]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched.c
sched: Make tunable scaling style configurable
[mirror_ubuntu-zesty-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_FAIR_GROUP_SCHED
313
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
316 {
317 return list_empty(&root_task_group.children);
318 }
319 #endif
320
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
326
327 /*
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
337
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
340
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
343 */
344 struct task_group init_task_group;
345
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
348 {
349 struct task_group *tg;
350
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
362 }
363
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 {
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
371
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
376 }
377
378 #else
379
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
382 {
383 return NULL;
384 }
385
386 #endif /* CONFIG_GROUP_SCHED */
387
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
393 u64 exec_clock;
394 u64 min_vruntime;
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
406 struct sched_entity *curr, *next, *last;
407
408 unsigned int nr_spread_over;
409
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
423
424 #ifdef CONFIG_SMP
425 /*
426 * the part of load.weight contributed by tasks
427 */
428 unsigned long task_weight;
429
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
437
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
447 #endif
448 #endif
449 };
450
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 spinlock_t rt_runtime_lock;
474
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
477
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
483 };
484
485 #ifdef CONFIG_SMP
486
487 /*
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
494 */
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
499
500 /*
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
509 };
510
511 /*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
515 static struct root_domain def_root_domain;
516
517 #endif
518
519 /*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
526 struct rq {
527 /* runqueue lock: */
528 spinlock_t lock;
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
546 struct rt_rq rt;
547
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
551 #endif
552 #ifdef CONFIG_RT_GROUP_SCHED
553 struct list_head leaf_rt_rq_list;
554 #endif
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
564 struct task_struct *curr, *idle;
565 unsigned long next_balance;
566 struct mm_struct *prev_mm;
567
568 u64 clock;
569
570 atomic_t nr_iowait;
571
572 #ifdef CONFIG_SMP
573 struct root_domain *rd;
574 struct sched_domain *sd;
575
576 unsigned char idle_at_tick;
577 /* For active balancing */
578 int post_schedule;
579 int active_balance;
580 int push_cpu;
581 /* cpu of this runqueue: */
582 int cpu;
583 int online;
584
585 unsigned long avg_load_per_task;
586
587 struct task_struct *migration_thread;
588 struct list_head migration_queue;
589
590 u64 rt_avg;
591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
594 #endif
595
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
600 #ifdef CONFIG_SCHED_HRTICK
601 #ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604 #endif
605 struct hrtimer hrtick_timer;
606 #endif
607
608 #ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613
614 /* sys_sched_yield() stats */
615 unsigned int yld_count;
616
617 /* schedule() stats */
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
621
622 /* try_to_wake_up() stats */
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
625
626 /* BKL stats */
627 unsigned int bkl_count;
628 #endif
629 };
630
631 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
632
633 static inline
634 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
635 {
636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
637 }
638
639 static inline int cpu_of(struct rq *rq)
640 {
641 #ifdef CONFIG_SMP
642 return rq->cpu;
643 #else
644 return 0;
645 #endif
646 }
647
648 /*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details.
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
655 #define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657
658 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659 #define this_rq() (&__get_cpu_var(runqueues))
660 #define task_rq(p) cpu_rq(task_cpu(p))
661 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
662 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663
664 inline void update_rq_clock(struct rq *rq)
665 {
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667 }
668
669 /*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672 #ifdef CONFIG_SCHED_DEBUG
673 # define const_debug __read_mostly
674 #else
675 # define const_debug static const
676 #endif
677
678 /**
679 * runqueue_is_locked
680 * @cpu: the processor in question.
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
686 int runqueue_is_locked(int cpu)
687 {
688 return spin_is_locked(&cpu_rq(cpu)->lock);
689 }
690
691 /*
692 * Debugging: various feature bits
693 */
694
695 #define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
698 enum {
699 #include "sched_features.h"
700 };
701
702 #undef SCHED_FEAT
703
704 #define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
707 const_debug unsigned int sysctl_sched_features =
708 #include "sched_features.h"
709 0;
710
711 #undef SCHED_FEAT
712
713 #ifdef CONFIG_SCHED_DEBUG
714 #define SCHED_FEAT(name, enabled) \
715 #name ,
716
717 static __read_mostly char *sched_feat_names[] = {
718 #include "sched_features.h"
719 NULL
720 };
721
722 #undef SCHED_FEAT
723
724 static int sched_feat_show(struct seq_file *m, void *v)
725 {
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
732 }
733 seq_puts(m, "\n");
734
735 return 0;
736 }
737
738 static ssize_t
739 sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741 {
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
755 if (strncmp(buf, "NO_", 3) == 0) {
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
775 *ppos += cnt;
776
777 return cnt;
778 }
779
780 static int sched_feat_open(struct inode *inode, struct file *filp)
781 {
782 return single_open(filp, sched_feat_show, NULL);
783 }
784
785 static const struct file_operations sched_feat_fops = {
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
791 };
792
793 static __init int sched_init_debug(void)
794 {
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799 }
800 late_initcall(sched_init_debug);
801
802 #endif
803
804 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
805
806 /*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810 const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
812 /*
813 * ratelimit for updating the group shares.
814 * default: 0.25ms
815 */
816 unsigned int sysctl_sched_shares_ratelimit = 250000;
817 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
818
819 /*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824 unsigned int sysctl_sched_shares_thresh = 4;
825
826 /*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
834 /*
835 * period over which we measure -rt task cpu usage in us.
836 * default: 1s
837 */
838 unsigned int sysctl_sched_rt_period = 1000000;
839
840 static __read_mostly int scheduler_running;
841
842 /*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846 int sysctl_sched_rt_runtime = 950000;
847
848 static inline u64 global_rt_period(void)
849 {
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851 }
852
853 static inline u64 global_rt_runtime(void)
854 {
855 if (sysctl_sched_rt_runtime < 0)
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859 }
860
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
863 #endif
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
866 #endif
867
868 static inline int task_current(struct rq *rq, struct task_struct *p)
869 {
870 return rq->curr == p;
871 }
872
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq *rq, struct task_struct *p)
875 {
876 return task_current(rq, p);
877 }
878
879 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 {
881 }
882
883 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884 {
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888 #endif
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
896 spin_unlock_irq(&rq->lock);
897 }
898
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq *rq, struct task_struct *p)
901 {
902 #ifdef CONFIG_SMP
903 return p->oncpu;
904 #else
905 return task_current(rq, p);
906 #endif
907 }
908
909 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 {
911 #ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918 #endif
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921 #else
922 spin_unlock(&rq->lock);
923 #endif
924 }
925
926 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 {
928 #ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936 #endif
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
939 #endif
940 }
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942
943 /*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
947 static inline struct rq *__task_rq_lock(struct task_struct *p)
948 __acquires(rq->lock)
949 {
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
955 spin_unlock(&rq->lock);
956 }
957 }
958
959 /*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
963 */
964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965 __acquires(rq->lock)
966 {
967 struct rq *rq;
968
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
975 spin_unlock_irqrestore(&rq->lock, *flags);
976 }
977 }
978
979 void task_rq_unlock_wait(struct task_struct *p)
980 {
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq->lock);
985 }
986
987 static void __task_rq_unlock(struct rq *rq)
988 __releases(rq->lock)
989 {
990 spin_unlock(&rq->lock);
991 }
992
993 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
994 __releases(rq->lock)
995 {
996 spin_unlock_irqrestore(&rq->lock, *flags);
997 }
998
999 /*
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1001 */
1002 static struct rq *this_rq_lock(void)
1003 __acquires(rq->lock)
1004 {
1005 struct rq *rq;
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 spin_lock(&rq->lock);
1010
1011 return rq;
1012 }
1013
1014 #ifdef CONFIG_SCHED_HRTICK
1015 /*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
1025
1026 /*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031 static inline int hrtick_enabled(struct rq *rq)
1032 {
1033 if (!sched_feat(HRTICK))
1034 return 0;
1035 if (!cpu_active(cpu_of(rq)))
1036 return 0;
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038 }
1039
1040 static void hrtick_clear(struct rq *rq)
1041 {
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044 }
1045
1046 /*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051 {
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 spin_lock(&rq->lock);
1057 update_rq_clock(rq);
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062 }
1063
1064 #ifdef CONFIG_SMP
1065 /*
1066 * called from hardirq (IPI) context
1067 */
1068 static void __hrtick_start(void *arg)
1069 {
1070 struct rq *rq = arg;
1071
1072 spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 spin_unlock(&rq->lock);
1076 }
1077
1078 /*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083 static void hrtick_start(struct rq *rq, u64 delay)
1084 {
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087
1088 hrtimer_set_expires(timer, time);
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1094 rq->hrtick_csd_pending = 1;
1095 }
1096 }
1097
1098 static int
1099 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100 {
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
1110 hrtick_clear(cpu_rq(cpu));
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115 }
1116
1117 static __init void init_hrtick(void)
1118 {
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120 }
1121 #else
1122 /*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127 static void hrtick_start(struct rq *rq, u64 delay)
1128 {
1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1130 HRTIMER_MODE_REL_PINNED, 0);
1131 }
1132
1133 static inline void init_hrtick(void)
1134 {
1135 }
1136 #endif /* CONFIG_SMP */
1137
1138 static void init_rq_hrtick(struct rq *rq)
1139 {
1140 #ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
1142
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146 #endif
1147
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
1150 }
1151 #else /* CONFIG_SCHED_HRTICK */
1152 static inline void hrtick_clear(struct rq *rq)
1153 {
1154 }
1155
1156 static inline void init_rq_hrtick(struct rq *rq)
1157 {
1158 }
1159
1160 static inline void init_hrtick(void)
1161 {
1162 }
1163 #endif /* CONFIG_SCHED_HRTICK */
1164
1165 /*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172 #ifdef CONFIG_SMP
1173
1174 #ifndef tsk_is_polling
1175 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176 #endif
1177
1178 static void resched_task(struct task_struct *p)
1179 {
1180 int cpu;
1181
1182 assert_spin_locked(&task_rq(p)->lock);
1183
1184 if (test_tsk_need_resched(p))
1185 return;
1186
1187 set_tsk_need_resched(p);
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197 }
1198
1199 static void resched_cpu(int cpu)
1200 {
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
1204 if (!spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 spin_unlock_irqrestore(&rq->lock, flags);
1208 }
1209
1210 #ifdef CONFIG_NO_HZ
1211 /*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221 void wake_up_idle_cpu(int cpu)
1222 {
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
1243 set_tsk_need_resched(rq->idle);
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249 }
1250 #endif /* CONFIG_NO_HZ */
1251
1252 static u64 sched_avg_period(void)
1253 {
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255 }
1256
1257 static void sched_avg_update(struct rq *rq)
1258 {
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265 }
1266
1267 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268 {
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271 }
1272
1273 #else /* !CONFIG_SMP */
1274 static void resched_task(struct task_struct *p)
1275 {
1276 assert_spin_locked(&task_rq(p)->lock);
1277 set_tsk_need_resched(p);
1278 }
1279
1280 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281 {
1282 }
1283 #endif /* CONFIG_SMP */
1284
1285 #if BITS_PER_LONG == 32
1286 # define WMULT_CONST (~0UL)
1287 #else
1288 # define WMULT_CONST (1UL << 32)
1289 #endif
1290
1291 #define WMULT_SHIFT 32
1292
1293 /*
1294 * Shift right and round:
1295 */
1296 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1297
1298 /*
1299 * delta *= weight / lw
1300 */
1301 static unsigned long
1302 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304 {
1305 u64 tmp;
1306
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
1319 if (unlikely(tmp > WMULT_CONST))
1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1321 WMULT_SHIFT/2);
1322 else
1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1324
1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 }
1327
1328 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1329 {
1330 lw->weight += inc;
1331 lw->inv_weight = 0;
1332 }
1333
1334 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1335 {
1336 lw->weight -= dec;
1337 lw->inv_weight = 0;
1338 }
1339
1340 /*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
1349 #define WEIGHT_IDLEPRIO 3
1350 #define WMULT_IDLEPRIO 1431655765
1351
1352 /*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
1363 */
1364 static const int prio_to_weight[40] = {
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
1373 };
1374
1375 /*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
1382 static const u32 prio_to_wmult[40] = {
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1391 };
1392
1393 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395 /*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400 struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404 };
1405
1406 #ifdef CONFIG_SMP
1407 static unsigned long
1408 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413 static int
1414 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
1417 #endif
1418
1419 /* Time spent by the tasks of the cpu accounting group executing in ... */
1420 enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1423
1424 CPUACCT_STAT_NSTATS,
1425 };
1426
1427 #ifdef CONFIG_CGROUP_CPUACCT
1428 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1429 static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
1431 #else
1432 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1433 static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
1435 #endif
1436
1437 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1438 {
1439 update_load_add(&rq->load, load);
1440 }
1441
1442 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1443 {
1444 update_load_sub(&rq->load, load);
1445 }
1446
1447 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1448 typedef int (*tg_visitor)(struct task_group *, void *);
1449
1450 /*
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1453 */
1454 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1455 {
1456 struct task_group *parent, *child;
1457 int ret;
1458
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461 down:
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1468
1469 up:
1470 continue;
1471 }
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
1475
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
1480 out_unlock:
1481 rcu_read_unlock();
1482
1483 return ret;
1484 }
1485
1486 static int tg_nop(struct task_group *tg, void *data)
1487 {
1488 return 0;
1489 }
1490 #endif
1491
1492 #ifdef CONFIG_SMP
1493 /* Used instead of source_load when we know the type == 0 */
1494 static unsigned long weighted_cpuload(const int cpu)
1495 {
1496 return cpu_rq(cpu)->load.weight;
1497 }
1498
1499 /*
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1502 *
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1505 */
1506 static unsigned long source_load(int cpu, int type)
1507 {
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return min(rq->cpu_load[type-1], total);
1515 }
1516
1517 /*
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 */
1521 static unsigned long target_load(int cpu, int type)
1522 {
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1525
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1528
1529 return max(rq->cpu_load[type-1], total);
1530 }
1531
1532 static struct sched_group *group_of(int cpu)
1533 {
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1535
1536 if (!sd)
1537 return NULL;
1538
1539 return sd->groups;
1540 }
1541
1542 static unsigned long power_of(int cpu)
1543 {
1544 struct sched_group *group = group_of(cpu);
1545
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1548
1549 return group->cpu_power;
1550 }
1551
1552 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1553
1554 static unsigned long cpu_avg_load_per_task(int cpu)
1555 {
1556 struct rq *rq = cpu_rq(cpu);
1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1558
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
1561 else
1562 rq->avg_load_per_task = 0;
1563
1564 return rq->avg_load_per_task;
1565 }
1566
1567 #ifdef CONFIG_FAIR_GROUP_SCHED
1568
1569 static __read_mostly unsigned long *update_shares_data;
1570
1571 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572
1573 /*
1574 * Calculate and set the cpu's group shares.
1575 */
1576 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
1579 unsigned long *usd_rq_weight)
1580 {
1581 unsigned long shares, rq_weight;
1582 int boost = 0;
1583
1584 rq_weight = usd_rq_weight[cpu];
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1588 }
1589
1590 /*
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
1594 */
1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1597
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
1602
1603 spin_lock_irqsave(&rq->lock, flags);
1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1606 __set_se_shares(tg->se[cpu], shares);
1607 spin_unlock_irqrestore(&rq->lock, flags);
1608 }
1609 }
1610
1611 /*
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
1615 */
1616 static int tg_shares_up(struct task_group *tg, void *data)
1617 {
1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1619 unsigned long *usd_rq_weight;
1620 struct sched_domain *sd = data;
1621 unsigned long flags;
1622 int i;
1623
1624 if (!tg->se[0])
1625 return 0;
1626
1627 local_irq_save(flags);
1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1629
1630 for_each_cpu(i, sched_domain_span(sd)) {
1631 weight = tg->cfs_rq[i]->load.weight;
1632 usd_rq_weight[i] = weight;
1633
1634 rq_weight += weight;
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
1643 sum_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1645 }
1646
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1652
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
1655
1656 for_each_cpu(i, sched_domain_span(sd))
1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1658
1659 local_irq_restore(flags);
1660
1661 return 0;
1662 }
1663
1664 /*
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
1668 */
1669 static int tg_load_down(struct task_group *tg, void *data)
1670 {
1671 unsigned long load;
1672 long cpu = (long)data;
1673
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 }
1681
1682 tg->cfs_rq[cpu]->h_load = load;
1683
1684 return 0;
1685 }
1686
1687 static void update_shares(struct sched_domain *sd)
1688 {
1689 s64 elapsed;
1690 u64 now;
1691
1692 if (root_task_group_empty())
1693 return;
1694
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
1697
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
1701 }
1702 }
1703
1704 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705 {
1706 if (root_task_group_empty())
1707 return;
1708
1709 spin_unlock(&rq->lock);
1710 update_shares(sd);
1711 spin_lock(&rq->lock);
1712 }
1713
1714 static void update_h_load(long cpu)
1715 {
1716 if (root_task_group_empty())
1717 return;
1718
1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 }
1721
1722 #else
1723
1724 static inline void update_shares(struct sched_domain *sd)
1725 {
1726 }
1727
1728 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729 {
1730 }
1731
1732 #endif
1733
1734 #ifdef CONFIG_PREEMPT
1735
1736 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737
1738 /*
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
1745 */
1746 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1750 {
1751 spin_unlock(&this_rq->lock);
1752 double_rq_lock(this_rq, busiest);
1753
1754 return 1;
1755 }
1756
1757 #else
1758 /*
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1764 */
1765 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1769 {
1770 int ret = 0;
1771
1772 if (unlikely(!spin_trylock(&busiest->lock))) {
1773 if (busiest < this_rq) {
1774 spin_unlock(&this_rq->lock);
1775 spin_lock(&busiest->lock);
1776 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1777 ret = 1;
1778 } else
1779 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1780 }
1781 return ret;
1782 }
1783
1784 #endif /* CONFIG_PREEMPT */
1785
1786 /*
1787 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1788 */
1789 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1790 {
1791 if (unlikely(!irqs_disabled())) {
1792 /* printk() doesn't work good under rq->lock */
1793 spin_unlock(&this_rq->lock);
1794 BUG_ON(1);
1795 }
1796
1797 return _double_lock_balance(this_rq, busiest);
1798 }
1799
1800 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1801 __releases(busiest->lock)
1802 {
1803 spin_unlock(&busiest->lock);
1804 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1805 }
1806 #endif
1807
1808 #ifdef CONFIG_FAIR_GROUP_SCHED
1809 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1810 {
1811 #ifdef CONFIG_SMP
1812 cfs_rq->shares = shares;
1813 #endif
1814 }
1815 #endif
1816
1817 static void calc_load_account_active(struct rq *this_rq);
1818 static void update_sysctl(void);
1819
1820 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1821 {
1822 set_task_rq(p, cpu);
1823 #ifdef CONFIG_SMP
1824 /*
1825 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1826 * successfuly executed on another CPU. We must ensure that updates of
1827 * per-task data have been completed by this moment.
1828 */
1829 smp_wmb();
1830 task_thread_info(p)->cpu = cpu;
1831 #endif
1832 }
1833
1834 #include "sched_stats.h"
1835 #include "sched_idletask.c"
1836 #include "sched_fair.c"
1837 #include "sched_rt.c"
1838 #ifdef CONFIG_SCHED_DEBUG
1839 # include "sched_debug.c"
1840 #endif
1841
1842 #define sched_class_highest (&rt_sched_class)
1843 #define for_each_class(class) \
1844 for (class = sched_class_highest; class; class = class->next)
1845
1846 static void inc_nr_running(struct rq *rq)
1847 {
1848 rq->nr_running++;
1849 }
1850
1851 static void dec_nr_running(struct rq *rq)
1852 {
1853 rq->nr_running--;
1854 }
1855
1856 static void set_load_weight(struct task_struct *p)
1857 {
1858 if (task_has_rt_policy(p)) {
1859 p->se.load.weight = prio_to_weight[0] * 2;
1860 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1861 return;
1862 }
1863
1864 /*
1865 * SCHED_IDLE tasks get minimal weight:
1866 */
1867 if (p->policy == SCHED_IDLE) {
1868 p->se.load.weight = WEIGHT_IDLEPRIO;
1869 p->se.load.inv_weight = WMULT_IDLEPRIO;
1870 return;
1871 }
1872
1873 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1874 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1875 }
1876
1877 static void update_avg(u64 *avg, u64 sample)
1878 {
1879 s64 diff = sample - *avg;
1880 *avg += diff >> 3;
1881 }
1882
1883 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1884 {
1885 if (wakeup)
1886 p->se.start_runtime = p->se.sum_exec_runtime;
1887
1888 sched_info_queued(p);
1889 p->sched_class->enqueue_task(rq, p, wakeup);
1890 p->se.on_rq = 1;
1891 }
1892
1893 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1894 {
1895 if (sleep) {
1896 if (p->se.last_wakeup) {
1897 update_avg(&p->se.avg_overlap,
1898 p->se.sum_exec_runtime - p->se.last_wakeup);
1899 p->se.last_wakeup = 0;
1900 } else {
1901 update_avg(&p->se.avg_wakeup,
1902 sysctl_sched_wakeup_granularity);
1903 }
1904 }
1905
1906 sched_info_dequeued(p);
1907 p->sched_class->dequeue_task(rq, p, sleep);
1908 p->se.on_rq = 0;
1909 }
1910
1911 /*
1912 * __normal_prio - return the priority that is based on the static prio
1913 */
1914 static inline int __normal_prio(struct task_struct *p)
1915 {
1916 return p->static_prio;
1917 }
1918
1919 /*
1920 * Calculate the expected normal priority: i.e. priority
1921 * without taking RT-inheritance into account. Might be
1922 * boosted by interactivity modifiers. Changes upon fork,
1923 * setprio syscalls, and whenever the interactivity
1924 * estimator recalculates.
1925 */
1926 static inline int normal_prio(struct task_struct *p)
1927 {
1928 int prio;
1929
1930 if (task_has_rt_policy(p))
1931 prio = MAX_RT_PRIO-1 - p->rt_priority;
1932 else
1933 prio = __normal_prio(p);
1934 return prio;
1935 }
1936
1937 /*
1938 * Calculate the current priority, i.e. the priority
1939 * taken into account by the scheduler. This value might
1940 * be boosted by RT tasks, or might be boosted by
1941 * interactivity modifiers. Will be RT if the task got
1942 * RT-boosted. If not then it returns p->normal_prio.
1943 */
1944 static int effective_prio(struct task_struct *p)
1945 {
1946 p->normal_prio = normal_prio(p);
1947 /*
1948 * If we are RT tasks or we were boosted to RT priority,
1949 * keep the priority unchanged. Otherwise, update priority
1950 * to the normal priority:
1951 */
1952 if (!rt_prio(p->prio))
1953 return p->normal_prio;
1954 return p->prio;
1955 }
1956
1957 /*
1958 * activate_task - move a task to the runqueue.
1959 */
1960 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1961 {
1962 if (task_contributes_to_load(p))
1963 rq->nr_uninterruptible--;
1964
1965 enqueue_task(rq, p, wakeup);
1966 inc_nr_running(rq);
1967 }
1968
1969 /*
1970 * deactivate_task - remove a task from the runqueue.
1971 */
1972 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1973 {
1974 if (task_contributes_to_load(p))
1975 rq->nr_uninterruptible++;
1976
1977 dequeue_task(rq, p, sleep);
1978 dec_nr_running(rq);
1979 }
1980
1981 /**
1982 * task_curr - is this task currently executing on a CPU?
1983 * @p: the task in question.
1984 */
1985 inline int task_curr(const struct task_struct *p)
1986 {
1987 return cpu_curr(task_cpu(p)) == p;
1988 }
1989
1990 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1991 const struct sched_class *prev_class,
1992 int oldprio, int running)
1993 {
1994 if (prev_class != p->sched_class) {
1995 if (prev_class->switched_from)
1996 prev_class->switched_from(rq, p, running);
1997 p->sched_class->switched_to(rq, p, running);
1998 } else
1999 p->sched_class->prio_changed(rq, p, oldprio, running);
2000 }
2001
2002 /**
2003 * kthread_bind - bind a just-created kthread to a cpu.
2004 * @p: thread created by kthread_create().
2005 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2006 *
2007 * Description: This function is equivalent to set_cpus_allowed(),
2008 * except that @cpu doesn't need to be online, and the thread must be
2009 * stopped (i.e., just returned from kthread_create()).
2010 *
2011 * Function lives here instead of kthread.c because it messes with
2012 * scheduler internals which require locking.
2013 */
2014 void kthread_bind(struct task_struct *p, unsigned int cpu)
2015 {
2016 struct rq *rq = cpu_rq(cpu);
2017 unsigned long flags;
2018
2019 /* Must have done schedule() in kthread() before we set_task_cpu */
2020 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2021 WARN_ON(1);
2022 return;
2023 }
2024
2025 spin_lock_irqsave(&rq->lock, flags);
2026 update_rq_clock(rq);
2027 set_task_cpu(p, cpu);
2028 p->cpus_allowed = cpumask_of_cpu(cpu);
2029 p->rt.nr_cpus_allowed = 1;
2030 p->flags |= PF_THREAD_BOUND;
2031 spin_unlock_irqrestore(&rq->lock, flags);
2032 }
2033 EXPORT_SYMBOL(kthread_bind);
2034
2035 #ifdef CONFIG_SMP
2036 /*
2037 * Is this task likely cache-hot:
2038 */
2039 static int
2040 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2041 {
2042 s64 delta;
2043
2044 /*
2045 * Buddy candidates are cache hot:
2046 */
2047 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2048 (&p->se == cfs_rq_of(&p->se)->next ||
2049 &p->se == cfs_rq_of(&p->se)->last))
2050 return 1;
2051
2052 if (p->sched_class != &fair_sched_class)
2053 return 0;
2054
2055 if (sysctl_sched_migration_cost == -1)
2056 return 1;
2057 if (sysctl_sched_migration_cost == 0)
2058 return 0;
2059
2060 delta = now - p->se.exec_start;
2061
2062 return delta < (s64)sysctl_sched_migration_cost;
2063 }
2064
2065
2066 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2067 {
2068 int old_cpu = task_cpu(p);
2069 struct rq *old_rq = cpu_rq(old_cpu);
2070 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2071 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2072
2073 trace_sched_migrate_task(p, new_cpu);
2074
2075 if (old_cpu != new_cpu) {
2076 p->se.nr_migrations++;
2077 #ifdef CONFIG_SCHEDSTATS
2078 if (task_hot(p, old_rq->clock, NULL))
2079 schedstat_inc(p, se.nr_forced2_migrations);
2080 #endif
2081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2082 1, 1, NULL, 0);
2083 }
2084 p->se.vruntime -= old_cfsrq->min_vruntime -
2085 new_cfsrq->min_vruntime;
2086
2087 __set_task_cpu(p, new_cpu);
2088 }
2089
2090 struct migration_req {
2091 struct list_head list;
2092
2093 struct task_struct *task;
2094 int dest_cpu;
2095
2096 struct completion done;
2097 };
2098
2099 /*
2100 * The task's runqueue lock must be held.
2101 * Returns true if you have to wait for migration thread.
2102 */
2103 static int
2104 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2105 {
2106 struct rq *rq = task_rq(p);
2107
2108 /*
2109 * If the task is not on a runqueue (and not running), then
2110 * it is sufficient to simply update the task's cpu field.
2111 */
2112 if (!p->se.on_rq && !task_running(rq, p)) {
2113 update_rq_clock(rq);
2114 set_task_cpu(p, dest_cpu);
2115 return 0;
2116 }
2117
2118 init_completion(&req->done);
2119 req->task = p;
2120 req->dest_cpu = dest_cpu;
2121 list_add(&req->list, &rq->migration_queue);
2122
2123 return 1;
2124 }
2125
2126 /*
2127 * wait_task_context_switch - wait for a thread to complete at least one
2128 * context switch.
2129 *
2130 * @p must not be current.
2131 */
2132 void wait_task_context_switch(struct task_struct *p)
2133 {
2134 unsigned long nvcsw, nivcsw, flags;
2135 int running;
2136 struct rq *rq;
2137
2138 nvcsw = p->nvcsw;
2139 nivcsw = p->nivcsw;
2140 for (;;) {
2141 /*
2142 * The runqueue is assigned before the actual context
2143 * switch. We need to take the runqueue lock.
2144 *
2145 * We could check initially without the lock but it is
2146 * very likely that we need to take the lock in every
2147 * iteration.
2148 */
2149 rq = task_rq_lock(p, &flags);
2150 running = task_running(rq, p);
2151 task_rq_unlock(rq, &flags);
2152
2153 if (likely(!running))
2154 break;
2155 /*
2156 * The switch count is incremented before the actual
2157 * context switch. We thus wait for two switches to be
2158 * sure at least one completed.
2159 */
2160 if ((p->nvcsw - nvcsw) > 1)
2161 break;
2162 if ((p->nivcsw - nivcsw) > 1)
2163 break;
2164
2165 cpu_relax();
2166 }
2167 }
2168
2169 /*
2170 * wait_task_inactive - wait for a thread to unschedule.
2171 *
2172 * If @match_state is nonzero, it's the @p->state value just checked and
2173 * not expected to change. If it changes, i.e. @p might have woken up,
2174 * then return zero. When we succeed in waiting for @p to be off its CPU,
2175 * we return a positive number (its total switch count). If a second call
2176 * a short while later returns the same number, the caller can be sure that
2177 * @p has remained unscheduled the whole time.
2178 *
2179 * The caller must ensure that the task *will* unschedule sometime soon,
2180 * else this function might spin for a *long* time. This function can't
2181 * be called with interrupts off, or it may introduce deadlock with
2182 * smp_call_function() if an IPI is sent by the same process we are
2183 * waiting to become inactive.
2184 */
2185 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2186 {
2187 unsigned long flags;
2188 int running, on_rq;
2189 unsigned long ncsw;
2190 struct rq *rq;
2191
2192 for (;;) {
2193 /*
2194 * We do the initial early heuristics without holding
2195 * any task-queue locks at all. We'll only try to get
2196 * the runqueue lock when things look like they will
2197 * work out!
2198 */
2199 rq = task_rq(p);
2200
2201 /*
2202 * If the task is actively running on another CPU
2203 * still, just relax and busy-wait without holding
2204 * any locks.
2205 *
2206 * NOTE! Since we don't hold any locks, it's not
2207 * even sure that "rq" stays as the right runqueue!
2208 * But we don't care, since "task_running()" will
2209 * return false if the runqueue has changed and p
2210 * is actually now running somewhere else!
2211 */
2212 while (task_running(rq, p)) {
2213 if (match_state && unlikely(p->state != match_state))
2214 return 0;
2215 cpu_relax();
2216 }
2217
2218 /*
2219 * Ok, time to look more closely! We need the rq
2220 * lock now, to be *sure*. If we're wrong, we'll
2221 * just go back and repeat.
2222 */
2223 rq = task_rq_lock(p, &flags);
2224 trace_sched_wait_task(rq, p);
2225 running = task_running(rq, p);
2226 on_rq = p->se.on_rq;
2227 ncsw = 0;
2228 if (!match_state || p->state == match_state)
2229 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2230 task_rq_unlock(rq, &flags);
2231
2232 /*
2233 * If it changed from the expected state, bail out now.
2234 */
2235 if (unlikely(!ncsw))
2236 break;
2237
2238 /*
2239 * Was it really running after all now that we
2240 * checked with the proper locks actually held?
2241 *
2242 * Oops. Go back and try again..
2243 */
2244 if (unlikely(running)) {
2245 cpu_relax();
2246 continue;
2247 }
2248
2249 /*
2250 * It's not enough that it's not actively running,
2251 * it must be off the runqueue _entirely_, and not
2252 * preempted!
2253 *
2254 * So if it was still runnable (but just not actively
2255 * running right now), it's preempted, and we should
2256 * yield - it could be a while.
2257 */
2258 if (unlikely(on_rq)) {
2259 schedule_timeout_uninterruptible(1);
2260 continue;
2261 }
2262
2263 /*
2264 * Ahh, all good. It wasn't running, and it wasn't
2265 * runnable, which means that it will never become
2266 * running in the future either. We're all done!
2267 */
2268 break;
2269 }
2270
2271 return ncsw;
2272 }
2273
2274 /***
2275 * kick_process - kick a running thread to enter/exit the kernel
2276 * @p: the to-be-kicked thread
2277 *
2278 * Cause a process which is running on another CPU to enter
2279 * kernel-mode, without any delay. (to get signals handled.)
2280 *
2281 * NOTE: this function doesnt have to take the runqueue lock,
2282 * because all it wants to ensure is that the remote task enters
2283 * the kernel. If the IPI races and the task has been migrated
2284 * to another CPU then no harm is done and the purpose has been
2285 * achieved as well.
2286 */
2287 void kick_process(struct task_struct *p)
2288 {
2289 int cpu;
2290
2291 preempt_disable();
2292 cpu = task_cpu(p);
2293 if ((cpu != smp_processor_id()) && task_curr(p))
2294 smp_send_reschedule(cpu);
2295 preempt_enable();
2296 }
2297 EXPORT_SYMBOL_GPL(kick_process);
2298 #endif /* CONFIG_SMP */
2299
2300 /**
2301 * task_oncpu_function_call - call a function on the cpu on which a task runs
2302 * @p: the task to evaluate
2303 * @func: the function to be called
2304 * @info: the function call argument
2305 *
2306 * Calls the function @func when the task is currently running. This might
2307 * be on the current CPU, which just calls the function directly
2308 */
2309 void task_oncpu_function_call(struct task_struct *p,
2310 void (*func) (void *info), void *info)
2311 {
2312 int cpu;
2313
2314 preempt_disable();
2315 cpu = task_cpu(p);
2316 if (task_curr(p))
2317 smp_call_function_single(cpu, func, info, 1);
2318 preempt_enable();
2319 }
2320
2321 #ifdef CONFIG_SMP
2322 static inline
2323 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2324 {
2325 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2326 }
2327 #endif
2328
2329 /***
2330 * try_to_wake_up - wake up a thread
2331 * @p: the to-be-woken-up thread
2332 * @state: the mask of task states that can be woken
2333 * @sync: do a synchronous wakeup?
2334 *
2335 * Put it on the run-queue if it's not already there. The "current"
2336 * thread is always on the run-queue (except when the actual
2337 * re-schedule is in progress), and as such you're allowed to do
2338 * the simpler "current->state = TASK_RUNNING" to mark yourself
2339 * runnable without the overhead of this.
2340 *
2341 * returns failure only if the task is already active.
2342 */
2343 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2344 int wake_flags)
2345 {
2346 int cpu, orig_cpu, this_cpu, success = 0;
2347 unsigned long flags;
2348 struct rq *rq, *orig_rq;
2349
2350 if (!sched_feat(SYNC_WAKEUPS))
2351 wake_flags &= ~WF_SYNC;
2352
2353 this_cpu = get_cpu();
2354
2355 smp_wmb();
2356 rq = orig_rq = task_rq_lock(p, &flags);
2357 update_rq_clock(rq);
2358 if (!(p->state & state))
2359 goto out;
2360
2361 if (p->se.on_rq)
2362 goto out_running;
2363
2364 cpu = task_cpu(p);
2365 orig_cpu = cpu;
2366
2367 #ifdef CONFIG_SMP
2368 if (unlikely(task_running(rq, p)))
2369 goto out_activate;
2370
2371 /*
2372 * In order to handle concurrent wakeups and release the rq->lock
2373 * we put the task in TASK_WAKING state.
2374 *
2375 * First fix up the nr_uninterruptible count:
2376 */
2377 if (task_contributes_to_load(p))
2378 rq->nr_uninterruptible--;
2379 p->state = TASK_WAKING;
2380 __task_rq_unlock(rq);
2381
2382 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2383 if (cpu != orig_cpu)
2384 set_task_cpu(p, cpu);
2385
2386 rq = __task_rq_lock(p);
2387 update_rq_clock(rq);
2388
2389 WARN_ON(p->state != TASK_WAKING);
2390 cpu = task_cpu(p);
2391
2392 #ifdef CONFIG_SCHEDSTATS
2393 schedstat_inc(rq, ttwu_count);
2394 if (cpu == this_cpu)
2395 schedstat_inc(rq, ttwu_local);
2396 else {
2397 struct sched_domain *sd;
2398 for_each_domain(this_cpu, sd) {
2399 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2400 schedstat_inc(sd, ttwu_wake_remote);
2401 break;
2402 }
2403 }
2404 }
2405 #endif /* CONFIG_SCHEDSTATS */
2406
2407 out_activate:
2408 #endif /* CONFIG_SMP */
2409 schedstat_inc(p, se.nr_wakeups);
2410 if (wake_flags & WF_SYNC)
2411 schedstat_inc(p, se.nr_wakeups_sync);
2412 if (orig_cpu != cpu)
2413 schedstat_inc(p, se.nr_wakeups_migrate);
2414 if (cpu == this_cpu)
2415 schedstat_inc(p, se.nr_wakeups_local);
2416 else
2417 schedstat_inc(p, se.nr_wakeups_remote);
2418 activate_task(rq, p, 1);
2419 success = 1;
2420
2421 /*
2422 * Only attribute actual wakeups done by this task.
2423 */
2424 if (!in_interrupt()) {
2425 struct sched_entity *se = &current->se;
2426 u64 sample = se->sum_exec_runtime;
2427
2428 if (se->last_wakeup)
2429 sample -= se->last_wakeup;
2430 else
2431 sample -= se->start_runtime;
2432 update_avg(&se->avg_wakeup, sample);
2433
2434 se->last_wakeup = se->sum_exec_runtime;
2435 }
2436
2437 out_running:
2438 trace_sched_wakeup(rq, p, success);
2439 check_preempt_curr(rq, p, wake_flags);
2440
2441 p->state = TASK_RUNNING;
2442 #ifdef CONFIG_SMP
2443 if (p->sched_class->task_wake_up)
2444 p->sched_class->task_wake_up(rq, p);
2445
2446 if (unlikely(rq->idle_stamp)) {
2447 u64 delta = rq->clock - rq->idle_stamp;
2448 u64 max = 2*sysctl_sched_migration_cost;
2449
2450 if (delta > max)
2451 rq->avg_idle = max;
2452 else
2453 update_avg(&rq->avg_idle, delta);
2454 rq->idle_stamp = 0;
2455 }
2456 #endif
2457 out:
2458 task_rq_unlock(rq, &flags);
2459 put_cpu();
2460
2461 return success;
2462 }
2463
2464 /**
2465 * wake_up_process - Wake up a specific process
2466 * @p: The process to be woken up.
2467 *
2468 * Attempt to wake up the nominated process and move it to the set of runnable
2469 * processes. Returns 1 if the process was woken up, 0 if it was already
2470 * running.
2471 *
2472 * It may be assumed that this function implies a write memory barrier before
2473 * changing the task state if and only if any tasks are woken up.
2474 */
2475 int wake_up_process(struct task_struct *p)
2476 {
2477 return try_to_wake_up(p, TASK_ALL, 0);
2478 }
2479 EXPORT_SYMBOL(wake_up_process);
2480
2481 int wake_up_state(struct task_struct *p, unsigned int state)
2482 {
2483 return try_to_wake_up(p, state, 0);
2484 }
2485
2486 /*
2487 * Perform scheduler related setup for a newly forked process p.
2488 * p is forked by current.
2489 *
2490 * __sched_fork() is basic setup used by init_idle() too:
2491 */
2492 static void __sched_fork(struct task_struct *p)
2493 {
2494 p->se.exec_start = 0;
2495 p->se.sum_exec_runtime = 0;
2496 p->se.prev_sum_exec_runtime = 0;
2497 p->se.nr_migrations = 0;
2498 p->se.last_wakeup = 0;
2499 p->se.avg_overlap = 0;
2500 p->se.start_runtime = 0;
2501 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2502
2503 #ifdef CONFIG_SCHEDSTATS
2504 p->se.wait_start = 0;
2505 p->se.wait_max = 0;
2506 p->se.wait_count = 0;
2507 p->se.wait_sum = 0;
2508
2509 p->se.sleep_start = 0;
2510 p->se.sleep_max = 0;
2511 p->se.sum_sleep_runtime = 0;
2512
2513 p->se.block_start = 0;
2514 p->se.block_max = 0;
2515 p->se.exec_max = 0;
2516 p->se.slice_max = 0;
2517
2518 p->se.nr_migrations_cold = 0;
2519 p->se.nr_failed_migrations_affine = 0;
2520 p->se.nr_failed_migrations_running = 0;
2521 p->se.nr_failed_migrations_hot = 0;
2522 p->se.nr_forced_migrations = 0;
2523 p->se.nr_forced2_migrations = 0;
2524
2525 p->se.nr_wakeups = 0;
2526 p->se.nr_wakeups_sync = 0;
2527 p->se.nr_wakeups_migrate = 0;
2528 p->se.nr_wakeups_local = 0;
2529 p->se.nr_wakeups_remote = 0;
2530 p->se.nr_wakeups_affine = 0;
2531 p->se.nr_wakeups_affine_attempts = 0;
2532 p->se.nr_wakeups_passive = 0;
2533 p->se.nr_wakeups_idle = 0;
2534
2535 #endif
2536
2537 INIT_LIST_HEAD(&p->rt.run_list);
2538 p->se.on_rq = 0;
2539 INIT_LIST_HEAD(&p->se.group_node);
2540
2541 #ifdef CONFIG_PREEMPT_NOTIFIERS
2542 INIT_HLIST_HEAD(&p->preempt_notifiers);
2543 #endif
2544
2545 /*
2546 * We mark the process as running here, but have not actually
2547 * inserted it onto the runqueue yet. This guarantees that
2548 * nobody will actually run it, and a signal or other external
2549 * event cannot wake it up and insert it on the runqueue either.
2550 */
2551 p->state = TASK_RUNNING;
2552 }
2553
2554 /*
2555 * fork()/clone()-time setup:
2556 */
2557 void sched_fork(struct task_struct *p, int clone_flags)
2558 {
2559 int cpu = get_cpu();
2560
2561 __sched_fork(p);
2562
2563 /*
2564 * Revert to default priority/policy on fork if requested.
2565 */
2566 if (unlikely(p->sched_reset_on_fork)) {
2567 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2568 p->policy = SCHED_NORMAL;
2569 p->normal_prio = p->static_prio;
2570 }
2571
2572 if (PRIO_TO_NICE(p->static_prio) < 0) {
2573 p->static_prio = NICE_TO_PRIO(0);
2574 p->normal_prio = p->static_prio;
2575 set_load_weight(p);
2576 }
2577
2578 /*
2579 * We don't need the reset flag anymore after the fork. It has
2580 * fulfilled its duty:
2581 */
2582 p->sched_reset_on_fork = 0;
2583 }
2584
2585 /*
2586 * Make sure we do not leak PI boosting priority to the child.
2587 */
2588 p->prio = current->normal_prio;
2589
2590 if (!rt_prio(p->prio))
2591 p->sched_class = &fair_sched_class;
2592
2593 if (p->sched_class->task_fork)
2594 p->sched_class->task_fork(p);
2595
2596 #ifdef CONFIG_SMP
2597 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2598 #endif
2599 set_task_cpu(p, cpu);
2600
2601 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2602 if (likely(sched_info_on()))
2603 memset(&p->sched_info, 0, sizeof(p->sched_info));
2604 #endif
2605 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2606 p->oncpu = 0;
2607 #endif
2608 #ifdef CONFIG_PREEMPT
2609 /* Want to start with kernel preemption disabled. */
2610 task_thread_info(p)->preempt_count = 1;
2611 #endif
2612 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2613
2614 put_cpu();
2615 }
2616
2617 /*
2618 * wake_up_new_task - wake up a newly created task for the first time.
2619 *
2620 * This function will do some initial scheduler statistics housekeeping
2621 * that must be done for every newly created context, then puts the task
2622 * on the runqueue and wakes it.
2623 */
2624 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2625 {
2626 unsigned long flags;
2627 struct rq *rq;
2628
2629 rq = task_rq_lock(p, &flags);
2630 BUG_ON(p->state != TASK_RUNNING);
2631 update_rq_clock(rq);
2632 activate_task(rq, p, 0);
2633 trace_sched_wakeup_new(rq, p, 1);
2634 check_preempt_curr(rq, p, WF_FORK);
2635 #ifdef CONFIG_SMP
2636 if (p->sched_class->task_wake_up)
2637 p->sched_class->task_wake_up(rq, p);
2638 #endif
2639 task_rq_unlock(rq, &flags);
2640 }
2641
2642 #ifdef CONFIG_PREEMPT_NOTIFIERS
2643
2644 /**
2645 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2646 * @notifier: notifier struct to register
2647 */
2648 void preempt_notifier_register(struct preempt_notifier *notifier)
2649 {
2650 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2651 }
2652 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2653
2654 /**
2655 * preempt_notifier_unregister - no longer interested in preemption notifications
2656 * @notifier: notifier struct to unregister
2657 *
2658 * This is safe to call from within a preemption notifier.
2659 */
2660 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2661 {
2662 hlist_del(&notifier->link);
2663 }
2664 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2665
2666 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2667 {
2668 struct preempt_notifier *notifier;
2669 struct hlist_node *node;
2670
2671 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2672 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2673 }
2674
2675 static void
2676 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2677 struct task_struct *next)
2678 {
2679 struct preempt_notifier *notifier;
2680 struct hlist_node *node;
2681
2682 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2683 notifier->ops->sched_out(notifier, next);
2684 }
2685
2686 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2687
2688 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2689 {
2690 }
2691
2692 static void
2693 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2694 struct task_struct *next)
2695 {
2696 }
2697
2698 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2699
2700 /**
2701 * prepare_task_switch - prepare to switch tasks
2702 * @rq: the runqueue preparing to switch
2703 * @prev: the current task that is being switched out
2704 * @next: the task we are going to switch to.
2705 *
2706 * This is called with the rq lock held and interrupts off. It must
2707 * be paired with a subsequent finish_task_switch after the context
2708 * switch.
2709 *
2710 * prepare_task_switch sets up locking and calls architecture specific
2711 * hooks.
2712 */
2713 static inline void
2714 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2715 struct task_struct *next)
2716 {
2717 fire_sched_out_preempt_notifiers(prev, next);
2718 prepare_lock_switch(rq, next);
2719 prepare_arch_switch(next);
2720 }
2721
2722 /**
2723 * finish_task_switch - clean up after a task-switch
2724 * @rq: runqueue associated with task-switch
2725 * @prev: the thread we just switched away from.
2726 *
2727 * finish_task_switch must be called after the context switch, paired
2728 * with a prepare_task_switch call before the context switch.
2729 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2730 * and do any other architecture-specific cleanup actions.
2731 *
2732 * Note that we may have delayed dropping an mm in context_switch(). If
2733 * so, we finish that here outside of the runqueue lock. (Doing it
2734 * with the lock held can cause deadlocks; see schedule() for
2735 * details.)
2736 */
2737 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2738 __releases(rq->lock)
2739 {
2740 struct mm_struct *mm = rq->prev_mm;
2741 long prev_state;
2742
2743 rq->prev_mm = NULL;
2744
2745 /*
2746 * A task struct has one reference for the use as "current".
2747 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2748 * schedule one last time. The schedule call will never return, and
2749 * the scheduled task must drop that reference.
2750 * The test for TASK_DEAD must occur while the runqueue locks are
2751 * still held, otherwise prev could be scheduled on another cpu, die
2752 * there before we look at prev->state, and then the reference would
2753 * be dropped twice.
2754 * Manfred Spraul <manfred@colorfullife.com>
2755 */
2756 prev_state = prev->state;
2757 finish_arch_switch(prev);
2758 perf_event_task_sched_in(current, cpu_of(rq));
2759 finish_lock_switch(rq, prev);
2760
2761 fire_sched_in_preempt_notifiers(current);
2762 if (mm)
2763 mmdrop(mm);
2764 if (unlikely(prev_state == TASK_DEAD)) {
2765 /*
2766 * Remove function-return probe instances associated with this
2767 * task and put them back on the free list.
2768 */
2769 kprobe_flush_task(prev);
2770 put_task_struct(prev);
2771 }
2772 }
2773
2774 #ifdef CONFIG_SMP
2775
2776 /* assumes rq->lock is held */
2777 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2778 {
2779 if (prev->sched_class->pre_schedule)
2780 prev->sched_class->pre_schedule(rq, prev);
2781 }
2782
2783 /* rq->lock is NOT held, but preemption is disabled */
2784 static inline void post_schedule(struct rq *rq)
2785 {
2786 if (rq->post_schedule) {
2787 unsigned long flags;
2788
2789 spin_lock_irqsave(&rq->lock, flags);
2790 if (rq->curr->sched_class->post_schedule)
2791 rq->curr->sched_class->post_schedule(rq);
2792 spin_unlock_irqrestore(&rq->lock, flags);
2793
2794 rq->post_schedule = 0;
2795 }
2796 }
2797
2798 #else
2799
2800 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2801 {
2802 }
2803
2804 static inline void post_schedule(struct rq *rq)
2805 {
2806 }
2807
2808 #endif
2809
2810 /**
2811 * schedule_tail - first thing a freshly forked thread must call.
2812 * @prev: the thread we just switched away from.
2813 */
2814 asmlinkage void schedule_tail(struct task_struct *prev)
2815 __releases(rq->lock)
2816 {
2817 struct rq *rq = this_rq();
2818
2819 finish_task_switch(rq, prev);
2820
2821 /*
2822 * FIXME: do we need to worry about rq being invalidated by the
2823 * task_switch?
2824 */
2825 post_schedule(rq);
2826
2827 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2828 /* In this case, finish_task_switch does not reenable preemption */
2829 preempt_enable();
2830 #endif
2831 if (current->set_child_tid)
2832 put_user(task_pid_vnr(current), current->set_child_tid);
2833 }
2834
2835 /*
2836 * context_switch - switch to the new MM and the new
2837 * thread's register state.
2838 */
2839 static inline void
2840 context_switch(struct rq *rq, struct task_struct *prev,
2841 struct task_struct *next)
2842 {
2843 struct mm_struct *mm, *oldmm;
2844
2845 prepare_task_switch(rq, prev, next);
2846 trace_sched_switch(rq, prev, next);
2847 mm = next->mm;
2848 oldmm = prev->active_mm;
2849 /*
2850 * For paravirt, this is coupled with an exit in switch_to to
2851 * combine the page table reload and the switch backend into
2852 * one hypercall.
2853 */
2854 arch_start_context_switch(prev);
2855
2856 if (likely(!mm)) {
2857 next->active_mm = oldmm;
2858 atomic_inc(&oldmm->mm_count);
2859 enter_lazy_tlb(oldmm, next);
2860 } else
2861 switch_mm(oldmm, mm, next);
2862
2863 if (likely(!prev->mm)) {
2864 prev->active_mm = NULL;
2865 rq->prev_mm = oldmm;
2866 }
2867 /*
2868 * Since the runqueue lock will be released by the next
2869 * task (which is an invalid locking op but in the case
2870 * of the scheduler it's an obvious special-case), so we
2871 * do an early lockdep release here:
2872 */
2873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2874 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2875 #endif
2876
2877 /* Here we just switch the register state and the stack. */
2878 switch_to(prev, next, prev);
2879
2880 barrier();
2881 /*
2882 * this_rq must be evaluated again because prev may have moved
2883 * CPUs since it called schedule(), thus the 'rq' on its stack
2884 * frame will be invalid.
2885 */
2886 finish_task_switch(this_rq(), prev);
2887 }
2888
2889 /*
2890 * nr_running, nr_uninterruptible and nr_context_switches:
2891 *
2892 * externally visible scheduler statistics: current number of runnable
2893 * threads, current number of uninterruptible-sleeping threads, total
2894 * number of context switches performed since bootup.
2895 */
2896 unsigned long nr_running(void)
2897 {
2898 unsigned long i, sum = 0;
2899
2900 for_each_online_cpu(i)
2901 sum += cpu_rq(i)->nr_running;
2902
2903 return sum;
2904 }
2905
2906 unsigned long nr_uninterruptible(void)
2907 {
2908 unsigned long i, sum = 0;
2909
2910 for_each_possible_cpu(i)
2911 sum += cpu_rq(i)->nr_uninterruptible;
2912
2913 /*
2914 * Since we read the counters lockless, it might be slightly
2915 * inaccurate. Do not allow it to go below zero though:
2916 */
2917 if (unlikely((long)sum < 0))
2918 sum = 0;
2919
2920 return sum;
2921 }
2922
2923 unsigned long long nr_context_switches(void)
2924 {
2925 int i;
2926 unsigned long long sum = 0;
2927
2928 for_each_possible_cpu(i)
2929 sum += cpu_rq(i)->nr_switches;
2930
2931 return sum;
2932 }
2933
2934 unsigned long nr_iowait(void)
2935 {
2936 unsigned long i, sum = 0;
2937
2938 for_each_possible_cpu(i)
2939 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2940
2941 return sum;
2942 }
2943
2944 unsigned long nr_iowait_cpu(void)
2945 {
2946 struct rq *this = this_rq();
2947 return atomic_read(&this->nr_iowait);
2948 }
2949
2950 unsigned long this_cpu_load(void)
2951 {
2952 struct rq *this = this_rq();
2953 return this->cpu_load[0];
2954 }
2955
2956
2957 /* Variables and functions for calc_load */
2958 static atomic_long_t calc_load_tasks;
2959 static unsigned long calc_load_update;
2960 unsigned long avenrun[3];
2961 EXPORT_SYMBOL(avenrun);
2962
2963 /**
2964 * get_avenrun - get the load average array
2965 * @loads: pointer to dest load array
2966 * @offset: offset to add
2967 * @shift: shift count to shift the result left
2968 *
2969 * These values are estimates at best, so no need for locking.
2970 */
2971 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2972 {
2973 loads[0] = (avenrun[0] + offset) << shift;
2974 loads[1] = (avenrun[1] + offset) << shift;
2975 loads[2] = (avenrun[2] + offset) << shift;
2976 }
2977
2978 static unsigned long
2979 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2980 {
2981 load *= exp;
2982 load += active * (FIXED_1 - exp);
2983 return load >> FSHIFT;
2984 }
2985
2986 /*
2987 * calc_load - update the avenrun load estimates 10 ticks after the
2988 * CPUs have updated calc_load_tasks.
2989 */
2990 void calc_global_load(void)
2991 {
2992 unsigned long upd = calc_load_update + 10;
2993 long active;
2994
2995 if (time_before(jiffies, upd))
2996 return;
2997
2998 active = atomic_long_read(&calc_load_tasks);
2999 active = active > 0 ? active * FIXED_1 : 0;
3000
3001 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3002 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3003 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3004
3005 calc_load_update += LOAD_FREQ;
3006 }
3007
3008 /*
3009 * Either called from update_cpu_load() or from a cpu going idle
3010 */
3011 static void calc_load_account_active(struct rq *this_rq)
3012 {
3013 long nr_active, delta;
3014
3015 nr_active = this_rq->nr_running;
3016 nr_active += (long) this_rq->nr_uninterruptible;
3017
3018 if (nr_active != this_rq->calc_load_active) {
3019 delta = nr_active - this_rq->calc_load_active;
3020 this_rq->calc_load_active = nr_active;
3021 atomic_long_add(delta, &calc_load_tasks);
3022 }
3023 }
3024
3025 /*
3026 * Update rq->cpu_load[] statistics. This function is usually called every
3027 * scheduler tick (TICK_NSEC).
3028 */
3029 static void update_cpu_load(struct rq *this_rq)
3030 {
3031 unsigned long this_load = this_rq->load.weight;
3032 int i, scale;
3033
3034 this_rq->nr_load_updates++;
3035
3036 /* Update our load: */
3037 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3038 unsigned long old_load, new_load;
3039
3040 /* scale is effectively 1 << i now, and >> i divides by scale */
3041
3042 old_load = this_rq->cpu_load[i];
3043 new_load = this_load;
3044 /*
3045 * Round up the averaging division if load is increasing. This
3046 * prevents us from getting stuck on 9 if the load is 10, for
3047 * example.
3048 */
3049 if (new_load > old_load)
3050 new_load += scale-1;
3051 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3052 }
3053
3054 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3055 this_rq->calc_load_update += LOAD_FREQ;
3056 calc_load_account_active(this_rq);
3057 }
3058 }
3059
3060 #ifdef CONFIG_SMP
3061
3062 /*
3063 * double_rq_lock - safely lock two runqueues
3064 *
3065 * Note this does not disable interrupts like task_rq_lock,
3066 * you need to do so manually before calling.
3067 */
3068 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3069 __acquires(rq1->lock)
3070 __acquires(rq2->lock)
3071 {
3072 BUG_ON(!irqs_disabled());
3073 if (rq1 == rq2) {
3074 spin_lock(&rq1->lock);
3075 __acquire(rq2->lock); /* Fake it out ;) */
3076 } else {
3077 if (rq1 < rq2) {
3078 spin_lock(&rq1->lock);
3079 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3080 } else {
3081 spin_lock(&rq2->lock);
3082 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3083 }
3084 }
3085 update_rq_clock(rq1);
3086 update_rq_clock(rq2);
3087 }
3088
3089 /*
3090 * double_rq_unlock - safely unlock two runqueues
3091 *
3092 * Note this does not restore interrupts like task_rq_unlock,
3093 * you need to do so manually after calling.
3094 */
3095 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3096 __releases(rq1->lock)
3097 __releases(rq2->lock)
3098 {
3099 spin_unlock(&rq1->lock);
3100 if (rq1 != rq2)
3101 spin_unlock(&rq2->lock);
3102 else
3103 __release(rq2->lock);
3104 }
3105
3106 /*
3107 * If dest_cpu is allowed for this process, migrate the task to it.
3108 * This is accomplished by forcing the cpu_allowed mask to only
3109 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3110 * the cpu_allowed mask is restored.
3111 */
3112 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3113 {
3114 struct migration_req req;
3115 unsigned long flags;
3116 struct rq *rq;
3117
3118 rq = task_rq_lock(p, &flags);
3119 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3120 || unlikely(!cpu_active(dest_cpu)))
3121 goto out;
3122
3123 /* force the process onto the specified CPU */
3124 if (migrate_task(p, dest_cpu, &req)) {
3125 /* Need to wait for migration thread (might exit: take ref). */
3126 struct task_struct *mt = rq->migration_thread;
3127
3128 get_task_struct(mt);
3129 task_rq_unlock(rq, &flags);
3130 wake_up_process(mt);
3131 put_task_struct(mt);
3132 wait_for_completion(&req.done);
3133
3134 return;
3135 }
3136 out:
3137 task_rq_unlock(rq, &flags);
3138 }
3139
3140 /*
3141 * sched_exec - execve() is a valuable balancing opportunity, because at
3142 * this point the task has the smallest effective memory and cache footprint.
3143 */
3144 void sched_exec(void)
3145 {
3146 int new_cpu, this_cpu = get_cpu();
3147 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
3148 put_cpu();
3149 if (new_cpu != this_cpu)
3150 sched_migrate_task(current, new_cpu);
3151 }
3152
3153 /*
3154 * pull_task - move a task from a remote runqueue to the local runqueue.
3155 * Both runqueues must be locked.
3156 */
3157 static void pull_task(struct rq *src_rq, struct task_struct *p,
3158 struct rq *this_rq, int this_cpu)
3159 {
3160 deactivate_task(src_rq, p, 0);
3161 set_task_cpu(p, this_cpu);
3162 activate_task(this_rq, p, 0);
3163 check_preempt_curr(this_rq, p, 0);
3164 }
3165
3166 /*
3167 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3168 */
3169 static
3170 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3171 struct sched_domain *sd, enum cpu_idle_type idle,
3172 int *all_pinned)
3173 {
3174 int tsk_cache_hot = 0;
3175 /*
3176 * We do not migrate tasks that are:
3177 * 1) running (obviously), or
3178 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3179 * 3) are cache-hot on their current CPU.
3180 */
3181 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3182 schedstat_inc(p, se.nr_failed_migrations_affine);
3183 return 0;
3184 }
3185 *all_pinned = 0;
3186
3187 if (task_running(rq, p)) {
3188 schedstat_inc(p, se.nr_failed_migrations_running);
3189 return 0;
3190 }
3191
3192 /*
3193 * Aggressive migration if:
3194 * 1) task is cache cold, or
3195 * 2) too many balance attempts have failed.
3196 */
3197
3198 tsk_cache_hot = task_hot(p, rq->clock, sd);
3199 if (!tsk_cache_hot ||
3200 sd->nr_balance_failed > sd->cache_nice_tries) {
3201 #ifdef CONFIG_SCHEDSTATS
3202 if (tsk_cache_hot) {
3203 schedstat_inc(sd, lb_hot_gained[idle]);
3204 schedstat_inc(p, se.nr_forced_migrations);
3205 }
3206 #endif
3207 return 1;
3208 }
3209
3210 if (tsk_cache_hot) {
3211 schedstat_inc(p, se.nr_failed_migrations_hot);
3212 return 0;
3213 }
3214 return 1;
3215 }
3216
3217 static unsigned long
3218 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3219 unsigned long max_load_move, struct sched_domain *sd,
3220 enum cpu_idle_type idle, int *all_pinned,
3221 int *this_best_prio, struct rq_iterator *iterator)
3222 {
3223 int loops = 0, pulled = 0, pinned = 0;
3224 struct task_struct *p;
3225 long rem_load_move = max_load_move;
3226
3227 if (max_load_move == 0)
3228 goto out;
3229
3230 pinned = 1;
3231
3232 /*
3233 * Start the load-balancing iterator:
3234 */
3235 p = iterator->start(iterator->arg);
3236 next:
3237 if (!p || loops++ > sysctl_sched_nr_migrate)
3238 goto out;
3239
3240 if ((p->se.load.weight >> 1) > rem_load_move ||
3241 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3242 p = iterator->next(iterator->arg);
3243 goto next;
3244 }
3245
3246 pull_task(busiest, p, this_rq, this_cpu);
3247 pulled++;
3248 rem_load_move -= p->se.load.weight;
3249
3250 #ifdef CONFIG_PREEMPT
3251 /*
3252 * NEWIDLE balancing is a source of latency, so preemptible kernels
3253 * will stop after the first task is pulled to minimize the critical
3254 * section.
3255 */
3256 if (idle == CPU_NEWLY_IDLE)
3257 goto out;
3258 #endif
3259
3260 /*
3261 * We only want to steal up to the prescribed amount of weighted load.
3262 */
3263 if (rem_load_move > 0) {
3264 if (p->prio < *this_best_prio)
3265 *this_best_prio = p->prio;
3266 p = iterator->next(iterator->arg);
3267 goto next;
3268 }
3269 out:
3270 /*
3271 * Right now, this is one of only two places pull_task() is called,
3272 * so we can safely collect pull_task() stats here rather than
3273 * inside pull_task().
3274 */
3275 schedstat_add(sd, lb_gained[idle], pulled);
3276
3277 if (all_pinned)
3278 *all_pinned = pinned;
3279
3280 return max_load_move - rem_load_move;
3281 }
3282
3283 /*
3284 * move_tasks tries to move up to max_load_move weighted load from busiest to
3285 * this_rq, as part of a balancing operation within domain "sd".
3286 * Returns 1 if successful and 0 otherwise.
3287 *
3288 * Called with both runqueues locked.
3289 */
3290 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3291 unsigned long max_load_move,
3292 struct sched_domain *sd, enum cpu_idle_type idle,
3293 int *all_pinned)
3294 {
3295 const struct sched_class *class = sched_class_highest;
3296 unsigned long total_load_moved = 0;
3297 int this_best_prio = this_rq->curr->prio;
3298
3299 do {
3300 total_load_moved +=
3301 class->load_balance(this_rq, this_cpu, busiest,
3302 max_load_move - total_load_moved,
3303 sd, idle, all_pinned, &this_best_prio);
3304 class = class->next;
3305
3306 #ifdef CONFIG_PREEMPT
3307 /*
3308 * NEWIDLE balancing is a source of latency, so preemptible
3309 * kernels will stop after the first task is pulled to minimize
3310 * the critical section.
3311 */
3312 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3313 break;
3314 #endif
3315 } while (class && max_load_move > total_load_moved);
3316
3317 return total_load_moved > 0;
3318 }
3319
3320 static int
3321 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3322 struct sched_domain *sd, enum cpu_idle_type idle,
3323 struct rq_iterator *iterator)
3324 {
3325 struct task_struct *p = iterator->start(iterator->arg);
3326 int pinned = 0;
3327
3328 while (p) {
3329 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3330 pull_task(busiest, p, this_rq, this_cpu);
3331 /*
3332 * Right now, this is only the second place pull_task()
3333 * is called, so we can safely collect pull_task()
3334 * stats here rather than inside pull_task().
3335 */
3336 schedstat_inc(sd, lb_gained[idle]);
3337
3338 return 1;
3339 }
3340 p = iterator->next(iterator->arg);
3341 }
3342
3343 return 0;
3344 }
3345
3346 /*
3347 * move_one_task tries to move exactly one task from busiest to this_rq, as
3348 * part of active balancing operations within "domain".
3349 * Returns 1 if successful and 0 otherwise.
3350 *
3351 * Called with both runqueues locked.
3352 */
3353 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3354 struct sched_domain *sd, enum cpu_idle_type idle)
3355 {
3356 const struct sched_class *class;
3357
3358 for_each_class(class) {
3359 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3360 return 1;
3361 }
3362
3363 return 0;
3364 }
3365 /********** Helpers for find_busiest_group ************************/
3366 /*
3367 * sd_lb_stats - Structure to store the statistics of a sched_domain
3368 * during load balancing.
3369 */
3370 struct sd_lb_stats {
3371 struct sched_group *busiest; /* Busiest group in this sd */
3372 struct sched_group *this; /* Local group in this sd */
3373 unsigned long total_load; /* Total load of all groups in sd */
3374 unsigned long total_pwr; /* Total power of all groups in sd */
3375 unsigned long avg_load; /* Average load across all groups in sd */
3376
3377 /** Statistics of this group */
3378 unsigned long this_load;
3379 unsigned long this_load_per_task;
3380 unsigned long this_nr_running;
3381
3382 /* Statistics of the busiest group */
3383 unsigned long max_load;
3384 unsigned long busiest_load_per_task;
3385 unsigned long busiest_nr_running;
3386
3387 int group_imb; /* Is there imbalance in this sd */
3388 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3389 int power_savings_balance; /* Is powersave balance needed for this sd */
3390 struct sched_group *group_min; /* Least loaded group in sd */
3391 struct sched_group *group_leader; /* Group which relieves group_min */
3392 unsigned long min_load_per_task; /* load_per_task in group_min */
3393 unsigned long leader_nr_running; /* Nr running of group_leader */
3394 unsigned long min_nr_running; /* Nr running of group_min */
3395 #endif
3396 };
3397
3398 /*
3399 * sg_lb_stats - stats of a sched_group required for load_balancing
3400 */
3401 struct sg_lb_stats {
3402 unsigned long avg_load; /*Avg load across the CPUs of the group */
3403 unsigned long group_load; /* Total load over the CPUs of the group */
3404 unsigned long sum_nr_running; /* Nr tasks running in the group */
3405 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3406 unsigned long group_capacity;
3407 int group_imb; /* Is there an imbalance in the group ? */
3408 };
3409
3410 /**
3411 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3412 * @group: The group whose first cpu is to be returned.
3413 */
3414 static inline unsigned int group_first_cpu(struct sched_group *group)
3415 {
3416 return cpumask_first(sched_group_cpus(group));
3417 }
3418
3419 /**
3420 * get_sd_load_idx - Obtain the load index for a given sched domain.
3421 * @sd: The sched_domain whose load_idx is to be obtained.
3422 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3423 */
3424 static inline int get_sd_load_idx(struct sched_domain *sd,
3425 enum cpu_idle_type idle)
3426 {
3427 int load_idx;
3428
3429 switch (idle) {
3430 case CPU_NOT_IDLE:
3431 load_idx = sd->busy_idx;
3432 break;
3433
3434 case CPU_NEWLY_IDLE:
3435 load_idx = sd->newidle_idx;
3436 break;
3437 default:
3438 load_idx = sd->idle_idx;
3439 break;
3440 }
3441
3442 return load_idx;
3443 }
3444
3445
3446 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3447 /**
3448 * init_sd_power_savings_stats - Initialize power savings statistics for
3449 * the given sched_domain, during load balancing.
3450 *
3451 * @sd: Sched domain whose power-savings statistics are to be initialized.
3452 * @sds: Variable containing the statistics for sd.
3453 * @idle: Idle status of the CPU at which we're performing load-balancing.
3454 */
3455 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3456 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3457 {
3458 /*
3459 * Busy processors will not participate in power savings
3460 * balance.
3461 */
3462 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3463 sds->power_savings_balance = 0;
3464 else {
3465 sds->power_savings_balance = 1;
3466 sds->min_nr_running = ULONG_MAX;
3467 sds->leader_nr_running = 0;
3468 }
3469 }
3470
3471 /**
3472 * update_sd_power_savings_stats - Update the power saving stats for a
3473 * sched_domain while performing load balancing.
3474 *
3475 * @group: sched_group belonging to the sched_domain under consideration.
3476 * @sds: Variable containing the statistics of the sched_domain
3477 * @local_group: Does group contain the CPU for which we're performing
3478 * load balancing ?
3479 * @sgs: Variable containing the statistics of the group.
3480 */
3481 static inline void update_sd_power_savings_stats(struct sched_group *group,
3482 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3483 {
3484
3485 if (!sds->power_savings_balance)
3486 return;
3487
3488 /*
3489 * If the local group is idle or completely loaded
3490 * no need to do power savings balance at this domain
3491 */
3492 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3493 !sds->this_nr_running))
3494 sds->power_savings_balance = 0;
3495
3496 /*
3497 * If a group is already running at full capacity or idle,
3498 * don't include that group in power savings calculations
3499 */
3500 if (!sds->power_savings_balance ||
3501 sgs->sum_nr_running >= sgs->group_capacity ||
3502 !sgs->sum_nr_running)
3503 return;
3504
3505 /*
3506 * Calculate the group which has the least non-idle load.
3507 * This is the group from where we need to pick up the load
3508 * for saving power
3509 */
3510 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3511 (sgs->sum_nr_running == sds->min_nr_running &&
3512 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3513 sds->group_min = group;
3514 sds->min_nr_running = sgs->sum_nr_running;
3515 sds->min_load_per_task = sgs->sum_weighted_load /
3516 sgs->sum_nr_running;
3517 }
3518
3519 /*
3520 * Calculate the group which is almost near its
3521 * capacity but still has some space to pick up some load
3522 * from other group and save more power
3523 */
3524 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3525 return;
3526
3527 if (sgs->sum_nr_running > sds->leader_nr_running ||
3528 (sgs->sum_nr_running == sds->leader_nr_running &&
3529 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3530 sds->group_leader = group;
3531 sds->leader_nr_running = sgs->sum_nr_running;
3532 }
3533 }
3534
3535 /**
3536 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3537 * @sds: Variable containing the statistics of the sched_domain
3538 * under consideration.
3539 * @this_cpu: Cpu at which we're currently performing load-balancing.
3540 * @imbalance: Variable to store the imbalance.
3541 *
3542 * Description:
3543 * Check if we have potential to perform some power-savings balance.
3544 * If yes, set the busiest group to be the least loaded group in the
3545 * sched_domain, so that it's CPUs can be put to idle.
3546 *
3547 * Returns 1 if there is potential to perform power-savings balance.
3548 * Else returns 0.
3549 */
3550 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3551 int this_cpu, unsigned long *imbalance)
3552 {
3553 if (!sds->power_savings_balance)
3554 return 0;
3555
3556 if (sds->this != sds->group_leader ||
3557 sds->group_leader == sds->group_min)
3558 return 0;
3559
3560 *imbalance = sds->min_load_per_task;
3561 sds->busiest = sds->group_min;
3562
3563 return 1;
3564
3565 }
3566 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3567 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3568 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3569 {
3570 return;
3571 }
3572
3573 static inline void update_sd_power_savings_stats(struct sched_group *group,
3574 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3575 {
3576 return;
3577 }
3578
3579 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3580 int this_cpu, unsigned long *imbalance)
3581 {
3582 return 0;
3583 }
3584 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3585
3586
3587 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3588 {
3589 return SCHED_LOAD_SCALE;
3590 }
3591
3592 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3593 {
3594 return default_scale_freq_power(sd, cpu);
3595 }
3596
3597 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3598 {
3599 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3600 unsigned long smt_gain = sd->smt_gain;
3601
3602 smt_gain /= weight;
3603
3604 return smt_gain;
3605 }
3606
3607 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3608 {
3609 return default_scale_smt_power(sd, cpu);
3610 }
3611
3612 unsigned long scale_rt_power(int cpu)
3613 {
3614 struct rq *rq = cpu_rq(cpu);
3615 u64 total, available;
3616
3617 sched_avg_update(rq);
3618
3619 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3620 available = total - rq->rt_avg;
3621
3622 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3623 total = SCHED_LOAD_SCALE;
3624
3625 total >>= SCHED_LOAD_SHIFT;
3626
3627 return div_u64(available, total);
3628 }
3629
3630 static void update_cpu_power(struct sched_domain *sd, int cpu)
3631 {
3632 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3633 unsigned long power = SCHED_LOAD_SCALE;
3634 struct sched_group *sdg = sd->groups;
3635
3636 if (sched_feat(ARCH_POWER))
3637 power *= arch_scale_freq_power(sd, cpu);
3638 else
3639 power *= default_scale_freq_power(sd, cpu);
3640
3641 power >>= SCHED_LOAD_SHIFT;
3642
3643 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3644 if (sched_feat(ARCH_POWER))
3645 power *= arch_scale_smt_power(sd, cpu);
3646 else
3647 power *= default_scale_smt_power(sd, cpu);
3648
3649 power >>= SCHED_LOAD_SHIFT;
3650 }
3651
3652 power *= scale_rt_power(cpu);
3653 power >>= SCHED_LOAD_SHIFT;
3654
3655 if (!power)
3656 power = 1;
3657
3658 sdg->cpu_power = power;
3659 }
3660
3661 static void update_group_power(struct sched_domain *sd, int cpu)
3662 {
3663 struct sched_domain *child = sd->child;
3664 struct sched_group *group, *sdg = sd->groups;
3665 unsigned long power;
3666
3667 if (!child) {
3668 update_cpu_power(sd, cpu);
3669 return;
3670 }
3671
3672 power = 0;
3673
3674 group = child->groups;
3675 do {
3676 power += group->cpu_power;
3677 group = group->next;
3678 } while (group != child->groups);
3679
3680 sdg->cpu_power = power;
3681 }
3682
3683 /**
3684 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3685 * @sd: The sched_domain whose statistics are to be updated.
3686 * @group: sched_group whose statistics are to be updated.
3687 * @this_cpu: Cpu for which load balance is currently performed.
3688 * @idle: Idle status of this_cpu
3689 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3690 * @sd_idle: Idle status of the sched_domain containing group.
3691 * @local_group: Does group contain this_cpu.
3692 * @cpus: Set of cpus considered for load balancing.
3693 * @balance: Should we balance.
3694 * @sgs: variable to hold the statistics for this group.
3695 */
3696 static inline void update_sg_lb_stats(struct sched_domain *sd,
3697 struct sched_group *group, int this_cpu,
3698 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3699 int local_group, const struct cpumask *cpus,
3700 int *balance, struct sg_lb_stats *sgs)
3701 {
3702 unsigned long load, max_cpu_load, min_cpu_load;
3703 int i;
3704 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3705 unsigned long sum_avg_load_per_task;
3706 unsigned long avg_load_per_task;
3707
3708 if (local_group) {
3709 balance_cpu = group_first_cpu(group);
3710 if (balance_cpu == this_cpu)
3711 update_group_power(sd, this_cpu);
3712 }
3713
3714 /* Tally up the load of all CPUs in the group */
3715 sum_avg_load_per_task = avg_load_per_task = 0;
3716 max_cpu_load = 0;
3717 min_cpu_load = ~0UL;
3718
3719 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3720 struct rq *rq = cpu_rq(i);
3721
3722 if (*sd_idle && rq->nr_running)
3723 *sd_idle = 0;
3724
3725 /* Bias balancing toward cpus of our domain */
3726 if (local_group) {
3727 if (idle_cpu(i) && !first_idle_cpu) {
3728 first_idle_cpu = 1;
3729 balance_cpu = i;
3730 }
3731
3732 load = target_load(i, load_idx);
3733 } else {
3734 load = source_load(i, load_idx);
3735 if (load > max_cpu_load)
3736 max_cpu_load = load;
3737 if (min_cpu_load > load)
3738 min_cpu_load = load;
3739 }
3740
3741 sgs->group_load += load;
3742 sgs->sum_nr_running += rq->nr_running;
3743 sgs->sum_weighted_load += weighted_cpuload(i);
3744
3745 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3746 }
3747
3748 /*
3749 * First idle cpu or the first cpu(busiest) in this sched group
3750 * is eligible for doing load balancing at this and above
3751 * domains. In the newly idle case, we will allow all the cpu's
3752 * to do the newly idle load balance.
3753 */
3754 if (idle != CPU_NEWLY_IDLE && local_group &&
3755 balance_cpu != this_cpu && balance) {
3756 *balance = 0;
3757 return;
3758 }
3759
3760 /* Adjust by relative CPU power of the group */
3761 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3762
3763
3764 /*
3765 * Consider the group unbalanced when the imbalance is larger
3766 * than the average weight of two tasks.
3767 *
3768 * APZ: with cgroup the avg task weight can vary wildly and
3769 * might not be a suitable number - should we keep a
3770 * normalized nr_running number somewhere that negates
3771 * the hierarchy?
3772 */
3773 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3774 group->cpu_power;
3775
3776 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3777 sgs->group_imb = 1;
3778
3779 sgs->group_capacity =
3780 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3781 }
3782
3783 /**
3784 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3785 * @sd: sched_domain whose statistics are to be updated.
3786 * @this_cpu: Cpu for which load balance is currently performed.
3787 * @idle: Idle status of this_cpu
3788 * @sd_idle: Idle status of the sched_domain containing group.
3789 * @cpus: Set of cpus considered for load balancing.
3790 * @balance: Should we balance.
3791 * @sds: variable to hold the statistics for this sched_domain.
3792 */
3793 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3794 enum cpu_idle_type idle, int *sd_idle,
3795 const struct cpumask *cpus, int *balance,
3796 struct sd_lb_stats *sds)
3797 {
3798 struct sched_domain *child = sd->child;
3799 struct sched_group *group = sd->groups;
3800 struct sg_lb_stats sgs;
3801 int load_idx, prefer_sibling = 0;
3802
3803 if (child && child->flags & SD_PREFER_SIBLING)
3804 prefer_sibling = 1;
3805
3806 init_sd_power_savings_stats(sd, sds, idle);
3807 load_idx = get_sd_load_idx(sd, idle);
3808
3809 do {
3810 int local_group;
3811
3812 local_group = cpumask_test_cpu(this_cpu,
3813 sched_group_cpus(group));
3814 memset(&sgs, 0, sizeof(sgs));
3815 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3816 local_group, cpus, balance, &sgs);
3817
3818 if (local_group && balance && !(*balance))
3819 return;
3820
3821 sds->total_load += sgs.group_load;
3822 sds->total_pwr += group->cpu_power;
3823
3824 /*
3825 * In case the child domain prefers tasks go to siblings
3826 * first, lower the group capacity to one so that we'll try
3827 * and move all the excess tasks away.
3828 */
3829 if (prefer_sibling)
3830 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3831
3832 if (local_group) {
3833 sds->this_load = sgs.avg_load;
3834 sds->this = group;
3835 sds->this_nr_running = sgs.sum_nr_running;
3836 sds->this_load_per_task = sgs.sum_weighted_load;
3837 } else if (sgs.avg_load > sds->max_load &&
3838 (sgs.sum_nr_running > sgs.group_capacity ||
3839 sgs.group_imb)) {
3840 sds->max_load = sgs.avg_load;
3841 sds->busiest = group;
3842 sds->busiest_nr_running = sgs.sum_nr_running;
3843 sds->busiest_load_per_task = sgs.sum_weighted_load;
3844 sds->group_imb = sgs.group_imb;
3845 }
3846
3847 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3848 group = group->next;
3849 } while (group != sd->groups);
3850 }
3851
3852 /**
3853 * fix_small_imbalance - Calculate the minor imbalance that exists
3854 * amongst the groups of a sched_domain, during
3855 * load balancing.
3856 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3857 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3858 * @imbalance: Variable to store the imbalance.
3859 */
3860 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3861 int this_cpu, unsigned long *imbalance)
3862 {
3863 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3864 unsigned int imbn = 2;
3865
3866 if (sds->this_nr_running) {
3867 sds->this_load_per_task /= sds->this_nr_running;
3868 if (sds->busiest_load_per_task >
3869 sds->this_load_per_task)
3870 imbn = 1;
3871 } else
3872 sds->this_load_per_task =
3873 cpu_avg_load_per_task(this_cpu);
3874
3875 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3876 sds->busiest_load_per_task * imbn) {
3877 *imbalance = sds->busiest_load_per_task;
3878 return;
3879 }
3880
3881 /*
3882 * OK, we don't have enough imbalance to justify moving tasks,
3883 * however we may be able to increase total CPU power used by
3884 * moving them.
3885 */
3886
3887 pwr_now += sds->busiest->cpu_power *
3888 min(sds->busiest_load_per_task, sds->max_load);
3889 pwr_now += sds->this->cpu_power *
3890 min(sds->this_load_per_task, sds->this_load);
3891 pwr_now /= SCHED_LOAD_SCALE;
3892
3893 /* Amount of load we'd subtract */
3894 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3895 sds->busiest->cpu_power;
3896 if (sds->max_load > tmp)
3897 pwr_move += sds->busiest->cpu_power *
3898 min(sds->busiest_load_per_task, sds->max_load - tmp);
3899
3900 /* Amount of load we'd add */
3901 if (sds->max_load * sds->busiest->cpu_power <
3902 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3903 tmp = (sds->max_load * sds->busiest->cpu_power) /
3904 sds->this->cpu_power;
3905 else
3906 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3907 sds->this->cpu_power;
3908 pwr_move += sds->this->cpu_power *
3909 min(sds->this_load_per_task, sds->this_load + tmp);
3910 pwr_move /= SCHED_LOAD_SCALE;
3911
3912 /* Move if we gain throughput */
3913 if (pwr_move > pwr_now)
3914 *imbalance = sds->busiest_load_per_task;
3915 }
3916
3917 /**
3918 * calculate_imbalance - Calculate the amount of imbalance present within the
3919 * groups of a given sched_domain during load balance.
3920 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3921 * @this_cpu: Cpu for which currently load balance is being performed.
3922 * @imbalance: The variable to store the imbalance.
3923 */
3924 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3925 unsigned long *imbalance)
3926 {
3927 unsigned long max_pull;
3928 /*
3929 * In the presence of smp nice balancing, certain scenarios can have
3930 * max load less than avg load(as we skip the groups at or below
3931 * its cpu_power, while calculating max_load..)
3932 */
3933 if (sds->max_load < sds->avg_load) {
3934 *imbalance = 0;
3935 return fix_small_imbalance(sds, this_cpu, imbalance);
3936 }
3937
3938 /* Don't want to pull so many tasks that a group would go idle */
3939 max_pull = min(sds->max_load - sds->avg_load,
3940 sds->max_load - sds->busiest_load_per_task);
3941
3942 /* How much load to actually move to equalise the imbalance */
3943 *imbalance = min(max_pull * sds->busiest->cpu_power,
3944 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3945 / SCHED_LOAD_SCALE;
3946
3947 /*
3948 * if *imbalance is less than the average load per runnable task
3949 * there is no gaurantee that any tasks will be moved so we'll have
3950 * a think about bumping its value to force at least one task to be
3951 * moved
3952 */
3953 if (*imbalance < sds->busiest_load_per_task)
3954 return fix_small_imbalance(sds, this_cpu, imbalance);
3955
3956 }
3957 /******* find_busiest_group() helpers end here *********************/
3958
3959 /**
3960 * find_busiest_group - Returns the busiest group within the sched_domain
3961 * if there is an imbalance. If there isn't an imbalance, and
3962 * the user has opted for power-savings, it returns a group whose
3963 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3964 * such a group exists.
3965 *
3966 * Also calculates the amount of weighted load which should be moved
3967 * to restore balance.
3968 *
3969 * @sd: The sched_domain whose busiest group is to be returned.
3970 * @this_cpu: The cpu for which load balancing is currently being performed.
3971 * @imbalance: Variable which stores amount of weighted load which should
3972 * be moved to restore balance/put a group to idle.
3973 * @idle: The idle status of this_cpu.
3974 * @sd_idle: The idleness of sd
3975 * @cpus: The set of CPUs under consideration for load-balancing.
3976 * @balance: Pointer to a variable indicating if this_cpu
3977 * is the appropriate cpu to perform load balancing at this_level.
3978 *
3979 * Returns: - the busiest group if imbalance exists.
3980 * - If no imbalance and user has opted for power-savings balance,
3981 * return the least loaded group whose CPUs can be
3982 * put to idle by rebalancing its tasks onto our group.
3983 */
3984 static struct sched_group *
3985 find_busiest_group(struct sched_domain *sd, int this_cpu,
3986 unsigned long *imbalance, enum cpu_idle_type idle,
3987 int *sd_idle, const struct cpumask *cpus, int *balance)
3988 {
3989 struct sd_lb_stats sds;
3990
3991 memset(&sds, 0, sizeof(sds));
3992
3993 /*
3994 * Compute the various statistics relavent for load balancing at
3995 * this level.
3996 */
3997 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3998 balance, &sds);
3999
4000 /* Cases where imbalance does not exist from POV of this_cpu */
4001 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4002 * at this level.
4003 * 2) There is no busy sibling group to pull from.
4004 * 3) This group is the busiest group.
4005 * 4) This group is more busy than the avg busieness at this
4006 * sched_domain.
4007 * 5) The imbalance is within the specified limit.
4008 * 6) Any rebalance would lead to ping-pong
4009 */
4010 if (balance && !(*balance))
4011 goto ret;
4012
4013 if (!sds.busiest || sds.busiest_nr_running == 0)
4014 goto out_balanced;
4015
4016 if (sds.this_load >= sds.max_load)
4017 goto out_balanced;
4018
4019 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4020
4021 if (sds.this_load >= sds.avg_load)
4022 goto out_balanced;
4023
4024 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4025 goto out_balanced;
4026
4027 sds.busiest_load_per_task /= sds.busiest_nr_running;
4028 if (sds.group_imb)
4029 sds.busiest_load_per_task =
4030 min(sds.busiest_load_per_task, sds.avg_load);
4031
4032 /*
4033 * We're trying to get all the cpus to the average_load, so we don't
4034 * want to push ourselves above the average load, nor do we wish to
4035 * reduce the max loaded cpu below the average load, as either of these
4036 * actions would just result in more rebalancing later, and ping-pong
4037 * tasks around. Thus we look for the minimum possible imbalance.
4038 * Negative imbalances (*we* are more loaded than anyone else) will
4039 * be counted as no imbalance for these purposes -- we can't fix that
4040 * by pulling tasks to us. Be careful of negative numbers as they'll
4041 * appear as very large values with unsigned longs.
4042 */
4043 if (sds.max_load <= sds.busiest_load_per_task)
4044 goto out_balanced;
4045
4046 /* Looks like there is an imbalance. Compute it */
4047 calculate_imbalance(&sds, this_cpu, imbalance);
4048 return sds.busiest;
4049
4050 out_balanced:
4051 /*
4052 * There is no obvious imbalance. But check if we can do some balancing
4053 * to save power.
4054 */
4055 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4056 return sds.busiest;
4057 ret:
4058 *imbalance = 0;
4059 return NULL;
4060 }
4061
4062 /*
4063 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4064 */
4065 static struct rq *
4066 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4067 unsigned long imbalance, const struct cpumask *cpus)
4068 {
4069 struct rq *busiest = NULL, *rq;
4070 unsigned long max_load = 0;
4071 int i;
4072
4073 for_each_cpu(i, sched_group_cpus(group)) {
4074 unsigned long power = power_of(i);
4075 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4076 unsigned long wl;
4077
4078 if (!cpumask_test_cpu(i, cpus))
4079 continue;
4080
4081 rq = cpu_rq(i);
4082 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4083 wl /= power;
4084
4085 if (capacity && rq->nr_running == 1 && wl > imbalance)
4086 continue;
4087
4088 if (wl > max_load) {
4089 max_load = wl;
4090 busiest = rq;
4091 }
4092 }
4093
4094 return busiest;
4095 }
4096
4097 /*
4098 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4099 * so long as it is large enough.
4100 */
4101 #define MAX_PINNED_INTERVAL 512
4102
4103 /* Working cpumask for load_balance and load_balance_newidle. */
4104 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4105
4106 /*
4107 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4108 * tasks if there is an imbalance.
4109 */
4110 static int load_balance(int this_cpu, struct rq *this_rq,
4111 struct sched_domain *sd, enum cpu_idle_type idle,
4112 int *balance)
4113 {
4114 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4115 struct sched_group *group;
4116 unsigned long imbalance;
4117 struct rq *busiest;
4118 unsigned long flags;
4119 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4120
4121 cpumask_copy(cpus, cpu_active_mask);
4122
4123 /*
4124 * When power savings policy is enabled for the parent domain, idle
4125 * sibling can pick up load irrespective of busy siblings. In this case,
4126 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4127 * portraying it as CPU_NOT_IDLE.
4128 */
4129 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4130 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4131 sd_idle = 1;
4132
4133 schedstat_inc(sd, lb_count[idle]);
4134
4135 redo:
4136 update_shares(sd);
4137 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4138 cpus, balance);
4139
4140 if (*balance == 0)
4141 goto out_balanced;
4142
4143 if (!group) {
4144 schedstat_inc(sd, lb_nobusyg[idle]);
4145 goto out_balanced;
4146 }
4147
4148 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4149 if (!busiest) {
4150 schedstat_inc(sd, lb_nobusyq[idle]);
4151 goto out_balanced;
4152 }
4153
4154 BUG_ON(busiest == this_rq);
4155
4156 schedstat_add(sd, lb_imbalance[idle], imbalance);
4157
4158 ld_moved = 0;
4159 if (busiest->nr_running > 1) {
4160 /*
4161 * Attempt to move tasks. If find_busiest_group has found
4162 * an imbalance but busiest->nr_running <= 1, the group is
4163 * still unbalanced. ld_moved simply stays zero, so it is
4164 * correctly treated as an imbalance.
4165 */
4166 local_irq_save(flags);
4167 double_rq_lock(this_rq, busiest);
4168 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4169 imbalance, sd, idle, &all_pinned);
4170 double_rq_unlock(this_rq, busiest);
4171 local_irq_restore(flags);
4172
4173 /*
4174 * some other cpu did the load balance for us.
4175 */
4176 if (ld_moved && this_cpu != smp_processor_id())
4177 resched_cpu(this_cpu);
4178
4179 /* All tasks on this runqueue were pinned by CPU affinity */
4180 if (unlikely(all_pinned)) {
4181 cpumask_clear_cpu(cpu_of(busiest), cpus);
4182 if (!cpumask_empty(cpus))
4183 goto redo;
4184 goto out_balanced;
4185 }
4186 }
4187
4188 if (!ld_moved) {
4189 schedstat_inc(sd, lb_failed[idle]);
4190 sd->nr_balance_failed++;
4191
4192 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4193
4194 spin_lock_irqsave(&busiest->lock, flags);
4195
4196 /* don't kick the migration_thread, if the curr
4197 * task on busiest cpu can't be moved to this_cpu
4198 */
4199 if (!cpumask_test_cpu(this_cpu,
4200 &busiest->curr->cpus_allowed)) {
4201 spin_unlock_irqrestore(&busiest->lock, flags);
4202 all_pinned = 1;
4203 goto out_one_pinned;
4204 }
4205
4206 if (!busiest->active_balance) {
4207 busiest->active_balance = 1;
4208 busiest->push_cpu = this_cpu;
4209 active_balance = 1;
4210 }
4211 spin_unlock_irqrestore(&busiest->lock, flags);
4212 if (active_balance)
4213 wake_up_process(busiest->migration_thread);
4214
4215 /*
4216 * We've kicked active balancing, reset the failure
4217 * counter.
4218 */
4219 sd->nr_balance_failed = sd->cache_nice_tries+1;
4220 }
4221 } else
4222 sd->nr_balance_failed = 0;
4223
4224 if (likely(!active_balance)) {
4225 /* We were unbalanced, so reset the balancing interval */
4226 sd->balance_interval = sd->min_interval;
4227 } else {
4228 /*
4229 * If we've begun active balancing, start to back off. This
4230 * case may not be covered by the all_pinned logic if there
4231 * is only 1 task on the busy runqueue (because we don't call
4232 * move_tasks).
4233 */
4234 if (sd->balance_interval < sd->max_interval)
4235 sd->balance_interval *= 2;
4236 }
4237
4238 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4239 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4240 ld_moved = -1;
4241
4242 goto out;
4243
4244 out_balanced:
4245 schedstat_inc(sd, lb_balanced[idle]);
4246
4247 sd->nr_balance_failed = 0;
4248
4249 out_one_pinned:
4250 /* tune up the balancing interval */
4251 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4252 (sd->balance_interval < sd->max_interval))
4253 sd->balance_interval *= 2;
4254
4255 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4256 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4257 ld_moved = -1;
4258 else
4259 ld_moved = 0;
4260 out:
4261 if (ld_moved)
4262 update_shares(sd);
4263 return ld_moved;
4264 }
4265
4266 /*
4267 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4268 * tasks if there is an imbalance.
4269 *
4270 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4271 * this_rq is locked.
4272 */
4273 static int
4274 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4275 {
4276 struct sched_group *group;
4277 struct rq *busiest = NULL;
4278 unsigned long imbalance;
4279 int ld_moved = 0;
4280 int sd_idle = 0;
4281 int all_pinned = 0;
4282 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4283
4284 cpumask_copy(cpus, cpu_active_mask);
4285
4286 /*
4287 * When power savings policy is enabled for the parent domain, idle
4288 * sibling can pick up load irrespective of busy siblings. In this case,
4289 * let the state of idle sibling percolate up as IDLE, instead of
4290 * portraying it as CPU_NOT_IDLE.
4291 */
4292 if (sd->flags & SD_SHARE_CPUPOWER &&
4293 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4294 sd_idle = 1;
4295
4296 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4297 redo:
4298 update_shares_locked(this_rq, sd);
4299 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4300 &sd_idle, cpus, NULL);
4301 if (!group) {
4302 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4303 goto out_balanced;
4304 }
4305
4306 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4307 if (!busiest) {
4308 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4309 goto out_balanced;
4310 }
4311
4312 BUG_ON(busiest == this_rq);
4313
4314 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4315
4316 ld_moved = 0;
4317 if (busiest->nr_running > 1) {
4318 /* Attempt to move tasks */
4319 double_lock_balance(this_rq, busiest);
4320 /* this_rq->clock is already updated */
4321 update_rq_clock(busiest);
4322 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4323 imbalance, sd, CPU_NEWLY_IDLE,
4324 &all_pinned);
4325 double_unlock_balance(this_rq, busiest);
4326
4327 if (unlikely(all_pinned)) {
4328 cpumask_clear_cpu(cpu_of(busiest), cpus);
4329 if (!cpumask_empty(cpus))
4330 goto redo;
4331 }
4332 }
4333
4334 if (!ld_moved) {
4335 int active_balance = 0;
4336
4337 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4338 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4339 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4340 return -1;
4341
4342 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4343 return -1;
4344
4345 if (sd->nr_balance_failed++ < 2)
4346 return -1;
4347
4348 /*
4349 * The only task running in a non-idle cpu can be moved to this
4350 * cpu in an attempt to completely freeup the other CPU
4351 * package. The same method used to move task in load_balance()
4352 * have been extended for load_balance_newidle() to speedup
4353 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4354 *
4355 * The package power saving logic comes from
4356 * find_busiest_group(). If there are no imbalance, then
4357 * f_b_g() will return NULL. However when sched_mc={1,2} then
4358 * f_b_g() will select a group from which a running task may be
4359 * pulled to this cpu in order to make the other package idle.
4360 * If there is no opportunity to make a package idle and if
4361 * there are no imbalance, then f_b_g() will return NULL and no
4362 * action will be taken in load_balance_newidle().
4363 *
4364 * Under normal task pull operation due to imbalance, there
4365 * will be more than one task in the source run queue and
4366 * move_tasks() will succeed. ld_moved will be true and this
4367 * active balance code will not be triggered.
4368 */
4369
4370 /* Lock busiest in correct order while this_rq is held */
4371 double_lock_balance(this_rq, busiest);
4372
4373 /*
4374 * don't kick the migration_thread, if the curr
4375 * task on busiest cpu can't be moved to this_cpu
4376 */
4377 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4378 double_unlock_balance(this_rq, busiest);
4379 all_pinned = 1;
4380 return ld_moved;
4381 }
4382
4383 if (!busiest->active_balance) {
4384 busiest->active_balance = 1;
4385 busiest->push_cpu = this_cpu;
4386 active_balance = 1;
4387 }
4388
4389 double_unlock_balance(this_rq, busiest);
4390 /*
4391 * Should not call ttwu while holding a rq->lock
4392 */
4393 spin_unlock(&this_rq->lock);
4394 if (active_balance)
4395 wake_up_process(busiest->migration_thread);
4396 spin_lock(&this_rq->lock);
4397
4398 } else
4399 sd->nr_balance_failed = 0;
4400
4401 update_shares_locked(this_rq, sd);
4402 return ld_moved;
4403
4404 out_balanced:
4405 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4406 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4407 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4408 return -1;
4409 sd->nr_balance_failed = 0;
4410
4411 return 0;
4412 }
4413
4414 /*
4415 * idle_balance is called by schedule() if this_cpu is about to become
4416 * idle. Attempts to pull tasks from other CPUs.
4417 */
4418 static void idle_balance(int this_cpu, struct rq *this_rq)
4419 {
4420 struct sched_domain *sd;
4421 int pulled_task = 0;
4422 unsigned long next_balance = jiffies + HZ;
4423
4424 this_rq->idle_stamp = this_rq->clock;
4425
4426 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4427 return;
4428
4429 for_each_domain(this_cpu, sd) {
4430 unsigned long interval;
4431
4432 if (!(sd->flags & SD_LOAD_BALANCE))
4433 continue;
4434
4435 if (sd->flags & SD_BALANCE_NEWIDLE)
4436 /* If we've pulled tasks over stop searching: */
4437 pulled_task = load_balance_newidle(this_cpu, this_rq,
4438 sd);
4439
4440 interval = msecs_to_jiffies(sd->balance_interval);
4441 if (time_after(next_balance, sd->last_balance + interval))
4442 next_balance = sd->last_balance + interval;
4443 if (pulled_task) {
4444 this_rq->idle_stamp = 0;
4445 break;
4446 }
4447 }
4448 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4449 /*
4450 * We are going idle. next_balance may be set based on
4451 * a busy processor. So reset next_balance.
4452 */
4453 this_rq->next_balance = next_balance;
4454 }
4455 }
4456
4457 /*
4458 * active_load_balance is run by migration threads. It pushes running tasks
4459 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4460 * running on each physical CPU where possible, and avoids physical /
4461 * logical imbalances.
4462 *
4463 * Called with busiest_rq locked.
4464 */
4465 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4466 {
4467 int target_cpu = busiest_rq->push_cpu;
4468 struct sched_domain *sd;
4469 struct rq *target_rq;
4470
4471 /* Is there any task to move? */
4472 if (busiest_rq->nr_running <= 1)
4473 return;
4474
4475 target_rq = cpu_rq(target_cpu);
4476
4477 /*
4478 * This condition is "impossible", if it occurs
4479 * we need to fix it. Originally reported by
4480 * Bjorn Helgaas on a 128-cpu setup.
4481 */
4482 BUG_ON(busiest_rq == target_rq);
4483
4484 /* move a task from busiest_rq to target_rq */
4485 double_lock_balance(busiest_rq, target_rq);
4486 update_rq_clock(busiest_rq);
4487 update_rq_clock(target_rq);
4488
4489 /* Search for an sd spanning us and the target CPU. */
4490 for_each_domain(target_cpu, sd) {
4491 if ((sd->flags & SD_LOAD_BALANCE) &&
4492 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4493 break;
4494 }
4495
4496 if (likely(sd)) {
4497 schedstat_inc(sd, alb_count);
4498
4499 if (move_one_task(target_rq, target_cpu, busiest_rq,
4500 sd, CPU_IDLE))
4501 schedstat_inc(sd, alb_pushed);
4502 else
4503 schedstat_inc(sd, alb_failed);
4504 }
4505 double_unlock_balance(busiest_rq, target_rq);
4506 }
4507
4508 #ifdef CONFIG_NO_HZ
4509 static struct {
4510 atomic_t load_balancer;
4511 cpumask_var_t cpu_mask;
4512 cpumask_var_t ilb_grp_nohz_mask;
4513 } nohz ____cacheline_aligned = {
4514 .load_balancer = ATOMIC_INIT(-1),
4515 };
4516
4517 int get_nohz_load_balancer(void)
4518 {
4519 return atomic_read(&nohz.load_balancer);
4520 }
4521
4522 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4523 /**
4524 * lowest_flag_domain - Return lowest sched_domain containing flag.
4525 * @cpu: The cpu whose lowest level of sched domain is to
4526 * be returned.
4527 * @flag: The flag to check for the lowest sched_domain
4528 * for the given cpu.
4529 *
4530 * Returns the lowest sched_domain of a cpu which contains the given flag.
4531 */
4532 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4533 {
4534 struct sched_domain *sd;
4535
4536 for_each_domain(cpu, sd)
4537 if (sd && (sd->flags & flag))
4538 break;
4539
4540 return sd;
4541 }
4542
4543 /**
4544 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4545 * @cpu: The cpu whose domains we're iterating over.
4546 * @sd: variable holding the value of the power_savings_sd
4547 * for cpu.
4548 * @flag: The flag to filter the sched_domains to be iterated.
4549 *
4550 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4551 * set, starting from the lowest sched_domain to the highest.
4552 */
4553 #define for_each_flag_domain(cpu, sd, flag) \
4554 for (sd = lowest_flag_domain(cpu, flag); \
4555 (sd && (sd->flags & flag)); sd = sd->parent)
4556
4557 /**
4558 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4559 * @ilb_group: group to be checked for semi-idleness
4560 *
4561 * Returns: 1 if the group is semi-idle. 0 otherwise.
4562 *
4563 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4564 * and atleast one non-idle CPU. This helper function checks if the given
4565 * sched_group is semi-idle or not.
4566 */
4567 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4568 {
4569 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4570 sched_group_cpus(ilb_group));
4571
4572 /*
4573 * A sched_group is semi-idle when it has atleast one busy cpu
4574 * and atleast one idle cpu.
4575 */
4576 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4577 return 0;
4578
4579 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4580 return 0;
4581
4582 return 1;
4583 }
4584 /**
4585 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4586 * @cpu: The cpu which is nominating a new idle_load_balancer.
4587 *
4588 * Returns: Returns the id of the idle load balancer if it exists,
4589 * Else, returns >= nr_cpu_ids.
4590 *
4591 * This algorithm picks the idle load balancer such that it belongs to a
4592 * semi-idle powersavings sched_domain. The idea is to try and avoid
4593 * completely idle packages/cores just for the purpose of idle load balancing
4594 * when there are other idle cpu's which are better suited for that job.
4595 */
4596 static int find_new_ilb(int cpu)
4597 {
4598 struct sched_domain *sd;
4599 struct sched_group *ilb_group;
4600
4601 /*
4602 * Have idle load balancer selection from semi-idle packages only
4603 * when power-aware load balancing is enabled
4604 */
4605 if (!(sched_smt_power_savings || sched_mc_power_savings))
4606 goto out_done;
4607
4608 /*
4609 * Optimize for the case when we have no idle CPUs or only one
4610 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4611 */
4612 if (cpumask_weight(nohz.cpu_mask) < 2)
4613 goto out_done;
4614
4615 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4616 ilb_group = sd->groups;
4617
4618 do {
4619 if (is_semi_idle_group(ilb_group))
4620 return cpumask_first(nohz.ilb_grp_nohz_mask);
4621
4622 ilb_group = ilb_group->next;
4623
4624 } while (ilb_group != sd->groups);
4625 }
4626
4627 out_done:
4628 return cpumask_first(nohz.cpu_mask);
4629 }
4630 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4631 static inline int find_new_ilb(int call_cpu)
4632 {
4633 return cpumask_first(nohz.cpu_mask);
4634 }
4635 #endif
4636
4637 /*
4638 * This routine will try to nominate the ilb (idle load balancing)
4639 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4640 * load balancing on behalf of all those cpus. If all the cpus in the system
4641 * go into this tickless mode, then there will be no ilb owner (as there is
4642 * no need for one) and all the cpus will sleep till the next wakeup event
4643 * arrives...
4644 *
4645 * For the ilb owner, tick is not stopped. And this tick will be used
4646 * for idle load balancing. ilb owner will still be part of
4647 * nohz.cpu_mask..
4648 *
4649 * While stopping the tick, this cpu will become the ilb owner if there
4650 * is no other owner. And will be the owner till that cpu becomes busy
4651 * or if all cpus in the system stop their ticks at which point
4652 * there is no need for ilb owner.
4653 *
4654 * When the ilb owner becomes busy, it nominates another owner, during the
4655 * next busy scheduler_tick()
4656 */
4657 int select_nohz_load_balancer(int stop_tick)
4658 {
4659 int cpu = smp_processor_id();
4660
4661 if (stop_tick) {
4662 cpu_rq(cpu)->in_nohz_recently = 1;
4663
4664 if (!cpu_active(cpu)) {
4665 if (atomic_read(&nohz.load_balancer) != cpu)
4666 return 0;
4667
4668 /*
4669 * If we are going offline and still the leader,
4670 * give up!
4671 */
4672 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4673 BUG();
4674
4675 return 0;
4676 }
4677
4678 cpumask_set_cpu(cpu, nohz.cpu_mask);
4679
4680 /* time for ilb owner also to sleep */
4681 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4682 if (atomic_read(&nohz.load_balancer) == cpu)
4683 atomic_set(&nohz.load_balancer, -1);
4684 return 0;
4685 }
4686
4687 if (atomic_read(&nohz.load_balancer) == -1) {
4688 /* make me the ilb owner */
4689 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4690 return 1;
4691 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4692 int new_ilb;
4693
4694 if (!(sched_smt_power_savings ||
4695 sched_mc_power_savings))
4696 return 1;
4697 /*
4698 * Check to see if there is a more power-efficient
4699 * ilb.
4700 */
4701 new_ilb = find_new_ilb(cpu);
4702 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4703 atomic_set(&nohz.load_balancer, -1);
4704 resched_cpu(new_ilb);
4705 return 0;
4706 }
4707 return 1;
4708 }
4709 } else {
4710 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4711 return 0;
4712
4713 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4714
4715 if (atomic_read(&nohz.load_balancer) == cpu)
4716 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4717 BUG();
4718 }
4719 return 0;
4720 }
4721 #endif
4722
4723 static DEFINE_SPINLOCK(balancing);
4724
4725 /*
4726 * It checks each scheduling domain to see if it is due to be balanced,
4727 * and initiates a balancing operation if so.
4728 *
4729 * Balancing parameters are set up in arch_init_sched_domains.
4730 */
4731 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4732 {
4733 int balance = 1;
4734 struct rq *rq = cpu_rq(cpu);
4735 unsigned long interval;
4736 struct sched_domain *sd;
4737 /* Earliest time when we have to do rebalance again */
4738 unsigned long next_balance = jiffies + 60*HZ;
4739 int update_next_balance = 0;
4740 int need_serialize;
4741
4742 for_each_domain(cpu, sd) {
4743 if (!(sd->flags & SD_LOAD_BALANCE))
4744 continue;
4745
4746 interval = sd->balance_interval;
4747 if (idle != CPU_IDLE)
4748 interval *= sd->busy_factor;
4749
4750 /* scale ms to jiffies */
4751 interval = msecs_to_jiffies(interval);
4752 if (unlikely(!interval))
4753 interval = 1;
4754 if (interval > HZ*NR_CPUS/10)
4755 interval = HZ*NR_CPUS/10;
4756
4757 need_serialize = sd->flags & SD_SERIALIZE;
4758
4759 if (need_serialize) {
4760 if (!spin_trylock(&balancing))
4761 goto out;
4762 }
4763
4764 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4765 if (load_balance(cpu, rq, sd, idle, &balance)) {
4766 /*
4767 * We've pulled tasks over so either we're no
4768 * longer idle, or one of our SMT siblings is
4769 * not idle.
4770 */
4771 idle = CPU_NOT_IDLE;
4772 }
4773 sd->last_balance = jiffies;
4774 }
4775 if (need_serialize)
4776 spin_unlock(&balancing);
4777 out:
4778 if (time_after(next_balance, sd->last_balance + interval)) {
4779 next_balance = sd->last_balance + interval;
4780 update_next_balance = 1;
4781 }
4782
4783 /*
4784 * Stop the load balance at this level. There is another
4785 * CPU in our sched group which is doing load balancing more
4786 * actively.
4787 */
4788 if (!balance)
4789 break;
4790 }
4791
4792 /*
4793 * next_balance will be updated only when there is a need.
4794 * When the cpu is attached to null domain for ex, it will not be
4795 * updated.
4796 */
4797 if (likely(update_next_balance))
4798 rq->next_balance = next_balance;
4799 }
4800
4801 /*
4802 * run_rebalance_domains is triggered when needed from the scheduler tick.
4803 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4804 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4805 */
4806 static void run_rebalance_domains(struct softirq_action *h)
4807 {
4808 int this_cpu = smp_processor_id();
4809 struct rq *this_rq = cpu_rq(this_cpu);
4810 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4811 CPU_IDLE : CPU_NOT_IDLE;
4812
4813 rebalance_domains(this_cpu, idle);
4814
4815 #ifdef CONFIG_NO_HZ
4816 /*
4817 * If this cpu is the owner for idle load balancing, then do the
4818 * balancing on behalf of the other idle cpus whose ticks are
4819 * stopped.
4820 */
4821 if (this_rq->idle_at_tick &&
4822 atomic_read(&nohz.load_balancer) == this_cpu) {
4823 struct rq *rq;
4824 int balance_cpu;
4825
4826 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4827 if (balance_cpu == this_cpu)
4828 continue;
4829
4830 /*
4831 * If this cpu gets work to do, stop the load balancing
4832 * work being done for other cpus. Next load
4833 * balancing owner will pick it up.
4834 */
4835 if (need_resched())
4836 break;
4837
4838 rebalance_domains(balance_cpu, CPU_IDLE);
4839
4840 rq = cpu_rq(balance_cpu);
4841 if (time_after(this_rq->next_balance, rq->next_balance))
4842 this_rq->next_balance = rq->next_balance;
4843 }
4844 }
4845 #endif
4846 }
4847
4848 static inline int on_null_domain(int cpu)
4849 {
4850 return !rcu_dereference(cpu_rq(cpu)->sd);
4851 }
4852
4853 /*
4854 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4855 *
4856 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4857 * idle load balancing owner or decide to stop the periodic load balancing,
4858 * if the whole system is idle.
4859 */
4860 static inline void trigger_load_balance(struct rq *rq, int cpu)
4861 {
4862 #ifdef CONFIG_NO_HZ
4863 /*
4864 * If we were in the nohz mode recently and busy at the current
4865 * scheduler tick, then check if we need to nominate new idle
4866 * load balancer.
4867 */
4868 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4869 rq->in_nohz_recently = 0;
4870
4871 if (atomic_read(&nohz.load_balancer) == cpu) {
4872 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4873 atomic_set(&nohz.load_balancer, -1);
4874 }
4875
4876 if (atomic_read(&nohz.load_balancer) == -1) {
4877 int ilb = find_new_ilb(cpu);
4878
4879 if (ilb < nr_cpu_ids)
4880 resched_cpu(ilb);
4881 }
4882 }
4883
4884 /*
4885 * If this cpu is idle and doing idle load balancing for all the
4886 * cpus with ticks stopped, is it time for that to stop?
4887 */
4888 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4889 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4890 resched_cpu(cpu);
4891 return;
4892 }
4893
4894 /*
4895 * If this cpu is idle and the idle load balancing is done by
4896 * someone else, then no need raise the SCHED_SOFTIRQ
4897 */
4898 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4899 cpumask_test_cpu(cpu, nohz.cpu_mask))
4900 return;
4901 #endif
4902 /* Don't need to rebalance while attached to NULL domain */
4903 if (time_after_eq(jiffies, rq->next_balance) &&
4904 likely(!on_null_domain(cpu)))
4905 raise_softirq(SCHED_SOFTIRQ);
4906 }
4907
4908 #else /* CONFIG_SMP */
4909
4910 /*
4911 * on UP we do not need to balance between CPUs:
4912 */
4913 static inline void idle_balance(int cpu, struct rq *rq)
4914 {
4915 }
4916
4917 #endif
4918
4919 DEFINE_PER_CPU(struct kernel_stat, kstat);
4920
4921 EXPORT_PER_CPU_SYMBOL(kstat);
4922
4923 /*
4924 * Return any ns on the sched_clock that have not yet been accounted in
4925 * @p in case that task is currently running.
4926 *
4927 * Called with task_rq_lock() held on @rq.
4928 */
4929 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4930 {
4931 u64 ns = 0;
4932
4933 if (task_current(rq, p)) {
4934 update_rq_clock(rq);
4935 ns = rq->clock - p->se.exec_start;
4936 if ((s64)ns < 0)
4937 ns = 0;
4938 }
4939
4940 return ns;
4941 }
4942
4943 unsigned long long task_delta_exec(struct task_struct *p)
4944 {
4945 unsigned long flags;
4946 struct rq *rq;
4947 u64 ns = 0;
4948
4949 rq = task_rq_lock(p, &flags);
4950 ns = do_task_delta_exec(p, rq);
4951 task_rq_unlock(rq, &flags);
4952
4953 return ns;
4954 }
4955
4956 /*
4957 * Return accounted runtime for the task.
4958 * In case the task is currently running, return the runtime plus current's
4959 * pending runtime that have not been accounted yet.
4960 */
4961 unsigned long long task_sched_runtime(struct task_struct *p)
4962 {
4963 unsigned long flags;
4964 struct rq *rq;
4965 u64 ns = 0;
4966
4967 rq = task_rq_lock(p, &flags);
4968 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4969 task_rq_unlock(rq, &flags);
4970
4971 return ns;
4972 }
4973
4974 /*
4975 * Return sum_exec_runtime for the thread group.
4976 * In case the task is currently running, return the sum plus current's
4977 * pending runtime that have not been accounted yet.
4978 *
4979 * Note that the thread group might have other running tasks as well,
4980 * so the return value not includes other pending runtime that other
4981 * running tasks might have.
4982 */
4983 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4984 {
4985 struct task_cputime totals;
4986 unsigned long flags;
4987 struct rq *rq;
4988 u64 ns;
4989
4990 rq = task_rq_lock(p, &flags);
4991 thread_group_cputime(p, &totals);
4992 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4993 task_rq_unlock(rq, &flags);
4994
4995 return ns;
4996 }
4997
4998 /*
4999 * Account user cpu time to a process.
5000 * @p: the process that the cpu time gets accounted to
5001 * @cputime: the cpu time spent in user space since the last update
5002 * @cputime_scaled: cputime scaled by cpu frequency
5003 */
5004 void account_user_time(struct task_struct *p, cputime_t cputime,
5005 cputime_t cputime_scaled)
5006 {
5007 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5008 cputime64_t tmp;
5009
5010 /* Add user time to process. */
5011 p->utime = cputime_add(p->utime, cputime);
5012 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5013 account_group_user_time(p, cputime);
5014
5015 /* Add user time to cpustat. */
5016 tmp = cputime_to_cputime64(cputime);
5017 if (TASK_NICE(p) > 0)
5018 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5019 else
5020 cpustat->user = cputime64_add(cpustat->user, tmp);
5021
5022 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5023 /* Account for user time used */
5024 acct_update_integrals(p);
5025 }
5026
5027 /*
5028 * Account guest cpu time to a process.
5029 * @p: the process that the cpu time gets accounted to
5030 * @cputime: the cpu time spent in virtual machine since the last update
5031 * @cputime_scaled: cputime scaled by cpu frequency
5032 */
5033 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5034 cputime_t cputime_scaled)
5035 {
5036 cputime64_t tmp;
5037 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5038
5039 tmp = cputime_to_cputime64(cputime);
5040
5041 /* Add guest time to process. */
5042 p->utime = cputime_add(p->utime, cputime);
5043 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5044 account_group_user_time(p, cputime);
5045 p->gtime = cputime_add(p->gtime, cputime);
5046
5047 /* Add guest time to cpustat. */
5048 if (TASK_NICE(p) > 0) {
5049 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5050 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5051 } else {
5052 cpustat->user = cputime64_add(cpustat->user, tmp);
5053 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5054 }
5055 }
5056
5057 /*
5058 * Account system cpu time to a process.
5059 * @p: the process that the cpu time gets accounted to
5060 * @hardirq_offset: the offset to subtract from hardirq_count()
5061 * @cputime: the cpu time spent in kernel space since the last update
5062 * @cputime_scaled: cputime scaled by cpu frequency
5063 */
5064 void account_system_time(struct task_struct *p, int hardirq_offset,
5065 cputime_t cputime, cputime_t cputime_scaled)
5066 {
5067 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5068 cputime64_t tmp;
5069
5070 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5071 account_guest_time(p, cputime, cputime_scaled);
5072 return;
5073 }
5074
5075 /* Add system time to process. */
5076 p->stime = cputime_add(p->stime, cputime);
5077 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5078 account_group_system_time(p, cputime);
5079
5080 /* Add system time to cpustat. */
5081 tmp = cputime_to_cputime64(cputime);
5082 if (hardirq_count() - hardirq_offset)
5083 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5084 else if (softirq_count())
5085 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5086 else
5087 cpustat->system = cputime64_add(cpustat->system, tmp);
5088
5089 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5090
5091 /* Account for system time used */
5092 acct_update_integrals(p);
5093 }
5094
5095 /*
5096 * Account for involuntary wait time.
5097 * @steal: the cpu time spent in involuntary wait
5098 */
5099 void account_steal_time(cputime_t cputime)
5100 {
5101 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5102 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5103
5104 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5105 }
5106
5107 /*
5108 * Account for idle time.
5109 * @cputime: the cpu time spent in idle wait
5110 */
5111 void account_idle_time(cputime_t cputime)
5112 {
5113 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5114 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5115 struct rq *rq = this_rq();
5116
5117 if (atomic_read(&rq->nr_iowait) > 0)
5118 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5119 else
5120 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5121 }
5122
5123 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5124
5125 /*
5126 * Account a single tick of cpu time.
5127 * @p: the process that the cpu time gets accounted to
5128 * @user_tick: indicates if the tick is a user or a system tick
5129 */
5130 void account_process_tick(struct task_struct *p, int user_tick)
5131 {
5132 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5133 struct rq *rq = this_rq();
5134
5135 if (user_tick)
5136 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5137 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5138 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5139 one_jiffy_scaled);
5140 else
5141 account_idle_time(cputime_one_jiffy);
5142 }
5143
5144 /*
5145 * Account multiple ticks of steal time.
5146 * @p: the process from which the cpu time has been stolen
5147 * @ticks: number of stolen ticks
5148 */
5149 void account_steal_ticks(unsigned long ticks)
5150 {
5151 account_steal_time(jiffies_to_cputime(ticks));
5152 }
5153
5154 /*
5155 * Account multiple ticks of idle time.
5156 * @ticks: number of stolen ticks
5157 */
5158 void account_idle_ticks(unsigned long ticks)
5159 {
5160 account_idle_time(jiffies_to_cputime(ticks));
5161 }
5162
5163 #endif
5164
5165 /*
5166 * Use precise platform statistics if available:
5167 */
5168 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5169 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5170 {
5171 *ut = p->utime;
5172 *st = p->stime;
5173 }
5174
5175 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5176 {
5177 struct task_cputime cputime;
5178
5179 thread_group_cputime(p, &cputime);
5180
5181 *ut = cputime.utime;
5182 *st = cputime.stime;
5183 }
5184 #else
5185
5186 #ifndef nsecs_to_cputime
5187 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5188 #endif
5189
5190 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5191 {
5192 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5193
5194 /*
5195 * Use CFS's precise accounting:
5196 */
5197 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5198
5199 if (total) {
5200 u64 temp;
5201
5202 temp = (u64)(rtime * utime);
5203 do_div(temp, total);
5204 utime = (cputime_t)temp;
5205 } else
5206 utime = rtime;
5207
5208 /*
5209 * Compare with previous values, to keep monotonicity:
5210 */
5211 p->prev_utime = max(p->prev_utime, utime);
5212 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5213
5214 *ut = p->prev_utime;
5215 *st = p->prev_stime;
5216 }
5217
5218 /*
5219 * Must be called with siglock held.
5220 */
5221 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5222 {
5223 struct signal_struct *sig = p->signal;
5224 struct task_cputime cputime;
5225 cputime_t rtime, utime, total;
5226
5227 thread_group_cputime(p, &cputime);
5228
5229 total = cputime_add(cputime.utime, cputime.stime);
5230 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5231
5232 if (total) {
5233 u64 temp;
5234
5235 temp = (u64)(rtime * cputime.utime);
5236 do_div(temp, total);
5237 utime = (cputime_t)temp;
5238 } else
5239 utime = rtime;
5240
5241 sig->prev_utime = max(sig->prev_utime, utime);
5242 sig->prev_stime = max(sig->prev_stime,
5243 cputime_sub(rtime, sig->prev_utime));
5244
5245 *ut = sig->prev_utime;
5246 *st = sig->prev_stime;
5247 }
5248 #endif
5249
5250 /*
5251 * This function gets called by the timer code, with HZ frequency.
5252 * We call it with interrupts disabled.
5253 *
5254 * It also gets called by the fork code, when changing the parent's
5255 * timeslices.
5256 */
5257 void scheduler_tick(void)
5258 {
5259 int cpu = smp_processor_id();
5260 struct rq *rq = cpu_rq(cpu);
5261 struct task_struct *curr = rq->curr;
5262
5263 sched_clock_tick();
5264
5265 spin_lock(&rq->lock);
5266 update_rq_clock(rq);
5267 update_cpu_load(rq);
5268 curr->sched_class->task_tick(rq, curr, 0);
5269 spin_unlock(&rq->lock);
5270
5271 perf_event_task_tick(curr, cpu);
5272
5273 #ifdef CONFIG_SMP
5274 rq->idle_at_tick = idle_cpu(cpu);
5275 trigger_load_balance(rq, cpu);
5276 #endif
5277 }
5278
5279 notrace unsigned long get_parent_ip(unsigned long addr)
5280 {
5281 if (in_lock_functions(addr)) {
5282 addr = CALLER_ADDR2;
5283 if (in_lock_functions(addr))
5284 addr = CALLER_ADDR3;
5285 }
5286 return addr;
5287 }
5288
5289 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5290 defined(CONFIG_PREEMPT_TRACER))
5291
5292 void __kprobes add_preempt_count(int val)
5293 {
5294 #ifdef CONFIG_DEBUG_PREEMPT
5295 /*
5296 * Underflow?
5297 */
5298 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5299 return;
5300 #endif
5301 preempt_count() += val;
5302 #ifdef CONFIG_DEBUG_PREEMPT
5303 /*
5304 * Spinlock count overflowing soon?
5305 */
5306 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5307 PREEMPT_MASK - 10);
5308 #endif
5309 if (preempt_count() == val)
5310 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5311 }
5312 EXPORT_SYMBOL(add_preempt_count);
5313
5314 void __kprobes sub_preempt_count(int val)
5315 {
5316 #ifdef CONFIG_DEBUG_PREEMPT
5317 /*
5318 * Underflow?
5319 */
5320 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5321 return;
5322 /*
5323 * Is the spinlock portion underflowing?
5324 */
5325 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5326 !(preempt_count() & PREEMPT_MASK)))
5327 return;
5328 #endif
5329
5330 if (preempt_count() == val)
5331 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5332 preempt_count() -= val;
5333 }
5334 EXPORT_SYMBOL(sub_preempt_count);
5335
5336 #endif
5337
5338 /*
5339 * Print scheduling while atomic bug:
5340 */
5341 static noinline void __schedule_bug(struct task_struct *prev)
5342 {
5343 struct pt_regs *regs = get_irq_regs();
5344
5345 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5346 prev->comm, prev->pid, preempt_count());
5347
5348 debug_show_held_locks(prev);
5349 print_modules();
5350 if (irqs_disabled())
5351 print_irqtrace_events(prev);
5352
5353 if (regs)
5354 show_regs(regs);
5355 else
5356 dump_stack();
5357 }
5358
5359 /*
5360 * Various schedule()-time debugging checks and statistics:
5361 */
5362 static inline void schedule_debug(struct task_struct *prev)
5363 {
5364 /*
5365 * Test if we are atomic. Since do_exit() needs to call into
5366 * schedule() atomically, we ignore that path for now.
5367 * Otherwise, whine if we are scheduling when we should not be.
5368 */
5369 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5370 __schedule_bug(prev);
5371
5372 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5373
5374 schedstat_inc(this_rq(), sched_count);
5375 #ifdef CONFIG_SCHEDSTATS
5376 if (unlikely(prev->lock_depth >= 0)) {
5377 schedstat_inc(this_rq(), bkl_count);
5378 schedstat_inc(prev, sched_info.bkl_count);
5379 }
5380 #endif
5381 }
5382
5383 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5384 {
5385 if (prev->state == TASK_RUNNING) {
5386 u64 runtime = prev->se.sum_exec_runtime;
5387
5388 runtime -= prev->se.prev_sum_exec_runtime;
5389 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5390
5391 /*
5392 * In order to avoid avg_overlap growing stale when we are
5393 * indeed overlapping and hence not getting put to sleep, grow
5394 * the avg_overlap on preemption.
5395 *
5396 * We use the average preemption runtime because that
5397 * correlates to the amount of cache footprint a task can
5398 * build up.
5399 */
5400 update_avg(&prev->se.avg_overlap, runtime);
5401 }
5402 prev->sched_class->put_prev_task(rq, prev);
5403 }
5404
5405 /*
5406 * Pick up the highest-prio task:
5407 */
5408 static inline struct task_struct *
5409 pick_next_task(struct rq *rq)
5410 {
5411 const struct sched_class *class;
5412 struct task_struct *p;
5413
5414 /*
5415 * Optimization: we know that if all tasks are in
5416 * the fair class we can call that function directly:
5417 */
5418 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5419 p = fair_sched_class.pick_next_task(rq);
5420 if (likely(p))
5421 return p;
5422 }
5423
5424 class = sched_class_highest;
5425 for ( ; ; ) {
5426 p = class->pick_next_task(rq);
5427 if (p)
5428 return p;
5429 /*
5430 * Will never be NULL as the idle class always
5431 * returns a non-NULL p:
5432 */
5433 class = class->next;
5434 }
5435 }
5436
5437 /*
5438 * schedule() is the main scheduler function.
5439 */
5440 asmlinkage void __sched schedule(void)
5441 {
5442 struct task_struct *prev, *next;
5443 unsigned long *switch_count;
5444 struct rq *rq;
5445 int cpu;
5446
5447 need_resched:
5448 preempt_disable();
5449 cpu = smp_processor_id();
5450 rq = cpu_rq(cpu);
5451 rcu_sched_qs(cpu);
5452 prev = rq->curr;
5453 switch_count = &prev->nivcsw;
5454
5455 release_kernel_lock(prev);
5456 need_resched_nonpreemptible:
5457
5458 schedule_debug(prev);
5459
5460 if (sched_feat(HRTICK))
5461 hrtick_clear(rq);
5462
5463 spin_lock_irq(&rq->lock);
5464 update_rq_clock(rq);
5465 clear_tsk_need_resched(prev);
5466
5467 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5468 if (unlikely(signal_pending_state(prev->state, prev)))
5469 prev->state = TASK_RUNNING;
5470 else
5471 deactivate_task(rq, prev, 1);
5472 switch_count = &prev->nvcsw;
5473 }
5474
5475 pre_schedule(rq, prev);
5476
5477 if (unlikely(!rq->nr_running))
5478 idle_balance(cpu, rq);
5479
5480 put_prev_task(rq, prev);
5481 next = pick_next_task(rq);
5482
5483 if (likely(prev != next)) {
5484 sched_info_switch(prev, next);
5485 perf_event_task_sched_out(prev, next, cpu);
5486
5487 rq->nr_switches++;
5488 rq->curr = next;
5489 ++*switch_count;
5490
5491 context_switch(rq, prev, next); /* unlocks the rq */
5492 /*
5493 * the context switch might have flipped the stack from under
5494 * us, hence refresh the local variables.
5495 */
5496 cpu = smp_processor_id();
5497 rq = cpu_rq(cpu);
5498 } else
5499 spin_unlock_irq(&rq->lock);
5500
5501 post_schedule(rq);
5502
5503 if (unlikely(reacquire_kernel_lock(current) < 0))
5504 goto need_resched_nonpreemptible;
5505
5506 preempt_enable_no_resched();
5507 if (need_resched())
5508 goto need_resched;
5509 }
5510 EXPORT_SYMBOL(schedule);
5511
5512 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5513 /*
5514 * Look out! "owner" is an entirely speculative pointer
5515 * access and not reliable.
5516 */
5517 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5518 {
5519 unsigned int cpu;
5520 struct rq *rq;
5521
5522 if (!sched_feat(OWNER_SPIN))
5523 return 0;
5524
5525 #ifdef CONFIG_DEBUG_PAGEALLOC
5526 /*
5527 * Need to access the cpu field knowing that
5528 * DEBUG_PAGEALLOC could have unmapped it if
5529 * the mutex owner just released it and exited.
5530 */
5531 if (probe_kernel_address(&owner->cpu, cpu))
5532 goto out;
5533 #else
5534 cpu = owner->cpu;
5535 #endif
5536
5537 /*
5538 * Even if the access succeeded (likely case),
5539 * the cpu field may no longer be valid.
5540 */
5541 if (cpu >= nr_cpumask_bits)
5542 goto out;
5543
5544 /*
5545 * We need to validate that we can do a
5546 * get_cpu() and that we have the percpu area.
5547 */
5548 if (!cpu_online(cpu))
5549 goto out;
5550
5551 rq = cpu_rq(cpu);
5552
5553 for (;;) {
5554 /*
5555 * Owner changed, break to re-assess state.
5556 */
5557 if (lock->owner != owner)
5558 break;
5559
5560 /*
5561 * Is that owner really running on that cpu?
5562 */
5563 if (task_thread_info(rq->curr) != owner || need_resched())
5564 return 0;
5565
5566 cpu_relax();
5567 }
5568 out:
5569 return 1;
5570 }
5571 #endif
5572
5573 #ifdef CONFIG_PREEMPT
5574 /*
5575 * this is the entry point to schedule() from in-kernel preemption
5576 * off of preempt_enable. Kernel preemptions off return from interrupt
5577 * occur there and call schedule directly.
5578 */
5579 asmlinkage void __sched preempt_schedule(void)
5580 {
5581 struct thread_info *ti = current_thread_info();
5582
5583 /*
5584 * If there is a non-zero preempt_count or interrupts are disabled,
5585 * we do not want to preempt the current task. Just return..
5586 */
5587 if (likely(ti->preempt_count || irqs_disabled()))
5588 return;
5589
5590 do {
5591 add_preempt_count(PREEMPT_ACTIVE);
5592 schedule();
5593 sub_preempt_count(PREEMPT_ACTIVE);
5594
5595 /*
5596 * Check again in case we missed a preemption opportunity
5597 * between schedule and now.
5598 */
5599 barrier();
5600 } while (need_resched());
5601 }
5602 EXPORT_SYMBOL(preempt_schedule);
5603
5604 /*
5605 * this is the entry point to schedule() from kernel preemption
5606 * off of irq context.
5607 * Note, that this is called and return with irqs disabled. This will
5608 * protect us against recursive calling from irq.
5609 */
5610 asmlinkage void __sched preempt_schedule_irq(void)
5611 {
5612 struct thread_info *ti = current_thread_info();
5613
5614 /* Catch callers which need to be fixed */
5615 BUG_ON(ti->preempt_count || !irqs_disabled());
5616
5617 do {
5618 add_preempt_count(PREEMPT_ACTIVE);
5619 local_irq_enable();
5620 schedule();
5621 local_irq_disable();
5622 sub_preempt_count(PREEMPT_ACTIVE);
5623
5624 /*
5625 * Check again in case we missed a preemption opportunity
5626 * between schedule and now.
5627 */
5628 barrier();
5629 } while (need_resched());
5630 }
5631
5632 #endif /* CONFIG_PREEMPT */
5633
5634 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5635 void *key)
5636 {
5637 return try_to_wake_up(curr->private, mode, wake_flags);
5638 }
5639 EXPORT_SYMBOL(default_wake_function);
5640
5641 /*
5642 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5643 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5644 * number) then we wake all the non-exclusive tasks and one exclusive task.
5645 *
5646 * There are circumstances in which we can try to wake a task which has already
5647 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5648 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5649 */
5650 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5651 int nr_exclusive, int wake_flags, void *key)
5652 {
5653 wait_queue_t *curr, *next;
5654
5655 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5656 unsigned flags = curr->flags;
5657
5658 if (curr->func(curr, mode, wake_flags, key) &&
5659 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5660 break;
5661 }
5662 }
5663
5664 /**
5665 * __wake_up - wake up threads blocked on a waitqueue.
5666 * @q: the waitqueue
5667 * @mode: which threads
5668 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5669 * @key: is directly passed to the wakeup function
5670 *
5671 * It may be assumed that this function implies a write memory barrier before
5672 * changing the task state if and only if any tasks are woken up.
5673 */
5674 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5675 int nr_exclusive, void *key)
5676 {
5677 unsigned long flags;
5678
5679 spin_lock_irqsave(&q->lock, flags);
5680 __wake_up_common(q, mode, nr_exclusive, 0, key);
5681 spin_unlock_irqrestore(&q->lock, flags);
5682 }
5683 EXPORT_SYMBOL(__wake_up);
5684
5685 /*
5686 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5687 */
5688 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5689 {
5690 __wake_up_common(q, mode, 1, 0, NULL);
5691 }
5692
5693 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5694 {
5695 __wake_up_common(q, mode, 1, 0, key);
5696 }
5697
5698 /**
5699 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5700 * @q: the waitqueue
5701 * @mode: which threads
5702 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5703 * @key: opaque value to be passed to wakeup targets
5704 *
5705 * The sync wakeup differs that the waker knows that it will schedule
5706 * away soon, so while the target thread will be woken up, it will not
5707 * be migrated to another CPU - ie. the two threads are 'synchronized'
5708 * with each other. This can prevent needless bouncing between CPUs.
5709 *
5710 * On UP it can prevent extra preemption.
5711 *
5712 * It may be assumed that this function implies a write memory barrier before
5713 * changing the task state if and only if any tasks are woken up.
5714 */
5715 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5716 int nr_exclusive, void *key)
5717 {
5718 unsigned long flags;
5719 int wake_flags = WF_SYNC;
5720
5721 if (unlikely(!q))
5722 return;
5723
5724 if (unlikely(!nr_exclusive))
5725 wake_flags = 0;
5726
5727 spin_lock_irqsave(&q->lock, flags);
5728 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5729 spin_unlock_irqrestore(&q->lock, flags);
5730 }
5731 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5732
5733 /*
5734 * __wake_up_sync - see __wake_up_sync_key()
5735 */
5736 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5737 {
5738 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5739 }
5740 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5741
5742 /**
5743 * complete: - signals a single thread waiting on this completion
5744 * @x: holds the state of this particular completion
5745 *
5746 * This will wake up a single thread waiting on this completion. Threads will be
5747 * awakened in the same order in which they were queued.
5748 *
5749 * See also complete_all(), wait_for_completion() and related routines.
5750 *
5751 * It may be assumed that this function implies a write memory barrier before
5752 * changing the task state if and only if any tasks are woken up.
5753 */
5754 void complete(struct completion *x)
5755 {
5756 unsigned long flags;
5757
5758 spin_lock_irqsave(&x->wait.lock, flags);
5759 x->done++;
5760 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5761 spin_unlock_irqrestore(&x->wait.lock, flags);
5762 }
5763 EXPORT_SYMBOL(complete);
5764
5765 /**
5766 * complete_all: - signals all threads waiting on this completion
5767 * @x: holds the state of this particular completion
5768 *
5769 * This will wake up all threads waiting on this particular completion event.
5770 *
5771 * It may be assumed that this function implies a write memory barrier before
5772 * changing the task state if and only if any tasks are woken up.
5773 */
5774 void complete_all(struct completion *x)
5775 {
5776 unsigned long flags;
5777
5778 spin_lock_irqsave(&x->wait.lock, flags);
5779 x->done += UINT_MAX/2;
5780 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5781 spin_unlock_irqrestore(&x->wait.lock, flags);
5782 }
5783 EXPORT_SYMBOL(complete_all);
5784
5785 static inline long __sched
5786 do_wait_for_common(struct completion *x, long timeout, int state)
5787 {
5788 if (!x->done) {
5789 DECLARE_WAITQUEUE(wait, current);
5790
5791 wait.flags |= WQ_FLAG_EXCLUSIVE;
5792 __add_wait_queue_tail(&x->wait, &wait);
5793 do {
5794 if (signal_pending_state(state, current)) {
5795 timeout = -ERESTARTSYS;
5796 break;
5797 }
5798 __set_current_state(state);
5799 spin_unlock_irq(&x->wait.lock);
5800 timeout = schedule_timeout(timeout);
5801 spin_lock_irq(&x->wait.lock);
5802 } while (!x->done && timeout);
5803 __remove_wait_queue(&x->wait, &wait);
5804 if (!x->done)
5805 return timeout;
5806 }
5807 x->done--;
5808 return timeout ?: 1;
5809 }
5810
5811 static long __sched
5812 wait_for_common(struct completion *x, long timeout, int state)
5813 {
5814 might_sleep();
5815
5816 spin_lock_irq(&x->wait.lock);
5817 timeout = do_wait_for_common(x, timeout, state);
5818 spin_unlock_irq(&x->wait.lock);
5819 return timeout;
5820 }
5821
5822 /**
5823 * wait_for_completion: - waits for completion of a task
5824 * @x: holds the state of this particular completion
5825 *
5826 * This waits to be signaled for completion of a specific task. It is NOT
5827 * interruptible and there is no timeout.
5828 *
5829 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5830 * and interrupt capability. Also see complete().
5831 */
5832 void __sched wait_for_completion(struct completion *x)
5833 {
5834 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5835 }
5836 EXPORT_SYMBOL(wait_for_completion);
5837
5838 /**
5839 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5840 * @x: holds the state of this particular completion
5841 * @timeout: timeout value in jiffies
5842 *
5843 * This waits for either a completion of a specific task to be signaled or for a
5844 * specified timeout to expire. The timeout is in jiffies. It is not
5845 * interruptible.
5846 */
5847 unsigned long __sched
5848 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5849 {
5850 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5851 }
5852 EXPORT_SYMBOL(wait_for_completion_timeout);
5853
5854 /**
5855 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5856 * @x: holds the state of this particular completion
5857 *
5858 * This waits for completion of a specific task to be signaled. It is
5859 * interruptible.
5860 */
5861 int __sched wait_for_completion_interruptible(struct completion *x)
5862 {
5863 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5864 if (t == -ERESTARTSYS)
5865 return t;
5866 return 0;
5867 }
5868 EXPORT_SYMBOL(wait_for_completion_interruptible);
5869
5870 /**
5871 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5872 * @x: holds the state of this particular completion
5873 * @timeout: timeout value in jiffies
5874 *
5875 * This waits for either a completion of a specific task to be signaled or for a
5876 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5877 */
5878 unsigned long __sched
5879 wait_for_completion_interruptible_timeout(struct completion *x,
5880 unsigned long timeout)
5881 {
5882 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5883 }
5884 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5885
5886 /**
5887 * wait_for_completion_killable: - waits for completion of a task (killable)
5888 * @x: holds the state of this particular completion
5889 *
5890 * This waits to be signaled for completion of a specific task. It can be
5891 * interrupted by a kill signal.
5892 */
5893 int __sched wait_for_completion_killable(struct completion *x)
5894 {
5895 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5896 if (t == -ERESTARTSYS)
5897 return t;
5898 return 0;
5899 }
5900 EXPORT_SYMBOL(wait_for_completion_killable);
5901
5902 /**
5903 * try_wait_for_completion - try to decrement a completion without blocking
5904 * @x: completion structure
5905 *
5906 * Returns: 0 if a decrement cannot be done without blocking
5907 * 1 if a decrement succeeded.
5908 *
5909 * If a completion is being used as a counting completion,
5910 * attempt to decrement the counter without blocking. This
5911 * enables us to avoid waiting if the resource the completion
5912 * is protecting is not available.
5913 */
5914 bool try_wait_for_completion(struct completion *x)
5915 {
5916 int ret = 1;
5917
5918 spin_lock_irq(&x->wait.lock);
5919 if (!x->done)
5920 ret = 0;
5921 else
5922 x->done--;
5923 spin_unlock_irq(&x->wait.lock);
5924 return ret;
5925 }
5926 EXPORT_SYMBOL(try_wait_for_completion);
5927
5928 /**
5929 * completion_done - Test to see if a completion has any waiters
5930 * @x: completion structure
5931 *
5932 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5933 * 1 if there are no waiters.
5934 *
5935 */
5936 bool completion_done(struct completion *x)
5937 {
5938 int ret = 1;
5939
5940 spin_lock_irq(&x->wait.lock);
5941 if (!x->done)
5942 ret = 0;
5943 spin_unlock_irq(&x->wait.lock);
5944 return ret;
5945 }
5946 EXPORT_SYMBOL(completion_done);
5947
5948 static long __sched
5949 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5950 {
5951 unsigned long flags;
5952 wait_queue_t wait;
5953
5954 init_waitqueue_entry(&wait, current);
5955
5956 __set_current_state(state);
5957
5958 spin_lock_irqsave(&q->lock, flags);
5959 __add_wait_queue(q, &wait);
5960 spin_unlock(&q->lock);
5961 timeout = schedule_timeout(timeout);
5962 spin_lock_irq(&q->lock);
5963 __remove_wait_queue(q, &wait);
5964 spin_unlock_irqrestore(&q->lock, flags);
5965
5966 return timeout;
5967 }
5968
5969 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5970 {
5971 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5972 }
5973 EXPORT_SYMBOL(interruptible_sleep_on);
5974
5975 long __sched
5976 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5977 {
5978 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5979 }
5980 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5981
5982 void __sched sleep_on(wait_queue_head_t *q)
5983 {
5984 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5985 }
5986 EXPORT_SYMBOL(sleep_on);
5987
5988 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5989 {
5990 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5991 }
5992 EXPORT_SYMBOL(sleep_on_timeout);
5993
5994 #ifdef CONFIG_RT_MUTEXES
5995
5996 /*
5997 * rt_mutex_setprio - set the current priority of a task
5998 * @p: task
5999 * @prio: prio value (kernel-internal form)
6000 *
6001 * This function changes the 'effective' priority of a task. It does
6002 * not touch ->normal_prio like __setscheduler().
6003 *
6004 * Used by the rt_mutex code to implement priority inheritance logic.
6005 */
6006 void rt_mutex_setprio(struct task_struct *p, int prio)
6007 {
6008 unsigned long flags;
6009 int oldprio, on_rq, running;
6010 struct rq *rq;
6011 const struct sched_class *prev_class = p->sched_class;
6012
6013 BUG_ON(prio < 0 || prio > MAX_PRIO);
6014
6015 rq = task_rq_lock(p, &flags);
6016 update_rq_clock(rq);
6017
6018 oldprio = p->prio;
6019 on_rq = p->se.on_rq;
6020 running = task_current(rq, p);
6021 if (on_rq)
6022 dequeue_task(rq, p, 0);
6023 if (running)
6024 p->sched_class->put_prev_task(rq, p);
6025
6026 if (rt_prio(prio))
6027 p->sched_class = &rt_sched_class;
6028 else
6029 p->sched_class = &fair_sched_class;
6030
6031 p->prio = prio;
6032
6033 if (running)
6034 p->sched_class->set_curr_task(rq);
6035 if (on_rq) {
6036 enqueue_task(rq, p, 0);
6037
6038 check_class_changed(rq, p, prev_class, oldprio, running);
6039 }
6040 task_rq_unlock(rq, &flags);
6041 }
6042
6043 #endif
6044
6045 void set_user_nice(struct task_struct *p, long nice)
6046 {
6047 int old_prio, delta, on_rq;
6048 unsigned long flags;
6049 struct rq *rq;
6050
6051 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6052 return;
6053 /*
6054 * We have to be careful, if called from sys_setpriority(),
6055 * the task might be in the middle of scheduling on another CPU.
6056 */
6057 rq = task_rq_lock(p, &flags);
6058 update_rq_clock(rq);
6059 /*
6060 * The RT priorities are set via sched_setscheduler(), but we still
6061 * allow the 'normal' nice value to be set - but as expected
6062 * it wont have any effect on scheduling until the task is
6063 * SCHED_FIFO/SCHED_RR:
6064 */
6065 if (task_has_rt_policy(p)) {
6066 p->static_prio = NICE_TO_PRIO(nice);
6067 goto out_unlock;
6068 }
6069 on_rq = p->se.on_rq;
6070 if (on_rq)
6071 dequeue_task(rq, p, 0);
6072
6073 p->static_prio = NICE_TO_PRIO(nice);
6074 set_load_weight(p);
6075 old_prio = p->prio;
6076 p->prio = effective_prio(p);
6077 delta = p->prio - old_prio;
6078
6079 if (on_rq) {
6080 enqueue_task(rq, p, 0);
6081 /*
6082 * If the task increased its priority or is running and
6083 * lowered its priority, then reschedule its CPU:
6084 */
6085 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6086 resched_task(rq->curr);
6087 }
6088 out_unlock:
6089 task_rq_unlock(rq, &flags);
6090 }
6091 EXPORT_SYMBOL(set_user_nice);
6092
6093 /*
6094 * can_nice - check if a task can reduce its nice value
6095 * @p: task
6096 * @nice: nice value
6097 */
6098 int can_nice(const struct task_struct *p, const int nice)
6099 {
6100 /* convert nice value [19,-20] to rlimit style value [1,40] */
6101 int nice_rlim = 20 - nice;
6102
6103 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6104 capable(CAP_SYS_NICE));
6105 }
6106
6107 #ifdef __ARCH_WANT_SYS_NICE
6108
6109 /*
6110 * sys_nice - change the priority of the current process.
6111 * @increment: priority increment
6112 *
6113 * sys_setpriority is a more generic, but much slower function that
6114 * does similar things.
6115 */
6116 SYSCALL_DEFINE1(nice, int, increment)
6117 {
6118 long nice, retval;
6119
6120 /*
6121 * Setpriority might change our priority at the same moment.
6122 * We don't have to worry. Conceptually one call occurs first
6123 * and we have a single winner.
6124 */
6125 if (increment < -40)
6126 increment = -40;
6127 if (increment > 40)
6128 increment = 40;
6129
6130 nice = TASK_NICE(current) + increment;
6131 if (nice < -20)
6132 nice = -20;
6133 if (nice > 19)
6134 nice = 19;
6135
6136 if (increment < 0 && !can_nice(current, nice))
6137 return -EPERM;
6138
6139 retval = security_task_setnice(current, nice);
6140 if (retval)
6141 return retval;
6142
6143 set_user_nice(current, nice);
6144 return 0;
6145 }
6146
6147 #endif
6148
6149 /**
6150 * task_prio - return the priority value of a given task.
6151 * @p: the task in question.
6152 *
6153 * This is the priority value as seen by users in /proc.
6154 * RT tasks are offset by -200. Normal tasks are centered
6155 * around 0, value goes from -16 to +15.
6156 */
6157 int task_prio(const struct task_struct *p)
6158 {
6159 return p->prio - MAX_RT_PRIO;
6160 }
6161
6162 /**
6163 * task_nice - return the nice value of a given task.
6164 * @p: the task in question.
6165 */
6166 int task_nice(const struct task_struct *p)
6167 {
6168 return TASK_NICE(p);
6169 }
6170 EXPORT_SYMBOL(task_nice);
6171
6172 /**
6173 * idle_cpu - is a given cpu idle currently?
6174 * @cpu: the processor in question.
6175 */
6176 int idle_cpu(int cpu)
6177 {
6178 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6179 }
6180
6181 /**
6182 * idle_task - return the idle task for a given cpu.
6183 * @cpu: the processor in question.
6184 */
6185 struct task_struct *idle_task(int cpu)
6186 {
6187 return cpu_rq(cpu)->idle;
6188 }
6189
6190 /**
6191 * find_process_by_pid - find a process with a matching PID value.
6192 * @pid: the pid in question.
6193 */
6194 static struct task_struct *find_process_by_pid(pid_t pid)
6195 {
6196 return pid ? find_task_by_vpid(pid) : current;
6197 }
6198
6199 /* Actually do priority change: must hold rq lock. */
6200 static void
6201 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6202 {
6203 BUG_ON(p->se.on_rq);
6204
6205 p->policy = policy;
6206 p->rt_priority = prio;
6207 p->normal_prio = normal_prio(p);
6208 /* we are holding p->pi_lock already */
6209 p->prio = rt_mutex_getprio(p);
6210 if (rt_prio(p->prio))
6211 p->sched_class = &rt_sched_class;
6212 else
6213 p->sched_class = &fair_sched_class;
6214 set_load_weight(p);
6215 }
6216
6217 /*
6218 * check the target process has a UID that matches the current process's
6219 */
6220 static bool check_same_owner(struct task_struct *p)
6221 {
6222 const struct cred *cred = current_cred(), *pcred;
6223 bool match;
6224
6225 rcu_read_lock();
6226 pcred = __task_cred(p);
6227 match = (cred->euid == pcred->euid ||
6228 cred->euid == pcred->uid);
6229 rcu_read_unlock();
6230 return match;
6231 }
6232
6233 static int __sched_setscheduler(struct task_struct *p, int policy,
6234 struct sched_param *param, bool user)
6235 {
6236 int retval, oldprio, oldpolicy = -1, on_rq, running;
6237 unsigned long flags;
6238 const struct sched_class *prev_class = p->sched_class;
6239 struct rq *rq;
6240 int reset_on_fork;
6241
6242 /* may grab non-irq protected spin_locks */
6243 BUG_ON(in_interrupt());
6244 recheck:
6245 /* double check policy once rq lock held */
6246 if (policy < 0) {
6247 reset_on_fork = p->sched_reset_on_fork;
6248 policy = oldpolicy = p->policy;
6249 } else {
6250 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6251 policy &= ~SCHED_RESET_ON_FORK;
6252
6253 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6254 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6255 policy != SCHED_IDLE)
6256 return -EINVAL;
6257 }
6258
6259 /*
6260 * Valid priorities for SCHED_FIFO and SCHED_RR are
6261 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6262 * SCHED_BATCH and SCHED_IDLE is 0.
6263 */
6264 if (param->sched_priority < 0 ||
6265 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6266 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6267 return -EINVAL;
6268 if (rt_policy(policy) != (param->sched_priority != 0))
6269 return -EINVAL;
6270
6271 /*
6272 * Allow unprivileged RT tasks to decrease priority:
6273 */
6274 if (user && !capable(CAP_SYS_NICE)) {
6275 if (rt_policy(policy)) {
6276 unsigned long rlim_rtprio;
6277
6278 if (!lock_task_sighand(p, &flags))
6279 return -ESRCH;
6280 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6281 unlock_task_sighand(p, &flags);
6282
6283 /* can't set/change the rt policy */
6284 if (policy != p->policy && !rlim_rtprio)
6285 return -EPERM;
6286
6287 /* can't increase priority */
6288 if (param->sched_priority > p->rt_priority &&
6289 param->sched_priority > rlim_rtprio)
6290 return -EPERM;
6291 }
6292 /*
6293 * Like positive nice levels, dont allow tasks to
6294 * move out of SCHED_IDLE either:
6295 */
6296 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6297 return -EPERM;
6298
6299 /* can't change other user's priorities */
6300 if (!check_same_owner(p))
6301 return -EPERM;
6302
6303 /* Normal users shall not reset the sched_reset_on_fork flag */
6304 if (p->sched_reset_on_fork && !reset_on_fork)
6305 return -EPERM;
6306 }
6307
6308 if (user) {
6309 #ifdef CONFIG_RT_GROUP_SCHED
6310 /*
6311 * Do not allow realtime tasks into groups that have no runtime
6312 * assigned.
6313 */
6314 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6315 task_group(p)->rt_bandwidth.rt_runtime == 0)
6316 return -EPERM;
6317 #endif
6318
6319 retval = security_task_setscheduler(p, policy, param);
6320 if (retval)
6321 return retval;
6322 }
6323
6324 /*
6325 * make sure no PI-waiters arrive (or leave) while we are
6326 * changing the priority of the task:
6327 */
6328 spin_lock_irqsave(&p->pi_lock, flags);
6329 /*
6330 * To be able to change p->policy safely, the apropriate
6331 * runqueue lock must be held.
6332 */
6333 rq = __task_rq_lock(p);
6334 /* recheck policy now with rq lock held */
6335 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6336 policy = oldpolicy = -1;
6337 __task_rq_unlock(rq);
6338 spin_unlock_irqrestore(&p->pi_lock, flags);
6339 goto recheck;
6340 }
6341 update_rq_clock(rq);
6342 on_rq = p->se.on_rq;
6343 running = task_current(rq, p);
6344 if (on_rq)
6345 deactivate_task(rq, p, 0);
6346 if (running)
6347 p->sched_class->put_prev_task(rq, p);
6348
6349 p->sched_reset_on_fork = reset_on_fork;
6350
6351 oldprio = p->prio;
6352 __setscheduler(rq, p, policy, param->sched_priority);
6353
6354 if (running)
6355 p->sched_class->set_curr_task(rq);
6356 if (on_rq) {
6357 activate_task(rq, p, 0);
6358
6359 check_class_changed(rq, p, prev_class, oldprio, running);
6360 }
6361 __task_rq_unlock(rq);
6362 spin_unlock_irqrestore(&p->pi_lock, flags);
6363
6364 rt_mutex_adjust_pi(p);
6365
6366 return 0;
6367 }
6368
6369 /**
6370 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6371 * @p: the task in question.
6372 * @policy: new policy.
6373 * @param: structure containing the new RT priority.
6374 *
6375 * NOTE that the task may be already dead.
6376 */
6377 int sched_setscheduler(struct task_struct *p, int policy,
6378 struct sched_param *param)
6379 {
6380 return __sched_setscheduler(p, policy, param, true);
6381 }
6382 EXPORT_SYMBOL_GPL(sched_setscheduler);
6383
6384 /**
6385 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6386 * @p: the task in question.
6387 * @policy: new policy.
6388 * @param: structure containing the new RT priority.
6389 *
6390 * Just like sched_setscheduler, only don't bother checking if the
6391 * current context has permission. For example, this is needed in
6392 * stop_machine(): we create temporary high priority worker threads,
6393 * but our caller might not have that capability.
6394 */
6395 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6396 struct sched_param *param)
6397 {
6398 return __sched_setscheduler(p, policy, param, false);
6399 }
6400
6401 static int
6402 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6403 {
6404 struct sched_param lparam;
6405 struct task_struct *p;
6406 int retval;
6407
6408 if (!param || pid < 0)
6409 return -EINVAL;
6410 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6411 return -EFAULT;
6412
6413 rcu_read_lock();
6414 retval = -ESRCH;
6415 p = find_process_by_pid(pid);
6416 if (p != NULL)
6417 retval = sched_setscheduler(p, policy, &lparam);
6418 rcu_read_unlock();
6419
6420 return retval;
6421 }
6422
6423 /**
6424 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6425 * @pid: the pid in question.
6426 * @policy: new policy.
6427 * @param: structure containing the new RT priority.
6428 */
6429 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6430 struct sched_param __user *, param)
6431 {
6432 /* negative values for policy are not valid */
6433 if (policy < 0)
6434 return -EINVAL;
6435
6436 return do_sched_setscheduler(pid, policy, param);
6437 }
6438
6439 /**
6440 * sys_sched_setparam - set/change the RT priority of a thread
6441 * @pid: the pid in question.
6442 * @param: structure containing the new RT priority.
6443 */
6444 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6445 {
6446 return do_sched_setscheduler(pid, -1, param);
6447 }
6448
6449 /**
6450 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6451 * @pid: the pid in question.
6452 */
6453 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6454 {
6455 struct task_struct *p;
6456 int retval;
6457
6458 if (pid < 0)
6459 return -EINVAL;
6460
6461 retval = -ESRCH;
6462 read_lock(&tasklist_lock);
6463 p = find_process_by_pid(pid);
6464 if (p) {
6465 retval = security_task_getscheduler(p);
6466 if (!retval)
6467 retval = p->policy
6468 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6469 }
6470 read_unlock(&tasklist_lock);
6471 return retval;
6472 }
6473
6474 /**
6475 * sys_sched_getparam - get the RT priority of a thread
6476 * @pid: the pid in question.
6477 * @param: structure containing the RT priority.
6478 */
6479 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6480 {
6481 struct sched_param lp;
6482 struct task_struct *p;
6483 int retval;
6484
6485 if (!param || pid < 0)
6486 return -EINVAL;
6487
6488 read_lock(&tasklist_lock);
6489 p = find_process_by_pid(pid);
6490 retval = -ESRCH;
6491 if (!p)
6492 goto out_unlock;
6493
6494 retval = security_task_getscheduler(p);
6495 if (retval)
6496 goto out_unlock;
6497
6498 lp.sched_priority = p->rt_priority;
6499 read_unlock(&tasklist_lock);
6500
6501 /*
6502 * This one might sleep, we cannot do it with a spinlock held ...
6503 */
6504 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6505
6506 return retval;
6507
6508 out_unlock:
6509 read_unlock(&tasklist_lock);
6510 return retval;
6511 }
6512
6513 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6514 {
6515 cpumask_var_t cpus_allowed, new_mask;
6516 struct task_struct *p;
6517 int retval;
6518
6519 get_online_cpus();
6520 read_lock(&tasklist_lock);
6521
6522 p = find_process_by_pid(pid);
6523 if (!p) {
6524 read_unlock(&tasklist_lock);
6525 put_online_cpus();
6526 return -ESRCH;
6527 }
6528
6529 /*
6530 * It is not safe to call set_cpus_allowed with the
6531 * tasklist_lock held. We will bump the task_struct's
6532 * usage count and then drop tasklist_lock.
6533 */
6534 get_task_struct(p);
6535 read_unlock(&tasklist_lock);
6536
6537 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6538 retval = -ENOMEM;
6539 goto out_put_task;
6540 }
6541 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6542 retval = -ENOMEM;
6543 goto out_free_cpus_allowed;
6544 }
6545 retval = -EPERM;
6546 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6547 goto out_unlock;
6548
6549 retval = security_task_setscheduler(p, 0, NULL);
6550 if (retval)
6551 goto out_unlock;
6552
6553 cpuset_cpus_allowed(p, cpus_allowed);
6554 cpumask_and(new_mask, in_mask, cpus_allowed);
6555 again:
6556 retval = set_cpus_allowed_ptr(p, new_mask);
6557
6558 if (!retval) {
6559 cpuset_cpus_allowed(p, cpus_allowed);
6560 if (!cpumask_subset(new_mask, cpus_allowed)) {
6561 /*
6562 * We must have raced with a concurrent cpuset
6563 * update. Just reset the cpus_allowed to the
6564 * cpuset's cpus_allowed
6565 */
6566 cpumask_copy(new_mask, cpus_allowed);
6567 goto again;
6568 }
6569 }
6570 out_unlock:
6571 free_cpumask_var(new_mask);
6572 out_free_cpus_allowed:
6573 free_cpumask_var(cpus_allowed);
6574 out_put_task:
6575 put_task_struct(p);
6576 put_online_cpus();
6577 return retval;
6578 }
6579
6580 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6581 struct cpumask *new_mask)
6582 {
6583 if (len < cpumask_size())
6584 cpumask_clear(new_mask);
6585 else if (len > cpumask_size())
6586 len = cpumask_size();
6587
6588 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6589 }
6590
6591 /**
6592 * sys_sched_setaffinity - set the cpu affinity of a process
6593 * @pid: pid of the process
6594 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6595 * @user_mask_ptr: user-space pointer to the new cpu mask
6596 */
6597 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6598 unsigned long __user *, user_mask_ptr)
6599 {
6600 cpumask_var_t new_mask;
6601 int retval;
6602
6603 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6604 return -ENOMEM;
6605
6606 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6607 if (retval == 0)
6608 retval = sched_setaffinity(pid, new_mask);
6609 free_cpumask_var(new_mask);
6610 return retval;
6611 }
6612
6613 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6614 {
6615 struct task_struct *p;
6616 unsigned long flags;
6617 struct rq *rq;
6618 int retval;
6619
6620 get_online_cpus();
6621 read_lock(&tasklist_lock);
6622
6623 retval = -ESRCH;
6624 p = find_process_by_pid(pid);
6625 if (!p)
6626 goto out_unlock;
6627
6628 retval = security_task_getscheduler(p);
6629 if (retval)
6630 goto out_unlock;
6631
6632 rq = task_rq_lock(p, &flags);
6633 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6634 task_rq_unlock(rq, &flags);
6635
6636 out_unlock:
6637 read_unlock(&tasklist_lock);
6638 put_online_cpus();
6639
6640 return retval;
6641 }
6642
6643 /**
6644 * sys_sched_getaffinity - get the cpu affinity of a process
6645 * @pid: pid of the process
6646 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6647 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6648 */
6649 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6650 unsigned long __user *, user_mask_ptr)
6651 {
6652 int ret;
6653 cpumask_var_t mask;
6654
6655 if (len < cpumask_size())
6656 return -EINVAL;
6657
6658 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6659 return -ENOMEM;
6660
6661 ret = sched_getaffinity(pid, mask);
6662 if (ret == 0) {
6663 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6664 ret = -EFAULT;
6665 else
6666 ret = cpumask_size();
6667 }
6668 free_cpumask_var(mask);
6669
6670 return ret;
6671 }
6672
6673 /**
6674 * sys_sched_yield - yield the current processor to other threads.
6675 *
6676 * This function yields the current CPU to other tasks. If there are no
6677 * other threads running on this CPU then this function will return.
6678 */
6679 SYSCALL_DEFINE0(sched_yield)
6680 {
6681 struct rq *rq = this_rq_lock();
6682
6683 schedstat_inc(rq, yld_count);
6684 current->sched_class->yield_task(rq);
6685
6686 /*
6687 * Since we are going to call schedule() anyway, there's
6688 * no need to preempt or enable interrupts:
6689 */
6690 __release(rq->lock);
6691 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6692 _raw_spin_unlock(&rq->lock);
6693 preempt_enable_no_resched();
6694
6695 schedule();
6696
6697 return 0;
6698 }
6699
6700 static inline int should_resched(void)
6701 {
6702 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6703 }
6704
6705 static void __cond_resched(void)
6706 {
6707 add_preempt_count(PREEMPT_ACTIVE);
6708 schedule();
6709 sub_preempt_count(PREEMPT_ACTIVE);
6710 }
6711
6712 int __sched _cond_resched(void)
6713 {
6714 if (should_resched()) {
6715 __cond_resched();
6716 return 1;
6717 }
6718 return 0;
6719 }
6720 EXPORT_SYMBOL(_cond_resched);
6721
6722 /*
6723 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6724 * call schedule, and on return reacquire the lock.
6725 *
6726 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6727 * operations here to prevent schedule() from being called twice (once via
6728 * spin_unlock(), once by hand).
6729 */
6730 int __cond_resched_lock(spinlock_t *lock)
6731 {
6732 int resched = should_resched();
6733 int ret = 0;
6734
6735 lockdep_assert_held(lock);
6736
6737 if (spin_needbreak(lock) || resched) {
6738 spin_unlock(lock);
6739 if (resched)
6740 __cond_resched();
6741 else
6742 cpu_relax();
6743 ret = 1;
6744 spin_lock(lock);
6745 }
6746 return ret;
6747 }
6748 EXPORT_SYMBOL(__cond_resched_lock);
6749
6750 int __sched __cond_resched_softirq(void)
6751 {
6752 BUG_ON(!in_softirq());
6753
6754 if (should_resched()) {
6755 local_bh_enable();
6756 __cond_resched();
6757 local_bh_disable();
6758 return 1;
6759 }
6760 return 0;
6761 }
6762 EXPORT_SYMBOL(__cond_resched_softirq);
6763
6764 /**
6765 * yield - yield the current processor to other threads.
6766 *
6767 * This is a shortcut for kernel-space yielding - it marks the
6768 * thread runnable and calls sys_sched_yield().
6769 */
6770 void __sched yield(void)
6771 {
6772 set_current_state(TASK_RUNNING);
6773 sys_sched_yield();
6774 }
6775 EXPORT_SYMBOL(yield);
6776
6777 /*
6778 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6779 * that process accounting knows that this is a task in IO wait state.
6780 */
6781 void __sched io_schedule(void)
6782 {
6783 struct rq *rq = raw_rq();
6784
6785 delayacct_blkio_start();
6786 atomic_inc(&rq->nr_iowait);
6787 current->in_iowait = 1;
6788 schedule();
6789 current->in_iowait = 0;
6790 atomic_dec(&rq->nr_iowait);
6791 delayacct_blkio_end();
6792 }
6793 EXPORT_SYMBOL(io_schedule);
6794
6795 long __sched io_schedule_timeout(long timeout)
6796 {
6797 struct rq *rq = raw_rq();
6798 long ret;
6799
6800 delayacct_blkio_start();
6801 atomic_inc(&rq->nr_iowait);
6802 current->in_iowait = 1;
6803 ret = schedule_timeout(timeout);
6804 current->in_iowait = 0;
6805 atomic_dec(&rq->nr_iowait);
6806 delayacct_blkio_end();
6807 return ret;
6808 }
6809
6810 /**
6811 * sys_sched_get_priority_max - return maximum RT priority.
6812 * @policy: scheduling class.
6813 *
6814 * this syscall returns the maximum rt_priority that can be used
6815 * by a given scheduling class.
6816 */
6817 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6818 {
6819 int ret = -EINVAL;
6820
6821 switch (policy) {
6822 case SCHED_FIFO:
6823 case SCHED_RR:
6824 ret = MAX_USER_RT_PRIO-1;
6825 break;
6826 case SCHED_NORMAL:
6827 case SCHED_BATCH:
6828 case SCHED_IDLE:
6829 ret = 0;
6830 break;
6831 }
6832 return ret;
6833 }
6834
6835 /**
6836 * sys_sched_get_priority_min - return minimum RT priority.
6837 * @policy: scheduling class.
6838 *
6839 * this syscall returns the minimum rt_priority that can be used
6840 * by a given scheduling class.
6841 */
6842 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6843 {
6844 int ret = -EINVAL;
6845
6846 switch (policy) {
6847 case SCHED_FIFO:
6848 case SCHED_RR:
6849 ret = 1;
6850 break;
6851 case SCHED_NORMAL:
6852 case SCHED_BATCH:
6853 case SCHED_IDLE:
6854 ret = 0;
6855 }
6856 return ret;
6857 }
6858
6859 /**
6860 * sys_sched_rr_get_interval - return the default timeslice of a process.
6861 * @pid: pid of the process.
6862 * @interval: userspace pointer to the timeslice value.
6863 *
6864 * this syscall writes the default timeslice value of a given process
6865 * into the user-space timespec buffer. A value of '0' means infinity.
6866 */
6867 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6868 struct timespec __user *, interval)
6869 {
6870 struct task_struct *p;
6871 unsigned int time_slice;
6872 unsigned long flags;
6873 struct rq *rq;
6874 int retval;
6875 struct timespec t;
6876
6877 if (pid < 0)
6878 return -EINVAL;
6879
6880 retval = -ESRCH;
6881 read_lock(&tasklist_lock);
6882 p = find_process_by_pid(pid);
6883 if (!p)
6884 goto out_unlock;
6885
6886 retval = security_task_getscheduler(p);
6887 if (retval)
6888 goto out_unlock;
6889
6890 rq = task_rq_lock(p, &flags);
6891 time_slice = p->sched_class->get_rr_interval(rq, p);
6892 task_rq_unlock(rq, &flags);
6893
6894 read_unlock(&tasklist_lock);
6895 jiffies_to_timespec(time_slice, &t);
6896 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6897 return retval;
6898
6899 out_unlock:
6900 read_unlock(&tasklist_lock);
6901 return retval;
6902 }
6903
6904 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6905
6906 void sched_show_task(struct task_struct *p)
6907 {
6908 unsigned long free = 0;
6909 unsigned state;
6910
6911 state = p->state ? __ffs(p->state) + 1 : 0;
6912 printk(KERN_INFO "%-13.13s %c", p->comm,
6913 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6914 #if BITS_PER_LONG == 32
6915 if (state == TASK_RUNNING)
6916 printk(KERN_CONT " running ");
6917 else
6918 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6919 #else
6920 if (state == TASK_RUNNING)
6921 printk(KERN_CONT " running task ");
6922 else
6923 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6924 #endif
6925 #ifdef CONFIG_DEBUG_STACK_USAGE
6926 free = stack_not_used(p);
6927 #endif
6928 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6929 task_pid_nr(p), task_pid_nr(p->real_parent),
6930 (unsigned long)task_thread_info(p)->flags);
6931
6932 show_stack(p, NULL);
6933 }
6934
6935 void show_state_filter(unsigned long state_filter)
6936 {
6937 struct task_struct *g, *p;
6938
6939 #if BITS_PER_LONG == 32
6940 printk(KERN_INFO
6941 " task PC stack pid father\n");
6942 #else
6943 printk(KERN_INFO
6944 " task PC stack pid father\n");
6945 #endif
6946 read_lock(&tasklist_lock);
6947 do_each_thread(g, p) {
6948 /*
6949 * reset the NMI-timeout, listing all files on a slow
6950 * console might take alot of time:
6951 */
6952 touch_nmi_watchdog();
6953 if (!state_filter || (p->state & state_filter))
6954 sched_show_task(p);
6955 } while_each_thread(g, p);
6956
6957 touch_all_softlockup_watchdogs();
6958
6959 #ifdef CONFIG_SCHED_DEBUG
6960 sysrq_sched_debug_show();
6961 #endif
6962 read_unlock(&tasklist_lock);
6963 /*
6964 * Only show locks if all tasks are dumped:
6965 */
6966 if (!state_filter)
6967 debug_show_all_locks();
6968 }
6969
6970 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6971 {
6972 idle->sched_class = &idle_sched_class;
6973 }
6974
6975 /**
6976 * init_idle - set up an idle thread for a given CPU
6977 * @idle: task in question
6978 * @cpu: cpu the idle task belongs to
6979 *
6980 * NOTE: this function does not set the idle thread's NEED_RESCHED
6981 * flag, to make booting more robust.
6982 */
6983 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6984 {
6985 struct rq *rq = cpu_rq(cpu);
6986 unsigned long flags;
6987
6988 spin_lock_irqsave(&rq->lock, flags);
6989
6990 __sched_fork(idle);
6991 idle->se.exec_start = sched_clock();
6992
6993 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6994 __set_task_cpu(idle, cpu);
6995
6996 rq->curr = rq->idle = idle;
6997 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6998 idle->oncpu = 1;
6999 #endif
7000 spin_unlock_irqrestore(&rq->lock, flags);
7001
7002 /* Set the preempt count _outside_ the spinlocks! */
7003 #if defined(CONFIG_PREEMPT)
7004 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7005 #else
7006 task_thread_info(idle)->preempt_count = 0;
7007 #endif
7008 /*
7009 * The idle tasks have their own, simple scheduling class:
7010 */
7011 idle->sched_class = &idle_sched_class;
7012 ftrace_graph_init_task(idle);
7013 }
7014
7015 /*
7016 * In a system that switches off the HZ timer nohz_cpu_mask
7017 * indicates which cpus entered this state. This is used
7018 * in the rcu update to wait only for active cpus. For system
7019 * which do not switch off the HZ timer nohz_cpu_mask should
7020 * always be CPU_BITS_NONE.
7021 */
7022 cpumask_var_t nohz_cpu_mask;
7023
7024 /*
7025 * Increase the granularity value when there are more CPUs,
7026 * because with more CPUs the 'effective latency' as visible
7027 * to users decreases. But the relationship is not linear,
7028 * so pick a second-best guess by going with the log2 of the
7029 * number of CPUs.
7030 *
7031 * This idea comes from the SD scheduler of Con Kolivas:
7032 */
7033 static void update_sysctl(void)
7034 {
7035 unsigned int cpus = min(num_online_cpus(), 8U);
7036 unsigned int factor;
7037
7038 switch (sysctl_sched_tunable_scaling) {
7039 case SCHED_TUNABLESCALING_NONE:
7040 factor = 1;
7041 break;
7042 case SCHED_TUNABLESCALING_LINEAR:
7043 factor = cpus;
7044 break;
7045 case SCHED_TUNABLESCALING_LOG:
7046 default:
7047 factor = 1 + ilog2(cpus);
7048 break;
7049 }
7050
7051 #define SET_SYSCTL(name) \
7052 (sysctl_##name = (factor) * normalized_sysctl_##name)
7053 SET_SYSCTL(sched_min_granularity);
7054 SET_SYSCTL(sched_latency);
7055 SET_SYSCTL(sched_wakeup_granularity);
7056 SET_SYSCTL(sched_shares_ratelimit);
7057 #undef SET_SYSCTL
7058 }
7059
7060 static inline void sched_init_granularity(void)
7061 {
7062 update_sysctl();
7063 }
7064
7065 #ifdef CONFIG_SMP
7066 /*
7067 * This is how migration works:
7068 *
7069 * 1) we queue a struct migration_req structure in the source CPU's
7070 * runqueue and wake up that CPU's migration thread.
7071 * 2) we down() the locked semaphore => thread blocks.
7072 * 3) migration thread wakes up (implicitly it forces the migrated
7073 * thread off the CPU)
7074 * 4) it gets the migration request and checks whether the migrated
7075 * task is still in the wrong runqueue.
7076 * 5) if it's in the wrong runqueue then the migration thread removes
7077 * it and puts it into the right queue.
7078 * 6) migration thread up()s the semaphore.
7079 * 7) we wake up and the migration is done.
7080 */
7081
7082 /*
7083 * Change a given task's CPU affinity. Migrate the thread to a
7084 * proper CPU and schedule it away if the CPU it's executing on
7085 * is removed from the allowed bitmask.
7086 *
7087 * NOTE: the caller must have a valid reference to the task, the
7088 * task must not exit() & deallocate itself prematurely. The
7089 * call is not atomic; no spinlocks may be held.
7090 */
7091 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7092 {
7093 struct migration_req req;
7094 unsigned long flags;
7095 struct rq *rq;
7096 int ret = 0;
7097
7098 rq = task_rq_lock(p, &flags);
7099 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7100 ret = -EINVAL;
7101 goto out;
7102 }
7103
7104 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7105 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7106 ret = -EINVAL;
7107 goto out;
7108 }
7109
7110 if (p->sched_class->set_cpus_allowed)
7111 p->sched_class->set_cpus_allowed(p, new_mask);
7112 else {
7113 cpumask_copy(&p->cpus_allowed, new_mask);
7114 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7115 }
7116
7117 /* Can the task run on the task's current CPU? If so, we're done */
7118 if (cpumask_test_cpu(task_cpu(p), new_mask))
7119 goto out;
7120
7121 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7122 /* Need help from migration thread: drop lock and wait. */
7123 struct task_struct *mt = rq->migration_thread;
7124
7125 get_task_struct(mt);
7126 task_rq_unlock(rq, &flags);
7127 wake_up_process(rq->migration_thread);
7128 put_task_struct(mt);
7129 wait_for_completion(&req.done);
7130 tlb_migrate_finish(p->mm);
7131 return 0;
7132 }
7133 out:
7134 task_rq_unlock(rq, &flags);
7135
7136 return ret;
7137 }
7138 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7139
7140 /*
7141 * Move (not current) task off this cpu, onto dest cpu. We're doing
7142 * this because either it can't run here any more (set_cpus_allowed()
7143 * away from this CPU, or CPU going down), or because we're
7144 * attempting to rebalance this task on exec (sched_exec).
7145 *
7146 * So we race with normal scheduler movements, but that's OK, as long
7147 * as the task is no longer on this CPU.
7148 *
7149 * Returns non-zero if task was successfully migrated.
7150 */
7151 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7152 {
7153 struct rq *rq_dest, *rq_src;
7154 int ret = 0, on_rq;
7155
7156 if (unlikely(!cpu_active(dest_cpu)))
7157 return ret;
7158
7159 rq_src = cpu_rq(src_cpu);
7160 rq_dest = cpu_rq(dest_cpu);
7161
7162 double_rq_lock(rq_src, rq_dest);
7163 /* Already moved. */
7164 if (task_cpu(p) != src_cpu)
7165 goto done;
7166 /* Affinity changed (again). */
7167 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7168 goto fail;
7169
7170 on_rq = p->se.on_rq;
7171 if (on_rq)
7172 deactivate_task(rq_src, p, 0);
7173
7174 set_task_cpu(p, dest_cpu);
7175 if (on_rq) {
7176 activate_task(rq_dest, p, 0);
7177 check_preempt_curr(rq_dest, p, 0);
7178 }
7179 done:
7180 ret = 1;
7181 fail:
7182 double_rq_unlock(rq_src, rq_dest);
7183 return ret;
7184 }
7185
7186 #define RCU_MIGRATION_IDLE 0
7187 #define RCU_MIGRATION_NEED_QS 1
7188 #define RCU_MIGRATION_GOT_QS 2
7189 #define RCU_MIGRATION_MUST_SYNC 3
7190
7191 /*
7192 * migration_thread - this is a highprio system thread that performs
7193 * thread migration by bumping thread off CPU then 'pushing' onto
7194 * another runqueue.
7195 */
7196 static int migration_thread(void *data)
7197 {
7198 int badcpu;
7199 int cpu = (long)data;
7200 struct rq *rq;
7201
7202 rq = cpu_rq(cpu);
7203 BUG_ON(rq->migration_thread != current);
7204
7205 set_current_state(TASK_INTERRUPTIBLE);
7206 while (!kthread_should_stop()) {
7207 struct migration_req *req;
7208 struct list_head *head;
7209
7210 spin_lock_irq(&rq->lock);
7211
7212 if (cpu_is_offline(cpu)) {
7213 spin_unlock_irq(&rq->lock);
7214 break;
7215 }
7216
7217 if (rq->active_balance) {
7218 active_load_balance(rq, cpu);
7219 rq->active_balance = 0;
7220 }
7221
7222 head = &rq->migration_queue;
7223
7224 if (list_empty(head)) {
7225 spin_unlock_irq(&rq->lock);
7226 schedule();
7227 set_current_state(TASK_INTERRUPTIBLE);
7228 continue;
7229 }
7230 req = list_entry(head->next, struct migration_req, list);
7231 list_del_init(head->next);
7232
7233 if (req->task != NULL) {
7234 spin_unlock(&rq->lock);
7235 __migrate_task(req->task, cpu, req->dest_cpu);
7236 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7237 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7238 spin_unlock(&rq->lock);
7239 } else {
7240 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7241 spin_unlock(&rq->lock);
7242 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7243 }
7244 local_irq_enable();
7245
7246 complete(&req->done);
7247 }
7248 __set_current_state(TASK_RUNNING);
7249
7250 return 0;
7251 }
7252
7253 #ifdef CONFIG_HOTPLUG_CPU
7254
7255 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7256 {
7257 int ret;
7258
7259 local_irq_disable();
7260 ret = __migrate_task(p, src_cpu, dest_cpu);
7261 local_irq_enable();
7262 return ret;
7263 }
7264
7265 /*
7266 * Figure out where task on dead CPU should go, use force if necessary.
7267 */
7268 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7269 {
7270 int dest_cpu;
7271 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7272
7273 again:
7274 /* Look for allowed, online CPU in same node. */
7275 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7276 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7277 goto move;
7278
7279 /* Any allowed, online CPU? */
7280 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7281 if (dest_cpu < nr_cpu_ids)
7282 goto move;
7283
7284 /* No more Mr. Nice Guy. */
7285 if (dest_cpu >= nr_cpu_ids) {
7286 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7287 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7288
7289 /*
7290 * Don't tell them about moving exiting tasks or
7291 * kernel threads (both mm NULL), since they never
7292 * leave kernel.
7293 */
7294 if (p->mm && printk_ratelimit()) {
7295 printk(KERN_INFO "process %d (%s) no "
7296 "longer affine to cpu%d\n",
7297 task_pid_nr(p), p->comm, dead_cpu);
7298 }
7299 }
7300
7301 move:
7302 /* It can have affinity changed while we were choosing. */
7303 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7304 goto again;
7305 }
7306
7307 /*
7308 * While a dead CPU has no uninterruptible tasks queued at this point,
7309 * it might still have a nonzero ->nr_uninterruptible counter, because
7310 * for performance reasons the counter is not stricly tracking tasks to
7311 * their home CPUs. So we just add the counter to another CPU's counter,
7312 * to keep the global sum constant after CPU-down:
7313 */
7314 static void migrate_nr_uninterruptible(struct rq *rq_src)
7315 {
7316 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7317 unsigned long flags;
7318
7319 local_irq_save(flags);
7320 double_rq_lock(rq_src, rq_dest);
7321 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7322 rq_src->nr_uninterruptible = 0;
7323 double_rq_unlock(rq_src, rq_dest);
7324 local_irq_restore(flags);
7325 }
7326
7327 /* Run through task list and migrate tasks from the dead cpu. */
7328 static void migrate_live_tasks(int src_cpu)
7329 {
7330 struct task_struct *p, *t;
7331
7332 read_lock(&tasklist_lock);
7333
7334 do_each_thread(t, p) {
7335 if (p == current)
7336 continue;
7337
7338 if (task_cpu(p) == src_cpu)
7339 move_task_off_dead_cpu(src_cpu, p);
7340 } while_each_thread(t, p);
7341
7342 read_unlock(&tasklist_lock);
7343 }
7344
7345 /*
7346 * Schedules idle task to be the next runnable task on current CPU.
7347 * It does so by boosting its priority to highest possible.
7348 * Used by CPU offline code.
7349 */
7350 void sched_idle_next(void)
7351 {
7352 int this_cpu = smp_processor_id();
7353 struct rq *rq = cpu_rq(this_cpu);
7354 struct task_struct *p = rq->idle;
7355 unsigned long flags;
7356
7357 /* cpu has to be offline */
7358 BUG_ON(cpu_online(this_cpu));
7359
7360 /*
7361 * Strictly not necessary since rest of the CPUs are stopped by now
7362 * and interrupts disabled on the current cpu.
7363 */
7364 spin_lock_irqsave(&rq->lock, flags);
7365
7366 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7367
7368 update_rq_clock(rq);
7369 activate_task(rq, p, 0);
7370
7371 spin_unlock_irqrestore(&rq->lock, flags);
7372 }
7373
7374 /*
7375 * Ensures that the idle task is using init_mm right before its cpu goes
7376 * offline.
7377 */
7378 void idle_task_exit(void)
7379 {
7380 struct mm_struct *mm = current->active_mm;
7381
7382 BUG_ON(cpu_online(smp_processor_id()));
7383
7384 if (mm != &init_mm)
7385 switch_mm(mm, &init_mm, current);
7386 mmdrop(mm);
7387 }
7388
7389 /* called under rq->lock with disabled interrupts */
7390 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7391 {
7392 struct rq *rq = cpu_rq(dead_cpu);
7393
7394 /* Must be exiting, otherwise would be on tasklist. */
7395 BUG_ON(!p->exit_state);
7396
7397 /* Cannot have done final schedule yet: would have vanished. */
7398 BUG_ON(p->state == TASK_DEAD);
7399
7400 get_task_struct(p);
7401
7402 /*
7403 * Drop lock around migration; if someone else moves it,
7404 * that's OK. No task can be added to this CPU, so iteration is
7405 * fine.
7406 */
7407 spin_unlock_irq(&rq->lock);
7408 move_task_off_dead_cpu(dead_cpu, p);
7409 spin_lock_irq(&rq->lock);
7410
7411 put_task_struct(p);
7412 }
7413
7414 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7415 static void migrate_dead_tasks(unsigned int dead_cpu)
7416 {
7417 struct rq *rq = cpu_rq(dead_cpu);
7418 struct task_struct *next;
7419
7420 for ( ; ; ) {
7421 if (!rq->nr_running)
7422 break;
7423 update_rq_clock(rq);
7424 next = pick_next_task(rq);
7425 if (!next)
7426 break;
7427 next->sched_class->put_prev_task(rq, next);
7428 migrate_dead(dead_cpu, next);
7429
7430 }
7431 }
7432
7433 /*
7434 * remove the tasks which were accounted by rq from calc_load_tasks.
7435 */
7436 static void calc_global_load_remove(struct rq *rq)
7437 {
7438 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7439 rq->calc_load_active = 0;
7440 }
7441 #endif /* CONFIG_HOTPLUG_CPU */
7442
7443 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7444
7445 static struct ctl_table sd_ctl_dir[] = {
7446 {
7447 .procname = "sched_domain",
7448 .mode = 0555,
7449 },
7450 {0, },
7451 };
7452
7453 static struct ctl_table sd_ctl_root[] = {
7454 {
7455 .ctl_name = CTL_KERN,
7456 .procname = "kernel",
7457 .mode = 0555,
7458 .child = sd_ctl_dir,
7459 },
7460 {0, },
7461 };
7462
7463 static struct ctl_table *sd_alloc_ctl_entry(int n)
7464 {
7465 struct ctl_table *entry =
7466 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7467
7468 return entry;
7469 }
7470
7471 static void sd_free_ctl_entry(struct ctl_table **tablep)
7472 {
7473 struct ctl_table *entry;
7474
7475 /*
7476 * In the intermediate directories, both the child directory and
7477 * procname are dynamically allocated and could fail but the mode
7478 * will always be set. In the lowest directory the names are
7479 * static strings and all have proc handlers.
7480 */
7481 for (entry = *tablep; entry->mode; entry++) {
7482 if (entry->child)
7483 sd_free_ctl_entry(&entry->child);
7484 if (entry->proc_handler == NULL)
7485 kfree(entry->procname);
7486 }
7487
7488 kfree(*tablep);
7489 *tablep = NULL;
7490 }
7491
7492 static void
7493 set_table_entry(struct ctl_table *entry,
7494 const char *procname, void *data, int maxlen,
7495 mode_t mode, proc_handler *proc_handler)
7496 {
7497 entry->procname = procname;
7498 entry->data = data;
7499 entry->maxlen = maxlen;
7500 entry->mode = mode;
7501 entry->proc_handler = proc_handler;
7502 }
7503
7504 static struct ctl_table *
7505 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7506 {
7507 struct ctl_table *table = sd_alloc_ctl_entry(13);
7508
7509 if (table == NULL)
7510 return NULL;
7511
7512 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7513 sizeof(long), 0644, proc_doulongvec_minmax);
7514 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7515 sizeof(long), 0644, proc_doulongvec_minmax);
7516 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7517 sizeof(int), 0644, proc_dointvec_minmax);
7518 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7519 sizeof(int), 0644, proc_dointvec_minmax);
7520 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7521 sizeof(int), 0644, proc_dointvec_minmax);
7522 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7523 sizeof(int), 0644, proc_dointvec_minmax);
7524 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7525 sizeof(int), 0644, proc_dointvec_minmax);
7526 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7527 sizeof(int), 0644, proc_dointvec_minmax);
7528 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7529 sizeof(int), 0644, proc_dointvec_minmax);
7530 set_table_entry(&table[9], "cache_nice_tries",
7531 &sd->cache_nice_tries,
7532 sizeof(int), 0644, proc_dointvec_minmax);
7533 set_table_entry(&table[10], "flags", &sd->flags,
7534 sizeof(int), 0644, proc_dointvec_minmax);
7535 set_table_entry(&table[11], "name", sd->name,
7536 CORENAME_MAX_SIZE, 0444, proc_dostring);
7537 /* &table[12] is terminator */
7538
7539 return table;
7540 }
7541
7542 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7543 {
7544 struct ctl_table *entry, *table;
7545 struct sched_domain *sd;
7546 int domain_num = 0, i;
7547 char buf[32];
7548
7549 for_each_domain(cpu, sd)
7550 domain_num++;
7551 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7552 if (table == NULL)
7553 return NULL;
7554
7555 i = 0;
7556 for_each_domain(cpu, sd) {
7557 snprintf(buf, 32, "domain%d", i);
7558 entry->procname = kstrdup(buf, GFP_KERNEL);
7559 entry->mode = 0555;
7560 entry->child = sd_alloc_ctl_domain_table(sd);
7561 entry++;
7562 i++;
7563 }
7564 return table;
7565 }
7566
7567 static struct ctl_table_header *sd_sysctl_header;
7568 static void register_sched_domain_sysctl(void)
7569 {
7570 int i, cpu_num = num_possible_cpus();
7571 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7572 char buf[32];
7573
7574 WARN_ON(sd_ctl_dir[0].child);
7575 sd_ctl_dir[0].child = entry;
7576
7577 if (entry == NULL)
7578 return;
7579
7580 for_each_possible_cpu(i) {
7581 snprintf(buf, 32, "cpu%d", i);
7582 entry->procname = kstrdup(buf, GFP_KERNEL);
7583 entry->mode = 0555;
7584 entry->child = sd_alloc_ctl_cpu_table(i);
7585 entry++;
7586 }
7587
7588 WARN_ON(sd_sysctl_header);
7589 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7590 }
7591
7592 /* may be called multiple times per register */
7593 static void unregister_sched_domain_sysctl(void)
7594 {
7595 if (sd_sysctl_header)
7596 unregister_sysctl_table(sd_sysctl_header);
7597 sd_sysctl_header = NULL;
7598 if (sd_ctl_dir[0].child)
7599 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7600 }
7601 #else
7602 static void register_sched_domain_sysctl(void)
7603 {
7604 }
7605 static void unregister_sched_domain_sysctl(void)
7606 {
7607 }
7608 #endif
7609
7610 static void set_rq_online(struct rq *rq)
7611 {
7612 if (!rq->online) {
7613 const struct sched_class *class;
7614
7615 cpumask_set_cpu(rq->cpu, rq->rd->online);
7616 rq->online = 1;
7617
7618 for_each_class(class) {
7619 if (class->rq_online)
7620 class->rq_online(rq);
7621 }
7622 }
7623 }
7624
7625 static void set_rq_offline(struct rq *rq)
7626 {
7627 if (rq->online) {
7628 const struct sched_class *class;
7629
7630 for_each_class(class) {
7631 if (class->rq_offline)
7632 class->rq_offline(rq);
7633 }
7634
7635 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7636 rq->online = 0;
7637 }
7638 }
7639
7640 /*
7641 * migration_call - callback that gets triggered when a CPU is added.
7642 * Here we can start up the necessary migration thread for the new CPU.
7643 */
7644 static int __cpuinit
7645 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7646 {
7647 struct task_struct *p;
7648 int cpu = (long)hcpu;
7649 unsigned long flags;
7650 struct rq *rq;
7651
7652 switch (action) {
7653
7654 case CPU_UP_PREPARE:
7655 case CPU_UP_PREPARE_FROZEN:
7656 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7657 if (IS_ERR(p))
7658 return NOTIFY_BAD;
7659 kthread_bind(p, cpu);
7660 /* Must be high prio: stop_machine expects to yield to it. */
7661 rq = task_rq_lock(p, &flags);
7662 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7663 task_rq_unlock(rq, &flags);
7664 get_task_struct(p);
7665 cpu_rq(cpu)->migration_thread = p;
7666 rq->calc_load_update = calc_load_update;
7667 break;
7668
7669 case CPU_ONLINE:
7670 case CPU_ONLINE_FROZEN:
7671 /* Strictly unnecessary, as first user will wake it. */
7672 wake_up_process(cpu_rq(cpu)->migration_thread);
7673
7674 /* Update our root-domain */
7675 rq = cpu_rq(cpu);
7676 spin_lock_irqsave(&rq->lock, flags);
7677 if (rq->rd) {
7678 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7679
7680 set_rq_online(rq);
7681 }
7682 spin_unlock_irqrestore(&rq->lock, flags);
7683 break;
7684
7685 #ifdef CONFIG_HOTPLUG_CPU
7686 case CPU_UP_CANCELED:
7687 case CPU_UP_CANCELED_FROZEN:
7688 if (!cpu_rq(cpu)->migration_thread)
7689 break;
7690 /* Unbind it from offline cpu so it can run. Fall thru. */
7691 kthread_bind(cpu_rq(cpu)->migration_thread,
7692 cpumask_any(cpu_online_mask));
7693 kthread_stop(cpu_rq(cpu)->migration_thread);
7694 put_task_struct(cpu_rq(cpu)->migration_thread);
7695 cpu_rq(cpu)->migration_thread = NULL;
7696 break;
7697
7698 case CPU_DEAD:
7699 case CPU_DEAD_FROZEN:
7700 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7701 migrate_live_tasks(cpu);
7702 rq = cpu_rq(cpu);
7703 kthread_stop(rq->migration_thread);
7704 put_task_struct(rq->migration_thread);
7705 rq->migration_thread = NULL;
7706 /* Idle task back to normal (off runqueue, low prio) */
7707 spin_lock_irq(&rq->lock);
7708 update_rq_clock(rq);
7709 deactivate_task(rq, rq->idle, 0);
7710 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7711 rq->idle->sched_class = &idle_sched_class;
7712 migrate_dead_tasks(cpu);
7713 spin_unlock_irq(&rq->lock);
7714 cpuset_unlock();
7715 migrate_nr_uninterruptible(rq);
7716 BUG_ON(rq->nr_running != 0);
7717 calc_global_load_remove(rq);
7718 /*
7719 * No need to migrate the tasks: it was best-effort if
7720 * they didn't take sched_hotcpu_mutex. Just wake up
7721 * the requestors.
7722 */
7723 spin_lock_irq(&rq->lock);
7724 while (!list_empty(&rq->migration_queue)) {
7725 struct migration_req *req;
7726
7727 req = list_entry(rq->migration_queue.next,
7728 struct migration_req, list);
7729 list_del_init(&req->list);
7730 spin_unlock_irq(&rq->lock);
7731 complete(&req->done);
7732 spin_lock_irq(&rq->lock);
7733 }
7734 spin_unlock_irq(&rq->lock);
7735 break;
7736
7737 case CPU_DYING:
7738 case CPU_DYING_FROZEN:
7739 /* Update our root-domain */
7740 rq = cpu_rq(cpu);
7741 spin_lock_irqsave(&rq->lock, flags);
7742 if (rq->rd) {
7743 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7744 set_rq_offline(rq);
7745 }
7746 spin_unlock_irqrestore(&rq->lock, flags);
7747 break;
7748 #endif
7749 }
7750 return NOTIFY_OK;
7751 }
7752
7753 /*
7754 * Register at high priority so that task migration (migrate_all_tasks)
7755 * happens before everything else. This has to be lower priority than
7756 * the notifier in the perf_event subsystem, though.
7757 */
7758 static struct notifier_block __cpuinitdata migration_notifier = {
7759 .notifier_call = migration_call,
7760 .priority = 10
7761 };
7762
7763 static int __init migration_init(void)
7764 {
7765 void *cpu = (void *)(long)smp_processor_id();
7766 int err;
7767
7768 /* Start one for the boot CPU: */
7769 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7770 BUG_ON(err == NOTIFY_BAD);
7771 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7772 register_cpu_notifier(&migration_notifier);
7773
7774 return 0;
7775 }
7776 early_initcall(migration_init);
7777 #endif
7778
7779 #ifdef CONFIG_SMP
7780
7781 #ifdef CONFIG_SCHED_DEBUG
7782
7783 static __read_mostly int sched_domain_debug_enabled;
7784
7785 static int __init sched_domain_debug_setup(char *str)
7786 {
7787 sched_domain_debug_enabled = 1;
7788
7789 return 0;
7790 }
7791 early_param("sched_debug", sched_domain_debug_setup);
7792
7793 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7794 struct cpumask *groupmask)
7795 {
7796 struct sched_group *group = sd->groups;
7797 char str[256];
7798
7799 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7800 cpumask_clear(groupmask);
7801
7802 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7803
7804 if (!(sd->flags & SD_LOAD_BALANCE)) {
7805 printk("does not load-balance\n");
7806 if (sd->parent)
7807 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7808 " has parent");
7809 return -1;
7810 }
7811
7812 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7813
7814 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7815 printk(KERN_ERR "ERROR: domain->span does not contain "
7816 "CPU%d\n", cpu);
7817 }
7818 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7819 printk(KERN_ERR "ERROR: domain->groups does not contain"
7820 " CPU%d\n", cpu);
7821 }
7822
7823 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7824 do {
7825 if (!group) {
7826 printk("\n");
7827 printk(KERN_ERR "ERROR: group is NULL\n");
7828 break;
7829 }
7830
7831 if (!group->cpu_power) {
7832 printk(KERN_CONT "\n");
7833 printk(KERN_ERR "ERROR: domain->cpu_power not "
7834 "set\n");
7835 break;
7836 }
7837
7838 if (!cpumask_weight(sched_group_cpus(group))) {
7839 printk(KERN_CONT "\n");
7840 printk(KERN_ERR "ERROR: empty group\n");
7841 break;
7842 }
7843
7844 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7845 printk(KERN_CONT "\n");
7846 printk(KERN_ERR "ERROR: repeated CPUs\n");
7847 break;
7848 }
7849
7850 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7851
7852 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7853
7854 printk(KERN_CONT " %s", str);
7855 if (group->cpu_power != SCHED_LOAD_SCALE) {
7856 printk(KERN_CONT " (cpu_power = %d)",
7857 group->cpu_power);
7858 }
7859
7860 group = group->next;
7861 } while (group != sd->groups);
7862 printk(KERN_CONT "\n");
7863
7864 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7865 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7866
7867 if (sd->parent &&
7868 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7869 printk(KERN_ERR "ERROR: parent span is not a superset "
7870 "of domain->span\n");
7871 return 0;
7872 }
7873
7874 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7875 {
7876 cpumask_var_t groupmask;
7877 int level = 0;
7878
7879 if (!sched_domain_debug_enabled)
7880 return;
7881
7882 if (!sd) {
7883 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7884 return;
7885 }
7886
7887 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7888
7889 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7890 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7891 return;
7892 }
7893
7894 for (;;) {
7895 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7896 break;
7897 level++;
7898 sd = sd->parent;
7899 if (!sd)
7900 break;
7901 }
7902 free_cpumask_var(groupmask);
7903 }
7904 #else /* !CONFIG_SCHED_DEBUG */
7905 # define sched_domain_debug(sd, cpu) do { } while (0)
7906 #endif /* CONFIG_SCHED_DEBUG */
7907
7908 static int sd_degenerate(struct sched_domain *sd)
7909 {
7910 if (cpumask_weight(sched_domain_span(sd)) == 1)
7911 return 1;
7912
7913 /* Following flags need at least 2 groups */
7914 if (sd->flags & (SD_LOAD_BALANCE |
7915 SD_BALANCE_NEWIDLE |
7916 SD_BALANCE_FORK |
7917 SD_BALANCE_EXEC |
7918 SD_SHARE_CPUPOWER |
7919 SD_SHARE_PKG_RESOURCES)) {
7920 if (sd->groups != sd->groups->next)
7921 return 0;
7922 }
7923
7924 /* Following flags don't use groups */
7925 if (sd->flags & (SD_WAKE_AFFINE))
7926 return 0;
7927
7928 return 1;
7929 }
7930
7931 static int
7932 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7933 {
7934 unsigned long cflags = sd->flags, pflags = parent->flags;
7935
7936 if (sd_degenerate(parent))
7937 return 1;
7938
7939 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7940 return 0;
7941
7942 /* Flags needing groups don't count if only 1 group in parent */
7943 if (parent->groups == parent->groups->next) {
7944 pflags &= ~(SD_LOAD_BALANCE |
7945 SD_BALANCE_NEWIDLE |
7946 SD_BALANCE_FORK |
7947 SD_BALANCE_EXEC |
7948 SD_SHARE_CPUPOWER |
7949 SD_SHARE_PKG_RESOURCES);
7950 if (nr_node_ids == 1)
7951 pflags &= ~SD_SERIALIZE;
7952 }
7953 if (~cflags & pflags)
7954 return 0;
7955
7956 return 1;
7957 }
7958
7959 static void free_rootdomain(struct root_domain *rd)
7960 {
7961 synchronize_sched();
7962
7963 cpupri_cleanup(&rd->cpupri);
7964
7965 free_cpumask_var(rd->rto_mask);
7966 free_cpumask_var(rd->online);
7967 free_cpumask_var(rd->span);
7968 kfree(rd);
7969 }
7970
7971 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7972 {
7973 struct root_domain *old_rd = NULL;
7974 unsigned long flags;
7975
7976 spin_lock_irqsave(&rq->lock, flags);
7977
7978 if (rq->rd) {
7979 old_rd = rq->rd;
7980
7981 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7982 set_rq_offline(rq);
7983
7984 cpumask_clear_cpu(rq->cpu, old_rd->span);
7985
7986 /*
7987 * If we dont want to free the old_rt yet then
7988 * set old_rd to NULL to skip the freeing later
7989 * in this function:
7990 */
7991 if (!atomic_dec_and_test(&old_rd->refcount))
7992 old_rd = NULL;
7993 }
7994
7995 atomic_inc(&rd->refcount);
7996 rq->rd = rd;
7997
7998 cpumask_set_cpu(rq->cpu, rd->span);
7999 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8000 set_rq_online(rq);
8001
8002 spin_unlock_irqrestore(&rq->lock, flags);
8003
8004 if (old_rd)
8005 free_rootdomain(old_rd);
8006 }
8007
8008 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8009 {
8010 gfp_t gfp = GFP_KERNEL;
8011
8012 memset(rd, 0, sizeof(*rd));
8013
8014 if (bootmem)
8015 gfp = GFP_NOWAIT;
8016
8017 if (!alloc_cpumask_var(&rd->span, gfp))
8018 goto out;
8019 if (!alloc_cpumask_var(&rd->online, gfp))
8020 goto free_span;
8021 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8022 goto free_online;
8023
8024 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8025 goto free_rto_mask;
8026 return 0;
8027
8028 free_rto_mask:
8029 free_cpumask_var(rd->rto_mask);
8030 free_online:
8031 free_cpumask_var(rd->online);
8032 free_span:
8033 free_cpumask_var(rd->span);
8034 out:
8035 return -ENOMEM;
8036 }
8037
8038 static void init_defrootdomain(void)
8039 {
8040 init_rootdomain(&def_root_domain, true);
8041
8042 atomic_set(&def_root_domain.refcount, 1);
8043 }
8044
8045 static struct root_domain *alloc_rootdomain(void)
8046 {
8047 struct root_domain *rd;
8048
8049 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8050 if (!rd)
8051 return NULL;
8052
8053 if (init_rootdomain(rd, false) != 0) {
8054 kfree(rd);
8055 return NULL;
8056 }
8057
8058 return rd;
8059 }
8060
8061 /*
8062 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8063 * hold the hotplug lock.
8064 */
8065 static void
8066 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8067 {
8068 struct rq *rq = cpu_rq(cpu);
8069 struct sched_domain *tmp;
8070
8071 /* Remove the sched domains which do not contribute to scheduling. */
8072 for (tmp = sd; tmp; ) {
8073 struct sched_domain *parent = tmp->parent;
8074 if (!parent)
8075 break;
8076
8077 if (sd_parent_degenerate(tmp, parent)) {
8078 tmp->parent = parent->parent;
8079 if (parent->parent)
8080 parent->parent->child = tmp;
8081 } else
8082 tmp = tmp->parent;
8083 }
8084
8085 if (sd && sd_degenerate(sd)) {
8086 sd = sd->parent;
8087 if (sd)
8088 sd->child = NULL;
8089 }
8090
8091 sched_domain_debug(sd, cpu);
8092
8093 rq_attach_root(rq, rd);
8094 rcu_assign_pointer(rq->sd, sd);
8095 }
8096
8097 /* cpus with isolated domains */
8098 static cpumask_var_t cpu_isolated_map;
8099
8100 /* Setup the mask of cpus configured for isolated domains */
8101 static int __init isolated_cpu_setup(char *str)
8102 {
8103 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8104 cpulist_parse(str, cpu_isolated_map);
8105 return 1;
8106 }
8107
8108 __setup("isolcpus=", isolated_cpu_setup);
8109
8110 /*
8111 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8112 * to a function which identifies what group(along with sched group) a CPU
8113 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8114 * (due to the fact that we keep track of groups covered with a struct cpumask).
8115 *
8116 * init_sched_build_groups will build a circular linked list of the groups
8117 * covered by the given span, and will set each group's ->cpumask correctly,
8118 * and ->cpu_power to 0.
8119 */
8120 static void
8121 init_sched_build_groups(const struct cpumask *span,
8122 const struct cpumask *cpu_map,
8123 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8124 struct sched_group **sg,
8125 struct cpumask *tmpmask),
8126 struct cpumask *covered, struct cpumask *tmpmask)
8127 {
8128 struct sched_group *first = NULL, *last = NULL;
8129 int i;
8130
8131 cpumask_clear(covered);
8132
8133 for_each_cpu(i, span) {
8134 struct sched_group *sg;
8135 int group = group_fn(i, cpu_map, &sg, tmpmask);
8136 int j;
8137
8138 if (cpumask_test_cpu(i, covered))
8139 continue;
8140
8141 cpumask_clear(sched_group_cpus(sg));
8142 sg->cpu_power = 0;
8143
8144 for_each_cpu(j, span) {
8145 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8146 continue;
8147
8148 cpumask_set_cpu(j, covered);
8149 cpumask_set_cpu(j, sched_group_cpus(sg));
8150 }
8151 if (!first)
8152 first = sg;
8153 if (last)
8154 last->next = sg;
8155 last = sg;
8156 }
8157 last->next = first;
8158 }
8159
8160 #define SD_NODES_PER_DOMAIN 16
8161
8162 #ifdef CONFIG_NUMA
8163
8164 /**
8165 * find_next_best_node - find the next node to include in a sched_domain
8166 * @node: node whose sched_domain we're building
8167 * @used_nodes: nodes already in the sched_domain
8168 *
8169 * Find the next node to include in a given scheduling domain. Simply
8170 * finds the closest node not already in the @used_nodes map.
8171 *
8172 * Should use nodemask_t.
8173 */
8174 static int find_next_best_node(int node, nodemask_t *used_nodes)
8175 {
8176 int i, n, val, min_val, best_node = 0;
8177
8178 min_val = INT_MAX;
8179
8180 for (i = 0; i < nr_node_ids; i++) {
8181 /* Start at @node */
8182 n = (node + i) % nr_node_ids;
8183
8184 if (!nr_cpus_node(n))
8185 continue;
8186
8187 /* Skip already used nodes */
8188 if (node_isset(n, *used_nodes))
8189 continue;
8190
8191 /* Simple min distance search */
8192 val = node_distance(node, n);
8193
8194 if (val < min_val) {
8195 min_val = val;
8196 best_node = n;
8197 }
8198 }
8199
8200 node_set(best_node, *used_nodes);
8201 return best_node;
8202 }
8203
8204 /**
8205 * sched_domain_node_span - get a cpumask for a node's sched_domain
8206 * @node: node whose cpumask we're constructing
8207 * @span: resulting cpumask
8208 *
8209 * Given a node, construct a good cpumask for its sched_domain to span. It
8210 * should be one that prevents unnecessary balancing, but also spreads tasks
8211 * out optimally.
8212 */
8213 static void sched_domain_node_span(int node, struct cpumask *span)
8214 {
8215 nodemask_t used_nodes;
8216 int i;
8217
8218 cpumask_clear(span);
8219 nodes_clear(used_nodes);
8220
8221 cpumask_or(span, span, cpumask_of_node(node));
8222 node_set(node, used_nodes);
8223
8224 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8225 int next_node = find_next_best_node(node, &used_nodes);
8226
8227 cpumask_or(span, span, cpumask_of_node(next_node));
8228 }
8229 }
8230 #endif /* CONFIG_NUMA */
8231
8232 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8233
8234 /*
8235 * The cpus mask in sched_group and sched_domain hangs off the end.
8236 *
8237 * ( See the the comments in include/linux/sched.h:struct sched_group
8238 * and struct sched_domain. )
8239 */
8240 struct static_sched_group {
8241 struct sched_group sg;
8242 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8243 };
8244
8245 struct static_sched_domain {
8246 struct sched_domain sd;
8247 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8248 };
8249
8250 struct s_data {
8251 #ifdef CONFIG_NUMA
8252 int sd_allnodes;
8253 cpumask_var_t domainspan;
8254 cpumask_var_t covered;
8255 cpumask_var_t notcovered;
8256 #endif
8257 cpumask_var_t nodemask;
8258 cpumask_var_t this_sibling_map;
8259 cpumask_var_t this_core_map;
8260 cpumask_var_t send_covered;
8261 cpumask_var_t tmpmask;
8262 struct sched_group **sched_group_nodes;
8263 struct root_domain *rd;
8264 };
8265
8266 enum s_alloc {
8267 sa_sched_groups = 0,
8268 sa_rootdomain,
8269 sa_tmpmask,
8270 sa_send_covered,
8271 sa_this_core_map,
8272 sa_this_sibling_map,
8273 sa_nodemask,
8274 sa_sched_group_nodes,
8275 #ifdef CONFIG_NUMA
8276 sa_notcovered,
8277 sa_covered,
8278 sa_domainspan,
8279 #endif
8280 sa_none,
8281 };
8282
8283 /*
8284 * SMT sched-domains:
8285 */
8286 #ifdef CONFIG_SCHED_SMT
8287 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8288 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8289
8290 static int
8291 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8292 struct sched_group **sg, struct cpumask *unused)
8293 {
8294 if (sg)
8295 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8296 return cpu;
8297 }
8298 #endif /* CONFIG_SCHED_SMT */
8299
8300 /*
8301 * multi-core sched-domains:
8302 */
8303 #ifdef CONFIG_SCHED_MC
8304 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8305 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8306 #endif /* CONFIG_SCHED_MC */
8307
8308 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8309 static int
8310 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8311 struct sched_group **sg, struct cpumask *mask)
8312 {
8313 int group;
8314
8315 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8316 group = cpumask_first(mask);
8317 if (sg)
8318 *sg = &per_cpu(sched_group_core, group).sg;
8319 return group;
8320 }
8321 #elif defined(CONFIG_SCHED_MC)
8322 static int
8323 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8324 struct sched_group **sg, struct cpumask *unused)
8325 {
8326 if (sg)
8327 *sg = &per_cpu(sched_group_core, cpu).sg;
8328 return cpu;
8329 }
8330 #endif
8331
8332 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8333 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8334
8335 static int
8336 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8337 struct sched_group **sg, struct cpumask *mask)
8338 {
8339 int group;
8340 #ifdef CONFIG_SCHED_MC
8341 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8342 group = cpumask_first(mask);
8343 #elif defined(CONFIG_SCHED_SMT)
8344 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8345 group = cpumask_first(mask);
8346 #else
8347 group = cpu;
8348 #endif
8349 if (sg)
8350 *sg = &per_cpu(sched_group_phys, group).sg;
8351 return group;
8352 }
8353
8354 #ifdef CONFIG_NUMA
8355 /*
8356 * The init_sched_build_groups can't handle what we want to do with node
8357 * groups, so roll our own. Now each node has its own list of groups which
8358 * gets dynamically allocated.
8359 */
8360 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8361 static struct sched_group ***sched_group_nodes_bycpu;
8362
8363 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8364 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8365
8366 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8367 struct sched_group **sg,
8368 struct cpumask *nodemask)
8369 {
8370 int group;
8371
8372 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8373 group = cpumask_first(nodemask);
8374
8375 if (sg)
8376 *sg = &per_cpu(sched_group_allnodes, group).sg;
8377 return group;
8378 }
8379
8380 static void init_numa_sched_groups_power(struct sched_group *group_head)
8381 {
8382 struct sched_group *sg = group_head;
8383 int j;
8384
8385 if (!sg)
8386 return;
8387 do {
8388 for_each_cpu(j, sched_group_cpus(sg)) {
8389 struct sched_domain *sd;
8390
8391 sd = &per_cpu(phys_domains, j).sd;
8392 if (j != group_first_cpu(sd->groups)) {
8393 /*
8394 * Only add "power" once for each
8395 * physical package.
8396 */
8397 continue;
8398 }
8399
8400 sg->cpu_power += sd->groups->cpu_power;
8401 }
8402 sg = sg->next;
8403 } while (sg != group_head);
8404 }
8405
8406 static int build_numa_sched_groups(struct s_data *d,
8407 const struct cpumask *cpu_map, int num)
8408 {
8409 struct sched_domain *sd;
8410 struct sched_group *sg, *prev;
8411 int n, j;
8412
8413 cpumask_clear(d->covered);
8414 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8415 if (cpumask_empty(d->nodemask)) {
8416 d->sched_group_nodes[num] = NULL;
8417 goto out;
8418 }
8419
8420 sched_domain_node_span(num, d->domainspan);
8421 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8422
8423 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8424 GFP_KERNEL, num);
8425 if (!sg) {
8426 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8427 num);
8428 return -ENOMEM;
8429 }
8430 d->sched_group_nodes[num] = sg;
8431
8432 for_each_cpu(j, d->nodemask) {
8433 sd = &per_cpu(node_domains, j).sd;
8434 sd->groups = sg;
8435 }
8436
8437 sg->cpu_power = 0;
8438 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8439 sg->next = sg;
8440 cpumask_or(d->covered, d->covered, d->nodemask);
8441
8442 prev = sg;
8443 for (j = 0; j < nr_node_ids; j++) {
8444 n = (num + j) % nr_node_ids;
8445 cpumask_complement(d->notcovered, d->covered);
8446 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8447 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8448 if (cpumask_empty(d->tmpmask))
8449 break;
8450 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8451 if (cpumask_empty(d->tmpmask))
8452 continue;
8453 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8454 GFP_KERNEL, num);
8455 if (!sg) {
8456 printk(KERN_WARNING
8457 "Can not alloc domain group for node %d\n", j);
8458 return -ENOMEM;
8459 }
8460 sg->cpu_power = 0;
8461 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8462 sg->next = prev->next;
8463 cpumask_or(d->covered, d->covered, d->tmpmask);
8464 prev->next = sg;
8465 prev = sg;
8466 }
8467 out:
8468 return 0;
8469 }
8470 #endif /* CONFIG_NUMA */
8471
8472 #ifdef CONFIG_NUMA
8473 /* Free memory allocated for various sched_group structures */
8474 static void free_sched_groups(const struct cpumask *cpu_map,
8475 struct cpumask *nodemask)
8476 {
8477 int cpu, i;
8478
8479 for_each_cpu(cpu, cpu_map) {
8480 struct sched_group **sched_group_nodes
8481 = sched_group_nodes_bycpu[cpu];
8482
8483 if (!sched_group_nodes)
8484 continue;
8485
8486 for (i = 0; i < nr_node_ids; i++) {
8487 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8488
8489 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8490 if (cpumask_empty(nodemask))
8491 continue;
8492
8493 if (sg == NULL)
8494 continue;
8495 sg = sg->next;
8496 next_sg:
8497 oldsg = sg;
8498 sg = sg->next;
8499 kfree(oldsg);
8500 if (oldsg != sched_group_nodes[i])
8501 goto next_sg;
8502 }
8503 kfree(sched_group_nodes);
8504 sched_group_nodes_bycpu[cpu] = NULL;
8505 }
8506 }
8507 #else /* !CONFIG_NUMA */
8508 static void free_sched_groups(const struct cpumask *cpu_map,
8509 struct cpumask *nodemask)
8510 {
8511 }
8512 #endif /* CONFIG_NUMA */
8513
8514 /*
8515 * Initialize sched groups cpu_power.
8516 *
8517 * cpu_power indicates the capacity of sched group, which is used while
8518 * distributing the load between different sched groups in a sched domain.
8519 * Typically cpu_power for all the groups in a sched domain will be same unless
8520 * there are asymmetries in the topology. If there are asymmetries, group
8521 * having more cpu_power will pickup more load compared to the group having
8522 * less cpu_power.
8523 */
8524 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8525 {
8526 struct sched_domain *child;
8527 struct sched_group *group;
8528 long power;
8529 int weight;
8530
8531 WARN_ON(!sd || !sd->groups);
8532
8533 if (cpu != group_first_cpu(sd->groups))
8534 return;
8535
8536 child = sd->child;
8537
8538 sd->groups->cpu_power = 0;
8539
8540 if (!child) {
8541 power = SCHED_LOAD_SCALE;
8542 weight = cpumask_weight(sched_domain_span(sd));
8543 /*
8544 * SMT siblings share the power of a single core.
8545 * Usually multiple threads get a better yield out of
8546 * that one core than a single thread would have,
8547 * reflect that in sd->smt_gain.
8548 */
8549 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8550 power *= sd->smt_gain;
8551 power /= weight;
8552 power >>= SCHED_LOAD_SHIFT;
8553 }
8554 sd->groups->cpu_power += power;
8555 return;
8556 }
8557
8558 /*
8559 * Add cpu_power of each child group to this groups cpu_power.
8560 */
8561 group = child->groups;
8562 do {
8563 sd->groups->cpu_power += group->cpu_power;
8564 group = group->next;
8565 } while (group != child->groups);
8566 }
8567
8568 /*
8569 * Initializers for schedule domains
8570 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8571 */
8572
8573 #ifdef CONFIG_SCHED_DEBUG
8574 # define SD_INIT_NAME(sd, type) sd->name = #type
8575 #else
8576 # define SD_INIT_NAME(sd, type) do { } while (0)
8577 #endif
8578
8579 #define SD_INIT(sd, type) sd_init_##type(sd)
8580
8581 #define SD_INIT_FUNC(type) \
8582 static noinline void sd_init_##type(struct sched_domain *sd) \
8583 { \
8584 memset(sd, 0, sizeof(*sd)); \
8585 *sd = SD_##type##_INIT; \
8586 sd->level = SD_LV_##type; \
8587 SD_INIT_NAME(sd, type); \
8588 }
8589
8590 SD_INIT_FUNC(CPU)
8591 #ifdef CONFIG_NUMA
8592 SD_INIT_FUNC(ALLNODES)
8593 SD_INIT_FUNC(NODE)
8594 #endif
8595 #ifdef CONFIG_SCHED_SMT
8596 SD_INIT_FUNC(SIBLING)
8597 #endif
8598 #ifdef CONFIG_SCHED_MC
8599 SD_INIT_FUNC(MC)
8600 #endif
8601
8602 static int default_relax_domain_level = -1;
8603
8604 static int __init setup_relax_domain_level(char *str)
8605 {
8606 unsigned long val;
8607
8608 val = simple_strtoul(str, NULL, 0);
8609 if (val < SD_LV_MAX)
8610 default_relax_domain_level = val;
8611
8612 return 1;
8613 }
8614 __setup("relax_domain_level=", setup_relax_domain_level);
8615
8616 static void set_domain_attribute(struct sched_domain *sd,
8617 struct sched_domain_attr *attr)
8618 {
8619 int request;
8620
8621 if (!attr || attr->relax_domain_level < 0) {
8622 if (default_relax_domain_level < 0)
8623 return;
8624 else
8625 request = default_relax_domain_level;
8626 } else
8627 request = attr->relax_domain_level;
8628 if (request < sd->level) {
8629 /* turn off idle balance on this domain */
8630 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8631 } else {
8632 /* turn on idle balance on this domain */
8633 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8634 }
8635 }
8636
8637 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8638 const struct cpumask *cpu_map)
8639 {
8640 switch (what) {
8641 case sa_sched_groups:
8642 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8643 d->sched_group_nodes = NULL;
8644 case sa_rootdomain:
8645 free_rootdomain(d->rd); /* fall through */
8646 case sa_tmpmask:
8647 free_cpumask_var(d->tmpmask); /* fall through */
8648 case sa_send_covered:
8649 free_cpumask_var(d->send_covered); /* fall through */
8650 case sa_this_core_map:
8651 free_cpumask_var(d->this_core_map); /* fall through */
8652 case sa_this_sibling_map:
8653 free_cpumask_var(d->this_sibling_map); /* fall through */
8654 case sa_nodemask:
8655 free_cpumask_var(d->nodemask); /* fall through */
8656 case sa_sched_group_nodes:
8657 #ifdef CONFIG_NUMA
8658 kfree(d->sched_group_nodes); /* fall through */
8659 case sa_notcovered:
8660 free_cpumask_var(d->notcovered); /* fall through */
8661 case sa_covered:
8662 free_cpumask_var(d->covered); /* fall through */
8663 case sa_domainspan:
8664 free_cpumask_var(d->domainspan); /* fall through */
8665 #endif
8666 case sa_none:
8667 break;
8668 }
8669 }
8670
8671 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8672 const struct cpumask *cpu_map)
8673 {
8674 #ifdef CONFIG_NUMA
8675 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8676 return sa_none;
8677 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8678 return sa_domainspan;
8679 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8680 return sa_covered;
8681 /* Allocate the per-node list of sched groups */
8682 d->sched_group_nodes = kcalloc(nr_node_ids,
8683 sizeof(struct sched_group *), GFP_KERNEL);
8684 if (!d->sched_group_nodes) {
8685 printk(KERN_WARNING "Can not alloc sched group node list\n");
8686 return sa_notcovered;
8687 }
8688 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8689 #endif
8690 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8691 return sa_sched_group_nodes;
8692 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8693 return sa_nodemask;
8694 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8695 return sa_this_sibling_map;
8696 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8697 return sa_this_core_map;
8698 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8699 return sa_send_covered;
8700 d->rd = alloc_rootdomain();
8701 if (!d->rd) {
8702 printk(KERN_WARNING "Cannot alloc root domain\n");
8703 return sa_tmpmask;
8704 }
8705 return sa_rootdomain;
8706 }
8707
8708 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8709 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8710 {
8711 struct sched_domain *sd = NULL;
8712 #ifdef CONFIG_NUMA
8713 struct sched_domain *parent;
8714
8715 d->sd_allnodes = 0;
8716 if (cpumask_weight(cpu_map) >
8717 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8718 sd = &per_cpu(allnodes_domains, i).sd;
8719 SD_INIT(sd, ALLNODES);
8720 set_domain_attribute(sd, attr);
8721 cpumask_copy(sched_domain_span(sd), cpu_map);
8722 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8723 d->sd_allnodes = 1;
8724 }
8725 parent = sd;
8726
8727 sd = &per_cpu(node_domains, i).sd;
8728 SD_INIT(sd, NODE);
8729 set_domain_attribute(sd, attr);
8730 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8731 sd->parent = parent;
8732 if (parent)
8733 parent->child = sd;
8734 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8735 #endif
8736 return sd;
8737 }
8738
8739 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8740 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8741 struct sched_domain *parent, int i)
8742 {
8743 struct sched_domain *sd;
8744 sd = &per_cpu(phys_domains, i).sd;
8745 SD_INIT(sd, CPU);
8746 set_domain_attribute(sd, attr);
8747 cpumask_copy(sched_domain_span(sd), d->nodemask);
8748 sd->parent = parent;
8749 if (parent)
8750 parent->child = sd;
8751 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8752 return sd;
8753 }
8754
8755 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8756 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8757 struct sched_domain *parent, int i)
8758 {
8759 struct sched_domain *sd = parent;
8760 #ifdef CONFIG_SCHED_MC
8761 sd = &per_cpu(core_domains, i).sd;
8762 SD_INIT(sd, MC);
8763 set_domain_attribute(sd, attr);
8764 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8765 sd->parent = parent;
8766 parent->child = sd;
8767 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8768 #endif
8769 return sd;
8770 }
8771
8772 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8773 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8774 struct sched_domain *parent, int i)
8775 {
8776 struct sched_domain *sd = parent;
8777 #ifdef CONFIG_SCHED_SMT
8778 sd = &per_cpu(cpu_domains, i).sd;
8779 SD_INIT(sd, SIBLING);
8780 set_domain_attribute(sd, attr);
8781 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8782 sd->parent = parent;
8783 parent->child = sd;
8784 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8785 #endif
8786 return sd;
8787 }
8788
8789 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8790 const struct cpumask *cpu_map, int cpu)
8791 {
8792 switch (l) {
8793 #ifdef CONFIG_SCHED_SMT
8794 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8795 cpumask_and(d->this_sibling_map, cpu_map,
8796 topology_thread_cpumask(cpu));
8797 if (cpu == cpumask_first(d->this_sibling_map))
8798 init_sched_build_groups(d->this_sibling_map, cpu_map,
8799 &cpu_to_cpu_group,
8800 d->send_covered, d->tmpmask);
8801 break;
8802 #endif
8803 #ifdef CONFIG_SCHED_MC
8804 case SD_LV_MC: /* set up multi-core groups */
8805 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8806 if (cpu == cpumask_first(d->this_core_map))
8807 init_sched_build_groups(d->this_core_map, cpu_map,
8808 &cpu_to_core_group,
8809 d->send_covered, d->tmpmask);
8810 break;
8811 #endif
8812 case SD_LV_CPU: /* set up physical groups */
8813 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8814 if (!cpumask_empty(d->nodemask))
8815 init_sched_build_groups(d->nodemask, cpu_map,
8816 &cpu_to_phys_group,
8817 d->send_covered, d->tmpmask);
8818 break;
8819 #ifdef CONFIG_NUMA
8820 case SD_LV_ALLNODES:
8821 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8822 d->send_covered, d->tmpmask);
8823 break;
8824 #endif
8825 default:
8826 break;
8827 }
8828 }
8829
8830 /*
8831 * Build sched domains for a given set of cpus and attach the sched domains
8832 * to the individual cpus
8833 */
8834 static int __build_sched_domains(const struct cpumask *cpu_map,
8835 struct sched_domain_attr *attr)
8836 {
8837 enum s_alloc alloc_state = sa_none;
8838 struct s_data d;
8839 struct sched_domain *sd;
8840 int i;
8841 #ifdef CONFIG_NUMA
8842 d.sd_allnodes = 0;
8843 #endif
8844
8845 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8846 if (alloc_state != sa_rootdomain)
8847 goto error;
8848 alloc_state = sa_sched_groups;
8849
8850 /*
8851 * Set up domains for cpus specified by the cpu_map.
8852 */
8853 for_each_cpu(i, cpu_map) {
8854 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8855 cpu_map);
8856
8857 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8858 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8859 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8860 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8861 }
8862
8863 for_each_cpu(i, cpu_map) {
8864 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8865 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8866 }
8867
8868 /* Set up physical groups */
8869 for (i = 0; i < nr_node_ids; i++)
8870 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8871
8872 #ifdef CONFIG_NUMA
8873 /* Set up node groups */
8874 if (d.sd_allnodes)
8875 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8876
8877 for (i = 0; i < nr_node_ids; i++)
8878 if (build_numa_sched_groups(&d, cpu_map, i))
8879 goto error;
8880 #endif
8881
8882 /* Calculate CPU power for physical packages and nodes */
8883 #ifdef CONFIG_SCHED_SMT
8884 for_each_cpu(i, cpu_map) {
8885 sd = &per_cpu(cpu_domains, i).sd;
8886 init_sched_groups_power(i, sd);
8887 }
8888 #endif
8889 #ifdef CONFIG_SCHED_MC
8890 for_each_cpu(i, cpu_map) {
8891 sd = &per_cpu(core_domains, i).sd;
8892 init_sched_groups_power(i, sd);
8893 }
8894 #endif
8895
8896 for_each_cpu(i, cpu_map) {
8897 sd = &per_cpu(phys_domains, i).sd;
8898 init_sched_groups_power(i, sd);
8899 }
8900
8901 #ifdef CONFIG_NUMA
8902 for (i = 0; i < nr_node_ids; i++)
8903 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8904
8905 if (d.sd_allnodes) {
8906 struct sched_group *sg;
8907
8908 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8909 d.tmpmask);
8910 init_numa_sched_groups_power(sg);
8911 }
8912 #endif
8913
8914 /* Attach the domains */
8915 for_each_cpu(i, cpu_map) {
8916 #ifdef CONFIG_SCHED_SMT
8917 sd = &per_cpu(cpu_domains, i).sd;
8918 #elif defined(CONFIG_SCHED_MC)
8919 sd = &per_cpu(core_domains, i).sd;
8920 #else
8921 sd = &per_cpu(phys_domains, i).sd;
8922 #endif
8923 cpu_attach_domain(sd, d.rd, i);
8924 }
8925
8926 d.sched_group_nodes = NULL; /* don't free this we still need it */
8927 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8928 return 0;
8929
8930 error:
8931 __free_domain_allocs(&d, alloc_state, cpu_map);
8932 return -ENOMEM;
8933 }
8934
8935 static int build_sched_domains(const struct cpumask *cpu_map)
8936 {
8937 return __build_sched_domains(cpu_map, NULL);
8938 }
8939
8940 static cpumask_var_t *doms_cur; /* current sched domains */
8941 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8942 static struct sched_domain_attr *dattr_cur;
8943 /* attribues of custom domains in 'doms_cur' */
8944
8945 /*
8946 * Special case: If a kmalloc of a doms_cur partition (array of
8947 * cpumask) fails, then fallback to a single sched domain,
8948 * as determined by the single cpumask fallback_doms.
8949 */
8950 static cpumask_var_t fallback_doms;
8951
8952 /*
8953 * arch_update_cpu_topology lets virtualized architectures update the
8954 * cpu core maps. It is supposed to return 1 if the topology changed
8955 * or 0 if it stayed the same.
8956 */
8957 int __attribute__((weak)) arch_update_cpu_topology(void)
8958 {
8959 return 0;
8960 }
8961
8962 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8963 {
8964 int i;
8965 cpumask_var_t *doms;
8966
8967 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8968 if (!doms)
8969 return NULL;
8970 for (i = 0; i < ndoms; i++) {
8971 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8972 free_sched_domains(doms, i);
8973 return NULL;
8974 }
8975 }
8976 return doms;
8977 }
8978
8979 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8980 {
8981 unsigned int i;
8982 for (i = 0; i < ndoms; i++)
8983 free_cpumask_var(doms[i]);
8984 kfree(doms);
8985 }
8986
8987 /*
8988 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8989 * For now this just excludes isolated cpus, but could be used to
8990 * exclude other special cases in the future.
8991 */
8992 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8993 {
8994 int err;
8995
8996 arch_update_cpu_topology();
8997 ndoms_cur = 1;
8998 doms_cur = alloc_sched_domains(ndoms_cur);
8999 if (!doms_cur)
9000 doms_cur = &fallback_doms;
9001 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9002 dattr_cur = NULL;
9003 err = build_sched_domains(doms_cur[0]);
9004 register_sched_domain_sysctl();
9005
9006 return err;
9007 }
9008
9009 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9010 struct cpumask *tmpmask)
9011 {
9012 free_sched_groups(cpu_map, tmpmask);
9013 }
9014
9015 /*
9016 * Detach sched domains from a group of cpus specified in cpu_map
9017 * These cpus will now be attached to the NULL domain
9018 */
9019 static void detach_destroy_domains(const struct cpumask *cpu_map)
9020 {
9021 /* Save because hotplug lock held. */
9022 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9023 int i;
9024
9025 for_each_cpu(i, cpu_map)
9026 cpu_attach_domain(NULL, &def_root_domain, i);
9027 synchronize_sched();
9028 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9029 }
9030
9031 /* handle null as "default" */
9032 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9033 struct sched_domain_attr *new, int idx_new)
9034 {
9035 struct sched_domain_attr tmp;
9036
9037 /* fast path */
9038 if (!new && !cur)
9039 return 1;
9040
9041 tmp = SD_ATTR_INIT;
9042 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9043 new ? (new + idx_new) : &tmp,
9044 sizeof(struct sched_domain_attr));
9045 }
9046
9047 /*
9048 * Partition sched domains as specified by the 'ndoms_new'
9049 * cpumasks in the array doms_new[] of cpumasks. This compares
9050 * doms_new[] to the current sched domain partitioning, doms_cur[].
9051 * It destroys each deleted domain and builds each new domain.
9052 *
9053 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9054 * The masks don't intersect (don't overlap.) We should setup one
9055 * sched domain for each mask. CPUs not in any of the cpumasks will
9056 * not be load balanced. If the same cpumask appears both in the
9057 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9058 * it as it is.
9059 *
9060 * The passed in 'doms_new' should be allocated using
9061 * alloc_sched_domains. This routine takes ownership of it and will
9062 * free_sched_domains it when done with it. If the caller failed the
9063 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9064 * and partition_sched_domains() will fallback to the single partition
9065 * 'fallback_doms', it also forces the domains to be rebuilt.
9066 *
9067 * If doms_new == NULL it will be replaced with cpu_online_mask.
9068 * ndoms_new == 0 is a special case for destroying existing domains,
9069 * and it will not create the default domain.
9070 *
9071 * Call with hotplug lock held
9072 */
9073 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9074 struct sched_domain_attr *dattr_new)
9075 {
9076 int i, j, n;
9077 int new_topology;
9078
9079 mutex_lock(&sched_domains_mutex);
9080
9081 /* always unregister in case we don't destroy any domains */
9082 unregister_sched_domain_sysctl();
9083
9084 /* Let architecture update cpu core mappings. */
9085 new_topology = arch_update_cpu_topology();
9086
9087 n = doms_new ? ndoms_new : 0;
9088
9089 /* Destroy deleted domains */
9090 for (i = 0; i < ndoms_cur; i++) {
9091 for (j = 0; j < n && !new_topology; j++) {
9092 if (cpumask_equal(doms_cur[i], doms_new[j])
9093 && dattrs_equal(dattr_cur, i, dattr_new, j))
9094 goto match1;
9095 }
9096 /* no match - a current sched domain not in new doms_new[] */
9097 detach_destroy_domains(doms_cur[i]);
9098 match1:
9099 ;
9100 }
9101
9102 if (doms_new == NULL) {
9103 ndoms_cur = 0;
9104 doms_new = &fallback_doms;
9105 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9106 WARN_ON_ONCE(dattr_new);
9107 }
9108
9109 /* Build new domains */
9110 for (i = 0; i < ndoms_new; i++) {
9111 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9112 if (cpumask_equal(doms_new[i], doms_cur[j])
9113 && dattrs_equal(dattr_new, i, dattr_cur, j))
9114 goto match2;
9115 }
9116 /* no match - add a new doms_new */
9117 __build_sched_domains(doms_new[i],
9118 dattr_new ? dattr_new + i : NULL);
9119 match2:
9120 ;
9121 }
9122
9123 /* Remember the new sched domains */
9124 if (doms_cur != &fallback_doms)
9125 free_sched_domains(doms_cur, ndoms_cur);
9126 kfree(dattr_cur); /* kfree(NULL) is safe */
9127 doms_cur = doms_new;
9128 dattr_cur = dattr_new;
9129 ndoms_cur = ndoms_new;
9130
9131 register_sched_domain_sysctl();
9132
9133 mutex_unlock(&sched_domains_mutex);
9134 }
9135
9136 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9137 static void arch_reinit_sched_domains(void)
9138 {
9139 get_online_cpus();
9140
9141 /* Destroy domains first to force the rebuild */
9142 partition_sched_domains(0, NULL, NULL);
9143
9144 rebuild_sched_domains();
9145 put_online_cpus();
9146 }
9147
9148 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9149 {
9150 unsigned int level = 0;
9151
9152 if (sscanf(buf, "%u", &level) != 1)
9153 return -EINVAL;
9154
9155 /*
9156 * level is always be positive so don't check for
9157 * level < POWERSAVINGS_BALANCE_NONE which is 0
9158 * What happens on 0 or 1 byte write,
9159 * need to check for count as well?
9160 */
9161
9162 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9163 return -EINVAL;
9164
9165 if (smt)
9166 sched_smt_power_savings = level;
9167 else
9168 sched_mc_power_savings = level;
9169
9170 arch_reinit_sched_domains();
9171
9172 return count;
9173 }
9174
9175 #ifdef CONFIG_SCHED_MC
9176 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9177 char *page)
9178 {
9179 return sprintf(page, "%u\n", sched_mc_power_savings);
9180 }
9181 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9182 const char *buf, size_t count)
9183 {
9184 return sched_power_savings_store(buf, count, 0);
9185 }
9186 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9187 sched_mc_power_savings_show,
9188 sched_mc_power_savings_store);
9189 #endif
9190
9191 #ifdef CONFIG_SCHED_SMT
9192 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9193 char *page)
9194 {
9195 return sprintf(page, "%u\n", sched_smt_power_savings);
9196 }
9197 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9198 const char *buf, size_t count)
9199 {
9200 return sched_power_savings_store(buf, count, 1);
9201 }
9202 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9203 sched_smt_power_savings_show,
9204 sched_smt_power_savings_store);
9205 #endif
9206
9207 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9208 {
9209 int err = 0;
9210
9211 #ifdef CONFIG_SCHED_SMT
9212 if (smt_capable())
9213 err = sysfs_create_file(&cls->kset.kobj,
9214 &attr_sched_smt_power_savings.attr);
9215 #endif
9216 #ifdef CONFIG_SCHED_MC
9217 if (!err && mc_capable())
9218 err = sysfs_create_file(&cls->kset.kobj,
9219 &attr_sched_mc_power_savings.attr);
9220 #endif
9221 return err;
9222 }
9223 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9224
9225 #ifndef CONFIG_CPUSETS
9226 /*
9227 * Add online and remove offline CPUs from the scheduler domains.
9228 * When cpusets are enabled they take over this function.
9229 */
9230 static int update_sched_domains(struct notifier_block *nfb,
9231 unsigned long action, void *hcpu)
9232 {
9233 switch (action) {
9234 case CPU_ONLINE:
9235 case CPU_ONLINE_FROZEN:
9236 case CPU_DOWN_PREPARE:
9237 case CPU_DOWN_PREPARE_FROZEN:
9238 case CPU_DOWN_FAILED:
9239 case CPU_DOWN_FAILED_FROZEN:
9240 partition_sched_domains(1, NULL, NULL);
9241 return NOTIFY_OK;
9242
9243 default:
9244 return NOTIFY_DONE;
9245 }
9246 }
9247 #endif
9248
9249 static int update_runtime(struct notifier_block *nfb,
9250 unsigned long action, void *hcpu)
9251 {
9252 int cpu = (int)(long)hcpu;
9253
9254 switch (action) {
9255 case CPU_DOWN_PREPARE:
9256 case CPU_DOWN_PREPARE_FROZEN:
9257 disable_runtime(cpu_rq(cpu));
9258 return NOTIFY_OK;
9259
9260 case CPU_DOWN_FAILED:
9261 case CPU_DOWN_FAILED_FROZEN:
9262 case CPU_ONLINE:
9263 case CPU_ONLINE_FROZEN:
9264 enable_runtime(cpu_rq(cpu));
9265 return NOTIFY_OK;
9266
9267 default:
9268 return NOTIFY_DONE;
9269 }
9270 }
9271
9272 void __init sched_init_smp(void)
9273 {
9274 cpumask_var_t non_isolated_cpus;
9275
9276 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9277 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9278
9279 #if defined(CONFIG_NUMA)
9280 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9281 GFP_KERNEL);
9282 BUG_ON(sched_group_nodes_bycpu == NULL);
9283 #endif
9284 get_online_cpus();
9285 mutex_lock(&sched_domains_mutex);
9286 arch_init_sched_domains(cpu_active_mask);
9287 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9288 if (cpumask_empty(non_isolated_cpus))
9289 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9290 mutex_unlock(&sched_domains_mutex);
9291 put_online_cpus();
9292
9293 #ifndef CONFIG_CPUSETS
9294 /* XXX: Theoretical race here - CPU may be hotplugged now */
9295 hotcpu_notifier(update_sched_domains, 0);
9296 #endif
9297
9298 /* RT runtime code needs to handle some hotplug events */
9299 hotcpu_notifier(update_runtime, 0);
9300
9301 init_hrtick();
9302
9303 /* Move init over to a non-isolated CPU */
9304 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9305 BUG();
9306 sched_init_granularity();
9307 free_cpumask_var(non_isolated_cpus);
9308
9309 init_sched_rt_class();
9310 }
9311 #else
9312 void __init sched_init_smp(void)
9313 {
9314 sched_init_granularity();
9315 }
9316 #endif /* CONFIG_SMP */
9317
9318 const_debug unsigned int sysctl_timer_migration = 1;
9319
9320 int in_sched_functions(unsigned long addr)
9321 {
9322 return in_lock_functions(addr) ||
9323 (addr >= (unsigned long)__sched_text_start
9324 && addr < (unsigned long)__sched_text_end);
9325 }
9326
9327 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9328 {
9329 cfs_rq->tasks_timeline = RB_ROOT;
9330 INIT_LIST_HEAD(&cfs_rq->tasks);
9331 #ifdef CONFIG_FAIR_GROUP_SCHED
9332 cfs_rq->rq = rq;
9333 #endif
9334 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9335 }
9336
9337 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9338 {
9339 struct rt_prio_array *array;
9340 int i;
9341
9342 array = &rt_rq->active;
9343 for (i = 0; i < MAX_RT_PRIO; i++) {
9344 INIT_LIST_HEAD(array->queue + i);
9345 __clear_bit(i, array->bitmap);
9346 }
9347 /* delimiter for bitsearch: */
9348 __set_bit(MAX_RT_PRIO, array->bitmap);
9349
9350 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9351 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9352 #ifdef CONFIG_SMP
9353 rt_rq->highest_prio.next = MAX_RT_PRIO;
9354 #endif
9355 #endif
9356 #ifdef CONFIG_SMP
9357 rt_rq->rt_nr_migratory = 0;
9358 rt_rq->overloaded = 0;
9359 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9360 #endif
9361
9362 rt_rq->rt_time = 0;
9363 rt_rq->rt_throttled = 0;
9364 rt_rq->rt_runtime = 0;
9365 spin_lock_init(&rt_rq->rt_runtime_lock);
9366
9367 #ifdef CONFIG_RT_GROUP_SCHED
9368 rt_rq->rt_nr_boosted = 0;
9369 rt_rq->rq = rq;
9370 #endif
9371 }
9372
9373 #ifdef CONFIG_FAIR_GROUP_SCHED
9374 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9375 struct sched_entity *se, int cpu, int add,
9376 struct sched_entity *parent)
9377 {
9378 struct rq *rq = cpu_rq(cpu);
9379 tg->cfs_rq[cpu] = cfs_rq;
9380 init_cfs_rq(cfs_rq, rq);
9381 cfs_rq->tg = tg;
9382 if (add)
9383 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9384
9385 tg->se[cpu] = se;
9386 /* se could be NULL for init_task_group */
9387 if (!se)
9388 return;
9389
9390 if (!parent)
9391 se->cfs_rq = &rq->cfs;
9392 else
9393 se->cfs_rq = parent->my_q;
9394
9395 se->my_q = cfs_rq;
9396 se->load.weight = tg->shares;
9397 se->load.inv_weight = 0;
9398 se->parent = parent;
9399 }
9400 #endif
9401
9402 #ifdef CONFIG_RT_GROUP_SCHED
9403 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9404 struct sched_rt_entity *rt_se, int cpu, int add,
9405 struct sched_rt_entity *parent)
9406 {
9407 struct rq *rq = cpu_rq(cpu);
9408
9409 tg->rt_rq[cpu] = rt_rq;
9410 init_rt_rq(rt_rq, rq);
9411 rt_rq->tg = tg;
9412 rt_rq->rt_se = rt_se;
9413 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9414 if (add)
9415 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9416
9417 tg->rt_se[cpu] = rt_se;
9418 if (!rt_se)
9419 return;
9420
9421 if (!parent)
9422 rt_se->rt_rq = &rq->rt;
9423 else
9424 rt_se->rt_rq = parent->my_q;
9425
9426 rt_se->my_q = rt_rq;
9427 rt_se->parent = parent;
9428 INIT_LIST_HEAD(&rt_se->run_list);
9429 }
9430 #endif
9431
9432 void __init sched_init(void)
9433 {
9434 int i, j;
9435 unsigned long alloc_size = 0, ptr;
9436
9437 #ifdef CONFIG_FAIR_GROUP_SCHED
9438 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9439 #endif
9440 #ifdef CONFIG_RT_GROUP_SCHED
9441 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9442 #endif
9443 #ifdef CONFIG_USER_SCHED
9444 alloc_size *= 2;
9445 #endif
9446 #ifdef CONFIG_CPUMASK_OFFSTACK
9447 alloc_size += num_possible_cpus() * cpumask_size();
9448 #endif
9449 if (alloc_size) {
9450 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9451
9452 #ifdef CONFIG_FAIR_GROUP_SCHED
9453 init_task_group.se = (struct sched_entity **)ptr;
9454 ptr += nr_cpu_ids * sizeof(void **);
9455
9456 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9457 ptr += nr_cpu_ids * sizeof(void **);
9458
9459 #ifdef CONFIG_USER_SCHED
9460 root_task_group.se = (struct sched_entity **)ptr;
9461 ptr += nr_cpu_ids * sizeof(void **);
9462
9463 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9464 ptr += nr_cpu_ids * sizeof(void **);
9465 #endif /* CONFIG_USER_SCHED */
9466 #endif /* CONFIG_FAIR_GROUP_SCHED */
9467 #ifdef CONFIG_RT_GROUP_SCHED
9468 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9469 ptr += nr_cpu_ids * sizeof(void **);
9470
9471 init_task_group.rt_rq = (struct rt_rq **)ptr;
9472 ptr += nr_cpu_ids * sizeof(void **);
9473
9474 #ifdef CONFIG_USER_SCHED
9475 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9476 ptr += nr_cpu_ids * sizeof(void **);
9477
9478 root_task_group.rt_rq = (struct rt_rq **)ptr;
9479 ptr += nr_cpu_ids * sizeof(void **);
9480 #endif /* CONFIG_USER_SCHED */
9481 #endif /* CONFIG_RT_GROUP_SCHED */
9482 #ifdef CONFIG_CPUMASK_OFFSTACK
9483 for_each_possible_cpu(i) {
9484 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9485 ptr += cpumask_size();
9486 }
9487 #endif /* CONFIG_CPUMASK_OFFSTACK */
9488 }
9489
9490 #ifdef CONFIG_SMP
9491 init_defrootdomain();
9492 #endif
9493
9494 init_rt_bandwidth(&def_rt_bandwidth,
9495 global_rt_period(), global_rt_runtime());
9496
9497 #ifdef CONFIG_RT_GROUP_SCHED
9498 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9499 global_rt_period(), global_rt_runtime());
9500 #ifdef CONFIG_USER_SCHED
9501 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9502 global_rt_period(), RUNTIME_INF);
9503 #endif /* CONFIG_USER_SCHED */
9504 #endif /* CONFIG_RT_GROUP_SCHED */
9505
9506 #ifdef CONFIG_GROUP_SCHED
9507 list_add(&init_task_group.list, &task_groups);
9508 INIT_LIST_HEAD(&init_task_group.children);
9509
9510 #ifdef CONFIG_USER_SCHED
9511 INIT_LIST_HEAD(&root_task_group.children);
9512 init_task_group.parent = &root_task_group;
9513 list_add(&init_task_group.siblings, &root_task_group.children);
9514 #endif /* CONFIG_USER_SCHED */
9515 #endif /* CONFIG_GROUP_SCHED */
9516
9517 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9518 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9519 __alignof__(unsigned long));
9520 #endif
9521 for_each_possible_cpu(i) {
9522 struct rq *rq;
9523
9524 rq = cpu_rq(i);
9525 spin_lock_init(&rq->lock);
9526 rq->nr_running = 0;
9527 rq->calc_load_active = 0;
9528 rq->calc_load_update = jiffies + LOAD_FREQ;
9529 init_cfs_rq(&rq->cfs, rq);
9530 init_rt_rq(&rq->rt, rq);
9531 #ifdef CONFIG_FAIR_GROUP_SCHED
9532 init_task_group.shares = init_task_group_load;
9533 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9534 #ifdef CONFIG_CGROUP_SCHED
9535 /*
9536 * How much cpu bandwidth does init_task_group get?
9537 *
9538 * In case of task-groups formed thr' the cgroup filesystem, it
9539 * gets 100% of the cpu resources in the system. This overall
9540 * system cpu resource is divided among the tasks of
9541 * init_task_group and its child task-groups in a fair manner,
9542 * based on each entity's (task or task-group's) weight
9543 * (se->load.weight).
9544 *
9545 * In other words, if init_task_group has 10 tasks of weight
9546 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9547 * then A0's share of the cpu resource is:
9548 *
9549 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9550 *
9551 * We achieve this by letting init_task_group's tasks sit
9552 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9553 */
9554 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9555 #elif defined CONFIG_USER_SCHED
9556 root_task_group.shares = NICE_0_LOAD;
9557 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9558 /*
9559 * In case of task-groups formed thr' the user id of tasks,
9560 * init_task_group represents tasks belonging to root user.
9561 * Hence it forms a sibling of all subsequent groups formed.
9562 * In this case, init_task_group gets only a fraction of overall
9563 * system cpu resource, based on the weight assigned to root
9564 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9565 * by letting tasks of init_task_group sit in a separate cfs_rq
9566 * (init_tg_cfs_rq) and having one entity represent this group of
9567 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9568 */
9569 init_tg_cfs_entry(&init_task_group,
9570 &per_cpu(init_tg_cfs_rq, i),
9571 &per_cpu(init_sched_entity, i), i, 1,
9572 root_task_group.se[i]);
9573
9574 #endif
9575 #endif /* CONFIG_FAIR_GROUP_SCHED */
9576
9577 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9578 #ifdef CONFIG_RT_GROUP_SCHED
9579 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9580 #ifdef CONFIG_CGROUP_SCHED
9581 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9582 #elif defined CONFIG_USER_SCHED
9583 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9584 init_tg_rt_entry(&init_task_group,
9585 &per_cpu(init_rt_rq, i),
9586 &per_cpu(init_sched_rt_entity, i), i, 1,
9587 root_task_group.rt_se[i]);
9588 #endif
9589 #endif
9590
9591 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9592 rq->cpu_load[j] = 0;
9593 #ifdef CONFIG_SMP
9594 rq->sd = NULL;
9595 rq->rd = NULL;
9596 rq->post_schedule = 0;
9597 rq->active_balance = 0;
9598 rq->next_balance = jiffies;
9599 rq->push_cpu = 0;
9600 rq->cpu = i;
9601 rq->online = 0;
9602 rq->migration_thread = NULL;
9603 rq->idle_stamp = 0;
9604 rq->avg_idle = 2*sysctl_sched_migration_cost;
9605 INIT_LIST_HEAD(&rq->migration_queue);
9606 rq_attach_root(rq, &def_root_domain);
9607 #endif
9608 init_rq_hrtick(rq);
9609 atomic_set(&rq->nr_iowait, 0);
9610 }
9611
9612 set_load_weight(&init_task);
9613
9614 #ifdef CONFIG_PREEMPT_NOTIFIERS
9615 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9616 #endif
9617
9618 #ifdef CONFIG_SMP
9619 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9620 #endif
9621
9622 #ifdef CONFIG_RT_MUTEXES
9623 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9624 #endif
9625
9626 /*
9627 * The boot idle thread does lazy MMU switching as well:
9628 */
9629 atomic_inc(&init_mm.mm_count);
9630 enter_lazy_tlb(&init_mm, current);
9631
9632 /*
9633 * Make us the idle thread. Technically, schedule() should not be
9634 * called from this thread, however somewhere below it might be,
9635 * but because we are the idle thread, we just pick up running again
9636 * when this runqueue becomes "idle".
9637 */
9638 init_idle(current, smp_processor_id());
9639
9640 calc_load_update = jiffies + LOAD_FREQ;
9641
9642 /*
9643 * During early bootup we pretend to be a normal task:
9644 */
9645 current->sched_class = &fair_sched_class;
9646
9647 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9648 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9649 #ifdef CONFIG_SMP
9650 #ifdef CONFIG_NO_HZ
9651 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9652 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9653 #endif
9654 /* May be allocated at isolcpus cmdline parse time */
9655 if (cpu_isolated_map == NULL)
9656 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9657 #endif /* SMP */
9658
9659 perf_event_init();
9660
9661 scheduler_running = 1;
9662 }
9663
9664 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9665 static inline int preempt_count_equals(int preempt_offset)
9666 {
9667 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9668
9669 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9670 }
9671
9672 void __might_sleep(char *file, int line, int preempt_offset)
9673 {
9674 #ifdef in_atomic
9675 static unsigned long prev_jiffy; /* ratelimiting */
9676
9677 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9678 system_state != SYSTEM_RUNNING || oops_in_progress)
9679 return;
9680 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9681 return;
9682 prev_jiffy = jiffies;
9683
9684 printk(KERN_ERR
9685 "BUG: sleeping function called from invalid context at %s:%d\n",
9686 file, line);
9687 printk(KERN_ERR
9688 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9689 in_atomic(), irqs_disabled(),
9690 current->pid, current->comm);
9691
9692 debug_show_held_locks(current);
9693 if (irqs_disabled())
9694 print_irqtrace_events(current);
9695 dump_stack();
9696 #endif
9697 }
9698 EXPORT_SYMBOL(__might_sleep);
9699 #endif
9700
9701 #ifdef CONFIG_MAGIC_SYSRQ
9702 static void normalize_task(struct rq *rq, struct task_struct *p)
9703 {
9704 int on_rq;
9705
9706 update_rq_clock(rq);
9707 on_rq = p->se.on_rq;
9708 if (on_rq)
9709 deactivate_task(rq, p, 0);
9710 __setscheduler(rq, p, SCHED_NORMAL, 0);
9711 if (on_rq) {
9712 activate_task(rq, p, 0);
9713 resched_task(rq->curr);
9714 }
9715 }
9716
9717 void normalize_rt_tasks(void)
9718 {
9719 struct task_struct *g, *p;
9720 unsigned long flags;
9721 struct rq *rq;
9722
9723 read_lock_irqsave(&tasklist_lock, flags);
9724 do_each_thread(g, p) {
9725 /*
9726 * Only normalize user tasks:
9727 */
9728 if (!p->mm)
9729 continue;
9730
9731 p->se.exec_start = 0;
9732 #ifdef CONFIG_SCHEDSTATS
9733 p->se.wait_start = 0;
9734 p->se.sleep_start = 0;
9735 p->se.block_start = 0;
9736 #endif
9737
9738 if (!rt_task(p)) {
9739 /*
9740 * Renice negative nice level userspace
9741 * tasks back to 0:
9742 */
9743 if (TASK_NICE(p) < 0 && p->mm)
9744 set_user_nice(p, 0);
9745 continue;
9746 }
9747
9748 spin_lock(&p->pi_lock);
9749 rq = __task_rq_lock(p);
9750
9751 normalize_task(rq, p);
9752
9753 __task_rq_unlock(rq);
9754 spin_unlock(&p->pi_lock);
9755 } while_each_thread(g, p);
9756
9757 read_unlock_irqrestore(&tasklist_lock, flags);
9758 }
9759
9760 #endif /* CONFIG_MAGIC_SYSRQ */
9761
9762 #ifdef CONFIG_IA64
9763 /*
9764 * These functions are only useful for the IA64 MCA handling.
9765 *
9766 * They can only be called when the whole system has been
9767 * stopped - every CPU needs to be quiescent, and no scheduling
9768 * activity can take place. Using them for anything else would
9769 * be a serious bug, and as a result, they aren't even visible
9770 * under any other configuration.
9771 */
9772
9773 /**
9774 * curr_task - return the current task for a given cpu.
9775 * @cpu: the processor in question.
9776 *
9777 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9778 */
9779 struct task_struct *curr_task(int cpu)
9780 {
9781 return cpu_curr(cpu);
9782 }
9783
9784 /**
9785 * set_curr_task - set the current task for a given cpu.
9786 * @cpu: the processor in question.
9787 * @p: the task pointer to set.
9788 *
9789 * Description: This function must only be used when non-maskable interrupts
9790 * are serviced on a separate stack. It allows the architecture to switch the
9791 * notion of the current task on a cpu in a non-blocking manner. This function
9792 * must be called with all CPU's synchronized, and interrupts disabled, the
9793 * and caller must save the original value of the current task (see
9794 * curr_task() above) and restore that value before reenabling interrupts and
9795 * re-starting the system.
9796 *
9797 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9798 */
9799 void set_curr_task(int cpu, struct task_struct *p)
9800 {
9801 cpu_curr(cpu) = p;
9802 }
9803
9804 #endif
9805
9806 #ifdef CONFIG_FAIR_GROUP_SCHED
9807 static void free_fair_sched_group(struct task_group *tg)
9808 {
9809 int i;
9810
9811 for_each_possible_cpu(i) {
9812 if (tg->cfs_rq)
9813 kfree(tg->cfs_rq[i]);
9814 if (tg->se)
9815 kfree(tg->se[i]);
9816 }
9817
9818 kfree(tg->cfs_rq);
9819 kfree(tg->se);
9820 }
9821
9822 static
9823 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9824 {
9825 struct cfs_rq *cfs_rq;
9826 struct sched_entity *se;
9827 struct rq *rq;
9828 int i;
9829
9830 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9831 if (!tg->cfs_rq)
9832 goto err;
9833 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9834 if (!tg->se)
9835 goto err;
9836
9837 tg->shares = NICE_0_LOAD;
9838
9839 for_each_possible_cpu(i) {
9840 rq = cpu_rq(i);
9841
9842 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9843 GFP_KERNEL, cpu_to_node(i));
9844 if (!cfs_rq)
9845 goto err;
9846
9847 se = kzalloc_node(sizeof(struct sched_entity),
9848 GFP_KERNEL, cpu_to_node(i));
9849 if (!se)
9850 goto err;
9851
9852 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9853 }
9854
9855 return 1;
9856
9857 err:
9858 return 0;
9859 }
9860
9861 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9862 {
9863 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9864 &cpu_rq(cpu)->leaf_cfs_rq_list);
9865 }
9866
9867 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9868 {
9869 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9870 }
9871 #else /* !CONFG_FAIR_GROUP_SCHED */
9872 static inline void free_fair_sched_group(struct task_group *tg)
9873 {
9874 }
9875
9876 static inline
9877 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9878 {
9879 return 1;
9880 }
9881
9882 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9883 {
9884 }
9885
9886 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9887 {
9888 }
9889 #endif /* CONFIG_FAIR_GROUP_SCHED */
9890
9891 #ifdef CONFIG_RT_GROUP_SCHED
9892 static void free_rt_sched_group(struct task_group *tg)
9893 {
9894 int i;
9895
9896 destroy_rt_bandwidth(&tg->rt_bandwidth);
9897
9898 for_each_possible_cpu(i) {
9899 if (tg->rt_rq)
9900 kfree(tg->rt_rq[i]);
9901 if (tg->rt_se)
9902 kfree(tg->rt_se[i]);
9903 }
9904
9905 kfree(tg->rt_rq);
9906 kfree(tg->rt_se);
9907 }
9908
9909 static
9910 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9911 {
9912 struct rt_rq *rt_rq;
9913 struct sched_rt_entity *rt_se;
9914 struct rq *rq;
9915 int i;
9916
9917 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9918 if (!tg->rt_rq)
9919 goto err;
9920 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9921 if (!tg->rt_se)
9922 goto err;
9923
9924 init_rt_bandwidth(&tg->rt_bandwidth,
9925 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9926
9927 for_each_possible_cpu(i) {
9928 rq = cpu_rq(i);
9929
9930 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9931 GFP_KERNEL, cpu_to_node(i));
9932 if (!rt_rq)
9933 goto err;
9934
9935 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9936 GFP_KERNEL, cpu_to_node(i));
9937 if (!rt_se)
9938 goto err;
9939
9940 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9941 }
9942
9943 return 1;
9944
9945 err:
9946 return 0;
9947 }
9948
9949 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9950 {
9951 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9952 &cpu_rq(cpu)->leaf_rt_rq_list);
9953 }
9954
9955 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9956 {
9957 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9958 }
9959 #else /* !CONFIG_RT_GROUP_SCHED */
9960 static inline void free_rt_sched_group(struct task_group *tg)
9961 {
9962 }
9963
9964 static inline
9965 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9966 {
9967 return 1;
9968 }
9969
9970 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9971 {
9972 }
9973
9974 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9975 {
9976 }
9977 #endif /* CONFIG_RT_GROUP_SCHED */
9978
9979 #ifdef CONFIG_GROUP_SCHED
9980 static void free_sched_group(struct task_group *tg)
9981 {
9982 free_fair_sched_group(tg);
9983 free_rt_sched_group(tg);
9984 kfree(tg);
9985 }
9986
9987 /* allocate runqueue etc for a new task group */
9988 struct task_group *sched_create_group(struct task_group *parent)
9989 {
9990 struct task_group *tg;
9991 unsigned long flags;
9992 int i;
9993
9994 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9995 if (!tg)
9996 return ERR_PTR(-ENOMEM);
9997
9998 if (!alloc_fair_sched_group(tg, parent))
9999 goto err;
10000
10001 if (!alloc_rt_sched_group(tg, parent))
10002 goto err;
10003
10004 spin_lock_irqsave(&task_group_lock, flags);
10005 for_each_possible_cpu(i) {
10006 register_fair_sched_group(tg, i);
10007 register_rt_sched_group(tg, i);
10008 }
10009 list_add_rcu(&tg->list, &task_groups);
10010
10011 WARN_ON(!parent); /* root should already exist */
10012
10013 tg->parent = parent;
10014 INIT_LIST_HEAD(&tg->children);
10015 list_add_rcu(&tg->siblings, &parent->children);
10016 spin_unlock_irqrestore(&task_group_lock, flags);
10017
10018 return tg;
10019
10020 err:
10021 free_sched_group(tg);
10022 return ERR_PTR(-ENOMEM);
10023 }
10024
10025 /* rcu callback to free various structures associated with a task group */
10026 static void free_sched_group_rcu(struct rcu_head *rhp)
10027 {
10028 /* now it should be safe to free those cfs_rqs */
10029 free_sched_group(container_of(rhp, struct task_group, rcu));
10030 }
10031
10032 /* Destroy runqueue etc associated with a task group */
10033 void sched_destroy_group(struct task_group *tg)
10034 {
10035 unsigned long flags;
10036 int i;
10037
10038 spin_lock_irqsave(&task_group_lock, flags);
10039 for_each_possible_cpu(i) {
10040 unregister_fair_sched_group(tg, i);
10041 unregister_rt_sched_group(tg, i);
10042 }
10043 list_del_rcu(&tg->list);
10044 list_del_rcu(&tg->siblings);
10045 spin_unlock_irqrestore(&task_group_lock, flags);
10046
10047 /* wait for possible concurrent references to cfs_rqs complete */
10048 call_rcu(&tg->rcu, free_sched_group_rcu);
10049 }
10050
10051 /* change task's runqueue when it moves between groups.
10052 * The caller of this function should have put the task in its new group
10053 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10054 * reflect its new group.
10055 */
10056 void sched_move_task(struct task_struct *tsk)
10057 {
10058 int on_rq, running;
10059 unsigned long flags;
10060 struct rq *rq;
10061
10062 rq = task_rq_lock(tsk, &flags);
10063
10064 update_rq_clock(rq);
10065
10066 running = task_current(rq, tsk);
10067 on_rq = tsk->se.on_rq;
10068
10069 if (on_rq)
10070 dequeue_task(rq, tsk, 0);
10071 if (unlikely(running))
10072 tsk->sched_class->put_prev_task(rq, tsk);
10073
10074 set_task_rq(tsk, task_cpu(tsk));
10075
10076 #ifdef CONFIG_FAIR_GROUP_SCHED
10077 if (tsk->sched_class->moved_group)
10078 tsk->sched_class->moved_group(tsk);
10079 #endif
10080
10081 if (unlikely(running))
10082 tsk->sched_class->set_curr_task(rq);
10083 if (on_rq)
10084 enqueue_task(rq, tsk, 0);
10085
10086 task_rq_unlock(rq, &flags);
10087 }
10088 #endif /* CONFIG_GROUP_SCHED */
10089
10090 #ifdef CONFIG_FAIR_GROUP_SCHED
10091 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10092 {
10093 struct cfs_rq *cfs_rq = se->cfs_rq;
10094 int on_rq;
10095
10096 on_rq = se->on_rq;
10097 if (on_rq)
10098 dequeue_entity(cfs_rq, se, 0);
10099
10100 se->load.weight = shares;
10101 se->load.inv_weight = 0;
10102
10103 if (on_rq)
10104 enqueue_entity(cfs_rq, se, 0);
10105 }
10106
10107 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10108 {
10109 struct cfs_rq *cfs_rq = se->cfs_rq;
10110 struct rq *rq = cfs_rq->rq;
10111 unsigned long flags;
10112
10113 spin_lock_irqsave(&rq->lock, flags);
10114 __set_se_shares(se, shares);
10115 spin_unlock_irqrestore(&rq->lock, flags);
10116 }
10117
10118 static DEFINE_MUTEX(shares_mutex);
10119
10120 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10121 {
10122 int i;
10123 unsigned long flags;
10124
10125 /*
10126 * We can't change the weight of the root cgroup.
10127 */
10128 if (!tg->se[0])
10129 return -EINVAL;
10130
10131 if (shares < MIN_SHARES)
10132 shares = MIN_SHARES;
10133 else if (shares > MAX_SHARES)
10134 shares = MAX_SHARES;
10135
10136 mutex_lock(&shares_mutex);
10137 if (tg->shares == shares)
10138 goto done;
10139
10140 spin_lock_irqsave(&task_group_lock, flags);
10141 for_each_possible_cpu(i)
10142 unregister_fair_sched_group(tg, i);
10143 list_del_rcu(&tg->siblings);
10144 spin_unlock_irqrestore(&task_group_lock, flags);
10145
10146 /* wait for any ongoing reference to this group to finish */
10147 synchronize_sched();
10148
10149 /*
10150 * Now we are free to modify the group's share on each cpu
10151 * w/o tripping rebalance_share or load_balance_fair.
10152 */
10153 tg->shares = shares;
10154 for_each_possible_cpu(i) {
10155 /*
10156 * force a rebalance
10157 */
10158 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10159 set_se_shares(tg->se[i], shares);
10160 }
10161
10162 /*
10163 * Enable load balance activity on this group, by inserting it back on
10164 * each cpu's rq->leaf_cfs_rq_list.
10165 */
10166 spin_lock_irqsave(&task_group_lock, flags);
10167 for_each_possible_cpu(i)
10168 register_fair_sched_group(tg, i);
10169 list_add_rcu(&tg->siblings, &tg->parent->children);
10170 spin_unlock_irqrestore(&task_group_lock, flags);
10171 done:
10172 mutex_unlock(&shares_mutex);
10173 return 0;
10174 }
10175
10176 unsigned long sched_group_shares(struct task_group *tg)
10177 {
10178 return tg->shares;
10179 }
10180 #endif
10181
10182 #ifdef CONFIG_RT_GROUP_SCHED
10183 /*
10184 * Ensure that the real time constraints are schedulable.
10185 */
10186 static DEFINE_MUTEX(rt_constraints_mutex);
10187
10188 static unsigned long to_ratio(u64 period, u64 runtime)
10189 {
10190 if (runtime == RUNTIME_INF)
10191 return 1ULL << 20;
10192
10193 return div64_u64(runtime << 20, period);
10194 }
10195
10196 /* Must be called with tasklist_lock held */
10197 static inline int tg_has_rt_tasks(struct task_group *tg)
10198 {
10199 struct task_struct *g, *p;
10200
10201 do_each_thread(g, p) {
10202 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10203 return 1;
10204 } while_each_thread(g, p);
10205
10206 return 0;
10207 }
10208
10209 struct rt_schedulable_data {
10210 struct task_group *tg;
10211 u64 rt_period;
10212 u64 rt_runtime;
10213 };
10214
10215 static int tg_schedulable(struct task_group *tg, void *data)
10216 {
10217 struct rt_schedulable_data *d = data;
10218 struct task_group *child;
10219 unsigned long total, sum = 0;
10220 u64 period, runtime;
10221
10222 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10223 runtime = tg->rt_bandwidth.rt_runtime;
10224
10225 if (tg == d->tg) {
10226 period = d->rt_period;
10227 runtime = d->rt_runtime;
10228 }
10229
10230 #ifdef CONFIG_USER_SCHED
10231 if (tg == &root_task_group) {
10232 period = global_rt_period();
10233 runtime = global_rt_runtime();
10234 }
10235 #endif
10236
10237 /*
10238 * Cannot have more runtime than the period.
10239 */
10240 if (runtime > period && runtime != RUNTIME_INF)
10241 return -EINVAL;
10242
10243 /*
10244 * Ensure we don't starve existing RT tasks.
10245 */
10246 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10247 return -EBUSY;
10248
10249 total = to_ratio(period, runtime);
10250
10251 /*
10252 * Nobody can have more than the global setting allows.
10253 */
10254 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10255 return -EINVAL;
10256
10257 /*
10258 * The sum of our children's runtime should not exceed our own.
10259 */
10260 list_for_each_entry_rcu(child, &tg->children, siblings) {
10261 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10262 runtime = child->rt_bandwidth.rt_runtime;
10263
10264 if (child == d->tg) {
10265 period = d->rt_period;
10266 runtime = d->rt_runtime;
10267 }
10268
10269 sum += to_ratio(period, runtime);
10270 }
10271
10272 if (sum > total)
10273 return -EINVAL;
10274
10275 return 0;
10276 }
10277
10278 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10279 {
10280 struct rt_schedulable_data data = {
10281 .tg = tg,
10282 .rt_period = period,
10283 .rt_runtime = runtime,
10284 };
10285
10286 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10287 }
10288
10289 static int tg_set_bandwidth(struct task_group *tg,
10290 u64 rt_period, u64 rt_runtime)
10291 {
10292 int i, err = 0;
10293
10294 mutex_lock(&rt_constraints_mutex);
10295 read_lock(&tasklist_lock);
10296 err = __rt_schedulable(tg, rt_period, rt_runtime);
10297 if (err)
10298 goto unlock;
10299
10300 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10301 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10302 tg->rt_bandwidth.rt_runtime = rt_runtime;
10303
10304 for_each_possible_cpu(i) {
10305 struct rt_rq *rt_rq = tg->rt_rq[i];
10306
10307 spin_lock(&rt_rq->rt_runtime_lock);
10308 rt_rq->rt_runtime = rt_runtime;
10309 spin_unlock(&rt_rq->rt_runtime_lock);
10310 }
10311 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10312 unlock:
10313 read_unlock(&tasklist_lock);
10314 mutex_unlock(&rt_constraints_mutex);
10315
10316 return err;
10317 }
10318
10319 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10320 {
10321 u64 rt_runtime, rt_period;
10322
10323 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10324 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10325 if (rt_runtime_us < 0)
10326 rt_runtime = RUNTIME_INF;
10327
10328 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10329 }
10330
10331 long sched_group_rt_runtime(struct task_group *tg)
10332 {
10333 u64 rt_runtime_us;
10334
10335 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10336 return -1;
10337
10338 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10339 do_div(rt_runtime_us, NSEC_PER_USEC);
10340 return rt_runtime_us;
10341 }
10342
10343 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10344 {
10345 u64 rt_runtime, rt_period;
10346
10347 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10348 rt_runtime = tg->rt_bandwidth.rt_runtime;
10349
10350 if (rt_period == 0)
10351 return -EINVAL;
10352
10353 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10354 }
10355
10356 long sched_group_rt_period(struct task_group *tg)
10357 {
10358 u64 rt_period_us;
10359
10360 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10361 do_div(rt_period_us, NSEC_PER_USEC);
10362 return rt_period_us;
10363 }
10364
10365 static int sched_rt_global_constraints(void)
10366 {
10367 u64 runtime, period;
10368 int ret = 0;
10369
10370 if (sysctl_sched_rt_period <= 0)
10371 return -EINVAL;
10372
10373 runtime = global_rt_runtime();
10374 period = global_rt_period();
10375
10376 /*
10377 * Sanity check on the sysctl variables.
10378 */
10379 if (runtime > period && runtime != RUNTIME_INF)
10380 return -EINVAL;
10381
10382 mutex_lock(&rt_constraints_mutex);
10383 read_lock(&tasklist_lock);
10384 ret = __rt_schedulable(NULL, 0, 0);
10385 read_unlock(&tasklist_lock);
10386 mutex_unlock(&rt_constraints_mutex);
10387
10388 return ret;
10389 }
10390
10391 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10392 {
10393 /* Don't accept realtime tasks when there is no way for them to run */
10394 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10395 return 0;
10396
10397 return 1;
10398 }
10399
10400 #else /* !CONFIG_RT_GROUP_SCHED */
10401 static int sched_rt_global_constraints(void)
10402 {
10403 unsigned long flags;
10404 int i;
10405
10406 if (sysctl_sched_rt_period <= 0)
10407 return -EINVAL;
10408
10409 /*
10410 * There's always some RT tasks in the root group
10411 * -- migration, kstopmachine etc..
10412 */
10413 if (sysctl_sched_rt_runtime == 0)
10414 return -EBUSY;
10415
10416 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10417 for_each_possible_cpu(i) {
10418 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10419
10420 spin_lock(&rt_rq->rt_runtime_lock);
10421 rt_rq->rt_runtime = global_rt_runtime();
10422 spin_unlock(&rt_rq->rt_runtime_lock);
10423 }
10424 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10425
10426 return 0;
10427 }
10428 #endif /* CONFIG_RT_GROUP_SCHED */
10429
10430 int sched_rt_handler(struct ctl_table *table, int write,
10431 void __user *buffer, size_t *lenp,
10432 loff_t *ppos)
10433 {
10434 int ret;
10435 int old_period, old_runtime;
10436 static DEFINE_MUTEX(mutex);
10437
10438 mutex_lock(&mutex);
10439 old_period = sysctl_sched_rt_period;
10440 old_runtime = sysctl_sched_rt_runtime;
10441
10442 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10443
10444 if (!ret && write) {
10445 ret = sched_rt_global_constraints();
10446 if (ret) {
10447 sysctl_sched_rt_period = old_period;
10448 sysctl_sched_rt_runtime = old_runtime;
10449 } else {
10450 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10451 def_rt_bandwidth.rt_period =
10452 ns_to_ktime(global_rt_period());
10453 }
10454 }
10455 mutex_unlock(&mutex);
10456
10457 return ret;
10458 }
10459
10460 #ifdef CONFIG_CGROUP_SCHED
10461
10462 /* return corresponding task_group object of a cgroup */
10463 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10464 {
10465 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10466 struct task_group, css);
10467 }
10468
10469 static struct cgroup_subsys_state *
10470 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10471 {
10472 struct task_group *tg, *parent;
10473
10474 if (!cgrp->parent) {
10475 /* This is early initialization for the top cgroup */
10476 return &init_task_group.css;
10477 }
10478
10479 parent = cgroup_tg(cgrp->parent);
10480 tg = sched_create_group(parent);
10481 if (IS_ERR(tg))
10482 return ERR_PTR(-ENOMEM);
10483
10484 return &tg->css;
10485 }
10486
10487 static void
10488 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10489 {
10490 struct task_group *tg = cgroup_tg(cgrp);
10491
10492 sched_destroy_group(tg);
10493 }
10494
10495 static int
10496 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10497 {
10498 #ifdef CONFIG_RT_GROUP_SCHED
10499 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10500 return -EINVAL;
10501 #else
10502 /* We don't support RT-tasks being in separate groups */
10503 if (tsk->sched_class != &fair_sched_class)
10504 return -EINVAL;
10505 #endif
10506 return 0;
10507 }
10508
10509 static int
10510 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10511 struct task_struct *tsk, bool threadgroup)
10512 {
10513 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10514 if (retval)
10515 return retval;
10516 if (threadgroup) {
10517 struct task_struct *c;
10518 rcu_read_lock();
10519 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10520 retval = cpu_cgroup_can_attach_task(cgrp, c);
10521 if (retval) {
10522 rcu_read_unlock();
10523 return retval;
10524 }
10525 }
10526 rcu_read_unlock();
10527 }
10528 return 0;
10529 }
10530
10531 static void
10532 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10533 struct cgroup *old_cont, struct task_struct *tsk,
10534 bool threadgroup)
10535 {
10536 sched_move_task(tsk);
10537 if (threadgroup) {
10538 struct task_struct *c;
10539 rcu_read_lock();
10540 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10541 sched_move_task(c);
10542 }
10543 rcu_read_unlock();
10544 }
10545 }
10546
10547 #ifdef CONFIG_FAIR_GROUP_SCHED
10548 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10549 u64 shareval)
10550 {
10551 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10552 }
10553
10554 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10555 {
10556 struct task_group *tg = cgroup_tg(cgrp);
10557
10558 return (u64) tg->shares;
10559 }
10560 #endif /* CONFIG_FAIR_GROUP_SCHED */
10561
10562 #ifdef CONFIG_RT_GROUP_SCHED
10563 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10564 s64 val)
10565 {
10566 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10567 }
10568
10569 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10570 {
10571 return sched_group_rt_runtime(cgroup_tg(cgrp));
10572 }
10573
10574 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10575 u64 rt_period_us)
10576 {
10577 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10578 }
10579
10580 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10581 {
10582 return sched_group_rt_period(cgroup_tg(cgrp));
10583 }
10584 #endif /* CONFIG_RT_GROUP_SCHED */
10585
10586 static struct cftype cpu_files[] = {
10587 #ifdef CONFIG_FAIR_GROUP_SCHED
10588 {
10589 .name = "shares",
10590 .read_u64 = cpu_shares_read_u64,
10591 .write_u64 = cpu_shares_write_u64,
10592 },
10593 #endif
10594 #ifdef CONFIG_RT_GROUP_SCHED
10595 {
10596 .name = "rt_runtime_us",
10597 .read_s64 = cpu_rt_runtime_read,
10598 .write_s64 = cpu_rt_runtime_write,
10599 },
10600 {
10601 .name = "rt_period_us",
10602 .read_u64 = cpu_rt_period_read_uint,
10603 .write_u64 = cpu_rt_period_write_uint,
10604 },
10605 #endif
10606 };
10607
10608 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10609 {
10610 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10611 }
10612
10613 struct cgroup_subsys cpu_cgroup_subsys = {
10614 .name = "cpu",
10615 .create = cpu_cgroup_create,
10616 .destroy = cpu_cgroup_destroy,
10617 .can_attach = cpu_cgroup_can_attach,
10618 .attach = cpu_cgroup_attach,
10619 .populate = cpu_cgroup_populate,
10620 .subsys_id = cpu_cgroup_subsys_id,
10621 .early_init = 1,
10622 };
10623
10624 #endif /* CONFIG_CGROUP_SCHED */
10625
10626 #ifdef CONFIG_CGROUP_CPUACCT
10627
10628 /*
10629 * CPU accounting code for task groups.
10630 *
10631 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10632 * (balbir@in.ibm.com).
10633 */
10634
10635 /* track cpu usage of a group of tasks and its child groups */
10636 struct cpuacct {
10637 struct cgroup_subsys_state css;
10638 /* cpuusage holds pointer to a u64-type object on every cpu */
10639 u64 *cpuusage;
10640 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10641 struct cpuacct *parent;
10642 };
10643
10644 struct cgroup_subsys cpuacct_subsys;
10645
10646 /* return cpu accounting group corresponding to this container */
10647 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10648 {
10649 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10650 struct cpuacct, css);
10651 }
10652
10653 /* return cpu accounting group to which this task belongs */
10654 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10655 {
10656 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10657 struct cpuacct, css);
10658 }
10659
10660 /* create a new cpu accounting group */
10661 static struct cgroup_subsys_state *cpuacct_create(
10662 struct cgroup_subsys *ss, struct cgroup *cgrp)
10663 {
10664 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10665 int i;
10666
10667 if (!ca)
10668 goto out;
10669
10670 ca->cpuusage = alloc_percpu(u64);
10671 if (!ca->cpuusage)
10672 goto out_free_ca;
10673
10674 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10675 if (percpu_counter_init(&ca->cpustat[i], 0))
10676 goto out_free_counters;
10677
10678 if (cgrp->parent)
10679 ca->parent = cgroup_ca(cgrp->parent);
10680
10681 return &ca->css;
10682
10683 out_free_counters:
10684 while (--i >= 0)
10685 percpu_counter_destroy(&ca->cpustat[i]);
10686 free_percpu(ca->cpuusage);
10687 out_free_ca:
10688 kfree(ca);
10689 out:
10690 return ERR_PTR(-ENOMEM);
10691 }
10692
10693 /* destroy an existing cpu accounting group */
10694 static void
10695 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10696 {
10697 struct cpuacct *ca = cgroup_ca(cgrp);
10698 int i;
10699
10700 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10701 percpu_counter_destroy(&ca->cpustat[i]);
10702 free_percpu(ca->cpuusage);
10703 kfree(ca);
10704 }
10705
10706 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10707 {
10708 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10709 u64 data;
10710
10711 #ifndef CONFIG_64BIT
10712 /*
10713 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10714 */
10715 spin_lock_irq(&cpu_rq(cpu)->lock);
10716 data = *cpuusage;
10717 spin_unlock_irq(&cpu_rq(cpu)->lock);
10718 #else
10719 data = *cpuusage;
10720 #endif
10721
10722 return data;
10723 }
10724
10725 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10726 {
10727 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10728
10729 #ifndef CONFIG_64BIT
10730 /*
10731 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10732 */
10733 spin_lock_irq(&cpu_rq(cpu)->lock);
10734 *cpuusage = val;
10735 spin_unlock_irq(&cpu_rq(cpu)->lock);
10736 #else
10737 *cpuusage = val;
10738 #endif
10739 }
10740
10741 /* return total cpu usage (in nanoseconds) of a group */
10742 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10743 {
10744 struct cpuacct *ca = cgroup_ca(cgrp);
10745 u64 totalcpuusage = 0;
10746 int i;
10747
10748 for_each_present_cpu(i)
10749 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10750
10751 return totalcpuusage;
10752 }
10753
10754 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10755 u64 reset)
10756 {
10757 struct cpuacct *ca = cgroup_ca(cgrp);
10758 int err = 0;
10759 int i;
10760
10761 if (reset) {
10762 err = -EINVAL;
10763 goto out;
10764 }
10765
10766 for_each_present_cpu(i)
10767 cpuacct_cpuusage_write(ca, i, 0);
10768
10769 out:
10770 return err;
10771 }
10772
10773 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10774 struct seq_file *m)
10775 {
10776 struct cpuacct *ca = cgroup_ca(cgroup);
10777 u64 percpu;
10778 int i;
10779
10780 for_each_present_cpu(i) {
10781 percpu = cpuacct_cpuusage_read(ca, i);
10782 seq_printf(m, "%llu ", (unsigned long long) percpu);
10783 }
10784 seq_printf(m, "\n");
10785 return 0;
10786 }
10787
10788 static const char *cpuacct_stat_desc[] = {
10789 [CPUACCT_STAT_USER] = "user",
10790 [CPUACCT_STAT_SYSTEM] = "system",
10791 };
10792
10793 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10794 struct cgroup_map_cb *cb)
10795 {
10796 struct cpuacct *ca = cgroup_ca(cgrp);
10797 int i;
10798
10799 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10800 s64 val = percpu_counter_read(&ca->cpustat[i]);
10801 val = cputime64_to_clock_t(val);
10802 cb->fill(cb, cpuacct_stat_desc[i], val);
10803 }
10804 return 0;
10805 }
10806
10807 static struct cftype files[] = {
10808 {
10809 .name = "usage",
10810 .read_u64 = cpuusage_read,
10811 .write_u64 = cpuusage_write,
10812 },
10813 {
10814 .name = "usage_percpu",
10815 .read_seq_string = cpuacct_percpu_seq_read,
10816 },
10817 {
10818 .name = "stat",
10819 .read_map = cpuacct_stats_show,
10820 },
10821 };
10822
10823 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10824 {
10825 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10826 }
10827
10828 /*
10829 * charge this task's execution time to its accounting group.
10830 *
10831 * called with rq->lock held.
10832 */
10833 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10834 {
10835 struct cpuacct *ca;
10836 int cpu;
10837
10838 if (unlikely(!cpuacct_subsys.active))
10839 return;
10840
10841 cpu = task_cpu(tsk);
10842
10843 rcu_read_lock();
10844
10845 ca = task_ca(tsk);
10846
10847 for (; ca; ca = ca->parent) {
10848 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10849 *cpuusage += cputime;
10850 }
10851
10852 rcu_read_unlock();
10853 }
10854
10855 /*
10856 * Charge the system/user time to the task's accounting group.
10857 */
10858 static void cpuacct_update_stats(struct task_struct *tsk,
10859 enum cpuacct_stat_index idx, cputime_t val)
10860 {
10861 struct cpuacct *ca;
10862
10863 if (unlikely(!cpuacct_subsys.active))
10864 return;
10865
10866 rcu_read_lock();
10867 ca = task_ca(tsk);
10868
10869 do {
10870 percpu_counter_add(&ca->cpustat[idx], val);
10871 ca = ca->parent;
10872 } while (ca);
10873 rcu_read_unlock();
10874 }
10875
10876 struct cgroup_subsys cpuacct_subsys = {
10877 .name = "cpuacct",
10878 .create = cpuacct_create,
10879 .destroy = cpuacct_destroy,
10880 .populate = cpuacct_populate,
10881 .subsys_id = cpuacct_subsys_id,
10882 };
10883 #endif /* CONFIG_CGROUP_CPUACCT */
10884
10885 #ifndef CONFIG_SMP
10886
10887 int rcu_expedited_torture_stats(char *page)
10888 {
10889 return 0;
10890 }
10891 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10892
10893 void synchronize_sched_expedited(void)
10894 {
10895 }
10896 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10897
10898 #else /* #ifndef CONFIG_SMP */
10899
10900 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10901 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10902
10903 #define RCU_EXPEDITED_STATE_POST -2
10904 #define RCU_EXPEDITED_STATE_IDLE -1
10905
10906 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10907
10908 int rcu_expedited_torture_stats(char *page)
10909 {
10910 int cnt = 0;
10911 int cpu;
10912
10913 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10914 for_each_online_cpu(cpu) {
10915 cnt += sprintf(&page[cnt], " %d:%d",
10916 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10917 }
10918 cnt += sprintf(&page[cnt], "\n");
10919 return cnt;
10920 }
10921 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10922
10923 static long synchronize_sched_expedited_count;
10924
10925 /*
10926 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10927 * approach to force grace period to end quickly. This consumes
10928 * significant time on all CPUs, and is thus not recommended for
10929 * any sort of common-case code.
10930 *
10931 * Note that it is illegal to call this function while holding any
10932 * lock that is acquired by a CPU-hotplug notifier. Failing to
10933 * observe this restriction will result in deadlock.
10934 */
10935 void synchronize_sched_expedited(void)
10936 {
10937 int cpu;
10938 unsigned long flags;
10939 bool need_full_sync = 0;
10940 struct rq *rq;
10941 struct migration_req *req;
10942 long snap;
10943 int trycount = 0;
10944
10945 smp_mb(); /* ensure prior mod happens before capturing snap. */
10946 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10947 get_online_cpus();
10948 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10949 put_online_cpus();
10950 if (trycount++ < 10)
10951 udelay(trycount * num_online_cpus());
10952 else {
10953 synchronize_sched();
10954 return;
10955 }
10956 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10957 smp_mb(); /* ensure test happens before caller kfree */
10958 return;
10959 }
10960 get_online_cpus();
10961 }
10962 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10963 for_each_online_cpu(cpu) {
10964 rq = cpu_rq(cpu);
10965 req = &per_cpu(rcu_migration_req, cpu);
10966 init_completion(&req->done);
10967 req->task = NULL;
10968 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10969 spin_lock_irqsave(&rq->lock, flags);
10970 list_add(&req->list, &rq->migration_queue);
10971 spin_unlock_irqrestore(&rq->lock, flags);
10972 wake_up_process(rq->migration_thread);
10973 }
10974 for_each_online_cpu(cpu) {
10975 rcu_expedited_state = cpu;
10976 req = &per_cpu(rcu_migration_req, cpu);
10977 rq = cpu_rq(cpu);
10978 wait_for_completion(&req->done);
10979 spin_lock_irqsave(&rq->lock, flags);
10980 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10981 need_full_sync = 1;
10982 req->dest_cpu = RCU_MIGRATION_IDLE;
10983 spin_unlock_irqrestore(&rq->lock, flags);
10984 }
10985 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10986 synchronize_sched_expedited_count++;
10987 mutex_unlock(&rcu_sched_expedited_mutex);
10988 put_online_cpus();
10989 if (need_full_sync)
10990 synchronize_sched();
10991 }
10992 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10993
10994 #endif /* #else #ifndef CONFIG_SMP */