]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/sched.h
Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/mutex.h>
6 #include <linux/spinlock.h>
7 #include <linux/stop_machine.h>
8 #include <linux/tick.h>
9 #include <linux/slab.h>
10
11 #include "cpupri.h"
12 #include "cpuacct.h"
13
14 struct rq;
15
16 extern __read_mostly int scheduler_running;
17
18 extern unsigned long calc_load_update;
19 extern atomic_long_t calc_load_tasks;
20
21 extern long calc_load_fold_active(struct rq *this_rq);
22 extern void update_cpu_load_active(struct rq *this_rq);
23
24 /*
25 * Convert user-nice values [ -20 ... 0 ... 19 ]
26 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
27 * and back.
28 */
29 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
30 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
31 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
32
33 /*
34 * 'User priority' is the nice value converted to something we
35 * can work with better when scaling various scheduler parameters,
36 * it's a [ 0 ... 39 ] range.
37 */
38 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
39 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
40 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
41
42 /*
43 * Helpers for converting nanosecond timing to jiffy resolution
44 */
45 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
46
47 /*
48 * Increase resolution of nice-level calculations for 64-bit architectures.
49 * The extra resolution improves shares distribution and load balancing of
50 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
51 * hierarchies, especially on larger systems. This is not a user-visible change
52 * and does not change the user-interface for setting shares/weights.
53 *
54 * We increase resolution only if we have enough bits to allow this increased
55 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
56 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
57 * increased costs.
58 */
59 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
60 # define SCHED_LOAD_RESOLUTION 10
61 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
62 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
63 #else
64 # define SCHED_LOAD_RESOLUTION 0
65 # define scale_load(w) (w)
66 # define scale_load_down(w) (w)
67 #endif
68
69 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
70 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
71
72 #define NICE_0_LOAD SCHED_LOAD_SCALE
73 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
74
75 /*
76 * These are the 'tuning knobs' of the scheduler:
77 */
78
79 /*
80 * single value that denotes runtime == period, ie unlimited time.
81 */
82 #define RUNTIME_INF ((u64)~0ULL)
83
84 static inline int rt_policy(int policy)
85 {
86 if (policy == SCHED_FIFO || policy == SCHED_RR)
87 return 1;
88 return 0;
89 }
90
91 static inline int task_has_rt_policy(struct task_struct *p)
92 {
93 return rt_policy(p->policy);
94 }
95
96 /*
97 * This is the priority-queue data structure of the RT scheduling class:
98 */
99 struct rt_prio_array {
100 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
101 struct list_head queue[MAX_RT_PRIO];
102 };
103
104 struct rt_bandwidth {
105 /* nests inside the rq lock: */
106 raw_spinlock_t rt_runtime_lock;
107 ktime_t rt_period;
108 u64 rt_runtime;
109 struct hrtimer rt_period_timer;
110 };
111
112 extern struct mutex sched_domains_mutex;
113
114 #ifdef CONFIG_CGROUP_SCHED
115
116 #include <linux/cgroup.h>
117
118 struct cfs_rq;
119 struct rt_rq;
120
121 extern struct list_head task_groups;
122
123 struct cfs_bandwidth {
124 #ifdef CONFIG_CFS_BANDWIDTH
125 raw_spinlock_t lock;
126 ktime_t period;
127 u64 quota, runtime;
128 s64 hierarchal_quota;
129 u64 runtime_expires;
130
131 int idle, timer_active;
132 struct hrtimer period_timer, slack_timer;
133 struct list_head throttled_cfs_rq;
134
135 /* statistics */
136 int nr_periods, nr_throttled;
137 u64 throttled_time;
138 #endif
139 };
140
141 /* task group related information */
142 struct task_group {
143 struct cgroup_subsys_state css;
144
145 #ifdef CONFIG_FAIR_GROUP_SCHED
146 /* schedulable entities of this group on each cpu */
147 struct sched_entity **se;
148 /* runqueue "owned" by this group on each cpu */
149 struct cfs_rq **cfs_rq;
150 unsigned long shares;
151
152 #ifdef CONFIG_SMP
153 atomic_long_t load_avg;
154 atomic_t runnable_avg;
155 #endif
156 #endif
157
158 #ifdef CONFIG_RT_GROUP_SCHED
159 struct sched_rt_entity **rt_se;
160 struct rt_rq **rt_rq;
161
162 struct rt_bandwidth rt_bandwidth;
163 #endif
164
165 struct rcu_head rcu;
166 struct list_head list;
167
168 struct task_group *parent;
169 struct list_head siblings;
170 struct list_head children;
171
172 #ifdef CONFIG_SCHED_AUTOGROUP
173 struct autogroup *autogroup;
174 #endif
175
176 struct cfs_bandwidth cfs_bandwidth;
177 };
178
179 #ifdef CONFIG_FAIR_GROUP_SCHED
180 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
181
182 /*
183 * A weight of 0 or 1 can cause arithmetics problems.
184 * A weight of a cfs_rq is the sum of weights of which entities
185 * are queued on this cfs_rq, so a weight of a entity should not be
186 * too large, so as the shares value of a task group.
187 * (The default weight is 1024 - so there's no practical
188 * limitation from this.)
189 */
190 #define MIN_SHARES (1UL << 1)
191 #define MAX_SHARES (1UL << 18)
192 #endif
193
194 typedef int (*tg_visitor)(struct task_group *, void *);
195
196 extern int walk_tg_tree_from(struct task_group *from,
197 tg_visitor down, tg_visitor up, void *data);
198
199 /*
200 * Iterate the full tree, calling @down when first entering a node and @up when
201 * leaving it for the final time.
202 *
203 * Caller must hold rcu_lock or sufficient equivalent.
204 */
205 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
206 {
207 return walk_tg_tree_from(&root_task_group, down, up, data);
208 }
209
210 extern int tg_nop(struct task_group *tg, void *data);
211
212 extern void free_fair_sched_group(struct task_group *tg);
213 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
214 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
215 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
216 struct sched_entity *se, int cpu,
217 struct sched_entity *parent);
218 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
219 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
220
221 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
222 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
223 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
224
225 extern void free_rt_sched_group(struct task_group *tg);
226 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
227 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
228 struct sched_rt_entity *rt_se, int cpu,
229 struct sched_rt_entity *parent);
230
231 extern struct task_group *sched_create_group(struct task_group *parent);
232 extern void sched_online_group(struct task_group *tg,
233 struct task_group *parent);
234 extern void sched_destroy_group(struct task_group *tg);
235 extern void sched_offline_group(struct task_group *tg);
236
237 extern void sched_move_task(struct task_struct *tsk);
238
239 #ifdef CONFIG_FAIR_GROUP_SCHED
240 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
241 #endif
242
243 #else /* CONFIG_CGROUP_SCHED */
244
245 struct cfs_bandwidth { };
246
247 #endif /* CONFIG_CGROUP_SCHED */
248
249 /* CFS-related fields in a runqueue */
250 struct cfs_rq {
251 struct load_weight load;
252 unsigned int nr_running, h_nr_running;
253
254 u64 exec_clock;
255 u64 min_vruntime;
256 #ifndef CONFIG_64BIT
257 u64 min_vruntime_copy;
258 #endif
259
260 struct rb_root tasks_timeline;
261 struct rb_node *rb_leftmost;
262
263 /*
264 * 'curr' points to currently running entity on this cfs_rq.
265 * It is set to NULL otherwise (i.e when none are currently running).
266 */
267 struct sched_entity *curr, *next, *last, *skip;
268
269 #ifdef CONFIG_SCHED_DEBUG
270 unsigned int nr_spread_over;
271 #endif
272
273 #ifdef CONFIG_SMP
274 /*
275 * CFS Load tracking
276 * Under CFS, load is tracked on a per-entity basis and aggregated up.
277 * This allows for the description of both thread and group usage (in
278 * the FAIR_GROUP_SCHED case).
279 */
280 unsigned long runnable_load_avg, blocked_load_avg;
281 atomic64_t decay_counter;
282 u64 last_decay;
283 atomic_long_t removed_load;
284
285 #ifdef CONFIG_FAIR_GROUP_SCHED
286 /* Required to track per-cpu representation of a task_group */
287 u32 tg_runnable_contrib;
288 unsigned long tg_load_contrib;
289
290 /*
291 * h_load = weight * f(tg)
292 *
293 * Where f(tg) is the recursive weight fraction assigned to
294 * this group.
295 */
296 unsigned long h_load;
297 u64 last_h_load_update;
298 struct sched_entity *h_load_next;
299 #endif /* CONFIG_FAIR_GROUP_SCHED */
300 #endif /* CONFIG_SMP */
301
302 #ifdef CONFIG_FAIR_GROUP_SCHED
303 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
304
305 /*
306 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
307 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
308 * (like users, containers etc.)
309 *
310 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
311 * list is used during load balance.
312 */
313 int on_list;
314 struct list_head leaf_cfs_rq_list;
315 struct task_group *tg; /* group that "owns" this runqueue */
316
317 #ifdef CONFIG_CFS_BANDWIDTH
318 int runtime_enabled;
319 u64 runtime_expires;
320 s64 runtime_remaining;
321
322 u64 throttled_clock, throttled_clock_task;
323 u64 throttled_clock_task_time;
324 int throttled, throttle_count;
325 struct list_head throttled_list;
326 #endif /* CONFIG_CFS_BANDWIDTH */
327 #endif /* CONFIG_FAIR_GROUP_SCHED */
328 };
329
330 static inline int rt_bandwidth_enabled(void)
331 {
332 return sysctl_sched_rt_runtime >= 0;
333 }
334
335 /* Real-Time classes' related field in a runqueue: */
336 struct rt_rq {
337 struct rt_prio_array active;
338 unsigned int rt_nr_running;
339 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
340 struct {
341 int curr; /* highest queued rt task prio */
342 #ifdef CONFIG_SMP
343 int next; /* next highest */
344 #endif
345 } highest_prio;
346 #endif
347 #ifdef CONFIG_SMP
348 unsigned long rt_nr_migratory;
349 unsigned long rt_nr_total;
350 int overloaded;
351 struct plist_head pushable_tasks;
352 #endif
353 int rt_throttled;
354 u64 rt_time;
355 u64 rt_runtime;
356 /* Nests inside the rq lock: */
357 raw_spinlock_t rt_runtime_lock;
358
359 #ifdef CONFIG_RT_GROUP_SCHED
360 unsigned long rt_nr_boosted;
361
362 struct rq *rq;
363 struct task_group *tg;
364 #endif
365 };
366
367 #ifdef CONFIG_SMP
368
369 /*
370 * We add the notion of a root-domain which will be used to define per-domain
371 * variables. Each exclusive cpuset essentially defines an island domain by
372 * fully partitioning the member cpus from any other cpuset. Whenever a new
373 * exclusive cpuset is created, we also create and attach a new root-domain
374 * object.
375 *
376 */
377 struct root_domain {
378 atomic_t refcount;
379 atomic_t rto_count;
380 struct rcu_head rcu;
381 cpumask_var_t span;
382 cpumask_var_t online;
383
384 /*
385 * The "RT overload" flag: it gets set if a CPU has more than
386 * one runnable RT task.
387 */
388 cpumask_var_t rto_mask;
389 struct cpupri cpupri;
390 };
391
392 extern struct root_domain def_root_domain;
393
394 #endif /* CONFIG_SMP */
395
396 /*
397 * This is the main, per-CPU runqueue data structure.
398 *
399 * Locking rule: those places that want to lock multiple runqueues
400 * (such as the load balancing or the thread migration code), lock
401 * acquire operations must be ordered by ascending &runqueue.
402 */
403 struct rq {
404 /* runqueue lock: */
405 raw_spinlock_t lock;
406
407 /*
408 * nr_running and cpu_load should be in the same cacheline because
409 * remote CPUs use both these fields when doing load calculation.
410 */
411 unsigned int nr_running;
412 #ifdef CONFIG_NUMA_BALANCING
413 unsigned int nr_numa_running;
414 unsigned int nr_preferred_running;
415 #endif
416 #define CPU_LOAD_IDX_MAX 5
417 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
418 unsigned long last_load_update_tick;
419 #ifdef CONFIG_NO_HZ_COMMON
420 u64 nohz_stamp;
421 unsigned long nohz_flags;
422 #endif
423 #ifdef CONFIG_NO_HZ_FULL
424 unsigned long last_sched_tick;
425 #endif
426 int skip_clock_update;
427
428 /* capture load from *all* tasks on this cpu: */
429 struct load_weight load;
430 unsigned long nr_load_updates;
431 u64 nr_switches;
432
433 struct cfs_rq cfs;
434 struct rt_rq rt;
435
436 #ifdef CONFIG_FAIR_GROUP_SCHED
437 /* list of leaf cfs_rq on this cpu: */
438 struct list_head leaf_cfs_rq_list;
439 #endif /* CONFIG_FAIR_GROUP_SCHED */
440
441 #ifdef CONFIG_RT_GROUP_SCHED
442 struct list_head leaf_rt_rq_list;
443 #endif
444
445 /*
446 * This is part of a global counter where only the total sum
447 * over all CPUs matters. A task can increase this counter on
448 * one CPU and if it got migrated afterwards it may decrease
449 * it on another CPU. Always updated under the runqueue lock:
450 */
451 unsigned long nr_uninterruptible;
452
453 struct task_struct *curr, *idle, *stop;
454 unsigned long next_balance;
455 struct mm_struct *prev_mm;
456
457 u64 clock;
458 u64 clock_task;
459
460 atomic_t nr_iowait;
461
462 #ifdef CONFIG_SMP
463 struct root_domain *rd;
464 struct sched_domain *sd;
465
466 unsigned long cpu_power;
467
468 unsigned char idle_balance;
469 /* For active balancing */
470 int post_schedule;
471 int active_balance;
472 int push_cpu;
473 struct cpu_stop_work active_balance_work;
474 /* cpu of this runqueue: */
475 int cpu;
476 int online;
477
478 struct list_head cfs_tasks;
479
480 u64 rt_avg;
481 u64 age_stamp;
482 u64 idle_stamp;
483 u64 avg_idle;
484
485 /* This is used to determine avg_idle's max value */
486 u64 max_idle_balance_cost;
487 #endif
488
489 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
490 u64 prev_irq_time;
491 #endif
492 #ifdef CONFIG_PARAVIRT
493 u64 prev_steal_time;
494 #endif
495 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
496 u64 prev_steal_time_rq;
497 #endif
498
499 /* calc_load related fields */
500 unsigned long calc_load_update;
501 long calc_load_active;
502
503 #ifdef CONFIG_SCHED_HRTICK
504 #ifdef CONFIG_SMP
505 int hrtick_csd_pending;
506 struct call_single_data hrtick_csd;
507 #endif
508 struct hrtimer hrtick_timer;
509 #endif
510
511 #ifdef CONFIG_SCHEDSTATS
512 /* latency stats */
513 struct sched_info rq_sched_info;
514 unsigned long long rq_cpu_time;
515 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
516
517 /* sys_sched_yield() stats */
518 unsigned int yld_count;
519
520 /* schedule() stats */
521 unsigned int sched_count;
522 unsigned int sched_goidle;
523
524 /* try_to_wake_up() stats */
525 unsigned int ttwu_count;
526 unsigned int ttwu_local;
527 #endif
528
529 #ifdef CONFIG_SMP
530 struct llist_head wake_list;
531 #endif
532
533 struct sched_avg avg;
534 };
535
536 static inline int cpu_of(struct rq *rq)
537 {
538 #ifdef CONFIG_SMP
539 return rq->cpu;
540 #else
541 return 0;
542 #endif
543 }
544
545 DECLARE_PER_CPU(struct rq, runqueues);
546
547 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
548 #define this_rq() (&__get_cpu_var(runqueues))
549 #define task_rq(p) cpu_rq(task_cpu(p))
550 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
551 #define raw_rq() (&__raw_get_cpu_var(runqueues))
552
553 static inline u64 rq_clock(struct rq *rq)
554 {
555 return rq->clock;
556 }
557
558 static inline u64 rq_clock_task(struct rq *rq)
559 {
560 return rq->clock_task;
561 }
562
563 #ifdef CONFIG_NUMA_BALANCING
564 extern void sched_setnuma(struct task_struct *p, int node);
565 extern int migrate_task_to(struct task_struct *p, int cpu);
566 extern int migrate_swap(struct task_struct *, struct task_struct *);
567 #endif /* CONFIG_NUMA_BALANCING */
568
569 #ifdef CONFIG_SMP
570
571 #define rcu_dereference_check_sched_domain(p) \
572 rcu_dereference_check((p), \
573 lockdep_is_held(&sched_domains_mutex))
574
575 /*
576 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
577 * See detach_destroy_domains: synchronize_sched for details.
578 *
579 * The domain tree of any CPU may only be accessed from within
580 * preempt-disabled sections.
581 */
582 #define for_each_domain(cpu, __sd) \
583 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
584 __sd; __sd = __sd->parent)
585
586 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
587
588 /**
589 * highest_flag_domain - Return highest sched_domain containing flag.
590 * @cpu: The cpu whose highest level of sched domain is to
591 * be returned.
592 * @flag: The flag to check for the highest sched_domain
593 * for the given cpu.
594 *
595 * Returns the highest sched_domain of a cpu which contains the given flag.
596 */
597 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
598 {
599 struct sched_domain *sd, *hsd = NULL;
600
601 for_each_domain(cpu, sd) {
602 if (!(sd->flags & flag))
603 break;
604 hsd = sd;
605 }
606
607 return hsd;
608 }
609
610 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
611 {
612 struct sched_domain *sd;
613
614 for_each_domain(cpu, sd) {
615 if (sd->flags & flag)
616 break;
617 }
618
619 return sd;
620 }
621
622 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
623 DECLARE_PER_CPU(int, sd_llc_size);
624 DECLARE_PER_CPU(int, sd_llc_id);
625 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
626 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
627 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
628
629 struct sched_group_power {
630 atomic_t ref;
631 /*
632 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
633 * single CPU.
634 */
635 unsigned int power, power_orig;
636 unsigned long next_update;
637 int imbalance; /* XXX unrelated to power but shared group state */
638 /*
639 * Number of busy cpus in this group.
640 */
641 atomic_t nr_busy_cpus;
642
643 unsigned long cpumask[0]; /* iteration mask */
644 };
645
646 struct sched_group {
647 struct sched_group *next; /* Must be a circular list */
648 atomic_t ref;
649
650 unsigned int group_weight;
651 struct sched_group_power *sgp;
652
653 /*
654 * The CPUs this group covers.
655 *
656 * NOTE: this field is variable length. (Allocated dynamically
657 * by attaching extra space to the end of the structure,
658 * depending on how many CPUs the kernel has booted up with)
659 */
660 unsigned long cpumask[0];
661 };
662
663 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
664 {
665 return to_cpumask(sg->cpumask);
666 }
667
668 /*
669 * cpumask masking which cpus in the group are allowed to iterate up the domain
670 * tree.
671 */
672 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
673 {
674 return to_cpumask(sg->sgp->cpumask);
675 }
676
677 /**
678 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
679 * @group: The group whose first cpu is to be returned.
680 */
681 static inline unsigned int group_first_cpu(struct sched_group *group)
682 {
683 return cpumask_first(sched_group_cpus(group));
684 }
685
686 extern int group_balance_cpu(struct sched_group *sg);
687
688 #endif /* CONFIG_SMP */
689
690 #include "stats.h"
691 #include "auto_group.h"
692
693 #ifdef CONFIG_CGROUP_SCHED
694
695 /*
696 * Return the group to which this tasks belongs.
697 *
698 * We cannot use task_css() and friends because the cgroup subsystem
699 * changes that value before the cgroup_subsys::attach() method is called,
700 * therefore we cannot pin it and might observe the wrong value.
701 *
702 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
703 * core changes this before calling sched_move_task().
704 *
705 * Instead we use a 'copy' which is updated from sched_move_task() while
706 * holding both task_struct::pi_lock and rq::lock.
707 */
708 static inline struct task_group *task_group(struct task_struct *p)
709 {
710 return p->sched_task_group;
711 }
712
713 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
714 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
715 {
716 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
717 struct task_group *tg = task_group(p);
718 #endif
719
720 #ifdef CONFIG_FAIR_GROUP_SCHED
721 p->se.cfs_rq = tg->cfs_rq[cpu];
722 p->se.parent = tg->se[cpu];
723 #endif
724
725 #ifdef CONFIG_RT_GROUP_SCHED
726 p->rt.rt_rq = tg->rt_rq[cpu];
727 p->rt.parent = tg->rt_se[cpu];
728 #endif
729 }
730
731 #else /* CONFIG_CGROUP_SCHED */
732
733 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
734 static inline struct task_group *task_group(struct task_struct *p)
735 {
736 return NULL;
737 }
738
739 #endif /* CONFIG_CGROUP_SCHED */
740
741 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
742 {
743 set_task_rq(p, cpu);
744 #ifdef CONFIG_SMP
745 /*
746 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
747 * successfuly executed on another CPU. We must ensure that updates of
748 * per-task data have been completed by this moment.
749 */
750 smp_wmb();
751 task_thread_info(p)->cpu = cpu;
752 p->wake_cpu = cpu;
753 #endif
754 }
755
756 /*
757 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
758 */
759 #ifdef CONFIG_SCHED_DEBUG
760 # include <linux/static_key.h>
761 # define const_debug __read_mostly
762 #else
763 # define const_debug const
764 #endif
765
766 extern const_debug unsigned int sysctl_sched_features;
767
768 #define SCHED_FEAT(name, enabled) \
769 __SCHED_FEAT_##name ,
770
771 enum {
772 #include "features.h"
773 __SCHED_FEAT_NR,
774 };
775
776 #undef SCHED_FEAT
777
778 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
779 static __always_inline bool static_branch__true(struct static_key *key)
780 {
781 return static_key_true(key); /* Not out of line branch. */
782 }
783
784 static __always_inline bool static_branch__false(struct static_key *key)
785 {
786 return static_key_false(key); /* Out of line branch. */
787 }
788
789 #define SCHED_FEAT(name, enabled) \
790 static __always_inline bool static_branch_##name(struct static_key *key) \
791 { \
792 return static_branch__##enabled(key); \
793 }
794
795 #include "features.h"
796
797 #undef SCHED_FEAT
798
799 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
800 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
801 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
802 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
803 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
804
805 #ifdef CONFIG_NUMA_BALANCING
806 #define sched_feat_numa(x) sched_feat(x)
807 #ifdef CONFIG_SCHED_DEBUG
808 #define numabalancing_enabled sched_feat_numa(NUMA)
809 #else
810 extern bool numabalancing_enabled;
811 #endif /* CONFIG_SCHED_DEBUG */
812 #else
813 #define sched_feat_numa(x) (0)
814 #define numabalancing_enabled (0)
815 #endif /* CONFIG_NUMA_BALANCING */
816
817 static inline u64 global_rt_period(void)
818 {
819 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
820 }
821
822 static inline u64 global_rt_runtime(void)
823 {
824 if (sysctl_sched_rt_runtime < 0)
825 return RUNTIME_INF;
826
827 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
828 }
829
830
831
832 static inline int task_current(struct rq *rq, struct task_struct *p)
833 {
834 return rq->curr == p;
835 }
836
837 static inline int task_running(struct rq *rq, struct task_struct *p)
838 {
839 #ifdef CONFIG_SMP
840 return p->on_cpu;
841 #else
842 return task_current(rq, p);
843 #endif
844 }
845
846
847 #ifndef prepare_arch_switch
848 # define prepare_arch_switch(next) do { } while (0)
849 #endif
850 #ifndef finish_arch_switch
851 # define finish_arch_switch(prev) do { } while (0)
852 #endif
853 #ifndef finish_arch_post_lock_switch
854 # define finish_arch_post_lock_switch() do { } while (0)
855 #endif
856
857 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
858 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
859 {
860 #ifdef CONFIG_SMP
861 /*
862 * We can optimise this out completely for !SMP, because the
863 * SMP rebalancing from interrupt is the only thing that cares
864 * here.
865 */
866 next->on_cpu = 1;
867 #endif
868 }
869
870 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
871 {
872 #ifdef CONFIG_SMP
873 /*
874 * After ->on_cpu is cleared, the task can be moved to a different CPU.
875 * We must ensure this doesn't happen until the switch is completely
876 * finished.
877 */
878 smp_wmb();
879 prev->on_cpu = 0;
880 #endif
881 #ifdef CONFIG_DEBUG_SPINLOCK
882 /* this is a valid case when another task releases the spinlock */
883 rq->lock.owner = current;
884 #endif
885 /*
886 * If we are tracking spinlock dependencies then we have to
887 * fix up the runqueue lock - which gets 'carried over' from
888 * prev into current:
889 */
890 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
891
892 raw_spin_unlock_irq(&rq->lock);
893 }
894
895 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
896 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
897 {
898 #ifdef CONFIG_SMP
899 /*
900 * We can optimise this out completely for !SMP, because the
901 * SMP rebalancing from interrupt is the only thing that cares
902 * here.
