]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/wait.c
Merge branches 'pm-core', 'pm-qos' and 'pm-avs'
[mirror_ubuntu-artful-kernel.git] / kernel / sched / wait.c
1 /*
2 * Generic waiting primitives.
3 *
4 * (C) 2004 Nadia Yvette Chambers, Oracle
5 */
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
12 #include <linux/kthread.h>
13
14 void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
15 {
16 spin_lock_init(&q->lock);
17 lockdep_set_class_and_name(&q->lock, key, name);
18 INIT_LIST_HEAD(&q->task_list);
19 }
20
21 EXPORT_SYMBOL(__init_waitqueue_head);
22
23 void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
24 {
25 unsigned long flags;
26
27 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
28 spin_lock_irqsave(&q->lock, flags);
29 __add_wait_queue(q, wait);
30 spin_unlock_irqrestore(&q->lock, flags);
31 }
32 EXPORT_SYMBOL(add_wait_queue);
33
34 void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
35 {
36 unsigned long flags;
37
38 wait->flags |= WQ_FLAG_EXCLUSIVE;
39 spin_lock_irqsave(&q->lock, flags);
40 __add_wait_queue_tail(q, wait);
41 spin_unlock_irqrestore(&q->lock, flags);
42 }
43 EXPORT_SYMBOL(add_wait_queue_exclusive);
44
45 void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
46 {
47 unsigned long flags;
48
49 spin_lock_irqsave(&q->lock, flags);
50 __remove_wait_queue(q, wait);
51 spin_unlock_irqrestore(&q->lock, flags);
52 }
53 EXPORT_SYMBOL(remove_wait_queue);
54
55
56 /*
57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
59 * number) then we wake all the non-exclusive tasks and one exclusive task.
60 *
61 * There are circumstances in which we can try to wake a task which has already
62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
64 */
65 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
66 int nr_exclusive, int wake_flags, void *key)
67 {
68 wait_queue_t *curr, *next;
69
70 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
71 unsigned flags = curr->flags;
72
73 if (curr->func(curr, mode, wake_flags, key) &&
74 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
75 break;
76 }
77 }
78
79 /**
80 * __wake_up - wake up threads blocked on a waitqueue.
81 * @q: the waitqueue
82 * @mode: which threads
83 * @nr_exclusive: how many wake-one or wake-many threads to wake up
84 * @key: is directly passed to the wakeup function
85 *
86 * It may be assumed that this function implies a write memory barrier before
87 * changing the task state if and only if any tasks are woken up.
88 */
89 void __wake_up(wait_queue_head_t *q, unsigned int mode,
90 int nr_exclusive, void *key)
91 {
92 unsigned long flags;
93
94 spin_lock_irqsave(&q->lock, flags);
95 __wake_up_common(q, mode, nr_exclusive, 0, key);
96 spin_unlock_irqrestore(&q->lock, flags);
97 }
98 EXPORT_SYMBOL(__wake_up);
99
100 /*
101 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
102 */
103 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
104 {
105 __wake_up_common(q, mode, nr, 0, NULL);
106 }
107 EXPORT_SYMBOL_GPL(__wake_up_locked);
108
109 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
110 {
111 __wake_up_common(q, mode, 1, 0, key);
112 }
113 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
114
115 /**
116 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
117 * @q: the waitqueue
118 * @mode: which threads
119 * @nr_exclusive: how many wake-one or wake-many threads to wake up
120 * @key: opaque value to be passed to wakeup targets
121 *
122 * The sync wakeup differs that the waker knows that it will schedule
123 * away soon, so while the target thread will be woken up, it will not
124 * be migrated to another CPU - ie. the two threads are 'synchronized'
125 * with each other. This can prevent needless bouncing between CPUs.
126 *
127 * On UP it can prevent extra preemption.
128 *
129 * It may be assumed that this function implies a write memory barrier before
130 * changing the task state if and only if any tasks are woken up.
131 */
132 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
133 int nr_exclusive, void *key)
134 {
135 unsigned long flags;
136 int wake_flags = 1; /* XXX WF_SYNC */
137
138 if (unlikely(!q))
139 return;
140
141 if (unlikely(nr_exclusive != 1))
142 wake_flags = 0;
143
144 spin_lock_irqsave(&q->lock, flags);
145 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
146 spin_unlock_irqrestore(&q->lock, flags);
147 }
148 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
149
150 /*
151 * __wake_up_sync - see __wake_up_sync_key()
152 */
153 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
154 {
155 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
156 }
157 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
158
159 /*
160 * Note: we use "set_current_state()" _after_ the wait-queue add,
161 * because we need a memory barrier there on SMP, so that any
162 * wake-function that tests for the wait-queue being active
163 * will be guaranteed to see waitqueue addition _or_ subsequent
164 * tests in this thread will see the wakeup having taken place.
165 *
166 * The spin_unlock() itself is semi-permeable and only protects
167 * one way (it only protects stuff inside the critical region and
168 * stops them from bleeding out - it would still allow subsequent
169 * loads to move into the critical region).
170 */
171 void
172 prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
173 {
174 unsigned long flags;
175
176 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
177 spin_lock_irqsave(&q->lock, flags);
178 if (list_empty(&wait->task_list))
179 __add_wait_queue(q, wait);
180 set_current_state(state);
181 spin_unlock_irqrestore(&q->lock, flags);
182 }
183 EXPORT_SYMBOL(prepare_to_wait);
184
185 void
186 prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
187 {
188 unsigned long flags;
189
190 wait->flags |= WQ_FLAG_EXCLUSIVE;
191 spin_lock_irqsave(&q->lock, flags);
192 if (list_empty(&wait->task_list))
193 __add_wait_queue_tail(q, wait);
194 set_current_state(state);
195 spin_unlock_irqrestore(&q->lock, flags);
196 }
197 EXPORT_SYMBOL(prepare_to_wait_exclusive);
198
199 void init_wait_entry(wait_queue_t *wait, int flags)
200 {
201 wait->flags = flags;
202 wait->private = current;
203 wait->func = autoremove_wake_function;
204 INIT_LIST_HEAD(&wait->task_list);
205 }
206 EXPORT_SYMBOL(init_wait_entry);
207
208 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
209 {
210 unsigned long flags;
211 long ret = 0;
212
213 spin_lock_irqsave(&q->lock, flags);
214 if (unlikely(signal_pending_state(state, current))) {
215 /*
216 * Exclusive waiter must not fail if it was selected by wakeup,
217 * it should "consume" the condition we were waiting for.
218 *
219 * The caller will recheck the condition and return success if
220 * we were already woken up, we can not miss the event because
221 * wakeup locks/unlocks the same q->lock.
222 *
223 * But we need to ensure that set-condition + wakeup after that
224 * can't see us, it should wake up another exclusive waiter if
225 * we fail.
226 */
227 list_del_init(&wait->task_list);
228 ret = -ERESTARTSYS;
229 } else {
230 if (list_empty(&wait->task_list)) {
231 if (wait->flags & WQ_FLAG_EXCLUSIVE)
232 __add_wait_queue_tail(q, wait);
233 else
234 __add_wait_queue(q, wait);
235 }
236 set_current_state(state);
237 }
238 spin_unlock_irqrestore(&q->lock, flags);
239
240 return ret;
241 }
242 EXPORT_SYMBOL(prepare_to_wait_event);
243
244 /**
245 * finish_wait - clean up after waiting in a queue
246 * @q: waitqueue waited on
247 * @wait: wait descriptor
248 *
249 * Sets current thread back to running state and removes
250 * the wait descriptor from the given waitqueue if still
251 * queued.
252 */
253 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
254 {
255 unsigned long flags;
256
257 __set_current_state(TASK_RUNNING);
258 /*
259 * We can check for list emptiness outside the lock
260 * IFF:
261 * - we use the "careful" check that verifies both
262 * the next and prev pointers, so that there cannot
263 * be any half-pending updates in progress on other
264 * CPU's that we haven't seen yet (and that might
265 * still change the stack area.
266 * and
267 * - all other users take the lock (ie we can only
268 * have _one_ other CPU that looks at or modifies
269 * the list).
270 */
271 if (!list_empty_careful(&wait->task_list)) {
272 spin_lock_irqsave(&q->lock, flags);
273 list_del_init(&wait->task_list);
274 spin_unlock_irqrestore(&q->lock, flags);
275 }
276 }
277 EXPORT_SYMBOL(finish_wait);
278
279 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
280 {
281 int ret = default_wake_function(wait, mode, sync, key);
282
283 if (ret)
284 list_del_init(&wait->task_list);
285 return ret;
286 }
287 EXPORT_SYMBOL(autoremove_wake_function);
288
289 static inline bool is_kthread_should_stop(void)
290 {
291 return (current->flags & PF_KTHREAD) && kthread_should_stop();
292 }
293
294 /*
295 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
296 *
297 * add_wait_queue(&wq, &wait);
298 * for (;;) {
299 * if (condition)
300 * break;
301 *
302 * p->state = mode; condition = true;
303 * smp_mb(); // A smp_wmb(); // C
304 * if (!wait->flags & WQ_FLAG_WOKEN) wait->flags |= WQ_FLAG_WOKEN;
305 * schedule() try_to_wake_up();
306 * p->state = TASK_RUNNING; ~~~~~~~~~~~~~~~~~~
307 * wait->flags &= ~WQ_FLAG_WOKEN; condition = true;
308 * smp_mb() // B smp_wmb(); // C
309 * wait->flags |= WQ_FLAG_WOKEN;
310 * }
311 * remove_wait_queue(&wq, &wait);
312 *
313 */
314 long wait_woken(wait_queue_t *wait, unsigned mode, long timeout)
315 {
316 set_current_state(mode); /* A */
317 /*
318 * The above implies an smp_mb(), which matches with the smp_wmb() from
319 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
320 * also observe all state before the wakeup.
321 */
322 if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
323 timeout = schedule_timeout(timeout);
324 __set_current_state(TASK_RUNNING);
325
326 /*
327 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
328 * woken_wake_function() such that we must either observe the wait
329 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
330 * an event.
331 */
332 smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */
333
334 return timeout;
335 }
336 EXPORT_SYMBOL(wait_woken);
337
338 int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
339 {
340 /*
341 * Although this function is called under waitqueue lock, LOCK
342 * doesn't imply write barrier and the users expects write
343 * barrier semantics on wakeup functions. The following
344 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
345 * and is paired with smp_store_mb() in wait_woken().
346 */
347 smp_wmb(); /* C */
348 wait->flags |= WQ_FLAG_WOKEN;
349
350 return default_wake_function(wait, mode, sync, key);
351 }
352 EXPORT_SYMBOL(woken_wake_function);
353
354 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
355 {
356 struct wait_bit_key *key = arg;
357 struct wait_bit_queue *wait_bit
358 = container_of(wait, struct wait_bit_queue, wait);
359
360 if (wait_bit->key.flags != key->flags ||
361 wait_bit->key.bit_nr != key->bit_nr ||
362 test_bit(key->bit_nr, key->flags))
363 return 0;
364 else
365 return autoremove_wake_function(wait, mode, sync, key);
366 }
367 EXPORT_SYMBOL(wake_bit_function);
368
369 /*
370 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
371 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
372 * permitted return codes. Nonzero return codes halt waiting and return.
373 */
374 int __sched
375 __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
376 wait_bit_action_f *action, unsigned mode)
377 {
378 int ret = 0;
379
380 do {
381 prepare_to_wait(wq, &q->wait, mode);
382 if (test_bit(q->key.bit_nr, q->key.flags))
383 ret = (*action)(&q->key, mode);
384 } while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
385 finish_wait(wq, &q->wait);
386 return ret;
387 }
388 EXPORT_SYMBOL(__wait_on_bit);
389
390 int __sched out_of_line_wait_on_bit(void *word, int bit,
391 wait_bit_action_f *action, unsigned mode)
392 {
393 wait_queue_head_t *wq = bit_waitqueue(word, bit);
394 DEFINE_WAIT_BIT(wait, word, bit);
395
396 return __wait_on_bit(wq, &wait, action, mode);
397 }
398 EXPORT_SYMBOL(out_of_line_wait_on_bit);
399
400 int __sched out_of_line_wait_on_bit_timeout(
401 void *word, int bit, wait_bit_action_f *action,
402 unsigned mode, unsigned long timeout)
403 {
404 wait_queue_head_t *wq = bit_waitqueue(word, bit);
405 DEFINE_WAIT_BIT(wait, word, bit);
406
407 wait.key.timeout = jiffies + timeout;
408 return __wait_on_bit(wq, &wait, action, mode);
409 }
410 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
411
412 int __sched
413 __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
414 wait_bit_action_f *action, unsigned mode)
415 {
416 int ret = 0;
417
418 for (;;) {
419 prepare_to_wait_exclusive(wq, &q->wait, mode);
420 if (test_bit(q->key.bit_nr, q->key.flags)) {
421 ret = action(&q->key, mode);
422 /*
423 * See the comment in prepare_to_wait_event().
424 * finish_wait() does not necessarily takes wq->lock,
425 * but test_and_set_bit() implies mb() which pairs with
426 * smp_mb__after_atomic() before wake_up_page().
427 */
428 if (ret)
429 finish_wait(wq, &q->wait);
430 }
431 if (!test_and_set_bit(q->key.bit_nr, q->key.flags)) {
432 if (!ret)
433 finish_wait(wq, &q->wait);
434 return 0;
435 } else if (ret) {
436 return ret;
437 }
438 }
439 }
440 EXPORT_SYMBOL(__wait_on_bit_lock);
441
442 int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
443 wait_bit_action_f *action, unsigned mode)
444 {
445 wait_queue_head_t *wq = bit_waitqueue(word, bit);
446 DEFINE_WAIT_BIT(wait, word, bit);
447
448 return __wait_on_bit_lock(wq, &wait, action, mode);
449 }
450 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
451
452 void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
453 {
454 struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
455 if (waitqueue_active(wq))
456 __wake_up(wq, TASK_NORMAL, 1, &key);
457 }
458 EXPORT_SYMBOL(__wake_up_bit);
459
460 /**
461 * wake_up_bit - wake up a waiter on a bit
462 * @word: the word being waited on, a kernel virtual address
463 * @bit: the bit of the word being waited on
464 *
465 * There is a standard hashed waitqueue table for generic use. This
466 * is the part of the hashtable's accessor API that wakes up waiters
467 * on a bit. For instance, if one were to have waiters on a bitflag,
468 * one would call wake_up_bit() after clearing the bit.
