifndef CONFIG_64BIT
1731 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1732
1733 static inline void irq_time_write_begin(void)
1734 {
1735 __this_cpu_inc(irq_time_seq.sequence);
1736 smp_wmb();
1737 }
1738
1739 static inline void irq_time_write_end(void)
1740 {
1741 smp_wmb();
1742 __this_cpu_inc(irq_time_seq.sequence);
1743 }
1744
1745 static inline u64 irq_time_read(int cpu)
1746 {
1747 u64 irq_time;
1748 unsigned seq;
1749
1750 do {
1751 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1752 irq_time = per_cpu(cpu_softirq_time, cpu) +
1753 per_cpu(cpu_hardirq_time, cpu);
1754 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1755
1756 return irq_time;
1757 }
1758 #else /* CONFIG_64BIT */
1759 static inline void irq_time_write_begin(void)
1760 {
1761 }
1762
1763 static inline void irq_time_write_end(void)
1764 {
1765 }
1766
1767 static inline u64 irq_time_read(int cpu)
1768 {
1769 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1770 }
1771 #endif /* CONFIG_64BIT */
1772 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */