]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched.c
sched: Optimize task_rq_lock()
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_CGROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 struct cgroup_subsys_state css;
247
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
254 #endif
255
256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
260 struct rt_bandwidth rt_bandwidth;
261 #endif
262
263 struct rcu_head rcu;
264 struct list_head list;
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
269 };
270
271 #define root_task_group init_task_group
272
273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares.
275 */
276 static DEFINE_SPINLOCK(task_group_lock);
277
278 #ifdef CONFIG_FAIR_GROUP_SCHED
279
280 #ifdef CONFIG_SMP
281 static int root_task_group_empty(void)
282 {
283 return list_empty(&root_task_group.children);
284 }
285 #endif
286
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
288
289 /*
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
297 #define MIN_SHARES 2
298 #define MAX_SHARES (1UL << 18)
299
300 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301 #endif
302
303 /* Default task group.
304 * Every task in system belong to this group at bootup.
305 */
306 struct task_group init_task_group;
307
308 /* return group to which a task belongs */
309 static inline struct task_group *task_group(struct task_struct *p)
310 {
311 struct task_group *tg;
312
313 #ifdef CONFIG_CGROUP_SCHED
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
316 #else
317 tg = &init_task_group;
318 #endif
319 return tg;
320 }
321
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
324 {
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
328 #endif
329
330 #ifdef CONFIG_RT_GROUP_SCHED
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
333 #endif
334 }
335
336 #else
337
338 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 static inline struct task_group *task_group(struct task_struct *p)
340 {
341 return NULL;
342 }
343
344 #endif /* CONFIG_CGROUP_SCHED */
345
346 /* CFS-related fields in a runqueue */
347 struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
351 u64 exec_clock;
352 u64 min_vruntime;
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
364 struct sched_entity *curr, *next, *last;
365
366 unsigned int nr_spread_over;
367
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
381
382 #ifdef CONFIG_SMP
383 /*
384 * the part of load.weight contributed by tasks
385 */
386 unsigned long task_weight;
387
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
395
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
405 #endif
406 #endif
407 };
408
409 /* Real-Time classes' related field in a runqueue: */
410 struct rt_rq {
411 struct rt_prio_array active;
412 unsigned long rt_nr_running;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 struct {
415 int curr; /* highest queued rt task prio */
416 #ifdef CONFIG_SMP
417 int next; /* next highest */
418 #endif
419 } highest_prio;
420 #endif
421 #ifdef CONFIG_SMP
422 unsigned long rt_nr_migratory;
423 unsigned long rt_nr_total;
424 int overloaded;
425 struct plist_head pushable_tasks;
426 #endif
427 int rt_throttled;
428 u64 rt_time;
429 u64 rt_runtime;
430 /* Nests inside the rq lock: */
431 raw_spinlock_t rt_runtime_lock;
432
433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted;
435
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
439 #endif
440 };
441
442 #ifdef CONFIG_SMP
443
444 /*
445 * We add the notion of a root-domain which will be used to define per-domain
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
450 *
451 */
452 struct root_domain {
453 atomic_t refcount;
454 cpumask_var_t span;
455 cpumask_var_t online;
456
457 /*
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
460 */
461 cpumask_var_t rto_mask;
462 atomic_t rto_count;
463 #ifdef CONFIG_SMP
464 struct cpupri cpupri;
465 #endif
466 };
467
468 /*
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
471 */
472 static struct root_domain def_root_domain;
473
474 #endif
475
476 /*
477 * This is the main, per-CPU runqueue data structure.
478 *
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
482 */
483 struct rq {
484 /* runqueue lock: */
485 raw_spinlock_t lock;
486
487 /*
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
490 */
491 unsigned long nr_running;
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494 #ifdef CONFIG_NO_HZ
495 u64 nohz_stamp;
496 unsigned char in_nohz_recently;
497 #endif
498 unsigned int skip_clock_update;
499
500 /* capture load from *all* tasks on this cpu: */
501 struct load_weight load;
502 unsigned long nr_load_updates;
503 u64 nr_switches;
504
505 struct cfs_rq cfs;
506 struct rt_rq rt;
507
508 #ifdef CONFIG_FAIR_GROUP_SCHED
509 /* list of leaf cfs_rq on this cpu: */
510 struct list_head leaf_cfs_rq_list;
511 #endif
512 #ifdef CONFIG_RT_GROUP_SCHED
513 struct list_head leaf_rt_rq_list;
514 #endif
515
516 /*
517 * This is part of a global counter where only the total sum
518 * over all CPUs matters. A task can increase this counter on
519 * one CPU and if it got migrated afterwards it may decrease
520 * it on another CPU. Always updated under the runqueue lock:
521 */
522 unsigned long nr_uninterruptible;
523
524 struct task_struct *curr, *idle;
525 unsigned long next_balance;
526 struct mm_struct *prev_mm;
527
528 u64 clock;
529
530 atomic_t nr_iowait;
531
532 #ifdef CONFIG_SMP
533 struct root_domain *rd;
534 struct sched_domain *sd;
535
536 unsigned char idle_at_tick;
537 /* For active balancing */
538 int post_schedule;
539 int active_balance;
540 int push_cpu;
541 /* cpu of this runqueue: */
542 int cpu;
543 int online;
544
545 unsigned long avg_load_per_task;
546
547 struct task_struct *migration_thread;
548 struct list_head migration_queue;
549
550 u64 rt_avg;
551 u64 age_stamp;
552 u64 idle_stamp;
553 u64 avg_idle;
554 #endif
555
556 /* calc_load related fields */
557 unsigned long calc_load_update;
558 long calc_load_active;
559
560 #ifdef CONFIG_SCHED_HRTICK
561 #ifdef CONFIG_SMP
562 int hrtick_csd_pending;
563 struct call_single_data hrtick_csd;
564 #endif
565 struct hrtimer hrtick_timer;
566 #endif
567
568 #ifdef CONFIG_SCHEDSTATS
569 /* latency stats */
570 struct sched_info rq_sched_info;
571 unsigned long long rq_cpu_time;
572 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
573
574 /* sys_sched_yield() stats */
575 unsigned int yld_count;
576
577 /* schedule() stats */
578 unsigned int sched_switch;
579 unsigned int sched_count;
580 unsigned int sched_goidle;
581
582 /* try_to_wake_up() stats */
583 unsigned int ttwu_count;
584 unsigned int ttwu_local;
585
586 /* BKL stats */
587 unsigned int bkl_count;
588 #endif
589 };
590
591 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
592
593 static inline
594 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
595 {
596 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
597
598 /*
599 * A queue event has occurred, and we're going to schedule. In
600 * this case, we can save a useless back to back clock update.
601 */
602 if (test_tsk_need_resched(p))
603 rq->skip_clock_update = 1;
604 }
605
606 static inline int cpu_of(struct rq *rq)
607 {
608 #ifdef CONFIG_SMP
609 return rq->cpu;
610 #else
611 return 0;
612 #endif
613 }
614
615 #define rcu_dereference_check_sched_domain(p) \
616 rcu_dereference_check((p), \
617 rcu_read_lock_sched_held() || \
618 lockdep_is_held(&sched_domains_mutex))
619
620 /*
621 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622 * See detach_destroy_domains: synchronize_sched for details.
623 *
624 * The domain tree of any CPU may only be accessed from within
625 * preempt-disabled sections.
626 */
627 #define for_each_domain(cpu, __sd) \
628 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
629
630 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
631 #define this_rq() (&__get_cpu_var(runqueues))
632 #define task_rq(p) cpu_rq(task_cpu(p))
633 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
634 #define raw_rq() (&__raw_get_cpu_var(runqueues))
635
636 inline void update_rq_clock(struct rq *rq)
637 {
638 if (!rq->skip_clock_update)
639 rq->clock = sched_clock_cpu(cpu_of(rq));
640 }
641
642 /*
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 */
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
647 #else
648 # define const_debug static const
649 #endif
650
651 /**
652 * runqueue_is_locked
653 * @cpu: the processor in question.
654 *
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
658 */
659 int runqueue_is_locked(int cpu)
660 {
661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
662 }
663
664 /*
665 * Debugging: various feature bits
666 */
667
668 #define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
670
671 enum {
672 #include "sched_features.h"
673 };
674
675 #undef SCHED_FEAT
676
677 #define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
679
680 const_debug unsigned int sysctl_sched_features =
681 #include "sched_features.h"
682 0;
683
684 #undef SCHED_FEAT
685
686 #ifdef CONFIG_SCHED_DEBUG
687 #define SCHED_FEAT(name, enabled) \
688 #name ,
689
690 static __read_mostly char *sched_feat_names[] = {
691 #include "sched_features.h"
692 NULL
693 };
694
695 #undef SCHED_FEAT
696
697 static int sched_feat_show(struct seq_file *m, void *v)
698 {
699 int i;
700
701 for (i = 0; sched_feat_names[i]; i++) {
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
705 }
706 seq_puts(m, "\n");
707
708 return 0;
709 }
710
711 static ssize_t
712 sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714 {
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
719
720 if (cnt > 63)
721 cnt = 63;
722
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
725
726 buf[cnt] = 0;
727
728 if (strncmp(buf, "NO_", 3) == 0) {
729 neg = 1;
730 cmp += 3;
731 }
732
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
735
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
742 }
743 }
744
745 if (!sched_feat_names[i])
746 return -EINVAL;
747
748 *ppos += cnt;
749
750 return cnt;
751 }
752
753 static int sched_feat_open(struct inode *inode, struct file *filp)
754 {
755 return single_open(filp, sched_feat_show, NULL);
756 }
757
758 static const struct file_operations sched_feat_fops = {
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
764 };
765
766 static __init int sched_init_debug(void)
767 {
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
770
771 return 0;
772 }
773 late_initcall(sched_init_debug);
774
775 #endif
776
777 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
778
779 /*
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
782 */
783 const_debug unsigned int sysctl_sched_nr_migrate = 32;
784
785 /*
786 * ratelimit for updating the group shares.
787 * default: 0.25ms
788 */
789 unsigned int sysctl_sched_shares_ratelimit = 250000;
790 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
791
792 /*
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
796 */
797 unsigned int sysctl_sched_shares_thresh = 4;
798
799 /*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
807 /*
808 * period over which we measure -rt task cpu usage in us.
809 * default: 1s
810 */
811 unsigned int sysctl_sched_rt_period = 1000000;
812
813 static __read_mostly int scheduler_running;
814
815 /*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819 int sysctl_sched_rt_runtime = 950000;
820
821 static inline u64 global_rt_period(void)
822 {
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824 }
825
826 static inline u64 global_rt_runtime(void)
827 {
828 if (sysctl_sched_rt_runtime < 0)
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832 }
833
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
836 #endif
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
839 #endif
840
841 static inline int task_current(struct rq *rq, struct task_struct *p)
842 {
843 return rq->curr == p;
844 }
845
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq *rq, struct task_struct *p)
848 {
849 return task_current(rq, p);
850 }
851
852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 {
854 }
855
856 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857 {
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861 #endif
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
869 raw_spin_unlock_irq(&rq->lock);
870 }
871
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq *rq, struct task_struct *p)
874 {
875 #ifdef CONFIG_SMP
876 return p->oncpu;
877 #else
878 return task_current(rq, p);
879 #endif
880 }
881
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 {
884 #ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891 #endif
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 raw_spin_unlock_irq(&rq->lock);
894 #else
895 raw_spin_unlock(&rq->lock);
896 #endif
897 }
898
899 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 {
901 #ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909 #endif
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
912 #endif
913 }
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
915
916 /*
917 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
918 * against ttwu().
919 */
920 static inline int task_is_waking(struct task_struct *p)
921 {
922 return unlikely(p->state == TASK_WAKING);
923 }
924
925 /*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
929 static inline struct rq *__task_rq_lock(struct task_struct *p)
930 __acquires(rq->lock)
931 {
932 struct rq *rq;
933
934 for (;;) {
935 rq = task_rq(p);
936 raw_spin_lock(&rq->lock);
937 if (likely(rq == task_rq(p)))
938 return rq;
939 raw_spin_unlock(&rq->lock);
940 }
941 }
942
943 /*
944 * task_rq_lock - lock the runqueue a given task resides on and disable
945 * interrupts. Note the ordering: we can safely lookup the task_rq without
946 * explicitly disabling preemption.
947 */
948 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
949 __acquires(rq->lock)
950 {
951 struct rq *rq;
952
953 for (;;) {
954 local_irq_save(*flags);
955 rq = task_rq(p);
956 raw_spin_lock(&rq->lock);
957 if (likely(rq == task_rq(p)))
958 return rq;
959 raw_spin_unlock_irqrestore(&rq->lock, *flags);
960 }
961 }
962
963 void task_rq_unlock_wait(struct task_struct *p)
964 {
965 struct rq *rq = task_rq(p);
966
967 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
968 raw_spin_unlock_wait(&rq->lock);
969 }
970
971 static void __task_rq_unlock(struct rq *rq)
972 __releases(rq->lock)
973 {
974 raw_spin_unlock(&rq->lock);
975 }
976
977 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
978 __releases(rq->lock)
979 {
980 raw_spin_unlock_irqrestore(&rq->lock, *flags);
981 }
982
983 /*
984 * this_rq_lock - lock this runqueue and disable interrupts.
985 */
986 static struct rq *this_rq_lock(void)
987 __acquires(rq->lock)
988 {
989 struct rq *rq;
990
991 local_irq_disable();
992 rq = this_rq();
993 raw_spin_lock(&rq->lock);
994
995 return rq;
996 }
997
998 #ifdef CONFIG_SCHED_HRTICK
999 /*
1000 * Use HR-timers to deliver accurate preemption points.
1001 *
1002 * Its all a bit involved since we cannot program an hrt while holding the
1003 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1004 * reschedule event.
1005 *
1006 * When we get rescheduled we reprogram the hrtick_timer outside of the
1007 * rq->lock.
1008 */
1009
1010 /*
1011 * Use hrtick when:
1012 * - enabled by features
1013 * - hrtimer is actually high res
1014 */
1015 static inline int hrtick_enabled(struct rq *rq)
1016 {
1017 if (!sched_feat(HRTICK))
1018 return 0;
1019 if (!cpu_active(cpu_of(rq)))
1020 return 0;
1021 return hrtimer_is_hres_active(&rq->hrtick_timer);
1022 }
1023
1024 static void hrtick_clear(struct rq *rq)
1025 {
1026 if (hrtimer_active(&rq->hrtick_timer))
1027 hrtimer_cancel(&rq->hrtick_timer);
1028 }
1029
1030 /*
1031 * High-resolution timer tick.
1032 * Runs from hardirq context with interrupts disabled.
1033 */
1034 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1035 {
1036 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1037
1038 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1039
1040 raw_spin_lock(&rq->lock);
1041 update_rq_clock(rq);
1042 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1043 raw_spin_unlock(&rq->lock);
1044
1045 return HRTIMER_NORESTART;
1046 }
1047
1048 #ifdef CONFIG_SMP
1049 /*
1050 * called from hardirq (IPI) context
1051 */
1052 static void __hrtick_start(void *arg)
1053 {
1054 struct rq *rq = arg;
1055
1056 raw_spin_lock(&rq->lock);
1057 hrtimer_restart(&rq->hrtick_timer);
1058 rq->hrtick_csd_pending = 0;
1059 raw_spin_unlock(&rq->lock);
1060 }
1061
1062 /*
1063 * Called to set the hrtick timer state.
1064 *
1065 * called with rq->lock held and irqs disabled
1066 */
1067 static void hrtick_start(struct rq *rq, u64 delay)
1068 {
1069 struct hrtimer *timer = &rq->hrtick_timer;
1070 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1071
1072 hrtimer_set_expires(timer, time);
1073
1074 if (rq == this_rq()) {
1075 hrtimer_restart(timer);
1076 } else if (!rq->hrtick_csd_pending) {
1077 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1078 rq->hrtick_csd_pending = 1;
1079 }
1080 }
1081
1082 static int
1083 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1084 {
1085 int cpu = (int)(long)hcpu;
1086
1087 switch (action) {
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 case CPU_DOWN_PREPARE:
1091 case CPU_DOWN_PREPARE_FROZEN:
1092 case CPU_DEAD:
1093 case CPU_DEAD_FROZEN:
1094 hrtick_clear(cpu_rq(cpu));
1095 return NOTIFY_OK;
1096 }
1097
1098 return NOTIFY_DONE;
1099 }
1100
1101 static __init void init_hrtick(void)
1102 {
1103 hotcpu_notifier(hotplug_hrtick, 0);
1104 }
1105 #else
1106 /*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111 static void hrtick_start(struct rq *rq, u64 delay)
1112 {
1113 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1114 HRTIMER_MODE_REL_PINNED, 0);
1115 }
1116
1117 static inline void init_hrtick(void)
1118 {
1119 }
1120 #endif /* CONFIG_SMP */
1121
1122 static void init_rq_hrtick(struct rq *rq)
1123 {
1124 #ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
1126
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130 #endif
1131
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
1134 }
1135 #else /* CONFIG_SCHED_HRTICK */
1136 static inline void hrtick_clear(struct rq *rq)
1137 {
1138 }
1139
1140 static inline void init_rq_hrtick(struct rq *rq)
1141 {
1142 }
1143
1144 static inline void init_hrtick(void)
1145 {
1146 }
1147 #endif /* CONFIG_SCHED_HRTICK */
1148
1149 /*
1150 * resched_task - mark a task 'to be rescheduled now'.
1151 *
1152 * On UP this means the setting of the need_resched flag, on SMP it
1153 * might also involve a cross-CPU call to trigger the scheduler on
1154 * the target CPU.
1155 */
1156 #ifdef CONFIG_SMP
1157
1158 #ifndef tsk_is_polling
1159 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1160 #endif
1161
1162 static void resched_task(struct task_struct *p)
1163 {
1164 int cpu;
1165
1166 assert_raw_spin_locked(&task_rq(p)->lock);
1167
1168 if (test_tsk_need_resched(p))
1169 return;
1170
1171 set_tsk_need_resched(p);
1172
1173 cpu = task_cpu(p);
1174 if (cpu == smp_processor_id())
1175 return;
1176
1177 /* NEED_RESCHED must be visible before we test polling */
1178 smp_mb();
1179 if (!tsk_is_polling(p))
1180 smp_send_reschedule(cpu);
1181 }
1182
1183 static void resched_cpu(int cpu)
1184 {
1185 struct rq *rq = cpu_rq(cpu);
1186 unsigned long flags;
1187
1188 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1189 return;
1190 resched_task(cpu_curr(cpu));
1191 raw_spin_unlock_irqrestore(&rq->lock, flags);
1192 }
1193
1194 #ifdef CONFIG_NO_HZ
1195 /*
1196 * When add_timer_on() enqueues a timer into the timer wheel of an
1197 * idle CPU then this timer might expire before the next timer event
1198 * which is scheduled to wake up that CPU. In case of a completely
1199 * idle system the next event might even be infinite time into the
1200 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1201 * leaves the inner idle loop so the newly added timer is taken into
1202 * account when the CPU goes back to idle and evaluates the timer
1203 * wheel for the next timer event.
1204 */
1205 void wake_up_idle_cpu(int cpu)
1206 {
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /*
1213 * This is safe, as this function is called with the timer
1214 * wheel base lock of (cpu) held. When the CPU is on the way
1215 * to idle and has not yet set rq->curr to idle then it will
1216 * be serialized on the timer wheel base lock and take the new
1217 * timer into account automatically.
1218 */
1219 if (rq->curr != rq->idle)
1220 return;
1221
1222 /*
1223 * We can set TIF_RESCHED on the idle task of the other CPU
1224 * lockless. The worst case is that the other CPU runs the
1225 * idle task through an additional NOOP schedule()
1226 */
1227 set_tsk_need_resched(rq->idle);
1228
1229 /* NEED_RESCHED must be visible before we test polling */
1230 smp_mb();
1231 if (!tsk_is_polling(rq->idle))
1232 smp_send_reschedule(cpu);
1233 }
1234
1235 int nohz_ratelimit(int cpu)
1236 {
1237 struct rq *rq = cpu_rq(cpu);
1238 u64 diff = rq->clock - rq->nohz_stamp;
1239
1240 rq->nohz_stamp = rq->clock;
1241
1242 return diff < (NSEC_PER_SEC / HZ) >> 1;
1243 }
1244
1245 #endif /* CONFIG_NO_HZ */
1246
1247 static u64 sched_avg_period(void)
1248 {
1249 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1250 }
1251
1252 static void sched_avg_update(struct rq *rq)
1253 {
1254 s64 period = sched_avg_period();
1255
1256 while ((s64)(rq->clock - rq->age_stamp) > period) {
1257 rq->age_stamp += period;
1258 rq->rt_avg /= 2;
1259 }
1260 }
1261
1262 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1263 {
1264 rq->rt_avg += rt_delta;
1265 sched_avg_update(rq);
1266 }
1267
1268 #else /* !CONFIG_SMP */
1269 static void resched_task(struct task_struct *p)
1270 {
1271 assert_raw_spin_locked(&task_rq(p)->lock);
1272 set_tsk_need_resched(p);
1273 }
1274
1275 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1276 {
1277 }
1278 #endif /* CONFIG_SMP */
1279
1280 #if BITS_PER_LONG == 32
1281 # define WMULT_CONST (~0UL)
1282 #else
1283 # define WMULT_CONST (1UL << 32)
1284 #endif
1285
1286 #define WMULT_SHIFT 32
1287
1288 /*
1289 * Shift right and round:
1290 */
1291 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1292
1293 /*
1294 * delta *= weight / lw
1295 */
1296 static unsigned long
1297 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1298 struct load_weight *lw)
1299 {
1300 u64 tmp;
1301
1302 if (!lw->inv_weight) {
1303 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1304 lw->inv_weight = 1;
1305 else
1306 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1307 / (lw->weight+1);
1308 }
1309
1310 tmp = (u64)delta_exec * weight;
1311 /*
1312 * Check whether we'd overflow the 64-bit multiplication:
1313 */
1314 if (unlikely(tmp > WMULT_CONST))
1315 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1316 WMULT_SHIFT/2);
1317 else
1318 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1319
1320 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1321 }
1322
1323 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1324 {
1325 lw->weight += inc;
1326 lw->inv_weight = 0;
1327 }
1328
1329 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1330 {
1331 lw->weight -= dec;
1332 lw->inv_weight = 0;
1333 }
1334
1335 /*
1336 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1337 * of tasks with abnormal "nice" values across CPUs the contribution that
1338 * each task makes to its run queue's load is weighted according to its
1339 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1340 * scaled version of the new time slice allocation that they receive on time
1341 * slice expiry etc.
1342 */
1343
1344 #define WEIGHT_IDLEPRIO 3
1345 #define WMULT_IDLEPRIO 1431655765
1346
1347 /*
1348 * Nice levels are multiplicative, with a gentle 10% change for every
1349 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1350 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1351 * that remained on nice 0.
1352 *
1353 * The "10% effect" is relative and cumulative: from _any_ nice level,
1354 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1355 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1356 * If a task goes up by ~10% and another task goes down by ~10% then
1357 * the relative distance between them is ~25%.)
1358 */
1359 static const int prio_to_weight[40] = {
1360 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1361 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1362 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1363 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1364 /* 0 */ 1024, 820, 655, 526, 423,
1365 /* 5 */ 335, 272, 215, 172, 137,
1366 /* 10 */ 110, 87, 70, 56, 45,
1367 /* 15 */ 36, 29, 23, 18, 15,
1368 };
1369
1370 /*
1371 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1372 *
1373 * In cases where the weight does not change often, we can use the
1374 * precalculated inverse to speed up arithmetics by turning divisions
1375 * into multiplications:
1376 */
1377 static const u32 prio_to_wmult[40] = {
1378 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1379 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1380 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1381 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1382 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1383 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1384 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1385 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1386 };
1387
1388 /* Time spent by the tasks of the cpu accounting group executing in ... */
1389 enum cpuacct_stat_index {
1390 CPUACCT_STAT_USER, /* ... user mode */
1391 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1392
1393 CPUACCT_STAT_NSTATS,
1394 };
1395
1396 #ifdef CONFIG_CGROUP_CPUACCT
1397 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1398 static void cpuacct_update_stats(struct task_struct *tsk,
1399 enum cpuacct_stat_index idx, cputime_t val);
1400 #else
1401 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1402 static inline void cpuacct_update_stats(struct task_struct *tsk,
1403 enum cpuacct_stat_index idx, cputime_t val) {}
1404 #endif
1405
1406 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1407 {
1408 update_load_add(&rq->load, load);
1409 }
1410
1411 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1412 {
1413 update_load_sub(&rq->load, load);
1414 }
1415
1416 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1417 typedef int (*tg_visitor)(struct task_group *, void *);
1418
1419 /*
1420 * Iterate the full tree, calling @down when first entering a node and @up when
1421 * leaving it for the final time.
1422 */
1423 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1424 {
1425 struct task_group *parent, *child;
1426 int ret;
1427
1428 rcu_read_lock();
1429 parent = &root_task_group;
1430 down:
1431 ret = (*down)(parent, data);
1432 if (ret)
1433 goto out_unlock;
1434 list_for_each_entry_rcu(child, &parent->children, siblings) {
1435 parent = child;
1436 goto down;
1437
1438 up:
1439 continue;
1440 }
1441 ret = (*up)(parent, data);
1442 if (ret)
1443 goto out_unlock;
1444
1445 child = parent;
1446 parent = parent->parent;
1447 if (parent)
1448 goto up;
1449 out_unlock:
1450 rcu_read_unlock();
1451
1452 return ret;
1453 }
1454
1455 static int tg_nop(struct task_group *tg, void *data)
1456 {
1457 return 0;
1458 }
1459 #endif
1460
1461 #ifdef CONFIG_SMP
1462 /* Used instead of source_load when we know the type == 0 */
1463 static unsigned long weighted_cpuload(const int cpu)
1464 {
1465 return cpu_rq(cpu)->load.weight;
1466 }
1467
1468 /*
1469 * Return a low guess at the load of a migration-source cpu weighted
1470 * according to the scheduling class and "nice" value.