469 *
470 * In order for this to function properly, as it uses waitqueue_active()
471 * internally, some kind of memory barrier must be done prior to calling
472 * this. Typically, this will be smp_mb__after_atomic(), but in some
473 * cases where bitflags are manipulated non-atomically under a lock, one
474 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
475 * because spin_unlock() does not guarantee a memory barrier.
476 */
477 void wake_up_bit(void *word, int bit)
478 {
479 __wake_up_bit(bit_waitqueue(word, bit), word, bit);
480 }
481 EXPORT_SYMBOL(wake_up_bit);
482
483 /*
484 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
485 * index (we're keying off bit -1, but that would produce a horrible hash
486 * value).
487 */
488 static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
489 {
490 if (BITS_PER_LONG == 64) {
491 unsigned long q = (unsigned long)p;
492 return bit_waitqueue((void *)(q & ~1), q & 1);
493 }
494 return bit_waitqueue(p, 0);
495 }
496
497 static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
498 void *arg)
499 {
500 struct wait_bit_key *key = arg;
501 struct wait_bit_queue *wait_bit
502 = container_of(wait, struct wait_bit_queue, wait);
503 atomic_t *val = key->flags;
504
505 if (wait_bit->key.flags != key->flags ||
506 wait_bit->key.bit_nr != key->bit_nr ||
507 atomic_read(val) != 0)
508 return 0;
509 return autoremove_wake_function(wait, mode, sync, key);
510 }
511
512 /*
513 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
514 * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero
515 * return codes halt waiting and return.
516 */
517 static __sched
518 int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
519 int (*action)(atomic_t *), unsigned mode)
520 {
521 atomic_t *val;
522 int ret = 0;
523
524 do {
525 prepare_to_wait(wq, &q->wait, mode);
526 val = q->key.flags;
527 if (atomic_read(val) == 0)
528 break;
529 ret = (*action)(val);
530 } while (!ret && atomic_read(val) != 0);
531 finish_wait(wq, &q->wait);
532 return ret;
533 }
534
535 #define DEFINE_WAIT_ATOMIC_T(name, p) \
536 struct wait_bit_queue name = { \
537 .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \
538 .wait = { \
539 .private = current, \
540 .func = wake_atomic_t_function, \
541 .task_list = \
542 LIST_HEAD_INIT((name).wait.task_list), \
543 }, \
544 }
545
546 __sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
547 unsigned mode)
548 {
549 wait_queue_head_t *wq = atomic_t_waitqueue(p);
550 DEFINE_WAIT_ATOMIC_T(wait, p);
551
552 return __wait_on_atomic_t(wq, &wait, action, mode);
553 }
554 EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
555
556 /**
557 * wake_up_atomic_t - Wake up a waiter on a atomic_t
558 * @p: The atomic_t being waited on, a kernel virtual address
559 *
560 * Wake up anyone waiting for the atomic_t to go to zero.
561 *
562 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
563 * check is done by the waiter's wake function, not the by the waker itself).
564 */
565 void wake_up_atomic_t(atomic_t *p)
566 {
567 __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
568 }
569 EXPORT_SYMBOL(wake_up_atomic_t);
570
571 __sched int bit_wait(struct wait_bit_key *word, int mode)
572 {
573 schedule();
574 if (signal_pending_state(mode, current))
575 return -EINTR;
576 return 0;
577 }
578 EXPORT_SYMBOL(bit_wait);
579
580 __sched int bit_wait_io(struct wait_bit_key *word, int mode)
581 {
582 io_schedule();
583 if (signal_pending_state(mode, current))
584 return -EINTR;
585 return 0;
586 }
587 EXPORT_SYMBOL(bit_wait_io);
588
589 __sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
590 {
591 unsigned long now = READ_ONCE(jiffies);
592 if (time_after_eq(now, word->timeout))
593 return -EAGAIN;
594 schedule_timeout(word->timeout - now);
595 if (signal_pending_state(mode, current))
596 return -EINTR;
597 return 0;
598 }
599 EXPORT_SYMBOL_GPL(bit_wait_timeout);
600
601 __sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
602 {
603 unsigned long now = READ_ONCE(jiffies);
604 if (time_after_eq(now, word->timeout))
605 return -EAGAIN;
606 io_schedule_timeout(word->timeout - now);
607 if (signal_pending_state(mode, current))
608 return -EINTR;
609 return 0;
610 }
611 EXPORT_SYMBOL_GPL(bit_wait_io_timeout);