]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/sched.h
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/irq_work.h>
10 #include <linux/tick.h>
11 #include <linux/slab.h>
12
13 #include "cpupri.h"
14 #include "cpudeadline.h"
15 #include "cpuacct.h"
16
17 struct rq;
18 struct cpuidle_state;
19
20 /* task_struct::on_rq states: */
21 #define TASK_ON_RQ_QUEUED 1
22 #define TASK_ON_RQ_MIGRATING 2
23
24 extern __read_mostly int scheduler_running;
25
26 extern unsigned long calc_load_update;
27 extern atomic_long_t calc_load_tasks;
28
29 extern void calc_global_load_tick(struct rq *this_rq);
30 extern long calc_load_fold_active(struct rq *this_rq);
31
32 #ifdef CONFIG_SMP
33 extern void update_cpu_load_active(struct rq *this_rq);
34 #else
35 static inline void update_cpu_load_active(struct rq *this_rq) { }
36 #endif
37
38 /*
39 * Helpers for converting nanosecond timing to jiffy resolution
40 */
41 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
42
43 /*
44 * Increase resolution of nice-level calculations for 64-bit architectures.
45 * The extra resolution improves shares distribution and load balancing of
46 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
47 * hierarchies, especially on larger systems. This is not a user-visible change
48 * and does not change the user-interface for setting shares/weights.
49 *
50 * We increase resolution only if we have enough bits to allow this increased
51 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
52 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
53 * increased costs.
54 */
55 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
56 # define SCHED_LOAD_RESOLUTION 10
57 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
58 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
59 #else
60 # define SCHED_LOAD_RESOLUTION 0
61 # define scale_load(w) (w)
62 # define scale_load_down(w) (w)
63 #endif
64
65 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
66 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
67
68 #define NICE_0_LOAD SCHED_LOAD_SCALE
69 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
70
71 /*
72 * Single value that decides SCHED_DEADLINE internal math precision.
73 * 10 -> just above 1us
74 * 9 -> just above 0.5us
75 */
76 #define DL_SCALE (10)
77
78 /*
79 * These are the 'tuning knobs' of the scheduler:
80 */
81
82 /*
83 * single value that denotes runtime == period, ie unlimited time.
84 */
85 #define RUNTIME_INF ((u64)~0ULL)
86
87 static inline int fair_policy(int policy)
88 {
89 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
90 }
91
92 static inline int rt_policy(int policy)
93 {
94 return policy == SCHED_FIFO || policy == SCHED_RR;
95 }
96
97 static inline int dl_policy(int policy)
98 {
99 return policy == SCHED_DEADLINE;
100 }
101
102 static inline int task_has_rt_policy(struct task_struct *p)
103 {
104 return rt_policy(p->policy);
105 }
106
107 static inline int task_has_dl_policy(struct task_struct *p)
108 {
109 return dl_policy(p->policy);
110 }
111
112 static inline bool dl_time_before(u64 a, u64 b)
113 {
114 return (s64)(a - b) < 0;
115 }
116
117 /*
118 * Tells if entity @a should preempt entity @b.
119 */
120 static inline bool
121 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
122 {
123 return dl_time_before(a->deadline, b->deadline);
124 }
125
126 /*
127 * This is the priority-queue data structure of the RT scheduling class:
128 */
129 struct rt_prio_array {
130 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
131 struct list_head queue[MAX_RT_PRIO];
132 };
133
134 struct rt_bandwidth {
135 /* nests inside the rq lock: */
136 raw_spinlock_t rt_runtime_lock;
137 ktime_t rt_period;
138 u64 rt_runtime;
139 struct hrtimer rt_period_timer;
140 unsigned int rt_period_active;
141 };
142
143 void __dl_clear_params(struct task_struct *p);
144
145 /*
146 * To keep the bandwidth of -deadline tasks and groups under control
147 * we need some place where:
148 * - store the maximum -deadline bandwidth of the system (the group);
149 * - cache the fraction of that bandwidth that is currently allocated.
150 *
151 * This is all done in the data structure below. It is similar to the
152 * one used for RT-throttling (rt_bandwidth), with the main difference
153 * that, since here we are only interested in admission control, we
154 * do not decrease any runtime while the group "executes", neither we
155 * need a timer to replenish it.
156 *
157 * With respect to SMP, the bandwidth is given on a per-CPU basis,
158 * meaning that:
159 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
160 * - dl_total_bw array contains, in the i-eth element, the currently
161 * allocated bandwidth on the i-eth CPU.
162 * Moreover, groups consume bandwidth on each CPU, while tasks only
163 * consume bandwidth on the CPU they're running on.
164 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
165 * that will be shown the next time the proc or cgroup controls will
166 * be red. It on its turn can be changed by writing on its own
167 * control.
168 */
169 struct dl_bandwidth {
170 raw_spinlock_t dl_runtime_lock;
171 u64 dl_runtime;
172 u64 dl_period;
173 };
174
175 static inline int dl_bandwidth_enabled(void)
176 {
177 return sysctl_sched_rt_runtime >= 0;
178 }
179
180 extern struct dl_bw *dl_bw_of(int i);
181
182 struct dl_bw {
183 raw_spinlock_t lock;
184 u64 bw, total_bw;
185 };
186
187 static inline
188 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
189 {
190 dl_b->total_bw -= tsk_bw;
191 }
192
193 static inline
194 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
195 {
196 dl_b->total_bw += tsk_bw;
197 }
198
199 static inline
200 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
201 {
202 return dl_b->bw != -1 &&
203 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
204 }
205
206 extern struct mutex sched_domains_mutex;
207
208 #ifdef CONFIG_CGROUP_SCHED
209
210 #include <linux/cgroup.h>
211
212 struct cfs_rq;
213 struct rt_rq;
214
215 extern struct list_head task_groups;
216
217 struct cfs_bandwidth {
218 #ifdef CONFIG_CFS_BANDWIDTH
219 raw_spinlock_t lock;
220 ktime_t period;
221 u64 quota, runtime;
222 s64 hierarchical_quota;
223 u64 runtime_expires;
224
225 int idle, period_active;
226 struct hrtimer period_timer, slack_timer;
227 struct list_head throttled_cfs_rq;
228
229 /* statistics */
230 int nr_periods, nr_throttled;
231 u64 throttled_time;
232 #endif
233 };
234
235 /* task group related information */
236 struct task_group {
237 struct cgroup_subsys_state css;
238
239 #ifdef CONFIG_FAIR_GROUP_SCHED
240 /* schedulable entities of this group on each cpu */
241 struct sched_entity **se;
242 /* runqueue "owned" by this group on each cpu */
243 struct cfs_rq **cfs_rq;
244 unsigned long shares;
245
246 #ifdef CONFIG_SMP
247 atomic_long_t load_avg;
248 atomic_t runnable_avg;
249 #endif
250 #endif
251
252 #ifdef CONFIG_RT_GROUP_SCHED
253 struct sched_rt_entity **rt_se;
254 struct rt_rq **rt_rq;
255
256 struct rt_bandwidth rt_bandwidth;
257 #endif
258
259 struct rcu_head rcu;
260 struct list_head list;
261
262 struct task_group *parent;
263 struct list_head siblings;
264 struct list_head children;
265
266 #ifdef CONFIG_SCHED_AUTOGROUP
267 struct autogroup *autogroup;
268 #endif
269
270 struct cfs_bandwidth cfs_bandwidth;
271 };
272
273 #ifdef CONFIG_FAIR_GROUP_SCHED
274 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
275
276 /*
277 * A weight of 0 or 1 can cause arithmetics problems.
278 * A weight of a cfs_rq is the sum of weights of which entities
279 * are queued on this cfs_rq, so a weight of a entity should not be
280 * too large, so as the shares value of a task group.
281 * (The default weight is 1024 - so there's no practical
282 * limitation from this.)
283 */
284 #define MIN_SHARES (1UL << 1)
285 #define MAX_SHARES (1UL << 18)
286 #endif
287
288 typedef int (*tg_visitor)(struct task_group *, void *);
289
290 extern int walk_tg_tree_from(struct task_group *from,
291 tg_visitor down, tg_visitor up, void *data);
292
293 /*
294 * Iterate the full tree, calling @down when first entering a node and @up when
295 * leaving it for the final time.
296 *
297 * Caller must hold rcu_lock or sufficient equivalent.
298 */
299 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
300 {
301 return walk_tg_tree_from(&root_task_group, down, up, data);
302 }
303
304 extern int tg_nop(struct task_group *tg, void *data);
305
306 extern void free_fair_sched_group(struct task_group *tg);
307 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
308 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
309 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
310 struct sched_entity *se, int cpu,
311 struct sched_entity *parent);
312 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
313 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
314
315 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
316 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
317 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
318
319 extern void free_rt_sched_group(struct task_group *tg);
320 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
321 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
322 struct sched_rt_entity *rt_se, int cpu,
323 struct sched_rt_entity *parent);
324
325 extern struct task_group *sched_create_group(struct task_group *parent);
326 extern void sched_online_group(struct task_group *tg,
327 struct task_group *parent);
328 extern void sched_destroy_group(struct task_group *tg);
329 extern void sched_offline_group(struct task_group *tg);
330
331 extern void sched_move_task(struct task_struct *tsk);
332
333 #ifdef CONFIG_FAIR_GROUP_SCHED
334 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
335 #endif
336
337 #else /* CONFIG_CGROUP_SCHED */
338
339 struct cfs_bandwidth { };
340
341 #endif /* CONFIG_CGROUP_SCHED */
342
343 /* CFS-related fields in a runqueue */
344 struct cfs_rq {
345 struct load_weight load;
346 unsigned int nr_running, h_nr_running;
347
348 u64 exec_clock;
349 u64 min_vruntime;
350 #ifndef CONFIG_64BIT
351 u64 min_vruntime_copy;
352 #endif
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
356
357 /*
358 * 'curr' points to currently running entity on this cfs_rq.
359 * It is set to NULL otherwise (i.e when none are currently running).
360 */
361 struct sched_entity *curr, *next, *last, *skip;
362
363 #ifdef CONFIG_SCHED_DEBUG
364 unsigned int nr_spread_over;
365 #endif
366
367 #ifdef CONFIG_SMP
368 /*
369 * CFS Load tracking
370 * Under CFS, load is tracked on a per-entity basis and aggregated up.
371 * This allows for the description of both thread and group usage (in
372 * the FAIR_GROUP_SCHED case).
373 * runnable_load_avg is the sum of the load_avg_contrib of the
374 * sched_entities on the rq.
375 * blocked_load_avg is similar to runnable_load_avg except that its
376 * the blocked sched_entities on the rq.
377 * utilization_load_avg is the sum of the average running time of the
378 * sched_entities on the rq.
379 */
380 unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
381 atomic64_t decay_counter;
382 u64 last_decay;
383 atomic_long_t removed_load;
384
385 #ifdef CONFIG_FAIR_GROUP_SCHED
386 /* Required to track per-cpu representation of a task_group */
387 u32 tg_runnable_contrib;
388 unsigned long tg_load_contrib;
389
390 /*
391 * h_load = weight * f(tg)
392 *
393 * Where f(tg) is the recursive weight fraction assigned to
394 * this group.
395 */
396 unsigned long h_load;
397 u64 last_h_load_update;
398 struct sched_entity *h_load_next;
399 #endif /* CONFIG_FAIR_GROUP_SCHED */
400 #endif /* CONFIG_SMP */
401
402 #ifdef CONFIG_FAIR_GROUP_SCHED
403 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
404
405 /*
406 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
407 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
408 * (like users, containers etc.)
409 *
410 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
411 * list is used during load balance.
412 */
413 int on_list;
414 struct list_head leaf_cfs_rq_list;
415 struct task_group *tg; /* group that "owns" this runqueue */
416
417 #ifdef CONFIG_CFS_BANDWIDTH
418 int runtime_enabled;
419 u64 runtime_expires;
420 s64 runtime_remaining;
421
422 u64 throttled_clock, throttled_clock_task;
423 u64 throttled_clock_task_time;
424 int throttled, throttle_count;
425 struct list_head throttled_list;
426 #endif /* CONFIG_CFS_BANDWIDTH */
427 #endif /* CONFIG_FAIR_GROUP_SCHED */
428 };
429
430 static inline int rt_bandwidth_enabled(void)
431 {
432 return sysctl_sched_rt_runtime >= 0;
433 }
434
435 /* RT IPI pull logic requires IRQ_WORK */
436 #ifdef CONFIG_IRQ_WORK
437 # define HAVE_RT_PUSH_IPI
438 #endif
439
440 /* Real-Time classes' related field in a runqueue: */
441 struct rt_rq {
442 struct rt_prio_array active;
443 unsigned int rt_nr_running;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445 struct {
446 int curr; /* highest queued rt task prio */
447 #ifdef CONFIG_SMP
448 int next; /* next highest */
449 #endif
450 } highest_prio;
451 #endif
452 #ifdef CONFIG_SMP
453 unsigned long rt_nr_migratory;
454 unsigned long rt_nr_total;
455 int overloaded;
456 struct plist_head pushable_tasks;
457 #ifdef HAVE_RT_PUSH_IPI
458 int push_flags;
459 int push_cpu;
460 struct irq_work push_work;
461 raw_spinlock_t push_lock;
462 #endif
463 #endif /* CONFIG_SMP */
464 int rt_queued;
465
466 int rt_throttled;
467 u64 rt_time;
468 u64 rt_runtime;
469 /* Nests inside the rq lock: */
470 raw_spinlock_t rt_runtime_lock;
471
472 #ifdef CONFIG_RT_GROUP_SCHED
473 unsigned long rt_nr_boosted;
474
475 struct rq *rq;
476 struct task_group *tg;
477 #endif
478 };
479
480 /* Deadline class' related fields in a runqueue */
481 struct dl_rq {
482 /* runqueue is an rbtree, ordered by deadline */
483 struct rb_root rb_root;
484 struct rb_node *rb_leftmost;
485
486 unsigned long dl_nr_running;
487
488 #ifdef CONFIG_SMP
489 /*
490 * Deadline values of the currently executing and the
491 * earliest ready task on this rq. Caching these facilitates
492 * the decision wether or not a ready but not running task
493 * should migrate somewhere else.
494 */
495 struct {
496 u64 curr;
497 u64 next;
498 } earliest_dl;
499
500 unsigned long dl_nr_migratory;
501 int overloaded;
502
503 /*
504 * Tasks on this rq that can be pushed away. They are kept in
505 * an rb-tree, ordered by tasks' deadlines, with caching
506 * of the leftmost (earliest deadline) element.
507 */
508 struct rb_root pushable_dl_tasks_root;
509 struct rb_node *pushable_dl_tasks_leftmost;
510 #else
511 struct dl_bw dl_bw;
512 #endif
513 };
514
515 #ifdef CONFIG_SMP
516
517 /*
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
524 */
525 struct root_domain {
526 atomic_t refcount;
527 atomic_t rto_count;
528 struct rcu_head rcu;
529 cpumask_var_t span;
530 cpumask_var_t online;
531
532 /* Indicate more than one runnable task for any CPU */
533 bool overload;
534
535 /*
536 * The bit corresponding to a CPU gets set here if such CPU has more
537 * than one runnable -deadline task (as it is below for RT tasks).
538 */
539 cpumask_var_t dlo_mask;
540 atomic_t dlo_count;
541 struct dl_bw dl_bw;
542 struct cpudl cpudl;
543
544 /*
545 * The "RT overload" flag: it gets set if a CPU has more than
546 * one runnable RT task.
547 */
548 cpumask_var_t rto_mask;
549 struct cpupri cpupri;
550 };
551
552 extern struct root_domain def_root_domain;
553
554 #endif /* CONFIG_SMP */
555
556 /*
557 * This is the main, per-CPU runqueue data structure.
558 *
559 * Locking rule: those places that want to lock multiple runqueues
560 * (such as the load balancing or the thread migration code), lock
561 * acquire operations must be ordered by ascending &runqueue.
562 */
563 struct rq {
564 /* runqueue lock: */
565 raw_spinlock_t lock;
566
567 /*
568 * nr_running and cpu_load should be in the same cacheline because
569 * remote CPUs use both these fields when doing load calculation.
570 */
571 unsigned int nr_running;
572 #ifdef CONFIG_NUMA_BALANCING
573 unsigned int nr_numa_running;
574 unsigned int nr_preferred_running;
575 #endif
576 #define CPU_LOAD_IDX_MAX 5
577 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
578 unsigned long last_load_update_tick;
579 #ifdef CONFIG_NO_HZ_COMMON
580 u64 nohz_stamp;
581 unsigned long nohz_flags;
582 #endif
583 #ifdef CONFIG_NO_HZ_FULL
584 unsigned long last_sched_tick;
585 #endif
586 /* capture load from *all* tasks on this cpu: */
587 struct load_weight load;
588 unsigned long nr_load_updates;
589 u64 nr_switches;
590
591 struct cfs_rq cfs;
592 struct rt_rq rt;
593 struct dl_rq dl;
594
595 #ifdef CONFIG_FAIR_GROUP_SCHED
596 /* list of leaf cfs_rq on this cpu: */
597 struct list_head leaf_cfs_rq_list;
598
599 struct sched_avg avg;
600 #endif /* CONFIG_FAIR_GROUP_SCHED */
601
602 /*
603 * This is part of a global counter where only the total sum
604 * over all CPUs matters. A task can increase this counter on
605 * one CPU and if it got migrated afterwards it may decrease
606 * it on another CPU. Always updated under the runqueue lock:
607 */
608 unsigned long nr_uninterruptible;
609
610 struct task_struct *curr, *idle, *stop;
611 unsigned long next_balance;
612 struct mm_struct *prev_mm;
613
614 unsigned int clock_skip_update;
615 u64 clock;
616 u64 clock_task;
617
618 atomic_t nr_iowait;
619
620 #ifdef CONFIG_SMP
621 struct root_domain *rd;
622 struct sched_domain *sd;
623
624 unsigned long cpu_capacity;
625 unsigned long cpu_capacity_orig;
626
627 unsigned char idle_balance;
628 /* For active balancing */
629 int post_schedule;
630 int active_balance;
631 int push_cpu;
632 struct cpu_stop_work active_balance_work;
633 /* cpu of this runqueue: */
634 int cpu;
635 int online;
636
637 struct list_head cfs_tasks;
638
639 u64 rt_avg;
640 u64 age_stamp;
641 u64 idle_stamp;
642 u64 avg_idle;
643
644 /* This is used to determine avg_idle's max value */
645 u64 max_idle_balance_cost;
646 #endif
647
648 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
649 u64 prev_irq_time;
650 #endif
651 #ifdef CONFIG_PARAVIRT
652 u64 prev_steal_time;
653 #endif
654 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
655 u64 prev_steal_time_rq;
656 #endif
657
658 /* calc_load related fields */
659 unsigned long calc_load_update;
660 long calc_load_active;
661
662 #ifdef CONFIG_SCHED_HRTICK
663 #ifdef CONFIG_SMP
664 int hrtick_csd_pending;
665 struct call_single_data hrtick_csd;
666 #endif
667 struct hrtimer hrtick_timer;
668 #endif
669
670 #ifdef CONFIG_SCHEDSTATS
671 /* latency stats */
672 struct sched_info rq_sched_info;
673 unsigned long long rq_cpu_time;
674 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
675
676 /* sys_sched_yield() stats */
677 unsigned int yld_count;
678
679 /* schedule() stats */
680 unsigned int sched_count;
681 unsigned int sched_goidle;
682
683 /* try_to_wake_up() stats */
684 unsigned int ttwu_count;
685 unsigned int ttwu_local;
686 #endif
687
688 #ifdef CONFIG_SMP
689 struct llist_head wake_list;
690 #endif
691
692 #ifdef CONFIG_CPU_IDLE
693 /* Must be inspected within a rcu lock section */
694 struct cpuidle_state *idle_state;
695 #endif
696 };
697
698 static inline int cpu_of(struct rq *rq)
699 {
700 #ifdef CONFIG_SMP
701 return rq->cpu;
702 #else
703 return 0;
704 #endif
705 }
706
707 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
708
709 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
710 #define this_rq() this_cpu_ptr(&runqueues)
711 #define task_rq(p) cpu_rq(task_cpu(p))
712 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
713 #define raw_rq() raw_cpu_ptr(&runqueues)
714
715 static inline u64 __rq_clock_broken(struct rq *rq)
716 {
717 return READ_ONCE(rq->clock);
718 }
719
720 static inline u64 rq_clock(struct rq *rq)
721 {
722 lockdep_assert_held(&rq->lock);
723 return rq->clock;
724 }
725
726 static inline u64 rq_clock_task(struct rq *rq)
727 {
728 lockdep_assert_held(&rq->lock);
729 return rq->clock_task;
730 }
731
732 #define RQCF_REQ_SKIP 0x01
733 #define RQCF_ACT_SKIP 0x02
734
735 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
736 {
737 lockdep_assert_held(&rq->lock);
738 if (skip)
739 rq->clock_skip_update |= RQCF_REQ_SKIP;
740 else
741 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
742 }
743
744 #ifdef CONFIG_NUMA
745 enum numa_topology_type {
746 NUMA_DIRECT,
747 NUMA_GLUELESS_MESH,
748 NUMA_BACKPLANE,
749 };
750 extern enum numa_topology_type sched_numa_topology_type;
751 extern int sched_max_numa_distance;
752 extern bool find_numa_distance(int distance);
753 #endif
754
755 #ifdef CONFIG_NUMA_BALANCING
756 /* The regions in numa_faults array from task_struct */
757 enum numa_faults_stats {
758 NUMA_MEM = 0,
759 NUMA_CPU,
760 NUMA_MEMBUF,
761 NUMA_CPUBUF
762 };
763 extern void sched_setnuma(struct task_struct *p, int node);
764 extern int migrate_task_to(struct task_struct *p, int cpu);
765 extern int migrate_swap(struct task_struct *, struct task_struct *);
766 #endif /* CONFIG_NUMA_BALANCING */
767
768 #ifdef CONFIG_SMP
769
770 extern void sched_ttwu_pending(void);
771
772 #define rcu_dereference_check_sched_domain(p) \
773 rcu_dereference_check((p), \
774 lockdep_is_held(&sched_domains_mutex))
775
776 /*
777 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
778 * See detach_destroy_domains: synchronize_sched for details.
779 *
780 * The domain tree of any CPU may only be accessed from within
781 * preempt-disabled sections.
782 */
783 #define for_each_domain(cpu, __sd) \
784 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
785 __sd; __sd = __sd->parent)
786
787 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
788
789 /**
790 * highest_flag_domain - Return highest sched_domain containing flag.
791 * @cpu: The cpu whose highest level of sched domain is to
792 * be returned.
793 * @flag: The flag to check for the highest sched_domain
794 * for the given cpu.
795 *
796 * Returns the highest sched_domain of a cpu which contains the given flag.
797 */
798 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
799 {
800 struct sched_domain *sd, *hsd = NULL;
801
802 for_each_domain(cpu, sd) {
803 if (!(sd->flags & flag))
804 break;
805 hsd = sd;
806 }
807
808 return hsd;
809 }
810
811 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
812 {
813 struct sched_domain *sd;
814
815 for_each_domain(cpu, sd) {
816 if (sd->flags & flag)
817 break;
818 }
819
820 return sd;
821 }
822
823 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
824 DECLARE_PER_CPU(int, sd_llc_size);
825 DECLARE_PER_CPU(int, sd_llc_id);
826 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
827 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
828 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
829
830 struct sched_group_capacity {
831 atomic_t ref;
832 /*
833 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
834 * for a single CPU.
835 */
836 unsigned int capacity;
837 unsigned long next_update;
838 int imbalance; /* XXX unrelated to capacity but shared group state */
839 /*
840 * Number of busy cpus in this group.
841 */
842 atomic_t nr_busy_cpus;
843
844 unsigned long cpumask[0]; /* iteration mask */
845 };
846
847 struct sched_group {
848 struct sched_group *next; /* Must be a circular list */
849 atomic_t ref;
850
851 unsigned int group_weight;
852 struct sched_group_capacity *sgc;
853
854 /*
855 * The CPUs this group covers.
856 *
857 * NOTE: this field is variable length. (Allocated dynamically
858 * by attaching extra space to the end of the structure,
859 * depending on how many CPUs the kernel has booted up with)
860 */
861 unsigned long cpumask[0];
862 };
863
864 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
865 {
866 return to_cpumask(sg->cpumask);
867 }
868
869 /*
870 * cpumask masking which cpus in the group are allowed to iterate up the domain
871 * tree.
872 */
873 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
874 {
875 return to_cpumask(sg->sgc->cpumask);
876 }
877
878 /**
879 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
880 * @group: The group whose first cpu is to be returned.
881 */
882 static inline unsigned int group_first_cpu(struct sched_group *group)
883 {
884 return cpumask_first(sched_group_cpus(group));
885 }
886
887 extern int group_balance_cpu(struct sched_group *sg);
888
889 #else
890
891 static inline void sched_ttwu_pending(void) { }
892
893 #endif /* CONFIG_SMP */
894
895 #include "stats.h"
896 #include "auto_group.h"
897
898 #ifdef CONFIG_CGROUP_SCHED
899
900 /*
901 * Return the group to which this tasks belongs.
902 *
903 * We cannot use task_css() and friends because the cgroup subsystem
904 * changes that value before the cgroup_subsys::attach() method is called,
905 * therefore we cannot pin it and might observe the wrong value.
906 *
907 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
908 * core changes this before calling sched_move_task().
909 *
910 * Instead we use a 'copy' which is updated from sched_move_task() while
911 * holding both task_struct::pi_lock and rq::lock.
912 */
913 static inline struct task_group *task_group(struct task_struct *p)
914 {
915 return p->sched_task_group;
916 }
917
918 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
919 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
920 {
921 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
922 struct task_group *tg = task_group(p);
923 #endif
924
925 #ifdef CONFIG_FAIR_GROUP_SCHED
926 p->se.cfs_rq = tg->cfs_rq[cpu];
927 p->se.parent = tg->se[cpu];
928 #endif
929
930 #ifdef CONFIG_RT_GROUP_SCHED
931 p->rt.rt_rq = tg->rt_rq[cpu];
932 p->rt.parent = tg->rt_se[cpu];
933 #endif
934 }
935
936 #else /* CONFIG_CGROUP_SCHED */
937
938 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
939 static inline struct task_group *task_group(struct task_struct *p)
940 {
941 return NULL;
942 }
943
944 #endif /* CONFIG_CGROUP_SCHED */
945
946 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
947 {
948 set_task_rq(p, cpu);
949 #ifdef CONFIG_SMP
950 /*
951 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
952 * successfuly executed on another CPU. We must ensure that updates of
953 * per-task data have been completed by this moment.
954 */
955 smp_wmb();
956 task_thread_info(p)->cpu = cpu;
957 p->wake_cpu = cpu;
958 #endif
959 }
960
961 /*
962 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
963 */
964 #ifdef CONFIG_SCHED_DEBUG
965 # include <linux/static_key.h>
966 # define const_debug __read_mostly
967 #else
968 # define const_debug const
969 #endif
970
971 extern const_debug unsigned int sysctl_sched_features;
972
973 #define SCHED_FEAT(name, enabled) \
974 __SCHED_FEAT_##name ,
975
976 enum {
977 #include "features.h"
978 __SCHED_FEAT_NR,
979 };
980
981 #undef SCHED_FEAT
982
983 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
984 #define SCHED_FEAT(name, enabled) \
985 static __always_inline bool static_branch_##name(struct static_key *key) \
986 { \
987 return static_key_##enabled(key); \
988 }
989
990 #include "features.h"
991
992 #undef SCHED_FEAT
993
994 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
995 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
996 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
997 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
998 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
999
1000 #ifdef CONFIG_NUMA_BALANCING
1001 #define sched_feat_numa(x) sched_feat(x)
1002 #ifdef CONFIG_SCHED_DEBUG
1003 #define numabalancing_enabled sched_feat_numa(NUMA)
1004 #else
1005 extern bool numabalancing_enabled;
1006 #endif /* CONFIG_SCHED_DEBUG */
1007 #else
1008 #define sched_feat_numa(x) (0)
1009 #define numabalancing_enabled (0)
1010 #endif /* CONFIG_NUMA_BALANCING */
1011
1012 static inline u64 global_rt_period(void)
1013 {
1014 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1015 }
1016
1017 static inline u64 global_rt_runtime(void)
1018 {
1019 if (sysctl_sched_rt_runtime < 0)
1020 return RUNTIME_INF;
1021
1022 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1023 }
1024
1025 static inline int task_current(struct rq *rq, struct task_struct *p)
1026 {
1027 return rq->curr == p;
1028 }
1029
1030 static inline int task_running(struct rq *rq, struct task_struct *p)
1031 {
1032 #ifdef CONFIG_SMP
1033 return p->on_cpu;
1034 #else
1035 return task_current(rq, p);
1036 #endif
1037 }
1038
1039 static inline int task_on_rq_queued(struct task_struct *p)
1040 {
1041 return p->on_rq == TASK_ON_RQ_QUEUED;
1042 }
1043
1044 static inline int task_on_rq_migrating(struct task_struct *p)
1045 {
1046 return p->on_rq == TASK_ON_RQ_MIGRATING;
1047 }
1048
1049 #ifndef prepare_arch_switch
1050 # define prepare_arch_switch(next) do { } while (0)
1051 #endif
1052 #ifndef finish_arch_switch
1053 # define finish_arch_switch(prev) do { } while (0)
1054 #endif
1055 #ifndef finish_arch_post_lock_switch
1056 # define finish_arch_post_lock_switch() do { } while (0)
1057 #endif
1058
1059 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1060 {
1061 #ifdef CONFIG_SMP
1062 /*
1063 * We can optimise this out completely for !SMP, because the
1064 * SMP rebalancing from interrupt is the only thing that cares
1065 * here.
1066 */
1067 next->on_cpu = 1;
1068 #endif
1069 }
1070
1071 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1072 {
1073 #ifdef CONFIG_SMP
1074 /*
1075 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1076 * We must ensure this doesn't happen until the switch is completely
1077 * finished.
1078 */
1079 smp_wmb();
1080 prev->on_cpu = 0;
1081 #endif
1082 #ifdef CONFIG_DEBUG_SPINLOCK
1083 /* this is a valid case when another task releases the spinlock */
1084 rq->lock.owner = current;
1085 #endif
1086 /*
1087 * If we are tracking spinlock dependencies then we have to
1088 * fix up the runqueue lock - which gets 'carried over' from
1089 * prev into current:
1090 */
1091 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1092
1093 raw_spin_unlock_irq(&rq->lock);
1094 }
1095
1096 /*
1097 * wake flags
1098 */
1099 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1100 #define WF_FORK 0x02 /* child wakeup after fork */
1101 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1102
1103 /*
1104 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1105 * of tasks with abnormal "nice" values across CPUs the contribution that
1106 * each task makes to its run queue's load is weighted according to its
1107 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1108 * scaled version of the new time slice allocation that they receive on time
1109 * slice expiry etc.
1110 */
1111
1112 #define WEIGHT_IDLEPRIO 3
1113 #define WMULT_IDLEPRIO 1431655765
1114
1115 /*
1116 * Nice levels are multiplicative, with a gentle 10% change for every
1117 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1118 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1119 * that remained on nice 0.
1120 *
1121 * The "10% effect" is relative and cumulative: from _any_ nice level,
1122 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1123 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1124 * If a task goes up by ~10% and another task goes down by ~10% then
1125 * the relative distance between them is ~25%.)
1126 */
1127 static const int prio_to_weight[40] = {
1128 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1129 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1130 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1131 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1132 /* 0 */ 1024, 820, 655, 526, 423,
1133 /* 5 */ 335, 272, 215, 172, 137,
1134 /* 10 */ 110, 87, 70, 56, 45,
1135 /* 15 */ 36, 29, 23, 18, 15,
1136 };
1137
1138 /*
1139 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1140 *
1141 * In cases where the weight does not change often, we can use the
1142 * precalculated inverse to speed up arithmetics by turning divisions
1143 * into multiplications:
1144 */
1145 static const u32 prio_to_wmult[40] = {
1146 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1147 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1148 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1149 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1150 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1151 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1152 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1153 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1154 };
1155
1156 #define ENQUEUE_WAKEUP 1
1157 #define ENQUEUE_HEAD 2
1158 #ifdef CONFIG_SMP
1159 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1160 #else
1161 #define ENQUEUE_WAKING 0
1162 #endif
1163 #define ENQUEUE_REPLENISH 8
1164
1165 #define DEQUEUE_SLEEP 1
1166
1167 #define RETRY_TASK ((void *)-1UL)
1168
1169 struct sched_class {
1170 const struct sched_class *next;
1171
1172 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1173 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1174 void (*yield_task) (struct rq *rq);
1175 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1176
1177 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1178
1179 /*
1180 * It is the responsibility of the pick_next_task() method that will
1181 * return the next task to call put_prev_task() on the @prev task or
1182 * something equivalent.
1183 *
1184 * May return RETRY_TASK when it finds a higher prio class has runnable
1185 * tasks.
1186 */
1187 struct task_struct * (*pick_next_task) (struct rq *rq,
1188 struct task_struct *prev);
1189 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1190
1191 #ifdef CONFIG_SMP
1192 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1193 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1194
1195 void (*post_schedule) (struct rq *this_rq);
1196 void (*task_waking) (struct task_struct *task);
1197 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1198
1199 void (*set_cpus_allowed)(struct task_struct *p,
1200 const struct cpumask *newmask);
1201
1202 void (*rq_online)(struct rq *rq);
1203 void (*rq_offline)(struct rq *rq);
1204 #endif
1205
1206 void (*set_curr_task) (struct rq *rq);
1207 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1208 void (*task_fork) (struct task_struct *p);
1209 void (*task_dead) (struct task_struct *p);
1210
1211 /*
1212 * The switched_from() call is allowed to drop rq->lock, therefore we
1213 * cannot assume the switched_from/switched_to pair is serliazed by
1214 * rq->lock. They are however serialized by p->pi_lock.
1215 */
1216 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1217 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1218 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1219 int oldprio);
1220
1221 unsigned int (*get_rr_interval) (struct rq *rq,
1222 struct task_struct *task);
1223
1224 void (*update_curr) (struct rq *rq);
1225
1226 #ifdef CONFIG_FAIR_GROUP_SCHED
1227 void (*task_move_group) (struct task_struct *p, int on_rq);
1228 #endif
1229 };
1230
1231 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1232 {
1233 prev->sched_class->put_prev_task(rq, prev);
1234 }
1235
1236 #define sched_class_highest (&stop_sched_class)
1237 #define for_each_class(class) \
1238 for (class = sched_class_highest; class; class = class->next)
1239
1240 extern const struct sched_class stop_sched_class;
1241 extern const struct sched_class dl_sched_class;
1242 extern const struct sched_class rt_sched_class;
1243 extern const struct sched_class fair_sched_class;
1244 extern const struct sched_class idle_sched_class;
1245
1246
1247 #ifdef CONFIG_SMP
1248
1249 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1250
1251 extern void trigger_load_balance(struct rq *rq);
1252
1253 extern void idle_enter_fair(struct rq *this_rq);
1254 extern void idle_exit_fair(struct rq *this_rq);
1255
1256 #else
1257
1258 static inline void idle_enter_fair(struct rq *rq) { }
1259 static inline void idle_exit_fair(struct rq *rq) { }
1260
1261 #endif
1262
1263 #ifdef CONFIG_CPU_IDLE
1264 static inline void idle_set_state(struct rq *rq,
1265 struct cpuidle_state *idle_state)
1266 {
1267 rq->idle_state = idle_state;
1268 }
1269
1270 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1271 {
1272 WARN_ON(!rcu_read_lock_held());
1273 return rq->idle_state;
1274 }
1275 #else
1276 static inline void idle_set_state(struct rq *rq,
1277 struct cpuidle_state *idle_state)
1278 {
1279 }
1280
1281 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1282 {
1283 return NULL;
1284 }
1285 #endif
1286
1287 extern void sysrq_sched_debug_show(void);
1288 extern void sched_init_granularity(void);
1289 extern void update_max_interval(void);
1290
1291 extern void init_sched_dl_class(void);
1292 extern void init_sched_rt_class(void);
1293 extern void init_sched_fair_class(void);
1294
1295 extern void resched_curr(struct rq *rq);
1296 extern void resched_cpu(int cpu);
1297
1298 extern struct rt_bandwidth def_rt_bandwidth;
1299 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1300
1301 extern struct dl_bandwidth def_dl_bandwidth;
1302 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1303 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1304
1305 unsigned long to_ratio(u64 period, u64 runtime);
1306
1307 extern void init_task_runnable_average(struct task_struct *p);
1308
1309 static inline void add_nr_running(struct rq *rq, unsigned count)
1310 {
1311 unsigned prev_nr = rq->nr_running;
1312
1313 rq->nr_running = prev_nr + count;
1314
1315 if (prev_nr < 2 && rq->nr_running >= 2) {
1316 #ifdef CONFIG_SMP
1317 if (!rq->rd->overload)
1318 rq->rd->overload = true;
1319 #endif
1320
1321 #ifdef CONFIG_NO_HZ_FULL
1322 if (tick_nohz_full_cpu(rq->cpu)) {
1323 /*
1324 * Tick is needed if more than one task runs on a CPU.
1325 * Send the target an IPI to kick it out of nohz mode.
1326 *
1327 * We assume that IPI implies full memory barrier and the
1328 * new value of rq->nr_running is visible on reception
1329 * from the target.
1330 */
1331 tick_nohz_full_kick_cpu(rq->cpu);
1332 }
1333 #endif
1334 }
1335 }
1336
1337 static inline void sub_nr_running(struct rq *rq, unsigned count)
1338 {
1339 rq->nr_running -= count;
1340 }
1341
1342 static inline void rq_last_tick_reset(struct rq *rq)
1343 {
1344 #ifdef CONFIG_NO_HZ_FULL
1345 rq->last_sched_tick = jiffies;
1346 #endif
1347 }
1348
1349 extern void update_rq_clock(struct rq *rq);
1350
1351 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1352 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1353
1354 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1355
1356 extern const_debug unsigned int sysctl_sched_time_avg;
1357 extern const_debug unsigned int sysctl_sched_nr_migrate;
1358 extern const_debug unsigned int sysctl_sched_migration_cost;
1359
1360 static inline u64 sched_avg_period(void)
1361 {
1362 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1363 }
1364
1365 #ifdef CONFIG_SCHED_HRTICK
1366
1367 /*
1368 * Use hrtick when:
1369 * - enabled by features
1370 * - hrtimer is actually high res
1371 */
1372 static inline int hrtick_enabled(struct rq *rq)
1373 {
1374 if (!sched_feat(HRTICK))
1375 return 0;
1376 if (!cpu_active(cpu_of(rq)))
1377 return 0;
1378 return hrtimer_is_hres_active(&rq->hrtick_timer);
1379 }
1380
1381 void hrtick_start(struct rq *rq, u64 delay);
1382
1383 #else
1384
1385 static inline int hrtick_enabled(struct rq *rq)
1386 {
1387 return 0;
1388 }
1389
1390 #endif /* CONFIG_SCHED_HRTICK */
1391
1392 #ifdef CONFIG_SMP
1393 extern void sched_avg_update(struct rq *rq);
1394
1395 #ifndef arch_scale_freq_capacity
1396 static __always_inline
1397 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1398 {
1399 return SCHED_CAPACITY_SCALE;
1400 }
1401 #endif
1402
1403 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1404 {
1405 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1406 sched_avg_update(rq);
1407 }
1408 #else
1409 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1410 static inline void sched_avg_update(struct rq *rq) { }
1411 #endif
1412
1413 /*
1414 * __task_rq_lock - lock the rq @p resides on.
1415 */
1416 static inline struct rq *__task_rq_lock(struct task_struct *p)
1417 __acquires(rq->lock)
1418 {
1419 struct rq *rq;
1420
1421 lockdep_assert_held(&p->pi_lock);
1422
1423 for (;;) {
1424 rq = task_rq(p);
1425 raw_spin_lock(&rq->lock);
1426 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1427 return rq;
1428 raw_spin_unlock(&rq->lock);
1429
1430 while (unlikely(task_on_rq_migrating(p)))
1431 cpu_relax();
1432 }
1433 }
1434
1435 /*
1436 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1437 */
1438 static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1439 __acquires(p->pi_lock)
1440 __acquires(rq->lock)
1441 {
1442 struct rq *rq;
1443
1444 for (;;) {
1445 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1446 rq = task_rq(p);
1447 raw_spin_lock(&rq->lock);
1448 /*
1449 * move_queued_task() task_rq_lock()
1450 *
1451 * ACQUIRE (rq->lock)
1452 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1453 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1454 * [S] ->cpu = new_cpu [L] task_rq()
1455 * [L] ->on_rq
1456 * RELEASE (rq->lock)
1457 *
1458 * If we observe the old cpu in task_rq_lock, the acquire of
1459 * the old rq->lock will fully serialize against the stores.
1460 *
1461 * If we observe the new cpu in task_rq_lock, the acquire will
1462 * pair with the WMB to ensure we must then also see migrating.
1463 */
1464 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1465 return rq;
1466 raw_spin_unlock(&rq->lock);
1467 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1468
1469 while (unlikely(task_on_rq_migrating(p)))
1470 cpu_relax();
1471 }
1472 }
1473
1474 static inline void __task_rq_unlock(struct rq *rq)
1475 __releases(rq->lock)
1476 {
1477 raw_spin_unlock(&rq->lock);
1478 }
1479
1480 static inline void
1481 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1482 __releases(rq->lock)
1483 __releases(p->pi_lock)
1484 {
1485 raw_spin_unlock(&rq->lock);
1486 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1487 }
1488
1489 #ifdef CONFIG_SMP
1490 #ifdef CONFIG_PREEMPT
1491
1492 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1493
1494 /*
1495 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1496 * way at the expense of forcing extra atomic operations in all
1497 * invocations. This assures that the double_lock is acquired using the
1498 * same underlying policy as the spinlock_t on this architecture, which
1499 * reduces latency compared to the unfair variant below. However, it
1500 * also adds more overhead and therefore may reduce throughput.
1501 */
1502 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1503 __releases(this_rq->lock)
1504 __acquires(busiest->lock)
1505 __acquires(this_rq->lock)
1506 {
1507 raw_spin_unlock(&this_rq->lock);
1508 double_rq_lock(this_rq, busiest);
1509
1510 return 1;
1511 }
1512
1513 #else
1514 /*
1515 * Unfair double_lock_balance: Optimizes throughput at the expense of
1516 * latency by eliminating extra atomic operations when the locks are
1517 * already in proper order on entry. This favors lower cpu-ids and will
1518 * grant the double lock to lower cpus over higher ids under contention,
1519 * regardless of entry order into the function.
1520 */
1521 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1522 __releases(this_rq->lock)
1523 __acquires(busiest->lock)
1524 __acquires(this_rq->lock)
1525 {
1526 int ret = 0;
1527
1528 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1529 if (busiest < this_rq) {
1530 raw_spin_unlock(&this_rq->lock);
1531 raw_spin_lock(&busiest->lock);
1532 raw_spin_lock_nested(&this_rq->lock,
1533 SINGLE_DEPTH_NESTING);
1534 ret = 1;
1535 } else
1536 raw_spin_lock_nested(&busiest->lock,
1537 SINGLE_DEPTH_NESTING);
1538 }
1539 return ret;
1540 }
1541
1542 #endif /* CONFIG_PREEMPT */
1543
1544 /*
1545 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1546 */
1547 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1548 {
1549 if (unlikely(!irqs_disabled())) {
1550 /* printk() doesn't work good under rq->lock */
1551 raw_spin_unlock(&this_rq->lock);
1552 BUG_ON(1);
1553 }
1554
1555 return _double_lock_balance(this_rq, busiest);
1556 }
1557
1558 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1559 __releases(busiest->lock)
1560 {
1561 raw_spin_unlock(&busiest->lock);
1562 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1563 }
1564
1565 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1566 {
1567 if (l1 > l2)
1568 swap(l1, l2);
1569
1570 spin_lock(l1);
1571 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1572 }
1573
1574 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1575 {
1576 if (l1 > l2)
1577 swap(l1, l2);
1578
1579 spin_lock_irq(l1);
1580 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1581 }
1582
1583 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1584 {
1585 if (l1 > l2)
1586 swap(l1, l2);
1587
1588 raw_spin_lock(l1);
1589 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1590 }
1591
1592 /*
1593 * double_rq_lock - safely lock two runqueues
1594 *
1595 * Note this does not disable interrupts like task_rq_lock,
1596 * you need to do so manually before calling.
1597 */
1598 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1599 __acquires(rq1->lock)
1600 __acquires(rq2->lock)
1601 {
1602 BUG_ON(!irqs_disabled());
1603 if (rq1 == rq2) {
1604 raw_spin_lock(&rq1->lock);
1605 __acquire(rq2->lock); /* Fake it out ;) */
1606 } else {
1607 if (rq1 < rq2) {
1608 raw_spin_lock(&rq1->lock);
1609 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1610 } else {
1611 raw_spin_lock(&rq2->lock);
1612 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1613 }
1614 }
1615 }
1616
1617 /*
1618 * double_rq_unlock - safely unlock two runqueues
1619 *
1620 * Note this does not restore interrupts like task_rq_unlock,
1621 * you need to do so manually after calling.
1622 */
1623 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1624 __releases(rq1->lock)
1625 __releases(rq2->lock)
1626 {
1627 raw_spin_unlock(&rq1->lock);
1628 if (rq1 != rq2)
1629 raw_spin_unlock(&rq2->lock);
1630 else
1631 __release(rq2->lock);
1632 }
1633
1634 #else /* CONFIG_SMP */
1635
1636 /*
1637 * double_rq_lock - safely lock two runqueues
1638 *
1639 * Note this does not disable interrupts like task_rq_lock,
1640 * you need to do so manually before calling.
1641 */
1642 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1643 __acquires(rq1->lock)
1644 __acquires(rq2->lock)
1645 {
1646 BUG_ON(!irqs_disabled());
1647 BUG_ON(rq1 != rq2);
1648 raw_spin_lock(&rq1->lock);
1649 __acquire(rq2->lock); /* Fake it out ;) */
1650 }
1651
1652 /*
1653 * double_rq_unlock - safely unlock two runqueues
1654 *
1655 * Note this does not restore interrupts like task_rq_unlock,
1656 * you need to do so manually after calling.
1657 */
1658 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1659 __releases(rq1->lock)
1660 __releases(rq2->lock)
1661 {
1662 BUG_ON(rq1 != rq2);
1663 raw_spin_unlock(&rq1->lock);
1664 __release(rq2->lock);
1665 }
1666
1667 #endif
1668
1669 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1670 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1671 extern void print_cfs_stats(struct seq_file *m, int cpu);
1672 extern void print_rt_stats(struct seq_file *m, int cpu);
1673 extern void print_dl_stats(struct seq_file *m, int cpu);
1674
1675 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1676 extern void init_rt_rq(struct rt_rq *rt_rq);
1677 extern void init_dl_rq(struct dl_rq *dl_rq);
1678
1679 extern void cfs_bandwidth_usage_inc(void);
1680 extern void cfs_bandwidth_usage_dec(void);
1681
1682 #ifdef CONFIG_NO_HZ_COMMON
1683 enum rq_nohz_flag_bits {
1684 NOHZ_TICK_STOPPED,
1685 NOHZ_BALANCE_KICK,
1686 };
1687
1688 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1689 #endif
1690
1691 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1692
1693 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1694 DECLARE_PER_CPU(u64, cpu_softirq_time);
1695
1696 #ifndef CONFIG_64BIT
1697 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1698
1699 static inline void irq_time_write_begin(void)
1700 {
1701 __this_cpu_inc(irq_time_seq.sequence);
1702 smp_wmb();
1703 }
1704
1705 static inline void irq_time_write_end(void)
1706 {
1707 smp_wmb();
1708 __this_cpu_inc(irq_time_seq.sequence);
1709 }
1710
1711 static inline u64 irq_time_read(int cpu)
1712 {
1713 u64 irq_time;
1714 unsigned seq;
1715
1716 do {
1717 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1718 irq_time = per_cpu(cpu_softirq_time, cpu) +
1719 per_cpu(cpu_hardirq_time, cpu);
1720 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1721
1722 return irq_time;
1723 }
1724 #else /* CONFIG_64BIT */
1725 static inline void irq_time_write_begin(void)
1726 {
1727 }
1728
1729 static inline void irq_time_write_end(void)
1730 {
1731 }
1732
1733 static inline u64 irq_time_read(int cpu)
1734 {
1735 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1736 }
1737 #endif /* CONFIG_64BIT */
1738 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */