]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched.c
Merge branch 'sched/new-API-sched_setscheduler' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102
103 #define NICE_0_LOAD SCHED_LOAD_SCALE
104 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
106 /*
107 * These are the 'tuning knobs' of the scheduler:
108 *
109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
110 * Timeslices get refilled after they expire.
111 */
112 #define DEF_TIMESLICE (100 * HZ / 1000)
113
114 /*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117 #define RUNTIME_INF ((u64)~0ULL)
118
119 #ifdef CONFIG_SMP
120 /*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 {
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127 }
128
129 /*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 {
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 }
138 #endif
139
140 static inline int rt_policy(int policy)
141 {
142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 return 1;
144 return 0;
145 }
146
147 static inline int task_has_rt_policy(struct task_struct *p)
148 {
149 return rt_policy(p->policy);
150 }
151
152 /*
153 * This is the priority-queue data structure of the RT scheduling class:
154 */
155 struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158 };
159
160 struct rt_bandwidth {
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
166 };
167
168 static struct rt_bandwidth def_rt_bandwidth;
169
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173 {
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191 }
192
193 static
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195 {
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205 }
206
207 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208 {
209 ktime_t now;
210
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
213
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
216
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
221
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
227 }
228 spin_unlock(&rt_b->rt_runtime_lock);
229 }
230
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233 {
234 hrtimer_cancel(&rt_b->rt_period_timer);
235 }
236 #endif
237
238 /*
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
241 */
242 static DEFINE_MUTEX(sched_domains_mutex);
243
244 #ifdef CONFIG_GROUP_SCHED
245
246 #include <linux/cgroup.h>
247
248 struct cfs_rq;
249
250 static LIST_HEAD(task_groups);
251
252 /* task group related information */
253 struct task_group {
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css;
256 #endif
257
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
264 #endif
265
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
269
270 struct rt_bandwidth rt_bandwidth;
271 #endif
272
273 struct rcu_head rcu;
274 struct list_head list;
275
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
279 };
280
281 #ifdef CONFIG_USER_SCHED
282
283 /*
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
287 */
288 struct task_group root_task_group;
289
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 #endif /* CONFIG_FAIR_GROUP_SCHED */
296
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 #endif /* CONFIG_RT_GROUP_SCHED */
301 #else /* !CONFIG_FAIR_GROUP_SCHED */
302 #define root_task_group init_task_group
303 #endif /* CONFIG_FAIR_GROUP_SCHED */
304
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
307 */
308 static DEFINE_SPINLOCK(task_group_lock);
309
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else /* !CONFIG_USER_SCHED */
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif /* CONFIG_USER_SCHED */
316
317 /*
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
324 */
325 #define MIN_SHARES 2
326 #define MAX_SHARES (1UL << 18)
327
328 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
329 #endif
330
331 /* Default task group.
332 * Every task in system belong to this group at bootup.
333 */
334 struct task_group init_task_group;
335
336 /* return group to which a task belongs */
337 static inline struct task_group *task_group(struct task_struct *p)
338 {
339 struct task_group *tg;
340
341 #ifdef CONFIG_USER_SCHED
342 tg = p->user->tg;
343 #elif defined(CONFIG_CGROUP_SCHED)
344 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345 struct task_group, css);
346 #else
347 tg = &init_task_group;
348 #endif
349 return tg;
350 }
351
352 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
353 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
354 {
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357 p->se.parent = task_group(p)->se[cpu];
358 #endif
359
360 #ifdef CONFIG_RT_GROUP_SCHED
361 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
362 p->rt.parent = task_group(p)->rt_se[cpu];
363 #endif
364 }
365
366 #else
367
368 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 static inline struct task_group *task_group(struct task_struct *p)
370 {
371 return NULL;
372 }
373
374 #endif /* CONFIG_GROUP_SCHED */
375
376 /* CFS-related fields in a runqueue */
377 struct cfs_rq {
378 struct load_weight load;
379 unsigned long nr_running;
380
381 u64 exec_clock;
382 u64 min_vruntime;
383 u64 pair_start;
384
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
387
388 struct list_head tasks;
389 struct list_head *balance_iterator;
390
391 /*
392 * 'curr' points to currently running entity on this cfs_rq.
393 * It is set to NULL otherwise (i.e when none are currently running).
394 */
395 struct sched_entity *curr, *next;
396
397 unsigned long nr_spread_over;
398
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
401
402 /*
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
406 *
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
409 */
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
412
413 #ifdef CONFIG_SMP
414 /*
415 * the part of load.weight contributed by tasks
416 */
417 unsigned long task_weight;
418
419 /*
420 * h_load = weight * f(tg)
421 *
422 * Where f(tg) is the recursive weight fraction assigned to
423 * this group.
424 */
425 unsigned long h_load;
426
427 /*
428 * this cpu's part of tg->shares
429 */
430 unsigned long shares;
431
432 /*
433 * load.weight at the time we set shares
434 */
435 unsigned long rq_weight;
436 #endif
437 #endif
438 };
439
440 /* Real-Time classes' related field in a runqueue: */
441 struct rt_rq {
442 struct rt_prio_array active;
443 unsigned long rt_nr_running;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445 int highest_prio; /* highest queued rt task prio */
446 #endif
447 #ifdef CONFIG_SMP
448 unsigned long rt_nr_migratory;
449 int overloaded;
450 #endif
451 int rt_throttled;
452 u64 rt_time;
453 u64 rt_runtime;
454 /* Nests inside the rq lock: */
455 spinlock_t rt_runtime_lock;
456
457 #ifdef CONFIG_RT_GROUP_SCHED
458 unsigned long rt_nr_boosted;
459
460 struct rq *rq;
461 struct list_head leaf_rt_rq_list;
462 struct task_group *tg;
463 struct sched_rt_entity *rt_se;
464 #endif
465 };
466
467 #ifdef CONFIG_SMP
468
469 /*
470 * We add the notion of a root-domain which will be used to define per-domain
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
473 * exclusive cpuset is created, we also create and attach a new root-domain
474 * object.
475 *
476 */
477 struct root_domain {
478 atomic_t refcount;
479 cpumask_t span;
480 cpumask_t online;
481
482 /*
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
485 */
486 cpumask_t rto_mask;
487 atomic_t rto_count;
488 #ifdef CONFIG_SMP
489 struct cpupri cpupri;
490 #endif
491 };
492
493 /*
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
496 */
497 static struct root_domain def_root_domain;
498
499 #endif
500
501 /*
502 * This is the main, per-CPU runqueue data structure.
503 *
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
507 */
508 struct rq {
509 /* runqueue lock: */
510 spinlock_t lock;
511
512 /*
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
515 */
516 unsigned long nr_running;
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519 unsigned char idle_at_tick;
520 #ifdef CONFIG_NO_HZ
521 unsigned long last_tick_seen;
522 unsigned char in_nohz_recently;
523 #endif
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load;
526 unsigned long nr_load_updates;
527 u64 nr_switches;
528
529 struct cfs_rq cfs;
530 struct rt_rq rt;
531
532 #ifdef CONFIG_FAIR_GROUP_SCHED
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list;
535 #endif
536 #ifdef CONFIG_RT_GROUP_SCHED
537 struct list_head leaf_rt_rq_list;
538 #endif
539
540 /*
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
545 */
546 unsigned long nr_uninterruptible;
547
548 struct task_struct *curr, *idle;
549 unsigned long next_balance;
550 struct mm_struct *prev_mm;
551
552 u64 clock;
553
554 atomic_t nr_iowait;
555
556 #ifdef CONFIG_SMP
557 struct root_domain *rd;
558 struct sched_domain *sd;
559
560 /* For active balancing */
561 int active_balance;
562 int push_cpu;
563 /* cpu of this runqueue: */
564 int cpu;
565 int online;
566
567 unsigned long avg_load_per_task;
568
569 struct task_struct *migration_thread;
570 struct list_head migration_queue;
571 #endif
572
573 #ifdef CONFIG_SCHED_HRTICK
574 unsigned long hrtick_flags;
575 ktime_t hrtick_expire;
576 struct hrtimer hrtick_timer;
577 #endif
578
579 #ifdef CONFIG_SCHEDSTATS
580 /* latency stats */
581 struct sched_info rq_sched_info;
582
583 /* sys_sched_yield() stats */
584 unsigned int yld_exp_empty;
585 unsigned int yld_act_empty;
586 unsigned int yld_both_empty;
587 unsigned int yld_count;
588
589 /* schedule() stats */
590 unsigned int sched_switch;
591 unsigned int sched_count;
592 unsigned int sched_goidle;
593
594 /* try_to_wake_up() stats */
595 unsigned int ttwu_count;
596 unsigned int ttwu_local;
597
598 /* BKL stats */
599 unsigned int bkl_count;
600 #endif
601 struct lock_class_key rq_lock_key;
602 };
603
604 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
605
606 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
607 {
608 rq->curr->sched_class->check_preempt_curr(rq, p);
609 }
610
611 static inline int cpu_of(struct rq *rq)
612 {
613 #ifdef CONFIG_SMP
614 return rq->cpu;
615 #else
616 return 0;
617 #endif
618 }
619
620 /*
621 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622 * See detach_destroy_domains: synchronize_sched for details.
623 *
624 * The domain tree of any CPU may only be accessed from within
625 * preempt-disabled sections.
626 */
627 #define for_each_domain(cpu, __sd) \
628 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
629
630 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
631 #define this_rq() (&__get_cpu_var(runqueues))
632 #define task_rq(p) cpu_rq(task_cpu(p))
633 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
634
635 static inline void update_rq_clock(struct rq *rq)
636 {
637 rq->clock = sched_clock_cpu(cpu_of(rq));
638 }
639
640 /*
641 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
642 */
643 #ifdef CONFIG_SCHED_DEBUG
644 # define const_debug __read_mostly
645 #else
646 # define const_debug static const
647 #endif
648
649 /**
650 * runqueue_is_locked
651 *
652 * Returns true if the current cpu runqueue is locked.
653 * This interface allows printk to be called with the runqueue lock
654 * held and know whether or not it is OK to wake up the klogd.
655 */
656 int runqueue_is_locked(void)
657 {
658 int cpu = get_cpu();
659 struct rq *rq = cpu_rq(cpu);
660 int ret;
661
662 ret = spin_is_locked(&rq->lock);
663 put_cpu();
664 return ret;
665 }
666
667 /*
668 * Debugging: various feature bits
669 */
670
671 #define SCHED_FEAT(name, enabled) \
672 __SCHED_FEAT_##name ,
673
674 enum {
675 #include "sched_features.h"
676 };
677
678 #undef SCHED_FEAT
679
680 #define SCHED_FEAT(name, enabled) \
681 (1UL << __SCHED_FEAT_##name) * enabled |
682
683 const_debug unsigned int sysctl_sched_features =
684 #include "sched_features.h"
685 0;
686
687 #undef SCHED_FEAT
688
689 #ifdef CONFIG_SCHED_DEBUG
690 #define SCHED_FEAT(name, enabled) \
691 #name ,
692
693 static __read_mostly char *sched_feat_names[] = {
694 #include "sched_features.h"
695 NULL
696 };
697
698 #undef SCHED_FEAT
699
700 static int sched_feat_open(struct inode *inode, struct file *filp)
701 {
702 filp->private_data = inode->i_private;
703 return 0;
704 }
705
706 static ssize_t
707 sched_feat_read(struct file *filp, char __user *ubuf,
708 size_t cnt, loff_t *ppos)
709 {
710 char *buf;
711 int r = 0;
712 int len = 0;
713 int i;
714
715 for (i = 0; sched_feat_names[i]; i++) {
716 len += strlen(sched_feat_names[i]);
717 len += 4;
718 }
719
720 buf = kmalloc(len + 2, GFP_KERNEL);
721 if (!buf)
722 return -ENOMEM;
723
724 for (i = 0; sched_feat_names[i]; i++) {
725 if (sysctl_sched_features & (1UL << i))
726 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
727 else
728 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
729 }
730
731 r += sprintf(buf + r, "\n");
732 WARN_ON(r >= len + 2);
733
734 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
735
736 kfree(buf);
737
738 return r;
739 }
740
741 static ssize_t
742 sched_feat_write(struct file *filp, const char __user *ubuf,
743 size_t cnt, loff_t *ppos)
744 {
745 char buf[64];
746 char *cmp = buf;
747 int neg = 0;
748 int i;
749
750 if (cnt > 63)
751 cnt = 63;
752
753 if (copy_from_user(&buf, ubuf, cnt))
754 return -EFAULT;
755
756 buf[cnt] = 0;
757
758 if (strncmp(buf, "NO_", 3) == 0) {
759 neg = 1;
760 cmp += 3;
761 }
762
763 for (i = 0; sched_feat_names[i]; i++) {
764 int len = strlen(sched_feat_names[i]);
765
766 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
767 if (neg)
768 sysctl_sched_features &= ~(1UL << i);
769 else
770 sysctl_sched_features |= (1UL << i);
771 break;
772 }
773 }
774
775 if (!sched_feat_names[i])
776 return -EINVAL;
777
778 filp->f_pos += cnt;
779
780 return cnt;
781 }
782
783 static struct file_operations sched_feat_fops = {
784 .open = sched_feat_open,
785 .read = sched_feat_read,
786 .write = sched_feat_write,
787 };
788
789 static __init int sched_init_debug(void)
790 {
791 debugfs_create_file("sched_features", 0644, NULL, NULL,
792 &sched_feat_fops);
793
794 return 0;
795 }
796 late_initcall(sched_init_debug);
797
798 #endif
799
800 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
801
802 /*
803 * Number of tasks to iterate in a single balance run.
804 * Limited because this is done with IRQs disabled.
805 */
806 const_debug unsigned int sysctl_sched_nr_migrate = 32;
807
808 /*
809 * ratelimit for updating the group shares.
810 * default: 0.5ms
811 */
812 const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
813
814 /*
815 * period over which we measure -rt task cpu usage in us.
816 * default: 1s
817 */
818 unsigned int sysctl_sched_rt_period = 1000000;
819
820 static __read_mostly int scheduler_running;
821
822 /*
823 * part of the period that we allow rt tasks to run in us.
824 * default: 0.95s
825 */
826 int sysctl_sched_rt_runtime = 950000;
827
828 static inline u64 global_rt_period(void)
829 {
830 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
831 }
832
833 static inline u64 global_rt_runtime(void)
834 {
835 if (sysctl_sched_rt_period < 0)
836 return RUNTIME_INF;
837
838 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
839 }
840
841 #ifndef prepare_arch_switch
842 # define prepare_arch_switch(next) do { } while (0)
843 #endif
844 #ifndef finish_arch_switch
845 # define finish_arch_switch(prev) do { } while (0)
846 #endif
847
848 static inline int task_current(struct rq *rq, struct task_struct *p)
849 {
850 return rq->curr == p;
851 }
852
853 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
854 static inline int task_running(struct rq *rq, struct task_struct *p)
855 {
856 return task_current(rq, p);
857 }
858
859 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
860 {
861 }
862
863 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
864 {
865 #ifdef CONFIG_DEBUG_SPINLOCK
866 /* this is a valid case when another task releases the spinlock */
867 rq->lock.owner = current;
868 #endif
869 /*
870 * If we are tracking spinlock dependencies then we have to
871 * fix up the runqueue lock - which gets 'carried over' from
872 * prev into current:
873 */
874 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
875
876 spin_unlock_irq(&rq->lock);
877 }
878
879 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
880 static inline int task_running(struct rq *rq, struct task_struct *p)
881 {
882 #ifdef CONFIG_SMP
883 return p->oncpu;
884 #else
885 return task_current(rq, p);
886 #endif
887 }
888
889 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
890 {
891 #ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
897 next->oncpu = 1;
898 #endif
899 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900 spin_unlock_irq(&rq->lock);
901 #else
902 spin_unlock(&rq->lock);
903 #endif
904 }
905
906 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
907 {
908 #ifdef CONFIG_SMP
909 /*
910 * After ->oncpu is cleared, the task can be moved to a different CPU.
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
915 prev->oncpu = 0;
916 #endif
917 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
919 #endif
920 }
921 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
922
923 /*
924 * __task_rq_lock - lock the runqueue a given task resides on.
925 * Must be called interrupts disabled.
926 */
927 static inline struct rq *__task_rq_lock(struct task_struct *p)
928 __acquires(rq->lock)
929 {
930 for (;;) {
931 struct rq *rq = task_rq(p);
932 spin_lock(&rq->lock);
933 if (likely(rq == task_rq(p)))
934 return rq;
935 spin_unlock(&rq->lock);
936 }
937 }
938
939 /*
940 * task_rq_lock - lock the runqueue a given task resides on and disable
941 * interrupts. Note the ordering: we can safely lookup the task_rq without
942 * explicitly disabling preemption.
943 */
944 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
945 __acquires(rq->lock)
946 {
947 struct rq *rq;
948
949 for (;;) {
950 local_irq_save(*flags);
951 rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
955 spin_unlock_irqrestore(&rq->lock, *flags);
956 }
957 }
958
959 static void __task_rq_unlock(struct rq *rq)
960 __releases(rq->lock)
961 {
962 spin_unlock(&rq->lock);
963 }
964
965 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
966 __releases(rq->lock)
967 {
968 spin_unlock_irqrestore(&rq->lock, *flags);
969 }
970
971 /*
972 * this_rq_lock - lock this runqueue and disable interrupts.
973 */
974 static struct rq *this_rq_lock(void)
975 __acquires(rq->lock)
976 {
977 struct rq *rq;
978
979 local_irq_disable();
980 rq = this_rq();
981 spin_lock(&rq->lock);
982
983 return rq;
984 }
985
986 static void __resched_task(struct task_struct *p, int tif_bit);
987
988 static inline void resched_task(struct task_struct *p)
989 {
990 __resched_task(p, TIF_NEED_RESCHED);
991 }
992
993 #ifdef CONFIG_SCHED_HRTICK
994 /*
995 * Use HR-timers to deliver accurate preemption points.
996 *
997 * Its all a bit involved since we cannot program an hrt while holding the
998 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
999 * reschedule event.
1000 *
1001 * When we get rescheduled we reprogram the hrtick_timer outside of the
1002 * rq->lock.
1003 */
1004 static inline void resched_hrt(struct task_struct *p)
1005 {
1006 __resched_task(p, TIF_HRTICK_RESCHED);
1007 }
1008
1009 static inline void resched_rq(struct rq *rq)
1010 {
1011 unsigned long flags;
1012
1013 spin_lock_irqsave(&rq->lock, flags);
1014 resched_task(rq->curr);
1015 spin_unlock_irqrestore(&rq->lock, flags);
1016 }
1017
1018 enum {
1019 HRTICK_SET, /* re-programm hrtick_timer */
1020 HRTICK_RESET, /* not a new slice */
1021 HRTICK_BLOCK, /* stop hrtick operations */
1022 };
1023
1024 /*
1025 * Use hrtick when:
1026 * - enabled by features
1027 * - hrtimer is actually high res
1028 */
1029 static inline int hrtick_enabled(struct rq *rq)
1030 {
1031 if (!sched_feat(HRTICK))
1032 return 0;
1033 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1034 return 0;
1035 return hrtimer_is_hres_active(&rq->hrtick_timer);
1036 }
1037
1038 /*
1039 * Called to set the hrtick timer state.
1040 *
1041 * called with rq->lock held and irqs disabled
1042 */
1043 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1044 {
1045 assert_spin_locked(&rq->lock);
1046
1047 /*
1048 * preempt at: now + delay
1049 */
1050 rq->hrtick_expire =
1051 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1052 /*
1053 * indicate we need to program the timer
1054 */
1055 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1056 if (reset)
1057 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1058
1059 /*
1060 * New slices are called from the schedule path and don't need a
1061 * forced reschedule.
1062 */
1063 if (reset)
1064 resched_hrt(rq->curr);
1065 }
1066
1067 static void hrtick_clear(struct rq *rq)
1068 {
1069 if (hrtimer_active(&rq->hrtick_timer))
1070 hrtimer_cancel(&rq->hrtick_timer);
1071 }
1072
1073 /*
1074 * Update the timer from the possible pending state.
1075 */
1076 static void hrtick_set(struct rq *rq)
1077 {
1078 ktime_t time;
1079 int set, reset;
1080 unsigned long flags;
1081
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083
1084 spin_lock_irqsave(&rq->lock, flags);
1085 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1086 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1087 time = rq->hrtick_expire;
1088 clear_thread_flag(TIF_HRTICK_RESCHED);
1089 spin_unlock_irqrestore(&rq->lock, flags);
1090
1091 if (set) {
1092 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1093 if (reset && !hrtimer_active(&rq->hrtick_timer))
1094 resched_rq(rq);
1095 } else
1096 hrtick_clear(rq);
1097 }
1098
1099 /*
1100 * High-resolution timer tick.
1101 * Runs from hardirq context with interrupts disabled.
1102 */
1103 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1104 {
1105 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1106
1107 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1108
1109 spin_lock(&rq->lock);
1110 update_rq_clock(rq);
1111 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1112 spin_unlock(&rq->lock);
1113
1114 return HRTIMER_NORESTART;
1115 }
1116
1117 #ifdef CONFIG_SMP
1118 static void hotplug_hrtick_disable(int cpu)
1119 {
1120 struct rq *rq = cpu_rq(cpu);
1121 unsigned long flags;
1122
1123 spin_lock_irqsave(&rq->lock, flags);
1124 rq->hrtick_flags = 0;
1125 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1126 spin_unlock_irqrestore(&rq->lock, flags);
1127
1128 hrtick_clear(rq);
1129 }
1130
1131 static void hotplug_hrtick_enable(int cpu)
1132 {
1133 struct rq *rq = cpu_rq(cpu);
1134 unsigned long flags;
1135
1136 spin_lock_irqsave(&rq->lock, flags);
1137 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1138 spin_unlock_irqrestore(&rq->lock, flags);
1139 }
1140
1141 static int
1142 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1143 {
1144 int cpu = (int)(long)hcpu;
1145
1146 switch (action) {
1147 case CPU_UP_CANCELED:
1148 case CPU_UP_CANCELED_FROZEN:
1149 case CPU_DOWN_PREPARE:
1150 case CPU_DOWN_PREPARE_FROZEN:
1151 case CPU_DEAD:
1152 case CPU_DEAD_FROZEN:
1153 hotplug_hrtick_disable(cpu);
1154 return NOTIFY_OK;
1155
1156 case CPU_UP_PREPARE:
1157 case CPU_UP_PREPARE_FROZEN:
1158 case CPU_DOWN_FAILED:
1159 case CPU_DOWN_FAILED_FROZEN:
1160 case CPU_ONLINE:
1161 case CPU_ONLINE_FROZEN:
1162 hotplug_hrtick_enable(cpu);
1163 return NOTIFY_OK;
1164 }
1165
1166 return NOTIFY_DONE;
1167 }
1168
1169 static void init_hrtick(void)
1170 {
1171 hotcpu_notifier(hotplug_hrtick, 0);
1172 }
1173 #endif /* CONFIG_SMP */
1174
1175 static void init_rq_hrtick(struct rq *rq)
1176 {
1177 rq->hrtick_flags = 0;
1178 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1179 rq->hrtick_timer.function = hrtick;
1180 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1181 }
1182
1183 void hrtick_resched(void)
1184 {
1185 struct rq *rq;
1186 unsigned long flags;
1187
1188 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1189 return;
1190
1191 local_irq_save(flags);
1192 rq = cpu_rq(smp_processor_id());
1193 hrtick_set(rq);
1194 local_irq_restore(flags);
1195 }
1196 #else
1197 static inline void hrtick_clear(struct rq *rq)
1198 {
1199 }
1200
1201 static inline void hrtick_set(struct rq *rq)
1202 {
1203 }
1204
1205 static inline void init_rq_hrtick(struct rq *rq)
1206 {
1207 }
1208
1209 void hrtick_resched(void)
1210 {
1211 }
1212
1213 static inline void init_hrtick(void)
1214 {
1215 }
1216 #endif
1217
1218 /*
1219 * resched_task - mark a task 'to be rescheduled now'.
1220 *
1221 * On UP this means the setting of the need_resched flag, on SMP it
1222 * might also involve a cross-CPU call to trigger the scheduler on
1223 * the target CPU.
1224 */
1225 #ifdef CONFIG_SMP
1226
1227 #ifndef tsk_is_polling
1228 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1229 #endif
1230
1231 static void __resched_task(struct task_struct *p, int tif_bit)
1232 {
1233 int cpu;
1234
1235 assert_spin_locked(&task_rq(p)->lock);
1236
1237 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1238 return;
1239
1240 set_tsk_thread_flag(p, tif_bit);
1241
1242 cpu = task_cpu(p);
1243 if (cpu == smp_processor_id())
1244 return;
1245
1246 /* NEED_RESCHED must be visible before we test polling */
1247 smp_mb();
1248 if (!tsk_is_polling(p))
1249 smp_send_reschedule(cpu);
1250 }
1251
1252 static void resched_cpu(int cpu)
1253 {
1254 struct rq *rq = cpu_rq(cpu);
1255 unsigned long flags;
1256
1257 if (!spin_trylock_irqsave(&rq->lock, flags))
1258 return;
1259 resched_task(cpu_curr(cpu));
1260 spin_unlock_irqrestore(&rq->lock, flags);
1261 }
1262
1263 #ifdef CONFIG_NO_HZ
1264 /*
1265 * When add_timer_on() enqueues a timer into the timer wheel of an
1266 * idle CPU then this timer might expire before the next timer event
1267 * which is scheduled to wake up that CPU. In case of a completely
1268 * idle system the next event might even be infinite time into the
1269 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1270 * leaves the inner idle loop so the newly added timer is taken into
1271 * account when the CPU goes back to idle and evaluates the timer
1272 * wheel for the next timer event.
1273 */
1274 void wake_up_idle_cpu(int cpu)
1275 {
1276 struct rq *rq = cpu_rq(cpu);
1277
1278 if (cpu == smp_processor_id())
1279 return;
1280
1281 /*
1282 * This is safe, as this function is called with the timer
1283 * wheel base lock of (cpu) held. When the CPU is on the way
1284 * to idle and has not yet set rq->curr to idle then it will
1285 * be serialized on the timer wheel base lock and take the new
1286 * timer into account automatically.
1287 */
1288 if (rq->curr != rq->idle)
1289 return;
1290
1291 /*
1292 * We can set TIF_RESCHED on the idle task of the other CPU
1293 * lockless. The worst case is that the other CPU runs the
1294 * idle task through an additional NOOP schedule()
1295 */
1296 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1297
1298 /* NEED_RESCHED must be visible before we test polling */
1299 smp_mb();
1300 if (!tsk_is_polling(rq->idle))
1301 smp_send_reschedule(cpu);
1302 }
1303 #endif /* CONFIG_NO_HZ */
1304
1305 #else /* !CONFIG_SMP */
1306 static void __resched_task(struct task_struct *p, int tif_bit)
1307 {
1308 assert_spin_locked(&task_rq(p)->lock);
1309 set_tsk_thread_flag(p, tif_bit);
1310 }
1311 #endif /* CONFIG_SMP */
1312
1313 #if BITS_PER_LONG == 32
1314 # define WMULT_CONST (~0UL)
1315 #else
1316 # define WMULT_CONST (1UL << 32)
1317 #endif
1318
1319 #define WMULT_SHIFT 32
1320
1321 /*
1322 * Shift right and round:
1323 */
1324 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1325
1326 /*
1327 * delta *= weight / lw
1328 */
1329 static unsigned long
1330 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1331 struct load_weight *lw)
1332 {
1333 u64 tmp;
1334
1335 if (!lw->inv_weight) {
1336 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1337 lw->inv_weight = 1;
1338 else
1339 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1340 / (lw->weight+1);
1341 }
1342
1343 tmp = (u64)delta_exec * weight;
1344 /*
1345 * Check whether we'd overflow the 64-bit multiplication:
1346 */
1347 if (unlikely(tmp > WMULT_CONST))
1348 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1349 WMULT_SHIFT/2);
1350 else
1351 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1352
1353 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1354 }
1355
1356 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1357 {
1358 lw->weight += inc;
1359 lw->inv_weight = 0;
1360 }
1361
1362 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1363 {
1364 lw->weight -= dec;
1365 lw->inv_weight = 0;
1366 }
1367
1368 /*
1369 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1370 * of tasks with abnormal "nice" values across CPUs the contribution that
1371 * each task makes to its run queue's load is weighted according to its
1372 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1373 * scaled version of the new time slice allocation that they receive on time
1374 * slice expiry etc.
1375 */
1376
1377 #define WEIGHT_IDLEPRIO 2
1378 #define WMULT_IDLEPRIO (1 << 31)
1379
1380 /*
1381 * Nice levels are multiplicative, with a gentle 10% change for every
1382 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1383 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1384 * that remained on nice 0.
1385 *
1386 * The "10% effect" is relative and cumulative: from _any_ nice level,
1387 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1388 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1389 * If a task goes up by ~10% and another task goes down by ~10% then
1390 * the relative distance between them is ~25%.)
1391 */
1392 static const int prio_to_weight[40] = {
1393 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1394 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1395 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1396 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1397 /* 0 */ 1024, 820, 655, 526, 423,
1398 /* 5 */ 335, 272, 215, 172, 137,
1399 /* 10 */ 110, 87, 70, 56, 45,
1400 /* 15 */ 36, 29, 23, 18, 15,
1401 };
1402
1403 /*
1404 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1405 *
1406 * In cases where the weight does not change often, we can use the
1407 * precalculated inverse to speed up arithmetics by turning divisions
1408 * into multiplications:
1409 */
1410 static const u32 prio_to_wmult[40] = {
1411 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1412 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1413 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1414 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1415 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1416 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1417 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1418 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1419 };
1420
1421 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1422
1423 /*
1424 * runqueue iterator, to support SMP load-balancing between different
1425 * scheduling classes, without having to expose their internal data
1426 * structures to the load-balancing proper:
1427 */
1428 struct rq_iterator {
1429 void *arg;
1430 struct task_struct *(*start)(void *);
1431 struct task_struct *(*next)(void *);
1432 };
1433
1434 #ifdef CONFIG_SMP
1435 static unsigned long
1436 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1437 unsigned long max_load_move, struct sched_domain *sd,
1438 enum cpu_idle_type idle, int *all_pinned,
1439 int *this_best_prio, struct rq_iterator *iterator);
1440
1441 static int
1442 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1443 struct sched_domain *sd, enum cpu_idle_type idle,
1444 struct rq_iterator *iterator);
1445 #endif
1446
1447 #ifdef CONFIG_CGROUP_CPUACCT
1448 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1449 #else
1450 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1451 #endif
1452
1453 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1454 {
1455 update_load_add(&rq->load, load);
1456 }
1457
1458 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1459 {
1460 update_load_sub(&rq->load, load);
1461 }
1462
1463 #ifdef CONFIG_SMP
1464 static unsigned long source_load(int cpu, int type);
1465 static unsigned long target_load(int cpu, int type);
1466 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1467
1468 static unsigned long cpu_avg_load_per_task(int cpu)
1469 {
1470 struct rq *rq = cpu_rq(cpu);
1471
1472 if (rq->nr_running)
1473 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1474
1475 return rq->avg_load_per_task;
1476 }
1477
1478 #ifdef CONFIG_FAIR_GROUP_SCHED
1479
1480 typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1481
1482 /*
1483 * Iterate the full tree, calling @down when first entering a node and @up when
1484 * leaving it for the final time.
1485 */
1486 static void
1487 walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1488 {
1489 struct task_group *parent, *child;
1490
1491 rcu_read_lock();
1492 parent = &root_task_group;
1493 down:
1494 (*down)(parent, cpu, sd);
1495 list_for_each_entry_rcu(child, &parent->children, siblings) {
1496 parent = child;
1497 goto down;
1498
1499 up:
1500 continue;
1501 }
1502 (*up)(parent, cpu, sd);
1503
1504 child = parent;
1505 parent = parent->parent;
1506 if (parent)
1507 goto up;
1508 rcu_read_unlock();
1509 }
1510
1511 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1512
1513 /*
1514 * Calculate and set the cpu's group shares.
1515 */
1516 static void
1517 __update_group_shares_cpu(struct task_group *tg, int cpu,
1518 unsigned long sd_shares, unsigned long sd_rq_weight)
1519 {
1520 int boost = 0;
1521 unsigned long shares;
1522 unsigned long rq_weight;
1523
1524 if (!tg->se[cpu])
1525 return;
1526
1527 rq_weight = tg->cfs_rq[cpu]->load.weight;
1528
1529 /*
1530 * If there are currently no tasks on the cpu pretend there is one of
1531 * average load so that when a new task gets to run here it will not
1532 * get delayed by group starvation.
1533 */
1534 if (!rq_weight) {
1535 boost = 1;
1536 rq_weight = NICE_0_LOAD;
1537 }
1538
1539 if (unlikely(rq_weight > sd_rq_weight))
1540 rq_weight = sd_rq_weight;
1541
1542 /*
1543 * \Sum shares * rq_weight
1544 * shares = -----------------------
1545 * \Sum rq_weight
1546 *
1547 */
1548 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1549
1550 /*
1551 * record the actual number of shares, not the boosted amount.
1552 */
1553 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1554 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1555
1556 if (shares < MIN_SHARES)
1557 shares = MIN_SHARES;
1558 else if (shares > MAX_SHARES)
1559 shares = MAX_SHARES;
1560
1561 __set_se_shares(tg->se[cpu], shares);
1562 }
1563
1564 /*
1565 * Re-compute the task group their per cpu shares over the given domain.
1566 * This needs to be done in a bottom-up fashion because the rq weight of a
1567 * parent group depends on the shares of its child groups.
1568 */
1569 static void
1570 tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1571 {
1572 unsigned long rq_weight = 0;
1573 unsigned long shares = 0;
1574 int i;
1575
1576 for_each_cpu_mask(i, sd->span) {
1577 rq_weight += tg->cfs_rq[i]->load.weight;
1578 shares += tg->cfs_rq[i]->shares;
1579 }
1580
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1583
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
1586
1587 if (!rq_weight)
1588 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1589
1590 for_each_cpu_mask(i, sd->span) {
1591 struct rq *rq = cpu_rq(i);
1592 unsigned long flags;
1593
1594 spin_lock_irqsave(&rq->lock, flags);
1595 __update_group_shares_cpu(tg, i, shares, rq_weight);
1596 spin_unlock_irqrestore(&rq->lock, flags);
1597 }
1598 }
1599
1600 /*
1601 * Compute the cpu's hierarchical load factor for each task group.
1602 * This needs to be done in a top-down fashion because the load of a child
1603 * group is a fraction of its parents load.
1604 */
1605 static void
1606 tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1607 {
1608 unsigned long load;
1609
1610 if (!tg->parent) {
1611 load = cpu_rq(cpu)->load.weight;
1612 } else {
1613 load = tg->parent->cfs_rq[cpu]->h_load;
1614 load *= tg->cfs_rq[cpu]->shares;
1615 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1616 }
1617
1618 tg->cfs_rq[cpu]->h_load = load;
1619 }
1620
1621 static void
1622 tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1623 {
1624 }
1625
1626 static void update_shares(struct sched_domain *sd)
1627 {
1628 u64 now = cpu_clock(raw_smp_processor_id());
1629 s64 elapsed = now - sd->last_update;
1630
1631 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1632 sd->last_update = now;
1633 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1634 }
1635 }
1636
1637 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1638 {
1639 spin_unlock(&rq->lock);
1640 update_shares(sd);
1641 spin_lock(&rq->lock);
1642 }
1643
1644 static void update_h_load(int cpu)
1645 {
1646 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1647 }
1648
1649 #else
1650
1651 static inline void update_shares(struct sched_domain *sd)
1652 {
1653 }
1654
1655 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1656 {
1657 }
1658
1659 #endif
1660
1661 #endif
1662
1663 #ifdef CONFIG_FAIR_GROUP_SCHED
1664 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1665 {
1666 #ifdef CONFIG_SMP
1667 cfs_rq->shares = shares;
1668 #endif
1669 }
1670 #endif
1671
1672 #include "sched_stats.h"
1673 #include "sched_idletask.c"
1674 #include "sched_fair.c"
1675 #include "sched_rt.c"
1676 #ifdef CONFIG_SCHED_DEBUG
1677 # include "sched_debug.c"
1678 #endif
1679
1680 #define sched_class_highest (&rt_sched_class)
1681 #define for_each_class(class) \
1682 for (class = sched_class_highest; class; class = class->next)
1683
1684 static void inc_nr_running(struct rq *rq)
1685 {
1686 rq->nr_running++;
1687 }
1688
1689 static void dec_nr_running(struct rq *rq)
1690 {
1691 rq->nr_running--;
1692 }
1693
1694 static void set_load_weight(struct task_struct *p)
1695 {
1696 if (task_has_rt_policy(p)) {
1697 p->se.load.weight = prio_to_weight[0] * 2;
1698 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1699 return;
1700 }
1701
1702 /*
1703 * SCHED_IDLE tasks get minimal weight:
1704 */
1705 if (p->policy == SCHED_IDLE) {
1706 p->se.load.weight = WEIGHT_IDLEPRIO;
1707 p->se.load.inv_weight = WMULT_IDLEPRIO;
1708 return;
1709 }
1710
1711 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1712 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1713 }
1714
1715 static void update_avg(u64 *avg, u64 sample)
1716 {
1717 s64 diff = sample - *avg;
1718 *avg += diff >> 3;
1719 }
1720
1721 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1722 {
1723 sched_info_queued(p);
1724 p->sched_class->enqueue_task(rq, p, wakeup);
1725 p->se.on_rq = 1;
1726 }
1727
1728 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1729 {
1730 if (sleep && p->se.last_wakeup) {
1731 update_avg(&p->se.avg_overlap,
1732 p->se.sum_exec_runtime - p->se.last_wakeup);
1733 p->se.last_wakeup = 0;
1734 }
1735
1736 sched_info_dequeued(p);
1737 p->sched_class->dequeue_task(rq, p, sleep);
1738 p->se.on_rq = 0;
1739 }
1740
1741 /*
1742 * __normal_prio - return the priority that is based on the static prio
1743 */
1744 static inline int __normal_prio(struct task_struct *p)
1745 {
1746 return p->static_prio;
1747 }
1748
1749 /*
1750 * Calculate the expected normal priority: i.e. priority
1751 * without taking RT-inheritance into account. Might be
1752 * boosted by interactivity modifiers. Changes upon fork,
1753 * setprio syscalls, and whenever the interactivity
1754 * estimator recalculates.
1755 */
1756 static inline int normal_prio(struct task_struct *p)
1757 {
1758 int prio;
1759
1760 if (task_has_rt_policy(p))
1761 prio = MAX_RT_PRIO-1 - p->rt_priority;
1762 else
1763 prio = __normal_prio(p);
1764 return prio;
1765 }
1766
1767 /*
1768 * Calculate the current priority, i.e. the priority
1769 * taken into account by the scheduler. This value might
1770 * be boosted by RT tasks, or might be boosted by
1771 * interactivity modifiers. Will be RT if the task got
1772 * RT-boosted. If not then it returns p->normal_prio.
1773 */
1774 static int effective_prio(struct task_struct *p)
1775 {
1776 p->normal_prio = normal_prio(p);
1777 /*
1778 * If we are RT tasks or we were boosted to RT priority,
1779 * keep the priority unchanged. Otherwise, update priority
1780 * to the normal priority:
1781 */
1782 if (!rt_prio(p->prio))
1783 return p->normal_prio;
1784 return p->prio;
1785 }
1786
1787 /*
1788 * activate_task - move a task to the runqueue.
1789 */
1790 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1791 {
1792 if (task_contributes_to_load(p))
1793 rq->nr_uninterruptible--;
1794
1795 enqueue_task(rq, p, wakeup);
1796 inc_nr_running(rq);
1797 }
1798
1799 /*
1800 * deactivate_task - remove a task from the runqueue.
1801 */
1802 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1803 {
1804 if (task_contributes_to_load(p))
1805 rq->nr_uninterruptible++;
1806
1807 dequeue_task(rq, p, sleep);
1808 dec_nr_running(rq);
1809 }
1810
1811 /**
1812 * task_curr - is this task currently executing on a CPU?
1813 * @p: the task in question.
1814 */
1815 inline int task_curr(const struct task_struct *p)
1816 {
1817 return cpu_curr(task_cpu(p)) == p;
1818 }
1819
1820 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1821 {
1822 set_task_rq(p, cpu);
1823 #ifdef CONFIG_SMP
1824 /*
1825 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1826 * successfuly executed on another CPU. We must ensure that updates of
1827 * per-task data have been completed by this moment.
1828 */
1829 smp_wmb();
1830 task_thread_info(p)->cpu = cpu;
1831 #endif
1832 }
1833
1834 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1835 const struct sched_class *prev_class,
1836 int oldprio, int running)
1837 {
1838 if (prev_class != p->sched_class) {
1839 if (prev_class->switched_from)
1840 prev_class->switched_from(rq, p, running);
1841 p->sched_class->switched_to(rq, p, running);
1842 } else
1843 p->sched_class->prio_changed(rq, p, oldprio, running);
1844 }
1845
1846 #ifdef CONFIG_SMP
1847
1848 /* Used instead of source_load when we know the type == 0 */
1849 static unsigned long weighted_cpuload(const int cpu)
1850 {
1851 return cpu_rq(cpu)->load.weight;
1852 }
1853
1854 /*
1855 * Is this task likely cache-hot:
1856 */
1857 static int
1858 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1859 {
1860 s64 delta;
1861
1862 /*
1863 * Buddy candidates are cache hot:
1864 */
1865 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1866 return 1;
1867
1868 if (p->sched_class != &fair_sched_class)
1869 return 0;
1870
1871 if (sysctl_sched_migration_cost == -1)
1872 return 1;
1873 if (sysctl_sched_migration_cost == 0)
1874 return 0;
1875
1876 delta = now - p->se.exec_start;
1877
1878 return delta < (s64)sysctl_sched_migration_cost;
1879 }
1880
1881
1882 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1883 {
1884 int old_cpu = task_cpu(p);
1885 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1886 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1887 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1888 u64 clock_offset;
1889
1890 clock_offset = old_rq->clock - new_rq->clock;
1891
1892 #ifdef CONFIG_SCHEDSTATS
1893 if (p->se.wait_start)
1894 p->se.wait_start -= clock_offset;
1895 if (p->se.sleep_start)
1896 p->se.sleep_start -= clock_offset;
1897 if (p->se.block_start)
1898 p->se.block_start -= clock_offset;
1899 if (old_cpu != new_cpu) {
1900 schedstat_inc(p, se.nr_migrations);
1901 if (task_hot(p, old_rq->clock, NULL))
1902 schedstat_inc(p, se.nr_forced2_migrations);
1903 }
1904 #endif
1905 p->se.vruntime -= old_cfsrq->min_vruntime -
1906 new_cfsrq->min_vruntime;
1907
1908 __set_task_cpu(p, new_cpu);
1909 }
1910
1911 struct migration_req {
1912 struct list_head list;
1913
1914 struct task_struct *task;
1915 int dest_cpu;
1916
1917 struct completion done;
1918 };
1919
1920 /*
1921 * The task's runqueue lock must be held.
1922 * Returns true if you have to wait for migration thread.
1923 */
1924 static int
1925 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1926 {
1927 struct rq *rq = task_rq(p);
1928
1929 /*
1930 * If the task is not on a runqueue (and not running), then
1931 * it is sufficient to simply update the task's cpu field.
1932 */
1933 if (!p->se.on_rq && !task_running(rq, p)) {
1934 set_task_cpu(p, dest_cpu);
1935 return 0;
1936 }
1937
1938 init_completion(&req->done);
1939 req->task = p;
1940 req->dest_cpu = dest_cpu;
1941 list_add(&req->list, &rq->migration_queue);
1942
1943 return 1;
1944 }
1945
1946 /*
1947 * wait_task_inactive - wait for a thread to unschedule.
1948 *
1949 * The caller must ensure that the task *will* unschedule sometime soon,
1950 * else this function might spin for a *long* time. This function can't
1951 * be called with interrupts off, or it may introduce deadlock with
1952 * smp_call_function() if an IPI is sent by the same process we are
1953 * waiting to become inactive.
1954 */
1955 void wait_task_inactive(struct task_struct *p)
1956 {
1957 unsigned long flags;
1958 int running, on_rq;
1959 struct rq *rq;
1960
1961 for (;;) {
1962 /*
1963 * We do the initial early heuristics without holding
1964 * any task-queue locks at all. We'll only try to get
1965 * the runqueue lock when things look like they will
1966 * work out!
1967 */
1968 rq = task_rq(p);
1969
1970 /*
1971 * If the task is actively running on another CPU
1972 * still, just relax and busy-wait without holding
1973 * any locks.
1974 *
1975 * NOTE! Since we don't hold any locks, it's not
1976 * even sure that "rq" stays as the right runqueue!
1977 * But we don't care, since "task_running()" will
1978 * return false if the runqueue has changed and p
1979 * is actually now running somewhere else!
1980 */
1981 while (task_running(rq, p))
1982 cpu_relax();
1983
1984 /*
1985 * Ok, time to look more closely! We need the rq
1986 * lock now, to be *sure*. If we're wrong, we'll
1987 * just go back and repeat.
1988 */
1989 rq = task_rq_lock(p, &flags);
1990 running = task_running(rq, p);
1991 on_rq = p->se.on_rq;
1992 task_rq_unlock(rq, &flags);
1993
1994 /*
1995 * Was it really running after all now that we
1996 * checked with the proper locks actually held?
1997 *
1998 * Oops. Go back and try again..
1999 */
2000 if (unlikely(running)) {
2001 cpu_relax();
2002 continue;
2003 }
2004
2005 /*
2006 * It's not enough that it's not actively running,
2007 * it must be off the runqueue _entirely_, and not
2008 * preempted!
2009 *
2010 * So if it wa still runnable (but just not actively
2011 * running right now), it's preempted, and we should
2012 * yield - it could be a while.
2013 */
2014 if (unlikely(on_rq)) {
2015 schedule_timeout_uninterruptible(1);
2016 continue;
2017 }
2018
2019 /*
2020 * Ahh, all good. It wasn't running, and it wasn't
2021 * runnable, which means that it will never become
2022 * running in the future either. We're all done!
2023 */
2024 break;
2025 }
2026 }
2027
2028 /***
2029 * kick_process - kick a running thread to enter/exit the kernel
2030 * @p: the to-be-kicked thread
2031 *
2032 * Cause a process which is running on another CPU to enter
2033 * kernel-mode, without any delay. (to get signals handled.)
2034 *
2035 * NOTE: this function doesnt have to take the runqueue lock,
2036 * because all it wants to ensure is that the remote task enters
2037 * the kernel. If the IPI races and the task has been migrated
2038 * to another CPU then no harm is done and the purpose has been
2039 * achieved as well.
2040 */
2041 void kick_process(struct task_struct *p)
2042 {
2043 int cpu;
2044
2045 preempt_disable();
2046 cpu = task_cpu(p);
2047 if ((cpu != smp_processor_id()) && task_curr(p))
2048 smp_send_reschedule(cpu);
2049 preempt_enable();
2050 }
2051
2052 /*
2053 * Return a low guess at the load of a migration-source cpu weighted
2054 * according to the scheduling class and "nice" value.
2055 *
2056 * We want to under-estimate the load of migration sources, to
2057 * balance conservatively.
2058 */
2059 static unsigned long source_load(int cpu, int type)
2060 {
2061 struct rq *rq = cpu_rq(cpu);
2062 unsigned long total = weighted_cpuload(cpu);
2063
2064 if (type == 0 || !sched_feat(LB_BIAS))
2065 return total;
2066
2067 return min(rq->cpu_load[type-1], total);
2068 }
2069
2070 /*
2071 * Return a high guess at the load of a migration-target cpu weighted
2072 * according to the scheduling class and "nice" value.
2073 */
2074 static unsigned long target_load(int cpu, int type)
2075 {
2076 struct rq *rq = cpu_rq(cpu);
2077 unsigned long total = weighted_cpuload(cpu);
2078
2079 if (type == 0 || !sched_feat(LB_BIAS))
2080 return total;
2081
2082 return max(rq->cpu_load[type-1], total);
2083 }
2084
2085 /*
2086 * find_idlest_group finds and returns the least busy CPU group within the
2087 * domain.
2088 */
2089 static struct sched_group *
2090 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2091 {
2092 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2093 unsigned long min_load = ULONG_MAX, this_load = 0;
2094 int load_idx = sd->forkexec_idx;
2095 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2096
2097 do {
2098 unsigned long load, avg_load;
2099 int local_group;
2100 int i;
2101
2102 /* Skip over this group if it has no CPUs allowed */
2103 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2104 continue;
2105
2106 local_group = cpu_isset(this_cpu, group->cpumask);
2107
2108 /* Tally up the load of all CPUs in the group */
2109 avg_load = 0;
2110
2111 for_each_cpu_mask(i, group->cpumask) {
2112 /* Bias balancing toward cpus of our domain */
2113 if (local_group)
2114 load = source_load(i, load_idx);
2115 else
2116 load = target_load(i, load_idx);
2117
2118 avg_load += load;
2119 }
2120
2121 /* Adjust by relative CPU power of the group */
2122 avg_load = sg_div_cpu_power(group,
2123 avg_load * SCHED_LOAD_SCALE);
2124
2125 if (local_group) {
2126 this_load = avg_load;
2127 this = group;
2128 } else if (avg_load < min_load) {
2129 min_load = avg_load;
2130 idlest = group;
2131 }
2132 } while (group = group->next, group != sd->groups);
2133
2134 if (!idlest || 100*this_load < imbalance*min_load)
2135 return NULL;
2136 return idlest;
2137 }
2138
2139 /*
2140 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2141 */
2142 static int
2143 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2144 cpumask_t *tmp)
2145 {
2146 unsigned long load, min_load = ULONG_MAX;
2147 int idlest = -1;
2148 int i;
2149
2150 /* Traverse only the allowed CPUs */
2151 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2152
2153 for_each_cpu_mask(i, *tmp) {
2154 load = weighted_cpuload(i);
2155
2156 if (load < min_load || (load == min_load && i == this_cpu)) {
2157 min_load = load;
2158 idlest = i;
2159 }
2160 }
2161
2162 return idlest;
2163 }
2164
2165 /*
2166 * sched_balance_self: balance the current task (running on cpu) in domains
2167 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2168 * SD_BALANCE_EXEC.
2169 *
2170 * Balance, ie. select the least loaded group.
2171 *
2172 * Returns the target CPU number, or the same CPU if no balancing is needed.
2173 *
2174 * preempt must be disabled.
2175 */
2176 static int sched_balance_self(int cpu, int flag)
2177 {
2178 struct task_struct *t = current;
2179 struct sched_domain *tmp, *sd = NULL;
2180
2181 for_each_domain(cpu, tmp) {
2182 /*
2183 * If power savings logic is enabled for a domain, stop there.
2184 */
2185 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2186 break;
2187 if (tmp->flags & flag)
2188 sd = tmp;
2189 }
2190
2191 if (sd)
2192 update_shares(sd);
2193
2194 while (sd) {
2195 cpumask_t span, tmpmask;
2196 struct sched_group *group;
2197 int new_cpu, weight;
2198
2199 if (!(sd->flags & flag)) {
2200 sd = sd->child;
2201 continue;
2202 }
2203
2204 span = sd->span;
2205 group = find_idlest_group(sd, t, cpu);
2206 if (!group) {
2207 sd = sd->child;
2208 continue;
2209 }
2210
2211 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2212 if (new_cpu == -1 || new_cpu == cpu) {
2213 /* Now try balancing at a lower domain level of cpu */
2214 sd = sd->child;
2215 continue;
2216 }
2217
2218 /* Now try balancing at a lower domain level of new_cpu */
2219 cpu = new_cpu;
2220 sd = NULL;
2221 weight = cpus_weight(span);
2222 for_each_domain(cpu, tmp) {
2223 if (weight <= cpus_weight(tmp->span))
2224 break;
2225 if (tmp->flags & flag)
2226 sd = tmp;
2227 }
2228 /* while loop will break here if sd == NULL */
2229 }
2230
2231 return cpu;
2232 }
2233
2234 #endif /* CONFIG_SMP */
2235
2236 /***
2237 * try_to_wake_up - wake up a thread
2238 * @p: the to-be-woken-up thread
2239 * @state: the mask of task states that can be woken
2240 * @sync: do a synchronous wakeup?
2241 *
2242 * Put it on the run-queue if it's not already there. The "current"
2243 * thread is always on the run-queue (except when the actual
2244 * re-schedule is in progress), and as such you're allowed to do
2245 * the simpler "current->state = TASK_RUNNING" to mark yourself
2246 * runnable without the overhead of this.
2247 *
2248 * returns failure only if the task is already active.
2249 */
2250 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2251 {
2252 int cpu, orig_cpu, this_cpu, success = 0;
2253 unsigned long flags;
2254 long old_state;
2255 struct rq *rq;
2256
2257 if (!sched_feat(SYNC_WAKEUPS))
2258 sync = 0;
2259
2260 #ifdef CONFIG_SMP
2261 if (sched_feat(LB_WAKEUP_UPDATE)) {
2262 struct sched_domain *sd;
2263
2264 this_cpu = raw_smp_processor_id();
2265 cpu = task_cpu(p);
2266
2267 for_each_domain(this_cpu, sd) {
2268 if (cpu_isset(cpu, sd->span)) {
2269 update_shares(sd);
2270 break;
2271 }
2272 }
2273 }
2274 #endif
2275
2276 smp_wmb();
2277 rq = task_rq_lock(p, &flags);
2278 old_state = p->state;
2279 if (!(old_state & state))
2280 goto out;
2281
2282 if (p->se.on_rq)
2283 goto out_running;
2284
2285 cpu = task_cpu(p);
2286 orig_cpu = cpu;
2287 this_cpu = smp_processor_id();
2288
2289 #ifdef CONFIG_SMP
2290 if (unlikely(task_running(rq, p)))
2291 goto out_activate;
2292
2293 cpu = p->sched_class->select_task_rq(p, sync);
2294 if (cpu != orig_cpu) {
2295 set_task_cpu(p, cpu);
2296 task_rq_unlock(rq, &flags);
2297 /* might preempt at this point */
2298 rq = task_rq_lock(p, &flags);
2299 old_state = p->state;
2300 if (!(old_state & state))
2301 goto out;
2302 if (p->se.on_rq)
2303 goto out_running;
2304
2305 this_cpu = smp_processor_id();
2306 cpu = task_cpu(p);
2307 }
2308
2309 #ifdef CONFIG_SCHEDSTATS
2310 schedstat_inc(rq, ttwu_count);
2311 if (cpu == this_cpu)
2312 schedstat_inc(rq, ttwu_local);
2313 else {
2314 struct sched_domain *sd;
2315 for_each_domain(this_cpu, sd) {
2316 if (cpu_isset(cpu, sd->span)) {
2317 schedstat_inc(sd, ttwu_wake_remote);
2318 break;
2319 }
2320 }
2321 }
2322 #endif /* CONFIG_SCHEDSTATS */
2323
2324 out_activate:
2325 #endif /* CONFIG_SMP */
2326 schedstat_inc(p, se.nr_wakeups);
2327 if (sync)
2328 schedstat_inc(p, se.nr_wakeups_sync);
2329 if (orig_cpu != cpu)
2330 schedstat_inc(p, se.nr_wakeups_migrate);
2331 if (cpu == this_cpu)
2332 schedstat_inc(p, se.nr_wakeups_local);
2333 else
2334 schedstat_inc(p, se.nr_wakeups_remote);
2335 update_rq_clock(rq);
2336 activate_task(rq, p, 1);
2337 success = 1;
2338
2339 out_running:
2340 trace_mark(kernel_sched_wakeup,
2341 "pid %d state %ld ## rq %p task %p rq->curr %p",
2342 p->pid, p->state, rq, p, rq->curr);
2343 check_preempt_curr(rq, p);
2344
2345 p->state = TASK_RUNNING;
2346 #ifdef CONFIG_SMP
2347 if (p->sched_class->task_wake_up)
2348 p->sched_class->task_wake_up(rq, p);
2349 #endif
2350 out:
2351 current->se.last_wakeup = current->se.sum_exec_runtime;
2352
2353 task_rq_unlock(rq, &flags);
2354
2355 return success;
2356 }
2357
2358 int wake_up_process(struct task_struct *p)
2359 {
2360 return try_to_wake_up(p, TASK_ALL, 0);
2361 }
2362 EXPORT_SYMBOL(wake_up_process);
2363
2364 int wake_up_state(struct task_struct *p, unsigned int state)
2365 {
2366 return try_to_wake_up(p, state, 0);
2367 }
2368
2369 /*
2370 * Perform scheduler related setup for a newly forked process p.
2371 * p is forked by current.
2372 *
2373 * __sched_fork() is basic setup used by init_idle() too:
2374 */
2375 static void __sched_fork(struct task_struct *p)
2376 {
2377 p->se.exec_start = 0;
2378 p->se.sum_exec_runtime = 0;
2379 p->se.prev_sum_exec_runtime = 0;
2380 p->se.last_wakeup = 0;
2381 p->se.avg_overlap = 0;
2382
2383 #ifdef CONFIG_SCHEDSTATS
2384 p->se.wait_start = 0;
2385 p->se.sum_sleep_runtime = 0;
2386 p->se.sleep_start = 0;
2387 p->se.block_start = 0;
2388 p->se.sleep_max = 0;
2389 p->se.block_max = 0;
2390 p->se.exec_max = 0;
2391 p->se.slice_max = 0;
2392 p->se.wait_max = 0;
2393 #endif
2394
2395 INIT_LIST_HEAD(&p->rt.run_list);
2396 p->se.on_rq = 0;
2397 INIT_LIST_HEAD(&p->se.group_node);
2398
2399 #ifdef CONFIG_PREEMPT_NOTIFIERS
2400 INIT_HLIST_HEAD(&p->preempt_notifiers);
2401 #endif
2402
2403 /*
2404 * We mark the process as running here, but have not actually
2405 * inserted it onto the runqueue yet. This guarantees that
2406 * nobody will actually run it, and a signal or other external
2407 * event cannot wake it up and insert it on the runqueue either.
2408 */
2409 p->state = TASK_RUNNING;
2410 }
2411
2412 /*
2413 * fork()/clone()-time setup:
2414 */
2415 void sched_fork(struct task_struct *p, int clone_flags)
2416 {
2417 int cpu = get_cpu();
2418
2419 __sched_fork(p);
2420
2421 #ifdef CONFIG_SMP
2422 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2423 #endif
2424 set_task_cpu(p, cpu);
2425
2426 /*
2427 * Make sure we do not leak PI boosting priority to the child:
2428 */
2429 p->prio = current->normal_prio;
2430 if (!rt_prio(p->prio))
2431 p->sched_class = &fair_sched_class;
2432
2433 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2434 if (likely(sched_info_on()))
2435 memset(&p->sched_info, 0, sizeof(p->sched_info));
2436 #endif
2437 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2438 p->oncpu = 0;
2439 #endif
2440 #ifdef CONFIG_PREEMPT
2441 /* Want to start with kernel preemption disabled. */
2442 task_thread_info(p)->preempt_count = 1;
2443 #endif
2444 put_cpu();
2445 }
2446
2447 /*
2448 * wake_up_new_task - wake up a newly created task for the first time.
2449 *
2450 * This function will do some initial scheduler statistics housekeeping
2451 * that must be done for every newly created context, then puts the task
2452 * on the runqueue and wakes it.
2453 */
2454 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2455 {
2456 unsigned long flags;
2457 struct rq *rq;
2458
2459 rq = task_rq_lock(p, &flags);
2460 BUG_ON(p->state != TASK_RUNNING);
2461 update_rq_clock(rq);
2462
2463 p->prio = effective_prio(p);
2464
2465 if (!p->sched_class->task_new || !current->se.on_rq) {
2466 activate_task(rq, p, 0);
2467 } else {
2468 /*
2469 * Let the scheduling class do new task startup
2470 * management (if any):
2471 */
2472 p->sched_class->task_new(rq, p);
2473 inc_nr_running(rq);
2474 }
2475 trace_mark(kernel_sched_wakeup_new,
2476 "pid %d state %ld ## rq %p task %p rq->curr %p",
2477 p->pid, p->state, rq, p, rq->curr);
2478 check_preempt_curr(rq, p);
2479 #ifdef CONFIG_SMP
2480 if (p->sched_class->task_wake_up)
2481 p->sched_class->task_wake_up(rq, p);
2482 #endif
2483 task_rq_unlock(rq, &flags);
2484 }
2485
2486 #ifdef CONFIG_PREEMPT_NOTIFIERS
2487
2488 /**
2489 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2490 * @notifier: notifier struct to register
2491 */
2492 void preempt_notifier_register(struct preempt_notifier *notifier)
2493 {
2494 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2495 }
2496 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2497
2498 /**
2499 * preempt_notifier_unregister - no longer interested in preemption notifications
2500 * @notifier: notifier struct to unregister
2501 *
2502 * This is safe to call from within a preemption notifier.
2503 */
2504 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2505 {
2506 hlist_del(&notifier->link);
2507 }
2508 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2509
2510 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2511 {
2512 struct preempt_notifier *notifier;
2513 struct hlist_node *node;
2514
2515 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2516 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2517 }
2518
2519 static void
2520 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2521 struct task_struct *next)
2522 {
2523 struct preempt_notifier *notifier;
2524 struct hlist_node *node;
2525
2526 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2527 notifier->ops->sched_out(notifier, next);
2528 }
2529
2530 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2531
2532 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533 {
2534 }
2535
2536 static void
2537 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2538 struct task_struct *next)
2539 {
2540 }
2541
2542 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2543
2544 /**
2545 * prepare_task_switch - prepare to switch tasks
2546 * @rq: the runqueue preparing to switch
2547 * @prev: the current task that is being switched out
2548 * @next: the task we are going to switch to.
2549 *
2550 * This is called with the rq lock held and interrupts off. It must
2551 * be paired with a subsequent finish_task_switch after the context
2552 * switch.
2553 *
2554 * prepare_task_switch sets up locking and calls architecture specific
2555 * hooks.
2556 */
2557 static inline void
2558 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2559 struct task_struct *next)
2560 {
2561 fire_sched_out_preempt_notifiers(prev, next);
2562 prepare_lock_switch(rq, next);
2563 prepare_arch_switch(next);
2564 }
2565
2566 /**
2567 * finish_task_switch - clean up after a task-switch
2568 * @rq: runqueue associated with task-switch
2569 * @prev: the thread we just switched away from.
2570 *
2571 * finish_task_switch must be called after the context switch, paired
2572 * with a prepare_task_switch call before the context switch.
2573 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2574 * and do any other architecture-specific cleanup actions.
2575 *
2576 * Note that we may have delayed dropping an mm in context_switch(). If
2577 * so, we finish that here outside of the runqueue lock. (Doing it
2578 * with the lock held can cause deadlocks; see schedule() for
2579 * details.)
2580 */
2581 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2582 __releases(rq->lock)
2583 {
2584 struct mm_struct *mm = rq->prev_mm;
2585 long prev_state;
2586
2587 rq->prev_mm = NULL;
2588
2589 /*
2590 * A task struct has one reference for the use as "current".
2591 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2592 * schedule one last time. The schedule call will never return, and
2593 * the scheduled task must drop that reference.
2594 * The test for TASK_DEAD must occur while the runqueue locks are
2595 * still held, otherwise prev could be scheduled on another cpu, die
2596 * there before we look at prev->state, and then the reference would
2597 * be dropped twice.
2598 * Manfred Spraul <manfred@colorfullife.com>
2599 */
2600 prev_state = prev->state;
2601 finish_arch_switch(prev);
2602 finish_lock_switch(rq, prev);
2603 #ifdef CONFIG_SMP
2604 if (current->sched_class->post_schedule)
2605 current->sched_class->post_schedule(rq);
2606 #endif
2607
2608 fire_sched_in_preempt_notifiers(current);
2609 if (mm)
2610 mmdrop(mm);
2611 if (unlikely(prev_state == TASK_DEAD)) {
2612 /*
2613 * Remove function-return probe instances associated with this
2614 * task and put them back on the free list.
2615 */
2616 kprobe_flush_task(prev);
2617 put_task_struct(prev);
2618 }
2619 }
2620
2621 /**
2622 * schedule_tail - first thing a freshly forked thread must call.
2623 * @prev: the thread we just switched away from.
2624 */
2625 asmlinkage void schedule_tail(struct task_struct *prev)
2626 __releases(rq->lock)
2627 {
2628 struct rq *rq = this_rq();
2629
2630 finish_task_switch(rq, prev);
2631 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2632 /* In this case, finish_task_switch does not reenable preemption */
2633 preempt_enable();
2634 #endif
2635 if (current->set_child_tid)
2636 put_user(task_pid_vnr(current), current->set_child_tid);
2637 }
2638
2639 /*
2640 * context_switch - switch to the new MM and the new
2641 * thread's register state.
2642 */
2643 static inline void
2644 context_switch(struct rq *rq, struct task_struct *prev,
2645 struct task_struct *next)
2646 {
2647 struct mm_struct *mm, *oldmm;
2648
2649 prepare_task_switch(rq, prev, next);
2650 trace_mark(kernel_sched_schedule,
2651 "prev_pid %d next_pid %d prev_state %ld "
2652 "## rq %p prev %p next %p",
2653 prev->pid, next->pid, prev->state,
2654 rq, prev, next);
2655 mm = next->mm;
2656 oldmm = prev->active_mm;
2657 /*
2658 * For paravirt, this is coupled with an exit in switch_to to
2659 * combine the page table reload and the switch backend into
2660 * one hypercall.
2661 */
2662 arch_enter_lazy_cpu_mode();
2663
2664 if (unlikely(!mm)) {
2665 next->active_mm = oldmm;
2666 atomic_inc(&oldmm->mm_count);
2667 enter_lazy_tlb(oldmm, next);
2668 } else
2669 switch_mm(oldmm, mm, next);
2670
2671 if (unlikely(!prev->mm)) {
2672 prev->active_mm = NULL;
2673 rq->prev_mm = oldmm;
2674 }
2675 /*
2676 * Since the runqueue lock will be released by the next
2677 * task (which is an invalid locking op but in the case
2678 * of the scheduler it's an obvious special-case), so we
2679 * do an early lockdep release here:
2680 */
2681 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2682 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2683 #endif
2684
2685 /* Here we just switch the register state and the stack. */
2686 switch_to(prev, next, prev);
2687
2688 barrier();
2689 /*
2690 * this_rq must be evaluated again because prev may have moved
2691 * CPUs since it called schedule(), thus the 'rq' on its stack
2692 * frame will be invalid.
2693 */
2694 finish_task_switch(this_rq(), prev);
2695 }
2696
2697 /*
2698 * nr_running, nr_uninterruptible and nr_context_switches:
2699 *
2700 * externally visible scheduler statistics: current number of runnable
2701 * threads, current number of uninterruptible-sleeping threads, total
2702 * number of context switches performed since bootup.
2703 */
2704 unsigned long nr_running(void)
2705 {
2706 unsigned long i, sum = 0;
2707
2708 for_each_online_cpu(i)
2709 sum += cpu_rq(i)->nr_running;
2710
2711 return sum;
2712 }
2713
2714 unsigned long nr_uninterruptible(void)
2715 {
2716 unsigned long i, sum = 0;
2717
2718 for_each_possible_cpu(i)
2719 sum += cpu_rq(i)->nr_uninterruptible;
2720
2721 /*
2722 * Since we read the counters lockless, it might be slightly
2723 * inaccurate. Do not allow it to go below zero though:
2724 */
2725 if (unlikely((long)sum < 0))
2726 sum = 0;
2727
2728 return sum;
2729 }
2730
2731 unsigned long long nr_context_switches(void)
2732 {
2733 int i;
2734 unsigned long long sum = 0;
2735
2736 for_each_possible_cpu(i)
2737 sum += cpu_rq(i)->nr_switches;
2738
2739 return sum;
2740 }
2741
2742 unsigned long nr_iowait(void)
2743 {
2744 unsigned long i, sum = 0;
2745
2746 for_each_possible_cpu(i)
2747 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2748
2749 return sum;
2750 }
2751
2752 unsigned long nr_active(void)
2753 {
2754 unsigned long i, running = 0, uninterruptible = 0;
2755
2756 for_each_online_cpu(i) {
2757 running += cpu_rq(i)->nr_running;
2758 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2759 }
2760
2761 if (unlikely((long)uninterruptible < 0))
2762 uninterruptible = 0;
2763
2764 return running + uninterruptible;
2765 }
2766
2767 /*
2768 * Update rq->cpu_load[] statistics. This function is usually called every
2769 * scheduler tick (TICK_NSEC).
2770 */
2771 static void update_cpu_load(struct rq *this_rq)
2772 {
2773 unsigned long this_load = this_rq->load.weight;
2774 int i, scale;
2775
2776 this_rq->nr_load_updates++;
2777
2778 /* Update our load: */
2779 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2780 unsigned long old_load, new_load;
2781
2782 /* scale is effectively 1 << i now, and >> i divides by scale */
2783
2784 old_load = this_rq->cpu_load[i];
2785 new_load = this_load;
2786 /*
2787 * Round up the averaging division if load is increasing. This
2788 * prevents us from getting stuck on 9 if the load is 10, for
2789 * example.
2790 */
2791 if (new_load > old_load)
2792 new_load += scale-1;
2793 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2794 }
2795 }
2796
2797 #ifdef CONFIG_SMP
2798
2799 /*
2800 * double_rq_lock - safely lock two runqueues
2801 *
2802 * Note this does not disable interrupts like task_rq_lock,
2803 * you need to do so manually before calling.
2804 */
2805 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2806 __acquires(rq1->lock)
2807 __acquires(rq2->lock)
2808 {
2809 BUG_ON(!irqs_disabled());
2810 if (rq1 == rq2) {
2811 spin_lock(&rq1->lock);
2812 __acquire(rq2->lock); /* Fake it out ;) */
2813 } else {
2814 if (rq1 < rq2) {
2815 spin_lock(&rq1->lock);
2816 spin_lock(&rq2->lock);
2817 } else {
2818 spin_lock(&rq2->lock);
2819 spin_lock(&rq1->lock);
2820 }
2821 }
2822 update_rq_clock(rq1);
2823 update_rq_clock(rq2);
2824 }
2825
2826 /*
2827 * double_rq_unlock - safely unlock two runqueues
2828 *
2829 * Note this does not restore interrupts like task_rq_unlock,
2830 * you need to do so manually after calling.
2831 */
2832 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2833 __releases(rq1->lock)
2834 __releases(rq2->lock)
2835 {
2836 spin_unlock(&rq1->lock);
2837 if (rq1 != rq2)
2838 spin_unlock(&rq2->lock);
2839 else
2840 __release(rq2->lock);
2841 }
2842
2843 /*
2844 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2845 */
2846 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2847 __releases(this_rq->lock)
2848 __acquires(busiest->lock)
2849 __acquires(this_rq->lock)
2850 {
2851 int ret = 0;
2852
2853 if (unlikely(!irqs_disabled())) {
2854 /* printk() doesn't work good under rq->lock */
2855 spin_unlock(&this_rq->lock);
2856 BUG_ON(1);
2857 }
2858 if (unlikely(!spin_trylock(&busiest->lock))) {
2859 if (busiest < this_rq) {
2860 spin_unlock(&this_rq->lock);
2861 spin_lock(&busiest->lock);
2862 spin_lock(&this_rq->lock);
2863 ret = 1;
2864 } else
2865 spin_lock(&busiest->lock);
2866 }
2867 return ret;
2868 }
2869
2870 /*
2871 * If dest_cpu is allowed for this process, migrate the task to it.
2872 * This is accomplished by forcing the cpu_allowed mask to only
2873 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2874 * the cpu_allowed mask is restored.
2875 */
2876 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2877 {
2878 struct migration_req req;
2879 unsigned long flags;
2880 struct rq *rq;
2881
2882 rq = task_rq_lock(p, &flags);
2883 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2884 || unlikely(cpu_is_offline(dest_cpu)))
2885 goto out;
2886
2887 /* force the process onto the specified CPU */
2888 if (migrate_task(p, dest_cpu, &req)) {
2889 /* Need to wait for migration thread (might exit: take ref). */
2890 struct task_struct *mt = rq->migration_thread;
2891
2892 get_task_struct(mt);
2893 task_rq_unlock(rq, &flags);
2894 wake_up_process(mt);
2895 put_task_struct(mt);
2896 wait_for_completion(&req.done);
2897
2898 return;
2899 }
2900 out:
2901 task_rq_unlock(rq, &flags);
2902 }
2903
2904 /*
2905 * sched_exec - execve() is a valuable balancing opportunity, because at
2906 * this point the task has the smallest effective memory and cache footprint.
2907 */
2908 void sched_exec(void)
2909 {
2910 int new_cpu, this_cpu = get_cpu();
2911 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2912 put_cpu();
2913 if (new_cpu != this_cpu)
2914 sched_migrate_task(current, new_cpu);
2915 }
2916
2917 /*
2918 * pull_task - move a task from a remote runqueue to the local runqueue.
2919 * Both runqueues must be locked.
2920 */
2921 static void pull_task(struct rq *src_rq, struct task_struct *p,
2922 struct rq *this_rq, int this_cpu)
2923 {
2924 deactivate_task(src_rq, p, 0);
2925 set_task_cpu(p, this_cpu);
2926 activate_task(this_rq, p, 0);
2927 /*
2928 * Note that idle threads have a prio of MAX_PRIO, for this test
2929 * to be always true for them.
2930 */
2931 check_preempt_curr(this_rq, p);
2932 }
2933
2934 /*
2935 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2936 */
2937 static
2938 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2939 struct sched_domain *sd, enum cpu_idle_type idle,
2940 int *all_pinned)
2941 {
2942 /*
2943 * We do not migrate tasks that are:
2944 * 1) running (obviously), or
2945 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2946 * 3) are cache-hot on their current CPU.
2947 */
2948 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2949 schedstat_inc(p, se.nr_failed_migrations_affine);
2950 return 0;
2951 }
2952 *all_pinned = 0;
2953
2954 if (task_running(rq, p)) {
2955 schedstat_inc(p, se.nr_failed_migrations_running);
2956 return 0;
2957 }
2958
2959 /*
2960 * Aggressive migration if:
2961 * 1) task is cache cold, or
2962 * 2) too many balance attempts have failed.
2963 */
2964
2965 if (!task_hot(p, rq->clock, sd) ||
2966 sd->nr_balance_failed > sd->cache_nice_tries) {
2967 #ifdef CONFIG_SCHEDSTATS
2968 if (task_hot(p, rq->clock, sd)) {
2969 schedstat_inc(sd, lb_hot_gained[idle]);
2970 schedstat_inc(p, se.nr_forced_migrations);
2971 }
2972 #endif
2973 return 1;
2974 }
2975
2976 if (task_hot(p, rq->clock, sd)) {
2977 schedstat_inc(p, se.nr_failed_migrations_hot);
2978 return 0;
2979 }
2980 return 1;
2981 }
2982
2983 static unsigned long
2984 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2985 unsigned long max_load_move, struct sched_domain *sd,
2986 enum cpu_idle_type idle, int *all_pinned,
2987 int *this_best_prio, struct rq_iterator *iterator)
2988 {
2989 int loops = 0, pulled = 0, pinned = 0;
2990 struct task_struct *p;
2991 long rem_load_move = max_load_move;
2992
2993 if (max_load_move == 0)
2994 goto out;
2995
2996 pinned = 1;
2997
2998 /*
2999 * Start the load-balancing iterator:
3000 */
3001 p = iterator->start(iterator->arg);
3002 next:
3003 if (!p || loops++ > sysctl_sched_nr_migrate)
3004 goto out;
3005
3006 if ((p->se.load.weight >> 1) > rem_load_move ||
3007 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3008 p = iterator->next(iterator->arg);
3009 goto next;
3010 }
3011
3012 pull_task(busiest, p, this_rq, this_cpu);
3013 pulled++;
3014 rem_load_move -= p->se.load.weight;
3015
3016 /*
3017 * We only want to steal up to the prescribed amount of weighted load.
3018 */
3019 if (rem_load_move > 0) {
3020 if (p->prio < *this_best_prio)
3021 *this_best_prio = p->prio;
3022 p = iterator->next(iterator->arg);
3023 goto next;
3024 }
3025 out:
3026 /*
3027 * Right now, this is one of only two places pull_task() is called,
3028 * so we can safely collect pull_task() stats here rather than
3029 * inside pull_task().
3030 */
3031 schedstat_add(sd, lb_gained[idle], pulled);
3032
3033 if (all_pinned)
3034 *all_pinned = pinned;
3035
3036 return max_load_move - rem_load_move;
3037 }
3038
3039 /*
3040 * move_tasks tries to move up to max_load_move weighted load from busiest to
3041 * this_rq, as part of a balancing operation within domain "sd".
3042 * Returns 1 if successful and 0 otherwise.
3043 *
3044 * Called with both runqueues locked.
3045 */
3046 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3047 unsigned long max_load_move,
3048 struct sched_domain *sd, enum cpu_idle_type idle,
3049 int *all_pinned)
3050 {
3051 const struct sched_class *class = sched_class_highest;
3052 unsigned long total_load_moved = 0;
3053 int this_best_prio = this_rq->curr->prio;
3054
3055 do {
3056 total_load_moved +=
3057 class->load_balance(this_rq, this_cpu, busiest,
3058 max_load_move - total_load_moved,
3059 sd, idle, all_pinned, &this_best_prio);
3060 class = class->next;
3061
3062 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3063 break;
3064
3065 } while (class && max_load_move > total_load_moved);
3066
3067 return total_load_moved > 0;
3068 }
3069
3070 static int
3071 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3072 struct sched_domain *sd, enum cpu_idle_type idle,
3073 struct rq_iterator *iterator)
3074 {
3075 struct task_struct *p = iterator->start(iterator->arg);
3076 int pinned = 0;
3077
3078 while (p) {
3079 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3080 pull_task(busiest, p, this_rq, this_cpu);
3081 /*
3082 * Right now, this is only the second place pull_task()
3083 * is called, so we can safely collect pull_task()
3084 * stats here rather than inside pull_task().
3085 */
3086 schedstat_inc(sd, lb_gained[idle]);
3087
3088 return 1;
3089 }
3090 p = iterator->next(iterator->arg);
3091 }
3092
3093 return 0;
3094 }
3095
3096 /*
3097 * move_one_task tries to move exactly one task from busiest to this_rq, as
3098 * part of active balancing operations within "domain".
3099 * Returns 1 if successful and 0 otherwise.
3100 *
3101 * Called with both runqueues locked.
3102 */
3103 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3104 struct sched_domain *sd, enum cpu_idle_type idle)
3105 {
3106 const struct sched_class *class;
3107
3108 for (class = sched_class_highest; class; class = class->next)
3109 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3110 return 1;
3111
3112 return 0;
3113 }
3114
3115 /*
3116 * find_busiest_group finds and returns the busiest CPU group within the
3117 * domain. It calculates and returns the amount of weighted load which
3118 * should be moved to restore balance via the imbalance parameter.
3119 */
3120 static struct sched_group *
3121 find_busiest_group(struct sched_domain *sd, int this_cpu,
3122 unsigned long *imbalance, enum cpu_idle_type idle,
3123 int *sd_idle, const cpumask_t *cpus, int *balance)
3124 {
3125 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3126 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3127 unsigned long max_pull;
3128 unsigned long busiest_load_per_task, busiest_nr_running;
3129 unsigned long this_load_per_task, this_nr_running;
3130 int load_idx, group_imb = 0;
3131 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3132 int power_savings_balance = 1;
3133 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3134 unsigned long min_nr_running = ULONG_MAX;
3135 struct sched_group *group_min = NULL, *group_leader = NULL;
3136 #endif
3137
3138 max_load = this_load = total_load = total_pwr = 0;
3139 busiest_load_per_task = busiest_nr_running = 0;
3140 this_load_per_task = this_nr_running = 0;
3141
3142 if (idle == CPU_NOT_IDLE)
3143 load_idx = sd->busy_idx;
3144 else if (idle == CPU_NEWLY_IDLE)
3145 load_idx = sd->newidle_idx;
3146 else
3147 load_idx = sd->idle_idx;
3148
3149 do {
3150 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3151 int local_group;
3152 int i;
3153 int __group_imb = 0;
3154 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3155 unsigned long sum_nr_running, sum_weighted_load;
3156 unsigned long sum_avg_load_per_task;
3157 unsigned long avg_load_per_task;
3158
3159 local_group = cpu_isset(this_cpu, group->cpumask);
3160
3161 if (local_group)
3162 balance_cpu = first_cpu(group->cpumask);
3163
3164 /* Tally up the load of all CPUs in the group */
3165 sum_weighted_load = sum_nr_running = avg_load = 0;
3166 sum_avg_load_per_task = avg_load_per_task = 0;
3167
3168 max_cpu_load = 0;
3169 min_cpu_load = ~0UL;
3170
3171 for_each_cpu_mask(i, group->cpumask) {
3172 struct rq *rq;
3173
3174 if (!cpu_isset(i, *cpus))
3175 continue;
3176
3177 rq = cpu_rq(i);
3178
3179 if (*sd_idle && rq->nr_running)
3180 *sd_idle = 0;
3181
3182 /* Bias balancing toward cpus of our domain */
3183 if (local_group) {
3184 if (idle_cpu(i) && !first_idle_cpu) {
3185 first_idle_cpu = 1;
3186 balance_cpu = i;
3187 }
3188
3189 load = target_load(i, load_idx);
3190 } else {
3191 load = source_load(i, load_idx);
3192 if (load > max_cpu_load)
3193 max_cpu_load = load;
3194 if (min_cpu_load > load)
3195 min_cpu_load = load;
3196 }
3197
3198 avg_load += load;
3199 sum_nr_running += rq->nr_running;
3200 sum_weighted_load += weighted_cpuload(i);
3201
3202 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3203 }
3204
3205 /*
3206 * First idle cpu or the first cpu(busiest) in this sched group
3207 * is eligible for doing load balancing at this and above
3208 * domains. In the newly idle case, we will allow all the cpu's
3209 * to do the newly idle load balance.
3210 */
3211 if (idle != CPU_NEWLY_IDLE && local_group &&
3212 balance_cpu != this_cpu && balance) {
3213 *balance = 0;
3214 goto ret;
3215 }
3216
3217 total_load += avg_load;
3218 total_pwr += group->__cpu_power;
3219
3220 /* Adjust by relative CPU power of the group */
3221 avg_load = sg_div_cpu_power(group,
3222 avg_load * SCHED_LOAD_SCALE);
3223
3224
3225 /*
3226 * Consider the group unbalanced when the imbalance is larger
3227 * than the average weight of two tasks.
3228 *
3229 * APZ: with cgroup the avg task weight can vary wildly and
3230 * might not be a suitable number - should we keep a
3231 * normalized nr_running number somewhere that negates
3232 * the hierarchy?
3233 */
3234 avg_load_per_task = sg_div_cpu_power(group,
3235 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3236
3237 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3238 __group_imb = 1;
3239
3240 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3241
3242 if (local_group) {
3243 this_load = avg_load;
3244 this = group;
3245 this_nr_running = sum_nr_running;
3246 this_load_per_task = sum_weighted_load;
3247 } else if (avg_load > max_load &&
3248 (sum_nr_running > group_capacity || __group_imb)) {
3249 max_load = avg_load;
3250 busiest = group;
3251 busiest_nr_running = sum_nr_running;
3252 busiest_load_per_task = sum_weighted_load;
3253 group_imb = __group_imb;
3254 }
3255
3256 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3257 /*
3258 * Busy processors will not participate in power savings
3259 * balance.
3260 */
3261 if (idle == CPU_NOT_IDLE ||
3262 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3263 goto group_next;
3264
3265 /*
3266 * If the local group is idle or completely loaded
3267 * no need to do power savings balance at this domain
3268 */
3269 if (local_group && (this_nr_running >= group_capacity ||
3270 !this_nr_running))
3271 power_savings_balance = 0;
3272
3273 /*
3274 * If a group is already running at full capacity or idle,
3275 * don't include that group in power savings calculations
3276 */
3277 if (!power_savings_balance || sum_nr_running >= group_capacity
3278 || !sum_nr_running)
3279 goto group_next;
3280
3281 /*
3282 * Calculate the group which has the least non-idle load.
3283 * This is the group from where we need to pick up the load
3284 * for saving power
3285 */
3286 if ((sum_nr_running < min_nr_running) ||
3287 (sum_nr_running == min_nr_running &&
3288 first_cpu(group->cpumask) <
3289 first_cpu(group_min->cpumask))) {
3290 group_min = group;
3291 min_nr_running = sum_nr_running;
3292 min_load_per_task = sum_weighted_load /
3293 sum_nr_running;
3294 }
3295
3296 /*
3297 * Calculate the group which is almost near its
3298 * capacity but still has some space to pick up some load
3299 * from other group and save more power
3300 */
3301 if (sum_nr_running <= group_capacity - 1) {
3302 if (sum_nr_running > leader_nr_running ||
3303 (sum_nr_running == leader_nr_running &&
3304 first_cpu(group->cpumask) >
3305 first_cpu(group_leader->cpumask))) {
3306 group_leader = group;
3307 leader_nr_running = sum_nr_running;
3308 }
3309 }
3310 group_next:
3311 #endif
3312 group = group->next;
3313 } while (group != sd->groups);
3314
3315 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3316 goto out_balanced;
3317
3318 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3319
3320 if (this_load >= avg_load ||
3321 100*max_load <= sd->imbalance_pct*this_load)
3322 goto out_balanced;
3323
3324 busiest_load_per_task /= busiest_nr_running;
3325 if (group_imb)
3326 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3327
3328 /*
3329 * We're trying to get all the cpus to the average_load, so we don't
3330 * want to push ourselves above the average load, nor do we wish to
3331 * reduce the max loaded cpu below the average load, as either of these
3332 * actions would just result in more rebalancing later, and ping-pong
3333 * tasks around. Thus we look for the minimum possible imbalance.
3334 * Negative imbalances (*we* are more loaded than anyone else) will
3335 * be counted as no imbalance for these purposes -- we can't fix that
3336 * by pulling tasks to us. Be careful of negative numbers as they'll
3337 * appear as very large values with unsigned longs.
3338 */
3339 if (max_load <= busiest_load_per_task)
3340 goto out_balanced;
3341
3342 /*
3343 * In the presence of smp nice balancing, certain scenarios can have
3344 * max load less than avg load(as we skip the groups at or below
3345 * its cpu_power, while calculating max_load..)
3346 */
3347 if (max_load < avg_load) {
3348 *imbalance = 0;
3349 goto small_imbalance;
3350 }
3351
3352 /* Don't want to pull so many tasks that a group would go idle */
3353 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3354
3355 /* How much load to actually move to equalise the imbalance */
3356 *imbalance = min(max_pull * busiest->__cpu_power,
3357 (avg_load - this_load) * this->__cpu_power)
3358 / SCHED_LOAD_SCALE;
3359
3360 /*
3361 * if *imbalance is less than the average load per runnable task
3362 * there is no gaurantee that any tasks will be moved so we'll have
3363 * a think about bumping its value to force at least one task to be
3364 * moved
3365 */
3366 if (*imbalance < busiest_load_per_task) {
3367 unsigned long tmp, pwr_now, pwr_move;
3368 unsigned int imbn;
3369
3370 small_imbalance:
3371 pwr_move = pwr_now = 0;
3372 imbn = 2;
3373 if (this_nr_running) {
3374 this_load_per_task /= this_nr_running;
3375 if (busiest_load_per_task > this_load_per_task)
3376 imbn = 1;
3377 } else
3378 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3379
3380 if (max_load - this_load + 2*busiest_load_per_task >=
3381 busiest_load_per_task * imbn) {
3382 *imbalance = busiest_load_per_task;
3383 return busiest;
3384 }
3385
3386 /*
3387 * OK, we don't have enough imbalance to justify moving tasks,
3388 * however we may be able to increase total CPU power used by
3389 * moving them.
3390 */
3391
3392 pwr_now += busiest->__cpu_power *
3393 min(busiest_load_per_task, max_load);
3394 pwr_now += this->__cpu_power *
3395 min(this_load_per_task, this_load);
3396 pwr_now /= SCHED_LOAD_SCALE;
3397
3398 /* Amount of load we'd subtract */
3399 tmp = sg_div_cpu_power(busiest,
3400 busiest_load_per_task * SCHED_LOAD_SCALE);
3401 if (max_load > tmp)
3402 pwr_move += busiest->__cpu_power *
3403 min(busiest_load_per_task, max_load - tmp);
3404
3405 /* Amount of load we'd add */
3406 if (max_load * busiest->__cpu_power <
3407 busiest_load_per_task * SCHED_LOAD_SCALE)
3408 tmp = sg_div_cpu_power(this,
3409 max_load * busiest->__cpu_power);
3410 else
3411 tmp = sg_div_cpu_power(this,
3412 busiest_load_per_task * SCHED_LOAD_SCALE);
3413 pwr_move += this->__cpu_power *
3414 min(this_load_per_task, this_load + tmp);
3415 pwr_move /= SCHED_LOAD_SCALE;
3416
3417 /* Move if we gain throughput */
3418 if (pwr_move > pwr_now)
3419 *imbalance = busiest_load_per_task;
3420 }
3421
3422 return busiest;
3423
3424 out_balanced:
3425 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3426 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3427 goto ret;
3428
3429 if (this == group_leader && group_leader != group_min) {
3430 *imbalance = min_load_per_task;
3431 return group_min;
3432 }
3433 #endif
3434 ret:
3435 *imbalance = 0;
3436 return NULL;
3437 }
3438
3439 /*
3440 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3441 */
3442 static struct rq *
3443 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3444 unsigned long imbalance, const cpumask_t *cpus)
3445 {
3446 struct rq *busiest = NULL, *rq;
3447 unsigned long max_load = 0;
3448 int i;
3449
3450 for_each_cpu_mask(i, group->cpumask) {
3451 unsigned long wl;
3452
3453 if (!cpu_isset(i, *cpus))
3454 continue;
3455
3456 rq = cpu_rq(i);
3457 wl = weighted_cpuload(i);
3458
3459 if (rq->nr_running == 1 && wl > imbalance)
3460 continue;
3461
3462 if (wl > max_load) {
3463 max_load = wl;
3464 busiest = rq;
3465 }
3466 }
3467
3468 return busiest;
3469 }
3470
3471 /*
3472 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3473 * so long as it is large enough.
3474 */
3475 #define MAX_PINNED_INTERVAL 512
3476
3477 /*
3478 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3479 * tasks if there is an imbalance.
3480 */
3481 static int load_balance(int this_cpu, struct rq *this_rq,
3482 struct sched_domain *sd, enum cpu_idle_type idle,
3483 int *balance, cpumask_t *cpus)
3484 {
3485 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3486 struct sched_group *group;
3487 unsigned long imbalance;
3488 struct rq *busiest;
3489 unsigned long flags;
3490
3491 cpus_setall(*cpus);
3492
3493 /*
3494 * When power savings policy is enabled for the parent domain, idle
3495 * sibling can pick up load irrespective of busy siblings. In this case,
3496 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3497 * portraying it as CPU_NOT_IDLE.
3498 */
3499 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3500 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3501 sd_idle = 1;
3502
3503 schedstat_inc(sd, lb_count[idle]);
3504
3505 redo:
3506 update_shares(sd);
3507 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3508 cpus, balance);
3509
3510 if (*balance == 0)
3511 goto out_balanced;
3512
3513 if (!group) {
3514 schedstat_inc(sd, lb_nobusyg[idle]);
3515 goto out_balanced;
3516 }
3517
3518 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3519 if (!busiest) {
3520 schedstat_inc(sd, lb_nobusyq[idle]);
3521 goto out_balanced;
3522 }
3523
3524 BUG_ON(busiest == this_rq);
3525
3526 schedstat_add(sd, lb_imbalance[idle], imbalance);
3527
3528 ld_moved = 0;
3529 if (busiest->nr_running > 1) {
3530 /*
3531 * Attempt to move tasks. If find_busiest_group has found
3532 * an imbalance but busiest->nr_running <= 1, the group is
3533 * still unbalanced. ld_moved simply stays zero, so it is
3534 * correctly treated as an imbalance.
3535 */
3536 local_irq_save(flags);
3537 double_rq_lock(this_rq, busiest);
3538 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3539 imbalance, sd, idle, &all_pinned);
3540 double_rq_unlock(this_rq, busiest);
3541 local_irq_restore(flags);
3542
3543 /*
3544 * some other cpu did the load balance for us.
3545 */
3546 if (ld_moved && this_cpu != smp_processor_id())
3547 resched_cpu(this_cpu);
3548
3549 /* All tasks on this runqueue were pinned by CPU affinity */
3550 if (unlikely(all_pinned)) {
3551 cpu_clear(cpu_of(busiest), *cpus);
3552 if (!cpus_empty(*cpus))
3553 goto redo;
3554 goto out_balanced;
3555 }
3556 }
3557
3558 if (!ld_moved) {
3559 schedstat_inc(sd, lb_failed[idle]);
3560 sd->nr_balance_failed++;
3561
3562 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3563
3564 spin_lock_irqsave(&busiest->lock, flags);
3565
3566 /* don't kick the migration_thread, if the curr
3567 * task on busiest cpu can't be moved to this_cpu
3568 */
3569 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3570 spin_unlock_irqrestore(&busiest->lock, flags);
3571 all_pinned = 1;
3572 goto out_one_pinned;
3573 }
3574
3575 if (!busiest->active_balance) {
3576 busiest->active_balance = 1;
3577 busiest->push_cpu = this_cpu;
3578 active_balance = 1;
3579 }
3580 spin_unlock_irqrestore(&busiest->lock, flags);
3581 if (active_balance)
3582 wake_up_process(busiest->migration_thread);
3583
3584 /*
3585 * We've kicked active balancing, reset the failure
3586 * counter.
3587 */
3588 sd->nr_balance_failed = sd->cache_nice_tries+1;
3589 }
3590 } else
3591 sd->nr_balance_failed = 0;
3592
3593 if (likely(!active_balance)) {
3594 /* We were unbalanced, so reset the balancing interval */
3595 sd->balance_interval = sd->min_interval;
3596 } else {
3597 /*
3598 * If we've begun active balancing, start to back off. This
3599 * case may not be covered by the all_pinned logic if there
3600 * is only 1 task on the busy runqueue (because we don't call
3601 * move_tasks).
3602 */
3603 if (sd->balance_interval < sd->max_interval)
3604 sd->balance_interval *= 2;
3605 }
3606
3607 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3608 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3609 ld_moved = -1;
3610
3611 goto out;
3612
3613 out_balanced:
3614 schedstat_inc(sd, lb_balanced[idle]);
3615
3616 sd->nr_balance_failed = 0;
3617
3618 out_one_pinned:
3619 /* tune up the balancing interval */
3620 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3621 (sd->balance_interval < sd->max_interval))
3622 sd->balance_interval *= 2;
3623
3624 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3625 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3626 ld_moved = -1;
3627 else
3628 ld_moved = 0;
3629 out:
3630 if (ld_moved)
3631 update_shares(sd);
3632 return ld_moved;
3633 }
3634
3635 /*
3636 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3637 * tasks if there is an imbalance.
3638 *
3639 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3640 * this_rq is locked.
3641 */
3642 static int
3643 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3644 cpumask_t *cpus)
3645 {
3646 struct sched_group *group;
3647 struct rq *busiest = NULL;
3648 unsigned long imbalance;
3649 int ld_moved = 0;
3650 int sd_idle = 0;
3651 int all_pinned = 0;
3652
3653 cpus_setall(*cpus);
3654
3655 /*
3656 * When power savings policy is enabled for the parent domain, idle
3657 * sibling can pick up load irrespective of busy siblings. In this case,
3658 * let the state of idle sibling percolate up as IDLE, instead of
3659 * portraying it as CPU_NOT_IDLE.
3660 */
3661 if (sd->flags & SD_SHARE_CPUPOWER &&
3662 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3663 sd_idle = 1;
3664
3665 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3666 redo:
3667 update_shares_locked(this_rq, sd);
3668 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3669 &sd_idle, cpus, NULL);
3670 if (!group) {
3671 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3672 goto out_balanced;
3673 }
3674
3675 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3676 if (!busiest) {
3677 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3678 goto out_balanced;
3679 }
3680
3681 BUG_ON(busiest == this_rq);
3682
3683 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3684
3685 ld_moved = 0;
3686 if (busiest->nr_running > 1) {
3687 /* Attempt to move tasks */
3688 double_lock_balance(this_rq, busiest);
3689 /* this_rq->clock is already updated */
3690 update_rq_clock(busiest);
3691 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3692 imbalance, sd, CPU_NEWLY_IDLE,
3693 &all_pinned);
3694 spin_unlock(&busiest->lock);
3695
3696 if (unlikely(all_pinned)) {
3697 cpu_clear(cpu_of(busiest), *cpus);
3698 if (!cpus_empty(*cpus))
3699 goto redo;
3700 }
3701 }
3702
3703 if (!ld_moved) {
3704 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3705 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3706 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3707 return -1;
3708 } else
3709 sd->nr_balance_failed = 0;
3710
3711 update_shares_locked(this_rq, sd);
3712 return ld_moved;
3713
3714 out_balanced:
3715 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3716 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3717 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3718 return -1;
3719 sd->nr_balance_failed = 0;
3720
3721 return 0;
3722 }
3723
3724 /*
3725 * idle_balance is called by schedule() if this_cpu is about to become
3726 * idle. Attempts to pull tasks from other CPUs.
3727 */
3728 static void idle_balance(int this_cpu, struct rq *this_rq)
3729 {
3730 struct sched_domain *sd;
3731 int pulled_task = -1;
3732 unsigned long next_balance = jiffies + HZ;
3733 cpumask_t tmpmask;
3734
3735 for_each_domain(this_cpu, sd) {
3736 unsigned long interval;
3737
3738 if (!(sd->flags & SD_LOAD_BALANCE))
3739 continue;
3740
3741 if (sd->flags & SD_BALANCE_NEWIDLE)
3742 /* If we've pulled tasks over stop searching: */
3743 pulled_task = load_balance_newidle(this_cpu, this_rq,
3744 sd, &tmpmask);
3745
3746 interval = msecs_to_jiffies(sd->balance_interval);
3747 if (time_after(next_balance, sd->last_balance + interval))
3748 next_balance = sd->last_balance + interval;
3749 if (pulled_task)
3750 break;
3751 }
3752 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3753 /*
3754 * We are going idle. next_balance may be set based on
3755 * a busy processor. So reset next_balance.
3756 */
3757 this_rq->next_balance = next_balance;
3758 }
3759 }
3760
3761 /*
3762 * active_load_balance is run by migration threads. It pushes running tasks
3763 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3764 * running on each physical CPU where possible, and avoids physical /
3765 * logical imbalances.
3766 *
3767 * Called with busiest_rq locked.
3768 */
3769 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3770 {
3771 int target_cpu = busiest_rq->push_cpu;
3772 struct sched_domain *sd;
3773 struct rq *target_rq;
3774
3775 /* Is there any task to move? */
3776 if (busiest_rq->nr_running <= 1)
3777 return;
3778
3779 target_rq = cpu_rq(target_cpu);
3780
3781 /*
3782 * This condition is "impossible", if it occurs
3783 * we need to fix it. Originally reported by
3784 * Bjorn Helgaas on a 128-cpu setup.
3785 */
3786 BUG_ON(busiest_rq == target_rq);
3787
3788 /* move a task from busiest_rq to target_rq */
3789 double_lock_balance(busiest_rq, target_rq);
3790 update_rq_clock(busiest_rq);
3791 update_rq_clock(target_rq);
3792
3793 /* Search for an sd spanning us and the target CPU. */
3794 for_each_domain(target_cpu, sd) {
3795 if ((sd->flags & SD_LOAD_BALANCE) &&
3796 cpu_isset(busiest_cpu, sd->span))
3797 break;
3798 }
3799
3800 if (likely(sd)) {
3801 schedstat_inc(sd, alb_count);
3802
3803 if (move_one_task(target_rq, target_cpu, busiest_rq,
3804 sd, CPU_IDLE))
3805 schedstat_inc(sd, alb_pushed);
3806 else
3807 schedstat_inc(sd, alb_failed);
3808 }
3809 spin_unlock(&target_rq->lock);
3810 }
3811
3812 #ifdef CONFIG_NO_HZ
3813 static struct {
3814 atomic_t load_balancer;
3815 cpumask_t cpu_mask;
3816 } nohz ____cacheline_aligned = {
3817 .load_balancer = ATOMIC_INIT(-1),
3818 .cpu_mask = CPU_MASK_NONE,
3819 };
3820
3821 /*
3822 * This routine will try to nominate the ilb (idle load balancing)
3823 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3824 * load balancing on behalf of all those cpus. If all the cpus in the system
3825 * go into this tickless mode, then there will be no ilb owner (as there is
3826 * no need for one) and all the cpus will sleep till the next wakeup event
3827 * arrives...
3828 *
3829 * For the ilb owner, tick is not stopped. And this tick will be used
3830 * for idle load balancing. ilb owner will still be part of
3831 * nohz.cpu_mask..
3832 *
3833 * While stopping the tick, this cpu will become the ilb owner if there
3834 * is no other owner. And will be the owner till that cpu becomes busy
3835 * or if all cpus in the system stop their ticks at which point
3836 * there is no need for ilb owner.
3837 *
3838 * When the ilb owner becomes busy, it nominates another owner, during the
3839 * next busy scheduler_tick()
3840 */
3841 int select_nohz_load_balancer(int stop_tick)
3842 {
3843 int cpu = smp_processor_id();
3844
3845 if (stop_tick) {
3846 cpu_set(cpu, nohz.cpu_mask);
3847 cpu_rq(cpu)->in_nohz_recently = 1;
3848
3849 /*
3850 * If we are going offline and still the leader, give up!
3851 */
3852 if (cpu_is_offline(cpu) &&
3853 atomic_read(&nohz.load_balancer) == cpu) {
3854 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3855 BUG();
3856 return 0;
3857 }
3858
3859 /* time for ilb owner also to sleep */
3860 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3861 if (atomic_read(&nohz.load_balancer) == cpu)
3862 atomic_set(&nohz.load_balancer, -1);
3863 return 0;
3864 }
3865
3866 if (atomic_read(&nohz.load_balancer) == -1) {
3867 /* make me the ilb owner */
3868 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3869 return 1;
3870 } else if (atomic_read(&nohz.load_balancer) == cpu)
3871 return 1;
3872 } else {
3873 if (!cpu_isset(cpu, nohz.cpu_mask))
3874 return 0;
3875
3876 cpu_clear(cpu, nohz.cpu_mask);
3877
3878 if (atomic_read(&nohz.load_balancer) == cpu)
3879 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3880 BUG();
3881 }
3882 return 0;
3883 }
3884 #endif
3885
3886 static DEFINE_SPINLOCK(balancing);
3887
3888 /*
3889 * It checks each scheduling domain to see if it is due to be balanced,
3890 * and initiates a balancing operation if so.
3891 *
3892 * Balancing parameters are set up in arch_init_sched_domains.
3893 */
3894 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3895 {
3896 int balance = 1;
3897 struct rq *rq = cpu_rq(cpu);
3898 unsigned long interval;
3899 struct sched_domain *sd;
3900 /* Earliest time when we have to do rebalance again */
3901 unsigned long next_balance = jiffies + 60*HZ;
3902 int update_next_balance = 0;
3903 int need_serialize;
3904 cpumask_t tmp;
3905
3906 for_each_domain(cpu, sd) {
3907 if (!(sd->flags & SD_LOAD_BALANCE))
3908 continue;
3909
3910 interval = sd->balance_interval;
3911 if (idle != CPU_IDLE)
3912 interval *= sd->busy_factor;
3913
3914 /* scale ms to jiffies */
3915 interval = msecs_to_jiffies(interval);
3916 if (unlikely(!interval))
3917 interval = 1;
3918 if (interval > HZ*NR_CPUS/10)
3919 interval = HZ*NR_CPUS/10;
3920
3921 need_serialize = sd->flags & SD_SERIALIZE;
3922
3923 if (need_serialize) {
3924 if (!spin_trylock(&balancing))
3925 goto out;
3926 }
3927
3928 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3929 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3930 /*
3931 * We've pulled tasks over so either we're no
3932 * longer idle, or one of our SMT siblings is
3933 * not idle.
3934 */
3935 idle = CPU_NOT_IDLE;
3936 }
3937 sd->last_balance = jiffies;
3938 }
3939 if (need_serialize)
3940 spin_unlock(&balancing);
3941 out:
3942 if (time_after(next_balance, sd->last_balance + interval)) {
3943 next_balance = sd->last_balance + interval;
3944 update_next_balance = 1;
3945 }
3946
3947 /*
3948 * Stop the load balance at this level. There is another
3949 * CPU in our sched group which is doing load balancing more
3950 * actively.
3951 */
3952 if (!balance)
3953 break;
3954 }
3955
3956 /*
3957 * next_balance will be updated only when there is a need.
3958 * When the cpu is attached to null domain for ex, it will not be
3959 * updated.
3960 */
3961 if (likely(update_next_balance))
3962 rq->next_balance = next_balance;
3963 }
3964
3965 /*
3966 * run_rebalance_domains is triggered when needed from the scheduler tick.
3967 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3968 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3969 */
3970 static void run_rebalance_domains(struct softirq_action *h)
3971 {
3972 int this_cpu = smp_processor_id();
3973 struct rq *this_rq = cpu_rq(this_cpu);
3974 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3975 CPU_IDLE : CPU_NOT_IDLE;
3976
3977 rebalance_domains(this_cpu, idle);
3978
3979 #ifdef CONFIG_NO_HZ
3980 /*
3981 * If this cpu is the owner for idle load balancing, then do the
3982 * balancing on behalf of the other idle cpus whose ticks are
3983 * stopped.
3984 */
3985 if (this_rq->idle_at_tick &&
3986 atomic_read(&nohz.load_balancer) == this_cpu) {
3987 cpumask_t cpus = nohz.cpu_mask;
3988 struct rq *rq;
3989 int balance_cpu;
3990
3991 cpu_clear(this_cpu, cpus);
3992 for_each_cpu_mask(balance_cpu, cpus) {
3993 /*
3994 * If this cpu gets work to do, stop the load balancing
3995 * work being done for other cpus. Next load
3996 * balancing owner will pick it up.
3997 */
3998 if (need_resched())
3999 break;
4000
4001 rebalance_domains(balance_cpu, CPU_IDLE);
4002
4003 rq = cpu_rq(balance_cpu);
4004 if (time_after(this_rq->next_balance, rq->next_balance))
4005 this_rq->next_balance = rq->next_balance;
4006 }
4007 }
4008 #endif
4009 }
4010
4011 /*
4012 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4013 *
4014 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4015 * idle load balancing owner or decide to stop the periodic load balancing,
4016 * if the whole system is idle.
4017 */
4018 static inline void trigger_load_balance(struct rq *rq, int cpu)
4019 {
4020 #ifdef CONFIG_NO_HZ
4021 /*
4022 * If we were in the nohz mode recently and busy at the current
4023 * scheduler tick, then check if we need to nominate new idle
4024 * load balancer.
4025 */
4026 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4027 rq->in_nohz_recently = 0;
4028
4029 if (atomic_read(&nohz.load_balancer) == cpu) {
4030 cpu_clear(cpu, nohz.cpu_mask);
4031 atomic_set(&nohz.load_balancer, -1);
4032 }
4033
4034 if (atomic_read(&nohz.load_balancer) == -1) {
4035 /*
4036 * simple selection for now: Nominate the
4037 * first cpu in the nohz list to be the next
4038 * ilb owner.
4039 *
4040 * TBD: Traverse the sched domains and nominate
4041 * the nearest cpu in the nohz.cpu_mask.
4042 */
4043 int ilb = first_cpu(nohz.cpu_mask);
4044
4045 if (ilb < nr_cpu_ids)
4046 resched_cpu(ilb);
4047 }
4048 }
4049
4050 /*
4051 * If this cpu is idle and doing idle load balancing for all the
4052 * cpus with ticks stopped, is it time for that to stop?
4053 */
4054 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4055 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4056 resched_cpu(cpu);
4057 return;
4058 }
4059
4060 /*
4061 * If this cpu is idle and the idle load balancing is done by
4062 * someone else, then no need raise the SCHED_SOFTIRQ
4063 */
4064 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4065 cpu_isset(cpu, nohz.cpu_mask))
4066 return;
4067 #endif
4068 if (time_after_eq(jiffies, rq->next_balance))
4069 raise_softirq(SCHED_SOFTIRQ);
4070 }
4071
4072 #else /* CONFIG_SMP */
4073
4074 /*
4075 * on UP we do not need to balance between CPUs:
4076 */
4077 static inline void idle_balance(int cpu, struct rq *rq)
4078 {
4079 }
4080
4081 #endif
4082
4083 DEFINE_PER_CPU(struct kernel_stat, kstat);
4084
4085 EXPORT_PER_CPU_SYMBOL(kstat);
4086
4087 /*
4088 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4089 * that have not yet been banked in case the task is currently running.
4090 */
4091 unsigned long long task_sched_runtime(struct task_struct *p)
4092 {
4093 unsigned long flags;
4094 u64 ns, delta_exec;
4095 struct rq *rq;
4096
4097 rq = task_rq_lock(p, &flags);
4098 ns = p->se.sum_exec_runtime;
4099 if (task_current(rq, p)) {
4100 update_rq_clock(rq);
4101 delta_exec = rq->clock - p->se.exec_start;
4102 if ((s64)delta_exec > 0)
4103 ns += delta_exec;
4104 }
4105 task_rq_unlock(rq, &flags);
4106
4107 return ns;
4108 }
4109
4110 /*
4111 * Account user cpu time to a process.
4112 * @p: the process that the cpu time gets accounted to
4113 * @cputime: the cpu time spent in user space since the last update
4114 */
4115 void account_user_time(struct task_struct *p, cputime_t cputime)
4116 {
4117 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4118 cputime64_t tmp;
4119
4120 p->utime = cputime_add(p->utime, cputime);
4121
4122 /* Add user time to cpustat. */
4123 tmp = cputime_to_cputime64(cputime);
4124 if (TASK_NICE(p) > 0)
4125 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4126 else
4127 cpustat->user = cputime64_add(cpustat->user, tmp);
4128 }
4129
4130 /*
4131 * Account guest cpu time to a process.
4132 * @p: the process that the cpu time gets accounted to
4133 * @cputime: the cpu time spent in virtual machine since the last update
4134 */
4135 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4136 {
4137 cputime64_t tmp;
4138 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4139
4140 tmp = cputime_to_cputime64(cputime);
4141
4142 p->utime = cputime_add(p->utime, cputime);
4143 p->gtime = cputime_add(p->gtime, cputime);
4144
4145 cpustat->user = cputime64_add(cpustat->user, tmp);
4146 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4147 }
4148
4149 /*
4150 * Account scaled user cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
4152 * @cputime: the cpu time spent in user space since the last update
4153 */
4154 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4155 {
4156 p->utimescaled = cputime_add(p->utimescaled, cputime);
4157 }
4158
4159 /*
4160 * Account system cpu time to a process.
4161 * @p: the process that the cpu time gets accounted to
4162 * @hardirq_offset: the offset to subtract from hardirq_count()
4163 * @cputime: the cpu time spent in kernel space since the last update
4164 */
4165 void account_system_time(struct task_struct *p, int hardirq_offset,
4166 cputime_t cputime)
4167 {
4168 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4169 struct rq *rq = this_rq();
4170 cputime64_t tmp;
4171
4172 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4173 account_guest_time(p, cputime);
4174 return;
4175 }
4176
4177 p->stime = cputime_add(p->stime, cputime);
4178
4179 /* Add system time to cpustat. */
4180 tmp = cputime_to_cputime64(cputime);
4181 if (hardirq_count() - hardirq_offset)
4182 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4183 else if (softirq_count())
4184 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4185 else if (p != rq->idle)
4186 cpustat->system = cputime64_add(cpustat->system, tmp);
4187 else if (atomic_read(&rq->nr_iowait) > 0)
4188 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4189 else
4190 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4191 /* Account for system time used */
4192 acct_update_integrals(p);
4193 }
4194
4195 /*
4196 * Account scaled system cpu time to a process.
4197 * @p: the process that the cpu time gets accounted to
4198 * @hardirq_offset: the offset to subtract from hardirq_count()
4199 * @cputime: the cpu time spent in kernel space since the last update
4200 */
4201 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4202 {
4203 p->stimescaled = cputime_add(p->stimescaled, cputime);
4204 }
4205
4206 /*
4207 * Account for involuntary wait time.
4208 * @p: the process from which the cpu time has been stolen
4209 * @steal: the cpu time spent in involuntary wait
4210 */
4211 void account_steal_time(struct task_struct *p, cputime_t steal)
4212 {
4213 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4214 cputime64_t tmp = cputime_to_cputime64(steal);
4215 struct rq *rq = this_rq();
4216
4217 if (p == rq->idle) {
4218 p->stime = cputime_add(p->stime, steal);
4219 if (atomic_read(&rq->nr_iowait) > 0)
4220 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4221 else
4222 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4223 } else
4224 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4225 }
4226
4227 /*
4228 * This function gets called by the timer code, with HZ frequency.
4229 * We call it with interrupts disabled.
4230 *
4231 * It also gets called by the fork code, when changing the parent's
4232 * timeslices.
4233 */
4234 void scheduler_tick(void)
4235 {
4236 int cpu = smp_processor_id();
4237 struct rq *rq = cpu_rq(cpu);
4238 struct task_struct *curr = rq->curr;
4239
4240 sched_clock_tick();
4241
4242 spin_lock(&rq->lock);
4243 update_rq_clock(rq);
4244 update_cpu_load(rq);
4245 curr->sched_class->task_tick(rq, curr, 0);
4246 spin_unlock(&rq->lock);
4247
4248 #ifdef CONFIG_SMP
4249 rq->idle_at_tick = idle_cpu(cpu);
4250 trigger_load_balance(rq, cpu);
4251 #endif
4252 }
4253
4254 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4255 defined(CONFIG_PREEMPT_TRACER))
4256
4257 static inline unsigned long get_parent_ip(unsigned long addr)
4258 {
4259 if (in_lock_functions(addr)) {
4260 addr = CALLER_ADDR2;
4261 if (in_lock_functions(addr))
4262 addr = CALLER_ADDR3;
4263 }
4264 return addr;
4265 }
4266
4267 void __kprobes add_preempt_count(int val)
4268 {
4269 #ifdef CONFIG_DEBUG_PREEMPT
4270 /*
4271 * Underflow?
4272 */
4273 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4274 return;
4275 #endif
4276 preempt_count() += val;
4277 #ifdef CONFIG_DEBUG_PREEMPT
4278 /*
4279 * Spinlock count overflowing soon?
4280 */
4281 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4282 PREEMPT_MASK - 10);
4283 #endif
4284 if (preempt_count() == val)
4285 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4286 }
4287 EXPORT_SYMBOL(add_preempt_count);
4288
4289 void __kprobes sub_preempt_count(int val)
4290 {
4291 #ifdef CONFIG_DEBUG_PREEMPT
4292 /*
4293 * Underflow?
4294 */
4295 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4296 return;
4297 /*
4298 * Is the spinlock portion underflowing?
4299 */
4300 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4301 !(preempt_count() & PREEMPT_MASK)))
4302 return;
4303 #endif
4304
4305 if (preempt_count() == val)
4306 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4307 preempt_count() -= val;
4308 }
4309 EXPORT_SYMBOL(sub_preempt_count);
4310
4311 #endif
4312
4313 /*
4314 * Print scheduling while atomic bug:
4315 */
4316 static noinline void __schedule_bug(struct task_struct *prev)
4317 {
4318 struct pt_regs *regs = get_irq_regs();
4319
4320 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4321 prev->comm, prev->pid, preempt_count());
4322
4323 debug_show_held_locks(prev);
4324 print_modules();
4325 if (irqs_disabled())
4326 print_irqtrace_events(prev);
4327
4328 if (regs)
4329 show_regs(regs);
4330 else
4331 dump_stack();
4332 }
4333
4334 /*
4335 * Various schedule()-time debugging checks and statistics:
4336 */
4337 static inline void schedule_debug(struct task_struct *prev)
4338 {
4339 /*
4340 * Test if we are atomic. Since do_exit() needs to call into
4341 * schedule() atomically, we ignore that path for now.
4342 * Otherwise, whine if we are scheduling when we should not be.
4343 */
4344 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4345 __schedule_bug(prev);
4346
4347 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4348
4349 schedstat_inc(this_rq(), sched_count);
4350 #ifdef CONFIG_SCHEDSTATS
4351 if (unlikely(prev->lock_depth >= 0)) {
4352 schedstat_inc(this_rq(), bkl_count);
4353 schedstat_inc(prev, sched_info.bkl_count);
4354 }
4355 #endif
4356 }
4357
4358 /*
4359 * Pick up the highest-prio task:
4360 */
4361 static inline struct task_struct *
4362 pick_next_task(struct rq *rq, struct task_struct *prev)
4363 {
4364 const struct sched_class *class;
4365 struct task_struct *p;
4366
4367 /*
4368 * Optimization: we know that if all tasks are in
4369 * the fair class we can call that function directly:
4370 */
4371 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4372 p = fair_sched_class.pick_next_task(rq);
4373 if (likely(p))
4374 return p;
4375 }
4376
4377 class = sched_class_highest;
4378 for ( ; ; ) {
4379 p = class->pick_next_task(rq);
4380 if (p)
4381 return p;
4382 /*
4383 * Will never be NULL as the idle class always
4384 * returns a non-NULL p:
4385 */
4386 class = class->next;
4387 }
4388 }
4389
4390 /*
4391 * schedule() is the main scheduler function.
4392 */
4393 asmlinkage void __sched schedule(void)
4394 {
4395 struct task_struct *prev, *next;
4396 unsigned long *switch_count;
4397 struct rq *rq;
4398 int cpu, hrtick = sched_feat(HRTICK);
4399
4400 need_resched:
4401 preempt_disable();
4402 cpu = smp_processor_id();
4403 rq = cpu_rq(cpu);
4404 rcu_qsctr_inc(cpu);
4405 prev = rq->curr;
4406 switch_count = &prev->nivcsw;
4407
4408 release_kernel_lock(prev);
4409 need_resched_nonpreemptible:
4410
4411 schedule_debug(prev);
4412
4413 if (hrtick)
4414 hrtick_clear(rq);
4415
4416 /*
4417 * Do the rq-clock update outside the rq lock:
4418 */
4419 local_irq_disable();
4420 update_rq_clock(rq);
4421 spin_lock(&rq->lock);
4422 clear_tsk_need_resched(prev);
4423
4424 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4425 if (unlikely(signal_pending_state(prev->state, prev)))
4426 prev->state = TASK_RUNNING;
4427 else
4428 deactivate_task(rq, prev, 1);
4429 switch_count = &prev->nvcsw;
4430 }
4431
4432 #ifdef CONFIG_SMP
4433 if (prev->sched_class->pre_schedule)
4434 prev->sched_class->pre_schedule(rq, prev);
4435 #endif
4436
4437 if (unlikely(!rq->nr_running))
4438 idle_balance(cpu, rq);
4439
4440 prev->sched_class->put_prev_task(rq, prev);
4441 next = pick_next_task(rq, prev);
4442
4443 if (likely(prev != next)) {
4444 sched_info_switch(prev, next);
4445
4446 rq->nr_switches++;
4447 rq->curr = next;
4448 ++*switch_count;
4449
4450 context_switch(rq, prev, next); /* unlocks the rq */
4451 /*
4452 * the context switch might have flipped the stack from under
4453 * us, hence refresh the local variables.
4454 */
4455 cpu = smp_processor_id();
4456 rq = cpu_rq(cpu);
4457 } else
4458 spin_unlock_irq(&rq->lock);
4459
4460 if (hrtick)
4461 hrtick_set(rq);
4462
4463 if (unlikely(reacquire_kernel_lock(current) < 0))
4464 goto need_resched_nonpreemptible;
4465
4466 preempt_enable_no_resched();
4467 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4468 goto need_resched;
4469 }
4470 EXPORT_SYMBOL(schedule);
4471
4472 #ifdef CONFIG_PREEMPT
4473 /*
4474 * this is the entry point to schedule() from in-kernel preemption
4475 * off of preempt_enable. Kernel preemptions off return from interrupt
4476 * occur there and call schedule directly.
4477 */
4478 asmlinkage void __sched preempt_schedule(void)
4479 {
4480 struct thread_info *ti = current_thread_info();
4481
4482 /*
4483 * If there is a non-zero preempt_count or interrupts are disabled,
4484 * we do not want to preempt the current task. Just return..
4485 */
4486 if (likely(ti->preempt_count || irqs_disabled()))
4487 return;
4488
4489 do {
4490 add_preempt_count(PREEMPT_ACTIVE);
4491 schedule();
4492 sub_preempt_count(PREEMPT_ACTIVE);
4493
4494 /*
4495 * Check again in case we missed a preemption opportunity
4496 * between schedule and now.
4497 */
4498 barrier();
4499 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4500 }
4501 EXPORT_SYMBOL(preempt_schedule);
4502
4503 /*
4504 * this is the entry point to schedule() from kernel preemption
4505 * off of irq context.
4506 * Note, that this is called and return with irqs disabled. This will
4507 * protect us against recursive calling from irq.
4508 */
4509 asmlinkage void __sched preempt_schedule_irq(void)
4510 {
4511 struct thread_info *ti = current_thread_info();
4512
4513 /* Catch callers which need to be fixed */
4514 BUG_ON(ti->preempt_count || !irqs_disabled());
4515
4516 do {
4517 add_preempt_count(PREEMPT_ACTIVE);
4518 local_irq_enable();
4519 schedule();
4520 local_irq_disable();
4521 sub_preempt_count(PREEMPT_ACTIVE);
4522
4523 /*
4524 * Check again in case we missed a preemption opportunity
4525 * between schedule and now.
4526 */
4527 barrier();
4528 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4529 }
4530
4531 #endif /* CONFIG_PREEMPT */
4532
4533 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4534 void *key)
4535 {
4536 return try_to_wake_up(curr->private, mode, sync);
4537 }
4538 EXPORT_SYMBOL(default_wake_function);
4539
4540 /*
4541 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4542 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4543 * number) then we wake all the non-exclusive tasks and one exclusive task.
4544 *
4545 * There are circumstances in which we can try to wake a task which has already
4546 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4547 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4548 */
4549 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4550 int nr_exclusive, int sync, void *key)
4551 {
4552 wait_queue_t *curr, *next;
4553
4554 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4555 unsigned flags = curr->flags;
4556
4557 if (curr->func(curr, mode, sync, key) &&
4558 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4559 break;
4560 }
4561 }
4562
4563 /**
4564 * __wake_up - wake up threads blocked on a waitqueue.
4565 * @q: the waitqueue
4566 * @mode: which threads
4567 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4568 * @key: is directly passed to the wakeup function
4569 */
4570 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4571 int nr_exclusive, void *key)
4572 {
4573 unsigned long flags;
4574
4575 spin_lock_irqsave(&q->lock, flags);
4576 __wake_up_common(q, mode, nr_exclusive, 0, key);
4577 spin_unlock_irqrestore(&q->lock, flags);
4578 }
4579 EXPORT_SYMBOL(__wake_up);
4580
4581 /*
4582 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4583 */
4584 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4585 {
4586 __wake_up_common(q, mode, 1, 0, NULL);
4587 }
4588
4589 /**
4590 * __wake_up_sync - wake up threads blocked on a waitqueue.
4591 * @q: the waitqueue
4592 * @mode: which threads
4593 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4594 *
4595 * The sync wakeup differs that the waker knows that it will schedule
4596 * away soon, so while the target thread will be woken up, it will not
4597 * be migrated to another CPU - ie. the two threads are 'synchronized'
4598 * with each other. This can prevent needless bouncing between CPUs.
4599 *
4600 * On UP it can prevent extra preemption.
4601 */
4602 void
4603 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4604 {
4605 unsigned long flags;
4606 int sync = 1;
4607
4608 if (unlikely(!q))
4609 return;
4610
4611 if (unlikely(!nr_exclusive))
4612 sync = 0;
4613
4614 spin_lock_irqsave(&q->lock, flags);
4615 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4616 spin_unlock_irqrestore(&q->lock, flags);
4617 }
4618 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4619
4620 void complete(struct completion *x)
4621 {
4622 unsigned long flags;
4623
4624 spin_lock_irqsave(&x->wait.lock, flags);
4625 x->done++;
4626 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4627 spin_unlock_irqrestore(&x->wait.lock, flags);
4628 }
4629 EXPORT_SYMBOL(complete);
4630
4631 void complete_all(struct completion *x)
4632 {
4633 unsigned long flags;
4634
4635 spin_lock_irqsave(&x->wait.lock, flags);
4636 x->done += UINT_MAX/2;
4637 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4638 spin_unlock_irqrestore(&x->wait.lock, flags);
4639 }
4640 EXPORT_SYMBOL(complete_all);
4641
4642 static inline long __sched
4643 do_wait_for_common(struct completion *x, long timeout, int state)
4644 {
4645 if (!x->done) {
4646 DECLARE_WAITQUEUE(wait, current);
4647
4648 wait.flags |= WQ_FLAG_EXCLUSIVE;
4649 __add_wait_queue_tail(&x->wait, &wait);
4650 do {
4651 if ((state == TASK_INTERRUPTIBLE &&
4652 signal_pending(current)) ||
4653 (state == TASK_KILLABLE &&
4654 fatal_signal_pending(current))) {
4655 timeout = -ERESTARTSYS;
4656 break;
4657 }
4658 __set_current_state(state);
4659 spin_unlock_irq(&x->wait.lock);
4660 timeout = schedule_timeout(timeout);
4661 spin_lock_irq(&x->wait.lock);
4662 } while (!x->done && timeout);
4663 __remove_wait_queue(&x->wait, &wait);
4664 if (!x->done)
4665 return timeout;
4666 }
4667 x->done--;
4668 return timeout ?: 1;
4669 }
4670
4671 static long __sched
4672 wait_for_common(struct completion *x, long timeout, int state)
4673 {
4674 might_sleep();
4675
4676 spin_lock_irq(&x->wait.lock);
4677 timeout = do_wait_for_common(x, timeout, state);
4678 spin_unlock_irq(&x->wait.lock);
4679 return timeout;
4680 }
4681
4682 void __sched wait_for_completion(struct completion *x)
4683 {
4684 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4685 }
4686 EXPORT_SYMBOL(wait_for_completion);
4687
4688 unsigned long __sched
4689 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4690 {
4691 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4692 }
4693 EXPORT_SYMBOL(wait_for_completion_timeout);
4694
4695 int __sched wait_for_completion_interruptible(struct completion *x)
4696 {
4697 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4698 if (t == -ERESTARTSYS)
4699 return t;
4700 return 0;
4701 }
4702 EXPORT_SYMBOL(wait_for_completion_interruptible);
4703
4704 unsigned long __sched
4705 wait_for_completion_interruptible_timeout(struct completion *x,
4706 unsigned long timeout)
4707 {
4708 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4709 }
4710 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4711
4712 int __sched wait_for_completion_killable(struct completion *x)
4713 {
4714 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4715 if (t == -ERESTARTSYS)
4716 return t;
4717 return 0;
4718 }
4719 EXPORT_SYMBOL(wait_for_completion_killable);
4720
4721 static long __sched
4722 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4723 {
4724 unsigned long flags;
4725 wait_queue_t wait;
4726
4727 init_waitqueue_entry(&wait, current);
4728
4729 __set_current_state(state);
4730
4731 spin_lock_irqsave(&q->lock, flags);
4732 __add_wait_queue(q, &wait);
4733 spin_unlock(&q->lock);
4734 timeout = schedule_timeout(timeout);
4735 spin_lock_irq(&q->lock);
4736 __remove_wait_queue(q, &wait);
4737 spin_unlock_irqrestore(&q->lock, flags);
4738
4739 return timeout;
4740 }
4741
4742 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4743 {
4744 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4745 }
4746 EXPORT_SYMBOL(interruptible_sleep_on);
4747
4748 long __sched
4749 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4750 {
4751 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4752 }
4753 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4754
4755 void __sched sleep_on(wait_queue_head_t *q)
4756 {
4757 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4758 }
4759 EXPORT_SYMBOL(sleep_on);
4760
4761 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4762 {
4763 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4764 }
4765 EXPORT_SYMBOL(sleep_on_timeout);
4766
4767 #ifdef CONFIG_RT_MUTEXES
4768
4769 /*
4770 * rt_mutex_setprio - set the current priority of a task
4771 * @p: task
4772 * @prio: prio value (kernel-internal form)
4773 *
4774 * This function changes the 'effective' priority of a task. It does
4775 * not touch ->normal_prio like __setscheduler().
4776 *
4777 * Used by the rt_mutex code to implement priority inheritance logic.
4778 */
4779 void rt_mutex_setprio(struct task_struct *p, int prio)
4780 {
4781 unsigned long flags;
4782 int oldprio, on_rq, running;
4783 struct rq *rq;
4784 const struct sched_class *prev_class = p->sched_class;
4785
4786 BUG_ON(prio < 0 || prio > MAX_PRIO);
4787
4788 rq = task_rq_lock(p, &flags);
4789 update_rq_clock(rq);
4790
4791 oldprio = p->prio;
4792 on_rq = p->se.on_rq;
4793 running = task_current(rq, p);
4794 if (on_rq)
4795 dequeue_task(rq, p, 0);
4796 if (running)
4797 p->sched_class->put_prev_task(rq, p);
4798
4799 if (rt_prio(prio))
4800 p->sched_class = &rt_sched_class;
4801 else
4802 p->sched_class = &fair_sched_class;
4803
4804 p->prio = prio;
4805
4806 if (running)
4807 p->sched_class->set_curr_task(rq);
4808 if (on_rq) {
4809 enqueue_task(rq, p, 0);
4810
4811 check_class_changed(rq, p, prev_class, oldprio, running);
4812 }
4813 task_rq_unlock(rq, &flags);
4814 }
4815
4816 #endif
4817
4818 void set_user_nice(struct task_struct *p, long nice)
4819 {
4820 int old_prio, delta, on_rq;
4821 unsigned long flags;
4822 struct rq *rq;
4823
4824 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4825 return;
4826 /*
4827 * We have to be careful, if called from sys_setpriority(),
4828 * the task might be in the middle of scheduling on another CPU.
4829 */
4830 rq = task_rq_lock(p, &flags);
4831 update_rq_clock(rq);
4832 /*
4833 * The RT priorities are set via sched_setscheduler(), but we still
4834 * allow the 'normal' nice value to be set - but as expected
4835 * it wont have any effect on scheduling until the task is
4836 * SCHED_FIFO/SCHED_RR:
4837 */
4838 if (task_has_rt_policy(p)) {
4839 p->static_prio = NICE_TO_PRIO(nice);
4840 goto out_unlock;
4841 }
4842 on_rq = p->se.on_rq;
4843 if (on_rq)
4844 dequeue_task(rq, p, 0);
4845
4846 p->static_prio = NICE_TO_PRIO(nice);
4847 set_load_weight(p);
4848 old_prio = p->prio;
4849 p->prio = effective_prio(p);
4850 delta = p->prio - old_prio;
4851
4852 if (on_rq) {
4853 enqueue_task(rq, p, 0);
4854 /*
4855 * If the task increased its priority or is running and
4856 * lowered its priority, then reschedule its CPU:
4857 */
4858 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4859 resched_task(rq->curr);
4860 }
4861 out_unlock:
4862 task_rq_unlock(rq, &flags);
4863 }
4864 EXPORT_SYMBOL(set_user_nice);
4865
4866 /*
4867 * can_nice - check if a task can reduce its nice value
4868 * @p: task
4869 * @nice: nice value
4870 */
4871 int can_nice(const struct task_struct *p, const int nice)
4872 {
4873 /* convert nice value [19,-20] to rlimit style value [1,40] */
4874 int nice_rlim = 20 - nice;
4875
4876 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4877 capable(CAP_SYS_NICE));
4878 }
4879
4880 #ifdef __ARCH_WANT_SYS_NICE
4881
4882 /*
4883 * sys_nice - change the priority of the current process.
4884 * @increment: priority increment
4885 *
4886 * sys_setpriority is a more generic, but much slower function that
4887 * does similar things.
4888 */
4889 asmlinkage long sys_nice(int increment)
4890 {
4891 long nice, retval;
4892
4893 /*
4894 * Setpriority might change our priority at the same moment.
4895 * We don't have to worry. Conceptually one call occurs first
4896 * and we have a single winner.
4897 */
4898 if (increment < -40)
4899 increment = -40;
4900 if (increment > 40)
4901 increment = 40;
4902
4903 nice = PRIO_TO_NICE(current->static_prio) + increment;
4904 if (nice < -20)
4905 nice = -20;
4906 if (nice > 19)
4907 nice = 19;
4908
4909 if (increment < 0 && !can_nice(current, nice))
4910 return -EPERM;
4911
4912 retval = security_task_setnice(current, nice);
4913 if (retval)
4914 return retval;
4915
4916 set_user_nice(current, nice);
4917 return 0;
4918 }
4919
4920 #endif
4921
4922 /**
4923 * task_prio - return the priority value of a given task.
4924 * @p: the task in question.
4925 *
4926 * This is the priority value as seen by users in /proc.
4927 * RT tasks are offset by -200. Normal tasks are centered
4928 * around 0, value goes from -16 to +15.
4929 */
4930 int task_prio(const struct task_struct *p)
4931 {
4932 return p->prio - MAX_RT_PRIO;
4933 }
4934
4935 /**
4936 * task_nice - return the nice value of a given task.
4937 * @p: the task in question.
4938 */
4939 int task_nice(const struct task_struct *p)
4940 {
4941 return TASK_NICE(p);
4942 }
4943 EXPORT_SYMBOL(task_nice);
4944
4945 /**
4946 * idle_cpu - is a given cpu idle currently?
4947 * @cpu: the processor in question.
4948 */
4949 int idle_cpu(int cpu)
4950 {
4951 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4952 }
4953
4954 /**
4955 * idle_task - return the idle task for a given cpu.
4956 * @cpu: the processor in question.
4957 */
4958 struct task_struct *idle_task(int cpu)
4959 {
4960 return cpu_rq(cpu)->idle;
4961 }
4962
4963 /**
4964 * find_process_by_pid - find a process with a matching PID value.
4965 * @pid: the pid in question.
4966 */
4967 static struct task_struct *find_process_by_pid(pid_t pid)
4968 {
4969 return pid ? find_task_by_vpid(pid) : current;
4970 }
4971
4972 /* Actually do priority change: must hold rq lock. */
4973 static void
4974 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4975 {
4976 BUG_ON(p->se.on_rq);
4977
4978 p->policy = policy;
4979 switch (p->policy) {
4980 case SCHED_NORMAL:
4981 case SCHED_BATCH:
4982 case SCHED_IDLE:
4983 p->sched_class = &fair_sched_class;
4984 break;
4985 case SCHED_FIFO:
4986 case SCHED_RR:
4987 p->sched_class = &rt_sched_class;
4988 break;
4989 }
4990
4991 p->rt_priority = prio;
4992 p->normal_prio = normal_prio(p);
4993 /* we are holding p->pi_lock already */
4994 p->prio = rt_mutex_getprio(p);
4995 set_load_weight(p);
4996 }
4997
4998 static int __sched_setscheduler(struct task_struct *p, int policy,
4999 struct sched_param *param, bool user)
5000 {
5001 int retval, oldprio, oldpolicy = -1, on_rq, running;
5002 unsigned long flags;
5003 const struct sched_class *prev_class = p->sched_class;
5004 struct rq *rq;
5005
5006 /* may grab non-irq protected spin_locks */
5007 BUG_ON(in_interrupt());
5008 recheck:
5009 /* double check policy once rq lock held */
5010 if (policy < 0)
5011 policy = oldpolicy = p->policy;
5012 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5013 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5014 policy != SCHED_IDLE)
5015 return -EINVAL;
5016 /*
5017 * Valid priorities for SCHED_FIFO and SCHED_RR are
5018 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5019 * SCHED_BATCH and SCHED_IDLE is 0.
5020 */
5021 if (param->sched_priority < 0 ||
5022 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5023 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5024 return -EINVAL;
5025 if (rt_policy(policy) != (param->sched_priority != 0))
5026 return -EINVAL;
5027
5028 /*
5029 * Allow unprivileged RT tasks to decrease priority:
5030 */
5031 if (user && !capable(CAP_SYS_NICE)) {
5032 if (rt_policy(policy)) {
5033 unsigned long rlim_rtprio;
5034
5035 if (!lock_task_sighand(p, &flags))
5036 return -ESRCH;
5037 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5038 unlock_task_sighand(p, &flags);
5039
5040 /* can't set/change the rt policy */
5041 if (policy != p->policy && !rlim_rtprio)
5042 return -EPERM;
5043
5044 /* can't increase priority */
5045 if (param->sched_priority > p->rt_priority &&
5046 param->sched_priority > rlim_rtprio)
5047 return -EPERM;
5048 }
5049 /*
5050 * Like positive nice levels, dont allow tasks to
5051 * move out of SCHED_IDLE either:
5052 */
5053 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5054 return -EPERM;
5055
5056 /* can't change other user's priorities */
5057 if ((current->euid != p->euid) &&
5058 (current->euid != p->uid))
5059 return -EPERM;
5060 }
5061
5062 #ifdef CONFIG_RT_GROUP_SCHED
5063 /*
5064 * Do not allow realtime tasks into groups that have no runtime
5065 * assigned.
5066 */
5067 if (user
5068 && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5069 return -EPERM;
5070 #endif
5071
5072 retval = security_task_setscheduler(p, policy, param);
5073 if (retval)
5074 return retval;
5075 /*
5076 * make sure no PI-waiters arrive (or leave) while we are
5077 * changing the priority of the task:
5078 */
5079 spin_lock_irqsave(&p->pi_lock, flags);
5080 /*
5081 * To be able to change p->policy safely, the apropriate
5082 * runqueue lock must be held.
5083 */
5084 rq = __task_rq_lock(p);
5085 /* recheck policy now with rq lock held */
5086 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5087 policy = oldpolicy = -1;
5088 __task_rq_unlock(rq);
5089 spin_unlock_irqrestore(&p->pi_lock, flags);
5090 goto recheck;
5091 }
5092 update_rq_clock(rq);
5093 on_rq = p->se.on_rq;
5094 running = task_current(rq, p);
5095 if (on_rq)
5096 deactivate_task(rq, p, 0);
5097 if (running)
5098 p->sched_class->put_prev_task(rq, p);
5099
5100 oldprio = p->prio;
5101 __setscheduler(rq, p, policy, param->sched_priority);
5102
5103 if (running)
5104 p->sched_class->set_curr_task(rq);
5105 if (on_rq) {
5106 activate_task(rq, p, 0);
5107
5108 check_class_changed(rq, p, prev_class, oldprio, running);
5109 }
5110 __task_rq_unlock(rq);
5111 spin_unlock_irqrestore(&p->pi_lock, flags);
5112
5113 rt_mutex_adjust_pi(p);
5114
5115 return 0;
5116 }
5117
5118 /**
5119 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5120 * @p: the task in question.
5121 * @policy: new policy.
5122 * @param: structure containing the new RT priority.
5123 *
5124 * NOTE that the task may be already dead.
5125 */
5126 int sched_setscheduler(struct task_struct *p, int policy,
5127 struct sched_param *param)
5128 {
5129 return __sched_setscheduler(p, policy, param, true);
5130 }
5131 EXPORT_SYMBOL_GPL(sched_setscheduler);
5132
5133 /**
5134 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5135 * @p: the task in question.
5136 * @policy: new policy.
5137 * @param: structure containing the new RT priority.
5138 *
5139 * Just like sched_setscheduler, only don't bother checking if the
5140 * current context has permission. For example, this is needed in
5141 * stop_machine(): we create temporary high priority worker threads,
5142 * but our caller might not have that capability.
5143 */
5144 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5145 struct sched_param *param)
5146 {
5147 return __sched_setscheduler(p, policy, param, false);
5148 }
5149
5150 static int
5151 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5152 {
5153 struct sched_param lparam;
5154 struct task_struct *p;
5155 int retval;
5156
5157 if (!param || pid < 0)
5158 return -EINVAL;
5159 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5160 return -EFAULT;
5161
5162 rcu_read_lock();
5163 retval = -ESRCH;
5164 p = find_process_by_pid(pid);
5165 if (p != NULL)
5166 retval = sched_setscheduler(p, policy, &lparam);
5167 rcu_read_unlock();
5168
5169 return retval;
5170 }
5171
5172 /**
5173 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5174 * @pid: the pid in question.
5175 * @policy: new policy.
5176 * @param: structure containing the new RT priority.
5177 */
5178 asmlinkage long
5179 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5180 {
5181 /* negative values for policy are not valid */
5182 if (policy < 0)
5183 return -EINVAL;
5184
5185 return do_sched_setscheduler(pid, policy, param);
5186 }
5187
5188 /**
5189 * sys_sched_setparam - set/change the RT priority of a thread
5190 * @pid: the pid in question.
5191 * @param: structure containing the new RT priority.
5192 */
5193 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5194 {
5195 return do_sched_setscheduler(pid, -1, param);
5196 }
5197
5198 /**
5199 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5200 * @pid: the pid in question.
5201 */
5202 asmlinkage long sys_sched_getscheduler(pid_t pid)
5203 {
5204 struct task_struct *p;
5205 int retval;
5206
5207 if (pid < 0)
5208 return -EINVAL;
5209
5210 retval = -ESRCH;
5211 read_lock(&tasklist_lock);
5212 p = find_process_by_pid(pid);
5213 if (p) {
5214 retval = security_task_getscheduler(p);
5215 if (!retval)
5216 retval = p->policy;
5217 }
5218 read_unlock(&tasklist_lock);
5219 return retval;
5220 }
5221
5222 /**
5223 * sys_sched_getscheduler - get the RT priority of a thread
5224 * @pid: the pid in question.
5225 * @param: structure containing the RT priority.
5226 */
5227 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5228 {
5229 struct sched_param lp;
5230 struct task_struct *p;
5231 int retval;
5232
5233 if (!param || pid < 0)
5234 return -EINVAL;
5235
5236 read_lock(&tasklist_lock);
5237 p = find_process_by_pid(pid);
5238 retval = -ESRCH;
5239 if (!p)
5240 goto out_unlock;
5241
5242 retval = security_task_getscheduler(p);
5243 if (retval)
5244 goto out_unlock;
5245
5246 lp.sched_priority = p->rt_priority;
5247 read_unlock(&tasklist_lock);
5248
5249 /*
5250 * This one might sleep, we cannot do it with a spinlock held ...
5251 */
5252 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5253
5254 return retval;
5255
5256 out_unlock:
5257 read_unlock(&tasklist_lock);
5258 return retval;
5259 }
5260
5261 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5262 {
5263 cpumask_t cpus_allowed;
5264 cpumask_t new_mask = *in_mask;
5265 struct task_struct *p;
5266 int retval;
5267
5268 get_online_cpus();
5269 read_lock(&tasklist_lock);
5270
5271 p = find_process_by_pid(pid);
5272 if (!p) {
5273 read_unlock(&tasklist_lock);
5274 put_online_cpus();
5275 return -ESRCH;
5276 }
5277
5278 /*
5279 * It is not safe to call set_cpus_allowed with the
5280 * tasklist_lock held. We will bump the task_struct's
5281 * usage count and then drop tasklist_lock.
5282 */
5283 get_task_struct(p);
5284 read_unlock(&tasklist_lock);
5285
5286 retval = -EPERM;
5287 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5288 !capable(CAP_SYS_NICE))
5289 goto out_unlock;
5290
5291 retval = security_task_setscheduler(p, 0, NULL);
5292 if (retval)
5293 goto out_unlock;
5294
5295 cpuset_cpus_allowed(p, &cpus_allowed);
5296 cpus_and(new_mask, new_mask, cpus_allowed);
5297 again:
5298 retval = set_cpus_allowed_ptr(p, &new_mask);
5299
5300 if (!retval) {
5301 cpuset_cpus_allowed(p, &cpus_allowed);
5302 if (!cpus_subset(new_mask, cpus_allowed)) {
5303 /*
5304 * We must have raced with a concurrent cpuset
5305 * update. Just reset the cpus_allowed to the
5306 * cpuset's cpus_allowed
5307 */
5308 new_mask = cpus_allowed;
5309 goto again;
5310 }
5311 }
5312 out_unlock:
5313 put_task_struct(p);
5314 put_online_cpus();
5315 return retval;
5316 }
5317
5318 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5319 cpumask_t *new_mask)
5320 {
5321 if (len < sizeof(cpumask_t)) {
5322 memset(new_mask, 0, sizeof(cpumask_t));
5323 } else if (len > sizeof(cpumask_t)) {
5324 len = sizeof(cpumask_t);
5325 }
5326 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5327 }
5328
5329 /**
5330 * sys_sched_setaffinity - set the cpu affinity of a process
5331 * @pid: pid of the process
5332 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5333 * @user_mask_ptr: user-space pointer to the new cpu mask
5334 */
5335 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5336 unsigned long __user *user_mask_ptr)
5337 {
5338 cpumask_t new_mask;
5339 int retval;
5340
5341 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5342 if (retval)
5343 return retval;
5344
5345 return sched_setaffinity(pid, &new_mask);
5346 }
5347
5348 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5349 {
5350 struct task_struct *p;
5351 int retval;
5352
5353 get_online_cpus();
5354 read_lock(&tasklist_lock);
5355
5356 retval = -ESRCH;
5357 p = find_process_by_pid(pid);
5358 if (!p)
5359 goto out_unlock;
5360
5361 retval = security_task_getscheduler(p);
5362 if (retval)
5363 goto out_unlock;
5364
5365 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5366
5367 out_unlock:
5368 read_unlock(&tasklist_lock);
5369 put_online_cpus();
5370
5371 return retval;
5372 }
5373
5374 /**
5375 * sys_sched_getaffinity - get the cpu affinity of a process
5376 * @pid: pid of the process
5377 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5378 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5379 */
5380 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5381 unsigned long __user *user_mask_ptr)
5382 {
5383 int ret;
5384 cpumask_t mask;
5385
5386 if (len < sizeof(cpumask_t))
5387 return -EINVAL;
5388
5389 ret = sched_getaffinity(pid, &mask);
5390 if (ret < 0)
5391 return ret;
5392
5393 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5394 return -EFAULT;
5395
5396 return sizeof(cpumask_t);
5397 }
5398
5399 /**
5400 * sys_sched_yield - yield the current processor to other threads.
5401 *
5402 * This function yields the current CPU to other tasks. If there are no
5403 * other threads running on this CPU then this function will return.
5404 */
5405 asmlinkage long sys_sched_yield(void)
5406 {
5407 struct rq *rq = this_rq_lock();
5408
5409 schedstat_inc(rq, yld_count);
5410 current->sched_class->yield_task(rq);
5411
5412 /*
5413 * Since we are going to call schedule() anyway, there's
5414 * no need to preempt or enable interrupts:
5415 */
5416 __release(rq->lock);
5417 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5418 _raw_spin_unlock(&rq->lock);
5419 preempt_enable_no_resched();
5420
5421 schedule();
5422
5423 return 0;
5424 }
5425
5426 static void __cond_resched(void)
5427 {
5428 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5429 __might_sleep(__FILE__, __LINE__);
5430 #endif
5431 /*
5432 * The BKS might be reacquired before we have dropped
5433 * PREEMPT_ACTIVE, which could trigger a second
5434 * cond_resched() call.
5435 */
5436 do {
5437 add_preempt_count(PREEMPT_ACTIVE);
5438 schedule();
5439 sub_preempt_count(PREEMPT_ACTIVE);
5440 } while (need_resched());
5441 }
5442
5443 int __sched _cond_resched(void)
5444 {
5445 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5446 system_state == SYSTEM_RUNNING) {
5447 __cond_resched();
5448 return 1;
5449 }
5450 return 0;
5451 }
5452 EXPORT_SYMBOL(_cond_resched);
5453
5454 /*
5455 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5456 * call schedule, and on return reacquire the lock.
5457 *
5458 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5459 * operations here to prevent schedule() from being called twice (once via
5460 * spin_unlock(), once by hand).
5461 */
5462 int cond_resched_lock(spinlock_t *lock)
5463 {
5464 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5465 int ret = 0;
5466
5467 if (spin_needbreak(lock) || resched) {
5468 spin_unlock(lock);
5469 if (resched && need_resched())
5470 __cond_resched();
5471 else
5472 cpu_relax();
5473 ret = 1;
5474 spin_lock(lock);
5475 }
5476 return ret;
5477 }
5478 EXPORT_SYMBOL(cond_resched_lock);
5479
5480 int __sched cond_resched_softirq(void)
5481 {
5482 BUG_ON(!in_softirq());
5483
5484 if (need_resched() && system_state == SYSTEM_RUNNING) {
5485 local_bh_enable();
5486 __cond_resched();
5487 local_bh_disable();
5488 return 1;
5489 }
5490 return 0;
5491 }
5492 EXPORT_SYMBOL(cond_resched_softirq);
5493
5494 /**
5495 * yield - yield the current processor to other threads.
5496 *
5497 * This is a shortcut for kernel-space yielding - it marks the
5498 * thread runnable and calls sys_sched_yield().
5499 */
5500 void __sched yield(void)
5501 {
5502 set_current_state(TASK_RUNNING);
5503 sys_sched_yield();
5504 }
5505 EXPORT_SYMBOL(yield);
5506
5507 /*
5508 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5509 * that process accounting knows that this is a task in IO wait state.
5510 *
5511 * But don't do that if it is a deliberate, throttling IO wait (this task
5512 * has set its backing_dev_info: the queue against which it should throttle)
5513 */
5514 void __sched io_schedule(void)
5515 {
5516 struct rq *rq = &__raw_get_cpu_var(runqueues);
5517
5518 delayacct_blkio_start();
5519 atomic_inc(&rq->nr_iowait);
5520 schedule();
5521 atomic_dec(&rq->nr_iowait);
5522 delayacct_blkio_end();
5523 }
5524 EXPORT_SYMBOL(io_schedule);
5525
5526 long __sched io_schedule_timeout(long timeout)
5527 {
5528 struct rq *rq = &__raw_get_cpu_var(runqueues);
5529 long ret;
5530
5531 delayacct_blkio_start();
5532 atomic_inc(&rq->nr_iowait);
5533 ret = schedule_timeout(timeout);
5534 atomic_dec(&rq->nr_iowait);
5535 delayacct_blkio_end();
5536 return ret;
5537 }
5538
5539 /**
5540 * sys_sched_get_priority_max - return maximum RT priority.
5541 * @policy: scheduling class.
5542 *
5543 * this syscall returns the maximum rt_priority that can be used
5544 * by a given scheduling class.
5545 */
5546 asmlinkage long sys_sched_get_priority_max(int policy)
5547 {
5548 int ret = -EINVAL;
5549
5550 switch (policy) {
5551 case SCHED_FIFO:
5552 case SCHED_RR:
5553 ret = MAX_USER_RT_PRIO-1;
5554 break;
5555 case SCHED_NORMAL:
5556 case SCHED_BATCH:
5557 case SCHED_IDLE:
5558 ret = 0;
5559 break;
5560 }
5561 return ret;
5562 }
5563
5564 /**
5565 * sys_sched_get_priority_min - return minimum RT priority.
5566 * @policy: scheduling class.
5567 *
5568 * this syscall returns the minimum rt_priority that can be used
5569 * by a given scheduling class.
5570 */
5571 asmlinkage long sys_sched_get_priority_min(int policy)
5572 {
5573 int ret = -EINVAL;
5574
5575 switch (policy) {
5576 case SCHED_FIFO:
5577 case SCHED_RR:
5578 ret = 1;
5579 break;
5580 case SCHED_NORMAL:
5581 case SCHED_BATCH:
5582 case SCHED_IDLE:
5583 ret = 0;
5584 }
5585 return ret;
5586 }
5587
5588 /**
5589 * sys_sched_rr_get_interval - return the default timeslice of a process.
5590 * @pid: pid of the process.
5591 * @interval: userspace pointer to the timeslice value.
5592 *
5593 * this syscall writes the default timeslice value of a given process
5594 * into the user-space timespec buffer. A value of '0' means infinity.
5595 */
5596 asmlinkage
5597 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5598 {
5599 struct task_struct *p;
5600 unsigned int time_slice;
5601 int retval;
5602 struct timespec t;
5603
5604 if (pid < 0)
5605 return -EINVAL;
5606
5607 retval = -ESRCH;
5608 read_lock(&tasklist_lock);
5609 p = find_process_by_pid(pid);
5610 if (!p)
5611 goto out_unlock;
5612
5613 retval = security_task_getscheduler(p);
5614 if (retval)
5615 goto out_unlock;
5616
5617 /*
5618 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5619 * tasks that are on an otherwise idle runqueue:
5620 */
5621 time_slice = 0;
5622 if (p->policy == SCHED_RR) {
5623 time_slice = DEF_TIMESLICE;
5624 } else if (p->policy != SCHED_FIFO) {
5625 struct sched_entity *se = &p->se;
5626 unsigned long flags;
5627 struct rq *rq;
5628
5629 rq = task_rq_lock(p, &flags);
5630 if (rq->cfs.load.weight)
5631 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5632 task_rq_unlock(rq, &flags);
5633 }
5634 read_unlock(&tasklist_lock);
5635 jiffies_to_timespec(time_slice, &t);
5636 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5637 return retval;
5638
5639 out_unlock:
5640 read_unlock(&tasklist_lock);
5641 return retval;
5642 }
5643
5644 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5645
5646 void sched_show_task(struct task_struct *p)
5647 {
5648 unsigned long free = 0;
5649 unsigned state;
5650
5651 state = p->state ? __ffs(p->state) + 1 : 0;
5652 printk(KERN_INFO "%-13.13s %c", p->comm,
5653 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5654 #if BITS_PER_LONG == 32
5655 if (state == TASK_RUNNING)
5656 printk(KERN_CONT " running ");
5657 else
5658 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5659 #else
5660 if (state == TASK_RUNNING)
5661 printk(KERN_CONT " running task ");
5662 else
5663 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5664 #endif
5665 #ifdef CONFIG_DEBUG_STACK_USAGE
5666 {
5667 unsigned long *n = end_of_stack(p);
5668 while (!*n)
5669 n++;
5670 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5671 }
5672 #endif
5673 printk(KERN_CONT "%5lu %5d %6d\n", free,
5674 task_pid_nr(p), task_pid_nr(p->real_parent));
5675
5676 show_stack(p, NULL);
5677 }
5678
5679 void show_state_filter(unsigned long state_filter)
5680 {
5681 struct task_struct *g, *p;
5682
5683 #if BITS_PER_LONG == 32
5684 printk(KERN_INFO
5685 " task PC stack pid father\n");
5686 #else
5687 printk(KERN_INFO
5688 " task PC stack pid father\n");
5689 #endif
5690 read_lock(&tasklist_lock);
5691 do_each_thread(g, p) {
5692 /*
5693 * reset the NMI-timeout, listing all files on a slow
5694 * console might take alot of time:
5695 */
5696 touch_nmi_watchdog();
5697 if (!state_filter || (p->state & state_filter))
5698 sched_show_task(p);
5699 } while_each_thread(g, p);
5700
5701 touch_all_softlockup_watchdogs();
5702
5703 #ifdef CONFIG_SCHED_DEBUG
5704 sysrq_sched_debug_show();
5705 #endif
5706 read_unlock(&tasklist_lock);
5707 /*
5708 * Only show locks if all tasks are dumped:
5709 */
5710 if (state_filter == -1)
5711 debug_show_all_locks();
5712 }
5713
5714 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5715 {
5716 idle->sched_class = &idle_sched_class;
5717 }
5718
5719 /**
5720 * init_idle - set up an idle thread for a given CPU
5721 * @idle: task in question
5722 * @cpu: cpu the idle task belongs to
5723 *
5724 * NOTE: this function does not set the idle thread's NEED_RESCHED
5725 * flag, to make booting more robust.
5726 */
5727 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5728 {
5729 struct rq *rq = cpu_rq(cpu);
5730 unsigned long flags;
5731
5732 __sched_fork(idle);
5733 idle->se.exec_start = sched_clock();
5734
5735 idle->prio = idle->normal_prio = MAX_PRIO;
5736 idle->cpus_allowed = cpumask_of_cpu(cpu);
5737 __set_task_cpu(idle, cpu);
5738
5739 spin_lock_irqsave(&rq->lock, flags);
5740 rq->curr = rq->idle = idle;
5741 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5742 idle->oncpu = 1;
5743 #endif
5744 spin_unlock_irqrestore(&rq->lock, flags);
5745
5746 /* Set the preempt count _outside_ the spinlocks! */
5747 #if defined(CONFIG_PREEMPT)
5748 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5749 #else
5750 task_thread_info(idle)->preempt_count = 0;
5751 #endif
5752 /*
5753 * The idle tasks have their own, simple scheduling class:
5754 */
5755 idle->sched_class = &idle_sched_class;
5756 }
5757
5758 /*
5759 * In a system that switches off the HZ timer nohz_cpu_mask
5760 * indicates which cpus entered this state. This is used
5761 * in the rcu update to wait only for active cpus. For system
5762 * which do not switch off the HZ timer nohz_cpu_mask should
5763 * always be CPU_MASK_NONE.
5764 */
5765 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5766
5767 /*
5768 * Increase the granularity value when there are more CPUs,
5769 * because with more CPUs the 'effective latency' as visible
5770 * to users decreases. But the relationship is not linear,
5771 * so pick a second-best guess by going with the log2 of the
5772 * number of CPUs.
5773 *
5774 * This idea comes from the SD scheduler of Con Kolivas:
5775 */
5776 static inline void sched_init_granularity(void)
5777 {
5778 unsigned int factor = 1 + ilog2(num_online_cpus());
5779 const unsigned long limit = 200000000;
5780
5781 sysctl_sched_min_granularity *= factor;
5782 if (sysctl_sched_min_granularity > limit)
5783 sysctl_sched_min_granularity = limit;
5784
5785 sysctl_sched_latency *= factor;
5786 if (sysctl_sched_latency > limit)
5787 sysctl_sched_latency = limit;
5788
5789 sysctl_sched_wakeup_granularity *= factor;
5790 }
5791
5792 #ifdef CONFIG_SMP
5793 /*
5794 * This is how migration works:
5795 *
5796 * 1) we queue a struct migration_req structure in the source CPU's
5797 * runqueue and wake up that CPU's migration thread.
5798 * 2) we down() the locked semaphore => thread blocks.
5799 * 3) migration thread wakes up (implicitly it forces the migrated
5800 * thread off the CPU)
5801 * 4) it gets the migration request and checks whether the migrated
5802 * task is still in the wrong runqueue.
5803 * 5) if it's in the wrong runqueue then the migration thread removes
5804 * it and puts it into the right queue.
5805 * 6) migration thread up()s the semaphore.
5806 * 7) we wake up and the migration is done.
5807 */
5808
5809 /*
5810 * Change a given task's CPU affinity. Migrate the thread to a
5811 * proper CPU and schedule it away if the CPU it's executing on
5812 * is removed from the allowed bitmask.
5813 *
5814 * NOTE: the caller must have a valid reference to the task, the
5815 * task must not exit() & deallocate itself prematurely. The
5816 * call is not atomic; no spinlocks may be held.
5817 */
5818 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5819 {
5820 struct migration_req req;
5821 unsigned long flags;
5822 struct rq *rq;
5823 int ret = 0;
5824
5825 rq = task_rq_lock(p, &flags);
5826 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5827 ret = -EINVAL;
5828 goto out;
5829 }
5830
5831 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5832 !cpus_equal(p->cpus_allowed, *new_mask))) {
5833 ret = -EINVAL;
5834 goto out;
5835 }
5836
5837 if (p->sched_class->set_cpus_allowed)
5838 p->sched_class->set_cpus_allowed(p, new_mask);
5839 else {
5840 p->cpus_allowed = *new_mask;
5841 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5842 }
5843
5844 /* Can the task run on the task's current CPU? If so, we're done */
5845 if (cpu_isset(task_cpu(p), *new_mask))
5846 goto out;
5847
5848 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5849 /* Need help from migration thread: drop lock and wait. */
5850 task_rq_unlock(rq, &flags);
5851 wake_up_process(rq->migration_thread);
5852 wait_for_completion(&req.done);
5853 tlb_migrate_finish(p->mm);
5854 return 0;
5855 }
5856 out:
5857 task_rq_unlock(rq, &flags);
5858
5859 return ret;
5860 }
5861 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5862
5863 /*
5864 * Move (not current) task off this cpu, onto dest cpu. We're doing
5865 * this because either it can't run here any more (set_cpus_allowed()
5866 * away from this CPU, or CPU going down), or because we're
5867 * attempting to rebalance this task on exec (sched_exec).
5868 *
5869 * So we race with normal scheduler movements, but that's OK, as long
5870 * as the task is no longer on this CPU.
5871 *
5872 * Returns non-zero if task was successfully migrated.
5873 */
5874 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5875 {
5876 struct rq *rq_dest, *rq_src;
5877 int ret = 0, on_rq;
5878
5879 if (unlikely(cpu_is_offline(dest_cpu)))
5880 return ret;
5881
5882 rq_src = cpu_rq(src_cpu);
5883 rq_dest = cpu_rq(dest_cpu);
5884
5885 double_rq_lock(rq_src, rq_dest);
5886 /* Already moved. */
5887 if (task_cpu(p) != src_cpu)
5888 goto done;
5889 /* Affinity changed (again). */
5890 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5891 goto fail;
5892
5893 on_rq = p->se.on_rq;
5894 if (on_rq)
5895 deactivate_task(rq_src, p, 0);
5896
5897 set_task_cpu(p, dest_cpu);
5898 if (on_rq) {
5899 activate_task(rq_dest, p, 0);
5900 check_preempt_curr(rq_dest, p);
5901 }
5902 done:
5903 ret = 1;
5904 fail:
5905 double_rq_unlock(rq_src, rq_dest);
5906 return ret;
5907 }
5908
5909 /*
5910 * migration_thread - this is a highprio system thread that performs
5911 * thread migration by bumping thread off CPU then 'pushing' onto
5912 * another runqueue.
5913 */
5914 static int migration_thread(void *data)
5915 {
5916 int cpu = (long)data;
5917 struct rq *rq;
5918
5919 rq = cpu_rq(cpu);
5920 BUG_ON(rq->migration_thread != current);
5921
5922 set_current_state(TASK_INTERRUPTIBLE);
5923 while (!kthread_should_stop()) {
5924 struct migration_req *req;
5925 struct list_head *head;
5926
5927 spin_lock_irq(&rq->lock);
5928
5929 if (cpu_is_offline(cpu)) {
5930 spin_unlock_irq(&rq->lock);
5931 goto wait_to_die;
5932 }
5933
5934 if (rq->active_balance) {
5935 active_load_balance(rq, cpu);
5936 rq->active_balance = 0;
5937 }
5938
5939 head = &rq->migration_queue;
5940
5941 if (list_empty(head)) {
5942 spin_unlock_irq(&rq->lock);
5943 schedule();
5944 set_current_state(TASK_INTERRUPTIBLE);
5945 continue;
5946 }
5947 req = list_entry(head->next, struct migration_req, list);
5948 list_del_init(head->next);
5949
5950 spin_unlock(&rq->lock);
5951 __migrate_task(req->task, cpu, req->dest_cpu);
5952 local_irq_enable();
5953
5954 complete(&req->done);
5955 }
5956 __set_current_state(TASK_RUNNING);
5957 return 0;
5958
5959 wait_to_die:
5960 /* Wait for kthread_stop */
5961 set_current_state(TASK_INTERRUPTIBLE);
5962 while (!kthread_should_stop()) {
5963 schedule();
5964 set_current_state(TASK_INTERRUPTIBLE);
5965 }
5966 __set_current_state(TASK_RUNNING);
5967 return 0;
5968 }
5969
5970 #ifdef CONFIG_HOTPLUG_CPU
5971
5972 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5973 {
5974 int ret;
5975
5976 local_irq_disable();
5977 ret = __migrate_task(p, src_cpu, dest_cpu);
5978 local_irq_enable();
5979 return ret;
5980 }
5981
5982 /*
5983 * Figure out where task on dead CPU should go, use force if necessary.
5984 * NOTE: interrupts should be disabled by the caller
5985 */
5986 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5987 {
5988 unsigned long flags;
5989 cpumask_t mask;
5990 struct rq *rq;
5991 int dest_cpu;
5992
5993 do {
5994 /* On same node? */
5995 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5996 cpus_and(mask, mask, p->cpus_allowed);
5997 dest_cpu = any_online_cpu(mask);
5998
5999 /* On any allowed CPU? */
6000 if (dest_cpu >= nr_cpu_ids)
6001 dest_cpu = any_online_cpu(p->cpus_allowed);
6002
6003 /* No more Mr. Nice Guy. */
6004 if (dest_cpu >= nr_cpu_ids) {
6005 cpumask_t cpus_allowed;
6006
6007 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6008 /*
6009 * Try to stay on the same cpuset, where the
6010 * current cpuset may be a subset of all cpus.
6011 * The cpuset_cpus_allowed_locked() variant of
6012 * cpuset_cpus_allowed() will not block. It must be
6013 * called within calls to cpuset_lock/cpuset_unlock.
6014 */
6015 rq = task_rq_lock(p, &flags);
6016 p->cpus_allowed = cpus_allowed;
6017 dest_cpu = any_online_cpu(p->cpus_allowed);
6018 task_rq_unlock(rq, &flags);
6019
6020 /*
6021 * Don't tell them about moving exiting tasks or
6022 * kernel threads (both mm NULL), since they never
6023 * leave kernel.
6024 */
6025 if (p->mm && printk_ratelimit()) {
6026 printk(KERN_INFO "process %d (%s) no "
6027 "longer affine to cpu%d\n",
6028 task_pid_nr(p), p->comm, dead_cpu);
6029 }
6030 }
6031 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6032 }
6033
6034 /*
6035 * While a dead CPU has no uninterruptible tasks queued at this point,
6036 * it might still have a nonzero ->nr_uninterruptible counter, because
6037 * for performance reasons the counter is not stricly tracking tasks to
6038 * their home CPUs. So we just add the counter to another CPU's counter,
6039 * to keep the global sum constant after CPU-down:
6040 */
6041 static void migrate_nr_uninterruptible(struct rq *rq_src)
6042 {
6043 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6044 unsigned long flags;
6045
6046 local_irq_save(flags);
6047 double_rq_lock(rq_src, rq_dest);
6048 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6049 rq_src->nr_uninterruptible = 0;
6050 double_rq_unlock(rq_src, rq_dest);
6051 local_irq_restore(flags);
6052 }
6053
6054 /* Run through task list and migrate tasks from the dead cpu. */
6055 static void migrate_live_tasks(int src_cpu)
6056 {
6057 struct task_struct *p, *t;
6058
6059 read_lock(&tasklist_lock);
6060
6061 do_each_thread(t, p) {
6062 if (p == current)
6063 continue;
6064
6065 if (task_cpu(p) == src_cpu)
6066 move_task_off_dead_cpu(src_cpu, p);
6067 } while_each_thread(t, p);
6068
6069 read_unlock(&tasklist_lock);
6070 }
6071
6072 /*
6073 * Schedules idle task to be the next runnable task on current CPU.
6074 * It does so by boosting its priority to highest possible.
6075 * Used by CPU offline code.
6076 */
6077 void sched_idle_next(void)
6078 {
6079 int this_cpu = smp_processor_id();
6080 struct rq *rq = cpu_rq(this_cpu);
6081 struct task_struct *p = rq->idle;
6082 unsigned long flags;
6083
6084 /* cpu has to be offline */
6085 BUG_ON(cpu_online(this_cpu));
6086
6087 /*
6088 * Strictly not necessary since rest of the CPUs are stopped by now
6089 * and interrupts disabled on the current cpu.
6090 */
6091 spin_lock_irqsave(&rq->lock, flags);
6092
6093 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6094
6095 update_rq_clock(rq);
6096 activate_task(rq, p, 0);
6097
6098 spin_unlock_irqrestore(&rq->lock, flags);
6099 }
6100
6101 /*
6102 * Ensures that the idle task is using init_mm right before its cpu goes
6103 * offline.
6104 */
6105 void idle_task_exit(void)
6106 {
6107 struct mm_struct *mm = current->active_mm;
6108
6109 BUG_ON(cpu_online(smp_processor_id()));
6110
6111 if (mm != &init_mm)
6112 switch_mm(mm, &init_mm, current);
6113 mmdrop(mm);
6114 }
6115
6116 /* called under rq->lock with disabled interrupts */
6117 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6118 {
6119 struct rq *rq = cpu_rq(dead_cpu);
6120
6121 /* Must be exiting, otherwise would be on tasklist. */
6122 BUG_ON(!p->exit_state);
6123
6124 /* Cannot have done final schedule yet: would have vanished. */
6125 BUG_ON(p->state == TASK_DEAD);
6126
6127 get_task_struct(p);
6128
6129 /*
6130 * Drop lock around migration; if someone else moves it,
6131 * that's OK. No task can be added to this CPU, so iteration is
6132 * fine.
6133 */
6134 spin_unlock_irq(&rq->lock);
6135 move_task_off_dead_cpu(dead_cpu, p);
6136 spin_lock_irq(&rq->lock);
6137
6138 put_task_struct(p);
6139 }
6140
6141 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6142 static void migrate_dead_tasks(unsigned int dead_cpu)
6143 {
6144 struct rq *rq = cpu_rq(dead_cpu);
6145 struct task_struct *next;
6146
6147 for ( ; ; ) {
6148 if (!rq->nr_running)
6149 break;
6150 update_rq_clock(rq);
6151 next = pick_next_task(rq, rq->curr);
6152 if (!next)
6153 break;
6154 next->sched_class->put_prev_task(rq, next);
6155 migrate_dead(dead_cpu, next);
6156
6157 }
6158 }
6159 #endif /* CONFIG_HOTPLUG_CPU */
6160
6161 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6162
6163 static struct ctl_table sd_ctl_dir[] = {
6164 {
6165 .procname = "sched_domain",
6166 .mode = 0555,
6167 },
6168 {0, },
6169 };
6170
6171 static struct ctl_table sd_ctl_root[] = {
6172 {
6173 .ctl_name = CTL_KERN,
6174 .procname = "kernel",
6175 .mode = 0555,
6176 .child = sd_ctl_dir,
6177 },
6178 {0, },
6179 };
6180
6181 static struct ctl_table *sd_alloc_ctl_entry(int n)
6182 {
6183 struct ctl_table *entry =
6184 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6185
6186 return entry;
6187 }
6188
6189 static void sd_free_ctl_entry(struct ctl_table **tablep)
6190 {
6191 struct ctl_table *entry;
6192
6193 /*
6194 * In the intermediate directories, both the child directory and
6195 * procname are dynamically allocated and could fail but the mode
6196 * will always be set. In the lowest directory the names are
6197 * static strings and all have proc handlers.
6198 */
6199 for (entry = *tablep; entry->mode; entry++) {
6200 if (entry->child)
6201 sd_free_ctl_entry(&entry->child);
6202 if (entry->proc_handler == NULL)
6203 kfree(entry->procname);
6204 }
6205
6206 kfree(*tablep);
6207 *tablep = NULL;
6208 }
6209
6210 static void
6211 set_table_entry(struct ctl_table *entry,
6212 const char *procname, void *data, int maxlen,
6213 mode_t mode, proc_handler *proc_handler)
6214 {
6215 entry->procname = procname;
6216 entry->data = data;
6217 entry->maxlen = maxlen;
6218 entry->mode = mode;
6219 entry->proc_handler = proc_handler;
6220 }
6221
6222 static struct ctl_table *
6223 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6224 {
6225 struct ctl_table *table = sd_alloc_ctl_entry(12);
6226
6227 if (table == NULL)
6228 return NULL;
6229
6230 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6231 sizeof(long), 0644, proc_doulongvec_minmax);
6232 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6233 sizeof(long), 0644, proc_doulongvec_minmax);
6234 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6235 sizeof(int), 0644, proc_dointvec_minmax);
6236 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6237 sizeof(int), 0644, proc_dointvec_minmax);
6238 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6239 sizeof(int), 0644, proc_dointvec_minmax);
6240 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6241 sizeof(int), 0644, proc_dointvec_minmax);
6242 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6243 sizeof(int), 0644, proc_dointvec_minmax);
6244 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6245 sizeof(int), 0644, proc_dointvec_minmax);
6246 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6247 sizeof(int), 0644, proc_dointvec_minmax);
6248 set_table_entry(&table[9], "cache_nice_tries",
6249 &sd->cache_nice_tries,
6250 sizeof(int), 0644, proc_dointvec_minmax);
6251 set_table_entry(&table[10], "flags", &sd->flags,
6252 sizeof(int), 0644, proc_dointvec_minmax);
6253 /* &table[11] is terminator */
6254
6255 return table;
6256 }
6257
6258 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6259 {
6260 struct ctl_table *entry, *table;
6261 struct sched_domain *sd;
6262 int domain_num = 0, i;
6263 char buf[32];
6264
6265 for_each_domain(cpu, sd)
6266 domain_num++;
6267 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6268 if (table == NULL)
6269 return NULL;
6270
6271 i = 0;
6272 for_each_domain(cpu, sd) {
6273 snprintf(buf, 32, "domain%d", i);
6274 entry->procname = kstrdup(buf, GFP_KERNEL);
6275 entry->mode = 0555;
6276 entry->child = sd_alloc_ctl_domain_table(sd);
6277 entry++;
6278 i++;
6279 }
6280 return table;
6281 }
6282
6283 static struct ctl_table_header *sd_sysctl_header;
6284 static void register_sched_domain_sysctl(void)
6285 {
6286 int i, cpu_num = num_online_cpus();
6287 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6288 char buf[32];
6289
6290 WARN_ON(sd_ctl_dir[0].child);
6291 sd_ctl_dir[0].child = entry;
6292
6293 if (entry == NULL)
6294 return;
6295
6296 for_each_online_cpu(i) {
6297 snprintf(buf, 32, "cpu%d", i);
6298 entry->procname = kstrdup(buf, GFP_KERNEL);
6299 entry->mode = 0555;
6300 entry->child = sd_alloc_ctl_cpu_table(i);
6301 entry++;
6302 }
6303
6304 WARN_ON(sd_sysctl_header);
6305 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6306 }
6307
6308 /* may be called multiple times per register */
6309 static void unregister_sched_domain_sysctl(void)
6310 {
6311 if (sd_sysctl_header)
6312 unregister_sysctl_table(sd_sysctl_header);
6313 sd_sysctl_header = NULL;
6314 if (sd_ctl_dir[0].child)
6315 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6316 }
6317 #else
6318 static void register_sched_domain_sysctl(void)
6319 {
6320 }
6321 static void unregister_sched_domain_sysctl(void)
6322 {
6323 }
6324 #endif
6325
6326 static void set_rq_online(struct rq *rq)
6327 {
6328 if (!rq->online) {
6329 const struct sched_class *class;
6330
6331 cpu_set(rq->cpu, rq->rd->online);
6332 rq->online = 1;
6333
6334 for_each_class(class) {
6335 if (class->rq_online)
6336 class->rq_online(rq);
6337 }
6338 }
6339 }
6340
6341 static void set_rq_offline(struct rq *rq)
6342 {
6343 if (rq->online) {
6344 const struct sched_class *class;
6345
6346 for_each_class(class) {
6347 if (class->rq_offline)
6348 class->rq_offline(rq);
6349 }
6350
6351 cpu_clear(rq->cpu, rq->rd->online);
6352 rq->online = 0;
6353 }
6354 }
6355
6356 /*
6357 * migration_call - callback that gets triggered when a CPU is added.
6358 * Here we can start up the necessary migration thread for the new CPU.
6359 */
6360 static int __cpuinit
6361 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6362 {
6363 struct task_struct *p;
6364 int cpu = (long)hcpu;
6365 unsigned long flags;
6366 struct rq *rq;
6367
6368 switch (action) {
6369
6370 case CPU_UP_PREPARE:
6371 case CPU_UP_PREPARE_FROZEN:
6372 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6373 if (IS_ERR(p))
6374 return NOTIFY_BAD;
6375 kthread_bind(p, cpu);
6376 /* Must be high prio: stop_machine expects to yield to it. */
6377 rq = task_rq_lock(p, &flags);
6378 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6379 task_rq_unlock(rq, &flags);
6380 cpu_rq(cpu)->migration_thread = p;
6381 break;
6382
6383 case CPU_ONLINE:
6384 case CPU_ONLINE_FROZEN:
6385 /* Strictly unnecessary, as first user will wake it. */
6386 wake_up_process(cpu_rq(cpu)->migration_thread);
6387
6388 /* Update our root-domain */
6389 rq = cpu_rq(cpu);
6390 spin_lock_irqsave(&rq->lock, flags);
6391 if (rq->rd) {
6392 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6393
6394 set_rq_online(rq);
6395 }
6396 spin_unlock_irqrestore(&rq->lock, flags);
6397 break;
6398
6399 #ifdef CONFIG_HOTPLUG_CPU
6400 case CPU_UP_CANCELED:
6401 case CPU_UP_CANCELED_FROZEN:
6402 if (!cpu_rq(cpu)->migration_thread)
6403 break;
6404 /* Unbind it from offline cpu so it can run. Fall thru. */
6405 kthread_bind(cpu_rq(cpu)->migration_thread,
6406 any_online_cpu(cpu_online_map));
6407 kthread_stop(cpu_rq(cpu)->migration_thread);
6408 cpu_rq(cpu)->migration_thread = NULL;
6409 break;
6410
6411 case CPU_DEAD:
6412 case CPU_DEAD_FROZEN:
6413 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6414 migrate_live_tasks(cpu);
6415 rq = cpu_rq(cpu);
6416 kthread_stop(rq->migration_thread);
6417 rq->migration_thread = NULL;
6418 /* Idle task back to normal (off runqueue, low prio) */
6419 spin_lock_irq(&rq->lock);
6420 update_rq_clock(rq);
6421 deactivate_task(rq, rq->idle, 0);
6422 rq->idle->static_prio = MAX_PRIO;
6423 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6424 rq->idle->sched_class = &idle_sched_class;
6425 migrate_dead_tasks(cpu);
6426 spin_unlock_irq(&rq->lock);
6427 cpuset_unlock();
6428 migrate_nr_uninterruptible(rq);
6429 BUG_ON(rq->nr_running != 0);
6430
6431 /*
6432 * No need to migrate the tasks: it was best-effort if
6433 * they didn't take sched_hotcpu_mutex. Just wake up
6434 * the requestors.
6435 */
6436 spin_lock_irq(&rq->lock);
6437 while (!list_empty(&rq->migration_queue)) {
6438 struct migration_req *req;
6439
6440 req = list_entry(rq->migration_queue.next,
6441 struct migration_req, list);
6442 list_del_init(&req->list);
6443 complete(&req->done);
6444 }
6445 spin_unlock_irq(&rq->lock);
6446 break;
6447
6448 case CPU_DYING:
6449 case CPU_DYING_FROZEN:
6450 /* Update our root-domain */
6451 rq = cpu_rq(cpu);
6452 spin_lock_irqsave(&rq->lock, flags);
6453 if (rq->rd) {
6454 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6455 set_rq_offline(rq);
6456 }
6457 spin_unlock_irqrestore(&rq->lock, flags);
6458 break;
6459 #endif
6460 }
6461 return NOTIFY_OK;
6462 }
6463
6464 /* Register at highest priority so that task migration (migrate_all_tasks)
6465 * happens before everything else.
6466 */
6467 static struct notifier_block __cpuinitdata migration_notifier = {
6468 .notifier_call = migration_call,
6469 .priority = 10
6470 };
6471
6472 void __init migration_init(void)
6473 {
6474 void *cpu = (void *)(long)smp_processor_id();
6475 int err;
6476
6477 /* Start one for the boot CPU: */
6478 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6479 BUG_ON(err == NOTIFY_BAD);
6480 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6481 register_cpu_notifier(&migration_notifier);
6482 }
6483 #endif
6484
6485 #ifdef CONFIG_SMP
6486
6487 #ifdef CONFIG_SCHED_DEBUG
6488
6489 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6490 {
6491 switch (lvl) {
6492 case SD_LV_NONE:
6493 return "NONE";
6494 case SD_LV_SIBLING:
6495 return "SIBLING";
6496 case SD_LV_MC:
6497 return "MC";
6498 case SD_LV_CPU:
6499 return "CPU";
6500 case SD_LV_NODE:
6501 return "NODE";
6502 case SD_LV_ALLNODES:
6503 return "ALLNODES";
6504 case SD_LV_MAX:
6505 return "MAX";
6506
6507 }
6508 return "MAX";
6509 }
6510
6511 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6512 cpumask_t *groupmask)
6513 {
6514 struct sched_group *group = sd->groups;
6515 char str[256];
6516
6517 cpulist_scnprintf(str, sizeof(str), sd->span);
6518 cpus_clear(*groupmask);
6519
6520 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6521
6522 if (!(sd->flags & SD_LOAD_BALANCE)) {
6523 printk("does not load-balance\n");
6524 if (sd->parent)
6525 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6526 " has parent");
6527 return -1;
6528 }
6529
6530 printk(KERN_CONT "span %s level %s\n",
6531 str, sd_level_to_string(sd->level));
6532
6533 if (!cpu_isset(cpu, sd->span)) {
6534 printk(KERN_ERR "ERROR: domain->span does not contain "
6535 "CPU%d\n", cpu);
6536 }
6537 if (!cpu_isset(cpu, group->cpumask)) {
6538 printk(KERN_ERR "ERROR: domain->groups does not contain"
6539 " CPU%d\n", cpu);
6540 }
6541
6542 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6543 do {
6544 if (!group) {
6545 printk("\n");
6546 printk(KERN_ERR "ERROR: group is NULL\n");
6547 break;
6548 }
6549
6550 if (!group->__cpu_power) {
6551 printk(KERN_CONT "\n");
6552 printk(KERN_ERR "ERROR: domain->cpu_power not "
6553 "set\n");
6554 break;
6555 }
6556
6557 if (!cpus_weight(group->cpumask)) {
6558 printk(KERN_CONT "\n");
6559 printk(KERN_ERR "ERROR: empty group\n");
6560 break;
6561 }
6562
6563 if (cpus_intersects(*groupmask, group->cpumask)) {
6564 printk(KERN_CONT "\n");
6565 printk(KERN_ERR "ERROR: repeated CPUs\n");
6566 break;
6567 }
6568
6569 cpus_or(*groupmask, *groupmask, group->cpumask);
6570
6571 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6572 printk(KERN_CONT " %s", str);
6573
6574 group = group->next;
6575 } while (group != sd->groups);
6576 printk(KERN_CONT "\n");
6577
6578 if (!cpus_equal(sd->span, *groupmask))
6579 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6580
6581 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6582 printk(KERN_ERR "ERROR: parent span is not a superset "
6583 "of domain->span\n");
6584 return 0;
6585 }
6586
6587 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6588 {
6589 cpumask_t *groupmask;
6590 int level = 0;
6591
6592 if (!sd) {
6593 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6594 return;
6595 }
6596
6597 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6598
6599 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6600 if (!groupmask) {
6601 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6602 return;
6603 }
6604
6605 for (;;) {
6606 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6607 break;
6608 level++;
6609 sd = sd->parent;
6610 if (!sd)
6611 break;
6612 }
6613 kfree(groupmask);
6614 }
6615 #else /* !CONFIG_SCHED_DEBUG */
6616 # define sched_domain_debug(sd, cpu) do { } while (0)
6617 #endif /* CONFIG_SCHED_DEBUG */
6618
6619 static int sd_degenerate(struct sched_domain *sd)
6620 {
6621 if (cpus_weight(sd->span) == 1)
6622 return 1;
6623
6624 /* Following flags need at least 2 groups */
6625 if (sd->flags & (SD_LOAD_BALANCE |
6626 SD_BALANCE_NEWIDLE |
6627 SD_BALANCE_FORK |
6628 SD_BALANCE_EXEC |
6629 SD_SHARE_CPUPOWER |
6630 SD_SHARE_PKG_RESOURCES)) {
6631 if (sd->groups != sd->groups->next)
6632 return 0;
6633 }
6634
6635 /* Following flags don't use groups */
6636 if (sd->flags & (SD_WAKE_IDLE |
6637 SD_WAKE_AFFINE |
6638 SD_WAKE_BALANCE))
6639 return 0;
6640
6641 return 1;
6642 }
6643
6644 static int
6645 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6646 {
6647 unsigned long cflags = sd->flags, pflags = parent->flags;
6648
6649 if (sd_degenerate(parent))
6650 return 1;
6651
6652 if (!cpus_equal(sd->span, parent->span))
6653 return 0;
6654
6655 /* Does parent contain flags not in child? */
6656 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6657 if (cflags & SD_WAKE_AFFINE)
6658 pflags &= ~SD_WAKE_BALANCE;
6659 /* Flags needing groups don't count if only 1 group in parent */
6660 if (parent->groups == parent->groups->next) {
6661 pflags &= ~(SD_LOAD_BALANCE |
6662 SD_BALANCE_NEWIDLE |
6663 SD_BALANCE_FORK |
6664 SD_BALANCE_EXEC |
6665 SD_SHARE_CPUPOWER |
6666 SD_SHARE_PKG_RESOURCES);
6667 }
6668 if (~cflags & pflags)
6669 return 0;
6670
6671 return 1;
6672 }
6673
6674 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6675 {
6676 unsigned long flags;
6677
6678 spin_lock_irqsave(&rq->lock, flags);
6679
6680 if (rq->rd) {
6681 struct root_domain *old_rd = rq->rd;
6682
6683 if (cpu_isset(rq->cpu, old_rd->online))
6684 set_rq_offline(rq);
6685
6686 cpu_clear(rq->cpu, old_rd->span);
6687
6688 if (atomic_dec_and_test(&old_rd->refcount))
6689 kfree(old_rd);
6690 }
6691
6692 atomic_inc(&rd->refcount);
6693 rq->rd = rd;
6694
6695 cpu_set(rq->cpu, rd->span);
6696 if (cpu_isset(rq->cpu, cpu_online_map))
6697 set_rq_online(rq);
6698
6699 spin_unlock_irqrestore(&rq->lock, flags);
6700 }
6701
6702 static void init_rootdomain(struct root_domain *rd)
6703 {
6704 memset(rd, 0, sizeof(*rd));
6705
6706 cpus_clear(rd->span);
6707 cpus_clear(rd->online);
6708
6709 cpupri_init(&rd->cpupri);
6710 }
6711
6712 static void init_defrootdomain(void)
6713 {
6714 init_rootdomain(&def_root_domain);
6715 atomic_set(&def_root_domain.refcount, 1);
6716 }
6717
6718 static struct root_domain *alloc_rootdomain(void)
6719 {
6720 struct root_domain *rd;
6721
6722 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6723 if (!rd)
6724 return NULL;
6725
6726 init_rootdomain(rd);
6727
6728 return rd;
6729 }
6730
6731 /*
6732 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6733 * hold the hotplug lock.
6734 */
6735 static void
6736 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6737 {
6738 struct rq *rq = cpu_rq(cpu);
6739 struct sched_domain *tmp;
6740
6741 /* Remove the sched domains which do not contribute to scheduling. */
6742 for (tmp = sd; tmp; tmp = tmp->parent) {
6743 struct sched_domain *parent = tmp->parent;
6744 if (!parent)
6745 break;
6746 if (sd_parent_degenerate(tmp, parent)) {
6747 tmp->parent = parent->parent;
6748 if (parent->parent)
6749 parent->parent->child = tmp;
6750 }
6751 }
6752
6753 if (sd && sd_degenerate(sd)) {
6754 sd = sd->parent;
6755 if (sd)
6756 sd->child = NULL;
6757 }
6758
6759 sched_domain_debug(sd, cpu);
6760
6761 rq_attach_root(rq, rd);
6762 rcu_assign_pointer(rq->sd, sd);
6763 }
6764
6765 /* cpus with isolated domains */
6766 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6767
6768 /* Setup the mask of cpus configured for isolated domains */
6769 static int __init isolated_cpu_setup(char *str)
6770 {
6771 int ints[NR_CPUS], i;
6772
6773 str = get_options(str, ARRAY_SIZE(ints), ints);
6774 cpus_clear(cpu_isolated_map);
6775 for (i = 1; i <= ints[0]; i++)
6776 if (ints[i] < NR_CPUS)
6777 cpu_set(ints[i], cpu_isolated_map);
6778 return 1;
6779 }
6780
6781 __setup("isolcpus=", isolated_cpu_setup);
6782
6783 /*
6784 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6785 * to a function which identifies what group(along with sched group) a CPU
6786 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6787 * (due to the fact that we keep track of groups covered with a cpumask_t).
6788 *
6789 * init_sched_build_groups will build a circular linked list of the groups
6790 * covered by the given span, and will set each group's ->cpumask correctly,
6791 * and ->cpu_power to 0.
6792 */
6793 static void
6794 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6795 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6796 struct sched_group **sg,
6797 cpumask_t *tmpmask),
6798 cpumask_t *covered, cpumask_t *tmpmask)
6799 {
6800 struct sched_group *first = NULL, *last = NULL;
6801 int i;
6802
6803 cpus_clear(*covered);
6804
6805 for_each_cpu_mask(i, *span) {
6806 struct sched_group *sg;
6807 int group = group_fn(i, cpu_map, &sg, tmpmask);
6808 int j;
6809
6810 if (cpu_isset(i, *covered))
6811 continue;
6812
6813 cpus_clear(sg->cpumask);
6814 sg->__cpu_power = 0;
6815
6816 for_each_cpu_mask(j, *span) {
6817 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6818 continue;
6819
6820 cpu_set(j, *covered);
6821 cpu_set(j, sg->cpumask);
6822 }
6823 if (!first)
6824 first = sg;
6825 if (last)
6826 last->next = sg;
6827 last = sg;
6828 }
6829 last->next = first;
6830 }
6831
6832 #define SD_NODES_PER_DOMAIN 16
6833
6834 #ifdef CONFIG_NUMA
6835
6836 /**
6837 * find_next_best_node - find the next node to include in a sched_domain
6838 * @node: node whose sched_domain we're building
6839 * @used_nodes: nodes already in the sched_domain
6840 *
6841 * Find the next node to include in a given scheduling domain. Simply
6842 * finds the closest node not already in the @used_nodes map.
6843 *
6844 * Should use nodemask_t.
6845 */
6846 static int find_next_best_node(int node, nodemask_t *used_nodes)
6847 {
6848 int i, n, val, min_val, best_node = 0;
6849
6850 min_val = INT_MAX;
6851
6852 for (i = 0; i < nr_node_ids; i++) {
6853 /* Start at @node */
6854 n = (node + i) % nr_node_ids;
6855
6856 if (!nr_cpus_node(n))
6857 continue;
6858
6859 /* Skip already used nodes */
6860 if (node_isset(n, *used_nodes))
6861 continue;
6862
6863 /* Simple min distance search */
6864 val = node_distance(node, n);
6865
6866 if (val < min_val) {
6867 min_val = val;
6868 best_node = n;
6869 }
6870 }
6871
6872 node_set(best_node, *used_nodes);
6873 return best_node;
6874 }
6875
6876 /**
6877 * sched_domain_node_span - get a cpumask for a node's sched_domain
6878 * @node: node whose cpumask we're constructing
6879 * @span: resulting cpumask
6880 *
6881 * Given a node, construct a good cpumask for its sched_domain to span. It
6882 * should be one that prevents unnecessary balancing, but also spreads tasks
6883 * out optimally.
6884 */
6885 static void sched_domain_node_span(int node, cpumask_t *span)
6886 {
6887 nodemask_t used_nodes;
6888 node_to_cpumask_ptr(nodemask, node);
6889 int i;
6890
6891 cpus_clear(*span);
6892 nodes_clear(used_nodes);
6893
6894 cpus_or(*span, *span, *nodemask);
6895 node_set(node, used_nodes);
6896
6897 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6898 int next_node = find_next_best_node(node, &used_nodes);
6899
6900 node_to_cpumask_ptr_next(nodemask, next_node);
6901 cpus_or(*span, *span, *nodemask);
6902 }
6903 }
6904 #endif /* CONFIG_NUMA */
6905
6906 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6907
6908 /*
6909 * SMT sched-domains:
6910 */
6911 #ifdef CONFIG_SCHED_SMT
6912 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6913 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6914
6915 static int
6916 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6917 cpumask_t *unused)
6918 {
6919 if (sg)
6920 *sg = &per_cpu(sched_group_cpus, cpu);
6921 return cpu;
6922 }
6923 #endif /* CONFIG_SCHED_SMT */
6924
6925 /*
6926 * multi-core sched-domains:
6927 */
6928 #ifdef CONFIG_SCHED_MC
6929 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6930 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6931 #endif /* CONFIG_SCHED_MC */
6932
6933 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6934 static int
6935 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6936 cpumask_t *mask)
6937 {
6938 int group;
6939
6940 *mask = per_cpu(cpu_sibling_map, cpu);
6941 cpus_and(*mask, *mask, *cpu_map);
6942 group = first_cpu(*mask);
6943 if (sg)
6944 *sg = &per_cpu(sched_group_core, group);
6945 return group;
6946 }
6947 #elif defined(CONFIG_SCHED_MC)
6948 static int
6949 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6950 cpumask_t *unused)
6951 {
6952 if (sg)
6953 *sg = &per_cpu(sched_group_core, cpu);
6954 return cpu;
6955 }
6956 #endif
6957
6958 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6959 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6960
6961 static int
6962 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6963 cpumask_t *mask)
6964 {
6965 int group;
6966 #ifdef CONFIG_SCHED_MC
6967 *mask = cpu_coregroup_map(cpu);
6968 cpus_and(*mask, *mask, *cpu_map);
6969 group = first_cpu(*mask);
6970 #elif defined(CONFIG_SCHED_SMT)
6971 *mask = per_cpu(cpu_sibling_map, cpu);
6972 cpus_and(*mask, *mask, *cpu_map);
6973 group = first_cpu(*mask);
6974 #else
6975 group = cpu;
6976 #endif
6977 if (sg)
6978 *sg = &per_cpu(sched_group_phys, group);
6979 return group;
6980 }
6981
6982 #ifdef CONFIG_NUMA
6983 /*
6984 * The init_sched_build_groups can't handle what we want to do with node
6985 * groups, so roll our own. Now each node has its own list of groups which
6986 * gets dynamically allocated.
6987 */
6988 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6989 static struct sched_group ***sched_group_nodes_bycpu;
6990
6991 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6992 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6993
6994 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6995 struct sched_group **sg, cpumask_t *nodemask)
6996 {
6997 int group;
6998
6999 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7000 cpus_and(*nodemask, *nodemask, *cpu_map);
7001 group = first_cpu(*nodemask);
7002
7003 if (sg)
7004 *sg = &per_cpu(sched_group_allnodes, group);
7005 return group;
7006 }
7007
7008 static void init_numa_sched_groups_power(struct sched_group *group_head)
7009 {
7010 struct sched_group *sg = group_head;
7011 int j;
7012
7013 if (!sg)
7014 return;
7015 do {
7016 for_each_cpu_mask(j, sg->cpumask) {
7017 struct sched_domain *sd;
7018
7019 sd = &per_cpu(phys_domains, j);
7020 if (j != first_cpu(sd->groups->cpumask)) {
7021 /*
7022 * Only add "power" once for each
7023 * physical package.
7024 */
7025 continue;
7026 }
7027
7028 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7029 }
7030 sg = sg->next;
7031 } while (sg != group_head);
7032 }
7033 #endif /* CONFIG_NUMA */
7034
7035 #ifdef CONFIG_NUMA
7036 /* Free memory allocated for various sched_group structures */
7037 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7038 {
7039 int cpu, i;
7040
7041 for_each_cpu_mask(cpu, *cpu_map) {
7042 struct sched_group **sched_group_nodes
7043 = sched_group_nodes_bycpu[cpu];
7044
7045 if (!sched_group_nodes)
7046 continue;
7047
7048 for (i = 0; i < nr_node_ids; i++) {
7049 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7050
7051 *nodemask = node_to_cpumask(i);
7052 cpus_and(*nodemask, *nodemask, *cpu_map);
7053 if (cpus_empty(*nodemask))
7054 continue;
7055
7056 if (sg == NULL)
7057 continue;
7058 sg = sg->next;
7059 next_sg:
7060 oldsg = sg;
7061 sg = sg->next;
7062 kfree(oldsg);
7063 if (oldsg != sched_group_nodes[i])
7064 goto next_sg;
7065 }
7066 kfree(sched_group_nodes);
7067 sched_group_nodes_bycpu[cpu] = NULL;
7068 }
7069 }
7070 #else /* !CONFIG_NUMA */
7071 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7072 {
7073 }
7074 #endif /* CONFIG_NUMA */
7075
7076 /*
7077 * Initialize sched groups cpu_power.
7078 *
7079 * cpu_power indicates the capacity of sched group, which is used while
7080 * distributing the load between different sched groups in a sched domain.
7081 * Typically cpu_power for all the groups in a sched domain will be same unless
7082 * there are asymmetries in the topology. If there are asymmetries, group
7083 * having more cpu_power will pickup more load compared to the group having
7084 * less cpu_power.
7085 *
7086 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7087 * the maximum number of tasks a group can handle in the presence of other idle
7088 * or lightly loaded groups in the same sched domain.
7089 */
7090 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7091 {
7092 struct sched_domain *child;
7093 struct sched_group *group;
7094
7095 WARN_ON(!sd || !sd->groups);
7096
7097 if (cpu != first_cpu(sd->groups->cpumask))
7098 return;
7099
7100 child = sd->child;
7101
7102 sd->groups->__cpu_power = 0;
7103
7104 /*
7105 * For perf policy, if the groups in child domain share resources
7106 * (for example cores sharing some portions of the cache hierarchy
7107 * or SMT), then set this domain groups cpu_power such that each group
7108 * can handle only one task, when there are other idle groups in the
7109 * same sched domain.
7110 */
7111 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7112 (child->flags &
7113 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7114 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7115 return;
7116 }
7117
7118 /*
7119 * add cpu_power of each child group to this groups cpu_power
7120 */
7121 group = child->groups;
7122 do {
7123 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7124 group = group->next;
7125 } while (group != child->groups);
7126 }
7127
7128 /*
7129 * Initializers for schedule domains
7130 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7131 */
7132
7133 #define SD_INIT(sd, type) sd_init_##type(sd)
7134 #define SD_INIT_FUNC(type) \
7135 static noinline void sd_init_##type(struct sched_domain *sd) \
7136 { \
7137 memset(sd, 0, sizeof(*sd)); \
7138 *sd = SD_##type##_INIT; \
7139 sd->level = SD_LV_##type; \
7140 }
7141
7142 SD_INIT_FUNC(CPU)
7143 #ifdef CONFIG_NUMA
7144 SD_INIT_FUNC(ALLNODES)
7145 SD_INIT_FUNC(NODE)
7146 #endif
7147 #ifdef CONFIG_SCHED_SMT
7148 SD_INIT_FUNC(SIBLING)
7149 #endif
7150 #ifdef CONFIG_SCHED_MC
7151 SD_INIT_FUNC(MC)
7152 #endif
7153
7154 /*
7155 * To minimize stack usage kmalloc room for cpumasks and share the
7156 * space as the usage in build_sched_domains() dictates. Used only
7157 * if the amount of space is significant.
7158 */
7159 struct allmasks {
7160 cpumask_t tmpmask; /* make this one first */
7161 union {
7162 cpumask_t nodemask;
7163 cpumask_t this_sibling_map;
7164 cpumask_t this_core_map;
7165 };
7166 cpumask_t send_covered;
7167
7168 #ifdef CONFIG_NUMA
7169 cpumask_t domainspan;
7170 cpumask_t covered;
7171 cpumask_t notcovered;
7172 #endif
7173 };
7174
7175 #if NR_CPUS > 128
7176 #define SCHED_CPUMASK_ALLOC 1
7177 #define SCHED_CPUMASK_FREE(v) kfree(v)
7178 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7179 #else
7180 #define SCHED_CPUMASK_ALLOC 0
7181 #define SCHED_CPUMASK_FREE(v)
7182 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7183 #endif
7184
7185 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7186 ((unsigned long)(a) + offsetof(struct allmasks, v))
7187
7188 static int default_relax_domain_level = -1;
7189
7190 static int __init setup_relax_domain_level(char *str)
7191 {
7192 unsigned long val;
7193
7194 val = simple_strtoul(str, NULL, 0);
7195 if (val < SD_LV_MAX)
7196 default_relax_domain_level = val;
7197
7198 return 1;
7199 }
7200 __setup("relax_domain_level=", setup_relax_domain_level);
7201
7202 static void set_domain_attribute(struct sched_domain *sd,
7203 struct sched_domain_attr *attr)
7204 {
7205 int request;
7206
7207 if (!attr || attr->relax_domain_level < 0) {
7208 if (default_relax_domain_level < 0)
7209 return;
7210 else
7211 request = default_relax_domain_level;
7212 } else
7213 request = attr->relax_domain_level;
7214 if (request < sd->level) {
7215 /* turn off idle balance on this domain */
7216 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7217 } else {
7218 /* turn on idle balance on this domain */
7219 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7220 }
7221 }
7222
7223 /*
7224 * Build sched domains for a given set of cpus and attach the sched domains
7225 * to the individual cpus
7226 */
7227 static int __build_sched_domains(const cpumask_t *cpu_map,
7228 struct sched_domain_attr *attr)
7229 {
7230 int i;
7231 struct root_domain *rd;
7232 SCHED_CPUMASK_DECLARE(allmasks);
7233 cpumask_t *tmpmask;
7234 #ifdef CONFIG_NUMA
7235 struct sched_group **sched_group_nodes = NULL;
7236 int sd_allnodes = 0;
7237
7238 /*
7239 * Allocate the per-node list of sched groups
7240 */
7241 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7242 GFP_KERNEL);
7243 if (!sched_group_nodes) {
7244 printk(KERN_WARNING "Can not alloc sched group node list\n");
7245 return -ENOMEM;
7246 }
7247 #endif
7248
7249 rd = alloc_rootdomain();
7250 if (!rd) {
7251 printk(KERN_WARNING "Cannot alloc root domain\n");
7252 #ifdef CONFIG_NUMA
7253 kfree(sched_group_nodes);
7254 #endif
7255 return -ENOMEM;
7256 }
7257
7258 #if SCHED_CPUMASK_ALLOC
7259 /* get space for all scratch cpumask variables */
7260 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7261 if (!allmasks) {
7262 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7263 kfree(rd);
7264 #ifdef CONFIG_NUMA
7265 kfree(sched_group_nodes);
7266 #endif
7267 return -ENOMEM;
7268 }
7269 #endif
7270 tmpmask = (cpumask_t *)allmasks;
7271
7272
7273 #ifdef CONFIG_NUMA
7274 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7275 #endif
7276
7277 /*
7278 * Set up domains for cpus specified by the cpu_map.
7279 */
7280 for_each_cpu_mask(i, *cpu_map) {
7281 struct sched_domain *sd = NULL, *p;
7282 SCHED_CPUMASK_VAR(nodemask, allmasks);
7283
7284 *nodemask = node_to_cpumask(cpu_to_node(i));
7285 cpus_and(*nodemask, *nodemask, *cpu_map);
7286
7287 #ifdef CONFIG_NUMA
7288 if (cpus_weight(*cpu_map) >
7289 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7290 sd = &per_cpu(allnodes_domains, i);
7291 SD_INIT(sd, ALLNODES);
7292 set_domain_attribute(sd, attr);
7293 sd->span = *cpu_map;
7294 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7295 p = sd;
7296 sd_allnodes = 1;
7297 } else
7298 p = NULL;
7299
7300 sd = &per_cpu(node_domains, i);
7301 SD_INIT(sd, NODE);
7302 set_domain_attribute(sd, attr);
7303 sched_domain_node_span(cpu_to_node(i), &sd->span);
7304 sd->parent = p;
7305 if (p)
7306 p->child = sd;
7307 cpus_and(sd->span, sd->span, *cpu_map);
7308 #endif
7309
7310 p = sd;
7311 sd = &per_cpu(phys_domains, i);
7312 SD_INIT(sd, CPU);
7313 set_domain_attribute(sd, attr);
7314 sd->span = *nodemask;
7315 sd->parent = p;
7316 if (p)
7317 p->child = sd;
7318 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7319
7320 #ifdef CONFIG_SCHED_MC
7321 p = sd;
7322 sd = &per_cpu(core_domains, i);
7323 SD_INIT(sd, MC);
7324 set_domain_attribute(sd, attr);
7325 sd->span = cpu_coregroup_map(i);
7326 cpus_and(sd->span, sd->span, *cpu_map);
7327 sd->parent = p;
7328 p->child = sd;
7329 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7330 #endif
7331
7332 #ifdef CONFIG_SCHED_SMT
7333 p = sd;
7334 sd = &per_cpu(cpu_domains, i);
7335 SD_INIT(sd, SIBLING);
7336 set_domain_attribute(sd, attr);
7337 sd->span = per_cpu(cpu_sibling_map, i);
7338 cpus_and(sd->span, sd->span, *cpu_map);
7339 sd->parent = p;
7340 p->child = sd;
7341 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7342 #endif
7343 }
7344
7345 #ifdef CONFIG_SCHED_SMT
7346 /* Set up CPU (sibling) groups */
7347 for_each_cpu_mask(i, *cpu_map) {
7348 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7349 SCHED_CPUMASK_VAR(send_covered, allmasks);
7350
7351 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7352 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7353 if (i != first_cpu(*this_sibling_map))
7354 continue;
7355
7356 init_sched_build_groups(this_sibling_map, cpu_map,
7357 &cpu_to_cpu_group,
7358 send_covered, tmpmask);
7359 }
7360 #endif
7361
7362 #ifdef CONFIG_SCHED_MC
7363 /* Set up multi-core groups */
7364 for_each_cpu_mask(i, *cpu_map) {
7365 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7366 SCHED_CPUMASK_VAR(send_covered, allmasks);
7367
7368 *this_core_map = cpu_coregroup_map(i);
7369 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7370 if (i != first_cpu(*this_core_map))
7371 continue;
7372
7373 init_sched_build_groups(this_core_map, cpu_map,
7374 &cpu_to_core_group,
7375 send_covered, tmpmask);
7376 }
7377 #endif
7378
7379 /* Set up physical groups */
7380 for (i = 0; i < nr_node_ids; i++) {
7381 SCHED_CPUMASK_VAR(nodemask, allmasks);
7382 SCHED_CPUMASK_VAR(send_covered, allmasks);
7383
7384 *nodemask = node_to_cpumask(i);
7385 cpus_and(*nodemask, *nodemask, *cpu_map);
7386 if (cpus_empty(*nodemask))
7387 continue;
7388
7389 init_sched_build_groups(nodemask, cpu_map,
7390 &cpu_to_phys_group,
7391 send_covered, tmpmask);
7392 }
7393
7394 #ifdef CONFIG_NUMA
7395 /* Set up node groups */
7396 if (sd_allnodes) {
7397 SCHED_CPUMASK_VAR(send_covered, allmasks);
7398
7399 init_sched_build_groups(cpu_map, cpu_map,
7400 &cpu_to_allnodes_group,
7401 send_covered, tmpmask);
7402 }
7403
7404 for (i = 0; i < nr_node_ids; i++) {
7405 /* Set up node groups */
7406 struct sched_group *sg, *prev;
7407 SCHED_CPUMASK_VAR(nodemask, allmasks);
7408 SCHED_CPUMASK_VAR(domainspan, allmasks);
7409 SCHED_CPUMASK_VAR(covered, allmasks);
7410 int j;
7411
7412 *nodemask = node_to_cpumask(i);
7413 cpus_clear(*covered);
7414
7415 cpus_and(*nodemask, *nodemask, *cpu_map);
7416 if (cpus_empty(*nodemask)) {
7417 sched_group_nodes[i] = NULL;
7418 continue;
7419 }
7420
7421 sched_domain_node_span(i, domainspan);
7422 cpus_and(*domainspan, *domainspan, *cpu_map);
7423
7424 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7425 if (!sg) {
7426 printk(KERN_WARNING "Can not alloc domain group for "
7427 "node %d\n", i);
7428 goto error;
7429 }
7430 sched_group_nodes[i] = sg;
7431 for_each_cpu_mask(j, *nodemask) {
7432 struct sched_domain *sd;
7433
7434 sd = &per_cpu(node_domains, j);
7435 sd->groups = sg;
7436 }
7437 sg->__cpu_power = 0;
7438 sg->cpumask = *nodemask;
7439 sg->next = sg;
7440 cpus_or(*covered, *covered, *nodemask);
7441 prev = sg;
7442
7443 for (j = 0; j < nr_node_ids; j++) {
7444 SCHED_CPUMASK_VAR(notcovered, allmasks);
7445 int n = (i + j) % nr_node_ids;
7446 node_to_cpumask_ptr(pnodemask, n);
7447
7448 cpus_complement(*notcovered, *covered);
7449 cpus_and(*tmpmask, *notcovered, *cpu_map);
7450 cpus_and(*tmpmask, *tmpmask, *domainspan);
7451 if (cpus_empty(*tmpmask))
7452 break;
7453
7454 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7455 if (cpus_empty(*tmpmask))
7456 continue;
7457
7458 sg = kmalloc_node(sizeof(struct sched_group),
7459 GFP_KERNEL, i);
7460 if (!sg) {
7461 printk(KERN_WARNING
7462 "Can not alloc domain group for node %d\n", j);
7463 goto error;
7464 }
7465 sg->__cpu_power = 0;
7466 sg->cpumask = *tmpmask;
7467 sg->next = prev->next;
7468 cpus_or(*covered, *covered, *tmpmask);
7469 prev->next = sg;
7470 prev = sg;
7471 }
7472 }
7473 #endif
7474
7475 /* Calculate CPU power for physical packages and nodes */
7476 #ifdef CONFIG_SCHED_SMT
7477 for_each_cpu_mask(i, *cpu_map) {
7478 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7479
7480 init_sched_groups_power(i, sd);
7481 }
7482 #endif
7483 #ifdef CONFIG_SCHED_MC
7484 for_each_cpu_mask(i, *cpu_map) {
7485 struct sched_domain *sd = &per_cpu(core_domains, i);
7486
7487 init_sched_groups_power(i, sd);
7488 }
7489 #endif
7490
7491 for_each_cpu_mask(i, *cpu_map) {
7492 struct sched_domain *sd = &per_cpu(phys_domains, i);
7493
7494 init_sched_groups_power(i, sd);
7495 }
7496
7497 #ifdef CONFIG_NUMA
7498 for (i = 0; i < nr_node_ids; i++)
7499 init_numa_sched_groups_power(sched_group_nodes[i]);
7500
7501 if (sd_allnodes) {
7502 struct sched_group *sg;
7503
7504 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7505 tmpmask);
7506 init_numa_sched_groups_power(sg);
7507 }
7508 #endif
7509
7510 /* Attach the domains */
7511 for_each_cpu_mask(i, *cpu_map) {
7512 struct sched_domain *sd;
7513 #ifdef CONFIG_SCHED_SMT
7514 sd = &per_cpu(cpu_domains, i);
7515 #elif defined(CONFIG_SCHED_MC)
7516 sd = &per_cpu(core_domains, i);
7517 #else
7518 sd = &per_cpu(phys_domains, i);
7519 #endif
7520 cpu_attach_domain(sd, rd, i);
7521 }
7522
7523 SCHED_CPUMASK_FREE((void *)allmasks);
7524 return 0;
7525
7526 #ifdef CONFIG_NUMA
7527 error:
7528 free_sched_groups(cpu_map, tmpmask);
7529 SCHED_CPUMASK_FREE((void *)allmasks);
7530 return -ENOMEM;
7531 #endif
7532 }
7533
7534 static int build_sched_domains(const cpumask_t *cpu_map)
7535 {
7536 return __build_sched_domains(cpu_map, NULL);
7537 }
7538
7539 static cpumask_t *doms_cur; /* current sched domains */
7540 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7541 static struct sched_domain_attr *dattr_cur;
7542 /* attribues of custom domains in 'doms_cur' */
7543
7544 /*
7545 * Special case: If a kmalloc of a doms_cur partition (array of
7546 * cpumask_t) fails, then fallback to a single sched domain,
7547 * as determined by the single cpumask_t fallback_doms.
7548 */
7549 static cpumask_t fallback_doms;
7550
7551 void __attribute__((weak)) arch_update_cpu_topology(void)
7552 {
7553 }
7554
7555 /*
7556 * Free current domain masks.
7557 * Called after all cpus are attached to NULL domain.
7558 */
7559 static void free_sched_domains(void)
7560 {
7561 ndoms_cur = 0;
7562 if (doms_cur != &fallback_doms)
7563 kfree(doms_cur);
7564 doms_cur = &fallback_doms;
7565 }
7566
7567 /*
7568 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7569 * For now this just excludes isolated cpus, but could be used to
7570 * exclude other special cases in the future.
7571 */
7572 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7573 {
7574 int err;
7575
7576 arch_update_cpu_topology();
7577 ndoms_cur = 1;
7578 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7579 if (!doms_cur)
7580 doms_cur = &fallback_doms;
7581 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7582 dattr_cur = NULL;
7583 err = build_sched_domains(doms_cur);
7584 register_sched_domain_sysctl();
7585
7586 return err;
7587 }
7588
7589 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7590 cpumask_t *tmpmask)
7591 {
7592 free_sched_groups(cpu_map, tmpmask);
7593 }
7594
7595 /*
7596 * Detach sched domains from a group of cpus specified in cpu_map
7597 * These cpus will now be attached to the NULL domain
7598 */
7599 static void detach_destroy_domains(const cpumask_t *cpu_map)
7600 {
7601 cpumask_t tmpmask;
7602 int i;
7603
7604 unregister_sched_domain_sysctl();
7605
7606 for_each_cpu_mask(i, *cpu_map)
7607 cpu_attach_domain(NULL, &def_root_domain, i);
7608 synchronize_sched();
7609 arch_destroy_sched_domains(cpu_map, &tmpmask);
7610 }
7611
7612 /* handle null as "default" */
7613 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7614 struct sched_domain_attr *new, int idx_new)
7615 {
7616 struct sched_domain_attr tmp;
7617
7618 /* fast path */
7619 if (!new && !cur)
7620 return 1;
7621
7622 tmp = SD_ATTR_INIT;
7623 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7624 new ? (new + idx_new) : &tmp,
7625 sizeof(struct sched_domain_attr));
7626 }
7627
7628 /*
7629 * Partition sched domains as specified by the 'ndoms_new'
7630 * cpumasks in the array doms_new[] of cpumasks. This compares
7631 * doms_new[] to the current sched domain partitioning, doms_cur[].
7632 * It destroys each deleted domain and builds each new domain.
7633 *
7634 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7635 * The masks don't intersect (don't overlap.) We should setup one
7636 * sched domain for each mask. CPUs not in any of the cpumasks will
7637 * not be load balanced. If the same cpumask appears both in the
7638 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7639 * it as it is.
7640 *
7641 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7642 * ownership of it and will kfree it when done with it. If the caller
7643 * failed the kmalloc call, then it can pass in doms_new == NULL,
7644 * and partition_sched_domains() will fallback to the single partition
7645 * 'fallback_doms'.
7646 *
7647 * Call with hotplug lock held
7648 */
7649 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7650 struct sched_domain_attr *dattr_new)
7651 {
7652 int i, j;
7653
7654 mutex_lock(&sched_domains_mutex);
7655
7656 /* always unregister in case we don't destroy any domains */
7657 unregister_sched_domain_sysctl();
7658
7659 if (doms_new == NULL) {
7660 ndoms_new = 1;
7661 doms_new = &fallback_doms;
7662 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7663 dattr_new = NULL;
7664 }
7665
7666 /* Destroy deleted domains */
7667 for (i = 0; i < ndoms_cur; i++) {
7668 for (j = 0; j < ndoms_new; j++) {
7669 if (cpus_equal(doms_cur[i], doms_new[j])
7670 && dattrs_equal(dattr_cur, i, dattr_new, j))
7671 goto match1;
7672 }
7673 /* no match - a current sched domain not in new doms_new[] */
7674 detach_destroy_domains(doms_cur + i);
7675 match1:
7676 ;
7677 }
7678
7679 /* Build new domains */
7680 for (i = 0; i < ndoms_new; i++) {
7681 for (j = 0; j < ndoms_cur; j++) {
7682 if (cpus_equal(doms_new[i], doms_cur[j])
7683 && dattrs_equal(dattr_new, i, dattr_cur, j))
7684 goto match2;
7685 }
7686 /* no match - add a new doms_new */
7687 __build_sched_domains(doms_new + i,
7688 dattr_new ? dattr_new + i : NULL);
7689 match2:
7690 ;
7691 }
7692
7693 /* Remember the new sched domains */
7694 if (doms_cur != &fallback_doms)
7695 kfree(doms_cur);
7696 kfree(dattr_cur); /* kfree(NULL) is safe */
7697 doms_cur = doms_new;
7698 dattr_cur = dattr_new;
7699 ndoms_cur = ndoms_new;
7700
7701 register_sched_domain_sysctl();
7702
7703 mutex_unlock(&sched_domains_mutex);
7704 }
7705
7706 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7707 int arch_reinit_sched_domains(void)
7708 {
7709 int err;
7710
7711 get_online_cpus();
7712 mutex_lock(&sched_domains_mutex);
7713 detach_destroy_domains(&cpu_online_map);
7714 free_sched_domains();
7715 err = arch_init_sched_domains(&cpu_online_map);
7716 mutex_unlock(&sched_domains_mutex);
7717 put_online_cpus();
7718
7719 return err;
7720 }
7721
7722 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7723 {
7724 int ret;
7725
7726 if (buf[0] != '0' && buf[0] != '1')
7727 return -EINVAL;
7728
7729 if (smt)
7730 sched_smt_power_savings = (buf[0] == '1');
7731 else
7732 sched_mc_power_savings = (buf[0] == '1');
7733
7734 ret = arch_reinit_sched_domains();
7735
7736 return ret ? ret : count;
7737 }
7738
7739 #ifdef CONFIG_SCHED_MC
7740 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7741 {
7742 return sprintf(page, "%u\n", sched_mc_power_savings);
7743 }
7744 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7745 const char *buf, size_t count)
7746 {
7747 return sched_power_savings_store(buf, count, 0);
7748 }
7749 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7750 sched_mc_power_savings_store);
7751 #endif
7752
7753 #ifdef CONFIG_SCHED_SMT
7754 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7755 {
7756 return sprintf(page, "%u\n", sched_smt_power_savings);
7757 }
7758 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7759 const char *buf, size_t count)
7760 {
7761 return sched_power_savings_store(buf, count, 1);
7762 }
7763 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7764 sched_smt_power_savings_store);
7765 #endif
7766
7767 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7768 {
7769 int err = 0;
7770
7771 #ifdef CONFIG_SCHED_SMT
7772 if (smt_capable())
7773 err = sysfs_create_file(&cls->kset.kobj,
7774 &attr_sched_smt_power_savings.attr);
7775 #endif
7776 #ifdef CONFIG_SCHED_MC
7777 if (!err && mc_capable())
7778 err = sysfs_create_file(&cls->kset.kobj,
7779 &attr_sched_mc_power_savings.attr);
7780 #endif
7781 return err;
7782 }
7783 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7784
7785 /*
7786 * Force a reinitialization of the sched domains hierarchy. The domains
7787 * and groups cannot be updated in place without racing with the balancing
7788 * code, so we temporarily attach all running cpus to the NULL domain
7789 * which will prevent rebalancing while the sched domains are recalculated.
7790 */
7791 static int update_sched_domains(struct notifier_block *nfb,
7792 unsigned long action, void *hcpu)
7793 {
7794 int cpu = (int)(long)hcpu;
7795
7796 switch (action) {
7797 case CPU_DOWN_PREPARE:
7798 case CPU_DOWN_PREPARE_FROZEN:
7799 disable_runtime(cpu_rq(cpu));
7800 /* fall-through */
7801 case CPU_UP_PREPARE:
7802 case CPU_UP_PREPARE_FROZEN:
7803 detach_destroy_domains(&cpu_online_map);
7804 free_sched_domains();
7805 return NOTIFY_OK;
7806
7807
7808 case CPU_DOWN_FAILED:
7809 case CPU_DOWN_FAILED_FROZEN:
7810 case CPU_ONLINE:
7811 case CPU_ONLINE_FROZEN:
7812 enable_runtime(cpu_rq(cpu));
7813 /* fall-through */
7814 case CPU_UP_CANCELED:
7815 case CPU_UP_CANCELED_FROZEN:
7816 case CPU_DEAD:
7817 case CPU_DEAD_FROZEN:
7818 /*
7819 * Fall through and re-initialise the domains.
7820 */
7821 break;
7822 default:
7823 return NOTIFY_DONE;
7824 }
7825
7826 #ifndef CONFIG_CPUSETS
7827 /*
7828 * Create default domain partitioning if cpusets are disabled.
7829 * Otherwise we let cpusets rebuild the domains based on the
7830 * current setup.
7831 */
7832
7833 /* The hotplug lock is already held by cpu_up/cpu_down */
7834 arch_init_sched_domains(&cpu_online_map);
7835 #endif
7836
7837 return NOTIFY_OK;
7838 }
7839
7840 void __init sched_init_smp(void)
7841 {
7842 cpumask_t non_isolated_cpus;
7843
7844 #if defined(CONFIG_NUMA)
7845 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7846 GFP_KERNEL);
7847 BUG_ON(sched_group_nodes_bycpu == NULL);
7848 #endif
7849 get_online_cpus();
7850 mutex_lock(&sched_domains_mutex);
7851 arch_init_sched_domains(&cpu_online_map);
7852 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7853 if (cpus_empty(non_isolated_cpus))
7854 cpu_set(smp_processor_id(), non_isolated_cpus);
7855 mutex_unlock(&sched_domains_mutex);
7856 put_online_cpus();
7857 /* XXX: Theoretical race here - CPU may be hotplugged now */
7858 hotcpu_notifier(update_sched_domains, 0);
7859 init_hrtick();
7860
7861 /* Move init over to a non-isolated CPU */
7862 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7863 BUG();
7864 sched_init_granularity();
7865 }
7866 #else
7867 void __init sched_init_smp(void)
7868 {
7869 sched_init_granularity();
7870 }
7871 #endif /* CONFIG_SMP */
7872
7873 int in_sched_functions(unsigned long addr)
7874 {
7875 return in_lock_functions(addr) ||
7876 (addr >= (unsigned long)__sched_text_start
7877 && addr < (unsigned long)__sched_text_end);
7878 }
7879
7880 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7881 {
7882 cfs_rq->tasks_timeline = RB_ROOT;
7883 INIT_LIST_HEAD(&cfs_rq->tasks);
7884 #ifdef CONFIG_FAIR_GROUP_SCHED
7885 cfs_rq->rq = rq;
7886 #endif
7887 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7888 }
7889
7890 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7891 {
7892 struct rt_prio_array *array;
7893 int i;
7894
7895 array = &rt_rq->active;
7896 for (i = 0; i < MAX_RT_PRIO; i++) {
7897 INIT_LIST_HEAD(array->queue + i);
7898 __clear_bit(i, array->bitmap);
7899 }
7900 /* delimiter for bitsearch: */
7901 __set_bit(MAX_RT_PRIO, array->bitmap);
7902
7903 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7904 rt_rq->highest_prio = MAX_RT_PRIO;
7905 #endif
7906 #ifdef CONFIG_SMP
7907 rt_rq->rt_nr_migratory = 0;
7908 rt_rq->overloaded = 0;
7909 #endif
7910
7911 rt_rq->rt_time = 0;
7912 rt_rq->rt_throttled = 0;
7913 rt_rq->rt_runtime = 0;
7914 spin_lock_init(&rt_rq->rt_runtime_lock);
7915
7916 #ifdef CONFIG_RT_GROUP_SCHED
7917 rt_rq->rt_nr_boosted = 0;
7918 rt_rq->rq = rq;
7919 #endif
7920 }
7921
7922 #ifdef CONFIG_FAIR_GROUP_SCHED
7923 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7924 struct sched_entity *se, int cpu, int add,
7925 struct sched_entity *parent)
7926 {
7927 struct rq *rq = cpu_rq(cpu);
7928 tg->cfs_rq[cpu] = cfs_rq;
7929 init_cfs_rq(cfs_rq, rq);
7930 cfs_rq->tg = tg;
7931 if (add)
7932 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7933
7934 tg->se[cpu] = se;
7935 /* se could be NULL for init_task_group */
7936 if (!se)
7937 return;
7938
7939 if (!parent)
7940 se->cfs_rq = &rq->cfs;
7941 else
7942 se->cfs_rq = parent->my_q;
7943
7944 se->my_q = cfs_rq;
7945 se->load.weight = tg->shares;
7946 se->load.inv_weight = 0;
7947 se->parent = parent;
7948 }
7949 #endif
7950
7951 #ifdef CONFIG_RT_GROUP_SCHED
7952 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7953 struct sched_rt_entity *rt_se, int cpu, int add,
7954 struct sched_rt_entity *parent)
7955 {
7956 struct rq *rq = cpu_rq(cpu);
7957
7958 tg->rt_rq[cpu] = rt_rq;
7959 init_rt_rq(rt_rq, rq);
7960 rt_rq->tg = tg;
7961 rt_rq->rt_se = rt_se;
7962 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7963 if (add)
7964 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7965
7966 tg->rt_se[cpu] = rt_se;
7967 if (!rt_se)
7968 return;
7969
7970 if (!parent)
7971 rt_se->rt_rq = &rq->rt;
7972 else
7973 rt_se->rt_rq = parent->my_q;
7974
7975 rt_se->my_q = rt_rq;
7976 rt_se->parent = parent;
7977 INIT_LIST_HEAD(&rt_se->run_list);
7978 }
7979 #endif
7980
7981 void __init sched_init(void)
7982 {
7983 int i, j;
7984 unsigned long alloc_size = 0, ptr;
7985
7986 #ifdef CONFIG_FAIR_GROUP_SCHED
7987 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7988 #endif
7989 #ifdef CONFIG_RT_GROUP_SCHED
7990 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7991 #endif
7992 #ifdef CONFIG_USER_SCHED
7993 alloc_size *= 2;
7994 #endif
7995 /*
7996 * As sched_init() is called before page_alloc is setup,
7997 * we use alloc_bootmem().
7998 */
7999 if (alloc_size) {
8000 ptr = (unsigned long)alloc_bootmem(alloc_size);
8001
8002 #ifdef CONFIG_FAIR_GROUP_SCHED
8003 init_task_group.se = (struct sched_entity **)ptr;
8004 ptr += nr_cpu_ids * sizeof(void **);
8005
8006 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8007 ptr += nr_cpu_ids * sizeof(void **);
8008
8009 #ifdef CONFIG_USER_SCHED
8010 root_task_group.se = (struct sched_entity **)ptr;
8011 ptr += nr_cpu_ids * sizeof(void **);
8012
8013 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8014 ptr += nr_cpu_ids * sizeof(void **);
8015 #endif /* CONFIG_USER_SCHED */
8016 #endif /* CONFIG_FAIR_GROUP_SCHED */
8017 #ifdef CONFIG_RT_GROUP_SCHED
8018 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8019 ptr += nr_cpu_ids * sizeof(void **);
8020
8021 init_task_group.rt_rq = (struct rt_rq **)ptr;
8022 ptr += nr_cpu_ids * sizeof(void **);
8023
8024 #ifdef CONFIG_USER_SCHED
8025 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8026 ptr += nr_cpu_ids * sizeof(void **);
8027
8028 root_task_group.rt_rq = (struct rt_rq **)ptr;
8029 ptr += nr_cpu_ids * sizeof(void **);
8030 #endif /* CONFIG_USER_SCHED */
8031 #endif /* CONFIG_RT_GROUP_SCHED */
8032 }
8033
8034 #ifdef CONFIG_SMP
8035 init_defrootdomain();
8036 #endif
8037
8038 init_rt_bandwidth(&def_rt_bandwidth,
8039 global_rt_period(), global_rt_runtime());
8040
8041 #ifdef CONFIG_RT_GROUP_SCHED
8042 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8043 global_rt_period(), global_rt_runtime());
8044 #ifdef CONFIG_USER_SCHED
8045 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8046 global_rt_period(), RUNTIME_INF);
8047 #endif /* CONFIG_USER_SCHED */
8048 #endif /* CONFIG_RT_GROUP_SCHED */
8049
8050 #ifdef CONFIG_GROUP_SCHED
8051 list_add(&init_task_group.list, &task_groups);
8052 INIT_LIST_HEAD(&init_task_group.children);
8053
8054 #ifdef CONFIG_USER_SCHED
8055 INIT_LIST_HEAD(&root_task_group.children);
8056 init_task_group.parent = &root_task_group;
8057 list_add(&init_task_group.siblings, &root_task_group.children);
8058 #endif /* CONFIG_USER_SCHED */
8059 #endif /* CONFIG_GROUP_SCHED */
8060
8061 for_each_possible_cpu(i) {
8062 struct rq *rq;
8063
8064 rq = cpu_rq(i);
8065 spin_lock_init(&rq->lock);
8066 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
8067 rq->nr_running = 0;
8068 init_cfs_rq(&rq->cfs, rq);
8069 init_rt_rq(&rq->rt, rq);
8070 #ifdef CONFIG_FAIR_GROUP_SCHED
8071 init_task_group.shares = init_task_group_load;
8072 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8073 #ifdef CONFIG_CGROUP_SCHED
8074 /*
8075 * How much cpu bandwidth does init_task_group get?
8076 *
8077 * In case of task-groups formed thr' the cgroup filesystem, it
8078 * gets 100% of the cpu resources in the system. This overall
8079 * system cpu resource is divided among the tasks of
8080 * init_task_group and its child task-groups in a fair manner,
8081 * based on each entity's (task or task-group's) weight
8082 * (se->load.weight).
8083 *
8084 * In other words, if init_task_group has 10 tasks of weight
8085 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8086 * then A0's share of the cpu resource is:
8087 *
8088 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8089 *
8090 * We achieve this by letting init_task_group's tasks sit
8091 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8092 */
8093 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8094 #elif defined CONFIG_USER_SCHED
8095 root_task_group.shares = NICE_0_LOAD;
8096 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8097 /*
8098 * In case of task-groups formed thr' the user id of tasks,
8099 * init_task_group represents tasks belonging to root user.
8100 * Hence it forms a sibling of all subsequent groups formed.
8101 * In this case, init_task_group gets only a fraction of overall
8102 * system cpu resource, based on the weight assigned to root
8103 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8104 * by letting tasks of init_task_group sit in a separate cfs_rq
8105 * (init_cfs_rq) and having one entity represent this group of
8106 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8107 */
8108 init_tg_cfs_entry(&init_task_group,
8109 &per_cpu(init_cfs_rq, i),
8110 &per_cpu(init_sched_entity, i), i, 1,
8111 root_task_group.se[i]);
8112
8113 #endif
8114 #endif /* CONFIG_FAIR_GROUP_SCHED */
8115
8116 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8117 #ifdef CONFIG_RT_GROUP_SCHED
8118 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8119 #ifdef CONFIG_CGROUP_SCHED
8120 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8121 #elif defined CONFIG_USER_SCHED
8122 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8123 init_tg_rt_entry(&init_task_group,
8124 &per_cpu(init_rt_rq, i),
8125 &per_cpu(init_sched_rt_entity, i), i, 1,
8126 root_task_group.rt_se[i]);
8127 #endif
8128 #endif
8129
8130 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8131 rq->cpu_load[j] = 0;
8132 #ifdef CONFIG_SMP
8133 rq->sd = NULL;
8134 rq->rd = NULL;
8135 rq->active_balance = 0;
8136 rq->next_balance = jiffies;
8137 rq->push_cpu = 0;
8138 rq->cpu = i;
8139 rq->online = 0;
8140 rq->migration_thread = NULL;
8141 INIT_LIST_HEAD(&rq->migration_queue);
8142 rq_attach_root(rq, &def_root_domain);
8143 #endif
8144 init_rq_hrtick(rq);
8145 atomic_set(&rq->nr_iowait, 0);
8146 }
8147
8148 set_load_weight(&init_task);
8149
8150 #ifdef CONFIG_PREEMPT_NOTIFIERS
8151 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8152 #endif
8153
8154 #ifdef CONFIG_SMP
8155 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8156 #endif
8157
8158 #ifdef CONFIG_RT_MUTEXES
8159 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8160 #endif
8161
8162 /*
8163 * The boot idle thread does lazy MMU switching as well:
8164 */
8165 atomic_inc(&init_mm.mm_count);
8166 enter_lazy_tlb(&init_mm, current);
8167
8168 /*
8169 * Make us the idle thread. Technically, schedule() should not be
8170 * called from this thread, however somewhere below it might be,
8171 * but because we are the idle thread, we just pick up running again
8172 * when this runqueue becomes "idle".
8173 */
8174 init_idle(current, smp_processor_id());
8175 /*
8176 * During early bootup we pretend to be a normal task:
8177 */
8178 current->sched_class = &fair_sched_class;
8179
8180 scheduler_running = 1;
8181 }
8182
8183 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8184 void __might_sleep(char *file, int line)
8185 {
8186 #ifdef in_atomic
8187 static unsigned long prev_jiffy; /* ratelimiting */
8188
8189 if ((in_atomic() || irqs_disabled()) &&
8190 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8191 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8192 return;
8193 prev_jiffy = jiffies;
8194 printk(KERN_ERR "BUG: sleeping function called from invalid"
8195 " context at %s:%d\n", file, line);
8196 printk("in_atomic():%d, irqs_disabled():%d\n",
8197 in_atomic(), irqs_disabled());
8198 debug_show_held_locks(current);
8199 if (irqs_disabled())
8200 print_irqtrace_events(current);
8201 dump_stack();
8202 }
8203 #endif
8204 }
8205 EXPORT_SYMBOL(__might_sleep);
8206 #endif
8207
8208 #ifdef CONFIG_MAGIC_SYSRQ
8209 static void normalize_task(struct rq *rq, struct task_struct *p)
8210 {
8211 int on_rq;
8212
8213 update_rq_clock(rq);
8214 on_rq = p->se.on_rq;
8215 if (on_rq)
8216 deactivate_task(rq, p, 0);
8217 __setscheduler(rq, p, SCHED_NORMAL, 0);
8218 if (on_rq) {
8219 activate_task(rq, p, 0);
8220 resched_task(rq->curr);
8221 }
8222 }
8223
8224 void normalize_rt_tasks(void)
8225 {
8226 struct task_struct *g, *p;
8227 unsigned long flags;
8228 struct rq *rq;
8229
8230 read_lock_irqsave(&tasklist_lock, flags);
8231 do_each_thread(g, p) {
8232 /*
8233 * Only normalize user tasks:
8234 */
8235 if (!p->mm)
8236 continue;
8237
8238 p->se.exec_start = 0;
8239 #ifdef CONFIG_SCHEDSTATS
8240 p->se.wait_start = 0;
8241 p->se.sleep_start = 0;
8242 p->se.block_start = 0;
8243 #endif
8244
8245 if (!rt_task(p)) {
8246 /*
8247 * Renice negative nice level userspace
8248 * tasks back to 0:
8249 */
8250 if (TASK_NICE(p) < 0 && p->mm)
8251 set_user_nice(p, 0);
8252 continue;
8253 }
8254
8255 spin_lock(&p->pi_lock);
8256 rq = __task_rq_lock(p);
8257
8258 normalize_task(rq, p);
8259
8260 __task_rq_unlock(rq);
8261 spin_unlock(&p->pi_lock);
8262 } while_each_thread(g, p);
8263
8264 read_unlock_irqrestore(&tasklist_lock, flags);
8265 }
8266
8267 #endif /* CONFIG_MAGIC_SYSRQ */
8268
8269 #ifdef CONFIG_IA64
8270 /*
8271 * These functions are only useful for the IA64 MCA handling.
8272 *
8273 * They can only be called when the whole system has been
8274 * stopped - every CPU needs to be quiescent, and no scheduling
8275 * activity can take place. Using them for anything else would
8276 * be a serious bug, and as a result, they aren't even visible
8277 * under any other configuration.
8278 */
8279
8280 /**
8281 * curr_task - return the current task for a given cpu.
8282 * @cpu: the processor in question.
8283 *
8284 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8285 */
8286 struct task_struct *curr_task(int cpu)
8287 {
8288 return cpu_curr(cpu);
8289 }
8290
8291 /**
8292 * set_curr_task - set the current task for a given cpu.
8293 * @cpu: the processor in question.
8294 * @p: the task pointer to set.
8295 *
8296 * Description: This function must only be used when non-maskable interrupts
8297 * are serviced on a separate stack. It allows the architecture to switch the
8298 * notion of the current task on a cpu in a non-blocking manner. This function
8299 * must be called with all CPU's synchronized, and interrupts disabled, the
8300 * and caller must save the original value of the current task (see
8301 * curr_task() above) and restore that value before reenabling interrupts and
8302 * re-starting the system.
8303 *
8304 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8305 */
8306 void set_curr_task(int cpu, struct task_struct *p)
8307 {
8308 cpu_curr(cpu) = p;
8309 }
8310
8311 #endif
8312
8313 #ifdef CONFIG_FAIR_GROUP_SCHED
8314 static void free_fair_sched_group(struct task_group *tg)
8315 {
8316 int i;
8317
8318 for_each_possible_cpu(i) {
8319 if (tg->cfs_rq)
8320 kfree(tg->cfs_rq[i]);
8321 if (tg->se)
8322 kfree(tg->se[i]);
8323 }
8324
8325 kfree(tg->cfs_rq);
8326 kfree(tg->se);
8327 }
8328
8329 static
8330 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8331 {
8332 struct cfs_rq *cfs_rq;
8333 struct sched_entity *se, *parent_se;
8334 struct rq *rq;
8335 int i;
8336
8337 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8338 if (!tg->cfs_rq)
8339 goto err;
8340 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8341 if (!tg->se)
8342 goto err;
8343
8344 tg->shares = NICE_0_LOAD;
8345
8346 for_each_possible_cpu(i) {
8347 rq = cpu_rq(i);
8348
8349 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8350 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8351 if (!cfs_rq)
8352 goto err;
8353
8354 se = kmalloc_node(sizeof(struct sched_entity),
8355 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8356 if (!se)
8357 goto err;
8358
8359 parent_se = parent ? parent->se[i] : NULL;
8360 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8361 }
8362
8363 return 1;
8364
8365 err:
8366 return 0;
8367 }
8368
8369 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8370 {
8371 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8372 &cpu_rq(cpu)->leaf_cfs_rq_list);
8373 }
8374
8375 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8376 {
8377 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8378 }
8379 #else /* !CONFG_FAIR_GROUP_SCHED */
8380 static inline void free_fair_sched_group(struct task_group *tg)
8381 {
8382 }
8383
8384 static inline
8385 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8386 {
8387 return 1;
8388 }
8389
8390 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8391 {
8392 }
8393
8394 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8395 {
8396 }
8397 #endif /* CONFIG_FAIR_GROUP_SCHED */
8398
8399 #ifdef CONFIG_RT_GROUP_SCHED
8400 static void free_rt_sched_group(struct task_group *tg)
8401 {
8402 int i;
8403
8404 destroy_rt_bandwidth(&tg->rt_bandwidth);
8405
8406 for_each_possible_cpu(i) {
8407 if (tg->rt_rq)
8408 kfree(tg->rt_rq[i]);
8409 if (tg->rt_se)
8410 kfree(tg->rt_se[i]);
8411 }
8412
8413 kfree(tg->rt_rq);
8414 kfree(tg->rt_se);
8415 }
8416
8417 static
8418 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8419 {
8420 struct rt_rq *rt_rq;
8421 struct sched_rt_entity *rt_se, *parent_se;
8422 struct rq *rq;
8423 int i;
8424
8425 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8426 if (!tg->rt_rq)
8427 goto err;
8428 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8429 if (!tg->rt_se)
8430 goto err;
8431
8432 init_rt_bandwidth(&tg->rt_bandwidth,
8433 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8434
8435 for_each_possible_cpu(i) {
8436 rq = cpu_rq(i);
8437
8438 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8439 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8440 if (!rt_rq)
8441 goto err;
8442
8443 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8444 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8445 if (!rt_se)
8446 goto err;
8447
8448 parent_se = parent ? parent->rt_se[i] : NULL;
8449 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8450 }
8451
8452 return 1;
8453
8454 err:
8455 return 0;
8456 }
8457
8458 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8459 {
8460 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8461 &cpu_rq(cpu)->leaf_rt_rq_list);
8462 }
8463
8464 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8465 {
8466 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8467 }
8468 #else /* !CONFIG_RT_GROUP_SCHED */
8469 static inline void free_rt_sched_group(struct task_group *tg)
8470 {
8471 }
8472
8473 static inline
8474 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8475 {
8476 return 1;
8477 }
8478
8479 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8480 {
8481 }
8482
8483 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8484 {
8485 }
8486 #endif /* CONFIG_RT_GROUP_SCHED */
8487
8488 #ifdef CONFIG_GROUP_SCHED
8489 static void free_sched_group(struct task_group *tg)
8490 {
8491 free_fair_sched_group(tg);
8492 free_rt_sched_group(tg);
8493 kfree(tg);
8494 }
8495
8496 /* allocate runqueue etc for a new task group */
8497 struct task_group *sched_create_group(struct task_group *parent)
8498 {
8499 struct task_group *tg;
8500 unsigned long flags;
8501 int i;
8502
8503 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8504 if (!tg)
8505 return ERR_PTR(-ENOMEM);
8506
8507 if (!alloc_fair_sched_group(tg, parent))
8508 goto err;
8509
8510 if (!alloc_rt_sched_group(tg, parent))
8511 goto err;
8512
8513 spin_lock_irqsave(&task_group_lock, flags);
8514 for_each_possible_cpu(i) {
8515 register_fair_sched_group(tg, i);
8516 register_rt_sched_group(tg, i);
8517 }
8518 list_add_rcu(&tg->list, &task_groups);
8519
8520 WARN_ON(!parent); /* root should already exist */
8521
8522 tg->parent = parent;
8523 list_add_rcu(&tg->siblings, &parent->children);
8524 INIT_LIST_HEAD(&tg->children);
8525 spin_unlock_irqrestore(&task_group_lock, flags);
8526
8527 return tg;
8528
8529 err:
8530 free_sched_group(tg);
8531 return ERR_PTR(-ENOMEM);
8532 }
8533
8534 /* rcu callback to free various structures associated with a task group */
8535 static void free_sched_group_rcu(struct rcu_head *rhp)
8536 {
8537 /* now it should be safe to free those cfs_rqs */
8538 free_sched_group(container_of(rhp, struct task_group, rcu));
8539 }
8540
8541 /* Destroy runqueue etc associated with a task group */
8542 void sched_destroy_group(struct task_group *tg)
8543 {
8544 unsigned long flags;
8545 int i;
8546
8547 spin_lock_irqsave(&task_group_lock, flags);
8548 for_each_possible_cpu(i) {
8549 unregister_fair_sched_group(tg, i);
8550 unregister_rt_sched_group(tg, i);
8551 }
8552 list_del_rcu(&tg->list);
8553 list_del_rcu(&tg->siblings);
8554 spin_unlock_irqrestore(&task_group_lock, flags);
8555
8556 /* wait for possible concurrent references to cfs_rqs complete */
8557 call_rcu(&tg->rcu, free_sched_group_rcu);
8558 }
8559
8560 /* change task's runqueue when it moves between groups.
8561 * The caller of this function should have put the task in its new group
8562 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8563 * reflect its new group.
8564 */
8565 void sched_move_task(struct task_struct *tsk)
8566 {
8567 int on_rq, running;
8568 unsigned long flags;
8569 struct rq *rq;
8570
8571 rq = task_rq_lock(tsk, &flags);
8572
8573 update_rq_clock(rq);
8574
8575 running = task_current(rq, tsk);
8576 on_rq = tsk->se.on_rq;
8577
8578 if (on_rq)
8579 dequeue_task(rq, tsk, 0);
8580 if (unlikely(running))
8581 tsk->sched_class->put_prev_task(rq, tsk);
8582
8583 set_task_rq(tsk, task_cpu(tsk));
8584
8585 #ifdef CONFIG_FAIR_GROUP_SCHED
8586 if (tsk->sched_class->moved_group)
8587 tsk->sched_class->moved_group(tsk);
8588 #endif
8589
8590 if (unlikely(running))
8591 tsk->sched_class->set_curr_task(rq);
8592 if (on_rq)
8593 enqueue_task(rq, tsk, 0);
8594
8595 task_rq_unlock(rq, &flags);
8596 }
8597 #endif /* CONFIG_GROUP_SCHED */
8598
8599 #ifdef CONFIG_FAIR_GROUP_SCHED
8600 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8601 {
8602 struct cfs_rq *cfs_rq = se->cfs_rq;
8603 int on_rq;
8604
8605 on_rq = se->on_rq;
8606 if (on_rq)
8607 dequeue_entity(cfs_rq, se, 0);
8608
8609 se->load.weight = shares;
8610 se->load.inv_weight = 0;
8611
8612 if (on_rq)
8613 enqueue_entity(cfs_rq, se, 0);
8614 }
8615
8616 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8617 {
8618 struct cfs_rq *cfs_rq = se->cfs_rq;
8619 struct rq *rq = cfs_rq->rq;
8620 unsigned long flags;
8621
8622 spin_lock_irqsave(&rq->lock, flags);
8623 __set_se_shares(se, shares);
8624 spin_unlock_irqrestore(&rq->lock, flags);
8625 }
8626
8627 static DEFINE_MUTEX(shares_mutex);
8628
8629 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8630 {
8631 int i;
8632 unsigned long flags;
8633
8634 /*
8635 * We can't change the weight of the root cgroup.
8636 */
8637 if (!tg->se[0])
8638 return -EINVAL;
8639
8640 if (shares < MIN_SHARES)
8641 shares = MIN_SHARES;
8642 else if (shares > MAX_SHARES)
8643 shares = MAX_SHARES;
8644
8645 mutex_lock(&shares_mutex);
8646 if (tg->shares == shares)
8647 goto done;
8648
8649 spin_lock_irqsave(&task_group_lock, flags);
8650 for_each_possible_cpu(i)
8651 unregister_fair_sched_group(tg, i);
8652 list_del_rcu(&tg->siblings);
8653 spin_unlock_irqrestore(&task_group_lock, flags);
8654
8655 /* wait for any ongoing reference to this group to finish */
8656 synchronize_sched();
8657
8658 /*
8659 * Now we are free to modify the group's share on each cpu
8660 * w/o tripping rebalance_share or load_balance_fair.
8661 */
8662 tg->shares = shares;
8663 for_each_possible_cpu(i) {
8664 /*
8665 * force a rebalance
8666 */
8667 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8668 set_se_shares(tg->se[i], shares);
8669 }
8670
8671 /*
8672 * Enable load balance activity on this group, by inserting it back on
8673 * each cpu's rq->leaf_cfs_rq_list.
8674 */
8675 spin_lock_irqsave(&task_group_lock, flags);
8676 for_each_possible_cpu(i)
8677 register_fair_sched_group(tg, i);
8678 list_add_rcu(&tg->siblings, &tg->parent->children);
8679 spin_unlock_irqrestore(&task_group_lock, flags);
8680 done:
8681 mutex_unlock(&shares_mutex);
8682 return 0;
8683 }
8684
8685 unsigned long sched_group_shares(struct task_group *tg)
8686 {
8687 return tg->shares;
8688 }
8689 #endif
8690
8691 #ifdef CONFIG_RT_GROUP_SCHED
8692 /*
8693 * Ensure that the real time constraints are schedulable.
8694 */
8695 static DEFINE_MUTEX(rt_constraints_mutex);
8696
8697 static unsigned long to_ratio(u64 period, u64 runtime)
8698 {
8699 if (runtime == RUNTIME_INF)
8700 return 1ULL << 16;
8701
8702 return div64_u64(runtime << 16, period);
8703 }
8704
8705 #ifdef CONFIG_CGROUP_SCHED
8706 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8707 {
8708 struct task_group *tgi, *parent = tg->parent;
8709 unsigned long total = 0;
8710
8711 if (!parent) {
8712 if (global_rt_period() < period)
8713 return 0;
8714
8715 return to_ratio(period, runtime) <
8716 to_ratio(global_rt_period(), global_rt_runtime());
8717 }
8718
8719 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8720 return 0;
8721
8722 rcu_read_lock();
8723 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8724 if (tgi == tg)
8725 continue;
8726
8727 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8728 tgi->rt_bandwidth.rt_runtime);
8729 }
8730 rcu_read_unlock();
8731
8732 return total + to_ratio(period, runtime) <=
8733 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8734 parent->rt_bandwidth.rt_runtime);
8735 }
8736 #elif defined CONFIG_USER_SCHED
8737 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8738 {
8739 struct task_group *tgi;
8740 unsigned long total = 0;
8741 unsigned long global_ratio =
8742 to_ratio(global_rt_period(), global_rt_runtime());
8743
8744 rcu_read_lock();
8745 list_for_each_entry_rcu(tgi, &task_groups, list) {
8746 if (tgi == tg)
8747 continue;
8748
8749 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8750 tgi->rt_bandwidth.rt_runtime);
8751 }
8752 rcu_read_unlock();
8753
8754 return total + to_ratio(period, runtime) < global_ratio;
8755 }
8756 #endif
8757
8758 /* Must be called with tasklist_lock held */
8759 static inline int tg_has_rt_tasks(struct task_group *tg)
8760 {
8761 struct task_struct *g, *p;
8762 do_each_thread(g, p) {
8763 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8764 return 1;
8765 } while_each_thread(g, p);
8766 return 0;
8767 }
8768
8769 static int tg_set_bandwidth(struct task_group *tg,
8770 u64 rt_period, u64 rt_runtime)
8771 {
8772 int i, err = 0;
8773
8774 mutex_lock(&rt_constraints_mutex);
8775 read_lock(&tasklist_lock);
8776 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8777 err = -EBUSY;
8778 goto unlock;
8779 }
8780 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8781 err = -EINVAL;
8782 goto unlock;
8783 }
8784
8785 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8786 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8787 tg->rt_bandwidth.rt_runtime = rt_runtime;
8788
8789 for_each_possible_cpu(i) {
8790 struct rt_rq *rt_rq = tg->rt_rq[i];
8791
8792 spin_lock(&rt_rq->rt_runtime_lock);
8793 rt_rq->rt_runtime = rt_runtime;
8794 spin_unlock(&rt_rq->rt_runtime_lock);
8795 }
8796 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8797 unlock:
8798 read_unlock(&tasklist_lock);
8799 mutex_unlock(&rt_constraints_mutex);
8800
8801 return err;
8802 }
8803
8804 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8805 {
8806 u64 rt_runtime, rt_period;
8807
8808 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8809 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8810 if (rt_runtime_us < 0)
8811 rt_runtime = RUNTIME_INF;
8812
8813 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8814 }
8815
8816 long sched_group_rt_runtime(struct task_group *tg)
8817 {
8818 u64 rt_runtime_us;
8819
8820 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8821 return -1;
8822
8823 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8824 do_div(rt_runtime_us, NSEC_PER_USEC);
8825 return rt_runtime_us;
8826 }
8827
8828 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8829 {
8830 u64 rt_runtime, rt_period;
8831
8832 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8833 rt_runtime = tg->rt_bandwidth.rt_runtime;
8834
8835 if (rt_period == 0)
8836 return -EINVAL;
8837
8838 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8839 }
8840
8841 long sched_group_rt_period(struct task_group *tg)
8842 {
8843 u64 rt_period_us;
8844
8845 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8846 do_div(rt_period_us, NSEC_PER_USEC);
8847 return rt_period_us;
8848 }
8849
8850 static int sched_rt_global_constraints(void)
8851 {
8852 struct task_group *tg = &root_task_group;
8853 u64 rt_runtime, rt_period;
8854 int ret = 0;
8855
8856 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8857 rt_runtime = tg->rt_bandwidth.rt_runtime;
8858
8859 mutex_lock(&rt_constraints_mutex);
8860 if (!__rt_schedulable(tg, rt_period, rt_runtime))
8861 ret = -EINVAL;
8862 mutex_unlock(&rt_constraints_mutex);
8863
8864 return ret;
8865 }
8866 #else /* !CONFIG_RT_GROUP_SCHED */
8867 static int sched_rt_global_constraints(void)
8868 {
8869 unsigned long flags;
8870 int i;
8871
8872 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8873 for_each_possible_cpu(i) {
8874 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8875
8876 spin_lock(&rt_rq->rt_runtime_lock);
8877 rt_rq->rt_runtime = global_rt_runtime();
8878 spin_unlock(&rt_rq->rt_runtime_lock);
8879 }
8880 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8881
8882 return 0;
8883 }
8884 #endif /* CONFIG_RT_GROUP_SCHED */
8885
8886 int sched_rt_handler(struct ctl_table *table, int write,
8887 struct file *filp, void __user *buffer, size_t *lenp,
8888 loff_t *ppos)
8889 {
8890 int ret;
8891 int old_period, old_runtime;
8892 static DEFINE_MUTEX(mutex);
8893
8894 mutex_lock(&mutex);
8895 old_period = sysctl_sched_rt_period;
8896 old_runtime = sysctl_sched_rt_runtime;
8897
8898 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8899
8900 if (!ret && write) {
8901 ret = sched_rt_global_constraints();
8902 if (ret) {
8903 sysctl_sched_rt_period = old_period;
8904 sysctl_sched_rt_runtime = old_runtime;
8905 } else {
8906 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8907 def_rt_bandwidth.rt_period =
8908 ns_to_ktime(global_rt_period());
8909 }
8910 }
8911 mutex_unlock(&mutex);
8912
8913 return ret;
8914 }
8915
8916 #ifdef CONFIG_CGROUP_SCHED
8917
8918 /* return corresponding task_group object of a cgroup */
8919 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8920 {
8921 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8922 struct task_group, css);
8923 }
8924
8925 static struct cgroup_subsys_state *
8926 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8927 {
8928 struct task_group *tg, *parent;
8929
8930 if (!cgrp->parent) {
8931 /* This is early initialization for the top cgroup */
8932 init_task_group.css.cgroup = cgrp;
8933 return &init_task_group.css;
8934 }
8935
8936 parent = cgroup_tg(cgrp->parent);
8937 tg = sched_create_group(parent);
8938 if (IS_ERR(tg))
8939 return ERR_PTR(-ENOMEM);
8940
8941 /* Bind the cgroup to task_group object we just created */
8942 tg->css.cgroup = cgrp;
8943
8944 return &tg->css;
8945 }
8946
8947 static void
8948 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8949 {
8950 struct task_group *tg = cgroup_tg(cgrp);
8951
8952 sched_destroy_group(tg);
8953 }
8954
8955 static int
8956 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8957 struct task_struct *tsk)
8958 {
8959 #ifdef CONFIG_RT_GROUP_SCHED
8960 /* Don't accept realtime tasks when there is no way for them to run */
8961 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8962 return -EINVAL;
8963 #else
8964 /* We don't support RT-tasks being in separate groups */
8965 if (tsk->sched_class != &fair_sched_class)
8966 return -EINVAL;
8967 #endif
8968
8969 return 0;
8970 }
8971
8972 static void
8973 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8974 struct cgroup *old_cont, struct task_struct *tsk)
8975 {
8976 sched_move_task(tsk);
8977 }
8978
8979 #ifdef CONFIG_FAIR_GROUP_SCHED
8980 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8981 u64 shareval)
8982 {
8983 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8984 }
8985
8986 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8987 {
8988 struct task_group *tg = cgroup_tg(cgrp);
8989
8990 return (u64) tg->shares;
8991 }
8992 #endif /* CONFIG_FAIR_GROUP_SCHED */
8993
8994 #ifdef CONFIG_RT_GROUP_SCHED
8995 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8996 s64 val)
8997 {
8998 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8999 }
9000
9001 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9002 {
9003 return sched_group_rt_runtime(cgroup_tg(cgrp));
9004 }
9005
9006 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9007 u64 rt_period_us)
9008 {
9009 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9010 }
9011
9012 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9013 {
9014 return sched_group_rt_period(cgroup_tg(cgrp));
9015 }
9016 #endif /* CONFIG_RT_GROUP_SCHED */
9017
9018 static struct cftype cpu_files[] = {
9019 #ifdef CONFIG_FAIR_GROUP_SCHED
9020 {
9021 .name = "shares",
9022 .read_u64 = cpu_shares_read_u64,
9023 .write_u64 = cpu_shares_write_u64,
9024 },
9025 #endif
9026 #ifdef CONFIG_RT_GROUP_SCHED
9027 {
9028 .name = "rt_runtime_us",
9029 .read_s64 = cpu_rt_runtime_read,
9030 .write_s64 = cpu_rt_runtime_write,
9031 },
9032 {
9033 .name = "rt_period_us",
9034 .read_u64 = cpu_rt_period_read_uint,
9035 .write_u64 = cpu_rt_period_write_uint,
9036 },
9037 #endif
9038 };
9039
9040 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9041 {
9042 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9043 }
9044
9045 struct cgroup_subsys cpu_cgroup_subsys = {
9046 .name = "cpu",
9047 .create = cpu_cgroup_create,
9048 .destroy = cpu_cgroup_destroy,
9049 .can_attach = cpu_cgroup_can_attach,
9050 .attach = cpu_cgroup_attach,
9051 .populate = cpu_cgroup_populate,
9052 .subsys_id = cpu_cgroup_subsys_id,
9053 .early_init = 1,
9054 };
9055
9056 #endif /* CONFIG_CGROUP_SCHED */
9057
9058 #ifdef CONFIG_CGROUP_CPUACCT
9059
9060 /*
9061 * CPU accounting code for task groups.
9062 *
9063 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9064 * (balbir@in.ibm.com).
9065 */
9066
9067 /* track cpu usage of a group of tasks */
9068 struct cpuacct {
9069 struct cgroup_subsys_state css;
9070 /* cpuusage holds pointer to a u64-type object on every cpu */
9071 u64 *cpuusage;
9072 };
9073
9074 struct cgroup_subsys cpuacct_subsys;
9075
9076 /* return cpu accounting group corresponding to this container */
9077 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9078 {
9079 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9080 struct cpuacct, css);
9081 }
9082
9083 /* return cpu accounting group to which this task belongs */
9084 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9085 {
9086 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9087 struct cpuacct, css);
9088 }
9089
9090 /* create a new cpu accounting group */
9091 static struct cgroup_subsys_state *cpuacct_create(
9092 struct cgroup_subsys *ss, struct cgroup *cgrp)
9093 {
9094 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9095
9096 if (!ca)
9097 return ERR_PTR(-ENOMEM);
9098
9099 ca->cpuusage = alloc_percpu(u64);
9100 if (!ca->cpuusage) {
9101 kfree(ca);
9102 return ERR_PTR(-ENOMEM);
9103 }
9104
9105 return &ca->css;
9106 }
9107
9108 /* destroy an existing cpu accounting group */
9109 static void
9110 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9111 {
9112 struct cpuacct *ca = cgroup_ca(cgrp);
9113
9114 free_percpu(ca->cpuusage);
9115 kfree(ca);
9116 }
9117
9118 /* return total cpu usage (in nanoseconds) of a group */
9119 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9120 {
9121 struct cpuacct *ca = cgroup_ca(cgrp);
9122 u64 totalcpuusage = 0;
9123 int i;
9124
9125 for_each_possible_cpu(i) {
9126 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9127
9128 /*
9129 * Take rq->lock to make 64-bit addition safe on 32-bit
9130 * platforms.
9131 */
9132 spin_lock_irq(&cpu_rq(i)->lock);
9133 totalcpuusage += *cpuusage;
9134 spin_unlock_irq(&cpu_rq(i)->lock);
9135 }
9136
9137 return totalcpuusage;
9138 }
9139
9140 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9141 u64 reset)
9142 {
9143 struct cpuacct *ca = cgroup_ca(cgrp);
9144 int err = 0;
9145 int i;
9146
9147 if (reset) {
9148 err = -EINVAL;
9149 goto out;
9150 }
9151
9152 for_each_possible_cpu(i) {
9153 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9154
9155 spin_lock_irq(&cpu_rq(i)->lock);
9156 *cpuusage = 0;
9157 spin_unlock_irq(&cpu_rq(i)->lock);
9158 }
9159 out:
9160 return err;
9161 }
9162
9163 static struct cftype files[] = {
9164 {
9165 .name = "usage",
9166 .read_u64 = cpuusage_read,
9167 .write_u64 = cpuusage_write,
9168 },
9169 };
9170
9171 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9172 {
9173 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9174 }
9175
9176 /*
9177 * charge this task's execution time to its accounting group.
9178 *
9179 * called with rq->lock held.
9180 */
9181 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9182 {
9183 struct cpuacct *ca;
9184
9185 if (!cpuacct_subsys.active)
9186 return;
9187
9188 ca = task_ca(tsk);
9189 if (ca) {
9190 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9191
9192 *cpuusage += cputime;
9193 }
9194 }
9195
9196 struct cgroup_subsys cpuacct_subsys = {
9197 .name = "cpuacct",
9198 .create = cpuacct_create,
9199 .destroy = cpuacct_destroy,
9200 .populate = cpuacct_populate,
9201 .subsys_id = cpuacct_subsys_id,
9202 };
9203 #endif /* CONFIG_CGROUP_CPUACCT */