903 */
904 next->on_cpu = 1;
905 #endif
906 raw_spin_unlock(&rq->lock);
907 }
908
909 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
910 {
911 #ifdef CONFIG_SMP
912 /*
913 * After ->on_cpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
918 prev->on_cpu = 0;
919 #endif
920 local_irq_enable();
921 }
922 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
923
924 /*
925 * wake flags
926 */
927 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
928 #define WF_FORK 0x02 /* child wakeup after fork */
929 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
930
931 /*
932 * To aid in avoiding the subversion of "niceness" due to uneven distribution
933 * of tasks with abnormal "nice" values across CPUs the contribution that
934 * each task makes to its run queue's load is weighted according to its
935 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
936 * scaled version of the new time slice allocation that they receive on time
937 * slice expiry etc.
938 */
939
940 #define WEIGHT_IDLEPRIO 3
941 #define WMULT_IDLEPRIO 1431655765
942
943 /*
944 * Nice levels are multiplicative, with a gentle 10% change for every
945 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
946 * nice 1, it will get ~10% less CPU time than another CPU-bound task
947 * that remained on nice 0.
948 *
949 * The "10% effect" is relative and cumulative: from _any_ nice level,
950 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
951 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
952 * If a task goes up by ~10% and another task goes down by ~10% then
953 * the relative distance between them is ~25%.)
954 */
955 static const int prio_to_weight[40] = {
956 /* -20 */ 88761, 71755, 56483, 46273, 36291,
957 /* -15 */ 29154, 23254, 18705, 14949, 11916,
958 /* -10 */ 9548, 7620, 6100, 4904, 3906,
959 /* -5 */ 3121, 2501, 1991, 1586, 1277,
960 /* 0 */ 1024, 820, 655, 526, 423,
961 /* 5 */ 335, 272, 215, 172, 137,
962 /* 10 */ 110, 87, 70, 56, 45,
963 /* 15 */ 36, 29, 23, 18, 15,
964 };
965
966 /*
967 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
968 *
969 * In cases where the weight does not change often, we can use the
970 * precalculated inverse to speed up arithmetics by turning divisions
971 * into multiplications:
972 */
973 static const u32 prio_to_wmult[40] = {
974 /* -20 */ 48388, 59856, 76040, 92818, 118348,
975 /* -15 */ 147320, 184698, 229616, 287308, 360437,
976 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
977 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
978 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
979 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
980 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
981 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
982 };
983
984 #define ENQUEUE_WAKEUP 1
985 #define ENQUEUE_HEAD 2
986 #ifdef CONFIG_SMP
987 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
988 #else
989 #define ENQUEUE_WAKING 0
990 #endif
991
992 #define DEQUEUE_SLEEP 1
993
994 struct sched_class {
995 const struct sched_class *next;
996
997 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
998 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
999 void (*yield_task) (struct rq *rq);
1000 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1001
1002 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1003
1004 struct task_struct * (*pick_next_task) (struct rq *rq);
1005 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1006
1007 #ifdef CONFIG_SMP
1008 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1009 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1010
1011 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1012 void (*post_schedule) (struct rq *this_rq);
1013 void (*task_waking) (struct task_struct *task);
1014 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1015
1016 void (*set_cpus_allowed)(struct task_struct *p,
1017 const struct cpumask *newmask);
1018
1019 void (*rq_online)(struct rq *rq);
1020 void (*rq_offline)(struct rq *rq);
1021 #endif
1022
1023 void (*set_curr_task) (struct rq *rq);
1024 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1025 void (*task_fork) (struct task_struct *p);
1026
1027 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1028 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1029 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1030 int oldprio);
1031
1032 unsigned int (*get_rr_interval) (struct rq *rq,
1033 struct task_struct *task);
1034
1035 #ifdef CONFIG_FAIR_GROUP_SCHED
1036 void (*task_move_group) (struct task_struct *p, int on_rq);
1037 #endif
1038 };
1039
1040 #define sched_class_highest (&stop_sched_class)
1041 #define for_each_class(class) \
1042 for (class = sched_class_highest; class; class = class->next)
1043
1044 extern const struct sched_class stop_sched_class;
1045 extern const struct sched_class rt_sched_class;
1046 extern const struct sched_class fair_sched_class;
1047 extern const struct sched_class idle_sched_class;
1048
1049
1050 #ifdef CONFIG_SMP
1051
1052 extern void update_group_power(struct sched_domain *sd, int cpu);
1053
1054 extern void trigger_load_balance(struct rq *rq, int cpu);
1055 extern void idle_balance(int this_cpu, struct rq *this_rq);
1056
1057 extern void idle_enter_fair(struct rq *this_rq);
1058 extern void idle_exit_fair(struct rq *this_rq);
1059
1060 #else /* CONFIG_SMP */
1061
1062 static inline void idle_balance(int cpu, struct rq *rq)
1063 {
1064 }
1065
1066 #endif
1067
1068 extern void sysrq_sched_debug_show(void);
1069 extern void sched_init_granularity(void);
1070 extern void update_max_interval(void);
1071 extern void init_sched_rt_class(void);
1072 extern void init_sched_fair_class(void);
1073
1074 extern void resched_task(struct task_struct *p);
1075 extern void resched_cpu(int cpu);
1076
1077 extern struct rt_bandwidth def_rt_bandwidth;
1078 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1079
1080 extern void update_idle_cpu_load(struct rq *this_rq);
1081
1082 extern void init_task_runnable_average(struct task_struct *p);
1083
1084 #ifdef CONFIG_PARAVIRT
1085 static inline u64 steal_ticks(u64 steal)
1086 {
1087 if (unlikely(steal > NSEC_PER_SEC))
1088 return div_u64(steal, TICK_NSEC);
1089
1090 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1091 }
1092 #endif
1093
1094 static inline void inc_nr_running(struct rq *rq)
1095 {
1096 rq->nr_running++;
1097
1098 #ifdef CONFIG_NO_HZ_FULL
1099 if (rq->nr_running == 2) {
1100 if (tick_nohz_full_cpu(rq->cpu)) {
1101 /* Order rq->nr_running write against the IPI */
1102 smp_wmb();
1103 smp_send_reschedule(rq->cpu);
1104 }
1105 }
1106 #endif
1107 }
1108
1109 static inline void dec_nr_running(struct rq *rq)
1110 {
1111 rq->nr_running--;
1112 }
1113
1114 static inline void rq_last_tick_reset(struct rq *rq)
1115 {
1116 #ifdef CONFIG_NO_HZ_FULL
1117 rq->last_sched_tick = jiffies;
1118 #endif
1119 }
1120
1121 extern void update_rq_clock(struct rq *rq);
1122
1123 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1124 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1125
1126 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1127
1128 extern const_debug unsigned int sysctl_sched_time_avg;
1129 extern const_debug unsigned int sysctl_sched_nr_migrate;
1130 extern const_debug unsigned int sysctl_sched_migration_cost;
1131
1132 static inline u64 sched_avg_period(void)
1133 {
1134 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1135 }
1136
1137 #ifdef CONFIG_SCHED_HRTICK
1138
1139 /*
1140 * Use hrtick when:
1141 * - enabled by features
1142 * - hrtimer is actually high res
1143 */
1144 static inline int hrtick_enabled(struct rq *rq)
1145 {
1146 if (!sched_feat(HRTICK))
1147 return 0;
1148 if (!cpu_active(cpu_of(rq)))
1149 return 0;
1150 return hrtimer_is_hres_active(&rq->hrtick_timer);
1151 }
1152
1153 void hrtick_start(struct rq *rq, u64 delay);
1154
1155 #else
1156
1157 static inline int hrtick_enabled(struct rq *rq)
1158 {
1159 return 0;
1160 }
1161
1162 #endif /* CONFIG_SCHED_HRTICK */
1163
1164 #ifdef CONFIG_SMP
1165 extern void sched_avg_update(struct rq *rq);
1166 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1167 {
1168 rq->rt_avg += rt_delta;
1169 sched_avg_update(rq);
1170 }
1171 #else
1172 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1173 static inline void sched_avg_update(struct rq *rq) { }
1174 #endif
1175
1176 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1177
1178 #ifdef CONFIG_SMP
1179 #ifdef CONFIG_PREEMPT
1180
1181 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1182
1183 /*
1184 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1185 * way at the expense of forcing extra atomic operations in all
1186 * invocations. This assures that the double_lock is acquired using the
1187 * same underlying policy as the spinlock_t on this architecture, which
1188 * reduces latency compared to the unfair variant below. However, it
1189 * also adds more overhead and therefore may reduce throughput.
1190 */
1191 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1192 __releases(this_rq->lock)
1193 __acquires(busiest->lock)
1194 __acquires(this_rq->lock)
1195 {
1196 raw_spin_unlock(&this_rq->lock);
1197 double_rq_lock(this_rq, busiest);
1198
1199 return 1;
1200 }
1201
1202 #else
1203 /*
1204 * Unfair double_lock_balance: Optimizes throughput at the expense of
1205 * latency by eliminating extra atomic operations when the locks are
1206 * already in proper order on entry. This favors lower cpu-ids and will
1207 * grant the double lock to lower cpus over higher ids under contention,
1208 * regardless of entry order into the function.
1209 */
1210 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1211 __releases(this_rq->lock)
1212 __acquires(busiest->lock)
1213 __acquires(this_rq->lock)
1214 {
1215 int ret = 0;
1216
1217 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1218 if (busiest < this_rq) {
1219 raw_spin_unlock(&this_rq->lock);
1220 raw_spin_lock(&busiest->lock);
1221 raw_spin_lock_nested(&this_rq->lock,
1222 SINGLE_DEPTH_NESTING);
1223 ret = 1;
1224 } else
1225 raw_spin_lock_nested(&busiest->lock,
1226 SINGLE_DEPTH_NESTING);
1227 }
1228 return ret;
1229 }
1230
1231 #endif /* CONFIG_PREEMPT */
1232
1233 /*
1234 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1235 */
1236 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1237 {
1238 if (unlikely(!irqs_disabled())) {
1239 /* printk() doesn't work good under rq->lock */
1240 raw_spin_unlock(&this_rq->lock);
1241 BUG_ON(1);
1242 }
1243
1244 return _double_lock_balance(this_rq, busiest);
1245 }
1246
1247 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1248 __releases(busiest->lock)
1249 {
1250 raw_spin_unlock(&busiest->lock);
1251 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1252 }
1253
1254 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1255 {
1256 if (l1 > l2)
1257 swap(l1, l2);
1258
1259 spin_lock(l1);
1260 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1261 }
1262
1263 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1264 {
1265 if (l1 > l2)
1266 swap(l1, l2);
1267
1268 raw_spin_lock(l1);
1269 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1270 }
1271
1272 /*
1273 * double_rq_lock - safely lock two runqueues
1274 *
1275 * Note this does not disable interrupts like task_rq_lock,
1276 * you need to do so manually before calling.
1277 */
1278 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1279 __acquires(rq1->lock)
1280 __acquires(rq2->lock)
1281 {
1282 BUG_ON(!irqs_disabled());
1283 if (rq1 == rq2) {
1284 raw_spin_lock(&rq1->lock);
1285 __acquire(rq2->lock); /* Fake it out ;) */
1286 } else {
1287 if (rq1 < rq2) {
1288 raw_spin_lock(&rq1->lock);
1289 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1290 } else {
1291 raw_spin_lock(&rq2->lock);
1292 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1293 }
1294 }
1295 }
1296
1297 /*
1298 * double_rq_unlock - safely unlock two runqueues
1299 *
1300 * Note this does not restore interrupts like task_rq_unlock,
1301 * you need to do so manually after calling.
1302 */
1303 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1304 __releases(rq1->lock)
1305 __releases(rq2->lock)
1306 {
1307 raw_spin_unlock(&rq1->lock);
1308 if (rq1 != rq2)
1309 raw_spin_unlock(&rq2->lock);
1310 else
1311 __release(rq2->lock);
1312 }
1313
1314 #else /* CONFIG_SMP */
1315
1316 /*
1317 * double_rq_lock - safely lock two runqueues
1318 *
1319 * Note this does not disable interrupts like task_rq_lock,
1320 * you need to do so manually before calling.
1321 */
1322 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1323 __acquires(rq1->lock)
1324 __acquires(rq2->lock)
1325 {
1326 BUG_ON(!irqs_disabled());
1327 BUG_ON(rq1 != rq2);
1328 raw_spin_lock(&rq1->lock);
1329 __acquire(rq2->lock); /* Fake it out ;) */
1330 }
1331
1332 /*
1333 * double_rq_unlock - safely unlock two runqueues
1334 *
1335 * Note this does not restore interrupts like task_rq_unlock,
1336 * you need to do so manually after calling.
1337 */
1338 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1339 __releases(rq1->lock)
1340 __releases(rq2->lock)
1341 {
1342 BUG_ON(rq1 != rq2);
1343 raw_spin_unlock(&rq1->lock);
1344 __release(rq2->lock);
1345 }
1346
1347 #endif
1348
1349 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1350 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1351 extern void print_cfs_stats(struct seq_file *m, int cpu);
1352 extern void print_rt_stats(struct seq_file *m, int cpu);
1353
1354 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1355 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1356
1357 extern void cfs_bandwidth_usage_inc(void);
1358 extern void cfs_bandwidth_usage_dec(void);
1359
1360 #ifdef CONFIG_NO_HZ_COMMON
1361 enum rq_nohz_flag_bits {
1362 NOHZ_TICK_STOPPED,
1363 NOHZ_BALANCE_KICK,
1364 };
1365
1366 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1367 #endif
1368
1369 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1370
1371 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1372 DECLARE_PER_CPU(u64, cpu_softirq_time);
1373
1374 #ifndef CONFIG_64BIT
1375 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1376
1377 static inline void irq_time_write_begin(void)
1378 {
1379 __this_cpu_inc(irq_time_seq.sequence);
1380 smp_wmb();
1381 }
1382
1383 static inline void irq_time_write_end(void)
1384 {
1385 smp_wmb();
1386 __this_cpu_inc(irq_time_seq.sequence);
1387 }
1388
1389 static inline u64 irq_time_read(int cpu)
1390 {
1391 u64 irq_time;
1392 unsigned seq;
1393
1394 do {
1395 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1396 irq_time = per_cpu(cpu_softirq_time, cpu) +
1397 per_cpu(cpu_hardirq_time, cpu);
1398 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1399
1400 return irq_time;
1401 }
1402 #else /* CONFIG_64BIT */
1403 static inline void irq_time_write_begin(void)
1404 {
1405 }
1406
1407 static inline void irq_time_write_end(void)
1408 {
1409 }
1410
1411 static inline u64 irq_time_read(int cpu)
1412 {
1413 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1414 }
1415 #endif /* CONFIG_64BIT */
1416 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */