]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/sched.h
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/topology.h>
5 #include <linux/sched/rt.h>
6 #include <linux/sched/clock.h>
7 #include <linux/sched/wake_q.h>
8 #include <linux/sched/signal.h>
9 #include <linux/sched/numa_balancing.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/cpufreq.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/nohz.h>
14 #include <linux/sched/debug.h>
15 #include <linux/u64_stats_sync.h>
16 #include <linux/sched/deadline.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/binfmts.h>
19 #include <linux/mutex.h>
20 #include <linux/spinlock.h>
21 #include <linux/stop_machine.h>
22 #include <linux/irq_work.h>
23 #include <linux/tick.h>
24 #include <linux/slab.h>
25
26 #ifdef CONFIG_PARAVIRT
27 #include <asm/paravirt.h>
28 #endif
29
30 #include "cpupri.h"
31 #include "cpudeadline.h"
32 #include "cpuacct.h"
33
34 #ifdef CONFIG_SCHED_DEBUG
35 #define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
36 #else
37 #define SCHED_WARN_ON(x) ((void)(x))
38 #endif
39
40 struct rq;
41 struct cpuidle_state;
42
43 /* task_struct::on_rq states: */
44 #define TASK_ON_RQ_QUEUED 1
45 #define TASK_ON_RQ_MIGRATING 2
46
47 extern __read_mostly int scheduler_running;
48
49 extern unsigned long calc_load_update;
50 extern atomic_long_t calc_load_tasks;
51
52 extern void calc_global_load_tick(struct rq *this_rq);
53 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
54
55 #ifdef CONFIG_SMP
56 extern void cpu_load_update_active(struct rq *this_rq);
57 #else
58 static inline void cpu_load_update_active(struct rq *this_rq) { }
59 #endif
60
61 /*
62 * Helpers for converting nanosecond timing to jiffy resolution
63 */
64 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
65
66 /*
67 * Increase resolution of nice-level calculations for 64-bit architectures.
68 * The extra resolution improves shares distribution and load balancing of
69 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
70 * hierarchies, especially on larger systems. This is not a user-visible change
71 * and does not change the user-interface for setting shares/weights.
72 *
73 * We increase resolution only if we have enough bits to allow this increased
74 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
75 * pretty high and the returns do not justify the increased costs.
76 *
77 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
78 * increase coverage and consistency always enable it on 64bit platforms.
79 */
80 #ifdef CONFIG_64BIT
81 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
82 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
83 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
84 #else
85 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
86 # define scale_load(w) (w)
87 # define scale_load_down(w) (w)
88 #endif
89
90 /*
91 * Task weight (visible to users) and its load (invisible to users) have
92 * independent resolution, but they should be well calibrated. We use
93 * scale_load() and scale_load_down(w) to convert between them. The
94 * following must be true:
95 *
96 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
97 *
98 */
99 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
100
101 /*
102 * Single value that decides SCHED_DEADLINE internal math precision.
103 * 10 -> just above 1us
104 * 9 -> just above 0.5us
105 */
106 #define DL_SCALE (10)
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 */
111
112 /*
113 * single value that denotes runtime == period, ie unlimited time.
114 */
115 #define RUNTIME_INF ((u64)~0ULL)
116
117 static inline int idle_policy(int policy)
118 {
119 return policy == SCHED_IDLE;
120 }
121 static inline int fair_policy(int policy)
122 {
123 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
124 }
125
126 static inline int rt_policy(int policy)
127 {
128 return policy == SCHED_FIFO || policy == SCHED_RR;
129 }
130
131 static inline int dl_policy(int policy)
132 {
133 return policy == SCHED_DEADLINE;
134 }
135 static inline bool valid_policy(int policy)
136 {
137 return idle_policy(policy) || fair_policy(policy) ||
138 rt_policy(policy) || dl_policy(policy);
139 }
140
141 static inline int task_has_rt_policy(struct task_struct *p)
142 {
143 return rt_policy(p->policy);
144 }
145
146 static inline int task_has_dl_policy(struct task_struct *p)
147 {
148 return dl_policy(p->policy);
149 }
150
151 /*
152 * Tells if entity @a should preempt entity @b.
153 */
154 static inline bool
155 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
156 {
157 return dl_time_before(a->deadline, b->deadline);
158 }
159
160 /*
161 * This is the priority-queue data structure of the RT scheduling class:
162 */
163 struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166 };
167
168 struct rt_bandwidth {
169 /* nests inside the rq lock: */
170 raw_spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
174 unsigned int rt_period_active;
175 };
176
177 void __dl_clear_params(struct task_struct *p);
178
179 /*
180 * To keep the bandwidth of -deadline tasks and groups under control
181 * we need some place where:
182 * - store the maximum -deadline bandwidth of the system (the group);
183 * - cache the fraction of that bandwidth that is currently allocated.
184 *
185 * This is all done in the data structure below. It is similar to the
186 * one used for RT-throttling (rt_bandwidth), with the main difference
187 * that, since here we are only interested in admission control, we
188 * do not decrease any runtime while the group "executes", neither we
189 * need a timer to replenish it.
190 *
191 * With respect to SMP, the bandwidth is given on a per-CPU basis,
192 * meaning that:
193 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
194 * - dl_total_bw array contains, in the i-eth element, the currently
195 * allocated bandwidth on the i-eth CPU.
196 * Moreover, groups consume bandwidth on each CPU, while tasks only
197 * consume bandwidth on the CPU they're running on.
198 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
199 * that will be shown the next time the proc or cgroup controls will
200 * be red. It on its turn can be changed by writing on its own
201 * control.
202 */
203 struct dl_bandwidth {
204 raw_spinlock_t dl_runtime_lock;
205 u64 dl_runtime;
206 u64 dl_period;
207 };
208
209 static inline int dl_bandwidth_enabled(void)
210 {
211 return sysctl_sched_rt_runtime >= 0;
212 }
213
214 extern struct dl_bw *dl_bw_of(int i);
215
216 struct dl_bw {
217 raw_spinlock_t lock;
218 u64 bw, total_bw;
219 };
220
221 static inline
222 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
223 {
224 dl_b->total_bw -= tsk_bw;
225 }
226
227 static inline
228 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
229 {
230 dl_b->total_bw += tsk_bw;
231 }
232
233 static inline
234 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
235 {
236 return dl_b->bw != -1 &&
237 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
238 }
239
240 extern void init_dl_bw(struct dl_bw *dl_b);
241
242 #ifdef CONFIG_CGROUP_SCHED
243
244 #include <linux/cgroup.h>
245
246 struct cfs_rq;
247 struct rt_rq;
248
249 extern struct list_head task_groups;
250
251 struct cfs_bandwidth {
252 #ifdef CONFIG_CFS_BANDWIDTH
253 raw_spinlock_t lock;
254 ktime_t period;
255 u64 quota, runtime;
256 s64 hierarchical_quota;
257 u64 runtime_expires;
258
259 int idle, period_active;
260 struct hrtimer period_timer, slack_timer;
261 struct list_head throttled_cfs_rq;
262
263 /* statistics */
264 int nr_periods, nr_throttled;
265 u64 throttled_time;
266 #endif
267 };
268
269 /* task group related information */
270 struct task_group {
271 struct cgroup_subsys_state css;
272
273 #ifdef CONFIG_FAIR_GROUP_SCHED
274 /* schedulable entities of this group on each cpu */
275 struct sched_entity **se;
276 /* runqueue "owned" by this group on each cpu */
277 struct cfs_rq **cfs_rq;
278 unsigned long shares;
279
280 #ifdef CONFIG_SMP
281 /*
282 * load_avg can be heavily contended at clock tick time, so put
283 * it in its own cacheline separated from the fields above which
284 * will also be accessed at each tick.
285 */
286 atomic_long_t load_avg ____cacheline_aligned;
287 #endif
288 #endif
289
290 #ifdef CONFIG_RT_GROUP_SCHED
291 struct sched_rt_entity **rt_se;
292 struct rt_rq **rt_rq;
293
294 struct rt_bandwidth rt_bandwidth;
295 #endif
296
297 struct rcu_head rcu;
298 struct list_head list;
299
300 struct task_group *parent;
301 struct list_head siblings;
302 struct list_head children;
303
304 #ifdef CONFIG_SCHED_AUTOGROUP
305 struct autogroup *autogroup;
306 #endif
307
308 struct cfs_bandwidth cfs_bandwidth;
309 };
310
311 #ifdef CONFIG_FAIR_GROUP_SCHED
312 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
313
314 /*
315 * A weight of 0 or 1 can cause arithmetics problems.
316 * A weight of a cfs_rq is the sum of weights of which entities
317 * are queued on this cfs_rq, so a weight of a entity should not be
318 * too large, so as the shares value of a task group.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
321 */
322 #define MIN_SHARES (1UL << 1)
323 #define MAX_SHARES (1UL << 18)
324 #endif
325
326 typedef int (*tg_visitor)(struct task_group *, void *);
327
328 extern int walk_tg_tree_from(struct task_group *from,
329 tg_visitor down, tg_visitor up, void *data);
330
331 /*
332 * Iterate the full tree, calling @down when first entering a node and @up when
333 * leaving it for the final time.
334 *
335 * Caller must hold rcu_lock or sufficient equivalent.
336 */
337 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
338 {
339 return walk_tg_tree_from(&root_task_group, down, up, data);
340 }
341
342 extern int tg_nop(struct task_group *tg, void *data);
343
344 extern void free_fair_sched_group(struct task_group *tg);
345 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
346 extern void online_fair_sched_group(struct task_group *tg);
347 extern void unregister_fair_sched_group(struct task_group *tg);
348 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
349 struct sched_entity *se, int cpu,
350 struct sched_entity *parent);
351 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
352
353 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
354 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
355 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
356
357 extern void free_rt_sched_group(struct task_group *tg);
358 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
359 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
360 struct sched_rt_entity *rt_se, int cpu,
361 struct sched_rt_entity *parent);
362
363 extern struct task_group *sched_create_group(struct task_group *parent);
364 extern void sched_online_group(struct task_group *tg,
365 struct task_group *parent);
366 extern void sched_destroy_group(struct task_group *tg);
367 extern void sched_offline_group(struct task_group *tg);
368
369 extern void sched_move_task(struct task_struct *tsk);
370
371 #ifdef CONFIG_FAIR_GROUP_SCHED
372 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
373
374 #ifdef CONFIG_SMP
375 extern void set_task_rq_fair(struct sched_entity *se,
376 struct cfs_rq *prev, struct cfs_rq *next);
377 #else /* !CONFIG_SMP */
378 static inline void set_task_rq_fair(struct sched_entity *se,
379 struct cfs_rq *prev, struct cfs_rq *next) { }
380 #endif /* CONFIG_SMP */
381 #endif /* CONFIG_FAIR_GROUP_SCHED */
382
383 #else /* CONFIG_CGROUP_SCHED */
384
385 struct cfs_bandwidth { };
386
387 #endif /* CONFIG_CGROUP_SCHED */
388
389 /* CFS-related fields in a runqueue */
390 struct cfs_rq {
391 struct load_weight load;
392 unsigned int nr_running, h_nr_running;
393
394 u64 exec_clock;
395 u64 min_vruntime;
396 #ifndef CONFIG_64BIT
397 u64 min_vruntime_copy;
398 #endif
399
400 struct rb_root tasks_timeline;
401 struct rb_node *rb_leftmost;
402
403 /*
404 * 'curr' points to currently running entity on this cfs_rq.
405 * It is set to NULL otherwise (i.e when none are currently running).
406 */
407 struct sched_entity *curr, *next, *last, *skip;
408
409 #ifdef CONFIG_SCHED_DEBUG
410 unsigned int nr_spread_over;
411 #endif
412
413 #ifdef CONFIG_SMP
414 /*
415 * CFS load tracking
416 */
417 struct sched_avg avg;
418 u64 runnable_load_sum;
419 unsigned long runnable_load_avg;
420 #ifdef CONFIG_FAIR_GROUP_SCHED
421 unsigned long tg_load_avg_contrib;
422 unsigned long propagate_avg;
423 #endif
424 atomic_long_t removed_load_avg, removed_util_avg;
425 #ifndef CONFIG_64BIT
426 u64 load_last_update_time_copy;
427 #endif
428
429 #ifdef CONFIG_FAIR_GROUP_SCHED
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
437 u64 last_h_load_update;
438 struct sched_entity *h_load_next;
439 #endif /* CONFIG_FAIR_GROUP_SCHED */
440 #endif /* CONFIG_SMP */
441
442 #ifdef CONFIG_FAIR_GROUP_SCHED
443 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
444
445 /*
446 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
447 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
448 * (like users, containers etc.)
449 *
450 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
451 * list is used during load balance.
452 */
453 int on_list;
454 struct list_head leaf_cfs_rq_list;
455 struct task_group *tg; /* group that "owns" this runqueue */
456
457 #ifdef CONFIG_CFS_BANDWIDTH
458 int runtime_enabled;
459 u64 runtime_expires;
460 s64 runtime_remaining;
461
462 u64 throttled_clock, throttled_clock_task;
463 u64 throttled_clock_task_time;
464 int throttled, throttle_count;
465 struct list_head throttled_list;
466 #endif /* CONFIG_CFS_BANDWIDTH */
467 #endif /* CONFIG_FAIR_GROUP_SCHED */
468 };
469
470 static inline int rt_bandwidth_enabled(void)
471 {
472 return sysctl_sched_rt_runtime >= 0;
473 }
474
475 /* RT IPI pull logic requires IRQ_WORK */
476 #ifdef CONFIG_IRQ_WORK
477 # define HAVE_RT_PUSH_IPI
478 #endif
479
480 /* Real-Time classes' related field in a runqueue: */
481 struct rt_rq {
482 struct rt_prio_array active;
483 unsigned int rt_nr_running;
484 unsigned int rr_nr_running;
485 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
486 struct {
487 int curr; /* highest queued rt task prio */
488 #ifdef CONFIG_SMP
489 int next; /* next highest */
490 #endif
491 } highest_prio;
492 #endif
493 #ifdef CONFIG_SMP
494 unsigned long rt_nr_migratory;
495 unsigned long rt_nr_total;
496 int overloaded;
497 struct plist_head pushable_tasks;
498 #ifdef HAVE_RT_PUSH_IPI
499 int push_flags;
500 int push_cpu;
501 struct irq_work push_work;
502 raw_spinlock_t push_lock;
503 #endif
504 #endif /* CONFIG_SMP */
505 int rt_queued;
506
507 int rt_throttled;
508 u64 rt_time;
509 u64 rt_runtime;
510 /* Nests inside the rq lock: */
511 raw_spinlock_t rt_runtime_lock;
512
513 #ifdef CONFIG_RT_GROUP_SCHED
514 unsigned long rt_nr_boosted;
515
516 struct rq *rq;
517 struct task_group *tg;
518 #endif
519 };
520
521 /* Deadline class' related fields in a runqueue */
522 struct dl_rq {
523 /* runqueue is an rbtree, ordered by deadline */
524 struct rb_root rb_root;
525 struct rb_node *rb_leftmost;
526
527 unsigned long dl_nr_running;
528
529 #ifdef CONFIG_SMP
530 /*
531 * Deadline values of the currently executing and the
532 * earliest ready task on this rq. Caching these facilitates
533 * the decision wether or not a ready but not running task
534 * should migrate somewhere else.
535 */
536 struct {
537 u64 curr;
538 u64 next;
539 } earliest_dl;
540
541 unsigned long dl_nr_migratory;
542 int overloaded;
543
544 /*
545 * Tasks on this rq that can be pushed away. They are kept in
546 * an rb-tree, ordered by tasks' deadlines, with caching
547 * of the leftmost (earliest deadline) element.
548 */
549 struct rb_root pushable_dl_tasks_root;
550 struct rb_node *pushable_dl_tasks_leftmost;
551 #else
552 struct dl_bw dl_bw;
553 #endif
554 };
555
556 #ifdef CONFIG_SMP
557
558 static inline bool sched_asym_prefer(int a, int b)
559 {
560 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
561 }
562
563 /*
564 * We add the notion of a root-domain which will be used to define per-domain
565 * variables. Each exclusive cpuset essentially defines an island domain by
566 * fully partitioning the member cpus from any other cpuset. Whenever a new
567 * exclusive cpuset is created, we also create and attach a new root-domain
568 * object.
569 *
570 */
571 struct root_domain {
572 atomic_t refcount;
573 atomic_t rto_count;
574 struct rcu_head rcu;
575 cpumask_var_t span;
576 cpumask_var_t online;
577
578 /* Indicate more than one runnable task for any CPU */
579 bool overload;
580
581 /*
582 * The bit corresponding to a CPU gets set here if such CPU has more
583 * than one runnable -deadline task (as it is below for RT tasks).
584 */
585 cpumask_var_t dlo_mask;
586 atomic_t dlo_count;
587 struct dl_bw dl_bw;
588 struct cpudl cpudl;
589
590 /*
591 * The "RT overload" flag: it gets set if a CPU has more than
592 * one runnable RT task.
593 */
594 cpumask_var_t rto_mask;
595 struct cpupri cpupri;
596
597 unsigned long max_cpu_capacity;
598 };
599
600 extern struct root_domain def_root_domain;
601 extern struct mutex sched_domains_mutex;
602 extern cpumask_var_t fallback_doms;
603 extern cpumask_var_t sched_domains_tmpmask;
604
605 extern void init_defrootdomain(void);
606 extern int init_sched_domains(const struct cpumask *cpu_map);
607 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
608
609 #endif /* CONFIG_SMP */
610
611 /*
612 * This is the main, per-CPU runqueue data structure.
613 *
614 * Locking rule: those places that want to lock multiple runqueues
615 * (such as the load balancing or the thread migration code), lock
616 * acquire operations must be ordered by ascending &runqueue.
617 */
618 struct rq {
619 /* runqueue lock: */
620 raw_spinlock_t lock;
621
622 /*
623 * nr_running and cpu_load should be in the same cacheline because
624 * remote CPUs use both these fields when doing load calculation.
625 */
626 unsigned int nr_running;
627 #ifdef CONFIG_NUMA_BALANCING
628 unsigned int nr_numa_running;
629 unsigned int nr_preferred_running;
630 #endif
631 #define CPU_LOAD_IDX_MAX 5
632 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
633 #ifdef CONFIG_NO_HZ_COMMON
634 #ifdef CONFIG_SMP
635 unsigned long last_load_update_tick;
636 #endif /* CONFIG_SMP */
637 unsigned long nohz_flags;
638 #endif /* CONFIG_NO_HZ_COMMON */
639 #ifdef CONFIG_NO_HZ_FULL
640 unsigned long last_sched_tick;
641 #endif
642 /* capture load from *all* tasks on this cpu: */
643 struct load_weight load;
644 unsigned long nr_load_updates;
645 u64 nr_switches;
646
647 struct cfs_rq cfs;
648 struct rt_rq rt;
649 struct dl_rq dl;
650
651 #ifdef CONFIG_FAIR_GROUP_SCHED
652 /* list of leaf cfs_rq on this cpu: */
653 struct list_head leaf_cfs_rq_list;
654 struct list_head *tmp_alone_branch;
655 #endif /* CONFIG_FAIR_GROUP_SCHED */
656
657 /*
658 * This is part of a global counter where only the total sum
659 * over all CPUs matters. A task can increase this counter on
660 * one CPU and if it got migrated afterwards it may decrease
661 * it on another CPU. Always updated under the runqueue lock:
662 */
663 unsigned long nr_uninterruptible;
664
665 struct task_struct *curr, *idle, *stop;
666 unsigned long next_balance;
667 struct mm_struct *prev_mm;
668
669 unsigned int clock_update_flags;
670 u64 clock;
671 u64 clock_task;
672
673 atomic_t nr_iowait;
674
675 #ifdef CONFIG_SMP
676 struct root_domain *rd;
677 struct sched_domain *sd;
678
679 unsigned long cpu_capacity;
680 unsigned long cpu_capacity_orig;
681
682 struct callback_head *balance_callback;
683
684 unsigned char idle_balance;
685 /* For active balancing */
686 int active_balance;
687 int push_cpu;
688 struct cpu_stop_work active_balance_work;
689 /* cpu of this runqueue: */
690 int cpu;
691 int online;
692
693 struct list_head cfs_tasks;
694
695 u64 rt_avg;
696 u64 age_stamp;
697 u64 idle_stamp;
698 u64 avg_idle;
699
700 /* This is used to determine avg_idle's max value */
701 u64 max_idle_balance_cost;
702 #endif
703
704 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
705 u64 prev_irq_time;
706 #endif
707 #ifdef CONFIG_PARAVIRT
708 u64 prev_steal_time;
709 #endif
710 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
711 u64 prev_steal_time_rq;
712 #endif
713
714 /* calc_load related fields */
715 unsigned long calc_load_update;
716 long calc_load_active;
717
718 #ifdef CONFIG_SCHED_HRTICK
719 #ifdef CONFIG_SMP
720 int hrtick_csd_pending;
721 struct call_single_data hrtick_csd;
722 #endif
723 struct hrtimer hrtick_timer;
724 #endif
725
726 #ifdef CONFIG_SCHEDSTATS
727 /* latency stats */
728 struct sched_info rq_sched_info;
729 unsigned long long rq_cpu_time;
730 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
731
732 /* sys_sched_yield() stats */
733 unsigned int yld_count;
734
735 /* schedule() stats */
736 unsigned int sched_count;
737 unsigned int sched_goidle;
738
739 /* try_to_wake_up() stats */
740 unsigned int ttwu_count;
741 unsigned int ttwu_local;
742 #endif
743
744 #ifdef CONFIG_SMP
745 struct llist_head wake_list;
746 #endif
747
748 #ifdef CONFIG_CPU_IDLE
749 /* Must be inspected within a rcu lock section */
750 struct cpuidle_state *idle_state;
751 #endif
752 };
753
754 static inline int cpu_of(struct rq *rq)
755 {
756 #ifdef CONFIG_SMP
757 return rq->cpu;
758 #else
759 return 0;
760 #endif
761 }
762
763
764 #ifdef CONFIG_SCHED_SMT
765
766 extern struct static_key_false sched_smt_present;
767
768 extern void __update_idle_core(struct rq *rq);
769
770 static inline void update_idle_core(struct rq *rq)
771 {
772 if (static_branch_unlikely(&sched_smt_present))
773 __update_idle_core(rq);
774 }
775
776 #else
777 static inline void update_idle_core(struct rq *rq) { }
778 #endif
779
780 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
781
782 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
783 #define this_rq() this_cpu_ptr(&runqueues)
784 #define task_rq(p) cpu_rq(task_cpu(p))
785 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
786 #define raw_rq() raw_cpu_ptr(&runqueues)
787
788 static inline u64 __rq_clock_broken(struct rq *rq)
789 {
790 return READ_ONCE(rq->clock);
791 }
792
793 /*
794 * rq::clock_update_flags bits
795 *
796 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
797 * call to __schedule(). This is an optimisation to avoid
798 * neighbouring rq clock updates.
799 *
800 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
801 * in effect and calls to update_rq_clock() are being ignored.
802 *
803 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
804 * made to update_rq_clock() since the last time rq::lock was pinned.
805 *
806 * If inside of __schedule(), clock_update_flags will have been
807 * shifted left (a left shift is a cheap operation for the fast path
808 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
809 *
810 * if (rq-clock_update_flags >= RQCF_UPDATED)
811 *
812 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
813 * one position though, because the next rq_unpin_lock() will shift it
814 * back.
815 */
816 #define RQCF_REQ_SKIP 0x01
817 #define RQCF_ACT_SKIP 0x02
818 #define RQCF_UPDATED 0x04
819
820 static inline void assert_clock_updated(struct rq *rq)
821 {
822 /*
823 * The only reason for not seeing a clock update since the
824 * last rq_pin_lock() is if we're currently skipping updates.
825 */
826 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
827 }
828
829 static inline u64 rq_clock(struct rq *rq)
830 {
831 lockdep_assert_held(&rq->lock);
832 assert_clock_updated(rq);
833
834 return rq->clock;
835 }
836
837 static inline u64 rq_clock_task(struct rq *rq)
838 {
839 lockdep_assert_held(&rq->lock);
840 assert_clock_updated(rq);
841
842 return rq->clock_task;
843 }
844
845 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
846 {
847 lockdep_assert_held(&rq->lock);
848 if (skip)
849 rq->clock_update_flags |= RQCF_REQ_SKIP;
850 else
851 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
852 }
853
854 struct rq_flags {
855 unsigned long flags;
856 struct pin_cookie cookie;
857 #ifdef CONFIG_SCHED_DEBUG
858 /*
859 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
860 * current pin context is stashed here in case it needs to be
861 * restored in rq_repin_lock().
862 */
863 unsigned int clock_update_flags;
864 #endif
865 };
866
867 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
868 {
869 rf->cookie = lockdep_pin_lock(&rq->lock);
870
871 #ifdef CONFIG_SCHED_DEBUG
872 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
873 rf->clock_update_flags = 0;
874 #endif
875 }
876
877 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
878 {
879 #ifdef CONFIG_SCHED_DEBUG
880 if (rq->clock_update_flags > RQCF_ACT_SKIP)
881 rf->clock_update_flags = RQCF_UPDATED;
882 #endif
883
884 lockdep_unpin_lock(&rq->lock, rf->cookie);
885 }
886
887 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
888 {
889 lockdep_repin_lock(&rq->lock, rf->cookie);
890
891 #ifdef CONFIG_SCHED_DEBUG
892 /*
893 * Restore the value we stashed in @rf for this pin context.
894 */
895 rq->clock_update_flags |= rf->clock_update_flags;
896 #endif
897 }
898
899 #ifdef CONFIG_NUMA
900 enum numa_topology_type {
901 NUMA_DIRECT,
902 NUMA_GLUELESS_MESH,
903 NUMA_BACKPLANE,
904 };
905 extern enum numa_topology_type sched_numa_topology_type;
906 extern int sched_max_numa_distance;
907 extern bool find_numa_distance(int distance);
908 #endif
909
910 #ifdef CONFIG_NUMA
911 extern void sched_init_numa(void);
912 extern void sched_domains_numa_masks_set(unsigned int cpu);
913 extern void sched_domains_numa_masks_clear(unsigned int cpu);
914 #else
915 static inline void sched_init_numa(void) { }
916 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
917 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
918 #endif
919
920 #ifdef CONFIG_NUMA_BALANCING
921 /* The regions in numa_faults array from task_struct */
922 enum numa_faults_stats {
923 NUMA_MEM = 0,
924 NUMA_CPU,
925 NUMA_MEMBUF,
926 NUMA_CPUBUF
927 };
928 extern void sched_setnuma(struct task_struct *p, int node);
929 extern int migrate_task_to(struct task_struct *p, int cpu);
930 extern int migrate_swap(struct task_struct *, struct task_struct *);
931 #endif /* CONFIG_NUMA_BALANCING */
932
933 #ifdef CONFIG_SMP
934
935 static inline void
936 queue_balance_callback(struct rq *rq,
937 struct callback_head *head,
938 void (*func)(struct rq *rq))
939 {
940 lockdep_assert_held(&rq->lock);
941
942 if (unlikely(head->next))
943 return;
944
945 head->func = (void (*)(struct callback_head *))func;
946 head->next = rq->balance_callback;
947 rq->balance_callback = head;
948 }
949
950 extern void sched_ttwu_pending(void);
951
952 #define rcu_dereference_check_sched_domain(p) \
953 rcu_dereference_check((p), \
954 lockdep_is_held(&sched_domains_mutex))
955
956 /*
957 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
958 * See detach_destroy_domains: synchronize_sched for details.
959 *
960 * The domain tree of any CPU may only be accessed from within
961 * preempt-disabled sections.
962 */
963 #define for_each_domain(cpu, __sd) \
964 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
965 __sd; __sd = __sd->parent)
966
967 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
968
969 /**
970 * highest_flag_domain - Return highest sched_domain containing flag.
971 * @cpu: The cpu whose highest level of sched domain is to
972 * be returned.
973 * @flag: The flag to check for the highest sched_domain
974 * for the given cpu.
975 *
976 * Returns the highest sched_domain of a cpu which contains the given flag.
977 */
978 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
979 {
980 struct sched_domain *sd, *hsd = NULL;
981
982 for_each_domain(cpu, sd) {
983 if (!(sd->flags & flag))
984 break;
985 hsd = sd;
986 }
987
988 return hsd;
989 }
990
991 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
992 {
993 struct sched_domain *sd;
994
995 for_each_domain(cpu, sd) {
996 if (sd->flags & flag)
997 break;
998 }
999
1000 return sd;
1001 }
1002
1003 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1004 DECLARE_PER_CPU(int, sd_llc_size);
1005 DECLARE_PER_CPU(int, sd_llc_id);
1006 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1007 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1008 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1009
1010 struct sched_group_capacity {
1011 atomic_t ref;
1012 /*
1013 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1014 * for a single CPU.
1015 */
1016 unsigned long capacity;
1017 unsigned long min_capacity; /* Min per-CPU capacity in group */
1018 unsigned long next_update;
1019 int imbalance; /* XXX unrelated to capacity but shared group state */
1020
1021 unsigned long cpumask[0]; /* iteration mask */
1022 };
1023
1024 struct sched_group {
1025 struct sched_group *next; /* Must be a circular list */
1026 atomic_t ref;
1027
1028 unsigned int group_weight;
1029 struct sched_group_capacity *sgc;
1030 int asym_prefer_cpu; /* cpu of highest priority in group */
1031
1032 /*
1033 * The CPUs this group covers.
1034 *
1035 * NOTE: this field is variable length. (Allocated dynamically
1036 * by attaching extra space to the end of the structure,
1037 * depending on how many CPUs the kernel has booted up with)
1038 */
1039 unsigned long cpumask[0];
1040 };
1041
1042 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
1043 {
1044 return to_cpumask(sg->cpumask);
1045 }
1046
1047 /*
1048 * cpumask masking which cpus in the group are allowed to iterate up the domain
1049 * tree.
1050 */
1051 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
1052 {
1053 return to_cpumask(sg->sgc->cpumask);
1054 }
1055
1056 /**
1057 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1058 * @group: The group whose first cpu is to be returned.
1059 */
1060 static inline unsigned int group_first_cpu(struct sched_group *group)
1061 {
1062 return cpumask_first(sched_group_cpus(group));
1063 }
1064
1065 extern int group_balance_cpu(struct sched_group *sg);
1066
1067 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1068 void register_sched_domain_sysctl(void);
1069 void unregister_sched_domain_sysctl(void);
1070 #else
1071 static inline void register_sched_domain_sysctl(void)
1072 {
1073 }
1074 static inline void unregister_sched_domain_sysctl(void)
1075 {
1076 }
1077 #endif
1078
1079 #else
1080
1081 static inline void sched_ttwu_pending(void) { }
1082
1083 #endif /* CONFIG_SMP */
1084
1085 #include "stats.h"
1086 #include "autogroup.h"
1087
1088 #ifdef CONFIG_CGROUP_SCHED
1089
1090 /*
1091 * Return the group to which this tasks belongs.
1092 *
1093 * We cannot use task_css() and friends because the cgroup subsystem
1094 * changes that value before the cgroup_subsys::attach() method is called,
1095 * therefore we cannot pin it and might observe the wrong value.
1096 *
1097 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1098 * core changes this before calling sched_move_task().
1099 *
1100 * Instead we use a 'copy' which is updated from sched_move_task() while
1101 * holding both task_struct::pi_lock and rq::lock.
1102 */
1103 static inline struct task_group *task_group(struct task_struct *p)
1104 {
1105 return p->sched_task_group;
1106 }
1107
1108 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1109 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1110 {
1111 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1112 struct task_group *tg = task_group(p);
1113 #endif
1114
1115 #ifdef CONFIG_FAIR_GROUP_SCHED
1116 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1117 p->se.cfs_rq = tg->cfs_rq[cpu];
1118 p->se.parent = tg->se[cpu];
1119 #endif
1120
1121 #ifdef CONFIG_RT_GROUP_SCHED
1122 p->rt.rt_rq = tg->rt_rq[cpu];
1123 p->rt.parent = tg->rt_se[cpu];
1124 #endif
1125 }
1126
1127 #else /* CONFIG_CGROUP_SCHED */
1128
1129 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1130 static inline struct task_group *task_group(struct task_struct *p)
1131 {
1132 return NULL;
1133 }
1134
1135 #endif /* CONFIG_CGROUP_SCHED */
1136
1137 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1138 {
1139 set_task_rq(p, cpu);
1140 #ifdef CONFIG_SMP
1141 /*
1142 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1143 * successfuly executed on another CPU. We must ensure that updates of
1144 * per-task data have been completed by this moment.
1145 */
1146 smp_wmb();
1147 #ifdef CONFIG_THREAD_INFO_IN_TASK
1148 p->cpu = cpu;
1149 #else
1150 task_thread_info(p)->cpu = cpu;
1151 #endif
1152 p->wake_cpu = cpu;
1153 #endif
1154 }
1155
1156 /*
1157 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1158 */
1159 #ifdef CONFIG_SCHED_DEBUG
1160 # include <linux/static_key.h>
1161 # define const_debug __read_mostly
1162 #else
1163 # define const_debug const
1164 #endif
1165
1166 extern const_debug unsigned int sysctl_sched_features;
1167
1168 #define SCHED_FEAT(name, enabled) \
1169 __SCHED_FEAT_##name ,
1170
1171 enum {
1172 #include "features.h"
1173 __SCHED_FEAT_NR,
1174 };
1175
1176 #undef SCHED_FEAT
1177
1178 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1179 #define SCHED_FEAT(name, enabled) \
1180 static __always_inline bool static_branch_##name(struct static_key *key) \
1181 { \
1182 return static_key_##enabled(key); \
1183 }
1184
1185 #include "features.h"
1186
1187 #undef SCHED_FEAT
1188
1189 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1190 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1191 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1192 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1193 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1194
1195 extern struct static_key_false sched_numa_balancing;
1196 extern struct static_key_false sched_schedstats;
1197
1198 static inline u64 global_rt_period(void)
1199 {
1200 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1201 }
1202
1203 static inline u64 global_rt_runtime(void)
1204 {
1205 if (sysctl_sched_rt_runtime < 0)
1206 return RUNTIME_INF;
1207
1208 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1209 }
1210
1211 static inline int task_current(struct rq *rq, struct task_struct *p)
1212 {
1213 return rq->curr == p;
1214 }
1215
1216 static inline int task_running(struct rq *rq, struct task_struct *p)
1217 {
1218 #ifdef CONFIG_SMP
1219 return p->on_cpu;
1220 #else
1221 return task_current(rq, p);
1222 #endif
1223 }
1224
1225 static inline int task_on_rq_queued(struct task_struct *p)
1226 {
1227 return p->on_rq == TASK_ON_RQ_QUEUED;
1228 }
1229
1230 static inline int task_on_rq_migrating(struct task_struct *p)
1231 {
1232 return p->on_rq == TASK_ON_RQ_MIGRATING;
1233 }
1234
1235 #ifndef prepare_arch_switch
1236 # define prepare_arch_switch(next) do { } while (0)
1237 #endif
1238 #ifndef finish_arch_post_lock_switch
1239 # define finish_arch_post_lock_switch() do { } while (0)
1240 #endif
1241
1242 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1243 {
1244 #ifdef CONFIG_SMP
1245 /*
1246 * We can optimise this out completely for !SMP, because the
1247 * SMP rebalancing from interrupt is the only thing that cares
1248 * here.
1249 */
1250 next->on_cpu = 1;
1251 #endif
1252 }
1253
1254 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1255 {
1256 #ifdef CONFIG_SMP
1257 /*
1258 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1259 * We must ensure this doesn't happen until the switch is completely
1260 * finished.
1261 *
1262 * In particular, the load of prev->state in finish_task_switch() must
1263 * happen before this.
1264 *
1265 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1266 */
1267 smp_store_release(&prev->on_cpu, 0);
1268 #endif
1269 #ifdef CONFIG_DEBUG_SPINLOCK
1270 /* this is a valid case when another task releases the spinlock */
1271 rq->lock.owner = current;
1272 #endif
1273 /*
1274 * If we are tracking spinlock dependencies then we have to
1275 * fix up the runqueue lock - which gets 'carried over' from
1276 * prev into current:
1277 */
1278 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1279
1280 raw_spin_unlock_irq(&rq->lock);
1281 }
1282
1283 /*
1284 * wake flags
1285 */
1286 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1287 #define WF_FORK 0x02 /* child wakeup after fork */
1288 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1289
1290 /*
1291 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1292 * of tasks with abnormal "nice" values across CPUs the contribution that
1293 * each task makes to its run queue's load is weighted according to its
1294 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1295 * scaled version of the new time slice allocation that they receive on time
1296 * slice expiry etc.
1297 */
1298
1299 #define WEIGHT_IDLEPRIO 3
1300 #define WMULT_IDLEPRIO 1431655765
1301
1302 extern const int sched_prio_to_weight[40];
1303 extern const u32 sched_prio_to_wmult[40];
1304
1305 /*
1306 * {de,en}queue flags:
1307 *
1308 * DEQUEUE_SLEEP - task is no longer runnable
1309 * ENQUEUE_WAKEUP - task just became runnable
1310 *
1311 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1312 * are in a known state which allows modification. Such pairs
1313 * should preserve as much state as possible.
1314 *
1315 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1316 * in the runqueue.
1317 *
1318 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1319 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1320 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1321 *
1322 */
1323
1324 #define DEQUEUE_SLEEP 0x01
1325 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1326 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1327
1328 #define ENQUEUE_WAKEUP 0x01
1329 #define ENQUEUE_RESTORE 0x02
1330 #define ENQUEUE_MOVE 0x04
1331
1332 #define ENQUEUE_HEAD 0x08
1333 #define ENQUEUE_REPLENISH 0x10
1334 #ifdef CONFIG_SMP
1335 #define ENQUEUE_MIGRATED 0x20
1336 #else
1337 #define ENQUEUE_MIGRATED 0x00
1338 #endif
1339
1340 #define RETRY_TASK ((void *)-1UL)
1341
1342 struct sched_class {
1343 const struct sched_class *next;
1344
1345 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1346 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1347 void (*yield_task) (struct rq *rq);
1348 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1349
1350 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1351
1352 /*
1353 * It is the responsibility of the pick_next_task() method that will
1354 * return the next task to call put_prev_task() on the @prev task or
1355 * something equivalent.
1356 *
1357 * May return RETRY_TASK when it finds a higher prio class has runnable
1358 * tasks.
1359 */
1360 struct task_struct * (*pick_next_task) (struct rq *rq,
1361 struct task_struct *prev,
1362 struct rq_flags *rf);
1363 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1364
1365 #ifdef CONFIG_SMP
1366 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1367 void (*migrate_task_rq)(struct task_struct *p);
1368
1369 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1370
1371 void (*set_cpus_allowed)(struct task_struct *p,
1372 const struct cpumask *newmask);
1373
1374 void (*rq_online)(struct rq *rq);
1375 void (*rq_offline)(struct rq *rq);
1376 #endif
1377
1378 void (*set_curr_task) (struct rq *rq);
1379 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1380 void (*task_fork) (struct task_struct *p);
1381 void (*task_dead) (struct task_struct *p);
1382
1383 /*
1384 * The switched_from() call is allowed to drop rq->lock, therefore we
1385 * cannot assume the switched_from/switched_to pair is serliazed by
1386 * rq->lock. They are however serialized by p->pi_lock.
1387 */
1388 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1389 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1390 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1391 int oldprio);
1392
1393 unsigned int (*get_rr_interval) (struct rq *rq,
1394 struct task_struct *task);
1395
1396 void (*update_curr) (struct rq *rq);
1397
1398 #define TASK_SET_GROUP 0
1399 #define TASK_MOVE_GROUP 1
1400
1401 #ifdef CONFIG_FAIR_GROUP_SCHED
1402 void (*task_change_group) (struct task_struct *p, int type);
1403 #endif
1404 };
1405
1406 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1407 {
1408 prev->sched_class->put_prev_task(rq, prev);
1409 }
1410
1411 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1412 {
1413 curr->sched_class->set_curr_task(rq);
1414 }
1415
1416 #define sched_class_highest (&stop_sched_class)
1417 #define for_each_class(class) \
1418 for (class = sched_class_highest; class; class = class->next)
1419
1420 extern const struct sched_class stop_sched_class;
1421 extern const struct sched_class dl_sched_class;
1422 extern const struct sched_class rt_sched_class;
1423 extern const struct sched_class fair_sched_class;
1424 extern const struct sched_class idle_sched_class;
1425
1426
1427 #ifdef CONFIG_SMP
1428
1429 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1430
1431 extern void trigger_load_balance(struct rq *rq);
1432
1433 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1434
1435 #endif
1436
1437 #ifdef CONFIG_CPU_IDLE
1438 static inline void idle_set_state(struct rq *rq,
1439 struct cpuidle_state *idle_state)
1440 {
1441 rq->idle_state = idle_state;
1442 }
1443
1444 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1445 {
1446 SCHED_WARN_ON(!rcu_read_lock_held());
1447 return rq->idle_state;
1448 }
1449 #else
1450 static inline void idle_set_state(struct rq *rq,
1451 struct cpuidle_state *idle_state)
1452 {
1453 }
1454
1455 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1456 {
1457 return NULL;
1458 }
1459 #endif
1460
1461 extern void sysrq_sched_debug_show(void);
1462 extern void sched_init_granularity(void);
1463 extern void update_max_interval(void);
1464
1465 extern void init_sched_dl_class(void);
1466 extern void init_sched_rt_class(void);
1467 extern void init_sched_fair_class(void);
1468
1469 extern void resched_curr(struct rq *rq);
1470 extern void resched_cpu(int cpu);
1471
1472 extern struct rt_bandwidth def_rt_bandwidth;
1473 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1474
1475 extern struct dl_bandwidth def_dl_bandwidth;
1476 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1477 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1478
1479 unsigned long to_ratio(u64 period, u64 runtime);
1480
1481 extern void init_entity_runnable_average(struct sched_entity *se);
1482 extern void post_init_entity_util_avg(struct sched_entity *se);
1483
1484 #ifdef CONFIG_NO_HZ_FULL
1485 extern bool sched_can_stop_tick(struct rq *rq);
1486
1487 /*
1488 * Tick may be needed by tasks in the runqueue depending on their policy and
1489 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1490 * nohz mode if necessary.
1491 */
1492 static inline void sched_update_tick_dependency(struct rq *rq)
1493 {
1494 int cpu;
1495
1496 if (!tick_nohz_full_enabled())
1497 return;
1498
1499 cpu = cpu_of(rq);
1500
1501 if (!tick_nohz_full_cpu(cpu))
1502 return;
1503
1504 if (sched_can_stop_tick(rq))
1505 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1506 else
1507 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1508 }
1509 #else
1510 static inline void sched_update_tick_dependency(struct rq *rq) { }
1511 #endif
1512
1513 static inline void add_nr_running(struct rq *rq, unsigned count)
1514 {
1515 unsigned prev_nr = rq->nr_running;
1516
1517 rq->nr_running = prev_nr + count;
1518
1519 if (prev_nr < 2 && rq->nr_running >= 2) {
1520 #ifdef CONFIG_SMP
1521 if (!rq->rd->overload)
1522 rq->rd->overload = true;
1523 #endif
1524 }
1525
1526 sched_update_tick_dependency(rq);
1527 }
1528
1529 static inline void sub_nr_running(struct rq *rq, unsigned count)
1530 {
1531 rq->nr_running -= count;
1532 /* Check if we still need preemption */
1533 sched_update_tick_dependency(rq);
1534 }
1535
1536 static inline void rq_last_tick_reset(struct rq *rq)
1537 {
1538 #ifdef CONFIG_NO_HZ_FULL
1539 rq->last_sched_tick = jiffies;
1540 #endif
1541 }
1542
1543 extern void update_rq_clock(struct rq *rq);
1544
1545 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1546 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1547
1548 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1549
1550 extern const_debug unsigned int sysctl_sched_time_avg;
1551 extern const_debug unsigned int sysctl_sched_nr_migrate;
1552 extern const_debug unsigned int sysctl_sched_migration_cost;
1553
1554 static inline u64 sched_avg_period(void)
1555 {
1556 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1557 }
1558
1559 #ifdef CONFIG_SCHED_HRTICK
1560
1561 /*
1562 * Use hrtick when:
1563 * - enabled by features
1564 * - hrtimer is actually high res
1565 */
1566 static inline int hrtick_enabled(struct rq *rq)
1567 {
1568 if (!sched_feat(HRTICK))
1569 return 0;
1570 if (!cpu_active(cpu_of(rq)))
1571 return 0;
1572 return hrtimer_is_hres_active(&rq->hrtick_timer);
1573 }
1574
1575 void hrtick_start(struct rq *rq, u64 delay);
1576
1577 #else
1578
1579 static inline int hrtick_enabled(struct rq *rq)
1580 {
1581 return 0;
1582 }
1583
1584 #endif /* CONFIG_SCHED_HRTICK */
1585
1586 #ifdef CONFIG_SMP
1587 extern void sched_avg_update(struct rq *rq);
1588
1589 #ifndef arch_scale_freq_capacity
1590 static __always_inline
1591 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1592 {
1593 return SCHED_CAPACITY_SCALE;
1594 }
1595 #endif
1596
1597 #ifndef arch_scale_cpu_capacity
1598 static __always_inline
1599 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1600 {
1601 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1602 return sd->smt_gain / sd->span_weight;
1603
1604 return SCHED_CAPACITY_SCALE;
1605 }
1606 #endif
1607
1608 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1609 {
1610 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1611 sched_avg_update(rq);
1612 }
1613 #else
1614 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1615 static inline void sched_avg_update(struct rq *rq) { }
1616 #endif
1617
1618 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1619 __acquires(rq->lock);
1620 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1621 __acquires(p->pi_lock)
1622 __acquires(rq->lock);
1623
1624 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1625 __releases(rq->lock)
1626 {
1627 rq_unpin_lock(rq, rf);
1628 raw_spin_unlock(&rq->lock);
1629 }
1630
1631 static inline void
1632 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1633 __releases(rq->lock)
1634 __releases(p->pi_lock)
1635 {
1636 rq_unpin_lock(rq, rf);
1637 raw_spin_unlock(&rq->lock);
1638 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1639 }
1640
1641 #ifdef CONFIG_SMP
1642 #ifdef CONFIG_PREEMPT
1643
1644 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1645
1646 /*
1647 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1648 * way at the expense of forcing extra atomic operations in all
1649 * invocations. This assures that the double_lock is acquired using the
1650 * same underlying policy as the spinlock_t on this architecture, which
1651 * reduces latency compared to the unfair variant below. However, it
1652 * also adds more overhead and therefore may reduce throughput.
1653 */
1654 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1655 __releases(this_rq->lock)
1656 __acquires(busiest->lock)
1657 __acquires(this_rq->lock)
1658 {
1659 raw_spin_unlock(&this_rq->lock);
1660 double_rq_lock(this_rq, busiest);
1661
1662 return 1;
1663 }
1664
1665 #else
1666 /*
1667 * Unfair double_lock_balance: Optimizes throughput at the expense of
1668 * latency by eliminating extra atomic operations when the locks are
1669 * already in proper order on entry. This favors lower cpu-ids and will
1670 * grant the double lock to lower cpus over higher ids under contention,
1671 * regardless of entry order into the function.
1672 */
1673 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1674 __releases(this_rq->lock)
1675 __acquires(busiest->lock)
1676 __acquires(this_rq->lock)
1677 {
1678 int ret = 0;
1679
1680 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1681 if (busiest < this_rq) {
1682 raw_spin_unlock(&this_rq->lock);
1683 raw_spin_lock(&busiest->lock);
1684 raw_spin_lock_nested(&this_rq->lock,
1685 SINGLE_DEPTH_NESTING);
1686 ret = 1;
1687 } else
1688 raw_spin_lock_nested(&busiest->lock,
1689 SINGLE_DEPTH_NESTING);
1690 }
1691 return ret;
1692 }
1693
1694 #endif /* CONFIG_PREEMPT */
1695
1696 /*
1697 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1698 */
1699 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1700 {
1701 if (unlikely(!irqs_disabled())) {
1702 /* printk() doesn't work good under rq->lock */
1703 raw_spin_unlock(&this_rq->lock);
1704 BUG_ON(1);
1705 }
1706
1707 return _double_lock_balance(this_rq, busiest);
1708 }
1709
1710 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1711 __releases(busiest->lock)
1712 {
1713 raw_spin_unlock(&busiest->lock);
1714 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1715 }
1716
1717 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1718 {
1719 if (l1 > l2)
1720 swap(l1, l2);
1721
1722 spin_lock(l1);
1723 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1724 }
1725
1726 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1727 {
1728 if (l1 > l2)
1729 swap(l1, l2);
1730
1731 spin_lock_irq(l1);
1732 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1733 }
1734
1735 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1736 {
1737 if (l1 > l2)
1738 swap(l1, l2);
1739
1740 raw_spin_lock(l1);
1741 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1742 }
1743
1744 /*
1745 * double_rq_lock - safely lock two runqueues
1746 *
1747 * Note this does not disable interrupts like task_rq_lock,
1748 * you need to do so manually before calling.
1749 */
1750 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1751 __acquires(rq1->lock)
1752 __acquires(rq2->lock)
1753 {
1754 BUG_ON(!irqs_disabled());
1755 if (rq1 == rq2) {
1756 raw_spin_lock(&rq1->lock);
1757 __acquire(rq2->lock); /* Fake it out ;) */
1758 } else {
1759 if (rq1 < rq2) {
1760 raw_spin_lock(&rq1->lock);
1761 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1762 } else {
1763 raw_spin_lock(&rq2->lock);
1764 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1765 }
1766 }
1767 }
1768
1769 /*
1770 * double_rq_unlock - safely unlock two runqueues
1771 *
1772 * Note this does not restore interrupts like task_rq_unlock,
1773 * you need to do so manually after calling.
1774 */
1775 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1776 __releases(rq1->lock)
1777 __releases(rq2->lock)
1778 {
1779 raw_spin_unlock(&rq1->lock);
1780 if (rq1 != rq2)
1781 raw_spin_unlock(&rq2->lock);
1782 else
1783 __release(rq2->lock);
1784 }
1785
1786 extern void set_rq_online (struct rq *rq);
1787 extern void set_rq_offline(struct rq *rq);
1788 extern bool sched_smp_initialized;
1789
1790 #else /* CONFIG_SMP */
1791
1792 /*
1793 * double_rq_lock - safely lock two runqueues
1794 *
1795 * Note this does not disable interrupts like task_rq_lock,
1796 * you need to do so manually before calling.
1797 */
1798 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1799 __acquires(rq1->lock)
1800 __acquires(rq2->lock)
1801 {
1802 BUG_ON(!irqs_disabled());
1803 BUG_ON(rq1 != rq2);
1804 raw_spin_lock(&rq1->lock);
1805 __acquire(rq2->lock); /* Fake it out ;) */
1806 }
1807
1808 /*
1809 * double_rq_unlock - safely unlock two runqueues
1810 *
1811 * Note this does not restore interrupts like task_rq_unlock,
1812 * you need to do so manually after calling.
1813 */
1814 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1815 __releases(rq1->lock)
1816 __releases(rq2->lock)
1817 {
1818 BUG_ON(rq1 != rq2);
1819 raw_spin_unlock(&rq1->lock);
1820 __release(rq2->lock);
1821 }
1822
1823 #endif
1824
1825 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1826 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1827
1828 #ifdef CONFIG_SCHED_DEBUG
1829 extern void print_cfs_stats(struct seq_file *m, int cpu);
1830 extern void print_rt_stats(struct seq_file *m, int cpu);
1831 extern void print_dl_stats(struct seq_file *m, int cpu);
1832 extern void
1833 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1834 #ifdef CONFIG_NUMA_BALANCING
1835 extern void
1836 show_numa_stats(struct task_struct *p, struct seq_file *m);
1837 extern void
1838 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1839 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1840 #endif /* CONFIG_NUMA_BALANCING */
1841 #endif /* CONFIG_SCHED_DEBUG */
1842
1843 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1844 extern void init_rt_rq(struct rt_rq *rt_rq);
1845 extern void init_dl_rq(struct dl_rq *dl_rq);
1846
1847 extern void cfs_bandwidth_usage_inc(void);
1848 extern void cfs_bandwidth_usage_dec(void);
1849
1850 #ifdef CONFIG_NO_HZ_COMMON
1851 enum rq_nohz_flag_bits {
1852 NOHZ_TICK_STOPPED,
1853 NOHZ_BALANCE_KICK,
1854 };
1855
1856 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1857
1858 extern void nohz_balance_exit_idle(unsigned int cpu);
1859 #else
1860 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1861 #endif
1862
1863 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1864 struct irqtime {
1865 u64 tick_delta;
1866 u64 irq_start_time;
1867 struct u64_stats_sync sync;
1868 };
1869
1870 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
1871
1872 static inline u64 irq_time_read(int cpu)
1873 {
1874 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
1875 u64 *cpustat = kcpustat_cpu(cpu).cpustat;
1876 unsigned int seq;
1877 u64 total;
1878
1879 do {
1880 seq = __u64_stats_fetch_begin(&irqtime->sync);
1881 total = cpustat[CPUTIME_SOFTIRQ] + cpustat[CPUTIME_IRQ];
1882 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
1883
1884 return total;
1885 }
1886 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1887
1888 #ifdef CONFIG_CPU_FREQ
1889 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1890
1891 /**
1892 * cpufreq_update_util - Take a note about CPU utilization changes.
1893 * @rq: Runqueue to carry out the update for.
1894 * @flags: Update reason flags.
1895 *
1896 * This function is called by the scheduler on the CPU whose utilization is
1897 * being updated.
1898 *
1899 * It can only be called from RCU-sched read-side critical sections.
1900 *
1901 * The way cpufreq is currently arranged requires it to evaluate the CPU
1902 * performance state (frequency/voltage) on a regular basis to prevent it from
1903 * being stuck in a completely inadequate performance level for too long.
1904 * That is not guaranteed to happen if the updates are only triggered from CFS,
1905 * though, because they may not be coming in if RT or deadline tasks are active
1906 * all the time (or there are RT and DL tasks only).
1907 *
1908 * As a workaround for that issue, this function is called by the RT and DL
1909 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1910 * but that really is a band-aid. Going forward it should be replaced with
1911 * solutions targeted more specifically at RT and DL tasks.
1912 */
1913 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
1914 {
1915 struct update_util_data *data;
1916
1917 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1918 if (data)
1919 data->func(data, rq_clock(rq), flags);
1920 }
1921
1922 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1923 {
1924 if (cpu_of(rq) == smp_processor_id())
1925 cpufreq_update_util(rq, flags);
1926 }
1927 #else
1928 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
1929 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
1930 #endif /* CONFIG_CPU_FREQ */
1931
1932 #ifdef arch_scale_freq_capacity
1933 #ifndef arch_scale_freq_invariant
1934 #define arch_scale_freq_invariant() (true)
1935 #endif
1936 #else /* arch_scale_freq_capacity */
1937 #define arch_scale_freq_invariant() (false)
1938 #endif