]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/sched.h
956b8ca24893daa75a10827f88db4ab21b78efd1
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/tick.h>
10 #include <linux/slab.h>
11
12 #include "cpupri.h"
13 #include "cpudeadline.h"
14 #include "cpuacct.h"
15
16 struct rq;
17
18 extern __read_mostly int scheduler_running;
19
20 extern unsigned long calc_load_update;
21 extern atomic_long_t calc_load_tasks;
22
23 extern long calc_load_fold_active(struct rq *this_rq);
24 extern void update_cpu_load_active(struct rq *this_rq);
25
26 /*
27 * Helpers for converting nanosecond timing to jiffy resolution
28 */
29 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
30
31 /*
32 * Increase resolution of nice-level calculations for 64-bit architectures.
33 * The extra resolution improves shares distribution and load balancing of
34 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
35 * hierarchies, especially on larger systems. This is not a user-visible change
36 * and does not change the user-interface for setting shares/weights.
37 *
38 * We increase resolution only if we have enough bits to allow this increased
39 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
40 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
41 * increased costs.
42 */
43 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
44 # define SCHED_LOAD_RESOLUTION 10
45 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
46 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
47 #else
48 # define SCHED_LOAD_RESOLUTION 0
49 # define scale_load(w) (w)
50 # define scale_load_down(w) (w)
51 #endif
52
53 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
54 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
55
56 #define NICE_0_LOAD SCHED_LOAD_SCALE
57 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
58
59 /*
60 * Single value that decides SCHED_DEADLINE internal math precision.
61 * 10 -> just above 1us
62 * 9 -> just above 0.5us
63 */
64 #define DL_SCALE (10)
65
66 /*
67 * These are the 'tuning knobs' of the scheduler:
68 */
69
70 /*
71 * single value that denotes runtime == period, ie unlimited time.
72 */
73 #define RUNTIME_INF ((u64)~0ULL)
74
75 static inline int fair_policy(int policy)
76 {
77 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
78 }
79
80 static inline int rt_policy(int policy)
81 {
82 return policy == SCHED_FIFO || policy == SCHED_RR;
83 }
84
85 static inline int dl_policy(int policy)
86 {
87 return policy == SCHED_DEADLINE;
88 }
89
90 static inline int task_has_rt_policy(struct task_struct *p)
91 {
92 return rt_policy(p->policy);
93 }
94
95 static inline int task_has_dl_policy(struct task_struct *p)
96 {
97 return dl_policy(p->policy);
98 }
99
100 static inline bool dl_time_before(u64 a, u64 b)
101 {
102 return (s64)(a - b) < 0;
103 }
104
105 /*
106 * Tells if entity @a should preempt entity @b.
107 */
108 static inline bool
109 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
110 {
111 return dl_time_before(a->deadline, b->deadline);
112 }
113
114 /*
115 * This is the priority-queue data structure of the RT scheduling class:
116 */
117 struct rt_prio_array {
118 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
119 struct list_head queue[MAX_RT_PRIO];
120 };
121
122 struct rt_bandwidth {
123 /* nests inside the rq lock: */
124 raw_spinlock_t rt_runtime_lock;
125 ktime_t rt_period;
126 u64 rt_runtime;
127 struct hrtimer rt_period_timer;
128 };
129 /*
130 * To keep the bandwidth of -deadline tasks and groups under control
131 * we need some place where:
132 * - store the maximum -deadline bandwidth of the system (the group);
133 * - cache the fraction of that bandwidth that is currently allocated.
134 *
135 * This is all done in the data structure below. It is similar to the
136 * one used for RT-throttling (rt_bandwidth), with the main difference
137 * that, since here we are only interested in admission control, we
138 * do not decrease any runtime while the group "executes", neither we
139 * need a timer to replenish it.
140 *
141 * With respect to SMP, the bandwidth is given on a per-CPU basis,
142 * meaning that:
143 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
144 * - dl_total_bw array contains, in the i-eth element, the currently
145 * allocated bandwidth on the i-eth CPU.
146 * Moreover, groups consume bandwidth on each CPU, while tasks only
147 * consume bandwidth on the CPU they're running on.
148 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
149 * that will be shown the next time the proc or cgroup controls will
150 * be red. It on its turn can be changed by writing on its own
151 * control.
152 */
153 struct dl_bandwidth {
154 raw_spinlock_t dl_runtime_lock;
155 u64 dl_runtime;
156 u64 dl_period;
157 };
158
159 static inline int dl_bandwidth_enabled(void)
160 {
161 return sysctl_sched_rt_runtime >= 0;
162 }
163
164 extern struct dl_bw *dl_bw_of(int i);
165
166 struct dl_bw {
167 raw_spinlock_t lock;
168 u64 bw, total_bw;
169 };
170
171 extern struct mutex sched_domains_mutex;
172
173 #ifdef CONFIG_CGROUP_SCHED
174
175 #include <linux/cgroup.h>
176
177 struct cfs_rq;
178 struct rt_rq;
179
180 extern struct list_head task_groups;
181
182 struct cfs_bandwidth {
183 #ifdef CONFIG_CFS_BANDWIDTH
184 raw_spinlock_t lock;
185 ktime_t period;
186 u64 quota, runtime;
187 s64 hierarchal_quota;
188 u64 runtime_expires;
189
190 int idle, timer_active;
191 struct hrtimer period_timer, slack_timer;
192 struct list_head throttled_cfs_rq;
193
194 /* statistics */
195 int nr_periods, nr_throttled;
196 u64 throttled_time;
197 #endif
198 };
199
200 /* task group related information */
201 struct task_group {
202 struct cgroup_subsys_state css;
203
204 #ifdef CONFIG_FAIR_GROUP_SCHED
205 /* schedulable entities of this group on each cpu */
206 struct sched_entity **se;
207 /* runqueue "owned" by this group on each cpu */
208 struct cfs_rq **cfs_rq;
209 unsigned long shares;
210
211 #ifdef CONFIG_SMP
212 atomic_long_t load_avg;
213 atomic_t runnable_avg;
214 #endif
215 #endif
216
217 #ifdef CONFIG_RT_GROUP_SCHED
218 struct sched_rt_entity **rt_se;
219 struct rt_rq **rt_rq;
220
221 struct rt_bandwidth rt_bandwidth;
222 #endif
223
224 struct rcu_head rcu;
225 struct list_head list;
226
227 struct task_group *parent;
228 struct list_head siblings;
229 struct list_head children;
230
231 #ifdef CONFIG_SCHED_AUTOGROUP
232 struct autogroup *autogroup;
233 #endif
234
235 struct cfs_bandwidth cfs_bandwidth;
236 };
237
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
240
241 /*
242 * A weight of 0 or 1 can cause arithmetics problems.
243 * A weight of a cfs_rq is the sum of weights of which entities
244 * are queued on this cfs_rq, so a weight of a entity should not be
245 * too large, so as the shares value of a task group.
246 * (The default weight is 1024 - so there's no practical
247 * limitation from this.)
248 */
249 #define MIN_SHARES (1UL << 1)
250 #define MAX_SHARES (1UL << 18)
251 #endif
252
253 typedef int (*tg_visitor)(struct task_group *, void *);
254
255 extern int walk_tg_tree_from(struct task_group *from,
256 tg_visitor down, tg_visitor up, void *data);
257
258 /*
259 * Iterate the full tree, calling @down when first entering a node and @up when
260 * leaving it for the final time.
261 *
262 * Caller must hold rcu_lock or sufficient equivalent.
263 */
264 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
265 {
266 return walk_tg_tree_from(&root_task_group, down, up, data);
267 }
268
269 extern int tg_nop(struct task_group *tg, void *data);
270
271 extern void free_fair_sched_group(struct task_group *tg);
272 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
273 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
274 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
275 struct sched_entity *se, int cpu,
276 struct sched_entity *parent);
277 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
278 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
279
280 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
281 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
282 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
283
284 extern void free_rt_sched_group(struct task_group *tg);
285 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
286 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
287 struct sched_rt_entity *rt_se, int cpu,
288 struct sched_rt_entity *parent);
289
290 extern struct task_group *sched_create_group(struct task_group *parent);
291 extern void sched_online_group(struct task_group *tg,
292 struct task_group *parent);
293 extern void sched_destroy_group(struct task_group *tg);
294 extern void sched_offline_group(struct task_group *tg);
295
296 extern void sched_move_task(struct task_struct *tsk);
297
298 #ifdef CONFIG_FAIR_GROUP_SCHED
299 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
300 #endif
301
302 #else /* CONFIG_CGROUP_SCHED */
303
304 struct cfs_bandwidth { };
305
306 #endif /* CONFIG_CGROUP_SCHED */
307
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 struct load_weight load;
311 unsigned int nr_running, h_nr_running;
312
313 u64 exec_clock;
314 u64 min_vruntime;
315 #ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317 #endif
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
321
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
326 struct sched_entity *curr, *next, *last, *skip;
327
328 #ifdef CONFIG_SCHED_DEBUG
329 unsigned int nr_spread_over;
330 #endif
331
332 #ifdef CONFIG_SMP
333 /*
334 * CFS Load tracking
335 * Under CFS, load is tracked on a per-entity basis and aggregated up.
336 * This allows for the description of both thread and group usage (in
337 * the FAIR_GROUP_SCHED case).
338 */
339 unsigned long runnable_load_avg, blocked_load_avg;
340 atomic64_t decay_counter;
341 u64 last_decay;
342 atomic_long_t removed_load;
343
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 /* Required to track per-cpu representation of a task_group */
346 u32 tg_runnable_contrib;
347 unsigned long tg_load_contrib;
348
349 /*
350 * h_load = weight * f(tg)
351 *
352 * Where f(tg) is the recursive weight fraction assigned to
353 * this group.
354 */
355 unsigned long h_load;
356 u64 last_h_load_update;
357 struct sched_entity *h_load_next;
358 #endif /* CONFIG_FAIR_GROUP_SCHED */
359 #endif /* CONFIG_SMP */
360
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
372 int on_list;
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
375
376 #ifdef CONFIG_CFS_BANDWIDTH
377 int runtime_enabled;
378 u64 runtime_expires;
379 s64 runtime_remaining;
380
381 u64 throttled_clock, throttled_clock_task;
382 u64 throttled_clock_task_time;
383 int throttled, throttle_count;
384 struct list_head throttled_list;
385 #endif /* CONFIG_CFS_BANDWIDTH */
386 #endif /* CONFIG_FAIR_GROUP_SCHED */
387 };
388
389 static inline int rt_bandwidth_enabled(void)
390 {
391 return sysctl_sched_rt_runtime >= 0;
392 }
393
394 /* Real-Time classes' related field in a runqueue: */
395 struct rt_rq {
396 struct rt_prio_array active;
397 unsigned int rt_nr_running;
398 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
399 struct {
400 int curr; /* highest queued rt task prio */
401 #ifdef CONFIG_SMP
402 int next; /* next highest */
403 #endif
404 } highest_prio;
405 #endif
406 #ifdef CONFIG_SMP
407 unsigned long rt_nr_migratory;
408 unsigned long rt_nr_total;
409 int overloaded;
410 struct plist_head pushable_tasks;
411 #endif
412 int rt_queued;
413
414 int rt_throttled;
415 u64 rt_time;
416 u64 rt_runtime;
417 /* Nests inside the rq lock: */
418 raw_spinlock_t rt_runtime_lock;
419
420 #ifdef CONFIG_RT_GROUP_SCHED
421 unsigned long rt_nr_boosted;
422
423 struct rq *rq;
424 struct task_group *tg;
425 #endif
426 };
427
428 /* Deadline class' related fields in a runqueue */
429 struct dl_rq {
430 /* runqueue is an rbtree, ordered by deadline */
431 struct rb_root rb_root;
432 struct rb_node *rb_leftmost;
433
434 unsigned long dl_nr_running;
435
436 #ifdef CONFIG_SMP
437 /*
438 * Deadline values of the currently executing and the
439 * earliest ready task on this rq. Caching these facilitates
440 * the decision wether or not a ready but not running task
441 * should migrate somewhere else.
442 */
443 struct {
444 u64 curr;
445 u64 next;
446 } earliest_dl;
447
448 unsigned long dl_nr_migratory;
449 int overloaded;
450
451 /*
452 * Tasks on this rq that can be pushed away. They are kept in
453 * an rb-tree, ordered by tasks' deadlines, with caching
454 * of the leftmost (earliest deadline) element.
455 */
456 struct rb_root pushable_dl_tasks_root;
457 struct rb_node *pushable_dl_tasks_leftmost;
458 #else
459 struct dl_bw dl_bw;
460 #endif
461 };
462
463 #ifdef CONFIG_SMP
464
465 /*
466 * We add the notion of a root-domain which will be used to define per-domain
467 * variables. Each exclusive cpuset essentially defines an island domain by
468 * fully partitioning the member cpus from any other cpuset. Whenever a new
469 * exclusive cpuset is created, we also create and attach a new root-domain
470 * object.
471 *
472 */
473 struct root_domain {
474 atomic_t refcount;
475 atomic_t rto_count;
476 struct rcu_head rcu;
477 cpumask_var_t span;
478 cpumask_var_t online;
479
480 /*
481 * The bit corresponding to a CPU gets set here if such CPU has more
482 * than one runnable -deadline task (as it is below for RT tasks).
483 */
484 cpumask_var_t dlo_mask;
485 atomic_t dlo_count;
486 struct dl_bw dl_bw;
487 struct cpudl cpudl;
488
489 /*
490 * The "RT overload" flag: it gets set if a CPU has more than
491 * one runnable RT task.
492 */
493 cpumask_var_t rto_mask;
494 struct cpupri cpupri;
495 };
496
497 extern struct root_domain def_root_domain;
498
499 #endif /* CONFIG_SMP */
500
501 /*
502 * This is the main, per-CPU runqueue data structure.
503 *
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
507 */
508 struct rq {
509 /* runqueue lock: */
510 raw_spinlock_t lock;
511
512 /*
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
515 */
516 unsigned int nr_running;
517 #ifdef CONFIG_NUMA_BALANCING
518 unsigned int nr_numa_running;
519 unsigned int nr_preferred_running;
520 #endif
521 #define CPU_LOAD_IDX_MAX 5
522 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
523 unsigned long last_load_update_tick;
524 #ifdef CONFIG_NO_HZ_COMMON
525 u64 nohz_stamp;
526 unsigned long nohz_flags;
527 #endif
528 #ifdef CONFIG_NO_HZ_FULL
529 unsigned long last_sched_tick;
530 #endif
531 int skip_clock_update;
532
533 /* capture load from *all* tasks on this cpu: */
534 struct load_weight load;
535 unsigned long nr_load_updates;
536 u64 nr_switches;
537
538 struct cfs_rq cfs;
539 struct rt_rq rt;
540 struct dl_rq dl;
541
542 #ifdef CONFIG_FAIR_GROUP_SCHED
543 /* list of leaf cfs_rq on this cpu: */
544 struct list_head leaf_cfs_rq_list;
545
546 struct sched_avg avg;
547 #endif /* CONFIG_FAIR_GROUP_SCHED */
548
549 /*
550 * This is part of a global counter where only the total sum
551 * over all CPUs matters. A task can increase this counter on
552 * one CPU and if it got migrated afterwards it may decrease
553 * it on another CPU. Always updated under the runqueue lock:
554 */
555 unsigned long nr_uninterruptible;
556
557 struct task_struct *curr, *idle, *stop;
558 unsigned long next_balance;
559 struct mm_struct *prev_mm;
560
561 u64 clock;
562 u64 clock_task;
563
564 atomic_t nr_iowait;
565
566 #ifdef CONFIG_SMP
567 struct root_domain *rd;
568 struct sched_domain *sd;
569
570 unsigned long cpu_capacity;
571
572 unsigned char idle_balance;
573 /* For active balancing */
574 int post_schedule;
575 int active_balance;
576 int push_cpu;
577 struct cpu_stop_work active_balance_work;
578 /* cpu of this runqueue: */
579 int cpu;
580 int online;
581
582 struct list_head cfs_tasks;
583
584 u64 rt_avg;
585 u64 age_stamp;
586 u64 idle_stamp;
587 u64 avg_idle;
588
589 /* This is used to determine avg_idle's max value */
590 u64 max_idle_balance_cost;
591 #endif
592
593 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
594 u64 prev_irq_time;
595 #endif
596 #ifdef CONFIG_PARAVIRT
597 u64 prev_steal_time;
598 #endif
599 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
600 u64 prev_steal_time_rq;
601 #endif
602
603 /* calc_load related fields */
604 unsigned long calc_load_update;
605 long calc_load_active;
606
607 #ifdef CONFIG_SCHED_HRTICK
608 #ifdef CONFIG_SMP
609 int hrtick_csd_pending;
610 struct call_single_data hrtick_csd;
611 #endif
612 struct hrtimer hrtick_timer;
613 #endif
614
615 #ifdef CONFIG_SCHEDSTATS
616 /* latency stats */
617 struct sched_info rq_sched_info;
618 unsigned long long rq_cpu_time;
619 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
620
621 /* sys_sched_yield() stats */
622 unsigned int yld_count;
623
624 /* schedule() stats */
625 unsigned int sched_count;
626 unsigned int sched_goidle;
627
628 /* try_to_wake_up() stats */
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
631 #endif
632
633 #ifdef CONFIG_SMP
634 struct llist_head wake_list;
635 #endif
636 };
637
638 static inline int cpu_of(struct rq *rq)
639 {
640 #ifdef CONFIG_SMP
641 return rq->cpu;
642 #else
643 return 0;
644 #endif
645 }
646
647 DECLARE_PER_CPU(struct rq, runqueues);
648
649 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
650 #define this_rq() (&__get_cpu_var(runqueues))
651 #define task_rq(p) cpu_rq(task_cpu(p))
652 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
653 #define raw_rq() (&__raw_get_cpu_var(runqueues))
654
655 static inline u64 rq_clock(struct rq *rq)
656 {
657 return rq->clock;
658 }
659
660 static inline u64 rq_clock_task(struct rq *rq)
661 {
662 return rq->clock_task;
663 }
664
665 #ifdef CONFIG_NUMA_BALANCING
666 extern void sched_setnuma(struct task_struct *p, int node);
667 extern int migrate_task_to(struct task_struct *p, int cpu);
668 extern int migrate_swap(struct task_struct *, struct task_struct *);
669 #endif /* CONFIG_NUMA_BALANCING */
670
671 #ifdef CONFIG_SMP
672
673 #define rcu_dereference_check_sched_domain(p) \
674 rcu_dereference_check((p), \
675 lockdep_is_held(&sched_domains_mutex))
676
677 /*
678 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
679 * See detach_destroy_domains: synchronize_sched for details.
680 *
681 * The domain tree of any CPU may only be accessed from within
682 * preempt-disabled sections.
683 */
684 #define for_each_domain(cpu, __sd) \
685 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
686 __sd; __sd = __sd->parent)
687
688 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
689
690 /**
691 * highest_flag_domain - Return highest sched_domain containing flag.
692 * @cpu: The cpu whose highest level of sched domain is to
693 * be returned.
694 * @flag: The flag to check for the highest sched_domain
695 * for the given cpu.
696 *
697 * Returns the highest sched_domain of a cpu which contains the given flag.
698 */
699 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
700 {
701 struct sched_domain *sd, *hsd = NULL;
702
703 for_each_domain(cpu, sd) {
704 if (!(sd->flags & flag))
705 break;
706 hsd = sd;
707 }
708
709 return hsd;
710 }
711
712 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
713 {
714 struct sched_domain *sd;
715
716 for_each_domain(cpu, sd) {
717 if (sd->flags & flag)
718 break;
719 }
720
721 return sd;
722 }
723
724 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
725 DECLARE_PER_CPU(int, sd_llc_size);
726 DECLARE_PER_CPU(int, sd_llc_id);
727 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
728 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
729 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
730
731 struct sched_group_capacity {
732 atomic_t ref;
733 /*
734 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
735 * for a single CPU.
736 */
737 unsigned int capacity, capacity_orig;
738 unsigned long next_update;
739 int imbalance; /* XXX unrelated to capacity but shared group state */
740 /*
741 * Number of busy cpus in this group.
742 */
743 atomic_t nr_busy_cpus;
744
745 unsigned long cpumask[0]; /* iteration mask */
746 };
747
748 struct sched_group {
749 struct sched_group *next; /* Must be a circular list */
750 atomic_t ref;
751
752 unsigned int group_weight;
753 struct sched_group_capacity *sgc;
754
755 /*
756 * The CPUs this group covers.
757 *
758 * NOTE: this field is variable length. (Allocated dynamically
759 * by attaching extra space to the end of the structure,
760 * depending on how many CPUs the kernel has booted up with)
761 */
762 unsigned long cpumask[0];
763 };
764
765 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
766 {
767 return to_cpumask(sg->cpumask);
768 }
769
770 /*
771 * cpumask masking which cpus in the group are allowed to iterate up the domain
772 * tree.
773 */
774 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
775 {
776 return to_cpumask(sg->sgc->cpumask);
777 }
778
779 /**
780 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
781 * @group: The group whose first cpu is to be returned.
782 */
783 static inline unsigned int group_first_cpu(struct sched_group *group)
784 {
785 return cpumask_first(sched_group_cpus(group));
786 }
787
788 extern int group_balance_cpu(struct sched_group *sg);
789
790 #endif /* CONFIG_SMP */
791
792 #include "stats.h"
793 #include "auto_group.h"
794
795 #ifdef CONFIG_CGROUP_SCHED
796
797 /*
798 * Return the group to which this tasks belongs.
799 *
800 * We cannot use task_css() and friends because the cgroup subsystem
801 * changes that value before the cgroup_subsys::attach() method is called,
802 * therefore we cannot pin it and might observe the wrong value.
803 *
804 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
805 * core changes this before calling sched_move_task().
806 *
807 * Instead we use a 'copy' which is updated from sched_move_task() while
808 * holding both task_struct::pi_lock and rq::lock.
809 */
810 static inline struct task_group *task_group(struct task_struct *p)
811 {
812 return p->sched_task_group;
813 }
814
815 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
816 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
817 {
818 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
819 struct task_group *tg = task_group(p);
820 #endif
821
822 #ifdef CONFIG_FAIR_GROUP_SCHED
823 p->se.cfs_rq = tg->cfs_rq[cpu];
824 p->se.parent = tg->se[cpu];
825 #endif
826
827 #ifdef CONFIG_RT_GROUP_SCHED
828 p->rt.rt_rq = tg->rt_rq[cpu];
829 p->rt.parent = tg->rt_se[cpu];
830 #endif
831 }
832
833 #else /* CONFIG_CGROUP_SCHED */
834
835 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
836 static inline struct task_group *task_group(struct task_struct *p)
837 {
838 return NULL;
839 }
840
841 #endif /* CONFIG_CGROUP_SCHED */
842
843 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
844 {
845 set_task_rq(p, cpu);
846 #ifdef CONFIG_SMP
847 /*
848 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
849 * successfuly executed on another CPU. We must ensure that updates of
850 * per-task data have been completed by this moment.
851 */
852 smp_wmb();
853 task_thread_info(p)->cpu = cpu;
854 p->wake_cpu = cpu;
855 #endif
856 }
857
858 /*
859 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
860 */
861 #ifdef CONFIG_SCHED_DEBUG
862 # include <linux/static_key.h>
863 # define const_debug __read_mostly
864 #else
865 # define const_debug const
866 #endif
867
868 extern const_debug unsigned int sysctl_sched_features;
869
870 #define SCHED_FEAT(name, enabled) \
871 __SCHED_FEAT_##name ,
872
873 enum {
874 #include "features.h"
875 __SCHED_FEAT_NR,
876 };
877
878 #undef SCHED_FEAT
879
880 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
881 static __always_inline bool static_branch__true(struct static_key *key)
882 {
883 return static_key_true(key); /* Not out of line branch. */
884 }
885
886 static __always_inline bool static_branch__false(struct static_key *key)
887 {
888 return static_key_false(key); /* Out of line branch. */
889 }
890
891 #define SCHED_FEAT(name, enabled) \
892 static __always_inline bool static_branch_##name(struct static_key *key) \
893 { \
894 return static_branch__##enabled(key); \
895 }
896
897 #include "features.h"
898
899 #undef SCHED_FEAT
900
901 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
902 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
903 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
904 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
905 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
906
907 #ifdef CONFIG_NUMA_BALANCING
908 #define sched_feat_numa(x) sched_feat(x)
909 #ifdef CONFIG_SCHED_DEBUG
910 #define numabalancing_enabled sched_feat_numa(NUMA)
911 #else
912 extern bool numabalancing_enabled;
913 #endif /* CONFIG_SCHED_DEBUG */
914 #else
915 #define sched_feat_numa(x) (0)
916 #define numabalancing_enabled (0)
917 #endif /* CONFIG_NUMA_BALANCING */
918
919 static inline u64 global_rt_period(void)
920 {
921 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
922 }
923
924 static inline u64 global_rt_runtime(void)
925 {
926 if (sysctl_sched_rt_runtime < 0)
927 return RUNTIME_INF;
928
929 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
930 }
931
932 static inline int task_current(struct rq *rq, struct task_struct *p)
933 {
934 return rq->curr == p;
935 }
936
937 static inline int task_running(struct rq *rq, struct task_struct *p)
938 {
939 #ifdef CONFIG_SMP
940 return p->on_cpu;
941 #else
942 return task_current(rq, p);
943 #endif
944 }
945
946
947 #ifndef prepare_arch_switch
948 # define prepare_arch_switch(next) do { } while (0)
949 #endif
950 #ifndef finish_arch_switch
951 # define finish_arch_switch(prev) do { } while (0)
952 #endif
953 #ifndef finish_arch_post_lock_switch
954 # define finish_arch_post_lock_switch() do { } while (0)
955 #endif
956
957 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
958 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
959 {
960 #ifdef CONFIG_SMP
961 /*
962 * We can optimise this out completely for !SMP, because the
963 * SMP rebalancing from interrupt is the only thing that cares
964 * here.
965 */
966 next->on_cpu = 1;
967 #endif
968 }
969
970 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
971 {
972 #ifdef CONFIG_SMP
973 /*
974 * After ->on_cpu is cleared, the task can be moved to a different CPU.
975 * We must ensure this doesn't happen until the switch is completely
976 * finished.
977 */
978 smp_wmb();
979 prev->on_cpu = 0;
980 #endif
981 #ifdef CONFIG_DEBUG_SPINLOCK
982 /* this is a valid case when another task releases the spinlock */
983 rq->lock.owner = current;
984 #endif
985 /*
986 * If we are tracking spinlock dependencies then we have to
987 * fix up the runqueue lock - which gets 'carried over' from
988 * prev into current:
989 */
990 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
991
992 raw_spin_unlock_irq(&rq->lock);
993 }
994
995 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
996 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
997 {
998 #ifdef CONFIG_SMP
999 /*
1000 * We can optimise this out completely for !SMP, because the
1001 * SMP rebalancing from interrupt is the only thing that cares
1002 * here.
1003 */
1004 next->on_cpu = 1;
1005 #endif
1006 raw_spin_unlock(&rq->lock);
1007 }
1008
1009 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1010 {
1011 #ifdef CONFIG_SMP
1012 /*
1013 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1014 * We must ensure this doesn't happen until the switch is completely
1015 * finished.
1016 */
1017 smp_wmb();
1018 prev->on_cpu = 0;
1019 #endif
1020 local_irq_enable();
1021 }
1022 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1023
1024 /*
1025 * wake flags
1026 */
1027 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1028 #define WF_FORK 0x02 /* child wakeup after fork */
1029 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1030
1031 /*
1032 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1033 * of tasks with abnormal "nice" values across CPUs the contribution that
1034 * each task makes to its run queue's load is weighted according to its
1035 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1036 * scaled version of the new time slice allocation that they receive on time
1037 * slice expiry etc.
1038 */
1039
1040 #define WEIGHT_IDLEPRIO 3
1041 #define WMULT_IDLEPRIO 1431655765
1042
1043 /*
1044 * Nice levels are multiplicative, with a gentle 10% change for every
1045 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1046 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1047 * that remained on nice 0.
1048 *
1049 * The "10% effect" is relative and cumulative: from _any_ nice level,
1050 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1051 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1052 * If a task goes up by ~10% and another task goes down by ~10% then
1053 * the relative distance between them is ~25%.)
1054 */
1055 static const int prio_to_weight[40] = {
1056 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1057 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1058 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1059 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1060 /* 0 */ 1024, 820, 655, 526, 423,
1061 /* 5 */ 335, 272, 215, 172, 137,
1062 /* 10 */ 110, 87, 70, 56, 45,
1063 /* 15 */ 36, 29, 23, 18, 15,
1064 };
1065
1066 /*
1067 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1068 *
1069 * In cases where the weight does not change often, we can use the
1070 * precalculated inverse to speed up arithmetics by turning divisions
1071 * into multiplications:
1072 */
1073 static const u32 prio_to_wmult[40] = {
1074 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1075 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1076 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1077 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1078 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1079 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1080 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1081 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1082 };
1083
1084 #define ENQUEUE_WAKEUP 1
1085 #define ENQUEUE_HEAD 2
1086 #ifdef CONFIG_SMP
1087 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1088 #else
1089 #define ENQUEUE_WAKING 0
1090 #endif
1091 #define ENQUEUE_REPLENISH 8
1092
1093 #define DEQUEUE_SLEEP 1
1094
1095 #define RETRY_TASK ((void *)-1UL)
1096
1097 struct sched_class {
1098 const struct sched_class *next;
1099
1100 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1101 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1102 void (*yield_task) (struct rq *rq);
1103 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1104
1105 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1106
1107 /*
1108 * It is the responsibility of the pick_next_task() method that will
1109 * return the next task to call put_prev_task() on the @prev task or
1110 * something equivalent.
1111 *
1112 * May return RETRY_TASK when it finds a higher prio class has runnable
1113 * tasks.
1114 */
1115 struct task_struct * (*pick_next_task) (struct rq *rq,
1116 struct task_struct *prev);
1117 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1118
1119 #ifdef CONFIG_SMP
1120 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1121 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1122
1123 void (*post_schedule) (struct rq *this_rq);
1124 void (*task_waking) (struct task_struct *task);
1125 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1126
1127 void (*set_cpus_allowed)(struct task_struct *p,
1128 const struct cpumask *newmask);
1129
1130 void (*rq_online)(struct rq *rq);
1131 void (*rq_offline)(struct rq *rq);
1132 #endif
1133
1134 void (*set_curr_task) (struct rq *rq);
1135 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1136 void (*task_fork) (struct task_struct *p);
1137 void (*task_dead) (struct task_struct *p);
1138
1139 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1140 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1141 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1142 int oldprio);
1143
1144 unsigned int (*get_rr_interval) (struct rq *rq,
1145 struct task_struct *task);
1146
1147 #ifdef CONFIG_FAIR_GROUP_SCHED
1148 void (*task_move_group) (struct task_struct *p, int on_rq);
1149 #endif
1150 };
1151
1152 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1153 {
1154 prev->sched_class->put_prev_task(rq, prev);
1155 }
1156
1157 #define sched_class_highest (&stop_sched_class)
1158 #define for_each_class(class) \
1159 for (class = sched_class_highest; class; class = class->next)
1160
1161 extern const struct sched_class stop_sched_class;
1162 extern const struct sched_class dl_sched_class;
1163 extern const struct sched_class rt_sched_class;
1164 extern const struct sched_class fair_sched_class;
1165 extern const struct sched_class idle_sched_class;
1166
1167
1168 #ifdef CONFIG_SMP
1169
1170 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1171
1172 extern void trigger_load_balance(struct rq *rq);
1173
1174 extern void idle_enter_fair(struct rq *this_rq);
1175 extern void idle_exit_fair(struct rq *this_rq);
1176
1177 #else
1178
1179 static inline void idle_enter_fair(struct rq *rq) { }
1180 static inline void idle_exit_fair(struct rq *rq) { }
1181
1182 #endif
1183
1184 extern void sysrq_sched_debug_show(void);
1185 extern void sched_init_granularity(void);
1186 extern void update_max_interval(void);
1187
1188 extern void init_sched_dl_class(void);
1189 extern void init_sched_rt_class(void);
1190 extern void init_sched_fair_class(void);
1191 extern void init_sched_dl_class(void);
1192
1193 extern void resched_task(struct task_struct *p);
1194 extern void resched_cpu(int cpu);
1195
1196 extern struct rt_bandwidth def_rt_bandwidth;
1197 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1198
1199 extern struct dl_bandwidth def_dl_bandwidth;
1200 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1201 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1202
1203 unsigned long to_ratio(u64 period, u64 runtime);
1204
1205 extern void update_idle_cpu_load(struct rq *this_rq);
1206
1207 extern void init_task_runnable_average(struct task_struct *p);
1208
1209 static inline void add_nr_running(struct rq *rq, unsigned count)
1210 {
1211 unsigned prev_nr = rq->nr_running;
1212
1213 rq->nr_running = prev_nr + count;
1214
1215 #ifdef CONFIG_NO_HZ_FULL
1216 if (prev_nr < 2 && rq->nr_running >= 2) {
1217 if (tick_nohz_full_cpu(rq->cpu)) {
1218 /* Order rq->nr_running write against the IPI */
1219 smp_wmb();
1220 smp_send_reschedule(rq->cpu);
1221 }
1222 }
1223 #endif
1224 }
1225
1226 static inline void sub_nr_running(struct rq *rq, unsigned count)
1227 {
1228 rq->nr_running -= count;
1229 }
1230
1231 static inline void rq_last_tick_reset(struct rq *rq)
1232 {
1233 #ifdef CONFIG_NO_HZ_FULL
1234 rq->last_sched_tick = jiffies;
1235 #endif
1236 }
1237
1238 extern void update_rq_clock(struct rq *rq);
1239
1240 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1241 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1242
1243 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1244
1245 extern const_debug unsigned int sysctl_sched_time_avg;
1246 extern const_debug unsigned int sysctl_sched_nr_migrate;
1247 extern const_debug unsigned int sysctl_sched_migration_cost;
1248
1249 static inline u64 sched_avg_period(void)
1250 {
1251 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1252 }
1253
1254 #ifdef CONFIG_SCHED_HRTICK
1255
1256 /*
1257 * Use hrtick when:
1258 * - enabled by features
1259 * - hrtimer is actually high res
1260 */
1261 static inline int hrtick_enabled(struct rq *rq)
1262 {
1263 if (!sched_feat(HRTICK))
1264 return 0;
1265 if (!cpu_active(cpu_of(rq)))
1266 return 0;
1267 return hrtimer_is_hres_active(&rq->hrtick_timer);
1268 }
1269
1270 void hrtick_start(struct rq *rq, u64 delay);
1271
1272 #else
1273
1274 static inline int hrtick_enabled(struct rq *rq)
1275 {
1276 return 0;
1277 }
1278
1279 #endif /* CONFIG_SCHED_HRTICK */
1280
1281 #ifdef CONFIG_SMP
1282 extern void sched_avg_update(struct rq *rq);
1283 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1284 {
1285 rq->rt_avg += rt_delta;
1286 sched_avg_update(rq);
1287 }
1288 #else
1289 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1290 static inline void sched_avg_update(struct rq *rq) { }
1291 #endif
1292
1293 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1294
1295 #ifdef CONFIG_SMP
1296 #ifdef CONFIG_PREEMPT
1297
1298 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1299
1300 /*
1301 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1302 * way at the expense of forcing extra atomic operations in all
1303 * invocations. This assures that the double_lock is acquired using the
1304 * same underlying policy as the spinlock_t on this architecture, which
1305 * reduces latency compared to the unfair variant below. However, it
1306 * also adds more overhead and therefore may reduce throughput.
1307 */
1308 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1309 __releases(this_rq->lock)
1310 __acquires(busiest->lock)
1311 __acquires(this_rq->lock)
1312 {
1313 raw_spin_unlock(&this_rq->lock);
1314 double_rq_lock(this_rq, busiest);
1315
1316 return 1;
1317 }
1318
1319 #else
1320 /*
1321 * Unfair double_lock_balance: Optimizes throughput at the expense of
1322 * latency by eliminating extra atomic operations when the locks are
1323 * already in proper order on entry. This favors lower cpu-ids and will
1324 * grant the double lock to lower cpus over higher ids under contention,
1325 * regardless of entry order into the function.