1471 *
1472 * We want to under-estimate the load of migration sources, to
1473 * balance conservatively.
1474 */
1475 static unsigned long source_load(int cpu, int type)
1476 {
1477 struct rq *rq = cpu_rq(cpu);
1478 unsigned long total = weighted_cpuload(cpu);
1479
1480 if (type == 0 || !sched_feat(LB_BIAS))
1481 return total;
1482
1483 return min(rq->cpu_load[type-1], total);
1484 }
1485
1486 /*
1487 * Return a high guess at the load of a migration-target cpu weighted
1488 * according to the scheduling class and "nice" value.
1489 */
1490 static unsigned long target_load(int cpu, int type)
1491 {
1492 struct rq *rq = cpu_rq(cpu);
1493 unsigned long total = weighted_cpuload(cpu);
1494
1495 if (type == 0 || !sched_feat(LB_BIAS))
1496 return total;
1497
1498 return max(rq->cpu_load[type-1], total);
1499 }
1500
1501 static struct sched_group *group_of(int cpu)
1502 {
1503 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1504
1505 if (!sd)
1506 return NULL;
1507
1508 return sd->groups;
1509 }
1510
1511 static unsigned long power_of(int cpu)
1512 {
1513 struct sched_group *group = group_of(cpu);
1514
1515 if (!group)
1516 return SCHED_LOAD_SCALE;
1517
1518 return group->cpu_power;
1519 }
1520
1521 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1522
1523 static unsigned long cpu_avg_load_per_task(int cpu)
1524 {
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1527
1528 if (nr_running)
1529 rq->avg_load_per_task = rq->load.weight / nr_running;
1530 else
1531 rq->avg_load_per_task = 0;
1532
1533 return rq->avg_load_per_task;
1534 }
1535
1536 #ifdef CONFIG_FAIR_GROUP_SCHED
1537
1538 static __read_mostly unsigned long __percpu *update_shares_data;
1539
1540 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1541
1542 /*
1543 * Calculate and set the cpu's group shares.
1544 */
1545 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1546 unsigned long sd_shares,
1547 unsigned long sd_rq_weight,
1548 unsigned long *usd_rq_weight)
1549 {
1550 unsigned long shares, rq_weight;
1551 int boost = 0;
1552
1553 rq_weight = usd_rq_weight[cpu];
1554 if (!rq_weight) {
1555 boost = 1;
1556 rq_weight = NICE_0_LOAD;
1557 }
1558
1559 /*
1560 * \Sum_j shares_j * rq_weight_i
1561 * shares_i = -----------------------------
1562 * \Sum_j rq_weight_j
1563 */
1564 shares = (sd_shares * rq_weight) / sd_rq_weight;
1565 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1566
1567 if (abs(shares - tg->se[cpu]->load.weight) >
1568 sysctl_sched_shares_thresh) {
1569 struct rq *rq = cpu_rq(cpu);
1570 unsigned long flags;
1571
1572 raw_spin_lock_irqsave(&rq->lock, flags);
1573 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1574 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1575 __set_se_shares(tg->se[cpu], shares);
1576 raw_spin_unlock_irqrestore(&rq->lock, flags);
1577 }
1578 }
1579
1580 /*
1581 * Re-compute the task group their per cpu shares over the given domain.
1582 * This needs to be done in a bottom-up fashion because the rq weight of a
1583 * parent group depends on the shares of its child groups.
1584 */
1585 static int tg_shares_up(struct task_group *tg, void *data)
1586 {
1587 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1588 unsigned long *usd_rq_weight;
1589 struct sched_domain *sd = data;
1590 unsigned long flags;
1591 int i;
1592
1593 if (!tg->se[0])
1594 return 0;
1595
1596 local_irq_save(flags);
1597 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1598
1599 for_each_cpu(i, sched_domain_span(sd)) {
1600 weight = tg->cfs_rq[i]->load.weight;
1601 usd_rq_weight[i] = weight;
1602
1603 rq_weight += weight;
1604 /*
1605 * If there are currently no tasks on the cpu pretend there
1606 * is one of average load so that when a new task gets to
1607 * run here it will not get delayed by group starvation.
1608 */
1609 if (!weight)
1610 weight = NICE_0_LOAD;
1611
1612 sum_weight += weight;
1613 shares += tg->cfs_rq[i]->shares;
1614 }
1615
1616 if (!rq_weight)
1617 rq_weight = sum_weight;
1618
1619 if ((!shares && rq_weight) || shares > tg->shares)
1620 shares = tg->shares;
1621
1622 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1623 shares = tg->shares;
1624
1625 for_each_cpu(i, sched_domain_span(sd))
1626 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1627
1628 local_irq_restore(flags);
1629
1630 return 0;
1631 }
1632
1633 /*
1634 * Compute the cpu's hierarchical load factor for each task group.
1635 * This needs to be done in a top-down fashion because the load of a child
1636 * group is a fraction of its parents load.
1637 */
1638 static int tg_load_down(struct task_group *tg, void *data)
1639 {
1640 unsigned long load;
1641 long cpu = (long)data;
1642
1643 if (!tg->parent) {
1644 load = cpu_rq(cpu)->load.weight;
1645 } else {
1646 load = tg->parent->cfs_rq[cpu]->h_load;
1647 load *= tg->cfs_rq[cpu]->shares;
1648 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1649 }
1650
1651 tg->cfs_rq[cpu]->h_load = load;
1652
1653 return 0;
1654 }
1655
1656 static void update_shares(struct sched_domain *sd)
1657 {
1658 s64 elapsed;
1659 u64 now;
1660
1661 if (root_task_group_empty())
1662 return;
1663
1664 now = cpu_clock(raw_smp_processor_id());
1665 elapsed = now - sd->last_update;
1666
1667 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1668 sd->last_update = now;
1669 walk_tg_tree(tg_nop, tg_shares_up, sd);
1670 }
1671 }
1672
1673 static void update_h_load(long cpu)
1674 {
1675 if (root_task_group_empty())
1676 return;
1677
1678 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1679 }
1680
1681 #else
1682
1683 static inline void update_shares(struct sched_domain *sd)
1684 {
1685 }
1686
1687 #endif
1688
1689 #ifdef CONFIG_PREEMPT
1690
1691 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1692
1693 /*
1694 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1695 * way at the expense of forcing extra atomic operations in all
1696 * invocations. This assures that the double_lock is acquired using the
1697 * same underlying policy as the spinlock_t on this architecture, which
1698 * reduces latency compared to the unfair variant below. However, it
1699 * also adds more overhead and therefore may reduce throughput.
1700 */
1701 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1702 __releases(this_rq->lock)
1703 __acquires(busiest->lock)
1704 __acquires(this_rq->lock)
1705 {
1706 raw_spin_unlock(&this_rq->lock);
1707 double_rq_lock(this_rq, busiest);
1708
1709 return 1;
1710 }
1711
1712 #else
1713 /*
1714 * Unfair double_lock_balance: Optimizes throughput at the expense of
1715 * latency by eliminating extra atomic operations when the locks are
1716 * already in proper order on entry. This favors lower cpu-ids and will
1717 * grant the double lock to lower cpus over higher ids under contention,
1718 * regardless of entry order into the function.
1719 */
1720 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1721 __releases(this_rq->lock)
1722 __acquires(busiest->lock)
1723 __acquires(this_rq->lock)
1724 {
1725 int ret = 0;
1726
1727 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1728 if (busiest < this_rq) {
1729 raw_spin_unlock(&this_rq->lock);
1730 raw_spin_lock(&busiest->lock);
1731 raw_spin_lock_nested(&this_rq->lock,
1732 SINGLE_DEPTH_NESTING);
1733 ret = 1;
1734 } else
1735 raw_spin_lock_nested(&busiest->lock,
1736 SINGLE_DEPTH_NESTING);
1737 }
1738 return ret;
1739 }
1740
1741 #endif /* CONFIG_PREEMPT */
1742
1743 /*
1744 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1745 */
1746 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 {
1748 if (unlikely(!irqs_disabled())) {
1749 /* printk() doesn't work good under rq->lock */
1750 raw_spin_unlock(&this_rq->lock);
1751 BUG_ON(1);
1752 }
1753
1754 return _double_lock_balance(this_rq, busiest);
1755 }
1756
1757 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1758 __releases(busiest->lock)
1759 {
1760 raw_spin_unlock(&busiest->lock);
1761 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1762 }
1763
1764 /*
1765 * double_rq_lock - safely lock two runqueues
1766 *
1767 * Note this does not disable interrupts like task_rq_lock,
1768 * you need to do so manually before calling.
1769 */
1770 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1771 __acquires(rq1->lock)
1772 __acquires(rq2->lock)
1773 {
1774 BUG_ON(!irqs_disabled());
1775 if (rq1 == rq2) {
1776 raw_spin_lock(&rq1->lock);
1777 __acquire(rq2->lock); /* Fake it out ;) */
1778 } else {
1779 if (rq1 < rq2) {
1780 raw_spin_lock(&rq1->lock);
1781 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1782 } else {
1783 raw_spin_lock(&rq2->lock);
1784 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1785 }
1786 }
1787 }
1788
1789 /*
1790 * double_rq_unlock - safely unlock two runqueues
1791 *
1792 * Note this does not restore interrupts like task_rq_unlock,
1793 * you need to do so manually after calling.
1794 */
1795 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1796 __releases(rq1->lock)
1797 __releases(rq2->lock)
1798 {
1799 raw_spin_unlock(&rq1->lock);
1800 if (rq1 != rq2)
1801 raw_spin_unlock(&rq2->lock);
1802 else
1803 __release(rq2->lock);
1804 }
1805
1806 #endif
1807
1808 #ifdef CONFIG_FAIR_GROUP_SCHED
1809 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1810 {
1811 #ifdef CONFIG_SMP
1812 cfs_rq->shares = shares;
1813 #endif
1814 }
1815 #endif
1816
1817 static void calc_load_account_active(struct rq *this_rq);
1818 static void update_sysctl(void);
1819 static int get_update_sysctl_factor(void);
1820
1821 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1822 {
1823 set_task_rq(p, cpu);
1824 #ifdef CONFIG_SMP
1825 /*
1826 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1827 * successfuly executed on another CPU. We must ensure that updates of
1828 * per-task data have been completed by this moment.
1829 */
1830 smp_wmb();
1831 task_thread_info(p)->cpu = cpu;
1832 #endif
1833 }
1834
1835 static const struct sched_class rt_sched_class;
1836
1837 #define sched_class_highest (&rt_sched_class)
1838 #define for_each_class(class) \
1839 for (class = sched_class_highest; class; class = class->next)
1840
1841 #include "sched_stats.h"
1842
1843 static void inc_nr_running(struct rq *rq)
1844 {
1845 rq->nr_running++;
1846 }
1847
1848 static void dec_nr_running(struct rq *rq)
1849 {
1850 rq->nr_running--;
1851 }
1852
1853 static void set_load_weight(struct task_struct *p)
1854 {
1855 if (task_has_rt_policy(p)) {
1856 p->se.load.weight = prio_to_weight[0] * 2;
1857 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1858 return;
1859 }
1860
1861 /*
1862 * SCHED_IDLE tasks get minimal weight:
1863 */
1864 if (p->policy == SCHED_IDLE) {
1865 p->se.load.weight = WEIGHT_IDLEPRIO;
1866 p->se.load.inv_weight = WMULT_IDLEPRIO;
1867 return;
1868 }
1869
1870 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1871 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1872 }
1873
1874 static void update_avg(u64 *avg, u64 sample)
1875 {
1876 s64 diff = sample - *avg;
1877 *avg += diff >> 3;
1878 }
1879
1880 static void
1881 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1882 {
1883 update_rq_clock(rq);
1884 sched_info_queued(p);
1885 p->sched_class->enqueue_task(rq, p, wakeup, head);
1886 p->se.on_rq = 1;
1887 }
1888
1889 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1890 {
1891 update_rq_clock(rq);
1892 sched_info_dequeued(p);
1893 p->sched_class->dequeue_task(rq, p, sleep);
1894 p->se.on_rq = 0;
1895 }
1896
1897 /*
1898 * activate_task - move a task to the runqueue.
1899 */
1900 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1901 {
1902 if (task_contributes_to_load(p))
1903 rq->nr_uninterruptible--;
1904
1905 enqueue_task(rq, p, wakeup, false);
1906 inc_nr_running(rq);
1907 }
1908
1909 /*
1910 * deactivate_task - remove a task from the runqueue.
1911 */
1912 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1913 {
1914 if (task_contributes_to_load(p))
1915 rq->nr_uninterruptible++;
1916
1917 dequeue_task(rq, p, sleep);
1918 dec_nr_running(rq);
1919 }
1920
1921 #include "sched_idletask.c"
1922 #include "sched_fair.c"
1923 #include "sched_rt.c"
1924 #ifdef CONFIG_SCHED_DEBUG
1925 # include "sched_debug.c"
1926 #endif
1927
1928 /*
1929 * __normal_prio - return the priority that is based on the static prio
1930 */
1931 static inline int __normal_prio(struct task_struct *p)
1932 {
1933 return p->static_prio;
1934 }
1935
1936 /*
1937 * Calculate the expected normal priority: i.e. priority
1938 * without taking RT-inheritance into account. Might be
1939 * boosted by interactivity modifiers. Changes upon fork,
1940 * setprio syscalls, and whenever the interactivity
1941 * estimator recalculates.
1942 */
1943 static inline int normal_prio(struct task_struct *p)
1944 {
1945 int prio;
1946
1947 if (task_has_rt_policy(p))
1948 prio = MAX_RT_PRIO-1 - p->rt_priority;
1949 else
1950 prio = __normal_prio(p);
1951 return prio;
1952 }
1953
1954 /*
1955 * Calculate the current priority, i.e. the priority
1956 * taken into account by the scheduler. This value might
1957 * be boosted by RT tasks, or might be boosted by
1958 * interactivity modifiers. Will be RT if the task got
1959 * RT-boosted. If not then it returns p->normal_prio.
1960 */
1961 static int effective_prio(struct task_struct *p)
1962 {
1963 p->normal_prio = normal_prio(p);
1964 /*
1965 * If we are RT tasks or we were boosted to RT priority,
1966 * keep the priority unchanged. Otherwise, update priority
1967 * to the normal priority:
1968 */
1969 if (!rt_prio(p->prio))
1970 return p->normal_prio;
1971 return p->prio;
1972 }
1973
1974 /**
1975 * task_curr - is this task currently executing on a CPU?
1976 * @p: the task in question.
1977 */
1978 inline int task_curr(const struct task_struct *p)
1979 {
1980 return cpu_curr(task_cpu(p)) == p;
1981 }
1982
1983 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1984 const struct sched_class *prev_class,
1985 int oldprio, int running)
1986 {
1987 if (prev_class != p->sched_class) {
1988 if (prev_class->switched_from)
1989 prev_class->switched_from(rq, p, running);
1990 p->sched_class->switched_to(rq, p, running);
1991 } else
1992 p->sched_class->prio_changed(rq, p, oldprio, running);
1993 }
1994
1995 #ifdef CONFIG_SMP
1996 /*
1997 * Is this task likely cache-hot:
1998 */
1999 static int
2000 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2001 {
2002 s64 delta;
2003
2004 if (p->sched_class != &fair_sched_class)
2005 return 0;
2006
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
2010 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
2013 return 1;
2014
2015 if (sysctl_sched_migration_cost == -1)
2016 return 1;
2017 if (sysctl_sched_migration_cost == 0)
2018 return 0;
2019
2020 delta = now - p->se.exec_start;
2021
2022 return delta < (s64)sysctl_sched_migration_cost;
2023 }
2024
2025 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2026 {
2027 #ifdef CONFIG_SCHED_DEBUG
2028 /*
2029 * We should never call set_task_cpu() on a blocked task,
2030 * ttwu() will sort out the placement.
2031 */
2032 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2033 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2034 #endif
2035
2036 trace_sched_migrate_task(p, new_cpu);
2037
2038 if (task_cpu(p) != new_cpu) {
2039 p->se.nr_migrations++;
2040 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2041 }
2042
2043 __set_task_cpu(p, new_cpu);
2044 }
2045
2046 struct migration_req {
2047 struct list_head list;
2048
2049 struct task_struct *task;
2050 int dest_cpu;
2051
2052 struct completion done;
2053 };
2054
2055 /*
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2058 */
2059 static int
2060 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2061 {
2062 struct rq *rq = task_rq(p);
2063
2064 /*
2065 * If the task is not on a runqueue (and not running), then
2066 * the next wake-up will properly place the task.
2067 */
2068 if (!p->se.on_rq && !task_running(rq, p))
2069 return 0;
2070
2071 init_completion(&req->done);
2072 req->task = p;
2073 req->dest_cpu = dest_cpu;
2074 list_add(&req->list, &rq->migration_queue);
2075
2076 return 1;
2077 }
2078
2079 /*
2080 * wait_task_context_switch - wait for a thread to complete at least one
2081 * context switch.
2082 *
2083 * @p must not be current.
2084 */
2085 void wait_task_context_switch(struct task_struct *p)
2086 {
2087 unsigned long nvcsw, nivcsw, flags;
2088 int running;
2089 struct rq *rq;
2090
2091 nvcsw = p->nvcsw;
2092 nivcsw = p->nivcsw;
2093 for (;;) {
2094 /*
2095 * The runqueue is assigned before the actual context
2096 * switch. We need to take the runqueue lock.
2097 *
2098 * We could check initially without the lock but it is
2099 * very likely that we need to take the lock in every
2100 * iteration.
2101 */
2102 rq = task_rq_lock(p, &flags);
2103 running = task_running(rq, p);
2104 task_rq_unlock(rq, &flags);
2105
2106 if (likely(!running))
2107 break;
2108 /*
2109 * The switch count is incremented before the actual
2110 * context switch. We thus wait for two switches to be
2111 * sure at least one completed.
2112 */
2113 if ((p->nvcsw - nvcsw) > 1)
2114 break;
2115 if ((p->nivcsw - nivcsw) > 1)
2116 break;
2117
2118 cpu_relax();
2119 }
2120 }
2121
2122 /*
2123 * wait_task_inactive - wait for a thread to unschedule.
2124 *
2125 * If @match_state is nonzero, it's the @p->state value just checked and
2126 * not expected to change. If it changes, i.e. @p might have woken up,
2127 * then return zero. When we succeed in waiting for @p to be off its CPU,
2128 * we return a positive number (its total switch count). If a second call
2129 * a short while later returns the same number, the caller can be sure that
2130 * @p has remained unscheduled the whole time.
2131 *
2132 * The caller must ensure that the task *will* unschedule sometime soon,
2133 * else this function might spin for a *long* time. This function can't
2134 * be called with interrupts off, or it may introduce deadlock with
2135 * smp_call_function() if an IPI is sent by the same process we are
2136 * waiting to become inactive.
2137 */
2138 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2139 {
2140 unsigned long flags;
2141 int running, on_rq;
2142 unsigned long ncsw;
2143 struct rq *rq;
2144
2145 for (;;) {
2146 /*
2147 * We do the initial early heuristics without holding
2148 * any task-queue locks at all. We'll only try to get
2149 * the runqueue lock when things look like they will
2150 * work out!
2151 */
2152 rq = task_rq(p);
2153
2154 /*
2155 * If the task is actively running on another CPU
2156 * still, just relax and busy-wait without holding
2157 * any locks.
2158 *
2159 * NOTE! Since we don't hold any locks, it's not
2160 * even sure that "rq" stays as the right runqueue!
2161 * But we don't care, since "task_running()" will
2162 * return false if the runqueue has changed and p
2163 * is actually now running somewhere else!
2164 */
2165 while (task_running(rq, p)) {
2166 if (match_state && unlikely(p->state != match_state))
2167 return 0;
2168 cpu_relax();
2169 }
2170
2171 /*
2172 * Ok, time to look more closely! We need the rq
2173 * lock now, to be *sure*. If we're wrong, we'll
2174 * just go back and repeat.
2175 */
2176 rq = task_rq_lock(p, &flags);
2177 trace_sched_wait_task(rq, p);
2178 running = task_running(rq, p);
2179 on_rq = p->se.on_rq;
2180 ncsw = 0;
2181 if (!match_state || p->state == match_state)
2182 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2183 task_rq_unlock(rq, &flags);
2184
2185 /*
2186 * If it changed from the expected state, bail out now.
2187 */
2188 if (unlikely(!ncsw))
2189 break;
2190
2191 /*
2192 * Was it really running after all now that we
2193 * checked with the proper locks actually held?
2194 *
2195 * Oops. Go back and try again..
2196 */
2197 if (unlikely(running)) {
2198 cpu_relax();
2199 continue;
2200 }
2201
2202 /*
2203 * It's not enough that it's not actively running,
2204 * it must be off the runqueue _entirely_, and not
2205 * preempted!
2206 *
2207 * So if it was still runnable (but just not actively
2208 * running right now), it's preempted, and we should
2209 * yield - it could be a while.
2210 */
2211 if (unlikely(on_rq)) {
2212 schedule_timeout_uninterruptible(1);
2213 continue;
2214 }
2215
2216 /*
2217 * Ahh, all good. It wasn't running, and it wasn't
2218 * runnable, which means that it will never become
2219 * running in the future either. We're all done!
2220 */
2221 break;
2222 }
2223
2224 return ncsw;
2225 }
2226
2227 /***
2228 * kick_process - kick a running thread to enter/exit the kernel
2229 * @p: the to-be-kicked thread
2230 *
2231 * Cause a process which is running on another CPU to enter
2232 * kernel-mode, without any delay. (to get signals handled.)
2233 *
2234 * NOTE: this function doesnt have to take the runqueue lock,
2235 * because all it wants to ensure is that the remote task enters
2236 * the kernel. If the IPI races and the task has been migrated
2237 * to another CPU then no harm is done and the purpose has been
2238 * achieved as well.
2239 */
2240 void kick_process(struct task_struct *p)
2241 {
2242 int cpu;
2243
2244 preempt_disable();
2245 cpu = task_cpu(p);
2246 if ((cpu != smp_processor_id()) && task_curr(p))
2247 smp_send_reschedule(cpu);
2248 preempt_enable();
2249 }
2250 EXPORT_SYMBOL_GPL(kick_process);
2251 #endif /* CONFIG_SMP */
2252
2253 /**
2254 * task_oncpu_function_call - call a function on the cpu on which a task runs
2255 * @p: the task to evaluate
2256 * @func: the function to be called
2257 * @info: the function call argument
2258 *
2259 * Calls the function @func when the task is currently running. This might
2260 * be on the current CPU, which just calls the function directly
2261 */
2262 void task_oncpu_function_call(struct task_struct *p,
2263 void (*func) (void *info), void *info)
2264 {
2265 int cpu;
2266
2267 preempt_disable();
2268 cpu = task_cpu(p);
2269 if (task_curr(p))
2270 smp_call_function_single(cpu, func, info, 1);
2271 preempt_enable();
2272 }
2273
2274 #ifdef CONFIG_SMP
2275 /*
2276 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2277 */
2278 static int select_fallback_rq(int cpu, struct task_struct *p)
2279 {
2280 int dest_cpu;
2281 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2282
2283 /* Look for allowed, online CPU in same node. */
2284 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2285 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2286 return dest_cpu;
2287
2288 /* Any allowed, online CPU? */
2289 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2290 if (dest_cpu < nr_cpu_ids)
2291 return dest_cpu;
2292
2293 /* No more Mr. Nice Guy. */
2294 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2295 dest_cpu = cpuset_cpus_allowed_fallback(p);
2296 /*
2297 * Don't tell them about moving exiting tasks or
2298 * kernel threads (both mm NULL), since they never
2299 * leave kernel.
2300 */
2301 if (p->mm && printk_ratelimit()) {
2302 printk(KERN_INFO "process %d (%s) no "
2303 "longer affine to cpu%d\n",
2304 task_pid_nr(p), p->comm, cpu);
2305 }
2306 }
2307
2308 return dest_cpu;
2309 }
2310
2311 /*
2312 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2313 */
2314 static inline
2315 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2316 {
2317 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2318
2319 /*
2320 * In order not to call set_task_cpu() on a blocking task we need
2321 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2322 * cpu.
2323 *
2324 * Since this is common to all placement strategies, this lives here.
2325 *
2326 * [ this allows ->select_task() to simply return task_cpu(p) and
2327 * not worry about this generic constraint ]
2328 */
2329 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2330 !cpu_online(cpu)))
2331 cpu = select_fallback_rq(task_cpu(p), p);
2332
2333 return cpu;
2334 }
2335 #endif
2336
2337 /***
2338 * try_to_wake_up - wake up a thread
2339 * @p: the to-be-woken-up thread
2340 * @state: the mask of task states that can be woken
2341 * @sync: do a synchronous wakeup?
2342 *
2343 * Put it on the run-queue if it's not already there. The "current"
2344 * thread is always on the run-queue (except when the actual
2345 * re-schedule is in progress), and as such you're allowed to do
2346 * the simpler "current->state = TASK_RUNNING" to mark yourself
2347 * runnable without the overhead of this.
2348 *
2349 * returns failure only if the task is already active.
2350 */
2351 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2352 int wake_flags)
2353 {
2354 int cpu, orig_cpu, this_cpu, success = 0;
2355 unsigned long flags;
2356 struct rq *rq;
2357
2358 this_cpu = get_cpu();
2359
2360 smp_wmb();
2361 rq = task_rq_lock(p, &flags);
2362 if (!(p->state & state))
2363 goto out;
2364
2365 if (p->se.on_rq)
2366 goto out_running;
2367
2368 cpu = task_cpu(p);
2369 orig_cpu = cpu;
2370
2371 #ifdef CONFIG_SMP
2372 if (unlikely(task_running(rq, p)))
2373 goto out_activate;
2374
2375 /*
2376 * In order to handle concurrent wakeups and release the rq->lock
2377 * we put the task in TASK_WAKING state.
2378 *
2379 * First fix up the nr_uninterruptible count:
2380 */
2381 if (task_contributes_to_load(p))
2382 rq->nr_uninterruptible--;
2383 p->state = TASK_WAKING;
2384
2385 if (p->sched_class->task_waking)
2386 p->sched_class->task_waking(rq, p);
2387
2388 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2389 if (cpu != orig_cpu)
2390 set_task_cpu(p, cpu);
2391 __task_rq_unlock(rq);
2392
2393 rq = cpu_rq(cpu);
2394 raw_spin_lock(&rq->lock);
2395
2396 /*
2397 * We migrated the task without holding either rq->lock, however
2398 * since the task is not on the task list itself, nobody else
2399 * will try and migrate the task, hence the rq should match the
2400 * cpu we just moved it to.
2401 */
2402 WARN_ON(task_cpu(p) != cpu);
2403 WARN_ON(p->state != TASK_WAKING);
2404
2405 #ifdef CONFIG_SCHEDSTATS
2406 schedstat_inc(rq, ttwu_count);
2407 if (cpu == this_cpu)
2408 schedstat_inc(rq, ttwu_local);
2409 else {
2410 struct sched_domain *sd;
2411 for_each_domain(this_cpu, sd) {
2412 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2413 schedstat_inc(sd, ttwu_wake_remote);
2414 break;
2415 }
2416 }
2417 }
2418 #endif /* CONFIG_SCHEDSTATS */
2419
2420 out_activate:
2421 #endif /* CONFIG_SMP */
2422 schedstat_inc(p, se.statistics.nr_wakeups);
2423 if (wake_flags & WF_SYNC)
2424 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2425 if (orig_cpu != cpu)
2426 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2427 if (cpu == this_cpu)
2428 schedstat_inc(p, se.statistics.nr_wakeups_local);
2429 else
2430 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2431 activate_task(rq, p, 1);
2432 success = 1;
2433
2434 out_running:
2435 trace_sched_wakeup(rq, p, success);
2436 check_preempt_curr(rq, p, wake_flags);
2437
2438 p->state = TASK_RUNNING;
2439 #ifdef CONFIG_SMP
2440 if (p->sched_class->task_woken)
2441 p->sched_class->task_woken(rq, p);
2442
2443 if (unlikely(rq->idle_stamp)) {
2444 u64 delta = rq->clock - rq->idle_stamp;
2445 u64 max = 2*sysctl_sched_migration_cost;
2446
2447 if (delta > max)
2448 rq->avg_idle = max;
2449 else
2450 update_avg(&rq->avg_idle, delta);
2451 rq->idle_stamp = 0;
2452 }
2453 #endif
2454 out:
2455 task_rq_unlock(rq, &flags);
2456 put_cpu();
2457
2458 return success;
2459 }
2460
2461 /**
2462 * wake_up_process - Wake up a specific process
2463 * @p: The process to be woken up.
2464 *
2465 * Attempt to wake up the nominated process and move it to the set of runnable
2466 * processes. Returns 1 if the process was woken up, 0 if it was already
2467 * running.
2468 *
2469 * It may be assumed that this function implies a write memory barrier before
2470 * changing the task state if and only if any tasks are woken up.
2471 */
2472 int wake_up_process(struct task_struct *p)
2473 {
2474 return try_to_wake_up(p, TASK_ALL, 0);
2475 }
2476 EXPORT_SYMBOL(wake_up_process);
2477
2478 int wake_up_state(struct task_struct *p, unsigned int state)
2479 {
2480 return try_to_wake_up(p, state, 0);
2481 }
2482
2483 /*
2484 * Perform scheduler related setup for a newly forked process p.
2485 * p is forked by current.
2486 *
2487 * __sched_fork() is basic setup used by init_idle() too:
2488 */
2489 static void __sched_fork(struct task_struct *p)
2490 {
2491 p->se.exec_start = 0;
2492 p->se.sum_exec_runtime = 0;
2493 p->se.prev_sum_exec_runtime = 0;
2494 p->se.nr_migrations = 0;
2495
2496 #ifdef CONFIG_SCHEDSTATS
2497 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2498 #endif
2499
2500 INIT_LIST_HEAD(&p->rt.run_list);
2501 p->se.on_rq = 0;
2502 INIT_LIST_HEAD(&p->se.group_node);
2503
2504 #ifdef CONFIG_PREEMPT_NOTIFIERS
2505 INIT_HLIST_HEAD(&p->preempt_notifiers);
2506 #endif
2507 }
2508
2509 /*
2510 * fork()/clone()-time setup:
2511 */
2512 void sched_fork(struct task_struct *p, int clone_flags)
2513 {
2514 int cpu = get_cpu();
2515
2516 __sched_fork(p);
2517 /*
2518 * We mark the process as running here. This guarantees that
2519 * nobody will actually run it, and a signal or other external
2520 * event cannot wake it up and insert it on the runqueue either.
2521 */
2522 p->state = TASK_RUNNING;
2523
2524 /*
2525 * Revert to default priority/policy on fork if requested.
2526 */
2527 if (unlikely(p->sched_reset_on_fork)) {
2528 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2529 p->policy = SCHED_NORMAL;
2530 p->normal_prio = p->static_prio;
2531 }
2532
2533 if (PRIO_TO_NICE(p->static_prio) < 0) {
2534 p->static_prio = NICE_TO_PRIO(0);
2535 p->normal_prio = p->static_prio;
2536 set_load_weight(p);
2537 }
2538
2539 /*
2540 * We don't need the reset flag anymore after the fork. It has
2541 * fulfilled its duty:
2542 */
2543 p->sched_reset_on_fork = 0;
2544 }
2545
2546 /*
2547 * Make sure we do not leak PI boosting priority to the child.
2548 */
2549 p->prio = current->normal_prio;
2550
2551 if (!rt_prio(p->prio))
2552 p->sched_class = &fair_sched_class;
2553
2554 if (p->sched_class->task_fork)
2555 p->sched_class->task_fork(p);
2556
2557 set_task_cpu(p, cpu);
2558
2559 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2560 if (likely(sched_info_on()))
2561 memset(&p->sched_info, 0, sizeof(p->sched_info));
2562 #endif
2563 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2564 p->oncpu = 0;
2565 #endif
2566 #ifdef CONFIG_PREEMPT
2567 /* Want to start with kernel preemption disabled. */
2568 task_thread_info(p)->preempt_count = 1;
2569 #endif
2570 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2571
2572 put_cpu();
2573 }
2574
2575 /*
2576 * wake_up_new_task - wake up a newly created task for the first time.
2577 *
2578 * This function will do some initial scheduler statistics housekeeping
2579 * that must be done for every newly created context, then puts the task
2580 * on the runqueue and wakes it.
2581 */
2582 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2583 {
2584 unsigned long flags;
2585 struct rq *rq;
2586 int cpu __maybe_unused = get_cpu();
2587
2588 #ifdef CONFIG_SMP
2589 rq = task_rq_lock(p, &flags);
2590 p->state = TASK_WAKING;
2591
2592 /*
2593 * Fork balancing, do it here and not earlier because:
2594 * - cpus_allowed can change in the fork path
2595 * - any previously selected cpu might disappear through hotplug
2596 *
2597 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2598 * without people poking at ->cpus_allowed.
2599 */
2600 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2601 set_task_cpu(p, cpu);
2602
2603 p->state = TASK_RUNNING;
2604 task_rq_unlock(rq, &flags);
2605 #endif
2606
2607 rq = task_rq_lock(p, &flags);
2608 activate_task(rq, p, 0);
2609 trace_sched_wakeup_new(rq, p, 1);
2610 check_preempt_curr(rq, p, WF_FORK);
2611 #ifdef CONFIG_SMP
2612 if (p->sched_class->task_woken)
2613 p->sched_class->task_woken(rq, p);
2614 #endif
2615 task_rq_unlock(rq, &flags);
2616 put_cpu();
2617 }
2618
2619 #ifdef CONFIG_PREEMPT_NOTIFIERS
2620
2621 /**
2622 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2623 * @notifier: notifier struct to register
2624 */
2625 void preempt_notifier_register(struct preempt_notifier *notifier)
2626 {
2627 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2628 }
2629 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2630
2631 /**
2632 * preempt_notifier_unregister - no longer interested in preemption notifications
2633 * @notifier: notifier struct to unregister
2634 *
2635 * This is safe to call from within a preemption notifier.
2636 */
2637 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2638 {
2639 hlist_del(&notifier->link);
2640 }
2641 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2642
2643 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2644 {
2645 struct preempt_notifier *notifier;
2646 struct hlist_node *node;
2647
2648 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2649 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2650 }
2651
2652 static void
2653 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2654 struct task_struct *next)
2655 {
2656 struct preempt_notifier *notifier;
2657 struct hlist_node *node;
2658
2659 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2660 notifier->ops->sched_out(notifier, next);
2661 }
2662
2663 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2664
2665 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2666 {
2667 }
2668
2669 static void
2670 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2671 struct task_struct *next)
2672 {
2673 }
2674
2675 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2676
2677 /**
2678 * prepare_task_switch - prepare to switch tasks
2679 * @rq: the runqueue preparing to switch
2680 * @prev: the current task that is being switched out
2681 * @next: the task we are going to switch to.
2682 *
2683 * This is called with the rq lock held and interrupts off. It must
2684 * be paired with a subsequent finish_task_switch after the context
2685 * switch.
2686 *
2687 * prepare_task_switch sets up locking and calls architecture specific
2688 * hooks.
2689 */
2690 static inline void
2691 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2692 struct task_struct *next)
2693 {
2694 fire_sched_out_preempt_notifiers(prev, next);
2695 prepare_lock_switch(rq, next);
2696 prepare_arch_switch(next);
2697 }
2698
2699 /**
2700 * finish_task_switch - clean up after a task-switch
2701 * @rq: runqueue associated with task-switch
2702 * @prev: the thread we just switched away from.
2703 *
2704 * finish_task_switch must be called after the context switch, paired
2705 * with a prepare_task_switch call before the context switch.
2706 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2707 * and do any other architecture-specific cleanup actions.
2708 *
2709 * Note that we may have delayed dropping an mm in context_switch(). If
2710 * so, we finish that here outside of the runqueue lock. (Doing it
2711 * with the lock held can cause deadlocks; see schedule() for
2712 * details.)
2713 */
2714 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2715 __releases(rq->lock)
2716 {
2717 struct mm_struct *mm = rq->prev_mm;
2718 long prev_state;
2719
2720 rq->prev_mm = NULL;
2721
2722 /*
2723 * A task struct has one reference for the use as "current".
2724 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2725 * schedule one last time. The schedule call will never return, and
2726 * the scheduled task must drop that reference.
2727 * The test for TASK_DEAD must occur while the runqueue locks are
2728 * still held, otherwise prev could be scheduled on another cpu, die
2729 * there before we look at prev->state, and then the reference would
2730 * be dropped twice.
2731 * Manfred Spraul <manfred@colorfullife.com>
2732 */
2733 prev_state = prev->state;
2734 finish_arch_switch(prev);
2735 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2736 local_irq_disable();
2737 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2738 perf_event_task_sched_in(current);
2739 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2740 local_irq_enable();
2741 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2742 finish_lock_switch(rq, prev);
2743
2744 fire_sched_in_preempt_notifiers(current);
2745 if (mm)
2746 mmdrop(mm);
2747 if (unlikely(prev_state == TASK_DEAD)) {
2748 /*
2749 * Remove function-return probe instances associated with this
2750 * task and put them back on the free list.
2751 */
2752 kprobe_flush_task(prev);
2753 put_task_struct(prev);
2754 }
2755 }
2756
2757 #ifdef CONFIG_SMP
2758
2759 /* assumes rq->lock is held */
2760 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2761 {
2762 if (prev->sched_class->pre_schedule)
2763 prev->sched_class->pre_schedule(rq, prev);
2764 }
2765
2766 /* rq->lock is NOT held, but preemption is disabled */
2767 static inline void post_schedule(struct rq *rq)
2768 {
2769 if (rq->post_schedule) {
2770 unsigned long flags;
2771
2772 raw_spin_lock_irqsave(&rq->lock, flags);
2773 if (rq->curr->sched_class->post_schedule)
2774 rq->curr->sched_class->post_schedule(rq);
2775 raw_spin_unlock_irqrestore(&rq->lock, flags);
2776
2777 rq->post_schedule = 0;
2778 }
2779 }
2780
2781 #else
2782
2783 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2784 {
2785 }
2786
2787 static inline void post_schedule(struct rq *rq)
2788 {
2789 }
2790
2791 #endif
2792
2793 /**
2794 * schedule_tail - first thing a freshly forked thread must call.
2795 * @prev: the thread we just switched away from.
2796 */
2797 asmlinkage void schedule_tail(struct task_struct *prev)
2798 __releases(rq->lock)
2799 {
2800 struct rq *rq = this_rq();
2801
2802 finish_task_switch(rq, prev);
2803
2804 /*
2805 * FIXME: do we need to worry about rq being invalidated by the
2806 * task_switch?
2807 */
2808 post_schedule(rq);
2809
2810 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2811 /* In this case, finish_task_switch does not reenable preemption */
2812 preempt_enable();
2813 #endif
2814 if (current->set_child_tid)
2815 put_user(task_pid_vnr(current), current->set_child_tid);
2816 }
2817
2818 /*
2819 * context_switch - switch to the new MM and the new
2820 * thread's register state.
2821 */
2822 static inline void
2823 context_switch(struct rq *rq, struct task_struct *prev,
2824 struct task_struct *next)
2825 {
2826 struct mm_struct *mm, *oldmm;
2827
2828 prepare_task_switch(rq, prev, next);
2829 trace_sched_switch(rq, prev, next);
2830 mm = next->mm;
2831 oldmm = prev->active_mm;
2832 /*
2833 * For paravirt, this is coupled with an exit in switch_to to
2834 * combine the page table reload and the switch backend into
2835 * one hypercall.
2836 */
2837 arch_start_context_switch(prev);
2838
2839 if (likely(!mm)) {
2840 next->active_mm = oldmm;
2841 atomic_inc(&oldmm->mm_count);
2842 enter_lazy_tlb(oldmm, next);
2843 } else
2844 switch_mm(oldmm, mm, next);
2845
2846 if (likely(!prev->mm)) {
2847 prev->active_mm = NULL;
2848 rq->prev_mm = oldmm;
2849 }
2850 /*
2851 * Since the runqueue lock will be released by the next
2852 * task (which is an invalid locking op but in the case
2853 * of the scheduler it's an obvious special-case), so we
2854 * do an early lockdep release here:
2855 */
2856 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2857 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2858 #endif
2859
2860 /* Here we just switch the register state and the stack. */
2861 switch_to(prev, next, prev);
2862
2863 barrier();
2864 /*
2865 * this_rq must be evaluated again because prev may have moved
2866 * CPUs since it called schedule(), thus the 'rq' on its stack
2867 * frame will be invalid.
2868 */
2869 finish_task_switch(this_rq(), prev);
2870 }
2871
2872 /*
2873 * nr_running, nr_uninterruptible and nr_context_switches:
2874 *
2875 * externally visible scheduler statistics: current number of runnable
2876 * threads, current number of uninterruptible-sleeping threads, total
2877 * number of context switches performed since bootup.
2878 */
2879 unsigned long nr_running(void)
2880 {
2881 unsigned long i, sum = 0;
2882
2883 for_each_online_cpu(i)
2884 sum += cpu_rq(i)->nr_running;
2885
2886 return sum;
2887 }
2888
2889 unsigned long nr_uninterruptible(void)
2890 {
2891 unsigned long i, sum = 0;
2892
2893 for_each_possible_cpu(i)
2894 sum += cpu_rq(i)->nr_uninterruptible;
2895
2896 /*
2897 * Since we read the counters lockless, it might be slightly
2898 * inaccurate. Do not allow it to go below zero though:
2899 */
2900 if (unlikely((long)sum < 0))
2901 sum = 0;
2902
2903 return sum;
2904 }
2905
2906 unsigned long long nr_context_switches(void)
2907 {
2908 int i;
2909 unsigned long long sum = 0;
2910
2911 for_each_possible_cpu(i)
2912 sum += cpu_rq(i)->nr_switches;
2913
2914 return sum;
2915 }
2916
2917 unsigned long nr_iowait(void)
2918 {
2919 unsigned long i, sum = 0;
2920
2921 for_each_possible_cpu(i)
2922 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2923
2924 return sum;
2925 }
2926
2927 unsigned long nr_iowait_cpu(void)
2928 {
2929 struct rq *this = this_rq();
2930 return atomic_read(&this->nr_iowait);
2931 }
2932
2933 unsigned long this_cpu_load(void)
2934 {
2935 struct rq *this = this_rq();
2936 return this->cpu_load[0];
2937 }
2938
2939
2940 /* Variables and functions for calc_load */
2941 static atomic_long_t calc_load_tasks;
2942 static unsigned long calc_load_update;
2943 unsigned long avenrun[3];
2944 EXPORT_SYMBOL(avenrun);
2945
2946 /**
2947 * get_avenrun - get the load average array
2948 * @loads: pointer to dest load array
2949 * @offset: offset to add
2950 * @shift: shift count to shift the result left
2951 *
2952 * These values are estimates at best, so no need for locking.
2953 */
2954 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2955 {
2956 loads[0] = (avenrun[0] + offset) << shift;
2957 loads[1] = (avenrun[1] + offset) << shift;
2958 loads[2] = (avenrun[2] + offset) << shift;
2959 }
2960
2961 static unsigned long
2962 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2963 {
2964 load *= exp;
2965 load += active * (FIXED_1 - exp);
2966 return load >> FSHIFT;
2967 }
2968
2969 /*
2970 * calc_load - update the avenrun load estimates 10 ticks after the
2971 * CPUs have updated calc_load_tasks.
2972 */
2973 void calc_global_load(void)
2974 {
2975 unsigned long upd = calc_load_update + 10;
2976 long active;
2977
2978 if (time_before(jiffies, upd))
2979 return;
2980
2981 active = atomic_long_read(&calc_load_tasks);
2982 active = active > 0 ? active * FIXED_1 : 0;
2983
2984 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2985 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2986 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2987
2988 calc_load_update += LOAD_FREQ;
2989 }
2990
2991 /*
2992 * Either called from update_cpu_load() or from a cpu going idle
2993 */
2994 static void calc_load_account_active(struct rq *this_rq)
2995 {
2996 long nr_active, delta;
2997
2998 nr_active = this_rq->nr_running;
2999 nr_active += (long) this_rq->nr_uninterruptible;
3000
3001 if (nr_active != this_rq->calc_load_active) {
3002 delta = nr_active - this_rq->calc_load_active;
3003 this_rq->calc_load_active = nr_active;
3004 atomic_long_add(delta, &calc_load_tasks);
3005 }
3006 }
3007
3008 /*
3009 * Update rq->cpu_load[] statistics. This function is usually called every
3010 * scheduler tick (TICK_NSEC).
3011 */
3012 static void update_cpu_load(struct rq *this_rq)
3013 {
3014 unsigned long this_load = this_rq->load.weight;
3015 int i, scale;
3016
3017 this_rq->nr_load_updates++;
3018
3019 /* Update our load: */
3020 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3021 unsigned long old_load, new_load;
3022
3023 /* scale is effectively 1 << i now, and >> i divides by scale */
3024
3025 old_load = this_rq->cpu_load[i];
3026 new_load = this_load;
3027 /*
3028 * Round up the averaging division if load is increasing. This
3029 * prevents us from getting stuck on 9 if the load is 10, for
3030 * example.
3031 */
3032 if (new_load > old_load)
3033 new_load += scale-1;
3034 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3035 }
3036
3037 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3038 this_rq->calc_load_update += LOAD_FREQ;
3039 calc_load_account_active(this_rq);
3040 }
3041 }
3042
3043 #ifdef CONFIG_SMP
3044
3045 /*
3046 * sched_exec - execve() is a valuable balancing opportunity, because at
3047 * this point the task has the smallest effective memory and cache footprint.
3048 */
3049 void sched_exec(void)
3050 {
3051 struct task_struct *p = current;
3052 struct migration_req req;
3053 unsigned long flags;
3054 struct rq *rq;
3055 int dest_cpu;
3056
3057 rq = task_rq_lock(p, &flags);
3058 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3059 if (dest_cpu == smp_processor_id())
3060 goto unlock;
3061
3062 /*
3063 * select_task_rq() can race against ->cpus_allowed
3064 */
3065 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3066 likely(cpu_active(dest_cpu)) &&
3067 migrate_task(p, dest_cpu, &req)) {
3068 /* Need to wait for migration thread (might exit: take ref). */
3069 struct task_struct *mt = rq->migration_thread;
3070
3071 get_task_struct(mt);
3072 task_rq_unlock(rq, &flags);
3073 wake_up_process(mt);
3074 put_task_struct(mt);
3075 wait_for_completion(&req.done);
3076
3077 return;
3078 }
3079 unlock:
3080 task_rq_unlock(rq, &flags);
3081 }
3082
3083 #endif
3084
3085 DEFINE_PER_CPU(struct kernel_stat, kstat);
3086
3087 EXPORT_PER_CPU_SYMBOL(kstat);
3088
3089 /*
3090 * Return any ns on the sched_clock that have not yet been accounted in
3091 * @p in case that task is currently running.
3092 *
3093 * Called with task_rq_lock() held on @rq.
3094 */
3095 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3096 {
3097 u64 ns = 0;
3098
3099 if (task_current(rq, p)) {
3100 update_rq_clock(rq);
3101 ns = rq->clock - p->se.exec_start;
3102 if ((s64)ns < 0)
3103 ns = 0;
3104 }
3105
3106 return ns;
3107 }
3108
3109 unsigned long long task_delta_exec(struct task_struct *p)
3110 {
3111 unsigned long flags;
3112 struct rq *rq;
3113 u64 ns = 0;
3114
3115 rq = task_rq_lock(p, &flags);
3116 ns = do_task_delta_exec(p, rq);
3117 task_rq_unlock(rq, &flags);
3118
3119 return ns;
3120 }
3121
3122 /*
3123 * Return accounted runtime for the task.
3124 * In case the task is currently running, return the runtime plus current's
3125 * pending runtime that have not been accounted yet.
3126 */
3127 unsigned long long task_sched_runtime(struct task_struct *p)
3128 {
3129 unsigned long flags;
3130 struct rq *rq;
3131 u64 ns = 0;
3132
3133 rq = task_rq_lock(p, &flags);
3134 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3135 task_rq_unlock(rq, &flags);
3136
3137 return ns;
3138 }
3139
3140 /*
3141 * Return sum_exec_runtime for the thread group.
3142 * In case the task is currently running, return the sum plus current's
3143 * pending runtime that have not been accounted yet.
3144 *
3145 * Note that the thread group might have other running tasks as well,
3146 * so the return value not includes other pending runtime that other
3147 * running tasks might have.
3148 */
3149 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3150 {
3151 struct task_cputime totals;
3152 unsigned long flags;
3153 struct rq *rq;
3154 u64 ns;
3155
3156 rq = task_rq_lock(p, &flags);
3157 thread_group_cputime(p, &totals);
3158 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3159 task_rq_unlock(rq, &flags);
3160
3161 return ns;
3162 }
3163
3164 /*
3165 * Account user cpu time to a process.
3166 * @p: the process that the cpu time gets accounted to
3167 * @cputime: the cpu time spent in user space since the last update
3168 * @cputime_scaled: cputime scaled by cpu frequency
3169 */
3170 void account_user_time(struct task_struct *p, cputime_t cputime,
3171 cputime_t cputime_scaled)
3172 {
3173 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3174 cputime64_t tmp;
3175
3176 /* Add user time to process. */
3177 p->utime = cputime_add(p->utime, cputime);
3178 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3179 account_group_user_time(p, cputime);
3180
3181 /* Add user time to cpustat. */
3182 tmp = cputime_to_cputime64(cputime);
3183 if (TASK_NICE(p) > 0)
3184 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3185 else
3186 cpustat->user = cputime64_add(cpustat->user, tmp);
3187
3188 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3189 /* Account for user time used */
3190 acct_update_integrals(p);
3191 }
3192
3193 /*
3194 * Account guest cpu time to a process.
3195 * @p: the process that the cpu time gets accounted to
3196 * @cputime: the cpu time spent in virtual machine since the last update
3197 * @cputime_scaled: cputime scaled by cpu frequency
3198 */
3199 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3200 cputime_t cputime_scaled)
3201 {
3202 cputime64_t tmp;
3203 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3204
3205 tmp = cputime_to_cputime64(cputime);
3206
3207 /* Add guest time to process. */
3208 p->utime = cputime_add(p->utime, cputime);
3209 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3210 account_group_user_time(p, cputime);
3211 p->gtime = cputime_add(p->gtime, cputime);
3212
3213 /* Add guest time to cpustat. */
3214 if (TASK_NICE(p) > 0) {
3215 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3216 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3217 } else {
3218 cpustat->user = cputime64_add(cpustat->user, tmp);
3219 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3220 }
3221 }
3222
3223 /*
3224 * Account system cpu time to a process.
3225 * @p: the process that the cpu time gets accounted to
3226 * @hardirq_offset: the offset to subtract from hardirq_count()
3227 * @cputime: the cpu time spent in kernel space since the last update
3228 * @cputime_scaled: cputime scaled by cpu frequency
3229 */
3230 void account_system_time(struct task_struct *p, int hardirq_offset,
3231 cputime_t cputime, cputime_t cputime_scaled)
3232 {
3233 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3234 cputime64_t tmp;
3235
3236 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3237 account_guest_time(p, cputime, cputime_scaled);
3238 return;
3239 }
3240
3241 /* Add system time to process. */
3242 p->stime = cputime_add(p->stime, cputime);
3243 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3244 account_group_system_time(p, cputime);
3245
3246 /* Add system time to cpustat. */
3247 tmp = cputime_to_cputime64(cputime);
3248 if (hardirq_count() - hardirq_offset)
3249 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3250 else if (softirq_count())
3251 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3252 else
3253 cpustat->system = cputime64_add(cpustat->system, tmp);
3254
3255 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3256
3257 /* Account for system time used */
3258 acct_update_integrals(p);
3259 }
3260
3261 /*
3262 * Account for involuntary wait time.
3263 * @steal: the cpu time spent in involuntary wait
3264 */
3265 void account_steal_time(cputime_t cputime)
3266 {
3267 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3268 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3269
3270 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3271 }
3272
3273 /*
3274 * Account for idle time.
3275 * @cputime: the cpu time spent in idle wait
3276 */
3277 void account_idle_time(cputime_t cputime)
3278 {
3279 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3280 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3281 struct rq *rq = this_rq();
3282
3283 if (atomic_read(&rq->nr_iowait) > 0)
3284 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3285 else
3286 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3287 }
3288
3289 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3290
3291 /*
3292 * Account a single tick of cpu time.
3293 * @p: the process that the cpu time gets accounted to
3294 * @user_tick: indicates if the tick is a user or a system tick
3295 */
3296 void account_process_tick(struct task_struct *p, int user_tick)
3297 {
3298 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3299 struct rq *rq = this_rq();
3300
3301 if (user_tick)
3302 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3303 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3304 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3305 one_jiffy_scaled);
3306 else
3307 account_idle_time(cputime_one_jiffy);
3308 }
3309
3310 /*
3311 * Account multiple ticks of steal time.
3312 * @p: the process from which the cpu time has been stolen
3313 * @ticks: number of stolen ticks
3314 */
3315 void account_steal_ticks(unsigned long ticks)
3316 {
3317 account_steal_time(jiffies_to_cputime(ticks));
3318 }
3319
3320 /*
3321 * Account multiple ticks of idle time.
3322 * @ticks: number of stolen ticks
3323 */
3324 void account_idle_ticks(unsigned long ticks)
3325 {
3326 account_idle_time(jiffies_to_cputime(ticks));
3327 }
3328
3329 #endif
3330
3331 /*
3332 * Use precise platform statistics if available:
3333 */
3334 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3335 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3336 {
3337 *ut = p->utime;
3338 *st = p->stime;
3339 }
3340
3341 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3342 {
3343 struct task_cputime cputime;
3344
3345 thread_group_cputime(p, &cputime);
3346
3347 *ut = cputime.utime;
3348 *st = cputime.stime;
3349 }
3350 #else
3351
3352 #ifndef nsecs_to_cputime
3353 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3354 #endif
3355
3356 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3357 {
3358 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3359
3360 /*
3361 * Use CFS's precise accounting:
3362 */
3363 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3364
3365 if (total) {
3366 u64 temp;
3367
3368 temp = (u64)(rtime * utime);
3369 do_div(temp, total);
3370 utime = (cputime_t)temp;
3371 } else
3372 utime = rtime;
3373
3374 /*
3375 * Compare with previous values, to keep monotonicity:
3376 */
3377 p->prev_utime = max(p->prev_utime, utime);
3378 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3379
3380 *ut = p->prev_utime;
3381 *st = p->prev_stime;
3382 }
3383
3384 /*
3385 * Must be called with siglock held.
3386 */
3387 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3388 {
3389 struct signal_struct *sig = p->signal;
3390 struct task_cputime cputime;
3391 cputime_t rtime, utime, total;
3392
3393 thread_group_cputime(p, &cputime);
3394
3395 total = cputime_add(cputime.utime, cputime.stime);
3396 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3397
3398 if (total) {
3399 u64 temp;
3400
3401 temp = (u64)(rtime * cputime.utime);
3402 do_div(temp, total);
3403 utime = (cputime_t)temp;
3404 } else
3405 utime = rtime;
3406
3407 sig->prev_utime = max(sig->prev_utime, utime);
3408 sig->prev_stime = max(sig->prev_stime,
3409 cputime_sub(rtime, sig->prev_utime));
3410
3411 *ut = sig->prev_utime;
3412 *st = sig->prev_stime;
3413 }
3414 #endif
3415
3416 /*
3417 * This function gets called by the timer code, with HZ frequency.
3418 * We call it with interrupts disabled.
3419 *
3420 * It also gets called by the fork code, when changing the parent's
3421 * timeslices.
3422 */
3423 void scheduler_tick(void)
3424 {
3425 int cpu = smp_processor_id();
3426 struct rq *rq = cpu_rq(cpu);
3427 struct task_struct *curr = rq->curr;
3428
3429 sched_clock_tick();
3430
3431 raw_spin_lock(&rq->lock);
3432 update_rq_clock(rq);
3433 update_cpu_load(rq);
3434 curr->sched_class->task_tick(rq, curr, 0);
3435 raw_spin_unlock(&rq->lock);
3436
3437 perf_event_task_tick(curr);
3438
3439 #ifdef CONFIG_SMP
3440 rq->idle_at_tick = idle_cpu(cpu);
3441 trigger_load_balance(rq, cpu);
3442 #endif
3443 }
3444
3445 notrace unsigned long get_parent_ip(unsigned long addr)
3446 {
3447 if (in_lock_functions(addr)) {
3448 addr = CALLER_ADDR2;
3449 if (in_lock_functions(addr))
3450 addr = CALLER_ADDR3;
3451 }
3452 return addr;
3453 }
3454
3455 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3456 defined(CONFIG_PREEMPT_TRACER))
3457
3458 void __kprobes add_preempt_count(int val)
3459 {
3460 #ifdef CONFIG_DEBUG_PREEMPT
3461 /*
3462 * Underflow?
3463 */
3464 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3465 return;
3466 #endif
3467 preempt_count() += val;
3468 #ifdef CONFIG_DEBUG_PREEMPT
3469 /*
3470 * Spinlock count overflowing soon?
3471 */
3472 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3473 PREEMPT_MASK - 10);
3474 #endif
3475 if (preempt_count() == val)
3476 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3477 }
3478 EXPORT_SYMBOL(add_preempt_count);
3479
3480 void __kprobes sub_preempt_count(int val)
3481 {
3482 #ifdef CONFIG_DEBUG_PREEMPT
3483 /*
3484 * Underflow?
3485 */
3486 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3487 return;
3488 /*
3489 * Is the spinlock portion underflowing?
3490 */
3491 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3492 !(preempt_count() & PREEMPT_MASK)))
3493 return;
3494 #endif
3495
3496 if (preempt_count() == val)
3497 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3498 preempt_count() -= val;
3499 }
3500 EXPORT_SYMBOL(sub_preempt_count);
3501
3502 #endif
3503
3504 /*
3505 * Print scheduling while atomic bug:
3506 */
3507 static noinline void __schedule_bug(struct task_struct *prev)
3508 {
3509 struct pt_regs *regs = get_irq_regs();
3510
3511 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3512 prev->comm, prev->pid, preempt_count());
3513
3514 debug_show_held_locks(prev);
3515 print_modules();
3516 if (irqs_disabled())
3517 print_irqtrace_events(prev);
3518
3519 if (regs)
3520 show_regs(regs);
3521 else
3522 dump_stack();
3523 }
3524
3525 /*
3526 * Various schedule()-time debugging checks and statistics:
3527 */
3528 static inline void schedule_debug(struct task_struct *prev)
3529 {
3530 /*
3531 * Test if we are atomic. Since do_exit() needs to call into
3532 * schedule() atomically, we ignore that path for now.
3533 * Otherwise, whine if we are scheduling when we should not be.
3534 */
3535 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3536 __schedule_bug(prev);
3537
3538 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3539
3540 schedstat_inc(this_rq(), sched_count);
3541 #ifdef CONFIG_SCHEDSTATS
3542 if (unlikely(prev->lock_depth >= 0)) {
3543 schedstat_inc(this_rq(), bkl_count);
3544 schedstat_inc(prev, sched_info.bkl_count);
3545 }
3546 #endif
3547 }
3548
3549 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3550 {
3551 if (prev->se.on_rq)
3552 update_rq_clock(rq);
3553 rq->skip_clock_update = 0;
3554 prev->sched_class->put_prev_task(rq, prev);
3555 }
3556
3557 /*
3558 * Pick up the highest-prio task:
3559 */
3560 static inline struct task_struct *
3561 pick_next_task(struct rq *rq)
3562 {
3563 const struct sched_class *class;
3564 struct task_struct *p;
3565
3566 /*
3567 * Optimization: we know that if all tasks are in
3568 * the fair class we can call that function directly:
3569 */
3570 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3571 p = fair_sched_class.pick_next_task(rq);
3572 if (likely(p))
3573 return p;
3574 }
3575
3576 class = sched_class_highest;
3577 for ( ; ; ) {
3578 p = class->pick_next_task(rq);
3579 if (p)
3580 return p;
3581 /*
3582 * Will never be NULL as the idle class always
3583 * returns a non-NULL p:
3584 */
3585 class = class->next;
3586 }
3587 }
3588
3589 /*
3590 * schedule() is the main scheduler function.
3591 */
3592 asmlinkage void __sched schedule(void)
3593 {
3594 struct task_struct *prev, *next;
3595 unsigned long *switch_count;
3596 struct rq *rq;
3597 int cpu;
3598
3599 need_resched:
3600 preempt_disable();
3601 cpu = smp_processor_id();
3602 rq = cpu_rq(cpu);
3603 rcu_sched_qs(cpu);
3604 prev = rq->curr;
3605 switch_count = &prev->nivcsw;
3606
3607 release_kernel_lock(prev);
3608 need_resched_nonpreemptible:
3609
3610 schedule_debug(prev);
3611
3612 if (sched_feat(HRTICK))
3613 hrtick_clear(rq);
3614
3615 raw_spin_lock_irq(&rq->lock);
3616 clear_tsk_need_resched(prev);
3617
3618 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3619 if (unlikely(signal_pending_state(prev->state, prev)))
3620 prev->state = TASK_RUNNING;
3621 else
3622 deactivate_task(rq, prev, 1);
3623 switch_count = &prev->nvcsw;
3624 }
3625
3626 pre_schedule(rq, prev);
3627
3628 if (unlikely(!rq->nr_running))
3629 idle_balance(cpu, rq);
3630
3631 put_prev_task(rq, prev);
3632 next = pick_next_task(rq);
3633
3634 if (likely(prev != next)) {
3635 sched_info_switch(prev, next);
3636 perf_event_task_sched_out(prev, next);
3637
3638 rq->nr_switches++;
3639 rq->curr = next;
3640 ++*switch_count;
3641
3642 context_switch(rq, prev, next); /* unlocks the rq */
3643 /*
3644 * the context switch might have flipped the stack from under
3645 * us, hence refresh the local variables.
3646 */
3647 cpu = smp_processor_id();
3648 rq = cpu_rq(cpu);
3649 } else
3650 raw_spin_unlock_irq(&rq->lock);
3651
3652 post_schedule(rq);
3653
3654 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3655 prev = rq->curr;
3656 switch_count = &prev->nivcsw;
3657 goto need_resched_nonpreemptible;
3658 }
3659
3660 preempt_enable_no_resched();
3661 if (need_resched())
3662 goto need_resched;
3663 }
3664 EXPORT_SYMBOL(schedule);
3665
3666 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3667 /*
3668 * Look out! "owner" is an entirely speculative pointer
3669 * access and not reliable.
3670 */
3671 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3672 {
3673 unsigned int cpu;
3674 struct rq *rq;
3675
3676 if (!sched_feat(OWNER_SPIN))
3677 return 0;
3678
3679 #ifdef CONFIG_DEBUG_PAGEALLOC
3680 /*
3681 * Need to access the cpu field knowing that
3682 * DEBUG_PAGEALLOC could have unmapped it if
3683 * the mutex owner just released it and exited.
3684 */
3685 if (probe_kernel_address(&owner->cpu, cpu))
3686 goto out;
3687 #else
3688 cpu = owner->cpu;
3689 #endif
3690
3691 /*
3692 * Even if the access succeeded (likely case),
3693 * the cpu field may no longer be valid.
3694 */
3695 if (cpu >= nr_cpumask_bits)
3696 goto out;
3697
3698 /*
3699 * We need to validate that we can do a
3700 * get_cpu() and that we have the percpu area.
3701 */
3702 if (!cpu_online(cpu))
3703 goto out;
3704
3705 rq = cpu_rq(cpu);
3706
3707 for (;;) {
3708 /*
3709 * Owner changed, break to re-assess state.
3710 */
3711 if (lock->owner != owner)
3712 break;
3713
3714 /*
3715 * Is that owner really running on that cpu?
3716 */
3717 if (task_thread_info(rq->curr) != owner || need_resched())
3718 return 0;
3719
3720 cpu_relax();
3721 }
3722 out:
3723 return 1;
3724 }
3725 #endif
3726
3727 #ifdef CONFIG_PREEMPT
3728 /*
3729 * this is the entry point to schedule() from in-kernel preemption
3730 * off of preempt_enable. Kernel preemptions off return from interrupt
3731 * occur there and call schedule directly.
3732 */
3733 asmlinkage void __sched preempt_schedule(void)
3734 {
3735 struct thread_info *ti = current_thread_info();
3736
3737 /*
3738 * If there is a non-zero preempt_count or interrupts are disabled,
3739 * we do not want to preempt the current task. Just return..
3740 */
3741 if (likely(ti->preempt_count || irqs_disabled()))
3742 return;
3743
3744 do {
3745 add_preempt_count(PREEMPT_ACTIVE);
3746 schedule();
3747 sub_preempt_count(PREEMPT_ACTIVE);
3748
3749 /*
3750 * Check again in case we missed a preemption opportunity
3751 * between schedule and now.
3752 */
3753 barrier();
3754 } while (need_resched());
3755 }
3756 EXPORT_SYMBOL(preempt_schedule);
3757
3758 /*
3759 * this is the entry point to schedule() from kernel preemption
3760 * off of irq context.
3761 * Note, that this is called and return with irqs disabled. This will
3762 * protect us against recursive calling from irq.
3763 */
3764 asmlinkage void __sched preempt_schedule_irq(void)
3765 {
3766 struct thread_info *ti = current_thread_info();
3767
3768 /* Catch callers which need to be fixed */
3769 BUG_ON(ti->preempt_count || !irqs_disabled());
3770
3771 do {
3772 add_preempt_count(PREEMPT_ACTIVE);
3773 local_irq_enable();
3774 schedule();
3775 local_irq_disable();
3776 sub_preempt_count(PREEMPT_ACTIVE);
3777
3778 /*
3779 * Check again in case we missed a preemption opportunity
3780 * between schedule and now.
3781 */
3782 barrier();
3783 } while (need_resched());
3784 }
3785
3786 #endif /* CONFIG_PREEMPT */
3787
3788 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3789 void *key)
3790 {
3791 return try_to_wake_up(curr->private, mode, wake_flags);
3792 }
3793 EXPORT_SYMBOL(default_wake_function);
3794
3795 /*
3796 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3797 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3798 * number) then we wake all the non-exclusive tasks and one exclusive task.
3799 *
3800 * There are circumstances in which we can try to wake a task which has already
3801 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3802 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3803 */
3804 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3805 int nr_exclusive, int wake_flags, void *key)
3806 {
3807 wait_queue_t *curr, *next;
3808
3809 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3810 unsigned flags = curr->flags;
3811
3812 if (curr->func(curr, mode, wake_flags, key) &&
3813 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3814 break;
3815 }
3816 }
3817
3818 /**
3819 * __wake_up - wake up threads blocked on a waitqueue.
3820 * @q: the waitqueue
3821 * @mode: which threads
3822 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3823 * @key: is directly passed to the wakeup function
3824 *
3825 * It may be assumed that this function implies a write memory barrier before
3826 * changing the task state if and only if any tasks are woken up.
3827 */
3828 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3829 int nr_exclusive, void *key)
3830 {
3831 unsigned long flags;
3832
3833 spin_lock_irqsave(&q->lock, flags);
3834 __wake_up_common(q, mode, nr_exclusive, 0, key);
3835 spin_unlock_irqrestore(&q->lock, flags);
3836 }
3837 EXPORT_SYMBOL(__wake_up);
3838
3839 /*
3840 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3841 */
3842 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3843 {
3844 __wake_up_common(q, mode, 1, 0, NULL);
3845 }
3846
3847 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3848 {
3849 __wake_up_common(q, mode, 1, 0, key);
3850 }
3851
3852 /**
3853 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3854 * @q: the waitqueue
3855 * @mode: which threads
3856 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3857 * @key: opaque value to be passed to wakeup targets
3858 *
3859 * The sync wakeup differs that the waker knows that it will schedule
3860 * away soon, so while the target thread will be woken up, it will not
3861 * be migrated to another CPU - ie. the two threads are 'synchronized'
3862 * with each other. This can prevent needless bouncing between CPUs.
3863 *
3864 * On UP it can prevent extra preemption.
3865 *
3866 * It may be assumed that this function implies a write memory barrier before
3867 * changing the task state if and only if any tasks are woken up.
3868 */
3869 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3870 int nr_exclusive, void *key)
3871 {
3872 unsigned long flags;
3873 int wake_flags = WF_SYNC;
3874
3875 if (unlikely(!q))
3876 return;
3877
3878 if (unlikely(!nr_exclusive))
3879 wake_flags = 0;
3880
3881 spin_lock_irqsave(&q->lock, flags);
3882 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3883 spin_unlock_irqrestore(&q->lock, flags);
3884 }
3885 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3886
3887 /*
3888 * __wake_up_sync - see __wake_up_sync_key()
3889 */
3890 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3891 {
3892 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3893 }
3894 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3895
3896 /**
3897 * complete: - signals a single thread waiting on this completion
3898 * @x: holds the state of this particular completion
3899 *
3900 * This will wake up a single thread waiting on this completion. Threads will be
3901 * awakened in the same order in which they were queued.
3902 *
3903 * See also complete_all(), wait_for_completion() and related routines.
3904 *
3905 * It may be assumed that this function implies a write memory barrier before
3906 * changing the task state if and only if any tasks are woken up.
3907 */
3908 void complete(struct completion *x)
3909 {
3910 unsigned long flags;
3911
3912 spin_lock_irqsave(&x->wait.lock, flags);
3913 x->done++;
3914 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3915 spin_unlock_irqrestore(&x->wait.lock, flags);
3916 }
3917 EXPORT_SYMBOL(complete);
3918
3919 /**
3920 * complete_all: - signals all threads waiting on this completion
3921 * @x: holds the state of this particular completion
3922 *
3923 * This will wake up all threads waiting on this particular completion event.
3924 *
3925 * It may be assumed that this function implies a write memory barrier before
3926 * changing the task state if and only if any tasks are woken up.
3927 */
3928 void complete_all(struct completion *x)
3929 {
3930 unsigned long flags;
3931
3932 spin_lock_irqsave(&x->wait.lock, flags);
3933 x->done += UINT_MAX/2;
3934 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3935 spin_unlock_irqrestore(&x->wait.lock, flags);
3936 }
3937 EXPORT_SYMBOL(complete_all);
3938
3939 static inline long __sched
3940 do_wait_for_common(struct completion *x, long timeout, int state)
3941 {
3942 if (!x->done) {
3943 DECLARE_WAITQUEUE(wait, current);
3944
3945 wait.flags |= WQ_FLAG_EXCLUSIVE;
3946 __add_wait_queue_tail(&x->wait, &wait);
3947 do {
3948 if (signal_pending_state(state, current)) {
3949 timeout = -ERESTARTSYS;
3950 break;
3951 }
3952 __set_current_state(state);
3953 spin_unlock_irq(&x->wait.lock);
3954 timeout = schedule_timeout(timeout);
3955 spin_lock_irq(&x->wait.lock);
3956 } while (!x->done && timeout);
3957 __remove_wait_queue(&x->wait, &wait);
3958 if (!x->done)
3959 return timeout;
3960 }
3961 x->done--;
3962 return timeout ?: 1;
3963 }
3964
3965 static long __sched
3966 wait_for_common(struct completion *x, long timeout, int state)
3967 {
3968 might_sleep();
3969
3970 spin_lock_irq(&x->wait.lock);
3971 timeout = do_wait_for_common(x, timeout, state);
3972 spin_unlock_irq(&x->wait.lock);
3973 return timeout;
3974 }
3975
3976 /**
3977 * wait_for_completion: - waits for completion of a task
3978 * @x: holds the state of this particular completion
3979 *
3980 * This waits to be signaled for completion of a specific task. It is NOT
3981 * interruptible and there is no timeout.
3982 *
3983 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3984 * and interrupt capability. Also see complete().
3985 */
3986 void __sched wait_for_completion(struct completion *x)
3987 {
3988 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3989 }
3990 EXPORT_SYMBOL(wait_for_completion);
3991
3992 /**
3993 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3994 * @x: holds the state of this particular completion
3995 * @timeout: timeout value in jiffies
3996 *
3997 * This waits for either a completion of a specific task to be signaled or for a
3998 * specified timeout to expire. The timeout is in jiffies. It is not
3999 * interruptible.
4000 */
4001 unsigned long __sched
4002 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4003 {
4004 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4005 }
4006 EXPORT_SYMBOL(wait_for_completion_timeout);
4007
4008 /**
4009 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4010 * @x: holds the state of this particular completion
4011 *
4012 * This waits for completion of a specific task to be signaled. It is
4013 * interruptible.
4014 */
4015 int __sched wait_for_completion_interruptible(struct completion *x)
4016 {
4017 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4018 if (t == -ERESTARTSYS)
4019 return t;
4020 return 0;
4021 }
4022 EXPORT_SYMBOL(wait_for_completion_interruptible);
4023
4024 /**
4025 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4026 * @x: holds the state of this particular completion
4027 * @timeout: timeout value in jiffies
4028 *
4029 * This waits for either a completion of a specific task to be signaled or for a
4030 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4031 */
4032 unsigned long __sched
4033 wait_for_completion_interruptible_timeout(struct completion *x,
4034 unsigned long timeout)
4035 {
4036 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4037 }
4038 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4039
4040 /**
4041 * wait_for_completion_killable: - waits for completion of a task (killable)
4042 * @x: holds the state of this particular completion
4043 *
4044 * This waits to be signaled for completion of a specific task. It can be
4045 * interrupted by a kill signal.
4046 */
4047 int __sched wait_for_completion_killable(struct completion *x)
4048 {
4049 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4050 if (t == -ERESTARTSYS)
4051 return t;
4052 return 0;
4053 }
4054 EXPORT_SYMBOL(wait_for_completion_killable);
4055
4056 /**
4057 * try_wait_for_completion - try to decrement a completion without blocking
4058 * @x: completion structure
4059 *
4060 * Returns: 0 if a decrement cannot be done without blocking
4061 * 1 if a decrement succeeded.
4062 *
4063 * If a completion is being used as a counting completion,
4064 * attempt to decrement the counter without blocking. This
4065 * enables us to avoid waiting if the resource the completion
4066 * is protecting is not available.
4067 */
4068 bool try_wait_for_completion(struct completion *x)
4069 {
4070 unsigned long flags;
4071 int ret = 1;
4072
4073 spin_lock_irqsave(&x->wait.lock, flags);
4074 if (!x->done)
4075 ret = 0;
4076 else
4077 x->done--;
4078 spin_unlock_irqrestore(&x->wait.lock, flags);
4079 return ret;
4080 }
4081 EXPORT_SYMBOL(try_wait_for_completion);
4082
4083 /**
4084 * completion_done - Test to see if a completion has any waiters
4085 * @x: completion structure
4086 *
4087 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4088 * 1 if there are no waiters.
4089 *
4090 */
4091 bool completion_done(struct completion *x)
4092 {
4093 unsigned long flags;
4094 int ret = 1;
4095
4096 spin_lock_irqsave(&x->wait.lock, flags);
4097 if (!x->done)
4098 ret = 0;
4099 spin_unlock_irqrestore(&x->wait.lock, flags);
4100 return ret;
4101 }
4102 EXPORT_SYMBOL(completion_done);
4103
4104 static long __sched
4105 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4106 {
4107 unsigned long flags;
4108 wait_queue_t wait;
4109
4110 init_waitqueue_entry(&wait, current);
4111
4112 __set_current_state(state);
4113
4114 spin_lock_irqsave(&q->lock, flags);
4115 __add_wait_queue(q, &wait);
4116 spin_unlock(&q->lock);
4117 timeout = schedule_timeout(timeout);
4118 spin_lock_irq(&q->lock);
4119 __remove_wait_queue(q, &wait);
4120 spin_unlock_irqrestore(&q->lock, flags);
4121
4122 return timeout;
4123 }
4124
4125 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4126 {
4127 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4128 }
4129 EXPORT_SYMBOL(interruptible_sleep_on);
4130
4131 long __sched
4132 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4133 {
4134 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4135 }
4136 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4137
4138 void __sched sleep_on(wait_queue_head_t *q)
4139 {
4140 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4141 }
4142 EXPORT_SYMBOL(sleep_on);
4143
4144 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4145 {
4146 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4147 }
4148 EXPORT_SYMBOL(sleep_on_timeout);
4149
4150 #ifdef CONFIG_RT_MUTEXES
4151
4152 /*
4153 * rt_mutex_setprio - set the current priority of a task
4154 * @p: task
4155 * @prio: prio value (kernel-internal form)
4156 *
4157 * This function changes the 'effective' priority of a task. It does
4158 * not touch ->normal_prio like __setscheduler().
4159 *
4160 * Used by the rt_mutex code to implement priority inheritance logic.
4161 */
4162 void rt_mutex_setprio(struct task_struct *p, int prio)
4163 {
4164 unsigned long flags;
4165 int oldprio, on_rq, running;
4166 struct rq *rq;
4167 const struct sched_class *prev_class;
4168
4169 BUG_ON(prio < 0 || prio > MAX_PRIO);
4170
4171 rq = task_rq_lock(p, &flags);
4172
4173 oldprio = p->prio;
4174 prev_class = p->sched_class;
4175 on_rq = p->se.on_rq;
4176 running = task_current(rq, p);
4177 if (on_rq)
4178 dequeue_task(rq, p, 0);
4179 if (running)
4180 p->sched_class->put_prev_task(rq, p);
4181
4182 if (rt_prio(prio))
4183 p->sched_class = &rt_sched_class;
4184 else
4185 p->sched_class = &fair_sched_class;
4186
4187 p->prio = prio;
4188
4189 if (running)
4190 p->sched_class->set_curr_task(rq);
4191 if (on_rq) {
4192 enqueue_task(rq, p, 0, oldprio < prio);
4193
4194 check_class_changed(rq, p, prev_class, oldprio, running);
4195 }
4196 task_rq_unlock(rq, &flags);
4197 }
4198
4199 #endif
4200
4201 void set_user_nice(struct task_struct *p, long nice)
4202 {
4203 int old_prio, delta, on_rq;
4204 unsigned long flags;
4205 struct rq *rq;
4206
4207 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4208 return;
4209 /*
4210 * We have to be careful, if called from sys_setpriority(),
4211 * the task might be in the middle of scheduling on another CPU.
4212 */
4213 rq = task_rq_lock(p, &flags);
4214 /*
4215 * The RT priorities are set via sched_setscheduler(), but we still
4216 * allow the 'normal' nice value to be set - but as expected
4217 * it wont have any effect on scheduling until the task is
4218 * SCHED_FIFO/SCHED_RR:
4219 */
4220 if (task_has_rt_policy(p)) {
4221 p->static_prio = NICE_TO_PRIO(nice);
4222 goto out_unlock;
4223 }
4224 on_rq = p->se.on_rq;
4225 if (on_rq)
4226 dequeue_task(rq, p, 0);
4227
4228 p->static_prio = NICE_TO_PRIO(nice);
4229 set_load_weight(p);
4230 old_prio = p->prio;
4231 p->prio = effective_prio(p);
4232 delta = p->prio - old_prio;
4233
4234 if (on_rq) {
4235 enqueue_task(rq, p, 0, false);
4236 /*
4237 * If the task increased its priority or is running and
4238 * lowered its priority, then reschedule its CPU:
4239 */
4240 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4241 resched_task(rq->curr);
4242 }
4243 out_unlock:
4244 task_rq_unlock(rq, &flags);
4245 }
4246 EXPORT_SYMBOL(set_user_nice);
4247
4248 /*
4249 * can_nice - check if a task can reduce its nice value
4250 * @p: task
4251 * @nice: nice value
4252 */
4253 int can_nice(const struct task_struct *p, const int nice)
4254 {
4255 /* convert nice value [19,-20] to rlimit style value [1,40] */
4256 int nice_rlim = 20 - nice;
4257
4258 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4259 capable(CAP_SYS_NICE));
4260 }
4261
4262 #ifdef __ARCH_WANT_SYS_NICE
4263
4264 /*
4265 * sys_nice - change the priority of the current process.
4266 * @increment: priority increment
4267 *
4268 * sys_setpriority is a more generic, but much slower function that
4269 * does similar things.
4270 */
4271 SYSCALL_DEFINE1(nice, int, increment)
4272 {
4273 long nice, retval;
4274
4275 /*
4276 * Setpriority might change our priority at the same moment.
4277 * We don't have to worry. Conceptually one call occurs first
4278 * and we have a single winner.
4279 */
4280 if (increment < -40)
4281 increment = -40;
4282 if (increment > 40)
4283 increment = 40;
4284
4285 nice = TASK_NICE(current) + increment;
4286 if (nice < -20)
4287 nice = -20;
4288 if (nice > 19)
4289 nice = 19;
4290
4291 if (increment < 0 && !can_nice(current, nice))
4292 return -EPERM;
4293
4294 retval = security_task_setnice(current, nice);
4295 if (retval)
4296 return retval;
4297
4298 set_user_nice(current, nice);
4299 return 0;
4300 }
4301
4302 #endif
4303
4304 /**
4305 * task_prio - return the priority value of a given task.
4306 * @p: the task in question.
4307 *
4308 * This is the priority value as seen by users in /proc.
4309 * RT tasks are offset by -200. Normal tasks are centered
4310 * around 0, value goes from -16 to +15.
4311 */
4312 int task_prio(const struct task_struct *p)
4313 {
4314 return p->prio - MAX_RT_PRIO;
4315 }
4316
4317 /**
4318 * task_nice - return the nice value of a given task.
4319 * @p: the task in question.
4320 */
4321 int task_nice(const struct task_struct *p)
4322 {
4323 return TASK_NICE(p);
4324 }
4325 EXPORT_SYMBOL(task_nice);
4326
4327 /**
4328 * idle_cpu - is a given cpu idle currently?
4329 * @cpu: the processor in question.
4330 */
4331 int idle_cpu(int cpu)
4332 {
4333 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4334 }
4335
4336 /**
4337 * idle_task - return the idle task for a given cpu.
4338 * @cpu: the processor in question.
4339 */
4340 struct task_struct *idle_task(int cpu)
4341 {
4342 return cpu_rq(cpu)->idle;
4343 }
4344
4345 /**
4346 * find_process_by_pid - find a process with a matching PID value.
4347 * @pid: the pid in question.
4348 */
4349 static struct task_struct *find_process_by_pid(pid_t pid)
4350 {
4351 return pid ? find_task_by_vpid(pid) : current;
4352 }
4353
4354 /* Actually do priority change: must hold rq lock. */
4355 static void
4356 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4357 {
4358 BUG_ON(p->se.on_rq);
4359
4360 p->policy = policy;
4361 p->rt_priority = prio;
4362 p->normal_prio = normal_prio(p);
4363 /* we are holding p->pi_lock already */
4364 p->prio = rt_mutex_getprio(p);
4365 if (rt_prio(p->prio))
4366 p->sched_class = &rt_sched_class;
4367 else
4368 p->sched_class = &fair_sched_class;
4369 set_load_weight(p);
4370 }
4371
4372 /*
4373 * check the target process has a UID that matches the current process's
4374 */
4375 static bool check_same_owner(struct task_struct *p)
4376 {
4377 const struct cred *cred = current_cred(), *pcred;
4378 bool match;
4379
4380 rcu_read_lock();
4381 pcred = __task_cred(p);
4382 match = (cred->euid == pcred->euid ||
4383 cred->euid == pcred->uid);
4384 rcu_read_unlock();
4385 return match;
4386 }
4387
4388 static int __sched_setscheduler(struct task_struct *p, int policy,
4389 struct sched_param *param, bool user)
4390 {
4391 int retval, oldprio, oldpolicy = -1, on_rq, running;
4392 unsigned long flags;
4393 const struct sched_class *prev_class;
4394 struct rq *rq;
4395 int reset_on_fork;
4396
4397 /* may grab non-irq protected spin_locks */
4398 BUG_ON(in_interrupt());
4399 recheck:
4400 /* double check policy once rq lock held */
4401 if (policy < 0) {
4402 reset_on_fork = p->sched_reset_on_fork;
4403 policy = oldpolicy = p->policy;
4404 } else {
4405 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4406 policy &= ~SCHED_RESET_ON_FORK;
4407
4408 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4409 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4410 policy != SCHED_IDLE)
4411 return -EINVAL;
4412 }
4413
4414 /*
4415 * Valid priorities for SCHED_FIFO and SCHED_RR are
4416 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4417 * SCHED_BATCH and SCHED_IDLE is 0.
4418 */
4419 if (param->sched_priority < 0 ||
4420 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4421 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4422 return -EINVAL;
4423 if (rt_policy(policy) != (param->sched_priority != 0))
4424 return -EINVAL;
4425
4426 /*
4427 * Allow unprivileged RT tasks to decrease priority:
4428 */
4429 if (user && !capable(CAP_SYS_NICE)) {
4430 if (rt_policy(policy)) {
4431 unsigned long rlim_rtprio;
4432
4433 if (!lock_task_sighand(p, &flags))
4434 return -ESRCH;
4435 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4436 unlock_task_sighand(p, &flags);
4437
4438 /* can't set/change the rt policy */
4439 if (policy != p->policy && !rlim_rtprio)
4440 return -EPERM;
4441
4442 /* can't increase priority */
4443 if (param->sched_priority > p->rt_priority &&
4444 param->sched_priority > rlim_rtprio)
4445 return -EPERM;
4446 }
4447 /*
4448 * Like positive nice levels, dont allow tasks to
4449 * move out of SCHED_IDLE either:
4450 */
4451 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4452 return -EPERM;
4453
4454 /* can't change other user's priorities */
4455 if (!check_same_owner(p))
4456 return -EPERM;
4457
4458 /* Normal users shall not reset the sched_reset_on_fork flag */
4459 if (p->sched_reset_on_fork && !reset_on_fork)
4460 return -EPERM;
4461 }
4462
4463 if (user) {
4464 #ifdef CONFIG_RT_GROUP_SCHED
4465 /*
4466 * Do not allow realtime tasks into groups that have no runtime
4467 * assigned.
4468 */
4469 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4470 task_group(p)->rt_bandwidth.rt_runtime == 0)
4471 return -EPERM;
4472 #endif
4473
4474 retval = security_task_setscheduler(p, policy, param);
4475 if (retval)
4476 return retval;
4477 }
4478
4479 /*
4480 * make sure no PI-waiters arrive (or leave) while we are
4481 * changing the priority of the task:
4482 */
4483 raw_spin_lock_irqsave(&p->pi_lock, flags);
4484 /*
4485 * To be able to change p->policy safely, the apropriate
4486 * runqueue lock must be held.
4487 */
4488 rq = __task_rq_lock(p);
4489 /* recheck policy now with rq lock held */
4490 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4491 policy = oldpolicy = -1;
4492 __task_rq_unlock(rq);
4493 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4494 goto recheck;
4495 }
4496 on_rq = p->se.on_rq;
4497 running = task_current(rq, p);
4498 if (on_rq)
4499 deactivate_task(rq, p, 0);
4500 if (running)
4501 p->sched_class->put_prev_task(rq, p);
4502
4503 p->sched_reset_on_fork = reset_on_fork;
4504
4505 oldprio = p->prio;
4506 prev_class = p->sched_class;
4507 __setscheduler(rq, p, policy, param->sched_priority);
4508
4509 if (running)
4510 p->sched_class->set_curr_task(rq);
4511 if (on_rq) {
4512 activate_task(rq, p, 0);
4513
4514 check_class_changed(rq, p, prev_class, oldprio, running);
4515 }
4516 __task_rq_unlock(rq);
4517 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4518
4519 rt_mutex_adjust_pi(p);
4520
4521 return 0;
4522 }
4523
4524 /**
4525 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4526 * @p: the task in question.
4527 * @policy: new policy.
4528 * @param: structure containing the new RT priority.
4529 *
4530 * NOTE that the task may be already dead.
4531 */
4532 int sched_setscheduler(struct task_struct *p, int policy,
4533 struct sched_param *param)
4534 {
4535 return __sched_setscheduler(p, policy, param, true);
4536 }
4537 EXPORT_SYMBOL_GPL(sched_setscheduler);
4538
4539 /**
4540 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4541 * @p: the task in question.
4542 * @policy: new policy.
4543 * @param: structure containing the new RT priority.
4544 *
4545 * Just like sched_setscheduler, only don't bother checking if the
4546 * current context has permission. For example, this is needed in
4547 * stop_machine(): we create temporary high priority worker threads,
4548 * but our caller might not have that capability.
4549 */
4550 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4551 struct sched_param *param)
4552 {
4553 return __sched_setscheduler(p, policy, param, false);
4554 }
4555
4556 static int
4557 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4558 {
4559 struct sched_param lparam;
4560 struct task_struct *p;
4561 int retval;
4562
4563 if (!param || pid < 0)
4564 return -EINVAL;
4565 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4566 return -EFAULT;
4567
4568 rcu_read_lock();
4569 retval = -ESRCH;
4570 p = find_process_by_pid(pid);
4571 if (p != NULL)
4572 retval = sched_setscheduler(p, policy, &lparam);
4573 rcu_read_unlock();
4574
4575 return retval;
4576 }
4577
4578 /**
4579 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4580 * @pid: the pid in question.
4581 * @policy: new policy.
4582 * @param: structure containing the new RT priority.
4583 */
4584 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4585 struct sched_param __user *, param)
4586 {
4587 /* negative values for policy are not valid */
4588 if (policy < 0)
4589 return -EINVAL;
4590
4591 return do_sched_setscheduler(pid, policy, param);
4592 }
4593
4594 /**
4595 * sys_sched_setparam - set/change the RT priority of a thread
4596 * @pid: the pid in question.
4597 * @param: structure containing the new RT priority.
4598 */
4599 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4600 {
4601 return do_sched_setscheduler(pid, -1, param);
4602 }
4603
4604 /**
4605 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4606 * @pid: the pid in question.
4607 */
4608 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4609 {
4610 struct task_struct *p;
4611 int retval;
4612
4613 if (pid < 0)
4614 return -EINVAL;
4615
4616 retval = -ESRCH;
4617 rcu_read_lock();
4618 p = find_process_by_pid(pid);
4619 if (p) {
4620 retval = security_task_getscheduler(p);
4621 if (!retval)
4622 retval = p->policy
4623 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4624 }
4625 rcu_read_unlock();
4626 return retval;
4627 }
4628
4629 /**
4630 * sys_sched_getparam - get the RT priority of a thread
4631 * @pid: the pid in question.
4632 * @param: structure containing the RT priority.
4633 */
4634 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4635 {
4636 struct sched_param lp;
4637 struct task_struct *p;
4638 int retval;
4639
4640 if (!param || pid < 0)
4641 return -EINVAL;
4642
4643 rcu_read_lock();
4644 p = find_process_by_pid(pid);
4645 retval = -ESRCH;
4646 if (!p)
4647 goto out_unlock;
4648
4649 retval = security_task_getscheduler(p);
4650 if (retval)
4651 goto out_unlock;
4652
4653 lp.sched_priority = p->rt_priority;
4654 rcu_read_unlock();
4655
4656 /*
4657 * This one might sleep, we cannot do it with a spinlock held ...
4658 */
4659 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4660
4661 return retval;
4662
4663 out_unlock:
4664 rcu_read_unlock();
4665 return retval;
4666 }
4667
4668 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4669 {
4670 cpumask_var_t cpus_allowed, new_mask;
4671 struct task_struct *p;
4672 int retval;
4673
4674 get_online_cpus();
4675 rcu_read_lock();
4676
4677 p = find_process_by_pid(pid);
4678 if (!p) {
4679 rcu_read_unlock();
4680 put_online_cpus();
4681 return -ESRCH;
4682 }
4683
4684 /* Prevent p going away */
4685 get_task_struct(p);
4686 rcu_read_unlock();
4687
4688 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4689 retval = -ENOMEM;
4690 goto out_put_task;
4691 }
4692 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4693 retval = -ENOMEM;
4694 goto out_free_cpus_allowed;
4695 }
4696 retval = -EPERM;
4697 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4698 goto out_unlock;
4699
4700 retval = security_task_setscheduler(p, 0, NULL);
4701 if (retval)
4702 goto out_unlock;
4703
4704 cpuset_cpus_allowed(p, cpus_allowed);
4705 cpumask_and(new_mask, in_mask, cpus_allowed);
4706 again:
4707 retval = set_cpus_allowed_ptr(p, new_mask);
4708
4709 if (!retval) {
4710 cpuset_cpus_allowed(p, cpus_allowed);
4711 if (!cpumask_subset(new_mask, cpus_allowed)) {
4712 /*
4713 * We must have raced with a concurrent cpuset
4714 * update. Just reset the cpus_allowed to the
4715 * cpuset's cpus_allowed
4716 */
4717 cpumask_copy(new_mask, cpus_allowed);
4718 goto again;
4719 }
4720 }
4721 out_unlock:
4722 free_cpumask_var(new_mask);
4723 out_free_cpus_allowed:
4724 free_cpumask_var(cpus_allowed);
4725 out_put_task:
4726 put_task_struct(p);
4727 put_online_cpus();
4728 return retval;
4729 }
4730
4731 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4732 struct cpumask *new_mask)
4733 {
4734 if (len < cpumask_size())
4735 cpumask_clear(new_mask);
4736 else if (len > cpumask_size())
4737 len = cpumask_size();
4738
4739 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4740 }
4741
4742 /**
4743 * sys_sched_setaffinity - set the cpu affinity of a process
4744 * @pid: pid of the process
4745 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4746 * @user_mask_ptr: user-space pointer to the new cpu mask
4747 */
4748 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4749 unsigned long __user *, user_mask_ptr)
4750 {
4751 cpumask_var_t new_mask;
4752 int retval;
4753
4754 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4755 return -ENOMEM;
4756
4757 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4758 if (retval == 0)
4759 retval = sched_setaffinity(pid, new_mask);
4760 free_cpumask_var(new_mask);
4761 return retval;
4762 }
4763
4764 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4765 {
4766 struct task_struct *p;
4767 unsigned long flags;
4768 struct rq *rq;
4769 int retval;
4770
4771 get_online_cpus();
4772 rcu_read_lock();
4773
4774 retval = -ESRCH;
4775 p = find_process_by_pid(pid);
4776 if (!p)
4777 goto out_unlock;
4778
4779 retval = security_task_getscheduler(p);
4780 if (retval)
4781 goto out_unlock;
4782
4783 rq = task_rq_lock(p, &flags);
4784 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4785 task_rq_unlock(rq, &flags);
4786
4787 out_unlock:
4788 rcu_read_unlock();
4789 put_online_cpus();
4790
4791 return retval;
4792 }
4793
4794 /**
4795 * sys_sched_getaffinity - get the cpu affinity of a process
4796 * @pid: pid of the process
4797 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4798 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4799 */
4800 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4801 unsigned long __user *, user_mask_ptr)
4802 {
4803 int ret;
4804 cpumask_var_t mask;
4805
4806 if (len < nr_cpu_ids)
4807 return -EINVAL;
4808 if (len & (sizeof(unsigned long)-1))
4809 return -EINVAL;
4810
4811 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4812 return -ENOMEM;
4813
4814 ret = sched_getaffinity(pid, mask);
4815 if (ret == 0) {
4816 size_t retlen = min_t(size_t, len, cpumask_size());
4817
4818 if (copy_to_user(user_mask_ptr, mask, retlen))
4819 ret = -EFAULT;
4820 else
4821 ret = retlen;
4822 }
4823 free_cpumask_var(mask);
4824
4825 return ret;
4826 }
4827
4828 /**
4829 * sys_sched_yield - yield the current processor to other threads.
4830 *
4831 * This function yields the current CPU to other tasks. If there are no
4832 * other threads running on this CPU then this function will return.
4833 */
4834 SYSCALL_DEFINE0(sched_yield)
4835 {
4836 struct rq *rq = this_rq_lock();
4837
4838 schedstat_inc(rq, yld_count);
4839 current->sched_class->yield_task(rq);
4840
4841 /*
4842 * Since we are going to call schedule() anyway, there's
4843 * no need to preempt or enable interrupts:
4844 */
4845 __release(rq->lock);
4846 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4847 do_raw_spin_unlock(&rq->lock);
4848 preempt_enable_no_resched();
4849
4850 schedule();
4851
4852 return 0;
4853 }
4854
4855 static inline int should_resched(void)
4856 {
4857 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4858 }
4859
4860 static void __cond_resched(void)
4861 {
4862 add_preempt_count(PREEMPT_ACTIVE);
4863 schedule();
4864 sub_preempt_count(PREEMPT_ACTIVE);
4865 }
4866
4867 int __sched _cond_resched(void)
4868 {
4869 if (should_resched()) {
4870 __cond_resched();
4871 return 1;
4872 }
4873 return 0;
4874 }
4875 EXPORT_SYMBOL(_cond_resched);
4876
4877 /*
4878 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4879 * call schedule, and on return reacquire the lock.
4880 *
4881 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4882 * operations here to prevent schedule() from being called twice (once via
4883 * spin_unlock(), once by hand).
4884 */
4885 int __cond_resched_lock(spinlock_t *lock)
4886 {
4887 int resched = should_resched();
4888 int ret = 0;
4889
4890 lockdep_assert_held(lock);
4891
4892 if (spin_needbreak(lock) || resched) {
4893 spin_unlock(lock);
4894 if (resched)
4895 __cond_resched();
4896 else
4897 cpu_relax();
4898 ret = 1;
4899 spin_lock(lock);
4900 }
4901 return ret;
4902 }
4903 EXPORT_SYMBOL(__cond_resched_lock);
4904
4905 int __sched __cond_resched_softirq(void)
4906 {
4907 BUG_ON(!in_softirq());
4908
4909 if (should_resched()) {
4910 local_bh_enable();
4911 __cond_resched();
4912 local_bh_disable();
4913 return 1;
4914 }
4915 return 0;
4916 }
4917 EXPORT_SYMBOL(__cond_resched_softirq);
4918
4919 /**
4920 * yield - yield the current processor to other threads.
4921 *
4922 * This is a shortcut for kernel-space yielding - it marks the
4923 * thread runnable and calls sys_sched_yield().
4924 */
4925 void __sched yield(void)
4926 {
4927 set_current_state(TASK_RUNNING);
4928 sys_sched_yield();
4929 }
4930 EXPORT_SYMBOL(yield);
4931
4932 /*
4933 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4934 * that process accounting knows that this is a task in IO wait state.
4935 */
4936 void __sched io_schedule(void)
4937 {
4938 struct rq *rq = raw_rq();
4939
4940 delayacct_blkio_start();
4941 atomic_inc(&rq->nr_iowait);
4942 current->in_iowait = 1;
4943 schedule();
4944 current->in_iowait = 0;
4945 atomic_dec(&rq->nr_iowait);
4946 delayacct_blkio_end();
4947 }
4948 EXPORT_SYMBOL(io_schedule);
4949
4950 long __sched io_schedule_timeout(long timeout)
4951 {
4952 struct rq *rq = raw_rq();
4953 long ret;
4954
4955 delayacct_blkio_start();
4956 atomic_inc(&rq->nr_iowait);
4957 current->in_iowait = 1;
4958 ret = schedule_timeout(timeout);
4959 current->in_iowait = 0;
4960 atomic_dec(&rq->nr_iowait);
4961 delayacct_blkio_end();
4962 return ret;
4963 }
4964
4965 /**
4966 * sys_sched_get_priority_max - return maximum RT priority.
4967 * @policy: scheduling class.
4968 *
4969 * this syscall returns the maximum rt_priority that can be used
4970 * by a given scheduling class.
4971 */
4972 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4973 {
4974 int ret = -EINVAL;
4975
4976 switch (policy) {
4977 case SCHED_FIFO:
4978 case SCHED_RR:
4979 ret = MAX_USER_RT_PRIO-1;
4980 break;
4981 case SCHED_NORMAL:
4982 case SCHED_BATCH:
4983 case SCHED_IDLE:
4984 ret = 0;
4985 break;
4986 }
4987 return ret;
4988 }
4989
4990 /**
4991 * sys_sched_get_priority_min - return minimum RT priority.
4992 * @policy: scheduling class.
4993 *
4994 * this syscall returns the minimum rt_priority that can be used
4995 * by a given scheduling class.
4996 */
4997 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4998 {
4999 int ret = -EINVAL;
5000
5001 switch (policy) {
5002 case SCHED_FIFO:
5003 case SCHED_RR:
5004 ret = 1;
5005 break;
5006 case SCHED_NORMAL:
5007 case SCHED_BATCH:
5008 case SCHED_IDLE:
5009 ret = 0;
5010 }
5011 return ret;
5012 }
5013
5014 /**
5015 * sys_sched_rr_get_interval - return the default timeslice of a process.
5016 * @pid: pid of the process.
5017 * @interval: userspace pointer to the timeslice value.
5018 *
5019 * this syscall writes the default timeslice value of a given process
5020 * into the user-space timespec buffer. A value of '0' means infinity.
5021 */
5022 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5023 struct timespec __user *, interval)
5024 {
5025 struct task_struct *p;
5026 unsigned int time_slice;
5027 unsigned long flags;
5028 struct rq *rq;
5029 int retval;
5030 struct timespec t;
5031
5032 if (pid < 0)
5033 return -EINVAL;
5034
5035 retval = -ESRCH;
5036 rcu_read_lock();
5037 p = find_process_by_pid(pid);
5038 if (!p)
5039 goto out_unlock;
5040
5041 retval = security_task_getscheduler(p);
5042 if (retval)
5043 goto out_unlock;
5044
5045 rq = task_rq_lock(p, &flags);
5046 time_slice = p->sched_class->get_rr_interval(rq, p);
5047 task_rq_unlock(rq, &flags);
5048
5049 rcu_read_unlock();
5050 jiffies_to_timespec(time_slice, &t);
5051 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5052 return retval;
5053
5054 out_unlock:
5055 rcu_read_unlock();
5056 return retval;
5057 }
5058
5059 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5060
5061 void sched_show_task(struct task_struct *p)
5062 {
5063 unsigned long free = 0;
5064 unsigned state;
5065
5066 state = p->state ? __ffs(p->state) + 1 : 0;
5067 printk(KERN_INFO "%-13.13s %c", p->comm,
5068 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5069 #if BITS_PER_LONG == 32
5070 if (state == TASK_RUNNING)
5071 printk(KERN_CONT " running ");
5072 else
5073 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5074 #else
5075 if (state == TASK_RUNNING)
5076 printk(KERN_CONT " running task ");
5077 else
5078 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5079 #endif
5080 #ifdef CONFIG_DEBUG_STACK_USAGE
5081 free = stack_not_used(p);
5082 #endif
5083 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5084 task_pid_nr(p), task_pid_nr(p->real_parent),
5085 (unsigned long)task_thread_info(p)->flags);
5086
5087 show_stack(p, NULL);
5088 }
5089
5090 void show_state_filter(unsigned long state_filter)
5091 {
5092 struct task_struct *g, *p;
5093
5094 #if BITS_PER_LONG == 32
5095 printk(KERN_INFO
5096 " task PC stack pid father\n");
5097 #else
5098 printk(KERN_INFO
5099 " task PC stack pid father\n");
5100 #endif
5101 read_lock(&tasklist_lock);
5102 do_each_thread(g, p) {
5103 /*
5104 * reset the NMI-timeout, listing all files on a slow
5105 * console might take alot of time:
5106 */
5107 touch_nmi_watchdog();
5108 if (!state_filter || (p->state & state_filter))
5109 sched_show_task(p);
5110 } while_each_thread(g, p);
5111
5112 touch_all_softlockup_watchdogs();
5113
5114 #ifdef CONFIG_SCHED_DEBUG
5115 sysrq_sched_debug_show();
5116 #endif
5117 read_unlock(&tasklist_lock);
5118 /*
5119 * Only show locks if all tasks are dumped:
5120 */
5121 if (!state_filter)
5122 debug_show_all_locks();
5123 }
5124
5125 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5126 {
5127 idle->sched_class = &idle_sched_class;
5128 }
5129
5130 /**
5131 * init_idle - set up an idle thread for a given CPU
5132 * @idle: task in question
5133 * @cpu: cpu the idle task belongs to
5134 *
5135 * NOTE: this function does not set the idle thread's NEED_RESCHED
5136 * flag, to make booting more robust.
5137 */
5138 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5139 {
5140 struct rq *rq = cpu_rq(cpu);
5141 unsigned long flags;
5142
5143 raw_spin_lock_irqsave(&rq->lock, flags);
5144
5145 __sched_fork(idle);
5146 idle->state = TASK_RUNNING;
5147 idle->se.exec_start = sched_clock();
5148
5149 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5150 __set_task_cpu(idle, cpu);
5151
5152 rq->curr = rq->idle = idle;
5153 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5154 idle->oncpu = 1;
5155 #endif
5156 raw_spin_unlock_irqrestore(&rq->lock, flags);
5157
5158 /* Set the preempt count _outside_ the spinlocks! */
5159 #if defined(CONFIG_PREEMPT)
5160 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5161 #else
5162 task_thread_info(idle)->preempt_count = 0;
5163 #endif
5164 /*
5165 * The idle tasks have their own, simple scheduling class:
5166 */
5167 idle->sched_class = &idle_sched_class;
5168 ftrace_graph_init_task(idle);
5169 }
5170
5171 /*
5172 * In a system that switches off the HZ timer nohz_cpu_mask
5173 * indicates which cpus entered this state. This is used
5174 * in the rcu update to wait only for active cpus. For system
5175 * which do not switch off the HZ timer nohz_cpu_mask should
5176 * always be CPU_BITS_NONE.
5177 */
5178 cpumask_var_t nohz_cpu_mask;
5179
5180 /*
5181 * Increase the granularity value when there are more CPUs,
5182 * because with more CPUs the 'effective latency' as visible
5183 * to users decreases. But the relationship is not linear,
5184 * so pick a second-best guess by going with the log2 of the
5185 * number of CPUs.
5186 *
5187 * This idea comes from the SD scheduler of Con Kolivas:
5188 */
5189 static int get_update_sysctl_factor(void)
5190 {
5191 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5192 unsigned int factor;
5193
5194 switch (sysctl_sched_tunable_scaling) {
5195 case SCHED_TUNABLESCALING_NONE:
5196 factor = 1;
5197 break;
5198 case SCHED_TUNABLESCALING_LINEAR:
5199 factor = cpus;
5200 break;
5201 case SCHED_TUNABLESCALING_LOG:
5202 default:
5203 factor = 1 + ilog2(cpus);
5204 break;
5205 }
5206
5207 return factor;
5208 }
5209
5210 static void update_sysctl(void)
5211 {
5212 unsigned int factor = get_update_sysctl_factor();
5213
5214 #define SET_SYSCTL(name) \
5215 (sysctl_##name = (factor) * normalized_sysctl_##name)
5216 SET_SYSCTL(sched_min_granularity);
5217 SET_SYSCTL(sched_latency);
5218 SET_SYSCTL(sched_wakeup_granularity);
5219 SET_SYSCTL(sched_shares_ratelimit);
5220 #undef SET_SYSCTL
5221 }
5222
5223 static inline void sched_init_granularity(void)
5224 {
5225 update_sysctl();
5226 }
5227
5228 #ifdef CONFIG_SMP
5229 /*
5230 * This is how migration works:
5231 *
5232 * 1) we queue a struct migration_req structure in the source CPU's
5233 * runqueue and wake up that CPU's migration thread.
5234 * 2) we down() the locked semaphore => thread blocks.
5235 * 3) migration thread wakes up (implicitly it forces the migrated
5236 * thread off the CPU)
5237 * 4) it gets the migration request and checks whether the migrated
5238 * task is still in the wrong runqueue.
5239 * 5) if it's in the wrong runqueue then the migration thread removes
5240 * it and puts it into the right queue.
5241 * 6) migration thread up()s the semaphore.
5242 * 7) we wake up and the migration is done.
5243 */
5244
5245 /*
5246 * Change a given task's CPU affinity. Migrate the thread to a
5247 * proper CPU and schedule it away if the CPU it's executing on
5248 * is removed from the allowed bitmask.
5249 *
5250 * NOTE: the caller must have a valid reference to the task, the
5251 * task must not exit() & deallocate itself prematurely. The
5252 * call is not atomic; no spinlocks may be held.
5253 */
5254 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5255 {
5256 struct migration_req req;
5257 unsigned long flags;
5258 struct rq *rq;
5259 int ret = 0;
5260
5261 /*
5262 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5263 * drop the rq->lock and still rely on ->cpus_allowed.
5264 */
5265 again:
5266 while (task_is_waking(p))
5267 cpu_relax();
5268 rq = task_rq_lock(p, &flags);
5269 if (task_is_waking(p)) {
5270 task_rq_unlock(rq, &flags);
5271 goto again;
5272 }
5273
5274 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5275 ret = -EINVAL;
5276 goto out;
5277 }
5278
5279 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5280 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5281 ret = -EINVAL;
5282 goto out;
5283 }
5284
5285 if (p->sched_class->set_cpus_allowed)
5286 p->sched_class->set_cpus_allowed(p, new_mask);
5287 else {
5288 cpumask_copy(&p->cpus_allowed, new_mask);
5289 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5290 }
5291
5292 /* Can the task run on the task's current CPU? If so, we're done */
5293 if (cpumask_test_cpu(task_cpu(p), new_mask))
5294 goto out;
5295
5296 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5297 /* Need help from migration thread: drop lock and wait. */
5298 struct task_struct *mt = rq->migration_thread;
5299
5300 get_task_struct(mt);
5301 task_rq_unlock(rq, &flags);
5302 wake_up_process(rq->migration_thread);
5303 put_task_struct(mt);
5304 wait_for_completion(&req.done);
5305 tlb_migrate_finish(p->mm);
5306 return 0;
5307 }
5308 out:
5309 task_rq_unlock(rq, &flags);
5310
5311 return ret;
5312 }
5313 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5314
5315 /*
5316 * Move (not current) task off this cpu, onto dest cpu. We're doing
5317 * this because either it can't run here any more (set_cpus_allowed()
5318 * away from this CPU, or CPU going down), or because we're
5319 * attempting to rebalance this task on exec (sched_exec).
5320 *
5321 * So we race with normal scheduler movements, but that's OK, as long
5322 * as the task is no longer on this CPU.
5323 *
5324 * Returns non-zero if task was successfully migrated.
5325 */
5326 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5327 {
5328 struct rq *rq_dest, *rq_src;
5329 int ret = 0;
5330
5331 if (unlikely(!cpu_active(dest_cpu)))
5332 return ret;
5333
5334 rq_src = cpu_rq(src_cpu);
5335 rq_dest = cpu_rq(dest_cpu);
5336
5337 double_rq_lock(rq_src, rq_dest);
5338 /* Already moved. */
5339 if (task_cpu(p) != src_cpu)
5340 goto done;
5341 /* Affinity changed (again). */
5342 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5343 goto fail;
5344
5345 /*
5346 * If we're not on a rq, the next wake-up will ensure we're
5347 * placed properly.
5348 */
5349 if (p->se.on_rq) {
5350 deactivate_task(rq_src, p, 0);
5351 set_task_cpu(p, dest_cpu);
5352 activate_task(rq_dest, p, 0);
5353 check_preempt_curr(rq_dest, p, 0);
5354 }
5355 done:
5356 ret = 1;
5357 fail:
5358 double_rq_unlock(rq_src, rq_dest);
5359 return ret;
5360 }
5361
5362 #define RCU_MIGRATION_IDLE 0
5363 #define RCU_MIGRATION_NEED_QS 1
5364 #define RCU_MIGRATION_GOT_QS 2
5365 #define RCU_MIGRATION_MUST_SYNC 3
5366
5367 /*
5368 * migration_thread - this is a highprio system thread that performs
5369 * thread migration by bumping thread off CPU then 'pushing' onto
5370 * another runqueue.
5371 */
5372 static int migration_thread(void *data)
5373 {
5374 int badcpu;
5375 int cpu = (long)data;
5376 struct rq *rq;
5377
5378 rq = cpu_rq(cpu);
5379 BUG_ON(rq->migration_thread != current);
5380
5381 set_current_state(TASK_INTERRUPTIBLE);
5382 while (!kthread_should_stop()) {
5383 struct migration_req *req;
5384 struct list_head *head;
5385
5386 raw_spin_lock_irq(&rq->lock);
5387
5388 if (cpu_is_offline(cpu)) {
5389 raw_spin_unlock_irq(&rq->lock);
5390 break;
5391 }
5392
5393 if (rq->active_balance) {
5394 active_load_balance(rq, cpu);
5395 rq->active_balance = 0;
5396 }
5397
5398 head = &rq->migration_queue;
5399
5400 if (list_empty(head)) {
5401 raw_spin_unlock_irq(&rq->lock);
5402 schedule();
5403 set_current_state(TASK_INTERRUPTIBLE);
5404 continue;
5405 }
5406 req = list_entry(head->next, struct migration_req, list);
5407 list_del_init(head->next);
5408
5409 if (req->task != NULL) {
5410 raw_spin_unlock(&rq->lock);
5411 __migrate_task(req->task, cpu, req->dest_cpu);
5412 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5413 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5414 raw_spin_unlock(&rq->lock);
5415 } else {
5416 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5417 raw_spin_unlock(&rq->lock);
5418 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5419 }
5420 local_irq_enable();
5421
5422 complete(&req->done);
5423 }
5424 __set_current_state(TASK_RUNNING);
5425
5426 return 0;
5427 }
5428
5429 #ifdef CONFIG_HOTPLUG_CPU
5430 /*
5431 * Figure out where task on dead CPU should go, use force if necessary.
5432 */
5433 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5434 {
5435 struct rq *rq = cpu_rq(dead_cpu);
5436 int needs_cpu, uninitialized_var(dest_cpu);
5437 unsigned long flags;
5438
5439 local_irq_save(flags);
5440
5441 raw_spin_lock(&rq->lock);
5442 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5443 if (needs_cpu)
5444 dest_cpu = select_fallback_rq(dead_cpu, p);
5445 raw_spin_unlock(&rq->lock);
5446 /*
5447 * It can only fail if we race with set_cpus_allowed(),
5448 * in the racer should migrate the task anyway.
5449 */
5450 if (needs_cpu)
5451 __migrate_task(p, dead_cpu, dest_cpu);
5452 local_irq_restore(flags);
5453 }
5454
5455 /*
5456 * While a dead CPU has no uninterruptible tasks queued at this point,
5457 * it might still have a nonzero ->nr_uninterruptible counter, because
5458 * for performance reasons the counter is not stricly tracking tasks to
5459 * their home CPUs. So we just add the counter to another CPU's counter,
5460 * to keep the global sum constant after CPU-down:
5461 */
5462 static void migrate_nr_uninterruptible(struct rq *rq_src)
5463 {
5464 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5465 unsigned long flags;
5466
5467 local_irq_save(flags);
5468 double_rq_lock(rq_src, rq_dest);
5469 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5470 rq_src->nr_uninterruptible = 0;
5471 double_rq_unlock(rq_src, rq_dest);
5472 local_irq_restore(flags);
5473 }
5474
5475 /* Run through task list and migrate tasks from the dead cpu. */
5476 static void migrate_live_tasks(int src_cpu)
5477 {
5478 struct task_struct *p, *t;
5479
5480 read_lock(&tasklist_lock);
5481
5482 do_each_thread(t, p) {
5483 if (p == current)
5484 continue;
5485
5486 if (task_cpu(p) == src_cpu)
5487 move_task_off_dead_cpu(src_cpu, p);
5488 } while_each_thread(t, p);
5489
5490 read_unlock(&tasklist_lock);
5491 }
5492
5493 /*
5494 * Schedules idle task to be the next runnable task on current CPU.
5495 * It does so by boosting its priority to highest possible.
5496 * Used by CPU offline code.
5497 */
5498 void sched_idle_next(void)
5499 {
5500 int this_cpu = smp_processor_id();
5501 struct rq *rq = cpu_rq(this_cpu);
5502 struct task_struct *p = rq->idle;
5503 unsigned long flags;
5504
5505 /* cpu has to be offline */
5506 BUG_ON(cpu_online(this_cpu));
5507
5508 /*
5509 * Strictly not necessary since rest of the CPUs are stopped by now
5510 * and interrupts disabled on the current cpu.
5511 */
5512 raw_spin_lock_irqsave(&rq->lock, flags);
5513
5514 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5515
5516 activate_task(rq, p, 0);
5517
5518 raw_spin_unlock_irqrestore(&rq->lock, flags);
5519 }
5520
5521 /*
5522 * Ensures that the idle task is using init_mm right before its cpu goes
5523 * offline.
5524 */
5525 void idle_task_exit(void)
5526 {
5527 struct mm_struct *mm = current->active_mm;
5528
5529 BUG_ON(cpu_online(smp_processor_id()));
5530
5531 if (mm != &init_mm)
5532 switch_mm(mm, &init_mm, current);
5533 mmdrop(mm);
5534 }
5535
5536 /* called under rq->lock with disabled interrupts */
5537 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5538 {
5539 struct rq *rq = cpu_rq(dead_cpu);
5540
5541 /* Must be exiting, otherwise would be on tasklist. */
5542 BUG_ON(!p->exit_state);
5543
5544 /* Cannot have done final schedule yet: would have vanished. */
5545 BUG_ON(p->state == TASK_DEAD);
5546
5547 get_task_struct(p);
5548
5549 /*
5550 * Drop lock around migration; if someone else moves it,
5551 * that's OK. No task can be added to this CPU, so iteration is
5552 * fine.
5553 */
5554 raw_spin_unlock_irq(&rq->lock);
5555 move_task_off_dead_cpu(dead_cpu, p);
5556 raw_spin_lock_irq(&rq->lock);
5557
5558 put_task_struct(p);
5559 }
5560
5561 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5562 static void migrate_dead_tasks(unsigned int dead_cpu)
5563 {
5564 struct rq *rq = cpu_rq(dead_cpu);
5565 struct task_struct *next;
5566
5567 for ( ; ; ) {
5568 if (!rq->nr_running)
5569 break;
5570 next = pick_next_task(rq);
5571 if (!next)
5572 break;
5573 next->sched_class->put_prev_task(rq, next);
5574 migrate_dead(dead_cpu, next);
5575
5576 }
5577 }
5578
5579 /*
5580 * remove the tasks which were accounted by rq from calc_load_tasks.
5581 */
5582 static void calc_global_load_remove(struct rq *rq)
5583 {
5584 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5585 rq->calc_load_active = 0;
5586 }
5587 #endif /* CONFIG_HOTPLUG_CPU */
5588
5589 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5590
5591 static struct ctl_table sd_ctl_dir[] = {
5592 {
5593 .procname = "sched_domain",
5594 .mode = 0555,
5595 },
5596 {}
5597 };
5598
5599 static struct ctl_table sd_ctl_root[] = {
5600 {
5601 .procname = "kernel",
5602 .mode = 0555,
5603 .child = sd_ctl_dir,
5604 },
5605 {}
5606 };
5607
5608 static struct ctl_table *sd_alloc_ctl_entry(int n)
5609 {
5610 struct ctl_table *entry =
5611 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5612
5613 return entry;
5614 }
5615
5616 static void sd_free_ctl_entry(struct ctl_table **tablep)
5617 {
5618 struct ctl_table *entry;
5619
5620 /*
5621 * In the intermediate directories, both the child directory and
5622 * procname are dynamically allocated and could fail but the mode
5623 * will always be set. In the lowest directory the names are
5624 * static strings and all have proc handlers.
5625 */
5626 for (entry = *tablep; entry->mode; entry++) {
5627 if (entry->child)
5628 sd_free_ctl_entry(&entry->child);
5629 if (entry->proc_handler == NULL)
5630 kfree(entry->procname);
5631 }
5632
5633 kfree(*tablep);
5634 *tablep = NULL;
5635 }
5636
5637 static void
5638 set_table_entry(struct ctl_table *entry,
5639 const char *procname, void *data, int maxlen,
5640 mode_t mode, proc_handler *proc_handler)
5641 {
5642 entry->procname = procname;
5643 entry->data = data;
5644 entry->maxlen = maxlen;
5645 entry->mode = mode;
5646 entry->proc_handler = proc_handler;
5647 }
5648
5649 static struct ctl_table *
5650 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5651 {
5652 struct ctl_table *table = sd_alloc_ctl_entry(13);
5653
5654 if (table == NULL)
5655 return NULL;
5656
5657 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5658 sizeof(long), 0644, proc_doulongvec_minmax);
5659 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5660 sizeof(long), 0644, proc_doulongvec_minmax);
5661 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5662 sizeof(int), 0644, proc_dointvec_minmax);
5663 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5664 sizeof(int), 0644, proc_dointvec_minmax);
5665 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5666 sizeof(int), 0644, proc_dointvec_minmax);
5667 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5668 sizeof(int), 0644, proc_dointvec_minmax);
5669 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5670 sizeof(int), 0644, proc_dointvec_minmax);
5671 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5672 sizeof(int), 0644, proc_dointvec_minmax);
5673 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5674 sizeof(int), 0644, proc_dointvec_minmax);
5675 set_table_entry(&table[9], "cache_nice_tries",
5676 &sd->cache_nice_tries,
5677 sizeof(int), 0644, proc_dointvec_minmax);
5678 set_table_entry(&table[10], "flags", &sd->flags,
5679 sizeof(int), 0644, proc_dointvec_minmax);
5680 set_table_entry(&table[11], "name", sd->name,
5681 CORENAME_MAX_SIZE, 0444, proc_dostring);
5682 /* &table[12] is terminator */
5683
5684 return table;
5685 }
5686
5687 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5688 {
5689 struct ctl_table *entry, *table;
5690 struct sched_domain *sd;
5691 int domain_num = 0, i;
5692 char buf[32];
5693
5694 for_each_domain(cpu, sd)
5695 domain_num++;
5696 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5697 if (table == NULL)
5698 return NULL;
5699
5700 i = 0;
5701 for_each_domain(cpu, sd) {
5702 snprintf(buf, 32, "domain%d", i);
5703 entry->procname = kstrdup(buf, GFP_KERNEL);
5704 entry->mode = 0555;
5705 entry->child = sd_alloc_ctl_domain_table(sd);
5706 entry++;
5707 i++;
5708 }
5709 return table;
5710 }
5711
5712 static struct ctl_table_header *sd_sysctl_header;
5713 static void register_sched_domain_sysctl(void)
5714 {
5715 int i, cpu_num = num_possible_cpus();
5716 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5717 char buf[32];
5718
5719 WARN_ON(sd_ctl_dir[0].child);
5720 sd_ctl_dir[0].child = entry;
5721
5722 if (entry == NULL)
5723 return;
5724
5725 for_each_possible_cpu(i) {
5726 snprintf(buf, 32, "cpu%d", i);
5727 entry->procname = kstrdup(buf, GFP_KERNEL);
5728 entry->mode = 0555;
5729 entry->child = sd_alloc_ctl_cpu_table(i);
5730 entry++;
5731 }
5732
5733 WARN_ON(sd_sysctl_header);
5734 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5735 }
5736
5737 /* may be called multiple times per register */
5738 static void unregister_sched_domain_sysctl(void)
5739 {
5740 if (sd_sysctl_header)
5741 unregister_sysctl_table(sd_sysctl_header);
5742 sd_sysctl_header = NULL;
5743 if (sd_ctl_dir[0].child)
5744 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5745 }
5746 #else
5747 static void register_sched_domain_sysctl(void)
5748 {
5749 }
5750 static void unregister_sched_domain_sysctl(void)
5751 {
5752 }
5753 #endif
5754
5755 static void set_rq_online(struct rq *rq)
5756 {
5757 if (!rq->online) {
5758 const struct sched_class *class;
5759
5760 cpumask_set_cpu(rq->cpu, rq->rd->online);
5761 rq->online = 1;
5762
5763 for_each_class(class) {
5764 if (class->rq_online)
5765 class->rq_online(rq);
5766 }
5767 }
5768 }
5769
5770 static void set_rq_offline(struct rq *rq)
5771 {
5772 if (rq->online) {
5773 const struct sched_class *class;
5774
5775 for_each_class(class) {
5776 if (class->rq_offline)
5777 class->rq_offline(rq);
5778 }
5779
5780 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5781 rq->online = 0;
5782 }
5783 }
5784
5785 /*
5786 * migration_call - callback that gets triggered when a CPU is added.
5787 * Here we can start up the necessary migration thread for the new CPU.
5788 */
5789 static int __cpuinit
5790 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5791 {
5792 struct task_struct *p;
5793 int cpu = (long)hcpu;
5794 unsigned long flags;
5795 struct rq *rq;
5796
5797 switch (action) {
5798
5799 case CPU_UP_PREPARE:
5800 case CPU_UP_PREPARE_FROZEN:
5801 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5802 if (IS_ERR(p))
5803 return NOTIFY_BAD;
5804 kthread_bind(p, cpu);
5805 /* Must be high prio: stop_machine expects to yield to it. */
5806 rq = task_rq_lock(p, &flags);
5807 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5808 task_rq_unlock(rq, &flags);
5809 get_task_struct(p);
5810 cpu_rq(cpu)->migration_thread = p;
5811 rq->calc_load_update = calc_load_update;
5812 break;
5813
5814 case CPU_ONLINE:
5815 case CPU_ONLINE_FROZEN:
5816 /* Strictly unnecessary, as first user will wake it. */
5817 wake_up_process(cpu_rq(cpu)->migration_thread);
5818
5819 /* Update our root-domain */
5820 rq = cpu_rq(cpu);
5821 raw_spin_lock_irqsave(&rq->lock, flags);
5822 if (rq->rd) {
5823 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5824
5825 set_rq_online(rq);
5826 }
5827 raw_spin_unlock_irqrestore(&rq->lock, flags);
5828 break;
5829
5830 #ifdef CONFIG_HOTPLUG_CPU
5831 case CPU_UP_CANCELED:
5832 case CPU_UP_CANCELED_FROZEN:
5833 if (!cpu_rq(cpu)->migration_thread)
5834 break;
5835 /* Unbind it from offline cpu so it can run. Fall thru. */
5836 kthread_bind(cpu_rq(cpu)->migration_thread,
5837 cpumask_any(cpu_online_mask));
5838 kthread_stop(cpu_rq(cpu)->migration_thread);
5839 put_task_struct(cpu_rq(cpu)->migration_thread);
5840 cpu_rq(cpu)->migration_thread = NULL;
5841 break;
5842
5843 case CPU_DEAD:
5844 case CPU_DEAD_FROZEN:
5845 migrate_live_tasks(cpu);
5846 rq = cpu_rq(cpu);
5847 kthread_stop(rq->migration_thread);
5848 put_task_struct(rq->migration_thread);
5849 rq->migration_thread = NULL;
5850 /* Idle task back to normal (off runqueue, low prio) */
5851 raw_spin_lock_irq(&rq->lock);
5852 deactivate_task(rq, rq->idle, 0);
5853 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5854 rq->idle->sched_class = &idle_sched_class;
5855 migrate_dead_tasks(cpu);
5856 raw_spin_unlock_irq(&rq->lock);
5857 migrate_nr_uninterruptible(rq);
5858 BUG_ON(rq->nr_running != 0);
5859 calc_global_load_remove(rq);
5860 /*
5861 * No need to migrate the tasks: it was best-effort if
5862 * they didn't take sched_hotcpu_mutex. Just wake up
5863 * the requestors.
5864 */
5865 raw_spin_lock_irq(&rq->lock);
5866 while (!list_empty(&rq->migration_queue)) {
5867 struct migration_req *req;
5868
5869 req = list_entry(rq->migration_queue.next,
5870 struct migration_req, list);
5871 list_del_init(&req->list);
5872 raw_spin_unlock_irq(&rq->lock);
5873 complete(&req->done);
5874 raw_spin_lock_irq(&rq->lock);
5875 }
5876 raw_spin_unlock_irq(&rq->lock);
5877 break;
5878
5879 case CPU_DYING:
5880 case CPU_DYING_FROZEN:
5881 /* Update our root-domain */
5882 rq = cpu_rq(cpu);
5883 raw_spin_lock_irqsave(&rq->lock, flags);
5884 if (rq->rd) {
5885 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5886 set_rq_offline(rq);
5887 }
5888 raw_spin_unlock_irqrestore(&rq->lock, flags);
5889 break;
5890 #endif
5891 }
5892 return NOTIFY_OK;
5893 }
5894
5895 /*
5896 * Register at high priority so that task migration (migrate_all_tasks)
5897 * happens before everything else. This has to be lower priority than
5898 * the notifier in the perf_event subsystem, though.
5899 */
5900 static struct notifier_block __cpuinitdata migration_notifier = {
5901 .notifier_call = migration_call,
5902 .priority = 10
5903 };
5904
5905 static int __init migration_init(void)
5906 {
5907 void *cpu = (void *)(long)smp_processor_id();
5908 int err;
5909
5910 /* Start one for the boot CPU: */
5911 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5912 BUG_ON(err == NOTIFY_BAD);
5913 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5914 register_cpu_notifier(&migration_notifier);
5915
5916 return 0;
5917 }
5918 early_initcall(migration_init);
5919 #endif
5920
5921 #ifdef CONFIG_SMP
5922
5923 #ifdef CONFIG_SCHED_DEBUG
5924
5925 static __read_mostly int sched_domain_debug_enabled;
5926
5927 static int __init sched_domain_debug_setup(char *str)
5928 {
5929 sched_domain_debug_enabled = 1;
5930
5931 return 0;
5932 }
5933 early_param("sched_debug", sched_domain_debug_setup);
5934
5935 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5936 struct cpumask *groupmask)
5937 {
5938 struct sched_group *group = sd->groups;
5939 char str[256];
5940
5941 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5942 cpumask_clear(groupmask);
5943
5944 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5945
5946 if (!(sd->flags & SD_LOAD_BALANCE)) {
5947 printk("does not load-balance\n");
5948 if (sd->parent)
5949 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5950 " has parent");
5951 return -1;
5952 }
5953
5954 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5955
5956 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5957 printk(KERN_ERR "ERROR: domain->span does not contain "
5958 "CPU%d\n", cpu);
5959 }
5960 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5961 printk(KERN_ERR "ERROR: domain->groups does not contain"
5962 " CPU%d\n", cpu);
5963 }
5964
5965 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5966 do {
5967 if (!group) {
5968 printk("\n");
5969 printk(KERN_ERR "ERROR: group is NULL\n");
5970 break;
5971 }
5972
5973 if (!group->cpu_power) {
5974 printk(KERN_CONT "\n");
5975 printk(KERN_ERR "ERROR: domain->cpu_power not "
5976 "set\n");
5977 break;
5978 }
5979
5980 if (!cpumask_weight(sched_group_cpus(group))) {
5981 printk(KERN_CONT "\n");
5982 printk(KERN_ERR "ERROR: empty group\n");
5983 break;
5984 }
5985
5986 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5987 printk(KERN_CONT "\n");
5988 printk(KERN_ERR "ERROR: repeated CPUs\n");
5989 break;
5990 }
5991
5992 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5993
5994 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5995
5996 printk(KERN_CONT " %s", str);
5997 if (group->cpu_power != SCHED_LOAD_SCALE) {
5998 printk(KERN_CONT " (cpu_power = %d)",
5999 group->cpu_power);
6000 }
6001
6002 group = group->next;
6003 } while (group != sd->groups);
6004 printk(KERN_CONT "\n");
6005
6006 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6007 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6008
6009 if (sd->parent &&
6010 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6011 printk(KERN_ERR "ERROR: parent span is not a superset "
6012 "of domain->span\n");
6013 return 0;
6014 }
6015
6016 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6017 {
6018 cpumask_var_t groupmask;
6019 int level = 0;
6020
6021 if (!sched_domain_debug_enabled)
6022 return;
6023
6024 if (!sd) {
6025 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6026 return;
6027 }
6028
6029 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6030
6031 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6032 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6033 return;
6034 }
6035
6036 for (;;) {
6037 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6038 break;
6039 level++;
6040 sd = sd->parent;
6041 if (!sd)
6042 break;
6043 }
6044 free_cpumask_var(groupmask);
6045 }
6046 #else /* !CONFIG_SCHED_DEBUG */
6047 # define sched_domain_debug(sd, cpu) do { } while (0)
6048 #endif /* CONFIG_SCHED_DEBUG */
6049
6050 static int sd_degenerate(struct sched_domain *sd)
6051 {
6052 if (cpumask_weight(sched_domain_span(sd)) == 1)
6053 return 1;
6054
6055 /* Following flags need at least 2 groups */
6056 if (sd->flags & (SD_LOAD_BALANCE |
6057 SD_BALANCE_NEWIDLE |
6058 SD_BALANCE_FORK |
6059 SD_BALANCE_EXEC |
6060 SD_SHARE_CPUPOWER |
6061 SD_SHARE_PKG_RESOURCES)) {
6062 if (sd->groups != sd->groups->next)
6063 return 0;
6064 }
6065
6066 /* Following flags don't use groups */
6067 if (sd->flags & (SD_WAKE_AFFINE))
6068 return 0;
6069
6070 return 1;
6071 }
6072
6073 static int
6074 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6075 {
6076 unsigned long cflags = sd->flags, pflags = parent->flags;
6077
6078 if (sd_degenerate(parent))
6079 return 1;
6080
6081 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6082 return 0;
6083
6084 /* Flags needing groups don't count if only 1 group in parent */
6085 if (parent->groups == parent->groups->next) {
6086 pflags &= ~(SD_LOAD_BALANCE |
6087 SD_BALANCE_NEWIDLE |
6088 SD_BALANCE_FORK |
6089 SD_BALANCE_EXEC |
6090 SD_SHARE_CPUPOWER |
6091 SD_SHARE_PKG_RESOURCES);
6092 if (nr_node_ids == 1)
6093 pflags &= ~SD_SERIALIZE;
6094 }
6095 if (~cflags & pflags)
6096 return 0;
6097
6098 return 1;
6099 }
6100
6101 static void free_rootdomain(struct root_domain *rd)
6102 {
6103 synchronize_sched();
6104
6105 cpupri_cleanup(&rd->cpupri);
6106
6107 free_cpumask_var(rd->rto_mask);
6108 free_cpumask_var(rd->online);
6109 free_cpumask_var(rd->span);
6110 kfree(rd);
6111 }
6112
6113 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6114 {
6115 struct root_domain *old_rd = NULL;
6116 unsigned long flags;
6117
6118 raw_spin_lock_irqsave(&rq->lock, flags);
6119
6120 if (rq->rd) {
6121 old_rd = rq->rd;
6122
6123 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6124 set_rq_offline(rq);
6125
6126 cpumask_clear_cpu(rq->cpu, old_rd->span);
6127
6128 /*
6129 * If we dont want to free the old_rt yet then
6130 * set old_rd to NULL to skip the freeing later
6131 * in this function:
6132 */
6133 if (!atomic_dec_and_test(&old_rd->refcount))
6134 old_rd = NULL;
6135 }
6136
6137 atomic_inc(&rd->refcount);
6138 rq->rd = rd;
6139
6140 cpumask_set_cpu(rq->cpu, rd->span);
6141 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6142 set_rq_online(rq);
6143
6144 raw_spin_unlock_irqrestore(&rq->lock, flags);
6145
6146 if (old_rd)
6147 free_rootdomain(old_rd);
6148 }
6149
6150 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6151 {
6152 gfp_t gfp = GFP_KERNEL;
6153
6154 memset(rd, 0, sizeof(*rd));
6155
6156 if (bootmem)
6157 gfp = GFP_NOWAIT;
6158
6159 if (!alloc_cpumask_var(&rd->span, gfp))
6160 goto out;
6161 if (!alloc_cpumask_var(&rd->online, gfp))
6162 goto free_span;
6163 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6164 goto free_online;
6165
6166 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6167 goto free_rto_mask;
6168 return 0;
6169
6170 free_rto_mask:
6171 free_cpumask_var(rd->rto_mask);
6172 free_online:
6173 free_cpumask_var(rd->online);
6174 free_span:
6175 free_cpumask_var(rd->span);
6176 out:
6177 return -ENOMEM;
6178 }
6179
6180 static void init_defrootdomain(void)
6181 {
6182 init_rootdomain(&def_root_domain, true);
6183
6184 atomic_set(&def_root_domain.refcount, 1);
6185 }
6186
6187 static struct root_domain *alloc_rootdomain(void)
6188 {
6189 struct root_domain *rd;
6190
6191 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6192 if (!rd)
6193 return NULL;
6194
6195 if (init_rootdomain(rd, false) != 0) {
6196 kfree(rd);
6197 return NULL;
6198 }
6199
6200 return rd;
6201 }
6202
6203 /*
6204 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6205 * hold the hotplug lock.
6206 */
6207 static void
6208 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6209 {
6210 struct rq *rq = cpu_rq(cpu);
6211 struct sched_domain *tmp;
6212
6213 /* Remove the sched domains which do not contribute to scheduling. */
6214 for (tmp = sd; tmp; ) {
6215 struct sched_domain *parent = tmp->parent;
6216 if (!parent)
6217 break;
6218
6219 if (sd_parent_degenerate(tmp, parent)) {
6220 tmp->parent = parent->parent;
6221 if (parent->parent)
6222 parent->parent->child = tmp;
6223 } else
6224 tmp = tmp->parent;
6225 }
6226
6227 if (sd && sd_degenerate(sd)) {
6228 sd = sd->parent;
6229 if (sd)
6230 sd->child = NULL;
6231 }
6232
6233 sched_domain_debug(sd, cpu);
6234
6235 rq_attach_root(rq, rd);
6236 rcu_assign_pointer(rq->sd, sd);
6237 }
6238
6239 /* cpus with isolated domains */
6240 static cpumask_var_t cpu_isolated_map;
6241
6242 /* Setup the mask of cpus configured for isolated domains */
6243 static int __init isolated_cpu_setup(char *str)
6244 {
6245 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6246 cpulist_parse(str, cpu_isolated_map);
6247 return 1;
6248 }
6249
6250 __setup("isolcpus=", isolated_cpu_setup);
6251
6252 /*
6253 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6254 * to a function which identifies what group(along with sched group) a CPU
6255 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6256 * (due to the fact that we keep track of groups covered with a struct cpumask).
6257 *
6258 * init_sched_build_groups will build a circular linked list of the groups
6259 * covered by the given span, and will set each group's ->cpumask correctly,
6260 * and ->cpu_power to 0.
6261 */
6262 static void
6263 init_sched_build_groups(const struct cpumask *span,
6264 const struct cpumask *cpu_map,
6265 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6266 struct sched_group **sg,
6267 struct cpumask *tmpmask),
6268 struct cpumask *covered, struct cpumask *tmpmask)
6269 {
6270 struct sched_group *first = NULL, *last = NULL;
6271 int i;
6272
6273 cpumask_clear(covered);
6274
6275 for_each_cpu(i, span) {
6276 struct sched_group *sg;
6277 int group = group_fn(i, cpu_map, &sg, tmpmask);
6278 int j;
6279
6280 if (cpumask_test_cpu(i, covered))
6281 continue;
6282
6283 cpumask_clear(sched_group_cpus(sg));
6284 sg->cpu_power = 0;
6285
6286 for_each_cpu(j, span) {
6287 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6288 continue;
6289
6290 cpumask_set_cpu(j, covered);
6291 cpumask_set_cpu(j, sched_group_cpus(sg));
6292 }
6293 if (!first)
6294 first = sg;
6295 if (last)
6296 last->next = sg;
6297 last = sg;
6298 }
6299 last->next = first;
6300 }
6301
6302 #define SD_NODES_PER_DOMAIN 16
6303
6304 #ifdef CONFIG_NUMA
6305
6306 /**
6307 * find_next_best_node - find the next node to include in a sched_domain
6308 * @node: node whose sched_domain we're building
6309 * @used_nodes: nodes already in the sched_domain
6310 *
6311 * Find the next node to include in a given scheduling domain. Simply
6312 * finds the closest node not already in the @used_nodes map.
6313 *
6314 * Should use nodemask_t.
6315 */
6316 static int find_next_best_node(int node, nodemask_t *used_nodes)
6317 {
6318 int i, n, val, min_val, best_node = 0;
6319
6320 min_val = INT_MAX;
6321
6322 for (i = 0; i < nr_node_ids; i++) {
6323 /* Start at @node */
6324 n = (node + i) % nr_node_ids;
6325
6326 if (!nr_cpus_node(n))
6327 continue;
6328
6329 /* Skip already used nodes */
6330 if (node_isset(n, *used_nodes))
6331 continue;
6332
6333 /* Simple min distance search */
6334 val = node_distance(node, n);
6335
6336 if (val < min_val) {
6337 min_val = val;
6338 best_node = n;
6339 }
6340 }
6341
6342 node_set(best_node, *used_nodes);
6343 return best_node;
6344 }
6345
6346 /**
6347 * sched_domain_node_span - get a cpumask for a node's sched_domain
6348 * @node: node whose cpumask we're constructing
6349 * @span: resulting cpumask
6350 *
6351 * Given a node, construct a good cpumask for its sched_domain to span. It
6352 * should be one that prevents unnecessary balancing, but also spreads tasks
6353 * out optimally.
6354 */
6355 static void sched_domain_node_span(int node, struct cpumask *span)
6356 {
6357 nodemask_t used_nodes;
6358 int i;
6359
6360 cpumask_clear(span);
6361 nodes_clear(used_nodes);
6362
6363 cpumask_or(span, span, cpumask_of_node(node));
6364 node_set(node, used_nodes);
6365
6366 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6367 int next_node = find_next_best_node(node, &used_nodes);
6368
6369 cpumask_or(span, span, cpumask_of_node(next_node));
6370 }
6371 }
6372 #endif /* CONFIG_NUMA */
6373
6374 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6375
6376 /*
6377 * The cpus mask in sched_group and sched_domain hangs off the end.
6378 *
6379 * ( See the the comments in include/linux/sched.h:struct sched_group
6380 * and struct sched_domain. )
6381 */
6382 struct static_sched_group {
6383 struct sched_group sg;
6384 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6385 };
6386
6387 struct static_sched_domain {
6388 struct sched_domain sd;
6389 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6390 };
6391
6392 struct s_data {
6393 #ifdef CONFIG_NUMA
6394 int sd_allnodes;
6395 cpumask_var_t domainspan;
6396 cpumask_var_t covered;
6397 cpumask_var_t notcovered;
6398 #endif
6399 cpumask_var_t nodemask;
6400 cpumask_var_t this_sibling_map;
6401 cpumask_var_t this_core_map;
6402 cpumask_var_t send_covered;
6403 cpumask_var_t tmpmask;
6404 struct sched_group **sched_group_nodes;
6405 struct root_domain *rd;
6406 };
6407
6408 enum s_alloc {
6409 sa_sched_groups = 0,
6410 sa_rootdomain,
6411 sa_tmpmask,
6412 sa_send_covered,
6413 sa_this_core_map,
6414 sa_this_sibling_map,
6415 sa_nodemask,
6416 sa_sched_group_nodes,
6417 #ifdef CONFIG_NUMA
6418 sa_notcovered,
6419 sa_covered,
6420 sa_domainspan,
6421 #endif
6422 sa_none,
6423 };
6424
6425 /*
6426 * SMT sched-domains:
6427 */
6428 #ifdef CONFIG_SCHED_SMT
6429 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6430 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6431
6432 static int
6433 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6434 struct sched_group **sg, struct cpumask *unused)
6435 {
6436 if (sg)
6437 *sg = &per_cpu(sched_groups, cpu).sg;
6438 return cpu;
6439 }
6440 #endif /* CONFIG_SCHED_SMT */
6441
6442 /*
6443 * multi-core sched-domains:
6444 */
6445 #ifdef CONFIG_SCHED_MC
6446 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6447 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6448 #endif /* CONFIG_SCHED_MC */
6449
6450 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6451 static int
6452 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6453 struct sched_group **sg, struct cpumask *mask)
6454 {
6455 int group;
6456
6457 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6458 group = cpumask_first(mask);
6459 if (sg)
6460 *sg = &per_cpu(sched_group_core, group).sg;
6461 return group;
6462 }
6463 #elif defined(CONFIG_SCHED_MC)
6464 static int
6465 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6466 struct sched_group **sg, struct cpumask *unused)
6467 {
6468 if (sg)
6469 *sg = &per_cpu(sched_group_core, cpu).sg;
6470 return cpu;
6471 }
6472 #endif
6473
6474 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6475 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6476
6477 static int
6478 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6479 struct sched_group **sg, struct cpumask *mask)
6480 {
6481 int group;
6482 #ifdef CONFIG_SCHED_MC
6483 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6484 group = cpumask_first(mask);
6485 #elif defined(CONFIG_SCHED_SMT)
6486 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6487 group = cpumask_first(mask);
6488 #else
6489 group = cpu;
6490 #endif
6491 if (sg)
6492 *sg = &per_cpu(sched_group_phys, group).sg;
6493 return group;
6494 }
6495
6496 #ifdef CONFIG_NUMA
6497 /*
6498 * The init_sched_build_groups can't handle what we want to do with node
6499 * groups, so roll our own. Now each node has its own list of groups which
6500 * gets dynamically allocated.
6501 */
6502 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6503 static struct sched_group ***sched_group_nodes_bycpu;
6504
6505 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6506 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6507
6508 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6509 struct sched_group **sg,
6510 struct cpumask *nodemask)
6511 {
6512 int group;
6513
6514 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6515 group = cpumask_first(nodemask);
6516
6517 if (sg)
6518 *sg = &per_cpu(sched_group_allnodes, group).sg;
6519 return group;
6520 }
6521
6522 static void init_numa_sched_groups_power(struct sched_group *group_head)
6523 {
6524 struct sched_group *sg = group_head;
6525 int j;
6526
6527 if (!sg)
6528 return;
6529 do {
6530 for_each_cpu(j, sched_group_cpus(sg)) {
6531 struct sched_domain *sd;
6532
6533 sd = &per_cpu(phys_domains, j).sd;
6534 if (j != group_first_cpu(sd->groups)) {
6535 /*
6536 * Only add "power" once for each
6537 * physical package.
6538 */
6539 continue;
6540 }
6541
6542 sg->cpu_power += sd->groups->cpu_power;
6543 }
6544 sg = sg->next;
6545 } while (sg != group_head);
6546 }
6547
6548 static int build_numa_sched_groups(struct s_data *d,
6549 const struct cpumask *cpu_map, int num)
6550 {
6551 struct sched_domain *sd;
6552 struct sched_group *sg, *prev;
6553 int n, j;
6554
6555 cpumask_clear(d->covered);
6556 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6557 if (cpumask_empty(d->nodemask)) {
6558 d->sched_group_nodes[num] = NULL;
6559 goto out;
6560 }
6561
6562 sched_domain_node_span(num, d->domainspan);
6563 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6564
6565 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6566 GFP_KERNEL, num);
6567 if (!sg) {
6568 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6569 num);
6570 return -ENOMEM;
6571 }
6572 d->sched_group_nodes[num] = sg;
6573
6574 for_each_cpu(j, d->nodemask) {
6575 sd = &per_cpu(node_domains, j).sd;
6576 sd->groups = sg;
6577 }
6578
6579 sg->cpu_power = 0;
6580 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6581 sg->next = sg;
6582 cpumask_or(d->covered, d->covered, d->nodemask);
6583
6584 prev = sg;
6585 for (j = 0; j < nr_node_ids; j++) {
6586 n = (num + j) % nr_node_ids;
6587 cpumask_complement(d->notcovered, d->covered);
6588 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6589 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6590 if (cpumask_empty(d->tmpmask))
6591 break;
6592 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6593 if (cpumask_empty(d->tmpmask))
6594 continue;
6595 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6596 GFP_KERNEL, num);
6597 if (!sg) {
6598 printk(KERN_WARNING
6599 "Can not alloc domain group for node %d\n", j);
6600 return -ENOMEM;
6601 }
6602 sg->cpu_power = 0;
6603 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6604 sg->next = prev->next;
6605 cpumask_or(d->covered, d->covered, d->tmpmask);
6606 prev->next = sg;
6607 prev = sg;
6608 }
6609 out:
6610 return 0;
6611 }
6612 #endif /* CONFIG_NUMA */
6613
6614 #ifdef CONFIG_NUMA
6615 /* Free memory allocated for various sched_group structures */
6616 static void free_sched_groups(const struct cpumask *cpu_map,
6617 struct cpumask *nodemask)
6618 {
6619 int cpu, i;
6620
6621 for_each_cpu(cpu, cpu_map) {
6622 struct sched_group **sched_group_nodes
6623 = sched_group_nodes_bycpu[cpu];
6624
6625 if (!sched_group_nodes)
6626 continue;
6627
6628 for (i = 0; i < nr_node_ids; i++) {
6629 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6630
6631 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6632 if (cpumask_empty(nodemask))
6633 continue;
6634
6635 if (sg == NULL)
6636 continue;
6637 sg = sg->next;
6638 next_sg:
6639 oldsg = sg;
6640 sg = sg->next;
6641 kfree(oldsg);
6642 if (oldsg != sched_group_nodes[i])
6643 goto next_sg;
6644 }
6645 kfree(sched_group_nodes);
6646 sched_group_nodes_bycpu[cpu] = NULL;
6647 }
6648 }
6649 #else /* !CONFIG_NUMA */
6650 static void free_sched_groups(const struct cpumask *cpu_map,
6651 struct cpumask *nodemask)
6652 {
6653 }
6654 #endif /* CONFIG_NUMA */
6655
6656 /*
6657 * Initialize sched groups cpu_power.
6658 *
6659 * cpu_power indicates the capacity of sched group, which is used while
6660 * distributing the load between different sched groups in a sched domain.
6661 * Typically cpu_power for all the groups in a sched domain will be same unless
6662 * there are asymmetries in the topology. If there are asymmetries, group
6663 * having more cpu_power will pickup more load compared to the group having
6664 * less cpu_power.
6665 */
6666 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6667 {
6668 struct sched_domain *child;
6669 struct sched_group *group;
6670 long power;
6671 int weight;
6672
6673 WARN_ON(!sd || !sd->groups);
6674
6675 if (cpu != group_first_cpu(sd->groups))
6676 return;
6677
6678 child = sd->child;
6679
6680 sd->groups->cpu_power = 0;
6681
6682 if (!child) {
6683 power = SCHED_LOAD_SCALE;
6684 weight = cpumask_weight(sched_domain_span(sd));
6685 /*
6686 * SMT siblings share the power of a single core.
6687 * Usually multiple threads get a better yield out of
6688 * that one core than a single thread would have,
6689 * reflect that in sd->smt_gain.
6690 */
6691 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6692 power *= sd->smt_gain;
6693 power /= weight;
6694 power >>= SCHED_LOAD_SHIFT;
6695 }
6696 sd->groups->cpu_power += power;
6697 return;
6698 }
6699
6700 /*
6701 * Add cpu_power of each child group to this groups cpu_power.
6702 */
6703 group = child->groups;
6704 do {
6705 sd->groups->cpu_power += group->cpu_power;
6706 group = group->next;
6707 } while (group != child->groups);
6708 }
6709
6710 /*
6711 * Initializers for schedule domains
6712 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6713 */
6714
6715 #ifdef CONFIG_SCHED_DEBUG
6716 # define SD_INIT_NAME(sd, type) sd->name = #type
6717 #else
6718 # define SD_INIT_NAME(sd, type) do { } while (0)
6719 #endif
6720
6721 #define SD_INIT(sd, type) sd_init_##type(sd)
6722
6723 #define SD_INIT_FUNC(type) \
6724 static noinline void sd_init_##type(struct sched_domain *sd) \
6725 { \
6726 memset(sd, 0, sizeof(*sd)); \
6727 *sd = SD_##type##_INIT; \
6728 sd->level = SD_LV_##type; \
6729 SD_INIT_NAME(sd, type); \
6730 }
6731
6732 SD_INIT_FUNC(CPU)
6733 #ifdef CONFIG_NUMA
6734 SD_INIT_FUNC(ALLNODES)
6735 SD_INIT_FUNC(NODE)
6736 #endif
6737 #ifdef CONFIG_SCHED_SMT
6738 SD_INIT_FUNC(SIBLING)
6739 #endif
6740 #ifdef CONFIG_SCHED_MC
6741 SD_INIT_FUNC(MC)
6742 #endif
6743
6744 static int default_relax_domain_level = -1;
6745
6746 static int __init setup_relax_domain_level(char *str)
6747 {
6748 unsigned long val;
6749
6750 val = simple_strtoul(str, NULL, 0);
6751 if (val < SD_LV_MAX)
6752 default_relax_domain_level = val;
6753
6754 return 1;
6755 }
6756 __setup("relax_domain_level=", setup_relax_domain_level);
6757
6758 static void set_domain_attribute(struct sched_domain *sd,
6759 struct sched_domain_attr *attr)
6760 {
6761 int request;
6762
6763 if (!attr || attr->relax_domain_level < 0) {
6764 if (default_relax_domain_level < 0)
6765 return;
6766 else
6767 request = default_relax_domain_level;
6768 } else
6769 request = attr->relax_domain_level;
6770 if (request < sd->level) {
6771 /* turn off idle balance on this domain */
6772 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6773 } else {
6774 /* turn on idle balance on this domain */
6775 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6776 }
6777 }
6778
6779 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6780 const struct cpumask *cpu_map)
6781 {
6782 switch (what) {
6783 case sa_sched_groups:
6784 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6785 d->sched_group_nodes = NULL;
6786 case sa_rootdomain:
6787 free_rootdomain(d->rd); /* fall through */
6788 case sa_tmpmask:
6789 free_cpumask_var(d->tmpmask); /* fall through */
6790 case sa_send_covered:
6791 free_cpumask_var(d->send_covered); /* fall through */
6792 case sa_this_core_map:
6793 free_cpumask_var(d->this_core_map); /* fall through */
6794 case sa_this_sibling_map:
6795 free_cpumask_var(d->this_sibling_map); /* fall through */
6796 case sa_nodemask:
6797 free_cpumask_var(d->nodemask); /* fall through */
6798 case sa_sched_group_nodes:
6799 #ifdef CONFIG_NUMA
6800 kfree(d->sched_group_nodes); /* fall through */
6801 case sa_notcovered:
6802 free_cpumask_var(d->notcovered); /* fall through */
6803 case sa_covered:
6804 free_cpumask_var(d->covered); /* fall through */
6805 case sa_domainspan:
6806 free_cpumask_var(d->domainspan); /* fall through */
6807 #endif
6808 case sa_none:
6809 break;
6810 }
6811 }
6812
6813 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6814 const struct cpumask *cpu_map)
6815 {
6816 #ifdef CONFIG_NUMA
6817 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6818 return sa_none;
6819 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6820 return sa_domainspan;
6821 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6822 return sa_covered;
6823 /* Allocate the per-node list of sched groups */
6824 d->sched_group_nodes = kcalloc(nr_node_ids,
6825 sizeof(struct sched_group *), GFP_KERNEL);
6826 if (!d->sched_group_nodes) {
6827 printk(KERN_WARNING "Can not alloc sched group node list\n");
6828 return sa_notcovered;
6829 }
6830 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6831 #endif
6832 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6833 return sa_sched_group_nodes;
6834 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6835 return sa_nodemask;
6836 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6837 return sa_this_sibling_map;
6838 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6839 return sa_this_core_map;
6840 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6841 return sa_send_covered;
6842 d->rd = alloc_rootdomain();
6843 if (!d->rd) {
6844 printk(KERN_WARNING "Cannot alloc root domain\n");
6845 return sa_tmpmask;
6846 }
6847 return sa_rootdomain;
6848 }
6849
6850 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6851 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6852 {
6853 struct sched_domain *sd = NULL;
6854 #ifdef CONFIG_NUMA
6855 struct sched_domain *parent;
6856
6857 d->sd_allnodes = 0;
6858 if (cpumask_weight(cpu_map) >
6859 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6860 sd = &per_cpu(allnodes_domains, i).sd;
6861 SD_INIT(sd, ALLNODES);
6862 set_domain_attribute(sd, attr);
6863 cpumask_copy(sched_domain_span(sd), cpu_map);
6864 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6865 d->sd_allnodes = 1;
6866 }
6867 parent = sd;
6868
6869 sd = &per_cpu(node_domains, i).sd;
6870 SD_INIT(sd, NODE);
6871 set_domain_attribute(sd, attr);
6872 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6873 sd->parent = parent;
6874 if (parent)
6875 parent->child = sd;
6876 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6877 #endif
6878 return sd;
6879 }
6880
6881 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6882 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6883 struct sched_domain *parent, int i)
6884 {
6885 struct sched_domain *sd;
6886 sd = &per_cpu(phys_domains, i).sd;
6887 SD_INIT(sd, CPU);
6888 set_domain_attribute(sd, attr);
6889 cpumask_copy(sched_domain_span(sd), d->nodemask);
6890 sd->parent = parent;
6891 if (parent)
6892 parent->child = sd;
6893 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6894 return sd;
6895 }
6896
6897 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6898 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6899 struct sched_domain *parent, int i)
6900 {
6901 struct sched_domain *sd = parent;
6902 #ifdef CONFIG_SCHED_MC
6903 sd = &per_cpu(core_domains, i).sd;
6904 SD_INIT(sd, MC);
6905 set_domain_attribute(sd, attr);
6906 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6907 sd->parent = parent;
6908 parent->child = sd;
6909 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6910 #endif
6911 return sd;
6912 }
6913
6914 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6915 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6916 struct sched_domain *parent, int i)
6917 {
6918 struct sched_domain *sd = parent;
6919 #ifdef CONFIG_SCHED_SMT
6920 sd = &per_cpu(cpu_domains, i).sd;
6921 SD_INIT(sd, SIBLING);
6922 set_domain_attribute(sd, attr);
6923 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6924 sd->parent = parent;
6925 parent->child = sd;
6926 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6927 #endif
6928 return sd;
6929 }
6930
6931 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6932 const struct cpumask *cpu_map, int cpu)
6933 {
6934 switch (l) {
6935 #ifdef CONFIG_SCHED_SMT
6936 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6937 cpumask_and(d->this_sibling_map, cpu_map,
6938 topology_thread_cpumask(cpu));
6939 if (cpu == cpumask_first(d->this_sibling_map))
6940 init_sched_build_groups(d->this_sibling_map, cpu_map,
6941 &cpu_to_cpu_group,
6942 d->send_covered, d->tmpmask);
6943 break;
6944 #endif
6945 #ifdef CONFIG_SCHED_MC
6946 case SD_LV_MC: /* set up multi-core groups */
6947 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6948 if (cpu == cpumask_first(d->this_core_map))
6949 init_sched_build_groups(d->this_core_map, cpu_map,
6950 &cpu_to_core_group,
6951 d->send_covered, d->tmpmask);
6952 break;
6953 #endif
6954 case SD_LV_CPU: /* set up physical groups */
6955 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6956 if (!cpumask_empty(d->nodemask))
6957 init_sched_build_groups(d->nodemask, cpu_map,
6958 &cpu_to_phys_group,
6959 d->send_covered, d->tmpmask);
6960 break;
6961 #ifdef CONFIG_NUMA
6962 case SD_LV_ALLNODES:
6963 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6964 d->send_covered, d->tmpmask);
6965 break;
6966 #endif
6967 default:
6968 break;
6969 }
6970 }
6971
6972 /*
6973 * Build sched domains for a given set of cpus and attach the sched domains
6974 * to the individual cpus
6975 */
6976 static int __build_sched_domains(const struct cpumask *cpu_map,
6977 struct sched_domain_attr *attr)
6978 {
6979 enum s_alloc alloc_state = sa_none;
6980 struct s_data d;
6981 struct sched_domain *sd;
6982 int i;
6983 #ifdef CONFIG_NUMA
6984 d.sd_allnodes = 0;
6985 #endif
6986
6987 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6988 if (alloc_state != sa_rootdomain)
6989 goto error;
6990 alloc_state = sa_sched_groups;
6991
6992 /*
6993 * Set up domains for cpus specified by the cpu_map.
