]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched.c
[PATCH] sched: add option to serialize load balancing
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/freezer.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/kprobes.h>
54 #include <linux/delayacct.h>
55 #include <asm/tlb.h>
56
57 #include <asm/unistd.h>
58
59 /*
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 * and back.
63 */
64 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67
68 /*
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
72 */
73 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76
77 /*
78 * Some helpers for converting nanosecond timing to jiffy resolution
79 */
80 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82
83 /*
84 * These are the 'tuning knobs' of the scheduler:
85 *
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
89 */
90 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91 #define DEF_TIMESLICE (100 * HZ / 1000)
92 #define ON_RUNQUEUE_WEIGHT 30
93 #define CHILD_PENALTY 95
94 #define PARENT_PENALTY 100
95 #define EXIT_WEIGHT 3
96 #define PRIO_BONUS_RATIO 25
97 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98 #define INTERACTIVE_DELTA 2
99 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
101 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102
103 /*
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
108 *
109 * This part scales the interactivity limit depending on niceness.
110 *
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
113 *
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
119 *
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
123 *
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
128 * too hard.
129 */
130
131 #define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 MAX_SLEEP_AVG)
134
135 #define GRANULARITY (10 * HZ / 1000 ? : 1)
136
137 #ifdef CONFIG_SMP
138 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 num_online_cpus())
141 #else
142 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144 #endif
145
146 #define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
148
149 #define DELTA(p) \
150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 INTERACTIVE_DELTA)
152
153 #define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
155
156 #define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
159
160 #define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
162
163 #define SCALE_PRIO(x, prio) \
164 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
165
166 static unsigned int static_prio_timeslice(int static_prio)
167 {
168 if (static_prio < NICE_TO_PRIO(0))
169 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
170 else
171 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
172 }
173
174 /*
175 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
176 * to time slice values: [800ms ... 100ms ... 5ms]
177 *
178 * The higher a thread's priority, the bigger timeslices
179 * it gets during one round of execution. But even the lowest
180 * priority thread gets MIN_TIMESLICE worth of execution time.
181 */
182
183 static inline unsigned int task_timeslice(struct task_struct *p)
184 {
185 return static_prio_timeslice(p->static_prio);
186 }
187
188 /*
189 * These are the runqueue data structures:
190 */
191
192 struct prio_array {
193 unsigned int nr_active;
194 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
195 struct list_head queue[MAX_PRIO];
196 };
197
198 /*
199 * This is the main, per-CPU runqueue data structure.
200 *
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
204 */
205 struct rq {
206 spinlock_t lock;
207
208 /*
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
211 */
212 unsigned long nr_running;
213 unsigned long raw_weighted_load;
214 #ifdef CONFIG_SMP
215 unsigned long cpu_load[3];
216 #endif
217 unsigned long long nr_switches;
218
219 /*
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
224 */
225 unsigned long nr_uninterruptible;
226
227 unsigned long expired_timestamp;
228 unsigned long long timestamp_last_tick;
229 struct task_struct *curr, *idle;
230 unsigned long next_balance;
231 struct mm_struct *prev_mm;
232 struct prio_array *active, *expired, arrays[2];
233 int best_expired_prio;
234 atomic_t nr_iowait;
235
236 #ifdef CONFIG_SMP
237 struct sched_domain *sd;
238
239 /* For active balancing */
240 int active_balance;
241 int push_cpu;
242 int cpu; /* cpu of this runqueue */
243
244 struct task_struct *migration_thread;
245 struct list_head migration_queue;
246 #endif
247
248 #ifdef CONFIG_SCHEDSTATS
249 /* latency stats */
250 struct sched_info rq_sched_info;
251
252 /* sys_sched_yield() stats */
253 unsigned long yld_exp_empty;
254 unsigned long yld_act_empty;
255 unsigned long yld_both_empty;
256 unsigned long yld_cnt;
257
258 /* schedule() stats */
259 unsigned long sched_switch;
260 unsigned long sched_cnt;
261 unsigned long sched_goidle;
262
263 /* try_to_wake_up() stats */
264 unsigned long ttwu_cnt;
265 unsigned long ttwu_local;
266 #endif
267 struct lock_class_key rq_lock_key;
268 };
269
270 static DEFINE_PER_CPU(struct rq, runqueues);
271
272 static inline int cpu_of(struct rq *rq)
273 {
274 #ifdef CONFIG_SMP
275 return rq->cpu;
276 #else
277 return 0;
278 #endif
279 }
280
281 /*
282 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
283 * See detach_destroy_domains: synchronize_sched for details.
284 *
285 * The domain tree of any CPU may only be accessed from within
286 * preempt-disabled sections.
287 */
288 #define for_each_domain(cpu, __sd) \
289 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
290
291 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
292 #define this_rq() (&__get_cpu_var(runqueues))
293 #define task_rq(p) cpu_rq(task_cpu(p))
294 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
295
296 #ifndef prepare_arch_switch
297 # define prepare_arch_switch(next) do { } while (0)
298 #endif
299 #ifndef finish_arch_switch
300 # define finish_arch_switch(prev) do { } while (0)
301 #endif
302
303 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
304 static inline int task_running(struct rq *rq, struct task_struct *p)
305 {
306 return rq->curr == p;
307 }
308
309 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
310 {
311 }
312
313 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
314 {
315 #ifdef CONFIG_DEBUG_SPINLOCK
316 /* this is a valid case when another task releases the spinlock */
317 rq->lock.owner = current;
318 #endif
319 /*
320 * If we are tracking spinlock dependencies then we have to
321 * fix up the runqueue lock - which gets 'carried over' from
322 * prev into current:
323 */
324 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
325
326 spin_unlock_irq(&rq->lock);
327 }
328
329 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
330 static inline int task_running(struct rq *rq, struct task_struct *p)
331 {
332 #ifdef CONFIG_SMP
333 return p->oncpu;
334 #else
335 return rq->curr == p;
336 #endif
337 }
338
339 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
340 {
341 #ifdef CONFIG_SMP
342 /*
343 * We can optimise this out completely for !SMP, because the
344 * SMP rebalancing from interrupt is the only thing that cares
345 * here.
346 */
347 next->oncpu = 1;
348 #endif
349 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
350 spin_unlock_irq(&rq->lock);
351 #else
352 spin_unlock(&rq->lock);
353 #endif
354 }
355
356 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
357 {
358 #ifdef CONFIG_SMP
359 /*
360 * After ->oncpu is cleared, the task can be moved to a different CPU.
361 * We must ensure this doesn't happen until the switch is completely
362 * finished.
363 */
364 smp_wmb();
365 prev->oncpu = 0;
366 #endif
367 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
368 local_irq_enable();
369 #endif
370 }
371 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
372
373 /*
374 * __task_rq_lock - lock the runqueue a given task resides on.
375 * Must be called interrupts disabled.
376 */
377 static inline struct rq *__task_rq_lock(struct task_struct *p)
378 __acquires(rq->lock)
379 {
380 struct rq *rq;
381
382 repeat_lock_task:
383 rq = task_rq(p);
384 spin_lock(&rq->lock);
385 if (unlikely(rq != task_rq(p))) {
386 spin_unlock(&rq->lock);
387 goto repeat_lock_task;
388 }
389 return rq;
390 }
391
392 /*
393 * task_rq_lock - lock the runqueue a given task resides on and disable
394 * interrupts. Note the ordering: we can safely lookup the task_rq without
395 * explicitly disabling preemption.
396 */
397 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
398 __acquires(rq->lock)
399 {
400 struct rq *rq;
401
402 repeat_lock_task:
403 local_irq_save(*flags);
404 rq = task_rq(p);
405 spin_lock(&rq->lock);
406 if (unlikely(rq != task_rq(p))) {
407 spin_unlock_irqrestore(&rq->lock, *flags);
408 goto repeat_lock_task;
409 }
410 return rq;
411 }
412
413 static inline void __task_rq_unlock(struct rq *rq)
414 __releases(rq->lock)
415 {
416 spin_unlock(&rq->lock);
417 }
418
419 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
420 __releases(rq->lock)
421 {
422 spin_unlock_irqrestore(&rq->lock, *flags);
423 }
424
425 #ifdef CONFIG_SCHEDSTATS
426 /*
427 * bump this up when changing the output format or the meaning of an existing
428 * format, so that tools can adapt (or abort)
429 */
430 #define SCHEDSTAT_VERSION 12
431
432 static int show_schedstat(struct seq_file *seq, void *v)
433 {
434 int cpu;
435
436 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
437 seq_printf(seq, "timestamp %lu\n", jiffies);
438 for_each_online_cpu(cpu) {
439 struct rq *rq = cpu_rq(cpu);
440 #ifdef CONFIG_SMP
441 struct sched_domain *sd;
442 int dcnt = 0;
443 #endif
444
445 /* runqueue-specific stats */
446 seq_printf(seq,
447 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
448 cpu, rq->yld_both_empty,
449 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
450 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
451 rq->ttwu_cnt, rq->ttwu_local,
452 rq->rq_sched_info.cpu_time,
453 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
454
455 seq_printf(seq, "\n");
456
457 #ifdef CONFIG_SMP
458 /* domain-specific stats */
459 preempt_disable();
460 for_each_domain(cpu, sd) {
461 enum idle_type itype;
462 char mask_str[NR_CPUS];
463
464 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
465 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
466 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
467 itype++) {
468 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
469 sd->lb_cnt[itype],
470 sd->lb_balanced[itype],
471 sd->lb_failed[itype],
472 sd->lb_imbalance[itype],
473 sd->lb_gained[itype],
474 sd->lb_hot_gained[itype],
475 sd->lb_nobusyq[itype],
476 sd->lb_nobusyg[itype]);
477 }
478 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
479 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
480 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
481 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
482 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
483 }
484 preempt_enable();
485 #endif
486 }
487 return 0;
488 }
489
490 static int schedstat_open(struct inode *inode, struct file *file)
491 {
492 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
493 char *buf = kmalloc(size, GFP_KERNEL);
494 struct seq_file *m;
495 int res;
496
497 if (!buf)
498 return -ENOMEM;
499 res = single_open(file, show_schedstat, NULL);
500 if (!res) {
501 m = file->private_data;
502 m->buf = buf;
503 m->size = size;
504 } else
505 kfree(buf);
506 return res;
507 }
508
509 const struct file_operations proc_schedstat_operations = {
510 .open = schedstat_open,
511 .read = seq_read,
512 .llseek = seq_lseek,
513 .release = single_release,
514 };
515
516 /*
517 * Expects runqueue lock to be held for atomicity of update
518 */
519 static inline void
520 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
521 {
522 if (rq) {
523 rq->rq_sched_info.run_delay += delta_jiffies;
524 rq->rq_sched_info.pcnt++;
525 }
526 }
527
528 /*
529 * Expects runqueue lock to be held for atomicity of update
530 */
531 static inline void
532 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
533 {
534 if (rq)
535 rq->rq_sched_info.cpu_time += delta_jiffies;
536 }
537 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
538 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
539 #else /* !CONFIG_SCHEDSTATS */
540 static inline void
541 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
542 {}
543 static inline void
544 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
545 {}
546 # define schedstat_inc(rq, field) do { } while (0)
547 # define schedstat_add(rq, field, amt) do { } while (0)
548 #endif
549
550 /*
551 * this_rq_lock - lock this runqueue and disable interrupts.
552 */
553 static inline struct rq *this_rq_lock(void)
554 __acquires(rq->lock)
555 {
556 struct rq *rq;
557
558 local_irq_disable();
559 rq = this_rq();
560 spin_lock(&rq->lock);
561
562 return rq;
563 }
564
565 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
566 /*
567 * Called when a process is dequeued from the active array and given
568 * the cpu. We should note that with the exception of interactive
569 * tasks, the expired queue will become the active queue after the active
570 * queue is empty, without explicitly dequeuing and requeuing tasks in the
571 * expired queue. (Interactive tasks may be requeued directly to the
572 * active queue, thus delaying tasks in the expired queue from running;
573 * see scheduler_tick()).
574 *
575 * This function is only called from sched_info_arrive(), rather than
576 * dequeue_task(). Even though a task may be queued and dequeued multiple
577 * times as it is shuffled about, we're really interested in knowing how
578 * long it was from the *first* time it was queued to the time that it
579 * finally hit a cpu.
580 */
581 static inline void sched_info_dequeued(struct task_struct *t)
582 {
583 t->sched_info.last_queued = 0;
584 }
585
586 /*
587 * Called when a task finally hits the cpu. We can now calculate how
588 * long it was waiting to run. We also note when it began so that we
589 * can keep stats on how long its timeslice is.
590 */
591 static void sched_info_arrive(struct task_struct *t)
592 {
593 unsigned long now = jiffies, delta_jiffies = 0;
594
595 if (t->sched_info.last_queued)
596 delta_jiffies = now - t->sched_info.last_queued;
597 sched_info_dequeued(t);
598 t->sched_info.run_delay += delta_jiffies;
599 t->sched_info.last_arrival = now;
600 t->sched_info.pcnt++;
601
602 rq_sched_info_arrive(task_rq(t), delta_jiffies);
603 }
604
605 /*
606 * Called when a process is queued into either the active or expired
607 * array. The time is noted and later used to determine how long we
608 * had to wait for us to reach the cpu. Since the expired queue will
609 * become the active queue after active queue is empty, without dequeuing
610 * and requeuing any tasks, we are interested in queuing to either. It
611 * is unusual but not impossible for tasks to be dequeued and immediately
612 * requeued in the same or another array: this can happen in sched_yield(),
613 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
614 * to runqueue.
615 *
616 * This function is only called from enqueue_task(), but also only updates
617 * the timestamp if it is already not set. It's assumed that
618 * sched_info_dequeued() will clear that stamp when appropriate.
619 */
620 static inline void sched_info_queued(struct task_struct *t)
621 {
622 if (unlikely(sched_info_on()))
623 if (!t->sched_info.last_queued)
624 t->sched_info.last_queued = jiffies;
625 }
626
627 /*
628 * Called when a process ceases being the active-running process, either
629 * voluntarily or involuntarily. Now we can calculate how long we ran.
630 */
631 static inline void sched_info_depart(struct task_struct *t)
632 {
633 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
634
635 t->sched_info.cpu_time += delta_jiffies;
636 rq_sched_info_depart(task_rq(t), delta_jiffies);
637 }
638
639 /*
640 * Called when tasks are switched involuntarily due, typically, to expiring
641 * their time slice. (This may also be called when switching to or from
642 * the idle task.) We are only called when prev != next.
643 */
644 static inline void
645 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
646 {
647 struct rq *rq = task_rq(prev);
648
649 /*
650 * prev now departs the cpu. It's not interesting to record
651 * stats about how efficient we were at scheduling the idle
652 * process, however.
653 */
654 if (prev != rq->idle)
655 sched_info_depart(prev);
656
657 if (next != rq->idle)
658 sched_info_arrive(next);
659 }
660 static inline void
661 sched_info_switch(struct task_struct *prev, struct task_struct *next)
662 {
663 if (unlikely(sched_info_on()))
664 __sched_info_switch(prev, next);
665 }
666 #else
667 #define sched_info_queued(t) do { } while (0)
668 #define sched_info_switch(t, next) do { } while (0)
669 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
670
671 /*
672 * Adding/removing a task to/from a priority array:
673 */
674 static void dequeue_task(struct task_struct *p, struct prio_array *array)
675 {
676 array->nr_active--;
677 list_del(&p->run_list);
678 if (list_empty(array->queue + p->prio))
679 __clear_bit(p->prio, array->bitmap);
680 }
681
682 static void enqueue_task(struct task_struct *p, struct prio_array *array)
683 {
684 sched_info_queued(p);
685 list_add_tail(&p->run_list, array->queue + p->prio);
686 __set_bit(p->prio, array->bitmap);
687 array->nr_active++;
688 p->array = array;
689 }
690
691 /*
692 * Put task to the end of the run list without the overhead of dequeue
693 * followed by enqueue.
694 */
695 static void requeue_task(struct task_struct *p, struct prio_array *array)
696 {
697 list_move_tail(&p->run_list, array->queue + p->prio);
698 }
699
700 static inline void
701 enqueue_task_head(struct task_struct *p, struct prio_array *array)
702 {
703 list_add(&p->run_list, array->queue + p->prio);
704 __set_bit(p->prio, array->bitmap);
705 array->nr_active++;
706 p->array = array;
707 }
708
709 /*
710 * __normal_prio - return the priority that is based on the static
711 * priority but is modified by bonuses/penalties.
712 *
713 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
714 * into the -5 ... 0 ... +5 bonus/penalty range.
715 *
716 * We use 25% of the full 0...39 priority range so that:
717 *
718 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
719 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
720 *
721 * Both properties are important to certain workloads.
722 */
723
724 static inline int __normal_prio(struct task_struct *p)
725 {
726 int bonus, prio;
727
728 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
729
730 prio = p->static_prio - bonus;
731 if (prio < MAX_RT_PRIO)
732 prio = MAX_RT_PRIO;
733 if (prio > MAX_PRIO-1)
734 prio = MAX_PRIO-1;
735 return prio;
736 }
737
738 /*
739 * To aid in avoiding the subversion of "niceness" due to uneven distribution
740 * of tasks with abnormal "nice" values across CPUs the contribution that
741 * each task makes to its run queue's load is weighted according to its
742 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
743 * scaled version of the new time slice allocation that they receive on time
744 * slice expiry etc.
745 */
746
747 /*
748 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
749 * If static_prio_timeslice() is ever changed to break this assumption then
750 * this code will need modification
751 */
752 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
753 #define LOAD_WEIGHT(lp) \
754 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
755 #define PRIO_TO_LOAD_WEIGHT(prio) \
756 LOAD_WEIGHT(static_prio_timeslice(prio))
757 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
758 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
759
760 static void set_load_weight(struct task_struct *p)
761 {
762 if (has_rt_policy(p)) {
763 #ifdef CONFIG_SMP
764 if (p == task_rq(p)->migration_thread)
765 /*
766 * The migration thread does the actual balancing.
767 * Giving its load any weight will skew balancing
768 * adversely.
769 */
770 p->load_weight = 0;
771 else
772 #endif
773 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
774 } else
775 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
776 }
777
778 static inline void
779 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
780 {
781 rq->raw_weighted_load += p->load_weight;
782 }
783
784 static inline void
785 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
786 {
787 rq->raw_weighted_load -= p->load_weight;
788 }
789
790 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
791 {
792 rq->nr_running++;
793 inc_raw_weighted_load(rq, p);
794 }
795
796 static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
797 {
798 rq->nr_running--;
799 dec_raw_weighted_load(rq, p);
800 }
801
802 /*
803 * Calculate the expected normal priority: i.e. priority
804 * without taking RT-inheritance into account. Might be
805 * boosted by interactivity modifiers. Changes upon fork,
806 * setprio syscalls, and whenever the interactivity
807 * estimator recalculates.
808 */
809 static inline int normal_prio(struct task_struct *p)
810 {
811 int prio;
812
813 if (has_rt_policy(p))
814 prio = MAX_RT_PRIO-1 - p->rt_priority;
815 else
816 prio = __normal_prio(p);
817 return prio;
818 }
819
820 /*
821 * Calculate the current priority, i.e. the priority
822 * taken into account by the scheduler. This value might
823 * be boosted by RT tasks, or might be boosted by
824 * interactivity modifiers. Will be RT if the task got
825 * RT-boosted. If not then it returns p->normal_prio.
826 */
827 static int effective_prio(struct task_struct *p)
828 {
829 p->normal_prio = normal_prio(p);
830 /*
831 * If we are RT tasks or we were boosted to RT priority,
832 * keep the priority unchanged. Otherwise, update priority
833 * to the normal priority:
834 */
835 if (!rt_prio(p->prio))
836 return p->normal_prio;
837 return p->prio;
838 }
839
840 /*
841 * __activate_task - move a task to the runqueue.
842 */
843 static void __activate_task(struct task_struct *p, struct rq *rq)
844 {
845 struct prio_array *target = rq->active;
846
847 if (batch_task(p))
848 target = rq->expired;
849 enqueue_task(p, target);
850 inc_nr_running(p, rq);
851 }
852
853 /*
854 * __activate_idle_task - move idle task to the _front_ of runqueue.
855 */
856 static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
857 {
858 enqueue_task_head(p, rq->active);
859 inc_nr_running(p, rq);
860 }
861
862 /*
863 * Recalculate p->normal_prio and p->prio after having slept,
864 * updating the sleep-average too:
865 */
866 static int recalc_task_prio(struct task_struct *p, unsigned long long now)
867 {
868 /* Caller must always ensure 'now >= p->timestamp' */
869 unsigned long sleep_time = now - p->timestamp;
870
871 if (batch_task(p))
872 sleep_time = 0;
873
874 if (likely(sleep_time > 0)) {
875 /*
876 * This ceiling is set to the lowest priority that would allow
877 * a task to be reinserted into the active array on timeslice
878 * completion.
879 */
880 unsigned long ceiling = INTERACTIVE_SLEEP(p);
881
882 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
883 /*
884 * Prevents user tasks from achieving best priority
885 * with one single large enough sleep.
886 */
887 p->sleep_avg = ceiling;
888 /*
889 * Using INTERACTIVE_SLEEP() as a ceiling places a
890 * nice(0) task 1ms sleep away from promotion, and
891 * gives it 700ms to round-robin with no chance of
892 * being demoted. This is more than generous, so
893 * mark this sleep as non-interactive to prevent the
894 * on-runqueue bonus logic from intervening should
895 * this task not receive cpu immediately.
896 */
897 p->sleep_type = SLEEP_NONINTERACTIVE;
898 } else {
899 /*
900 * Tasks waking from uninterruptible sleep are
901 * limited in their sleep_avg rise as they
902 * are likely to be waiting on I/O
903 */
904 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
905 if (p->sleep_avg >= ceiling)
906 sleep_time = 0;
907 else if (p->sleep_avg + sleep_time >=
908 ceiling) {
909 p->sleep_avg = ceiling;
910 sleep_time = 0;
911 }
912 }
913
914 /*
915 * This code gives a bonus to interactive tasks.
916 *
917 * The boost works by updating the 'average sleep time'
918 * value here, based on ->timestamp. The more time a
919 * task spends sleeping, the higher the average gets -
920 * and the higher the priority boost gets as well.
921 */
922 p->sleep_avg += sleep_time;
923
924 }
925 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
926 p->sleep_avg = NS_MAX_SLEEP_AVG;
927 }
928
929 return effective_prio(p);
930 }
931
932 /*
933 * activate_task - move a task to the runqueue and do priority recalculation
934 *
935 * Update all the scheduling statistics stuff. (sleep average
936 * calculation, priority modifiers, etc.)
937 */
938 static void activate_task(struct task_struct *p, struct rq *rq, int local)
939 {
940 unsigned long long now;
941
942 now = sched_clock();
943 #ifdef CONFIG_SMP
944 if (!local) {
945 /* Compensate for drifting sched_clock */
946 struct rq *this_rq = this_rq();
947 now = (now - this_rq->timestamp_last_tick)
948 + rq->timestamp_last_tick;
949 }
950 #endif
951
952 /*
953 * Sleep time is in units of nanosecs, so shift by 20 to get a
954 * milliseconds-range estimation of the amount of time that the task
955 * spent sleeping:
956 */
957 if (unlikely(prof_on == SLEEP_PROFILING)) {
958 if (p->state == TASK_UNINTERRUPTIBLE)
959 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
960 (now - p->timestamp) >> 20);
961 }
962
963 if (!rt_task(p))
964 p->prio = recalc_task_prio(p, now);
965
966 /*
967 * This checks to make sure it's not an uninterruptible task
968 * that is now waking up.
969 */
970 if (p->sleep_type == SLEEP_NORMAL) {
971 /*
972 * Tasks which were woken up by interrupts (ie. hw events)
973 * are most likely of interactive nature. So we give them
974 * the credit of extending their sleep time to the period
975 * of time they spend on the runqueue, waiting for execution
976 * on a CPU, first time around:
977 */
978 if (in_interrupt())
979 p->sleep_type = SLEEP_INTERRUPTED;
980 else {
981 /*
982 * Normal first-time wakeups get a credit too for
983 * on-runqueue time, but it will be weighted down:
984 */
985 p->sleep_type = SLEEP_INTERACTIVE;
986 }
987 }
988 p->timestamp = now;
989
990 __activate_task(p, rq);
991 }
992
993 /*
994 * deactivate_task - remove a task from the runqueue.
995 */
996 static void deactivate_task(struct task_struct *p, struct rq *rq)
997 {
998 dec_nr_running(p, rq);
999 dequeue_task(p, p->array);
1000 p->array = NULL;
1001 }
1002
1003 /*
1004 * resched_task - mark a task 'to be rescheduled now'.
1005 *
1006 * On UP this means the setting of the need_resched flag, on SMP it
1007 * might also involve a cross-CPU call to trigger the scheduler on
1008 * the target CPU.
1009 */
1010 #ifdef CONFIG_SMP
1011
1012 #ifndef tsk_is_polling
1013 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1014 #endif
1015
1016 static void resched_task(struct task_struct *p)
1017 {
1018 int cpu;
1019
1020 assert_spin_locked(&task_rq(p)->lock);
1021
1022 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1023 return;
1024
1025 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1026
1027 cpu = task_cpu(p);
1028 if (cpu == smp_processor_id())
1029 return;
1030
1031 /* NEED_RESCHED must be visible before we test polling */
1032 smp_mb();
1033 if (!tsk_is_polling(p))
1034 smp_send_reschedule(cpu);
1035 }
1036 #else
1037 static inline void resched_task(struct task_struct *p)
1038 {
1039 assert_spin_locked(&task_rq(p)->lock);
1040 set_tsk_need_resched(p);
1041 }
1042 #endif
1043
1044 /**
1045 * task_curr - is this task currently executing on a CPU?
1046 * @p: the task in question.
1047 */
1048 inline int task_curr(const struct task_struct *p)
1049 {
1050 return cpu_curr(task_cpu(p)) == p;
1051 }
1052
1053 /* Used instead of source_load when we know the type == 0 */
1054 unsigned long weighted_cpuload(const int cpu)
1055 {
1056 return cpu_rq(cpu)->raw_weighted_load;
1057 }
1058
1059 #ifdef CONFIG_SMP
1060 struct migration_req {
1061 struct list_head list;
1062
1063 struct task_struct *task;
1064 int dest_cpu;
1065
1066 struct completion done;
1067 };
1068
1069 /*
1070 * The task's runqueue lock must be held.
1071 * Returns true if you have to wait for migration thread.
1072 */
1073 static int
1074 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1075 {
1076 struct rq *rq = task_rq(p);
1077
1078 /*
1079 * If the task is not on a runqueue (and not running), then
1080 * it is sufficient to simply update the task's cpu field.
1081 */
1082 if (!p->array && !task_running(rq, p)) {
1083 set_task_cpu(p, dest_cpu);
1084 return 0;
1085 }
1086
1087 init_completion(&req->done);
1088 req->task = p;
1089 req->dest_cpu = dest_cpu;
1090 list_add(&req->list, &rq->migration_queue);
1091
1092 return 1;
1093 }
1094
1095 /*
1096 * wait_task_inactive - wait for a thread to unschedule.
1097 *
1098 * The caller must ensure that the task *will* unschedule sometime soon,
1099 * else this function might spin for a *long* time. This function can't
1100 * be called with interrupts off, or it may introduce deadlock with
1101 * smp_call_function() if an IPI is sent by the same process we are
1102 * waiting to become inactive.
1103 */
1104 void wait_task_inactive(struct task_struct *p)
1105 {
1106 unsigned long flags;
1107 struct rq *rq;
1108 int preempted;
1109
1110 repeat:
1111 rq = task_rq_lock(p, &flags);
1112 /* Must be off runqueue entirely, not preempted. */
1113 if (unlikely(p->array || task_running(rq, p))) {
1114 /* If it's preempted, we yield. It could be a while. */
1115 preempted = !task_running(rq, p);
1116 task_rq_unlock(rq, &flags);
1117 cpu_relax();
1118 if (preempted)
1119 yield();
1120 goto repeat;
1121 }
1122 task_rq_unlock(rq, &flags);
1123 }
1124
1125 /***
1126 * kick_process - kick a running thread to enter/exit the kernel
1127 * @p: the to-be-kicked thread
1128 *
1129 * Cause a process which is running on another CPU to enter
1130 * kernel-mode, without any delay. (to get signals handled.)
1131 *
1132 * NOTE: this function doesnt have to take the runqueue lock,
1133 * because all it wants to ensure is that the remote task enters
1134 * the kernel. If the IPI races and the task has been migrated
1135 * to another CPU then no harm is done and the purpose has been
1136 * achieved as well.
1137 */
1138 void kick_process(struct task_struct *p)
1139 {
1140 int cpu;
1141
1142 preempt_disable();
1143 cpu = task_cpu(p);
1144 if ((cpu != smp_processor_id()) && task_curr(p))
1145 smp_send_reschedule(cpu);
1146 preempt_enable();
1147 }
1148
1149 /*
1150 * Return a low guess at the load of a migration-source cpu weighted
1151 * according to the scheduling class and "nice" value.
1152 *
1153 * We want to under-estimate the load of migration sources, to
1154 * balance conservatively.
1155 */
1156 static inline unsigned long source_load(int cpu, int type)
1157 {
1158 struct rq *rq = cpu_rq(cpu);
1159
1160 if (type == 0)
1161 return rq->raw_weighted_load;
1162
1163 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1164 }
1165
1166 /*
1167 * Return a high guess at the load of a migration-target cpu weighted
1168 * according to the scheduling class and "nice" value.
1169 */
1170 static inline unsigned long target_load(int cpu, int type)
1171 {
1172 struct rq *rq = cpu_rq(cpu);
1173
1174 if (type == 0)
1175 return rq->raw_weighted_load;
1176
1177 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1178 }
1179
1180 /*
1181 * Return the average load per task on the cpu's run queue
1182 */
1183 static inline unsigned long cpu_avg_load_per_task(int cpu)
1184 {
1185 struct rq *rq = cpu_rq(cpu);
1186 unsigned long n = rq->nr_running;
1187
1188 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1189 }
1190
1191 /*
1192 * find_idlest_group finds and returns the least busy CPU group within the
1193 * domain.
1194 */
1195 static struct sched_group *
1196 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1197 {
1198 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1199 unsigned long min_load = ULONG_MAX, this_load = 0;
1200 int load_idx = sd->forkexec_idx;
1201 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1202
1203 do {
1204 unsigned long load, avg_load;
1205 int local_group;
1206 int i;
1207
1208 /* Skip over this group if it has no CPUs allowed */
1209 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1210 goto nextgroup;
1211
1212 local_group = cpu_isset(this_cpu, group->cpumask);
1213
1214 /* Tally up the load of all CPUs in the group */
1215 avg_load = 0;
1216
1217 for_each_cpu_mask(i, group->cpumask) {
1218 /* Bias balancing toward cpus of our domain */
1219 if (local_group)
1220 load = source_load(i, load_idx);
1221 else
1222 load = target_load(i, load_idx);
1223
1224 avg_load += load;
1225 }
1226
1227 /* Adjust by relative CPU power of the group */
1228 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1229
1230 if (local_group) {
1231 this_load = avg_load;
1232 this = group;
1233 } else if (avg_load < min_load) {
1234 min_load = avg_load;
1235 idlest = group;
1236 }
1237 nextgroup:
1238 group = group->next;
1239 } while (group != sd->groups);
1240
1241 if (!idlest || 100*this_load < imbalance*min_load)
1242 return NULL;
1243 return idlest;
1244 }
1245
1246 /*
1247 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1248 */
1249 static int
1250 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1251 {
1252 cpumask_t tmp;
1253 unsigned long load, min_load = ULONG_MAX;
1254 int idlest = -1;
1255 int i;
1256
1257 /* Traverse only the allowed CPUs */
1258 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1259
1260 for_each_cpu_mask(i, tmp) {
1261 load = weighted_cpuload(i);
1262
1263 if (load < min_load || (load == min_load && i == this_cpu)) {
1264 min_load = load;
1265 idlest = i;
1266 }
1267 }
1268
1269 return idlest;
1270 }
1271
1272 /*
1273 * sched_balance_self: balance the current task (running on cpu) in domains
1274 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1275 * SD_BALANCE_EXEC.
1276 *
1277 * Balance, ie. select the least loaded group.
1278 *
1279 * Returns the target CPU number, or the same CPU if no balancing is needed.
1280 *
1281 * preempt must be disabled.
1282 */
1283 static int sched_balance_self(int cpu, int flag)
1284 {
1285 struct task_struct *t = current;
1286 struct sched_domain *tmp, *sd = NULL;
1287
1288 for_each_domain(cpu, tmp) {
1289 /*
1290 * If power savings logic is enabled for a domain, stop there.
1291 */
1292 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1293 break;
1294 if (tmp->flags & flag)
1295 sd = tmp;
1296 }
1297
1298 while (sd) {
1299 cpumask_t span;
1300 struct sched_group *group;
1301 int new_cpu, weight;
1302
1303 if (!(sd->flags & flag)) {
1304 sd = sd->child;
1305 continue;
1306 }
1307
1308 span = sd->span;
1309 group = find_idlest_group(sd, t, cpu);
1310 if (!group) {
1311 sd = sd->child;
1312 continue;
1313 }
1314
1315 new_cpu = find_idlest_cpu(group, t, cpu);
1316 if (new_cpu == -1 || new_cpu == cpu) {
1317 /* Now try balancing at a lower domain level of cpu */
1318 sd = sd->child;
1319 continue;
1320 }
1321
1322 /* Now try balancing at a lower domain level of new_cpu */
1323 cpu = new_cpu;
1324 sd = NULL;
1325 weight = cpus_weight(span);
1326 for_each_domain(cpu, tmp) {
1327 if (weight <= cpus_weight(tmp->span))
1328 break;
1329 if (tmp->flags & flag)
1330 sd = tmp;
1331 }
1332 /* while loop will break here if sd == NULL */
1333 }
1334
1335 return cpu;
1336 }
1337
1338 #endif /* CONFIG_SMP */
1339
1340 /*
1341 * wake_idle() will wake a task on an idle cpu if task->cpu is
1342 * not idle and an idle cpu is available. The span of cpus to
1343 * search starts with cpus closest then further out as needed,
1344 * so we always favor a closer, idle cpu.
1345 *
1346 * Returns the CPU we should wake onto.
1347 */
1348 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1349 static int wake_idle(int cpu, struct task_struct *p)
1350 {
1351 cpumask_t tmp;
1352 struct sched_domain *sd;
1353 int i;
1354
1355 if (idle_cpu(cpu))
1356 return cpu;
1357
1358 for_each_domain(cpu, sd) {
1359 if (sd->flags & SD_WAKE_IDLE) {
1360 cpus_and(tmp, sd->span, p->cpus_allowed);
1361 for_each_cpu_mask(i, tmp) {
1362 if (idle_cpu(i))
1363 return i;
1364 }
1365 }
1366 else
1367 break;
1368 }
1369 return cpu;
1370 }
1371 #else
1372 static inline int wake_idle(int cpu, struct task_struct *p)
1373 {
1374 return cpu;
1375 }
1376 #endif
1377
1378 /***
1379 * try_to_wake_up - wake up a thread
1380 * @p: the to-be-woken-up thread
1381 * @state: the mask of task states that can be woken
1382 * @sync: do a synchronous wakeup?
1383 *
1384 * Put it on the run-queue if it's not already there. The "current"
1385 * thread is always on the run-queue (except when the actual
1386 * re-schedule is in progress), and as such you're allowed to do
1387 * the simpler "current->state = TASK_RUNNING" to mark yourself
1388 * runnable without the overhead of this.
1389 *
1390 * returns failure only if the task is already active.
1391 */
1392 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1393 {
1394 int cpu, this_cpu, success = 0;
1395 unsigned long flags;
1396 long old_state;
1397 struct rq *rq;
1398 #ifdef CONFIG_SMP
1399 struct sched_domain *sd, *this_sd = NULL;
1400 unsigned long load, this_load;
1401 int new_cpu;
1402 #endif
1403
1404 rq = task_rq_lock(p, &flags);
1405 old_state = p->state;
1406 if (!(old_state & state))
1407 goto out;
1408
1409 if (p->array)
1410 goto out_running;
1411
1412 cpu = task_cpu(p);
1413 this_cpu = smp_processor_id();
1414
1415 #ifdef CONFIG_SMP
1416 if (unlikely(task_running(rq, p)))
1417 goto out_activate;
1418
1419 new_cpu = cpu;
1420
1421 schedstat_inc(rq, ttwu_cnt);
1422 if (cpu == this_cpu) {
1423 schedstat_inc(rq, ttwu_local);
1424 goto out_set_cpu;
1425 }
1426
1427 for_each_domain(this_cpu, sd) {
1428 if (cpu_isset(cpu, sd->span)) {
1429 schedstat_inc(sd, ttwu_wake_remote);
1430 this_sd = sd;
1431 break;
1432 }
1433 }
1434
1435 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1436 goto out_set_cpu;
1437
1438 /*
1439 * Check for affine wakeup and passive balancing possibilities.
1440 */
1441 if (this_sd) {
1442 int idx = this_sd->wake_idx;
1443 unsigned int imbalance;
1444
1445 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1446
1447 load = source_load(cpu, idx);
1448 this_load = target_load(this_cpu, idx);
1449
1450 new_cpu = this_cpu; /* Wake to this CPU if we can */
1451
1452 if (this_sd->flags & SD_WAKE_AFFINE) {
1453 unsigned long tl = this_load;
1454 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1455
1456 /*
1457 * If sync wakeup then subtract the (maximum possible)
1458 * effect of the currently running task from the load
1459 * of the current CPU:
1460 */
1461 if (sync)
1462 tl -= current->load_weight;
1463
1464 if ((tl <= load &&
1465 tl + target_load(cpu, idx) <= tl_per_task) ||
1466 100*(tl + p->load_weight) <= imbalance*load) {
1467 /*
1468 * This domain has SD_WAKE_AFFINE and
1469 * p is cache cold in this domain, and
1470 * there is no bad imbalance.
1471 */
1472 schedstat_inc(this_sd, ttwu_move_affine);
1473 goto out_set_cpu;
1474 }
1475 }
1476
1477 /*
1478 * Start passive balancing when half the imbalance_pct
1479 * limit is reached.
1480 */
1481 if (this_sd->flags & SD_WAKE_BALANCE) {
1482 if (imbalance*this_load <= 100*load) {
1483 schedstat_inc(this_sd, ttwu_move_balance);
1484 goto out_set_cpu;
1485 }
1486 }
1487 }
1488
1489 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1490 out_set_cpu:
1491 new_cpu = wake_idle(new_cpu, p);
1492 if (new_cpu != cpu) {
1493 set_task_cpu(p, new_cpu);
1494 task_rq_unlock(rq, &flags);
1495 /* might preempt at this point */
1496 rq = task_rq_lock(p, &flags);
1497 old_state = p->state;
1498 if (!(old_state & state))
1499 goto out;
1500 if (p->array)
1501 goto out_running;
1502
1503 this_cpu = smp_processor_id();
1504 cpu = task_cpu(p);
1505 }
1506
1507 out_activate:
1508 #endif /* CONFIG_SMP */
1509 if (old_state == TASK_UNINTERRUPTIBLE) {
1510 rq->nr_uninterruptible--;
1511 /*
1512 * Tasks on involuntary sleep don't earn
1513 * sleep_avg beyond just interactive state.
1514 */
1515 p->sleep_type = SLEEP_NONINTERACTIVE;
1516 } else
1517
1518 /*
1519 * Tasks that have marked their sleep as noninteractive get
1520 * woken up with their sleep average not weighted in an
1521 * interactive way.
1522 */
1523 if (old_state & TASK_NONINTERACTIVE)
1524 p->sleep_type = SLEEP_NONINTERACTIVE;
1525
1526
1527 activate_task(p, rq, cpu == this_cpu);
1528 /*
1529 * Sync wakeups (i.e. those types of wakeups where the waker
1530 * has indicated that it will leave the CPU in short order)
1531 * don't trigger a preemption, if the woken up task will run on
1532 * this cpu. (in this case the 'I will reschedule' promise of
1533 * the waker guarantees that the freshly woken up task is going
1534 * to be considered on this CPU.)
1535 */
1536 if (!sync || cpu != this_cpu) {
1537 if (TASK_PREEMPTS_CURR(p, rq))
1538 resched_task(rq->curr);
1539 }
1540 success = 1;
1541
1542 out_running:
1543 p->state = TASK_RUNNING;
1544 out:
1545 task_rq_unlock(rq, &flags);
1546
1547 return success;
1548 }
1549
1550 int fastcall wake_up_process(struct task_struct *p)
1551 {
1552 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1553 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1554 }
1555 EXPORT_SYMBOL(wake_up_process);
1556
1557 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1558 {
1559 return try_to_wake_up(p, state, 0);
1560 }
1561
1562 /*
1563 * Perform scheduler related setup for a newly forked process p.
1564 * p is forked by current.
1565 */
1566 void fastcall sched_fork(struct task_struct *p, int clone_flags)
1567 {
1568 int cpu = get_cpu();
1569
1570 #ifdef CONFIG_SMP
1571 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1572 #endif
1573 set_task_cpu(p, cpu);
1574
1575 /*
1576 * We mark the process as running here, but have not actually
1577 * inserted it onto the runqueue yet. This guarantees that
1578 * nobody will actually run it, and a signal or other external
1579 * event cannot wake it up and insert it on the runqueue either.
1580 */
1581 p->state = TASK_RUNNING;
1582
1583 /*
1584 * Make sure we do not leak PI boosting priority to the child:
1585 */
1586 p->prio = current->normal_prio;
1587
1588 INIT_LIST_HEAD(&p->run_list);
1589 p->array = NULL;
1590 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1591 if (unlikely(sched_info_on()))
1592 memset(&p->sched_info, 0, sizeof(p->sched_info));
1593 #endif
1594 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1595 p->oncpu = 0;
1596 #endif
1597 #ifdef CONFIG_PREEMPT
1598 /* Want to start with kernel preemption disabled. */
1599 task_thread_info(p)->preempt_count = 1;
1600 #endif
1601 /*
1602 * Share the timeslice between parent and child, thus the
1603 * total amount of pending timeslices in the system doesn't change,
1604 * resulting in more scheduling fairness.
1605 */
1606 local_irq_disable();
1607 p->time_slice = (current->time_slice + 1) >> 1;
1608 /*
1609 * The remainder of the first timeslice might be recovered by
1610 * the parent if the child exits early enough.
1611 */
1612 p->first_time_slice = 1;
1613 current->time_slice >>= 1;
1614 p->timestamp = sched_clock();
1615 if (unlikely(!current->time_slice)) {
1616 /*
1617 * This case is rare, it happens when the parent has only
1618 * a single jiffy left from its timeslice. Taking the
1619 * runqueue lock is not a problem.
1620 */
1621 current->time_slice = 1;
1622 scheduler_tick();
1623 }
1624 local_irq_enable();
1625 put_cpu();
1626 }
1627
1628 /*
1629 * wake_up_new_task - wake up a newly created task for the first time.
1630 *
1631 * This function will do some initial scheduler statistics housekeeping
1632 * that must be done for every newly created context, then puts the task
1633 * on the runqueue and wakes it.
1634 */
1635 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1636 {
1637 struct rq *rq, *this_rq;
1638 unsigned long flags;
1639 int this_cpu, cpu;
1640
1641 rq = task_rq_lock(p, &flags);
1642 BUG_ON(p->state != TASK_RUNNING);
1643 this_cpu = smp_processor_id();
1644 cpu = task_cpu(p);
1645
1646 /*
1647 * We decrease the sleep average of forking parents
1648 * and children as well, to keep max-interactive tasks
1649 * from forking tasks that are max-interactive. The parent
1650 * (current) is done further down, under its lock.
1651 */
1652 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1653 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1654
1655 p->prio = effective_prio(p);
1656
1657 if (likely(cpu == this_cpu)) {
1658 if (!(clone_flags & CLONE_VM)) {
1659 /*
1660 * The VM isn't cloned, so we're in a good position to
1661 * do child-runs-first in anticipation of an exec. This
1662 * usually avoids a lot of COW overhead.
1663 */
1664 if (unlikely(!current->array))
1665 __activate_task(p, rq);
1666 else {
1667 p->prio = current->prio;
1668 p->normal_prio = current->normal_prio;
1669 list_add_tail(&p->run_list, &current->run_list);
1670 p->array = current->array;
1671 p->array->nr_active++;
1672 inc_nr_running(p, rq);
1673 }
1674 set_need_resched();
1675 } else
1676 /* Run child last */
1677 __activate_task(p, rq);
1678 /*
1679 * We skip the following code due to cpu == this_cpu
1680 *
1681 * task_rq_unlock(rq, &flags);
1682 * this_rq = task_rq_lock(current, &flags);
1683 */
1684 this_rq = rq;
1685 } else {
1686 this_rq = cpu_rq(this_cpu);
1687
1688 /*
1689 * Not the local CPU - must adjust timestamp. This should
1690 * get optimised away in the !CONFIG_SMP case.
1691 */
1692 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1693 + rq->timestamp_last_tick;
1694 __activate_task(p, rq);
1695 if (TASK_PREEMPTS_CURR(p, rq))
1696 resched_task(rq->curr);
1697
1698 /*
1699 * Parent and child are on different CPUs, now get the
1700 * parent runqueue to update the parent's ->sleep_avg:
1701 */
1702 task_rq_unlock(rq, &flags);
1703 this_rq = task_rq_lock(current, &flags);
1704 }
1705 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1706 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1707 task_rq_unlock(this_rq, &flags);
1708 }
1709
1710 /*
1711 * Potentially available exiting-child timeslices are
1712 * retrieved here - this way the parent does not get
1713 * penalized for creating too many threads.
1714 *
1715 * (this cannot be used to 'generate' timeslices
1716 * artificially, because any timeslice recovered here
1717 * was given away by the parent in the first place.)
1718 */
1719 void fastcall sched_exit(struct task_struct *p)
1720 {
1721 unsigned long flags;
1722 struct rq *rq;
1723
1724 /*
1725 * If the child was a (relative-) CPU hog then decrease
1726 * the sleep_avg of the parent as well.
1727 */
1728 rq = task_rq_lock(p->parent, &flags);
1729 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1730 p->parent->time_slice += p->time_slice;
1731 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1732 p->parent->time_slice = task_timeslice(p);
1733 }
1734 if (p->sleep_avg < p->parent->sleep_avg)
1735 p->parent->sleep_avg = p->parent->sleep_avg /
1736 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1737 (EXIT_WEIGHT + 1);
1738 task_rq_unlock(rq, &flags);
1739 }
1740
1741 /**
1742 * prepare_task_switch - prepare to switch tasks
1743 * @rq: the runqueue preparing to switch
1744 * @next: the task we are going to switch to.
1745 *
1746 * This is called with the rq lock held and interrupts off. It must
1747 * be paired with a subsequent finish_task_switch after the context
1748 * switch.
1749 *
1750 * prepare_task_switch sets up locking and calls architecture specific
1751 * hooks.
1752 */
1753 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1754 {
1755 prepare_lock_switch(rq, next);
1756 prepare_arch_switch(next);
1757 }
1758
1759 /**
1760 * finish_task_switch - clean up after a task-switch
1761 * @rq: runqueue associated with task-switch
1762 * @prev: the thread we just switched away from.
1763 *
1764 * finish_task_switch must be called after the context switch, paired
1765 * with a prepare_task_switch call before the context switch.
1766 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1767 * and do any other architecture-specific cleanup actions.
1768 *
1769 * Note that we may have delayed dropping an mm in context_switch(). If
1770 * so, we finish that here outside of the runqueue lock. (Doing it
1771 * with the lock held can cause deadlocks; see schedule() for
1772 * details.)
1773 */
1774 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1775 __releases(rq->lock)
1776 {
1777 struct mm_struct *mm = rq->prev_mm;
1778 long prev_state;
1779
1780 rq->prev_mm = NULL;
1781
1782 /*
1783 * A task struct has one reference for the use as "current".
1784 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1785 * schedule one last time. The schedule call will never return, and
1786 * the scheduled task must drop that reference.
1787 * The test for TASK_DEAD must occur while the runqueue locks are
1788 * still held, otherwise prev could be scheduled on another cpu, die
1789 * there before we look at prev->state, and then the reference would
1790 * be dropped twice.
1791 * Manfred Spraul <manfred@colorfullife.com>
1792 */
1793 prev_state = prev->state;
1794 finish_arch_switch(prev);
1795 finish_lock_switch(rq, prev);
1796 if (mm)
1797 mmdrop(mm);
1798 if (unlikely(prev_state == TASK_DEAD)) {
1799 /*
1800 * Remove function-return probe instances associated with this
1801 * task and put them back on the free list.
1802 */
1803 kprobe_flush_task(prev);
1804 put_task_struct(prev);
1805 }
1806 }
1807
1808 /**
1809 * schedule_tail - first thing a freshly forked thread must call.
1810 * @prev: the thread we just switched away from.
1811 */
1812 asmlinkage void schedule_tail(struct task_struct *prev)
1813 __releases(rq->lock)
1814 {
1815 struct rq *rq = this_rq();
1816
1817 finish_task_switch(rq, prev);
1818 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1819 /* In this case, finish_task_switch does not reenable preemption */
1820 preempt_enable();
1821 #endif
1822 if (current->set_child_tid)
1823 put_user(current->pid, current->set_child_tid);
1824 }
1825
1826 /*
1827 * context_switch - switch to the new MM and the new
1828 * thread's register state.
1829 */
1830 static inline struct task_struct *
1831 context_switch(struct rq *rq, struct task_struct *prev,
1832 struct task_struct *next)
1833 {
1834 struct mm_struct *mm = next->mm;
1835 struct mm_struct *oldmm = prev->active_mm;
1836
1837 if (!mm) {
1838 next->active_mm = oldmm;
1839 atomic_inc(&oldmm->mm_count);
1840 enter_lazy_tlb(oldmm, next);
1841 } else
1842 switch_mm(oldmm, mm, next);
1843
1844 if (!prev->mm) {
1845 prev->active_mm = NULL;
1846 WARN_ON(rq->prev_mm);
1847 rq->prev_mm = oldmm;
1848 }
1849 /*
1850 * Since the runqueue lock will be released by the next
1851 * task (which is an invalid locking op but in the case
1852 * of the scheduler it's an obvious special-case), so we
1853 * do an early lockdep release here:
1854 */
1855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1856 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1857 #endif
1858
1859 /* Here we just switch the register state and the stack. */
1860 switch_to(prev, next, prev);
1861
1862 return prev;
1863 }
1864
1865 /*
1866 * nr_running, nr_uninterruptible and nr_context_switches:
1867 *
1868 * externally visible scheduler statistics: current number of runnable
1869 * threads, current number of uninterruptible-sleeping threads, total
1870 * number of context switches performed since bootup.
1871 */
1872 unsigned long nr_running(void)
1873 {
1874 unsigned long i, sum = 0;
1875
1876 for_each_online_cpu(i)
1877 sum += cpu_rq(i)->nr_running;
1878
1879 return sum;
1880 }
1881
1882 unsigned long nr_uninterruptible(void)
1883 {
1884 unsigned long i, sum = 0;
1885
1886 for_each_possible_cpu(i)
1887 sum += cpu_rq(i)->nr_uninterruptible;
1888
1889 /*
1890 * Since we read the counters lockless, it might be slightly
1891 * inaccurate. Do not allow it to go below zero though:
1892 */
1893 if (unlikely((long)sum < 0))
1894 sum = 0;
1895
1896 return sum;
1897 }
1898
1899 unsigned long long nr_context_switches(void)
1900 {
1901 int i;
1902 unsigned long long sum = 0;
1903
1904 for_each_possible_cpu(i)
1905 sum += cpu_rq(i)->nr_switches;
1906
1907 return sum;
1908 }
1909
1910 unsigned long nr_iowait(void)
1911 {
1912 unsigned long i, sum = 0;
1913
1914 for_each_possible_cpu(i)
1915 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1916
1917 return sum;
1918 }
1919
1920 unsigned long nr_active(void)
1921 {
1922 unsigned long i, running = 0, uninterruptible = 0;
1923
1924 for_each_online_cpu(i) {
1925 running += cpu_rq(i)->nr_running;
1926 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1927 }
1928
1929 if (unlikely((long)uninterruptible < 0))
1930 uninterruptible = 0;
1931
1932 return running + uninterruptible;
1933 }
1934
1935 #ifdef CONFIG_SMP
1936
1937 /*
1938 * Is this task likely cache-hot:
1939 */
1940 static inline int
1941 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1942 {
1943 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1944 }
1945
1946 /*
1947 * double_rq_lock - safely lock two runqueues
1948 *
1949 * Note this does not disable interrupts like task_rq_lock,
1950 * you need to do so manually before calling.
1951 */
1952 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1953 __acquires(rq1->lock)
1954 __acquires(rq2->lock)
1955 {
1956 BUG_ON(!irqs_disabled());
1957 if (rq1 == rq2) {
1958 spin_lock(&rq1->lock);
1959 __acquire(rq2->lock); /* Fake it out ;) */
1960 } else {
1961 if (rq1 < rq2) {
1962 spin_lock(&rq1->lock);
1963 spin_lock(&rq2->lock);
1964 } else {
1965 spin_lock(&rq2->lock);
1966 spin_lock(&rq1->lock);
1967 }
1968 }
1969 }
1970
1971 /*
1972 * double_rq_unlock - safely unlock two runqueues
1973 *
1974 * Note this does not restore interrupts like task_rq_unlock,
1975 * you need to do so manually after calling.
1976 */
1977 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1978 __releases(rq1->lock)
1979 __releases(rq2->lock)
1980 {
1981 spin_unlock(&rq1->lock);
1982 if (rq1 != rq2)
1983 spin_unlock(&rq2->lock);
1984 else
1985 __release(rq2->lock);
1986 }
1987
1988 /*
1989 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1990 */
1991 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1992 __releases(this_rq->lock)
1993 __acquires(busiest->lock)
1994 __acquires(this_rq->lock)
1995 {
1996 if (unlikely(!irqs_disabled())) {
1997 /* printk() doesn't work good under rq->lock */
1998 spin_unlock(&this_rq->lock);
1999 BUG_ON(1);
2000 }
2001 if (unlikely(!spin_trylock(&busiest->lock))) {
2002 if (busiest < this_rq) {
2003 spin_unlock(&this_rq->lock);
2004 spin_lock(&busiest->lock);
2005 spin_lock(&this_rq->lock);
2006 } else
2007 spin_lock(&busiest->lock);
2008 }
2009 }
2010
2011 /*
2012 * If dest_cpu is allowed for this process, migrate the task to it.
2013 * This is accomplished by forcing the cpu_allowed mask to only
2014 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2015 * the cpu_allowed mask is restored.
2016 */
2017 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2018 {
2019 struct migration_req req;
2020 unsigned long flags;
2021 struct rq *rq;
2022
2023 rq = task_rq_lock(p, &flags);
2024 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2025 || unlikely(cpu_is_offline(dest_cpu)))
2026 goto out;
2027
2028 /* force the process onto the specified CPU */
2029 if (migrate_task(p, dest_cpu, &req)) {
2030 /* Need to wait for migration thread (might exit: take ref). */
2031 struct task_struct *mt = rq->migration_thread;
2032
2033 get_task_struct(mt);
2034 task_rq_unlock(rq, &flags);
2035 wake_up_process(mt);
2036 put_task_struct(mt);
2037 wait_for_completion(&req.done);
2038
2039 return;
2040 }
2041 out:
2042 task_rq_unlock(rq, &flags);
2043 }
2044
2045 /*
2046 * sched_exec - execve() is a valuable balancing opportunity, because at
2047 * this point the task has the smallest effective memory and cache footprint.
2048 */
2049 void sched_exec(void)
2050 {
2051 int new_cpu, this_cpu = get_cpu();
2052 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2053 put_cpu();
2054 if (new_cpu != this_cpu)
2055 sched_migrate_task(current, new_cpu);
2056 }
2057
2058 /*
2059 * pull_task - move a task from a remote runqueue to the local runqueue.
2060 * Both runqueues must be locked.
2061 */
2062 static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2063 struct task_struct *p, struct rq *this_rq,
2064 struct prio_array *this_array, int this_cpu)
2065 {
2066 dequeue_task(p, src_array);
2067 dec_nr_running(p, src_rq);
2068 set_task_cpu(p, this_cpu);
2069 inc_nr_running(p, this_rq);
2070 enqueue_task(p, this_array);
2071 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
2072 + this_rq->timestamp_last_tick;
2073 /*
2074 * Note that idle threads have a prio of MAX_PRIO, for this test
2075 * to be always true for them.
2076 */
2077 if (TASK_PREEMPTS_CURR(p, this_rq))
2078 resched_task(this_rq->curr);
2079 }
2080
2081 /*
2082 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2083 */
2084 static
2085 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2086 struct sched_domain *sd, enum idle_type idle,
2087 int *all_pinned)
2088 {
2089 /*
2090 * We do not migrate tasks that are:
2091 * 1) running (obviously), or
2092 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2093 * 3) are cache-hot on their current CPU.
2094 */
2095 if (!cpu_isset(this_cpu, p->cpus_allowed))
2096 return 0;
2097 *all_pinned = 0;
2098
2099 if (task_running(rq, p))
2100 return 0;
2101
2102 /*
2103 * Aggressive migration if:
2104 * 1) task is cache cold, or
2105 * 2) too many balance attempts have failed.
2106 */
2107
2108 if (sd->nr_balance_failed > sd->cache_nice_tries)
2109 return 1;
2110
2111 if (task_hot(p, rq->timestamp_last_tick, sd))
2112 return 0;
2113 return 1;
2114 }
2115
2116 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2117
2118 /*
2119 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2120 * load from busiest to this_rq, as part of a balancing operation within
2121 * "domain". Returns the number of tasks moved.
2122 *
2123 * Called with both runqueues locked.
2124 */
2125 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2126 unsigned long max_nr_move, unsigned long max_load_move,
2127 struct sched_domain *sd, enum idle_type idle,
2128 int *all_pinned)
2129 {
2130 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2131 best_prio_seen, skip_for_load;
2132 struct prio_array *array, *dst_array;
2133 struct list_head *head, *curr;
2134 struct task_struct *tmp;
2135 long rem_load_move;
2136
2137 if (max_nr_move == 0 || max_load_move == 0)
2138 goto out;
2139
2140 rem_load_move = max_load_move;
2141 pinned = 1;
2142 this_best_prio = rq_best_prio(this_rq);
2143 best_prio = rq_best_prio(busiest);
2144 /*
2145 * Enable handling of the case where there is more than one task
2146 * with the best priority. If the current running task is one
2147 * of those with prio==best_prio we know it won't be moved
2148 * and therefore it's safe to override the skip (based on load) of
2149 * any task we find with that prio.
2150 */
2151 best_prio_seen = best_prio == busiest->curr->prio;
2152
2153 /*
2154 * We first consider expired tasks. Those will likely not be
2155 * executed in the near future, and they are most likely to
2156 * be cache-cold, thus switching CPUs has the least effect
2157 * on them.
2158 */
2159 if (busiest->expired->nr_active) {
2160 array = busiest->expired;
2161 dst_array = this_rq->expired;
2162 } else {
2163 array = busiest->active;
2164 dst_array = this_rq->active;
2165 }
2166
2167 new_array:
2168 /* Start searching at priority 0: */
2169 idx = 0;
2170 skip_bitmap:
2171 if (!idx)
2172 idx = sched_find_first_bit(array->bitmap);
2173 else
2174 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2175 if (idx >= MAX_PRIO) {
2176 if (array == busiest->expired && busiest->active->nr_active) {
2177 array = busiest->active;
2178 dst_array = this_rq->active;
2179 goto new_array;
2180 }
2181 goto out;
2182 }
2183
2184 head = array->queue + idx;
2185 curr = head->prev;
2186 skip_queue:
2187 tmp = list_entry(curr, struct task_struct, run_list);
2188
2189 curr = curr->prev;
2190
2191 /*
2192 * To help distribute high priority tasks accross CPUs we don't
2193 * skip a task if it will be the highest priority task (i.e. smallest
2194 * prio value) on its new queue regardless of its load weight
2195 */
2196 skip_for_load = tmp->load_weight > rem_load_move;
2197 if (skip_for_load && idx < this_best_prio)
2198 skip_for_load = !best_prio_seen && idx == best_prio;
2199 if (skip_for_load ||
2200 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2201
2202 best_prio_seen |= idx == best_prio;
2203 if (curr != head)
2204 goto skip_queue;
2205 idx++;
2206 goto skip_bitmap;
2207 }
2208
2209 #ifdef CONFIG_SCHEDSTATS
2210 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2211 schedstat_inc(sd, lb_hot_gained[idle]);
2212 #endif
2213
2214 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2215 pulled++;
2216 rem_load_move -= tmp->load_weight;
2217
2218 /*
2219 * We only want to steal up to the prescribed number of tasks
2220 * and the prescribed amount of weighted load.
2221 */
2222 if (pulled < max_nr_move && rem_load_move > 0) {
2223 if (idx < this_best_prio)
2224 this_best_prio = idx;
2225 if (curr != head)
2226 goto skip_queue;
2227 idx++;
2228 goto skip_bitmap;
2229 }
2230 out:
2231 /*
2232 * Right now, this is the only place pull_task() is called,
2233 * so we can safely collect pull_task() stats here rather than
2234 * inside pull_task().
2235 */
2236 schedstat_add(sd, lb_gained[idle], pulled);
2237
2238 if (all_pinned)
2239 *all_pinned = pinned;
2240 return pulled;
2241 }
2242
2243 /*
2244 * find_busiest_group finds and returns the busiest CPU group within the
2245 * domain. It calculates and returns the amount of weighted load which
2246 * should be moved to restore balance via the imbalance parameter.
2247 */
2248 static struct sched_group *
2249 find_busiest_group(struct sched_domain *sd, int this_cpu,
2250 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2251 cpumask_t *cpus)
2252 {
2253 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2254 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2255 unsigned long max_pull;
2256 unsigned long busiest_load_per_task, busiest_nr_running;
2257 unsigned long this_load_per_task, this_nr_running;
2258 int load_idx;
2259 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2260 int power_savings_balance = 1;
2261 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2262 unsigned long min_nr_running = ULONG_MAX;
2263 struct sched_group *group_min = NULL, *group_leader = NULL;
2264 #endif
2265
2266 max_load = this_load = total_load = total_pwr = 0;
2267 busiest_load_per_task = busiest_nr_running = 0;
2268 this_load_per_task = this_nr_running = 0;
2269 if (idle == NOT_IDLE)
2270 load_idx = sd->busy_idx;
2271 else if (idle == NEWLY_IDLE)
2272 load_idx = sd->newidle_idx;
2273 else
2274 load_idx = sd->idle_idx;
2275
2276 do {
2277 unsigned long load, group_capacity;
2278 int local_group;
2279 int i;
2280 unsigned long sum_nr_running, sum_weighted_load;
2281
2282 local_group = cpu_isset(this_cpu, group->cpumask);
2283
2284 /* Tally up the load of all CPUs in the group */
2285 sum_weighted_load = sum_nr_running = avg_load = 0;
2286
2287 for_each_cpu_mask(i, group->cpumask) {
2288 struct rq *rq;
2289
2290 if (!cpu_isset(i, *cpus))
2291 continue;
2292
2293 rq = cpu_rq(i);
2294
2295 if (*sd_idle && !idle_cpu(i))
2296 *sd_idle = 0;
2297
2298 /* Bias balancing toward cpus of our domain */
2299 if (local_group)
2300 load = target_load(i, load_idx);
2301 else
2302 load = source_load(i, load_idx);
2303
2304 avg_load += load;
2305 sum_nr_running += rq->nr_running;
2306 sum_weighted_load += rq->raw_weighted_load;
2307 }
2308
2309 total_load += avg_load;
2310 total_pwr += group->cpu_power;
2311
2312 /* Adjust by relative CPU power of the group */
2313 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2314
2315 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2316
2317 if (local_group) {
2318 this_load = avg_load;
2319 this = group;
2320 this_nr_running = sum_nr_running;
2321 this_load_per_task = sum_weighted_load;
2322 } else if (avg_load > max_load &&
2323 sum_nr_running > group_capacity) {
2324 max_load = avg_load;
2325 busiest = group;
2326 busiest_nr_running = sum_nr_running;
2327 busiest_load_per_task = sum_weighted_load;
2328 }
2329
2330 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2331 /*
2332 * Busy processors will not participate in power savings
2333 * balance.
2334 */
2335 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2336 goto group_next;
2337
2338 /*
2339 * If the local group is idle or completely loaded
2340 * no need to do power savings balance at this domain
2341 */
2342 if (local_group && (this_nr_running >= group_capacity ||
2343 !this_nr_running))
2344 power_savings_balance = 0;
2345
2346 /*
2347 * If a group is already running at full capacity or idle,
2348 * don't include that group in power savings calculations
2349 */
2350 if (!power_savings_balance || sum_nr_running >= group_capacity
2351 || !sum_nr_running)
2352 goto group_next;
2353
2354 /*
2355 * Calculate the group which has the least non-idle load.
2356 * This is the group from where we need to pick up the load
2357 * for saving power
2358 */
2359 if ((sum_nr_running < min_nr_running) ||
2360 (sum_nr_running == min_nr_running &&
2361 first_cpu(group->cpumask) <
2362 first_cpu(group_min->cpumask))) {
2363 group_min = group;
2364 min_nr_running = sum_nr_running;
2365 min_load_per_task = sum_weighted_load /
2366 sum_nr_running;
2367 }
2368
2369 /*
2370 * Calculate the group which is almost near its
2371 * capacity but still has some space to pick up some load
2372 * from other group and save more power
2373 */
2374 if (sum_nr_running <= group_capacity - 1) {
2375 if (sum_nr_running > leader_nr_running ||
2376 (sum_nr_running == leader_nr_running &&
2377 first_cpu(group->cpumask) >
2378 first_cpu(group_leader->cpumask))) {
2379 group_leader = group;
2380 leader_nr_running = sum_nr_running;
2381 }
2382 }
2383 group_next:
2384 #endif
2385 group = group->next;
2386 } while (group != sd->groups);
2387
2388 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2389 goto out_balanced;
2390
2391 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2392
2393 if (this_load >= avg_load ||
2394 100*max_load <= sd->imbalance_pct*this_load)
2395 goto out_balanced;
2396
2397 busiest_load_per_task /= busiest_nr_running;
2398 /*
2399 * We're trying to get all the cpus to the average_load, so we don't
2400 * want to push ourselves above the average load, nor do we wish to
2401 * reduce the max loaded cpu below the average load, as either of these
2402 * actions would just result in more rebalancing later, and ping-pong
2403 * tasks around. Thus we look for the minimum possible imbalance.
2404 * Negative imbalances (*we* are more loaded than anyone else) will
2405 * be counted as no imbalance for these purposes -- we can't fix that
2406 * by pulling tasks to us. Be careful of negative numbers as they'll
2407 * appear as very large values with unsigned longs.
2408 */
2409 if (max_load <= busiest_load_per_task)
2410 goto out_balanced;
2411
2412 /*
2413 * In the presence of smp nice balancing, certain scenarios can have
2414 * max load less than avg load(as we skip the groups at or below
2415 * its cpu_power, while calculating max_load..)
2416 */
2417 if (max_load < avg_load) {
2418 *imbalance = 0;
2419 goto small_imbalance;
2420 }
2421
2422 /* Don't want to pull so many tasks that a group would go idle */
2423 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2424
2425 /* How much load to actually move to equalise the imbalance */
2426 *imbalance = min(max_pull * busiest->cpu_power,
2427 (avg_load - this_load) * this->cpu_power)
2428 / SCHED_LOAD_SCALE;
2429
2430 /*
2431 * if *imbalance is less than the average load per runnable task
2432 * there is no gaurantee that any tasks will be moved so we'll have
2433 * a think about bumping its value to force at least one task to be
2434 * moved
2435 */
2436 if (*imbalance < busiest_load_per_task) {
2437 unsigned long tmp, pwr_now, pwr_move;
2438 unsigned int imbn;
2439
2440 small_imbalance:
2441 pwr_move = pwr_now = 0;
2442 imbn = 2;
2443 if (this_nr_running) {
2444 this_load_per_task /= this_nr_running;
2445 if (busiest_load_per_task > this_load_per_task)
2446 imbn = 1;
2447 } else
2448 this_load_per_task = SCHED_LOAD_SCALE;
2449
2450 if (max_load - this_load >= busiest_load_per_task * imbn) {
2451 *imbalance = busiest_load_per_task;
2452 return busiest;
2453 }
2454
2455 /*
2456 * OK, we don't have enough imbalance to justify moving tasks,
2457 * however we may be able to increase total CPU power used by
2458 * moving them.
2459 */
2460
2461 pwr_now += busiest->cpu_power *
2462 min(busiest_load_per_task, max_load);
2463 pwr_now += this->cpu_power *
2464 min(this_load_per_task, this_load);
2465 pwr_now /= SCHED_LOAD_SCALE;
2466
2467 /* Amount of load we'd subtract */
2468 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
2469 if (max_load > tmp)
2470 pwr_move += busiest->cpu_power *
2471 min(busiest_load_per_task, max_load - tmp);
2472
2473 /* Amount of load we'd add */
2474 if (max_load*busiest->cpu_power <
2475 busiest_load_per_task*SCHED_LOAD_SCALE)
2476 tmp = max_load*busiest->cpu_power/this->cpu_power;
2477 else
2478 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2479 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
2480 pwr_move /= SCHED_LOAD_SCALE;
2481
2482 /* Move if we gain throughput */
2483 if (pwr_move <= pwr_now)
2484 goto out_balanced;
2485
2486 *imbalance = busiest_load_per_task;
2487 }
2488
2489 return busiest;
2490
2491 out_balanced:
2492 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2493 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2494 goto ret;
2495
2496 if (this == group_leader && group_leader != group_min) {
2497 *imbalance = min_load_per_task;
2498 return group_min;
2499 }
2500 ret:
2501 #endif
2502 *imbalance = 0;
2503 return NULL;
2504 }
2505
2506 /*
2507 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2508 */
2509 static struct rq *
2510 find_busiest_queue(struct sched_group *group, enum idle_type idle,
2511 unsigned long imbalance, cpumask_t *cpus)
2512 {
2513 struct rq *busiest = NULL, *rq;
2514 unsigned long max_load = 0;
2515 int i;
2516
2517 for_each_cpu_mask(i, group->cpumask) {
2518
2519 if (!cpu_isset(i, *cpus))
2520 continue;
2521
2522 rq = cpu_rq(i);
2523
2524 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2525 continue;
2526
2527 if (rq->raw_weighted_load > max_load) {
2528 max_load = rq->raw_weighted_load;
2529 busiest = rq;
2530 }
2531 }
2532
2533 return busiest;
2534 }
2535
2536 /*
2537 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2538 * so long as it is large enough.
2539 */
2540 #define MAX_PINNED_INTERVAL 512
2541
2542 static inline unsigned long minus_1_or_zero(unsigned long n)
2543 {
2544 return n > 0 ? n - 1 : 0;
2545 }
2546
2547 /*
2548 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2549 * tasks if there is an imbalance.
2550 */
2551 static int load_balance(int this_cpu, struct rq *this_rq,
2552 struct sched_domain *sd, enum idle_type idle)
2553 {
2554 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2555 struct sched_group *group;
2556 unsigned long imbalance;
2557 struct rq *busiest;
2558 cpumask_t cpus = CPU_MASK_ALL;
2559 unsigned long flags;
2560
2561 /*
2562 * When power savings policy is enabled for the parent domain, idle
2563 * sibling can pick up load irrespective of busy siblings. In this case,
2564 * let the state of idle sibling percolate up as IDLE, instead of
2565 * portraying it as NOT_IDLE.
2566 */
2567 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2568 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2569 sd_idle = 1;
2570
2571 schedstat_inc(sd, lb_cnt[idle]);
2572
2573 redo:
2574 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2575 &cpus);
2576 if (!group) {
2577 schedstat_inc(sd, lb_nobusyg[idle]);
2578 goto out_balanced;
2579 }
2580
2581 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2582 if (!busiest) {
2583 schedstat_inc(sd, lb_nobusyq[idle]);
2584 goto out_balanced;
2585 }
2586
2587 BUG_ON(busiest == this_rq);
2588
2589 schedstat_add(sd, lb_imbalance[idle], imbalance);
2590
2591 nr_moved = 0;
2592 if (busiest->nr_running > 1) {
2593 /*
2594 * Attempt to move tasks. If find_busiest_group has found
2595 * an imbalance but busiest->nr_running <= 1, the group is
2596 * still unbalanced. nr_moved simply stays zero, so it is
2597 * correctly treated as an imbalance.
2598 */
2599 local_irq_save(flags);
2600 double_rq_lock(this_rq, busiest);
2601 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2602 minus_1_or_zero(busiest->nr_running),
2603 imbalance, sd, idle, &all_pinned);
2604 double_rq_unlock(this_rq, busiest);
2605 local_irq_restore(flags);
2606
2607 /* All tasks on this runqueue were pinned by CPU affinity */
2608 if (unlikely(all_pinned)) {
2609 cpu_clear(cpu_of(busiest), cpus);
2610 if (!cpus_empty(cpus))
2611 goto redo;
2612 goto out_balanced;
2613 }
2614 }
2615
2616 if (!nr_moved) {
2617 schedstat_inc(sd, lb_failed[idle]);
2618 sd->nr_balance_failed++;
2619
2620 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2621
2622 spin_lock_irqsave(&busiest->lock, flags);
2623
2624 /* don't kick the migration_thread, if the curr
2625 * task on busiest cpu can't be moved to this_cpu
2626 */
2627 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2628 spin_unlock_irqrestore(&busiest->lock, flags);
2629 all_pinned = 1;
2630 goto out_one_pinned;
2631 }
2632
2633 if (!busiest->active_balance) {
2634 busiest->active_balance = 1;
2635 busiest->push_cpu = this_cpu;
2636 active_balance = 1;
2637 }
2638 spin_unlock_irqrestore(&busiest->lock, flags);
2639 if (active_balance)
2640 wake_up_process(busiest->migration_thread);
2641
2642 /*
2643 * We've kicked active balancing, reset the failure
2644 * counter.
2645 */
2646 sd->nr_balance_failed = sd->cache_nice_tries+1;
2647 }
2648 } else
2649 sd->nr_balance_failed = 0;
2650
2651 if (likely(!active_balance)) {
2652 /* We were unbalanced, so reset the balancing interval */
2653 sd->balance_interval = sd->min_interval;
2654 } else {
2655 /*
2656 * If we've begun active balancing, start to back off. This
2657 * case may not be covered by the all_pinned logic if there
2658 * is only 1 task on the busy runqueue (because we don't call
2659 * move_tasks).
2660 */
2661 if (sd->balance_interval < sd->max_interval)
2662 sd->balance_interval *= 2;
2663 }
2664
2665 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2666 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2667 return -1;
2668 return nr_moved;
2669
2670 out_balanced:
2671 schedstat_inc(sd, lb_balanced[idle]);
2672
2673 sd->nr_balance_failed = 0;
2674
2675 out_one_pinned:
2676 /* tune up the balancing interval */
2677 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2678 (sd->balance_interval < sd->max_interval))
2679 sd->balance_interval *= 2;
2680
2681 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2682 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2683 return -1;
2684 return 0;
2685 }
2686
2687 /*
2688 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2689 * tasks if there is an imbalance.
2690 *
2691 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2692 * this_rq is locked.
2693 */
2694 static int
2695 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2696 {
2697 struct sched_group *group;
2698 struct rq *busiest = NULL;
2699 unsigned long imbalance;
2700 int nr_moved = 0;
2701 int sd_idle = 0;
2702 cpumask_t cpus = CPU_MASK_ALL;
2703
2704 /*
2705 * When power savings policy is enabled for the parent domain, idle
2706 * sibling can pick up load irrespective of busy siblings. In this case,
2707 * let the state of idle sibling percolate up as IDLE, instead of
2708 * portraying it as NOT_IDLE.
2709 */
2710 if (sd->flags & SD_SHARE_CPUPOWER &&
2711 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2712 sd_idle = 1;
2713
2714 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2715 redo:
2716 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2717 &sd_idle, &cpus);
2718 if (!group) {
2719 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2720 goto out_balanced;
2721 }
2722
2723 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2724 &cpus);
2725 if (!busiest) {
2726 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2727 goto out_balanced;
2728 }
2729
2730 BUG_ON(busiest == this_rq);
2731
2732 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2733
2734 nr_moved = 0;
2735 if (busiest->nr_running > 1) {
2736 /* Attempt to move tasks */
2737 double_lock_balance(this_rq, busiest);
2738 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2739 minus_1_or_zero(busiest->nr_running),
2740 imbalance, sd, NEWLY_IDLE, NULL);
2741 spin_unlock(&busiest->lock);
2742
2743 if (!nr_moved) {
2744 cpu_clear(cpu_of(busiest), cpus);
2745 if (!cpus_empty(cpus))
2746 goto redo;
2747 }
2748 }
2749
2750 if (!nr_moved) {
2751 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2752 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2753 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2754 return -1;
2755 } else
2756 sd->nr_balance_failed = 0;
2757
2758 return nr_moved;
2759
2760 out_balanced:
2761 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2762 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2763 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2764 return -1;
2765 sd->nr_balance_failed = 0;
2766
2767 return 0;
2768 }
2769
2770 /*
2771 * idle_balance is called by schedule() if this_cpu is about to become
2772 * idle. Attempts to pull tasks from other CPUs.
2773 */
2774 static void idle_balance(int this_cpu, struct rq *this_rq)
2775 {
2776 struct sched_domain *sd;
2777 int pulled_task = 0;
2778 unsigned long next_balance = jiffies + 60 * HZ;
2779
2780 for_each_domain(this_cpu, sd) {
2781 if (sd->flags & SD_BALANCE_NEWIDLE) {
2782 /* If we've pulled tasks over stop searching: */
2783 pulled_task = load_balance_newidle(this_cpu,
2784 this_rq, sd);
2785 if (time_after(next_balance,
2786 sd->last_balance + sd->balance_interval))
2787 next_balance = sd->last_balance
2788 + sd->balance_interval;
2789 if (pulled_task)
2790 break;
2791 }
2792 }
2793 if (!pulled_task)
2794 /*
2795 * We are going idle. next_balance may be set based on
2796 * a busy processor. So reset next_balance.
2797 */
2798 this_rq->next_balance = next_balance;
2799 }
2800
2801 /*
2802 * active_load_balance is run by migration threads. It pushes running tasks
2803 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2804 * running on each physical CPU where possible, and avoids physical /
2805 * logical imbalances.
2806 *
2807 * Called with busiest_rq locked.
2808 */
2809 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2810 {
2811 int target_cpu = busiest_rq->push_cpu;
2812 struct sched_domain *sd;
2813 struct rq *target_rq;
2814
2815 /* Is there any task to move? */
2816 if (busiest_rq->nr_running <= 1)
2817 return;
2818
2819 target_rq = cpu_rq(target_cpu);
2820
2821 /*
2822 * This condition is "impossible", if it occurs
2823 * we need to fix it. Originally reported by
2824 * Bjorn Helgaas on a 128-cpu setup.
2825 */
2826 BUG_ON(busiest_rq == target_rq);
2827
2828 /* move a task from busiest_rq to target_rq */
2829 double_lock_balance(busiest_rq, target_rq);
2830
2831 /* Search for an sd spanning us and the target CPU. */
2832 for_each_domain(target_cpu, sd) {
2833 if ((sd->flags & SD_LOAD_BALANCE) &&
2834 cpu_isset(busiest_cpu, sd->span))
2835 break;
2836 }
2837
2838 if (likely(sd)) {
2839 schedstat_inc(sd, alb_cnt);
2840
2841 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2842 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2843 NULL))
2844 schedstat_inc(sd, alb_pushed);
2845 else
2846 schedstat_inc(sd, alb_failed);
2847 }
2848 spin_unlock(&target_rq->lock);
2849 }
2850
2851 static void update_load(struct rq *this_rq)
2852 {
2853 unsigned long this_load;
2854 int i, scale;
2855
2856 this_load = this_rq->raw_weighted_load;
2857
2858 /* Update our load: */
2859 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2860 unsigned long old_load, new_load;
2861
2862 old_load = this_rq->cpu_load[i];
2863 new_load = this_load;
2864 /*
2865 * Round up the averaging division if load is increasing. This
2866 * prevents us from getting stuck on 9 if the load is 10, for
2867 * example.
2868 */
2869 if (new_load > old_load)
2870 new_load += scale-1;
2871 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2872 }
2873 }
2874
2875 /*
2876 * run_rebalance_domains is triggered when needed from the scheduler tick.
2877 *
2878 * It checks each scheduling domain to see if it is due to be balanced,
2879 * and initiates a balancing operation if so.
2880 *
2881 * Balancing parameters are set up in arch_init_sched_domains.
2882 */
2883 static DEFINE_SPINLOCK(balancing);
2884
2885 static void run_rebalance_domains(struct softirq_action *h)
2886 {
2887 int this_cpu = smp_processor_id();
2888 struct rq *this_rq = cpu_rq(this_cpu);
2889 unsigned long interval;
2890 struct sched_domain *sd;
2891 /*
2892 * We are idle if there are no processes running. This
2893 * is valid even if we are the idle process (SMT).
2894 */
2895 enum idle_type idle = !this_rq->nr_running ?
2896 SCHED_IDLE : NOT_IDLE;
2897 /* Earliest time when we have to call run_rebalance_domains again */
2898 unsigned long next_balance = jiffies + 60*HZ;
2899
2900 for_each_domain(this_cpu, sd) {
2901 if (!(sd->flags & SD_LOAD_BALANCE))
2902 continue;
2903
2904 interval = sd->balance_interval;
2905 if (idle != SCHED_IDLE)
2906 interval *= sd->busy_factor;
2907
2908 /* scale ms to jiffies */
2909 interval = msecs_to_jiffies(interval);
2910 if (unlikely(!interval))
2911 interval = 1;
2912
2913 if (sd->flags & SD_SERIALIZE) {
2914 if (!spin_trylock(&balancing))
2915 goto out;
2916 }
2917
2918 if (time_after_eq(jiffies, sd->last_balance + interval)) {
2919 if (load_balance(this_cpu, this_rq, sd, idle)) {
2920 /*
2921 * We've pulled tasks over so either we're no
2922 * longer idle, or one of our SMT siblings is
2923 * not idle.
2924 */
2925 idle = NOT_IDLE;
2926 }
2927 sd->last_balance = jiffies;
2928 }
2929 if (sd->flags & SD_SERIALIZE)
2930 spin_unlock(&balancing);
2931 out:
2932 if (time_after(next_balance, sd->last_balance + interval))
2933 next_balance = sd->last_balance + interval;
2934 }
2935 this_rq->next_balance = next_balance;
2936 }
2937 #else
2938 /*
2939 * on UP we do not need to balance between CPUs:
2940 */
2941 static inline void idle_balance(int cpu, struct rq *rq)
2942 {
2943 }
2944 #endif
2945
2946 static inline void wake_priority_sleeper(struct rq *rq)
2947 {
2948 #ifdef CONFIG_SCHED_SMT
2949 if (!rq->nr_running)
2950 return;
2951
2952 spin_lock(&rq->lock);
2953 /*
2954 * If an SMT sibling task has been put to sleep for priority
2955 * reasons reschedule the idle task to see if it can now run.
2956 */
2957 if (rq->nr_running)
2958 resched_task(rq->idle);
2959 spin_unlock(&rq->lock);
2960 #endif
2961 }
2962
2963 DEFINE_PER_CPU(struct kernel_stat, kstat);
2964
2965 EXPORT_PER_CPU_SYMBOL(kstat);
2966
2967 /*
2968 * This is called on clock ticks and on context switches.
2969 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2970 */
2971 static inline void
2972 update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
2973 {
2974 p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
2975 }
2976
2977 /*
2978 * Return current->sched_time plus any more ns on the sched_clock
2979 * that have not yet been banked.
2980 */
2981 unsigned long long current_sched_time(const struct task_struct *p)
2982 {
2983 unsigned long long ns;
2984 unsigned long flags;
2985
2986 local_irq_save(flags);
2987 ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
2988 ns = p->sched_time + sched_clock() - ns;
2989 local_irq_restore(flags);
2990
2991 return ns;
2992 }
2993
2994 /*
2995 * We place interactive tasks back into the active array, if possible.
2996 *
2997 * To guarantee that this does not starve expired tasks we ignore the
2998 * interactivity of a task if the first expired task had to wait more
2999 * than a 'reasonable' amount of time. This deadline timeout is
3000 * load-dependent, as the frequency of array switched decreases with
3001 * increasing number of running tasks. We also ignore the interactivity
3002 * if a better static_prio task has expired:
3003 */
3004 static inline int expired_starving(struct rq *rq)
3005 {
3006 if (rq->curr->static_prio > rq->best_expired_prio)
3007 return 1;
3008 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3009 return 0;
3010 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3011 return 1;
3012 return 0;
3013 }
3014
3015 /*
3016 * Account user cpu time to a process.
3017 * @p: the process that the cpu time gets accounted to
3018 * @hardirq_offset: the offset to subtract from hardirq_count()
3019 * @cputime: the cpu time spent in user space since the last update
3020 */
3021 void account_user_time(struct task_struct *p, cputime_t cputime)
3022 {
3023 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3024 cputime64_t tmp;
3025
3026 p->utime = cputime_add(p->utime, cputime);
3027
3028 /* Add user time to cpustat. */
3029 tmp = cputime_to_cputime64(cputime);
3030 if (TASK_NICE(p) > 0)
3031 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3032 else
3033 cpustat->user = cputime64_add(cpustat->user, tmp);
3034 }
3035
3036 /*
3037 * Account system cpu time to a process.
3038 * @p: the process that the cpu time gets accounted to
3039 * @hardirq_offset: the offset to subtract from hardirq_count()
3040 * @cputime: the cpu time spent in kernel space since the last update
3041 */
3042 void account_system_time(struct task_struct *p, int hardirq_offset,
3043 cputime_t cputime)
3044 {
3045 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3046 struct rq *rq = this_rq();
3047 cputime64_t tmp;
3048
3049 p->stime = cputime_add(p->stime, cputime);
3050
3051 /* Add system time to cpustat. */
3052 tmp = cputime_to_cputime64(cputime);
3053 if (hardirq_count() - hardirq_offset)
3054 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3055 else if (softirq_count())
3056 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3057 else if (p != rq->idle)
3058 cpustat->system = cputime64_add(cpustat->system, tmp);
3059 else if (atomic_read(&rq->nr_iowait) > 0)
3060 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3061 else
3062 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3063 /* Account for system time used */
3064 acct_update_integrals(p);
3065 }
3066
3067 /*
3068 * Account for involuntary wait time.
3069 * @p: the process from which the cpu time has been stolen
3070 * @steal: the cpu time spent in involuntary wait
3071 */
3072 void account_steal_time(struct task_struct *p, cputime_t steal)
3073 {
3074 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3075 cputime64_t tmp = cputime_to_cputime64(steal);
3076 struct rq *rq = this_rq();
3077
3078 if (p == rq->idle) {
3079 p->stime = cputime_add(p->stime, steal);
3080 if (atomic_read(&rq->nr_iowait) > 0)
3081 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3082 else
3083 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3084 } else
3085 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3086 }
3087
3088 static void task_running_tick(struct rq *rq, struct task_struct *p)
3089 {
3090 if (p->array != rq->active) {
3091 /* Task has expired but was not scheduled yet */
3092 set_tsk_need_resched(p);
3093 return;
3094 }
3095 spin_lock(&rq->lock);
3096 /*
3097 * The task was running during this tick - update the
3098 * time slice counter. Note: we do not update a thread's
3099 * priority until it either goes to sleep or uses up its
3100 * timeslice. This makes it possible for interactive tasks
3101 * to use up their timeslices at their highest priority levels.
3102 */
3103 if (rt_task(p)) {
3104 /*
3105 * RR tasks need a special form of timeslice management.
3106 * FIFO tasks have no timeslices.
3107 */
3108 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3109 p->time_slice = task_timeslice(p);
3110 p->first_time_slice = 0;
3111 set_tsk_need_resched(p);
3112
3113 /* put it at the end of the queue: */
3114 requeue_task(p, rq->active);
3115 }
3116 goto out_unlock;
3117 }
3118 if (!--p->time_slice) {
3119 dequeue_task(p, rq->active);
3120 set_tsk_need_resched(p);
3121 p->prio = effective_prio(p);
3122 p->time_slice = task_timeslice(p);
3123 p->first_time_slice = 0;
3124
3125 if (!rq->expired_timestamp)
3126 rq->expired_timestamp = jiffies;
3127 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
3128 enqueue_task(p, rq->expired);
3129 if (p->static_prio < rq->best_expired_prio)
3130 rq->best_expired_prio = p->static_prio;
3131 } else
3132 enqueue_task(p, rq->active);
3133 } else {
3134 /*
3135 * Prevent a too long timeslice allowing a task to monopolize
3136 * the CPU. We do this by splitting up the timeslice into
3137 * smaller pieces.
3138 *
3139 * Note: this does not mean the task's timeslices expire or
3140 * get lost in any way, they just might be preempted by
3141 * another task of equal priority. (one with higher
3142 * priority would have preempted this task already.) We
3143 * requeue this task to the end of the list on this priority
3144 * level, which is in essence a round-robin of tasks with
3145 * equal priority.
3146 *
3147 * This only applies to tasks in the interactive
3148 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3149 */
3150 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3151 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3152 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3153 (p->array == rq->active)) {
3154
3155 requeue_task(p, rq->active);
3156 set_tsk_need_resched(p);
3157 }
3158 }
3159 out_unlock:
3160 spin_unlock(&rq->lock);
3161 }
3162
3163 /*
3164 * This function gets called by the timer code, with HZ frequency.
3165 * We call it with interrupts disabled.
3166 *
3167 * It also gets called by the fork code, when changing the parent's
3168 * timeslices.
3169 */
3170 void scheduler_tick(void)
3171 {
3172 unsigned long long now = sched_clock();
3173 struct task_struct *p = current;
3174 int cpu = smp_processor_id();
3175 struct rq *rq = cpu_rq(cpu);
3176
3177 update_cpu_clock(p, rq, now);
3178
3179 rq->timestamp_last_tick = now;
3180
3181 if (p == rq->idle)
3182 /* Task on the idle queue */
3183 wake_priority_sleeper(rq);
3184 else
3185 task_running_tick(rq, p);
3186 #ifdef CONFIG_SMP
3187 update_load(rq);
3188 if (time_after_eq(jiffies, rq->next_balance))
3189 raise_softirq(SCHED_SOFTIRQ);
3190 #endif
3191 }
3192
3193 #ifdef CONFIG_SCHED_SMT
3194 static inline void wakeup_busy_runqueue(struct rq *rq)
3195 {
3196 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3197 if (rq->curr == rq->idle && rq->nr_running)
3198 resched_task(rq->idle);
3199 }
3200
3201 /*
3202 * Called with interrupt disabled and this_rq's runqueue locked.
3203 */
3204 static void wake_sleeping_dependent(int this_cpu)
3205 {
3206 struct sched_domain *tmp, *sd = NULL;
3207 int i;
3208
3209 for_each_domain(this_cpu, tmp) {
3210 if (tmp->flags & SD_SHARE_CPUPOWER) {
3211 sd = tmp;
3212 break;
3213 }
3214 }
3215
3216 if (!sd)
3217 return;
3218
3219 for_each_cpu_mask(i, sd->span) {
3220 struct rq *smt_rq = cpu_rq(i);
3221
3222 if (i == this_cpu)
3223 continue;
3224 if (unlikely(!spin_trylock(&smt_rq->lock)))
3225 continue;
3226
3227 wakeup_busy_runqueue(smt_rq);
3228 spin_unlock(&smt_rq->lock);
3229 }
3230 }
3231
3232 /*
3233 * number of 'lost' timeslices this task wont be able to fully
3234 * utilize, if another task runs on a sibling. This models the
3235 * slowdown effect of other tasks running on siblings:
3236 */
3237 static inline unsigned long
3238 smt_slice(struct task_struct *p, struct sched_domain *sd)
3239 {
3240 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3241 }
3242
3243 /*
3244 * To minimise lock contention and not have to drop this_rq's runlock we only
3245 * trylock the sibling runqueues and bypass those runqueues if we fail to
3246 * acquire their lock. As we only trylock the normal locking order does not
3247 * need to be obeyed.
3248 */
3249 static int
3250 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3251 {
3252 struct sched_domain *tmp, *sd = NULL;
3253 int ret = 0, i;
3254
3255 /* kernel/rt threads do not participate in dependent sleeping */
3256 if (!p->mm || rt_task(p))
3257 return 0;
3258
3259 for_each_domain(this_cpu, tmp) {
3260 if (tmp->flags & SD_SHARE_CPUPOWER) {
3261 sd = tmp;
3262 break;
3263 }
3264 }
3265
3266 if (!sd)
3267 return 0;
3268
3269 for_each_cpu_mask(i, sd->span) {
3270 struct task_struct *smt_curr;
3271 struct rq *smt_rq;
3272
3273 if (i == this_cpu)
3274 continue;
3275
3276 smt_rq = cpu_rq(i);
3277 if (unlikely(!spin_trylock(&smt_rq->lock)))
3278 continue;
3279
3280 smt_curr = smt_rq->curr;
3281
3282 if (!smt_curr->mm)
3283 goto unlock;
3284
3285 /*
3286 * If a user task with lower static priority than the
3287 * running task on the SMT sibling is trying to schedule,
3288 * delay it till there is proportionately less timeslice
3289 * left of the sibling task to prevent a lower priority
3290 * task from using an unfair proportion of the
3291 * physical cpu's resources. -ck
3292 */
3293 if (rt_task(smt_curr)) {
3294 /*
3295 * With real time tasks we run non-rt tasks only
3296 * per_cpu_gain% of the time.
3297 */
3298 if ((jiffies % DEF_TIMESLICE) >
3299 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3300 ret = 1;
3301 } else {
3302 if (smt_curr->static_prio < p->static_prio &&
3303 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3304 smt_slice(smt_curr, sd) > task_timeslice(p))
3305 ret = 1;
3306 }
3307 unlock:
3308 spin_unlock(&smt_rq->lock);
3309 }
3310 return ret;
3311 }
3312 #else
3313 static inline void wake_sleeping_dependent(int this_cpu)
3314 {
3315 }
3316 static inline int
3317 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3318 {
3319 return 0;
3320 }
3321 #endif
3322
3323 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3324
3325 void fastcall add_preempt_count(int val)
3326 {
3327 /*
3328 * Underflow?
3329 */
3330 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3331 return;
3332 preempt_count() += val;
3333 /*
3334 * Spinlock count overflowing soon?
3335 */
3336 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
3337 }
3338 EXPORT_SYMBOL(add_preempt_count);
3339
3340 void fastcall sub_preempt_count(int val)
3341 {
3342 /*
3343 * Underflow?
3344 */
3345 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3346 return;
3347 /*
3348 * Is the spinlock portion underflowing?
3349 */
3350 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3351 !(preempt_count() & PREEMPT_MASK)))
3352 return;
3353
3354 preempt_count() -= val;
3355 }
3356 EXPORT_SYMBOL(sub_preempt_count);
3357
3358 #endif
3359
3360 static inline int interactive_sleep(enum sleep_type sleep_type)
3361 {
3362 return (sleep_type == SLEEP_INTERACTIVE ||
3363 sleep_type == SLEEP_INTERRUPTED);
3364 }
3365
3366 /*
3367 * schedule() is the main scheduler function.
3368 */
3369 asmlinkage void __sched schedule(void)
3370 {
3371 struct task_struct *prev, *next;
3372 struct prio_array *array;
3373 struct list_head *queue;
3374 unsigned long long now;
3375 unsigned long run_time;
3376 int cpu, idx, new_prio;
3377 long *switch_count;
3378 struct rq *rq;
3379
3380 /*
3381 * Test if we are atomic. Since do_exit() needs to call into
3382 * schedule() atomically, we ignore that path for now.
3383 * Otherwise, whine if we are scheduling when we should not be.
3384 */
3385 if (unlikely(in_atomic() && !current->exit_state)) {
3386 printk(KERN_ERR "BUG: scheduling while atomic: "
3387 "%s/0x%08x/%d\n",
3388 current->comm, preempt_count(), current->pid);
3389 debug_show_held_locks(current);
3390 dump_stack();
3391 }
3392 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3393
3394 need_resched:
3395 preempt_disable();
3396 prev = current;
3397 release_kernel_lock(prev);
3398 need_resched_nonpreemptible:
3399 rq = this_rq();
3400
3401 /*
3402 * The idle thread is not allowed to schedule!
3403 * Remove this check after it has been exercised a bit.
3404 */
3405 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3406 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3407 dump_stack();
3408 }
3409
3410 schedstat_inc(rq, sched_cnt);
3411 now = sched_clock();
3412 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3413 run_time = now - prev->timestamp;
3414 if (unlikely((long long)(now - prev->timestamp) < 0))
3415 run_time = 0;
3416 } else
3417 run_time = NS_MAX_SLEEP_AVG;
3418
3419 /*
3420 * Tasks charged proportionately less run_time at high sleep_avg to
3421 * delay them losing their interactive status
3422 */
3423 run_time /= (CURRENT_BONUS(prev) ? : 1);
3424
3425 spin_lock_irq(&rq->lock);
3426
3427 switch_count = &prev->nivcsw;
3428 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3429 switch_count = &prev->nvcsw;
3430 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3431 unlikely(signal_pending(prev))))
3432 prev->state = TASK_RUNNING;
3433 else {
3434 if (prev->state == TASK_UNINTERRUPTIBLE)
3435 rq->nr_uninterruptible++;
3436 deactivate_task(prev, rq);
3437 }
3438 }
3439
3440 cpu = smp_processor_id();
3441 if (unlikely(!rq->nr_running)) {
3442 idle_balance(cpu, rq);
3443 if (!rq->nr_running) {
3444 next = rq->idle;
3445 rq->expired_timestamp = 0;
3446 wake_sleeping_dependent(cpu);
3447 goto switch_tasks;
3448 }
3449 }
3450
3451 array = rq->active;
3452 if (unlikely(!array->nr_active)) {
3453 /*
3454 * Switch the active and expired arrays.
3455 */
3456 schedstat_inc(rq, sched_switch);
3457 rq->active = rq->expired;
3458 rq->expired = array;
3459 array = rq->active;
3460 rq->expired_timestamp = 0;
3461 rq->best_expired_prio = MAX_PRIO;
3462 }
3463
3464 idx = sched_find_first_bit(array->bitmap);
3465 queue = array->queue + idx;
3466 next = list_entry(queue->next, struct task_struct, run_list);
3467
3468 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3469 unsigned long long delta = now - next->timestamp;
3470 if (unlikely((long long)(now - next->timestamp) < 0))
3471 delta = 0;
3472
3473 if (next->sleep_type == SLEEP_INTERACTIVE)
3474 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3475
3476 array = next->array;
3477 new_prio = recalc_task_prio(next, next->timestamp + delta);
3478
3479 if (unlikely(next->prio != new_prio)) {
3480 dequeue_task(next, array);
3481 next->prio = new_prio;
3482 enqueue_task(next, array);
3483 }
3484 }
3485 next->sleep_type = SLEEP_NORMAL;
3486 if (dependent_sleeper(cpu, rq, next))
3487 next = rq->idle;
3488 switch_tasks:
3489 if (next == rq->idle)
3490 schedstat_inc(rq, sched_goidle);
3491 prefetch(next);
3492 prefetch_stack(next);
3493 clear_tsk_need_resched(prev);
3494 rcu_qsctr_inc(task_cpu(prev));
3495
3496 update_cpu_clock(prev, rq, now);
3497
3498 prev->sleep_avg -= run_time;
3499 if ((long)prev->sleep_avg <= 0)
3500 prev->sleep_avg = 0;
3501 prev->timestamp = prev->last_ran = now;
3502
3503 sched_info_switch(prev, next);
3504 if (likely(prev != next)) {
3505 next->timestamp = now;
3506 rq->nr_switches++;
3507 rq->curr = next;
3508 ++*switch_count;
3509
3510 prepare_task_switch(rq, next);
3511 prev = context_switch(rq, prev, next);
3512 barrier();
3513 /*
3514 * this_rq must be evaluated again because prev may have moved
3515 * CPUs since it called schedule(), thus the 'rq' on its stack
3516 * frame will be invalid.
3517 */
3518 finish_task_switch(this_rq(), prev);
3519 } else
3520 spin_unlock_irq(&rq->lock);
3521
3522 prev = current;
3523 if (unlikely(reacquire_kernel_lock(prev) < 0))
3524 goto need_resched_nonpreemptible;
3525 preempt_enable_no_resched();
3526 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3527 goto need_resched;
3528 }
3529 EXPORT_SYMBOL(schedule);
3530
3531 #ifdef CONFIG_PREEMPT
3532 /*
3533 * this is the entry point to schedule() from in-kernel preemption
3534 * off of preempt_enable. Kernel preemptions off return from interrupt
3535 * occur there and call schedule directly.
3536 */
3537 asmlinkage void __sched preempt_schedule(void)
3538 {
3539 struct thread_info *ti = current_thread_info();
3540 #ifdef CONFIG_PREEMPT_BKL
3541 struct task_struct *task = current;
3542 int saved_lock_depth;
3543 #endif
3544 /*
3545 * If there is a non-zero preempt_count or interrupts are disabled,
3546 * we do not want to preempt the current task. Just return..
3547 */
3548 if (likely(ti->preempt_count || irqs_disabled()))
3549 return;
3550
3551 need_resched:
3552 add_preempt_count(PREEMPT_ACTIVE);
3553 /*
3554 * We keep the big kernel semaphore locked, but we
3555 * clear ->lock_depth so that schedule() doesnt
3556 * auto-release the semaphore:
3557 */
3558 #ifdef CONFIG_PREEMPT_BKL
3559 saved_lock_depth = task->lock_depth;
3560 task->lock_depth = -1;
3561 #endif
3562 schedule();
3563 #ifdef CONFIG_PREEMPT_BKL
3564 task->lock_depth = saved_lock_depth;
3565 #endif
3566 sub_preempt_count(PREEMPT_ACTIVE);
3567
3568 /* we could miss a preemption opportunity between schedule and now */
3569 barrier();
3570 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3571 goto need_resched;
3572 }
3573 EXPORT_SYMBOL(preempt_schedule);
3574
3575 /*
3576 * this is the entry point to schedule() from kernel preemption
3577 * off of irq context.
3578 * Note, that this is called and return with irqs disabled. This will
3579 * protect us against recursive calling from irq.
3580 */
3581 asmlinkage void __sched preempt_schedule_irq(void)
3582 {
3583 struct thread_info *ti = current_thread_info();
3584 #ifdef CONFIG_PREEMPT_BKL
3585 struct task_struct *task = current;
3586 int saved_lock_depth;
3587 #endif
3588 /* Catch callers which need to be fixed */
3589 BUG_ON(ti->preempt_count || !irqs_disabled());
3590
3591 need_resched:
3592 add_preempt_count(PREEMPT_ACTIVE);
3593 /*
3594 * We keep the big kernel semaphore locked, but we
3595 * clear ->lock_depth so that schedule() doesnt
3596 * auto-release the semaphore:
3597 */
3598 #ifdef CONFIG_PREEMPT_BKL
3599 saved_lock_depth = task->lock_depth;
3600 task->lock_depth = -1;
3601 #endif
3602 local_irq_enable();
3603 schedule();
3604 local_irq_disable();
3605 #ifdef CONFIG_PREEMPT_BKL
3606 task->lock_depth = saved_lock_depth;
3607 #endif
3608 sub_preempt_count(PREEMPT_ACTIVE);
3609
3610 /* we could miss a preemption opportunity between schedule and now */
3611 barrier();
3612 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3613 goto need_resched;
3614 }
3615
3616 #endif /* CONFIG_PREEMPT */
3617
3618 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3619 void *key)
3620 {
3621 return try_to_wake_up(curr->private, mode, sync);
3622 }
3623 EXPORT_SYMBOL(default_wake_function);
3624
3625 /*
3626 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3627 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3628 * number) then we wake all the non-exclusive tasks and one exclusive task.
3629 *
3630 * There are circumstances in which we can try to wake a task which has already
3631 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3632 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3633 */
3634 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3635 int nr_exclusive, int sync, void *key)
3636 {
3637 struct list_head *tmp, *next;
3638
3639 list_for_each_safe(tmp, next, &q->task_list) {
3640 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3641 unsigned flags = curr->flags;
3642
3643 if (curr->func(curr, mode, sync, key) &&
3644 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3645 break;
3646 }
3647 }
3648
3649 /**
3650 * __wake_up - wake up threads blocked on a waitqueue.
3651 * @q: the waitqueue
3652 * @mode: which threads
3653 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3654 * @key: is directly passed to the wakeup function
3655 */
3656 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3657 int nr_exclusive, void *key)
3658 {
3659 unsigned long flags;
3660
3661 spin_lock_irqsave(&q->lock, flags);
3662 __wake_up_common(q, mode, nr_exclusive, 0, key);
3663 spin_unlock_irqrestore(&q->lock, flags);
3664 }
3665 EXPORT_SYMBOL(__wake_up);
3666
3667 /*
3668 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3669 */
3670 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3671 {
3672 __wake_up_common(q, mode, 1, 0, NULL);
3673 }
3674
3675 /**
3676 * __wake_up_sync - wake up threads blocked on a waitqueue.
3677 * @q: the waitqueue
3678 * @mode: which threads
3679 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3680 *
3681 * The sync wakeup differs that the waker knows that it will schedule
3682 * away soon, so while the target thread will be woken up, it will not
3683 * be migrated to another CPU - ie. the two threads are 'synchronized'
3684 * with each other. This can prevent needless bouncing between CPUs.
3685 *
3686 * On UP it can prevent extra preemption.
3687 */
3688 void fastcall
3689 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3690 {
3691 unsigned long flags;
3692 int sync = 1;
3693
3694 if (unlikely(!q))
3695 return;
3696
3697 if (unlikely(!nr_exclusive))
3698 sync = 0;
3699
3700 spin_lock_irqsave(&q->lock, flags);
3701 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3702 spin_unlock_irqrestore(&q->lock, flags);
3703 }
3704 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3705
3706 void fastcall complete(struct completion *x)
3707 {
3708 unsigned long flags;
3709
3710 spin_lock_irqsave(&x->wait.lock, flags);
3711 x->done++;
3712 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3713 1, 0, NULL);
3714 spin_unlock_irqrestore(&x->wait.lock, flags);
3715 }
3716 EXPORT_SYMBOL(complete);
3717
3718 void fastcall complete_all(struct completion *x)
3719 {
3720 unsigned long flags;
3721
3722 spin_lock_irqsave(&x->wait.lock, flags);
3723 x->done += UINT_MAX/2;
3724 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3725 0, 0, NULL);
3726 spin_unlock_irqrestore(&x->wait.lock, flags);
3727 }
3728 EXPORT_SYMBOL(complete_all);
3729
3730 void fastcall __sched wait_for_completion(struct completion *x)
3731 {
3732 might_sleep();
3733
3734 spin_lock_irq(&x->wait.lock);
3735 if (!x->done) {
3736 DECLARE_WAITQUEUE(wait, current);
3737
3738 wait.flags |= WQ_FLAG_EXCLUSIVE;
3739 __add_wait_queue_tail(&x->wait, &wait);
3740 do {
3741 __set_current_state(TASK_UNINTERRUPTIBLE);
3742 spin_unlock_irq(&x->wait.lock);
3743 schedule();
3744 spin_lock_irq(&x->wait.lock);
3745 } while (!x->done);
3746 __remove_wait_queue(&x->wait, &wait);
3747 }
3748 x->done--;
3749 spin_unlock_irq(&x->wait.lock);
3750 }
3751 EXPORT_SYMBOL(wait_for_completion);
3752
3753 unsigned long fastcall __sched
3754 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3755 {
3756 might_sleep();
3757
3758 spin_lock_irq(&x->wait.lock);
3759 if (!x->done) {
3760 DECLARE_WAITQUEUE(wait, current);
3761
3762 wait.flags |= WQ_FLAG_EXCLUSIVE;
3763 __add_wait_queue_tail(&x->wait, &wait);
3764 do {
3765 __set_current_state(TASK_UNINTERRUPTIBLE);
3766 spin_unlock_irq(&x->wait.lock);
3767 timeout = schedule_timeout(timeout);
3768 spin_lock_irq(&x->wait.lock);
3769 if (!timeout) {
3770 __remove_wait_queue(&x->wait, &wait);
3771 goto out;
3772 }
3773 } while (!x->done);
3774 __remove_wait_queue(&x->wait, &wait);
3775 }
3776 x->done--;
3777 out:
3778 spin_unlock_irq(&x->wait.lock);
3779 return timeout;
3780 }
3781 EXPORT_SYMBOL(wait_for_completion_timeout);
3782
3783 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3784 {
3785 int ret = 0;
3786
3787 might_sleep();
3788
3789 spin_lock_irq(&x->wait.lock);
3790 if (!x->done) {
3791 DECLARE_WAITQUEUE(wait, current);
3792
3793 wait.flags |= WQ_FLAG_EXCLUSIVE;
3794 __add_wait_queue_tail(&x->wait, &wait);
3795 do {
3796 if (signal_pending(current)) {
3797 ret = -ERESTARTSYS;
3798 __remove_wait_queue(&x->wait, &wait);
3799 goto out;
3800 }
3801 __set_current_state(TASK_INTERRUPTIBLE);
3802 spin_unlock_irq(&x->wait.lock);
3803 schedule();
3804 spin_lock_irq(&x->wait.lock);
3805 } while (!x->done);
3806 __remove_wait_queue(&x->wait, &wait);
3807 }
3808 x->done--;
3809 out:
3810 spin_unlock_irq(&x->wait.lock);
3811
3812 return ret;
3813 }
3814 EXPORT_SYMBOL(wait_for_completion_interruptible);
3815
3816 unsigned long fastcall __sched
3817 wait_for_completion_interruptible_timeout(struct completion *x,
3818 unsigned long timeout)
3819 {
3820 might_sleep();
3821
3822 spin_lock_irq(&x->wait.lock);
3823 if (!x->done) {
3824 DECLARE_WAITQUEUE(wait, current);
3825
3826 wait.flags |= WQ_FLAG_EXCLUSIVE;
3827 __add_wait_queue_tail(&x->wait, &wait);
3828 do {
3829 if (signal_pending(current)) {
3830 timeout = -ERESTARTSYS;
3831 __remove_wait_queue(&x->wait, &wait);
3832 goto out;
3833 }
3834 __set_current_state(TASK_INTERRUPTIBLE);
3835 spin_unlock_irq(&x->wait.lock);
3836 timeout = schedule_timeout(timeout);
3837 spin_lock_irq(&x->wait.lock);
3838 if (!timeout) {
3839 __remove_wait_queue(&x->wait, &wait);
3840 goto out;
3841 }
3842 } while (!x->done);
3843 __remove_wait_queue(&x->wait, &wait);
3844 }
3845 x->done--;
3846 out:
3847 spin_unlock_irq(&x->wait.lock);
3848 return timeout;
3849 }
3850 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3851
3852
3853 #define SLEEP_ON_VAR \
3854 unsigned long flags; \
3855 wait_queue_t wait; \
3856 init_waitqueue_entry(&wait, current);
3857
3858 #define SLEEP_ON_HEAD \
3859 spin_lock_irqsave(&q->lock,flags); \
3860 __add_wait_queue(q, &wait); \
3861 spin_unlock(&q->lock);
3862
3863 #define SLEEP_ON_TAIL \
3864 spin_lock_irq(&q->lock); \
3865 __remove_wait_queue(q, &wait); \
3866 spin_unlock_irqrestore(&q->lock, flags);
3867
3868 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3869 {
3870 SLEEP_ON_VAR
3871
3872 current->state = TASK_INTERRUPTIBLE;
3873
3874 SLEEP_ON_HEAD
3875 schedule();
3876 SLEEP_ON_TAIL
3877 }
3878 EXPORT_SYMBOL(interruptible_sleep_on);
3879
3880 long fastcall __sched
3881 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3882 {
3883 SLEEP_ON_VAR
3884
3885 current->state = TASK_INTERRUPTIBLE;
3886
3887 SLEEP_ON_HEAD
3888 timeout = schedule_timeout(timeout);
3889 SLEEP_ON_TAIL
3890
3891 return timeout;
3892 }
3893 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3894
3895 void fastcall __sched sleep_on(wait_queue_head_t *q)
3896 {
3897 SLEEP_ON_VAR
3898
3899 current->state = TASK_UNINTERRUPTIBLE;
3900
3901 SLEEP_ON_HEAD
3902 schedule();
3903 SLEEP_ON_TAIL
3904 }
3905 EXPORT_SYMBOL(sleep_on);
3906
3907 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3908 {
3909 SLEEP_ON_VAR
3910
3911 current->state = TASK_UNINTERRUPTIBLE;
3912
3913 SLEEP_ON_HEAD
3914 timeout = schedule_timeout(timeout);
3915 SLEEP_ON_TAIL
3916
3917 return timeout;
3918 }
3919
3920 EXPORT_SYMBOL(sleep_on_timeout);
3921
3922 #ifdef CONFIG_RT_MUTEXES
3923
3924 /*
3925 * rt_mutex_setprio - set the current priority of a task
3926 * @p: task
3927 * @prio: prio value (kernel-internal form)
3928 *
3929 * This function changes the 'effective' priority of a task. It does
3930 * not touch ->normal_prio like __setscheduler().
3931 *
3932 * Used by the rt_mutex code to implement priority inheritance logic.
3933 */
3934 void rt_mutex_setprio(struct task_struct *p, int prio)
3935 {
3936 struct prio_array *array;
3937 unsigned long flags;
3938 struct rq *rq;
3939 int oldprio;
3940
3941 BUG_ON(prio < 0 || prio > MAX_PRIO);
3942
3943 rq = task_rq_lock(p, &flags);
3944
3945 oldprio = p->prio;
3946 array = p->array;
3947 if (array)
3948 dequeue_task(p, array);
3949 p->prio = prio;
3950
3951 if (array) {
3952 /*
3953 * If changing to an RT priority then queue it
3954 * in the active array!
3955 */
3956 if (rt_task(p))
3957 array = rq->active;
3958 enqueue_task(p, array);
3959 /*
3960 * Reschedule if we are currently running on this runqueue and
3961 * our priority decreased, or if we are not currently running on
3962 * this runqueue and our priority is higher than the current's
3963 */
3964 if (task_running(rq, p)) {
3965 if (p->prio > oldprio)
3966 resched_task(rq->curr);
3967 } else if (TASK_PREEMPTS_CURR(p, rq))
3968 resched_task(rq->curr);
3969 }
3970 task_rq_unlock(rq, &flags);
3971 }
3972
3973 #endif
3974
3975 void set_user_nice(struct task_struct *p, long nice)
3976 {
3977 struct prio_array *array;
3978 int old_prio, delta;
3979 unsigned long flags;
3980 struct rq *rq;
3981
3982 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3983 return;
3984 /*
3985 * We have to be careful, if called from sys_setpriority(),
3986 * the task might be in the middle of scheduling on another CPU.
3987 */
3988 rq = task_rq_lock(p, &flags);
3989 /*
3990 * The RT priorities are set via sched_setscheduler(), but we still
3991 * allow the 'normal' nice value to be set - but as expected
3992 * it wont have any effect on scheduling until the task is
3993 * not SCHED_NORMAL/SCHED_BATCH:
3994 */
3995 if (has_rt_policy(p)) {
3996 p->static_prio = NICE_TO_PRIO(nice);
3997 goto out_unlock;
3998 }
3999 array = p->array;
4000 if (array) {
4001 dequeue_task(p, array);
4002 dec_raw_weighted_load(rq, p);
4003 }
4004
4005 p->static_prio = NICE_TO_PRIO(nice);
4006 set_load_weight(p);
4007 old_prio = p->prio;
4008 p->prio = effective_prio(p);
4009 delta = p->prio - old_prio;
4010
4011 if (array) {
4012 enqueue_task(p, array);
4013 inc_raw_weighted_load(rq, p);
4014 /*
4015 * If the task increased its priority or is running and
4016 * lowered its priority, then reschedule its CPU:
4017 */
4018 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4019 resched_task(rq->curr);
4020 }
4021 out_unlock:
4022 task_rq_unlock(rq, &flags);
4023 }
4024 EXPORT_SYMBOL(set_user_nice);
4025
4026 /*
4027 * can_nice - check if a task can reduce its nice value
4028 * @p: task
4029 * @nice: nice value
4030 */
4031 int can_nice(const struct task_struct *p, const int nice)
4032 {
4033 /* convert nice value [19,-20] to rlimit style value [1,40] */
4034 int nice_rlim = 20 - nice;
4035
4036 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4037 capable(CAP_SYS_NICE));
4038 }
4039
4040 #ifdef __ARCH_WANT_SYS_NICE
4041
4042 /*
4043 * sys_nice - change the priority of the current process.
4044 * @increment: priority increment
4045 *
4046 * sys_setpriority is a more generic, but much slower function that
4047 * does similar things.
4048 */
4049 asmlinkage long sys_nice(int increment)
4050 {
4051 long nice, retval;
4052
4053 /*
4054 * Setpriority might change our priority at the same moment.
4055 * We don't have to worry. Conceptually one call occurs first
4056 * and we have a single winner.
4057 */
4058 if (increment < -40)
4059 increment = -40;
4060 if (increment > 40)
4061 increment = 40;
4062
4063 nice = PRIO_TO_NICE(current->static_prio) + increment;
4064 if (nice < -20)
4065 nice = -20;
4066 if (nice > 19)
4067 nice = 19;
4068
4069 if (increment < 0 && !can_nice(current, nice))
4070 return -EPERM;
4071
4072 retval = security_task_setnice(current, nice);
4073 if (retval)
4074 return retval;
4075
4076 set_user_nice(current, nice);
4077 return 0;
4078 }
4079
4080 #endif
4081
4082 /**
4083 * task_prio - return the priority value of a given task.
4084 * @p: the task in question.
4085 *
4086 * This is the priority value as seen by users in /proc.
4087 * RT tasks are offset by -200. Normal tasks are centered
4088 * around 0, value goes from -16 to +15.
4089 */
4090 int task_prio(const struct task_struct *p)
4091 {
4092 return p->prio - MAX_RT_PRIO;
4093 }
4094
4095 /**
4096 * task_nice - return the nice value of a given task.
4097 * @p: the task in question.
4098 */
4099 int task_nice(const struct task_struct *p)
4100 {
4101 return TASK_NICE(p);
4102 }
4103 EXPORT_SYMBOL_GPL(task_nice);
4104
4105 /**
4106 * idle_cpu - is a given cpu idle currently?
4107 * @cpu: the processor in question.
4108 */
4109 int idle_cpu(int cpu)
4110 {
4111 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4112 }
4113
4114 /**
4115 * idle_task - return the idle task for a given cpu.
4116 * @cpu: the processor in question.
4117 */
4118 struct task_struct *idle_task(int cpu)
4119 {
4120 return cpu_rq(cpu)->idle;
4121 }
4122
4123 /**
4124 * find_process_by_pid - find a process with a matching PID value.
4125 * @pid: the pid in question.
4126 */
4127 static inline struct task_struct *find_process_by_pid(pid_t pid)
4128 {
4129 return pid ? find_task_by_pid(pid) : current;
4130 }
4131
4132 /* Actually do priority change: must hold rq lock. */
4133 static void __setscheduler(struct task_struct *p, int policy, int prio)
4134 {
4135 BUG_ON(p->array);
4136
4137 p->policy = policy;
4138 p->rt_priority = prio;
4139 p->normal_prio = normal_prio(p);
4140 /* we are holding p->pi_lock already */
4141 p->prio = rt_mutex_getprio(p);
4142 /*
4143 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4144 */
4145 if (policy == SCHED_BATCH)
4146 p->sleep_avg = 0;
4147 set_load_weight(p);
4148 }
4149
4150 /**
4151 * sched_setscheduler - change the scheduling policy and/or RT priority of
4152 * a thread.
4153 * @p: the task in question.
4154 * @policy: new policy.
4155 * @param: structure containing the new RT priority.
4156 *
4157 * NOTE: the task may be already dead
4158 */
4159 int sched_setscheduler(struct task_struct *p, int policy,
4160 struct sched_param *param)
4161 {
4162 int retval, oldprio, oldpolicy = -1;
4163 struct prio_array *array;
4164 unsigned long flags;
4165 struct rq *rq;
4166
4167 /* may grab non-irq protected spin_locks */
4168 BUG_ON(in_interrupt());
4169 recheck:
4170 /* double check policy once rq lock held */
4171 if (policy < 0)
4172 policy = oldpolicy = p->policy;
4173 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4174 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4175 return -EINVAL;
4176 /*
4177 * Valid priorities for SCHED_FIFO and SCHED_RR are
4178 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4179 * SCHED_BATCH is 0.
4180 */
4181 if (param->sched_priority < 0 ||
4182 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4183 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4184 return -EINVAL;
4185 if (is_rt_policy(policy) != (param->sched_priority != 0))
4186 return -EINVAL;
4187
4188 /*
4189 * Allow unprivileged RT tasks to decrease priority:
4190 */
4191 if (!capable(CAP_SYS_NICE)) {
4192 if (is_rt_policy(policy)) {
4193 unsigned long rlim_rtprio;
4194 unsigned long flags;
4195
4196 if (!lock_task_sighand(p, &flags))
4197 return -ESRCH;
4198 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4199 unlock_task_sighand(p, &flags);
4200
4201 /* can't set/change the rt policy */
4202 if (policy != p->policy && !rlim_rtprio)
4203 return -EPERM;
4204
4205 /* can't increase priority */
4206 if (param->sched_priority > p->rt_priority &&
4207 param->sched_priority > rlim_rtprio)
4208 return -EPERM;
4209 }
4210
4211 /* can't change other user's priorities */
4212 if ((current->euid != p->euid) &&
4213 (current->euid != p->uid))
4214 return -EPERM;
4215 }
4216
4217 retval = security_task_setscheduler(p, policy, param);
4218 if (retval)
4219 return retval;
4220 /*
4221 * make sure no PI-waiters arrive (or leave) while we are
4222 * changing the priority of the task:
4223 */
4224 spin_lock_irqsave(&p->pi_lock, flags);
4225 /*
4226 * To be able to change p->policy safely, the apropriate
4227 * runqueue lock must be held.
4228 */
4229 rq = __task_rq_lock(p);
4230 /* recheck policy now with rq lock held */
4231 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4232 policy = oldpolicy = -1;
4233 __task_rq_unlock(rq);
4234 spin_unlock_irqrestore(&p->pi_lock, flags);
4235 goto recheck;
4236 }
4237 array = p->array;
4238 if (array)
4239 deactivate_task(p, rq);
4240 oldprio = p->prio;
4241 __setscheduler(p, policy, param->sched_priority);
4242 if (array) {
4243 __activate_task(p, rq);
4244 /*
4245 * Reschedule if we are currently running on this runqueue and
4246 * our priority decreased, or if we are not currently running on
4247 * this runqueue and our priority is higher than the current's
4248 */
4249 if (task_running(rq, p)) {
4250 if (p->prio > oldprio)
4251 resched_task(rq->curr);
4252 } else if (TASK_PREEMPTS_CURR(p, rq))
4253 resched_task(rq->curr);
4254 }
4255 __task_rq_unlock(rq);
4256 spin_unlock_irqrestore(&p->pi_lock, flags);
4257
4258 rt_mutex_adjust_pi(p);
4259
4260 return 0;
4261 }
4262 EXPORT_SYMBOL_GPL(sched_setscheduler);
4263
4264 static int
4265 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4266 {
4267 struct sched_param lparam;
4268 struct task_struct *p;
4269 int retval;
4270
4271 if (!param || pid < 0)
4272 return -EINVAL;
4273 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4274 return -EFAULT;
4275
4276 rcu_read_lock();
4277 retval = -ESRCH;
4278 p = find_process_by_pid(pid);
4279 if (p != NULL)
4280 retval = sched_setscheduler(p, policy, &lparam);
4281 rcu_read_unlock();
4282
4283 return retval;
4284 }
4285
4286 /**
4287 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4288 * @pid: the pid in question.
4289 * @policy: new policy.
4290 * @param: structure containing the new RT priority.
4291 */
4292 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4293 struct sched_param __user *param)
4294 {
4295 /* negative values for policy are not valid */
4296 if (policy < 0)
4297 return -EINVAL;
4298
4299 return do_sched_setscheduler(pid, policy, param);
4300 }
4301
4302 /**
4303 * sys_sched_setparam - set/change the RT priority of a thread
4304 * @pid: the pid in question.
4305 * @param: structure containing the new RT priority.
4306 */
4307 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4308 {
4309 return do_sched_setscheduler(pid, -1, param);
4310 }
4311
4312 /**
4313 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4314 * @pid: the pid in question.
4315 */
4316 asmlinkage long sys_sched_getscheduler(pid_t pid)
4317 {
4318 struct task_struct *p;
4319 int retval = -EINVAL;
4320
4321 if (pid < 0)
4322 goto out_nounlock;
4323
4324 retval = -ESRCH;
4325 read_lock(&tasklist_lock);
4326 p = find_process_by_pid(pid);
4327 if (p) {
4328 retval = security_task_getscheduler(p);
4329 if (!retval)
4330 retval = p->policy;
4331 }
4332 read_unlock(&tasklist_lock);
4333
4334 out_nounlock:
4335 return retval;
4336 }
4337
4338 /**
4339 * sys_sched_getscheduler - get the RT priority of a thread
4340 * @pid: the pid in question.
4341 * @param: structure containing the RT priority.
4342 */
4343 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4344 {
4345 struct sched_param lp;
4346 struct task_struct *p;
4347 int retval = -EINVAL;
4348
4349 if (!param || pid < 0)
4350 goto out_nounlock;
4351
4352 read_lock(&tasklist_lock);
4353 p = find_process_by_pid(pid);
4354 retval = -ESRCH;
4355 if (!p)
4356 goto out_unlock;
4357
4358 retval = security_task_getscheduler(p);
4359 if (retval)
4360 goto out_unlock;
4361
4362 lp.sched_priority = p->rt_priority;
4363 read_unlock(&tasklist_lock);
4364
4365 /*
4366 * This one might sleep, we cannot do it with a spinlock held ...
4367 */
4368 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4369
4370 out_nounlock:
4371 return retval;
4372
4373 out_unlock:
4374 read_unlock(&tasklist_lock);
4375 return retval;
4376 }
4377
4378 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4379 {
4380 cpumask_t cpus_allowed;
4381 struct task_struct *p;
4382 int retval;
4383
4384 lock_cpu_hotplug();
4385 read_lock(&tasklist_lock);
4386
4387 p = find_process_by_pid(pid);
4388 if (!p) {
4389 read_unlock(&tasklist_lock);
4390 unlock_cpu_hotplug();
4391 return -ESRCH;
4392 }
4393
4394 /*
4395 * It is not safe to call set_cpus_allowed with the
4396 * tasklist_lock held. We will bump the task_struct's
4397 * usage count and then drop tasklist_lock.
4398 */
4399 get_task_struct(p);
4400 read_unlock(&tasklist_lock);
4401
4402 retval = -EPERM;
4403 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4404 !capable(CAP_SYS_NICE))
4405 goto out_unlock;
4406
4407 retval = security_task_setscheduler(p, 0, NULL);
4408 if (retval)
4409 goto out_unlock;
4410
4411 cpus_allowed = cpuset_cpus_allowed(p);
4412 cpus_and(new_mask, new_mask, cpus_allowed);
4413 retval = set_cpus_allowed(p, new_mask);
4414
4415 out_unlock:
4416 put_task_struct(p);
4417 unlock_cpu_hotplug();
4418 return retval;
4419 }
4420
4421 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4422 cpumask_t *new_mask)
4423 {
4424 if (len < sizeof(cpumask_t)) {
4425 memset(new_mask, 0, sizeof(cpumask_t));
4426 } else if (len > sizeof(cpumask_t)) {
4427 len = sizeof(cpumask_t);
4428 }
4429 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4430 }
4431
4432 /**
4433 * sys_sched_setaffinity - set the cpu affinity of a process
4434 * @pid: pid of the process
4435 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4436 * @user_mask_ptr: user-space pointer to the new cpu mask
4437 */
4438 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4439 unsigned long __user *user_mask_ptr)
4440 {
4441 cpumask_t new_mask;
4442 int retval;
4443
4444 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4445 if (retval)
4446 return retval;
4447
4448 return sched_setaffinity(pid, new_mask);
4449 }
4450
4451 /*
4452 * Represents all cpu's present in the system
4453 * In systems capable of hotplug, this map could dynamically grow
4454 * as new cpu's are detected in the system via any platform specific
4455 * method, such as ACPI for e.g.
4456 */
4457
4458 cpumask_t cpu_present_map __read_mostly;
4459 EXPORT_SYMBOL(cpu_present_map);
4460
4461 #ifndef CONFIG_SMP
4462 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4463 EXPORT_SYMBOL(cpu_online_map);
4464
4465 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4466 EXPORT_SYMBOL(cpu_possible_map);
4467 #endif
4468
4469 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4470 {
4471 struct task_struct *p;
4472 int retval;
4473
4474 lock_cpu_hotplug();
4475 read_lock(&tasklist_lock);
4476
4477 retval = -ESRCH;
4478 p = find_process_by_pid(pid);
4479 if (!p)
4480 goto out_unlock;
4481
4482 retval = security_task_getscheduler(p);
4483 if (retval)
4484 goto out_unlock;
4485
4486 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4487
4488 out_unlock:
4489 read_unlock(&tasklist_lock);
4490 unlock_cpu_hotplug();
4491 if (retval)
4492 return retval;
4493
4494 return 0;
4495 }
4496
4497 /**
4498 * sys_sched_getaffinity - get the cpu affinity of a process
4499 * @pid: pid of the process
4500 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4501 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4502 */
4503 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4504 unsigned long __user *user_mask_ptr)
4505 {
4506 int ret;
4507 cpumask_t mask;
4508
4509 if (len < sizeof(cpumask_t))
4510 return -EINVAL;
4511
4512 ret = sched_getaffinity(pid, &mask);
4513 if (ret < 0)
4514 return ret;
4515
4516 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4517 return -EFAULT;
4518
4519 return sizeof(cpumask_t);
4520 }
4521
4522 /**
4523 * sys_sched_yield - yield the current processor to other threads.
4524 *
4525 * this function yields the current CPU by moving the calling thread
4526 * to the expired array. If there are no other threads running on this
4527 * CPU then this function will return.
4528 */
4529 asmlinkage long sys_sched_yield(void)
4530 {
4531 struct rq *rq = this_rq_lock();
4532 struct prio_array *array = current->array, *target = rq->expired;
4533
4534 schedstat_inc(rq, yld_cnt);
4535 /*
4536 * We implement yielding by moving the task into the expired
4537 * queue.
4538 *
4539 * (special rule: RT tasks will just roundrobin in the active
4540 * array.)
4541 */
4542 if (rt_task(current))
4543 target = rq->active;
4544
4545 if (array->nr_active == 1) {
4546 schedstat_inc(rq, yld_act_empty);
4547 if (!rq->expired->nr_active)
4548 schedstat_inc(rq, yld_both_empty);
4549 } else if (!rq->expired->nr_active)
4550 schedstat_inc(rq, yld_exp_empty);
4551
4552 if (array != target) {
4553 dequeue_task(current, array);
4554 enqueue_task(current, target);
4555 } else
4556 /*
4557 * requeue_task is cheaper so perform that if possible.
4558 */
4559 requeue_task(current, array);
4560
4561 /*
4562 * Since we are going to call schedule() anyway, there's
4563 * no need to preempt or enable interrupts:
4564 */
4565 __release(rq->lock);
4566 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4567 _raw_spin_unlock(&rq->lock);
4568 preempt_enable_no_resched();
4569
4570 schedule();
4571
4572 return 0;
4573 }
4574
4575 static inline int __resched_legal(int expected_preempt_count)
4576 {
4577 if (unlikely(preempt_count() != expected_preempt_count))
4578 return 0;
4579 if (unlikely(system_state != SYSTEM_RUNNING))
4580 return 0;
4581 return 1;
4582 }
4583
4584 static void __cond_resched(void)
4585 {
4586 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4587 __might_sleep(__FILE__, __LINE__);
4588 #endif
4589 /*
4590 * The BKS might be reacquired before we have dropped
4591 * PREEMPT_ACTIVE, which could trigger a second
4592 * cond_resched() call.
4593 */
4594 do {
4595 add_preempt_count(PREEMPT_ACTIVE);
4596 schedule();
4597 sub_preempt_count(PREEMPT_ACTIVE);
4598 } while (need_resched());
4599 }
4600
4601 int __sched cond_resched(void)
4602 {
4603 if (need_resched() && __resched_legal(0)) {
4604 __cond_resched();
4605 return 1;
4606 }
4607 return 0;
4608 }
4609 EXPORT_SYMBOL(cond_resched);
4610
4611 /*
4612 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4613 * call schedule, and on return reacquire the lock.
4614 *
4615 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4616 * operations here to prevent schedule() from being called twice (once via
4617 * spin_unlock(), once by hand).
4618 */
4619 int cond_resched_lock(spinlock_t *lock)
4620 {
4621 int ret = 0;
4622
4623 if (need_lockbreak(lock)) {
4624 spin_unlock(lock);
4625 cpu_relax();
4626 ret = 1;
4627 spin_lock(lock);
4628 }
4629 if (need_resched() && __resched_legal(1)) {
4630 spin_release(&lock->dep_map, 1, _THIS_IP_);
4631 _raw_spin_unlock(lock);
4632 preempt_enable_no_resched();
4633 __cond_resched();
4634 ret = 1;
4635 spin_lock(lock);
4636 }
4637 return ret;
4638 }
4639 EXPORT_SYMBOL(cond_resched_lock);
4640
4641 int __sched cond_resched_softirq(void)
4642 {
4643 BUG_ON(!in_softirq());
4644
4645 if (need_resched() && __resched_legal(0)) {
4646 raw_local_irq_disable();
4647 _local_bh_enable();
4648 raw_local_irq_enable();
4649 __cond_resched();
4650 local_bh_disable();
4651 return 1;
4652 }
4653 return 0;
4654 }
4655 EXPORT_SYMBOL(cond_resched_softirq);
4656
4657 /**
4658 * yield - yield the current processor to other threads.
4659 *
4660 * this is a shortcut for kernel-space yielding - it marks the
4661 * thread runnable and calls sys_sched_yield().
4662 */
4663 void __sched yield(void)
4664 {
4665 set_current_state(TASK_RUNNING);
4666 sys_sched_yield();
4667 }
4668 EXPORT_SYMBOL(yield);
4669
4670 /*
4671 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4672 * that process accounting knows that this is a task in IO wait state.
4673 *
4674 * But don't do that if it is a deliberate, throttling IO wait (this task
4675 * has set its backing_dev_info: the queue against which it should throttle)
4676 */
4677 void __sched io_schedule(void)
4678 {
4679 struct rq *rq = &__raw_get_cpu_var(runqueues);
4680
4681 delayacct_blkio_start();
4682 atomic_inc(&rq->nr_iowait);
4683 schedule();
4684 atomic_dec(&rq->nr_iowait);
4685 delayacct_blkio_end();
4686 }
4687 EXPORT_SYMBOL(io_schedule);
4688
4689 long __sched io_schedule_timeout(long timeout)
4690 {
4691 struct rq *rq = &__raw_get_cpu_var(runqueues);
4692 long ret;
4693
4694 delayacct_blkio_start();
4695 atomic_inc(&rq->nr_iowait);
4696 ret = schedule_timeout(timeout);
4697 atomic_dec(&rq->nr_iowait);
4698 delayacct_blkio_end();
4699 return ret;
4700 }
4701
4702 /**
4703 * sys_sched_get_priority_max - return maximum RT priority.
4704 * @policy: scheduling class.
4705 *
4706 * this syscall returns the maximum rt_priority that can be used
4707 * by a given scheduling class.
4708 */
4709 asmlinkage long sys_sched_get_priority_max(int policy)
4710 {
4711 int ret = -EINVAL;
4712
4713 switch (policy) {
4714 case SCHED_FIFO:
4715 case SCHED_RR:
4716 ret = MAX_USER_RT_PRIO-1;
4717 break;
4718 case SCHED_NORMAL:
4719 case SCHED_BATCH:
4720 ret = 0;
4721 break;
4722 }
4723 return ret;
4724 }
4725
4726 /**
4727 * sys_sched_get_priority_min - return minimum RT priority.
4728 * @policy: scheduling class.
4729 *
4730 * this syscall returns the minimum rt_priority that can be used
4731 * by a given scheduling class.
4732 */
4733 asmlinkage long sys_sched_get_priority_min(int policy)
4734 {
4735 int ret = -EINVAL;
4736
4737 switch (policy) {
4738 case SCHED_FIFO:
4739 case SCHED_RR:
4740 ret = 1;
4741 break;
4742 case SCHED_NORMAL:
4743 case SCHED_BATCH:
4744 ret = 0;
4745 }
4746 return ret;
4747 }
4748
4749 /**
4750 * sys_sched_rr_get_interval - return the default timeslice of a process.
4751 * @pid: pid of the process.
4752 * @interval: userspace pointer to the timeslice value.
4753 *
4754 * this syscall writes the default timeslice value of a given process
4755 * into the user-space timespec buffer. A value of '0' means infinity.
4756 */
4757 asmlinkage
4758 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4759 {
4760 struct task_struct *p;
4761 int retval = -EINVAL;
4762 struct timespec t;
4763
4764 if (pid < 0)
4765 goto out_nounlock;
4766
4767 retval = -ESRCH;
4768 read_lock(&tasklist_lock);
4769 p = find_process_by_pid(pid);
4770 if (!p)
4771 goto out_unlock;
4772
4773 retval = security_task_getscheduler(p);
4774 if (retval)
4775 goto out_unlock;
4776
4777 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4778 0 : task_timeslice(p), &t);
4779 read_unlock(&tasklist_lock);
4780 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4781 out_nounlock:
4782 return retval;
4783 out_unlock:
4784 read_unlock(&tasklist_lock);
4785 return retval;
4786 }
4787
4788 static inline struct task_struct *eldest_child(struct task_struct *p)
4789 {
4790 if (list_empty(&p->children))
4791 return NULL;
4792 return list_entry(p->children.next,struct task_struct,sibling);
4793 }
4794
4795 static inline struct task_struct *older_sibling(struct task_struct *p)
4796 {
4797 if (p->sibling.prev==&p->parent->children)
4798 return NULL;
4799 return list_entry(p->sibling.prev,struct task_struct,sibling);
4800 }
4801
4802 static inline struct task_struct *younger_sibling(struct task_struct *p)
4803 {
4804 if (p->sibling.next==&p->parent->children)
4805 return NULL;
4806 return list_entry(p->sibling.next,struct task_struct,sibling);
4807 }
4808
4809 static const char stat_nam[] = "RSDTtZX";
4810
4811 static void show_task(struct task_struct *p)
4812 {
4813 struct task_struct *relative;
4814 unsigned long free = 0;
4815 unsigned state;
4816
4817 state = p->state ? __ffs(p->state) + 1 : 0;
4818 printk("%-13.13s %c", p->comm,
4819 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4820 #if (BITS_PER_LONG == 32)
4821 if (state == TASK_RUNNING)
4822 printk(" running ");
4823 else
4824 printk(" %08lX ", thread_saved_pc(p));
4825 #else
4826 if (state == TASK_RUNNING)
4827 printk(" running task ");
4828 else
4829 printk(" %016lx ", thread_saved_pc(p));
4830 #endif
4831 #ifdef CONFIG_DEBUG_STACK_USAGE
4832 {
4833 unsigned long *n = end_of_stack(p);
4834 while (!*n)
4835 n++;
4836 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4837 }
4838 #endif
4839 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4840 if ((relative = eldest_child(p)))
4841 printk("%5d ", relative->pid);
4842 else
4843 printk(" ");
4844 if ((relative = younger_sibling(p)))
4845 printk("%7d", relative->pid);
4846 else
4847 printk(" ");
4848 if ((relative = older_sibling(p)))
4849 printk(" %5d", relative->pid);
4850 else
4851 printk(" ");
4852 if (!p->mm)
4853 printk(" (L-TLB)\n");
4854 else
4855 printk(" (NOTLB)\n");
4856
4857 if (state != TASK_RUNNING)
4858 show_stack(p, NULL);
4859 }
4860
4861 void show_state_filter(unsigned long state_filter)
4862 {
4863 struct task_struct *g, *p;
4864
4865 #if (BITS_PER_LONG == 32)
4866 printk("\n"
4867 " free sibling\n");
4868 printk(" task PC stack pid father child younger older\n");
4869 #else
4870 printk("\n"
4871 " free sibling\n");
4872 printk(" task PC stack pid father child younger older\n");
4873 #endif
4874 read_lock(&tasklist_lock);
4875 do_each_thread(g, p) {
4876 /*
4877 * reset the NMI-timeout, listing all files on a slow
4878 * console might take alot of time:
4879 */
4880 touch_nmi_watchdog();
4881 if (p->state & state_filter)
4882 show_task(p);
4883 } while_each_thread(g, p);
4884
4885 read_unlock(&tasklist_lock);
4886 /*
4887 * Only show locks if all tasks are dumped:
4888 */
4889 if (state_filter == -1)
4890 debug_show_all_locks();
4891 }
4892
4893 /**
4894 * init_idle - set up an idle thread for a given CPU
4895 * @idle: task in question
4896 * @cpu: cpu the idle task belongs to
4897 *
4898 * NOTE: this function does not set the idle thread's NEED_RESCHED
4899 * flag, to make booting more robust.
4900 */
4901 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4902 {
4903 struct rq *rq = cpu_rq(cpu);
4904 unsigned long flags;
4905
4906 idle->timestamp = sched_clock();
4907 idle->sleep_avg = 0;
4908 idle->array = NULL;
4909 idle->prio = idle->normal_prio = MAX_PRIO;
4910 idle->state = TASK_RUNNING;
4911 idle->cpus_allowed = cpumask_of_cpu(cpu);
4912 set_task_cpu(idle, cpu);
4913
4914 spin_lock_irqsave(&rq->lock, flags);
4915 rq->curr = rq->idle = idle;
4916 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4917 idle->oncpu = 1;
4918 #endif
4919 spin_unlock_irqrestore(&rq->lock, flags);
4920
4921 /* Set the preempt count _outside_ the spinlocks! */
4922 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4923 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4924 #else
4925 task_thread_info(idle)->preempt_count = 0;
4926 #endif
4927 }
4928
4929 /*
4930 * In a system that switches off the HZ timer nohz_cpu_mask
4931 * indicates which cpus entered this state. This is used
4932 * in the rcu update to wait only for active cpus. For system
4933 * which do not switch off the HZ timer nohz_cpu_mask should
4934 * always be CPU_MASK_NONE.
4935 */
4936 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4937
4938 #ifdef CONFIG_SMP
4939 /*
4940 * This is how migration works:
4941 *
4942 * 1) we queue a struct migration_req structure in the source CPU's
4943 * runqueue and wake up that CPU's migration thread.
4944 * 2) we down() the locked semaphore => thread blocks.
4945 * 3) migration thread wakes up (implicitly it forces the migrated
4946 * thread off the CPU)
4947 * 4) it gets the migration request and checks whether the migrated
4948 * task is still in the wrong runqueue.
4949 * 5) if it's in the wrong runqueue then the migration thread removes
4950 * it and puts it into the right queue.
4951 * 6) migration thread up()s the semaphore.
4952 * 7) we wake up and the migration is done.
4953 */
4954
4955 /*
4956 * Change a given task's CPU affinity. Migrate the thread to a
4957 * proper CPU and schedule it away if the CPU it's executing on
4958 * is removed from the allowed bitmask.
4959 *
4960 * NOTE: the caller must have a valid reference to the task, the
4961 * task must not exit() & deallocate itself prematurely. The
4962 * call is not atomic; no spinlocks may be held.
4963 */
4964 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4965 {
4966 struct migration_req req;
4967 unsigned long flags;
4968 struct rq *rq;
4969 int ret = 0;
4970
4971 rq = task_rq_lock(p, &flags);
4972 if (!cpus_intersects(new_mask, cpu_online_map)) {
4973 ret = -EINVAL;
4974 goto out;
4975 }
4976
4977 p->cpus_allowed = new_mask;
4978 /* Can the task run on the task's current CPU? If so, we're done */
4979 if (cpu_isset(task_cpu(p), new_mask))
4980 goto out;
4981
4982 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4983 /* Need help from migration thread: drop lock and wait. */
4984 task_rq_unlock(rq, &flags);
4985 wake_up_process(rq->migration_thread);
4986 wait_for_completion(&req.done);
4987 tlb_migrate_finish(p->mm);
4988 return 0;
4989 }
4990 out:
4991 task_rq_unlock(rq, &flags);
4992
4993 return ret;
4994 }
4995 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4996
4997 /*
4998 * Move (not current) task off this cpu, onto dest cpu. We're doing
4999 * this because either it can't run here any more (set_cpus_allowed()
5000 * away from this CPU, or CPU going down), or because we're
5001 * attempting to rebalance this task on exec (sched_exec).
5002 *
5003 * So we race with normal scheduler movements, but that's OK, as long
5004 * as the task is no longer on this CPU.
5005 *
5006 * Returns non-zero if task was successfully migrated.
5007 */
5008 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5009 {
5010 struct rq *rq_dest, *rq_src;
5011 int ret = 0;
5012
5013 if (unlikely(cpu_is_offline(dest_cpu)))
5014 return ret;
5015
5016 rq_src = cpu_rq(src_cpu);
5017 rq_dest = cpu_rq(dest_cpu);
5018
5019 double_rq_lock(rq_src, rq_dest);
5020 /* Already moved. */
5021 if (task_cpu(p) != src_cpu)
5022 goto out;
5023 /* Affinity changed (again). */
5024 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5025 goto out;
5026
5027 set_task_cpu(p, dest_cpu);
5028 if (p->array) {
5029 /*
5030 * Sync timestamp with rq_dest's before activating.
5031 * The same thing could be achieved by doing this step
5032 * afterwards, and pretending it was a local activate.
5033 * This way is cleaner and logically correct.
5034 */
5035 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
5036 + rq_dest->timestamp_last_tick;
5037 deactivate_task(p, rq_src);
5038 __activate_task(p, rq_dest);
5039 if (TASK_PREEMPTS_CURR(p, rq_dest))
5040 resched_task(rq_dest->curr);
5041 }
5042 ret = 1;
5043 out:
5044 double_rq_unlock(rq_src, rq_dest);
5045 return ret;
5046 }
5047
5048 /*
5049 * migration_thread - this is a highprio system thread that performs
5050 * thread migration by bumping thread off CPU then 'pushing' onto
5051 * another runqueue.
5052 */
5053 static int migration_thread(void *data)
5054 {
5055 int cpu = (long)data;
5056 struct rq *rq;
5057
5058 rq = cpu_rq(cpu);
5059 BUG_ON(rq->migration_thread != current);
5060
5061 set_current_state(TASK_INTERRUPTIBLE);
5062 while (!kthread_should_stop()) {
5063 struct migration_req *req;
5064 struct list_head *head;
5065
5066 try_to_freeze();
5067
5068 spin_lock_irq(&rq->lock);
5069
5070 if (cpu_is_offline(cpu)) {
5071 spin_unlock_irq(&rq->lock);
5072 goto wait_to_die;
5073 }
5074
5075 if (rq->active_balance) {
5076 active_load_balance(rq, cpu);
5077 rq->active_balance = 0;
5078 }
5079
5080 head = &rq->migration_queue;
5081
5082 if (list_empty(head)) {
5083 spin_unlock_irq(&rq->lock);
5084 schedule();
5085 set_current_state(TASK_INTERRUPTIBLE);
5086 continue;
5087 }
5088 req = list_entry(head->next, struct migration_req, list);
5089 list_del_init(head->next);
5090
5091 spin_unlock(&rq->lock);
5092 __migrate_task(req->task, cpu, req->dest_cpu);
5093 local_irq_enable();
5094
5095 complete(&req->done);
5096 }
5097 __set_current_state(TASK_RUNNING);
5098 return 0;
5099
5100 wait_to_die:
5101 /* Wait for kthread_stop */
5102 set_current_state(TASK_INTERRUPTIBLE);
5103 while (!kthread_should_stop()) {
5104 schedule();
5105 set_current_state(TASK_INTERRUPTIBLE);
5106 }
5107 __set_current_state(TASK_RUNNING);
5108 return 0;
5109 }
5110
5111 #ifdef CONFIG_HOTPLUG_CPU
5112 /*
5113 * Figure out where task on dead CPU should go, use force if neccessary.
5114 * NOTE: interrupts should be disabled by the caller
5115 */
5116 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5117 {
5118 unsigned long flags;
5119 cpumask_t mask;
5120 struct rq *rq;
5121 int dest_cpu;
5122
5123 restart:
5124 /* On same node? */
5125 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5126 cpus_and(mask, mask, p->cpus_allowed);
5127 dest_cpu = any_online_cpu(mask);
5128
5129 /* On any allowed CPU? */
5130 if (dest_cpu == NR_CPUS)
5131 dest_cpu = any_online_cpu(p->cpus_allowed);
5132
5133 /* No more Mr. Nice Guy. */
5134 if (dest_cpu == NR_CPUS) {
5135 rq = task_rq_lock(p, &flags);
5136 cpus_setall(p->cpus_allowed);
5137 dest_cpu = any_online_cpu(p->cpus_allowed);
5138 task_rq_unlock(rq, &flags);
5139
5140 /*
5141 * Don't tell them about moving exiting tasks or
5142 * kernel threads (both mm NULL), since they never
5143 * leave kernel.
5144 */
5145 if (p->mm && printk_ratelimit())
5146 printk(KERN_INFO "process %d (%s) no "
5147 "longer affine to cpu%d\n",
5148 p->pid, p->comm, dead_cpu);
5149 }
5150 if (!__migrate_task(p, dead_cpu, dest_cpu))
5151 goto restart;
5152 }
5153
5154 /*
5155 * While a dead CPU has no uninterruptible tasks queued at this point,
5156 * it might still have a nonzero ->nr_uninterruptible counter, because
5157 * for performance reasons the counter is not stricly tracking tasks to
5158 * their home CPUs. So we just add the counter to another CPU's counter,
5159 * to keep the global sum constant after CPU-down:
5160 */
5161 static void migrate_nr_uninterruptible(struct rq *rq_src)
5162 {
5163 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5164 unsigned long flags;
5165
5166 local_irq_save(flags);
5167 double_rq_lock(rq_src, rq_dest);
5168 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5169 rq_src->nr_uninterruptible = 0;
5170 double_rq_unlock(rq_src, rq_dest);
5171 local_irq_restore(flags);
5172 }
5173
5174 /* Run through task list and migrate tasks from the dead cpu. */
5175 static void migrate_live_tasks(int src_cpu)
5176 {
5177 struct task_struct *p, *t;
5178
5179 write_lock_irq(&tasklist_lock);
5180
5181 do_each_thread(t, p) {
5182 if (p == current)
5183 continue;
5184
5185 if (task_cpu(p) == src_cpu)
5186 move_task_off_dead_cpu(src_cpu, p);
5187 } while_each_thread(t, p);
5188
5189 write_unlock_irq(&tasklist_lock);
5190 }
5191
5192 /* Schedules idle task to be the next runnable task on current CPU.
5193 * It does so by boosting its priority to highest possible and adding it to
5194 * the _front_ of the runqueue. Used by CPU offline code.
5195 */
5196 void sched_idle_next(void)
5197 {
5198 int this_cpu = smp_processor_id();
5199 struct rq *rq = cpu_rq(this_cpu);
5200 struct task_struct *p = rq->idle;
5201 unsigned long flags;
5202
5203 /* cpu has to be offline */
5204 BUG_ON(cpu_online(this_cpu));
5205
5206 /*
5207 * Strictly not necessary since rest of the CPUs are stopped by now
5208 * and interrupts disabled on the current cpu.
5209 */
5210 spin_lock_irqsave(&rq->lock, flags);
5211
5212 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5213
5214 /* Add idle task to the _front_ of its priority queue: */
5215 __activate_idle_task(p, rq);
5216
5217 spin_unlock_irqrestore(&rq->lock, flags);
5218 }
5219
5220 /*
5221 * Ensures that the idle task is using init_mm right before its cpu goes
5222 * offline.
5223 */
5224 void idle_task_exit(void)
5225 {
5226 struct mm_struct *mm = current->active_mm;
5227
5228 BUG_ON(cpu_online(smp_processor_id()));
5229
5230 if (mm != &init_mm)
5231 switch_mm(mm, &init_mm, current);
5232 mmdrop(mm);
5233 }
5234
5235 /* called under rq->lock with disabled interrupts */
5236 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5237 {
5238 struct rq *rq = cpu_rq(dead_cpu);
5239
5240 /* Must be exiting, otherwise would be on tasklist. */
5241 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5242
5243 /* Cannot have done final schedule yet: would have vanished. */
5244 BUG_ON(p->state == TASK_DEAD);
5245
5246 get_task_struct(p);
5247
5248 /*
5249 * Drop lock around migration; if someone else moves it,
5250 * that's OK. No task can be added to this CPU, so iteration is
5251 * fine.
5252 * NOTE: interrupts should be left disabled --dev@
5253 */
5254 spin_unlock(&rq->lock);
5255 move_task_off_dead_cpu(dead_cpu, p);
5256 spin_lock(&rq->lock);
5257
5258 put_task_struct(p);
5259 }
5260
5261 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5262 static void migrate_dead_tasks(unsigned int dead_cpu)
5263 {
5264 struct rq *rq = cpu_rq(dead_cpu);
5265 unsigned int arr, i;
5266
5267 for (arr = 0; arr < 2; arr++) {
5268 for (i = 0; i < MAX_PRIO; i++) {
5269 struct list_head *list = &rq->arrays[arr].queue[i];
5270
5271 while (!list_empty(list))
5272 migrate_dead(dead_cpu, list_entry(list->next,
5273 struct task_struct, run_list));
5274 }
5275 }
5276 }
5277 #endif /* CONFIG_HOTPLUG_CPU */
5278
5279 /*
5280 * migration_call - callback that gets triggered when a CPU is added.
5281 * Here we can start up the necessary migration thread for the new CPU.
5282 */
5283 static int __cpuinit
5284 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5285 {
5286 struct task_struct *p;
5287 int cpu = (long)hcpu;
5288 unsigned long flags;
5289 struct rq *rq;
5290
5291 switch (action) {
5292 case CPU_UP_PREPARE:
5293 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5294 if (IS_ERR(p))
5295 return NOTIFY_BAD;
5296 p->flags |= PF_NOFREEZE;
5297 kthread_bind(p, cpu);
5298 /* Must be high prio: stop_machine expects to yield to it. */
5299 rq = task_rq_lock(p, &flags);
5300 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5301 task_rq_unlock(rq, &flags);
5302 cpu_rq(cpu)->migration_thread = p;
5303 break;
5304
5305 case CPU_ONLINE:
5306 /* Strictly unneccessary, as first user will wake it. */
5307 wake_up_process(cpu_rq(cpu)->migration_thread);
5308 break;
5309
5310 #ifdef CONFIG_HOTPLUG_CPU
5311 case CPU_UP_CANCELED:
5312 if (!cpu_rq(cpu)->migration_thread)
5313 break;
5314 /* Unbind it from offline cpu so it can run. Fall thru. */
5315 kthread_bind(cpu_rq(cpu)->migration_thread,
5316 any_online_cpu(cpu_online_map));
5317 kthread_stop(cpu_rq(cpu)->migration_thread);
5318 cpu_rq(cpu)->migration_thread = NULL;
5319 break;
5320
5321 case CPU_DEAD:
5322 migrate_live_tasks(cpu);
5323 rq = cpu_rq(cpu);
5324 kthread_stop(rq->migration_thread);
5325 rq->migration_thread = NULL;
5326 /* Idle task back to normal (off runqueue, low prio) */
5327 rq = task_rq_lock(rq->idle, &flags);
5328 deactivate_task(rq->idle, rq);
5329 rq->idle->static_prio = MAX_PRIO;
5330 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5331 migrate_dead_tasks(cpu);
5332 task_rq_unlock(rq, &flags);
5333 migrate_nr_uninterruptible(rq);
5334 BUG_ON(rq->nr_running != 0);
5335
5336 /* No need to migrate the tasks: it was best-effort if
5337 * they didn't do lock_cpu_hotplug(). Just wake up
5338 * the requestors. */
5339 spin_lock_irq(&rq->lock);
5340 while (!list_empty(&rq->migration_queue)) {
5341 struct migration_req *req;
5342
5343 req = list_entry(rq->migration_queue.next,
5344 struct migration_req, list);
5345 list_del_init(&req->list);
5346 complete(&req->done);
5347 }
5348 spin_unlock_irq(&rq->lock);
5349 break;
5350 #endif
5351 }
5352 return NOTIFY_OK;
5353 }
5354
5355 /* Register at highest priority so that task migration (migrate_all_tasks)
5356 * happens before everything else.
5357 */
5358 static struct notifier_block __cpuinitdata migration_notifier = {
5359 .notifier_call = migration_call,
5360 .priority = 10
5361 };
5362
5363 int __init migration_init(void)
5364 {
5365 void *cpu = (void *)(long)smp_processor_id();
5366 int err;
5367
5368 /* Start one for the boot CPU: */
5369 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5370 BUG_ON(err == NOTIFY_BAD);
5371 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5372 register_cpu_notifier(&migration_notifier);
5373
5374 return 0;
5375 }
5376 #endif
5377
5378 #ifdef CONFIG_SMP
5379 #undef SCHED_DOMAIN_DEBUG
5380 #ifdef SCHED_DOMAIN_DEBUG
5381 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5382 {
5383 int level = 0;
5384
5385 if (!sd) {
5386 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5387 return;
5388 }
5389
5390 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5391
5392 do {
5393 int i;
5394 char str[NR_CPUS];
5395 struct sched_group *group = sd->groups;
5396 cpumask_t groupmask;
5397
5398 cpumask_scnprintf(str, NR_CPUS, sd->span);
5399 cpus_clear(groupmask);
5400
5401 printk(KERN_DEBUG);
5402 for (i = 0; i < level + 1; i++)
5403 printk(" ");
5404 printk("domain %d: ", level);
5405
5406 if (!(sd->flags & SD_LOAD_BALANCE)) {
5407 printk("does not load-balance\n");
5408 if (sd->parent)
5409 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5410 break;
5411 }
5412
5413 printk("span %s\n", str);
5414
5415 if (!cpu_isset(cpu, sd->span))
5416 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5417 if (!cpu_isset(cpu, group->cpumask))
5418 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5419
5420 printk(KERN_DEBUG);
5421 for (i = 0; i < level + 2; i++)
5422 printk(" ");
5423 printk("groups:");
5424 do {
5425 if (!group) {
5426 printk("\n");
5427 printk(KERN_ERR "ERROR: group is NULL\n");
5428 break;
5429 }
5430
5431 if (!group->cpu_power) {
5432 printk("\n");
5433 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5434 }
5435
5436 if (!cpus_weight(group->cpumask)) {
5437 printk("\n");
5438 printk(KERN_ERR "ERROR: empty group\n");
5439 }
5440
5441 if (cpus_intersects(groupmask, group->cpumask)) {
5442 printk("\n");
5443 printk(KERN_ERR "ERROR: repeated CPUs\n");
5444 }
5445
5446 cpus_or(groupmask, groupmask, group->cpumask);
5447
5448 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5449 printk(" %s", str);
5450
5451 group = group->next;
5452 } while (group != sd->groups);
5453 printk("\n");
5454
5455 if (!cpus_equal(sd->span, groupmask))
5456 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5457
5458 level++;
5459 sd = sd->parent;
5460
5461 if (sd) {
5462 if (!cpus_subset(groupmask, sd->span))
5463 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5464 }
5465
5466 } while (sd);
5467 }
5468 #else
5469 # define sched_domain_debug(sd, cpu) do { } while (0)
5470 #endif
5471
5472 static int sd_degenerate(struct sched_domain *sd)
5473 {
5474 if (cpus_weight(sd->span) == 1)
5475 return 1;
5476
5477 /* Following flags need at least 2 groups */
5478 if (sd->flags & (SD_LOAD_BALANCE |
5479 SD_BALANCE_NEWIDLE |
5480 SD_BALANCE_FORK |
5481 SD_BALANCE_EXEC |
5482 SD_SHARE_CPUPOWER |
5483 SD_SHARE_PKG_RESOURCES)) {
5484 if (sd->groups != sd->groups->next)
5485 return 0;
5486 }
5487
5488 /* Following flags don't use groups */
5489 if (sd->flags & (SD_WAKE_IDLE |
5490 SD_WAKE_AFFINE |
5491 SD_WAKE_BALANCE))
5492 return 0;
5493
5494 return 1;
5495 }
5496
5497 static int
5498 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5499 {
5500 unsigned long cflags = sd->flags, pflags = parent->flags;
5501
5502 if (sd_degenerate(parent))
5503 return 1;
5504
5505 if (!cpus_equal(sd->span, parent->span))
5506 return 0;
5507
5508 /* Does parent contain flags not in child? */
5509 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5510 if (cflags & SD_WAKE_AFFINE)
5511 pflags &= ~SD_WAKE_BALANCE;
5512 /* Flags needing groups don't count if only 1 group in parent */
5513 if (parent->groups == parent->groups->next) {
5514 pflags &= ~(SD_LOAD_BALANCE |
5515 SD_BALANCE_NEWIDLE |
5516 SD_BALANCE_FORK |
5517 SD_BALANCE_EXEC |
5518 SD_SHARE_CPUPOWER |
5519 SD_SHARE_PKG_RESOURCES);
5520 }
5521 if (~cflags & pflags)
5522 return 0;
5523
5524 return 1;
5525 }
5526
5527 /*
5528 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5529 * hold the hotplug lock.
5530 */
5531 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5532 {
5533 struct rq *rq = cpu_rq(cpu);
5534 struct sched_domain *tmp;
5535
5536 /* Remove the sched domains which do not contribute to scheduling. */
5537 for (tmp = sd; tmp; tmp = tmp->parent) {
5538 struct sched_domain *parent = tmp->parent;
5539 if (!parent)
5540 break;
5541 if (sd_parent_degenerate(tmp, parent)) {
5542 tmp->parent = parent->parent;
5543 if (parent->parent)
5544 parent->parent->child = tmp;
5545 }
5546 }
5547
5548 if (sd && sd_degenerate(sd)) {
5549 sd = sd->parent;
5550 if (sd)
5551 sd->child = NULL;
5552 }
5553
5554 sched_domain_debug(sd, cpu);
5555
5556 rcu_assign_pointer(rq->sd, sd);
5557 }
5558
5559 /* cpus with isolated domains */
5560 static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
5561
5562 /* Setup the mask of cpus configured for isolated domains */
5563 static int __init isolated_cpu_setup(char *str)
5564 {
5565 int ints[NR_CPUS], i;
5566
5567 str = get_options(str, ARRAY_SIZE(ints), ints);
5568 cpus_clear(cpu_isolated_map);
5569 for (i = 1; i <= ints[0]; i++)
5570 if (ints[i] < NR_CPUS)
5571 cpu_set(ints[i], cpu_isolated_map);
5572 return 1;
5573 }
5574
5575 __setup ("isolcpus=", isolated_cpu_setup);
5576
5577 /*
5578 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5579 * to a function which identifies what group(along with sched group) a CPU
5580 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5581 * (due to the fact that we keep track of groups covered with a cpumask_t).
5582 *
5583 * init_sched_build_groups will build a circular linked list of the groups
5584 * covered by the given span, and will set each group's ->cpumask correctly,
5585 * and ->cpu_power to 0.
5586 */
5587 static void
5588 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5589 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5590 struct sched_group **sg))
5591 {
5592 struct sched_group *first = NULL, *last = NULL;
5593 cpumask_t covered = CPU_MASK_NONE;
5594 int i;
5595
5596 for_each_cpu_mask(i, span) {
5597 struct sched_group *sg;
5598 int group = group_fn(i, cpu_map, &sg);
5599 int j;
5600
5601 if (cpu_isset(i, covered))
5602 continue;
5603
5604 sg->cpumask = CPU_MASK_NONE;
5605 sg->cpu_power = 0;
5606
5607 for_each_cpu_mask(j, span) {
5608 if (group_fn(j, cpu_map, NULL) != group)
5609 continue;
5610
5611 cpu_set(j, covered);
5612 cpu_set(j, sg->cpumask);
5613 }
5614 if (!first)
5615 first = sg;
5616 if (last)
5617 last->next = sg;
5618 last = sg;
5619 }
5620 last->next = first;
5621 }
5622
5623 #define SD_NODES_PER_DOMAIN 16
5624
5625 /*
5626 * Self-tuning task migration cost measurement between source and target CPUs.
5627 *
5628 * This is done by measuring the cost of manipulating buffers of varying
5629 * sizes. For a given buffer-size here are the steps that are taken:
5630 *
5631 * 1) the source CPU reads+dirties a shared buffer
5632 * 2) the target CPU reads+dirties the same shared buffer
5633 *
5634 * We measure how long they take, in the following 4 scenarios:
5635 *
5636 * - source: CPU1, target: CPU2 | cost1
5637 * - source: CPU2, target: CPU1 | cost2
5638 * - source: CPU1, target: CPU1 | cost3
5639 * - source: CPU2, target: CPU2 | cost4
5640 *
5641 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5642 * the cost of migration.
5643 *
5644 * We then start off from a small buffer-size and iterate up to larger
5645 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5646 * doing a maximum search for the cost. (The maximum cost for a migration
5647 * normally occurs when the working set size is around the effective cache
5648 * size.)
5649 */
5650 #define SEARCH_SCOPE 2
5651 #define MIN_CACHE_SIZE (64*1024U)
5652 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5653 #define ITERATIONS 1
5654 #define SIZE_THRESH 130
5655 #define COST_THRESH 130
5656
5657 /*
5658 * The migration cost is a function of 'domain distance'. Domain
5659 * distance is the number of steps a CPU has to iterate down its
5660 * domain tree to share a domain with the other CPU. The farther
5661 * two CPUs are from each other, the larger the distance gets.
5662 *
5663 * Note that we use the distance only to cache measurement results,
5664 * the distance value is not used numerically otherwise. When two
5665 * CPUs have the same distance it is assumed that the migration
5666 * cost is the same. (this is a simplification but quite practical)
5667 */
5668 #define MAX_DOMAIN_DISTANCE 32
5669
5670 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5671 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5672 /*
5673 * Architectures may override the migration cost and thus avoid
5674 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5675 * virtualized hardware:
5676 */
5677 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5678 CONFIG_DEFAULT_MIGRATION_COST
5679 #else
5680 -1LL
5681 #endif
5682 };
5683
5684 /*
5685 * Allow override of migration cost - in units of microseconds.
5686 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5687 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5688 */
5689 static int __init migration_cost_setup(char *str)
5690 {
5691 int ints[MAX_DOMAIN_DISTANCE+1], i;
5692
5693 str = get_options(str, ARRAY_SIZE(ints), ints);
5694
5695 printk("#ints: %d\n", ints[0]);
5696 for (i = 1; i <= ints[0]; i++) {
5697 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5698 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5699 }
5700 return 1;
5701 }
5702
5703 __setup ("migration_cost=", migration_cost_setup);
5704
5705 /*
5706 * Global multiplier (divisor) for migration-cutoff values,
5707 * in percentiles. E.g. use a value of 150 to get 1.5 times
5708 * longer cache-hot cutoff times.
5709 *
5710 * (We scale it from 100 to 128 to long long handling easier.)
5711 */
5712
5713 #define MIGRATION_FACTOR_SCALE 128
5714
5715 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5716
5717 static int __init setup_migration_factor(char *str)
5718 {
5719 get_option(&str, &migration_factor);
5720 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5721 return 1;
5722 }
5723
5724 __setup("migration_factor=", setup_migration_factor);
5725
5726 /*
5727 * Estimated distance of two CPUs, measured via the number of domains
5728 * we have to pass for the two CPUs to be in the same span:
5729 */
5730 static unsigned long domain_distance(int cpu1, int cpu2)
5731 {
5732 unsigned long distance = 0;
5733 struct sched_domain *sd;
5734
5735 for_each_domain(cpu1, sd) {
5736 WARN_ON(!cpu_isset(cpu1, sd->span));
5737 if (cpu_isset(cpu2, sd->span))
5738 return distance;
5739 distance++;
5740 }
5741 if (distance >= MAX_DOMAIN_DISTANCE) {
5742 WARN_ON(1);
5743 distance = MAX_DOMAIN_DISTANCE-1;
5744 }
5745
5746 return distance;
5747 }
5748
5749 static unsigned int migration_debug;
5750
5751 static int __init setup_migration_debug(char *str)
5752 {
5753 get_option(&str, &migration_debug);
5754 return 1;
5755 }
5756
5757 __setup("migration_debug=", setup_migration_debug);
5758
5759 /*
5760 * Maximum cache-size that the scheduler should try to measure.
5761 * Architectures with larger caches should tune this up during
5762 * bootup. Gets used in the domain-setup code (i.e. during SMP
5763 * bootup).
5764 */
5765 unsigned int max_cache_size;
5766
5767 static int __init setup_max_cache_size(char *str)
5768 {
5769 get_option(&str, &max_cache_size);
5770 return 1;
5771 }
5772
5773 __setup("max_cache_size=", setup_max_cache_size);
5774
5775 /*
5776 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5777 * is the operation that is timed, so we try to generate unpredictable
5778 * cachemisses that still end up filling the L2 cache:
5779 */
5780 static void touch_cache(void *__cache, unsigned long __size)
5781 {
5782 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5783 chunk2 = 2*size/3;
5784 unsigned long *cache = __cache;
5785 int i;
5786
5787 for (i = 0; i < size/6; i += 8) {
5788 switch (i % 6) {
5789 case 0: cache[i]++;
5790 case 1: cache[size-1-i]++;
5791 case 2: cache[chunk1-i]++;
5792 case 3: cache[chunk1+i]++;
5793 case 4: cache[chunk2-i]++;
5794 case 5: cache[chunk2+i]++;
5795 }
5796 }
5797 }
5798
5799 /*
5800 * Measure the cache-cost of one task migration. Returns in units of nsec.
5801 */
5802 static unsigned long long
5803 measure_one(void *cache, unsigned long size, int source, int target)
5804 {
5805 cpumask_t mask, saved_mask;
5806 unsigned long long t0, t1, t2, t3, cost;
5807
5808 saved_mask = current->cpus_allowed;
5809
5810 /*
5811 * Flush source caches to RAM and invalidate them:
5812 */
5813 sched_cacheflush();
5814
5815 /*
5816 * Migrate to the source CPU:
5817 */
5818 mask = cpumask_of_cpu(source);
5819 set_cpus_allowed(current, mask);
5820 WARN_ON(smp_processor_id() != source);
5821
5822 /*
5823 * Dirty the working set:
5824 */
5825 t0 = sched_clock();
5826 touch_cache(cache, size);
5827 t1 = sched_clock();
5828
5829 /*
5830 * Migrate to the target CPU, dirty the L2 cache and access
5831 * the shared buffer. (which represents the working set
5832 * of a migrated task.)
5833 */
5834 mask = cpumask_of_cpu(target);
5835 set_cpus_allowed(current, mask);
5836 WARN_ON(smp_processor_id() != target);
5837
5838 t2 = sched_clock();
5839 touch_cache(cache, size);
5840 t3 = sched_clock();
5841
5842 cost = t1-t0 + t3-t2;
5843
5844 if (migration_debug >= 2)
5845 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5846 source, target, t1-t0, t1-t0, t3-t2, cost);
5847 /*
5848 * Flush target caches to RAM and invalidate them:
5849 */
5850 sched_cacheflush();
5851
5852 set_cpus_allowed(current, saved_mask);
5853
5854 return cost;
5855 }
5856
5857 /*
5858 * Measure a series of task migrations and return the average
5859 * result. Since this code runs early during bootup the system
5860 * is 'undisturbed' and the average latency makes sense.
5861 *
5862 * The algorithm in essence auto-detects the relevant cache-size,
5863 * so it will properly detect different cachesizes for different
5864 * cache-hierarchies, depending on how the CPUs are connected.
5865 *
5866 * Architectures can prime the upper limit of the search range via
5867 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5868 */
5869 static unsigned long long
5870 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5871 {
5872 unsigned long long cost1, cost2;
5873 int i;
5874
5875 /*
5876 * Measure the migration cost of 'size' bytes, over an
5877 * average of 10 runs:
5878 *
5879 * (We perturb the cache size by a small (0..4k)
5880 * value to compensate size/alignment related artifacts.
5881 * We also subtract the cost of the operation done on
5882 * the same CPU.)
5883 */
5884 cost1 = 0;
5885
5886 /*
5887 * dry run, to make sure we start off cache-cold on cpu1,
5888 * and to get any vmalloc pagefaults in advance:
5889 */
5890 measure_one(cache, size, cpu1, cpu2);
5891 for (i = 0; i < ITERATIONS; i++)
5892 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5893
5894 measure_one(cache, size, cpu2, cpu1);
5895 for (i = 0; i < ITERATIONS; i++)
5896 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5897
5898 /*
5899 * (We measure the non-migrating [cached] cost on both
5900 * cpu1 and cpu2, to handle CPUs with different speeds)
5901 */
5902 cost2 = 0;
5903
5904 measure_one(cache, size, cpu1, cpu1);
5905 for (i = 0; i < ITERATIONS; i++)
5906 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5907
5908 measure_one(cache, size, cpu2, cpu2);
5909 for (i = 0; i < ITERATIONS; i++)
5910 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5911
5912 /*
5913 * Get the per-iteration migration cost:
5914 */
5915 do_div(cost1, 2*ITERATIONS);
5916 do_div(cost2, 2*ITERATIONS);
5917
5918 return cost1 - cost2;
5919 }
5920
5921 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5922 {
5923 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5924 unsigned int max_size, size, size_found = 0;
5925 long long cost = 0, prev_cost;
5926 void *cache;
5927
5928 /*
5929 * Search from max_cache_size*5 down to 64K - the real relevant
5930 * cachesize has to lie somewhere inbetween.
5931 */
5932 if (max_cache_size) {
5933 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5934 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5935 } else {
5936 /*
5937 * Since we have no estimation about the relevant
5938 * search range
5939 */
5940 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5941 size = MIN_CACHE_SIZE;
5942 }
5943
5944 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5945 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5946 return 0;
5947 }
5948
5949 /*
5950 * Allocate the working set:
5951 */
5952 cache = vmalloc(max_size);
5953 if (!cache) {
5954 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5955 return 1000000; /* return 1 msec on very small boxen */
5956 }
5957
5958 while (size <= max_size) {
5959 prev_cost = cost;
5960 cost = measure_cost(cpu1, cpu2, cache, size);
5961
5962 /*
5963 * Update the max:
5964 */
5965 if (cost > 0) {
5966 if (max_cost < cost) {
5967 max_cost = cost;
5968 size_found = size;
5969 }
5970 }
5971 /*
5972 * Calculate average fluctuation, we use this to prevent
5973 * noise from triggering an early break out of the loop:
5974 */
5975 fluct = abs(cost - prev_cost);
5976 avg_fluct = (avg_fluct + fluct)/2;
5977
5978 if (migration_debug)
5979 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5980 cpu1, cpu2, size,
5981 (long)cost / 1000000,
5982 ((long)cost / 100000) % 10,
5983 (long)max_cost / 1000000,
5984 ((long)max_cost / 100000) % 10,
5985 domain_distance(cpu1, cpu2),
5986 cost, avg_fluct);
5987
5988 /*
5989 * If we iterated at least 20% past the previous maximum,
5990 * and the cost has dropped by more than 20% already,
5991 * (taking fluctuations into account) then we assume to
5992 * have found the maximum and break out of the loop early:
5993 */
5994 if (size_found && (size*100 > size_found*SIZE_THRESH))
5995 if (cost+avg_fluct <= 0 ||
5996 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5997
5998 if (migration_debug)
5999 printk("-> found max.\n");
6000 break;
6001 }
6002 /*
6003 * Increase the cachesize in 10% steps:
6004 */
6005 size = size * 10 / 9;
6006 }
6007
6008 if (migration_debug)
6009 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6010 cpu1, cpu2, size_found, max_cost);
6011
6012 vfree(cache);
6013
6014 /*
6015 * A task is considered 'cache cold' if at least 2 times
6016 * the worst-case cost of migration has passed.
6017 *
6018 * (this limit is only listened to if the load-balancing
6019 * situation is 'nice' - if there is a large imbalance we
6020 * ignore it for the sake of CPU utilization and
6021 * processing fairness.)
6022 */
6023 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6024 }
6025
6026 static void calibrate_migration_costs(const cpumask_t *cpu_map)
6027 {
6028 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6029 unsigned long j0, j1, distance, max_distance = 0;
6030 struct sched_domain *sd;
6031
6032 j0 = jiffies;
6033
6034 /*
6035 * First pass - calculate the cacheflush times:
6036 */
6037 for_each_cpu_mask(cpu1, *cpu_map) {
6038 for_each_cpu_mask(cpu2, *cpu_map) {
6039 if (cpu1 == cpu2)
6040 continue;
6041 distance = domain_distance(cpu1, cpu2);
6042 max_distance = max(max_distance, distance);
6043 /*
6044 * No result cached yet?
6045 */
6046 if (migration_cost[distance] == -1LL)
6047 migration_cost[distance] =
6048 measure_migration_cost(cpu1, cpu2);
6049 }
6050 }
6051 /*
6052 * Second pass - update the sched domain hierarchy with
6053 * the new cache-hot-time estimations:
6054 */
6055 for_each_cpu_mask(cpu, *cpu_map) {
6056 distance = 0;
6057 for_each_domain(cpu, sd) {
6058 sd->cache_hot_time = migration_cost[distance];
6059 distance++;
6060 }
6061 }
6062 /*
6063 * Print the matrix:
6064 */
6065 if (migration_debug)
6066 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6067 max_cache_size,
6068 #ifdef CONFIG_X86
6069 cpu_khz/1000
6070 #else
6071 -1
6072 #endif
6073 );
6074 if (system_state == SYSTEM_BOOTING) {
6075 if (num_online_cpus() > 1) {
6076 printk("migration_cost=");
6077 for (distance = 0; distance <= max_distance; distance++) {
6078 if (distance)
6079 printk(",");
6080 printk("%ld", (long)migration_cost[distance] / 1000);
6081 }
6082 printk("\n");
6083 }
6084 }
6085 j1 = jiffies;
6086 if (migration_debug)
6087 printk("migration: %ld seconds\n", (j1-j0)/HZ);
6088
6089 /*
6090 * Move back to the original CPU. NUMA-Q gets confused
6091 * if we migrate to another quad during bootup.
6092 */
6093 if (raw_smp_processor_id() != orig_cpu) {
6094 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6095 saved_mask = current->cpus_allowed;
6096
6097 set_cpus_allowed(current, mask);
6098 set_cpus_allowed(current, saved_mask);
6099 }
6100 }
6101
6102 #ifdef CONFIG_NUMA
6103
6104 /**
6105 * find_next_best_node - find the next node to include in a sched_domain
6106 * @node: node whose sched_domain we're building
6107 * @used_nodes: nodes already in the sched_domain
6108 *
6109 * Find the next node to include in a given scheduling domain. Simply
6110 * finds the closest node not already in the @used_nodes map.
6111 *
6112 * Should use nodemask_t.
6113 */
6114 static int find_next_best_node(int node, unsigned long *used_nodes)
6115 {
6116 int i, n, val, min_val, best_node = 0;
6117
6118 min_val = INT_MAX;
6119
6120 for (i = 0; i < MAX_NUMNODES; i++) {
6121 /* Start at @node */
6122 n = (node + i) % MAX_NUMNODES;
6123
6124 if (!nr_cpus_node(n))
6125 continue;
6126
6127 /* Skip already used nodes */
6128 if (test_bit(n, used_nodes))
6129 continue;
6130
6131 /* Simple min distance search */
6132 val = node_distance(node, n);
6133
6134 if (val < min_val) {
6135 min_val = val;
6136 best_node = n;
6137 }
6138 }
6139
6140 set_bit(best_node, used_nodes);
6141 return best_node;
6142 }
6143
6144 /**
6145 * sched_domain_node_span - get a cpumask for a node's sched_domain
6146 * @node: node whose cpumask we're constructing
6147 * @size: number of nodes to include in this span
6148 *
6149 * Given a node, construct a good cpumask for its sched_domain to span. It
6150 * should be one that prevents unnecessary balancing, but also spreads tasks
6151 * out optimally.
6152 */
6153 static cpumask_t sched_domain_node_span(int node)
6154 {
6155 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6156 cpumask_t span, nodemask;
6157 int i;
6158
6159 cpus_clear(span);
6160 bitmap_zero(used_nodes, MAX_NUMNODES);
6161
6162 nodemask = node_to_cpumask(node);
6163 cpus_or(span, span, nodemask);
6164 set_bit(node, used_nodes);
6165
6166 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6167 int next_node = find_next_best_node(node, used_nodes);
6168
6169 nodemask = node_to_cpumask(next_node);
6170 cpus_or(span, span, nodemask);
6171 }
6172
6173 return span;
6174 }
6175 #endif
6176
6177 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6178
6179 /*
6180 * SMT sched-domains:
6181 */
6182 #ifdef CONFIG_SCHED_SMT
6183 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6184 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6185
6186 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6187 struct sched_group **sg)
6188 {
6189 if (sg)
6190 *sg = &per_cpu(sched_group_cpus, cpu);
6191 return cpu;
6192 }
6193 #endif
6194
6195 /*
6196 * multi-core sched-domains:
6197 */
6198 #ifdef CONFIG_SCHED_MC
6199 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6200 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6201 #endif
6202
6203 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6204 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6205 struct sched_group **sg)
6206 {
6207 int group;
6208 cpumask_t mask = cpu_sibling_map[cpu];
6209 cpus_and(mask, mask, *cpu_map);
6210 group = first_cpu(mask);
6211 if (sg)
6212 *sg = &per_cpu(sched_group_core, group);
6213 return group;
6214 }
6215 #elif defined(CONFIG_SCHED_MC)
6216 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6217 struct sched_group **sg)
6218 {
6219 if (sg)
6220 *sg = &per_cpu(sched_group_core, cpu);
6221 return cpu;
6222 }
6223 #endif
6224
6225 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6226 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6227
6228 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6229 struct sched_group **sg)
6230 {
6231 int group;
6232 #ifdef CONFIG_SCHED_MC
6233 cpumask_t mask = cpu_coregroup_map(cpu);
6234 cpus_and(mask, mask, *cpu_map);
6235 group = first_cpu(mask);
6236 #elif defined(CONFIG_SCHED_SMT)
6237 cpumask_t mask = cpu_sibling_map[cpu];
6238 cpus_and(mask, mask, *cpu_map);
6239 group = first_cpu(mask);
6240 #else
6241 group = cpu;
6242 #endif
6243 if (sg)
6244 *sg = &per_cpu(sched_group_phys, group);
6245 return group;
6246 }
6247
6248 #ifdef CONFIG_NUMA
6249 /*
6250 * The init_sched_build_groups can't handle what we want to do with node
6251 * groups, so roll our own. Now each node has its own list of groups which
6252 * gets dynamically allocated.
6253 */
6254 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6255 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6256
6257 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6258 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6259
6260 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6261 struct sched_group **sg)
6262 {
6263 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6264 int group;
6265
6266 cpus_and(nodemask, nodemask, *cpu_map);
6267 group = first_cpu(nodemask);
6268
6269 if (sg)
6270 *sg = &per_cpu(sched_group_allnodes, group);
6271 return group;
6272 }
6273
6274 static void init_numa_sched_groups_power(struct sched_group *group_head)
6275 {
6276 struct sched_group *sg = group_head;
6277 int j;
6278
6279 if (!sg)
6280 return;
6281 next_sg:
6282 for_each_cpu_mask(j, sg->cpumask) {
6283 struct sched_domain *sd;
6284
6285 sd = &per_cpu(phys_domains, j);
6286 if (j != first_cpu(sd->groups->cpumask)) {
6287 /*
6288 * Only add "power" once for each
6289 * physical package.
6290 */
6291 continue;
6292 }
6293
6294 sg->cpu_power += sd->groups->cpu_power;
6295 }
6296 sg = sg->next;
6297 if (sg != group_head)
6298 goto next_sg;
6299 }
6300 #endif
6301
6302 #ifdef CONFIG_NUMA
6303 /* Free memory allocated for various sched_group structures */
6304 static void free_sched_groups(const cpumask_t *cpu_map)
6305 {
6306 int cpu, i;
6307
6308 for_each_cpu_mask(cpu, *cpu_map) {
6309 struct sched_group **sched_group_nodes
6310 = sched_group_nodes_bycpu[cpu];
6311
6312 if (!sched_group_nodes)
6313 continue;
6314
6315 for (i = 0; i < MAX_NUMNODES; i++) {
6316 cpumask_t nodemask = node_to_cpumask(i);
6317 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6318
6319 cpus_and(nodemask, nodemask, *cpu_map);
6320 if (cpus_empty(nodemask))
6321 continue;
6322
6323 if (sg == NULL)
6324 continue;
6325 sg = sg->next;
6326 next_sg:
6327 oldsg = sg;
6328 sg = sg->next;
6329 kfree(oldsg);
6330 if (oldsg != sched_group_nodes[i])
6331 goto next_sg;
6332 }
6333 kfree(sched_group_nodes);
6334 sched_group_nodes_bycpu[cpu] = NULL;
6335 }
6336 }
6337 #else
6338 static void free_sched_groups(const cpumask_t *cpu_map)
6339 {
6340 }
6341 #endif
6342
6343 /*
6344 * Initialize sched groups cpu_power.
6345 *
6346 * cpu_power indicates the capacity of sched group, which is used while
6347 * distributing the load between different sched groups in a sched domain.
6348 * Typically cpu_power for all the groups in a sched domain will be same unless
6349 * there are asymmetries in the topology. If there are asymmetries, group
6350 * having more cpu_power will pickup more load compared to the group having
6351 * less cpu_power.
6352 *
6353 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6354 * the maximum number of tasks a group can handle in the presence of other idle
6355 * or lightly loaded groups in the same sched domain.
6356 */
6357 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6358 {
6359 struct sched_domain *child;
6360 struct sched_group *group;
6361
6362 WARN_ON(!sd || !sd->groups);
6363
6364 if (cpu != first_cpu(sd->groups->cpumask))
6365 return;
6366
6367 child = sd->child;
6368
6369 /*
6370 * For perf policy, if the groups in child domain share resources
6371 * (for example cores sharing some portions of the cache hierarchy
6372 * or SMT), then set this domain groups cpu_power such that each group
6373 * can handle only one task, when there are other idle groups in the
6374 * same sched domain.
6375 */
6376 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6377 (child->flags &
6378 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6379 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6380 return;
6381 }
6382
6383 sd->groups->cpu_power = 0;
6384
6385 /*
6386 * add cpu_power of each child group to this groups cpu_power
6387 */
6388 group = child->groups;
6389 do {
6390 sd->groups->cpu_power += group->cpu_power;
6391 group = group->next;
6392 } while (group != child->groups);
6393 }
6394
6395 /*
6396 * Build sched domains for a given set of cpus and attach the sched domains
6397 * to the individual cpus
6398 */
6399 static int build_sched_domains(const cpumask_t *cpu_map)
6400 {
6401 int i;
6402 struct sched_domain *sd;
6403 #ifdef CONFIG_NUMA
6404 struct sched_group **sched_group_nodes = NULL;
6405 int sd_allnodes = 0;
6406
6407 /*
6408 * Allocate the per-node list of sched groups
6409 */
6410 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6411 GFP_KERNEL);
6412 if (!sched_group_nodes) {
6413 printk(KERN_WARNING "Can not alloc sched group node list\n");
6414 return -ENOMEM;
6415 }
6416 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6417 #endif
6418
6419 /*
6420 * Set up domains for cpus specified by the cpu_map.
6421 */
6422 for_each_cpu_mask(i, *cpu_map) {
6423 struct sched_domain *sd = NULL, *p;
6424 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6425
6426 cpus_and(nodemask, nodemask, *cpu_map);
6427
6428 #ifdef CONFIG_NUMA
6429 if (cpus_weight(*cpu_map)
6430 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6431 sd = &per_cpu(allnodes_domains, i);
6432 *sd = SD_ALLNODES_INIT;
6433 sd->span = *cpu_map;
6434 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6435 p = sd;
6436 sd_allnodes = 1;
6437 } else
6438 p = NULL;
6439
6440 sd = &per_cpu(node_domains, i);
6441 *sd = SD_NODE_INIT;
6442 sd->span = sched_domain_node_span(cpu_to_node(i));
6443 sd->parent = p;
6444 if (p)
6445 p->child = sd;
6446 cpus_and(sd->span, sd->span, *cpu_map);
6447 #endif
6448
6449 p = sd;
6450 sd = &per_cpu(phys_domains, i);
6451 *sd = SD_CPU_INIT;
6452 sd->span = nodemask;
6453 sd->parent = p;
6454 if (p)
6455 p->child = sd;
6456 cpu_to_phys_group(i, cpu_map, &sd->groups);
6457
6458 #ifdef CONFIG_SCHED_MC
6459 p = sd;
6460 sd = &per_cpu(core_domains, i);
6461 *sd = SD_MC_INIT;
6462 sd->span = cpu_coregroup_map(i);
6463 cpus_and(sd->span, sd->span, *cpu_map);
6464 sd->parent = p;
6465 p->child = sd;
6466 cpu_to_core_group(i, cpu_map, &sd->groups);
6467 #endif
6468
6469 #ifdef CONFIG_SCHED_SMT
6470 p = sd;
6471 sd = &per_cpu(cpu_domains, i);
6472 *sd = SD_SIBLING_INIT;
6473 sd->span = cpu_sibling_map[i];
6474 cpus_and(sd->span, sd->span, *cpu_map);
6475 sd->parent = p;
6476 p->child = sd;
6477 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6478 #endif
6479 }
6480
6481 #ifdef CONFIG_SCHED_SMT
6482 /* Set up CPU (sibling) groups */
6483 for_each_cpu_mask(i, *cpu_map) {
6484 cpumask_t this_sibling_map = cpu_sibling_map[i];
6485 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6486 if (i != first_cpu(this_sibling_map))
6487 continue;
6488
6489 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
6490 }
6491 #endif
6492
6493 #ifdef CONFIG_SCHED_MC
6494 /* Set up multi-core groups */
6495 for_each_cpu_mask(i, *cpu_map) {
6496 cpumask_t this_core_map = cpu_coregroup_map(i);
6497 cpus_and(this_core_map, this_core_map, *cpu_map);
6498 if (i != first_cpu(this_core_map))
6499 continue;
6500 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6501 }
6502 #endif
6503
6504
6505 /* Set up physical groups */
6506 for (i = 0; i < MAX_NUMNODES; i++) {
6507 cpumask_t nodemask = node_to_cpumask(i);
6508
6509 cpus_and(nodemask, nodemask, *cpu_map);
6510 if (cpus_empty(nodemask))
6511 continue;
6512
6513 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6514 }
6515
6516 #ifdef CONFIG_NUMA
6517 /* Set up node groups */
6518 if (sd_allnodes)
6519 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6520
6521 for (i = 0; i < MAX_NUMNODES; i++) {
6522 /* Set up node groups */
6523 struct sched_group *sg, *prev;
6524 cpumask_t nodemask = node_to_cpumask(i);
6525 cpumask_t domainspan;
6526 cpumask_t covered = CPU_MASK_NONE;
6527 int j;
6528
6529 cpus_and(nodemask, nodemask, *cpu_map);
6530 if (cpus_empty(nodemask)) {
6531 sched_group_nodes[i] = NULL;
6532 continue;
6533 }
6534
6535 domainspan = sched_domain_node_span(i);
6536 cpus_and(domainspan, domainspan, *cpu_map);
6537
6538 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6539 if (!sg) {
6540 printk(KERN_WARNING "Can not alloc domain group for "
6541 "node %d\n", i);
6542 goto error;
6543 }
6544 sched_group_nodes[i] = sg;
6545 for_each_cpu_mask(j, nodemask) {
6546 struct sched_domain *sd;
6547 sd = &per_cpu(node_domains, j);
6548 sd->groups = sg;
6549 }
6550 sg->cpu_power = 0;
6551 sg->cpumask = nodemask;
6552 sg->next = sg;
6553 cpus_or(covered, covered, nodemask);
6554 prev = sg;
6555
6556 for (j = 0; j < MAX_NUMNODES; j++) {
6557 cpumask_t tmp, notcovered;
6558 int n = (i + j) % MAX_NUMNODES;
6559
6560 cpus_complement(notcovered, covered);
6561 cpus_and(tmp, notcovered, *cpu_map);
6562 cpus_and(tmp, tmp, domainspan);
6563 if (cpus_empty(tmp))
6564 break;
6565
6566 nodemask = node_to_cpumask(n);
6567 cpus_and(tmp, tmp, nodemask);
6568 if (cpus_empty(tmp))
6569 continue;
6570
6571 sg = kmalloc_node(sizeof(struct sched_group),
6572 GFP_KERNEL, i);
6573 if (!sg) {
6574 printk(KERN_WARNING
6575 "Can not alloc domain group for node %d\n", j);
6576 goto error;
6577 }
6578 sg->cpu_power = 0;
6579 sg->cpumask = tmp;
6580 sg->next = prev->next;
6581 cpus_or(covered, covered, tmp);
6582 prev->next = sg;
6583 prev = sg;
6584 }
6585 }
6586 #endif
6587
6588 /* Calculate CPU power for physical packages and nodes */
6589 #ifdef CONFIG_SCHED_SMT
6590 for_each_cpu_mask(i, *cpu_map) {
6591 sd = &per_cpu(cpu_domains, i);
6592 init_sched_groups_power(i, sd);
6593 }
6594 #endif
6595 #ifdef CONFIG_SCHED_MC
6596 for_each_cpu_mask(i, *cpu_map) {
6597 sd = &per_cpu(core_domains, i);
6598 init_sched_groups_power(i, sd);
6599 }
6600 #endif
6601
6602 for_each_cpu_mask(i, *cpu_map) {
6603 sd = &per_cpu(phys_domains, i);
6604 init_sched_groups_power(i, sd);
6605 }
6606
6607 #ifdef CONFIG_NUMA
6608 for (i = 0; i < MAX_NUMNODES; i++)
6609 init_numa_sched_groups_power(sched_group_nodes[i]);
6610
6611 if (sd_allnodes) {
6612 struct sched_group *sg;
6613
6614 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6615 init_numa_sched_groups_power(sg);
6616 }
6617 #endif
6618
6619 /* Attach the domains */
6620 for_each_cpu_mask(i, *cpu_map) {
6621 struct sched_domain *sd;
6622 #ifdef CONFIG_SCHED_SMT
6623 sd = &per_cpu(cpu_domains, i);
6624 #elif defined(CONFIG_SCHED_MC)
6625 sd = &per_cpu(core_domains, i);
6626 #else
6627 sd = &per_cpu(phys_domains, i);
6628 #endif
6629 cpu_attach_domain(sd, i);
6630 }
6631 /*
6632 * Tune cache-hot values:
6633 */
6634 calibrate_migration_costs(cpu_map);
6635
6636 return 0;
6637
6638 #ifdef CONFIG_NUMA
6639 error:
6640 free_sched_groups(cpu_map);
6641 return -ENOMEM;
6642 #endif
6643 }
6644 /*
6645 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6646 */
6647 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6648 {
6649 cpumask_t cpu_default_map;
6650 int err;
6651
6652 /*
6653 * Setup mask for cpus without special case scheduling requirements.
6654 * For now this just excludes isolated cpus, but could be used to
6655 * exclude other special cases in the future.
6656 */
6657 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6658
6659 err = build_sched_domains(&cpu_default_map);
6660
6661 return err;
6662 }
6663
6664 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6665 {
6666 free_sched_groups(cpu_map);
6667 }
6668
6669 /*
6670 * Detach sched domains from a group of cpus specified in cpu_map
6671 * These cpus will now be attached to the NULL domain
6672 */
6673 static void detach_destroy_domains(const cpumask_t *cpu_map)
6674 {
6675 int i;
6676
6677 for_each_cpu_mask(i, *cpu_map)
6678 cpu_attach_domain(NULL, i);
6679 synchronize_sched();
6680 arch_destroy_sched_domains(cpu_map);
6681 }
6682
6683 /*
6684 * Partition sched domains as specified by the cpumasks below.
6685 * This attaches all cpus from the cpumasks to the NULL domain,
6686 * waits for a RCU quiescent period, recalculates sched
6687 * domain information and then attaches them back to the
6688 * correct sched domains
6689 * Call with hotplug lock held
6690 */
6691 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6692 {
6693 cpumask_t change_map;
6694 int err = 0;
6695
6696 cpus_and(*partition1, *partition1, cpu_online_map);
6697 cpus_and(*partition2, *partition2, cpu_online_map);
6698 cpus_or(change_map, *partition1, *partition2);
6699
6700 /* Detach sched domains from all of the affected cpus */
6701 detach_destroy_domains(&change_map);
6702 if (!cpus_empty(*partition1))
6703 err = build_sched_domains(partition1);
6704 if (!err && !cpus_empty(*partition2))
6705 err = build_sched_domains(partition2);
6706
6707 return err;
6708 }
6709
6710 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6711 int arch_reinit_sched_domains(void)
6712 {
6713 int err;
6714
6715 lock_cpu_hotplug();
6716 detach_destroy_domains(&cpu_online_map);
6717 err = arch_init_sched_domains(&cpu_online_map);
6718 unlock_cpu_hotplug();
6719
6720 return err;
6721 }
6722
6723 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6724 {
6725 int ret;
6726
6727 if (buf[0] != '0' && buf[0] != '1')
6728 return -EINVAL;
6729
6730 if (smt)
6731 sched_smt_power_savings = (buf[0] == '1');
6732 else
6733 sched_mc_power_savings = (buf[0] == '1');
6734
6735 ret = arch_reinit_sched_domains();
6736
6737 return ret ? ret : count;
6738 }
6739
6740 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6741 {
6742 int err = 0;
6743
6744 #ifdef CONFIG_SCHED_SMT
6745 if (smt_capable())
6746 err = sysfs_create_file(&cls->kset.kobj,
6747 &attr_sched_smt_power_savings.attr);
6748 #endif
6749 #ifdef CONFIG_SCHED_MC
6750 if (!err && mc_capable())
6751 err = sysfs_create_file(&cls->kset.kobj,
6752 &attr_sched_mc_power_savings.attr);
6753 #endif
6754 return err;
6755 }
6756 #endif
6757
6758 #ifdef CONFIG_SCHED_MC
6759 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6760 {
6761 return sprintf(page, "%u\n", sched_mc_power_savings);
6762 }
6763 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6764 const char *buf, size_t count)
6765 {
6766 return sched_power_savings_store(buf, count, 0);
6767 }
6768 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6769 sched_mc_power_savings_store);
6770 #endif
6771
6772 #ifdef CONFIG_SCHED_SMT
6773 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6774 {
6775 return sprintf(page, "%u\n", sched_smt_power_savings);
6776 }
6777 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6778 const char *buf, size_t count)
6779 {
6780 return sched_power_savings_store(buf, count, 1);
6781 }
6782 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6783 sched_smt_power_savings_store);
6784 #endif
6785
6786 /*
6787 * Force a reinitialization of the sched domains hierarchy. The domains
6788 * and groups cannot be updated in place without racing with the balancing
6789 * code, so we temporarily attach all running cpus to the NULL domain
6790 * which will prevent rebalancing while the sched domains are recalculated.
6791 */
6792 static int update_sched_domains(struct notifier_block *nfb,
6793 unsigned long action, void *hcpu)
6794 {
6795 switch (action) {
6796 case CPU_UP_PREPARE:
6797 case CPU_DOWN_PREPARE:
6798 detach_destroy_domains(&cpu_online_map);
6799 return NOTIFY_OK;
6800
6801 case CPU_UP_CANCELED:
6802 case CPU_DOWN_FAILED:
6803 case CPU_ONLINE:
6804 case CPU_DEAD:
6805 /*
6806 * Fall through and re-initialise the domains.
6807 */
6808 break;
6809 default:
6810 return NOTIFY_DONE;
6811 }
6812
6813 /* The hotplug lock is already held by cpu_up/cpu_down */
6814 arch_init_sched_domains(&cpu_online_map);
6815
6816 return NOTIFY_OK;
6817 }
6818
6819 void __init sched_init_smp(void)
6820 {
6821 cpumask_t non_isolated_cpus;
6822
6823 lock_cpu_hotplug();
6824 arch_init_sched_domains(&cpu_online_map);
6825 cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
6826 if (cpus_empty(non_isolated_cpus))
6827 cpu_set(smp_processor_id(), non_isolated_cpus);
6828 unlock_cpu_hotplug();
6829 /* XXX: Theoretical race here - CPU may be hotplugged now */
6830 hotcpu_notifier(update_sched_domains, 0);
6831
6832 /* Move init over to a non-isolated CPU */
6833 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6834 BUG();
6835 }
6836 #else
6837 void __init sched_init_smp(void)
6838 {
6839 }
6840 #endif /* CONFIG_SMP */
6841
6842 int in_sched_functions(unsigned long addr)
6843 {
6844 /* Linker adds these: start and end of __sched functions */
6845 extern char __sched_text_start[], __sched_text_end[];
6846
6847 return in_lock_functions(addr) ||
6848 (addr >= (unsigned long)__sched_text_start
6849 && addr < (unsigned long)__sched_text_end);
6850 }
6851
6852 void __init sched_init(void)
6853 {
6854 int i, j, k;
6855
6856 for_each_possible_cpu(i) {
6857 struct prio_array *array;
6858 struct rq *rq;
6859
6860 rq = cpu_rq(i);
6861 spin_lock_init(&rq->lock);
6862 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6863 rq->nr_running = 0;
6864 rq->active = rq->arrays;
6865 rq->expired = rq->arrays + 1;
6866 rq->best_expired_prio = MAX_PRIO;
6867
6868 #ifdef CONFIG_SMP
6869 rq->sd = NULL;
6870 for (j = 1; j < 3; j++)
6871 rq->cpu_load[j] = 0;
6872 rq->active_balance = 0;
6873 rq->push_cpu = 0;
6874 rq->cpu = i;
6875 rq->migration_thread = NULL;
6876 INIT_LIST_HEAD(&rq->migration_queue);
6877 #endif
6878 atomic_set(&rq->nr_iowait, 0);
6879
6880 for (j = 0; j < 2; j++) {
6881 array = rq->arrays + j;
6882 for (k = 0; k < MAX_PRIO; k++) {
6883 INIT_LIST_HEAD(array->queue + k);
6884 __clear_bit(k, array->bitmap);
6885 }
6886 // delimiter for bitsearch
6887 __set_bit(MAX_PRIO, array->bitmap);
6888 }
6889 }
6890
6891 set_load_weight(&init_task);
6892
6893 #ifdef CONFIG_SMP
6894 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6895 #endif
6896
6897 #ifdef CONFIG_RT_MUTEXES
6898 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6899 #endif
6900
6901 /*
6902 * The boot idle thread does lazy MMU switching as well:
6903 */
6904 atomic_inc(&init_mm.mm_count);
6905 enter_lazy_tlb(&init_mm, current);
6906
6907 /*
6908 * Make us the idle thread. Technically, schedule() should not be
6909 * called from this thread, however somewhere below it might be,
6910 * but because we are the idle thread, we just pick up running again
6911 * when this runqueue becomes "idle".
6912 */
6913 init_idle(current, smp_processor_id());
6914 }
6915
6916 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6917 void __might_sleep(char *file, int line)
6918 {
6919 #ifdef in_atomic
6920 static unsigned long prev_jiffy; /* ratelimiting */
6921
6922 if ((in_atomic() || irqs_disabled()) &&
6923 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6924 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6925 return;
6926 prev_jiffy = jiffies;
6927 printk(KERN_ERR "BUG: sleeping function called from invalid"
6928 " context at %s:%d\n", file, line);
6929 printk("in_atomic():%d, irqs_disabled():%d\n",
6930 in_atomic(), irqs_disabled());
6931 debug_show_held_locks(current);
6932 dump_stack();
6933 }
6934 #endif
6935 }
6936 EXPORT_SYMBOL(__might_sleep);
6937 #endif
6938
6939 #ifdef CONFIG_MAGIC_SYSRQ
6940 void normalize_rt_tasks(void)
6941 {
6942 struct prio_array *array;
6943 struct task_struct *p;
6944 unsigned long flags;
6945 struct rq *rq;
6946
6947 read_lock_irq(&tasklist_lock);
6948 for_each_process(p) {
6949 if (!rt_task(p))
6950 continue;
6951
6952 spin_lock_irqsave(&p->pi_lock, flags);
6953 rq = __task_rq_lock(p);
6954
6955 array = p->array;
6956 if (array)
6957 deactivate_task(p, task_rq(p));
6958 __setscheduler(p, SCHED_NORMAL, 0);
6959 if (array) {
6960 __activate_task(p, task_rq(p));
6961 resched_task(rq->curr);
6962 }
6963
6964 __task_rq_unlock(rq);
6965 spin_unlock_irqrestore(&p->pi_lock, flags);
6966 }
6967 read_unlock_irq(&tasklist_lock);
6968 }
6969
6970 #endif /* CONFIG_MAGIC_SYSRQ */
6971
6972 #ifdef CONFIG_IA64
6973 /*
6974 * These functions are only useful for the IA64 MCA handling.
6975 *
6976 * They can only be called when the whole system has been
6977 * stopped - every CPU needs to be quiescent, and no scheduling
6978 * activity can take place. Using them for anything else would
6979 * be a serious bug, and as a result, they aren't even visible
6980 * under any other configuration.
6981 */
6982
6983 /**
6984 * curr_task - return the current task for a given cpu.
6985 * @cpu: the processor in question.
6986 *
6987 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6988 */
6989 struct task_struct *curr_task(int cpu)
6990 {
6991 return cpu_curr(cpu);
6992 }
6993
6994 /**
6995 * set_curr_task - set the current task for a given cpu.
6996 * @cpu: the processor in question.
6997 * @p: the task pointer to set.
6998 *
6999 * Description: This function must only be used when non-maskable interrupts
7000 * are serviced on a separate stack. It allows the architecture to switch the
7001 * notion of the current task on a cpu in a non-blocking manner. This function
7002 * must be called with all CPU's synchronized, and interrupts disabled, the
7003 * and caller must save the original value of the current task (see
7004 * curr_task() above) and restore that value before reenabling interrupts and
7005 * re-starting the system.
7006 *
7007 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7008 */
7009 void set_curr_task(int cpu, struct task_struct *p)
7010 {
7011 cpu_curr(cpu) = p;
7012 }
7013
7014 #endif