1326 */
1327 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1328 __releases(this_rq->lock)
1329 __acquires(busiest->lock)
1330 __acquires(this_rq->lock)
1331 {
1332 int ret = 0;
1333
1334 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1335 if (busiest < this_rq) {
1336 raw_spin_unlock(&this_rq->lock);
1337 raw_spin_lock(&busiest->lock);
1338 raw_spin_lock_nested(&this_rq->lock,
1339 SINGLE_DEPTH_NESTING);
1340 ret = 1;
1341 } else
1342 raw_spin_lock_nested(&busiest->lock,
1343 SINGLE_DEPTH_NESTING);
1344 }
1345 return ret;
1346 }
1347
1348 #endif /* CONFIG_PREEMPT */
1349
1350 /*
1351 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1352 */
1353 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1354 {
1355 if (unlikely(!irqs_disabled())) {
1356 /* printk() doesn't work good under rq->lock */
1357 raw_spin_unlock(&this_rq->lock);
1358 BUG_ON(1);
1359 }
1360
1361 return _double_lock_balance(this_rq, busiest);
1362 }
1363
1364 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1365 __releases(busiest->lock)
1366 {
1367 raw_spin_unlock(&busiest->lock);
1368 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1369 }
1370
1371 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1372 {
1373 if (l1 > l2)
1374 swap(l1, l2);
1375
1376 spin_lock(l1);
1377 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1378 }
1379
1380 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1381 {
1382 if (l1 > l2)
1383 swap(l1, l2);
1384
1385 spin_lock_irq(l1);
1386 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1387 }
1388
1389 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1390 {
1391 if (l1 > l2)
1392 swap(l1, l2);
1393
1394 raw_spin_lock(l1);
1395 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1396 }
1397
1398 /*
1399 * double_rq_lock - safely lock two runqueues
1400 *
1401 * Note this does not disable interrupts like task_rq_lock,
1402 * you need to do so manually before calling.
1403 */
1404 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1405 __acquires(rq1->lock)
1406 __acquires(rq2->lock)
1407 {
1408 BUG_ON(!irqs_disabled());
1409 if (rq1 == rq2) {
1410 raw_spin_lock(&rq1->lock);
1411 __acquire(rq2->lock); /* Fake it out ;) */
1412 } else {
1413 if (rq1 < rq2) {
1414 raw_spin_lock(&rq1->lock);
1415 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1416 } else {
1417 raw_spin_lock(&rq2->lock);
1418 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1419 }
1420 }
1421 }
1422
1423 /*
1424 * double_rq_unlock - safely unlock two runqueues
1425 *
1426 * Note this does not restore interrupts like task_rq_unlock,
1427 * you need to do so manually after calling.
1428 */
1429 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1430 __releases(rq1->lock)
1431 __releases(rq2->lock)
1432 {
1433 raw_spin_unlock(&rq1->lock);
1434 if (rq1 != rq2)
1435 raw_spin_unlock(&rq2->lock);
1436 else
1437 __release(rq2->lock);
1438 }
1439
1440 #else /* CONFIG_SMP */
1441
1442 /*
1443 * double_rq_lock - safely lock two runqueues
1444 *
1445 * Note this does not disable interrupts like task_rq_lock,
1446 * you need to do so manually before calling.
1447 */
1448 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1449 __acquires(rq1->lock)
1450 __acquires(rq2->lock)
1451 {
1452 BUG_ON(!irqs_disabled());
1453 BUG_ON(rq1 != rq2);
1454 raw_spin_lock(&rq1->lock);
1455 __acquire(rq2->lock); /* Fake it out ;) */
1456 }
1457
1458 /*
1459 * double_rq_unlock - safely unlock two runqueues
1460 *
1461 * Note this does not restore interrupts like task_rq_unlock,
1462 * you need to do so manually after calling.
1463 */
1464 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1465 __releases(rq1->lock)
1466 __releases(rq2->lock)
1467 {
1468 BUG_ON(rq1 != rq2);
1469 raw_spin_unlock(&rq1->lock);
1470 __release(rq2->lock);
1471 }
1472
1473 #endif
1474
1475 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1476 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1477 extern void print_cfs_stats(struct seq_file *m, int cpu);
1478 extern void print_rt_stats(struct seq_file *m, int cpu);
1479
1480 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1481 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1482 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
1483
1484 extern void cfs_bandwidth_usage_inc(void);
1485 extern void cfs_bandwidth_usage_dec(void);
1486
1487 #ifdef CONFIG_NO_HZ_COMMON
1488 enum rq_nohz_flag_bits {
1489 NOHZ_TICK_STOPPED,
1490 NOHZ_BALANCE_KICK,
1491 };
1492
1493 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1494 #endif
1495
1496 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1497
1498 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1499 DECLARE_PER_CPU(u64, cpu_softirq_time);
1500
1501 #ifndef CONFIG_64BIT
1502 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1503
1504 static inline void irq_time_write_begin(void)
1505 {
1506 __this_cpu_inc(irq_time_seq.sequence);
1507 smp_wmb();
1508 }
1509
1510 static inline void irq_time_write_end(void)
1511 {
1512 smp_wmb();
1513 __this_cpu_inc(irq_time_seq.sequence);
1514 }
1515
1516 static inline u64 irq_time_read(int cpu)
1517 {
1518 u64 irq_time;
1519 unsigned seq;
1520
1521 do {
1522 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1523 irq_time = per_cpu(cpu_softirq_time, cpu) +
1524 per_cpu(cpu_hardirq_time, cpu);
1525 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1526
1527 return irq_time;
1528 }
1529 #else /* CONFIG_64BIT */
1530 static inline void irq_time_write_begin(void)
1531 {
1532 }
1533
1534 static inline void irq_time_write_end(void)
1535 {
1536 }
1537
1538 static inline u64 irq_time_read(int cpu)
1539 {
1540 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1541 }
1542 #endif /* CONFIG_64BIT */
1543 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */