]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
[S390] cputime: add sparse checking and cleanup
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74 #include <linux/init_task.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
79 #ifdef CONFIG_PARAVIRT
80 #include <asm/paravirt.h>
81 #endif
82
83 #include "sched_cpupri.h"
84 #include "workqueue_sched.h"
85 #include "sched_autogroup.h"
86
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/sched.h>
89
90 /*
91 * Convert user-nice values [ -20 ... 0 ... 19 ]
92 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
93 * and back.
94 */
95 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
96 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
97 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
98
99 /*
100 * 'User priority' is the nice value converted to something we
101 * can work with better when scaling various scheduler parameters,
102 * it's a [ 0 ... 39 ] range.
103 */
104 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
105 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
106 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
107
108 /*
109 * Helpers for converting nanosecond timing to jiffy resolution
110 */
111 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
112
113 #define NICE_0_LOAD SCHED_LOAD_SCALE
114 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
115
116 /*
117 * These are the 'tuning knobs' of the scheduler:
118 *
119 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
120 * Timeslices get refilled after they expire.
121 */
122 #define DEF_TIMESLICE (100 * HZ / 1000)
123
124 /*
125 * single value that denotes runtime == period, ie unlimited time.
126 */
127 #define RUNTIME_INF ((u64)~0ULL)
128
129 static inline int rt_policy(int policy)
130 {
131 if (policy == SCHED_FIFO || policy == SCHED_RR)
132 return 1;
133 return 0;
134 }
135
136 static inline int task_has_rt_policy(struct task_struct *p)
137 {
138 return rt_policy(p->policy);
139 }
140
141 /*
142 * This is the priority-queue data structure of the RT scheduling class:
143 */
144 struct rt_prio_array {
145 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
146 struct list_head queue[MAX_RT_PRIO];
147 };
148
149 struct rt_bandwidth {
150 /* nests inside the rq lock: */
151 raw_spinlock_t rt_runtime_lock;
152 ktime_t rt_period;
153 u64 rt_runtime;
154 struct hrtimer rt_period_timer;
155 };
156
157 static struct rt_bandwidth def_rt_bandwidth;
158
159 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
160
161 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
162 {
163 struct rt_bandwidth *rt_b =
164 container_of(timer, struct rt_bandwidth, rt_period_timer);
165 ktime_t now;
166 int overrun;
167 int idle = 0;
168
169 for (;;) {
170 now = hrtimer_cb_get_time(timer);
171 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
172
173 if (!overrun)
174 break;
175
176 idle = do_sched_rt_period_timer(rt_b, overrun);
177 }
178
179 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
180 }
181
182 static
183 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
184 {
185 rt_b->rt_period = ns_to_ktime(period);
186 rt_b->rt_runtime = runtime;
187
188 raw_spin_lock_init(&rt_b->rt_runtime_lock);
189
190 hrtimer_init(&rt_b->rt_period_timer,
191 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
192 rt_b->rt_period_timer.function = sched_rt_period_timer;
193 }
194
195 static inline int rt_bandwidth_enabled(void)
196 {
197 return sysctl_sched_rt_runtime >= 0;
198 }
199
200 static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
201 {
202 unsigned long delta;
203 ktime_t soft, hard, now;
204
205 for (;;) {
206 if (hrtimer_active(period_timer))
207 break;
208
209 now = hrtimer_cb_get_time(period_timer);
210 hrtimer_forward(period_timer, now, period);
211
212 soft = hrtimer_get_softexpires(period_timer);
213 hard = hrtimer_get_expires(period_timer);
214 delta = ktime_to_ns(ktime_sub(hard, soft));
215 __hrtimer_start_range_ns(period_timer, soft, delta,
216 HRTIMER_MODE_ABS_PINNED, 0);
217 }
218 }
219
220 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221 {
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 raw_spin_lock(&rt_b->rt_runtime_lock);
229 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
230 raw_spin_unlock(&rt_b->rt_runtime_lock);
231 }
232
233 #ifdef CONFIG_RT_GROUP_SCHED
234 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
235 {
236 hrtimer_cancel(&rt_b->rt_period_timer);
237 }
238 #endif
239
240 /*
241 * sched_domains_mutex serializes calls to init_sched_domains,
242 * detach_destroy_domains and partition_sched_domains.
243 */
244 static DEFINE_MUTEX(sched_domains_mutex);
245
246 #ifdef CONFIG_CGROUP_SCHED
247
248 #include <linux/cgroup.h>
249
250 struct cfs_rq;
251
252 static LIST_HEAD(task_groups);
253
254 struct cfs_bandwidth {
255 #ifdef CONFIG_CFS_BANDWIDTH
256 raw_spinlock_t lock;
257 ktime_t period;
258 u64 quota, runtime;
259 s64 hierarchal_quota;
260 u64 runtime_expires;
261
262 int idle, timer_active;
263 struct hrtimer period_timer, slack_timer;
264 struct list_head throttled_cfs_rq;
265
266 /* statistics */
267 int nr_periods, nr_throttled;
268 u64 throttled_time;
269 #endif
270 };
271
272 /* task group related information */
273 struct task_group {
274 struct cgroup_subsys_state css;
275
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
282
283 atomic_t load_weight;
284 #endif
285
286 #ifdef CONFIG_RT_GROUP_SCHED
287 struct sched_rt_entity **rt_se;
288 struct rt_rq **rt_rq;
289
290 struct rt_bandwidth rt_bandwidth;
291 #endif
292
293 struct rcu_head rcu;
294 struct list_head list;
295
296 struct task_group *parent;
297 struct list_head siblings;
298 struct list_head children;
299
300 #ifdef CONFIG_SCHED_AUTOGROUP
301 struct autogroup *autogroup;
302 #endif
303
304 struct cfs_bandwidth cfs_bandwidth;
305 };
306
307 /* task_group_lock serializes the addition/removal of task groups */
308 static DEFINE_SPINLOCK(task_group_lock);
309
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311
312 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
313
314 /*
315 * A weight of 0 or 1 can cause arithmetics problems.
316 * A weight of a cfs_rq is the sum of weights of which entities
317 * are queued on this cfs_rq, so a weight of a entity should not be
318 * too large, so as the shares value of a task group.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
321 */
322 #define MIN_SHARES (1UL << 1)
323 #define MAX_SHARES (1UL << 18)
324
325 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
326 #endif
327
328 /* Default task group.
329 * Every task in system belong to this group at bootup.
330 */
331 struct task_group root_task_group;
332
333 #endif /* CONFIG_CGROUP_SCHED */
334
335 /* CFS-related fields in a runqueue */
336 struct cfs_rq {
337 struct load_weight load;
338 unsigned long nr_running, h_nr_running;
339
340 u64 exec_clock;
341 u64 min_vruntime;
342 #ifndef CONFIG_64BIT
343 u64 min_vruntime_copy;
344 #endif
345
346 struct rb_root tasks_timeline;
347 struct rb_node *rb_leftmost;
348
349 struct list_head tasks;
350 struct list_head *balance_iterator;
351
352 /*
353 * 'curr' points to currently running entity on this cfs_rq.
354 * It is set to NULL otherwise (i.e when none are currently running).
355 */
356 struct sched_entity *curr, *next, *last, *skip;
357
358 #ifdef CONFIG_SCHED_DEBUG
359 unsigned int nr_spread_over;
360 #endif
361
362 #ifdef CONFIG_FAIR_GROUP_SCHED
363 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
364
365 /*
366 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
367 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
368 * (like users, containers etc.)
369 *
370 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
371 * list is used during load balance.
372 */
373 int on_list;
374 struct list_head leaf_cfs_rq_list;
375 struct task_group *tg; /* group that "owns" this runqueue */
376
377 #ifdef CONFIG_SMP
378 /*
379 * the part of load.weight contributed by tasks
380 */
381 unsigned long task_weight;
382
383 /*
384 * h_load = weight * f(tg)
385 *
386 * Where f(tg) is the recursive weight fraction assigned to
387 * this group.
388 */
389 unsigned long h_load;
390
391 /*
392 * Maintaining per-cpu shares distribution for group scheduling
393 *
394 * load_stamp is the last time we updated the load average
395 * load_last is the last time we updated the load average and saw load
396 * load_unacc_exec_time is currently unaccounted execution time
397 */
398 u64 load_avg;
399 u64 load_period;
400 u64 load_stamp, load_last, load_unacc_exec_time;
401
402 unsigned long load_contribution;
403 #endif
404 #ifdef CONFIG_CFS_BANDWIDTH
405 int runtime_enabled;
406 u64 runtime_expires;
407 s64 runtime_remaining;
408
409 u64 throttled_timestamp;
410 int throttled, throttle_count;
411 struct list_head throttled_list;
412 #endif
413 #endif
414 };
415
416 #ifdef CONFIG_FAIR_GROUP_SCHED
417 #ifdef CONFIG_CFS_BANDWIDTH
418 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
419 {
420 return &tg->cfs_bandwidth;
421 }
422
423 static inline u64 default_cfs_period(void);
424 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
425 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
426
427 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
428 {
429 struct cfs_bandwidth *cfs_b =
430 container_of(timer, struct cfs_bandwidth, slack_timer);
431 do_sched_cfs_slack_timer(cfs_b);
432
433 return HRTIMER_NORESTART;
434 }
435
436 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
437 {
438 struct cfs_bandwidth *cfs_b =
439 container_of(timer, struct cfs_bandwidth, period_timer);
440 ktime_t now;
441 int overrun;
442 int idle = 0;
443
444 for (;;) {
445 now = hrtimer_cb_get_time(timer);
446 overrun = hrtimer_forward(timer, now, cfs_b->period);
447
448 if (!overrun)
449 break;
450
451 idle = do_sched_cfs_period_timer(cfs_b, overrun);
452 }
453
454 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
455 }
456
457 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
458 {
459 raw_spin_lock_init(&cfs_b->lock);
460 cfs_b->runtime = 0;
461 cfs_b->quota = RUNTIME_INF;
462 cfs_b->period = ns_to_ktime(default_cfs_period());
463
464 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
465 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
466 cfs_b->period_timer.function = sched_cfs_period_timer;
467 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
468 cfs_b->slack_timer.function = sched_cfs_slack_timer;
469 }
470
471 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
472 {
473 cfs_rq->runtime_enabled = 0;
474 INIT_LIST_HEAD(&cfs_rq->throttled_list);
475 }
476
477 /* requires cfs_b->lock, may release to reprogram timer */
478 static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
479 {
480 /*
481 * The timer may be active because we're trying to set a new bandwidth
482 * period or because we're racing with the tear-down path
483 * (timer_active==0 becomes visible before the hrtimer call-back
484 * terminates). In either case we ensure that it's re-programmed
485 */
486 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
487 raw_spin_unlock(&cfs_b->lock);
488 /* ensure cfs_b->lock is available while we wait */
489 hrtimer_cancel(&cfs_b->period_timer);
490
491 raw_spin_lock(&cfs_b->lock);
492 /* if someone else restarted the timer then we're done */
493 if (cfs_b->timer_active)
494 return;
495 }
496
497 cfs_b->timer_active = 1;
498 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
499 }
500
501 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
502 {
503 hrtimer_cancel(&cfs_b->period_timer);
504 hrtimer_cancel(&cfs_b->slack_timer);
505 }
506 #else
507 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
508 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
509 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
510
511 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
512 {
513 return NULL;
514 }
515 #endif /* CONFIG_CFS_BANDWIDTH */
516 #endif /* CONFIG_FAIR_GROUP_SCHED */
517
518 /* Real-Time classes' related field in a runqueue: */
519 struct rt_rq {
520 struct rt_prio_array active;
521 unsigned long rt_nr_running;
522 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
523 struct {
524 int curr; /* highest queued rt task prio */
525 #ifdef CONFIG_SMP
526 int next; /* next highest */
527 #endif
528 } highest_prio;
529 #endif
530 #ifdef CONFIG_SMP
531 unsigned long rt_nr_migratory;
532 unsigned long rt_nr_total;
533 int overloaded;
534 struct plist_head pushable_tasks;
535 #endif
536 int rt_throttled;
537 u64 rt_time;
538 u64 rt_runtime;
539 /* Nests inside the rq lock: */
540 raw_spinlock_t rt_runtime_lock;
541
542 #ifdef CONFIG_RT_GROUP_SCHED
543 unsigned long rt_nr_boosted;
544
545 struct rq *rq;
546 struct list_head leaf_rt_rq_list;
547 struct task_group *tg;
548 #endif
549 };
550
551 #ifdef CONFIG_SMP
552
553 /*
554 * We add the notion of a root-domain which will be used to define per-domain
555 * variables. Each exclusive cpuset essentially defines an island domain by
556 * fully partitioning the member cpus from any other cpuset. Whenever a new
557 * exclusive cpuset is created, we also create and attach a new root-domain
558 * object.
559 *
560 */
561 struct root_domain {
562 atomic_t refcount;
563 atomic_t rto_count;
564 struct rcu_head rcu;
565 cpumask_var_t span;
566 cpumask_var_t online;
567
568 /*
569 * The "RT overload" flag: it gets set if a CPU has more than
570 * one runnable RT task.
571 */
572 cpumask_var_t rto_mask;
573 struct cpupri cpupri;
574 };
575
576 /*
577 * By default the system creates a single root-domain with all cpus as
578 * members (mimicking the global state we have today).
579 */
580 static struct root_domain def_root_domain;
581
582 #endif /* CONFIG_SMP */
583
584 /*
585 * This is the main, per-CPU runqueue data structure.
586 *
587 * Locking rule: those places that want to lock multiple runqueues
588 * (such as the load balancing or the thread migration code), lock
589 * acquire operations must be ordered by ascending &runqueue.
590 */
591 struct rq {
592 /* runqueue lock: */
593 raw_spinlock_t lock;
594
595 /*
596 * nr_running and cpu_load should be in the same cacheline because
597 * remote CPUs use both these fields when doing load calculation.
598 */
599 unsigned long nr_running;
600 #define CPU_LOAD_IDX_MAX 5
601 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
602 unsigned long last_load_update_tick;
603 #ifdef CONFIG_NO_HZ
604 u64 nohz_stamp;
605 unsigned char nohz_balance_kick;
606 #endif
607 int skip_clock_update;
608
609 /* capture load from *all* tasks on this cpu: */
610 struct load_weight load;
611 unsigned long nr_load_updates;
612 u64 nr_switches;
613
614 struct cfs_rq cfs;
615 struct rt_rq rt;
616
617 #ifdef CONFIG_FAIR_GROUP_SCHED
618 /* list of leaf cfs_rq on this cpu: */
619 struct list_head leaf_cfs_rq_list;
620 #endif
621 #ifdef CONFIG_RT_GROUP_SCHED
622 struct list_head leaf_rt_rq_list;
623 #endif
624
625 /*
626 * This is part of a global counter where only the total sum
627 * over all CPUs matters. A task can increase this counter on
628 * one CPU and if it got migrated afterwards it may decrease
629 * it on another CPU. Always updated under the runqueue lock:
630 */
631 unsigned long nr_uninterruptible;
632
633 struct task_struct *curr, *idle, *stop;
634 unsigned long next_balance;
635 struct mm_struct *prev_mm;
636
637 u64 clock;
638 u64 clock_task;
639
640 atomic_t nr_iowait;
641
642 #ifdef CONFIG_SMP
643 struct root_domain *rd;
644 struct sched_domain *sd;
645
646 unsigned long cpu_power;
647
648 unsigned char idle_balance;
649 /* For active balancing */
650 int post_schedule;
651 int active_balance;
652 int push_cpu;
653 struct cpu_stop_work active_balance_work;
654 /* cpu of this runqueue: */
655 int cpu;
656 int online;
657
658 u64 rt_avg;
659 u64 age_stamp;
660 u64 idle_stamp;
661 u64 avg_idle;
662 #endif
663
664 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
665 u64 prev_irq_time;
666 #endif
667 #ifdef CONFIG_PARAVIRT
668 u64 prev_steal_time;
669 #endif
670 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
671 u64 prev_steal_time_rq;
672 #endif
673
674 /* calc_load related fields */
675 unsigned long calc_load_update;
676 long calc_load_active;
677
678 #ifdef CONFIG_SCHED_HRTICK
679 #ifdef CONFIG_SMP
680 int hrtick_csd_pending;
681 struct call_single_data hrtick_csd;
682 #endif
683 struct hrtimer hrtick_timer;
684 #endif
685
686 #ifdef CONFIG_SCHEDSTATS
687 /* latency stats */
688 struct sched_info rq_sched_info;
689 unsigned long long rq_cpu_time;
690 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
691
692 /* sys_sched_yield() stats */
693 unsigned int yld_count;
694
695 /* schedule() stats */
696 unsigned int sched_switch;
697 unsigned int sched_count;
698 unsigned int sched_goidle;
699
700 /* try_to_wake_up() stats */
701 unsigned int ttwu_count;
702 unsigned int ttwu_local;
703 #endif
704
705 #ifdef CONFIG_SMP
706 struct llist_head wake_list;
707 #endif
708 };
709
710 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
711
712
713 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
714
715 static inline int cpu_of(struct rq *rq)
716 {
717 #ifdef CONFIG_SMP
718 return rq->cpu;
719 #else
720 return 0;
721 #endif
722 }
723
724 #define rcu_dereference_check_sched_domain(p) \
725 rcu_dereference_check((p), \
726 lockdep_is_held(&sched_domains_mutex))
727
728 /*
729 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
730 * See detach_destroy_domains: synchronize_sched for details.
731 *
732 * The domain tree of any CPU may only be accessed from within
733 * preempt-disabled sections.
734 */
735 #define for_each_domain(cpu, __sd) \
736 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
737
738 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
739 #define this_rq() (&__get_cpu_var(runqueues))
740 #define task_rq(p) cpu_rq(task_cpu(p))
741 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
742 #define raw_rq() (&__raw_get_cpu_var(runqueues))
743
744 #ifdef CONFIG_CGROUP_SCHED
745
746 /*
747 * Return the group to which this tasks belongs.
748 *
749 * We use task_subsys_state_check() and extend the RCU verification with
750 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
751 * task it moves into the cgroup. Therefore by holding either of those locks,
752 * we pin the task to the current cgroup.
753 */
754 static inline struct task_group *task_group(struct task_struct *p)
755 {
756 struct task_group *tg;
757 struct cgroup_subsys_state *css;
758
759 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
760 lockdep_is_held(&p->pi_lock) ||
761 lockdep_is_held(&task_rq(p)->lock));
762 tg = container_of(css, struct task_group, css);
763
764 return autogroup_task_group(p, tg);
765 }
766
767 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
768 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
769 {
770 #ifdef CONFIG_FAIR_GROUP_SCHED
771 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
772 p->se.parent = task_group(p)->se[cpu];
773 #endif
774
775 #ifdef CONFIG_RT_GROUP_SCHED
776 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
777 p->rt.parent = task_group(p)->rt_se[cpu];
778 #endif
779 }
780
781 #else /* CONFIG_CGROUP_SCHED */
782
783 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
784 static inline struct task_group *task_group(struct task_struct *p)
785 {
786 return NULL;
787 }
788
789 #endif /* CONFIG_CGROUP_SCHED */
790
791 static void update_rq_clock_task(struct rq *rq, s64 delta);
792
793 static void update_rq_clock(struct rq *rq)
794 {
795 s64 delta;
796
797 if (rq->skip_clock_update > 0)
798 return;
799
800 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
801 rq->clock += delta;
802 update_rq_clock_task(rq, delta);
803 }
804
805 /*
806 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
807 */
808 #ifdef CONFIG_SCHED_DEBUG
809 # define const_debug __read_mostly
810 #else
811 # define const_debug static const
812 #endif
813
814 /**
815 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
816 * @cpu: the processor in question.
817 *
818 * This interface allows printk to be called with the runqueue lock
819 * held and know whether or not it is OK to wake up the klogd.
820 */
821 int runqueue_is_locked(int cpu)
822 {
823 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
824 }
825
826 /*
827 * Debugging: various feature bits
828 */
829
830 #define SCHED_FEAT(name, enabled) \
831 __SCHED_FEAT_##name ,
832
833 enum {
834 #include "sched_features.h"
835 };
836
837 #undef SCHED_FEAT
838
839 #define SCHED_FEAT(name, enabled) \
840 (1UL << __SCHED_FEAT_##name) * enabled |
841
842 const_debug unsigned int sysctl_sched_features =
843 #include "sched_features.h"
844 0;
845
846 #undef SCHED_FEAT
847
848 #ifdef CONFIG_SCHED_DEBUG
849 #define SCHED_FEAT(name, enabled) \
850 #name ,
851
852 static __read_mostly char *sched_feat_names[] = {
853 #include "sched_features.h"
854 NULL
855 };
856
857 #undef SCHED_FEAT
858
859 static int sched_feat_show(struct seq_file *m, void *v)
860 {
861 int i;
862
863 for (i = 0; sched_feat_names[i]; i++) {
864 if (!(sysctl_sched_features & (1UL << i)))
865 seq_puts(m, "NO_");
866 seq_printf(m, "%s ", sched_feat_names[i]);
867 }
868 seq_puts(m, "\n");
869
870 return 0;
871 }
872
873 static ssize_t
874 sched_feat_write(struct file *filp, const char __user *ubuf,
875 size_t cnt, loff_t *ppos)
876 {
877 char buf[64];
878 char *cmp;
879 int neg = 0;
880 int i;
881
882 if (cnt > 63)
883 cnt = 63;
884
885 if (copy_from_user(&buf, ubuf, cnt))
886 return -EFAULT;
887
888 buf[cnt] = 0;
889 cmp = strstrip(buf);
890
891 if (strncmp(cmp, "NO_", 3) == 0) {
892 neg = 1;
893 cmp += 3;
894 }
895
896 for (i = 0; sched_feat_names[i]; i++) {
897 if (strcmp(cmp, sched_feat_names[i]) == 0) {
898 if (neg)
899 sysctl_sched_features &= ~(1UL << i);
900 else
901 sysctl_sched_features |= (1UL << i);
902 break;
903 }
904 }
905
906 if (!sched_feat_names[i])
907 return -EINVAL;
908
909 *ppos += cnt;
910
911 return cnt;
912 }
913
914 static int sched_feat_open(struct inode *inode, struct file *filp)
915 {
916 return single_open(filp, sched_feat_show, NULL);
917 }
918
919 static const struct file_operations sched_feat_fops = {
920 .open = sched_feat_open,
921 .write = sched_feat_write,
922 .read = seq_read,
923 .llseek = seq_lseek,
924 .release = single_release,
925 };
926
927 static __init int sched_init_debug(void)
928 {
929 debugfs_create_file("sched_features", 0644, NULL, NULL,
930 &sched_feat_fops);
931
932 return 0;
933 }
934 late_initcall(sched_init_debug);
935
936 #endif
937
938 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
939
940 /*
941 * Number of tasks to iterate in a single balance run.
942 * Limited because this is done with IRQs disabled.
943 */
944 const_debug unsigned int sysctl_sched_nr_migrate = 32;
945
946 /*
947 * period over which we average the RT time consumption, measured
948 * in ms.
949 *
950 * default: 1s
951 */
952 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
953
954 /*
955 * period over which we measure -rt task cpu usage in us.
956 * default: 1s
957 */
958 unsigned int sysctl_sched_rt_period = 1000000;
959
960 static __read_mostly int scheduler_running;
961
962 /*
963 * part of the period that we allow rt tasks to run in us.
964 * default: 0.95s
965 */
966 int sysctl_sched_rt_runtime = 950000;
967
968 static inline u64 global_rt_period(void)
969 {
970 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
971 }
972
973 static inline u64 global_rt_runtime(void)
974 {
975 if (sysctl_sched_rt_runtime < 0)
976 return RUNTIME_INF;
977
978 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
979 }
980
981 #ifndef prepare_arch_switch
982 # define prepare_arch_switch(next) do { } while (0)
983 #endif
984 #ifndef finish_arch_switch
985 # define finish_arch_switch(prev) do { } while (0)
986 #endif
987
988 static inline int task_current(struct rq *rq, struct task_struct *p)
989 {
990 return rq->curr == p;
991 }
992
993 static inline int task_running(struct rq *rq, struct task_struct *p)
994 {
995 #ifdef CONFIG_SMP
996 return p->on_cpu;
997 #else
998 return task_current(rq, p);
999 #endif
1000 }
1001
1002 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1003 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1004 {
1005 #ifdef CONFIG_SMP
1006 /*
1007 * We can optimise this out completely for !SMP, because the
1008 * SMP rebalancing from interrupt is the only thing that cares
1009 * here.
1010 */
1011 next->on_cpu = 1;
1012 #endif
1013 }
1014
1015 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1016 {
1017 #ifdef CONFIG_SMP
1018 /*
1019 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1020 * We must ensure this doesn't happen until the switch is completely
1021 * finished.
1022 */
1023 smp_wmb();
1024 prev->on_cpu = 0;
1025 #endif
1026 #ifdef CONFIG_DEBUG_SPINLOCK
1027 /* this is a valid case when another task releases the spinlock */
1028 rq->lock.owner = current;
1029 #endif
1030 /*
1031 * If we are tracking spinlock dependencies then we have to
1032 * fix up the runqueue lock - which gets 'carried over' from
1033 * prev into current:
1034 */
1035 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1036
1037 raw_spin_unlock_irq(&rq->lock);
1038 }
1039
1040 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1041 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1042 {
1043 #ifdef CONFIG_SMP
1044 /*
1045 * We can optimise this out completely for !SMP, because the
1046 * SMP rebalancing from interrupt is the only thing that cares
1047 * here.
1048 */
1049 next->on_cpu = 1;
1050 #endif
1051 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1052 raw_spin_unlock_irq(&rq->lock);
1053 #else
1054 raw_spin_unlock(&rq->lock);
1055 #endif
1056 }
1057
1058 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1059 {
1060 #ifdef CONFIG_SMP
1061 /*
1062 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1063 * We must ensure this doesn't happen until the switch is completely
1064 * finished.
1065 */
1066 smp_wmb();
1067 prev->on_cpu = 0;
1068 #endif
1069 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1070 local_irq_enable();
1071 #endif
1072 }
1073 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1074
1075 /*
1076 * __task_rq_lock - lock the rq @p resides on.
1077 */
1078 static inline struct rq *__task_rq_lock(struct task_struct *p)
1079 __acquires(rq->lock)
1080 {
1081 struct rq *rq;
1082
1083 lockdep_assert_held(&p->pi_lock);
1084
1085 for (;;) {
1086 rq = task_rq(p);
1087 raw_spin_lock(&rq->lock);
1088 if (likely(rq == task_rq(p)))
1089 return rq;
1090 raw_spin_unlock(&rq->lock);
1091 }
1092 }
1093
1094 /*
1095 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1096 */
1097 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1098 __acquires(p->pi_lock)
1099 __acquires(rq->lock)
1100 {
1101 struct rq *rq;
1102
1103 for (;;) {
1104 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1105 rq = task_rq(p);
1106 raw_spin_lock(&rq->lock);
1107 if (likely(rq == task_rq(p)))
1108 return rq;
1109 raw_spin_unlock(&rq->lock);
1110 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1111 }
1112 }
1113
1114 static void __task_rq_unlock(struct rq *rq)
1115 __releases(rq->lock)
1116 {
1117 raw_spin_unlock(&rq->lock);
1118 }
1119
1120 static inline void
1121 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1122 __releases(rq->lock)
1123 __releases(p->pi_lock)
1124 {
1125 raw_spin_unlock(&rq->lock);
1126 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1127 }
1128
1129 /*
1130 * this_rq_lock - lock this runqueue and disable interrupts.
1131 */
1132 static struct rq *this_rq_lock(void)
1133 __acquires(rq->lock)
1134 {
1135 struct rq *rq;
1136
1137 local_irq_disable();
1138 rq = this_rq();
1139 raw_spin_lock(&rq->lock);
1140
1141 return rq;
1142 }
1143
1144 #ifdef CONFIG_SCHED_HRTICK
1145 /*
1146 * Use HR-timers to deliver accurate preemption points.
1147 *
1148 * Its all a bit involved since we cannot program an hrt while holding the
1149 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1150 * reschedule event.
1151 *
1152 * When we get rescheduled we reprogram the hrtick_timer outside of the
1153 * rq->lock.
1154 */
1155
1156 /*
1157 * Use hrtick when:
1158 * - enabled by features
1159 * - hrtimer is actually high res
1160 */
1161 static inline int hrtick_enabled(struct rq *rq)
1162 {
1163 if (!sched_feat(HRTICK))
1164 return 0;
1165 if (!cpu_active(cpu_of(rq)))
1166 return 0;
1167 return hrtimer_is_hres_active(&rq->hrtick_timer);
1168 }
1169
1170 static void hrtick_clear(struct rq *rq)
1171 {
1172 if (hrtimer_active(&rq->hrtick_timer))
1173 hrtimer_cancel(&rq->hrtick_timer);
1174 }
1175
1176 /*
1177 * High-resolution timer tick.
1178 * Runs from hardirq context with interrupts disabled.
1179 */
1180 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1181 {
1182 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1183
1184 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1185
1186 raw_spin_lock(&rq->lock);
1187 update_rq_clock(rq);
1188 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1189 raw_spin_unlock(&rq->lock);
1190
1191 return HRTIMER_NORESTART;
1192 }
1193
1194 #ifdef CONFIG_SMP
1195 /*
1196 * called from hardirq (IPI) context
1197 */
1198 static void __hrtick_start(void *arg)
1199 {
1200 struct rq *rq = arg;
1201
1202 raw_spin_lock(&rq->lock);
1203 hrtimer_restart(&rq->hrtick_timer);
1204 rq->hrtick_csd_pending = 0;
1205 raw_spin_unlock(&rq->lock);
1206 }
1207
1208 /*
1209 * Called to set the hrtick timer state.
1210 *
1211 * called with rq->lock held and irqs disabled
1212 */
1213 static void hrtick_start(struct rq *rq, u64 delay)
1214 {
1215 struct hrtimer *timer = &rq->hrtick_timer;
1216 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1217
1218 hrtimer_set_expires(timer, time);
1219
1220 if (rq == this_rq()) {
1221 hrtimer_restart(timer);
1222 } else if (!rq->hrtick_csd_pending) {
1223 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1224 rq->hrtick_csd_pending = 1;
1225 }
1226 }
1227
1228 static int
1229 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1230 {
1231 int cpu = (int)(long)hcpu;
1232
1233 switch (action) {
1234 case CPU_UP_CANCELED:
1235 case CPU_UP_CANCELED_FROZEN:
1236 case CPU_DOWN_PREPARE:
1237 case CPU_DOWN_PREPARE_FROZEN:
1238 case CPU_DEAD:
1239 case CPU_DEAD_FROZEN:
1240 hrtick_clear(cpu_rq(cpu));
1241 return NOTIFY_OK;
1242 }
1243
1244 return NOTIFY_DONE;
1245 }
1246
1247 static __init void init_hrtick(void)
1248 {
1249 hotcpu_notifier(hotplug_hrtick, 0);
1250 }
1251 #else
1252 /*
1253 * Called to set the hrtick timer state.
1254 *
1255 * called with rq->lock held and irqs disabled
1256 */
1257 static void hrtick_start(struct rq *rq, u64 delay)
1258 {
1259 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1260 HRTIMER_MODE_REL_PINNED, 0);
1261 }
1262
1263 static inline void init_hrtick(void)
1264 {
1265 }
1266 #endif /* CONFIG_SMP */
1267
1268 static void init_rq_hrtick(struct rq *rq)
1269 {
1270 #ifdef CONFIG_SMP
1271 rq->hrtick_csd_pending = 0;
1272
1273 rq->hrtick_csd.flags = 0;
1274 rq->hrtick_csd.func = __hrtick_start;
1275 rq->hrtick_csd.info = rq;
1276 #endif
1277
1278 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1279 rq->hrtick_timer.function = hrtick;
1280 }
1281 #else /* CONFIG_SCHED_HRTICK */
1282 static inline void hrtick_clear(struct rq *rq)
1283 {
1284 }
1285
1286 static inline void init_rq_hrtick(struct rq *rq)
1287 {
1288 }
1289
1290 static inline void init_hrtick(void)
1291 {
1292 }
1293 #endif /* CONFIG_SCHED_HRTICK */
1294
1295 /*
1296 * resched_task - mark a task 'to be rescheduled now'.
1297 *
1298 * On UP this means the setting of the need_resched flag, on SMP it
1299 * might also involve a cross-CPU call to trigger the scheduler on
1300 * the target CPU.
1301 */
1302 #ifdef CONFIG_SMP
1303
1304 #ifndef tsk_is_polling
1305 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1306 #endif
1307
1308 static void resched_task(struct task_struct *p)
1309 {
1310 int cpu;
1311
1312 assert_raw_spin_locked(&task_rq(p)->lock);
1313
1314 if (test_tsk_need_resched(p))
1315 return;
1316
1317 set_tsk_need_resched(p);
1318
1319 cpu = task_cpu(p);
1320 if (cpu == smp_processor_id())
1321 return;
1322
1323 /* NEED_RESCHED must be visible before we test polling */
1324 smp_mb();
1325 if (!tsk_is_polling(p))
1326 smp_send_reschedule(cpu);
1327 }
1328
1329 static void resched_cpu(int cpu)
1330 {
1331 struct rq *rq = cpu_rq(cpu);
1332 unsigned long flags;
1333
1334 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1335 return;
1336 resched_task(cpu_curr(cpu));
1337 raw_spin_unlock_irqrestore(&rq->lock, flags);
1338 }
1339
1340 #ifdef CONFIG_NO_HZ
1341 /*
1342 * In the semi idle case, use the nearest busy cpu for migrating timers
1343 * from an idle cpu. This is good for power-savings.
1344 *
1345 * We don't do similar optimization for completely idle system, as
1346 * selecting an idle cpu will add more delays to the timers than intended
1347 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1348 */
1349 int get_nohz_timer_target(void)
1350 {
1351 int cpu = smp_processor_id();
1352 int i;
1353 struct sched_domain *sd;
1354
1355 rcu_read_lock();
1356 for_each_domain(cpu, sd) {
1357 for_each_cpu(i, sched_domain_span(sd)) {
1358 if (!idle_cpu(i)) {
1359 cpu = i;
1360 goto unlock;
1361 }
1362 }
1363 }
1364 unlock:
1365 rcu_read_unlock();
1366 return cpu;
1367 }
1368 /*
1369 * When add_timer_on() enqueues a timer into the timer wheel of an
1370 * idle CPU then this timer might expire before the next timer event
1371 * which is scheduled to wake up that CPU. In case of a completely
1372 * idle system the next event might even be infinite time into the
1373 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1374 * leaves the inner idle loop so the newly added timer is taken into
1375 * account when the CPU goes back to idle and evaluates the timer
1376 * wheel for the next timer event.
1377 */
1378 void wake_up_idle_cpu(int cpu)
1379 {
1380 struct rq *rq = cpu_rq(cpu);
1381
1382 if (cpu == smp_processor_id())
1383 return;
1384
1385 /*
1386 * This is safe, as this function is called with the timer
1387 * wheel base lock of (cpu) held. When the CPU is on the way
1388 * to idle and has not yet set rq->curr to idle then it will
1389 * be serialized on the timer wheel base lock and take the new
1390 * timer into account automatically.
1391 */
1392 if (rq->curr != rq->idle)
1393 return;
1394
1395 /*
1396 * We can set TIF_RESCHED on the idle task of the other CPU
1397 * lockless. The worst case is that the other CPU runs the
1398 * idle task through an additional NOOP schedule()
1399 */
1400 set_tsk_need_resched(rq->idle);
1401
1402 /* NEED_RESCHED must be visible before we test polling */
1403 smp_mb();
1404 if (!tsk_is_polling(rq->idle))
1405 smp_send_reschedule(cpu);
1406 }
1407
1408 static inline bool got_nohz_idle_kick(void)
1409 {
1410 return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
1411 }
1412
1413 #else /* CONFIG_NO_HZ */
1414
1415 static inline bool got_nohz_idle_kick(void)
1416 {
1417 return false;
1418 }
1419
1420 #endif /* CONFIG_NO_HZ */
1421
1422 static u64 sched_avg_period(void)
1423 {
1424 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1425 }
1426
1427 static void sched_avg_update(struct rq *rq)
1428 {
1429 s64 period = sched_avg_period();
1430
1431 while ((s64)(rq->clock - rq->age_stamp) > period) {
1432 /*
1433 * Inline assembly required to prevent the compiler
1434 * optimising this loop into a divmod call.
1435 * See __iter_div_u64_rem() for another example of this.
1436 */
1437 asm("" : "+rm" (rq->age_stamp));
1438 rq->age_stamp += period;
1439 rq->rt_avg /= 2;
1440 }
1441 }
1442
1443 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1444 {
1445 rq->rt_avg += rt_delta;
1446 sched_avg_update(rq);
1447 }
1448
1449 #else /* !CONFIG_SMP */
1450 static void resched_task(struct task_struct *p)
1451 {
1452 assert_raw_spin_locked(&task_rq(p)->lock);
1453 set_tsk_need_resched(p);
1454 }
1455
1456 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1457 {
1458 }
1459
1460 static void sched_avg_update(struct rq *rq)
1461 {
1462 }
1463 #endif /* CONFIG_SMP */
1464
1465 #if BITS_PER_LONG == 32
1466 # define WMULT_CONST (~0UL)
1467 #else
1468 # define WMULT_CONST (1UL << 32)
1469 #endif
1470
1471 #define WMULT_SHIFT 32
1472
1473 /*
1474 * Shift right and round:
1475 */
1476 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1477
1478 /*
1479 * delta *= weight / lw
1480 */
1481 static unsigned long
1482 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1483 struct load_weight *lw)
1484 {
1485 u64 tmp;
1486
1487 /*
1488 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1489 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1490 * 2^SCHED_LOAD_RESOLUTION.
1491 */
1492 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1493 tmp = (u64)delta_exec * scale_load_down(weight);
1494 else
1495 tmp = (u64)delta_exec;
1496
1497 if (!lw->inv_weight) {
1498 unsigned long w = scale_load_down(lw->weight);
1499
1500 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1501 lw->inv_weight = 1;
1502 else if (unlikely(!w))
1503 lw->inv_weight = WMULT_CONST;
1504 else
1505 lw->inv_weight = WMULT_CONST / w;
1506 }
1507
1508 /*
1509 * Check whether we'd overflow the 64-bit multiplication:
1510 */
1511 if (unlikely(tmp > WMULT_CONST))
1512 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1513 WMULT_SHIFT/2);
1514 else
1515 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1516
1517 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1518 }
1519
1520 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1521 {
1522 lw->weight += inc;
1523 lw->inv_weight = 0;
1524 }
1525
1526 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1527 {
1528 lw->weight -= dec;
1529 lw->inv_weight = 0;
1530 }
1531
1532 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1533 {
1534 lw->weight = w;
1535 lw->inv_weight = 0;
1536 }
1537
1538 /*
1539 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1540 * of tasks with abnormal "nice" values across CPUs the contribution that
1541 * each task makes to its run queue's load is weighted according to its
1542 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1543 * scaled version of the new time slice allocation that they receive on time
1544 * slice expiry etc.
1545 */
1546
1547 #define WEIGHT_IDLEPRIO 3
1548 #define WMULT_IDLEPRIO 1431655765
1549
1550 /*
1551 * Nice levels are multiplicative, with a gentle 10% change for every
1552 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1553 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1554 * that remained on nice 0.
1555 *
1556 * The "10% effect" is relative and cumulative: from _any_ nice level,
1557 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1558 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1559 * If a task goes up by ~10% and another task goes down by ~10% then
1560 * the relative distance between them is ~25%.)
1561 */
1562 static const int prio_to_weight[40] = {
1563 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1564 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1565 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1566 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1567 /* 0 */ 1024, 820, 655, 526, 423,
1568 /* 5 */ 335, 272, 215, 172, 137,
1569 /* 10 */ 110, 87, 70, 56, 45,
1570 /* 15 */ 36, 29, 23, 18, 15,
1571 };
1572
1573 /*
1574 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1575 *
1576 * In cases where the weight does not change often, we can use the
1577 * precalculated inverse to speed up arithmetics by turning divisions
1578 * into multiplications:
1579 */
1580 static const u32 prio_to_wmult[40] = {
1581 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1582 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1583 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1584 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1585 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1586 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1587 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1588 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1589 };
1590
1591 /* Time spent by the tasks of the cpu accounting group executing in ... */
1592 enum cpuacct_stat_index {
1593 CPUACCT_STAT_USER, /* ... user mode */
1594 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1595
1596 CPUACCT_STAT_NSTATS,
1597 };
1598
1599 #ifdef CONFIG_CGROUP_CPUACCT
1600 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1601 static void cpuacct_update_stats(struct task_struct *tsk,
1602 enum cpuacct_stat_index idx, cputime_t val);
1603 #else
1604 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1605 static inline void cpuacct_update_stats(struct task_struct *tsk,
1606 enum cpuacct_stat_index idx, cputime_t val) {}
1607 #endif
1608
1609 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1610 {
1611 update_load_add(&rq->load, load);
1612 }
1613
1614 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1615 {
1616 update_load_sub(&rq->load, load);
1617 }
1618
1619 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1620 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1621 typedef int (*tg_visitor)(struct task_group *, void *);
1622
1623 /*
1624 * Iterate task_group tree rooted at *from, calling @down when first entering a
1625 * node and @up when leaving it for the final time.
1626 *
1627 * Caller must hold rcu_lock or sufficient equivalent.
1628 */
1629 static int walk_tg_tree_from(struct task_group *from,
1630 tg_visitor down, tg_visitor up, void *data)
1631 {
1632 struct task_group *parent, *child;
1633 int ret;
1634
1635 parent = from;
1636
1637 down:
1638 ret = (*down)(parent, data);
1639 if (ret)
1640 goto out;
1641 list_for_each_entry_rcu(child, &parent->children, siblings) {
1642 parent = child;
1643 goto down;
1644
1645 up:
1646 continue;
1647 }
1648 ret = (*up)(parent, data);
1649 if (ret || parent == from)
1650 goto out;
1651
1652 child = parent;
1653 parent = parent->parent;
1654 if (parent)
1655 goto up;
1656 out:
1657 return ret;
1658 }
1659
1660 /*
1661 * Iterate the full tree, calling @down when first entering a node and @up when
1662 * leaving it for the final time.
1663 *
1664 * Caller must hold rcu_lock or sufficient equivalent.
1665 */
1666
1667 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1668 {
1669 return walk_tg_tree_from(&root_task_group, down, up, data);
1670 }
1671
1672 static int tg_nop(struct task_group *tg, void *data)
1673 {
1674 return 0;
1675 }
1676 #endif
1677
1678 #ifdef CONFIG_SMP
1679 /* Used instead of source_load when we know the type == 0 */
1680 static unsigned long weighted_cpuload(const int cpu)
1681 {
1682 return cpu_rq(cpu)->load.weight;
1683 }
1684
1685 /*
1686 * Return a low guess at the load of a migration-source cpu weighted
1687 * according to the scheduling class and "nice" value.
1688 *
1689 * We want to under-estimate the load of migration sources, to
1690 * balance conservatively.
1691 */
1692 static unsigned long source_load(int cpu, int type)
1693 {
1694 struct rq *rq = cpu_rq(cpu);
1695 unsigned long total = weighted_cpuload(cpu);
1696
1697 if (type == 0 || !sched_feat(LB_BIAS))
1698 return total;
1699
1700 return min(rq->cpu_load[type-1], total);
1701 }
1702
1703 /*
1704 * Return a high guess at the load of a migration-target cpu weighted
1705 * according to the scheduling class and "nice" value.
1706 */
1707 static unsigned long target_load(int cpu, int type)
1708 {
1709 struct rq *rq = cpu_rq(cpu);
1710 unsigned long total = weighted_cpuload(cpu);
1711
1712 if (type == 0 || !sched_feat(LB_BIAS))
1713 return total;
1714
1715 return max(rq->cpu_load[type-1], total);
1716 }
1717
1718 static unsigned long power_of(int cpu)
1719 {
1720 return cpu_rq(cpu)->cpu_power;
1721 }
1722
1723 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1724
1725 static unsigned long cpu_avg_load_per_task(int cpu)
1726 {
1727 struct rq *rq = cpu_rq(cpu);
1728 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1729
1730 if (nr_running)
1731 return rq->load.weight / nr_running;
1732
1733 return 0;
1734 }
1735
1736 #ifdef CONFIG_PREEMPT
1737
1738 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
1740 /*
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
1747 */
1748 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752 {
1753 raw_spin_unlock(&this_rq->lock);
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757 }
1758
1759 #else
1760 /*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771 {
1772 int ret = 0;
1773
1774 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1775 if (busiest < this_rq) {
1776 raw_spin_unlock(&this_rq->lock);
1777 raw_spin_lock(&busiest->lock);
1778 raw_spin_lock_nested(&this_rq->lock,
1779 SINGLE_DEPTH_NESTING);
1780 ret = 1;
1781 } else
1782 raw_spin_lock_nested(&busiest->lock,
1783 SINGLE_DEPTH_NESTING);
1784 }
1785 return ret;
1786 }
1787
1788 #endif /* CONFIG_PREEMPT */
1789
1790 /*
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 */
1793 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794 {
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
1797 raw_spin_unlock(&this_rq->lock);
1798 BUG_ON(1);
1799 }
1800
1801 return _double_lock_balance(this_rq, busiest);
1802 }
1803
1804 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 __releases(busiest->lock)
1806 {
1807 raw_spin_unlock(&busiest->lock);
1808 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1809 }
1810
1811 /*
1812 * double_rq_lock - safely lock two runqueues
1813 *
1814 * Note this does not disable interrupts like task_rq_lock,
1815 * you need to do so manually before calling.
1816 */
1817 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1818 __acquires(rq1->lock)
1819 __acquires(rq2->lock)
1820 {
1821 BUG_ON(!irqs_disabled());
1822 if (rq1 == rq2) {
1823 raw_spin_lock(&rq1->lock);
1824 __acquire(rq2->lock); /* Fake it out ;) */
1825 } else {
1826 if (rq1 < rq2) {
1827 raw_spin_lock(&rq1->lock);
1828 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1829 } else {
1830 raw_spin_lock(&rq2->lock);
1831 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1832 }
1833 }
1834 }
1835
1836 /*
1837 * double_rq_unlock - safely unlock two runqueues
1838 *
1839 * Note this does not restore interrupts like task_rq_unlock,
1840 * you need to do so manually after calling.
1841 */
1842 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1843 __releases(rq1->lock)
1844 __releases(rq2->lock)
1845 {
1846 raw_spin_unlock(&rq1->lock);
1847 if (rq1 != rq2)
1848 raw_spin_unlock(&rq2->lock);
1849 else
1850 __release(rq2->lock);
1851 }
1852
1853 #else /* CONFIG_SMP */
1854
1855 /*
1856 * double_rq_lock - safely lock two runqueues
1857 *
1858 * Note this does not disable interrupts like task_rq_lock,
1859 * you need to do so manually before calling.
1860 */
1861 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1862 __acquires(rq1->lock)
1863 __acquires(rq2->lock)
1864 {
1865 BUG_ON(!irqs_disabled());
1866 BUG_ON(rq1 != rq2);
1867 raw_spin_lock(&rq1->lock);
1868 __acquire(rq2->lock); /* Fake it out ;) */
1869 }
1870
1871 /*
1872 * double_rq_unlock - safely unlock two runqueues
1873 *
1874 * Note this does not restore interrupts like task_rq_unlock,
1875 * you need to do so manually after calling.
1876 */
1877 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1878 __releases(rq1->lock)
1879 __releases(rq2->lock)
1880 {
1881 BUG_ON(rq1 != rq2);
1882 raw_spin_unlock(&rq1->lock);
1883 __release(rq2->lock);
1884 }
1885
1886 #endif
1887
1888 static void calc_load_account_idle(struct rq *this_rq);
1889 static void update_sysctl(void);
1890 static int get_update_sysctl_factor(void);
1891 static void update_cpu_load(struct rq *this_rq);
1892
1893 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1894 {
1895 set_task_rq(p, cpu);
1896 #ifdef CONFIG_SMP
1897 /*
1898 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1899 * successfully executed on another CPU. We must ensure that updates of
1900 * per-task data have been completed by this moment.
1901 */
1902 smp_wmb();
1903 task_thread_info(p)->cpu = cpu;
1904 #endif
1905 }
1906
1907 static const struct sched_class rt_sched_class;
1908
1909 #define sched_class_highest (&stop_sched_class)
1910 #define for_each_class(class) \
1911 for (class = sched_class_highest; class; class = class->next)
1912
1913 #include "sched_stats.h"
1914
1915 static void inc_nr_running(struct rq *rq)
1916 {
1917 rq->nr_running++;
1918 }
1919
1920 static void dec_nr_running(struct rq *rq)
1921 {
1922 rq->nr_running--;
1923 }
1924
1925 static void set_load_weight(struct task_struct *p)
1926 {
1927 int prio = p->static_prio - MAX_RT_PRIO;
1928 struct load_weight *load = &p->se.load;
1929
1930 /*
1931 * SCHED_IDLE tasks get minimal weight:
1932 */
1933 if (p->policy == SCHED_IDLE) {
1934 load->weight = scale_load(WEIGHT_IDLEPRIO);
1935 load->inv_weight = WMULT_IDLEPRIO;
1936 return;
1937 }
1938
1939 load->weight = scale_load(prio_to_weight[prio]);
1940 load->inv_weight = prio_to_wmult[prio];
1941 }
1942
1943 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1944 {
1945 update_rq_clock(rq);
1946 sched_info_queued(p);
1947 p->sched_class->enqueue_task(rq, p, flags);
1948 }
1949
1950 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1951 {
1952 update_rq_clock(rq);
1953 sched_info_dequeued(p);
1954 p->sched_class->dequeue_task(rq, p, flags);
1955 }
1956
1957 /*
1958 * activate_task - move a task to the runqueue.
1959 */
1960 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1961 {
1962 if (task_contributes_to_load(p))
1963 rq->nr_uninterruptible--;
1964
1965 enqueue_task(rq, p, flags);
1966 }
1967
1968 /*
1969 * deactivate_task - remove a task from the runqueue.
1970 */
1971 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1972 {
1973 if (task_contributes_to_load(p))
1974 rq->nr_uninterruptible++;
1975
1976 dequeue_task(rq, p, flags);
1977 }
1978
1979 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1980
1981 /*
1982 * There are no locks covering percpu hardirq/softirq time.
1983 * They are only modified in account_system_vtime, on corresponding CPU
1984 * with interrupts disabled. So, writes are safe.
1985 * They are read and saved off onto struct rq in update_rq_clock().
1986 * This may result in other CPU reading this CPU's irq time and can
1987 * race with irq/account_system_vtime on this CPU. We would either get old
1988 * or new value with a side effect of accounting a slice of irq time to wrong
1989 * task when irq is in progress while we read rq->clock. That is a worthy
1990 * compromise in place of having locks on each irq in account_system_time.
1991 */
1992 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1993 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1994
1995 static DEFINE_PER_CPU(u64, irq_start_time);
1996 static int sched_clock_irqtime;
1997
1998 void enable_sched_clock_irqtime(void)
1999 {
2000 sched_clock_irqtime = 1;
2001 }
2002
2003 void disable_sched_clock_irqtime(void)
2004 {
2005 sched_clock_irqtime = 0;
2006 }
2007
2008 #ifndef CONFIG_64BIT
2009 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
2010
2011 static inline void irq_time_write_begin(void)
2012 {
2013 __this_cpu_inc(irq_time_seq.sequence);
2014 smp_wmb();
2015 }
2016
2017 static inline void irq_time_write_end(void)
2018 {
2019 smp_wmb();
2020 __this_cpu_inc(irq_time_seq.sequence);
2021 }
2022
2023 static inline u64 irq_time_read(int cpu)
2024 {
2025 u64 irq_time;
2026 unsigned seq;
2027
2028 do {
2029 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2030 irq_time = per_cpu(cpu_softirq_time, cpu) +
2031 per_cpu(cpu_hardirq_time, cpu);
2032 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2033
2034 return irq_time;
2035 }
2036 #else /* CONFIG_64BIT */
2037 static inline void irq_time_write_begin(void)
2038 {
2039 }
2040
2041 static inline void irq_time_write_end(void)
2042 {
2043 }
2044
2045 static inline u64 irq_time_read(int cpu)
2046 {
2047 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2048 }
2049 #endif /* CONFIG_64BIT */
2050
2051 /*
2052 * Called before incrementing preempt_count on {soft,}irq_enter
2053 * and before decrementing preempt_count on {soft,}irq_exit.
2054 */
2055 void account_system_vtime(struct task_struct *curr)
2056 {
2057 unsigned long flags;
2058 s64 delta;
2059 int cpu;
2060
2061 if (!sched_clock_irqtime)
2062 return;
2063
2064 local_irq_save(flags);
2065
2066 cpu = smp_processor_id();
2067 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2068 __this_cpu_add(irq_start_time, delta);
2069
2070 irq_time_write_begin();
2071 /*
2072 * We do not account for softirq time from ksoftirqd here.
2073 * We want to continue accounting softirq time to ksoftirqd thread
2074 * in that case, so as not to confuse scheduler with a special task
2075 * that do not consume any time, but still wants to run.
2076 */
2077 if (hardirq_count())
2078 __this_cpu_add(cpu_hardirq_time, delta);
2079 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
2080 __this_cpu_add(cpu_softirq_time, delta);
2081
2082 irq_time_write_end();
2083 local_irq_restore(flags);
2084 }
2085 EXPORT_SYMBOL_GPL(account_system_vtime);
2086
2087 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2088
2089 #ifdef CONFIG_PARAVIRT
2090 static inline u64 steal_ticks(u64 steal)
2091 {
2092 if (unlikely(steal > NSEC_PER_SEC))
2093 return div_u64(steal, TICK_NSEC);
2094
2095 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2096 }
2097 #endif
2098
2099 static void update_rq_clock_task(struct rq *rq, s64 delta)
2100 {
2101 /*
2102 * In theory, the compile should just see 0 here, and optimize out the call
2103 * to sched_rt_avg_update. But I don't trust it...
2104 */
2105 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2106 s64 steal = 0, irq_delta = 0;
2107 #endif
2108 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2109 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
2110
2111 /*
2112 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2113 * this case when a previous update_rq_clock() happened inside a
2114 * {soft,}irq region.
2115 *
2116 * When this happens, we stop ->clock_task and only update the
2117 * prev_irq_time stamp to account for the part that fit, so that a next
2118 * update will consume the rest. This ensures ->clock_task is
2119 * monotonic.
2120 *
2121 * It does however cause some slight miss-attribution of {soft,}irq
2122 * time, a more accurate solution would be to update the irq_time using
2123 * the current rq->clock timestamp, except that would require using
2124 * atomic ops.
2125 */
2126 if (irq_delta > delta)
2127 irq_delta = delta;
2128
2129 rq->prev_irq_time += irq_delta;
2130 delta -= irq_delta;
2131 #endif
2132 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2133 if (static_branch((&paravirt_steal_rq_enabled))) {
2134 u64 st;
2135
2136 steal = paravirt_steal_clock(cpu_of(rq));
2137 steal -= rq->prev_steal_time_rq;
2138
2139 if (unlikely(steal > delta))
2140 steal = delta;
2141
2142 st = steal_ticks(steal);
2143 steal = st * TICK_NSEC;
2144
2145 rq->prev_steal_time_rq += steal;
2146
2147 delta -= steal;
2148 }
2149 #endif
2150
2151 rq->clock_task += delta;
2152
2153 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2154 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2155 sched_rt_avg_update(rq, irq_delta + steal);
2156 #endif
2157 }
2158
2159 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2160 static int irqtime_account_hi_update(void)
2161 {
2162 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2163 unsigned long flags;
2164 u64 latest_ns;
2165 int ret = 0;
2166
2167 local_irq_save(flags);
2168 latest_ns = this_cpu_read(cpu_hardirq_time);
2169 if (nsecs_to_cputime64(latest_ns) > cpustat->irq)
2170 ret = 1;
2171 local_irq_restore(flags);
2172 return ret;
2173 }
2174
2175 static int irqtime_account_si_update(void)
2176 {
2177 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2178 unsigned long flags;
2179 u64 latest_ns;
2180 int ret = 0;
2181
2182 local_irq_save(flags);
2183 latest_ns = this_cpu_read(cpu_softirq_time);
2184 if (nsecs_to_cputime64(latest_ns) > cpustat->softirq)
2185 ret = 1;
2186 local_irq_restore(flags);
2187 return ret;
2188 }
2189
2190 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2191
2192 #define sched_clock_irqtime (0)
2193
2194 #endif
2195
2196 #include "sched_idletask.c"
2197 #include "sched_fair.c"
2198 #include "sched_rt.c"
2199 #include "sched_autogroup.c"
2200 #include "sched_stoptask.c"
2201 #ifdef CONFIG_SCHED_DEBUG
2202 # include "sched_debug.c"
2203 #endif
2204
2205 void sched_set_stop_task(int cpu, struct task_struct *stop)
2206 {
2207 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2208 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2209
2210 if (stop) {
2211 /*
2212 * Make it appear like a SCHED_FIFO task, its something
2213 * userspace knows about and won't get confused about.
2214 *
2215 * Also, it will make PI more or less work without too
2216 * much confusion -- but then, stop work should not
2217 * rely on PI working anyway.
2218 */
2219 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2220
2221 stop->sched_class = &stop_sched_class;
2222 }
2223
2224 cpu_rq(cpu)->stop = stop;
2225
2226 if (old_stop) {
2227 /*
2228 * Reset it back to a normal scheduling class so that
2229 * it can die in pieces.
2230 */
2231 old_stop->sched_class = &rt_sched_class;
2232 }
2233 }
2234
2235 /*
2236 * __normal_prio - return the priority that is based on the static prio
2237 */
2238 static inline int __normal_prio(struct task_struct *p)
2239 {
2240 return p->static_prio;
2241 }
2242
2243 /*
2244 * Calculate the expected normal priority: i.e. priority
2245 * without taking RT-inheritance into account. Might be
2246 * boosted by interactivity modifiers. Changes upon fork,
2247 * setprio syscalls, and whenever the interactivity
2248 * estimator recalculates.
2249 */
2250 static inline int normal_prio(struct task_struct *p)
2251 {
2252 int prio;
2253
2254 if (task_has_rt_policy(p))
2255 prio = MAX_RT_PRIO-1 - p->rt_priority;
2256 else
2257 prio = __normal_prio(p);
2258 return prio;
2259 }
2260
2261 /*
2262 * Calculate the current priority, i.e. the priority
2263 * taken into account by the scheduler. This value might
2264 * be boosted by RT tasks, or might be boosted by
2265 * interactivity modifiers. Will be RT if the task got
2266 * RT-boosted. If not then it returns p->normal_prio.
2267 */
2268 static int effective_prio(struct task_struct *p)
2269 {
2270 p->normal_prio = normal_prio(p);
2271 /*
2272 * If we are RT tasks or we were boosted to RT priority,
2273 * keep the priority unchanged. Otherwise, update priority
2274 * to the normal priority:
2275 */
2276 if (!rt_prio(p->prio))
2277 return p->normal_prio;
2278 return p->prio;
2279 }
2280
2281 /**
2282 * task_curr - is this task currently executing on a CPU?
2283 * @p: the task in question.
2284 */
2285 inline int task_curr(const struct task_struct *p)
2286 {
2287 return cpu_curr(task_cpu(p)) == p;
2288 }
2289
2290 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2291 const struct sched_class *prev_class,
2292 int oldprio)
2293 {
2294 if (prev_class != p->sched_class) {
2295 if (prev_class->switched_from)
2296 prev_class->switched_from(rq, p);
2297 p->sched_class->switched_to(rq, p);
2298 } else if (oldprio != p->prio)
2299 p->sched_class->prio_changed(rq, p, oldprio);
2300 }
2301
2302 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2303 {
2304 const struct sched_class *class;
2305
2306 if (p->sched_class == rq->curr->sched_class) {
2307 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2308 } else {
2309 for_each_class(class) {
2310 if (class == rq->curr->sched_class)
2311 break;
2312 if (class == p->sched_class) {
2313 resched_task(rq->curr);
2314 break;
2315 }
2316 }
2317 }
2318
2319 /*
2320 * A queue event has occurred, and we're going to schedule. In
2321 * this case, we can save a useless back to back clock update.
2322 */
2323 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2324 rq->skip_clock_update = 1;
2325 }
2326
2327 #ifdef CONFIG_SMP
2328 /*
2329 * Is this task likely cache-hot:
2330 */
2331 static int
2332 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2333 {
2334 s64 delta;
2335
2336 if (p->sched_class != &fair_sched_class)
2337 return 0;
2338
2339 if (unlikely(p->policy == SCHED_IDLE))
2340 return 0;
2341
2342 /*
2343 * Buddy candidates are cache hot:
2344 */
2345 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2346 (&p->se == cfs_rq_of(&p->se)->next ||
2347 &p->se == cfs_rq_of(&p->se)->last))
2348 return 1;
2349
2350 if (sysctl_sched_migration_cost == -1)
2351 return 1;
2352 if (sysctl_sched_migration_cost == 0)
2353 return 0;
2354
2355 delta = now - p->se.exec_start;
2356
2357 return delta < (s64)sysctl_sched_migration_cost;
2358 }
2359
2360 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2361 {
2362 #ifdef CONFIG_SCHED_DEBUG
2363 /*
2364 * We should never call set_task_cpu() on a blocked task,
2365 * ttwu() will sort out the placement.
2366 */
2367 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2368 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2369
2370 #ifdef CONFIG_LOCKDEP
2371 /*
2372 * The caller should hold either p->pi_lock or rq->lock, when changing
2373 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2374 *
2375 * sched_move_task() holds both and thus holding either pins the cgroup,
2376 * see set_task_rq().
2377 *
2378 * Furthermore, all task_rq users should acquire both locks, see
2379 * task_rq_lock().
2380 */
2381 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2382 lockdep_is_held(&task_rq(p)->lock)));
2383 #endif
2384 #endif
2385
2386 trace_sched_migrate_task(p, new_cpu);
2387
2388 if (task_cpu(p) != new_cpu) {
2389 p->se.nr_migrations++;
2390 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2391 }
2392
2393 __set_task_cpu(p, new_cpu);
2394 }
2395
2396 struct migration_arg {
2397 struct task_struct *task;
2398 int dest_cpu;
2399 };
2400
2401 static int migration_cpu_stop(void *data);
2402
2403 /*
2404 * wait_task_inactive - wait for a thread to unschedule.
2405 *
2406 * If @match_state is nonzero, it's the @p->state value just checked and
2407 * not expected to change. If it changes, i.e. @p might have woken up,
2408 * then return zero. When we succeed in waiting for @p to be off its CPU,
2409 * we return a positive number (its total switch count). If a second call
2410 * a short while later returns the same number, the caller can be sure that
2411 * @p has remained unscheduled the whole time.
2412 *
2413 * The caller must ensure that the task *will* unschedule sometime soon,
2414 * else this function might spin for a *long* time. This function can't
2415 * be called with interrupts off, or it may introduce deadlock with
2416 * smp_call_function() if an IPI is sent by the same process we are
2417 * waiting to become inactive.
2418 */
2419 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2420 {
2421 unsigned long flags;
2422 int running, on_rq;
2423 unsigned long ncsw;
2424 struct rq *rq;
2425
2426 for (;;) {
2427 /*
2428 * We do the initial early heuristics without holding
2429 * any task-queue locks at all. We'll only try to get
2430 * the runqueue lock when things look like they will
2431 * work out!
2432 */
2433 rq = task_rq(p);
2434
2435 /*
2436 * If the task is actively running on another CPU
2437 * still, just relax and busy-wait without holding
2438 * any locks.
2439 *
2440 * NOTE! Since we don't hold any locks, it's not
2441 * even sure that "rq" stays as the right runqueue!
2442 * But we don't care, since "task_running()" will
2443 * return false if the runqueue has changed and p
2444 * is actually now running somewhere else!
2445 */
2446 while (task_running(rq, p)) {
2447 if (match_state && unlikely(p->state != match_state))
2448 return 0;
2449 cpu_relax();
2450 }
2451
2452 /*
2453 * Ok, time to look more closely! We need the rq
2454 * lock now, to be *sure*. If we're wrong, we'll
2455 * just go back and repeat.
2456 */
2457 rq = task_rq_lock(p, &flags);
2458 trace_sched_wait_task(p);
2459 running = task_running(rq, p);
2460 on_rq = p->on_rq;
2461 ncsw = 0;
2462 if (!match_state || p->state == match_state)
2463 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2464 task_rq_unlock(rq, p, &flags);
2465
2466 /*
2467 * If it changed from the expected state, bail out now.
2468 */
2469 if (unlikely(!ncsw))
2470 break;
2471
2472 /*
2473 * Was it really running after all now that we
2474 * checked with the proper locks actually held?
2475 *
2476 * Oops. Go back and try again..
2477 */
2478 if (unlikely(running)) {
2479 cpu_relax();
2480 continue;
2481 }
2482
2483 /*
2484 * It's not enough that it's not actively running,
2485 * it must be off the runqueue _entirely_, and not
2486 * preempted!
2487 *
2488 * So if it was still runnable (but just not actively
2489 * running right now), it's preempted, and we should
2490 * yield - it could be a while.
2491 */
2492 if (unlikely(on_rq)) {
2493 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2494
2495 set_current_state(TASK_UNINTERRUPTIBLE);
2496 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2497 continue;
2498 }
2499
2500 /*
2501 * Ahh, all good. It wasn't running, and it wasn't
2502 * runnable, which means that it will never become
2503 * running in the future either. We're all done!
2504 */
2505 break;
2506 }
2507
2508 return ncsw;
2509 }
2510
2511 /***
2512 * kick_process - kick a running thread to enter/exit the kernel
2513 * @p: the to-be-kicked thread
2514 *
2515 * Cause a process which is running on another CPU to enter
2516 * kernel-mode, without any delay. (to get signals handled.)
2517 *
2518 * NOTE: this function doesn't have to take the runqueue lock,
2519 * because all it wants to ensure is that the remote task enters
2520 * the kernel. If the IPI races and the task has been migrated
2521 * to another CPU then no harm is done and the purpose has been
2522 * achieved as well.
2523 */
2524 void kick_process(struct task_struct *p)
2525 {
2526 int cpu;
2527
2528 preempt_disable();
2529 cpu = task_cpu(p);
2530 if ((cpu != smp_processor_id()) && task_curr(p))
2531 smp_send_reschedule(cpu);
2532 preempt_enable();
2533 }
2534 EXPORT_SYMBOL_GPL(kick_process);
2535 #endif /* CONFIG_SMP */
2536
2537 #ifdef CONFIG_SMP
2538 /*
2539 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2540 */
2541 static int select_fallback_rq(int cpu, struct task_struct *p)
2542 {
2543 int dest_cpu;
2544 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2545
2546 /* Look for allowed, online CPU in same node. */
2547 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2548 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
2549 return dest_cpu;
2550
2551 /* Any allowed, online CPU? */
2552 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
2553 if (dest_cpu < nr_cpu_ids)
2554 return dest_cpu;
2555
2556 /* No more Mr. Nice Guy. */
2557 dest_cpu = cpuset_cpus_allowed_fallback(p);
2558 /*
2559 * Don't tell them about moving exiting tasks or
2560 * kernel threads (both mm NULL), since they never
2561 * leave kernel.
2562 */
2563 if (p->mm && printk_ratelimit()) {
2564 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2565 task_pid_nr(p), p->comm, cpu);
2566 }
2567
2568 return dest_cpu;
2569 }
2570
2571 /*
2572 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2573 */
2574 static inline
2575 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2576 {
2577 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2578
2579 /*
2580 * In order not to call set_task_cpu() on a blocking task we need
2581 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2582 * cpu.
2583 *
2584 * Since this is common to all placement strategies, this lives here.
2585 *
2586 * [ this allows ->select_task() to simply return task_cpu(p) and
2587 * not worry about this generic constraint ]
2588 */
2589 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
2590 !cpu_online(cpu)))
2591 cpu = select_fallback_rq(task_cpu(p), p);
2592
2593 return cpu;
2594 }
2595
2596 static void update_avg(u64 *avg, u64 sample)
2597 {
2598 s64 diff = sample - *avg;
2599 *avg += diff >> 3;
2600 }
2601 #endif
2602
2603 static void
2604 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2605 {
2606 #ifdef CONFIG_SCHEDSTATS
2607 struct rq *rq = this_rq();
2608
2609 #ifdef CONFIG_SMP
2610 int this_cpu = smp_processor_id();
2611
2612 if (cpu == this_cpu) {
2613 schedstat_inc(rq, ttwu_local);
2614 schedstat_inc(p, se.statistics.nr_wakeups_local);
2615 } else {
2616 struct sched_domain *sd;
2617
2618 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2619 rcu_read_lock();
2620 for_each_domain(this_cpu, sd) {
2621 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2622 schedstat_inc(sd, ttwu_wake_remote);
2623 break;
2624 }
2625 }
2626 rcu_read_unlock();
2627 }
2628
2629 if (wake_flags & WF_MIGRATED)
2630 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2631
2632 #endif /* CONFIG_SMP */
2633
2634 schedstat_inc(rq, ttwu_count);
2635 schedstat_inc(p, se.statistics.nr_wakeups);
2636
2637 if (wake_flags & WF_SYNC)
2638 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2639
2640 #endif /* CONFIG_SCHEDSTATS */
2641 }
2642
2643 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2644 {
2645 activate_task(rq, p, en_flags);
2646 p->on_rq = 1;
2647
2648 /* if a worker is waking up, notify workqueue */
2649 if (p->flags & PF_WQ_WORKER)
2650 wq_worker_waking_up(p, cpu_of(rq));
2651 }
2652
2653 /*
2654 * Mark the task runnable and perform wakeup-preemption.
2655 */
2656 static void
2657 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2658 {
2659 trace_sched_wakeup(p, true);
2660 check_preempt_curr(rq, p, wake_flags);
2661
2662 p->state = TASK_RUNNING;
2663 #ifdef CONFIG_SMP
2664 if (p->sched_class->task_woken)
2665 p->sched_class->task_woken(rq, p);
2666
2667 if (rq->idle_stamp) {
2668 u64 delta = rq->clock - rq->idle_stamp;
2669 u64 max = 2*sysctl_sched_migration_cost;
2670
2671 if (delta > max)
2672 rq->avg_idle = max;
2673 else
2674 update_avg(&rq->avg_idle, delta);
2675 rq->idle_stamp = 0;
2676 }
2677 #endif
2678 }
2679
2680 static void
2681 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2682 {
2683 #ifdef CONFIG_SMP
2684 if (p->sched_contributes_to_load)
2685 rq->nr_uninterruptible--;
2686 #endif
2687
2688 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2689 ttwu_do_wakeup(rq, p, wake_flags);
2690 }
2691
2692 /*
2693 * Called in case the task @p isn't fully descheduled from its runqueue,
2694 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2695 * since all we need to do is flip p->state to TASK_RUNNING, since
2696 * the task is still ->on_rq.
2697 */
2698 static int ttwu_remote(struct task_struct *p, int wake_flags)
2699 {
2700 struct rq *rq;
2701 int ret = 0;
2702
2703 rq = __task_rq_lock(p);
2704 if (p->on_rq) {
2705 ttwu_do_wakeup(rq, p, wake_flags);
2706 ret = 1;
2707 }
2708 __task_rq_unlock(rq);
2709
2710 return ret;
2711 }
2712
2713 #ifdef CONFIG_SMP
2714 static void sched_ttwu_pending(void)
2715 {
2716 struct rq *rq = this_rq();
2717 struct llist_node *llist = llist_del_all(&rq->wake_list);
2718 struct task_struct *p;
2719
2720 raw_spin_lock(&rq->lock);
2721
2722 while (llist) {
2723 p = llist_entry(llist, struct task_struct, wake_entry);
2724 llist = llist_next(llist);
2725 ttwu_do_activate(rq, p, 0);
2726 }
2727
2728 raw_spin_unlock(&rq->lock);
2729 }
2730
2731 void scheduler_ipi(void)
2732 {
2733 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2734 return;
2735
2736 /*
2737 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2738 * traditionally all their work was done from the interrupt return
2739 * path. Now that we actually do some work, we need to make sure
2740 * we do call them.
2741 *
2742 * Some archs already do call them, luckily irq_enter/exit nest
2743 * properly.
2744 *
2745 * Arguably we should visit all archs and update all handlers,
2746 * however a fair share of IPIs are still resched only so this would
2747 * somewhat pessimize the simple resched case.
2748 */
2749 irq_enter();
2750 sched_ttwu_pending();
2751
2752 /*
2753 * Check if someone kicked us for doing the nohz idle load balance.
2754 */
2755 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
2756 this_rq()->idle_balance = 1;
2757 raise_softirq_irqoff(SCHED_SOFTIRQ);
2758 }
2759 irq_exit();
2760 }
2761
2762 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2763 {
2764 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
2765 smp_send_reschedule(cpu);
2766 }
2767
2768 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2769 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2770 {
2771 struct rq *rq;
2772 int ret = 0;
2773
2774 rq = __task_rq_lock(p);
2775 if (p->on_cpu) {
2776 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2777 ttwu_do_wakeup(rq, p, wake_flags);
2778 ret = 1;
2779 }
2780 __task_rq_unlock(rq);
2781
2782 return ret;
2783
2784 }
2785 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2786 #endif /* CONFIG_SMP */
2787
2788 static void ttwu_queue(struct task_struct *p, int cpu)
2789 {
2790 struct rq *rq = cpu_rq(cpu);
2791
2792 #if defined(CONFIG_SMP)
2793 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2794 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2795 ttwu_queue_remote(p, cpu);
2796 return;
2797 }
2798 #endif
2799
2800 raw_spin_lock(&rq->lock);
2801 ttwu_do_activate(rq, p, 0);
2802 raw_spin_unlock(&rq->lock);
2803 }
2804
2805 /**
2806 * try_to_wake_up - wake up a thread
2807 * @p: the thread to be awakened
2808 * @state: the mask of task states that can be woken
2809 * @wake_flags: wake modifier flags (WF_*)
2810 *
2811 * Put it on the run-queue if it's not already there. The "current"
2812 * thread is always on the run-queue (except when the actual
2813 * re-schedule is in progress), and as such you're allowed to do
2814 * the simpler "current->state = TASK_RUNNING" to mark yourself
2815 * runnable without the overhead of this.
2816 *
2817 * Returns %true if @p was woken up, %false if it was already running
2818 * or @state didn't match @p's state.
2819 */
2820 static int
2821 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2822 {
2823 unsigned long flags;
2824 int cpu, success = 0;
2825
2826 smp_wmb();
2827 raw_spin_lock_irqsave(&p->pi_lock, flags);
2828 if (!(p->state & state))
2829 goto out;
2830
2831 success = 1; /* we're going to change ->state */
2832 cpu = task_cpu(p);
2833
2834 if (p->on_rq && ttwu_remote(p, wake_flags))
2835 goto stat;
2836
2837 #ifdef CONFIG_SMP
2838 /*
2839 * If the owning (remote) cpu is still in the middle of schedule() with
2840 * this task as prev, wait until its done referencing the task.
2841 */
2842 while (p->on_cpu) {
2843 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2844 /*
2845 * In case the architecture enables interrupts in
2846 * context_switch(), we cannot busy wait, since that
2847 * would lead to deadlocks when an interrupt hits and
2848 * tries to wake up @prev. So bail and do a complete
2849 * remote wakeup.
2850 */
2851 if (ttwu_activate_remote(p, wake_flags))
2852 goto stat;
2853 #else
2854 cpu_relax();
2855 #endif
2856 }
2857 /*
2858 * Pairs with the smp_wmb() in finish_lock_switch().
2859 */
2860 smp_rmb();
2861
2862 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2863 p->state = TASK_WAKING;
2864
2865 if (p->sched_class->task_waking)
2866 p->sched_class->task_waking(p);
2867
2868 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2869 if (task_cpu(p) != cpu) {
2870 wake_flags |= WF_MIGRATED;
2871 set_task_cpu(p, cpu);
2872 }
2873 #endif /* CONFIG_SMP */
2874
2875 ttwu_queue(p, cpu);
2876 stat:
2877 ttwu_stat(p, cpu, wake_flags);
2878 out:
2879 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2880
2881 return success;
2882 }
2883
2884 /**
2885 * try_to_wake_up_local - try to wake up a local task with rq lock held
2886 * @p: the thread to be awakened
2887 *
2888 * Put @p on the run-queue if it's not already there. The caller must
2889 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2890 * the current task.
2891 */
2892 static void try_to_wake_up_local(struct task_struct *p)
2893 {
2894 struct rq *rq = task_rq(p);
2895
2896 BUG_ON(rq != this_rq());
2897 BUG_ON(p == current);
2898 lockdep_assert_held(&rq->lock);
2899
2900 if (!raw_spin_trylock(&p->pi_lock)) {
2901 raw_spin_unlock(&rq->lock);
2902 raw_spin_lock(&p->pi_lock);
2903 raw_spin_lock(&rq->lock);
2904 }
2905
2906 if (!(p->state & TASK_NORMAL))
2907 goto out;
2908
2909 if (!p->on_rq)
2910 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2911
2912 ttwu_do_wakeup(rq, p, 0);
2913 ttwu_stat(p, smp_processor_id(), 0);
2914 out:
2915 raw_spin_unlock(&p->pi_lock);
2916 }
2917
2918 /**
2919 * wake_up_process - Wake up a specific process
2920 * @p: The process to be woken up.
2921 *
2922 * Attempt to wake up the nominated process and move it to the set of runnable
2923 * processes. Returns 1 if the process was woken up, 0 if it was already
2924 * running.
2925 *
2926 * It may be assumed that this function implies a write memory barrier before
2927 * changing the task state if and only if any tasks are woken up.
2928 */
2929 int wake_up_process(struct task_struct *p)
2930 {
2931 return try_to_wake_up(p, TASK_ALL, 0);
2932 }
2933 EXPORT_SYMBOL(wake_up_process);
2934
2935 int wake_up_state(struct task_struct *p, unsigned int state)
2936 {
2937 return try_to_wake_up(p, state, 0);
2938 }
2939
2940 /*
2941 * Perform scheduler related setup for a newly forked process p.
2942 * p is forked by current.
2943 *
2944 * __sched_fork() is basic setup used by init_idle() too:
2945 */
2946 static void __sched_fork(struct task_struct *p)
2947 {
2948 p->on_rq = 0;
2949
2950 p->se.on_rq = 0;
2951 p->se.exec_start = 0;
2952 p->se.sum_exec_runtime = 0;
2953 p->se.prev_sum_exec_runtime = 0;
2954 p->se.nr_migrations = 0;
2955 p->se.vruntime = 0;
2956 INIT_LIST_HEAD(&p->se.group_node);
2957
2958 #ifdef CONFIG_SCHEDSTATS
2959 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2960 #endif
2961
2962 INIT_LIST_HEAD(&p->rt.run_list);
2963
2964 #ifdef CONFIG_PREEMPT_NOTIFIERS
2965 INIT_HLIST_HEAD(&p->preempt_notifiers);
2966 #endif
2967 }
2968
2969 /*
2970 * fork()/clone()-time setup:
2971 */
2972 void sched_fork(struct task_struct *p)
2973 {
2974 unsigned long flags;
2975 int cpu = get_cpu();
2976
2977 __sched_fork(p);
2978 /*
2979 * We mark the process as running here. This guarantees that
2980 * nobody will actually run it, and a signal or other external
2981 * event cannot wake it up and insert it on the runqueue either.
2982 */
2983 p->state = TASK_RUNNING;
2984
2985 /*
2986 * Make sure we do not leak PI boosting priority to the child.
2987 */
2988 p->prio = current->normal_prio;
2989
2990 /*
2991 * Revert to default priority/policy on fork if requested.
2992 */
2993 if (unlikely(p->sched_reset_on_fork)) {
2994 if (task_has_rt_policy(p)) {
2995 p->policy = SCHED_NORMAL;
2996 p->static_prio = NICE_TO_PRIO(0);
2997 p->rt_priority = 0;
2998 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2999 p->static_prio = NICE_TO_PRIO(0);
3000
3001 p->prio = p->normal_prio = __normal_prio(p);
3002 set_load_weight(p);
3003
3004 /*
3005 * We don't need the reset flag anymore after the fork. It has
3006 * fulfilled its duty:
3007 */
3008 p->sched_reset_on_fork = 0;
3009 }
3010
3011 if (!rt_prio(p->prio))
3012 p->sched_class = &fair_sched_class;
3013
3014 if (p->sched_class->task_fork)
3015 p->sched_class->task_fork(p);
3016
3017 /*
3018 * The child is not yet in the pid-hash so no cgroup attach races,
3019 * and the cgroup is pinned to this child due to cgroup_fork()
3020 * is ran before sched_fork().
3021 *
3022 * Silence PROVE_RCU.
3023 */
3024 raw_spin_lock_irqsave(&p->pi_lock, flags);
3025 set_task_cpu(p, cpu);
3026 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3027
3028 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
3029 if (likely(sched_info_on()))
3030 memset(&p->sched_info, 0, sizeof(p->sched_info));
3031 #endif
3032 #if defined(CONFIG_SMP)
3033 p->on_cpu = 0;
3034 #endif
3035 #ifdef CONFIG_PREEMPT_COUNT
3036 /* Want to start with kernel preemption disabled. */
3037 task_thread_info(p)->preempt_count = 1;
3038 #endif
3039 #ifdef CONFIG_SMP
3040 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3041 #endif
3042
3043 put_cpu();
3044 }
3045
3046 /*
3047 * wake_up_new_task - wake up a newly created task for the first time.
3048 *
3049 * This function will do some initial scheduler statistics housekeeping
3050 * that must be done for every newly created context, then puts the task
3051 * on the runqueue and wakes it.
3052 */
3053 void wake_up_new_task(struct task_struct *p)
3054 {
3055 unsigned long flags;
3056 struct rq *rq;
3057
3058 raw_spin_lock_irqsave(&p->pi_lock, flags);
3059 #ifdef CONFIG_SMP
3060 /*
3061 * Fork balancing, do it here and not earlier because:
3062 * - cpus_allowed can change in the fork path
3063 * - any previously selected cpu might disappear through hotplug
3064 */
3065 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
3066 #endif
3067
3068 rq = __task_rq_lock(p);
3069 activate_task(rq, p, 0);
3070 p->on_rq = 1;
3071 trace_sched_wakeup_new(p, true);
3072 check_preempt_curr(rq, p, WF_FORK);
3073 #ifdef CONFIG_SMP
3074 if (p->sched_class->task_woken)
3075 p->sched_class->task_woken(rq, p);
3076 #endif
3077 task_rq_unlock(rq, p, &flags);
3078 }
3079
3080 #ifdef CONFIG_PREEMPT_NOTIFIERS
3081
3082 /**
3083 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3084 * @notifier: notifier struct to register
3085 */
3086 void preempt_notifier_register(struct preempt_notifier *notifier)
3087 {
3088 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3089 }
3090 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3091
3092 /**
3093 * preempt_notifier_unregister - no longer interested in preemption notifications
3094 * @notifier: notifier struct to unregister
3095 *
3096 * This is safe to call from within a preemption notifier.
3097 */
3098 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3099 {
3100 hlist_del(&notifier->link);
3101 }
3102 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3103
3104 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3105 {
3106 struct preempt_notifier *notifier;
3107 struct hlist_node *node;
3108
3109 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3110 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3111 }
3112
3113 static void
3114 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3115 struct task_struct *next)
3116 {
3117 struct preempt_notifier *notifier;
3118 struct hlist_node *node;
3119
3120 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3121 notifier->ops->sched_out(notifier, next);
3122 }
3123
3124 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3125
3126 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3127 {
3128 }
3129
3130 static void
3131 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3132 struct task_struct *next)
3133 {
3134 }
3135
3136 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3137
3138 /**
3139 * prepare_task_switch - prepare to switch tasks
3140 * @rq: the runqueue preparing to switch
3141 * @prev: the current task that is being switched out
3142 * @next: the task we are going to switch to.
3143 *
3144 * This is called with the rq lock held and interrupts off. It must
3145 * be paired with a subsequent finish_task_switch after the context
3146 * switch.
3147 *
3148 * prepare_task_switch sets up locking and calls architecture specific
3149 * hooks.
3150 */
3151 static inline void
3152 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3153 struct task_struct *next)
3154 {
3155 sched_info_switch(prev, next);
3156 perf_event_task_sched_out(prev, next);
3157 fire_sched_out_preempt_notifiers(prev, next);
3158 prepare_lock_switch(rq, next);
3159 prepare_arch_switch(next);
3160 trace_sched_switch(prev, next);
3161 }
3162
3163 /**
3164 * finish_task_switch - clean up after a task-switch
3165 * @rq: runqueue associated with task-switch
3166 * @prev: the thread we just switched away from.
3167 *
3168 * finish_task_switch must be called after the context switch, paired
3169 * with a prepare_task_switch call before the context switch.
3170 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3171 * and do any other architecture-specific cleanup actions.
3172 *
3173 * Note that we may have delayed dropping an mm in context_switch(). If
3174 * so, we finish that here outside of the runqueue lock. (Doing it
3175 * with the lock held can cause deadlocks; see schedule() for
3176 * details.)
3177 */
3178 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3179 __releases(rq->lock)
3180 {
3181 struct mm_struct *mm = rq->prev_mm;
3182 long prev_state;
3183
3184 rq->prev_mm = NULL;
3185
3186 /*
3187 * A task struct has one reference for the use as "current".
3188 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3189 * schedule one last time. The schedule call will never return, and
3190 * the scheduled task must drop that reference.
3191 * The test for TASK_DEAD must occur while the runqueue locks are
3192 * still held, otherwise prev could be scheduled on another cpu, die
3193 * there before we look at prev->state, and then the reference would
3194 * be dropped twice.
3195 * Manfred Spraul <manfred@colorfullife.com>
3196 */
3197 prev_state = prev->state;
3198 finish_arch_switch(prev);
3199 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3200 local_irq_disable();
3201 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3202 perf_event_task_sched_in(prev, current);
3203 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3204 local_irq_enable();
3205 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3206 finish_lock_switch(rq, prev);
3207
3208 fire_sched_in_preempt_notifiers(current);
3209 if (mm)
3210 mmdrop(mm);
3211 if (unlikely(prev_state == TASK_DEAD)) {
3212 /*
3213 * Remove function-return probe instances associated with this
3214 * task and put them back on the free list.
3215 */
3216 kprobe_flush_task(prev);
3217 put_task_struct(prev);
3218 }
3219 }
3220
3221 #ifdef CONFIG_SMP
3222
3223 /* assumes rq->lock is held */
3224 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3225 {
3226 if (prev->sched_class->pre_schedule)
3227 prev->sched_class->pre_schedule(rq, prev);
3228 }
3229
3230 /* rq->lock is NOT held, but preemption is disabled */
3231 static inline void post_schedule(struct rq *rq)
3232 {
3233 if (rq->post_schedule) {
3234 unsigned long flags;
3235
3236 raw_spin_lock_irqsave(&rq->lock, flags);
3237 if (rq->curr->sched_class->post_schedule)
3238 rq->curr->sched_class->post_schedule(rq);
3239 raw_spin_unlock_irqrestore(&rq->lock, flags);
3240
3241 rq->post_schedule = 0;
3242 }
3243 }
3244
3245 #else
3246
3247 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3248 {
3249 }
3250
3251 static inline void post_schedule(struct rq *rq)
3252 {
3253 }
3254
3255 #endif
3256
3257 /**
3258 * schedule_tail - first thing a freshly forked thread must call.
3259 * @prev: the thread we just switched away from.
3260 */
3261 asmlinkage void schedule_tail(struct task_struct *prev)
3262 __releases(rq->lock)
3263 {
3264 struct rq *rq = this_rq();
3265
3266 finish_task_switch(rq, prev);
3267
3268 /*
3269 * FIXME: do we need to worry about rq being invalidated by the
3270 * task_switch?
3271 */
3272 post_schedule(rq);
3273
3274 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3275 /* In this case, finish_task_switch does not reenable preemption */
3276 preempt_enable();
3277 #endif
3278 if (current->set_child_tid)
3279 put_user(task_pid_vnr(current), current->set_child_tid);
3280 }
3281
3282 /*
3283 * context_switch - switch to the new MM and the new
3284 * thread's register state.
3285 */
3286 static inline void
3287 context_switch(struct rq *rq, struct task_struct *prev,
3288 struct task_struct *next)
3289 {
3290 struct mm_struct *mm, *oldmm;
3291
3292 prepare_task_switch(rq, prev, next);
3293
3294 mm = next->mm;
3295 oldmm = prev->active_mm;
3296 /*
3297 * For paravirt, this is coupled with an exit in switch_to to
3298 * combine the page table reload and the switch backend into
3299 * one hypercall.
3300 */
3301 arch_start_context_switch(prev);
3302
3303 if (!mm) {
3304 next->active_mm = oldmm;
3305 atomic_inc(&oldmm->mm_count);
3306 enter_lazy_tlb(oldmm, next);
3307 } else
3308 switch_mm(oldmm, mm, next);
3309
3310 if (!prev->mm) {
3311 prev->active_mm = NULL;
3312 rq->prev_mm = oldmm;
3313 }
3314 /*
3315 * Since the runqueue lock will be released by the next
3316 * task (which is an invalid locking op but in the case
3317 * of the scheduler it's an obvious special-case), so we
3318 * do an early lockdep release here:
3319 */
3320 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3321 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3322 #endif
3323
3324 /* Here we just switch the register state and the stack. */
3325 switch_to(prev, next, prev);
3326
3327 barrier();
3328 /*
3329 * this_rq must be evaluated again because prev may have moved
3330 * CPUs since it called schedule(), thus the 'rq' on its stack
3331 * frame will be invalid.
3332 */
3333 finish_task_switch(this_rq(), prev);
3334 }
3335
3336 /*
3337 * nr_running, nr_uninterruptible and nr_context_switches:
3338 *
3339 * externally visible scheduler statistics: current number of runnable
3340 * threads, current number of uninterruptible-sleeping threads, total
3341 * number of context switches performed since bootup.
3342 */
3343 unsigned long nr_running(void)
3344 {
3345 unsigned long i, sum = 0;
3346
3347 for_each_online_cpu(i)
3348 sum += cpu_rq(i)->nr_running;
3349
3350 return sum;
3351 }
3352
3353 unsigned long nr_uninterruptible(void)
3354 {
3355 unsigned long i, sum = 0;
3356
3357 for_each_possible_cpu(i)
3358 sum += cpu_rq(i)->nr_uninterruptible;
3359
3360 /*
3361 * Since we read the counters lockless, it might be slightly
3362 * inaccurate. Do not allow it to go below zero though:
3363 */
3364 if (unlikely((long)sum < 0))
3365 sum = 0;
3366
3367 return sum;
3368 }
3369
3370 unsigned long long nr_context_switches(void)
3371 {
3372 int i;
3373 unsigned long long sum = 0;
3374
3375 for_each_possible_cpu(i)
3376 sum += cpu_rq(i)->nr_switches;
3377
3378 return sum;
3379 }
3380
3381 unsigned long nr_iowait(void)
3382 {
3383 unsigned long i, sum = 0;
3384
3385 for_each_possible_cpu(i)
3386 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3387
3388 return sum;
3389 }
3390
3391 unsigned long nr_iowait_cpu(int cpu)
3392 {
3393 struct rq *this = cpu_rq(cpu);
3394 return atomic_read(&this->nr_iowait);
3395 }
3396
3397 unsigned long this_cpu_load(void)
3398 {
3399 struct rq *this = this_rq();
3400 return this->cpu_load[0];
3401 }
3402
3403
3404 /* Variables and functions for calc_load */
3405 static atomic_long_t calc_load_tasks;
3406 static unsigned long calc_load_update;
3407 unsigned long avenrun[3];
3408 EXPORT_SYMBOL(avenrun);
3409
3410 static long calc_load_fold_active(struct rq *this_rq)
3411 {
3412 long nr_active, delta = 0;
3413
3414 nr_active = this_rq->nr_running;
3415 nr_active += (long) this_rq->nr_uninterruptible;
3416
3417 if (nr_active != this_rq->calc_load_active) {
3418 delta = nr_active - this_rq->calc_load_active;
3419 this_rq->calc_load_active = nr_active;
3420 }
3421
3422 return delta;
3423 }
3424
3425 static unsigned long
3426 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3427 {
3428 load *= exp;
3429 load += active * (FIXED_1 - exp);
3430 load += 1UL << (FSHIFT - 1);
3431 return load >> FSHIFT;
3432 }
3433
3434 #ifdef CONFIG_NO_HZ
3435 /*
3436 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3437 *
3438 * When making the ILB scale, we should try to pull this in as well.
3439 */
3440 static atomic_long_t calc_load_tasks_idle;
3441
3442 static void calc_load_account_idle(struct rq *this_rq)
3443 {
3444 long delta;
3445
3446 delta = calc_load_fold_active(this_rq);
3447 if (delta)
3448 atomic_long_add(delta, &calc_load_tasks_idle);
3449 }
3450
3451 static long calc_load_fold_idle(void)
3452 {
3453 long delta = 0;
3454
3455 /*
3456 * Its got a race, we don't care...
3457 */
3458 if (atomic_long_read(&calc_load_tasks_idle))
3459 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3460
3461 return delta;
3462 }
3463
3464 /**
3465 * fixed_power_int - compute: x^n, in O(log n) time
3466 *
3467 * @x: base of the power
3468 * @frac_bits: fractional bits of @x
3469 * @n: power to raise @x to.
3470 *
3471 * By exploiting the relation between the definition of the natural power
3472 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3473 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3474 * (where: n_i \elem {0, 1}, the binary vector representing n),
3475 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3476 * of course trivially computable in O(log_2 n), the length of our binary
3477 * vector.
3478 */
3479 static unsigned long
3480 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3481 {
3482 unsigned long result = 1UL << frac_bits;
3483
3484 if (n) for (;;) {
3485 if (n & 1) {
3486 result *= x;
3487 result += 1UL << (frac_bits - 1);
3488 result >>= frac_bits;
3489 }
3490 n >>= 1;
3491 if (!n)
3492 break;
3493 x *= x;
3494 x += 1UL << (frac_bits - 1);
3495 x >>= frac_bits;
3496 }
3497
3498 return result;
3499 }
3500
3501 /*
3502 * a1 = a0 * e + a * (1 - e)
3503 *
3504 * a2 = a1 * e + a * (1 - e)
3505 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3506 * = a0 * e^2 + a * (1 - e) * (1 + e)
3507 *
3508 * a3 = a2 * e + a * (1 - e)
3509 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3510 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3511 *
3512 * ...
3513 *
3514 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3515 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3516 * = a0 * e^n + a * (1 - e^n)
3517 *
3518 * [1] application of the geometric series:
3519 *
3520 * n 1 - x^(n+1)
3521 * S_n := \Sum x^i = -------------
3522 * i=0 1 - x
3523 */
3524 static unsigned long
3525 calc_load_n(unsigned long load, unsigned long exp,
3526 unsigned long active, unsigned int n)
3527 {
3528
3529 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3530 }
3531
3532 /*
3533 * NO_HZ can leave us missing all per-cpu ticks calling
3534 * calc_load_account_active(), but since an idle CPU folds its delta into
3535 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3536 * in the pending idle delta if our idle period crossed a load cycle boundary.
3537 *
3538 * Once we've updated the global active value, we need to apply the exponential
3539 * weights adjusted to the number of cycles missed.
3540 */
3541 static void calc_global_nohz(unsigned long ticks)
3542 {
3543 long delta, active, n;
3544
3545 if (time_before(jiffies, calc_load_update))
3546 return;
3547
3548 /*
3549 * If we crossed a calc_load_update boundary, make sure to fold
3550 * any pending idle changes, the respective CPUs might have
3551 * missed the tick driven calc_load_account_active() update
3552 * due to NO_HZ.
3553 */
3554 delta = calc_load_fold_idle();
3555 if (delta)
3556 atomic_long_add(delta, &calc_load_tasks);
3557
3558 /*
3559 * If we were idle for multiple load cycles, apply them.
3560 */
3561 if (ticks >= LOAD_FREQ) {
3562 n = ticks / LOAD_FREQ;
3563
3564 active = atomic_long_read(&calc_load_tasks);
3565 active = active > 0 ? active * FIXED_1 : 0;
3566
3567 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3568 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3569 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3570
3571 calc_load_update += n * LOAD_FREQ;
3572 }
3573
3574 /*
3575 * Its possible the remainder of the above division also crosses
3576 * a LOAD_FREQ period, the regular check in calc_global_load()
3577 * which comes after this will take care of that.
3578 *
3579 * Consider us being 11 ticks before a cycle completion, and us
3580 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3581 * age us 4 cycles, and the test in calc_global_load() will
3582 * pick up the final one.
3583 */
3584 }
3585 #else
3586 static void calc_load_account_idle(struct rq *this_rq)
3587 {
3588 }
3589
3590 static inline long calc_load_fold_idle(void)
3591 {
3592 return 0;
3593 }
3594
3595 static void calc_global_nohz(unsigned long ticks)
3596 {
3597 }
3598 #endif
3599
3600 /**
3601 * get_avenrun - get the load average array
3602 * @loads: pointer to dest load array
3603 * @offset: offset to add
3604 * @shift: shift count to shift the result left
3605 *
3606 * These values are estimates at best, so no need for locking.
3607 */
3608 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3609 {
3610 loads[0] = (avenrun[0] + offset) << shift;
3611 loads[1] = (avenrun[1] + offset) << shift;
3612 loads[2] = (avenrun[2] + offset) << shift;
3613 }
3614
3615 /*
3616 * calc_load - update the avenrun load estimates 10 ticks after the
3617 * CPUs have updated calc_load_tasks.
3618 */
3619 void calc_global_load(unsigned long ticks)
3620 {
3621 long active;
3622
3623 calc_global_nohz(ticks);
3624
3625 if (time_before(jiffies, calc_load_update + 10))
3626 return;
3627
3628 active = atomic_long_read(&calc_load_tasks);
3629 active = active > 0 ? active * FIXED_1 : 0;
3630
3631 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3632 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3633 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3634
3635 calc_load_update += LOAD_FREQ;
3636 }
3637
3638 /*
3639 * Called from update_cpu_load() to periodically update this CPU's
3640 * active count.
3641 */
3642 static void calc_load_account_active(struct rq *this_rq)
3643 {
3644 long delta;
3645
3646 if (time_before(jiffies, this_rq->calc_load_update))
3647 return;
3648
3649 delta = calc_load_fold_active(this_rq);
3650 delta += calc_load_fold_idle();
3651 if (delta)
3652 atomic_long_add(delta, &calc_load_tasks);
3653
3654 this_rq->calc_load_update += LOAD_FREQ;
3655 }
3656
3657 /*
3658 * The exact cpuload at various idx values, calculated at every tick would be
3659 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3660 *
3661 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3662 * on nth tick when cpu may be busy, then we have:
3663 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3664 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3665 *
3666 * decay_load_missed() below does efficient calculation of
3667 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3668 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3669 *
3670 * The calculation is approximated on a 128 point scale.
3671 * degrade_zero_ticks is the number of ticks after which load at any
3672 * particular idx is approximated to be zero.
3673 * degrade_factor is a precomputed table, a row for each load idx.
3674 * Each column corresponds to degradation factor for a power of two ticks,
3675 * based on 128 point scale.
3676 * Example:
3677 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3678 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3679 *
3680 * With this power of 2 load factors, we can degrade the load n times
3681 * by looking at 1 bits in n and doing as many mult/shift instead of
3682 * n mult/shifts needed by the exact degradation.
3683 */
3684 #define DEGRADE_SHIFT 7
3685 static const unsigned char
3686 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3687 static const unsigned char
3688 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3689 {0, 0, 0, 0, 0, 0, 0, 0},
3690 {64, 32, 8, 0, 0, 0, 0, 0},
3691 {96, 72, 40, 12, 1, 0, 0},
3692 {112, 98, 75, 43, 15, 1, 0},
3693 {120, 112, 98, 76, 45, 16, 2} };
3694
3695 /*
3696 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3697 * would be when CPU is idle and so we just decay the old load without
3698 * adding any new load.
3699 */
3700 static unsigned long
3701 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3702 {
3703 int j = 0;
3704
3705 if (!missed_updates)
3706 return load;
3707
3708 if (missed_updates >= degrade_zero_ticks[idx])
3709 return 0;
3710
3711 if (idx == 1)
3712 return load >> missed_updates;
3713
3714 while (missed_updates) {
3715 if (missed_updates % 2)
3716 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3717
3718 missed_updates >>= 1;
3719 j++;
3720 }
3721 return load;
3722 }
3723
3724 /*
3725 * Update rq->cpu_load[] statistics. This function is usually called every
3726 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3727 * every tick. We fix it up based on jiffies.
3728 */
3729 static void update_cpu_load(struct rq *this_rq)
3730 {
3731 unsigned long this_load = this_rq->load.weight;
3732 unsigned long curr_jiffies = jiffies;
3733 unsigned long pending_updates;
3734 int i, scale;
3735
3736 this_rq->nr_load_updates++;
3737
3738 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3739 if (curr_jiffies == this_rq->last_load_update_tick)
3740 return;
3741
3742 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3743 this_rq->last_load_update_tick = curr_jiffies;
3744
3745 /* Update our load: */
3746 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3747 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3748 unsigned long old_load, new_load;
3749
3750 /* scale is effectively 1 << i now, and >> i divides by scale */
3751
3752 old_load = this_rq->cpu_load[i];
3753 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3754 new_load = this_load;
3755 /*
3756 * Round up the averaging division if load is increasing. This
3757 * prevents us from getting stuck on 9 if the load is 10, for
3758 * example.
3759 */
3760 if (new_load > old_load)
3761 new_load += scale - 1;
3762
3763 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3764 }
3765
3766 sched_avg_update(this_rq);
3767 }
3768
3769 static void update_cpu_load_active(struct rq *this_rq)
3770 {
3771 update_cpu_load(this_rq);
3772
3773 calc_load_account_active(this_rq);
3774 }
3775
3776 #ifdef CONFIG_SMP
3777
3778 /*
3779 * sched_exec - execve() is a valuable balancing opportunity, because at
3780 * this point the task has the smallest effective memory and cache footprint.
3781 */
3782 void sched_exec(void)
3783 {
3784 struct task_struct *p = current;
3785 unsigned long flags;
3786 int dest_cpu;
3787
3788 raw_spin_lock_irqsave(&p->pi_lock, flags);
3789 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3790 if (dest_cpu == smp_processor_id())
3791 goto unlock;
3792
3793 if (likely(cpu_active(dest_cpu))) {
3794 struct migration_arg arg = { p, dest_cpu };
3795
3796 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3797 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3798 return;
3799 }
3800 unlock:
3801 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3802 }
3803
3804 #endif
3805
3806 DEFINE_PER_CPU(struct kernel_stat, kstat);
3807
3808 EXPORT_PER_CPU_SYMBOL(kstat);
3809
3810 /*
3811 * Return any ns on the sched_clock that have not yet been accounted in
3812 * @p in case that task is currently running.
3813 *
3814 * Called with task_rq_lock() held on @rq.
3815 */
3816 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3817 {
3818 u64 ns = 0;
3819
3820 if (task_current(rq, p)) {
3821 update_rq_clock(rq);
3822 ns = rq->clock_task - p->se.exec_start;
3823 if ((s64)ns < 0)
3824 ns = 0;
3825 }
3826
3827 return ns;
3828 }
3829
3830 unsigned long long task_delta_exec(struct task_struct *p)
3831 {
3832 unsigned long flags;
3833 struct rq *rq;
3834 u64 ns = 0;
3835
3836 rq = task_rq_lock(p, &flags);
3837 ns = do_task_delta_exec(p, rq);
3838 task_rq_unlock(rq, p, &flags);
3839
3840 return ns;
3841 }
3842
3843 /*
3844 * Return accounted runtime for the task.
3845 * In case the task is currently running, return the runtime plus current's
3846 * pending runtime that have not been accounted yet.
3847 */
3848 unsigned long long task_sched_runtime(struct task_struct *p)
3849 {
3850 unsigned long flags;
3851 struct rq *rq;
3852 u64 ns = 0;
3853
3854 rq = task_rq_lock(p, &flags);
3855 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3856 task_rq_unlock(rq, p, &flags);
3857
3858 return ns;
3859 }
3860
3861 /*
3862 * Account user cpu time to a process.
3863 * @p: the process that the cpu time gets accounted to
3864 * @cputime: the cpu time spent in user space since the last update
3865 * @cputime_scaled: cputime scaled by cpu frequency
3866 */
3867 void account_user_time(struct task_struct *p, cputime_t cputime,
3868 cputime_t cputime_scaled)
3869 {
3870 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3871
3872 /* Add user time to process. */
3873 p->utime += cputime;
3874 p->utimescaled += cputime_scaled;
3875 account_group_user_time(p, cputime);
3876
3877 /* Add user time to cpustat. */
3878 if (TASK_NICE(p) > 0)
3879 cpustat->nice += (__force cputime64_t) cputime;
3880 else
3881 cpustat->user += (__force cputime64_t) cputime;
3882
3883 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3884 /* Account for user time used */
3885 acct_update_integrals(p);
3886 }
3887
3888 /*
3889 * Account guest cpu time to a process.
3890 * @p: the process that the cpu time gets accounted to
3891 * @cputime: the cpu time spent in virtual machine since the last update
3892 * @cputime_scaled: cputime scaled by cpu frequency
3893 */
3894 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3895 cputime_t cputime_scaled)
3896 {
3897 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3898
3899 /* Add guest time to process. */
3900 p->utime += cputime;
3901 p->utimescaled += cputime_scaled;
3902 account_group_user_time(p, cputime);
3903 p->gtime += cputime;
3904
3905 /* Add guest time to cpustat. */
3906 if (TASK_NICE(p) > 0) {
3907 cpustat->nice += (__force cputime64_t) cputime;
3908 cpustat->guest_nice += (__force cputime64_t) cputime;
3909 } else {
3910 cpustat->user += (__force cputime64_t) cputime;
3911 cpustat->guest += (__force cputime64_t) cputime;
3912 }
3913 }
3914
3915 /*
3916 * Account system cpu time to a process and desired cpustat field
3917 * @p: the process that the cpu time gets accounted to
3918 * @cputime: the cpu time spent in kernel space since the last update
3919 * @cputime_scaled: cputime scaled by cpu frequency
3920 * @target_cputime64: pointer to cpustat field that has to be updated
3921 */
3922 static inline
3923 void __account_system_time(struct task_struct *p, cputime_t cputime,
3924 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3925 {
3926 /* Add system time to process. */
3927 p->stime += cputime;
3928 p->stimescaled += cputime_scaled;
3929 account_group_system_time(p, cputime);
3930
3931 /* Add system time to cpustat. */
3932 *target_cputime64 += (__force cputime64_t) cputime;
3933 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3934
3935 /* Account for system time used */
3936 acct_update_integrals(p);
3937 }
3938
3939 /*
3940 * Account system cpu time to a process.
3941 * @p: the process that the cpu time gets accounted to
3942 * @hardirq_offset: the offset to subtract from hardirq_count()
3943 * @cputime: the cpu time spent in kernel space since the last update
3944 * @cputime_scaled: cputime scaled by cpu frequency
3945 */
3946 void account_system_time(struct task_struct *p, int hardirq_offset,
3947 cputime_t cputime, cputime_t cputime_scaled)
3948 {
3949 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3950 cputime64_t *target_cputime64;
3951
3952 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3953 account_guest_time(p, cputime, cputime_scaled);
3954 return;
3955 }
3956
3957 if (hardirq_count() - hardirq_offset)
3958 target_cputime64 = &cpustat->irq;
3959 else if (in_serving_softirq())
3960 target_cputime64 = &cpustat->softirq;
3961 else
3962 target_cputime64 = &cpustat->system;
3963
3964 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3965 }
3966
3967 /*
3968 * Account for involuntary wait time.
3969 * @cputime: the cpu time spent in involuntary wait
3970 */
3971 void account_steal_time(cputime_t cputime)
3972 {
3973 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3974
3975 cpustat->steal += (__force cputime64_t) cputime;
3976 }
3977
3978 /*
3979 * Account for idle time.
3980 * @cputime: the cpu time spent in idle wait
3981 */
3982 void account_idle_time(cputime_t cputime)
3983 {
3984 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3985 struct rq *rq = this_rq();
3986
3987 if (atomic_read(&rq->nr_iowait) > 0)
3988 cpustat->iowait += (__force cputime64_t) cputime;
3989 else
3990 cpustat->idle += (__force cputime64_t) cputime;
3991 }
3992
3993 static __always_inline bool steal_account_process_tick(void)
3994 {
3995 #ifdef CONFIG_PARAVIRT
3996 if (static_branch(&paravirt_steal_enabled)) {
3997 u64 steal, st = 0;
3998
3999 steal = paravirt_steal_clock(smp_processor_id());
4000 steal -= this_rq()->prev_steal_time;
4001
4002 st = steal_ticks(steal);
4003 this_rq()->prev_steal_time += st * TICK_NSEC;
4004
4005 account_steal_time(st);
4006 return st;
4007 }
4008 #endif
4009 return false;
4010 }
4011
4012 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4013
4014 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
4015 /*
4016 * Account a tick to a process and cpustat
4017 * @p: the process that the cpu time gets accounted to
4018 * @user_tick: is the tick from userspace
4019 * @rq: the pointer to rq
4020 *
4021 * Tick demultiplexing follows the order
4022 * - pending hardirq update
4023 * - pending softirq update
4024 * - user_time
4025 * - idle_time
4026 * - system time
4027 * - check for guest_time
4028 * - else account as system_time
4029 *
4030 * Check for hardirq is done both for system and user time as there is
4031 * no timer going off while we are on hardirq and hence we may never get an
4032 * opportunity to update it solely in system time.
4033 * p->stime and friends are only updated on system time and not on irq
4034 * softirq as those do not count in task exec_runtime any more.
4035 */
4036 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4037 struct rq *rq)
4038 {
4039 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4040 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4041
4042 if (steal_account_process_tick())
4043 return;
4044
4045 if (irqtime_account_hi_update()) {
4046 cpustat->irq += (__force cputime64_t) cputime_one_jiffy;
4047 } else if (irqtime_account_si_update()) {
4048 cpustat->softirq += (__force cputime64_t) cputime_one_jiffy;
4049 } else if (this_cpu_ksoftirqd() == p) {
4050 /*
4051 * ksoftirqd time do not get accounted in cpu_softirq_time.
4052 * So, we have to handle it separately here.
4053 * Also, p->stime needs to be updated for ksoftirqd.
4054 */
4055 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4056 &cpustat->softirq);
4057 } else if (user_tick) {
4058 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4059 } else if (p == rq->idle) {
4060 account_idle_time(cputime_one_jiffy);
4061 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4062 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4063 } else {
4064 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4065 &cpustat->system);
4066 }
4067 }
4068
4069 static void irqtime_account_idle_ticks(int ticks)
4070 {
4071 int i;
4072 struct rq *rq = this_rq();
4073
4074 for (i = 0; i < ticks; i++)
4075 irqtime_account_process_tick(current, 0, rq);
4076 }
4077 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
4078 static void irqtime_account_idle_ticks(int ticks) {}
4079 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4080 struct rq *rq) {}
4081 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
4082
4083 /*
4084 * Account a single tick of cpu time.
4085 * @p: the process that the cpu time gets accounted to
4086 * @user_tick: indicates if the tick is a user or a system tick
4087 */
4088 void account_process_tick(struct task_struct *p, int user_tick)
4089 {
4090 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4091 struct rq *rq = this_rq();
4092
4093 if (sched_clock_irqtime) {
4094 irqtime_account_process_tick(p, user_tick, rq);
4095 return;
4096 }
4097
4098 if (steal_account_process_tick())
4099 return;
4100
4101 if (user_tick)
4102 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4103 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4104 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
4105 one_jiffy_scaled);
4106 else
4107 account_idle_time(cputime_one_jiffy);
4108 }
4109
4110 /*
4111 * Account multiple ticks of steal time.
4112 * @p: the process from which the cpu time has been stolen
4113 * @ticks: number of stolen ticks
4114 */
4115 void account_steal_ticks(unsigned long ticks)
4116 {
4117 account_steal_time(jiffies_to_cputime(ticks));
4118 }
4119
4120 /*
4121 * Account multiple ticks of idle time.
4122 * @ticks: number of stolen ticks
4123 */
4124 void account_idle_ticks(unsigned long ticks)
4125 {
4126
4127 if (sched_clock_irqtime) {
4128 irqtime_account_idle_ticks(ticks);
4129 return;
4130 }
4131
4132 account_idle_time(jiffies_to_cputime(ticks));
4133 }
4134
4135 #endif
4136
4137 /*
4138 * Use precise platform statistics if available:
4139 */
4140 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4141 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4142 {
4143 *ut = p->utime;
4144 *st = p->stime;
4145 }
4146
4147 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4148 {
4149 struct task_cputime cputime;
4150
4151 thread_group_cputime(p, &cputime);
4152
4153 *ut = cputime.utime;
4154 *st = cputime.stime;
4155 }
4156 #else
4157
4158 #ifndef nsecs_to_cputime
4159 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4160 #endif
4161
4162 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4163 {
4164 cputime_t rtime, utime = p->utime, total = utime + p->stime;
4165
4166 /*
4167 * Use CFS's precise accounting:
4168 */
4169 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4170
4171 if (total) {
4172 u64 temp = (__force u64) rtime;
4173
4174 temp *= (__force u64) utime;
4175 do_div(temp, (__force u32) total);
4176 utime = (__force cputime_t) temp;
4177 } else
4178 utime = rtime;
4179
4180 /*
4181 * Compare with previous values, to keep monotonicity:
4182 */
4183 p->prev_utime = max(p->prev_utime, utime);
4184 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
4185
4186 *ut = p->prev_utime;
4187 *st = p->prev_stime;
4188 }
4189
4190 /*
4191 * Must be called with siglock held.
4192 */
4193 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4194 {
4195 struct signal_struct *sig = p->signal;
4196 struct task_cputime cputime;
4197 cputime_t rtime, utime, total;
4198
4199 thread_group_cputime(p, &cputime);
4200
4201 total = cputime.utime + cputime.stime;
4202 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4203
4204 if (total) {
4205 u64 temp = (__force u64) rtime;
4206
4207 temp *= (__force u64) cputime.utime;
4208 do_div(temp, (__force u32) total);
4209 utime = (__force cputime_t) temp;
4210 } else
4211 utime = rtime;
4212
4213 sig->prev_utime = max(sig->prev_utime, utime);
4214 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
4215
4216 *ut = sig->prev_utime;
4217 *st = sig->prev_stime;
4218 }
4219 #endif
4220
4221 /*
4222 * This function gets called by the timer code, with HZ frequency.
4223 * We call it with interrupts disabled.
4224 */
4225 void scheduler_tick(void)
4226 {
4227 int cpu = smp_processor_id();
4228 struct rq *rq = cpu_rq(cpu);
4229 struct task_struct *curr = rq->curr;
4230
4231 sched_clock_tick();
4232
4233 raw_spin_lock(&rq->lock);
4234 update_rq_clock(rq);
4235 update_cpu_load_active(rq);
4236 curr->sched_class->task_tick(rq, curr, 0);
4237 raw_spin_unlock(&rq->lock);
4238
4239 perf_event_task_tick();
4240
4241 #ifdef CONFIG_SMP
4242 rq->idle_balance = idle_cpu(cpu);
4243 trigger_load_balance(rq, cpu);
4244 #endif
4245 }
4246
4247 notrace unsigned long get_parent_ip(unsigned long addr)
4248 {
4249 if (in_lock_functions(addr)) {
4250 addr = CALLER_ADDR2;
4251 if (in_lock_functions(addr))
4252 addr = CALLER_ADDR3;
4253 }
4254 return addr;
4255 }
4256
4257 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4258 defined(CONFIG_PREEMPT_TRACER))
4259
4260 void __kprobes add_preempt_count(int val)
4261 {
4262 #ifdef CONFIG_DEBUG_PREEMPT
4263 /*
4264 * Underflow?
4265 */
4266 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4267 return;
4268 #endif
4269 preempt_count() += val;
4270 #ifdef CONFIG_DEBUG_PREEMPT
4271 /*
4272 * Spinlock count overflowing soon?
4273 */
4274 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4275 PREEMPT_MASK - 10);
4276 #endif
4277 if (preempt_count() == val)
4278 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4279 }
4280 EXPORT_SYMBOL(add_preempt_count);
4281
4282 void __kprobes sub_preempt_count(int val)
4283 {
4284 #ifdef CONFIG_DEBUG_PREEMPT
4285 /*
4286 * Underflow?
4287 */
4288 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4289 return;
4290 /*
4291 * Is the spinlock portion underflowing?
4292 */
4293 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4294 !(preempt_count() & PREEMPT_MASK)))
4295 return;
4296 #endif
4297
4298 if (preempt_count() == val)
4299 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4300 preempt_count() -= val;
4301 }
4302 EXPORT_SYMBOL(sub_preempt_count);
4303
4304 #endif
4305
4306 /*
4307 * Print scheduling while atomic bug:
4308 */
4309 static noinline void __schedule_bug(struct task_struct *prev)
4310 {
4311 struct pt_regs *regs = get_irq_regs();
4312
4313 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4314 prev->comm, prev->pid, preempt_count());
4315
4316 debug_show_held_locks(prev);
4317 print_modules();
4318 if (irqs_disabled())
4319 print_irqtrace_events(prev);
4320
4321 if (regs)
4322 show_regs(regs);
4323 else
4324 dump_stack();
4325 }
4326
4327 /*
4328 * Various schedule()-time debugging checks and statistics:
4329 */
4330 static inline void schedule_debug(struct task_struct *prev)
4331 {
4332 /*
4333 * Test if we are atomic. Since do_exit() needs to call into
4334 * schedule() atomically, we ignore that path for now.
4335 * Otherwise, whine if we are scheduling when we should not be.
4336 */
4337 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4338 __schedule_bug(prev);
4339 rcu_sleep_check();
4340
4341 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4342
4343 schedstat_inc(this_rq(), sched_count);
4344 }
4345
4346 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4347 {
4348 if (prev->on_rq || rq->skip_clock_update < 0)
4349 update_rq_clock(rq);
4350 prev->sched_class->put_prev_task(rq, prev);
4351 }
4352
4353 /*
4354 * Pick up the highest-prio task:
4355 */
4356 static inline struct task_struct *
4357 pick_next_task(struct rq *rq)
4358 {
4359 const struct sched_class *class;
4360 struct task_struct *p;
4361
4362 /*
4363 * Optimization: we know that if all tasks are in
4364 * the fair class we can call that function directly:
4365 */
4366 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
4367 p = fair_sched_class.pick_next_task(rq);
4368 if (likely(p))
4369 return p;
4370 }
4371
4372 for_each_class(class) {
4373 p = class->pick_next_task(rq);
4374 if (p)
4375 return p;
4376 }
4377
4378 BUG(); /* the idle class will always have a runnable task */
4379 }
4380
4381 /*
4382 * __schedule() is the main scheduler function.
4383 */
4384 static void __sched __schedule(void)
4385 {
4386 struct task_struct *prev, *next;
4387 unsigned long *switch_count;
4388 struct rq *rq;
4389 int cpu;
4390
4391 need_resched:
4392 preempt_disable();
4393 cpu = smp_processor_id();
4394 rq = cpu_rq(cpu);
4395 rcu_note_context_switch(cpu);
4396 prev = rq->curr;
4397
4398 schedule_debug(prev);
4399
4400 if (sched_feat(HRTICK))
4401 hrtick_clear(rq);
4402
4403 raw_spin_lock_irq(&rq->lock);
4404
4405 switch_count = &prev->nivcsw;
4406 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4407 if (unlikely(signal_pending_state(prev->state, prev))) {
4408 prev->state = TASK_RUNNING;
4409 } else {
4410 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4411 prev->on_rq = 0;
4412
4413 /*
4414 * If a worker went to sleep, notify and ask workqueue
4415 * whether it wants to wake up a task to maintain
4416 * concurrency.
4417 */
4418 if (prev->flags & PF_WQ_WORKER) {
4419 struct task_struct *to_wakeup;
4420
4421 to_wakeup = wq_worker_sleeping(prev, cpu);
4422 if (to_wakeup)
4423 try_to_wake_up_local(to_wakeup);
4424 }
4425 }
4426 switch_count = &prev->nvcsw;
4427 }
4428
4429 pre_schedule(rq, prev);
4430
4431 if (unlikely(!rq->nr_running))
4432 idle_balance(cpu, rq);
4433
4434 put_prev_task(rq, prev);
4435 next = pick_next_task(rq);
4436 clear_tsk_need_resched(prev);
4437 rq->skip_clock_update = 0;
4438
4439 if (likely(prev != next)) {
4440 rq->nr_switches++;
4441 rq->curr = next;
4442 ++*switch_count;
4443
4444 context_switch(rq, prev, next); /* unlocks the rq */
4445 /*
4446 * The context switch have flipped the stack from under us
4447 * and restored the local variables which were saved when
4448 * this task called schedule() in the past. prev == current
4449 * is still correct, but it can be moved to another cpu/rq.
4450 */
4451 cpu = smp_processor_id();
4452 rq = cpu_rq(cpu);
4453 } else
4454 raw_spin_unlock_irq(&rq->lock);
4455
4456 post_schedule(rq);
4457
4458 preempt_enable_no_resched();
4459 if (need_resched())
4460 goto need_resched;
4461 }
4462
4463 static inline void sched_submit_work(struct task_struct *tsk)
4464 {
4465 if (!tsk->state)
4466 return;
4467 /*
4468 * If we are going to sleep and we have plugged IO queued,
4469 * make sure to submit it to avoid deadlocks.
4470 */
4471 if (blk_needs_flush_plug(tsk))
4472 blk_schedule_flush_plug(tsk);
4473 }
4474
4475 asmlinkage void __sched schedule(void)
4476 {
4477 struct task_struct *tsk = current;
4478
4479 sched_submit_work(tsk);
4480 __schedule();
4481 }
4482 EXPORT_SYMBOL(schedule);
4483
4484 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4485
4486 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4487 {
4488 if (lock->owner != owner)
4489 return false;
4490
4491 /*
4492 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4493 * lock->owner still matches owner, if that fails, owner might
4494 * point to free()d memory, if it still matches, the rcu_read_lock()
4495 * ensures the memory stays valid.
4496 */
4497 barrier();
4498
4499 return owner->on_cpu;
4500 }
4501
4502 /*
4503 * Look out! "owner" is an entirely speculative pointer
4504 * access and not reliable.
4505 */
4506 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4507 {
4508 if (!sched_feat(OWNER_SPIN))
4509 return 0;
4510
4511 rcu_read_lock();
4512 while (owner_running(lock, owner)) {
4513 if (need_resched())
4514 break;
4515
4516 arch_mutex_cpu_relax();
4517 }
4518 rcu_read_unlock();
4519
4520 /*
4521 * We break out the loop above on need_resched() and when the
4522 * owner changed, which is a sign for heavy contention. Return
4523 * success only when lock->owner is NULL.
4524 */
4525 return lock->owner == NULL;
4526 }
4527 #endif
4528
4529 #ifdef CONFIG_PREEMPT
4530 /*
4531 * this is the entry point to schedule() from in-kernel preemption
4532 * off of preempt_enable. Kernel preemptions off return from interrupt
4533 * occur there and call schedule directly.
4534 */
4535 asmlinkage void __sched notrace preempt_schedule(void)
4536 {
4537 struct thread_info *ti = current_thread_info();
4538
4539 /*
4540 * If there is a non-zero preempt_count or interrupts are disabled,
4541 * we do not want to preempt the current task. Just return..
4542 */
4543 if (likely(ti->preempt_count || irqs_disabled()))
4544 return;
4545
4546 do {
4547 add_preempt_count_notrace(PREEMPT_ACTIVE);
4548 __schedule();
4549 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4550
4551 /*
4552 * Check again in case we missed a preemption opportunity
4553 * between schedule and now.
4554 */
4555 barrier();
4556 } while (need_resched());
4557 }
4558 EXPORT_SYMBOL(preempt_schedule);
4559
4560 /*
4561 * this is the entry point to schedule() from kernel preemption
4562 * off of irq context.
4563 * Note, that this is called and return with irqs disabled. This will
4564 * protect us against recursive calling from irq.
4565 */
4566 asmlinkage void __sched preempt_schedule_irq(void)
4567 {
4568 struct thread_info *ti = current_thread_info();
4569
4570 /* Catch callers which need to be fixed */
4571 BUG_ON(ti->preempt_count || !irqs_disabled());
4572
4573 do {
4574 add_preempt_count(PREEMPT_ACTIVE);
4575 local_irq_enable();
4576 __schedule();
4577 local_irq_disable();
4578 sub_preempt_count(PREEMPT_ACTIVE);
4579
4580 /*
4581 * Check again in case we missed a preemption opportunity
4582 * between schedule and now.
4583 */
4584 barrier();
4585 } while (need_resched());
4586 }
4587
4588 #endif /* CONFIG_PREEMPT */
4589
4590 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4591 void *key)
4592 {
4593 return try_to_wake_up(curr->private, mode, wake_flags);
4594 }
4595 EXPORT_SYMBOL(default_wake_function);
4596
4597 /*
4598 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4599 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4600 * number) then we wake all the non-exclusive tasks and one exclusive task.
4601 *
4602 * There are circumstances in which we can try to wake a task which has already
4603 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4604 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4605 */
4606 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4607 int nr_exclusive, int wake_flags, void *key)
4608 {
4609 wait_queue_t *curr, *next;
4610
4611 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4612 unsigned flags = curr->flags;
4613
4614 if (curr->func(curr, mode, wake_flags, key) &&
4615 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4616 break;
4617 }
4618 }
4619
4620 /**
4621 * __wake_up - wake up threads blocked on a waitqueue.
4622 * @q: the waitqueue
4623 * @mode: which threads
4624 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4625 * @key: is directly passed to the wakeup function
4626 *
4627 * It may be assumed that this function implies a write memory barrier before
4628 * changing the task state if and only if any tasks are woken up.
4629 */
4630 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4631 int nr_exclusive, void *key)
4632 {
4633 unsigned long flags;
4634
4635 spin_lock_irqsave(&q->lock, flags);
4636 __wake_up_common(q, mode, nr_exclusive, 0, key);
4637 spin_unlock_irqrestore(&q->lock, flags);
4638 }
4639 EXPORT_SYMBOL(__wake_up);
4640
4641 /*
4642 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4643 */
4644 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4645 {
4646 __wake_up_common(q, mode, 1, 0, NULL);
4647 }
4648 EXPORT_SYMBOL_GPL(__wake_up_locked);
4649
4650 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4651 {
4652 __wake_up_common(q, mode, 1, 0, key);
4653 }
4654 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4655
4656 /**
4657 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4658 * @q: the waitqueue
4659 * @mode: which threads
4660 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4661 * @key: opaque value to be passed to wakeup targets
4662 *
4663 * The sync wakeup differs that the waker knows that it will schedule
4664 * away soon, so while the target thread will be woken up, it will not
4665 * be migrated to another CPU - ie. the two threads are 'synchronized'
4666 * with each other. This can prevent needless bouncing between CPUs.
4667 *
4668 * On UP it can prevent extra preemption.
4669 *
4670 * It may be assumed that this function implies a write memory barrier before
4671 * changing the task state if and only if any tasks are woken up.
4672 */
4673 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4674 int nr_exclusive, void *key)
4675 {
4676 unsigned long flags;
4677 int wake_flags = WF_SYNC;
4678
4679 if (unlikely(!q))
4680 return;
4681
4682 if (unlikely(!nr_exclusive))
4683 wake_flags = 0;
4684
4685 spin_lock_irqsave(&q->lock, flags);
4686 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4687 spin_unlock_irqrestore(&q->lock, flags);
4688 }
4689 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4690
4691 /*
4692 * __wake_up_sync - see __wake_up_sync_key()
4693 */
4694 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4695 {
4696 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4697 }
4698 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4699
4700 /**
4701 * complete: - signals a single thread waiting on this completion
4702 * @x: holds the state of this particular completion
4703 *
4704 * This will wake up a single thread waiting on this completion. Threads will be
4705 * awakened in the same order in which they were queued.
4706 *
4707 * See also complete_all(), wait_for_completion() and related routines.
4708 *
4709 * It may be assumed that this function implies a write memory barrier before
4710 * changing the task state if and only if any tasks are woken up.
4711 */
4712 void complete(struct completion *x)
4713 {
4714 unsigned long flags;
4715
4716 spin_lock_irqsave(&x->wait.lock, flags);
4717 x->done++;
4718 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4719 spin_unlock_irqrestore(&x->wait.lock, flags);
4720 }
4721 EXPORT_SYMBOL(complete);
4722
4723 /**
4724 * complete_all: - signals all threads waiting on this completion
4725 * @x: holds the state of this particular completion
4726 *
4727 * This will wake up all threads waiting on this particular completion event.
4728 *
4729 * It may be assumed that this function implies a write memory barrier before
4730 * changing the task state if and only if any tasks are woken up.
4731 */
4732 void complete_all(struct completion *x)
4733 {
4734 unsigned long flags;
4735
4736 spin_lock_irqsave(&x->wait.lock, flags);
4737 x->done += UINT_MAX/2;
4738 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4739 spin_unlock_irqrestore(&x->wait.lock, flags);
4740 }
4741 EXPORT_SYMBOL(complete_all);
4742
4743 static inline long __sched
4744 do_wait_for_common(struct completion *x, long timeout, int state)
4745 {
4746 if (!x->done) {
4747 DECLARE_WAITQUEUE(wait, current);
4748
4749 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4750 do {
4751 if (signal_pending_state(state, current)) {
4752 timeout = -ERESTARTSYS;
4753 break;
4754 }
4755 __set_current_state(state);
4756 spin_unlock_irq(&x->wait.lock);
4757 timeout = schedule_timeout(timeout);
4758 spin_lock_irq(&x->wait.lock);
4759 } while (!x->done && timeout);
4760 __remove_wait_queue(&x->wait, &wait);
4761 if (!x->done)
4762 return timeout;
4763 }
4764 x->done--;
4765 return timeout ?: 1;
4766 }
4767
4768 static long __sched
4769 wait_for_common(struct completion *x, long timeout, int state)
4770 {
4771 might_sleep();
4772
4773 spin_lock_irq(&x->wait.lock);
4774 timeout = do_wait_for_common(x, timeout, state);
4775 spin_unlock_irq(&x->wait.lock);
4776 return timeout;
4777 }
4778
4779 /**
4780 * wait_for_completion: - waits for completion of a task
4781 * @x: holds the state of this particular completion
4782 *
4783 * This waits to be signaled for completion of a specific task. It is NOT
4784 * interruptible and there is no timeout.
4785 *
4786 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4787 * and interrupt capability. Also see complete().
4788 */
4789 void __sched wait_for_completion(struct completion *x)
4790 {
4791 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4792 }
4793 EXPORT_SYMBOL(wait_for_completion);
4794
4795 /**
4796 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4797 * @x: holds the state of this particular completion
4798 * @timeout: timeout value in jiffies
4799 *
4800 * This waits for either a completion of a specific task to be signaled or for a
4801 * specified timeout to expire. The timeout is in jiffies. It is not
4802 * interruptible.
4803 *
4804 * The return value is 0 if timed out, and positive (at least 1, or number of
4805 * jiffies left till timeout) if completed.
4806 */
4807 unsigned long __sched
4808 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4809 {
4810 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4811 }
4812 EXPORT_SYMBOL(wait_for_completion_timeout);
4813
4814 /**
4815 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4816 * @x: holds the state of this particular completion
4817 *
4818 * This waits for completion of a specific task to be signaled. It is
4819 * interruptible.
4820 *
4821 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
4822 */
4823 int __sched wait_for_completion_interruptible(struct completion *x)
4824 {
4825 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4826 if (t == -ERESTARTSYS)
4827 return t;
4828 return 0;
4829 }
4830 EXPORT_SYMBOL(wait_for_completion_interruptible);
4831
4832 /**
4833 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4834 * @x: holds the state of this particular completion
4835 * @timeout: timeout value in jiffies
4836 *
4837 * This waits for either a completion of a specific task to be signaled or for a
4838 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4839 *
4840 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
4841 * positive (at least 1, or number of jiffies left till timeout) if completed.
4842 */
4843 long __sched
4844 wait_for_completion_interruptible_timeout(struct completion *x,
4845 unsigned long timeout)
4846 {
4847 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4848 }
4849 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4850
4851 /**
4852 * wait_for_completion_killable: - waits for completion of a task (killable)
4853 * @x: holds the state of this particular completion
4854 *
4855 * This waits to be signaled for completion of a specific task. It can be
4856 * interrupted by a kill signal.
4857 *
4858 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
4859 */
4860 int __sched wait_for_completion_killable(struct completion *x)
4861 {
4862 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4863 if (t == -ERESTARTSYS)
4864 return t;
4865 return 0;
4866 }
4867 EXPORT_SYMBOL(wait_for_completion_killable);
4868
4869 /**
4870 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4871 * @x: holds the state of this particular completion
4872 * @timeout: timeout value in jiffies
4873 *
4874 * This waits for either a completion of a specific task to be
4875 * signaled or for a specified timeout to expire. It can be
4876 * interrupted by a kill signal. The timeout is in jiffies.
4877 *
4878 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
4879 * positive (at least 1, or number of jiffies left till timeout) if completed.
4880 */
4881 long __sched
4882 wait_for_completion_killable_timeout(struct completion *x,
4883 unsigned long timeout)
4884 {
4885 return wait_for_common(x, timeout, TASK_KILLABLE);
4886 }
4887 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4888
4889 /**
4890 * try_wait_for_completion - try to decrement a completion without blocking
4891 * @x: completion structure
4892 *
4893 * Returns: 0 if a decrement cannot be done without blocking
4894 * 1 if a decrement succeeded.
4895 *
4896 * If a completion is being used as a counting completion,
4897 * attempt to decrement the counter without blocking. This
4898 * enables us to avoid waiting if the resource the completion
4899 * is protecting is not available.
4900 */
4901 bool try_wait_for_completion(struct completion *x)
4902 {
4903 unsigned long flags;
4904 int ret = 1;
4905
4906 spin_lock_irqsave(&x->wait.lock, flags);
4907 if (!x->done)
4908 ret = 0;
4909 else
4910 x->done--;
4911 spin_unlock_irqrestore(&x->wait.lock, flags);
4912 return ret;
4913 }
4914 EXPORT_SYMBOL(try_wait_for_completion);
4915
4916 /**
4917 * completion_done - Test to see if a completion has any waiters
4918 * @x: completion structure
4919 *
4920 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4921 * 1 if there are no waiters.
4922 *
4923 */
4924 bool completion_done(struct completion *x)
4925 {
4926 unsigned long flags;
4927 int ret = 1;
4928
4929 spin_lock_irqsave(&x->wait.lock, flags);
4930 if (!x->done)
4931 ret = 0;
4932 spin_unlock_irqrestore(&x->wait.lock, flags);
4933 return ret;
4934 }
4935 EXPORT_SYMBOL(completion_done);
4936
4937 static long __sched
4938 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4939 {
4940 unsigned long flags;
4941 wait_queue_t wait;
4942
4943 init_waitqueue_entry(&wait, current);
4944
4945 __set_current_state(state);
4946
4947 spin_lock_irqsave(&q->lock, flags);
4948 __add_wait_queue(q, &wait);
4949 spin_unlock(&q->lock);
4950 timeout = schedule_timeout(timeout);
4951 spin_lock_irq(&q->lock);
4952 __remove_wait_queue(q, &wait);
4953 spin_unlock_irqrestore(&q->lock, flags);
4954
4955 return timeout;
4956 }
4957
4958 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4959 {
4960 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4961 }
4962 EXPORT_SYMBOL(interruptible_sleep_on);
4963
4964 long __sched
4965 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4966 {
4967 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4968 }
4969 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4970
4971 void __sched sleep_on(wait_queue_head_t *q)
4972 {
4973 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4974 }
4975 EXPORT_SYMBOL(sleep_on);
4976
4977 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4978 {
4979 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4980 }
4981 EXPORT_SYMBOL(sleep_on_timeout);
4982
4983 #ifdef CONFIG_RT_MUTEXES
4984
4985 /*
4986 * rt_mutex_setprio - set the current priority of a task
4987 * @p: task
4988 * @prio: prio value (kernel-internal form)
4989 *
4990 * This function changes the 'effective' priority of a task. It does
4991 * not touch ->normal_prio like __setscheduler().
4992 *
4993 * Used by the rt_mutex code to implement priority inheritance logic.
4994 */
4995 void rt_mutex_setprio(struct task_struct *p, int prio)
4996 {
4997 int oldprio, on_rq, running;
4998 struct rq *rq;
4999 const struct sched_class *prev_class;
5000
5001 BUG_ON(prio < 0 || prio > MAX_PRIO);
5002
5003 rq = __task_rq_lock(p);
5004
5005 trace_sched_pi_setprio(p, prio);
5006 oldprio = p->prio;
5007 prev_class = p->sched_class;
5008 on_rq = p->on_rq;
5009 running = task_current(rq, p);
5010 if (on_rq)
5011 dequeue_task(rq, p, 0);
5012 if (running)
5013 p->sched_class->put_prev_task(rq, p);
5014
5015 if (rt_prio(prio))
5016 p->sched_class = &rt_sched_class;
5017 else
5018 p->sched_class = &fair_sched_class;
5019
5020 p->prio = prio;
5021
5022 if (running)
5023 p->sched_class->set_curr_task(rq);
5024 if (on_rq)
5025 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
5026
5027 check_class_changed(rq, p, prev_class, oldprio);
5028 __task_rq_unlock(rq);
5029 }
5030
5031 #endif
5032
5033 void set_user_nice(struct task_struct *p, long nice)
5034 {
5035 int old_prio, delta, on_rq;
5036 unsigned long flags;
5037 struct rq *rq;
5038
5039 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5040 return;
5041 /*
5042 * We have to be careful, if called from sys_setpriority(),
5043 * the task might be in the middle of scheduling on another CPU.
5044 */
5045 rq = task_rq_lock(p, &flags);
5046 /*
5047 * The RT priorities are set via sched_setscheduler(), but we still
5048 * allow the 'normal' nice value to be set - but as expected
5049 * it wont have any effect on scheduling until the task is
5050 * SCHED_FIFO/SCHED_RR:
5051 */
5052 if (task_has_rt_policy(p)) {
5053 p->static_prio = NICE_TO_PRIO(nice);
5054 goto out_unlock;
5055 }
5056 on_rq = p->on_rq;
5057 if (on_rq)
5058 dequeue_task(rq, p, 0);
5059
5060 p->static_prio = NICE_TO_PRIO(nice);
5061 set_load_weight(p);
5062 old_prio = p->prio;
5063 p->prio = effective_prio(p);
5064 delta = p->prio - old_prio;
5065
5066 if (on_rq) {
5067 enqueue_task(rq, p, 0);
5068 /*
5069 * If the task increased its priority or is running and
5070 * lowered its priority, then reschedule its CPU:
5071 */
5072 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5073 resched_task(rq->curr);
5074 }
5075 out_unlock:
5076 task_rq_unlock(rq, p, &flags);
5077 }
5078 EXPORT_SYMBOL(set_user_nice);
5079
5080 /*
5081 * can_nice - check if a task can reduce its nice value
5082 * @p: task
5083 * @nice: nice value
5084 */
5085 int can_nice(const struct task_struct *p, const int nice)
5086 {
5087 /* convert nice value [19,-20] to rlimit style value [1,40] */
5088 int nice_rlim = 20 - nice;
5089
5090 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5091 capable(CAP_SYS_NICE));
5092 }
5093
5094 #ifdef __ARCH_WANT_SYS_NICE
5095
5096 /*
5097 * sys_nice - change the priority of the current process.
5098 * @increment: priority increment
5099 *
5100 * sys_setpriority is a more generic, but much slower function that
5101 * does similar things.
5102 */
5103 SYSCALL_DEFINE1(nice, int, increment)
5104 {
5105 long nice, retval;
5106
5107 /*
5108 * Setpriority might change our priority at the same moment.
5109 * We don't have to worry. Conceptually one call occurs first
5110 * and we have a single winner.
5111 */
5112 if (increment < -40)
5113 increment = -40;
5114 if (increment > 40)
5115 increment = 40;
5116
5117 nice = TASK_NICE(current) + increment;
5118 if (nice < -20)
5119 nice = -20;
5120 if (nice > 19)
5121 nice = 19;
5122
5123 if (increment < 0 && !can_nice(current, nice))
5124 return -EPERM;
5125
5126 retval = security_task_setnice(current, nice);
5127 if (retval)
5128 return retval;
5129
5130 set_user_nice(current, nice);
5131 return 0;
5132 }
5133
5134 #endif
5135
5136 /**
5137 * task_prio - return the priority value of a given task.
5138 * @p: the task in question.
5139 *
5140 * This is the priority value as seen by users in /proc.
5141 * RT tasks are offset by -200. Normal tasks are centered
5142 * around 0, value goes from -16 to +15.
5143 */
5144 int task_prio(const struct task_struct *p)
5145 {
5146 return p->prio - MAX_RT_PRIO;
5147 }
5148
5149 /**
5150 * task_nice - return the nice value of a given task.
5151 * @p: the task in question.
5152 */
5153 int task_nice(const struct task_struct *p)
5154 {
5155 return TASK_NICE(p);
5156 }
5157 EXPORT_SYMBOL(task_nice);
5158
5159 /**
5160 * idle_cpu - is a given cpu idle currently?
5161 * @cpu: the processor in question.
5162 */
5163 int idle_cpu(int cpu)
5164 {
5165 struct rq *rq = cpu_rq(cpu);
5166
5167 if (rq->curr != rq->idle)
5168 return 0;
5169
5170 if (rq->nr_running)
5171 return 0;
5172
5173 #ifdef CONFIG_SMP
5174 if (!llist_empty(&rq->wake_list))
5175 return 0;
5176 #endif
5177
5178 return 1;
5179 }
5180
5181 /**
5182 * idle_task - return the idle task for a given cpu.
5183 * @cpu: the processor in question.
5184 */
5185 struct task_struct *idle_task(int cpu)
5186 {
5187 return cpu_rq(cpu)->idle;
5188 }
5189
5190 /**
5191 * find_process_by_pid - find a process with a matching PID value.
5192 * @pid: the pid in question.
5193 */
5194 static struct task_struct *find_process_by_pid(pid_t pid)
5195 {
5196 return pid ? find_task_by_vpid(pid) : current;
5197 }
5198
5199 /* Actually do priority change: must hold rq lock. */
5200 static void
5201 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5202 {
5203 p->policy = policy;
5204 p->rt_priority = prio;
5205 p->normal_prio = normal_prio(p);
5206 /* we are holding p->pi_lock already */
5207 p->prio = rt_mutex_getprio(p);
5208 if (rt_prio(p->prio))
5209 p->sched_class = &rt_sched_class;
5210 else
5211 p->sched_class = &fair_sched_class;
5212 set_load_weight(p);
5213 }
5214
5215 /*
5216 * check the target process has a UID that matches the current process's
5217 */
5218 static bool check_same_owner(struct task_struct *p)
5219 {
5220 const struct cred *cred = current_cred(), *pcred;
5221 bool match;
5222
5223 rcu_read_lock();
5224 pcred = __task_cred(p);
5225 if (cred->user->user_ns == pcred->user->user_ns)
5226 match = (cred->euid == pcred->euid ||
5227 cred->euid == pcred->uid);
5228 else
5229 match = false;
5230 rcu_read_unlock();
5231 return match;
5232 }
5233
5234 static int __sched_setscheduler(struct task_struct *p, int policy,
5235 const struct sched_param *param, bool user)
5236 {
5237 int retval, oldprio, oldpolicy = -1, on_rq, running;
5238 unsigned long flags;
5239 const struct sched_class *prev_class;
5240 struct rq *rq;
5241 int reset_on_fork;
5242
5243 /* may grab non-irq protected spin_locks */
5244 BUG_ON(in_interrupt());
5245 recheck:
5246 /* double check policy once rq lock held */
5247 if (policy < 0) {
5248 reset_on_fork = p->sched_reset_on_fork;
5249 policy = oldpolicy = p->policy;
5250 } else {
5251 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5252 policy &= ~SCHED_RESET_ON_FORK;
5253
5254 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5255 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5256 policy != SCHED_IDLE)
5257 return -EINVAL;
5258 }
5259
5260 /*
5261 * Valid priorities for SCHED_FIFO and SCHED_RR are
5262 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5263 * SCHED_BATCH and SCHED_IDLE is 0.
5264 */
5265 if (param->sched_priority < 0 ||
5266 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5267 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5268 return -EINVAL;
5269 if (rt_policy(policy) != (param->sched_priority != 0))
5270 return -EINVAL;
5271
5272 /*
5273 * Allow unprivileged RT tasks to decrease priority:
5274 */
5275 if (user && !capable(CAP_SYS_NICE)) {
5276 if (rt_policy(policy)) {
5277 unsigned long rlim_rtprio =
5278 task_rlimit(p, RLIMIT_RTPRIO);
5279
5280 /* can't set/change the rt policy */
5281 if (policy != p->policy && !rlim_rtprio)
5282 return -EPERM;
5283
5284 /* can't increase priority */
5285 if (param->sched_priority > p->rt_priority &&
5286 param->sched_priority > rlim_rtprio)
5287 return -EPERM;
5288 }
5289
5290 /*
5291 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5292 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5293 */
5294 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5295 if (!can_nice(p, TASK_NICE(p)))
5296 return -EPERM;
5297 }
5298
5299 /* can't change other user's priorities */
5300 if (!check_same_owner(p))
5301 return -EPERM;
5302
5303 /* Normal users shall not reset the sched_reset_on_fork flag */
5304 if (p->sched_reset_on_fork && !reset_on_fork)
5305 return -EPERM;
5306 }
5307
5308 if (user) {
5309 retval = security_task_setscheduler(p);
5310 if (retval)
5311 return retval;
5312 }
5313
5314 /*
5315 * make sure no PI-waiters arrive (or leave) while we are
5316 * changing the priority of the task:
5317 *
5318 * To be able to change p->policy safely, the appropriate
5319 * runqueue lock must be held.
5320 */
5321 rq = task_rq_lock(p, &flags);
5322
5323 /*
5324 * Changing the policy of the stop threads its a very bad idea
5325 */
5326 if (p == rq->stop) {
5327 task_rq_unlock(rq, p, &flags);
5328 return -EINVAL;
5329 }
5330
5331 /*
5332 * If not changing anything there's no need to proceed further:
5333 */
5334 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5335 param->sched_priority == p->rt_priority))) {
5336
5337 __task_rq_unlock(rq);
5338 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5339 return 0;
5340 }
5341
5342 #ifdef CONFIG_RT_GROUP_SCHED
5343 if (user) {
5344 /*
5345 * Do not allow realtime tasks into groups that have no runtime
5346 * assigned.
5347 */
5348 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5349 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5350 !task_group_is_autogroup(task_group(p))) {
5351 task_rq_unlock(rq, p, &flags);
5352 return -EPERM;
5353 }
5354 }
5355 #endif
5356
5357 /* recheck policy now with rq lock held */
5358 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5359 policy = oldpolicy = -1;
5360 task_rq_unlock(rq, p, &flags);
5361 goto recheck;
5362 }
5363 on_rq = p->on_rq;
5364 running = task_current(rq, p);
5365 if (on_rq)
5366 deactivate_task(rq, p, 0);
5367 if (running)
5368 p->sched_class->put_prev_task(rq, p);
5369
5370 p->sched_reset_on_fork = reset_on_fork;
5371
5372 oldprio = p->prio;
5373 prev_class = p->sched_class;
5374 __setscheduler(rq, p, policy, param->sched_priority);
5375
5376 if (running)
5377 p->sched_class->set_curr_task(rq);
5378 if (on_rq)
5379 activate_task(rq, p, 0);
5380
5381 check_class_changed(rq, p, prev_class, oldprio);
5382 task_rq_unlock(rq, p, &flags);
5383
5384 rt_mutex_adjust_pi(p);
5385
5386 return 0;
5387 }
5388
5389 /**
5390 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5391 * @p: the task in question.
5392 * @policy: new policy.
5393 * @param: structure containing the new RT priority.
5394 *
5395 * NOTE that the task may be already dead.
5396 */
5397 int sched_setscheduler(struct task_struct *p, int policy,
5398 const struct sched_param *param)
5399 {
5400 return __sched_setscheduler(p, policy, param, true);
5401 }
5402 EXPORT_SYMBOL_GPL(sched_setscheduler);
5403
5404 /**
5405 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5406 * @p: the task in question.
5407 * @policy: new policy.
5408 * @param: structure containing the new RT priority.
5409 *
5410 * Just like sched_setscheduler, only don't bother checking if the
5411 * current context has permission. For example, this is needed in
5412 * stop_machine(): we create temporary high priority worker threads,
5413 * but our caller might not have that capability.
5414 */
5415 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5416 const struct sched_param *param)
5417 {
5418 return __sched_setscheduler(p, policy, param, false);
5419 }
5420
5421 static int
5422 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5423 {
5424 struct sched_param lparam;
5425 struct task_struct *p;
5426 int retval;
5427
5428 if (!param || pid < 0)
5429 return -EINVAL;
5430 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5431 return -EFAULT;
5432
5433 rcu_read_lock();
5434 retval = -ESRCH;
5435 p = find_process_by_pid(pid);
5436 if (p != NULL)
5437 retval = sched_setscheduler(p, policy, &lparam);
5438 rcu_read_unlock();
5439
5440 return retval;
5441 }
5442
5443 /**
5444 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5445 * @pid: the pid in question.
5446 * @policy: new policy.
5447 * @param: structure containing the new RT priority.
5448 */
5449 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5450 struct sched_param __user *, param)
5451 {
5452 /* negative values for policy are not valid */
5453 if (policy < 0)
5454 return -EINVAL;
5455
5456 return do_sched_setscheduler(pid, policy, param);
5457 }
5458
5459 /**
5460 * sys_sched_setparam - set/change the RT priority of a thread
5461 * @pid: the pid in question.
5462 * @param: structure containing the new RT priority.
5463 */
5464 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5465 {
5466 return do_sched_setscheduler(pid, -1, param);
5467 }
5468
5469 /**
5470 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5471 * @pid: the pid in question.
5472 */
5473 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5474 {
5475 struct task_struct *p;
5476 int retval;
5477
5478 if (pid < 0)
5479 return -EINVAL;
5480
5481 retval = -ESRCH;
5482 rcu_read_lock();
5483 p = find_process_by_pid(pid);
5484 if (p) {
5485 retval = security_task_getscheduler(p);
5486 if (!retval)
5487 retval = p->policy
5488 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5489 }
5490 rcu_read_unlock();
5491 return retval;
5492 }
5493
5494 /**
5495 * sys_sched_getparam - get the RT priority of a thread
5496 * @pid: the pid in question.
5497 * @param: structure containing the RT priority.
5498 */
5499 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5500 {
5501 struct sched_param lp;
5502 struct task_struct *p;
5503 int retval;
5504
5505 if (!param || pid < 0)
5506 return -EINVAL;
5507
5508 rcu_read_lock();
5509 p = find_process_by_pid(pid);
5510 retval = -ESRCH;
5511 if (!p)
5512 goto out_unlock;
5513
5514 retval = security_task_getscheduler(p);
5515 if (retval)
5516 goto out_unlock;
5517
5518 lp.sched_priority = p->rt_priority;
5519 rcu_read_unlock();
5520
5521 /*
5522 * This one might sleep, we cannot do it with a spinlock held ...
5523 */
5524 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5525
5526 return retval;
5527
5528 out_unlock:
5529 rcu_read_unlock();
5530 return retval;
5531 }
5532
5533 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5534 {
5535 cpumask_var_t cpus_allowed, new_mask;
5536 struct task_struct *p;
5537 int retval;
5538
5539 get_online_cpus();
5540 rcu_read_lock();
5541
5542 p = find_process_by_pid(pid);
5543 if (!p) {
5544 rcu_read_unlock();
5545 put_online_cpus();
5546 return -ESRCH;
5547 }
5548
5549 /* Prevent p going away */
5550 get_task_struct(p);
5551 rcu_read_unlock();
5552
5553 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5554 retval = -ENOMEM;
5555 goto out_put_task;
5556 }
5557 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5558 retval = -ENOMEM;
5559 goto out_free_cpus_allowed;
5560 }
5561 retval = -EPERM;
5562 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5563 goto out_unlock;
5564
5565 retval = security_task_setscheduler(p);
5566 if (retval)
5567 goto out_unlock;
5568
5569 cpuset_cpus_allowed(p, cpus_allowed);
5570 cpumask_and(new_mask, in_mask, cpus_allowed);
5571 again:
5572 retval = set_cpus_allowed_ptr(p, new_mask);
5573
5574 if (!retval) {
5575 cpuset_cpus_allowed(p, cpus_allowed);
5576 if (!cpumask_subset(new_mask, cpus_allowed)) {
5577 /*
5578 * We must have raced with a concurrent cpuset
5579 * update. Just reset the cpus_allowed to the
5580 * cpuset's cpus_allowed
5581 */
5582 cpumask_copy(new_mask, cpus_allowed);
5583 goto again;
5584 }
5585 }
5586 out_unlock:
5587 free_cpumask_var(new_mask);
5588 out_free_cpus_allowed:
5589 free_cpumask_var(cpus_allowed);
5590 out_put_task:
5591 put_task_struct(p);
5592 put_online_cpus();
5593 return retval;
5594 }
5595
5596 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5597 struct cpumask *new_mask)
5598 {
5599 if (len < cpumask_size())
5600 cpumask_clear(new_mask);
5601 else if (len > cpumask_size())
5602 len = cpumask_size();
5603
5604 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5605 }
5606
5607 /**
5608 * sys_sched_setaffinity - set the cpu affinity of a process
5609 * @pid: pid of the process
5610 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5611 * @user_mask_ptr: user-space pointer to the new cpu mask
5612 */
5613 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5614 unsigned long __user *, user_mask_ptr)
5615 {
5616 cpumask_var_t new_mask;
5617 int retval;
5618
5619 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5620 return -ENOMEM;
5621
5622 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5623 if (retval == 0)
5624 retval = sched_setaffinity(pid, new_mask);
5625 free_cpumask_var(new_mask);
5626 return retval;
5627 }
5628
5629 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5630 {
5631 struct task_struct *p;
5632 unsigned long flags;
5633 int retval;
5634
5635 get_online_cpus();
5636 rcu_read_lock();
5637
5638 retval = -ESRCH;
5639 p = find_process_by_pid(pid);
5640 if (!p)
5641 goto out_unlock;
5642
5643 retval = security_task_getscheduler(p);
5644 if (retval)
5645 goto out_unlock;
5646
5647 raw_spin_lock_irqsave(&p->pi_lock, flags);
5648 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5649 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5650
5651 out_unlock:
5652 rcu_read_unlock();
5653 put_online_cpus();
5654
5655 return retval;
5656 }
5657
5658 /**
5659 * sys_sched_getaffinity - get the cpu affinity of a process
5660 * @pid: pid of the process
5661 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5662 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5663 */
5664 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5665 unsigned long __user *, user_mask_ptr)
5666 {
5667 int ret;
5668 cpumask_var_t mask;
5669
5670 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5671 return -EINVAL;
5672 if (len & (sizeof(unsigned long)-1))
5673 return -EINVAL;
5674
5675 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5676 return -ENOMEM;
5677
5678 ret = sched_getaffinity(pid, mask);
5679 if (ret == 0) {
5680 size_t retlen = min_t(size_t, len, cpumask_size());
5681
5682 if (copy_to_user(user_mask_ptr, mask, retlen))
5683 ret = -EFAULT;
5684 else
5685 ret = retlen;
5686 }
5687 free_cpumask_var(mask);
5688
5689 return ret;
5690 }
5691
5692 /**
5693 * sys_sched_yield - yield the current processor to other threads.
5694 *
5695 * This function yields the current CPU to other tasks. If there are no
5696 * other threads running on this CPU then this function will return.
5697 */
5698 SYSCALL_DEFINE0(sched_yield)
5699 {
5700 struct rq *rq = this_rq_lock();
5701
5702 schedstat_inc(rq, yld_count);
5703 current->sched_class->yield_task(rq);
5704
5705 /*
5706 * Since we are going to call schedule() anyway, there's
5707 * no need to preempt or enable interrupts:
5708 */
5709 __release(rq->lock);
5710 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5711 do_raw_spin_unlock(&rq->lock);
5712 preempt_enable_no_resched();
5713
5714 schedule();
5715
5716 return 0;
5717 }
5718
5719 static inline int should_resched(void)
5720 {
5721 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5722 }
5723
5724 static void __cond_resched(void)
5725 {
5726 add_preempt_count(PREEMPT_ACTIVE);
5727 __schedule();
5728 sub_preempt_count(PREEMPT_ACTIVE);
5729 }
5730
5731 int __sched _cond_resched(void)
5732 {
5733 if (should_resched()) {
5734 __cond_resched();
5735 return 1;
5736 }
5737 return 0;
5738 }
5739 EXPORT_SYMBOL(_cond_resched);
5740
5741 /*
5742 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5743 * call schedule, and on return reacquire the lock.
5744 *
5745 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5746 * operations here to prevent schedule() from being called twice (once via
5747 * spin_unlock(), once by hand).
5748 */
5749 int __cond_resched_lock(spinlock_t *lock)
5750 {
5751 int resched = should_resched();
5752 int ret = 0;
5753
5754 lockdep_assert_held(lock);
5755
5756 if (spin_needbreak(lock) || resched) {
5757 spin_unlock(lock);
5758 if (resched)
5759 __cond_resched();
5760 else
5761 cpu_relax();
5762 ret = 1;
5763 spin_lock(lock);
5764 }
5765 return ret;
5766 }
5767 EXPORT_SYMBOL(__cond_resched_lock);
5768
5769 int __sched __cond_resched_softirq(void)
5770 {
5771 BUG_ON(!in_softirq());
5772
5773 if (should_resched()) {
5774 local_bh_enable();
5775 __cond_resched();
5776 local_bh_disable();
5777 return 1;
5778 }
5779 return 0;
5780 }
5781 EXPORT_SYMBOL(__cond_resched_softirq);
5782
5783 /**
5784 * yield - yield the current processor to other threads.
5785 *
5786 * This is a shortcut for kernel-space yielding - it marks the
5787 * thread runnable and calls sys_sched_yield().
5788 */
5789 void __sched yield(void)
5790 {
5791 set_current_state(TASK_RUNNING);
5792 sys_sched_yield();
5793 }
5794 EXPORT_SYMBOL(yield);
5795
5796 /**
5797 * yield_to - yield the current processor to another thread in
5798 * your thread group, or accelerate that thread toward the
5799 * processor it's on.
5800 * @p: target task
5801 * @preempt: whether task preemption is allowed or not
5802 *
5803 * It's the caller's job to ensure that the target task struct
5804 * can't go away on us before we can do any checks.
5805 *
5806 * Returns true if we indeed boosted the target task.
5807 */
5808 bool __sched yield_to(struct task_struct *p, bool preempt)
5809 {
5810 struct task_struct *curr = current;
5811 struct rq *rq, *p_rq;
5812 unsigned long flags;
5813 bool yielded = 0;
5814
5815 local_irq_save(flags);
5816 rq = this_rq();
5817
5818 again:
5819 p_rq = task_rq(p);
5820 double_rq_lock(rq, p_rq);
5821 while (task_rq(p) != p_rq) {
5822 double_rq_unlock(rq, p_rq);
5823 goto again;
5824 }
5825
5826 if (!curr->sched_class->yield_to_task)
5827 goto out;
5828
5829 if (curr->sched_class != p->sched_class)
5830 goto out;
5831
5832 if (task_running(p_rq, p) || p->state)
5833 goto out;
5834
5835 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5836 if (yielded) {
5837 schedstat_inc(rq, yld_count);
5838 /*
5839 * Make p's CPU reschedule; pick_next_entity takes care of
5840 * fairness.
5841 */
5842 if (preempt && rq != p_rq)
5843 resched_task(p_rq->curr);
5844 }
5845
5846 out:
5847 double_rq_unlock(rq, p_rq);
5848 local_irq_restore(flags);
5849
5850 if (yielded)
5851 schedule();
5852
5853 return yielded;
5854 }
5855 EXPORT_SYMBOL_GPL(yield_to);
5856
5857 /*
5858 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5859 * that process accounting knows that this is a task in IO wait state.
5860 */
5861 void __sched io_schedule(void)
5862 {
5863 struct rq *rq = raw_rq();
5864
5865 delayacct_blkio_start();
5866 atomic_inc(&rq->nr_iowait);
5867 blk_flush_plug(current);
5868 current->in_iowait = 1;
5869 schedule();
5870 current->in_iowait = 0;
5871 atomic_dec(&rq->nr_iowait);
5872 delayacct_blkio_end();
5873 }
5874 EXPORT_SYMBOL(io_schedule);
5875
5876 long __sched io_schedule_timeout(long timeout)
5877 {
5878 struct rq *rq = raw_rq();
5879 long ret;
5880
5881 delayacct_blkio_start();
5882 atomic_inc(&rq->nr_iowait);
5883 blk_flush_plug(current);
5884 current->in_iowait = 1;
5885 ret = schedule_timeout(timeout);
5886 current->in_iowait = 0;
5887 atomic_dec(&rq->nr_iowait);
5888 delayacct_blkio_end();
5889 return ret;
5890 }
5891
5892 /**
5893 * sys_sched_get_priority_max - return maximum RT priority.
5894 * @policy: scheduling class.
5895 *
5896 * this syscall returns the maximum rt_priority that can be used
5897 * by a given scheduling class.
5898 */
5899 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5900 {
5901 int ret = -EINVAL;
5902
5903 switch (policy) {
5904 case SCHED_FIFO:
5905 case SCHED_RR:
5906 ret = MAX_USER_RT_PRIO-1;
5907 break;
5908 case SCHED_NORMAL:
5909 case SCHED_BATCH:
5910 case SCHED_IDLE:
5911 ret = 0;
5912 break;
5913 }
5914 return ret;
5915 }
5916
5917 /**
5918 * sys_sched_get_priority_min - return minimum RT priority.
5919 * @policy: scheduling class.
5920 *
5921 * this syscall returns the minimum rt_priority that can be used
5922 * by a given scheduling class.
5923 */
5924 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5925 {
5926 int ret = -EINVAL;
5927
5928 switch (policy) {
5929 case SCHED_FIFO:
5930 case SCHED_RR:
5931 ret = 1;
5932 break;
5933 case SCHED_NORMAL:
5934 case SCHED_BATCH:
5935 case SCHED_IDLE:
5936 ret = 0;
5937 }
5938 return ret;
5939 }
5940
5941 /**
5942 * sys_sched_rr_get_interval - return the default timeslice of a process.
5943 * @pid: pid of the process.
5944 * @interval: userspace pointer to the timeslice value.
5945 *
5946 * this syscall writes the default timeslice value of a given process
5947 * into the user-space timespec buffer. A value of '0' means infinity.
5948 */
5949 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5950 struct timespec __user *, interval)
5951 {
5952 struct task_struct *p;
5953 unsigned int time_slice;
5954 unsigned long flags;
5955 struct rq *rq;
5956 int retval;
5957 struct timespec t;
5958
5959 if (pid < 0)
5960 return -EINVAL;
5961
5962 retval = -ESRCH;
5963 rcu_read_lock();
5964 p = find_process_by_pid(pid);
5965 if (!p)
5966 goto out_unlock;
5967
5968 retval = security_task_getscheduler(p);
5969 if (retval)
5970 goto out_unlock;
5971
5972 rq = task_rq_lock(p, &flags);
5973 time_slice = p->sched_class->get_rr_interval(rq, p);
5974 task_rq_unlock(rq, p, &flags);
5975
5976 rcu_read_unlock();
5977 jiffies_to_timespec(time_slice, &t);
5978 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5979 return retval;
5980
5981 out_unlock:
5982 rcu_read_unlock();
5983 return retval;
5984 }
5985
5986 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5987
5988 void sched_show_task(struct task_struct *p)
5989 {
5990 unsigned long free = 0;
5991 unsigned state;
5992
5993 state = p->state ? __ffs(p->state) + 1 : 0;
5994 printk(KERN_INFO "%-15.15s %c", p->comm,
5995 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5996 #if BITS_PER_LONG == 32
5997 if (state == TASK_RUNNING)
5998 printk(KERN_CONT " running ");
5999 else
6000 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6001 #else
6002 if (state == TASK_RUNNING)
6003 printk(KERN_CONT " running task ");
6004 else
6005 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6006 #endif
6007 #ifdef CONFIG_DEBUG_STACK_USAGE
6008 free = stack_not_used(p);
6009 #endif
6010 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6011 task_pid_nr(p), task_pid_nr(p->real_parent),
6012 (unsigned long)task_thread_info(p)->flags);
6013
6014 show_stack(p, NULL);
6015 }
6016
6017 void show_state_filter(unsigned long state_filter)
6018 {
6019 struct task_struct *g, *p;
6020
6021 #if BITS_PER_LONG == 32
6022 printk(KERN_INFO
6023 " task PC stack pid father\n");
6024 #else
6025 printk(KERN_INFO
6026 " task PC stack pid father\n");
6027 #endif
6028 rcu_read_lock();
6029 do_each_thread(g, p) {
6030 /*
6031 * reset the NMI-timeout, listing all files on a slow
6032 * console might take a lot of time:
6033 */
6034 touch_nmi_watchdog();
6035 if (!state_filter || (p->state & state_filter))
6036 sched_show_task(p);
6037 } while_each_thread(g, p);
6038
6039 touch_all_softlockup_watchdogs();
6040
6041 #ifdef CONFIG_SCHED_DEBUG
6042 sysrq_sched_debug_show();
6043 #endif
6044 rcu_read_unlock();
6045 /*
6046 * Only show locks if all tasks are dumped:
6047 */
6048 if (!state_filter)
6049 debug_show_all_locks();
6050 }
6051
6052 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6053 {
6054 idle->sched_class = &idle_sched_class;
6055 }
6056
6057 /**
6058 * init_idle - set up an idle thread for a given CPU
6059 * @idle: task in question
6060 * @cpu: cpu the idle task belongs to
6061 *
6062 * NOTE: this function does not set the idle thread's NEED_RESCHED
6063 * flag, to make booting more robust.
6064 */
6065 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6066 {
6067 struct rq *rq = cpu_rq(cpu);
6068 unsigned long flags;
6069
6070 raw_spin_lock_irqsave(&rq->lock, flags);
6071
6072 __sched_fork(idle);
6073 idle->state = TASK_RUNNING;
6074 idle->se.exec_start = sched_clock();
6075
6076 do_set_cpus_allowed(idle, cpumask_of(cpu));
6077 /*
6078 * We're having a chicken and egg problem, even though we are
6079 * holding rq->lock, the cpu isn't yet set to this cpu so the
6080 * lockdep check in task_group() will fail.
6081 *
6082 * Similar case to sched_fork(). / Alternatively we could
6083 * use task_rq_lock() here and obtain the other rq->lock.
6084 *
6085 * Silence PROVE_RCU
6086 */
6087 rcu_read_lock();
6088 __set_task_cpu(idle, cpu);
6089 rcu_read_unlock();
6090
6091 rq->curr = rq->idle = idle;
6092 #if defined(CONFIG_SMP)
6093 idle->on_cpu = 1;
6094 #endif
6095 raw_spin_unlock_irqrestore(&rq->lock, flags);
6096
6097 /* Set the preempt count _outside_ the spinlocks! */
6098 task_thread_info(idle)->preempt_count = 0;
6099
6100 /*
6101 * The idle tasks have their own, simple scheduling class:
6102 */
6103 idle->sched_class = &idle_sched_class;
6104 ftrace_graph_init_idle_task(idle, cpu);
6105 #if defined(CONFIG_SMP)
6106 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6107 #endif
6108 }
6109
6110 /*
6111 * Increase the granularity value when there are more CPUs,
6112 * because with more CPUs the 'effective latency' as visible
6113 * to users decreases. But the relationship is not linear,
6114 * so pick a second-best guess by going with the log2 of the
6115 * number of CPUs.
6116 *
6117 * This idea comes from the SD scheduler of Con Kolivas:
6118 */
6119 static int get_update_sysctl_factor(void)
6120 {
6121 unsigned int cpus = min_t(int, num_online_cpus(), 8);
6122 unsigned int factor;
6123
6124 switch (sysctl_sched_tunable_scaling) {
6125 case SCHED_TUNABLESCALING_NONE:
6126 factor = 1;
6127 break;
6128 case SCHED_TUNABLESCALING_LINEAR:
6129 factor = cpus;
6130 break;
6131 case SCHED_TUNABLESCALING_LOG:
6132 default:
6133 factor = 1 + ilog2(cpus);
6134 break;
6135 }
6136
6137 return factor;
6138 }
6139
6140 static void update_sysctl(void)
6141 {
6142 unsigned int factor = get_update_sysctl_factor();
6143
6144 #define SET_SYSCTL(name) \
6145 (sysctl_##name = (factor) * normalized_sysctl_##name)
6146 SET_SYSCTL(sched_min_granularity);
6147 SET_SYSCTL(sched_latency);
6148 SET_SYSCTL(sched_wakeup_granularity);
6149 #undef SET_SYSCTL
6150 }
6151
6152 static inline void sched_init_granularity(void)
6153 {
6154 update_sysctl();
6155 }
6156
6157 #ifdef CONFIG_SMP
6158 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6159 {
6160 if (p->sched_class && p->sched_class->set_cpus_allowed)
6161 p->sched_class->set_cpus_allowed(p, new_mask);
6162
6163 cpumask_copy(&p->cpus_allowed, new_mask);
6164 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6165 }
6166
6167 /*
6168 * This is how migration works:
6169 *
6170 * 1) we invoke migration_cpu_stop() on the target CPU using
6171 * stop_one_cpu().
6172 * 2) stopper starts to run (implicitly forcing the migrated thread
6173 * off the CPU)
6174 * 3) it checks whether the migrated task is still in the wrong runqueue.
6175 * 4) if it's in the wrong runqueue then the migration thread removes
6176 * it and puts it into the right queue.
6177 * 5) stopper completes and stop_one_cpu() returns and the migration
6178 * is done.
6179 */
6180
6181 /*
6182 * Change a given task's CPU affinity. Migrate the thread to a
6183 * proper CPU and schedule it away if the CPU it's executing on
6184 * is removed from the allowed bitmask.
6185 *
6186 * NOTE: the caller must have a valid reference to the task, the
6187 * task must not exit() & deallocate itself prematurely. The
6188 * call is not atomic; no spinlocks may be held.
6189 */
6190 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6191 {
6192 unsigned long flags;
6193 struct rq *rq;
6194 unsigned int dest_cpu;
6195 int ret = 0;
6196
6197 rq = task_rq_lock(p, &flags);
6198
6199 if (cpumask_equal(&p->cpus_allowed, new_mask))
6200 goto out;
6201
6202 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6203 ret = -EINVAL;
6204 goto out;
6205 }
6206
6207 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6208 ret = -EINVAL;
6209 goto out;
6210 }
6211
6212 do_set_cpus_allowed(p, new_mask);
6213
6214 /* Can the task run on the task's current CPU? If so, we're done */
6215 if (cpumask_test_cpu(task_cpu(p), new_mask))
6216 goto out;
6217
6218 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6219 if (p->on_rq) {
6220 struct migration_arg arg = { p, dest_cpu };
6221 /* Need help from migration thread: drop lock and wait. */
6222 task_rq_unlock(rq, p, &flags);
6223 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6224 tlb_migrate_finish(p->mm);
6225 return 0;
6226 }
6227 out:
6228 task_rq_unlock(rq, p, &flags);
6229
6230 return ret;
6231 }
6232 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6233
6234 /*
6235 * Move (not current) task off this cpu, onto dest cpu. We're doing
6236 * this because either it can't run here any more (set_cpus_allowed()
6237 * away from this CPU, or CPU going down), or because we're
6238 * attempting to rebalance this task on exec (sched_exec).
6239 *
6240 * So we race with normal scheduler movements, but that's OK, as long
6241 * as the task is no longer on this CPU.
6242 *
6243 * Returns non-zero if task was successfully migrated.
6244 */
6245 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6246 {
6247 struct rq *rq_dest, *rq_src;
6248 int ret = 0;
6249
6250 if (unlikely(!cpu_active(dest_cpu)))
6251 return ret;
6252
6253 rq_src = cpu_rq(src_cpu);
6254 rq_dest = cpu_rq(dest_cpu);
6255
6256 raw_spin_lock(&p->pi_lock);
6257 double_rq_lock(rq_src, rq_dest);
6258 /* Already moved. */
6259 if (task_cpu(p) != src_cpu)
6260 goto done;
6261 /* Affinity changed (again). */
6262 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
6263 goto fail;
6264
6265 /*
6266 * If we're not on a rq, the next wake-up will ensure we're
6267 * placed properly.
6268 */
6269 if (p->on_rq) {
6270 deactivate_task(rq_src, p, 0);
6271 set_task_cpu(p, dest_cpu);
6272 activate_task(rq_dest, p, 0);
6273 check_preempt_curr(rq_dest, p, 0);
6274 }
6275 done:
6276 ret = 1;
6277 fail:
6278 double_rq_unlock(rq_src, rq_dest);
6279 raw_spin_unlock(&p->pi_lock);
6280 return ret;
6281 }
6282
6283 /*
6284 * migration_cpu_stop - this will be executed by a highprio stopper thread
6285 * and performs thread migration by bumping thread off CPU then
6286 * 'pushing' onto another runqueue.
6287 */
6288 static int migration_cpu_stop(void *data)
6289 {
6290 struct migration_arg *arg = data;
6291
6292 /*
6293 * The original target cpu might have gone down and we might
6294 * be on another cpu but it doesn't matter.
6295 */
6296 local_irq_disable();
6297 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6298 local_irq_enable();
6299 return 0;
6300 }
6301
6302 #ifdef CONFIG_HOTPLUG_CPU
6303
6304 /*
6305 * Ensures that the idle task is using init_mm right before its cpu goes
6306 * offline.
6307 */
6308 void idle_task_exit(void)
6309 {
6310 struct mm_struct *mm = current->active_mm;
6311
6312 BUG_ON(cpu_online(smp_processor_id()));
6313
6314 if (mm != &init_mm)
6315 switch_mm(mm, &init_mm, current);
6316 mmdrop(mm);
6317 }
6318
6319 /*
6320 * While a dead CPU has no uninterruptible tasks queued at this point,
6321 * it might still have a nonzero ->nr_uninterruptible counter, because
6322 * for performance reasons the counter is not stricly tracking tasks to
6323 * their home CPUs. So we just add the counter to another CPU's counter,
6324 * to keep the global sum constant after CPU-down:
6325 */
6326 static void migrate_nr_uninterruptible(struct rq *rq_src)
6327 {
6328 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6329
6330 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6331 rq_src->nr_uninterruptible = 0;
6332 }
6333
6334 /*
6335 * remove the tasks which were accounted by rq from calc_load_tasks.
6336 */
6337 static void calc_global_load_remove(struct rq *rq)
6338 {
6339 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6340 rq->calc_load_active = 0;
6341 }
6342
6343 #ifdef CONFIG_CFS_BANDWIDTH
6344 static void unthrottle_offline_cfs_rqs(struct rq *rq)
6345 {
6346 struct cfs_rq *cfs_rq;
6347
6348 for_each_leaf_cfs_rq(rq, cfs_rq) {
6349 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6350
6351 if (!cfs_rq->runtime_enabled)
6352 continue;
6353
6354 /*
6355 * clock_task is not advancing so we just need to make sure
6356 * there's some valid quota amount
6357 */
6358 cfs_rq->runtime_remaining = cfs_b->quota;
6359 if (cfs_rq_throttled(cfs_rq))
6360 unthrottle_cfs_rq(cfs_rq);
6361 }
6362 }
6363 #else
6364 static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6365 #endif
6366
6367 /*
6368 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6369 * try_to_wake_up()->select_task_rq().
6370 *
6371 * Called with rq->lock held even though we'er in stop_machine() and
6372 * there's no concurrency possible, we hold the required locks anyway
6373 * because of lock validation efforts.
6374 */
6375 static void migrate_tasks(unsigned int dead_cpu)
6376 {
6377 struct rq *rq = cpu_rq(dead_cpu);
6378 struct task_struct *next, *stop = rq->stop;
6379 int dest_cpu;
6380
6381 /*
6382 * Fudge the rq selection such that the below task selection loop
6383 * doesn't get stuck on the currently eligible stop task.
6384 *
6385 * We're currently inside stop_machine() and the rq is either stuck
6386 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6387 * either way we should never end up calling schedule() until we're
6388 * done here.
6389 */
6390 rq->stop = NULL;
6391
6392 /* Ensure any throttled groups are reachable by pick_next_task */
6393 unthrottle_offline_cfs_rqs(rq);
6394
6395 for ( ; ; ) {
6396 /*
6397 * There's this thread running, bail when that's the only
6398 * remaining thread.
6399 */
6400 if (rq->nr_running == 1)
6401 break;
6402
6403 next = pick_next_task(rq);
6404 BUG_ON(!next);
6405 next->sched_class->put_prev_task(rq, next);
6406
6407 /* Find suitable destination for @next, with force if needed. */
6408 dest_cpu = select_fallback_rq(dead_cpu, next);
6409 raw_spin_unlock(&rq->lock);
6410
6411 __migrate_task(next, dead_cpu, dest_cpu);
6412
6413 raw_spin_lock(&rq->lock);
6414 }
6415
6416 rq->stop = stop;
6417 }
6418
6419 #endif /* CONFIG_HOTPLUG_CPU */
6420
6421 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6422
6423 static struct ctl_table sd_ctl_dir[] = {
6424 {
6425 .procname = "sched_domain",
6426 .mode = 0555,
6427 },
6428 {}
6429 };
6430
6431 static struct ctl_table sd_ctl_root[] = {
6432 {
6433 .procname = "kernel",
6434 .mode = 0555,
6435 .child = sd_ctl_dir,
6436 },
6437 {}
6438 };
6439
6440 static struct ctl_table *sd_alloc_ctl_entry(int n)
6441 {
6442 struct ctl_table *entry =
6443 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6444
6445 return entry;
6446 }
6447
6448 static void sd_free_ctl_entry(struct ctl_table **tablep)
6449 {
6450 struct ctl_table *entry;
6451
6452 /*
6453 * In the intermediate directories, both the child directory and
6454 * procname are dynamically allocated and could fail but the mode
6455 * will always be set. In the lowest directory the names are
6456 * static strings and all have proc handlers.
6457 */
6458 for (entry = *tablep; entry->mode; entry++) {
6459 if (entry->child)
6460 sd_free_ctl_entry(&entry->child);
6461 if (entry->proc_handler == NULL)
6462 kfree(entry->procname);
6463 }
6464
6465 kfree(*tablep);
6466 *tablep = NULL;
6467 }
6468
6469 static void
6470 set_table_entry(struct ctl_table *entry,
6471 const char *procname, void *data, int maxlen,
6472 mode_t mode, proc_handler *proc_handler)
6473 {
6474 entry->procname = procname;
6475 entry->data = data;
6476 entry->maxlen = maxlen;
6477 entry->mode = mode;
6478 entry->proc_handler = proc_handler;
6479 }
6480
6481 static struct ctl_table *
6482 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6483 {
6484 struct ctl_table *table = sd_alloc_ctl_entry(13);
6485
6486 if (table == NULL)
6487 return NULL;
6488
6489 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6490 sizeof(long), 0644, proc_doulongvec_minmax);
6491 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6492 sizeof(long), 0644, proc_doulongvec_minmax);
6493 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6494 sizeof(int), 0644, proc_dointvec_minmax);
6495 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6496 sizeof(int), 0644, proc_dointvec_minmax);
6497 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6498 sizeof(int), 0644, proc_dointvec_minmax);
6499 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6500 sizeof(int), 0644, proc_dointvec_minmax);
6501 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6502 sizeof(int), 0644, proc_dointvec_minmax);
6503 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6504 sizeof(int), 0644, proc_dointvec_minmax);
6505 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6506 sizeof(int), 0644, proc_dointvec_minmax);
6507 set_table_entry(&table[9], "cache_nice_tries",
6508 &sd->cache_nice_tries,
6509 sizeof(int), 0644, proc_dointvec_minmax);
6510 set_table_entry(&table[10], "flags", &sd->flags,
6511 sizeof(int), 0644, proc_dointvec_minmax);
6512 set_table_entry(&table[11], "name", sd->name,
6513 CORENAME_MAX_SIZE, 0444, proc_dostring);
6514 /* &table[12] is terminator */
6515
6516 return table;
6517 }
6518
6519 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6520 {
6521 struct ctl_table *entry, *table;
6522 struct sched_domain *sd;
6523 int domain_num = 0, i;
6524 char buf[32];
6525
6526 for_each_domain(cpu, sd)
6527 domain_num++;
6528 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6529 if (table == NULL)
6530 return NULL;
6531
6532 i = 0;
6533 for_each_domain(cpu, sd) {
6534 snprintf(buf, 32, "domain%d", i);
6535 entry->procname = kstrdup(buf, GFP_KERNEL);
6536 entry->mode = 0555;
6537 entry->child = sd_alloc_ctl_domain_table(sd);
6538 entry++;
6539 i++;
6540 }
6541 return table;
6542 }
6543
6544 static struct ctl_table_header *sd_sysctl_header;
6545 static void register_sched_domain_sysctl(void)
6546 {
6547 int i, cpu_num = num_possible_cpus();
6548 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6549 char buf[32];
6550
6551 WARN_ON(sd_ctl_dir[0].child);
6552 sd_ctl_dir[0].child = entry;
6553
6554 if (entry == NULL)
6555 return;
6556
6557 for_each_possible_cpu(i) {
6558 snprintf(buf, 32, "cpu%d", i);
6559 entry->procname = kstrdup(buf, GFP_KERNEL);
6560 entry->mode = 0555;
6561 entry->child = sd_alloc_ctl_cpu_table(i);
6562 entry++;
6563 }
6564
6565 WARN_ON(sd_sysctl_header);
6566 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6567 }
6568
6569 /* may be called multiple times per register */
6570 static void unregister_sched_domain_sysctl(void)
6571 {
6572 if (sd_sysctl_header)
6573 unregister_sysctl_table(sd_sysctl_header);
6574 sd_sysctl_header = NULL;
6575 if (sd_ctl_dir[0].child)
6576 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6577 }
6578 #else
6579 static void register_sched_domain_sysctl(void)
6580 {
6581 }
6582 static void unregister_sched_domain_sysctl(void)
6583 {
6584 }
6585 #endif
6586
6587 static void set_rq_online(struct rq *rq)
6588 {
6589 if (!rq->online) {
6590 const struct sched_class *class;
6591
6592 cpumask_set_cpu(rq->cpu, rq->rd->online);
6593 rq->online = 1;
6594
6595 for_each_class(class) {
6596 if (class->rq_online)
6597 class->rq_online(rq);
6598 }
6599 }
6600 }
6601
6602 static void set_rq_offline(struct rq *rq)
6603 {
6604 if (rq->online) {
6605 const struct sched_class *class;
6606
6607 for_each_class(class) {
6608 if (class->rq_offline)
6609 class->rq_offline(rq);
6610 }
6611
6612 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6613 rq->online = 0;
6614 }
6615 }
6616
6617 /*
6618 * migration_call - callback that gets triggered when a CPU is added.
6619 * Here we can start up the necessary migration thread for the new CPU.
6620 */
6621 static int __cpuinit
6622 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6623 {
6624 int cpu = (long)hcpu;
6625 unsigned long flags;
6626 struct rq *rq = cpu_rq(cpu);
6627
6628 switch (action & ~CPU_TASKS_FROZEN) {
6629
6630 case CPU_UP_PREPARE:
6631 rq->calc_load_update = calc_load_update;
6632 break;
6633
6634 case CPU_ONLINE:
6635 /* Update our root-domain */
6636 raw_spin_lock_irqsave(&rq->lock, flags);
6637 if (rq->rd) {
6638 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6639
6640 set_rq_online(rq);
6641 }
6642 raw_spin_unlock_irqrestore(&rq->lock, flags);
6643 break;
6644
6645 #ifdef CONFIG_HOTPLUG_CPU
6646 case CPU_DYING:
6647 sched_ttwu_pending();
6648 /* Update our root-domain */
6649 raw_spin_lock_irqsave(&rq->lock, flags);
6650 if (rq->rd) {
6651 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6652 set_rq_offline(rq);
6653 }
6654 migrate_tasks(cpu);
6655 BUG_ON(rq->nr_running != 1); /* the migration thread */
6656 raw_spin_unlock_irqrestore(&rq->lock, flags);
6657
6658 migrate_nr_uninterruptible(rq);
6659 calc_global_load_remove(rq);
6660 break;
6661 #endif
6662 }
6663
6664 update_max_interval();
6665
6666 return NOTIFY_OK;
6667 }
6668
6669 /*
6670 * Register at high priority so that task migration (migrate_all_tasks)
6671 * happens before everything else. This has to be lower priority than
6672 * the notifier in the perf_event subsystem, though.
6673 */
6674 static struct notifier_block __cpuinitdata migration_notifier = {
6675 .notifier_call = migration_call,
6676 .priority = CPU_PRI_MIGRATION,
6677 };
6678
6679 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6680 unsigned long action, void *hcpu)
6681 {
6682 switch (action & ~CPU_TASKS_FROZEN) {
6683 case CPU_ONLINE:
6684 case CPU_DOWN_FAILED:
6685 set_cpu_active((long)hcpu, true);
6686 return NOTIFY_OK;
6687 default:
6688 return NOTIFY_DONE;
6689 }
6690 }
6691
6692 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6693 unsigned long action, void *hcpu)
6694 {
6695 switch (action & ~CPU_TASKS_FROZEN) {
6696 case CPU_DOWN_PREPARE:
6697 set_cpu_active((long)hcpu, false);
6698 return NOTIFY_OK;
6699 default:
6700 return NOTIFY_DONE;
6701 }
6702 }
6703
6704 static int __init migration_init(void)
6705 {
6706 void *cpu = (void *)(long)smp_processor_id();
6707 int err;
6708
6709 /* Initialize migration for the boot CPU */
6710 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6711 BUG_ON(err == NOTIFY_BAD);
6712 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6713 register_cpu_notifier(&migration_notifier);
6714
6715 /* Register cpu active notifiers */
6716 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6717 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6718
6719 return 0;
6720 }
6721 early_initcall(migration_init);
6722 #endif
6723
6724 #ifdef CONFIG_SMP
6725
6726 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6727
6728 #ifdef CONFIG_SCHED_DEBUG
6729
6730 static __read_mostly int sched_domain_debug_enabled;
6731
6732 static int __init sched_domain_debug_setup(char *str)
6733 {
6734 sched_domain_debug_enabled = 1;
6735
6736 return 0;
6737 }
6738 early_param("sched_debug", sched_domain_debug_setup);
6739
6740 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6741 struct cpumask *groupmask)
6742 {
6743 struct sched_group *group = sd->groups;
6744 char str[256];
6745
6746 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6747 cpumask_clear(groupmask);
6748
6749 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6750
6751 if (!(sd->flags & SD_LOAD_BALANCE)) {
6752 printk("does not load-balance\n");
6753 if (sd->parent)
6754 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6755 " has parent");
6756 return -1;
6757 }
6758
6759 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6760
6761 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6762 printk(KERN_ERR "ERROR: domain->span does not contain "
6763 "CPU%d\n", cpu);
6764 }
6765 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6766 printk(KERN_ERR "ERROR: domain->groups does not contain"
6767 " CPU%d\n", cpu);
6768 }
6769
6770 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6771 do {
6772 if (!group) {
6773 printk("\n");
6774 printk(KERN_ERR "ERROR: group is NULL\n");
6775 break;
6776 }
6777
6778 if (!group->sgp->power) {
6779 printk(KERN_CONT "\n");
6780 printk(KERN_ERR "ERROR: domain->cpu_power not "
6781 "set\n");
6782 break;
6783 }
6784
6785 if (!cpumask_weight(sched_group_cpus(group))) {
6786 printk(KERN_CONT "\n");
6787 printk(KERN_ERR "ERROR: empty group\n");
6788 break;
6789 }
6790
6791 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6792 printk(KERN_CONT "\n");
6793 printk(KERN_ERR "ERROR: repeated CPUs\n");
6794 break;
6795 }
6796
6797 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6798
6799 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6800
6801 printk(KERN_CONT " %s", str);
6802 if (group->sgp->power != SCHED_POWER_SCALE) {
6803 printk(KERN_CONT " (cpu_power = %d)",
6804 group->sgp->power);
6805 }
6806
6807 group = group->next;
6808 } while (group != sd->groups);
6809 printk(KERN_CONT "\n");
6810
6811 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6812 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6813
6814 if (sd->parent &&
6815 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6816 printk(KERN_ERR "ERROR: parent span is not a superset "
6817 "of domain->span\n");
6818 return 0;
6819 }
6820
6821 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6822 {
6823 int level = 0;
6824
6825 if (!sched_domain_debug_enabled)
6826 return;
6827
6828 if (!sd) {
6829 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6830 return;
6831 }
6832
6833 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6834
6835 for (;;) {
6836 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6837 break;
6838 level++;
6839 sd = sd->parent;
6840 if (!sd)
6841 break;
6842 }
6843 }
6844 #else /* !CONFIG_SCHED_DEBUG */
6845 # define sched_domain_debug(sd, cpu) do { } while (0)
6846 #endif /* CONFIG_SCHED_DEBUG */
6847
6848 static int sd_degenerate(struct sched_domain *sd)
6849 {
6850 if (cpumask_weight(sched_domain_span(sd)) == 1)
6851 return 1;
6852
6853 /* Following flags need at least 2 groups */
6854 if (sd->flags & (SD_LOAD_BALANCE |
6855 SD_BALANCE_NEWIDLE |
6856 SD_BALANCE_FORK |
6857 SD_BALANCE_EXEC |
6858 SD_SHARE_CPUPOWER |
6859 SD_SHARE_PKG_RESOURCES)) {
6860 if (sd->groups != sd->groups->next)
6861 return 0;
6862 }
6863
6864 /* Following flags don't use groups */
6865 if (sd->flags & (SD_WAKE_AFFINE))
6866 return 0;
6867
6868 return 1;
6869 }
6870
6871 static int
6872 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6873 {
6874 unsigned long cflags = sd->flags, pflags = parent->flags;
6875
6876 if (sd_degenerate(parent))
6877 return 1;
6878
6879 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6880 return 0;
6881
6882 /* Flags needing groups don't count if only 1 group in parent */
6883 if (parent->groups == parent->groups->next) {
6884 pflags &= ~(SD_LOAD_BALANCE |
6885 SD_BALANCE_NEWIDLE |
6886 SD_BALANCE_FORK |
6887 SD_BALANCE_EXEC |
6888 SD_SHARE_CPUPOWER |
6889 SD_SHARE_PKG_RESOURCES);
6890 if (nr_node_ids == 1)
6891 pflags &= ~SD_SERIALIZE;
6892 }
6893 if (~cflags & pflags)
6894 return 0;
6895
6896 return 1;
6897 }
6898
6899 static void free_rootdomain(struct rcu_head *rcu)
6900 {
6901 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6902
6903 cpupri_cleanup(&rd->cpupri);
6904 free_cpumask_var(rd->rto_mask);
6905 free_cpumask_var(rd->online);
6906 free_cpumask_var(rd->span);
6907 kfree(rd);
6908 }
6909
6910 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6911 {
6912 struct root_domain *old_rd = NULL;
6913 unsigned long flags;
6914
6915 raw_spin_lock_irqsave(&rq->lock, flags);
6916
6917 if (rq->rd) {
6918 old_rd = rq->rd;
6919
6920 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6921 set_rq_offline(rq);
6922
6923 cpumask_clear_cpu(rq->cpu, old_rd->span);
6924
6925 /*
6926 * If we dont want to free the old_rt yet then
6927 * set old_rd to NULL to skip the freeing later
6928 * in this function:
6929 */
6930 if (!atomic_dec_and_test(&old_rd->refcount))
6931 old_rd = NULL;
6932 }
6933
6934 atomic_inc(&rd->refcount);
6935 rq->rd = rd;
6936
6937 cpumask_set_cpu(rq->cpu, rd->span);
6938 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6939 set_rq_online(rq);
6940
6941 raw_spin_unlock_irqrestore(&rq->lock, flags);
6942
6943 if (old_rd)
6944 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6945 }
6946
6947 static int init_rootdomain(struct root_domain *rd)
6948 {
6949 memset(rd, 0, sizeof(*rd));
6950
6951 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6952 goto out;
6953 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6954 goto free_span;
6955 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6956 goto free_online;
6957
6958 if (cpupri_init(&rd->cpupri) != 0)
6959 goto free_rto_mask;
6960 return 0;
6961
6962 free_rto_mask:
6963 free_cpumask_var(rd->rto_mask);
6964 free_online:
6965 free_cpumask_var(rd->online);
6966 free_span:
6967 free_cpumask_var(rd->span);
6968 out:
6969 return -ENOMEM;
6970 }
6971
6972 static void init_defrootdomain(void)
6973 {
6974 init_rootdomain(&def_root_domain);
6975
6976 atomic_set(&def_root_domain.refcount, 1);
6977 }
6978
6979 static struct root_domain *alloc_rootdomain(void)
6980 {
6981 struct root_domain *rd;
6982
6983 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6984 if (!rd)
6985 return NULL;
6986
6987 if (init_rootdomain(rd) != 0) {
6988 kfree(rd);
6989 return NULL;
6990 }
6991
6992 return rd;
6993 }
6994
6995 static void free_sched_groups(struct sched_group *sg, int free_sgp)
6996 {
6997 struct sched_group *tmp, *first;
6998
6999 if (!sg)
7000 return;
7001
7002 first = sg;
7003 do {
7004 tmp = sg->next;
7005
7006 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
7007 kfree(sg->sgp);
7008
7009 kfree(sg);
7010 sg = tmp;
7011 } while (sg != first);
7012 }
7013
7014 static void free_sched_domain(struct rcu_head *rcu)
7015 {
7016 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
7017
7018 /*
7019 * If its an overlapping domain it has private groups, iterate and
7020 * nuke them all.
7021 */
7022 if (sd->flags & SD_OVERLAP) {
7023 free_sched_groups(sd->groups, 1);
7024 } else if (atomic_dec_and_test(&sd->groups->ref)) {
7025 kfree(sd->groups->sgp);
7026 kfree(sd->groups);
7027 }
7028 kfree(sd);
7029 }
7030
7031 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7032 {
7033 call_rcu(&sd->rcu, free_sched_domain);
7034 }
7035
7036 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7037 {
7038 for (; sd; sd = sd->parent)
7039 destroy_sched_domain(sd, cpu);
7040 }
7041
7042 /*
7043 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7044 * hold the hotplug lock.
7045 */
7046 static void
7047 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7048 {
7049 struct rq *rq = cpu_rq(cpu);
7050 struct sched_domain *tmp;
7051
7052 /* Remove the sched domains which do not contribute to scheduling. */
7053 for (tmp = sd; tmp; ) {
7054 struct sched_domain *parent = tmp->parent;
7055 if (!parent)
7056 break;
7057
7058 if (sd_parent_degenerate(tmp, parent)) {
7059 tmp->parent = parent->parent;
7060 if (parent->parent)
7061 parent->parent->child = tmp;
7062 destroy_sched_domain(parent, cpu);
7063 } else
7064 tmp = tmp->parent;
7065 }
7066
7067 if (sd && sd_degenerate(sd)) {
7068 tmp = sd;
7069 sd = sd->parent;
7070 destroy_sched_domain(tmp, cpu);
7071 if (sd)
7072 sd->child = NULL;
7073 }
7074
7075 sched_domain_debug(sd, cpu);
7076
7077 rq_attach_root(rq, rd);
7078 tmp = rq->sd;
7079 rcu_assign_pointer(rq->sd, sd);
7080 destroy_sched_domains(tmp, cpu);
7081 }
7082
7083 /* cpus with isolated domains */
7084 static cpumask_var_t cpu_isolated_map;
7085
7086 /* Setup the mask of cpus configured for isolated domains */
7087 static int __init isolated_cpu_setup(char *str)
7088 {
7089 alloc_bootmem_cpumask_var(&cpu_isolated_map);
7090 cpulist_parse(str, cpu_isolated_map);
7091 return 1;
7092 }
7093
7094 __setup("isolcpus=", isolated_cpu_setup);
7095
7096 #ifdef CONFIG_NUMA
7097
7098 /**
7099 * find_next_best_node - find the next node to include in a sched_domain
7100 * @node: node whose sched_domain we're building
7101 * @used_nodes: nodes already in the sched_domain
7102 *
7103 * Find the next node to include in a given scheduling domain. Simply
7104 * finds the closest node not already in the @used_nodes map.
7105 *
7106 * Should use nodemask_t.
7107 */
7108 static int find_next_best_node(int node, nodemask_t *used_nodes)
7109 {
7110 int i, n, val, min_val, best_node = -1;
7111
7112 min_val = INT_MAX;
7113
7114 for (i = 0; i < nr_node_ids; i++) {
7115 /* Start at @node */
7116 n = (node + i) % nr_node_ids;
7117
7118 if (!nr_cpus_node(n))
7119 continue;
7120
7121 /* Skip already used nodes */
7122 if (node_isset(n, *used_nodes))
7123 continue;
7124
7125 /* Simple min distance search */
7126 val = node_distance(node, n);
7127
7128 if (val < min_val) {
7129 min_val = val;
7130 best_node = n;
7131 }
7132 }
7133
7134 if (best_node != -1)
7135 node_set(best_node, *used_nodes);
7136 return best_node;
7137 }
7138
7139 /**
7140 * sched_domain_node_span - get a cpumask for a node's sched_domain
7141 * @node: node whose cpumask we're constructing
7142 * @span: resulting cpumask
7143 *
7144 * Given a node, construct a good cpumask for its sched_domain to span. It
7145 * should be one that prevents unnecessary balancing, but also spreads tasks
7146 * out optimally.
7147 */
7148 static void sched_domain_node_span(int node, struct cpumask *span)
7149 {
7150 nodemask_t used_nodes;
7151 int i;
7152
7153 cpumask_clear(span);
7154 nodes_clear(used_nodes);
7155
7156 cpumask_or(span, span, cpumask_of_node(node));
7157 node_set(node, used_nodes);
7158
7159 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7160 int next_node = find_next_best_node(node, &used_nodes);
7161 if (next_node < 0)
7162 break;
7163 cpumask_or(span, span, cpumask_of_node(next_node));
7164 }
7165 }
7166
7167 static const struct cpumask *cpu_node_mask(int cpu)
7168 {
7169 lockdep_assert_held(&sched_domains_mutex);
7170
7171 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7172
7173 return sched_domains_tmpmask;
7174 }
7175
7176 static const struct cpumask *cpu_allnodes_mask(int cpu)
7177 {
7178 return cpu_possible_mask;
7179 }
7180 #endif /* CONFIG_NUMA */
7181
7182 static const struct cpumask *cpu_cpu_mask(int cpu)
7183 {
7184 return cpumask_of_node(cpu_to_node(cpu));
7185 }
7186
7187 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7188
7189 struct sd_data {
7190 struct sched_domain **__percpu sd;
7191 struct sched_group **__percpu sg;
7192 struct sched_group_power **__percpu sgp;
7193 };
7194
7195 struct s_data {
7196 struct sched_domain ** __percpu sd;
7197 struct root_domain *rd;
7198 };
7199
7200 enum s_alloc {
7201 sa_rootdomain,
7202 sa_sd,
7203 sa_sd_storage,
7204 sa_none,
7205 };
7206
7207 struct sched_domain_topology_level;
7208
7209 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7210 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7211
7212 #define SDTL_OVERLAP 0x01
7213
7214 struct sched_domain_topology_level {
7215 sched_domain_init_f init;
7216 sched_domain_mask_f mask;
7217 int flags;
7218 struct sd_data data;
7219 };
7220
7221 static int
7222 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7223 {
7224 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7225 const struct cpumask *span = sched_domain_span(sd);
7226 struct cpumask *covered = sched_domains_tmpmask;
7227 struct sd_data *sdd = sd->private;
7228 struct sched_domain *child;
7229 int i;
7230
7231 cpumask_clear(covered);
7232
7233 for_each_cpu(i, span) {
7234 struct cpumask *sg_span;
7235
7236 if (cpumask_test_cpu(i, covered))
7237 continue;
7238
7239 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7240 GFP_KERNEL, cpu_to_node(i));
7241
7242 if (!sg)
7243 goto fail;
7244
7245 sg_span = sched_group_cpus(sg);
7246
7247 child = *per_cpu_ptr(sdd->sd, i);
7248 if (child->child) {
7249 child = child->child;
7250 cpumask_copy(sg_span, sched_domain_span(child));
7251 } else
7252 cpumask_set_cpu(i, sg_span);
7253
7254 cpumask_or(covered, covered, sg_span);
7255
7256 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7257 atomic_inc(&sg->sgp->ref);
7258
7259 if (cpumask_test_cpu(cpu, sg_span))
7260 groups = sg;
7261
7262 if (!first)
7263 first = sg;
7264 if (last)
7265 last->next = sg;
7266 last = sg;
7267 last->next = first;
7268 }
7269 sd->groups = groups;
7270
7271 return 0;
7272
7273 fail:
7274 free_sched_groups(first, 0);
7275
7276 return -ENOMEM;
7277 }
7278
7279 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7280 {
7281 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7282 struct sched_domain *child = sd->child;
7283
7284 if (child)
7285 cpu = cpumask_first(sched_domain_span(child));
7286
7287 if (sg) {
7288 *sg = *per_cpu_ptr(sdd->sg, cpu);
7289 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7290 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7291 }
7292
7293 return cpu;
7294 }
7295
7296 /*
7297 * build_sched_groups will build a circular linked list of the groups
7298 * covered by the given span, and will set each group's ->cpumask correctly,
7299 * and ->cpu_power to 0.
7300 *
7301 * Assumes the sched_domain tree is fully constructed
7302 */
7303 static int
7304 build_sched_groups(struct sched_domain *sd, int cpu)
7305 {
7306 struct sched_group *first = NULL, *last = NULL;
7307 struct sd_data *sdd = sd->private;
7308 const struct cpumask *span = sched_domain_span(sd);
7309 struct cpumask *covered;
7310 int i;
7311
7312 get_group(cpu, sdd, &sd->groups);
7313 atomic_inc(&sd->groups->ref);
7314
7315 if (cpu != cpumask_first(sched_domain_span(sd)))
7316 return 0;
7317
7318 lockdep_assert_held(&sched_domains_mutex);
7319 covered = sched_domains_tmpmask;
7320
7321 cpumask_clear(covered);
7322
7323 for_each_cpu(i, span) {
7324 struct sched_group *sg;
7325 int group = get_group(i, sdd, &sg);
7326 int j;
7327
7328 if (cpumask_test_cpu(i, covered))
7329 continue;
7330
7331 cpumask_clear(sched_group_cpus(sg));
7332 sg->sgp->power = 0;
7333
7334 for_each_cpu(j, span) {
7335 if (get_group(j, sdd, NULL) != group)
7336 continue;
7337
7338 cpumask_set_cpu(j, covered);
7339 cpumask_set_cpu(j, sched_group_cpus(sg));
7340 }
7341
7342 if (!first)
7343 first = sg;
7344 if (last)
7345 last->next = sg;
7346 last = sg;
7347 }
7348 last->next = first;
7349
7350 return 0;
7351 }
7352
7353 /*
7354 * Initialize sched groups cpu_power.
7355 *
7356 * cpu_power indicates the capacity of sched group, which is used while
7357 * distributing the load between different sched groups in a sched domain.
7358 * Typically cpu_power for all the groups in a sched domain will be same unless
7359 * there are asymmetries in the topology. If there are asymmetries, group
7360 * having more cpu_power will pickup more load compared to the group having
7361 * less cpu_power.
7362 */
7363 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7364 {
7365 struct sched_group *sg = sd->groups;
7366
7367 WARN_ON(!sd || !sg);
7368
7369 do {
7370 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7371 sg = sg->next;
7372 } while (sg != sd->groups);
7373
7374 if (cpu != group_first_cpu(sg))
7375 return;
7376
7377 update_group_power(sd, cpu);
7378 }
7379
7380 /*
7381 * Initializers for schedule domains
7382 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7383 */
7384
7385 #ifdef CONFIG_SCHED_DEBUG
7386 # define SD_INIT_NAME(sd, type) sd->name = #type
7387 #else
7388 # define SD_INIT_NAME(sd, type) do { } while (0)
7389 #endif
7390
7391 #define SD_INIT_FUNC(type) \
7392 static noinline struct sched_domain * \
7393 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7394 { \
7395 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7396 *sd = SD_##type##_INIT; \
7397 SD_INIT_NAME(sd, type); \
7398 sd->private = &tl->data; \
7399 return sd; \
7400 }
7401
7402 SD_INIT_FUNC(CPU)
7403 #ifdef CONFIG_NUMA
7404 SD_INIT_FUNC(ALLNODES)
7405 SD_INIT_FUNC(NODE)
7406 #endif
7407 #ifdef CONFIG_SCHED_SMT
7408 SD_INIT_FUNC(SIBLING)
7409 #endif
7410 #ifdef CONFIG_SCHED_MC
7411 SD_INIT_FUNC(MC)
7412 #endif
7413 #ifdef CONFIG_SCHED_BOOK
7414 SD_INIT_FUNC(BOOK)
7415 #endif
7416
7417 static int default_relax_domain_level = -1;
7418 int sched_domain_level_max;
7419
7420 static int __init setup_relax_domain_level(char *str)
7421 {
7422 unsigned long val;
7423
7424 val = simple_strtoul(str, NULL, 0);
7425 if (val < sched_domain_level_max)
7426 default_relax_domain_level = val;
7427
7428 return 1;
7429 }
7430 __setup("relax_domain_level=", setup_relax_domain_level);
7431
7432 static void set_domain_attribute(struct sched_domain *sd,
7433 struct sched_domain_attr *attr)
7434 {
7435 int request;
7436
7437 if (!attr || attr->relax_domain_level < 0) {
7438 if (default_relax_domain_level < 0)
7439 return;
7440 else
7441 request = default_relax_domain_level;
7442 } else
7443 request = attr->relax_domain_level;
7444 if (request < sd->level) {
7445 /* turn off idle balance on this domain */
7446 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7447 } else {
7448 /* turn on idle balance on this domain */
7449 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7450 }
7451 }
7452
7453 static void __sdt_free(const struct cpumask *cpu_map);
7454 static int __sdt_alloc(const struct cpumask *cpu_map);
7455
7456 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7457 const struct cpumask *cpu_map)
7458 {
7459 switch (what) {
7460 case sa_rootdomain:
7461 if (!atomic_read(&d->rd->refcount))
7462 free_rootdomain(&d->rd->rcu); /* fall through */
7463 case sa_sd:
7464 free_percpu(d->sd); /* fall through */
7465 case sa_sd_storage:
7466 __sdt_free(cpu_map); /* fall through */
7467 case sa_none:
7468 break;
7469 }
7470 }
7471
7472 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7473 const struct cpumask *cpu_map)
7474 {
7475 memset(d, 0, sizeof(*d));
7476
7477 if (__sdt_alloc(cpu_map))
7478 return sa_sd_storage;
7479 d->sd = alloc_percpu(struct sched_domain *);
7480 if (!d->sd)
7481 return sa_sd_storage;
7482 d->rd = alloc_rootdomain();
7483 if (!d->rd)
7484 return sa_sd;
7485 return sa_rootdomain;
7486 }
7487
7488 /*
7489 * NULL the sd_data elements we've used to build the sched_domain and
7490 * sched_group structure so that the subsequent __free_domain_allocs()
7491 * will not free the data we're using.
7492 */
7493 static void claim_allocations(int cpu, struct sched_domain *sd)
7494 {
7495 struct sd_data *sdd = sd->private;
7496
7497 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7498 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7499
7500 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7501 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7502
7503 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7504 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7505 }
7506
7507 #ifdef CONFIG_SCHED_SMT
7508 static const struct cpumask *cpu_smt_mask(int cpu)
7509 {
7510 return topology_thread_cpumask(cpu);
7511 }
7512 #endif
7513
7514 /*
7515 * Topology list, bottom-up.
7516 */
7517 static struct sched_domain_topology_level default_topology[] = {
7518 #ifdef CONFIG_SCHED_SMT
7519 { sd_init_SIBLING, cpu_smt_mask, },
7520 #endif
7521 #ifdef CONFIG_SCHED_MC
7522 { sd_init_MC, cpu_coregroup_mask, },
7523 #endif
7524 #ifdef CONFIG_SCHED_BOOK
7525 { sd_init_BOOK, cpu_book_mask, },
7526 #endif
7527 { sd_init_CPU, cpu_cpu_mask, },
7528 #ifdef CONFIG_NUMA
7529 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7530 { sd_init_ALLNODES, cpu_allnodes_mask, },
7531 #endif
7532 { NULL, },
7533 };
7534
7535 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7536
7537 static int __sdt_alloc(const struct cpumask *cpu_map)
7538 {
7539 struct sched_domain_topology_level *tl;
7540 int j;
7541
7542 for (tl = sched_domain_topology; tl->init; tl++) {
7543 struct sd_data *sdd = &tl->data;
7544
7545 sdd->sd = alloc_percpu(struct sched_domain *);
7546 if (!sdd->sd)
7547 return -ENOMEM;
7548
7549 sdd->sg = alloc_percpu(struct sched_group *);
7550 if (!sdd->sg)
7551 return -ENOMEM;
7552
7553 sdd->sgp = alloc_percpu(struct sched_group_power *);
7554 if (!sdd->sgp)
7555 return -ENOMEM;
7556
7557 for_each_cpu(j, cpu_map) {
7558 struct sched_domain *sd;
7559 struct sched_group *sg;
7560 struct sched_group_power *sgp;
7561
7562 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7563 GFP_KERNEL, cpu_to_node(j));
7564 if (!sd)
7565 return -ENOMEM;
7566
7567 *per_cpu_ptr(sdd->sd, j) = sd;
7568
7569 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7570 GFP_KERNEL, cpu_to_node(j));
7571 if (!sg)
7572 return -ENOMEM;
7573
7574 *per_cpu_ptr(sdd->sg, j) = sg;
7575
7576 sgp = kzalloc_node(sizeof(struct sched_group_power),
7577 GFP_KERNEL, cpu_to_node(j));
7578 if (!sgp)
7579 return -ENOMEM;
7580
7581 *per_cpu_ptr(sdd->sgp, j) = sgp;
7582 }
7583 }
7584
7585 return 0;
7586 }
7587
7588 static void __sdt_free(const struct cpumask *cpu_map)
7589 {
7590 struct sched_domain_topology_level *tl;
7591 int j;
7592
7593 for (tl = sched_domain_topology; tl->init; tl++) {
7594 struct sd_data *sdd = &tl->data;
7595
7596 for_each_cpu(j, cpu_map) {
7597 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7598 if (sd && (sd->flags & SD_OVERLAP))
7599 free_sched_groups(sd->groups, 0);
7600 kfree(*per_cpu_ptr(sdd->sd, j));
7601 kfree(*per_cpu_ptr(sdd->sg, j));
7602 kfree(*per_cpu_ptr(sdd->sgp, j));
7603 }
7604 free_percpu(sdd->sd);
7605 free_percpu(sdd->sg);
7606 free_percpu(sdd->sgp);
7607 }
7608 }
7609
7610 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7611 struct s_data *d, const struct cpumask *cpu_map,
7612 struct sched_domain_attr *attr, struct sched_domain *child,
7613 int cpu)
7614 {
7615 struct sched_domain *sd = tl->init(tl, cpu);
7616 if (!sd)
7617 return child;
7618
7619 set_domain_attribute(sd, attr);
7620 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7621 if (child) {
7622 sd->level = child->level + 1;
7623 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7624 child->parent = sd;
7625 }
7626 sd->child = child;
7627
7628 return sd;
7629 }
7630
7631 /*
7632 * Build sched domains for a given set of cpus and attach the sched domains
7633 * to the individual cpus
7634 */
7635 static int build_sched_domains(const struct cpumask *cpu_map,
7636 struct sched_domain_attr *attr)
7637 {
7638 enum s_alloc alloc_state = sa_none;
7639 struct sched_domain *sd;
7640 struct s_data d;
7641 int i, ret = -ENOMEM;
7642
7643 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7644 if (alloc_state != sa_rootdomain)
7645 goto error;
7646
7647 /* Set up domains for cpus specified by the cpu_map. */
7648 for_each_cpu(i, cpu_map) {
7649 struct sched_domain_topology_level *tl;
7650
7651 sd = NULL;
7652 for (tl = sched_domain_topology; tl->init; tl++) {
7653 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7654 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7655 sd->flags |= SD_OVERLAP;
7656 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7657 break;
7658 }
7659
7660 while (sd->child)
7661 sd = sd->child;
7662
7663 *per_cpu_ptr(d.sd, i) = sd;
7664 }
7665
7666 /* Build the groups for the domains */
7667 for_each_cpu(i, cpu_map) {
7668 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7669 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7670 if (sd->flags & SD_OVERLAP) {
7671 if (build_overlap_sched_groups(sd, i))
7672 goto error;
7673 } else {
7674 if (build_sched_groups(sd, i))
7675 goto error;
7676 }
7677 }
7678 }
7679
7680 /* Calculate CPU power for physical packages and nodes */
7681 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7682 if (!cpumask_test_cpu(i, cpu_map))
7683 continue;
7684
7685 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7686 claim_allocations(i, sd);
7687 init_sched_groups_power(i, sd);
7688 }
7689 }
7690
7691 /* Attach the domains */
7692 rcu_read_lock();
7693 for_each_cpu(i, cpu_map) {
7694 sd = *per_cpu_ptr(d.sd, i);
7695 cpu_attach_domain(sd, d.rd, i);
7696 }
7697 rcu_read_unlock();
7698
7699 ret = 0;
7700 error:
7701 __free_domain_allocs(&d, alloc_state, cpu_map);
7702 return ret;
7703 }
7704
7705 static cpumask_var_t *doms_cur; /* current sched domains */
7706 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7707 static struct sched_domain_attr *dattr_cur;
7708 /* attribues of custom domains in 'doms_cur' */
7709
7710 /*
7711 * Special case: If a kmalloc of a doms_cur partition (array of
7712 * cpumask) fails, then fallback to a single sched domain,
7713 * as determined by the single cpumask fallback_doms.
7714 */
7715 static cpumask_var_t fallback_doms;
7716
7717 /*
7718 * arch_update_cpu_topology lets virtualized architectures update the
7719 * cpu core maps. It is supposed to return 1 if the topology changed
7720 * or 0 if it stayed the same.
7721 */
7722 int __attribute__((weak)) arch_update_cpu_topology(void)
7723 {
7724 return 0;
7725 }
7726
7727 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7728 {
7729 int i;
7730 cpumask_var_t *doms;
7731
7732 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7733 if (!doms)
7734 return NULL;
7735 for (i = 0; i < ndoms; i++) {
7736 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7737 free_sched_domains(doms, i);
7738 return NULL;
7739 }
7740 }
7741 return doms;
7742 }
7743
7744 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7745 {
7746 unsigned int i;
7747 for (i = 0; i < ndoms; i++)
7748 free_cpumask_var(doms[i]);
7749 kfree(doms);
7750 }
7751
7752 /*
7753 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7754 * For now this just excludes isolated cpus, but could be used to
7755 * exclude other special cases in the future.
7756 */
7757 static int init_sched_domains(const struct cpumask *cpu_map)
7758 {
7759 int err;
7760
7761 arch_update_cpu_topology();
7762 ndoms_cur = 1;
7763 doms_cur = alloc_sched_domains(ndoms_cur);
7764 if (!doms_cur)
7765 doms_cur = &fallback_doms;
7766 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7767 dattr_cur = NULL;
7768 err = build_sched_domains(doms_cur[0], NULL);
7769 register_sched_domain_sysctl();
7770
7771 return err;
7772 }
7773
7774 /*
7775 * Detach sched domains from a group of cpus specified in cpu_map
7776 * These cpus will now be attached to the NULL domain
7777 */
7778 static void detach_destroy_domains(const struct cpumask *cpu_map)
7779 {
7780 int i;
7781
7782 rcu_read_lock();
7783 for_each_cpu(i, cpu_map)
7784 cpu_attach_domain(NULL, &def_root_domain, i);
7785 rcu_read_unlock();
7786 }
7787
7788 /* handle null as "default" */
7789 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7790 struct sched_domain_attr *new, int idx_new)
7791 {
7792 struct sched_domain_attr tmp;
7793
7794 /* fast path */
7795 if (!new && !cur)
7796 return 1;
7797
7798 tmp = SD_ATTR_INIT;
7799 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7800 new ? (new + idx_new) : &tmp,
7801 sizeof(struct sched_domain_attr));
7802 }
7803
7804 /*
7805 * Partition sched domains as specified by the 'ndoms_new'
7806 * cpumasks in the array doms_new[] of cpumasks. This compares
7807 * doms_new[] to the current sched domain partitioning, doms_cur[].
7808 * It destroys each deleted domain and builds each new domain.
7809 *
7810 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7811 * The masks don't intersect (don't overlap.) We should setup one
7812 * sched domain for each mask. CPUs not in any of the cpumasks will
7813 * not be load balanced. If the same cpumask appears both in the
7814 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7815 * it as it is.
7816 *
7817 * The passed in 'doms_new' should be allocated using
7818 * alloc_sched_domains. This routine takes ownership of it and will
7819 * free_sched_domains it when done with it. If the caller failed the
7820 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7821 * and partition_sched_domains() will fallback to the single partition
7822 * 'fallback_doms', it also forces the domains to be rebuilt.
7823 *
7824 * If doms_new == NULL it will be replaced with cpu_online_mask.
7825 * ndoms_new == 0 is a special case for destroying existing domains,
7826 * and it will not create the default domain.
7827 *
7828 * Call with hotplug lock held
7829 */
7830 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7831 struct sched_domain_attr *dattr_new)
7832 {
7833 int i, j, n;
7834 int new_topology;
7835
7836 mutex_lock(&sched_domains_mutex);
7837
7838 /* always unregister in case we don't destroy any domains */
7839 unregister_sched_domain_sysctl();
7840
7841 /* Let architecture update cpu core mappings. */
7842 new_topology = arch_update_cpu_topology();
7843
7844 n = doms_new ? ndoms_new : 0;
7845
7846 /* Destroy deleted domains */
7847 for (i = 0; i < ndoms_cur; i++) {
7848 for (j = 0; j < n && !new_topology; j++) {
7849 if (cpumask_equal(doms_cur[i], doms_new[j])
7850 && dattrs_equal(dattr_cur, i, dattr_new, j))
7851 goto match1;
7852 }
7853 /* no match - a current sched domain not in new doms_new[] */
7854 detach_destroy_domains(doms_cur[i]);
7855 match1:
7856 ;
7857 }
7858
7859 if (doms_new == NULL) {
7860 ndoms_cur = 0;
7861 doms_new = &fallback_doms;
7862 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7863 WARN_ON_ONCE(dattr_new);
7864 }
7865
7866 /* Build new domains */
7867 for (i = 0; i < ndoms_new; i++) {
7868 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7869 if (cpumask_equal(doms_new[i], doms_cur[j])
7870 && dattrs_equal(dattr_new, i, dattr_cur, j))
7871 goto match2;
7872 }
7873 /* no match - add a new doms_new */
7874 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7875 match2:
7876 ;
7877 }
7878
7879 /* Remember the new sched domains */
7880 if (doms_cur != &fallback_doms)
7881 free_sched_domains(doms_cur, ndoms_cur);
7882 kfree(dattr_cur); /* kfree(NULL) is safe */
7883 doms_cur = doms_new;
7884 dattr_cur = dattr_new;
7885 ndoms_cur = ndoms_new;
7886
7887 register_sched_domain_sysctl();
7888
7889 mutex_unlock(&sched_domains_mutex);
7890 }
7891
7892 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7893 static void reinit_sched_domains(void)
7894 {
7895 get_online_cpus();
7896
7897 /* Destroy domains first to force the rebuild */
7898 partition_sched_domains(0, NULL, NULL);
7899
7900 rebuild_sched_domains();
7901 put_online_cpus();
7902 }
7903
7904 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7905 {
7906 unsigned int level = 0;
7907
7908 if (sscanf(buf, "%u", &level) != 1)
7909 return -EINVAL;
7910
7911 /*
7912 * level is always be positive so don't check for
7913 * level < POWERSAVINGS_BALANCE_NONE which is 0
7914 * What happens on 0 or 1 byte write,
7915 * need to check for count as well?
7916 */
7917
7918 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7919 return -EINVAL;
7920
7921 if (smt)
7922 sched_smt_power_savings = level;
7923 else
7924 sched_mc_power_savings = level;
7925
7926 reinit_sched_domains();
7927
7928 return count;
7929 }
7930
7931 #ifdef CONFIG_SCHED_MC
7932 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7933 struct sysdev_class_attribute *attr,
7934 char *page)
7935 {
7936 return sprintf(page, "%u\n", sched_mc_power_savings);
7937 }
7938 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7939 struct sysdev_class_attribute *attr,
7940 const char *buf, size_t count)
7941 {
7942 return sched_power_savings_store(buf, count, 0);
7943 }
7944 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7945 sched_mc_power_savings_show,
7946 sched_mc_power_savings_store);
7947 #endif
7948
7949 #ifdef CONFIG_SCHED_SMT
7950 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7951 struct sysdev_class_attribute *attr,
7952 char *page)
7953 {
7954 return sprintf(page, "%u\n", sched_smt_power_savings);
7955 }
7956 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7957 struct sysdev_class_attribute *attr,
7958 const char *buf, size_t count)
7959 {
7960 return sched_power_savings_store(buf, count, 1);
7961 }
7962 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7963 sched_smt_power_savings_show,
7964 sched_smt_power_savings_store);
7965 #endif
7966
7967 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7968 {
7969 int err = 0;
7970
7971 #ifdef CONFIG_SCHED_SMT
7972 if (smt_capable())
7973 err = sysfs_create_file(&cls->kset.kobj,
7974 &attr_sched_smt_power_savings.attr);
7975 #endif
7976 #ifdef CONFIG_SCHED_MC
7977 if (!err && mc_capable())
7978 err = sysfs_create_file(&cls->kset.kobj,
7979 &attr_sched_mc_power_savings.attr);
7980 #endif
7981 return err;
7982 }
7983 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7984
7985 /*
7986 * Update cpusets according to cpu_active mask. If cpusets are
7987 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7988 * around partition_sched_domains().
7989 */
7990 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7991 void *hcpu)
7992 {
7993 switch (action & ~CPU_TASKS_FROZEN) {
7994 case CPU_ONLINE:
7995 case CPU_DOWN_FAILED:
7996 cpuset_update_active_cpus();
7997 return NOTIFY_OK;
7998 default:
7999 return NOTIFY_DONE;
8000 }
8001 }
8002
8003 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
8004 void *hcpu)
8005 {
8006 switch (action & ~CPU_TASKS_FROZEN) {
8007 case CPU_DOWN_PREPARE:
8008 cpuset_update_active_cpus();
8009 return NOTIFY_OK;
8010 default:
8011 return NOTIFY_DONE;
8012 }
8013 }
8014
8015 static int update_runtime(struct notifier_block *nfb,
8016 unsigned long action, void *hcpu)
8017 {
8018 int cpu = (int)(long)hcpu;
8019
8020 switch (action) {
8021 case CPU_DOWN_PREPARE:
8022 case CPU_DOWN_PREPARE_FROZEN:
8023 disable_runtime(cpu_rq(cpu));
8024 return NOTIFY_OK;
8025
8026 case CPU_DOWN_FAILED:
8027 case CPU_DOWN_FAILED_FROZEN:
8028 case CPU_ONLINE:
8029 case CPU_ONLINE_FROZEN:
8030 enable_runtime(cpu_rq(cpu));
8031 return NOTIFY_OK;
8032
8033 default:
8034 return NOTIFY_DONE;
8035 }
8036 }
8037
8038 void __init sched_init_smp(void)
8039 {
8040 cpumask_var_t non_isolated_cpus;
8041
8042 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8043 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8044
8045 get_online_cpus();
8046 mutex_lock(&sched_domains_mutex);
8047 init_sched_domains(cpu_active_mask);
8048 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8049 if (cpumask_empty(non_isolated_cpus))
8050 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8051 mutex_unlock(&sched_domains_mutex);
8052 put_online_cpus();
8053
8054 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8055 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
8056
8057 /* RT runtime code needs to handle some hotplug events */
8058 hotcpu_notifier(update_runtime, 0);
8059
8060 init_hrtick();
8061
8062 /* Move init over to a non-isolated CPU */
8063 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8064 BUG();
8065 sched_init_granularity();
8066 free_cpumask_var(non_isolated_cpus);
8067
8068 init_sched_rt_class();
8069 }
8070 #else
8071 void __init sched_init_smp(void)
8072 {
8073 sched_init_granularity();
8074 }
8075 #endif /* CONFIG_SMP */
8076
8077 const_debug unsigned int sysctl_timer_migration = 1;
8078
8079 int in_sched_functions(unsigned long addr)
8080 {
8081 return in_lock_functions(addr) ||
8082 (addr >= (unsigned long)__sched_text_start
8083 && addr < (unsigned long)__sched_text_end);
8084 }
8085
8086 static void init_cfs_rq(struct cfs_rq *cfs_rq)
8087 {
8088 cfs_rq->tasks_timeline = RB_ROOT;
8089 INIT_LIST_HEAD(&cfs_rq->tasks);
8090 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8091 #ifndef CONFIG_64BIT
8092 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8093 #endif
8094 }
8095
8096 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8097 {
8098 struct rt_prio_array *array;
8099 int i;
8100
8101 array = &rt_rq->active;
8102 for (i = 0; i < MAX_RT_PRIO; i++) {
8103 INIT_LIST_HEAD(array->queue + i);
8104 __clear_bit(i, array->bitmap);
8105 }
8106 /* delimiter for bitsearch: */
8107 __set_bit(MAX_RT_PRIO, array->bitmap);
8108
8109 #if defined CONFIG_SMP
8110 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8111 rt_rq->highest_prio.next = MAX_RT_PRIO;
8112 rt_rq->rt_nr_migratory = 0;
8113 rt_rq->overloaded = 0;
8114 plist_head_init(&rt_rq->pushable_tasks);
8115 #endif
8116
8117 rt_rq->rt_time = 0;
8118 rt_rq->rt_throttled = 0;
8119 rt_rq->rt_runtime = 0;
8120 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8121 }
8122
8123 #ifdef CONFIG_FAIR_GROUP_SCHED
8124 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8125 struct sched_entity *se, int cpu,
8126 struct sched_entity *parent)
8127 {
8128 struct rq *rq = cpu_rq(cpu);
8129
8130 cfs_rq->tg = tg;
8131 cfs_rq->rq = rq;
8132 #ifdef CONFIG_SMP
8133 /* allow initial update_cfs_load() to truncate */
8134 cfs_rq->load_stamp = 1;
8135 #endif
8136 init_cfs_rq_runtime(cfs_rq);
8137
8138 tg->cfs_rq[cpu] = cfs_rq;
8139 tg->se[cpu] = se;
8140
8141 /* se could be NULL for root_task_group */
8142 if (!se)
8143 return;
8144
8145 if (!parent)
8146 se->cfs_rq = &rq->cfs;
8147 else
8148 se->cfs_rq = parent->my_q;
8149
8150 se->my_q = cfs_rq;
8151 update_load_set(&se->load, 0);
8152 se->parent = parent;
8153 }
8154 #endif
8155
8156 #ifdef CONFIG_RT_GROUP_SCHED
8157 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8158 struct sched_rt_entity *rt_se, int cpu,
8159 struct sched_rt_entity *parent)
8160 {
8161 struct rq *rq = cpu_rq(cpu);
8162
8163 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8164 rt_rq->rt_nr_boosted = 0;
8165 rt_rq->rq = rq;
8166 rt_rq->tg = tg;
8167
8168 tg->rt_rq[cpu] = rt_rq;
8169 tg->rt_se[cpu] = rt_se;
8170
8171 if (!rt_se)
8172 return;
8173
8174 if (!parent)
8175 rt_se->rt_rq = &rq->rt;
8176 else
8177 rt_se->rt_rq = parent->my_q;
8178
8179 rt_se->my_q = rt_rq;
8180 rt_se->parent = parent;
8181 INIT_LIST_HEAD(&rt_se->run_list);
8182 }
8183 #endif
8184
8185 void __init sched_init(void)
8186 {
8187 int i, j;
8188 unsigned long alloc_size = 0, ptr;
8189
8190 #ifdef CONFIG_FAIR_GROUP_SCHED
8191 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8192 #endif
8193 #ifdef CONFIG_RT_GROUP_SCHED
8194 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8195 #endif
8196 #ifdef CONFIG_CPUMASK_OFFSTACK
8197 alloc_size += num_possible_cpus() * cpumask_size();
8198 #endif
8199 if (alloc_size) {
8200 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8201
8202 #ifdef CONFIG_FAIR_GROUP_SCHED
8203 root_task_group.se = (struct sched_entity **)ptr;
8204 ptr += nr_cpu_ids * sizeof(void **);
8205
8206 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8207 ptr += nr_cpu_ids * sizeof(void **);
8208
8209 #endif /* CONFIG_FAIR_GROUP_SCHED */
8210 #ifdef CONFIG_RT_GROUP_SCHED
8211 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8212 ptr += nr_cpu_ids * sizeof(void **);
8213
8214 root_task_group.rt_rq = (struct rt_rq **)ptr;
8215 ptr += nr_cpu_ids * sizeof(void **);
8216
8217 #endif /* CONFIG_RT_GROUP_SCHED */
8218 #ifdef CONFIG_CPUMASK_OFFSTACK
8219 for_each_possible_cpu(i) {
8220 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8221 ptr += cpumask_size();
8222 }
8223 #endif /* CONFIG_CPUMASK_OFFSTACK */
8224 }
8225
8226 #ifdef CONFIG_SMP
8227 init_defrootdomain();
8228 #endif
8229
8230 init_rt_bandwidth(&def_rt_bandwidth,
8231 global_rt_period(), global_rt_runtime());
8232
8233 #ifdef CONFIG_RT_GROUP_SCHED
8234 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8235 global_rt_period(), global_rt_runtime());
8236 #endif /* CONFIG_RT_GROUP_SCHED */
8237
8238 #ifdef CONFIG_CGROUP_SCHED
8239 list_add(&root_task_group.list, &task_groups);
8240 INIT_LIST_HEAD(&root_task_group.children);
8241 autogroup_init(&init_task);
8242 #endif /* CONFIG_CGROUP_SCHED */
8243
8244 for_each_possible_cpu(i) {
8245 struct rq *rq;
8246
8247 rq = cpu_rq(i);
8248 raw_spin_lock_init(&rq->lock);
8249 rq->nr_running = 0;
8250 rq->calc_load_active = 0;
8251 rq->calc_load_update = jiffies + LOAD_FREQ;
8252 init_cfs_rq(&rq->cfs);
8253 init_rt_rq(&rq->rt, rq);
8254 #ifdef CONFIG_FAIR_GROUP_SCHED
8255 root_task_group.shares = root_task_group_load;
8256 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8257 /*
8258 * How much cpu bandwidth does root_task_group get?
8259 *
8260 * In case of task-groups formed thr' the cgroup filesystem, it
8261 * gets 100% of the cpu resources in the system. This overall
8262 * system cpu resource is divided among the tasks of
8263 * root_task_group and its child task-groups in a fair manner,
8264 * based on each entity's (task or task-group's) weight
8265 * (se->load.weight).
8266 *
8267 * In other words, if root_task_group has 10 tasks of weight
8268 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8269 * then A0's share of the cpu resource is:
8270 *
8271 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8272 *
8273 * We achieve this by letting root_task_group's tasks sit
8274 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8275 */
8276 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8277 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8278 #endif /* CONFIG_FAIR_GROUP_SCHED */
8279
8280 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8281 #ifdef CONFIG_RT_GROUP_SCHED
8282 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8283 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8284 #endif
8285
8286 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8287 rq->cpu_load[j] = 0;
8288
8289 rq->last_load_update_tick = jiffies;
8290
8291 #ifdef CONFIG_SMP
8292 rq->sd = NULL;
8293 rq->rd = NULL;
8294 rq->cpu_power = SCHED_POWER_SCALE;
8295 rq->post_schedule = 0;
8296 rq->active_balance = 0;
8297 rq->next_balance = jiffies;
8298 rq->push_cpu = 0;
8299 rq->cpu = i;
8300 rq->online = 0;
8301 rq->idle_stamp = 0;
8302 rq->avg_idle = 2*sysctl_sched_migration_cost;
8303 rq_attach_root(rq, &def_root_domain);
8304 #ifdef CONFIG_NO_HZ
8305 rq->nohz_balance_kick = 0;
8306 #endif
8307 #endif
8308 init_rq_hrtick(rq);
8309 atomic_set(&rq->nr_iowait, 0);
8310 }
8311
8312 set_load_weight(&init_task);
8313
8314 #ifdef CONFIG_PREEMPT_NOTIFIERS
8315 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8316 #endif
8317
8318 #ifdef CONFIG_SMP
8319 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8320 #endif
8321
8322 #ifdef CONFIG_RT_MUTEXES
8323 plist_head_init(&init_task.pi_waiters);
8324 #endif
8325
8326 /*
8327 * The boot idle thread does lazy MMU switching as well:
8328 */
8329 atomic_inc(&init_mm.mm_count);
8330 enter_lazy_tlb(&init_mm, current);
8331
8332 /*
8333 * Make us the idle thread. Technically, schedule() should not be
8334 * called from this thread, however somewhere below it might be,
8335 * but because we are the idle thread, we just pick up running again
8336 * when this runqueue becomes "idle".
8337 */
8338 init_idle(current, smp_processor_id());
8339
8340 calc_load_update = jiffies + LOAD_FREQ;
8341
8342 /*
8343 * During early bootup we pretend to be a normal task:
8344 */
8345 current->sched_class = &fair_sched_class;
8346
8347 #ifdef CONFIG_SMP
8348 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8349 #ifdef CONFIG_NO_HZ
8350 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8351 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8352 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8353 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8354 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8355 #endif
8356 /* May be allocated at isolcpus cmdline parse time */
8357 if (cpu_isolated_map == NULL)
8358 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8359 #endif /* SMP */
8360
8361 scheduler_running = 1;
8362 }
8363
8364 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8365 static inline int preempt_count_equals(int preempt_offset)
8366 {
8367 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8368
8369 return (nested == preempt_offset);
8370 }
8371
8372 void __might_sleep(const char *file, int line, int preempt_offset)
8373 {
8374 static unsigned long prev_jiffy; /* ratelimiting */
8375
8376 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
8377 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8378 system_state != SYSTEM_RUNNING || oops_in_progress)
8379 return;
8380 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8381 return;
8382 prev_jiffy = jiffies;
8383
8384 printk(KERN_ERR
8385 "BUG: sleeping function called from invalid context at %s:%d\n",
8386 file, line);
8387 printk(KERN_ERR
8388 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8389 in_atomic(), irqs_disabled(),
8390 current->pid, current->comm);
8391
8392 debug_show_held_locks(current);
8393 if (irqs_disabled())
8394 print_irqtrace_events(current);
8395 dump_stack();
8396 }
8397 EXPORT_SYMBOL(__might_sleep);
8398 #endif
8399
8400 #ifdef CONFIG_MAGIC_SYSRQ
8401 static void normalize_task(struct rq *rq, struct task_struct *p)
8402 {
8403 const struct sched_class *prev_class = p->sched_class;
8404 int old_prio = p->prio;
8405 int on_rq;
8406
8407 on_rq = p->on_rq;
8408 if (on_rq)
8409 deactivate_task(rq, p, 0);
8410 __setscheduler(rq, p, SCHED_NORMAL, 0);
8411 if (on_rq) {
8412 activate_task(rq, p, 0);
8413 resched_task(rq->curr);
8414 }
8415
8416 check_class_changed(rq, p, prev_class, old_prio);
8417 }
8418
8419 void normalize_rt_tasks(void)
8420 {
8421 struct task_struct *g, *p;
8422 unsigned long flags;
8423 struct rq *rq;
8424
8425 read_lock_irqsave(&tasklist_lock, flags);
8426 do_each_thread(g, p) {
8427 /*
8428 * Only normalize user tasks:
8429 */
8430 if (!p->mm)
8431 continue;
8432
8433 p->se.exec_start = 0;
8434 #ifdef CONFIG_SCHEDSTATS
8435 p->se.statistics.wait_start = 0;
8436 p->se.statistics.sleep_start = 0;
8437 p->se.statistics.block_start = 0;
8438 #endif
8439
8440 if (!rt_task(p)) {
8441 /*
8442 * Renice negative nice level userspace
8443 * tasks back to 0:
8444 */
8445 if (TASK_NICE(p) < 0 && p->mm)
8446 set_user_nice(p, 0);
8447 continue;
8448 }
8449
8450 raw_spin_lock(&p->pi_lock);
8451 rq = __task_rq_lock(p);
8452
8453 normalize_task(rq, p);
8454
8455 __task_rq_unlock(rq);
8456 raw_spin_unlock(&p->pi_lock);
8457 } while_each_thread(g, p);
8458
8459 read_unlock_irqrestore(&tasklist_lock, flags);
8460 }
8461
8462 #endif /* CONFIG_MAGIC_SYSRQ */
8463
8464 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8465 /*
8466 * These functions are only useful for the IA64 MCA handling, or kdb.
8467 *
8468 * They can only be called when the whole system has been
8469 * stopped - every CPU needs to be quiescent, and no scheduling
8470 * activity can take place. Using them for anything else would
8471 * be a serious bug, and as a result, they aren't even visible
8472 * under any other configuration.
8473 */
8474
8475 /**
8476 * curr_task - return the current task for a given cpu.
8477 * @cpu: the processor in question.
8478 *
8479 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8480 */
8481 struct task_struct *curr_task(int cpu)
8482 {
8483 return cpu_curr(cpu);
8484 }
8485
8486 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8487
8488 #ifdef CONFIG_IA64
8489 /**
8490 * set_curr_task - set the current task for a given cpu.
8491 * @cpu: the processor in question.
8492 * @p: the task pointer to set.
8493 *
8494 * Description: This function must only be used when non-maskable interrupts
8495 * are serviced on a separate stack. It allows the architecture to switch the
8496 * notion of the current task on a cpu in a non-blocking manner. This function
8497 * must be called with all CPU's synchronized, and interrupts disabled, the
8498 * and caller must save the original value of the current task (see
8499 * curr_task() above) and restore that value before reenabling interrupts and
8500 * re-starting the system.
