]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched/topology.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-kernels.git] / kernel / sched / topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Scheduler topology setup/handling methods
4 */
5 #include <linux/sched.h>
6 #include <linux/mutex.h>
7
8 #include "sched.h"
9
10 DEFINE_MUTEX(sched_domains_mutex);
11
12 /* Protected by sched_domains_mutex: */
13 cpumask_var_t sched_domains_tmpmask;
14 cpumask_var_t sched_domains_tmpmask2;
15
16 #ifdef CONFIG_SCHED_DEBUG
17
18 static int __init sched_debug_setup(char *str)
19 {
20 sched_debug_enabled = true;
21
22 return 0;
23 }
24 early_param("sched_debug", sched_debug_setup);
25
26 static inline bool sched_debug(void)
27 {
28 return sched_debug_enabled;
29 }
30
31 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
32 struct cpumask *groupmask)
33 {
34 struct sched_group *group = sd->groups;
35
36 cpumask_clear(groupmask);
37
38 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
39
40 if (!(sd->flags & SD_LOAD_BALANCE)) {
41 printk("does not load-balance\n");
42 if (sd->parent)
43 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
44 " has parent");
45 return -1;
46 }
47
48 printk(KERN_CONT "span=%*pbl level=%s\n",
49 cpumask_pr_args(sched_domain_span(sd)), sd->name);
50
51 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
52 printk(KERN_ERR "ERROR: domain->span does not contain "
53 "CPU%d\n", cpu);
54 }
55 if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
56 printk(KERN_ERR "ERROR: domain->groups does not contain"
57 " CPU%d\n", cpu);
58 }
59
60 printk(KERN_DEBUG "%*s groups:", level + 1, "");
61 do {
62 if (!group) {
63 printk("\n");
64 printk(KERN_ERR "ERROR: group is NULL\n");
65 break;
66 }
67
68 if (!cpumask_weight(sched_group_span(group))) {
69 printk(KERN_CONT "\n");
70 printk(KERN_ERR "ERROR: empty group\n");
71 break;
72 }
73
74 if (!(sd->flags & SD_OVERLAP) &&
75 cpumask_intersects(groupmask, sched_group_span(group))) {
76 printk(KERN_CONT "\n");
77 printk(KERN_ERR "ERROR: repeated CPUs\n");
78 break;
79 }
80
81 cpumask_or(groupmask, groupmask, sched_group_span(group));
82
83 printk(KERN_CONT " %d:{ span=%*pbl",
84 group->sgc->id,
85 cpumask_pr_args(sched_group_span(group)));
86
87 if ((sd->flags & SD_OVERLAP) &&
88 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
89 printk(KERN_CONT " mask=%*pbl",
90 cpumask_pr_args(group_balance_mask(group)));
91 }
92
93 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
94 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
95
96 if (group == sd->groups && sd->child &&
97 !cpumask_equal(sched_domain_span(sd->child),
98 sched_group_span(group))) {
99 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
100 }
101
102 printk(KERN_CONT " }");
103
104 group = group->next;
105
106 if (group != sd->groups)
107 printk(KERN_CONT ",");
108
109 } while (group != sd->groups);
110 printk(KERN_CONT "\n");
111
112 if (!cpumask_equal(sched_domain_span(sd), groupmask))
113 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
114
115 if (sd->parent &&
116 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
117 printk(KERN_ERR "ERROR: parent span is not a superset "
118 "of domain->span\n");
119 return 0;
120 }
121
122 static void sched_domain_debug(struct sched_domain *sd, int cpu)
123 {
124 int level = 0;
125
126 if (!sched_debug_enabled)
127 return;
128
129 if (!sd) {
130 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
131 return;
132 }
133
134 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
135
136 for (;;) {
137 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
138 break;
139 level++;
140 sd = sd->parent;
141 if (!sd)
142 break;
143 }
144 }
145 #else /* !CONFIG_SCHED_DEBUG */
146
147 # define sched_debug_enabled 0
148 # define sched_domain_debug(sd, cpu) do { } while (0)
149 static inline bool sched_debug(void)
150 {
151 return false;
152 }
153 #endif /* CONFIG_SCHED_DEBUG */
154
155 static int sd_degenerate(struct sched_domain *sd)
156 {
157 if (cpumask_weight(sched_domain_span(sd)) == 1)
158 return 1;
159
160 /* Following flags need at least 2 groups */
161 if (sd->flags & (SD_LOAD_BALANCE |
162 SD_BALANCE_NEWIDLE |
163 SD_BALANCE_FORK |
164 SD_BALANCE_EXEC |
165 SD_SHARE_CPUCAPACITY |
166 SD_ASYM_CPUCAPACITY |
167 SD_SHARE_PKG_RESOURCES |
168 SD_SHARE_POWERDOMAIN)) {
169 if (sd->groups != sd->groups->next)
170 return 0;
171 }
172
173 /* Following flags don't use groups */
174 if (sd->flags & (SD_WAKE_AFFINE))
175 return 0;
176
177 return 1;
178 }
179
180 static int
181 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
182 {
183 unsigned long cflags = sd->flags, pflags = parent->flags;
184
185 if (sd_degenerate(parent))
186 return 1;
187
188 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
189 return 0;
190
191 /* Flags needing groups don't count if only 1 group in parent */
192 if (parent->groups == parent->groups->next) {
193 pflags &= ~(SD_LOAD_BALANCE |
194 SD_BALANCE_NEWIDLE |
195 SD_BALANCE_FORK |
196 SD_BALANCE_EXEC |
197 SD_ASYM_CPUCAPACITY |
198 SD_SHARE_CPUCAPACITY |
199 SD_SHARE_PKG_RESOURCES |
200 SD_PREFER_SIBLING |
201 SD_SHARE_POWERDOMAIN);
202 if (nr_node_ids == 1)
203 pflags &= ~SD_SERIALIZE;
204 }
205 if (~cflags & pflags)
206 return 0;
207
208 return 1;
209 }
210
211 static void free_rootdomain(struct rcu_head *rcu)
212 {
213 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
214
215 cpupri_cleanup(&rd->cpupri);
216 cpudl_cleanup(&rd->cpudl);
217 free_cpumask_var(rd->dlo_mask);
218 free_cpumask_var(rd->rto_mask);
219 free_cpumask_var(rd->online);
220 free_cpumask_var(rd->span);
221 kfree(rd);
222 }
223
224 void rq_attach_root(struct rq *rq, struct root_domain *rd)
225 {
226 struct root_domain *old_rd = NULL;
227 unsigned long flags;
228
229 raw_spin_lock_irqsave(&rq->lock, flags);
230
231 if (rq->rd) {
232 old_rd = rq->rd;
233
234 if (cpumask_test_cpu(rq->cpu, old_rd->online))
235 set_rq_offline(rq);
236
237 cpumask_clear_cpu(rq->cpu, old_rd->span);
238
239 /*
240 * If we dont want to free the old_rd yet then
241 * set old_rd to NULL to skip the freeing later
242 * in this function:
243 */
244 if (!atomic_dec_and_test(&old_rd->refcount))
245 old_rd = NULL;
246 }
247
248 atomic_inc(&rd->refcount);
249 rq->rd = rd;
250
251 cpumask_set_cpu(rq->cpu, rd->span);
252 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
253 set_rq_online(rq);
254
255 raw_spin_unlock_irqrestore(&rq->lock, flags);
256
257 if (old_rd)
258 call_rcu_sched(&old_rd->rcu, free_rootdomain);
259 }
260
261 static int init_rootdomain(struct root_domain *rd)
262 {
263 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
264 goto out;
265 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
266 goto free_span;
267 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
268 goto free_online;
269 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
270 goto free_dlo_mask;
271
272 init_dl_bw(&rd->dl_bw);
273 if (cpudl_init(&rd->cpudl) != 0)
274 goto free_rto_mask;
275
276 if (cpupri_init(&rd->cpupri) != 0)
277 goto free_cpudl;
278 return 0;
279
280 free_cpudl:
281 cpudl_cleanup(&rd->cpudl);
282 free_rto_mask:
283 free_cpumask_var(rd->rto_mask);
284 free_dlo_mask:
285 free_cpumask_var(rd->dlo_mask);
286 free_online:
287 free_cpumask_var(rd->online);
288 free_span:
289 free_cpumask_var(rd->span);
290 out:
291 return -ENOMEM;
292 }
293
294 /*
295 * By default the system creates a single root-domain with all CPUs as
296 * members (mimicking the global state we have today).
297 */
298 struct root_domain def_root_domain;
299
300 void init_defrootdomain(void)
301 {
302 init_rootdomain(&def_root_domain);
303
304 atomic_set(&def_root_domain.refcount, 1);
305 }
306
307 static struct root_domain *alloc_rootdomain(void)
308 {
309 struct root_domain *rd;
310
311 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
312 if (!rd)
313 return NULL;
314
315 if (init_rootdomain(rd) != 0) {
316 kfree(rd);
317 return NULL;
318 }
319
320 return rd;
321 }
322
323 static void free_sched_groups(struct sched_group *sg, int free_sgc)
324 {
325 struct sched_group *tmp, *first;
326
327 if (!sg)
328 return;
329
330 first = sg;
331 do {
332 tmp = sg->next;
333
334 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
335 kfree(sg->sgc);
336
337 if (atomic_dec_and_test(&sg->ref))
338 kfree(sg);
339 sg = tmp;
340 } while (sg != first);
341 }
342
343 static void destroy_sched_domain(struct sched_domain *sd)
344 {
345 /*
346 * A normal sched domain may have multiple group references, an
347 * overlapping domain, having private groups, only one. Iterate,
348 * dropping group/capacity references, freeing where none remain.
349 */
350 free_sched_groups(sd->groups, 1);
351
352 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
353 kfree(sd->shared);
354 kfree(sd);
355 }
356
357 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
358 {
359 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
360
361 while (sd) {
362 struct sched_domain *parent = sd->parent;
363 destroy_sched_domain(sd);
364 sd = parent;
365 }
366 }
367
368 static void destroy_sched_domains(struct sched_domain *sd)
369 {
370 if (sd)
371 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
372 }
373
374 /*
375 * Keep a special pointer to the highest sched_domain that has
376 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
377 * allows us to avoid some pointer chasing select_idle_sibling().
378 *
379 * Also keep a unique ID per domain (we use the first CPU number in
380 * the cpumask of the domain), this allows us to quickly tell if
381 * two CPUs are in the same cache domain, see cpus_share_cache().
382 */
383 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
384 DEFINE_PER_CPU(int, sd_llc_size);
385 DEFINE_PER_CPU(int, sd_llc_id);
386 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
387 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
388 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
389
390 static void update_top_cache_domain(int cpu)
391 {
392 struct sched_domain_shared *sds = NULL;
393 struct sched_domain *sd;
394 int id = cpu;
395 int size = 1;
396
397 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
398 if (sd) {
399 id = cpumask_first(sched_domain_span(sd));
400 size = cpumask_weight(sched_domain_span(sd));
401 sds = sd->shared;
402 }
403
404 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
405 per_cpu(sd_llc_size, cpu) = size;
406 per_cpu(sd_llc_id, cpu) = id;
407 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
408
409 sd = lowest_flag_domain(cpu, SD_NUMA);
410 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
411
412 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
413 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
414 }
415
416 /*
417 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
418 * hold the hotplug lock.
419 */
420 static void
421 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
422 {
423 struct rq *rq = cpu_rq(cpu);
424 struct sched_domain *tmp;
425
426 /* Remove the sched domains which do not contribute to scheduling. */
427 for (tmp = sd; tmp; ) {
428 struct sched_domain *parent = tmp->parent;
429 if (!parent)
430 break;
431
432 if (sd_parent_degenerate(tmp, parent)) {
433 tmp->parent = parent->parent;
434 if (parent->parent)
435 parent->parent->child = tmp;
436 /*
437 * Transfer SD_PREFER_SIBLING down in case of a
438 * degenerate parent; the spans match for this
439 * so the property transfers.
440 */
441 if (parent->flags & SD_PREFER_SIBLING)
442 tmp->flags |= SD_PREFER_SIBLING;
443 destroy_sched_domain(parent);
444 } else
445 tmp = tmp->parent;
446 }
447
448 if (sd && sd_degenerate(sd)) {
449 tmp = sd;
450 sd = sd->parent;
451 destroy_sched_domain(tmp);
452 if (sd)
453 sd->child = NULL;
454 }
455
456 sched_domain_debug(sd, cpu);
457
458 rq_attach_root(rq, rd);
459 tmp = rq->sd;
460 rcu_assign_pointer(rq->sd, sd);
461 dirty_sched_domain_sysctl(cpu);
462 destroy_sched_domains(tmp);
463
464 update_top_cache_domain(cpu);
465 }
466
467 /* Setup the mask of CPUs configured for isolated domains */
468 static int __init isolated_cpu_setup(char *str)
469 {
470 int ret;
471
472 alloc_bootmem_cpumask_var(&cpu_isolated_map);
473 ret = cpulist_parse(str, cpu_isolated_map);
474 if (ret) {
475 pr_err("sched: Error, all isolcpus= values must be between 0 and %u\n", nr_cpu_ids);
476 return 0;
477 }
478 return 1;
479 }
480 __setup("isolcpus=", isolated_cpu_setup);
481
482 struct s_data {
483 struct sched_domain ** __percpu sd;
484 struct root_domain *rd;
485 };
486
487 enum s_alloc {
488 sa_rootdomain,
489 sa_sd,
490 sa_sd_storage,
491 sa_none,
492 };
493
494 /*
495 * Return the canonical balance CPU for this group, this is the first CPU
496 * of this group that's also in the balance mask.
497 *
498 * The balance mask are all those CPUs that could actually end up at this
499 * group. See build_balance_mask().
500 *
501 * Also see should_we_balance().
502 */
503 int group_balance_cpu(struct sched_group *sg)
504 {
505 return cpumask_first(group_balance_mask(sg));
506 }
507
508
509 /*
510 * NUMA topology (first read the regular topology blurb below)
511 *
512 * Given a node-distance table, for example:
513 *
514 * node 0 1 2 3
515 * 0: 10 20 30 20
516 * 1: 20 10 20 30
517 * 2: 30 20 10 20
518 * 3: 20 30 20 10
519 *
520 * which represents a 4 node ring topology like:
521 *
522 * 0 ----- 1
523 * | |
524 * | |
525 * | |
526 * 3 ----- 2
527 *
528 * We want to construct domains and groups to represent this. The way we go
529 * about doing this is to build the domains on 'hops'. For each NUMA level we
530 * construct the mask of all nodes reachable in @level hops.
531 *
532 * For the above NUMA topology that gives 3 levels:
533 *
534 * NUMA-2 0-3 0-3 0-3 0-3
535 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
536 *
537 * NUMA-1 0-1,3 0-2 1-3 0,2-3
538 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
539 *
540 * NUMA-0 0 1 2 3
541 *
542 *
543 * As can be seen; things don't nicely line up as with the regular topology.
544 * When we iterate a domain in child domain chunks some nodes can be
545 * represented multiple times -- hence the "overlap" naming for this part of
546 * the topology.
547 *
548 * In order to minimize this overlap, we only build enough groups to cover the
549 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
550 *
551 * Because:
552 *
553 * - the first group of each domain is its child domain; this
554 * gets us the first 0-1,3
555 * - the only uncovered node is 2, who's child domain is 1-3.
556 *
557 * However, because of the overlap, computing a unique CPU for each group is
558 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
559 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
560 * end up at those groups (they would end up in group: 0-1,3).
561 *
562 * To correct this we have to introduce the group balance mask. This mask
563 * will contain those CPUs in the group that can reach this group given the
564 * (child) domain tree.
565 *
566 * With this we can once again compute balance_cpu and sched_group_capacity
567 * relations.
568 *
569 * XXX include words on how balance_cpu is unique and therefore can be
570 * used for sched_group_capacity links.
571 *
572 *
573 * Another 'interesting' topology is:
574 *
575 * node 0 1 2 3
576 * 0: 10 20 20 30
577 * 1: 20 10 20 20
578 * 2: 20 20 10 20
579 * 3: 30 20 20 10
580 *
581 * Which looks a little like:
582 *
583 * 0 ----- 1
584 * | / |
585 * | / |
586 * | / |
587 * 2 ----- 3
588 *
589 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
590 * are not.
591 *
592 * This leads to a few particularly weird cases where the sched_domain's are
593 * not of the same number for each cpu. Consider:
594 *
595 * NUMA-2 0-3 0-3
596 * groups: {0-2},{1-3} {1-3},{0-2}
597 *
598 * NUMA-1 0-2 0-3 0-3 1-3
599 *
600 * NUMA-0 0 1 2 3
601 *
602 */
603
604
605 /*
606 * Build the balance mask; it contains only those CPUs that can arrive at this
607 * group and should be considered to continue balancing.
608 *
609 * We do this during the group creation pass, therefore the group information
610 * isn't complete yet, however since each group represents a (child) domain we
611 * can fully construct this using the sched_domain bits (which are already
612 * complete).
613 */
614 static void
615 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
616 {
617 const struct cpumask *sg_span = sched_group_span(sg);
618 struct sd_data *sdd = sd->private;
619 struct sched_domain *sibling;
620 int i;
621
622 cpumask_clear(mask);
623
624 for_each_cpu(i, sg_span) {
625 sibling = *per_cpu_ptr(sdd->sd, i);
626
627 /*
628 * Can happen in the asymmetric case, where these siblings are
629 * unused. The mask will not be empty because those CPUs that
630 * do have the top domain _should_ span the domain.
631 */
632 if (!sibling->child)
633 continue;
634
635 /* If we would not end up here, we can't continue from here */
636 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
637 continue;
638
639 cpumask_set_cpu(i, mask);
640 }
641
642 /* We must not have empty masks here */
643 WARN_ON_ONCE(cpumask_empty(mask));
644 }
645
646 /*
647 * XXX: This creates per-node group entries; since the load-balancer will
648 * immediately access remote memory to construct this group's load-balance
649 * statistics having the groups node local is of dubious benefit.
650 */
651 static struct sched_group *
652 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
653 {
654 struct sched_group *sg;
655 struct cpumask *sg_span;
656
657 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
658 GFP_KERNEL, cpu_to_node(cpu));
659
660 if (!sg)
661 return NULL;
662
663 sg_span = sched_group_span(sg);
664 if (sd->child)
665 cpumask_copy(sg_span, sched_domain_span(sd->child));
666 else
667 cpumask_copy(sg_span, sched_domain_span(sd));
668
669 atomic_inc(&sg->ref);
670 return sg;
671 }
672
673 static void init_overlap_sched_group(struct sched_domain *sd,
674 struct sched_group *sg)
675 {
676 struct cpumask *mask = sched_domains_tmpmask2;
677 struct sd_data *sdd = sd->private;
678 struct cpumask *sg_span;
679 int cpu;
680
681 build_balance_mask(sd, sg, mask);
682 cpu = cpumask_first_and(sched_group_span(sg), mask);
683
684 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
685 if (atomic_inc_return(&sg->sgc->ref) == 1)
686 cpumask_copy(group_balance_mask(sg), mask);
687 else
688 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
689
690 /*
691 * Initialize sgc->capacity such that even if we mess up the
692 * domains and no possible iteration will get us here, we won't
693 * die on a /0 trap.
694 */
695 sg_span = sched_group_span(sg);
696 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
697 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
698 }
699
700 static int
701 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
702 {
703 struct sched_group *first = NULL, *last = NULL, *sg;
704 const struct cpumask *span = sched_domain_span(sd);
705 struct cpumask *covered = sched_domains_tmpmask;
706 struct sd_data *sdd = sd->private;
707 struct sched_domain *sibling;
708 int i;
709
710 cpumask_clear(covered);
711
712 for_each_cpu_wrap(i, span, cpu) {
713 struct cpumask *sg_span;
714
715 if (cpumask_test_cpu(i, covered))
716 continue;
717
718 sibling = *per_cpu_ptr(sdd->sd, i);
719
720 /*
721 * Asymmetric node setups can result in situations where the
722 * domain tree is of unequal depth, make sure to skip domains
723 * that already cover the entire range.
724 *
725 * In that case build_sched_domains() will have terminated the
726 * iteration early and our sibling sd spans will be empty.
727 * Domains should always include the CPU they're built on, so
728 * check that.
729 */
730 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
731 continue;
732
733 sg = build_group_from_child_sched_domain(sibling, cpu);
734 if (!sg)
735 goto fail;
736
737 sg_span = sched_group_span(sg);
738 cpumask_or(covered, covered, sg_span);
739
740 init_overlap_sched_group(sd, sg);
741
742 if (!first)
743 first = sg;
744 if (last)
745 last->next = sg;
746 last = sg;
747 last->next = first;
748 }
749 sd->groups = first;
750
751 return 0;
752
753 fail:
754 free_sched_groups(first, 0);
755
756 return -ENOMEM;
757 }
758
759
760 /*
761 * Package topology (also see the load-balance blurb in fair.c)
762 *
763 * The scheduler builds a tree structure to represent a number of important
764 * topology features. By default (default_topology[]) these include:
765 *
766 * - Simultaneous multithreading (SMT)
767 * - Multi-Core Cache (MC)
768 * - Package (DIE)
769 *
770 * Where the last one more or less denotes everything up to a NUMA node.
771 *
772 * The tree consists of 3 primary data structures:
773 *
774 * sched_domain -> sched_group -> sched_group_capacity
775 * ^ ^ ^ ^
776 * `-' `-'
777 *
778 * The sched_domains are per-cpu and have a two way link (parent & child) and
779 * denote the ever growing mask of CPUs belonging to that level of topology.
780 *
781 * Each sched_domain has a circular (double) linked list of sched_group's, each
782 * denoting the domains of the level below (or individual CPUs in case of the
783 * first domain level). The sched_group linked by a sched_domain includes the
784 * CPU of that sched_domain [*].
785 *
786 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
787 *
788 * CPU 0 1 2 3 4 5 6 7
789 *
790 * DIE [ ]
791 * MC [ ] [ ]
792 * SMT [ ] [ ] [ ] [ ]
793 *
794 * - or -
795 *
796 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
797 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
798 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
799 *
800 * CPU 0 1 2 3 4 5 6 7
801 *
802 * One way to think about it is: sched_domain moves you up and down among these
803 * topology levels, while sched_group moves you sideways through it, at child
804 * domain granularity.
805 *
806 * sched_group_capacity ensures each unique sched_group has shared storage.
807 *
808 * There are two related construction problems, both require a CPU that
809 * uniquely identify each group (for a given domain):
810 *
811 * - The first is the balance_cpu (see should_we_balance() and the
812 * load-balance blub in fair.c); for each group we only want 1 CPU to
813 * continue balancing at a higher domain.
814 *
815 * - The second is the sched_group_capacity; we want all identical groups
816 * to share a single sched_group_capacity.
817 *
818 * Since these topologies are exclusive by construction. That is, its
819 * impossible for an SMT thread to belong to multiple cores, and cores to
820 * be part of multiple caches. There is a very clear and unique location
821 * for each CPU in the hierarchy.
822 *
823 * Therefore computing a unique CPU for each group is trivial (the iteration
824 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
825 * group), we can simply pick the first CPU in each group.
826 *
827 *
828 * [*] in other words, the first group of each domain is its child domain.
829 */
830
831 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
832 {
833 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
834 struct sched_domain *child = sd->child;
835 struct sched_group *sg;
836
837 if (child)
838 cpu = cpumask_first(sched_domain_span(child));
839
840 sg = *per_cpu_ptr(sdd->sg, cpu);
841 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
842
843 /* For claim_allocations: */
844 atomic_inc(&sg->ref);
845 atomic_inc(&sg->sgc->ref);
846
847 if (child) {
848 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
849 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
850 } else {
851 cpumask_set_cpu(cpu, sched_group_span(sg));
852 cpumask_set_cpu(cpu, group_balance_mask(sg));
853 }
854
855 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
856 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
857
858 return sg;
859 }
860
861 /*
862 * build_sched_groups will build a circular linked list of the groups
863 * covered by the given span, and will set each group's ->cpumask correctly,
864 * and ->cpu_capacity to 0.
865 *
866 * Assumes the sched_domain tree is fully constructed
867 */
868 static int
869 build_sched_groups(struct sched_domain *sd, int cpu)
870 {
871 struct sched_group *first = NULL, *last = NULL;
872 struct sd_data *sdd = sd->private;
873 const struct cpumask *span = sched_domain_span(sd);
874 struct cpumask *covered;
875 int i;
876
877 lockdep_assert_held(&sched_domains_mutex);
878 covered = sched_domains_tmpmask;
879
880 cpumask_clear(covered);
881
882 for_each_cpu_wrap(i, span, cpu) {
883 struct sched_group *sg;
884
885 if (cpumask_test_cpu(i, covered))
886 continue;
887
888 sg = get_group(i, sdd);
889
890 cpumask_or(covered, covered, sched_group_span(sg));
891
892 if (!first)
893 first = sg;
894 if (last)
895 last->next = sg;
896 last = sg;
897 }
898 last->next = first;
899 sd->groups = first;
900
901 return 0;
902 }
903
904 /*
905 * Initialize sched groups cpu_capacity.
906 *
907 * cpu_capacity indicates the capacity of sched group, which is used while
908 * distributing the load between different sched groups in a sched domain.
909 * Typically cpu_capacity for all the groups in a sched domain will be same
910 * unless there are asymmetries in the topology. If there are asymmetries,
911 * group having more cpu_capacity will pickup more load compared to the
912 * group having less cpu_capacity.
913 */
914 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
915 {
916 struct sched_group *sg = sd->groups;
917
918 WARN_ON(!sg);
919
920 do {
921 int cpu, max_cpu = -1;
922
923 sg->group_weight = cpumask_weight(sched_group_span(sg));
924
925 if (!(sd->flags & SD_ASYM_PACKING))
926 goto next;
927
928 for_each_cpu(cpu, sched_group_span(sg)) {
929 if (max_cpu < 0)
930 max_cpu = cpu;
931 else if (sched_asym_prefer(cpu, max_cpu))
932 max_cpu = cpu;
933 }
934 sg->asym_prefer_cpu = max_cpu;
935
936 next:
937 sg = sg->next;
938 } while (sg != sd->groups);
939
940 if (cpu != group_balance_cpu(sg))
941 return;
942
943 update_group_capacity(sd, cpu);
944 }
945
946 /*
947 * Initializers for schedule domains
948 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
949 */
950
951 static int default_relax_domain_level = -1;
952 int sched_domain_level_max;
953
954 static int __init setup_relax_domain_level(char *str)
955 {
956 if (kstrtoint(str, 0, &default_relax_domain_level))
957 pr_warn("Unable to set relax_domain_level\n");
958
959 return 1;
960 }
961 __setup("relax_domain_level=", setup_relax_domain_level);
962
963 static void set_domain_attribute(struct sched_domain *sd,
964 struct sched_domain_attr *attr)
965 {
966 int request;
967
968 if (!attr || attr->relax_domain_level < 0) {
969 if (default_relax_domain_level < 0)
970 return;
971 else
972 request = default_relax_domain_level;
973 } else
974 request = attr->relax_domain_level;
975 if (request < sd->level) {
976 /* Turn off idle balance on this domain: */
977 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
978 } else {
979 /* Turn on idle balance on this domain: */
980 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
981 }
982 }
983
984 static void __sdt_free(const struct cpumask *cpu_map);
985 static int __sdt_alloc(const struct cpumask *cpu_map);
986
987 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
988 const struct cpumask *cpu_map)
989 {
990 switch (what) {
991 case sa_rootdomain:
992 if (!atomic_read(&d->rd->refcount))
993 free_rootdomain(&d->rd->rcu);
994 /* Fall through */
995 case sa_sd:
996 free_percpu(d->sd);
997 /* Fall through */
998 case sa_sd_storage:
999 __sdt_free(cpu_map);
1000 /* Fall through */
1001 case sa_none:
1002 break;
1003 }
1004 }
1005
1006 static enum s_alloc
1007 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1008 {
1009 memset(d, 0, sizeof(*d));
1010
1011 if (__sdt_alloc(cpu_map))
1012 return sa_sd_storage;
1013 d->sd = alloc_percpu(struct sched_domain *);
1014 if (!d->sd)
1015 return sa_sd_storage;
1016 d->rd = alloc_rootdomain();
1017 if (!d->rd)
1018 return sa_sd;
1019 return sa_rootdomain;
1020 }
1021
1022 /*
1023 * NULL the sd_data elements we've used to build the sched_domain and
1024 * sched_group structure so that the subsequent __free_domain_allocs()
1025 * will not free the data we're using.
1026 */
1027 static void claim_allocations(int cpu, struct sched_domain *sd)
1028 {
1029 struct sd_data *sdd = sd->private;
1030
1031 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1032 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1033
1034 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1035 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1036
1037 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1038 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1039
1040 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1041 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1042 }
1043
1044 #ifdef CONFIG_NUMA
1045 static int sched_domains_numa_levels;
1046 enum numa_topology_type sched_numa_topology_type;
1047 static int *sched_domains_numa_distance;
1048 int sched_max_numa_distance;
1049 static struct cpumask ***sched_domains_numa_masks;
1050 static int sched_domains_curr_level;
1051 #endif
1052
1053 /*
1054 * SD_flags allowed in topology descriptions.
1055 *
1056 * These flags are purely descriptive of the topology and do not prescribe
1057 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1058 * function:
1059 *
1060 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1061 * SD_SHARE_PKG_RESOURCES - describes shared caches
1062 * SD_NUMA - describes NUMA topologies
1063 * SD_SHARE_POWERDOMAIN - describes shared power domain
1064 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
1065 *
1066 * Odd one out, which beside describing the topology has a quirk also
1067 * prescribes the desired behaviour that goes along with it:
1068 *
1069 * SD_ASYM_PACKING - describes SMT quirks
1070 */
1071 #define TOPOLOGY_SD_FLAGS \
1072 (SD_SHARE_CPUCAPACITY | \
1073 SD_SHARE_PKG_RESOURCES | \
1074 SD_NUMA | \
1075 SD_ASYM_PACKING | \
1076 SD_ASYM_CPUCAPACITY | \
1077 SD_SHARE_POWERDOMAIN)
1078
1079 static struct sched_domain *
1080 sd_init(struct sched_domain_topology_level *tl,
1081 const struct cpumask *cpu_map,
1082 struct sched_domain *child, int cpu)
1083 {
1084 struct sd_data *sdd = &tl->data;
1085 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1086 int sd_id, sd_weight, sd_flags = 0;
1087
1088 #ifdef CONFIG_NUMA
1089 /*
1090 * Ugly hack to pass state to sd_numa_mask()...
1091 */
1092 sched_domains_curr_level = tl->numa_level;
1093 #endif
1094
1095 sd_weight = cpumask_weight(tl->mask(cpu));
1096
1097 if (tl->sd_flags)
1098 sd_flags = (*tl->sd_flags)();
1099 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1100 "wrong sd_flags in topology description\n"))
1101 sd_flags &= ~TOPOLOGY_SD_FLAGS;
1102
1103 *sd = (struct sched_domain){
1104 .min_interval = sd_weight,
1105 .max_interval = 2*sd_weight,
1106 .busy_factor = 32,
1107 .imbalance_pct = 125,
1108
1109 .cache_nice_tries = 0,
1110 .busy_idx = 0,
1111 .idle_idx = 0,
1112 .newidle_idx = 0,
1113 .wake_idx = 0,
1114 .forkexec_idx = 0,
1115
1116 .flags = 1*SD_LOAD_BALANCE
1117 | 1*SD_BALANCE_NEWIDLE
1118 | 1*SD_BALANCE_EXEC
1119 | 1*SD_BALANCE_FORK
1120 | 0*SD_BALANCE_WAKE
1121 | 1*SD_WAKE_AFFINE
1122 | 0*SD_SHARE_CPUCAPACITY
1123 | 0*SD_SHARE_PKG_RESOURCES
1124 | 0*SD_SERIALIZE
1125 | 0*SD_PREFER_SIBLING
1126 | 0*SD_NUMA
1127 | sd_flags
1128 ,
1129
1130 .last_balance = jiffies,
1131 .balance_interval = sd_weight,
1132 .smt_gain = 0,
1133 .max_newidle_lb_cost = 0,
1134 .next_decay_max_lb_cost = jiffies,
1135 .child = child,
1136 #ifdef CONFIG_SCHED_DEBUG
1137 .name = tl->name,
1138 #endif
1139 };
1140
1141 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1142 sd_id = cpumask_first(sched_domain_span(sd));
1143
1144 /*
1145 * Convert topological properties into behaviour.
1146 */
1147
1148 if (sd->flags & SD_ASYM_CPUCAPACITY) {
1149 struct sched_domain *t = sd;
1150
1151 for_each_lower_domain(t)
1152 t->flags |= SD_BALANCE_WAKE;
1153 }
1154
1155 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1156 sd->flags |= SD_PREFER_SIBLING;
1157 sd->imbalance_pct = 110;
1158 sd->smt_gain = 1178; /* ~15% */
1159
1160 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1161 sd->imbalance_pct = 117;
1162 sd->cache_nice_tries = 1;
1163 sd->busy_idx = 2;
1164
1165 #ifdef CONFIG_NUMA
1166 } else if (sd->flags & SD_NUMA) {
1167 sd->cache_nice_tries = 2;
1168 sd->busy_idx = 3;
1169 sd->idle_idx = 2;
1170
1171 sd->flags |= SD_SERIALIZE;
1172 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1173 sd->flags &= ~(SD_BALANCE_EXEC |
1174 SD_BALANCE_FORK |
1175 SD_WAKE_AFFINE);
1176 }
1177
1178 #endif
1179 } else {
1180 sd->flags |= SD_PREFER_SIBLING;
1181 sd->cache_nice_tries = 1;
1182 sd->busy_idx = 2;
1183 sd->idle_idx = 1;
1184 }
1185
1186 /*
1187 * For all levels sharing cache; connect a sched_domain_shared
1188 * instance.
1189 */
1190 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1191 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1192 atomic_inc(&sd->shared->ref);
1193 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1194 }
1195
1196 sd->private = sdd;
1197
1198 return sd;
1199 }
1200
1201 /*
1202 * Topology list, bottom-up.
1203 */
1204 static struct sched_domain_topology_level default_topology[] = {
1205 #ifdef CONFIG_SCHED_SMT
1206 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1207 #endif
1208 #ifdef CONFIG_SCHED_MC
1209 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1210 #endif
1211 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1212 { NULL, },
1213 };
1214
1215 static struct sched_domain_topology_level *sched_domain_topology =
1216 default_topology;
1217
1218 #define for_each_sd_topology(tl) \
1219 for (tl = sched_domain_topology; tl->mask; tl++)
1220
1221 void set_sched_topology(struct sched_domain_topology_level *tl)
1222 {
1223 if (WARN_ON_ONCE(sched_smp_initialized))
1224 return;
1225
1226 sched_domain_topology = tl;
1227 }
1228
1229 #ifdef CONFIG_NUMA
1230
1231 static const struct cpumask *sd_numa_mask(int cpu)
1232 {
1233 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1234 }
1235
1236 static void sched_numa_warn(const char *str)
1237 {
1238 static int done = false;
1239 int i,j;
1240
1241 if (done)
1242 return;
1243
1244 done = true;
1245
1246 printk(KERN_WARNING "ERROR: %s\n\n", str);
1247
1248 for (i = 0; i < nr_node_ids; i++) {
1249 printk(KERN_WARNING " ");
1250 for (j = 0; j < nr_node_ids; j++)
1251 printk(KERN_CONT "%02d ", node_distance(i,j));
1252 printk(KERN_CONT "\n");
1253 }
1254 printk(KERN_WARNING "\n");
1255 }
1256
1257 bool find_numa_distance(int distance)
1258 {
1259 int i;
1260
1261 if (distance == node_distance(0, 0))
1262 return true;
1263
1264 for (i = 0; i < sched_domains_numa_levels; i++) {
1265 if (sched_domains_numa_distance[i] == distance)
1266 return true;
1267 }
1268
1269 return false;
1270 }
1271
1272 /*
1273 * A system can have three types of NUMA topology:
1274 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1275 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1276 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1277 *
1278 * The difference between a glueless mesh topology and a backplane
1279 * topology lies in whether communication between not directly
1280 * connected nodes goes through intermediary nodes (where programs
1281 * could run), or through backplane controllers. This affects
1282 * placement of programs.
1283 *
1284 * The type of topology can be discerned with the following tests:
1285 * - If the maximum distance between any nodes is 1 hop, the system
1286 * is directly connected.
1287 * - If for two nodes A and B, located N > 1 hops away from each other,
1288 * there is an intermediary node C, which is < N hops away from both
1289 * nodes A and B, the system is a glueless mesh.
1290 */
1291 static void init_numa_topology_type(void)
1292 {
1293 int a, b, c, n;
1294
1295 n = sched_max_numa_distance;
1296
1297 if (sched_domains_numa_levels <= 1) {
1298 sched_numa_topology_type = NUMA_DIRECT;
1299 return;
1300 }
1301
1302 for_each_online_node(a) {
1303 for_each_online_node(b) {
1304 /* Find two nodes furthest removed from each other. */
1305 if (node_distance(a, b) < n)
1306 continue;
1307
1308 /* Is there an intermediary node between a and b? */
1309 for_each_online_node(c) {
1310 if (node_distance(a, c) < n &&
1311 node_distance(b, c) < n) {
1312 sched_numa_topology_type =
1313 NUMA_GLUELESS_MESH;
1314 return;
1315 }
1316 }
1317
1318 sched_numa_topology_type = NUMA_BACKPLANE;
1319 return;
1320 }
1321 }
1322 }
1323
1324 void sched_init_numa(void)
1325 {
1326 int next_distance, curr_distance = node_distance(0, 0);
1327 struct sched_domain_topology_level *tl;
1328 int level = 0;
1329 int i, j, k;
1330
1331 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1332 if (!sched_domains_numa_distance)
1333 return;
1334
1335 /*
1336 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1337 * unique distances in the node_distance() table.
1338 *
1339 * Assumes node_distance(0,j) includes all distances in
1340 * node_distance(i,j) in order to avoid cubic time.
1341 */
1342 next_distance = curr_distance;
1343 for (i = 0; i < nr_node_ids; i++) {
1344 for (j = 0; j < nr_node_ids; j++) {
1345 for (k = 0; k < nr_node_ids; k++) {
1346 int distance = node_distance(i, k);
1347
1348 if (distance > curr_distance &&
1349 (distance < next_distance ||
1350 next_distance == curr_distance))
1351 next_distance = distance;
1352
1353 /*
1354 * While not a strong assumption it would be nice to know
1355 * about cases where if node A is connected to B, B is not
1356 * equally connected to A.
1357 */
1358 if (sched_debug() && node_distance(k, i) != distance)
1359 sched_numa_warn("Node-distance not symmetric");
1360
1361 if (sched_debug() && i && !find_numa_distance(distance))
1362 sched_numa_warn("Node-0 not representative");
1363 }
1364 if (next_distance != curr_distance) {
1365 sched_domains_numa_distance[level++] = next_distance;
1366 sched_domains_numa_levels = level;
1367 curr_distance = next_distance;
1368 } else break;
1369 }
1370
1371 /*
1372 * In case of sched_debug() we verify the above assumption.
1373 */
1374 if (!sched_debug())
1375 break;
1376 }
1377
1378 if (!level)
1379 return;
1380
1381 /*
1382 * 'level' contains the number of unique distances, excluding the
1383 * identity distance node_distance(i,i).
1384 *
1385 * The sched_domains_numa_distance[] array includes the actual distance
1386 * numbers.
1387 */
1388
1389 /*
1390 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1391 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1392 * the array will contain less then 'level' members. This could be
1393 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1394 * in other functions.
1395 *
1396 * We reset it to 'level' at the end of this function.
1397 */
1398 sched_domains_numa_levels = 0;
1399
1400 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1401 if (!sched_domains_numa_masks)
1402 return;
1403
1404 /*
1405 * Now for each level, construct a mask per node which contains all
1406 * CPUs of nodes that are that many hops away from us.
1407 */
1408 for (i = 0; i < level; i++) {
1409 sched_domains_numa_masks[i] =
1410 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1411 if (!sched_domains_numa_masks[i])
1412 return;
1413
1414 for (j = 0; j < nr_node_ids; j++) {
1415 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1416 if (!mask)
1417 return;
1418
1419 sched_domains_numa_masks[i][j] = mask;
1420
1421 for_each_node(k) {
1422 if (node_distance(j, k) > sched_domains_numa_distance[i])
1423 continue;
1424
1425 cpumask_or(mask, mask, cpumask_of_node(k));
1426 }
1427 }
1428 }
1429
1430 /* Compute default topology size */
1431 for (i = 0; sched_domain_topology[i].mask; i++);
1432
1433 tl = kzalloc((i + level + 1) *
1434 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1435 if (!tl)
1436 return;
1437
1438 /*
1439 * Copy the default topology bits..
1440 */
1441 for (i = 0; sched_domain_topology[i].mask; i++)
1442 tl[i] = sched_domain_topology[i];
1443
1444 /*
1445 * .. and append 'j' levels of NUMA goodness.
1446 */
1447 for (j = 0; j < level; i++, j++) {
1448 tl[i] = (struct sched_domain_topology_level){
1449 .mask = sd_numa_mask,
1450 .sd_flags = cpu_numa_flags,
1451 .flags = SDTL_OVERLAP,
1452 .numa_level = j,
1453 SD_INIT_NAME(NUMA)
1454 };
1455 }
1456
1457 sched_domain_topology = tl;
1458
1459 sched_domains_numa_levels = level;
1460 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1461
1462 init_numa_topology_type();
1463 }
1464
1465 void sched_domains_numa_masks_set(unsigned int cpu)
1466 {
1467 int node = cpu_to_node(cpu);
1468 int i, j;
1469
1470 for (i = 0; i < sched_domains_numa_levels; i++) {
1471 for (j = 0; j < nr_node_ids; j++) {
1472 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1473 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1474 }
1475 }
1476 }
1477
1478 void sched_domains_numa_masks_clear(unsigned int cpu)
1479 {
1480 int i, j;
1481
1482 for (i = 0; i < sched_domains_numa_levels; i++) {
1483 for (j = 0; j < nr_node_ids; j++)
1484 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1485 }
1486 }
1487
1488 #endif /* CONFIG_NUMA */
1489
1490 static int __sdt_alloc(const struct cpumask *cpu_map)
1491 {
1492 struct sched_domain_topology_level *tl;
1493 int j;
1494
1495 for_each_sd_topology(tl) {
1496 struct sd_data *sdd = &tl->data;
1497
1498 sdd->sd = alloc_percpu(struct sched_domain *);
1499 if (!sdd->sd)
1500 return -ENOMEM;
1501
1502 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1503 if (!sdd->sds)
1504 return -ENOMEM;
1505
1506 sdd->sg = alloc_percpu(struct sched_group *);
1507 if (!sdd->sg)
1508 return -ENOMEM;
1509
1510 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1511 if (!sdd->sgc)
1512 return -ENOMEM;
1513
1514 for_each_cpu(j, cpu_map) {
1515 struct sched_domain *sd;
1516 struct sched_domain_shared *sds;
1517 struct sched_group *sg;
1518 struct sched_group_capacity *sgc;
1519
1520 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1521 GFP_KERNEL, cpu_to_node(j));
1522 if (!sd)
1523 return -ENOMEM;
1524
1525 *per_cpu_ptr(sdd->sd, j) = sd;
1526
1527 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1528 GFP_KERNEL, cpu_to_node(j));
1529 if (!sds)
1530 return -ENOMEM;
1531
1532 *per_cpu_ptr(sdd->sds, j) = sds;
1533
1534 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1535 GFP_KERNEL, cpu_to_node(j));
1536 if (!sg)
1537 return -ENOMEM;
1538
1539 sg->next = sg;
1540
1541 *per_cpu_ptr(sdd->sg, j) = sg;
1542
1543 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1544 GFP_KERNEL, cpu_to_node(j));
1545 if (!sgc)
1546 return -ENOMEM;
1547
1548 #ifdef CONFIG_SCHED_DEBUG
1549 sgc->id = j;
1550 #endif
1551
1552 *per_cpu_ptr(sdd->sgc, j) = sgc;
1553 }
1554 }
1555
1556 return 0;
1557 }
1558
1559 static void __sdt_free(const struct cpumask *cpu_map)
1560 {
1561 struct sched_domain_topology_level *tl;
1562 int j;
1563
1564 for_each_sd_topology(tl) {
1565 struct sd_data *sdd = &tl->data;
1566
1567 for_each_cpu(j, cpu_map) {
1568 struct sched_domain *sd;
1569
1570 if (sdd->sd) {
1571 sd = *per_cpu_ptr(sdd->sd, j);
1572 if (sd && (sd->flags & SD_OVERLAP))
1573 free_sched_groups(sd->groups, 0);
1574 kfree(*per_cpu_ptr(sdd->sd, j));
1575 }
1576
1577 if (sdd->sds)
1578 kfree(*per_cpu_ptr(sdd->sds, j));
1579 if (sdd->sg)
1580 kfree(*per_cpu_ptr(sdd->sg, j));
1581 if (sdd->sgc)
1582 kfree(*per_cpu_ptr(sdd->sgc, j));
1583 }
1584 free_percpu(sdd->sd);
1585 sdd->sd = NULL;
1586 free_percpu(sdd->sds);
1587 sdd->sds = NULL;
1588 free_percpu(sdd->sg);
1589 sdd->sg = NULL;
1590 free_percpu(sdd->sgc);
1591 sdd->sgc = NULL;
1592 }
1593 }
1594
1595 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1596 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1597 struct sched_domain *child, int cpu)
1598 {
1599 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1600
1601 if (child) {
1602 sd->level = child->level + 1;
1603 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1604 child->parent = sd;
1605
1606 if (!cpumask_subset(sched_domain_span(child),
1607 sched_domain_span(sd))) {
1608 pr_err("BUG: arch topology borken\n");
1609 #ifdef CONFIG_SCHED_DEBUG
1610 pr_err(" the %s domain not a subset of the %s domain\n",
1611 child->name, sd->name);
1612 #endif
1613 /* Fixup, ensure @sd has at least @child cpus. */
1614 cpumask_or(sched_domain_span(sd),
1615 sched_domain_span(sd),
1616 sched_domain_span(child));
1617 }
1618
1619 }
1620 set_domain_attribute(sd, attr);
1621
1622 return sd;
1623 }
1624
1625 /*
1626 * Build sched domains for a given set of CPUs and attach the sched domains
1627 * to the individual CPUs
1628 */
1629 static int
1630 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1631 {
1632 enum s_alloc alloc_state;
1633 struct sched_domain *sd;
1634 struct s_data d;
1635 struct rq *rq = NULL;
1636 int i, ret = -ENOMEM;
1637
1638 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1639 if (alloc_state != sa_rootdomain)
1640 goto error;
1641
1642 /* Set up domains for CPUs specified by the cpu_map: */
1643 for_each_cpu(i, cpu_map) {
1644 struct sched_domain_topology_level *tl;
1645
1646 sd = NULL;
1647 for_each_sd_topology(tl) {
1648 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1649 if (tl == sched_domain_topology)
1650 *per_cpu_ptr(d.sd, i) = sd;
1651 if (tl->flags & SDTL_OVERLAP)
1652 sd->flags |= SD_OVERLAP;
1653 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1654 break;
1655 }
1656 }
1657
1658 /* Build the groups for the domains */
1659 for_each_cpu(i, cpu_map) {
1660 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1661 sd->span_weight = cpumask_weight(sched_domain_span(sd));
1662 if (sd->flags & SD_OVERLAP) {
1663 if (build_overlap_sched_groups(sd, i))
1664 goto error;
1665 } else {
1666 if (build_sched_groups(sd, i))
1667 goto error;
1668 }
1669 }
1670 }
1671
1672 /* Calculate CPU capacity for physical packages and nodes */
1673 for (i = nr_cpumask_bits-1; i >= 0; i--) {
1674 if (!cpumask_test_cpu(i, cpu_map))
1675 continue;
1676
1677 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1678 claim_allocations(i, sd);
1679 init_sched_groups_capacity(i, sd);
1680 }
1681 }
1682
1683 /* Attach the domains */
1684 rcu_read_lock();
1685 for_each_cpu(i, cpu_map) {
1686 rq = cpu_rq(i);
1687 sd = *per_cpu_ptr(d.sd, i);
1688
1689 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1690 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1691 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1692
1693 cpu_attach_domain(sd, d.rd, i);
1694 }
1695 rcu_read_unlock();
1696
1697 if (rq && sched_debug_enabled) {
1698 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1699 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1700 }
1701
1702 ret = 0;
1703 error:
1704 __free_domain_allocs(&d, alloc_state, cpu_map);
1705 return ret;
1706 }
1707
1708 /* Current sched domains: */
1709 static cpumask_var_t *doms_cur;
1710
1711 /* Number of sched domains in 'doms_cur': */
1712 static int ndoms_cur;
1713
1714 /* Attribues of custom domains in 'doms_cur' */
1715 static struct sched_domain_attr *dattr_cur;
1716
1717 /*
1718 * Special case: If a kmalloc() of a doms_cur partition (array of
1719 * cpumask) fails, then fallback to a single sched domain,
1720 * as determined by the single cpumask fallback_doms.
1721 */
1722 static cpumask_var_t fallback_doms;
1723
1724 /*
1725 * arch_update_cpu_topology lets virtualized architectures update the
1726 * CPU core maps. It is supposed to return 1 if the topology changed
1727 * or 0 if it stayed the same.
1728 */
1729 int __weak arch_update_cpu_topology(void)
1730 {
1731 return 0;
1732 }
1733
1734 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1735 {
1736 int i;
1737 cpumask_var_t *doms;
1738
1739 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1740 if (!doms)
1741 return NULL;
1742 for (i = 0; i < ndoms; i++) {
1743 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1744 free_sched_domains(doms, i);
1745 return NULL;
1746 }
1747 }
1748 return doms;
1749 }
1750
1751 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1752 {
1753 unsigned int i;
1754 for (i = 0; i < ndoms; i++)
1755 free_cpumask_var(doms[i]);
1756 kfree(doms);
1757 }
1758
1759 /*
1760 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1761 * For now this just excludes isolated CPUs, but could be used to
1762 * exclude other special cases in the future.
1763 */
1764 int sched_init_domains(const struct cpumask *cpu_map)
1765 {
1766 int err;
1767
1768 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1769 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
1770 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1771
1772 arch_update_cpu_topology();
1773 ndoms_cur = 1;
1774 doms_cur = alloc_sched_domains(ndoms_cur);
1775 if (!doms_cur)
1776 doms_cur = &fallback_doms;
1777 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1778 err = build_sched_domains(doms_cur[0], NULL);
1779 register_sched_domain_sysctl();
1780
1781 return err;
1782 }
1783
1784 /*
1785 * Detach sched domains from a group of CPUs specified in cpu_map
1786 * These CPUs will now be attached to the NULL domain
1787 */
1788 static void detach_destroy_domains(const struct cpumask *cpu_map)
1789 {
1790 int i;
1791
1792 rcu_read_lock();
1793 for_each_cpu(i, cpu_map)
1794 cpu_attach_domain(NULL, &def_root_domain, i);
1795 rcu_read_unlock();
1796 }
1797
1798 /* handle null as "default" */
1799 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1800 struct sched_domain_attr *new, int idx_new)
1801 {
1802 struct sched_domain_attr tmp;
1803
1804 /* Fast path: */
1805 if (!new && !cur)
1806 return 1;
1807
1808 tmp = SD_ATTR_INIT;
1809 return !memcmp(cur ? (cur + idx_cur) : &tmp,
1810 new ? (new + idx_new) : &tmp,
1811 sizeof(struct sched_domain_attr));
1812 }
1813
1814 /*
1815 * Partition sched domains as specified by the 'ndoms_new'
1816 * cpumasks in the array doms_new[] of cpumasks. This compares
1817 * doms_new[] to the current sched domain partitioning, doms_cur[].
1818 * It destroys each deleted domain and builds each new domain.
1819 *
1820 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1821 * The masks don't intersect (don't overlap.) We should setup one
1822 * sched domain for each mask. CPUs not in any of the cpumasks will
1823 * not be load balanced. If the same cpumask appears both in the
1824 * current 'doms_cur' domains and in the new 'doms_new', we can leave
1825 * it as it is.
1826 *
1827 * The passed in 'doms_new' should be allocated using
1828 * alloc_sched_domains. This routine takes ownership of it and will
1829 * free_sched_domains it when done with it. If the caller failed the
1830 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1831 * and partition_sched_domains() will fallback to the single partition
1832 * 'fallback_doms', it also forces the domains to be rebuilt.
1833 *
1834 * If doms_new == NULL it will be replaced with cpu_online_mask.
1835 * ndoms_new == 0 is a special case for destroying existing domains,
1836 * and it will not create the default domain.
1837 *
1838 * Call with hotplug lock held
1839 */
1840 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1841 struct sched_domain_attr *dattr_new)
1842 {
1843 int i, j, n;
1844 int new_topology;
1845
1846 mutex_lock(&sched_domains_mutex);
1847
1848 /* Always unregister in case we don't destroy any domains: */
1849 unregister_sched_domain_sysctl();
1850
1851 /* Let the architecture update CPU core mappings: */
1852 new_topology = arch_update_cpu_topology();
1853
1854 if (!doms_new) {
1855 WARN_ON_ONCE(dattr_new);
1856 n = 0;
1857 doms_new = alloc_sched_domains(1);
1858 if (doms_new) {
1859 n = 1;
1860 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1861 }
1862 } else {
1863 n = ndoms_new;
1864 }
1865
1866 /* Destroy deleted domains: */
1867 for (i = 0; i < ndoms_cur; i++) {
1868 for (j = 0; j < n && !new_topology; j++) {
1869 if (cpumask_equal(doms_cur[i], doms_new[j])
1870 && dattrs_equal(dattr_cur, i, dattr_new, j))
1871 goto match1;
1872 }
1873 /* No match - a current sched domain not in new doms_new[] */
1874 detach_destroy_domains(doms_cur[i]);
1875 match1:
1876 ;
1877 }
1878
1879 n = ndoms_cur;
1880 if (!doms_new) {
1881 n = 0;
1882 doms_new = &fallback_doms;
1883 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1884 }
1885
1886 /* Build new domains: */
1887 for (i = 0; i < ndoms_new; i++) {
1888 for (j = 0; j < n && !new_topology; j++) {
1889 if (cpumask_equal(doms_new[i], doms_cur[j])
1890 && dattrs_equal(dattr_new, i, dattr_cur, j))
1891 goto match2;
1892 }
1893 /* No match - add a new doms_new */
1894 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1895 match2:
1896 ;
1897 }
1898
1899 /* Remember the new sched domains: */
1900 if (doms_cur != &fallback_doms)
1901 free_sched_domains(doms_cur, ndoms_cur);
1902
1903 kfree(dattr_cur);
1904 doms_cur = doms_new;
1905 dattr_cur = dattr_new;
1906 ndoms_cur = ndoms_new;
1907
1908 register_sched_domain_sysctl();
1909
1910 mutex_unlock(&sched_domains_mutex);
1911 }
1912