]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
84
85 /*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94 /*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
111 /*
112 * These are the 'tuning knobs' of the scheduler:
113 *
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
116 */
117 #define DEF_TIMESLICE (100 * HZ / 1000)
118
119 /*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122 #define RUNTIME_INF ((u64)~0ULL)
123
124 static inline int rt_policy(int policy)
125 {
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
129 }
130
131 static inline int task_has_rt_policy(struct task_struct *p)
132 {
133 return rt_policy(p->policy);
134 }
135
136 /*
137 * This is the priority-queue data structure of the RT scheduling class:
138 */
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142 };
143
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
150 };
151
152 static struct rt_bandwidth def_rt_bandwidth;
153
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 {
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 }
176
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 {
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 }
189
190 static inline int rt_bandwidth_enabled(void)
191 {
192 return sysctl_sched_rt_runtime >= 0;
193 }
194
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 {
197 ktime_t now;
198
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
209
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
221 }
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 }
224
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 {
228 hrtimer_cancel(&rt_b->rt_period_timer);
229 }
230 #endif
231
232 /*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236 static DEFINE_MUTEX(sched_domains_mutex);
237
238 #ifdef CONFIG_CGROUP_SCHED
239
240 #include <linux/cgroup.h>
241
242 struct cfs_rq;
243
244 static LIST_HEAD(task_groups);
245
246 /* task group related information */
247 struct task_group {
248 struct cgroup_subsys_state css;
249
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
256 #endif
257
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
262 struct rt_bandwidth rt_bandwidth;
263 #endif
264
265 struct rcu_head rcu;
266 struct list_head list;
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
271 };
272
273 #define root_task_group init_task_group
274
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
277 */
278 static DEFINE_SPINLOCK(task_group_lock);
279
280 #ifdef CONFIG_FAIR_GROUP_SCHED
281
282 #ifdef CONFIG_SMP
283 static int root_task_group_empty(void)
284 {
285 return list_empty(&root_task_group.children);
286 }
287 #endif
288
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
290
291 /*
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
299 #define MIN_SHARES 2
300 #define MAX_SHARES (1UL << 18)
301
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303 #endif
304
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
307 */
308 struct task_group init_task_group;
309
310 #endif /* CONFIG_CGROUP_SCHED */
311
312 /* CFS-related fields in a runqueue */
313 struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
317 u64 exec_clock;
318 u64 min_vruntime;
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
330 struct sched_entity *curr, *next, *last;
331
332 unsigned int nr_spread_over;
333
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
347
348 #ifdef CONFIG_SMP
349 /*
350 * the part of load.weight contributed by tasks
351 */
352 unsigned long task_weight;
353
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
361
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
371 #endif
372 #endif
373 };
374
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
398
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
401
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
406 };
407
408 #ifdef CONFIG_SMP
409
410 /*
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
417 */
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
422
423 /*
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 #ifdef CONFIG_SMP
430 struct cpupri cpupri;
431 #endif
432 };
433
434 /*
435 * By default the system creates a single root-domain with all cpus as
436 * members (mimicking the global state we have today).
437 */
438 static struct root_domain def_root_domain;
439
440 #endif
441
442 /*
443 * This is the main, per-CPU runqueue data structure.
444 *
445 * Locking rule: those places that want to lock multiple runqueues
446 * (such as the load balancing or the thread migration code), lock
447 * acquire operations must be ordered by ascending &runqueue.
448 */
449 struct rq {
450 /* runqueue lock: */
451 raw_spinlock_t lock;
452
453 /*
454 * nr_running and cpu_load should be in the same cacheline because
455 * remote CPUs use both these fields when doing load calculation.
456 */
457 unsigned long nr_running;
458 #define CPU_LOAD_IDX_MAX 5
459 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
460 unsigned long last_load_update_tick;
461 #ifdef CONFIG_NO_HZ
462 u64 nohz_stamp;
463 unsigned char nohz_balance_kick;
464 #endif
465 unsigned int skip_clock_update;
466
467 /* capture load from *all* tasks on this cpu: */
468 struct load_weight load;
469 unsigned long nr_load_updates;
470 u64 nr_switches;
471
472 struct cfs_rq cfs;
473 struct rt_rq rt;
474
475 #ifdef CONFIG_FAIR_GROUP_SCHED
476 /* list of leaf cfs_rq on this cpu: */
477 struct list_head leaf_cfs_rq_list;
478 #endif
479 #ifdef CONFIG_RT_GROUP_SCHED
480 struct list_head leaf_rt_rq_list;
481 #endif
482
483 /*
484 * This is part of a global counter where only the total sum
485 * over all CPUs matters. A task can increase this counter on
486 * one CPU and if it got migrated afterwards it may decrease
487 * it on another CPU. Always updated under the runqueue lock:
488 */
489 unsigned long nr_uninterruptible;
490
491 struct task_struct *curr, *idle;
492 unsigned long next_balance;
493 struct mm_struct *prev_mm;
494
495 u64 clock;
496
497 atomic_t nr_iowait;
498
499 #ifdef CONFIG_SMP
500 struct root_domain *rd;
501 struct sched_domain *sd;
502
503 unsigned long cpu_power;
504
505 unsigned char idle_at_tick;
506 /* For active balancing */
507 int post_schedule;
508 int active_balance;
509 int push_cpu;
510 struct cpu_stop_work active_balance_work;
511 /* cpu of this runqueue: */
512 int cpu;
513 int online;
514
515 unsigned long avg_load_per_task;
516
517 u64 rt_avg;
518 u64 age_stamp;
519 u64 idle_stamp;
520 u64 avg_idle;
521 #endif
522
523 /* calc_load related fields */
524 unsigned long calc_load_update;
525 long calc_load_active;
526
527 #ifdef CONFIG_SCHED_HRTICK
528 #ifdef CONFIG_SMP
529 int hrtick_csd_pending;
530 struct call_single_data hrtick_csd;
531 #endif
532 struct hrtimer hrtick_timer;
533 #endif
534
535 #ifdef CONFIG_SCHEDSTATS
536 /* latency stats */
537 struct sched_info rq_sched_info;
538 unsigned long long rq_cpu_time;
539 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
540
541 /* sys_sched_yield() stats */
542 unsigned int yld_count;
543
544 /* schedule() stats */
545 unsigned int sched_switch;
546 unsigned int sched_count;
547 unsigned int sched_goidle;
548
549 /* try_to_wake_up() stats */
550 unsigned int ttwu_count;
551 unsigned int ttwu_local;
552
553 /* BKL stats */
554 unsigned int bkl_count;
555 #endif
556 };
557
558 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
559
560 static inline
561 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
562 {
563 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
564
565 /*
566 * A queue event has occurred, and we're going to schedule. In
567 * this case, we can save a useless back to back clock update.
568 */
569 if (test_tsk_need_resched(p))
570 rq->skip_clock_update = 1;
571 }
572
573 static inline int cpu_of(struct rq *rq)
574 {
575 #ifdef CONFIG_SMP
576 return rq->cpu;
577 #else
578 return 0;
579 #endif
580 }
581
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_sched_held() || \
585 lockdep_is_held(&sched_domains_mutex))
586
587 /*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
596
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
602
603 #ifdef CONFIG_CGROUP_SCHED
604
605 /*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
612 */
613 static inline struct task_group *task_group(struct task_struct *p)
614 {
615 struct cgroup_subsys_state *css;
616
617 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
618 lockdep_is_held(&task_rq(p)->lock));
619 return container_of(css, struct task_group, css);
620 }
621
622 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
623 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
624 {
625 #ifdef CONFIG_FAIR_GROUP_SCHED
626 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
627 p->se.parent = task_group(p)->se[cpu];
628 #endif
629
630 #ifdef CONFIG_RT_GROUP_SCHED
631 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
632 p->rt.parent = task_group(p)->rt_se[cpu];
633 #endif
634 }
635
636 #else /* CONFIG_CGROUP_SCHED */
637
638 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
639 static inline struct task_group *task_group(struct task_struct *p)
640 {
641 return NULL;
642 }
643
644 #endif /* CONFIG_CGROUP_SCHED */
645
646 inline void update_rq_clock(struct rq *rq)
647 {
648 if (!rq->skip_clock_update)
649 rq->clock = sched_clock_cpu(cpu_of(rq));
650 }
651
652 /*
653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 */
655 #ifdef CONFIG_SCHED_DEBUG
656 # define const_debug __read_mostly
657 #else
658 # define const_debug static const
659 #endif
660
661 /**
662 * runqueue_is_locked
663 * @cpu: the processor in question.
664 *
665 * Returns true if the current cpu runqueue is locked.
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
669 int runqueue_is_locked(int cpu)
670 {
671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
672 }
673
674 /*
675 * Debugging: various feature bits
676 */
677
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
681 enum {
682 #include "sched_features.h"
683 };
684
685 #undef SCHED_FEAT
686
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
690 const_debug unsigned int sysctl_sched_features =
691 #include "sched_features.h"
692 0;
693
694 #undef SCHED_FEAT
695
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
698 #name ,
699
700 static __read_mostly char *sched_feat_names[] = {
701 #include "sched_features.h"
702 NULL
703 };
704
705 #undef SCHED_FEAT
706
707 static int sched_feat_show(struct seq_file *m, void *v)
708 {
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
715 }
716 seq_puts(m, "\n");
717
718 return 0;
719 }
720
721 static ssize_t
722 sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724 {
725 char buf[64];
726 char *cmp = buf;
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
737
738 if (strncmp(buf, "NO_", 3) == 0) {
739 neg = 1;
740 cmp += 3;
741 }
742
743 for (i = 0; sched_feat_names[i]; i++) {
744 int len = strlen(sched_feat_names[i]);
745
746 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
747 if (neg)
748 sysctl_sched_features &= ~(1UL << i);
749 else
750 sysctl_sched_features |= (1UL << i);
751 break;
752 }
753 }
754
755 if (!sched_feat_names[i])
756 return -EINVAL;
757
758 *ppos += cnt;
759
760 return cnt;
761 }
762
763 static int sched_feat_open(struct inode *inode, struct file *filp)
764 {
765 return single_open(filp, sched_feat_show, NULL);
766 }
767
768 static const struct file_operations sched_feat_fops = {
769 .open = sched_feat_open,
770 .write = sched_feat_write,
771 .read = seq_read,
772 .llseek = seq_lseek,
773 .release = single_release,
774 };
775
776 static __init int sched_init_debug(void)
777 {
778 debugfs_create_file("sched_features", 0644, NULL, NULL,
779 &sched_feat_fops);
780
781 return 0;
782 }
783 late_initcall(sched_init_debug);
784
785 #endif
786
787 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
788
789 /*
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
792 */
793 const_debug unsigned int sysctl_sched_nr_migrate = 32;
794
795 /*
796 * ratelimit for updating the group shares.
797 * default: 0.25ms
798 */
799 unsigned int sysctl_sched_shares_ratelimit = 250000;
800 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
801
802 /*
803 * Inject some fuzzyness into changing the per-cpu group shares
804 * this avoids remote rq-locks at the expense of fairness.
805 * default: 4
806 */
807 unsigned int sysctl_sched_shares_thresh = 4;
808
809 /*
810 * period over which we average the RT time consumption, measured
811 * in ms.
812 *
813 * default: 1s
814 */
815 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
816
817 /*
818 * period over which we measure -rt task cpu usage in us.
819 * default: 1s
820 */
821 unsigned int sysctl_sched_rt_period = 1000000;
822
823 static __read_mostly int scheduler_running;
824
825 /*
826 * part of the period that we allow rt tasks to run in us.
827 * default: 0.95s
828 */
829 int sysctl_sched_rt_runtime = 950000;
830
831 static inline u64 global_rt_period(void)
832 {
833 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
834 }
835
836 static inline u64 global_rt_runtime(void)
837 {
838 if (sysctl_sched_rt_runtime < 0)
839 return RUNTIME_INF;
840
841 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
842 }
843
844 #ifndef prepare_arch_switch
845 # define prepare_arch_switch(next) do { } while (0)
846 #endif
847 #ifndef finish_arch_switch
848 # define finish_arch_switch(prev) do { } while (0)
849 #endif
850
851 static inline int task_current(struct rq *rq, struct task_struct *p)
852 {
853 return rq->curr == p;
854 }
855
856 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
857 static inline int task_running(struct rq *rq, struct task_struct *p)
858 {
859 return task_current(rq, p);
860 }
861
862 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
863 {
864 }
865
866 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
867 {
868 #ifdef CONFIG_DEBUG_SPINLOCK
869 /* this is a valid case when another task releases the spinlock */
870 rq->lock.owner = current;
871 #endif
872 /*
873 * If we are tracking spinlock dependencies then we have to
874 * fix up the runqueue lock - which gets 'carried over' from
875 * prev into current:
876 */
877 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
878
879 raw_spin_unlock_irq(&rq->lock);
880 }
881
882 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
883 static inline int task_running(struct rq *rq, struct task_struct *p)
884 {
885 #ifdef CONFIG_SMP
886 return p->oncpu;
887 #else
888 return task_current(rq, p);
889 #endif
890 }
891
892 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
893 {
894 #ifdef CONFIG_SMP
895 /*
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
899 */
900 next->oncpu = 1;
901 #endif
902 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903 raw_spin_unlock_irq(&rq->lock);
904 #else
905 raw_spin_unlock(&rq->lock);
906 #endif
907 }
908
909 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
910 {
911 #ifdef CONFIG_SMP
912 /*
913 * After ->oncpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
918 prev->oncpu = 0;
919 #endif
920 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
922 #endif
923 }
924 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
925
926 /*
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
928 * against ttwu().
929 */
930 static inline int task_is_waking(struct task_struct *p)
931 {
932 return unlikely(p->state == TASK_WAKING);
933 }
934
935 /*
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
938 */
939 static inline struct rq *__task_rq_lock(struct task_struct *p)
940 __acquires(rq->lock)
941 {
942 struct rq *rq;
943
944 for (;;) {
945 rq = task_rq(p);
946 raw_spin_lock(&rq->lock);
947 if (likely(rq == task_rq(p)))
948 return rq;
949 raw_spin_unlock(&rq->lock);
950 }
951 }
952
953 /*
954 * task_rq_lock - lock the runqueue a given task resides on and disable
955 * interrupts. Note the ordering: we can safely lookup the task_rq without
956 * explicitly disabling preemption.
957 */
958 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
959 __acquires(rq->lock)
960 {
961 struct rq *rq;
962
963 for (;;) {
964 local_irq_save(*flags);
965 rq = task_rq(p);
966 raw_spin_lock(&rq->lock);
967 if (likely(rq == task_rq(p)))
968 return rq;
969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
970 }
971 }
972
973 static void __task_rq_unlock(struct rq *rq)
974 __releases(rq->lock)
975 {
976 raw_spin_unlock(&rq->lock);
977 }
978
979 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
980 __releases(rq->lock)
981 {
982 raw_spin_unlock_irqrestore(&rq->lock, *flags);
983 }
984
985 /*
986 * this_rq_lock - lock this runqueue and disable interrupts.
987 */
988 static struct rq *this_rq_lock(void)
989 __acquires(rq->lock)
990 {
991 struct rq *rq;
992
993 local_irq_disable();
994 rq = this_rq();
995 raw_spin_lock(&rq->lock);
996
997 return rq;
998 }
999
1000 #ifdef CONFIG_SCHED_HRTICK
1001 /*
1002 * Use HR-timers to deliver accurate preemption points.
1003 *
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1006 * reschedule event.
1007 *
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * rq->lock.
1010 */
1011
1012 /*
1013 * Use hrtick when:
1014 * - enabled by features
1015 * - hrtimer is actually high res
1016 */
1017 static inline int hrtick_enabled(struct rq *rq)
1018 {
1019 if (!sched_feat(HRTICK))
1020 return 0;
1021 if (!cpu_active(cpu_of(rq)))
1022 return 0;
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1024 }
1025
1026 static void hrtick_clear(struct rq *rq)
1027 {
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1030 }
1031
1032 /*
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1035 */
1036 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037 {
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041
1042 raw_spin_lock(&rq->lock);
1043 update_rq_clock(rq);
1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1045 raw_spin_unlock(&rq->lock);
1046
1047 return HRTIMER_NORESTART;
1048 }
1049
1050 #ifdef CONFIG_SMP
1051 /*
1052 * called from hardirq (IPI) context
1053 */
1054 static void __hrtick_start(void *arg)
1055 {
1056 struct rq *rq = arg;
1057
1058 raw_spin_lock(&rq->lock);
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
1061 raw_spin_unlock(&rq->lock);
1062 }
1063
1064 /*
1065 * Called to set the hrtick timer state.
1066 *
1067 * called with rq->lock held and irqs disabled
1068 */
1069 static void hrtick_start(struct rq *rq, u64 delay)
1070 {
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1073
1074 hrtimer_set_expires(timer, time);
1075
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1080 rq->hrtick_csd_pending = 1;
1081 }
1082 }
1083
1084 static int
1085 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086 {
1087 int cpu = (int)(long)hcpu;
1088
1089 switch (action) {
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 case CPU_DEAD:
1095 case CPU_DEAD_FROZEN:
1096 hrtick_clear(cpu_rq(cpu));
1097 return NOTIFY_OK;
1098 }
1099
1100 return NOTIFY_DONE;
1101 }
1102
1103 static __init void init_hrtick(void)
1104 {
1105 hotcpu_notifier(hotplug_hrtick, 0);
1106 }
1107 #else
1108 /*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113 static void hrtick_start(struct rq *rq, u64 delay)
1114 {
1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1116 HRTIMER_MODE_REL_PINNED, 0);
1117 }
1118
1119 static inline void init_hrtick(void)
1120 {
1121 }
1122 #endif /* CONFIG_SMP */
1123
1124 static void init_rq_hrtick(struct rq *rq)
1125 {
1126 #ifdef CONFIG_SMP
1127 rq->hrtick_csd_pending = 0;
1128
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1132 #endif
1133
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
1136 }
1137 #else /* CONFIG_SCHED_HRTICK */
1138 static inline void hrtick_clear(struct rq *rq)
1139 {
1140 }
1141
1142 static inline void init_rq_hrtick(struct rq *rq)
1143 {
1144 }
1145
1146 static inline void init_hrtick(void)
1147 {
1148 }
1149 #endif /* CONFIG_SCHED_HRTICK */
1150
1151 /*
1152 * resched_task - mark a task 'to be rescheduled now'.
1153 *
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1156 * the target CPU.
1157 */
1158 #ifdef CONFIG_SMP
1159
1160 #ifndef tsk_is_polling
1161 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1162 #endif
1163
1164 static void resched_task(struct task_struct *p)
1165 {
1166 int cpu;
1167
1168 assert_raw_spin_locked(&task_rq(p)->lock);
1169
1170 if (test_tsk_need_resched(p))
1171 return;
1172
1173 set_tsk_need_resched(p);
1174
1175 cpu = task_cpu(p);
1176 if (cpu == smp_processor_id())
1177 return;
1178
1179 /* NEED_RESCHED must be visible before we test polling */
1180 smp_mb();
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1183 }
1184
1185 static void resched_cpu(int cpu)
1186 {
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1189
1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1191 return;
1192 resched_task(cpu_curr(cpu));
1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
1194 }
1195
1196 #ifdef CONFIG_NO_HZ
1197 /*
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1200 *
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1204 */
1205 int get_nohz_timer_target(void)
1206 {
1207 int cpu = smp_processor_id();
1208 int i;
1209 struct sched_domain *sd;
1210
1211 for_each_domain(cpu, sd) {
1212 for_each_cpu(i, sched_domain_span(sd))
1213 if (!idle_cpu(i))
1214 return i;
1215 }
1216 return cpu;
1217 }
1218 /*
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1227 */
1228 void wake_up_idle_cpu(int cpu)
1229 {
1230 struct rq *rq = cpu_rq(cpu);
1231
1232 if (cpu == smp_processor_id())
1233 return;
1234
1235 /*
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1241 */
1242 if (rq->curr != rq->idle)
1243 return;
1244
1245 /*
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1249 */
1250 set_tsk_need_resched(rq->idle);
1251
1252 /* NEED_RESCHED must be visible before we test polling */
1253 smp_mb();
1254 if (!tsk_is_polling(rq->idle))
1255 smp_send_reschedule(cpu);
1256 }
1257
1258 #endif /* CONFIG_NO_HZ */
1259
1260 static u64 sched_avg_period(void)
1261 {
1262 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1263 }
1264
1265 static void sched_avg_update(struct rq *rq)
1266 {
1267 s64 period = sched_avg_period();
1268
1269 while ((s64)(rq->clock - rq->age_stamp) > period) {
1270 /*
1271 * Inline assembly required to prevent the compiler
1272 * optimising this loop into a divmod call.
1273 * See __iter_div_u64_rem() for another example of this.
1274 */
1275 asm("" : "+rm" (rq->age_stamp));
1276 rq->age_stamp += period;
1277 rq->rt_avg /= 2;
1278 }
1279 }
1280
1281 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1282 {
1283 rq->rt_avg += rt_delta;
1284 sched_avg_update(rq);
1285 }
1286
1287 #else /* !CONFIG_SMP */
1288 static void resched_task(struct task_struct *p)
1289 {
1290 assert_raw_spin_locked(&task_rq(p)->lock);
1291 set_tsk_need_resched(p);
1292 }
1293
1294 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1295 {
1296 }
1297 #endif /* CONFIG_SMP */
1298
1299 #if BITS_PER_LONG == 32
1300 # define WMULT_CONST (~0UL)
1301 #else
1302 # define WMULT_CONST (1UL << 32)
1303 #endif
1304
1305 #define WMULT_SHIFT 32
1306
1307 /*
1308 * Shift right and round:
1309 */
1310 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1311
1312 /*
1313 * delta *= weight / lw
1314 */
1315 static unsigned long
1316 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1317 struct load_weight *lw)
1318 {
1319 u64 tmp;
1320
1321 if (!lw->inv_weight) {
1322 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1323 lw->inv_weight = 1;
1324 else
1325 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1326 / (lw->weight+1);
1327 }
1328
1329 tmp = (u64)delta_exec * weight;
1330 /*
1331 * Check whether we'd overflow the 64-bit multiplication:
1332 */
1333 if (unlikely(tmp > WMULT_CONST))
1334 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1335 WMULT_SHIFT/2);
1336 else
1337 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1338
1339 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1340 }
1341
1342 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1343 {
1344 lw->weight += inc;
1345 lw->inv_weight = 0;
1346 }
1347
1348 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1349 {
1350 lw->weight -= dec;
1351 lw->inv_weight = 0;
1352 }
1353
1354 /*
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1359 * scaled version of the new time slice allocation that they receive on time
1360 * slice expiry etc.
1361 */
1362
1363 #define WEIGHT_IDLEPRIO 3
1364 #define WMULT_IDLEPRIO 1431655765
1365
1366 /*
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1371 *
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
1377 */
1378 static const int prio_to_weight[40] = {
1379 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1380 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1381 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1382 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1383 /* 0 */ 1024, 820, 655, 526, 423,
1384 /* 5 */ 335, 272, 215, 172, 137,
1385 /* 10 */ 110, 87, 70, 56, 45,
1386 /* 15 */ 36, 29, 23, 18, 15,
1387 };
1388
1389 /*
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1391 *
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1395 */
1396 static const u32 prio_to_wmult[40] = {
1397 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1398 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1399 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1400 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1401 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1402 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1403 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1404 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1405 };
1406
1407 /* Time spent by the tasks of the cpu accounting group executing in ... */
1408 enum cpuacct_stat_index {
1409 CPUACCT_STAT_USER, /* ... user mode */
1410 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1411
1412 CPUACCT_STAT_NSTATS,
1413 };
1414
1415 #ifdef CONFIG_CGROUP_CPUACCT
1416 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1417 static void cpuacct_update_stats(struct task_struct *tsk,
1418 enum cpuacct_stat_index idx, cputime_t val);
1419 #else
1420 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1421 static inline void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val) {}
1423 #endif
1424
1425 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1426 {
1427 update_load_add(&rq->load, load);
1428 }
1429
1430 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1431 {
1432 update_load_sub(&rq->load, load);
1433 }
1434
1435 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1436 typedef int (*tg_visitor)(struct task_group *, void *);
1437
1438 /*
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1441 */
1442 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1443 {
1444 struct task_group *parent, *child;
1445 int ret;
1446
1447 rcu_read_lock();
1448 parent = &root_task_group;
1449 down:
1450 ret = (*down)(parent, data);
1451 if (ret)
1452 goto out_unlock;
1453 list_for_each_entry_rcu(child, &parent->children, siblings) {
1454 parent = child;
1455 goto down;
1456
1457 up:
1458 continue;
1459 }
1460 ret = (*up)(parent, data);
1461 if (ret)
1462 goto out_unlock;
1463
1464 child = parent;
1465 parent = parent->parent;
1466 if (parent)
1467 goto up;
1468 out_unlock:
1469 rcu_read_unlock();
1470
1471 return ret;
1472 }
1473
1474 static int tg_nop(struct task_group *tg, void *data)
1475 {
1476 return 0;
1477 }
1478 #endif
1479
1480 #ifdef CONFIG_SMP
1481 /* Used instead of source_load when we know the type == 0 */
1482 static unsigned long weighted_cpuload(const int cpu)
1483 {
1484 return cpu_rq(cpu)->load.weight;
1485 }
1486
1487 /*
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 *
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1493 */
1494 static unsigned long source_load(int cpu, int type)
1495 {
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long total = weighted_cpuload(cpu);
1498
1499 if (type == 0 || !sched_feat(LB_BIAS))
1500 return total;
1501
1502 return min(rq->cpu_load[type-1], total);
1503 }
1504
1505 /*
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 */
1509 static unsigned long target_load(int cpu, int type)
1510 {
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return max(rq->cpu_load[type-1], total);
1518 }
1519
1520 static unsigned long power_of(int cpu)
1521 {
1522 return cpu_rq(cpu)->cpu_power;
1523 }
1524
1525 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527 static unsigned long cpu_avg_load_per_task(int cpu)
1528 {
1529 struct rq *rq = cpu_rq(cpu);
1530 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1531
1532 if (nr_running)
1533 rq->avg_load_per_task = rq->load.weight / nr_running;
1534 else
1535 rq->avg_load_per_task = 0;
1536
1537 return rq->avg_load_per_task;
1538 }
1539
1540 #ifdef CONFIG_FAIR_GROUP_SCHED
1541
1542 static __read_mostly unsigned long __percpu *update_shares_data;
1543
1544 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1545
1546 /*
1547 * Calculate and set the cpu's group shares.
1548 */
1549 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1550 unsigned long sd_shares,
1551 unsigned long sd_rq_weight,
1552 unsigned long *usd_rq_weight)
1553 {
1554 unsigned long shares, rq_weight;
1555 int boost = 0;
1556
1557 rq_weight = usd_rq_weight[cpu];
1558 if (!rq_weight) {
1559 boost = 1;
1560 rq_weight = NICE_0_LOAD;
1561 }
1562
1563 /*
1564 * \Sum_j shares_j * rq_weight_i
1565 * shares_i = -----------------------------
1566 * \Sum_j rq_weight_j
1567 */
1568 shares = (sd_shares * rq_weight) / sd_rq_weight;
1569 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1570
1571 if (abs(shares - tg->se[cpu]->load.weight) >
1572 sysctl_sched_shares_thresh) {
1573 struct rq *rq = cpu_rq(cpu);
1574 unsigned long flags;
1575
1576 raw_spin_lock_irqsave(&rq->lock, flags);
1577 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1578 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1579 __set_se_shares(tg->se[cpu], shares);
1580 raw_spin_unlock_irqrestore(&rq->lock, flags);
1581 }
1582 }
1583
1584 /*
1585 * Re-compute the task group their per cpu shares over the given domain.
1586 * This needs to be done in a bottom-up fashion because the rq weight of a
1587 * parent group depends on the shares of its child groups.
1588 */
1589 static int tg_shares_up(struct task_group *tg, void *data)
1590 {
1591 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1592 unsigned long *usd_rq_weight;
1593 struct sched_domain *sd = data;
1594 unsigned long flags;
1595 int i;
1596
1597 if (!tg->se[0])
1598 return 0;
1599
1600 local_irq_save(flags);
1601 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1602
1603 for_each_cpu(i, sched_domain_span(sd)) {
1604 weight = tg->cfs_rq[i]->load.weight;
1605 usd_rq_weight[i] = weight;
1606
1607 rq_weight += weight;
1608 /*
1609 * If there are currently no tasks on the cpu pretend there
1610 * is one of average load so that when a new task gets to
1611 * run here it will not get delayed by group starvation.
1612 */
1613 if (!weight)
1614 weight = NICE_0_LOAD;
1615
1616 sum_weight += weight;
1617 shares += tg->cfs_rq[i]->shares;
1618 }
1619
1620 if (!rq_weight)
1621 rq_weight = sum_weight;
1622
1623 if ((!shares && rq_weight) || shares > tg->shares)
1624 shares = tg->shares;
1625
1626 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1627 shares = tg->shares;
1628
1629 for_each_cpu(i, sched_domain_span(sd))
1630 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1631
1632 local_irq_restore(flags);
1633
1634 return 0;
1635 }
1636
1637 /*
1638 * Compute the cpu's hierarchical load factor for each task group.
1639 * This needs to be done in a top-down fashion because the load of a child
1640 * group is a fraction of its parents load.
1641 */
1642 static int tg_load_down(struct task_group *tg, void *data)
1643 {
1644 unsigned long load;
1645 long cpu = (long)data;
1646
1647 if (!tg->parent) {
1648 load = cpu_rq(cpu)->load.weight;
1649 } else {
1650 load = tg->parent->cfs_rq[cpu]->h_load;
1651 load *= tg->cfs_rq[cpu]->shares;
1652 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1653 }
1654
1655 tg->cfs_rq[cpu]->h_load = load;
1656
1657 return 0;
1658 }
1659
1660 static void update_shares(struct sched_domain *sd)
1661 {
1662 s64 elapsed;
1663 u64 now;
1664
1665 if (root_task_group_empty())
1666 return;
1667
1668 now = local_clock();
1669 elapsed = now - sd->last_update;
1670
1671 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1672 sd->last_update = now;
1673 walk_tg_tree(tg_nop, tg_shares_up, sd);
1674 }
1675 }
1676
1677 static void update_h_load(long cpu)
1678 {
1679 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1680 }
1681
1682 #else
1683
1684 static inline void update_shares(struct sched_domain *sd)
1685 {
1686 }
1687
1688 #endif
1689
1690 #ifdef CONFIG_PREEMPT
1691
1692 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1693
1694 /*
1695 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1696 * way at the expense of forcing extra atomic operations in all
1697 * invocations. This assures that the double_lock is acquired using the
1698 * same underlying policy as the spinlock_t on this architecture, which
1699 * reduces latency compared to the unfair variant below. However, it
1700 * also adds more overhead and therefore may reduce throughput.
1701 */
1702 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1703 __releases(this_rq->lock)
1704 __acquires(busiest->lock)
1705 __acquires(this_rq->lock)
1706 {
1707 raw_spin_unlock(&this_rq->lock);
1708 double_rq_lock(this_rq, busiest);
1709
1710 return 1;
1711 }
1712
1713 #else
1714 /*
1715 * Unfair double_lock_balance: Optimizes throughput at the expense of
1716 * latency by eliminating extra atomic operations when the locks are
1717 * already in proper order on entry. This favors lower cpu-ids and will
1718 * grant the double lock to lower cpus over higher ids under contention,
1719 * regardless of entry order into the function.
1720 */
1721 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1722 __releases(this_rq->lock)
1723 __acquires(busiest->lock)
1724 __acquires(this_rq->lock)
1725 {
1726 int ret = 0;
1727
1728 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1729 if (busiest < this_rq) {
1730 raw_spin_unlock(&this_rq->lock);
1731 raw_spin_lock(&busiest->lock);
1732 raw_spin_lock_nested(&this_rq->lock,
1733 SINGLE_DEPTH_NESTING);
1734 ret = 1;
1735 } else
1736 raw_spin_lock_nested(&busiest->lock,
1737 SINGLE_DEPTH_NESTING);
1738 }
1739 return ret;
1740 }
1741
1742 #endif /* CONFIG_PREEMPT */
1743
1744 /*
1745 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1746 */
1747 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1748 {
1749 if (unlikely(!irqs_disabled())) {
1750 /* printk() doesn't work good under rq->lock */
1751 raw_spin_unlock(&this_rq->lock);
1752 BUG_ON(1);
1753 }
1754
1755 return _double_lock_balance(this_rq, busiest);
1756 }
1757
1758 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1759 __releases(busiest->lock)
1760 {
1761 raw_spin_unlock(&busiest->lock);
1762 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1763 }
1764
1765 /*
1766 * double_rq_lock - safely lock two runqueues
1767 *
1768 * Note this does not disable interrupts like task_rq_lock,
1769 * you need to do so manually before calling.
1770 */
1771 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1772 __acquires(rq1->lock)
1773 __acquires(rq2->lock)
1774 {
1775 BUG_ON(!irqs_disabled());
1776 if (rq1 == rq2) {
1777 raw_spin_lock(&rq1->lock);
1778 __acquire(rq2->lock); /* Fake it out ;) */
1779 } else {
1780 if (rq1 < rq2) {
1781 raw_spin_lock(&rq1->lock);
1782 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1783 } else {
1784 raw_spin_lock(&rq2->lock);
1785 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1786 }
1787 }
1788 }
1789
1790 /*
1791 * double_rq_unlock - safely unlock two runqueues
1792 *
1793 * Note this does not restore interrupts like task_rq_unlock,
1794 * you need to do so manually after calling.
1795 */
1796 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1797 __releases(rq1->lock)
1798 __releases(rq2->lock)
1799 {
1800 raw_spin_unlock(&rq1->lock);
1801 if (rq1 != rq2)
1802 raw_spin_unlock(&rq2->lock);
1803 else
1804 __release(rq2->lock);
1805 }
1806
1807 #endif
1808
1809 #ifdef CONFIG_FAIR_GROUP_SCHED
1810 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1811 {
1812 #ifdef CONFIG_SMP
1813 cfs_rq->shares = shares;
1814 #endif
1815 }
1816 #endif
1817
1818 static void calc_load_account_idle(struct rq *this_rq);
1819 static void update_sysctl(void);
1820 static int get_update_sysctl_factor(void);
1821 static void update_cpu_load(struct rq *this_rq);
1822
1823 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824 {
1825 set_task_rq(p, cpu);
1826 #ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834 #endif
1835 }
1836
1837 static const struct sched_class rt_sched_class;
1838
1839 #define sched_class_highest (&rt_sched_class)
1840 #define for_each_class(class) \
1841 for (class = sched_class_highest; class; class = class->next)
1842
1843 #include "sched_stats.h"
1844
1845 static void inc_nr_running(struct rq *rq)
1846 {
1847 rq->nr_running++;
1848 }
1849
1850 static void dec_nr_running(struct rq *rq)
1851 {
1852 rq->nr_running--;
1853 }
1854
1855 static void set_load_weight(struct task_struct *p)
1856 {
1857 if (task_has_rt_policy(p)) {
1858 p->se.load.weight = 0;
1859 p->se.load.inv_weight = WMULT_CONST;
1860 return;
1861 }
1862
1863 /*
1864 * SCHED_IDLE tasks get minimal weight:
1865 */
1866 if (p->policy == SCHED_IDLE) {
1867 p->se.load.weight = WEIGHT_IDLEPRIO;
1868 p->se.load.inv_weight = WMULT_IDLEPRIO;
1869 return;
1870 }
1871
1872 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1873 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1874 }
1875
1876 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1877 {
1878 update_rq_clock(rq);
1879 sched_info_queued(p);
1880 p->sched_class->enqueue_task(rq, p, flags);
1881 p->se.on_rq = 1;
1882 }
1883
1884 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1885 {
1886 update_rq_clock(rq);
1887 sched_info_dequeued(p);
1888 p->sched_class->dequeue_task(rq, p, flags);
1889 p->se.on_rq = 0;
1890 }
1891
1892 /*
1893 * activate_task - move a task to the runqueue.
1894 */
1895 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1896 {
1897 if (task_contributes_to_load(p))
1898 rq->nr_uninterruptible--;
1899
1900 enqueue_task(rq, p, flags);
1901 inc_nr_running(rq);
1902 }
1903
1904 /*
1905 * deactivate_task - remove a task from the runqueue.
1906 */
1907 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1908 {
1909 if (task_contributes_to_load(p))
1910 rq->nr_uninterruptible++;
1911
1912 dequeue_task(rq, p, flags);
1913 dec_nr_running(rq);
1914 }
1915
1916 #include "sched_idletask.c"
1917 #include "sched_fair.c"
1918 #include "sched_rt.c"
1919 #ifdef CONFIG_SCHED_DEBUG
1920 # include "sched_debug.c"
1921 #endif
1922
1923 /*
1924 * __normal_prio - return the priority that is based on the static prio
1925 */
1926 static inline int __normal_prio(struct task_struct *p)
1927 {
1928 return p->static_prio;
1929 }
1930
1931 /*
1932 * Calculate the expected normal priority: i.e. priority
1933 * without taking RT-inheritance into account. Might be
1934 * boosted by interactivity modifiers. Changes upon fork,
1935 * setprio syscalls, and whenever the interactivity
1936 * estimator recalculates.
1937 */
1938 static inline int normal_prio(struct task_struct *p)
1939 {
1940 int prio;
1941
1942 if (task_has_rt_policy(p))
1943 prio = MAX_RT_PRIO-1 - p->rt_priority;
1944 else
1945 prio = __normal_prio(p);
1946 return prio;
1947 }
1948
1949 /*
1950 * Calculate the current priority, i.e. the priority
1951 * taken into account by the scheduler. This value might
1952 * be boosted by RT tasks, or might be boosted by
1953 * interactivity modifiers. Will be RT if the task got
1954 * RT-boosted. If not then it returns p->normal_prio.
1955 */
1956 static int effective_prio(struct task_struct *p)
1957 {
1958 p->normal_prio = normal_prio(p);
1959 /*
1960 * If we are RT tasks or we were boosted to RT priority,
1961 * keep the priority unchanged. Otherwise, update priority
1962 * to the normal priority:
1963 */
1964 if (!rt_prio(p->prio))
1965 return p->normal_prio;
1966 return p->prio;
1967 }
1968
1969 /**
1970 * task_curr - is this task currently executing on a CPU?
1971 * @p: the task in question.
1972 */
1973 inline int task_curr(const struct task_struct *p)
1974 {
1975 return cpu_curr(task_cpu(p)) == p;
1976 }
1977
1978 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1979 const struct sched_class *prev_class,
1980 int oldprio, int running)
1981 {
1982 if (prev_class != p->sched_class) {
1983 if (prev_class->switched_from)
1984 prev_class->switched_from(rq, p, running);
1985 p->sched_class->switched_to(rq, p, running);
1986 } else
1987 p->sched_class->prio_changed(rq, p, oldprio, running);
1988 }
1989
1990 #ifdef CONFIG_SMP
1991 /*
1992 * Is this task likely cache-hot:
1993 */
1994 static int
1995 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1996 {
1997 s64 delta;
1998
1999 if (p->sched_class != &fair_sched_class)
2000 return 0;
2001
2002 /*
2003 * Buddy candidates are cache hot:
2004 */
2005 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2006 (&p->se == cfs_rq_of(&p->se)->next ||
2007 &p->se == cfs_rq_of(&p->se)->last))
2008 return 1;
2009
2010 if (sysctl_sched_migration_cost == -1)
2011 return 1;
2012 if (sysctl_sched_migration_cost == 0)
2013 return 0;
2014
2015 delta = now - p->se.exec_start;
2016
2017 return delta < (s64)sysctl_sched_migration_cost;
2018 }
2019
2020 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2021 {
2022 #ifdef CONFIG_SCHED_DEBUG
2023 /*
2024 * We should never call set_task_cpu() on a blocked task,
2025 * ttwu() will sort out the placement.
2026 */
2027 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2028 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2029 #endif
2030
2031 trace_sched_migrate_task(p, new_cpu);
2032
2033 if (task_cpu(p) != new_cpu) {
2034 p->se.nr_migrations++;
2035 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2036 }
2037
2038 __set_task_cpu(p, new_cpu);
2039 }
2040
2041 struct migration_arg {
2042 struct task_struct *task;
2043 int dest_cpu;
2044 };
2045
2046 static int migration_cpu_stop(void *data);
2047
2048 /*
2049 * The task's runqueue lock must be held.
2050 * Returns true if you have to wait for migration thread.
2051 */
2052 static bool migrate_task(struct task_struct *p, int dest_cpu)
2053 {
2054 struct rq *rq = task_rq(p);
2055
2056 /*
2057 * If the task is not on a runqueue (and not running), then
2058 * the next wake-up will properly place the task.
2059 */
2060 return p->se.on_rq || task_running(rq, p);
2061 }
2062
2063 /*
2064 * wait_task_inactive - wait for a thread to unschedule.
2065 *
2066 * If @match_state is nonzero, it's the @p->state value just checked and
2067 * not expected to change. If it changes, i.e. @p might have woken up,
2068 * then return zero. When we succeed in waiting for @p to be off its CPU,
2069 * we return a positive number (its total switch count). If a second call
2070 * a short while later returns the same number, the caller can be sure that
2071 * @p has remained unscheduled the whole time.
2072 *
2073 * The caller must ensure that the task *will* unschedule sometime soon,
2074 * else this function might spin for a *long* time. This function can't
2075 * be called with interrupts off, or it may introduce deadlock with
2076 * smp_call_function() if an IPI is sent by the same process we are
2077 * waiting to become inactive.
2078 */
2079 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2080 {
2081 unsigned long flags;
2082 int running, on_rq;
2083 unsigned long ncsw;
2084 struct rq *rq;
2085
2086 for (;;) {
2087 /*
2088 * We do the initial early heuristics without holding
2089 * any task-queue locks at all. We'll only try to get
2090 * the runqueue lock when things look like they will
2091 * work out!
2092 */
2093 rq = task_rq(p);
2094
2095 /*
2096 * If the task is actively running on another CPU
2097 * still, just relax and busy-wait without holding
2098 * any locks.
2099 *
2100 * NOTE! Since we don't hold any locks, it's not
2101 * even sure that "rq" stays as the right runqueue!
2102 * But we don't care, since "task_running()" will
2103 * return false if the runqueue has changed and p
2104 * is actually now running somewhere else!
2105 */
2106 while (task_running(rq, p)) {
2107 if (match_state && unlikely(p->state != match_state))
2108 return 0;
2109 cpu_relax();
2110 }
2111
2112 /*
2113 * Ok, time to look more closely! We need the rq
2114 * lock now, to be *sure*. If we're wrong, we'll
2115 * just go back and repeat.
2116 */
2117 rq = task_rq_lock(p, &flags);
2118 trace_sched_wait_task(p);
2119 running = task_running(rq, p);
2120 on_rq = p->se.on_rq;
2121 ncsw = 0;
2122 if (!match_state || p->state == match_state)
2123 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2124 task_rq_unlock(rq, &flags);
2125
2126 /*
2127 * If it changed from the expected state, bail out now.
2128 */
2129 if (unlikely(!ncsw))
2130 break;
2131
2132 /*
2133 * Was it really running after all now that we
2134 * checked with the proper locks actually held?
2135 *
2136 * Oops. Go back and try again..
2137 */
2138 if (unlikely(running)) {
2139 cpu_relax();
2140 continue;
2141 }
2142
2143 /*
2144 * It's not enough that it's not actively running,
2145 * it must be off the runqueue _entirely_, and not
2146 * preempted!
2147 *
2148 * So if it was still runnable (but just not actively
2149 * running right now), it's preempted, and we should
2150 * yield - it could be a while.
2151 */
2152 if (unlikely(on_rq)) {
2153 schedule_timeout_uninterruptible(1);
2154 continue;
2155 }
2156
2157 /*
2158 * Ahh, all good. It wasn't running, and it wasn't
2159 * runnable, which means that it will never become
2160 * running in the future either. We're all done!
2161 */
2162 break;
2163 }
2164
2165 return ncsw;
2166 }
2167
2168 /***
2169 * kick_process - kick a running thread to enter/exit the kernel
2170 * @p: the to-be-kicked thread
2171 *
2172 * Cause a process which is running on another CPU to enter
2173 * kernel-mode, without any delay. (to get signals handled.)
2174 *
2175 * NOTE: this function doesnt have to take the runqueue lock,
2176 * because all it wants to ensure is that the remote task enters
2177 * the kernel. If the IPI races and the task has been migrated
2178 * to another CPU then no harm is done and the purpose has been
2179 * achieved as well.
2180 */
2181 void kick_process(struct task_struct *p)
2182 {
2183 int cpu;
2184
2185 preempt_disable();
2186 cpu = task_cpu(p);
2187 if ((cpu != smp_processor_id()) && task_curr(p))
2188 smp_send_reschedule(cpu);
2189 preempt_enable();
2190 }
2191 EXPORT_SYMBOL_GPL(kick_process);
2192 #endif /* CONFIG_SMP */
2193
2194 /**
2195 * task_oncpu_function_call - call a function on the cpu on which a task runs
2196 * @p: the task to evaluate
2197 * @func: the function to be called
2198 * @info: the function call argument
2199 *
2200 * Calls the function @func when the task is currently running. This might
2201 * be on the current CPU, which just calls the function directly
2202 */
2203 void task_oncpu_function_call(struct task_struct *p,
2204 void (*func) (void *info), void *info)
2205 {
2206 int cpu;
2207
2208 preempt_disable();
2209 cpu = task_cpu(p);
2210 if (task_curr(p))
2211 smp_call_function_single(cpu, func, info, 1);
2212 preempt_enable();
2213 }
2214
2215 #ifdef CONFIG_SMP
2216 /*
2217 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2218 */
2219 static int select_fallback_rq(int cpu, struct task_struct *p)
2220 {
2221 int dest_cpu;
2222 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2223
2224 /* Look for allowed, online CPU in same node. */
2225 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2226 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2227 return dest_cpu;
2228
2229 /* Any allowed, online CPU? */
2230 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2231 if (dest_cpu < nr_cpu_ids)
2232 return dest_cpu;
2233
2234 /* No more Mr. Nice Guy. */
2235 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2236 dest_cpu = cpuset_cpus_allowed_fallback(p);
2237 /*
2238 * Don't tell them about moving exiting tasks or
2239 * kernel threads (both mm NULL), since they never
2240 * leave kernel.
2241 */
2242 if (p->mm && printk_ratelimit()) {
2243 printk(KERN_INFO "process %d (%s) no "
2244 "longer affine to cpu%d\n",
2245 task_pid_nr(p), p->comm, cpu);
2246 }
2247 }
2248
2249 return dest_cpu;
2250 }
2251
2252 /*
2253 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2254 */
2255 static inline
2256 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2257 {
2258 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2259
2260 /*
2261 * In order not to call set_task_cpu() on a blocking task we need
2262 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2263 * cpu.
2264 *
2265 * Since this is common to all placement strategies, this lives here.
2266 *
2267 * [ this allows ->select_task() to simply return task_cpu(p) and
2268 * not worry about this generic constraint ]
2269 */
2270 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2271 !cpu_online(cpu)))
2272 cpu = select_fallback_rq(task_cpu(p), p);
2273
2274 return cpu;
2275 }
2276
2277 static void update_avg(u64 *avg, u64 sample)
2278 {
2279 s64 diff = sample - *avg;
2280 *avg += diff >> 3;
2281 }
2282 #endif
2283
2284 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2285 bool is_sync, bool is_migrate, bool is_local,
2286 unsigned long en_flags)
2287 {
2288 schedstat_inc(p, se.statistics.nr_wakeups);
2289 if (is_sync)
2290 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2291 if (is_migrate)
2292 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2293 if (is_local)
2294 schedstat_inc(p, se.statistics.nr_wakeups_local);
2295 else
2296 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2297
2298 activate_task(rq, p, en_flags);
2299 }
2300
2301 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2302 int wake_flags, bool success)
2303 {
2304 trace_sched_wakeup(p, success);
2305 check_preempt_curr(rq, p, wake_flags);
2306
2307 p->state = TASK_RUNNING;
2308 #ifdef CONFIG_SMP
2309 if (p->sched_class->task_woken)
2310 p->sched_class->task_woken(rq, p);
2311
2312 if (unlikely(rq->idle_stamp)) {
2313 u64 delta = rq->clock - rq->idle_stamp;
2314 u64 max = 2*sysctl_sched_migration_cost;
2315
2316 if (delta > max)
2317 rq->avg_idle = max;
2318 else
2319 update_avg(&rq->avg_idle, delta);
2320 rq->idle_stamp = 0;
2321 }
2322 #endif
2323 /* if a worker is waking up, notify workqueue */
2324 if ((p->flags & PF_WQ_WORKER) && success)
2325 wq_worker_waking_up(p, cpu_of(rq));
2326 }
2327
2328 /**
2329 * try_to_wake_up - wake up a thread
2330 * @p: the thread to be awakened
2331 * @state: the mask of task states that can be woken
2332 * @wake_flags: wake modifier flags (WF_*)
2333 *
2334 * Put it on the run-queue if it's not already there. The "current"
2335 * thread is always on the run-queue (except when the actual
2336 * re-schedule is in progress), and as such you're allowed to do
2337 * the simpler "current->state = TASK_RUNNING" to mark yourself
2338 * runnable without the overhead of this.
2339 *
2340 * Returns %true if @p was woken up, %false if it was already running
2341 * or @state didn't match @p's state.
2342 */
2343 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2344 int wake_flags)
2345 {
2346 int cpu, orig_cpu, this_cpu, success = 0;
2347 unsigned long flags;
2348 unsigned long en_flags = ENQUEUE_WAKEUP;
2349 struct rq *rq;
2350
2351 this_cpu = get_cpu();
2352
2353 smp_wmb();
2354 rq = task_rq_lock(p, &flags);
2355 if (!(p->state & state))
2356 goto out;
2357
2358 if (p->se.on_rq)
2359 goto out_running;
2360
2361 cpu = task_cpu(p);
2362 orig_cpu = cpu;
2363
2364 #ifdef CONFIG_SMP
2365 if (unlikely(task_running(rq, p)))
2366 goto out_activate;
2367
2368 /*
2369 * In order to handle concurrent wakeups and release the rq->lock
2370 * we put the task in TASK_WAKING state.
2371 *
2372 * First fix up the nr_uninterruptible count:
2373 */
2374 if (task_contributes_to_load(p)) {
2375 if (likely(cpu_online(orig_cpu)))
2376 rq->nr_uninterruptible--;
2377 else
2378 this_rq()->nr_uninterruptible--;
2379 }
2380 p->state = TASK_WAKING;
2381
2382 if (p->sched_class->task_waking) {
2383 p->sched_class->task_waking(rq, p);
2384 en_flags |= ENQUEUE_WAKING;
2385 }
2386
2387 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2388 if (cpu != orig_cpu)
2389 set_task_cpu(p, cpu);
2390 __task_rq_unlock(rq);
2391
2392 rq = cpu_rq(cpu);
2393 raw_spin_lock(&rq->lock);
2394
2395 /*
2396 * We migrated the task without holding either rq->lock, however
2397 * since the task is not on the task list itself, nobody else
2398 * will try and migrate the task, hence the rq should match the
2399 * cpu we just moved it to.
2400 */
2401 WARN_ON(task_cpu(p) != cpu);
2402 WARN_ON(p->state != TASK_WAKING);
2403
2404 #ifdef CONFIG_SCHEDSTATS
2405 schedstat_inc(rq, ttwu_count);
2406 if (cpu == this_cpu)
2407 schedstat_inc(rq, ttwu_local);
2408 else {
2409 struct sched_domain *sd;
2410 for_each_domain(this_cpu, sd) {
2411 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2412 schedstat_inc(sd, ttwu_wake_remote);
2413 break;
2414 }
2415 }
2416 }
2417 #endif /* CONFIG_SCHEDSTATS */
2418
2419 out_activate:
2420 #endif /* CONFIG_SMP */
2421 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2422 cpu == this_cpu, en_flags);
2423 success = 1;
2424 out_running:
2425 ttwu_post_activation(p, rq, wake_flags, success);
2426 out:
2427 task_rq_unlock(rq, &flags);
2428 put_cpu();
2429
2430 return success;
2431 }
2432
2433 /**
2434 * try_to_wake_up_local - try to wake up a local task with rq lock held
2435 * @p: the thread to be awakened
2436 *
2437 * Put @p on the run-queue if it's not alredy there. The caller must
2438 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2439 * the current task. this_rq() stays locked over invocation.
2440 */
2441 static void try_to_wake_up_local(struct task_struct *p)
2442 {
2443 struct rq *rq = task_rq(p);
2444 bool success = false;
2445
2446 BUG_ON(rq != this_rq());
2447 BUG_ON(p == current);
2448 lockdep_assert_held(&rq->lock);
2449
2450 if (!(p->state & TASK_NORMAL))
2451 return;
2452
2453 if (!p->se.on_rq) {
2454 if (likely(!task_running(rq, p))) {
2455 schedstat_inc(rq, ttwu_count);
2456 schedstat_inc(rq, ttwu_local);
2457 }
2458 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2459 success = true;
2460 }
2461 ttwu_post_activation(p, rq, 0, success);
2462 }
2463
2464 /**
2465 * wake_up_process - Wake up a specific process
2466 * @p: The process to be woken up.
2467 *
2468 * Attempt to wake up the nominated process and move it to the set of runnable
2469 * processes. Returns 1 if the process was woken up, 0 if it was already
2470 * running.
2471 *
2472 * It may be assumed that this function implies a write memory barrier before
2473 * changing the task state if and only if any tasks are woken up.
2474 */
2475 int wake_up_process(struct task_struct *p)
2476 {
2477 return try_to_wake_up(p, TASK_ALL, 0);
2478 }
2479 EXPORT_SYMBOL(wake_up_process);
2480
2481 int wake_up_state(struct task_struct *p, unsigned int state)
2482 {
2483 return try_to_wake_up(p, state, 0);
2484 }
2485
2486 /*
2487 * Perform scheduler related setup for a newly forked process p.
2488 * p is forked by current.
2489 *
2490 * __sched_fork() is basic setup used by init_idle() too:
2491 */
2492 static void __sched_fork(struct task_struct *p)
2493 {
2494 p->se.exec_start = 0;
2495 p->se.sum_exec_runtime = 0;
2496 p->se.prev_sum_exec_runtime = 0;
2497 p->se.nr_migrations = 0;
2498
2499 #ifdef CONFIG_SCHEDSTATS
2500 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2501 #endif
2502
2503 INIT_LIST_HEAD(&p->rt.run_list);
2504 p->se.on_rq = 0;
2505 INIT_LIST_HEAD(&p->se.group_node);
2506
2507 #ifdef CONFIG_PREEMPT_NOTIFIERS
2508 INIT_HLIST_HEAD(&p->preempt_notifiers);
2509 #endif
2510 }
2511
2512 /*
2513 * fork()/clone()-time setup:
2514 */
2515 void sched_fork(struct task_struct *p, int clone_flags)
2516 {
2517 int cpu = get_cpu();
2518
2519 __sched_fork(p);
2520 /*
2521 * We mark the process as running here. This guarantees that
2522 * nobody will actually run it, and a signal or other external
2523 * event cannot wake it up and insert it on the runqueue either.
2524 */
2525 p->state = TASK_RUNNING;
2526
2527 /*
2528 * Revert to default priority/policy on fork if requested.
2529 */
2530 if (unlikely(p->sched_reset_on_fork)) {
2531 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2532 p->policy = SCHED_NORMAL;
2533 p->normal_prio = p->static_prio;
2534 }
2535
2536 if (PRIO_TO_NICE(p->static_prio) < 0) {
2537 p->static_prio = NICE_TO_PRIO(0);
2538 p->normal_prio = p->static_prio;
2539 set_load_weight(p);
2540 }
2541
2542 /*
2543 * We don't need the reset flag anymore after the fork. It has
2544 * fulfilled its duty:
2545 */
2546 p->sched_reset_on_fork = 0;
2547 }
2548
2549 /*
2550 * Make sure we do not leak PI boosting priority to the child.
2551 */
2552 p->prio = current->normal_prio;
2553
2554 if (!rt_prio(p->prio))
2555 p->sched_class = &fair_sched_class;
2556
2557 if (p->sched_class->task_fork)
2558 p->sched_class->task_fork(p);
2559
2560 /*
2561 * The child is not yet in the pid-hash so no cgroup attach races,
2562 * and the cgroup is pinned to this child due to cgroup_fork()
2563 * is ran before sched_fork().
2564 *
2565 * Silence PROVE_RCU.
2566 */
2567 rcu_read_lock();
2568 set_task_cpu(p, cpu);
2569 rcu_read_unlock();
2570
2571 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2572 if (likely(sched_info_on()))
2573 memset(&p->sched_info, 0, sizeof(p->sched_info));
2574 #endif
2575 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2576 p->oncpu = 0;
2577 #endif
2578 #ifdef CONFIG_PREEMPT
2579 /* Want to start with kernel preemption disabled. */
2580 task_thread_info(p)->preempt_count = 1;
2581 #endif
2582 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2583
2584 put_cpu();
2585 }
2586
2587 /*
2588 * wake_up_new_task - wake up a newly created task for the first time.
2589 *
2590 * This function will do some initial scheduler statistics housekeeping
2591 * that must be done for every newly created context, then puts the task
2592 * on the runqueue and wakes it.
2593 */
2594 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2595 {
2596 unsigned long flags;
2597 struct rq *rq;
2598 int cpu __maybe_unused = get_cpu();
2599
2600 #ifdef CONFIG_SMP
2601 rq = task_rq_lock(p, &flags);
2602 p->state = TASK_WAKING;
2603
2604 /*
2605 * Fork balancing, do it here and not earlier because:
2606 * - cpus_allowed can change in the fork path
2607 * - any previously selected cpu might disappear through hotplug
2608 *
2609 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2610 * without people poking at ->cpus_allowed.
2611 */
2612 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2613 set_task_cpu(p, cpu);
2614
2615 p->state = TASK_RUNNING;
2616 task_rq_unlock(rq, &flags);
2617 #endif
2618
2619 rq = task_rq_lock(p, &flags);
2620 activate_task(rq, p, 0);
2621 trace_sched_wakeup_new(p, 1);
2622 check_preempt_curr(rq, p, WF_FORK);
2623 #ifdef CONFIG_SMP
2624 if (p->sched_class->task_woken)
2625 p->sched_class->task_woken(rq, p);
2626 #endif
2627 task_rq_unlock(rq, &flags);
2628 put_cpu();
2629 }
2630
2631 #ifdef CONFIG_PREEMPT_NOTIFIERS
2632
2633 /**
2634 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2635 * @notifier: notifier struct to register
2636 */
2637 void preempt_notifier_register(struct preempt_notifier *notifier)
2638 {
2639 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2640 }
2641 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2642
2643 /**
2644 * preempt_notifier_unregister - no longer interested in preemption notifications
2645 * @notifier: notifier struct to unregister
2646 *
2647 * This is safe to call from within a preemption notifier.
2648 */
2649 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2650 {
2651 hlist_del(&notifier->link);
2652 }
2653 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2654
2655 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2656 {
2657 struct preempt_notifier *notifier;
2658 struct hlist_node *node;
2659
2660 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2661 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2662 }
2663
2664 static void
2665 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2666 struct task_struct *next)
2667 {
2668 struct preempt_notifier *notifier;
2669 struct hlist_node *node;
2670
2671 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2672 notifier->ops->sched_out(notifier, next);
2673 }
2674
2675 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2676
2677 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2678 {
2679 }
2680
2681 static void
2682 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2683 struct task_struct *next)
2684 {
2685 }
2686
2687 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2688
2689 /**
2690 * prepare_task_switch - prepare to switch tasks
2691 * @rq: the runqueue preparing to switch
2692 * @prev: the current task that is being switched out
2693 * @next: the task we are going to switch to.
2694 *
2695 * This is called with the rq lock held and interrupts off. It must
2696 * be paired with a subsequent finish_task_switch after the context
2697 * switch.
2698 *
2699 * prepare_task_switch sets up locking and calls architecture specific
2700 * hooks.
2701 */
2702 static inline void
2703 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2704 struct task_struct *next)
2705 {
2706 fire_sched_out_preempt_notifiers(prev, next);
2707 prepare_lock_switch(rq, next);
2708 prepare_arch_switch(next);
2709 }
2710
2711 /**
2712 * finish_task_switch - clean up after a task-switch
2713 * @rq: runqueue associated with task-switch
2714 * @prev: the thread we just switched away from.
2715 *
2716 * finish_task_switch must be called after the context switch, paired
2717 * with a prepare_task_switch call before the context switch.
2718 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2719 * and do any other architecture-specific cleanup actions.
2720 *
2721 * Note that we may have delayed dropping an mm in context_switch(). If
2722 * so, we finish that here outside of the runqueue lock. (Doing it
2723 * with the lock held can cause deadlocks; see schedule() for
2724 * details.)
2725 */
2726 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2727 __releases(rq->lock)
2728 {
2729 struct mm_struct *mm = rq->prev_mm;
2730 long prev_state;
2731
2732 rq->prev_mm = NULL;
2733
2734 /*
2735 * A task struct has one reference for the use as "current".
2736 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2737 * schedule one last time. The schedule call will never return, and
2738 * the scheduled task must drop that reference.
2739 * The test for TASK_DEAD must occur while the runqueue locks are
2740 * still held, otherwise prev could be scheduled on another cpu, die
2741 * there before we look at prev->state, and then the reference would
2742 * be dropped twice.
2743 * Manfred Spraul <manfred@colorfullife.com>
2744 */
2745 prev_state = prev->state;
2746 finish_arch_switch(prev);
2747 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2748 local_irq_disable();
2749 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2750 perf_event_task_sched_in(current);
2751 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2752 local_irq_enable();
2753 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2754 finish_lock_switch(rq, prev);
2755
2756 fire_sched_in_preempt_notifiers(current);
2757 if (mm)
2758 mmdrop(mm);
2759 if (unlikely(prev_state == TASK_DEAD)) {
2760 /*
2761 * Remove function-return probe instances associated with this
2762 * task and put them back on the free list.
2763 */
2764 kprobe_flush_task(prev);
2765 put_task_struct(prev);
2766 }
2767 }
2768
2769 #ifdef CONFIG_SMP
2770
2771 /* assumes rq->lock is held */
2772 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2773 {
2774 if (prev->sched_class->pre_schedule)
2775 prev->sched_class->pre_schedule(rq, prev);
2776 }
2777
2778 /* rq->lock is NOT held, but preemption is disabled */
2779 static inline void post_schedule(struct rq *rq)
2780 {
2781 if (rq->post_schedule) {
2782 unsigned long flags;
2783
2784 raw_spin_lock_irqsave(&rq->lock, flags);
2785 if (rq->curr->sched_class->post_schedule)
2786 rq->curr->sched_class->post_schedule(rq);
2787 raw_spin_unlock_irqrestore(&rq->lock, flags);
2788
2789 rq->post_schedule = 0;
2790 }
2791 }
2792
2793 #else
2794
2795 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2796 {
2797 }
2798
2799 static inline void post_schedule(struct rq *rq)
2800 {
2801 }
2802
2803 #endif
2804
2805 /**
2806 * schedule_tail - first thing a freshly forked thread must call.
2807 * @prev: the thread we just switched away from.
2808 */
2809 asmlinkage void schedule_tail(struct task_struct *prev)
2810 __releases(rq->lock)
2811 {
2812 struct rq *rq = this_rq();
2813
2814 finish_task_switch(rq, prev);
2815
2816 /*
2817 * FIXME: do we need to worry about rq being invalidated by the
2818 * task_switch?
2819 */
2820 post_schedule(rq);
2821
2822 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2823 /* In this case, finish_task_switch does not reenable preemption */
2824 preempt_enable();
2825 #endif
2826 if (current->set_child_tid)
2827 put_user(task_pid_vnr(current), current->set_child_tid);
2828 }
2829
2830 /*
2831 * context_switch - switch to the new MM and the new
2832 * thread's register state.
2833 */
2834 static inline void
2835 context_switch(struct rq *rq, struct task_struct *prev,
2836 struct task_struct *next)
2837 {
2838 struct mm_struct *mm, *oldmm;
2839
2840 prepare_task_switch(rq, prev, next);
2841 trace_sched_switch(prev, next);
2842 mm = next->mm;
2843 oldmm = prev->active_mm;
2844 /*
2845 * For paravirt, this is coupled with an exit in switch_to to
2846 * combine the page table reload and the switch backend into
2847 * one hypercall.
2848 */
2849 arch_start_context_switch(prev);
2850
2851 if (likely(!mm)) {
2852 next->active_mm = oldmm;
2853 atomic_inc(&oldmm->mm_count);
2854 enter_lazy_tlb(oldmm, next);
2855 } else
2856 switch_mm(oldmm, mm, next);
2857
2858 if (likely(!prev->mm)) {
2859 prev->active_mm = NULL;
2860 rq->prev_mm = oldmm;
2861 }
2862 /*
2863 * Since the runqueue lock will be released by the next
2864 * task (which is an invalid locking op but in the case
2865 * of the scheduler it's an obvious special-case), so we
2866 * do an early lockdep release here:
2867 */
2868 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2869 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2870 #endif
2871
2872 /* Here we just switch the register state and the stack. */
2873 switch_to(prev, next, prev);
2874
2875 barrier();
2876 /*
2877 * this_rq must be evaluated again because prev may have moved
2878 * CPUs since it called schedule(), thus the 'rq' on its stack
2879 * frame will be invalid.
2880 */
2881 finish_task_switch(this_rq(), prev);
2882 }
2883
2884 /*
2885 * nr_running, nr_uninterruptible and nr_context_switches:
2886 *
2887 * externally visible scheduler statistics: current number of runnable
2888 * threads, current number of uninterruptible-sleeping threads, total
2889 * number of context switches performed since bootup.
2890 */
2891 unsigned long nr_running(void)
2892 {
2893 unsigned long i, sum = 0;
2894
2895 for_each_online_cpu(i)
2896 sum += cpu_rq(i)->nr_running;
2897
2898 return sum;
2899 }
2900
2901 unsigned long nr_uninterruptible(void)
2902 {
2903 unsigned long i, sum = 0;
2904
2905 for_each_possible_cpu(i)
2906 sum += cpu_rq(i)->nr_uninterruptible;
2907
2908 /*
2909 * Since we read the counters lockless, it might be slightly
2910 * inaccurate. Do not allow it to go below zero though:
2911 */
2912 if (unlikely((long)sum < 0))
2913 sum = 0;
2914
2915 return sum;
2916 }
2917
2918 unsigned long long nr_context_switches(void)
2919 {
2920 int i;
2921 unsigned long long sum = 0;
2922
2923 for_each_possible_cpu(i)
2924 sum += cpu_rq(i)->nr_switches;
2925
2926 return sum;
2927 }
2928
2929 unsigned long nr_iowait(void)
2930 {
2931 unsigned long i, sum = 0;
2932
2933 for_each_possible_cpu(i)
2934 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2935
2936 return sum;
2937 }
2938
2939 unsigned long nr_iowait_cpu(int cpu)
2940 {
2941 struct rq *this = cpu_rq(cpu);
2942 return atomic_read(&this->nr_iowait);
2943 }
2944
2945 unsigned long this_cpu_load(void)
2946 {
2947 struct rq *this = this_rq();
2948 return this->cpu_load[0];
2949 }
2950
2951
2952 /* Variables and functions for calc_load */
2953 static atomic_long_t calc_load_tasks;
2954 static unsigned long calc_load_update;
2955 unsigned long avenrun[3];
2956 EXPORT_SYMBOL(avenrun);
2957
2958 static long calc_load_fold_active(struct rq *this_rq)
2959 {
2960 long nr_active, delta = 0;
2961
2962 nr_active = this_rq->nr_running;
2963 nr_active += (long) this_rq->nr_uninterruptible;
2964
2965 if (nr_active != this_rq->calc_load_active) {
2966 delta = nr_active - this_rq->calc_load_active;
2967 this_rq->calc_load_active = nr_active;
2968 }
2969
2970 return delta;
2971 }
2972
2973 #ifdef CONFIG_NO_HZ
2974 /*
2975 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2976 *
2977 * When making the ILB scale, we should try to pull this in as well.
2978 */
2979 static atomic_long_t calc_load_tasks_idle;
2980
2981 static void calc_load_account_idle(struct rq *this_rq)
2982 {
2983 long delta;
2984
2985 delta = calc_load_fold_active(this_rq);
2986 if (delta)
2987 atomic_long_add(delta, &calc_load_tasks_idle);
2988 }
2989
2990 static long calc_load_fold_idle(void)
2991 {
2992 long delta = 0;
2993
2994 /*
2995 * Its got a race, we don't care...
2996 */
2997 if (atomic_long_read(&calc_load_tasks_idle))
2998 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2999
3000 return delta;
3001 }
3002 #else
3003 static void calc_load_account_idle(struct rq *this_rq)
3004 {
3005 }
3006
3007 static inline long calc_load_fold_idle(void)
3008 {
3009 return 0;
3010 }
3011 #endif
3012
3013 /**
3014 * get_avenrun - get the load average array
3015 * @loads: pointer to dest load array
3016 * @offset: offset to add
3017 * @shift: shift count to shift the result left
3018 *
3019 * These values are estimates at best, so no need for locking.
3020 */
3021 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3022 {
3023 loads[0] = (avenrun[0] + offset) << shift;
3024 loads[1] = (avenrun[1] + offset) << shift;
3025 loads[2] = (avenrun[2] + offset) << shift;
3026 }
3027
3028 static unsigned long
3029 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3030 {
3031 load *= exp;
3032 load += active * (FIXED_1 - exp);
3033 return load >> FSHIFT;
3034 }
3035
3036 /*
3037 * calc_load - update the avenrun load estimates 10 ticks after the
3038 * CPUs have updated calc_load_tasks.
3039 */
3040 void calc_global_load(void)
3041 {
3042 unsigned long upd = calc_load_update + 10;
3043 long active;
3044
3045 if (time_before(jiffies, upd))
3046 return;
3047
3048 active = atomic_long_read(&calc_load_tasks);
3049 active = active > 0 ? active * FIXED_1 : 0;
3050
3051 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3052 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3053 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3054
3055 calc_load_update += LOAD_FREQ;
3056 }
3057
3058 /*
3059 * Called from update_cpu_load() to periodically update this CPU's
3060 * active count.
3061 */
3062 static void calc_load_account_active(struct rq *this_rq)
3063 {
3064 long delta;
3065
3066 if (time_before(jiffies, this_rq->calc_load_update))
3067 return;
3068
3069 delta = calc_load_fold_active(this_rq);
3070 delta += calc_load_fold_idle();
3071 if (delta)
3072 atomic_long_add(delta, &calc_load_tasks);
3073
3074 this_rq->calc_load_update += LOAD_FREQ;
3075 }
3076
3077 /*
3078 * The exact cpuload at various idx values, calculated at every tick would be
3079 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3080 *
3081 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3082 * on nth tick when cpu may be busy, then we have:
3083 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3084 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3085 *
3086 * decay_load_missed() below does efficient calculation of
3087 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3088 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3089 *
3090 * The calculation is approximated on a 128 point scale.
3091 * degrade_zero_ticks is the number of ticks after which load at any
3092 * particular idx is approximated to be zero.
3093 * degrade_factor is a precomputed table, a row for each load idx.
3094 * Each column corresponds to degradation factor for a power of two ticks,
3095 * based on 128 point scale.
3096 * Example:
3097 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3098 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3099 *
3100 * With this power of 2 load factors, we can degrade the load n times
3101 * by looking at 1 bits in n and doing as many mult/shift instead of
3102 * n mult/shifts needed by the exact degradation.
3103 */
3104 #define DEGRADE_SHIFT 7
3105 static const unsigned char
3106 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3107 static const unsigned char
3108 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3109 {0, 0, 0, 0, 0, 0, 0, 0},
3110 {64, 32, 8, 0, 0, 0, 0, 0},
3111 {96, 72, 40, 12, 1, 0, 0},
3112 {112, 98, 75, 43, 15, 1, 0},
3113 {120, 112, 98, 76, 45, 16, 2} };
3114
3115 /*
3116 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3117 * would be when CPU is idle and so we just decay the old load without
3118 * adding any new load.
3119 */
3120 static unsigned long
3121 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3122 {
3123 int j = 0;
3124
3125 if (!missed_updates)
3126 return load;
3127
3128 if (missed_updates >= degrade_zero_ticks[idx])
3129 return 0;
3130
3131 if (idx == 1)
3132 return load >> missed_updates;
3133
3134 while (missed_updates) {
3135 if (missed_updates % 2)
3136 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3137
3138 missed_updates >>= 1;
3139 j++;
3140 }
3141 return load;
3142 }
3143
3144 /*
3145 * Update rq->cpu_load[] statistics. This function is usually called every
3146 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3147 * every tick. We fix it up based on jiffies.
3148 */
3149 static void update_cpu_load(struct rq *this_rq)
3150 {
3151 unsigned long this_load = this_rq->load.weight;
3152 unsigned long curr_jiffies = jiffies;
3153 unsigned long pending_updates;
3154 int i, scale;
3155
3156 this_rq->nr_load_updates++;
3157
3158 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3159 if (curr_jiffies == this_rq->last_load_update_tick)
3160 return;
3161
3162 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3163 this_rq->last_load_update_tick = curr_jiffies;
3164
3165 /* Update our load: */
3166 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3167 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3168 unsigned long old_load, new_load;
3169
3170 /* scale is effectively 1 << i now, and >> i divides by scale */
3171
3172 old_load = this_rq->cpu_load[i];
3173 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3174 new_load = this_load;
3175 /*
3176 * Round up the averaging division if load is increasing. This
3177 * prevents us from getting stuck on 9 if the load is 10, for
3178 * example.
3179 */
3180 if (new_load > old_load)
3181 new_load += scale - 1;
3182
3183 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3184 }
3185 }
3186
3187 static void update_cpu_load_active(struct rq *this_rq)
3188 {
3189 update_cpu_load(this_rq);
3190
3191 calc_load_account_active(this_rq);
3192 }
3193
3194 #ifdef CONFIG_SMP
3195
3196 /*
3197 * sched_exec - execve() is a valuable balancing opportunity, because at
3198 * this point the task has the smallest effective memory and cache footprint.
3199 */
3200 void sched_exec(void)
3201 {
3202 struct task_struct *p = current;
3203 unsigned long flags;
3204 struct rq *rq;
3205 int dest_cpu;
3206
3207 rq = task_rq_lock(p, &flags);
3208 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3209 if (dest_cpu == smp_processor_id())
3210 goto unlock;
3211
3212 /*
3213 * select_task_rq() can race against ->cpus_allowed
3214 */
3215 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3216 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3217 struct migration_arg arg = { p, dest_cpu };
3218
3219 task_rq_unlock(rq, &flags);
3220 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3221 return;
3222 }
3223 unlock:
3224 task_rq_unlock(rq, &flags);
3225 }
3226
3227 #endif
3228
3229 DEFINE_PER_CPU(struct kernel_stat, kstat);
3230
3231 EXPORT_PER_CPU_SYMBOL(kstat);
3232
3233 /*
3234 * Return any ns on the sched_clock that have not yet been accounted in
3235 * @p in case that task is currently running.
3236 *
3237 * Called with task_rq_lock() held on @rq.
3238 */
3239 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3240 {
3241 u64 ns = 0;
3242
3243 if (task_current(rq, p)) {
3244 update_rq_clock(rq);
3245 ns = rq->clock - p->se.exec_start;
3246 if ((s64)ns < 0)
3247 ns = 0;
3248 }
3249
3250 return ns;
3251 }
3252
3253 unsigned long long task_delta_exec(struct task_struct *p)
3254 {
3255 unsigned long flags;
3256 struct rq *rq;
3257 u64 ns = 0;
3258
3259 rq = task_rq_lock(p, &flags);
3260 ns = do_task_delta_exec(p, rq);
3261 task_rq_unlock(rq, &flags);
3262
3263 return ns;
3264 }
3265
3266 /*
3267 * Return accounted runtime for the task.
3268 * In case the task is currently running, return the runtime plus current's
3269 * pending runtime that have not been accounted yet.
3270 */
3271 unsigned long long task_sched_runtime(struct task_struct *p)
3272 {
3273 unsigned long flags;
3274 struct rq *rq;
3275 u64 ns = 0;
3276
3277 rq = task_rq_lock(p, &flags);
3278 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3279 task_rq_unlock(rq, &flags);
3280
3281 return ns;
3282 }
3283
3284 /*
3285 * Return sum_exec_runtime for the thread group.
3286 * In case the task is currently running, return the sum plus current's
3287 * pending runtime that have not been accounted yet.
3288 *
3289 * Note that the thread group might have other running tasks as well,
3290 * so the return value not includes other pending runtime that other
3291 * running tasks might have.
3292 */
3293 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3294 {
3295 struct task_cputime totals;
3296 unsigned long flags;
3297 struct rq *rq;
3298 u64 ns;
3299
3300 rq = task_rq_lock(p, &flags);
3301 thread_group_cputime(p, &totals);
3302 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3303 task_rq_unlock(rq, &flags);
3304
3305 return ns;
3306 }
3307
3308 /*
3309 * Account user cpu time to a process.
3310 * @p: the process that the cpu time gets accounted to
3311 * @cputime: the cpu time spent in user space since the last update
3312 * @cputime_scaled: cputime scaled by cpu frequency
3313 */
3314 void account_user_time(struct task_struct *p, cputime_t cputime,
3315 cputime_t cputime_scaled)
3316 {
3317 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3318 cputime64_t tmp;
3319
3320 /* Add user time to process. */
3321 p->utime = cputime_add(p->utime, cputime);
3322 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3323 account_group_user_time(p, cputime);
3324
3325 /* Add user time to cpustat. */
3326 tmp = cputime_to_cputime64(cputime);
3327 if (TASK_NICE(p) > 0)
3328 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3329 else
3330 cpustat->user = cputime64_add(cpustat->user, tmp);
3331
3332 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3333 /* Account for user time used */
3334 acct_update_integrals(p);
3335 }
3336
3337 /*
3338 * Account guest cpu time to a process.
3339 * @p: the process that the cpu time gets accounted to
3340 * @cputime: the cpu time spent in virtual machine since the last update
3341 * @cputime_scaled: cputime scaled by cpu frequency
3342 */
3343 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3344 cputime_t cputime_scaled)
3345 {
3346 cputime64_t tmp;
3347 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3348
3349 tmp = cputime_to_cputime64(cputime);
3350
3351 /* Add guest time to process. */
3352 p->utime = cputime_add(p->utime, cputime);
3353 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3354 account_group_user_time(p, cputime);
3355 p->gtime = cputime_add(p->gtime, cputime);
3356
3357 /* Add guest time to cpustat. */
3358 if (TASK_NICE(p) > 0) {
3359 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3360 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3361 } else {
3362 cpustat->user = cputime64_add(cpustat->user, tmp);
3363 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3364 }
3365 }
3366
3367 /*
3368 * Account system cpu time to a process.
3369 * @p: the process that the cpu time gets accounted to
3370 * @hardirq_offset: the offset to subtract from hardirq_count()
3371 * @cputime: the cpu time spent in kernel space since the last update
3372 * @cputime_scaled: cputime scaled by cpu frequency
3373 */
3374 void account_system_time(struct task_struct *p, int hardirq_offset,
3375 cputime_t cputime, cputime_t cputime_scaled)
3376 {
3377 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3378 cputime64_t tmp;
3379
3380 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3381 account_guest_time(p, cputime, cputime_scaled);
3382 return;
3383 }
3384
3385 /* Add system time to process. */
3386 p->stime = cputime_add(p->stime, cputime);
3387 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3388 account_group_system_time(p, cputime);
3389
3390 /* Add system time to cpustat. */
3391 tmp = cputime_to_cputime64(cputime);
3392 if (hardirq_count() - hardirq_offset)
3393 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3394 else if (softirq_count())
3395 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3396 else
3397 cpustat->system = cputime64_add(cpustat->system, tmp);
3398
3399 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3400
3401 /* Account for system time used */
3402 acct_update_integrals(p);
3403 }
3404
3405 /*
3406 * Account for involuntary wait time.
3407 * @steal: the cpu time spent in involuntary wait
3408 */
3409 void account_steal_time(cputime_t cputime)
3410 {
3411 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3412 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3413
3414 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3415 }
3416
3417 /*
3418 * Account for idle time.
3419 * @cputime: the cpu time spent in idle wait
3420 */
3421 void account_idle_time(cputime_t cputime)
3422 {
3423 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3424 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3425 struct rq *rq = this_rq();
3426
3427 if (atomic_read(&rq->nr_iowait) > 0)
3428 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3429 else
3430 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3431 }
3432
3433 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3434
3435 /*
3436 * Account a single tick of cpu time.
3437 * @p: the process that the cpu time gets accounted to
3438 * @user_tick: indicates if the tick is a user or a system tick
3439 */
3440 void account_process_tick(struct task_struct *p, int user_tick)
3441 {
3442 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3443 struct rq *rq = this_rq();
3444
3445 if (user_tick)
3446 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3447 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3448 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3449 one_jiffy_scaled);
3450 else
3451 account_idle_time(cputime_one_jiffy);
3452 }
3453
3454 /*
3455 * Account multiple ticks of steal time.
3456 * @p: the process from which the cpu time has been stolen
3457 * @ticks: number of stolen ticks
3458 */
3459 void account_steal_ticks(unsigned long ticks)
3460 {
3461 account_steal_time(jiffies_to_cputime(ticks));
3462 }
3463
3464 /*
3465 * Account multiple ticks of idle time.
3466 * @ticks: number of stolen ticks
3467 */
3468 void account_idle_ticks(unsigned long ticks)
3469 {
3470 account_idle_time(jiffies_to_cputime(ticks));
3471 }
3472
3473 #endif
3474
3475 /*
3476 * Use precise platform statistics if available:
3477 */
3478 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3479 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3480 {
3481 *ut = p->utime;
3482 *st = p->stime;
3483 }
3484
3485 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3486 {
3487 struct task_cputime cputime;
3488
3489 thread_group_cputime(p, &cputime);
3490
3491 *ut = cputime.utime;
3492 *st = cputime.stime;
3493 }
3494 #else
3495
3496 #ifndef nsecs_to_cputime
3497 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3498 #endif
3499
3500 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3501 {
3502 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3503
3504 /*
3505 * Use CFS's precise accounting:
3506 */
3507 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3508
3509 if (total) {
3510 u64 temp;
3511
3512 temp = (u64)(rtime * utime);
3513 do_div(temp, total);
3514 utime = (cputime_t)temp;
3515 } else
3516 utime = rtime;
3517
3518 /*
3519 * Compare with previous values, to keep monotonicity:
3520 */
3521 p->prev_utime = max(p->prev_utime, utime);
3522 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3523
3524 *ut = p->prev_utime;
3525 *st = p->prev_stime;
3526 }
3527
3528 /*
3529 * Must be called with siglock held.
3530 */
3531 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3532 {
3533 struct signal_struct *sig = p->signal;
3534 struct task_cputime cputime;
3535 cputime_t rtime, utime, total;
3536
3537 thread_group_cputime(p, &cputime);
3538
3539 total = cputime_add(cputime.utime, cputime.stime);
3540 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3541
3542 if (total) {
3543 u64 temp;
3544
3545 temp = (u64)(rtime * cputime.utime);
3546 do_div(temp, total);
3547 utime = (cputime_t)temp;
3548 } else
3549 utime = rtime;
3550
3551 sig->prev_utime = max(sig->prev_utime, utime);
3552 sig->prev_stime = max(sig->prev_stime,
3553 cputime_sub(rtime, sig->prev_utime));
3554
3555 *ut = sig->prev_utime;
3556 *st = sig->prev_stime;
3557 }
3558 #endif
3559
3560 /*
3561 * This function gets called by the timer code, with HZ frequency.
3562 * We call it with interrupts disabled.
3563 *
3564 * It also gets called by the fork code, when changing the parent's
3565 * timeslices.
3566 */
3567 void scheduler_tick(void)
3568 {
3569 int cpu = smp_processor_id();
3570 struct rq *rq = cpu_rq(cpu);
3571 struct task_struct *curr = rq->curr;
3572
3573 sched_clock_tick();
3574
3575 raw_spin_lock(&rq->lock);
3576 update_rq_clock(rq);
3577 update_cpu_load_active(rq);
3578 curr->sched_class->task_tick(rq, curr, 0);
3579 raw_spin_unlock(&rq->lock);
3580
3581 perf_event_task_tick(curr);
3582
3583 #ifdef CONFIG_SMP
3584 rq->idle_at_tick = idle_cpu(cpu);
3585 trigger_load_balance(rq, cpu);
3586 #endif
3587 }
3588
3589 notrace unsigned long get_parent_ip(unsigned long addr)
3590 {
3591 if (in_lock_functions(addr)) {
3592 addr = CALLER_ADDR2;
3593 if (in_lock_functions(addr))
3594 addr = CALLER_ADDR3;
3595 }
3596 return addr;
3597 }
3598
3599 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3600 defined(CONFIG_PREEMPT_TRACER))
3601
3602 void __kprobes add_preempt_count(int val)
3603 {
3604 #ifdef CONFIG_DEBUG_PREEMPT
3605 /*
3606 * Underflow?
3607 */
3608 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3609 return;
3610 #endif
3611 preempt_count() += val;
3612 #ifdef CONFIG_DEBUG_PREEMPT
3613 /*
3614 * Spinlock count overflowing soon?
3615 */
3616 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3617 PREEMPT_MASK - 10);
3618 #endif
3619 if (preempt_count() == val)
3620 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3621 }
3622 EXPORT_SYMBOL(add_preempt_count);
3623
3624 void __kprobes sub_preempt_count(int val)
3625 {
3626 #ifdef CONFIG_DEBUG_PREEMPT
3627 /*
3628 * Underflow?
3629 */
3630 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3631 return;
3632 /*
3633 * Is the spinlock portion underflowing?
3634 */
3635 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3636 !(preempt_count() & PREEMPT_MASK)))
3637 return;
3638 #endif
3639
3640 if (preempt_count() == val)
3641 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3642 preempt_count() -= val;
3643 }
3644 EXPORT_SYMBOL(sub_preempt_count);
3645
3646 #endif
3647
3648 /*
3649 * Print scheduling while atomic bug:
3650 */
3651 static noinline void __schedule_bug(struct task_struct *prev)
3652 {
3653 struct pt_regs *regs = get_irq_regs();
3654
3655 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3656 prev->comm, prev->pid, preempt_count());
3657
3658 debug_show_held_locks(prev);
3659 print_modules();
3660 if (irqs_disabled())
3661 print_irqtrace_events(prev);
3662
3663 if (regs)
3664 show_regs(regs);
3665 else
3666 dump_stack();
3667 }
3668
3669 /*
3670 * Various schedule()-time debugging checks and statistics:
3671 */
3672 static inline void schedule_debug(struct task_struct *prev)
3673 {
3674 /*
3675 * Test if we are atomic. Since do_exit() needs to call into
3676 * schedule() atomically, we ignore that path for now.
3677 * Otherwise, whine if we are scheduling when we should not be.
3678 */
3679 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3680 __schedule_bug(prev);
3681
3682 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3683
3684 schedstat_inc(this_rq(), sched_count);
3685 #ifdef CONFIG_SCHEDSTATS
3686 if (unlikely(prev->lock_depth >= 0)) {
3687 schedstat_inc(this_rq(), bkl_count);
3688 schedstat_inc(prev, sched_info.bkl_count);
3689 }
3690 #endif
3691 }
3692
3693 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3694 {
3695 if (prev->se.on_rq)
3696 update_rq_clock(rq);
3697 rq->skip_clock_update = 0;
3698 prev->sched_class->put_prev_task(rq, prev);
3699 }
3700
3701 /*
3702 * Pick up the highest-prio task:
3703 */
3704 static inline struct task_struct *
3705 pick_next_task(struct rq *rq)
3706 {
3707 const struct sched_class *class;
3708 struct task_struct *p;
3709
3710 /*
3711 * Optimization: we know that if all tasks are in
3712 * the fair class we can call that function directly:
3713 */
3714 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3715 p = fair_sched_class.pick_next_task(rq);
3716 if (likely(p))
3717 return p;
3718 }
3719
3720 class = sched_class_highest;
3721 for ( ; ; ) {
3722 p = class->pick_next_task(rq);
3723 if (p)
3724 return p;
3725 /*
3726 * Will never be NULL as the idle class always
3727 * returns a non-NULL p:
3728 */
3729 class = class->next;
3730 }
3731 }
3732
3733 /*
3734 * schedule() is the main scheduler function.
3735 */
3736 asmlinkage void __sched schedule(void)
3737 {
3738 struct task_struct *prev, *next;
3739 unsigned long *switch_count;
3740 struct rq *rq;
3741 int cpu;
3742
3743 need_resched:
3744 preempt_disable();
3745 cpu = smp_processor_id();
3746 rq = cpu_rq(cpu);
3747 rcu_note_context_switch(cpu);
3748 prev = rq->curr;
3749
3750 release_kernel_lock(prev);
3751 need_resched_nonpreemptible:
3752
3753 schedule_debug(prev);
3754
3755 if (sched_feat(HRTICK))
3756 hrtick_clear(rq);
3757
3758 raw_spin_lock_irq(&rq->lock);
3759 clear_tsk_need_resched(prev);
3760
3761 switch_count = &prev->nivcsw;
3762 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3763 if (unlikely(signal_pending_state(prev->state, prev))) {
3764 prev->state = TASK_RUNNING;
3765 } else {
3766 /*
3767 * If a worker is going to sleep, notify and
3768 * ask workqueue whether it wants to wake up a
3769 * task to maintain concurrency. If so, wake
3770 * up the task.
3771 */
3772 if (prev->flags & PF_WQ_WORKER) {
3773 struct task_struct *to_wakeup;
3774
3775 to_wakeup = wq_worker_sleeping(prev, cpu);
3776 if (to_wakeup)
3777 try_to_wake_up_local(to_wakeup);
3778 }
3779 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3780 }
3781 switch_count = &prev->nvcsw;
3782 }
3783
3784 pre_schedule(rq, prev);
3785
3786 if (unlikely(!rq->nr_running))
3787 idle_balance(cpu, rq);
3788
3789 put_prev_task(rq, prev);
3790 next = pick_next_task(rq);
3791
3792 if (likely(prev != next)) {
3793 sched_info_switch(prev, next);
3794 perf_event_task_sched_out(prev, next);
3795
3796 rq->nr_switches++;
3797 rq->curr = next;
3798 ++*switch_count;
3799
3800 context_switch(rq, prev, next); /* unlocks the rq */
3801 /*
3802 * The context switch have flipped the stack from under us
3803 * and restored the local variables which were saved when
3804 * this task called schedule() in the past. prev == current
3805 * is still correct, but it can be moved to another cpu/rq.
3806 */
3807 cpu = smp_processor_id();
3808 rq = cpu_rq(cpu);
3809 } else
3810 raw_spin_unlock_irq(&rq->lock);
3811
3812 post_schedule(rq);
3813
3814 if (unlikely(reacquire_kernel_lock(prev)))
3815 goto need_resched_nonpreemptible;
3816
3817 preempt_enable_no_resched();
3818 if (need_resched())
3819 goto need_resched;
3820 }
3821 EXPORT_SYMBOL(schedule);
3822
3823 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3824 /*
3825 * Look out! "owner" is an entirely speculative pointer
3826 * access and not reliable.
3827 */
3828 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3829 {
3830 unsigned int cpu;
3831 struct rq *rq;
3832
3833 if (!sched_feat(OWNER_SPIN))
3834 return 0;
3835
3836 #ifdef CONFIG_DEBUG_PAGEALLOC
3837 /*
3838 * Need to access the cpu field knowing that
3839 * DEBUG_PAGEALLOC could have unmapped it if
3840 * the mutex owner just released it and exited.
3841 */
3842 if (probe_kernel_address(&owner->cpu, cpu))
3843 return 0;
3844 #else
3845 cpu = owner->cpu;
3846 #endif
3847
3848 /*
3849 * Even if the access succeeded (likely case),
3850 * the cpu field may no longer be valid.
3851 */
3852 if (cpu >= nr_cpumask_bits)
3853 return 0;
3854
3855 /*
3856 * We need to validate that we can do a
3857 * get_cpu() and that we have the percpu area.
3858 */
3859 if (!cpu_online(cpu))
3860 return 0;
3861
3862 rq = cpu_rq(cpu);
3863
3864 for (;;) {
3865 /*
3866 * Owner changed, break to re-assess state.
3867 */
3868 if (lock->owner != owner)
3869 break;
3870
3871 /*
3872 * Is that owner really running on that cpu?
3873 */
3874 if (task_thread_info(rq->curr) != owner || need_resched())
3875 return 0;
3876
3877 cpu_relax();
3878 }
3879
3880 return 1;
3881 }
3882 #endif
3883
3884 #ifdef CONFIG_PREEMPT
3885 /*
3886 * this is the entry point to schedule() from in-kernel preemption
3887 * off of preempt_enable. Kernel preemptions off return from interrupt
3888 * occur there and call schedule directly.
3889 */
3890 asmlinkage void __sched notrace preempt_schedule(void)
3891 {
3892 struct thread_info *ti = current_thread_info();
3893
3894 /*
3895 * If there is a non-zero preempt_count or interrupts are disabled,
3896 * we do not want to preempt the current task. Just return..
3897 */
3898 if (likely(ti->preempt_count || irqs_disabled()))
3899 return;
3900
3901 do {
3902 add_preempt_count_notrace(PREEMPT_ACTIVE);
3903 schedule();
3904 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3905
3906 /*
3907 * Check again in case we missed a preemption opportunity
3908 * between schedule and now.
3909 */
3910 barrier();
3911 } while (need_resched());
3912 }
3913 EXPORT_SYMBOL(preempt_schedule);
3914
3915 /*
3916 * this is the entry point to schedule() from kernel preemption
3917 * off of irq context.
3918 * Note, that this is called and return with irqs disabled. This will
3919 * protect us against recursive calling from irq.
3920 */
3921 asmlinkage void __sched preempt_schedule_irq(void)
3922 {
3923 struct thread_info *ti = current_thread_info();
3924
3925 /* Catch callers which need to be fixed */
3926 BUG_ON(ti->preempt_count || !irqs_disabled());
3927
3928 do {
3929 add_preempt_count(PREEMPT_ACTIVE);
3930 local_irq_enable();
3931 schedule();
3932 local_irq_disable();
3933 sub_preempt_count(PREEMPT_ACTIVE);
3934
3935 /*
3936 * Check again in case we missed a preemption opportunity
3937 * between schedule and now.
3938 */
3939 barrier();
3940 } while (need_resched());
3941 }
3942
3943 #endif /* CONFIG_PREEMPT */
3944
3945 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3946 void *key)
3947 {
3948 return try_to_wake_up(curr->private, mode, wake_flags);
3949 }
3950 EXPORT_SYMBOL(default_wake_function);
3951
3952 /*
3953 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3954 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3955 * number) then we wake all the non-exclusive tasks and one exclusive task.
3956 *
3957 * There are circumstances in which we can try to wake a task which has already
3958 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3959 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3960 */
3961 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3962 int nr_exclusive, int wake_flags, void *key)
3963 {
3964 wait_queue_t *curr, *next;
3965
3966 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3967 unsigned flags = curr->flags;
3968
3969 if (curr->func(curr, mode, wake_flags, key) &&
3970 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3971 break;
3972 }
3973 }
3974
3975 /**
3976 * __wake_up - wake up threads blocked on a waitqueue.
3977 * @q: the waitqueue
3978 * @mode: which threads
3979 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3980 * @key: is directly passed to the wakeup function
3981 *
3982 * It may be assumed that this function implies a write memory barrier before
3983 * changing the task state if and only if any tasks are woken up.
3984 */
3985 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3986 int nr_exclusive, void *key)
3987 {
3988 unsigned long flags;
3989
3990 spin_lock_irqsave(&q->lock, flags);
3991 __wake_up_common(q, mode, nr_exclusive, 0, key);
3992 spin_unlock_irqrestore(&q->lock, flags);
3993 }
3994 EXPORT_SYMBOL(__wake_up);
3995
3996 /*
3997 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3998 */
3999 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4000 {
4001 __wake_up_common(q, mode, 1, 0, NULL);
4002 }
4003 EXPORT_SYMBOL_GPL(__wake_up_locked);
4004
4005 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4006 {
4007 __wake_up_common(q, mode, 1, 0, key);
4008 }
4009
4010 /**
4011 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4012 * @q: the waitqueue
4013 * @mode: which threads
4014 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4015 * @key: opaque value to be passed to wakeup targets
4016 *
4017 * The sync wakeup differs that the waker knows that it will schedule
4018 * away soon, so while the target thread will be woken up, it will not
4019 * be migrated to another CPU - ie. the two threads are 'synchronized'
4020 * with each other. This can prevent needless bouncing between CPUs.
4021 *
4022 * On UP it can prevent extra preemption.
4023 *
4024 * It may be assumed that this function implies a write memory barrier before
4025 * changing the task state if and only if any tasks are woken up.
4026 */
4027 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4028 int nr_exclusive, void *key)
4029 {
4030 unsigned long flags;
4031 int wake_flags = WF_SYNC;
4032
4033 if (unlikely(!q))
4034 return;
4035
4036 if (unlikely(!nr_exclusive))
4037 wake_flags = 0;
4038
4039 spin_lock_irqsave(&q->lock, flags);
4040 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4041 spin_unlock_irqrestore(&q->lock, flags);
4042 }
4043 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4044
4045 /*
4046 * __wake_up_sync - see __wake_up_sync_key()
4047 */
4048 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4049 {
4050 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4051 }
4052 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4053
4054 /**
4055 * complete: - signals a single thread waiting on this completion
4056 * @x: holds the state of this particular completion
4057 *
4058 * This will wake up a single thread waiting on this completion. Threads will be
4059 * awakened in the same order in which they were queued.
4060 *
4061 * See also complete_all(), wait_for_completion() and related routines.
4062 *
4063 * It may be assumed that this function implies a write memory barrier before
4064 * changing the task state if and only if any tasks are woken up.
4065 */
4066 void complete(struct completion *x)
4067 {
4068 unsigned long flags;
4069
4070 spin_lock_irqsave(&x->wait.lock, flags);
4071 x->done++;
4072 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4073 spin_unlock_irqrestore(&x->wait.lock, flags);
4074 }
4075 EXPORT_SYMBOL(complete);
4076
4077 /**
4078 * complete_all: - signals all threads waiting on this completion
4079 * @x: holds the state of this particular completion
4080 *
4081 * This will wake up all threads waiting on this particular completion event.
4082 *
4083 * It may be assumed that this function implies a write memory barrier before
4084 * changing the task state if and only if any tasks are woken up.
4085 */
4086 void complete_all(struct completion *x)
4087 {
4088 unsigned long flags;
4089
4090 spin_lock_irqsave(&x->wait.lock, flags);
4091 x->done += UINT_MAX/2;
4092 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4093 spin_unlock_irqrestore(&x->wait.lock, flags);
4094 }
4095 EXPORT_SYMBOL(complete_all);
4096
4097 static inline long __sched
4098 do_wait_for_common(struct completion *x, long timeout, int state)
4099 {
4100 if (!x->done) {
4101 DECLARE_WAITQUEUE(wait, current);
4102
4103 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4104 do {
4105 if (signal_pending_state(state, current)) {
4106 timeout = -ERESTARTSYS;
4107 break;
4108 }
4109 __set_current_state(state);
4110 spin_unlock_irq(&x->wait.lock);
4111 timeout = schedule_timeout(timeout);
4112 spin_lock_irq(&x->wait.lock);
4113 } while (!x->done && timeout);
4114 __remove_wait_queue(&x->wait, &wait);
4115 if (!x->done)
4116 return timeout;
4117 }
4118 x->done--;
4119 return timeout ?: 1;
4120 }
4121
4122 static long __sched
4123 wait_for_common(struct completion *x, long timeout, int state)
4124 {
4125 might_sleep();
4126
4127 spin_lock_irq(&x->wait.lock);
4128 timeout = do_wait_for_common(x, timeout, state);
4129 spin_unlock_irq(&x->wait.lock);
4130 return timeout;
4131 }
4132
4133 /**
4134 * wait_for_completion: - waits for completion of a task
4135 * @x: holds the state of this particular completion
4136 *
4137 * This waits to be signaled for completion of a specific task. It is NOT
4138 * interruptible and there is no timeout.
4139 *
4140 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4141 * and interrupt capability. Also see complete().
4142 */
4143 void __sched wait_for_completion(struct completion *x)
4144 {
4145 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4146 }
4147 EXPORT_SYMBOL(wait_for_completion);
4148
4149 /**
4150 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4151 * @x: holds the state of this particular completion
4152 * @timeout: timeout value in jiffies
4153 *
4154 * This waits for either a completion of a specific task to be signaled or for a
4155 * specified timeout to expire. The timeout is in jiffies. It is not
4156 * interruptible.
4157 */
4158 unsigned long __sched
4159 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4160 {
4161 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4162 }
4163 EXPORT_SYMBOL(wait_for_completion_timeout);
4164
4165 /**
4166 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4167 * @x: holds the state of this particular completion
4168 *
4169 * This waits for completion of a specific task to be signaled. It is
4170 * interruptible.
4171 */
4172 int __sched wait_for_completion_interruptible(struct completion *x)
4173 {
4174 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4175 if (t == -ERESTARTSYS)
4176 return t;
4177 return 0;
4178 }
4179 EXPORT_SYMBOL(wait_for_completion_interruptible);
4180
4181 /**
4182 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4183 * @x: holds the state of this particular completion
4184 * @timeout: timeout value in jiffies
4185 *
4186 * This waits for either a completion of a specific task to be signaled or for a
4187 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4188 */
4189 unsigned long __sched
4190 wait_for_completion_interruptible_timeout(struct completion *x,
4191 unsigned long timeout)
4192 {
4193 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4194 }
4195 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4196
4197 /**
4198 * wait_for_completion_killable: - waits for completion of a task (killable)
4199 * @x: holds the state of this particular completion
4200 *
4201 * This waits to be signaled for completion of a specific task. It can be
4202 * interrupted by a kill signal.
4203 */
4204 int __sched wait_for_completion_killable(struct completion *x)
4205 {
4206 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4207 if (t == -ERESTARTSYS)
4208 return t;
4209 return 0;
4210 }
4211 EXPORT_SYMBOL(wait_for_completion_killable);
4212
4213 /**
4214 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4215 * @x: holds the state of this particular completion
4216 * @timeout: timeout value in jiffies
4217 *
4218 * This waits for either a completion of a specific task to be
4219 * signaled or for a specified timeout to expire. It can be
4220 * interrupted by a kill signal. The timeout is in jiffies.
4221 */
4222 unsigned long __sched
4223 wait_for_completion_killable_timeout(struct completion *x,
4224 unsigned long timeout)
4225 {
4226 return wait_for_common(x, timeout, TASK_KILLABLE);
4227 }
4228 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4229
4230 /**
4231 * try_wait_for_completion - try to decrement a completion without blocking
4232 * @x: completion structure
4233 *
4234 * Returns: 0 if a decrement cannot be done without blocking
4235 * 1 if a decrement succeeded.
4236 *
4237 * If a completion is being used as a counting completion,
4238 * attempt to decrement the counter without blocking. This
4239 * enables us to avoid waiting if the resource the completion
4240 * is protecting is not available.
4241 */
4242 bool try_wait_for_completion(struct completion *x)
4243 {
4244 unsigned long flags;
4245 int ret = 1;
4246
4247 spin_lock_irqsave(&x->wait.lock, flags);
4248 if (!x->done)
4249 ret = 0;
4250 else
4251 x->done--;
4252 spin_unlock_irqrestore(&x->wait.lock, flags);
4253 return ret;
4254 }
4255 EXPORT_SYMBOL(try_wait_for_completion);
4256
4257 /**
4258 * completion_done - Test to see if a completion has any waiters
4259 * @x: completion structure
4260 *
4261 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4262 * 1 if there are no waiters.
4263 *
4264 */
4265 bool completion_done(struct completion *x)
4266 {
4267 unsigned long flags;
4268 int ret = 1;
4269
4270 spin_lock_irqsave(&x->wait.lock, flags);
4271 if (!x->done)
4272 ret = 0;
4273 spin_unlock_irqrestore(&x->wait.lock, flags);
4274 return ret;
4275 }
4276 EXPORT_SYMBOL(completion_done);
4277
4278 static long __sched
4279 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4280 {
4281 unsigned long flags;
4282 wait_queue_t wait;
4283
4284 init_waitqueue_entry(&wait, current);
4285
4286 __set_current_state(state);
4287
4288 spin_lock_irqsave(&q->lock, flags);
4289 __add_wait_queue(q, &wait);
4290 spin_unlock(&q->lock);
4291 timeout = schedule_timeout(timeout);
4292 spin_lock_irq(&q->lock);
4293 __remove_wait_queue(q, &wait);
4294 spin_unlock_irqrestore(&q->lock, flags);
4295
4296 return timeout;
4297 }
4298
4299 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4300 {
4301 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4302 }
4303 EXPORT_SYMBOL(interruptible_sleep_on);
4304
4305 long __sched
4306 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4307 {
4308 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4309 }
4310 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4311
4312 void __sched sleep_on(wait_queue_head_t *q)
4313 {
4314 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4315 }
4316 EXPORT_SYMBOL(sleep_on);
4317
4318 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4319 {
4320 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4321 }
4322 EXPORT_SYMBOL(sleep_on_timeout);
4323
4324 #ifdef CONFIG_RT_MUTEXES
4325
4326 /*
4327 * rt_mutex_setprio - set the current priority of a task
4328 * @p: task
4329 * @prio: prio value (kernel-internal form)
4330 *
4331 * This function changes the 'effective' priority of a task. It does
4332 * not touch ->normal_prio like __setscheduler().
4333 *
4334 * Used by the rt_mutex code to implement priority inheritance logic.
4335 */
4336 void rt_mutex_setprio(struct task_struct *p, int prio)
4337 {
4338 unsigned long flags;
4339 int oldprio, on_rq, running;
4340 struct rq *rq;
4341 const struct sched_class *prev_class;
4342
4343 BUG_ON(prio < 0 || prio > MAX_PRIO);
4344
4345 rq = task_rq_lock(p, &flags);
4346
4347 oldprio = p->prio;
4348 prev_class = p->sched_class;
4349 on_rq = p->se.on_rq;
4350 running = task_current(rq, p);
4351 if (on_rq)
4352 dequeue_task(rq, p, 0);
4353 if (running)
4354 p->sched_class->put_prev_task(rq, p);
4355
4356 if (rt_prio(prio))
4357 p->sched_class = &rt_sched_class;
4358 else
4359 p->sched_class = &fair_sched_class;
4360
4361 p->prio = prio;
4362
4363 if (running)
4364 p->sched_class->set_curr_task(rq);
4365 if (on_rq) {
4366 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4367
4368 check_class_changed(rq, p, prev_class, oldprio, running);
4369 }
4370 task_rq_unlock(rq, &flags);
4371 }
4372
4373 #endif
4374
4375 void set_user_nice(struct task_struct *p, long nice)
4376 {
4377 int old_prio, delta, on_rq;
4378 unsigned long flags;
4379 struct rq *rq;
4380
4381 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4382 return;
4383 /*
4384 * We have to be careful, if called from sys_setpriority(),
4385 * the task might be in the middle of scheduling on another CPU.
4386 */
4387 rq = task_rq_lock(p, &flags);
4388 /*
4389 * The RT priorities are set via sched_setscheduler(), but we still
4390 * allow the 'normal' nice value to be set - but as expected
4391 * it wont have any effect on scheduling until the task is
4392 * SCHED_FIFO/SCHED_RR:
4393 */
4394 if (task_has_rt_policy(p)) {
4395 p->static_prio = NICE_TO_PRIO(nice);
4396 goto out_unlock;
4397 }
4398 on_rq = p->se.on_rq;
4399 if (on_rq)
4400 dequeue_task(rq, p, 0);
4401
4402 p->static_prio = NICE_TO_PRIO(nice);
4403 set_load_weight(p);
4404 old_prio = p->prio;
4405 p->prio = effective_prio(p);
4406 delta = p->prio - old_prio;
4407
4408 if (on_rq) {
4409 enqueue_task(rq, p, 0);
4410 /*
4411 * If the task increased its priority or is running and
4412 * lowered its priority, then reschedule its CPU:
4413 */
4414 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4415 resched_task(rq->curr);
4416 }
4417 out_unlock:
4418 task_rq_unlock(rq, &flags);
4419 }
4420 EXPORT_SYMBOL(set_user_nice);
4421
4422 /*
4423 * can_nice - check if a task can reduce its nice value
4424 * @p: task
4425 * @nice: nice value
4426 */
4427 int can_nice(const struct task_struct *p, const int nice)
4428 {
4429 /* convert nice value [19,-20] to rlimit style value [1,40] */
4430 int nice_rlim = 20 - nice;
4431
4432 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4433 capable(CAP_SYS_NICE));
4434 }
4435
4436 #ifdef __ARCH_WANT_SYS_NICE
4437
4438 /*
4439 * sys_nice - change the priority of the current process.
4440 * @increment: priority increment
4441 *
4442 * sys_setpriority is a more generic, but much slower function that
4443 * does similar things.
4444 */
4445 SYSCALL_DEFINE1(nice, int, increment)
4446 {
4447 long nice, retval;
4448
4449 /*
4450 * Setpriority might change our priority at the same moment.
4451 * We don't have to worry. Conceptually one call occurs first
4452 * and we have a single winner.
4453 */
4454 if (increment < -40)
4455 increment = -40;
4456 if (increment > 40)
4457 increment = 40;
4458
4459 nice = TASK_NICE(current) + increment;
4460 if (nice < -20)
4461 nice = -20;
4462 if (nice > 19)
4463 nice = 19;
4464
4465 if (increment < 0 && !can_nice(current, nice))
4466 return -EPERM;
4467
4468 retval = security_task_setnice(current, nice);
4469 if (retval)
4470 return retval;
4471
4472 set_user_nice(current, nice);
4473 return 0;
4474 }
4475
4476 #endif
4477
4478 /**
4479 * task_prio - return the priority value of a given task.
4480 * @p: the task in question.
4481 *
4482 * This is the priority value as seen by users in /proc.
4483 * RT tasks are offset by -200. Normal tasks are centered
4484 * around 0, value goes from -16 to +15.
4485 */
4486 int task_prio(const struct task_struct *p)
4487 {
4488 return p->prio - MAX_RT_PRIO;
4489 }
4490
4491 /**
4492 * task_nice - return the nice value of a given task.
4493 * @p: the task in question.
4494 */
4495 int task_nice(const struct task_struct *p)
4496 {
4497 return TASK_NICE(p);
4498 }
4499 EXPORT_SYMBOL(task_nice);
4500
4501 /**
4502 * idle_cpu - is a given cpu idle currently?
4503 * @cpu: the processor in question.
4504 */
4505 int idle_cpu(int cpu)
4506 {
4507 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4508 }
4509
4510 /**
4511 * idle_task - return the idle task for a given cpu.
4512 * @cpu: the processor in question.
4513 */
4514 struct task_struct *idle_task(int cpu)
4515 {
4516 return cpu_rq(cpu)->idle;
4517 }
4518
4519 /**
4520 * find_process_by_pid - find a process with a matching PID value.
4521 * @pid: the pid in question.
4522 */
4523 static struct task_struct *find_process_by_pid(pid_t pid)
4524 {
4525 return pid ? find_task_by_vpid(pid) : current;
4526 }
4527
4528 /* Actually do priority change: must hold rq lock. */
4529 static void
4530 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4531 {
4532 BUG_ON(p->se.on_rq);
4533
4534 p->policy = policy;
4535 p->rt_priority = prio;
4536 p->normal_prio = normal_prio(p);
4537 /* we are holding p->pi_lock already */
4538 p->prio = rt_mutex_getprio(p);
4539 if (rt_prio(p->prio))
4540 p->sched_class = &rt_sched_class;
4541 else
4542 p->sched_class = &fair_sched_class;
4543 set_load_weight(p);
4544 }
4545
4546 /*
4547 * check the target process has a UID that matches the current process's
4548 */
4549 static bool check_same_owner(struct task_struct *p)
4550 {
4551 const struct cred *cred = current_cred(), *pcred;
4552 bool match;
4553
4554 rcu_read_lock();
4555 pcred = __task_cred(p);
4556 match = (cred->euid == pcred->euid ||
4557 cred->euid == pcred->uid);
4558 rcu_read_unlock();
4559 return match;
4560 }
4561
4562 static int __sched_setscheduler(struct task_struct *p, int policy,
4563 struct sched_param *param, bool user)
4564 {
4565 int retval, oldprio, oldpolicy = -1, on_rq, running;
4566 unsigned long flags;
4567 const struct sched_class *prev_class;
4568 struct rq *rq;
4569 int reset_on_fork;
4570
4571 /* may grab non-irq protected spin_locks */
4572 BUG_ON(in_interrupt());
4573 recheck:
4574 /* double check policy once rq lock held */
4575 if (policy < 0) {
4576 reset_on_fork = p->sched_reset_on_fork;
4577 policy = oldpolicy = p->policy;
4578 } else {
4579 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4580 policy &= ~SCHED_RESET_ON_FORK;
4581
4582 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4583 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4584 policy != SCHED_IDLE)
4585 return -EINVAL;
4586 }
4587
4588 /*
4589 * Valid priorities for SCHED_FIFO and SCHED_RR are
4590 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4591 * SCHED_BATCH and SCHED_IDLE is 0.
4592 */
4593 if (param->sched_priority < 0 ||
4594 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4595 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4596 return -EINVAL;
4597 if (rt_policy(policy) != (param->sched_priority != 0))
4598 return -EINVAL;
4599
4600 /*
4601 * Allow unprivileged RT tasks to decrease priority:
4602 */
4603 if (user && !capable(CAP_SYS_NICE)) {
4604 if (rt_policy(policy)) {
4605 unsigned long rlim_rtprio =
4606 task_rlimit(p, RLIMIT_RTPRIO);
4607
4608 /* can't set/change the rt policy */
4609 if (policy != p->policy && !rlim_rtprio)
4610 return -EPERM;
4611
4612 /* can't increase priority */
4613 if (param->sched_priority > p->rt_priority &&
4614 param->sched_priority > rlim_rtprio)
4615 return -EPERM;
4616 }
4617 /*
4618 * Like positive nice levels, dont allow tasks to
4619 * move out of SCHED_IDLE either:
4620 */
4621 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4622 return -EPERM;
4623
4624 /* can't change other user's priorities */
4625 if (!check_same_owner(p))
4626 return -EPERM;
4627
4628 /* Normal users shall not reset the sched_reset_on_fork flag */
4629 if (p->sched_reset_on_fork && !reset_on_fork)
4630 return -EPERM;
4631 }
4632
4633 if (user) {
4634 retval = security_task_setscheduler(p, policy, param);
4635 if (retval)
4636 return retval;
4637 }
4638
4639 /*
4640 * make sure no PI-waiters arrive (or leave) while we are
4641 * changing the priority of the task:
4642 */
4643 raw_spin_lock_irqsave(&p->pi_lock, flags);
4644 /*
4645 * To be able to change p->policy safely, the apropriate
4646 * runqueue lock must be held.
4647 */
4648 rq = __task_rq_lock(p);
4649
4650 #ifdef CONFIG_RT_GROUP_SCHED
4651 if (user) {
4652 /*
4653 * Do not allow realtime tasks into groups that have no runtime
4654 * assigned.
4655 */
4656 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4657 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4658 __task_rq_unlock(rq);
4659 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4660 return -EPERM;
4661 }
4662 }
4663 #endif
4664
4665 /* recheck policy now with rq lock held */
4666 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4667 policy = oldpolicy = -1;
4668 __task_rq_unlock(rq);
4669 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4670 goto recheck;
4671 }
4672 on_rq = p->se.on_rq;
4673 running = task_current(rq, p);
4674 if (on_rq)
4675 deactivate_task(rq, p, 0);
4676 if (running)
4677 p->sched_class->put_prev_task(rq, p);
4678
4679 p->sched_reset_on_fork = reset_on_fork;
4680
4681 oldprio = p->prio;
4682 prev_class = p->sched_class;
4683 __setscheduler(rq, p, policy, param->sched_priority);
4684
4685 if (running)
4686 p->sched_class->set_curr_task(rq);
4687 if (on_rq) {
4688 activate_task(rq, p, 0);
4689
4690 check_class_changed(rq, p, prev_class, oldprio, running);
4691 }
4692 __task_rq_unlock(rq);
4693 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4694
4695 rt_mutex_adjust_pi(p);
4696
4697 return 0;
4698 }
4699
4700 /**
4701 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4702 * @p: the task in question.
4703 * @policy: new policy.
4704 * @param: structure containing the new RT priority.
4705 *
4706 * NOTE that the task may be already dead.
4707 */
4708 int sched_setscheduler(struct task_struct *p, int policy,
4709 struct sched_param *param)
4710 {
4711 return __sched_setscheduler(p, policy, param, true);
4712 }
4713 EXPORT_SYMBOL_GPL(sched_setscheduler);
4714
4715 /**
4716 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4717 * @p: the task in question.
4718 * @policy: new policy.
4719 * @param: structure containing the new RT priority.
4720 *
4721 * Just like sched_setscheduler, only don't bother checking if the
4722 * current context has permission. For example, this is needed in
4723 * stop_machine(): we create temporary high priority worker threads,
4724 * but our caller might not have that capability.
4725 */
4726 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4727 struct sched_param *param)
4728 {
4729 return __sched_setscheduler(p, policy, param, false);
4730 }
4731
4732 static int
4733 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4734 {
4735 struct sched_param lparam;
4736 struct task_struct *p;
4737 int retval;
4738
4739 if (!param || pid < 0)
4740 return -EINVAL;
4741 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4742 return -EFAULT;
4743
4744 rcu_read_lock();
4745 retval = -ESRCH;
4746 p = find_process_by_pid(pid);
4747 if (p != NULL)
4748 retval = sched_setscheduler(p, policy, &lparam);
4749 rcu_read_unlock();
4750
4751 return retval;
4752 }
4753
4754 /**
4755 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4756 * @pid: the pid in question.
4757 * @policy: new policy.
4758 * @param: structure containing the new RT priority.
4759 */
4760 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4761 struct sched_param __user *, param)
4762 {
4763 /* negative values for policy are not valid */
4764 if (policy < 0)
4765 return -EINVAL;
4766
4767 return do_sched_setscheduler(pid, policy, param);
4768 }
4769
4770 /**
4771 * sys_sched_setparam - set/change the RT priority of a thread
4772 * @pid: the pid in question.
4773 * @param: structure containing the new RT priority.
4774 */
4775 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4776 {
4777 return do_sched_setscheduler(pid, -1, param);
4778 }
4779
4780 /**
4781 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4782 * @pid: the pid in question.
4783 */
4784 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4785 {
4786 struct task_struct *p;
4787 int retval;
4788
4789 if (pid < 0)
4790 return -EINVAL;
4791
4792 retval = -ESRCH;
4793 rcu_read_lock();
4794 p = find_process_by_pid(pid);
4795 if (p) {
4796 retval = security_task_getscheduler(p);
4797 if (!retval)
4798 retval = p->policy
4799 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4800 }
4801 rcu_read_unlock();
4802 return retval;
4803 }
4804
4805 /**
4806 * sys_sched_getparam - get the RT priority of a thread
4807 * @pid: the pid in question.
4808 * @param: structure containing the RT priority.
4809 */
4810 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4811 {
4812 struct sched_param lp;
4813 struct task_struct *p;
4814 int retval;
4815
4816 if (!param || pid < 0)
4817 return -EINVAL;
4818
4819 rcu_read_lock();
4820 p = find_process_by_pid(pid);
4821 retval = -ESRCH;
4822 if (!p)
4823 goto out_unlock;
4824
4825 retval = security_task_getscheduler(p);
4826 if (retval)
4827 goto out_unlock;
4828
4829 lp.sched_priority = p->rt_priority;
4830 rcu_read_unlock();
4831
4832 /*
4833 * This one might sleep, we cannot do it with a spinlock held ...
4834 */
4835 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4836
4837 return retval;
4838
4839 out_unlock:
4840 rcu_read_unlock();
4841 return retval;
4842 }
4843
4844 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4845 {
4846 cpumask_var_t cpus_allowed, new_mask;
4847 struct task_struct *p;
4848 int retval;
4849
4850 get_online_cpus();
4851 rcu_read_lock();
4852
4853 p = find_process_by_pid(pid);
4854 if (!p) {
4855 rcu_read_unlock();
4856 put_online_cpus();
4857 return -ESRCH;
4858 }
4859
4860 /* Prevent p going away */
4861 get_task_struct(p);
4862 rcu_read_unlock();
4863
4864 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4865 retval = -ENOMEM;
4866 goto out_put_task;
4867 }
4868 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4869 retval = -ENOMEM;
4870 goto out_free_cpus_allowed;
4871 }
4872 retval = -EPERM;
4873 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4874 goto out_unlock;
4875
4876 retval = security_task_setscheduler(p, 0, NULL);
4877 if (retval)
4878 goto out_unlock;
4879
4880 cpuset_cpus_allowed(p, cpus_allowed);
4881 cpumask_and(new_mask, in_mask, cpus_allowed);
4882 again:
4883 retval = set_cpus_allowed_ptr(p, new_mask);
4884
4885 if (!retval) {
4886 cpuset_cpus_allowed(p, cpus_allowed);
4887 if (!cpumask_subset(new_mask, cpus_allowed)) {
4888 /*
4889 * We must have raced with a concurrent cpuset
4890 * update. Just reset the cpus_allowed to the
4891 * cpuset's cpus_allowed
4892 */
4893 cpumask_copy(new_mask, cpus_allowed);
4894 goto again;
4895 }
4896 }
4897 out_unlock:
4898 free_cpumask_var(new_mask);
4899 out_free_cpus_allowed:
4900 free_cpumask_var(cpus_allowed);
4901 out_put_task:
4902 put_task_struct(p);
4903 put_online_cpus();
4904 return retval;
4905 }
4906
4907 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4908 struct cpumask *new_mask)
4909 {
4910 if (len < cpumask_size())
4911 cpumask_clear(new_mask);
4912 else if (len > cpumask_size())
4913 len = cpumask_size();
4914
4915 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4916 }
4917
4918 /**
4919 * sys_sched_setaffinity - set the cpu affinity of a process
4920 * @pid: pid of the process
4921 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4922 * @user_mask_ptr: user-space pointer to the new cpu mask
4923 */
4924 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4925 unsigned long __user *, user_mask_ptr)
4926 {
4927 cpumask_var_t new_mask;
4928 int retval;
4929
4930 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4931 return -ENOMEM;
4932
4933 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4934 if (retval == 0)
4935 retval = sched_setaffinity(pid, new_mask);
4936 free_cpumask_var(new_mask);
4937 return retval;
4938 }
4939
4940 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4941 {
4942 struct task_struct *p;
4943 unsigned long flags;
4944 struct rq *rq;
4945 int retval;
4946
4947 get_online_cpus();
4948 rcu_read_lock();
4949
4950 retval = -ESRCH;
4951 p = find_process_by_pid(pid);
4952 if (!p)
4953 goto out_unlock;
4954
4955 retval = security_task_getscheduler(p);
4956 if (retval)
4957 goto out_unlock;
4958
4959 rq = task_rq_lock(p, &flags);
4960 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4961 task_rq_unlock(rq, &flags);
4962
4963 out_unlock:
4964 rcu_read_unlock();
4965 put_online_cpus();
4966
4967 return retval;
4968 }
4969
4970 /**
4971 * sys_sched_getaffinity - get the cpu affinity of a process
4972 * @pid: pid of the process
4973 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4974 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4975 */
4976 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4977 unsigned long __user *, user_mask_ptr)
4978 {
4979 int ret;
4980 cpumask_var_t mask;
4981
4982 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4983 return -EINVAL;
4984 if (len & (sizeof(unsigned long)-1))
4985 return -EINVAL;
4986
4987 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4988 return -ENOMEM;
4989
4990 ret = sched_getaffinity(pid, mask);
4991 if (ret == 0) {
4992 size_t retlen = min_t(size_t, len, cpumask_size());
4993
4994 if (copy_to_user(user_mask_ptr, mask, retlen))
4995 ret = -EFAULT;
4996 else
4997 ret = retlen;
4998 }
4999 free_cpumask_var(mask);
5000
5001 return ret;
5002 }
5003
5004 /**
5005 * sys_sched_yield - yield the current processor to other threads.
5006 *
5007 * This function yields the current CPU to other tasks. If there are no
5008 * other threads running on this CPU then this function will return.
5009 */
5010 SYSCALL_DEFINE0(sched_yield)
5011 {
5012 struct rq *rq = this_rq_lock();
5013
5014 schedstat_inc(rq, yld_count);
5015 current->sched_class->yield_task(rq);
5016
5017 /*
5018 * Since we are going to call schedule() anyway, there's
5019 * no need to preempt or enable interrupts:
5020 */
5021 __release(rq->lock);
5022 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5023 do_raw_spin_unlock(&rq->lock);
5024 preempt_enable_no_resched();
5025
5026 schedule();
5027
5028 return 0;
5029 }
5030
5031 static inline int should_resched(void)
5032 {
5033 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5034 }
5035
5036 static void __cond_resched(void)
5037 {
5038 add_preempt_count(PREEMPT_ACTIVE);
5039 schedule();
5040 sub_preempt_count(PREEMPT_ACTIVE);
5041 }
5042
5043 int __sched _cond_resched(void)
5044 {
5045 if (should_resched()) {
5046 __cond_resched();
5047 return 1;
5048 }
5049 return 0;
5050 }
5051 EXPORT_SYMBOL(_cond_resched);
5052
5053 /*
5054 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5055 * call schedule, and on return reacquire the lock.
5056 *
5057 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5058 * operations here to prevent schedule() from being called twice (once via
5059 * spin_unlock(), once by hand).
5060 */
5061 int __cond_resched_lock(spinlock_t *lock)
5062 {
5063 int resched = should_resched();
5064 int ret = 0;
5065
5066 lockdep_assert_held(lock);
5067
5068 if (spin_needbreak(lock) || resched) {
5069 spin_unlock(lock);
5070 if (resched)
5071 __cond_resched();
5072 else
5073 cpu_relax();
5074 ret = 1;
5075 spin_lock(lock);
5076 }
5077 return ret;
5078 }
5079 EXPORT_SYMBOL(__cond_resched_lock);
5080
5081 int __sched __cond_resched_softirq(void)
5082 {
5083 BUG_ON(!in_softirq());
5084
5085 if (should_resched()) {
5086 local_bh_enable();
5087 __cond_resched();
5088 local_bh_disable();
5089 return 1;
5090 }
5091 return 0;
5092 }
5093 EXPORT_SYMBOL(__cond_resched_softirq);
5094
5095 /**
5096 * yield - yield the current processor to other threads.
5097 *
5098 * This is a shortcut for kernel-space yielding - it marks the
5099 * thread runnable and calls sys_sched_yield().
5100 */
5101 void __sched yield(void)
5102 {
5103 set_current_state(TASK_RUNNING);
5104 sys_sched_yield();
5105 }
5106 EXPORT_SYMBOL(yield);
5107
5108 /*
5109 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5110 * that process accounting knows that this is a task in IO wait state.
5111 */
5112 void __sched io_schedule(void)
5113 {
5114 struct rq *rq = raw_rq();
5115
5116 delayacct_blkio_start();
5117 atomic_inc(&rq->nr_iowait);
5118 current->in_iowait = 1;
5119 schedule();
5120 current->in_iowait = 0;
5121 atomic_dec(&rq->nr_iowait);
5122 delayacct_blkio_end();
5123 }
5124 EXPORT_SYMBOL(io_schedule);
5125
5126 long __sched io_schedule_timeout(long timeout)
5127 {
5128 struct rq *rq = raw_rq();
5129 long ret;
5130
5131 delayacct_blkio_start();
5132 atomic_inc(&rq->nr_iowait);
5133 current->in_iowait = 1;
5134 ret = schedule_timeout(timeout);
5135 current->in_iowait = 0;
5136 atomic_dec(&rq->nr_iowait);
5137 delayacct_blkio_end();
5138 return ret;
5139 }
5140
5141 /**
5142 * sys_sched_get_priority_max - return maximum RT priority.
5143 * @policy: scheduling class.
5144 *
5145 * this syscall returns the maximum rt_priority that can be used
5146 * by a given scheduling class.
5147 */
5148 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5149 {
5150 int ret = -EINVAL;
5151
5152 switch (policy) {
5153 case SCHED_FIFO:
5154 case SCHED_RR:
5155 ret = MAX_USER_RT_PRIO-1;
5156 break;
5157 case SCHED_NORMAL:
5158 case SCHED_BATCH:
5159 case SCHED_IDLE:
5160 ret = 0;
5161 break;
5162 }
5163 return ret;
5164 }
5165
5166 /**
5167 * sys_sched_get_priority_min - return minimum RT priority.
5168 * @policy: scheduling class.
5169 *
5170 * this syscall returns the minimum rt_priority that can be used
5171 * by a given scheduling class.
5172 */
5173 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5174 {
5175 int ret = -EINVAL;
5176
5177 switch (policy) {
5178 case SCHED_FIFO:
5179 case SCHED_RR:
5180 ret = 1;
5181 break;
5182 case SCHED_NORMAL:
5183 case SCHED_BATCH:
5184 case SCHED_IDLE:
5185 ret = 0;
5186 }
5187 return ret;
5188 }
5189
5190 /**
5191 * sys_sched_rr_get_interval - return the default timeslice of a process.
5192 * @pid: pid of the process.
5193 * @interval: userspace pointer to the timeslice value.
5194 *
5195 * this syscall writes the default timeslice value of a given process
5196 * into the user-space timespec buffer. A value of '0' means infinity.
5197 */
5198 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5199 struct timespec __user *, interval)
5200 {
5201 struct task_struct *p;
5202 unsigned int time_slice;
5203 unsigned long flags;
5204 struct rq *rq;
5205 int retval;
5206 struct timespec t;
5207
5208 if (pid < 0)
5209 return -EINVAL;
5210
5211 retval = -ESRCH;
5212 rcu_read_lock();
5213 p = find_process_by_pid(pid);
5214 if (!p)
5215 goto out_unlock;
5216
5217 retval = security_task_getscheduler(p);
5218 if (retval)
5219 goto out_unlock;
5220
5221 rq = task_rq_lock(p, &flags);
5222 time_slice = p->sched_class->get_rr_interval(rq, p);
5223 task_rq_unlock(rq, &flags);
5224
5225 rcu_read_unlock();
5226 jiffies_to_timespec(time_slice, &t);
5227 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5228 return retval;
5229
5230 out_unlock:
5231 rcu_read_unlock();
5232 return retval;
5233 }
5234
5235 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5236
5237 void sched_show_task(struct task_struct *p)
5238 {
5239 unsigned long free = 0;
5240 unsigned state;
5241
5242 state = p->state ? __ffs(p->state) + 1 : 0;
5243 printk(KERN_INFO "%-13.13s %c", p->comm,
5244 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5245 #if BITS_PER_LONG == 32
5246 if (state == TASK_RUNNING)
5247 printk(KERN_CONT " running ");
5248 else
5249 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5250 #else
5251 if (state == TASK_RUNNING)
5252 printk(KERN_CONT " running task ");
5253 else
5254 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5255 #endif
5256 #ifdef CONFIG_DEBUG_STACK_USAGE
5257 free = stack_not_used(p);
5258 #endif
5259 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5260 task_pid_nr(p), task_pid_nr(p->real_parent),
5261 (unsigned long)task_thread_info(p)->flags);
5262
5263 show_stack(p, NULL);
5264 }
5265
5266 void show_state_filter(unsigned long state_filter)
5267 {
5268 struct task_struct *g, *p;
5269
5270 #if BITS_PER_LONG == 32
5271 printk(KERN_INFO
5272 " task PC stack pid father\n");
5273 #else
5274 printk(KERN_INFO
5275 " task PC stack pid father\n");
5276 #endif
5277 read_lock(&tasklist_lock);
5278 do_each_thread(g, p) {
5279 /*
5280 * reset the NMI-timeout, listing all files on a slow
5281 * console might take alot of time:
5282 */
5283 touch_nmi_watchdog();
5284 if (!state_filter || (p->state & state_filter))
5285 sched_show_task(p);
5286 } while_each_thread(g, p);
5287
5288 touch_all_softlockup_watchdogs();
5289
5290 #ifdef CONFIG_SCHED_DEBUG
5291 sysrq_sched_debug_show();
5292 #endif
5293 read_unlock(&tasklist_lock);
5294 /*
5295 * Only show locks if all tasks are dumped:
5296 */
5297 if (!state_filter)
5298 debug_show_all_locks();
5299 }
5300
5301 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5302 {
5303 idle->sched_class = &idle_sched_class;
5304 }
5305
5306 /**
5307 * init_idle - set up an idle thread for a given CPU
5308 * @idle: task in question
5309 * @cpu: cpu the idle task belongs to
5310 *
5311 * NOTE: this function does not set the idle thread's NEED_RESCHED
5312 * flag, to make booting more robust.
5313 */
5314 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5315 {
5316 struct rq *rq = cpu_rq(cpu);
5317 unsigned long flags;
5318
5319 raw_spin_lock_irqsave(&rq->lock, flags);
5320
5321 __sched_fork(idle);
5322 idle->state = TASK_RUNNING;
5323 idle->se.exec_start = sched_clock();
5324
5325 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5326 __set_task_cpu(idle, cpu);
5327
5328 rq->curr = rq->idle = idle;
5329 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5330 idle->oncpu = 1;
5331 #endif
5332 raw_spin_unlock_irqrestore(&rq->lock, flags);
5333
5334 /* Set the preempt count _outside_ the spinlocks! */
5335 #if defined(CONFIG_PREEMPT)
5336 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5337 #else
5338 task_thread_info(idle)->preempt_count = 0;
5339 #endif
5340 /*
5341 * The idle tasks have their own, simple scheduling class:
5342 */
5343 idle->sched_class = &idle_sched_class;
5344 ftrace_graph_init_task(idle);
5345 }
5346
5347 /*
5348 * In a system that switches off the HZ timer nohz_cpu_mask
5349 * indicates which cpus entered this state. This is used
5350 * in the rcu update to wait only for active cpus. For system
5351 * which do not switch off the HZ timer nohz_cpu_mask should
5352 * always be CPU_BITS_NONE.
5353 */
5354 cpumask_var_t nohz_cpu_mask;
5355
5356 /*
5357 * Increase the granularity value when there are more CPUs,
5358 * because with more CPUs the 'effective latency' as visible
5359 * to users decreases. But the relationship is not linear,
5360 * so pick a second-best guess by going with the log2 of the
5361 * number of CPUs.
5362 *
5363 * This idea comes from the SD scheduler of Con Kolivas:
5364 */
5365 static int get_update_sysctl_factor(void)
5366 {
5367 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5368 unsigned int factor;
5369
5370 switch (sysctl_sched_tunable_scaling) {
5371 case SCHED_TUNABLESCALING_NONE:
5372 factor = 1;
5373 break;
5374 case SCHED_TUNABLESCALING_LINEAR:
5375 factor = cpus;
5376 break;
5377 case SCHED_TUNABLESCALING_LOG:
5378 default:
5379 factor = 1 + ilog2(cpus);
5380 break;
5381 }
5382
5383 return factor;
5384 }
5385
5386 static void update_sysctl(void)
5387 {
5388 unsigned int factor = get_update_sysctl_factor();
5389
5390 #define SET_SYSCTL(name) \
5391 (sysctl_##name = (factor) * normalized_sysctl_##name)
5392 SET_SYSCTL(sched_min_granularity);
5393 SET_SYSCTL(sched_latency);
5394 SET_SYSCTL(sched_wakeup_granularity);
5395 SET_SYSCTL(sched_shares_ratelimit);
5396 #undef SET_SYSCTL
5397 }
5398
5399 static inline void sched_init_granularity(void)
5400 {
5401 update_sysctl();
5402 }
5403
5404 #ifdef CONFIG_SMP
5405 /*
5406 * This is how migration works:
5407 *
5408 * 1) we invoke migration_cpu_stop() on the target CPU using
5409 * stop_one_cpu().
5410 * 2) stopper starts to run (implicitly forcing the migrated thread
5411 * off the CPU)
5412 * 3) it checks whether the migrated task is still in the wrong runqueue.
5413 * 4) if it's in the wrong runqueue then the migration thread removes
5414 * it and puts it into the right queue.
5415 * 5) stopper completes and stop_one_cpu() returns and the migration
5416 * is done.
5417 */
5418
5419 /*
5420 * Change a given task's CPU affinity. Migrate the thread to a
5421 * proper CPU and schedule it away if the CPU it's executing on
5422 * is removed from the allowed bitmask.
5423 *
5424 * NOTE: the caller must have a valid reference to the task, the
5425 * task must not exit() & deallocate itself prematurely. The
5426 * call is not atomic; no spinlocks may be held.
5427 */
5428 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5429 {
5430 unsigned long flags;
5431 struct rq *rq;
5432 unsigned int dest_cpu;
5433 int ret = 0;
5434
5435 /*
5436 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5437 * drop the rq->lock and still rely on ->cpus_allowed.
5438 */
5439 again:
5440 while (task_is_waking(p))
5441 cpu_relax();
5442 rq = task_rq_lock(p, &flags);
5443 if (task_is_waking(p)) {
5444 task_rq_unlock(rq, &flags);
5445 goto again;
5446 }
5447
5448 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5449 ret = -EINVAL;
5450 goto out;
5451 }
5452
5453 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5454 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5455 ret = -EINVAL;
5456 goto out;
5457 }
5458
5459 if (p->sched_class->set_cpus_allowed)
5460 p->sched_class->set_cpus_allowed(p, new_mask);
5461 else {
5462 cpumask_copy(&p->cpus_allowed, new_mask);
5463 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5464 }
5465
5466 /* Can the task run on the task's current CPU? If so, we're done */
5467 if (cpumask_test_cpu(task_cpu(p), new_mask))
5468 goto out;
5469
5470 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5471 if (migrate_task(p, dest_cpu)) {
5472 struct migration_arg arg = { p, dest_cpu };
5473 /* Need help from migration thread: drop lock and wait. */
5474 task_rq_unlock(rq, &flags);
5475 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5476 tlb_migrate_finish(p->mm);
5477 return 0;
5478 }
5479 out:
5480 task_rq_unlock(rq, &flags);
5481
5482 return ret;
5483 }
5484 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5485
5486 /*
5487 * Move (not current) task off this cpu, onto dest cpu. We're doing
5488 * this because either it can't run here any more (set_cpus_allowed()
5489 * away from this CPU, or CPU going down), or because we're
5490 * attempting to rebalance this task on exec (sched_exec).
5491 *
5492 * So we race with normal scheduler movements, but that's OK, as long
5493 * as the task is no longer on this CPU.
5494 *
5495 * Returns non-zero if task was successfully migrated.
5496 */
5497 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5498 {
5499 struct rq *rq_dest, *rq_src;
5500 int ret = 0;
5501
5502 if (unlikely(!cpu_active(dest_cpu)))
5503 return ret;
5504
5505 rq_src = cpu_rq(src_cpu);
5506 rq_dest = cpu_rq(dest_cpu);
5507
5508 double_rq_lock(rq_src, rq_dest);
5509 /* Already moved. */
5510 if (task_cpu(p) != src_cpu)
5511 goto done;
5512 /* Affinity changed (again). */
5513 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5514 goto fail;
5515
5516 /*
5517 * If we're not on a rq, the next wake-up will ensure we're
5518 * placed properly.
5519 */
5520 if (p->se.on_rq) {
5521 deactivate_task(rq_src, p, 0);
5522 set_task_cpu(p, dest_cpu);
5523 activate_task(rq_dest, p, 0);
5524 check_preempt_curr(rq_dest, p, 0);
5525 }
5526 done:
5527 ret = 1;
5528 fail:
5529 double_rq_unlock(rq_src, rq_dest);
5530 return ret;
5531 }
5532
5533 /*
5534 * migration_cpu_stop - this will be executed by a highprio stopper thread
5535 * and performs thread migration by bumping thread off CPU then
5536 * 'pushing' onto another runqueue.
5537 */
5538 static int migration_cpu_stop(void *data)
5539 {
5540 struct migration_arg *arg = data;
5541
5542 /*
5543 * The original target cpu might have gone down and we might
5544 * be on another cpu but it doesn't matter.
5545 */
5546 local_irq_disable();
5547 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5548 local_irq_enable();
5549 return 0;
5550 }
5551
5552 #ifdef CONFIG_HOTPLUG_CPU
5553 /*
5554 * Figure out where task on dead CPU should go, use force if necessary.
5555 */
5556 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5557 {
5558 struct rq *rq = cpu_rq(dead_cpu);
5559 int needs_cpu, uninitialized_var(dest_cpu);
5560 unsigned long flags;
5561
5562 local_irq_save(flags);
5563
5564 raw_spin_lock(&rq->lock);
5565 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5566 if (needs_cpu)
5567 dest_cpu = select_fallback_rq(dead_cpu, p);
5568 raw_spin_unlock(&rq->lock);
5569 /*
5570 * It can only fail if we race with set_cpus_allowed(),
5571 * in the racer should migrate the task anyway.
5572 */
5573 if (needs_cpu)
5574 __migrate_task(p, dead_cpu, dest_cpu);
5575 local_irq_restore(flags);
5576 }
5577
5578 /*
5579 * While a dead CPU has no uninterruptible tasks queued at this point,
5580 * it might still have a nonzero ->nr_uninterruptible counter, because
5581 * for performance reasons the counter is not stricly tracking tasks to
5582 * their home CPUs. So we just add the counter to another CPU's counter,
5583 * to keep the global sum constant after CPU-down:
5584 */
5585 static void migrate_nr_uninterruptible(struct rq *rq_src)
5586 {
5587 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5588 unsigned long flags;
5589
5590 local_irq_save(flags);
5591 double_rq_lock(rq_src, rq_dest);
5592 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5593 rq_src->nr_uninterruptible = 0;
5594 double_rq_unlock(rq_src, rq_dest);
5595 local_irq_restore(flags);
5596 }
5597
5598 /* Run through task list and migrate tasks from the dead cpu. */
5599 static void migrate_live_tasks(int src_cpu)
5600 {
5601 struct task_struct *p, *t;
5602
5603 read_lock(&tasklist_lock);
5604
5605 do_each_thread(t, p) {
5606 if (p == current)
5607 continue;
5608
5609 if (task_cpu(p) == src_cpu)
5610 move_task_off_dead_cpu(src_cpu, p);
5611 } while_each_thread(t, p);
5612
5613 read_unlock(&tasklist_lock);
5614 }
5615
5616 /*
5617 * Schedules idle task to be the next runnable task on current CPU.
5618 * It does so by boosting its priority to highest possible.
5619 * Used by CPU offline code.
5620 */
5621 void sched_idle_next(void)
5622 {
5623 int this_cpu = smp_processor_id();
5624 struct rq *rq = cpu_rq(this_cpu);
5625 struct task_struct *p = rq->idle;
5626 unsigned long flags;
5627
5628 /* cpu has to be offline */
5629 BUG_ON(cpu_online(this_cpu));
5630
5631 /*
5632 * Strictly not necessary since rest of the CPUs are stopped by now
5633 * and interrupts disabled on the current cpu.
5634 */
5635 raw_spin_lock_irqsave(&rq->lock, flags);
5636
5637 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5638
5639 activate_task(rq, p, 0);
5640
5641 raw_spin_unlock_irqrestore(&rq->lock, flags);
5642 }
5643
5644 /*
5645 * Ensures that the idle task is using init_mm right before its cpu goes
5646 * offline.
5647 */
5648 void idle_task_exit(void)
5649 {
5650 struct mm_struct *mm = current->active_mm;
5651
5652 BUG_ON(cpu_online(smp_processor_id()));
5653
5654 if (mm != &init_mm)
5655 switch_mm(mm, &init_mm, current);
5656 mmdrop(mm);
5657 }
5658
5659 /* called under rq->lock with disabled interrupts */
5660 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5661 {
5662 struct rq *rq = cpu_rq(dead_cpu);
5663
5664 /* Must be exiting, otherwise would be on tasklist. */
5665 BUG_ON(!p->exit_state);
5666
5667 /* Cannot have done final schedule yet: would have vanished. */
5668 BUG_ON(p->state == TASK_DEAD);
5669
5670 get_task_struct(p);
5671
5672 /*
5673 * Drop lock around migration; if someone else moves it,
5674 * that's OK. No task can be added to this CPU, so iteration is
5675 * fine.
5676 */
5677 raw_spin_unlock_irq(&rq->lock);
5678 move_task_off_dead_cpu(dead_cpu, p);
5679 raw_spin_lock_irq(&rq->lock);
5680
5681 put_task_struct(p);
5682 }
5683
5684 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5685 static void migrate_dead_tasks(unsigned int dead_cpu)
5686 {
5687 struct rq *rq = cpu_rq(dead_cpu);
5688 struct task_struct *next;
5689
5690 for ( ; ; ) {
5691 if (!rq->nr_running)
5692 break;
5693 next = pick_next_task(rq);
5694 if (!next)
5695 break;
5696 next->sched_class->put_prev_task(rq, next);
5697 migrate_dead(dead_cpu, next);
5698
5699 }
5700 }
5701
5702 /*
5703 * remove the tasks which were accounted by rq from calc_load_tasks.
5704 */
5705 static void calc_global_load_remove(struct rq *rq)
5706 {
5707 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5708 rq->calc_load_active = 0;
5709 }
5710 #endif /* CONFIG_HOTPLUG_CPU */
5711
5712 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5713
5714 static struct ctl_table sd_ctl_dir[] = {
5715 {
5716 .procname = "sched_domain",
5717 .mode = 0555,
5718 },
5719 {}
5720 };
5721
5722 static struct ctl_table sd_ctl_root[] = {
5723 {
5724 .procname = "kernel",
5725 .mode = 0555,
5726 .child = sd_ctl_dir,
5727 },
5728 {}
5729 };
5730
5731 static struct ctl_table *sd_alloc_ctl_entry(int n)
5732 {
5733 struct ctl_table *entry =
5734 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5735
5736 return entry;
5737 }
5738
5739 static void sd_free_ctl_entry(struct ctl_table **tablep)
5740 {
5741 struct ctl_table *entry;
5742
5743 /*
5744 * In the intermediate directories, both the child directory and
5745 * procname are dynamically allocated and could fail but the mode
5746 * will always be set. In the lowest directory the names are
5747 * static strings and all have proc handlers.
5748 */
5749 for (entry = *tablep; entry->mode; entry++) {
5750 if (entry->child)
5751 sd_free_ctl_entry(&entry->child);
5752 if (entry->proc_handler == NULL)
5753 kfree(entry->procname);
5754 }
5755
5756 kfree(*tablep);
5757 *tablep = NULL;
5758 }
5759
5760 static void
5761 set_table_entry(struct ctl_table *entry,
5762 const char *procname, void *data, int maxlen,
5763 mode_t mode, proc_handler *proc_handler)
5764 {
5765 entry->procname = procname;
5766 entry->data = data;
5767 entry->maxlen = maxlen;
5768 entry->mode = mode;
5769 entry->proc_handler = proc_handler;
5770 }
5771
5772 static struct ctl_table *
5773 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5774 {
5775 struct ctl_table *table = sd_alloc_ctl_entry(13);
5776
5777 if (table == NULL)
5778 return NULL;
5779
5780 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5781 sizeof(long), 0644, proc_doulongvec_minmax);
5782 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5783 sizeof(long), 0644, proc_doulongvec_minmax);
5784 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5785 sizeof(int), 0644, proc_dointvec_minmax);
5786 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5787 sizeof(int), 0644, proc_dointvec_minmax);
5788 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5789 sizeof(int), 0644, proc_dointvec_minmax);
5790 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5791 sizeof(int), 0644, proc_dointvec_minmax);
5792 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5793 sizeof(int), 0644, proc_dointvec_minmax);
5794 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5795 sizeof(int), 0644, proc_dointvec_minmax);
5796 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5797 sizeof(int), 0644, proc_dointvec_minmax);
5798 set_table_entry(&table[9], "cache_nice_tries",
5799 &sd->cache_nice_tries,
5800 sizeof(int), 0644, proc_dointvec_minmax);
5801 set_table_entry(&table[10], "flags", &sd->flags,
5802 sizeof(int), 0644, proc_dointvec_minmax);
5803 set_table_entry(&table[11], "name", sd->name,
5804 CORENAME_MAX_SIZE, 0444, proc_dostring);
5805 /* &table[12] is terminator */
5806
5807 return table;
5808 }
5809
5810 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5811 {
5812 struct ctl_table *entry, *table;
5813 struct sched_domain *sd;
5814 int domain_num = 0, i;
5815 char buf[32];
5816
5817 for_each_domain(cpu, sd)
5818 domain_num++;
5819 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5820 if (table == NULL)
5821 return NULL;
5822
5823 i = 0;
5824 for_each_domain(cpu, sd) {
5825 snprintf(buf, 32, "domain%d", i);
5826 entry->procname = kstrdup(buf, GFP_KERNEL);
5827 entry->mode = 0555;
5828 entry->child = sd_alloc_ctl_domain_table(sd);
5829 entry++;
5830 i++;
5831 }
5832 return table;
5833 }
5834
5835 static struct ctl_table_header *sd_sysctl_header;
5836 static void register_sched_domain_sysctl(void)
5837 {
5838 int i, cpu_num = num_possible_cpus();
5839 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5840 char buf[32];
5841
5842 WARN_ON(sd_ctl_dir[0].child);
5843 sd_ctl_dir[0].child = entry;
5844
5845 if (entry == NULL)
5846 return;
5847
5848 for_each_possible_cpu(i) {
5849 snprintf(buf, 32, "cpu%d", i);
5850 entry->procname = kstrdup(buf, GFP_KERNEL);
5851 entry->mode = 0555;
5852 entry->child = sd_alloc_ctl_cpu_table(i);
5853 entry++;
5854 }
5855
5856 WARN_ON(sd_sysctl_header);
5857 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5858 }
5859
5860 /* may be called multiple times per register */
5861 static void unregister_sched_domain_sysctl(void)
5862 {
5863 if (sd_sysctl_header)
5864 unregister_sysctl_table(sd_sysctl_header);
5865 sd_sysctl_header = NULL;
5866 if (sd_ctl_dir[0].child)
5867 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5868 }
5869 #else
5870 static void register_sched_domain_sysctl(void)
5871 {
5872 }
5873 static void unregister_sched_domain_sysctl(void)
5874 {
5875 }
5876 #endif
5877
5878 static void set_rq_online(struct rq *rq)
5879 {
5880 if (!rq->online) {
5881 const struct sched_class *class;
5882
5883 cpumask_set_cpu(rq->cpu, rq->rd->online);
5884 rq->online = 1;
5885
5886 for_each_class(class) {
5887 if (class->rq_online)
5888 class->rq_online(rq);
5889 }
5890 }
5891 }
5892
5893 static void set_rq_offline(struct rq *rq)
5894 {
5895 if (rq->online) {
5896 const struct sched_class *class;
5897
5898 for_each_class(class) {
5899 if (class->rq_offline)
5900 class->rq_offline(rq);
5901 }
5902
5903 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5904 rq->online = 0;
5905 }
5906 }
5907
5908 /*
5909 * migration_call - callback that gets triggered when a CPU is added.
5910 * Here we can start up the necessary migration thread for the new CPU.
5911 */
5912 static int __cpuinit
5913 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5914 {
5915 int cpu = (long)hcpu;
5916 unsigned long flags;
5917 struct rq *rq = cpu_rq(cpu);
5918
5919 switch (action) {
5920
5921 case CPU_UP_PREPARE:
5922 case CPU_UP_PREPARE_FROZEN:
5923 rq->calc_load_update = calc_load_update;
5924 break;
5925
5926 case CPU_ONLINE:
5927 case CPU_ONLINE_FROZEN:
5928 /* Update our root-domain */
5929 raw_spin_lock_irqsave(&rq->lock, flags);
5930 if (rq->rd) {
5931 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5932
5933 set_rq_online(rq);
5934 }
5935 raw_spin_unlock_irqrestore(&rq->lock, flags);
5936 break;
5937
5938 #ifdef CONFIG_HOTPLUG_CPU
5939 case CPU_DEAD:
5940 case CPU_DEAD_FROZEN:
5941 migrate_live_tasks(cpu);
5942 /* Idle task back to normal (off runqueue, low prio) */
5943 raw_spin_lock_irq(&rq->lock);
5944 deactivate_task(rq, rq->idle, 0);
5945 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5946 rq->idle->sched_class = &idle_sched_class;
5947 migrate_dead_tasks(cpu);
5948 raw_spin_unlock_irq(&rq->lock);
5949 migrate_nr_uninterruptible(rq);
5950 BUG_ON(rq->nr_running != 0);
5951 calc_global_load_remove(rq);
5952 break;
5953
5954 case CPU_DYING:
5955 case CPU_DYING_FROZEN:
5956 /* Update our root-domain */
5957 raw_spin_lock_irqsave(&rq->lock, flags);
5958 if (rq->rd) {
5959 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5960 set_rq_offline(rq);
5961 }
5962 raw_spin_unlock_irqrestore(&rq->lock, flags);
5963 break;
5964 #endif
5965 }
5966 return NOTIFY_OK;
5967 }
5968
5969 /*
5970 * Register at high priority so that task migration (migrate_all_tasks)
5971 * happens before everything else. This has to be lower priority than
5972 * the notifier in the perf_event subsystem, though.
5973 */
5974 static struct notifier_block __cpuinitdata migration_notifier = {
5975 .notifier_call = migration_call,
5976 .priority = CPU_PRI_MIGRATION,
5977 };
5978
5979 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5980 unsigned long action, void *hcpu)
5981 {
5982 switch (action & ~CPU_TASKS_FROZEN) {
5983 case CPU_ONLINE:
5984 case CPU_DOWN_FAILED:
5985 set_cpu_active((long)hcpu, true);
5986 return NOTIFY_OK;
5987 default:
5988 return NOTIFY_DONE;
5989 }
5990 }
5991
5992 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5993 unsigned long action, void *hcpu)
5994 {
5995 switch (action & ~CPU_TASKS_FROZEN) {
5996 case CPU_DOWN_PREPARE:
5997 set_cpu_active((long)hcpu, false);
5998 return NOTIFY_OK;
5999 default:
6000 return NOTIFY_DONE;
6001 }
6002 }
6003
6004 static int __init migration_init(void)
6005 {
6006 void *cpu = (void *)(long)smp_processor_id();
6007 int err;
6008
6009 /* Initialize migration for the boot CPU */
6010 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6011 BUG_ON(err == NOTIFY_BAD);
6012 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6013 register_cpu_notifier(&migration_notifier);
6014
6015 /* Register cpu active notifiers */
6016 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6017 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6018
6019 return 0;
6020 }
6021 early_initcall(migration_init);
6022 #endif
6023
6024 #ifdef CONFIG_SMP
6025
6026 #ifdef CONFIG_SCHED_DEBUG
6027
6028 static __read_mostly int sched_domain_debug_enabled;
6029
6030 static int __init sched_domain_debug_setup(char *str)
6031 {
6032 sched_domain_debug_enabled = 1;
6033
6034 return 0;
6035 }
6036 early_param("sched_debug", sched_domain_debug_setup);
6037
6038 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6039 struct cpumask *groupmask)
6040 {
6041 struct sched_group *group = sd->groups;
6042 char str[256];
6043
6044 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6045 cpumask_clear(groupmask);
6046
6047 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6048
6049 if (!(sd->flags & SD_LOAD_BALANCE)) {
6050 printk("does not load-balance\n");
6051 if (sd->parent)
6052 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6053 " has parent");
6054 return -1;
6055 }
6056
6057 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6058
6059 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6060 printk(KERN_ERR "ERROR: domain->span does not contain "
6061 "CPU%d\n", cpu);
6062 }
6063 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6064 printk(KERN_ERR "ERROR: domain->groups does not contain"
6065 " CPU%d\n", cpu);
6066 }
6067
6068 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6069 do {
6070 if (!group) {
6071 printk("\n");
6072 printk(KERN_ERR "ERROR: group is NULL\n");
6073 break;
6074 }
6075
6076 if (!group->cpu_power) {
6077 printk(KERN_CONT "\n");
6078 printk(KERN_ERR "ERROR: domain->cpu_power not "
6079 "set\n");
6080 break;
6081 }
6082
6083 if (!cpumask_weight(sched_group_cpus(group))) {
6084 printk(KERN_CONT "\n");
6085 printk(KERN_ERR "ERROR: empty group\n");
6086 break;
6087 }
6088
6089 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6090 printk(KERN_CONT "\n");
6091 printk(KERN_ERR "ERROR: repeated CPUs\n");
6092 break;
6093 }
6094
6095 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6096
6097 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6098
6099 printk(KERN_CONT " %s", str);
6100 if (group->cpu_power != SCHED_LOAD_SCALE) {
6101 printk(KERN_CONT " (cpu_power = %d)",
6102 group->cpu_power);
6103 }
6104
6105 group = group->next;
6106 } while (group != sd->groups);
6107 printk(KERN_CONT "\n");
6108
6109 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6110 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6111
6112 if (sd->parent &&
6113 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6114 printk(KERN_ERR "ERROR: parent span is not a superset "
6115 "of domain->span\n");
6116 return 0;
6117 }
6118
6119 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6120 {
6121 cpumask_var_t groupmask;
6122 int level = 0;
6123
6124 if (!sched_domain_debug_enabled)
6125 return;
6126
6127 if (!sd) {
6128 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6129 return;
6130 }
6131
6132 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6133
6134 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6135 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6136 return;
6137 }
6138
6139 for (;;) {
6140 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6141 break;
6142 level++;
6143 sd = sd->parent;
6144 if (!sd)
6145 break;
6146 }
6147 free_cpumask_var(groupmask);
6148 }
6149 #else /* !CONFIG_SCHED_DEBUG */
6150 # define sched_domain_debug(sd, cpu) do { } while (0)
6151 #endif /* CONFIG_SCHED_DEBUG */
6152
6153 static int sd_degenerate(struct sched_domain *sd)
6154 {
6155 if (cpumask_weight(sched_domain_span(sd)) == 1)
6156 return 1;
6157
6158 /* Following flags need at least 2 groups */
6159 if (sd->flags & (SD_LOAD_BALANCE |
6160 SD_BALANCE_NEWIDLE |
6161 SD_BALANCE_FORK |
6162 SD_BALANCE_EXEC |
6163 SD_SHARE_CPUPOWER |
6164 SD_SHARE_PKG_RESOURCES)) {
6165 if (sd->groups != sd->groups->next)
6166 return 0;
6167 }
6168
6169 /* Following flags don't use groups */
6170 if (sd->flags & (SD_WAKE_AFFINE))
6171 return 0;
6172
6173 return 1;
6174 }
6175
6176 static int
6177 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6178 {
6179 unsigned long cflags = sd->flags, pflags = parent->flags;
6180
6181 if (sd_degenerate(parent))
6182 return 1;
6183
6184 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6185 return 0;
6186
6187 /* Flags needing groups don't count if only 1 group in parent */
6188 if (parent->groups == parent->groups->next) {
6189 pflags &= ~(SD_LOAD_BALANCE |
6190 SD_BALANCE_NEWIDLE |
6191 SD_BALANCE_FORK |
6192 SD_BALANCE_EXEC |
6193 SD_SHARE_CPUPOWER |
6194 SD_SHARE_PKG_RESOURCES);
6195 if (nr_node_ids == 1)
6196 pflags &= ~SD_SERIALIZE;
6197 }
6198 if (~cflags & pflags)
6199 return 0;
6200
6201 return 1;
6202 }
6203
6204 static void free_rootdomain(struct root_domain *rd)
6205 {
6206 synchronize_sched();
6207
6208 cpupri_cleanup(&rd->cpupri);
6209
6210 free_cpumask_var(rd->rto_mask);
6211 free_cpumask_var(rd->online);
6212 free_cpumask_var(rd->span);
6213 kfree(rd);
6214 }
6215
6216 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6217 {
6218 struct root_domain *old_rd = NULL;
6219 unsigned long flags;
6220
6221 raw_spin_lock_irqsave(&rq->lock, flags);
6222
6223 if (rq->rd) {
6224 old_rd = rq->rd;
6225
6226 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6227 set_rq_offline(rq);
6228
6229 cpumask_clear_cpu(rq->cpu, old_rd->span);
6230
6231 /*
6232 * If we dont want to free the old_rt yet then
6233 * set old_rd to NULL to skip the freeing later
6234 * in this function:
6235 */
6236 if (!atomic_dec_and_test(&old_rd->refcount))
6237 old_rd = NULL;
6238 }
6239
6240 atomic_inc(&rd->refcount);
6241 rq->rd = rd;
6242
6243 cpumask_set_cpu(rq->cpu, rd->span);
6244 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6245 set_rq_online(rq);
6246
6247 raw_spin_unlock_irqrestore(&rq->lock, flags);
6248
6249 if (old_rd)
6250 free_rootdomain(old_rd);
6251 }
6252
6253 static int init_rootdomain(struct root_domain *rd)
6254 {
6255 memset(rd, 0, sizeof(*rd));
6256
6257 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6258 goto out;
6259 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6260 goto free_span;
6261 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6262 goto free_online;
6263
6264 if (cpupri_init(&rd->cpupri) != 0)
6265 goto free_rto_mask;
6266 return 0;
6267
6268 free_rto_mask:
6269 free_cpumask_var(rd->rto_mask);
6270 free_online:
6271 free_cpumask_var(rd->online);
6272 free_span:
6273 free_cpumask_var(rd->span);
6274 out:
6275 return -ENOMEM;
6276 }
6277
6278 static void init_defrootdomain(void)
6279 {
6280 init_rootdomain(&def_root_domain);
6281
6282 atomic_set(&def_root_domain.refcount, 1);
6283 }
6284
6285 static struct root_domain *alloc_rootdomain(void)
6286 {
6287 struct root_domain *rd;
6288
6289 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6290 if (!rd)
6291 return NULL;
6292
6293 if (init_rootdomain(rd) != 0) {
6294 kfree(rd);
6295 return NULL;
6296 }
6297
6298 return rd;
6299 }
6300
6301 /*
6302 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6303 * hold the hotplug lock.
6304 */
6305 static void
6306 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6307 {
6308 struct rq *rq = cpu_rq(cpu);
6309 struct sched_domain *tmp;
6310
6311 for (tmp = sd; tmp; tmp = tmp->parent)
6312 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6313
6314 /* Remove the sched domains which do not contribute to scheduling. */
6315 for (tmp = sd; tmp; ) {
6316 struct sched_domain *parent = tmp->parent;
6317 if (!parent)
6318 break;
6319
6320 if (sd_parent_degenerate(tmp, parent)) {
6321 tmp->parent = parent->parent;
6322 if (parent->parent)
6323 parent->parent->child = tmp;
6324 } else
6325 tmp = tmp->parent;
6326 }
6327
6328 if (sd && sd_degenerate(sd)) {
6329 sd = sd->parent;
6330 if (sd)
6331 sd->child = NULL;
6332 }
6333
6334 sched_domain_debug(sd, cpu);
6335
6336 rq_attach_root(rq, rd);
6337 rcu_assign_pointer(rq->sd, sd);
6338 }
6339
6340 /* cpus with isolated domains */
6341 static cpumask_var_t cpu_isolated_map;
6342
6343 /* Setup the mask of cpus configured for isolated domains */
6344 static int __init isolated_cpu_setup(char *str)
6345 {
6346 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6347 cpulist_parse(str, cpu_isolated_map);
6348 return 1;
6349 }
6350
6351 __setup("isolcpus=", isolated_cpu_setup);
6352
6353 /*
6354 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6355 * to a function which identifies what group(along with sched group) a CPU
6356 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6357 * (due to the fact that we keep track of groups covered with a struct cpumask).
6358 *
6359 * init_sched_build_groups will build a circular linked list of the groups
6360 * covered by the given span, and will set each group's ->cpumask correctly,
6361 * and ->cpu_power to 0.
6362 */
6363 static void
6364 init_sched_build_groups(const struct cpumask *span,
6365 const struct cpumask *cpu_map,
6366 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6367 struct sched_group **sg,
6368 struct cpumask *tmpmask),
6369 struct cpumask *covered, struct cpumask *tmpmask)
6370 {
6371 struct sched_group *first = NULL, *last = NULL;
6372 int i;
6373
6374 cpumask_clear(covered);
6375
6376 for_each_cpu(i, span) {
6377 struct sched_group *sg;
6378 int group = group_fn(i, cpu_map, &sg, tmpmask);
6379 int j;
6380
6381 if (cpumask_test_cpu(i, covered))
6382 continue;
6383
6384 cpumask_clear(sched_group_cpus(sg));
6385 sg->cpu_power = 0;
6386
6387 for_each_cpu(j, span) {
6388 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6389 continue;
6390
6391 cpumask_set_cpu(j, covered);
6392 cpumask_set_cpu(j, sched_group_cpus(sg));
6393 }
6394 if (!first)
6395 first = sg;
6396 if (last)
6397 last->next = sg;
6398 last = sg;
6399 }
6400 last->next = first;
6401 }
6402
6403 #define SD_NODES_PER_DOMAIN 16
6404
6405 #ifdef CONFIG_NUMA
6406
6407 /**
6408 * find_next_best_node - find the next node to include in a sched_domain
6409 * @node: node whose sched_domain we're building
6410 * @used_nodes: nodes already in the sched_domain
6411 *
6412 * Find the next node to include in a given scheduling domain. Simply
6413 * finds the closest node not already in the @used_nodes map.
6414 *
6415 * Should use nodemask_t.
6416 */
6417 static int find_next_best_node(int node, nodemask_t *used_nodes)
6418 {
6419 int i, n, val, min_val, best_node = 0;
6420
6421 min_val = INT_MAX;
6422
6423 for (i = 0; i < nr_node_ids; i++) {
6424 /* Start at @node */
6425 n = (node + i) % nr_node_ids;
6426
6427 if (!nr_cpus_node(n))
6428 continue;
6429
6430 /* Skip already used nodes */
6431 if (node_isset(n, *used_nodes))
6432 continue;
6433
6434 /* Simple min distance search */
6435 val = node_distance(node, n);
6436
6437 if (val < min_val) {
6438 min_val = val;
6439 best_node = n;
6440 }
6441 }
6442
6443 node_set(best_node, *used_nodes);
6444 return best_node;
6445 }
6446
6447 /**
6448 * sched_domain_node_span - get a cpumask for a node's sched_domain
6449 * @node: node whose cpumask we're constructing
6450 * @span: resulting cpumask
6451 *
6452 * Given a node, construct a good cpumask for its sched_domain to span. It
6453 * should be one that prevents unnecessary balancing, but also spreads tasks
6454 * out optimally.
6455 */
6456 static void sched_domain_node_span(int node, struct cpumask *span)
6457 {
6458 nodemask_t used_nodes;
6459 int i;
6460
6461 cpumask_clear(span);
6462 nodes_clear(used_nodes);
6463
6464 cpumask_or(span, span, cpumask_of_node(node));
6465 node_set(node, used_nodes);
6466
6467 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6468 int next_node = find_next_best_node(node, &used_nodes);
6469
6470 cpumask_or(span, span, cpumask_of_node(next_node));
6471 }
6472 }
6473 #endif /* CONFIG_NUMA */
6474
6475 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6476
6477 /*
6478 * The cpus mask in sched_group and sched_domain hangs off the end.
6479 *
6480 * ( See the the comments in include/linux/sched.h:struct sched_group
6481 * and struct sched_domain. )
6482 */
6483 struct static_sched_group {
6484 struct sched_group sg;
6485 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6486 };
6487
6488 struct static_sched_domain {
6489 struct sched_domain sd;
6490 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6491 };
6492
6493 struct s_data {
6494 #ifdef CONFIG_NUMA
6495 int sd_allnodes;
6496 cpumask_var_t domainspan;
6497 cpumask_var_t covered;
6498 cpumask_var_t notcovered;
6499 #endif
6500 cpumask_var_t nodemask;
6501 cpumask_var_t this_sibling_map;
6502 cpumask_var_t this_core_map;
6503 cpumask_var_t send_covered;
6504 cpumask_var_t tmpmask;
6505 struct sched_group **sched_group_nodes;
6506 struct root_domain *rd;
6507 };
6508
6509 enum s_alloc {
6510 sa_sched_groups = 0,
6511 sa_rootdomain,
6512 sa_tmpmask,
6513 sa_send_covered,
6514 sa_this_core_map,
6515 sa_this_sibling_map,
6516 sa_nodemask,
6517 sa_sched_group_nodes,
6518 #ifdef CONFIG_NUMA
6519 sa_notcovered,
6520 sa_covered,
6521 sa_domainspan,
6522 #endif
6523 sa_none,
6524 };
6525
6526 /*
6527 * SMT sched-domains:
6528 */
6529 #ifdef CONFIG_SCHED_SMT
6530 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6531 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6532
6533 static int
6534 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6535 struct sched_group **sg, struct cpumask *unused)
6536 {
6537 if (sg)
6538 *sg = &per_cpu(sched_groups, cpu).sg;
6539 return cpu;
6540 }
6541 #endif /* CONFIG_SCHED_SMT */
6542
6543 /*
6544 * multi-core sched-domains:
6545 */
6546 #ifdef CONFIG_SCHED_MC
6547 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6548 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6549 #endif /* CONFIG_SCHED_MC */
6550
6551 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6552 static int
6553 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6554 struct sched_group **sg, struct cpumask *mask)
6555 {
6556 int group;
6557
6558 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6559 group = cpumask_first(mask);
6560 if (sg)
6561 *sg = &per_cpu(sched_group_core, group).sg;
6562 return group;
6563 }
6564 #elif defined(CONFIG_SCHED_MC)
6565 static int
6566 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6567 struct sched_group **sg, struct cpumask *unused)
6568 {
6569 if (sg)
6570 *sg = &per_cpu(sched_group_core, cpu).sg;
6571 return cpu;
6572 }
6573 #endif
6574
6575 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6576 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6577
6578 static int
6579 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6580 struct sched_group **sg, struct cpumask *mask)
6581 {
6582 int group;
6583 #ifdef CONFIG_SCHED_MC
6584 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6585 group = cpumask_first(mask);
6586 #elif defined(CONFIG_SCHED_SMT)
6587 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6588 group = cpumask_first(mask);
6589 #else
6590 group = cpu;
6591 #endif
6592 if (sg)
6593 *sg = &per_cpu(sched_group_phys, group).sg;
6594 return group;
6595 }
6596
6597 #ifdef CONFIG_NUMA
6598 /*
6599 * The init_sched_build_groups can't handle what we want to do with node
6600 * groups, so roll our own. Now each node has its own list of groups which
6601 * gets dynamically allocated.
6602 */
6603 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6604 static struct sched_group ***sched_group_nodes_bycpu;
6605
6606 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6607 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6608
6609 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6610 struct sched_group **sg,
6611 struct cpumask *nodemask)
6612 {
6613 int group;
6614
6615 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6616 group = cpumask_first(nodemask);
6617
6618 if (sg)
6619 *sg = &per_cpu(sched_group_allnodes, group).sg;
6620 return group;
6621 }
6622
6623 static void init_numa_sched_groups_power(struct sched_group *group_head)
6624 {
6625 struct sched_group *sg = group_head;
6626 int j;
6627
6628 if (!sg)
6629 return;
6630 do {
6631 for_each_cpu(j, sched_group_cpus(sg)) {
6632 struct sched_domain *sd;
6633
6634 sd = &per_cpu(phys_domains, j).sd;
6635 if (j != group_first_cpu(sd->groups)) {
6636 /*
6637 * Only add "power" once for each
6638 * physical package.
6639 */
6640 continue;
6641 }
6642
6643 sg->cpu_power += sd->groups->cpu_power;
6644 }
6645 sg = sg->next;
6646 } while (sg != group_head);
6647 }
6648
6649 static int build_numa_sched_groups(struct s_data *d,
6650 const struct cpumask *cpu_map, int num)
6651 {
6652 struct sched_domain *sd;
6653 struct sched_group *sg, *prev;
6654 int n, j;
6655
6656 cpumask_clear(d->covered);
6657 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6658 if (cpumask_empty(d->nodemask)) {
6659 d->sched_group_nodes[num] = NULL;
6660 goto out;
6661 }
6662
6663 sched_domain_node_span(num, d->domainspan);
6664 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6665
6666 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6667 GFP_KERNEL, num);
6668 if (!sg) {
6669 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6670 num);
6671 return -ENOMEM;
6672 }
6673 d->sched_group_nodes[num] = sg;
6674
6675 for_each_cpu(j, d->nodemask) {
6676 sd = &per_cpu(node_domains, j).sd;
6677 sd->groups = sg;
6678 }
6679
6680 sg->cpu_power = 0;
6681 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6682 sg->next = sg;
6683 cpumask_or(d->covered, d->covered, d->nodemask);
6684
6685 prev = sg;
6686 for (j = 0; j < nr_node_ids; j++) {
6687 n = (num + j) % nr_node_ids;
6688 cpumask_complement(d->notcovered, d->covered);
6689 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6690 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6691 if (cpumask_empty(d->tmpmask))
6692 break;
6693 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6694 if (cpumask_empty(d->tmpmask))
6695 continue;
6696 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6697 GFP_KERNEL, num);
6698 if (!sg) {
6699 printk(KERN_WARNING
6700 "Can not alloc domain group for node %d\n", j);
6701 return -ENOMEM;
6702 }
6703 sg->cpu_power = 0;
6704 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6705 sg->next = prev->next;
6706 cpumask_or(d->covered, d->covered, d->tmpmask);
6707 prev->next = sg;
6708 prev = sg;
6709 }
6710 out:
6711 return 0;
6712 }
6713 #endif /* CONFIG_NUMA */
6714
6715 #ifdef CONFIG_NUMA
6716 /* Free memory allocated for various sched_group structures */
6717 static void free_sched_groups(const struct cpumask *cpu_map,
6718 struct cpumask *nodemask)
6719 {
6720 int cpu, i;
6721
6722 for_each_cpu(cpu, cpu_map) {
6723 struct sched_group **sched_group_nodes
6724 = sched_group_nodes_bycpu[cpu];
6725
6726 if (!sched_group_nodes)
6727 continue;
6728
6729 for (i = 0; i < nr_node_ids; i++) {
6730 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6731
6732 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6733 if (cpumask_empty(nodemask))
6734 continue;
6735
6736 if (sg == NULL)
6737 continue;
6738 sg = sg->next;
6739 next_sg:
6740 oldsg = sg;
6741 sg = sg->next;
6742 kfree(oldsg);
6743 if (oldsg != sched_group_nodes[i])
6744 goto next_sg;
6745 }
6746 kfree(sched_group_nodes);
6747 sched_group_nodes_bycpu[cpu] = NULL;
6748 }
6749 }
6750 #else /* !CONFIG_NUMA */
6751 static void free_sched_groups(const struct cpumask *cpu_map,
6752 struct cpumask *nodemask)
6753 {
6754 }
6755 #endif /* CONFIG_NUMA */
6756
6757 /*
6758 * Initialize sched groups cpu_power.
6759 *
6760 * cpu_power indicates the capacity of sched group, which is used while
6761 * distributing the load between different sched groups in a sched domain.
6762 * Typically cpu_power for all the groups in a sched domain will be same unless
6763 * there are asymmetries in the topology. If there are asymmetries, group
6764 * having more cpu_power will pickup more load compared to the group having
6765 * less cpu_power.
6766 */
6767 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6768 {
6769 struct sched_domain *child;
6770 struct sched_group *group;
6771 long power;
6772 int weight;
6773
6774 WARN_ON(!sd || !sd->groups);
6775
6776 if (cpu != group_first_cpu(sd->groups))
6777 return;
6778
6779 child = sd->child;
6780
6781 sd->groups->cpu_power = 0;
6782
6783 if (!child) {
6784 power = SCHED_LOAD_SCALE;
6785 weight = cpumask_weight(sched_domain_span(sd));
6786 /*
6787 * SMT siblings share the power of a single core.
6788 * Usually multiple threads get a better yield out of
6789 * that one core than a single thread would have,
6790 * reflect that in sd->smt_gain.
6791 */
6792 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6793 power *= sd->smt_gain;
6794 power /= weight;
6795 power >>= SCHED_LOAD_SHIFT;
6796 }
6797 sd->groups->cpu_power += power;
6798 return;
6799 }
6800
6801 /*
6802 * Add cpu_power of each child group to this groups cpu_power.
6803 */
6804 group = child->groups;
6805 do {
6806 sd->groups->cpu_power += group->cpu_power;
6807 group = group->next;
6808 } while (group != child->groups);
6809 }
6810
6811 /*
6812 * Initializers for schedule domains
6813 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6814 */
6815
6816 #ifdef CONFIG_SCHED_DEBUG
6817 # define SD_INIT_NAME(sd, type) sd->name = #type
6818 #else
6819 # define SD_INIT_NAME(sd, type) do { } while (0)
6820 #endif
6821
6822 #define SD_INIT(sd, type) sd_init_##type(sd)
6823
6824 #define SD_INIT_FUNC(type) \
6825 static noinline void sd_init_##type(struct sched_domain *sd) \
6826 { \
6827 memset(sd, 0, sizeof(*sd)); \
6828 *sd = SD_##type##_INIT; \
6829 sd->level = SD_LV_##type; \
6830 SD_INIT_NAME(sd, type); \
6831 }
6832
6833 SD_INIT_FUNC(CPU)
6834 #ifdef CONFIG_NUMA
6835 SD_INIT_FUNC(ALLNODES)
6836 SD_INIT_FUNC(NODE)
6837 #endif
6838 #ifdef CONFIG_SCHED_SMT
6839 SD_INIT_FUNC(SIBLING)
6840 #endif
6841 #ifdef CONFIG_SCHED_MC
6842 SD_INIT_FUNC(MC)
6843 #endif
6844
6845 static int default_relax_domain_level = -1;
6846
6847 static int __init setup_relax_domain_level(char *str)
6848 {
6849 unsigned long val;
6850
6851 val = simple_strtoul(str, NULL, 0);
6852 if (val < SD_LV_MAX)
6853 default_relax_domain_level = val;
6854
6855 return 1;
6856 }
6857 __setup("relax_domain_level=", setup_relax_domain_level);
6858
6859 static void set_domain_attribute(struct sched_domain *sd,
6860 struct sched_domain_attr *attr)
6861 {
6862 int request;
6863
6864 if (!attr || attr->relax_domain_level < 0) {
6865 if (default_relax_domain_level < 0)
6866 return;
6867 else
6868 request = default_relax_domain_level;
6869 } else
6870 request = attr->relax_domain_level;
6871 if (request < sd->level) {
6872 /* turn off idle balance on this domain */
6873 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6874 } else {
6875 /* turn on idle balance on this domain */
6876 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6877 }
6878 }
6879
6880 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6881 const struct cpumask *cpu_map)
6882 {
6883 switch (what) {
6884 case sa_sched_groups:
6885 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6886 d->sched_group_nodes = NULL;
6887 case sa_rootdomain:
6888 free_rootdomain(d->rd); /* fall through */
6889 case sa_tmpmask:
6890 free_cpumask_var(d->tmpmask); /* fall through */
6891 case sa_send_covered:
6892 free_cpumask_var(d->send_covered); /* fall through */
6893 case sa_this_core_map:
6894 free_cpumask_var(d->this_core_map); /* fall through */
6895 case sa_this_sibling_map:
6896 free_cpumask_var(d->this_sibling_map); /* fall through */
6897 case sa_nodemask:
6898 free_cpumask_var(d->nodemask); /* fall through */
6899 case sa_sched_group_nodes:
6900 #ifdef CONFIG_NUMA
6901 kfree(d->sched_group_nodes); /* fall through */
6902 case sa_notcovered:
6903 free_cpumask_var(d->notcovered); /* fall through */
6904 case sa_covered:
6905 free_cpumask_var(d->covered); /* fall through */
6906 case sa_domainspan:
6907 free_cpumask_var(d->domainspan); /* fall through */
6908 #endif
6909 case sa_none:
6910 break;
6911 }
6912 }
6913
6914 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6915 const struct cpumask *cpu_map)
6916 {
6917 #ifdef CONFIG_NUMA
6918 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6919 return sa_none;
6920 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6921 return sa_domainspan;
6922 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6923 return sa_covered;
6924 /* Allocate the per-node list of sched groups */
6925 d->sched_group_nodes = kcalloc(nr_node_ids,
6926 sizeof(struct sched_group *), GFP_KERNEL);
6927 if (!d->sched_group_nodes) {
6928 printk(KERN_WARNING "Can not alloc sched group node list\n");
6929 return sa_notcovered;
6930 }
6931 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6932 #endif
6933 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6934 return sa_sched_group_nodes;
6935 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6936 return sa_nodemask;
6937 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6938 return sa_this_sibling_map;
6939 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6940 return sa_this_core_map;
6941 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6942 return sa_send_covered;
6943 d->rd = alloc_rootdomain();
6944 if (!d->rd) {
6945 printk(KERN_WARNING "Cannot alloc root domain\n");
6946 return sa_tmpmask;
6947 }
6948 return sa_rootdomain;
6949 }
6950
6951 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6952 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6953 {
6954 struct sched_domain *sd = NULL;
6955 #ifdef CONFIG_NUMA
6956 struct sched_domain *parent;
6957
6958 d->sd_allnodes = 0;
6959 if (cpumask_weight(cpu_map) >
6960 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6961 sd = &per_cpu(allnodes_domains, i).sd;
6962 SD_INIT(sd, ALLNODES);
6963 set_domain_attribute(sd, attr);
6964 cpumask_copy(sched_domain_span(sd), cpu_map);
6965 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6966 d->sd_allnodes = 1;
6967 }
6968 parent = sd;
6969
6970 sd = &per_cpu(node_domains, i).sd;
6971 SD_INIT(sd, NODE);
6972 set_domain_attribute(sd, attr);
6973 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6974 sd->parent = parent;
6975 if (parent)
6976 parent->child = sd;
6977 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6978 #endif
6979 return sd;
6980 }
6981
6982 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6983 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6984 struct sched_domain *parent, int i)
6985 {
6986 struct sched_domain *sd;
6987 sd = &per_cpu(phys_domains, i).sd;
6988 SD_INIT(sd, CPU);
6989 set_domain_attribute(sd, attr);
6990 cpumask_copy(sched_domain_span(sd), d->nodemask);
6991 sd->parent = parent;
6992 if (parent)
6993 parent->child = sd;
6994 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6995 return sd;
6996 }
6997
6998 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6999 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7000 struct sched_domain *parent, int i)
7001 {
7002 struct sched_domain *sd = parent;
7003 #ifdef CONFIG_SCHED_MC
7004 sd = &per_cpu(core_domains, i).sd;
7005 SD_INIT(sd, MC);
7006 set_domain_attribute(sd, attr);
7007 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7008 sd->parent = parent;
7009 parent->child = sd;
7010 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7011 #endif
7012 return sd;
7013 }
7014
7015 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7016 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7017 struct sched_domain *parent, int i)
7018 {
7019 struct sched_domain *sd = parent;
7020 #ifdef CONFIG_SCHED_SMT
7021 sd = &per_cpu(cpu_domains, i).sd;
7022 SD_INIT(sd, SIBLING);
7023 set_domain_attribute(sd, attr);
7024 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7025 sd->parent = parent;
7026 parent->child = sd;
7027 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7028 #endif
7029 return sd;
7030 }
7031
7032 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7033 const struct cpumask *cpu_map, int cpu)
7034 {
7035 switch (l) {
7036 #ifdef CONFIG_SCHED_SMT
7037 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7038 cpumask_and(d->this_sibling_map, cpu_map,
7039 topology_thread_cpumask(cpu));
7040 if (cpu == cpumask_first(d->this_sibling_map))
7041 init_sched_build_groups(d->this_sibling_map, cpu_map,
7042 &cpu_to_cpu_group,
7043 d->send_covered, d->tmpmask);
7044 break;
7045 #endif
7046 #ifdef CONFIG_SCHED_MC
7047 case SD_LV_MC: /* set up multi-core groups */
7048 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7049 if (cpu == cpumask_first(d->this_core_map))
7050 init_sched_build_groups(d->this_core_map, cpu_map,
7051 &cpu_to_core_group,
7052 d->send_covered, d->tmpmask);
7053 break;
7054 #endif
7055 case SD_LV_CPU: /* set up physical groups */
7056 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7057 if (!cpumask_empty(d->nodemask))
7058 init_sched_build_groups(d->nodemask, cpu_map,
7059 &cpu_to_phys_group,
7060 d->send_covered, d->tmpmask);
7061 break;
7062 #ifdef CONFIG_NUMA
7063 case SD_LV_ALLNODES:
7064 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7065 d->send_covered, d->tmpmask);
7066 break;
7067 #endif
7068 default:
7069 break;
7070 }
7071 }
7072
7073 /*
7074 * Build sched domains for a given set of cpus and attach the sched domains
7075 * to the individual cpus
7076 */
7077 static int __build_sched_domains(const struct cpumask *cpu_map,
7078 struct sched_domain_attr *attr)
7079 {
7080 enum s_alloc alloc_state = sa_none;
7081 struct s_data d;
7082 struct sched_domain *sd;
7083 int i;
7084 #ifdef CONFIG_NUMA
7085 d.sd_allnodes = 0;
7086 #endif
7087
7088 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7089 if (alloc_state != sa_rootdomain)
7090 goto error;
7091 alloc_state = sa_sched_groups;
7092
7093 /*
7094 * Set up domains for cpus specified by the cpu_map.
7095 */
7096 for_each_cpu(i, cpu_map) {
7097 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7098 cpu_map);
7099
7100 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7101 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7102 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7103 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7104 }
7105
7106 for_each_cpu(i, cpu_map) {
7107 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7108 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7109 }
7110
7111 /* Set up physical groups */
7112 for (i = 0; i < nr_node_ids; i++)
7113 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7114
7115 #ifdef CONFIG_NUMA
7116 /* Set up node groups */
7117 if (d.sd_allnodes)
7118 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7119
7120 for (i = 0; i < nr_node_ids; i++)
7121 if (build_numa_sched_groups(&d, cpu_map, i))
7122 goto error;
7123 #endif
7124
7125 /* Calculate CPU power for physical packages and nodes */
7126 #ifdef CONFIG_SCHED_SMT
7127 for_each_cpu(i, cpu_map) {
7128 sd = &per_cpu(cpu_domains, i).sd;
7129 init_sched_groups_power(i, sd);
7130 }
7131 #endif
7132 #ifdef CONFIG_SCHED_MC
7133 for_each_cpu(i, cpu_map) {
7134 sd = &per_cpu(core_domains, i).sd;
7135 init_sched_groups_power(i, sd);
7136 }
7137 #endif
7138
7139 for_each_cpu(i, cpu_map) {
7140 sd = &per_cpu(phys_domains, i).sd;
7141 init_sched_groups_power(i, sd);
7142 }
7143
7144 #ifdef CONFIG_NUMA
7145 for (i = 0; i < nr_node_ids; i++)
7146 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7147
7148 if (d.sd_allnodes) {
7149 struct sched_group *sg;
7150
7151 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7152 d.tmpmask);
7153 init_numa_sched_groups_power(sg);
7154 }
7155 #endif
7156
7157 /* Attach the domains */
7158 for_each_cpu(i, cpu_map) {
7159 #ifdef CONFIG_SCHED_SMT
7160 sd = &per_cpu(cpu_domains, i).sd;
7161 #elif defined(CONFIG_SCHED_MC)
7162 sd = &per_cpu(core_domains, i).sd;
7163 #else
7164 sd = &per_cpu(phys_domains, i).sd;
7165 #endif
7166 cpu_attach_domain(sd, d.rd, i);
7167 }
7168
7169 d.sched_group_nodes = NULL; /* don't free this we still need it */
7170 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7171 return 0;
7172
7173 error:
7174 __free_domain_allocs(&d, alloc_state, cpu_map);
7175 return -ENOMEM;
7176 }
7177
7178 static int build_sched_domains(const struct cpumask *cpu_map)
7179 {
7180 return __build_sched_domains(cpu_map, NULL);
7181 }
7182
7183 static cpumask_var_t *doms_cur; /* current sched domains */
7184 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7185 static struct sched_domain_attr *dattr_cur;
7186 /* attribues of custom domains in 'doms_cur' */
7187
7188 /*
7189 * Special case: If a kmalloc of a doms_cur partition (array of
7190 * cpumask) fails, then fallback to a single sched domain,
7191 * as determined by the single cpumask fallback_doms.
7192 */
7193 static cpumask_var_t fallback_doms;
7194
7195 /*
7196 * arch_update_cpu_topology lets virtualized architectures update the
7197 * cpu core maps. It is supposed to return 1 if the topology changed
7198 * or 0 if it stayed the same.
7199 */
7200 int __attribute__((weak)) arch_update_cpu_topology(void)
7201 {
7202 return 0;
7203 }
7204
7205 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7206 {
7207 int i;
7208 cpumask_var_t *doms;
7209
7210 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7211 if (!doms)
7212 return NULL;
7213 for (i = 0; i < ndoms; i++) {
7214 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7215 free_sched_domains(doms, i);
7216 return NULL;
7217 }
7218 }
7219 return doms;
7220 }
7221
7222 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7223 {
7224 unsigned int i;
7225 for (i = 0; i < ndoms; i++)
7226 free_cpumask_var(doms[i]);
7227 kfree(doms);
7228 }
7229
7230 /*
7231 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7232 * For now this just excludes isolated cpus, but could be used to
7233 * exclude other special cases in the future.
7234 */
7235 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7236 {
7237 int err;
7238
7239 arch_update_cpu_topology();
7240 ndoms_cur = 1;
7241 doms_cur = alloc_sched_domains(ndoms_cur);
7242 if (!doms_cur)
7243 doms_cur = &fallback_doms;
7244 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7245 dattr_cur = NULL;
7246 err = build_sched_domains(doms_cur[0]);
7247 register_sched_domain_sysctl();
7248
7249 return err;
7250 }
7251
7252 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7253 struct cpumask *tmpmask)
7254 {
7255 free_sched_groups(cpu_map, tmpmask);
7256 }
7257
7258 /*
7259 * Detach sched domains from a group of cpus specified in cpu_map
7260 * These cpus will now be attached to the NULL domain
7261 */
7262 static void detach_destroy_domains(const struct cpumask *cpu_map)
7263 {
7264 /* Save because hotplug lock held. */
7265 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7266 int i;
7267
7268 for_each_cpu(i, cpu_map)
7269 cpu_attach_domain(NULL, &def_root_domain, i);
7270 synchronize_sched();
7271 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7272 }
7273
7274 /* handle null as "default" */
7275 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7276 struct sched_domain_attr *new, int idx_new)
7277 {
7278 struct sched_domain_attr tmp;
7279
7280 /* fast path */
7281 if (!new && !cur)
7282 return 1;
7283
7284 tmp = SD_ATTR_INIT;
7285 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7286 new ? (new + idx_new) : &tmp,
7287 sizeof(struct sched_domain_attr));
7288 }
7289
7290 /*
7291 * Partition sched domains as specified by the 'ndoms_new'
7292 * cpumasks in the array doms_new[] of cpumasks. This compares
7293 * doms_new[] to the current sched domain partitioning, doms_cur[].
7294 * It destroys each deleted domain and builds each new domain.
7295 *
7296 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7297 * The masks don't intersect (don't overlap.) We should setup one
7298 * sched domain for each mask. CPUs not in any of the cpumasks will
7299 * not be load balanced. If the same cpumask appears both in the
7300 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7301 * it as it is.
7302 *
7303 * The passed in 'doms_new' should be allocated using
7304 * alloc_sched_domains. This routine takes ownership of it and will
7305 * free_sched_domains it when done with it. If the caller failed the
7306 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7307 * and partition_sched_domains() will fallback to the single partition
7308 * 'fallback_doms', it also forces the domains to be rebuilt.
7309 *
7310 * If doms_new == NULL it will be replaced with cpu_online_mask.
7311 * ndoms_new == 0 is a special case for destroying existing domains,
7312 * and it will not create the default domain.
7313 *
7314 * Call with hotplug lock held
7315 */
7316 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7317 struct sched_domain_attr *dattr_new)
7318 {
7319 int i, j, n;
7320 int new_topology;
7321
7322 mutex_lock(&sched_domains_mutex);
7323
7324 /* always unregister in case we don't destroy any domains */
7325 unregister_sched_domain_sysctl();
7326
7327 /* Let architecture update cpu core mappings. */
7328 new_topology = arch_update_cpu_topology();
7329
7330 n = doms_new ? ndoms_new : 0;
7331
7332 /* Destroy deleted domains */
7333 for (i = 0; i < ndoms_cur; i++) {
7334 for (j = 0; j < n && !new_topology; j++) {
7335 if (cpumask_equal(doms_cur[i], doms_new[j])
7336 && dattrs_equal(dattr_cur, i, dattr_new, j))
7337 goto match1;
7338 }
7339 /* no match - a current sched domain not in new doms_new[] */
7340 detach_destroy_domains(doms_cur[i]);
7341 match1:
7342 ;
7343 }
7344
7345 if (doms_new == NULL) {
7346 ndoms_cur = 0;
7347 doms_new = &fallback_doms;
7348 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7349 WARN_ON_ONCE(dattr_new);
7350 }
7351
7352 /* Build new domains */
7353 for (i = 0; i < ndoms_new; i++) {
7354 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7355 if (cpumask_equal(doms_new[i], doms_cur[j])
7356 && dattrs_equal(dattr_new, i, dattr_cur, j))
7357 goto match2;
7358 }
7359 /* no match - add a new doms_new */
7360 __build_sched_domains(doms_new[i],
7361 dattr_new ? dattr_new + i : NULL);
7362 match2:
7363 ;
7364 }
7365
7366 /* Remember the new sched domains */
7367 if (doms_cur != &fallback_doms)
7368 free_sched_domains(doms_cur, ndoms_cur);
7369 kfree(dattr_cur); /* kfree(NULL) is safe */
7370 doms_cur = doms_new;
7371 dattr_cur = dattr_new;
7372 ndoms_cur = ndoms_new;
7373
7374 register_sched_domain_sysctl();
7375
7376 mutex_unlock(&sched_domains_mutex);
7377 }
7378
7379 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7380 static void arch_reinit_sched_domains(void)
7381 {
7382 get_online_cpus();
7383
7384 /* Destroy domains first to force the rebuild */
7385 partition_sched_domains(0, NULL, NULL);
7386
7387 rebuild_sched_domains();
7388 put_online_cpus();
7389 }
7390
7391 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7392 {
7393 unsigned int level = 0;
7394
7395 if (sscanf(buf, "%u", &level) != 1)
7396 return -EINVAL;
7397
7398 /*
7399 * level is always be positive so don't check for
7400 * level < POWERSAVINGS_BALANCE_NONE which is 0
7401 * What happens on 0 or 1 byte write,
7402 * need to check for count as well?
7403 */
7404
7405 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7406 return -EINVAL;
7407
7408 if (smt)
7409 sched_smt_power_savings = level;
7410 else
7411 sched_mc_power_savings = level;
7412
7413 arch_reinit_sched_domains();
7414
7415 return count;
7416 }
7417
7418 #ifdef CONFIG_SCHED_MC
7419 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7420 struct sysdev_class_attribute *attr,
7421 char *page)
7422 {
7423 return sprintf(page, "%u\n", sched_mc_power_savings);
7424 }
7425 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7426 struct sysdev_class_attribute *attr,
7427 const char *buf, size_t count)
7428 {
7429 return sched_power_savings_store(buf, count, 0);
7430 }
7431 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7432 sched_mc_power_savings_show,
7433 sched_mc_power_savings_store);
7434 #endif
7435
7436 #ifdef CONFIG_SCHED_SMT
7437 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7438 struct sysdev_class_attribute *attr,
7439 char *page)
7440 {
7441 return sprintf(page, "%u\n", sched_smt_power_savings);
7442 }
7443 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7444 struct sysdev_class_attribute *attr,
7445 const char *buf, size_t count)
7446 {
7447 return sched_power_savings_store(buf, count, 1);
7448 }
7449 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7450 sched_smt_power_savings_show,
7451 sched_smt_power_savings_store);
7452 #endif
7453
7454 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7455 {
7456 int err = 0;
7457
7458 #ifdef CONFIG_SCHED_SMT
7459 if (smt_capable())
7460 err = sysfs_create_file(&cls->kset.kobj,
7461 &attr_sched_smt_power_savings.attr);
7462 #endif
7463 #ifdef CONFIG_SCHED_MC
7464 if (!err && mc_capable())
7465 err = sysfs_create_file(&cls->kset.kobj,
7466 &attr_sched_mc_power_savings.attr);
7467 #endif
7468 return err;
7469 }
7470 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7471
7472 /*
7473 * Update cpusets according to cpu_active mask. If cpusets are
7474 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7475 * around partition_sched_domains().
7476 */
7477 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7478 void *hcpu)
7479 {
7480 switch (action & ~CPU_TASKS_FROZEN) {
7481 case CPU_ONLINE:
7482 case CPU_DOWN_FAILED:
7483 cpuset_update_active_cpus();
7484 return NOTIFY_OK;
7485 default:
7486 return NOTIFY_DONE;
7487 }
7488 }
7489
7490 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7491 void *hcpu)
7492 {
7493 switch (action & ~CPU_TASKS_FROZEN) {
7494 case CPU_DOWN_PREPARE:
7495 cpuset_update_active_cpus();
7496 return NOTIFY_OK;
7497 default:
7498 return NOTIFY_DONE;
7499 }
7500 }
7501
7502 static int update_runtime(struct notifier_block *nfb,
7503 unsigned long action, void *hcpu)
7504 {
7505 int cpu = (int)(long)hcpu;
7506
7507 switch (action) {
7508 case CPU_DOWN_PREPARE:
7509 case CPU_DOWN_PREPARE_FROZEN:
7510 disable_runtime(cpu_rq(cpu));
7511 return NOTIFY_OK;
7512
7513 case CPU_DOWN_FAILED:
7514 case CPU_DOWN_FAILED_FROZEN:
7515 case CPU_ONLINE:
7516 case CPU_ONLINE_FROZEN:
7517 enable_runtime(cpu_rq(cpu));
7518 return NOTIFY_OK;
7519
7520 default:
7521 return NOTIFY_DONE;
7522 }
7523 }
7524
7525 void __init sched_init_smp(void)
7526 {
7527 cpumask_var_t non_isolated_cpus;
7528
7529 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7530 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7531
7532 #if defined(CONFIG_NUMA)
7533 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7534 GFP_KERNEL);
7535 BUG_ON(sched_group_nodes_bycpu == NULL);
7536 #endif
7537 get_online_cpus();
7538 mutex_lock(&sched_domains_mutex);
7539 arch_init_sched_domains(cpu_active_mask);
7540 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7541 if (cpumask_empty(non_isolated_cpus))
7542 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7543 mutex_unlock(&sched_domains_mutex);
7544 put_online_cpus();
7545
7546 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7547 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7548
7549 /* RT runtime code needs to handle some hotplug events */
7550 hotcpu_notifier(update_runtime, 0);
7551
7552 init_hrtick();
7553
7554 /* Move init over to a non-isolated CPU */
7555 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7556 BUG();
7557 sched_init_granularity();
7558 free_cpumask_var(non_isolated_cpus);
7559
7560 init_sched_rt_class();
7561 }
7562 #else
7563 void __init sched_init_smp(void)
7564 {
7565 sched_init_granularity();
7566 }
7567 #endif /* CONFIG_SMP */
7568
7569 const_debug unsigned int sysctl_timer_migration = 1;
7570
7571 int in_sched_functions(unsigned long addr)
7572 {
7573 return in_lock_functions(addr) ||
7574 (addr >= (unsigned long)__sched_text_start
7575 && addr < (unsigned long)__sched_text_end);
7576 }
7577
7578 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7579 {
7580 cfs_rq->tasks_timeline = RB_ROOT;
7581 INIT_LIST_HEAD(&cfs_rq->tasks);
7582 #ifdef CONFIG_FAIR_GROUP_SCHED
7583 cfs_rq->rq = rq;
7584 #endif
7585 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7586 }
7587
7588 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7589 {
7590 struct rt_prio_array *array;
7591 int i;
7592
7593 array = &rt_rq->active;
7594 for (i = 0; i < MAX_RT_PRIO; i++) {
7595 INIT_LIST_HEAD(array->queue + i);
7596 __clear_bit(i, array->bitmap);
7597 }
7598 /* delimiter for bitsearch: */
7599 __set_bit(MAX_RT_PRIO, array->bitmap);
7600
7601 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7602 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7603 #ifdef CONFIG_SMP
7604 rt_rq->highest_prio.next = MAX_RT_PRIO;
7605 #endif
7606 #endif
7607 #ifdef CONFIG_SMP
7608 rt_rq->rt_nr_migratory = 0;
7609 rt_rq->overloaded = 0;
7610 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7611 #endif
7612
7613 rt_rq->rt_time = 0;
7614 rt_rq->rt_throttled = 0;
7615 rt_rq->rt_runtime = 0;
7616 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7617
7618 #ifdef CONFIG_RT_GROUP_SCHED
7619 rt_rq->rt_nr_boosted = 0;
7620 rt_rq->rq = rq;
7621 #endif
7622 }
7623
7624 #ifdef CONFIG_FAIR_GROUP_SCHED
7625 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7626 struct sched_entity *se, int cpu, int add,
7627 struct sched_entity *parent)
7628 {
7629 struct rq *rq = cpu_rq(cpu);
7630 tg->cfs_rq[cpu] = cfs_rq;
7631 init_cfs_rq(cfs_rq, rq);
7632 cfs_rq->tg = tg;
7633 if (add)
7634 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7635
7636 tg->se[cpu] = se;
7637 /* se could be NULL for init_task_group */
7638 if (!se)
7639 return;
7640
7641 if (!parent)
7642 se->cfs_rq = &rq->cfs;
7643 else
7644 se->cfs_rq = parent->my_q;
7645
7646 se->my_q = cfs_rq;
7647 se->load.weight = tg->shares;
7648 se->load.inv_weight = 0;
7649 se->parent = parent;
7650 }
7651 #endif
7652
7653 #ifdef CONFIG_RT_GROUP_SCHED
7654 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7655 struct sched_rt_entity *rt_se, int cpu, int add,
7656 struct sched_rt_entity *parent)
7657 {
7658 struct rq *rq = cpu_rq(cpu);
7659
7660 tg->rt_rq[cpu] = rt_rq;
7661 init_rt_rq(rt_rq, rq);
7662 rt_rq->tg = tg;
7663 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7664 if (add)
7665 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7666
7667 tg->rt_se[cpu] = rt_se;
7668 if (!rt_se)
7669 return;
7670
7671 if (!parent)
7672 rt_se->rt_rq = &rq->rt;
7673 else
7674 rt_se->rt_rq = parent->my_q;
7675
7676 rt_se->my_q = rt_rq;
7677 rt_se->parent = parent;
7678 INIT_LIST_HEAD(&rt_se->run_list);
7679 }
7680 #endif
7681
7682 void __init sched_init(void)
7683 {
7684 int i, j;
7685 unsigned long alloc_size = 0, ptr;
7686
7687 #ifdef CONFIG_FAIR_GROUP_SCHED
7688 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7689 #endif
7690 #ifdef CONFIG_RT_GROUP_SCHED
7691 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7692 #endif
7693 #ifdef CONFIG_CPUMASK_OFFSTACK
7694 alloc_size += num_possible_cpus() * cpumask_size();
7695 #endif
7696 if (alloc_size) {
7697 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7698
7699 #ifdef CONFIG_FAIR_GROUP_SCHED
7700 init_task_group.se = (struct sched_entity **)ptr;
7701 ptr += nr_cpu_ids * sizeof(void **);
7702
7703 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7704 ptr += nr_cpu_ids * sizeof(void **);
7705
7706 #endif /* CONFIG_FAIR_GROUP_SCHED */
7707 #ifdef CONFIG_RT_GROUP_SCHED
7708 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7709 ptr += nr_cpu_ids * sizeof(void **);
7710
7711 init_task_group.rt_rq = (struct rt_rq **)ptr;
7712 ptr += nr_cpu_ids * sizeof(void **);
7713
7714 #endif /* CONFIG_RT_GROUP_SCHED */
7715 #ifdef CONFIG_CPUMASK_OFFSTACK
7716 for_each_possible_cpu(i) {
7717 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7718 ptr += cpumask_size();
7719 }
7720 #endif /* CONFIG_CPUMASK_OFFSTACK */
7721 }
7722
7723 #ifdef CONFIG_SMP
7724 init_defrootdomain();
7725 #endif
7726
7727 init_rt_bandwidth(&def_rt_bandwidth,
7728 global_rt_period(), global_rt_runtime());
7729
7730 #ifdef CONFIG_RT_GROUP_SCHED
7731 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7732 global_rt_period(), global_rt_runtime());
7733 #endif /* CONFIG_RT_GROUP_SCHED */
7734
7735 #ifdef CONFIG_CGROUP_SCHED
7736 list_add(&init_task_group.list, &task_groups);
7737 INIT_LIST_HEAD(&init_task_group.children);
7738
7739 #endif /* CONFIG_CGROUP_SCHED */
7740
7741 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7742 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7743 __alignof__(unsigned long));
7744 #endif
7745 for_each_possible_cpu(i) {
7746 struct rq *rq;
7747
7748 rq = cpu_rq(i);
7749 raw_spin_lock_init(&rq->lock);
7750 rq->nr_running = 0;
7751 rq->calc_load_active = 0;
7752 rq->calc_load_update = jiffies + LOAD_FREQ;
7753 init_cfs_rq(&rq->cfs, rq);
7754 init_rt_rq(&rq->rt, rq);
7755 #ifdef CONFIG_FAIR_GROUP_SCHED
7756 init_task_group.shares = init_task_group_load;
7757 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7758 #ifdef CONFIG_CGROUP_SCHED
7759 /*
7760 * How much cpu bandwidth does init_task_group get?
7761 *
7762 * In case of task-groups formed thr' the cgroup filesystem, it
7763 * gets 100% of the cpu resources in the system. This overall
7764 * system cpu resource is divided among the tasks of
7765 * init_task_group and its child task-groups in a fair manner,
7766 * based on each entity's (task or task-group's) weight
7767 * (se->load.weight).
7768 *
7769 * In other words, if init_task_group has 10 tasks of weight
7770 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7771 * then A0's share of the cpu resource is:
7772 *
7773 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7774 *
7775 * We achieve this by letting init_task_group's tasks sit
7776 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7777 */
7778 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7779 #endif
7780 #endif /* CONFIG_FAIR_GROUP_SCHED */
7781
7782 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7783 #ifdef CONFIG_RT_GROUP_SCHED
7784 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7785 #ifdef CONFIG_CGROUP_SCHED
7786 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7787 #endif
7788 #endif
7789
7790 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7791 rq->cpu_load[j] = 0;
7792
7793 rq->last_load_update_tick = jiffies;
7794
7795 #ifdef CONFIG_SMP
7796 rq->sd = NULL;
7797 rq->rd = NULL;
7798 rq->cpu_power = SCHED_LOAD_SCALE;
7799 rq->post_schedule = 0;
7800 rq->active_balance = 0;
7801 rq->next_balance = jiffies;
7802 rq->push_cpu = 0;
7803 rq->cpu = i;
7804 rq->online = 0;
7805 rq->idle_stamp = 0;
7806 rq->avg_idle = 2*sysctl_sched_migration_cost;
7807 rq_attach_root(rq, &def_root_domain);
7808 #ifdef CONFIG_NO_HZ
7809 rq->nohz_balance_kick = 0;
7810 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7811 #endif
7812 #endif
7813 init_rq_hrtick(rq);
7814 atomic_set(&rq->nr_iowait, 0);
7815 }
7816
7817 set_load_weight(&init_task);
7818
7819 #ifdef CONFIG_PREEMPT_NOTIFIERS
7820 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7821 #endif
7822
7823 #ifdef CONFIG_SMP
7824 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7825 #endif
7826
7827 #ifdef CONFIG_RT_MUTEXES
7828 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7829 #endif
7830
7831 /*
7832 * The boot idle thread does lazy MMU switching as well:
7833 */
7834 atomic_inc(&init_mm.mm_count);
7835 enter_lazy_tlb(&init_mm, current);
7836
7837 /*
7838 * Make us the idle thread. Technically, schedule() should not be
7839 * called from this thread, however somewhere below it might be,
7840 * but because we are the idle thread, we just pick up running again
7841 * when this runqueue becomes "idle".
7842 */
7843 init_idle(current, smp_processor_id());
7844
7845 calc_load_update = jiffies + LOAD_FREQ;
7846
7847 /*
7848 * During early bootup we pretend to be a normal task:
7849 */
7850 current->sched_class = &fair_sched_class;
7851
7852 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7853 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7854 #ifdef CONFIG_SMP
7855 #ifdef CONFIG_NO_HZ
7856 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7857 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7858 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7859 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7860 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7861 #endif
7862 /* May be allocated at isolcpus cmdline parse time */
7863 if (cpu_isolated_map == NULL)
7864 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7865 #endif /* SMP */
7866
7867 perf_event_init();
7868
7869 scheduler_running = 1;
7870 }
7871
7872 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7873 static inline int preempt_count_equals(int preempt_offset)
7874 {
7875 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7876
7877 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7878 }
7879
7880 void __might_sleep(const char *file, int line, int preempt_offset)
7881 {
7882 #ifdef in_atomic
7883 static unsigned long prev_jiffy; /* ratelimiting */
7884
7885 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7886 system_state != SYSTEM_RUNNING || oops_in_progress)
7887 return;
7888 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7889 return;
7890 prev_jiffy = jiffies;
7891
7892 printk(KERN_ERR
7893 "BUG: sleeping function called from invalid context at %s:%d\n",
7894 file, line);
7895 printk(KERN_ERR
7896 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7897 in_atomic(), irqs_disabled(),
7898 current->pid, current->comm);
7899
7900 debug_show_held_locks(current);
7901 if (irqs_disabled())
7902 print_irqtrace_events(current);
7903 dump_stack();
7904 #endif
7905 }
7906 EXPORT_SYMBOL(__might_sleep);
7907 #endif
7908
7909 #ifdef CONFIG_MAGIC_SYSRQ
7910 static void normalize_task(struct rq *rq, struct task_struct *p)
7911 {
7912 int on_rq;
7913
7914 on_rq = p->se.on_rq;
7915 if (on_rq)
7916 deactivate_task(rq, p, 0);
7917 __setscheduler(rq, p, SCHED_NORMAL, 0);
7918 if (on_rq) {
7919 activate_task(rq, p, 0);
7920 resched_task(rq->curr);
7921 }
7922 }
7923
7924 void normalize_rt_tasks(void)
7925 {
7926 struct task_struct *g, *p;
7927 unsigned long flags;
7928 struct rq *rq;
7929
7930 read_lock_irqsave(&tasklist_lock, flags);
7931 do_each_thread(g, p) {
7932 /*
7933 * Only normalize user tasks:
7934 */
7935 if (!p->mm)
7936 continue;
7937
7938 p->se.exec_start = 0;
7939 #ifdef CONFIG_SCHEDSTATS
7940 p->se.statistics.wait_start = 0;
7941 p->se.statistics.sleep_start = 0;
7942 p->se.statistics.block_start = 0;
7943 #endif
7944
7945 if (!rt_task(p)) {
7946 /*
7947 * Renice negative nice level userspace
7948 * tasks back to 0:
7949 */
7950 if (TASK_NICE(p) < 0 && p->mm)
7951 set_user_nice(p, 0);
7952 continue;
7953 }
7954
7955 raw_spin_lock(&p->pi_lock);
7956 rq = __task_rq_lock(p);
7957
7958 normalize_task(rq, p);
7959
7960 __task_rq_unlock(rq);
7961 raw_spin_unlock(&p->pi_lock);
7962 } while_each_thread(g, p);
7963
7964 read_unlock_irqrestore(&tasklist_lock, flags);
7965 }
7966
7967 #endif /* CONFIG_MAGIC_SYSRQ */
7968
7969 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7970 /*
7971 * These functions are only useful for the IA64 MCA handling, or kdb.
7972 *
7973 * They can only be called when the whole system has been
7974 * stopped - every CPU needs to be quiescent, and no scheduling
7975 * activity can take place. Using them for anything else would
7976 * be a serious bug, and as a result, they aren't even visible
7977 * under any other configuration.
7978 */
7979
7980 /**
7981 * curr_task - return the current task for a given cpu.
7982 * @cpu: the processor in question.
7983 *
7984 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7985 */
7986 struct task_struct *curr_task(int cpu)
7987 {
7988 return cpu_curr(cpu);
7989 }
7990
7991 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7992
7993 #ifdef CONFIG_IA64
7994 /**
7995 * set_curr_task - set the current task for a given cpu.
7996 * @cpu: the processor in question.
7997 * @p: the task pointer to set.
7998 *
7999 * Description: This function must only be used when non-maskable interrupts
8000 * are serviced on a separate stack. It allows the architecture to switch the
8001 * notion of the current task on a cpu in a non-blocking manner. This function
8002 * must be called with all CPU's synchronized, and interrupts disabled, the
8003 * and caller must save the original value of the current task (see
8004 * curr_task() above) and restore that value before reenabling interrupts and
8005 * re-starting the system.
8006 *
8007 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8008 */
8009 void set_curr_task(int cpu, struct task_struct *p)
8010 {
8011 cpu_curr(cpu) = p;
8012 }
8013
8014 #endif
8015
8016 #ifdef CONFIG_FAIR_GROUP_SCHED
8017 static void free_fair_sched_group(struct task_group *tg)
8018 {
8019 int i;
8020
8021 for_each_possible_cpu(i) {
8022 if (tg->cfs_rq)
8023 kfree(tg->cfs_rq[i]);
8024 if (tg->se)
8025 kfree(tg->se[i]);
8026 }
8027
8028 kfree(tg->cfs_rq);
8029 kfree(tg->se);
8030 }
8031
8032 static
8033 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8034 {
8035 struct cfs_rq *cfs_rq;
8036 struct sched_entity *se;
8037 struct rq *rq;
8038 int i;
8039
8040 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8041 if (!tg->cfs_rq)
8042 goto err;
8043 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8044 if (!tg->se)
8045 goto err;
8046
8047 tg->shares = NICE_0_LOAD;
8048
8049 for_each_possible_cpu(i) {
8050 rq = cpu_rq(i);
8051
8052 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8053 GFP_KERNEL, cpu_to_node(i));
8054 if (!cfs_rq)
8055 goto err;
8056
8057 se = kzalloc_node(sizeof(struct sched_entity),
8058 GFP_KERNEL, cpu_to_node(i));
8059 if (!se)
8060 goto err_free_rq;
8061
8062 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8063 }
8064
8065 return 1;
8066
8067 err_free_rq:
8068 kfree(cfs_rq);
8069 err:
8070 return 0;
8071 }
8072
8073 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8074 {
8075 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8076 &cpu_rq(cpu)->leaf_cfs_rq_list);
8077 }
8078
8079 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8080 {
8081 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8082 }
8083 #else /* !CONFG_FAIR_GROUP_SCHED */
8084 static inline void free_fair_sched_group(struct task_group *tg)
8085 {
8086 }
8087
8088 static inline
8089 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8090 {
8091 return 1;
8092 }
8093
8094 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8095 {
8096 }
8097
8098 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8099 {
8100 }
8101 #endif /* CONFIG_FAIR_GROUP_SCHED */
8102
8103 #ifdef CONFIG_RT_GROUP_SCHED
8104 static void free_rt_sched_group(struct task_group *tg)
8105 {
8106 int i;
8107
8108 destroy_rt_bandwidth(&tg->rt_bandwidth);
8109
8110 for_each_possible_cpu(i) {
8111 if (tg->rt_rq)
8112 kfree(tg->rt_rq[i]);
8113 if (tg->rt_se)
8114 kfree(tg->rt_se[i]);
8115 }
8116
8117 kfree(tg->rt_rq);
8118 kfree(tg->rt_se);
8119 }
8120
8121 static
8122 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8123 {
8124 struct rt_rq *rt_rq;
8125 struct sched_rt_entity *rt_se;
8126 struct rq *rq;
8127 int i;
8128
8129 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8130 if (!tg->rt_rq)
8131 goto err;
8132 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8133 if (!tg->rt_se)
8134 goto err;
8135
8136 init_rt_bandwidth(&tg->rt_bandwidth,
8137 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8138
8139 for_each_possible_cpu(i) {
8140 rq = cpu_rq(i);
8141
8142 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8143 GFP_KERNEL, cpu_to_node(i));
8144 if (!rt_rq)
8145 goto err;
8146
8147 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8148 GFP_KERNEL, cpu_to_node(i));
8149 if (!rt_se)
8150 goto err_free_rq;
8151
8152 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8153 }
8154
8155 return 1;
8156
8157 err_free_rq:
8158 kfree(rt_rq);
8159 err:
8160 return 0;
8161 }
8162
8163 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8164 {
8165 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8166 &cpu_rq(cpu)->leaf_rt_rq_list);
8167 }
8168
8169 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8170 {
8171 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8172 }
8173 #else /* !CONFIG_RT_GROUP_SCHED */
8174 static inline void free_rt_sched_group(struct task_group *tg)
8175 {
8176 }
8177
8178 static inline
8179 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8180 {
8181 return 1;
8182 }
8183
8184 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8185 {
8186 }
8187
8188 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8189 {
8190 }
8191 #endif /* CONFIG_RT_GROUP_SCHED */
8192
8193 #ifdef CONFIG_CGROUP_SCHED
8194 static void free_sched_group(struct task_group *tg)
8195 {
8196 free_fair_sched_group(tg);
8197 free_rt_sched_group(tg);
8198 kfree(tg);
8199 }
8200
8201 /* allocate runqueue etc for a new task group */
8202 struct task_group *sched_create_group(struct task_group *parent)
8203 {
8204 struct task_group *tg;
8205 unsigned long flags;
8206 int i;
8207
8208 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8209 if (!tg)
8210 return ERR_PTR(-ENOMEM);
8211
8212 if (!alloc_fair_sched_group(tg, parent))
8213 goto err;
8214
8215 if (!alloc_rt_sched_group(tg, parent))
8216 goto err;
8217
8218 spin_lock_irqsave(&task_group_lock, flags);
8219 for_each_possible_cpu(i) {
8220 register_fair_sched_group(tg, i);
8221 register_rt_sched_group(tg, i);
8222 }
8223 list_add_rcu(&tg->list, &task_groups);
8224
8225 WARN_ON(!parent); /* root should already exist */
8226
8227 tg->parent = parent;
8228 INIT_LIST_HEAD(&tg->children);
8229 list_add_rcu(&tg->siblings, &parent->children);
8230 spin_unlock_irqrestore(&task_group_lock, flags);
8231
8232 return tg;
8233
8234 err:
8235 free_sched_group(tg);
8236 return ERR_PTR(-ENOMEM);
8237 }
8238
8239 /* rcu callback to free various structures associated with a task group */
8240 static void free_sched_group_rcu(struct rcu_head *rhp)
8241 {
8242 /* now it should be safe to free those cfs_rqs */
8243 free_sched_group(container_of(rhp, struct task_group, rcu));
8244 }
8245
8246 /* Destroy runqueue etc associated with a task group */
8247 void sched_destroy_group(struct task_group *tg)
8248 {
8249 unsigned long flags;
8250 int i;
8251
8252 spin_lock_irqsave(&task_group_lock, flags);
8253 for_each_possible_cpu(i) {
8254 unregister_fair_sched_group(tg, i);
8255 unregister_rt_sched_group(tg, i);
8256 }
8257 list_del_rcu(&tg->list);
8258 list_del_rcu(&tg->siblings);
8259 spin_unlock_irqrestore(&task_group_lock, flags);
8260
8261 /* wait for possible concurrent references to cfs_rqs complete */
8262 call_rcu(&tg->rcu, free_sched_group_rcu);
8263 }
8264
8265 /* change task's runqueue when it moves between groups.
8266 * The caller of this function should have put the task in its new group
8267 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8268 * reflect its new group.
8269 */
8270 void sched_move_task(struct task_struct *tsk)
8271 {
8272 int on_rq, running;
8273 unsigned long flags;
8274 struct rq *rq;
8275
8276 rq = task_rq_lock(tsk, &flags);
8277
8278 running = task_current(rq, tsk);
8279 on_rq = tsk->se.on_rq;
8280
8281 if (on_rq)
8282 dequeue_task(rq, tsk, 0);
8283 if (unlikely(running))
8284 tsk->sched_class->put_prev_task(rq, tsk);
8285
8286 set_task_rq(tsk, task_cpu(tsk));
8287
8288 #ifdef CONFIG_FAIR_GROUP_SCHED
8289 if (tsk->sched_class->moved_group)
8290 tsk->sched_class->moved_group(tsk, on_rq);
8291 #endif
8292
8293 if (unlikely(running))
8294 tsk->sched_class->set_curr_task(rq);
8295 if (on_rq)
8296 enqueue_task(rq, tsk, 0);
8297
8298 task_rq_unlock(rq, &flags);
8299 }
8300 #endif /* CONFIG_CGROUP_SCHED */
8301
8302 #ifdef CONFIG_FAIR_GROUP_SCHED
8303 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8304 {
8305 struct cfs_rq *cfs_rq = se->cfs_rq;
8306 int on_rq;
8307
8308 on_rq = se->on_rq;
8309 if (on_rq)
8310 dequeue_entity(cfs_rq, se, 0);
8311
8312 se->load.weight = shares;
8313 se->load.inv_weight = 0;
8314
8315 if (on_rq)
8316 enqueue_entity(cfs_rq, se, 0);
8317 }
8318
8319 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8320 {
8321 struct cfs_rq *cfs_rq = se->cfs_rq;
8322 struct rq *rq = cfs_rq->rq;
8323 unsigned long flags;
8324
8325 raw_spin_lock_irqsave(&rq->lock, flags);
8326 __set_se_shares(se, shares);
8327 raw_spin_unlock_irqrestore(&rq->lock, flags);
8328 }
8329
8330 static DEFINE_MUTEX(shares_mutex);
8331
8332 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8333 {
8334 int i;
8335 unsigned long flags;
8336
8337 /*
8338 * We can't change the weight of the root cgroup.
8339 */
8340 if (!tg->se[0])
8341 return -EINVAL;
8342
8343 if (shares < MIN_SHARES)
8344 shares = MIN_SHARES;
8345 else if (shares > MAX_SHARES)
8346 shares = MAX_SHARES;
8347
8348 mutex_lock(&shares_mutex);
8349 if (tg->shares == shares)
8350 goto done;
8351
8352 spin_lock_irqsave(&task_group_lock, flags);
8353 for_each_possible_cpu(i)
8354 unregister_fair_sched_group(tg, i);
8355 list_del_rcu(&tg->siblings);
8356 spin_unlock_irqrestore(&task_group_lock, flags);
8357
8358 /* wait for any ongoing reference to this group to finish */
8359 synchronize_sched();
8360
8361 /*
8362 * Now we are free to modify the group's share on each cpu
8363 * w/o tripping rebalance_share or load_balance_fair.
8364 */
8365 tg->shares = shares;
8366 for_each_possible_cpu(i) {
8367 /*
8368 * force a rebalance
8369 */
8370 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8371 set_se_shares(tg->se[i], shares);
8372 }
8373
8374 /*
8375 * Enable load balance activity on this group, by inserting it back on
8376 * each cpu's rq->leaf_cfs_rq_list.
8377 */
8378 spin_lock_irqsave(&task_group_lock, flags);
8379 for_each_possible_cpu(i)
8380 register_fair_sched_group(tg, i);
8381 list_add_rcu(&tg->siblings, &tg->parent->children);
8382 spin_unlock_irqrestore(&task_group_lock, flags);
8383 done:
8384 mutex_unlock(&shares_mutex);
8385 return 0;
8386 }
8387
8388 unsigned long sched_group_shares(struct task_group *tg)
8389 {
8390 return tg->shares;
8391 }
8392 #endif
8393
8394 #ifdef CONFIG_RT_GROUP_SCHED
8395 /*
8396 * Ensure that the real time constraints are schedulable.
8397 */
8398 static DEFINE_MUTEX(rt_constraints_mutex);
8399
8400 static unsigned long to_ratio(u64 period, u64 runtime)
8401 {
8402 if (runtime == RUNTIME_INF)
8403 return 1ULL << 20;
8404
8405 return div64_u64(runtime << 20, period);
8406 }
8407
8408 /* Must be called with tasklist_lock held */
8409 static inline int tg_has_rt_tasks(struct task_group *tg)
8410 {
8411 struct task_struct *g, *p;
8412
8413 do_each_thread(g, p) {
8414 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8415 return 1;
8416 } while_each_thread(g, p);
8417
8418 return 0;
8419 }
8420
8421 struct rt_schedulable_data {
8422 struct task_group *tg;
8423 u64 rt_period;
8424 u64 rt_runtime;
8425 };
8426
8427 static int tg_schedulable(struct task_group *tg, void *data)
8428 {
8429 struct rt_schedulable_data *d = data;
8430 struct task_group *child;
8431 unsigned long total, sum = 0;
8432 u64 period, runtime;
8433
8434 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8435 runtime = tg->rt_bandwidth.rt_runtime;
8436
8437 if (tg == d->tg) {
8438 period = d->rt_period;
8439 runtime = d->rt_runtime;
8440 }
8441
8442 /*
8443 * Cannot have more runtime than the period.
8444 */
8445 if (runtime > period && runtime != RUNTIME_INF)
8446 return -EINVAL;
8447
8448 /*
8449 * Ensure we don't starve existing RT tasks.
8450 */
8451 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8452 return -EBUSY;
8453
8454 total = to_ratio(period, runtime);
8455
8456 /*
8457 * Nobody can have more than the global setting allows.
8458 */
8459 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8460 return -EINVAL;
8461
8462 /*
8463 * The sum of our children's runtime should not exceed our own.
8464 */
8465 list_for_each_entry_rcu(child, &tg->children, siblings) {
8466 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8467 runtime = child->rt_bandwidth.rt_runtime;
8468
8469 if (child == d->tg) {
8470 period = d->rt_period;
8471 runtime = d->rt_runtime;
8472 }
8473
8474 sum += to_ratio(period, runtime);
8475 }
8476
8477 if (sum > total)
8478 return -EINVAL;
8479
8480 return 0;
8481 }
8482
8483 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8484 {
8485 struct rt_schedulable_data data = {
8486 .tg = tg,
8487 .rt_period = period,
8488 .rt_runtime = runtime,
8489 };
8490
8491 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8492 }
8493
8494 static int tg_set_bandwidth(struct task_group *tg,
8495 u64 rt_period, u64 rt_runtime)
8496 {
8497 int i, err = 0;
8498
8499 mutex_lock(&rt_constraints_mutex);
8500 read_lock(&tasklist_lock);
8501 err = __rt_schedulable(tg, rt_period, rt_runtime);
8502 if (err)
8503 goto unlock;
8504
8505 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8506 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8507 tg->rt_bandwidth.rt_runtime = rt_runtime;
8508
8509 for_each_possible_cpu(i) {
8510 struct rt_rq *rt_rq = tg->rt_rq[i];
8511
8512 raw_spin_lock(&rt_rq->rt_runtime_lock);
8513 rt_rq->rt_runtime = rt_runtime;
8514 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8515 }
8516 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8517 unlock:
8518 read_unlock(&tasklist_lock);
8519 mutex_unlock(&rt_constraints_mutex);
8520
8521 return err;
8522 }
8523
8524 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8525 {
8526 u64 rt_runtime, rt_period;
8527
8528 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8529 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8530 if (rt_runtime_us < 0)
8531 rt_runtime = RUNTIME_INF;
8532
8533 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8534 }
8535
8536 long sched_group_rt_runtime(struct task_group *tg)
8537 {
8538 u64 rt_runtime_us;
8539
8540 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8541 return -1;
8542
8543 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8544 do_div(rt_runtime_us, NSEC_PER_USEC);
8545 return rt_runtime_us;
8546 }
8547
8548 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8549 {
8550 u64 rt_runtime, rt_period;
8551
8552 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8553 rt_runtime = tg->rt_bandwidth.rt_runtime;
8554
8555 if (rt_period == 0)
8556 return -EINVAL;
8557
8558 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8559 }
8560
8561 long sched_group_rt_period(struct task_group *tg)
8562 {
8563 u64 rt_period_us;
8564
8565 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8566 do_div(rt_period_us, NSEC_PER_USEC);
8567 return rt_period_us;
8568 }
8569
8570 static int sched_rt_global_constraints(void)
8571 {
8572 u64 runtime, period;
8573 int ret = 0;
8574
8575 if (sysctl_sched_rt_period <= 0)
8576 return -EINVAL;
8577
8578 runtime = global_rt_runtime();
8579 period = global_rt_period();
8580
8581 /*
8582 * Sanity check on the sysctl variables.
8583 */
8584 if (runtime > period && runtime != RUNTIME_INF)
8585 return -EINVAL;
8586
8587 mutex_lock(&rt_constraints_mutex);
8588 read_lock(&tasklist_lock);
8589 ret = __rt_schedulable(NULL, 0, 0);
8590 read_unlock(&tasklist_lock);
8591 mutex_unlock(&rt_constraints_mutex);
8592
8593 return ret;
8594 }
8595
8596 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8597 {
8598 /* Don't accept realtime tasks when there is no way for them to run */
8599 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8600 return 0;
8601
8602 return 1;
8603 }
8604
8605 #else /* !CONFIG_RT_GROUP_SCHED */
8606 static int sched_rt_global_constraints(void)
8607 {
8608 unsigned long flags;
8609 int i;
8610
8611 if (sysctl_sched_rt_period <= 0)
8612 return -EINVAL;
8613
8614 /*
8615 * There's always some RT tasks in the root group
8616 * -- migration, kstopmachine etc..
8617 */
8618 if (sysctl_sched_rt_runtime == 0)
8619 return -EBUSY;
8620
8621 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8622 for_each_possible_cpu(i) {
8623 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8624
8625 raw_spin_lock(&rt_rq->rt_runtime_lock);
8626 rt_rq->rt_runtime = global_rt_runtime();
8627 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8628 }
8629 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8630
8631 return 0;
8632 }
8633 #endif /* CONFIG_RT_GROUP_SCHED */
8634
8635 int sched_rt_handler(struct ctl_table *table, int write,
8636 void __user *buffer, size_t *lenp,
8637 loff_t *ppos)
8638 {
8639 int ret;
8640 int old_period, old_runtime;
8641 static DEFINE_MUTEX(mutex);
8642
8643 mutex_lock(&mutex);
8644 old_period = sysctl_sched_rt_period;
8645 old_runtime = sysctl_sched_rt_runtime;
8646
8647 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8648
8649 if (!ret && write) {
8650 ret = sched_rt_global_constraints();
8651 if (ret) {
8652 sysctl_sched_rt_period = old_period;
8653 sysctl_sched_rt_runtime = old_runtime;
8654 } else {
8655 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8656 def_rt_bandwidth.rt_period =
8657 ns_to_ktime(global_rt_period());
8658 }
8659 }
8660 mutex_unlock(&mutex);
8661
8662 return ret;
8663 }
8664
8665 #ifdef CONFIG_CGROUP_SCHED
8666
8667 /* return corresponding task_group object of a cgroup */
8668 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8669 {
8670 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8671 struct task_group, css);
8672 }
8673
8674 static struct cgroup_subsys_state *
8675 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8676 {
8677 struct task_group *tg, *parent;
8678
8679 if (!cgrp->parent) {
8680 /* This is early initialization for the top cgroup */
8681 return &init_task_group.css;
8682 }
8683
8684 parent = cgroup_tg(cgrp->parent);
8685 tg = sched_create_group(parent);
8686 if (IS_ERR(tg))
8687 return ERR_PTR(-ENOMEM);
8688
8689 return &tg->css;
8690 }
8691
8692 static void
8693 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8694 {
8695 struct task_group *tg = cgroup_tg(cgrp);
8696
8697 sched_destroy_group(tg);
8698 }
8699
8700 static int
8701 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8702 {
8703 #ifdef CONFIG_RT_GROUP_SCHED
8704 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8705 return -EINVAL;
8706 #else
8707 /* We don't support RT-tasks being in separate groups */
8708 if (tsk->sched_class != &fair_sched_class)
8709 return -EINVAL;
8710 #endif
8711 return 0;
8712 }
8713
8714 static int
8715 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8716 struct task_struct *tsk, bool threadgroup)
8717 {
8718 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8719 if (retval)
8720 return retval;
8721 if (threadgroup) {
8722 struct task_struct *c;
8723 rcu_read_lock();
8724 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8725 retval = cpu_cgroup_can_attach_task(cgrp, c);
8726 if (retval) {
8727 rcu_read_unlock();
8728 return retval;
8729 }
8730 }
8731 rcu_read_unlock();
8732 }
8733 return 0;
8734 }
8735
8736 static void
8737 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8738 struct cgroup *old_cont, struct task_struct *tsk,
8739 bool threadgroup)
8740 {
8741 sched_move_task(tsk);
8742 if (threadgroup) {
8743 struct task_struct *c;
8744 rcu_read_lock();
8745 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8746 sched_move_task(c);
8747 }
8748 rcu_read_unlock();
8749 }
8750 }
8751
8752 #ifdef CONFIG_FAIR_GROUP_SCHED
8753 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8754 u64 shareval)
8755 {
8756 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8757 }
8758
8759 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8760 {
8761 struct task_group *tg = cgroup_tg(cgrp);
8762
8763 return (u64) tg->shares;
8764 }
8765 #endif /* CONFIG_FAIR_GROUP_SCHED */
8766
8767 #ifdef CONFIG_RT_GROUP_SCHED
8768 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8769 s64 val)
8770 {
8771 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8772 }
8773
8774 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8775 {
8776 return sched_group_rt_runtime(cgroup_tg(cgrp));
8777 }
8778
8779 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8780 u64 rt_period_us)
8781 {
8782 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8783 }
8784
8785 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8786 {
8787 return sched_group_rt_period(cgroup_tg(cgrp));
8788 }
8789 #endif /* CONFIG_RT_GROUP_SCHED */
8790
8791 static struct cftype cpu_files[] = {
8792 #ifdef CONFIG_FAIR_GROUP_SCHED
8793 {
8794 .name = "shares",
8795 .read_u64 = cpu_shares_read_u64,
8796 .write_u64 = cpu_shares_write_u64,
8797 },
8798 #endif
8799 #ifdef CONFIG_RT_GROUP_SCHED
8800 {
8801 .name = "rt_runtime_us",
8802 .read_s64 = cpu_rt_runtime_read,
8803 .write_s64 = cpu_rt_runtime_write,
8804 },
8805 {
8806 .name = "rt_period_us",
8807 .read_u64 = cpu_rt_period_read_uint,
8808 .write_u64 = cpu_rt_period_write_uint,
8809 },
8810 #endif
8811 };
8812
8813 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8814 {
8815 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8816 }
8817
8818 struct cgroup_subsys cpu_cgroup_subsys = {
8819 .name = "cpu",
8820 .create = cpu_cgroup_create,
8821 .destroy = cpu_cgroup_destroy,
8822 .can_attach = cpu_cgroup_can_attach,
8823 .attach = cpu_cgroup_attach,
8824 .populate = cpu_cgroup_populate,
8825 .subsys_id = cpu_cgroup_subsys_id,
8826 .early_init = 1,
8827 };
8828
8829 #endif /* CONFIG_CGROUP_SCHED */
8830
8831 #ifdef CONFIG_CGROUP_CPUACCT
8832
8833 /*
8834 * CPU accounting code for task groups.
8835 *
8836 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8837 * (balbir@in.ibm.com).
8838 */
8839
8840 /* track cpu usage of a group of tasks and its child groups */
8841 struct cpuacct {
8842 struct cgroup_subsys_state css;
8843 /* cpuusage holds pointer to a u64-type object on every cpu */
8844 u64 __percpu *cpuusage;
8845 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8846 struct cpuacct *parent;
8847 };
8848
8849 struct cgroup_subsys cpuacct_subsys;
8850
8851 /* return cpu accounting group corresponding to this container */
8852 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8853 {
8854 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8855 struct cpuacct, css);
8856 }
8857
8858 /* return cpu accounting group to which this task belongs */
8859 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8860 {
8861 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8862 struct cpuacct, css);
8863 }
8864
8865 /* create a new cpu accounting group */
8866 static struct cgroup_subsys_state *cpuacct_create(
8867 struct cgroup_subsys *ss, struct cgroup *cgrp)
8868 {
8869 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8870 int i;
8871
8872 if (!ca)
8873 goto out;
8874
8875 ca->cpuusage = alloc_percpu(u64);
8876 if (!ca->cpuusage)
8877 goto out_free_ca;
8878
8879 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8880 if (percpu_counter_init(&ca->cpustat[i], 0))
8881 goto out_free_counters;
8882
8883 if (cgrp->parent)
8884 ca->parent = cgroup_ca(cgrp->parent);
8885
8886 return &ca->css;
8887
8888 out_free_counters:
8889 while (--i >= 0)
8890 percpu_counter_destroy(&ca->cpustat[i]);
8891 free_percpu(ca->cpuusage);
8892 out_free_ca:
8893 kfree(ca);
8894 out:
8895 return ERR_PTR(-ENOMEM);
8896 }
8897
8898 /* destroy an existing cpu accounting group */
8899 static void
8900 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8901 {
8902 struct cpuacct *ca = cgroup_ca(cgrp);
8903 int i;
8904
8905 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8906 percpu_counter_destroy(&ca->cpustat[i]);
8907 free_percpu(ca->cpuusage);
8908 kfree(ca);
8909 }
8910
8911 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8912 {
8913 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8914 u64 data;
8915
8916 #ifndef CONFIG_64BIT
8917 /*
8918 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8919 */
8920 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8921 data = *cpuusage;
8922 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8923 #else
8924 data = *cpuusage;
8925 #endif
8926
8927 return data;
8928 }
8929
8930 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8931 {
8932 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8933
8934 #ifndef CONFIG_64BIT
8935 /*
8936 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8937 */
8938 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8939 *cpuusage = val;
8940 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8941 #else
8942 *cpuusage = val;
8943 #endif
8944 }
8945
8946 /* return total cpu usage (in nanoseconds) of a group */
8947 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8948 {
8949 struct cpuacct *ca = cgroup_ca(cgrp);
8950 u64 totalcpuusage = 0;
8951 int i;
8952
8953 for_each_present_cpu(i)
8954 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8955
8956 return totalcpuusage;
8957 }
8958
8959 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8960 u64 reset)
8961 {
8962 struct cpuacct *ca = cgroup_ca(cgrp);
8963 int err = 0;
8964 int i;
8965
8966 if (reset) {
8967 err = -EINVAL;
8968 goto out;
8969 }
8970
8971 for_each_present_cpu(i)
8972 cpuacct_cpuusage_write(ca, i, 0);
8973
8974 out:
8975 return err;
8976 }
8977
8978 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8979 struct seq_file *m)
8980 {
8981 struct cpuacct *ca = cgroup_ca(cgroup);
8982 u64 percpu;
8983 int i;
8984
8985 for_each_present_cpu(i) {
8986 percpu = cpuacct_cpuusage_read(ca, i);
8987 seq_printf(m, "%llu ", (unsigned long long) percpu);
8988 }
8989 seq_printf(m, "\n");
8990 return 0;
8991 }
8992
8993 static const char *cpuacct_stat_desc[] = {
8994 [CPUACCT_STAT_USER] = "user",
8995 [CPUACCT_STAT_SYSTEM] = "system",
8996 };
8997
8998 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8999 struct cgroup_map_cb *cb)
9000 {
9001 struct cpuacct *ca = cgroup_ca(cgrp);
9002 int i;
9003
9004 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9005 s64 val = percpu_counter_read(&ca->cpustat[i]);
9006 val = cputime64_to_clock_t(val);
9007 cb->fill(cb, cpuacct_stat_desc[i], val);
9008 }
9009 return 0;
9010 }
9011
9012 static struct cftype files[] = {
9013 {
9014 .name = "usage",
9015 .read_u64 = cpuusage_read,
9016 .write_u64 = cpuusage_write,
9017 },
9018 {
9019 .name = "usage_percpu",
9020 .read_seq_string = cpuacct_percpu_seq_read,
9021 },
9022 {
9023 .name = "stat",
9024 .read_map = cpuacct_stats_show,
9025 },
9026 };
9027
9028 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9029 {
9030 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9031 }
9032
9033 /*
9034 * charge this task's execution time to its accounting group.
9035 *
9036 * called with rq->lock held.
9037 */
9038 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9039 {
9040 struct cpuacct *ca;
9041 int cpu;
9042
9043 if (unlikely(!cpuacct_subsys.active))
9044 return;
9045
9046 cpu = task_cpu(tsk);
9047
9048 rcu_read_lock();
9049
9050 ca = task_ca(tsk);
9051
9052 for (; ca; ca = ca->parent) {
9053 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9054 *cpuusage += cputime;
9055 }
9056
9057 rcu_read_unlock();
9058 }
9059
9060 /*
9061 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9062 * in cputime_t units. As a result, cpuacct_update_stats calls
9063 * percpu_counter_add with values large enough to always overflow the
9064 * per cpu batch limit causing bad SMP scalability.
9065 *
9066 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9067 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9068 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9069 */
9070 #ifdef CONFIG_SMP
9071 #define CPUACCT_BATCH \
9072 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9073 #else
9074 #define CPUACCT_BATCH 0
9075 #endif
9076
9077 /*
9078 * Charge the system/user time to the task's accounting group.
9079 */
9080 static void cpuacct_update_stats(struct task_struct *tsk,
9081 enum cpuacct_stat_index idx, cputime_t val)
9082 {
9083 struct cpuacct *ca;
9084 int batch = CPUACCT_BATCH;
9085
9086 if (unlikely(!cpuacct_subsys.active))
9087 return;
9088
9089 rcu_read_lock();
9090 ca = task_ca(tsk);
9091
9092 do {
9093 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9094 ca = ca->parent;
9095 } while (ca);
9096 rcu_read_unlock();
9097 }
9098
9099 struct cgroup_subsys cpuacct_subsys = {
9100 .name = "cpuacct",
9101 .create = cpuacct_create,
9102 .destroy = cpuacct_destroy,
9103 .populate = cpuacct_populate,
9104 .subsys_id = cpuacct_subsys_id,
9105 };
9106 #endif /* CONFIG_CGROUP_CPUACCT */
9107
9108 #ifndef CONFIG_SMP
9109
9110 void synchronize_sched_expedited(void)
9111 {
9112 barrier();
9113 }
9114 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9115
9116 #else /* #ifndef CONFIG_SMP */
9117
9118 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9119
9120 static int synchronize_sched_expedited_cpu_stop(void *data)
9121 {
9122 /*
9123 * There must be a full memory barrier on each affected CPU
9124 * between the time that try_stop_cpus() is called and the
9125 * time that it returns.
9126 *
9127 * In the current initial implementation of cpu_stop, the
9128 * above condition is already met when the control reaches
9129 * this point and the following smp_mb() is not strictly
9130 * necessary. Do smp_mb() anyway for documentation and
9131 * robustness against future implementation changes.
9132 */
9133 smp_mb(); /* See above comment block. */
9134 return 0;
9135 }
9136
9137 /*
9138 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9139 * approach to force grace period to end quickly. This consumes
9140 * significant time on all CPUs, and is thus not recommended for
9141 * any sort of common-case code.
9142 *
9143 * Note that it is illegal to call this function while holding any
9144 * lock that is acquired by a CPU-hotplug notifier. Failing to
9145 * observe this restriction will result in deadlock.
9146 */
9147 void synchronize_sched_expedited(void)
9148 {
9149 int snap, trycount = 0;
9150
9151 smp_mb(); /* ensure prior mod happens before capturing snap. */
9152 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9153 get_online_cpus();
9154 while (try_stop_cpus(cpu_online_mask,
9155 synchronize_sched_expedited_cpu_stop,
9156 NULL) == -EAGAIN) {
9157 put_online_cpus();
9158 if (trycount++ < 10)
9159 udelay(trycount * num_online_cpus());
9160 else {
9161 synchronize_sched();
9162 return;
9163 }
9164 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9165 smp_mb(); /* ensure test happens before caller kfree */
9166 return;
9167 }
9168 get_online_cpus();
9169 }
9170 atomic_inc(&synchronize_sched_expedited_count);
9171 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9172 put_online_cpus();
9173 }
9174 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9175
9176 #endif /* #else #ifndef CONFIG_SMP */