8501 *
8502 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8503 */
8504 void set_curr_task(int cpu, struct task_struct *p)
8505 {
8506 cpu_curr(cpu) = p;
8507 }
8508
8509 #endif
8510
8511 #ifdef CONFIG_FAIR_GROUP_SCHED
8512 static void free_fair_sched_group(struct task_group *tg)
8513 {
8514 int i;
8515
8516 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8517
8518 for_each_possible_cpu(i) {
8519 if (tg->cfs_rq)
8520 kfree(tg->cfs_rq[i]);
8521 if (tg->se)
8522 kfree(tg->se[i]);
8523 }
8524
8525 kfree(tg->cfs_rq);
8526 kfree(tg->se);
8527 }
8528
8529 static
8530 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8531 {
8532 struct cfs_rq *cfs_rq;
8533 struct sched_entity *se;
8534 int i;
8535
8536 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8537 if (!tg->cfs_rq)
8538 goto err;
8539 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8540 if (!tg->se)
8541 goto err;
8542
8543 tg->shares = NICE_0_LOAD;
8544
8545 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8546
8547 for_each_possible_cpu(i) {
8548 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8549 GFP_KERNEL, cpu_to_node(i));
8550 if (!cfs_rq)
8551 goto err;
8552
8553 se = kzalloc_node(sizeof(struct sched_entity),
8554 GFP_KERNEL, cpu_to_node(i));
8555 if (!se)
8556 goto err_free_rq;
8557
8558 init_cfs_rq(cfs_rq);
8559 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8560 }
8561
8562 return 1;
8563
8564 err_free_rq:
8565 kfree(cfs_rq);
8566 err:
8567 return 0;
8568 }
8569
8570 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8571 {
8572 struct rq *rq = cpu_rq(cpu);
8573 unsigned long flags;
8574
8575 /*
8576 * Only empty task groups can be destroyed; so we can speculatively
8577 * check on_list without danger of it being re-added.
8578 */
8579 if (!tg->cfs_rq[cpu]->on_list)
8580 return;
8581
8582 raw_spin_lock_irqsave(&rq->lock, flags);
8583 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8584 raw_spin_unlock_irqrestore(&rq->lock, flags);
8585 }
8586 #else /* !CONFIG_FAIR_GROUP_SCHED */
8587 static inline void free_fair_sched_group(struct task_group *tg)
8588 {
8589 }
8590
8591 static inline
8592 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8593 {
8594 return 1;
8595 }
8596
8597 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8598 {
8599 }
8600 #endif /* CONFIG_FAIR_GROUP_SCHED */
8601
8602 #ifdef CONFIG_RT_GROUP_SCHED
8603 static void free_rt_sched_group(struct task_group *tg)
8604 {
8605 int i;
8606
8607 if (tg->rt_se)
8608 destroy_rt_bandwidth(&tg->rt_bandwidth);
8609
8610 for_each_possible_cpu(i) {
8611 if (tg->rt_rq)
8612 kfree(tg->rt_rq[i]);
8613 if (tg->rt_se)
8614 kfree(tg->rt_se[i]);
8615 }
8616
8617 kfree(tg->rt_rq);
8618 kfree(tg->rt_se);
8619 }
8620
8621 static
8622 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8623 {
8624 struct rt_rq *rt_rq;
8625 struct sched_rt_entity *rt_se;
8626 int i;
8627
8628 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8629 if (!tg->rt_rq)
8630 goto err;
8631 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8632 if (!tg->rt_se)
8633 goto err;
8634
8635 init_rt_bandwidth(&tg->rt_bandwidth,
8636 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8637
8638 for_each_possible_cpu(i) {
8639 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8640 GFP_KERNEL, cpu_to_node(i));
8641 if (!rt_rq)
8642 goto err;
8643
8644 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8645 GFP_KERNEL, cpu_to_node(i));
8646 if (!rt_se)
8647 goto err_free_rq;
8648
8649 init_rt_rq(rt_rq, cpu_rq(i));
8650 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8651 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8652 }
8653
8654 return 1;
8655
8656 err_free_rq:
8657 kfree(rt_rq);
8658 err:
8659 return 0;
8660 }
8661 #else /* !CONFIG_RT_GROUP_SCHED */
8662 static inline void free_rt_sched_group(struct task_group *tg)
8663 {
8664 }
8665
8666 static inline
8667 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8668 {
8669 return 1;
8670 }
8671 #endif /* CONFIG_RT_GROUP_SCHED */
8672
8673 #ifdef CONFIG_CGROUP_SCHED
8674 static void free_sched_group(struct task_group *tg)
8675 {
8676 free_fair_sched_group(tg);
8677 free_rt_sched_group(tg);
8678 autogroup_free(tg);
8679 kfree(tg);
8680 }
8681
8682 /* allocate runqueue etc for a new task group */
8683 struct task_group *sched_create_group(struct task_group *parent)
8684 {
8685 struct task_group *tg;
8686 unsigned long flags;
8687
8688 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8689 if (!tg)
8690 return ERR_PTR(-ENOMEM);
8691
8692 if (!alloc_fair_sched_group(tg, parent))
8693 goto err;
8694
8695 if (!alloc_rt_sched_group(tg, parent))
8696 goto err;
8697
8698 spin_lock_irqsave(&task_group_lock, flags);
8699 list_add_rcu(&tg->list, &task_groups);
8700
8701 WARN_ON(!parent); /* root should already exist */
8702
8703 tg->parent = parent;
8704 INIT_LIST_HEAD(&tg->children);
8705 list_add_rcu(&tg->siblings, &parent->children);
8706 spin_unlock_irqrestore(&task_group_lock, flags);
8707
8708 return tg;
8709
8710 err:
8711 free_sched_group(tg);
8712 return ERR_PTR(-ENOMEM);
8713 }
8714
8715 /* rcu callback to free various structures associated with a task group */
8716 static void free_sched_group_rcu(struct rcu_head *rhp)
8717 {
8718 /* now it should be safe to free those cfs_rqs */
8719 free_sched_group(container_of(rhp, struct task_group, rcu));
8720 }
8721
8722 /* Destroy runqueue etc associated with a task group */
8723 void sched_destroy_group(struct task_group *tg)
8724 {
8725 unsigned long flags;
8726 int i;
8727
8728 /* end participation in shares distribution */
8729 for_each_possible_cpu(i)
8730 unregister_fair_sched_group(tg, i);
8731
8732 spin_lock_irqsave(&task_group_lock, flags);
8733 list_del_rcu(&tg->list);
8734 list_del_rcu(&tg->siblings);
8735 spin_unlock_irqrestore(&task_group_lock, flags);
8736
8737 /* wait for possible concurrent references to cfs_rqs complete */
8738 call_rcu(&tg->rcu, free_sched_group_rcu);
8739 }
8740
8741 /* change task's runqueue when it moves between groups.
8742 * The caller of this function should have put the task in its new group
8743 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8744 * reflect its new group.
8745 */
8746 void sched_move_task(struct task_struct *tsk)
8747 {
8748 int on_rq, running;
8749 unsigned long flags;
8750 struct rq *rq;
8751
8752 rq = task_rq_lock(tsk, &flags);
8753
8754 running = task_current(rq, tsk);
8755 on_rq = tsk->on_rq;
8756
8757 if (on_rq)
8758 dequeue_task(rq, tsk, 0);
8759 if (unlikely(running))
8760 tsk->sched_class->put_prev_task(rq, tsk);
8761
8762 #ifdef CONFIG_FAIR_GROUP_SCHED
8763 if (tsk->sched_class->task_move_group)
8764 tsk->sched_class->task_move_group(tsk, on_rq);
8765 else
8766 #endif
8767 set_task_rq(tsk, task_cpu(tsk));
8768
8769 if (unlikely(running))
8770 tsk->sched_class->set_curr_task(rq);
8771 if (on_rq)
8772 enqueue_task(rq, tsk, 0);
8773
8774 task_rq_unlock(rq, tsk, &flags);
8775 }
8776 #endif /* CONFIG_CGROUP_SCHED */
8777
8778 #ifdef CONFIG_FAIR_GROUP_SCHED
8779 static DEFINE_MUTEX(shares_mutex);
8780
8781 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8782 {
8783 int i;
8784 unsigned long flags;
8785
8786 /*
8787 * We can't change the weight of the root cgroup.
8788 */
8789 if (!tg->se[0])
8790 return -EINVAL;
8791
8792 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8793
8794 mutex_lock(&shares_mutex);
8795 if (tg->shares == shares)
8796 goto done;
8797
8798 tg->shares = shares;
8799 for_each_possible_cpu(i) {
8800 struct rq *rq = cpu_rq(i);
8801 struct sched_entity *se;
8802
8803 se = tg->se[i];
8804 /* Propagate contribution to hierarchy */
8805 raw_spin_lock_irqsave(&rq->lock, flags);
8806 for_each_sched_entity(se)
8807 update_cfs_shares(group_cfs_rq(se));
8808 raw_spin_unlock_irqrestore(&rq->lock, flags);
8809 }
8810
8811 done:
8812 mutex_unlock(&shares_mutex);
8813 return 0;
8814 }
8815
8816 unsigned long sched_group_shares(struct task_group *tg)
8817 {
8818 return tg->shares;
8819 }
8820 #endif
8821
8822 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
8823 static unsigned long to_ratio(u64 period, u64 runtime)
8824 {
8825 if (runtime == RUNTIME_INF)
8826 return 1ULL << 20;
8827
8828 return div64_u64(runtime << 20, period);
8829 }
8830 #endif
8831
8832 #ifdef CONFIG_RT_GROUP_SCHED
8833 /*
8834 * Ensure that the real time constraints are schedulable.
8835 */
8836 static DEFINE_MUTEX(rt_constraints_mutex);
8837
8838 /* Must be called with tasklist_lock held */
8839 static inline int tg_has_rt_tasks(struct task_group *tg)
8840 {
8841 struct task_struct *g, *p;
8842
8843 do_each_thread(g, p) {
8844 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8845 return 1;
8846 } while_each_thread(g, p);
8847
8848 return 0;
8849 }
8850
8851 struct rt_schedulable_data {
8852 struct task_group *tg;
8853 u64 rt_period;
8854 u64 rt_runtime;
8855 };
8856
8857 static int tg_rt_schedulable(struct task_group *tg, void *data)
8858 {
8859 struct rt_schedulable_data *d = data;
8860 struct task_group *child;
8861 unsigned long total, sum = 0;
8862 u64 period, runtime;
8863
8864 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8865 runtime = tg->rt_bandwidth.rt_runtime;
8866
8867 if (tg == d->tg) {
8868 period = d->rt_period;
8869 runtime = d->rt_runtime;
8870 }
8871
8872 /*
8873 * Cannot have more runtime than the period.
8874 */
8875 if (runtime > period && runtime != RUNTIME_INF)
8876 return -EINVAL;
8877
8878 /*
8879 * Ensure we don't starve existing RT tasks.
8880 */
8881 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8882 return -EBUSY;
8883
8884 total = to_ratio(period, runtime);
8885
8886 /*
8887 * Nobody can have more than the global setting allows.
8888 */
8889 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8890 return -EINVAL;
8891
8892 /*
8893 * The sum of our children's runtime should not exceed our own.
8894 */
8895 list_for_each_entry_rcu(child, &tg->children, siblings) {
8896 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8897 runtime = child->rt_bandwidth.rt_runtime;
8898
8899 if (child == d->tg) {
8900 period = d->rt_period;
8901 runtime = d->rt_runtime;
8902 }
8903
8904 sum += to_ratio(period, runtime);
8905 }
8906
8907 if (sum > total)
8908 return -EINVAL;
8909
8910 return 0;
8911 }
8912
8913 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8914 {
8915 int ret;
8916
8917 struct rt_schedulable_data data = {
8918 .tg = tg,
8919 .rt_period = period,
8920 .rt_runtime = runtime,
8921 };
8922
8923 rcu_read_lock();
8924 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8925 rcu_read_unlock();
8926
8927 return ret;
8928 }
8929
8930 static int tg_set_rt_bandwidth(struct task_group *tg,
8931 u64 rt_period, u64 rt_runtime)
8932 {
8933 int i, err = 0;
8934
8935 mutex_lock(&rt_constraints_mutex);
8936 read_lock(&tasklist_lock);
8937 err = __rt_schedulable(tg, rt_period, rt_runtime);
8938 if (err)
8939 goto unlock;
8940
8941 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8942 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8943 tg->rt_bandwidth.rt_runtime = rt_runtime;
8944
8945 for_each_possible_cpu(i) {
8946 struct rt_rq *rt_rq = tg->rt_rq[i];
8947
8948 raw_spin_lock(&rt_rq->rt_runtime_lock);
8949 rt_rq->rt_runtime = rt_runtime;
8950 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8951 }
8952 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8953 unlock:
8954 read_unlock(&tasklist_lock);
8955 mutex_unlock(&rt_constraints_mutex);
8956
8957 return err;
8958 }
8959
8960 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8961 {
8962 u64 rt_runtime, rt_period;
8963
8964 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8965 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8966 if (rt_runtime_us < 0)
8967 rt_runtime = RUNTIME_INF;
8968
8969 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8970 }
8971
8972 long sched_group_rt_runtime(struct task_group *tg)
8973 {
8974 u64 rt_runtime_us;
8975
8976 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8977 return -1;
8978
8979 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8980 do_div(rt_runtime_us, NSEC_PER_USEC);
8981 return rt_runtime_us;
8982 }
8983
8984 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8985 {
8986 u64 rt_runtime, rt_period;
8987
8988 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8989 rt_runtime = tg->rt_bandwidth.rt_runtime;
8990
8991 if (rt_period == 0)
8992 return -EINVAL;
8993
8994 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8995 }
8996
8997 long sched_group_rt_period(struct task_group *tg)
8998 {
8999 u64 rt_period_us;
9000
9001 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9002 do_div(rt_period_us, NSEC_PER_USEC);
9003 return rt_period_us;
9004 }
9005
9006 static int sched_rt_global_constraints(void)
9007 {
9008 u64 runtime, period;
9009 int ret = 0;
9010
9011 if (sysctl_sched_rt_period <= 0)
9012 return -EINVAL;
9013
9014 runtime = global_rt_runtime();
9015 period = global_rt_period();
9016
9017 /*
9018 * Sanity check on the sysctl variables.
9019 */
9020 if (runtime > period && runtime != RUNTIME_INF)
9021 return -EINVAL;
9022
9023 mutex_lock(&rt_constraints_mutex);
9024 read_lock(&tasklist_lock);
9025 ret = __rt_schedulable(NULL, 0, 0);
9026 read_unlock(&tasklist_lock);
9027 mutex_unlock(&rt_constraints_mutex);
9028
9029 return ret;
9030 }
9031
9032 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9033 {
9034 /* Don't accept realtime tasks when there is no way for them to run */
9035 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9036 return 0;
9037
9038 return 1;
9039 }
9040
9041 #else /* !CONFIG_RT_GROUP_SCHED */
9042 static int sched_rt_global_constraints(void)
9043 {
9044 unsigned long flags;
9045 int i;
9046
9047 if (sysctl_sched_rt_period <= 0)
9048 return -EINVAL;
9049
9050 /*
9051 * There's always some RT tasks in the root group
9052 * -- migration, kstopmachine etc..
9053 */
9054 if (sysctl_sched_rt_runtime == 0)
9055 return -EBUSY;
9056
9057 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9058 for_each_possible_cpu(i) {
9059 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9060
9061 raw_spin_lock(&rt_rq->rt_runtime_lock);
9062 rt_rq->rt_runtime = global_rt_runtime();
9063 raw_spin_unlock(&rt_rq->rt_runtime_lock);
9064 }
9065 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9066
9067 return 0;
9068 }
9069 #endif /* CONFIG_RT_GROUP_SCHED */
9070
9071 int sched_rt_handler(struct ctl_table *table, int write,
9072 void __user *buffer, size_t *lenp,
9073 loff_t *ppos)
9074 {
9075 int ret;
9076 int old_period, old_runtime;
9077 static DEFINE_MUTEX(mutex);
9078
9079 mutex_lock(&mutex);
9080 old_period = sysctl_sched_rt_period;
9081 old_runtime = sysctl_sched_rt_runtime;
9082
9083 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9084
9085 if (!ret && write) {
9086 ret = sched_rt_global_constraints();
9087 if (ret) {
9088 sysctl_sched_rt_period = old_period;
9089 sysctl_sched_rt_runtime = old_runtime;
9090 } else {
9091 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9092 def_rt_bandwidth.rt_period =
9093 ns_to_ktime(global_rt_period());
9094 }
9095 }
9096 mutex_unlock(&mutex);
9097
9098 return ret;
9099 }
9100
9101 #ifdef CONFIG_CGROUP_SCHED
9102
9103 /* return corresponding task_group object of a cgroup */
9104 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9105 {
9106 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9107 struct task_group, css);
9108 }
9109
9110 static struct cgroup_subsys_state *
9111 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9112 {
9113 struct task_group *tg, *parent;
9114
9115 if (!cgrp->parent) {
9116 /* This is early initialization for the top cgroup */
9117 return &root_task_group.css;
9118 }
9119
9120 parent = cgroup_tg(cgrp->parent);
9121 tg = sched_create_group(parent);
9122 if (IS_ERR(tg))
9123 return ERR_PTR(-ENOMEM);
9124
9125 return &tg->css;
9126 }
9127
9128 static void
9129 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9130 {
9131 struct task_group *tg = cgroup_tg(cgrp);
9132
9133 sched_destroy_group(tg);
9134 }
9135
9136 static int
9137 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9138 {
9139 #ifdef CONFIG_RT_GROUP_SCHED
9140 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9141 return -EINVAL;
9142 #else
9143 /* We don't support RT-tasks being in separate groups */
9144 if (tsk->sched_class != &fair_sched_class)
9145 return -EINVAL;
9146 #endif
9147 return 0;
9148 }
9149
9150 static void
9151 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9152 {
9153 sched_move_task(tsk);
9154 }
9155
9156 static void
9157 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9158 struct cgroup *old_cgrp, struct task_struct *task)
9159 {
9160 /*
9161 * cgroup_exit() is called in the copy_process() failure path.
9162 * Ignore this case since the task hasn't ran yet, this avoids
9163 * trying to poke a half freed task state from generic code.
9164 */
9165 if (!(task->flags & PF_EXITING))
9166 return;
9167
9168 sched_move_task(task);
9169 }
9170
9171 #ifdef CONFIG_FAIR_GROUP_SCHED
9172 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9173 u64 shareval)
9174 {
9175 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9176 }
9177
9178 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9179 {
9180 struct task_group *tg = cgroup_tg(cgrp);
9181
9182 return (u64) scale_load_down(tg->shares);
9183 }
9184
9185 #ifdef CONFIG_CFS_BANDWIDTH
9186 static DEFINE_MUTEX(cfs_constraints_mutex);
9187
9188 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9189 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9190
9191 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9192
9193 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9194 {
9195 int i, ret = 0, runtime_enabled;
9196 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9197
9198 if (tg == &root_task_group)
9199 return -EINVAL;
9200
9201 /*
9202 * Ensure we have at some amount of bandwidth every period. This is
9203 * to prevent reaching a state of large arrears when throttled via
9204 * entity_tick() resulting in prolonged exit starvation.
9205 */
9206 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9207 return -EINVAL;
9208
9209 /*
9210 * Likewise, bound things on the otherside by preventing insane quota
9211 * periods. This also allows us to normalize in computing quota
9212 * feasibility.
9213 */
9214 if (period > max_cfs_quota_period)
9215 return -EINVAL;
9216
9217 mutex_lock(&cfs_constraints_mutex);
9218 ret = __cfs_schedulable(tg, period, quota);
9219 if (ret)
9220 goto out_unlock;
9221
9222 runtime_enabled = quota != RUNTIME_INF;
9223 raw_spin_lock_irq(&cfs_b->lock);
9224 cfs_b->period = ns_to_ktime(period);
9225 cfs_b->quota = quota;
9226
9227 __refill_cfs_bandwidth_runtime(cfs_b);
9228 /* restart the period timer (if active) to handle new period expiry */
9229 if (runtime_enabled && cfs_b->timer_active) {
9230 /* force a reprogram */
9231 cfs_b->timer_active = 0;
9232 __start_cfs_bandwidth(cfs_b);
9233 }
9234 raw_spin_unlock_irq(&cfs_b->lock);
9235
9236 for_each_possible_cpu(i) {
9237 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9238 struct rq *rq = rq_of(cfs_rq);
9239
9240 raw_spin_lock_irq(&rq->lock);
9241 cfs_rq->runtime_enabled = runtime_enabled;
9242 cfs_rq->runtime_remaining = 0;
9243
9244 if (cfs_rq_throttled(cfs_rq))
9245 unthrottle_cfs_rq(cfs_rq);
9246 raw_spin_unlock_irq(&rq->lock);
9247 }
9248 out_unlock:
9249 mutex_unlock(&cfs_constraints_mutex);
9250
9251 return ret;
9252 }
9253
9254 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9255 {
9256 u64 quota, period;
9257
9258 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9259 if (cfs_quota_us < 0)
9260 quota = RUNTIME_INF;
9261 else
9262 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9263
9264 return tg_set_cfs_bandwidth(tg, period, quota);
9265 }
9266
9267 long tg_get_cfs_quota(struct task_group *tg)
9268 {
9269 u64 quota_us;
9270
9271 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9272 return -1;
9273
9274 quota_us = tg_cfs_bandwidth(tg)->quota;
9275 do_div(quota_us, NSEC_PER_USEC);
9276
9277 return quota_us;
9278 }
9279
9280 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9281 {
9282 u64 quota, period;
9283
9284 period = (u64)cfs_period_us * NSEC_PER_USEC;
9285 quota = tg_cfs_bandwidth(tg)->quota;
9286
9287 if (period <= 0)
9288 return -EINVAL;
9289
9290 return tg_set_cfs_bandwidth(tg, period, quota);
9291 }
9292
9293 long tg_get_cfs_period(struct task_group *tg)
9294 {
9295 u64 cfs_period_us;
9296
9297 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9298 do_div(cfs_period_us, NSEC_PER_USEC);
9299
9300 return cfs_period_us;
9301 }
9302
9303 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9304 {
9305 return tg_get_cfs_quota(cgroup_tg(cgrp));
9306 }
9307
9308 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9309 s64 cfs_quota_us)
9310 {
9311 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9312 }
9313
9314 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9315 {
9316 return tg_get_cfs_period(cgroup_tg(cgrp));
9317 }
9318
9319 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9320 u64 cfs_period_us)
9321 {
9322 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9323 }
9324
9325 struct cfs_schedulable_data {
9326 struct task_group *tg;
9327 u64 period, quota;
9328 };
9329
9330 /*
9331 * normalize group quota/period to be quota/max_period
9332 * note: units are usecs
9333 */
9334 static u64 normalize_cfs_quota(struct task_group *tg,
9335 struct cfs_schedulable_data *d)
9336 {
9337 u64 quota, period;
9338
9339 if (tg == d->tg) {
9340 period = d->period;
9341 quota = d->quota;
9342 } else {
9343 period = tg_get_cfs_period(tg);
9344 quota = tg_get_cfs_quota(tg);
9345 }
9346
9347 /* note: these should typically be equivalent */
9348 if (quota == RUNTIME_INF || quota == -1)
9349 return RUNTIME_INF;
9350
9351 return to_ratio(period, quota);
9352 }
9353
9354 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9355 {
9356 struct cfs_schedulable_data *d = data;
9357 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9358 s64 quota = 0, parent_quota = -1;
9359
9360 if (!tg->parent) {
9361 quota = RUNTIME_INF;
9362 } else {
9363 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9364
9365 quota = normalize_cfs_quota(tg, d);
9366 parent_quota = parent_b->hierarchal_quota;
9367
9368 /*
9369 * ensure max(child_quota) <= parent_quota, inherit when no
9370 * limit is set
9371 */
9372 if (quota == RUNTIME_INF)
9373 quota = parent_quota;
9374 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9375 return -EINVAL;
9376 }
9377 cfs_b->hierarchal_quota = quota;
9378
9379 return 0;
9380 }
9381
9382 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9383 {
9384 int ret;
9385 struct cfs_schedulable_data data = {
9386 .tg = tg,
9387 .period = period,
9388 .quota = quota,
9389 };
9390
9391 if (quota != RUNTIME_INF) {
9392 do_div(data.period, NSEC_PER_USEC);
9393 do_div(data.quota, NSEC_PER_USEC);
9394 }
9395
9396 rcu_read_lock();
9397 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9398 rcu_read_unlock();
9399
9400 return ret;
9401 }
9402
9403 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
9404 struct cgroup_map_cb *cb)
9405 {
9406 struct task_group *tg = cgroup_tg(cgrp);
9407 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9408
9409 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
9410 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
9411 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
9412
9413 return 0;
9414 }
9415 #endif /* CONFIG_CFS_BANDWIDTH */
9416 #endif /* CONFIG_FAIR_GROUP_SCHED */
9417
9418 #ifdef CONFIG_RT_GROUP_SCHED
9419 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9420 s64 val)
9421 {
9422 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9423 }
9424
9425 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9426 {
9427 return sched_group_rt_runtime(cgroup_tg(cgrp));
9428 }
9429
9430 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9431 u64 rt_period_us)
9432 {
9433 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9434 }
9435
9436 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9437 {
9438 return sched_group_rt_period(cgroup_tg(cgrp));
9439 }
9440 #endif /* CONFIG_RT_GROUP_SCHED */
9441
9442 static struct cftype cpu_files[] = {
9443 #ifdef CONFIG_FAIR_GROUP_SCHED
9444 {
9445 .name = "shares",
9446 .read_u64 = cpu_shares_read_u64,
9447 .write_u64 = cpu_shares_write_u64,
9448 },
9449 #endif
9450 #ifdef CONFIG_CFS_BANDWIDTH
9451 {
9452 .name = "cfs_quota_us",
9453 .read_s64 = cpu_cfs_quota_read_s64,
9454 .write_s64 = cpu_cfs_quota_write_s64,
9455 },
9456 {
9457 .name = "cfs_period_us",
9458 .read_u64 = cpu_cfs_period_read_u64,
9459 .write_u64 = cpu_cfs_period_write_u64,
9460 },
9461 {
9462 .name = "stat",
9463 .read_map = cpu_stats_show,
9464 },
9465 #endif
9466 #ifdef CONFIG_RT_GROUP_SCHED
9467 {
9468 .name = "rt_runtime_us",
9469 .read_s64 = cpu_rt_runtime_read,
9470 .write_s64 = cpu_rt_runtime_write,
9471 },
9472 {
9473 .name = "rt_period_us",
9474 .read_u64 = cpu_rt_period_read_uint,
9475 .write_u64 = cpu_rt_period_write_uint,
9476 },
9477 #endif
9478 };
9479
9480 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9481 {
9482 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9483 }
9484
9485 struct cgroup_subsys cpu_cgroup_subsys = {
9486 .name = "cpu",
9487 .create = cpu_cgroup_create,
9488 .destroy = cpu_cgroup_destroy,
9489 .can_attach_task = cpu_cgroup_can_attach_task,
9490 .attach_task = cpu_cgroup_attach_task,
9491 .exit = cpu_cgroup_exit,
9492 .populate = cpu_cgroup_populate,
9493 .subsys_id = cpu_cgroup_subsys_id,
9494 .early_init = 1,
9495 };
9496
9497 #endif /* CONFIG_CGROUP_SCHED */
9498
9499 #ifdef CONFIG_CGROUP_CPUACCT
9500
9501 /*
9502 * CPU accounting code for task groups.
9503 *
9504 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9505 * (balbir@in.ibm.com).
9506 */
9507
9508 /* track cpu usage of a group of tasks and its child groups */
9509 struct cpuacct {
9510 struct cgroup_subsys_state css;
9511 /* cpuusage holds pointer to a u64-type object on every cpu */
9512 u64 __percpu *cpuusage;
9513 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9514 struct cpuacct *parent;
9515 };
9516
9517 struct cgroup_subsys cpuacct_subsys;
9518
9519 /* return cpu accounting group corresponding to this container */
9520 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9521 {
9522 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9523 struct cpuacct, css);
9524 }
9525
9526 /* return cpu accounting group to which this task belongs */
9527 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9528 {
9529 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9530 struct cpuacct, css);
9531 }
9532
9533 /* create a new cpu accounting group */
9534 static struct cgroup_subsys_state *cpuacct_create(
9535 struct cgroup_subsys *ss, struct cgroup *cgrp)
9536 {
9537 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9538 int i;
9539
9540 if (!ca)
9541 goto out;
9542
9543 ca->cpuusage = alloc_percpu(u64);
9544 if (!ca->cpuusage)
9545 goto out_free_ca;
9546
9547 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9548 if (percpu_counter_init(&ca->cpustat[i], 0))
9549 goto out_free_counters;
9550
9551 if (cgrp->parent)
9552 ca->parent = cgroup_ca(cgrp->parent);
9553
9554 return &ca->css;
9555
9556 out_free_counters:
9557 while (--i >= 0)
9558 percpu_counter_destroy(&ca->cpustat[i]);
9559 free_percpu(ca->cpuusage);
9560 out_free_ca:
9561 kfree(ca);
9562 out:
9563 return ERR_PTR(-ENOMEM);
9564 }
9565
9566 /* destroy an existing cpu accounting group */
9567 static void
9568 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9569 {
9570 struct cpuacct *ca = cgroup_ca(cgrp);
9571 int i;
9572
9573 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9574 percpu_counter_destroy(&ca->cpustat[i]);
9575 free_percpu(ca->cpuusage);
9576 kfree(ca);
9577 }
9578
9579 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9580 {
9581 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9582 u64 data;
9583
9584 #ifndef CONFIG_64BIT
9585 /*
9586 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9587 */
9588 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9589 data = *cpuusage;
9590 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9591 #else
9592 data = *cpuusage;
9593 #endif
9594
9595 return data;
9596 }
9597
9598 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9599 {
9600 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9601
9602 #ifndef CONFIG_64BIT
9603 /*
9604 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9605 */
9606 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9607 *cpuusage = val;
9608 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9609 #else
9610 *cpuusage = val;
9611 #endif
9612 }
9613
9614 /* return total cpu usage (in nanoseconds) of a group */
9615 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9616 {
9617 struct cpuacct *ca = cgroup_ca(cgrp);
9618 u64 totalcpuusage = 0;
9619 int i;
9620
9621 for_each_present_cpu(i)
9622 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9623
9624 return totalcpuusage;
9625 }
9626
9627 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9628 u64 reset)
9629 {
9630 struct cpuacct *ca = cgroup_ca(cgrp);
9631 int err = 0;
9632 int i;
9633
9634 if (reset) {
9635 err = -EINVAL;
9636 goto out;
9637 }
9638
9639 for_each_present_cpu(i)
9640 cpuacct_cpuusage_write(ca, i, 0);
9641
9642 out:
9643 return err;
9644 }
9645
9646 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9647 struct seq_file *m)
9648 {
9649 struct cpuacct *ca = cgroup_ca(cgroup);
9650 u64 percpu;
9651 int i;
9652
9653 for_each_present_cpu(i) {
9654 percpu = cpuacct_cpuusage_read(ca, i);
9655 seq_printf(m, "%llu ", (unsigned long long) percpu);
9656 }
9657 seq_printf(m, "\n");
9658 return 0;
9659 }
9660
9661 static const char *cpuacct_stat_desc[] = {
9662 [CPUACCT_STAT_USER] = "user",
9663 [CPUACCT_STAT_SYSTEM] = "system",
9664 };
9665
9666 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9667 struct cgroup_map_cb *cb)
9668 {
9669 struct cpuacct *ca = cgroup_ca(cgrp);
9670 int i;
9671
9672 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9673 s64 val = percpu_counter_read(&ca->cpustat[i]);
9674 val = cputime64_to_clock_t(val);
9675 cb->fill(cb, cpuacct_stat_desc[i], val);
9676 }
9677 return 0;
9678 }
9679
9680 static struct cftype files[] = {
9681 {
9682 .name = "usage",
9683 .read_u64 = cpuusage_read,
9684 .write_u64 = cpuusage_write,
9685 },
9686 {
9687 .name = "usage_percpu",
9688 .read_seq_string = cpuacct_percpu_seq_read,
9689 },
9690 {
9691 .name = "stat",
9692 .read_map = cpuacct_stats_show,
9693 },
9694 };
9695
9696 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9697 {
9698 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9699 }
9700
9701 /*
9702 * charge this task's execution time to its accounting group.
9703 *
9704 * called with rq->lock held.
9705 */
9706 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9707 {
9708 struct cpuacct *ca;
9709 int cpu;
9710
9711 if (unlikely(!cpuacct_subsys.active))
9712 return;
9713
9714 cpu = task_cpu(tsk);
9715
9716 rcu_read_lock();
9717
9718 ca = task_ca(tsk);
9719
9720 for (; ca; ca = ca->parent) {
9721 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9722 *cpuusage += cputime;
9723 }
9724
9725 rcu_read_unlock();
9726 }
9727
9728 /*
9729 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9730 * in cputime_t units. As a result, cpuacct_update_stats calls
9731 * percpu_counter_add with values large enough to always overflow the
9732 * per cpu batch limit causing bad SMP scalability.
9733 *
9734 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9735 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9736 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9737 */
9738 #ifdef CONFIG_SMP
9739 #define CPUACCT_BATCH \
9740 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9741 #else
9742 #define CPUACCT_BATCH 0
9743 #endif
9744
9745 /*
9746 * Charge the system/user time to the task's accounting group.
9747 */
9748 static void cpuacct_update_stats(struct task_struct *tsk,
9749 enum cpuacct_stat_index idx, cputime_t val)
9750 {
9751 struct cpuacct *ca;
9752 int batch = CPUACCT_BATCH;
9753
9754 if (unlikely(!cpuacct_subsys.active))
9755 return;
9756
9757 rcu_read_lock();
9758 ca = task_ca(tsk);
9759
9760 do {
9761 __percpu_counter_add(&ca->cpustat[idx],
9762 (__force s64) val, batch);
9763 ca = ca->parent;
9764 } while (ca);
9765 rcu_read_unlock();
9766 }
9767
9768 struct cgroup_subsys cpuacct_subsys = {
9769 .name = "cpuacct",
9770 .create = cpuacct_create,
9771 .destroy = cpuacct_destroy,
9772 .populate = cpuacct_populate,
9773 .subsys_id = cpuacct_subsys_id,
9774 };
9775 #endif /* CONFIG_CGROUP_CPUACCT */