6994 */
6995 for_each_cpu(i, cpu_map) {
6996 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6997 cpu_map);
6998
6999 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7000 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7001 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7002 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7003 }
7004
7005 for_each_cpu(i, cpu_map) {
7006 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7007 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7008 }
7009
7010 /* Set up physical groups */
7011 for (i = 0; i < nr_node_ids; i++)
7012 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7013
7014 #ifdef CONFIG_NUMA
7015 /* Set up node groups */
7016 if (d.sd_allnodes)
7017 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7018
7019 for (i = 0; i < nr_node_ids; i++)
7020 if (build_numa_sched_groups(&d, cpu_map, i))
7021 goto error;
7022 #endif
7023
7024 /* Calculate CPU power for physical packages and nodes */
7025 #ifdef CONFIG_SCHED_SMT
7026 for_each_cpu(i, cpu_map) {
7027 sd = &per_cpu(cpu_domains, i).sd;
7028 init_sched_groups_power(i, sd);
7029 }
7030 #endif
7031 #ifdef CONFIG_SCHED_MC
7032 for_each_cpu(i, cpu_map) {
7033 sd = &per_cpu(core_domains, i).sd;
7034 init_sched_groups_power(i, sd);
7035 }
7036 #endif
7037
7038 for_each_cpu(i, cpu_map) {
7039 sd = &per_cpu(phys_domains, i).sd;
7040 init_sched_groups_power(i, sd);
7041 }
7042
7043 #ifdef CONFIG_NUMA
7044 for (i = 0; i < nr_node_ids; i++)
7045 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7046
7047 if (d.sd_allnodes) {
7048 struct sched_group *sg;
7049
7050 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7051 d.tmpmask);
7052 init_numa_sched_groups_power(sg);
7053 }
7054 #endif
7055
7056 /* Attach the domains */
7057 for_each_cpu(i, cpu_map) {
7058 #ifdef CONFIG_SCHED_SMT
7059 sd = &per_cpu(cpu_domains, i).sd;
7060 #elif defined(CONFIG_SCHED_MC)
7061 sd = &per_cpu(core_domains, i).sd;
7062 #else
7063 sd = &per_cpu(phys_domains, i).sd;
7064 #endif
7065 cpu_attach_domain(sd, d.rd, i);
7066 }
7067
7068 d.sched_group_nodes = NULL; /* don't free this we still need it */
7069 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7070 return 0;
7071
7072 error:
7073 __free_domain_allocs(&d, alloc_state, cpu_map);
7074 return -ENOMEM;
7075 }
7076
7077 static int build_sched_domains(const struct cpumask *cpu_map)
7078 {
7079 return __build_sched_domains(cpu_map, NULL);
7080 }
7081
7082 static cpumask_var_t *doms_cur; /* current sched domains */
7083 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7084 static struct sched_domain_attr *dattr_cur;
7085 /* attribues of custom domains in 'doms_cur' */
7086
7087 /*
7088 * Special case: If a kmalloc of a doms_cur partition (array of
7089 * cpumask) fails, then fallback to a single sched domain,
7090 * as determined by the single cpumask fallback_doms.
7091 */
7092 static cpumask_var_t fallback_doms;
7093
7094 /*
7095 * arch_update_cpu_topology lets virtualized architectures update the
7096 * cpu core maps. It is supposed to return 1 if the topology changed
7097 * or 0 if it stayed the same.
7098 */
7099 int __attribute__((weak)) arch_update_cpu_topology(void)
7100 {
7101 return 0;
7102 }
7103
7104 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7105 {
7106 int i;
7107 cpumask_var_t *doms;
7108
7109 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7110 if (!doms)
7111 return NULL;
7112 for (i = 0; i < ndoms; i++) {
7113 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7114 free_sched_domains(doms, i);
7115 return NULL;
7116 }
7117 }
7118 return doms;
7119 }
7120
7121 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7122 {
7123 unsigned int i;
7124 for (i = 0; i < ndoms; i++)
7125 free_cpumask_var(doms[i]);
7126 kfree(doms);
7127 }
7128
7129 /*
7130 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7131 * For now this just excludes isolated cpus, but could be used to
7132 * exclude other special cases in the future.
7133 */
7134 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7135 {
7136 int err;
7137
7138 arch_update_cpu_topology();
7139 ndoms_cur = 1;
7140 doms_cur = alloc_sched_domains(ndoms_cur);
7141 if (!doms_cur)
7142 doms_cur = &fallback_doms;
7143 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7144 dattr_cur = NULL;
7145 err = build_sched_domains(doms_cur[0]);
7146 register_sched_domain_sysctl();
7147
7148 return err;
7149 }
7150
7151 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7152 struct cpumask *tmpmask)
7153 {
7154 free_sched_groups(cpu_map, tmpmask);
7155 }
7156
7157 /*
7158 * Detach sched domains from a group of cpus specified in cpu_map
7159 * These cpus will now be attached to the NULL domain
7160 */
7161 static void detach_destroy_domains(const struct cpumask *cpu_map)
7162 {
7163 /* Save because hotplug lock held. */
7164 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7165 int i;
7166
7167 for_each_cpu(i, cpu_map)
7168 cpu_attach_domain(NULL, &def_root_domain, i);
7169 synchronize_sched();
7170 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7171 }
7172
7173 /* handle null as "default" */
7174 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7175 struct sched_domain_attr *new, int idx_new)
7176 {
7177 struct sched_domain_attr tmp;
7178
7179 /* fast path */
7180 if (!new && !cur)
7181 return 1;
7182
7183 tmp = SD_ATTR_INIT;
7184 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7185 new ? (new + idx_new) : &tmp,
7186 sizeof(struct sched_domain_attr));
7187 }
7188
7189 /*
7190 * Partition sched domains as specified by the 'ndoms_new'
7191 * cpumasks in the array doms_new[] of cpumasks. This compares
7192 * doms_new[] to the current sched domain partitioning, doms_cur[].
7193 * It destroys each deleted domain and builds each new domain.
7194 *
7195 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7196 * The masks don't intersect (don't overlap.) We should setup one
7197 * sched domain for each mask. CPUs not in any of the cpumasks will
7198 * not be load balanced. If the same cpumask appears both in the
7199 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7200 * it as it is.
7201 *
7202 * The passed in 'doms_new' should be allocated using
7203 * alloc_sched_domains. This routine takes ownership of it and will
7204 * free_sched_domains it when done with it. If the caller failed the
7205 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7206 * and partition_sched_domains() will fallback to the single partition
7207 * 'fallback_doms', it also forces the domains to be rebuilt.
7208 *
7209 * If doms_new == NULL it will be replaced with cpu_online_mask.
7210 * ndoms_new == 0 is a special case for destroying existing domains,
7211 * and it will not create the default domain.
7212 *
7213 * Call with hotplug lock held
7214 */
7215 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7216 struct sched_domain_attr *dattr_new)
7217 {
7218 int i, j, n;
7219 int new_topology;
7220
7221 mutex_lock(&sched_domains_mutex);
7222
7223 /* always unregister in case we don't destroy any domains */
7224 unregister_sched_domain_sysctl();
7225
7226 /* Let architecture update cpu core mappings. */
7227 new_topology = arch_update_cpu_topology();
7228
7229 n = doms_new ? ndoms_new : 0;
7230
7231 /* Destroy deleted domains */
7232 for (i = 0; i < ndoms_cur; i++) {
7233 for (j = 0; j < n && !new_topology; j++) {
7234 if (cpumask_equal(doms_cur[i], doms_new[j])
7235 && dattrs_equal(dattr_cur, i, dattr_new, j))
7236 goto match1;
7237 }
7238 /* no match - a current sched domain not in new doms_new[] */
7239 detach_destroy_domains(doms_cur[i]);
7240 match1:
7241 ;
7242 }
7243
7244 if (doms_new == NULL) {
7245 ndoms_cur = 0;
7246 doms_new = &fallback_doms;
7247 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7248 WARN_ON_ONCE(dattr_new);
7249 }
7250
7251 /* Build new domains */
7252 for (i = 0; i < ndoms_new; i++) {
7253 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7254 if (cpumask_equal(doms_new[i], doms_cur[j])
7255 && dattrs_equal(dattr_new, i, dattr_cur, j))
7256 goto match2;
7257 }
7258 /* no match - add a new doms_new */
7259 __build_sched_domains(doms_new[i],
7260 dattr_new ? dattr_new + i : NULL);
7261 match2:
7262 ;
7263 }
7264
7265 /* Remember the new sched domains */
7266 if (doms_cur != &fallback_doms)
7267 free_sched_domains(doms_cur, ndoms_cur);
7268 kfree(dattr_cur); /* kfree(NULL) is safe */
7269 doms_cur = doms_new;
7270 dattr_cur = dattr_new;
7271 ndoms_cur = ndoms_new;
7272
7273 register_sched_domain_sysctl();
7274
7275 mutex_unlock(&sched_domains_mutex);
7276 }
7277
7278 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7279 static void arch_reinit_sched_domains(void)
7280 {
7281 get_online_cpus();
7282
7283 /* Destroy domains first to force the rebuild */
7284 partition_sched_domains(0, NULL, NULL);
7285
7286 rebuild_sched_domains();
7287 put_online_cpus();
7288 }
7289
7290 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7291 {
7292 unsigned int level = 0;
7293
7294 if (sscanf(buf, "%u", &level) != 1)
7295 return -EINVAL;
7296
7297 /*
7298 * level is always be positive so don't check for
7299 * level < POWERSAVINGS_BALANCE_NONE which is 0
7300 * What happens on 0 or 1 byte write,
7301 * need to check for count as well?
7302 */
7303
7304 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7305 return -EINVAL;
7306
7307 if (smt)
7308 sched_smt_power_savings = level;
7309 else
7310 sched_mc_power_savings = level;
7311
7312 arch_reinit_sched_domains();
7313
7314 return count;
7315 }
7316
7317 #ifdef CONFIG_SCHED_MC
7318 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7319 struct sysdev_class_attribute *attr,
7320 char *page)
7321 {
7322 return sprintf(page, "%u\n", sched_mc_power_savings);
7323 }
7324 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7325 struct sysdev_class_attribute *attr,
7326 const char *buf, size_t count)
7327 {
7328 return sched_power_savings_store(buf, count, 0);
7329 }
7330 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7331 sched_mc_power_savings_show,
7332 sched_mc_power_savings_store);
7333 #endif
7334
7335 #ifdef CONFIG_SCHED_SMT
7336 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7337 struct sysdev_class_attribute *attr,
7338 char *page)
7339 {
7340 return sprintf(page, "%u\n", sched_smt_power_savings);
7341 }
7342 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7343 struct sysdev_class_attribute *attr,
7344 const char *buf, size_t count)
7345 {
7346 return sched_power_savings_store(buf, count, 1);
7347 }
7348 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7349 sched_smt_power_savings_show,
7350 sched_smt_power_savings_store);
7351 #endif
7352
7353 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7354 {
7355 int err = 0;
7356
7357 #ifdef CONFIG_SCHED_SMT
7358 if (smt_capable())
7359 err = sysfs_create_file(&cls->kset.kobj,
7360 &attr_sched_smt_power_savings.attr);
7361 #endif
7362 #ifdef CONFIG_SCHED_MC
7363 if (!err && mc_capable())
7364 err = sysfs_create_file(&cls->kset.kobj,
7365 &attr_sched_mc_power_savings.attr);
7366 #endif
7367 return err;
7368 }
7369 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7370
7371 #ifndef CONFIG_CPUSETS
7372 /*
7373 * Add online and remove offline CPUs from the scheduler domains.
7374 * When cpusets are enabled they take over this function.
7375 */
7376 static int update_sched_domains(struct notifier_block *nfb,
7377 unsigned long action, void *hcpu)
7378 {
7379 switch (action) {
7380 case CPU_ONLINE:
7381 case CPU_ONLINE_FROZEN:
7382 case CPU_DOWN_PREPARE:
7383 case CPU_DOWN_PREPARE_FROZEN:
7384 case CPU_DOWN_FAILED:
7385 case CPU_DOWN_FAILED_FROZEN:
7386 partition_sched_domains(1, NULL, NULL);
7387 return NOTIFY_OK;
7388
7389 default:
7390 return NOTIFY_DONE;
7391 }
7392 }
7393 #endif
7394
7395 static int update_runtime(struct notifier_block *nfb,
7396 unsigned long action, void *hcpu)
7397 {
7398 int cpu = (int)(long)hcpu;
7399
7400 switch (action) {
7401 case CPU_DOWN_PREPARE:
7402 case CPU_DOWN_PREPARE_FROZEN:
7403 disable_runtime(cpu_rq(cpu));
7404 return NOTIFY_OK;
7405
7406 case CPU_DOWN_FAILED:
7407 case CPU_DOWN_FAILED_FROZEN:
7408 case CPU_ONLINE:
7409 case CPU_ONLINE_FROZEN:
7410 enable_runtime(cpu_rq(cpu));
7411 return NOTIFY_OK;
7412
7413 default:
7414 return NOTIFY_DONE;
7415 }
7416 }
7417
7418 void __init sched_init_smp(void)
7419 {
7420 cpumask_var_t non_isolated_cpus;
7421
7422 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7423 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7424
7425 #if defined(CONFIG_NUMA)
7426 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7427 GFP_KERNEL);
7428 BUG_ON(sched_group_nodes_bycpu == NULL);
7429 #endif
7430 get_online_cpus();
7431 mutex_lock(&sched_domains_mutex);
7432 arch_init_sched_domains(cpu_active_mask);
7433 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7434 if (cpumask_empty(non_isolated_cpus))
7435 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7436 mutex_unlock(&sched_domains_mutex);
7437 put_online_cpus();
7438
7439 #ifndef CONFIG_CPUSETS
7440 /* XXX: Theoretical race here - CPU may be hotplugged now */
7441 hotcpu_notifier(update_sched_domains, 0);
7442 #endif
7443
7444 /* RT runtime code needs to handle some hotplug events */
7445 hotcpu_notifier(update_runtime, 0);
7446
7447 init_hrtick();
7448
7449 /* Move init over to a non-isolated CPU */
7450 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7451 BUG();
7452 sched_init_granularity();
7453 free_cpumask_var(non_isolated_cpus);
7454
7455 init_sched_rt_class();
7456 }
7457 #else
7458 void __init sched_init_smp(void)
7459 {
7460 sched_init_granularity();
7461 }
7462 #endif /* CONFIG_SMP */
7463
7464 const_debug unsigned int sysctl_timer_migration = 1;
7465
7466 int in_sched_functions(unsigned long addr)
7467 {
7468 return in_lock_functions(addr) ||
7469 (addr >= (unsigned long)__sched_text_start
7470 && addr < (unsigned long)__sched_text_end);
7471 }
7472
7473 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7474 {
7475 cfs_rq->tasks_timeline = RB_ROOT;
7476 INIT_LIST_HEAD(&cfs_rq->tasks);
7477 #ifdef CONFIG_FAIR_GROUP_SCHED
7478 cfs_rq->rq = rq;
7479 #endif
7480 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7481 }
7482
7483 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7484 {
7485 struct rt_prio_array *array;
7486 int i;
7487
7488 array = &rt_rq->active;
7489 for (i = 0; i < MAX_RT_PRIO; i++) {
7490 INIT_LIST_HEAD(array->queue + i);
7491 __clear_bit(i, array->bitmap);
7492 }
7493 /* delimiter for bitsearch: */
7494 __set_bit(MAX_RT_PRIO, array->bitmap);
7495
7496 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7497 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7498 #ifdef CONFIG_SMP
7499 rt_rq->highest_prio.next = MAX_RT_PRIO;
7500 #endif
7501 #endif
7502 #ifdef CONFIG_SMP
7503 rt_rq->rt_nr_migratory = 0;
7504 rt_rq->overloaded = 0;
7505 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7506 #endif
7507
7508 rt_rq->rt_time = 0;
7509 rt_rq->rt_throttled = 0;
7510 rt_rq->rt_runtime = 0;
7511 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7512
7513 #ifdef CONFIG_RT_GROUP_SCHED
7514 rt_rq->rt_nr_boosted = 0;
7515 rt_rq->rq = rq;
7516 #endif
7517 }
7518
7519 #ifdef CONFIG_FAIR_GROUP_SCHED
7520 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7521 struct sched_entity *se, int cpu, int add,
7522 struct sched_entity *parent)
7523 {
7524 struct rq *rq = cpu_rq(cpu);
7525 tg->cfs_rq[cpu] = cfs_rq;
7526 init_cfs_rq(cfs_rq, rq);
7527 cfs_rq->tg = tg;
7528 if (add)
7529 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7530
7531 tg->se[cpu] = se;
7532 /* se could be NULL for init_task_group */
7533 if (!se)
7534 return;
7535
7536 if (!parent)
7537 se->cfs_rq = &rq->cfs;
7538 else
7539 se->cfs_rq = parent->my_q;
7540
7541 se->my_q = cfs_rq;
7542 se->load.weight = tg->shares;
7543 se->load.inv_weight = 0;
7544 se->parent = parent;
7545 }
7546 #endif
7547
7548 #ifdef CONFIG_RT_GROUP_SCHED
7549 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7550 struct sched_rt_entity *rt_se, int cpu, int add,
7551 struct sched_rt_entity *parent)
7552 {
7553 struct rq *rq = cpu_rq(cpu);
7554
7555 tg->rt_rq[cpu] = rt_rq;
7556 init_rt_rq(rt_rq, rq);
7557 rt_rq->tg = tg;
7558 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7559 if (add)
7560 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7561
7562 tg->rt_se[cpu] = rt_se;
7563 if (!rt_se)
7564 return;
7565
7566 if (!parent)
7567 rt_se->rt_rq = &rq->rt;
7568 else
7569 rt_se->rt_rq = parent->my_q;
7570
7571 rt_se->my_q = rt_rq;
7572 rt_se->parent = parent;
7573 INIT_LIST_HEAD(&rt_se->run_list);
7574 }
7575 #endif
7576
7577 void __init sched_init(void)
7578 {
7579 int i, j;
7580 unsigned long alloc_size = 0, ptr;
7581
7582 #ifdef CONFIG_FAIR_GROUP_SCHED
7583 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7584 #endif
7585 #ifdef CONFIG_RT_GROUP_SCHED
7586 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7587 #endif
7588 #ifdef CONFIG_CPUMASK_OFFSTACK
7589 alloc_size += num_possible_cpus() * cpumask_size();
7590 #endif
7591 if (alloc_size) {
7592 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7593
7594 #ifdef CONFIG_FAIR_GROUP_SCHED
7595 init_task_group.se = (struct sched_entity **)ptr;
7596 ptr += nr_cpu_ids * sizeof(void **);
7597
7598 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7599 ptr += nr_cpu_ids * sizeof(void **);
7600
7601 #endif /* CONFIG_FAIR_GROUP_SCHED */
7602 #ifdef CONFIG_RT_GROUP_SCHED
7603 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7604 ptr += nr_cpu_ids * sizeof(void **);
7605
7606 init_task_group.rt_rq = (struct rt_rq **)ptr;
7607 ptr += nr_cpu_ids * sizeof(void **);
7608
7609 #endif /* CONFIG_RT_GROUP_SCHED */
7610 #ifdef CONFIG_CPUMASK_OFFSTACK
7611 for_each_possible_cpu(i) {
7612 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7613 ptr += cpumask_size();
7614 }
7615 #endif /* CONFIG_CPUMASK_OFFSTACK */
7616 }
7617
7618 #ifdef CONFIG_SMP
7619 init_defrootdomain();
7620 #endif
7621
7622 init_rt_bandwidth(&def_rt_bandwidth,
7623 global_rt_period(), global_rt_runtime());
7624
7625 #ifdef CONFIG_RT_GROUP_SCHED
7626 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7627 global_rt_period(), global_rt_runtime());
7628 #endif /* CONFIG_RT_GROUP_SCHED */
7629
7630 #ifdef CONFIG_CGROUP_SCHED
7631 list_add(&init_task_group.list, &task_groups);
7632 INIT_LIST_HEAD(&init_task_group.children);
7633
7634 #endif /* CONFIG_CGROUP_SCHED */
7635
7636 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7637 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7638 __alignof__(unsigned long));
7639 #endif
7640 for_each_possible_cpu(i) {
7641 struct rq *rq;
7642
7643 rq = cpu_rq(i);
7644 raw_spin_lock_init(&rq->lock);
7645 rq->nr_running = 0;
7646 rq->calc_load_active = 0;
7647 rq->calc_load_update = jiffies + LOAD_FREQ;
7648 init_cfs_rq(&rq->cfs, rq);
7649 init_rt_rq(&rq->rt, rq);
7650 #ifdef CONFIG_FAIR_GROUP_SCHED
7651 init_task_group.shares = init_task_group_load;
7652 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7653 #ifdef CONFIG_CGROUP_SCHED
7654 /*
7655 * How much cpu bandwidth does init_task_group get?
7656 *
7657 * In case of task-groups formed thr' the cgroup filesystem, it
7658 * gets 100% of the cpu resources in the system. This overall
7659 * system cpu resource is divided among the tasks of
7660 * init_task_group and its child task-groups in a fair manner,
7661 * based on each entity's (task or task-group's) weight
7662 * (se->load.weight).
7663 *
7664 * In other words, if init_task_group has 10 tasks of weight
7665 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7666 * then A0's share of the cpu resource is:
7667 *
7668 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7669 *
7670 * We achieve this by letting init_task_group's tasks sit
7671 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7672 */
7673 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7674 #endif
7675 #endif /* CONFIG_FAIR_GROUP_SCHED */
7676
7677 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7678 #ifdef CONFIG_RT_GROUP_SCHED
7679 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7680 #ifdef CONFIG_CGROUP_SCHED
7681 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7682 #endif
7683 #endif
7684
7685 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7686 rq->cpu_load[j] = 0;
7687 #ifdef CONFIG_SMP
7688 rq->sd = NULL;
7689 rq->rd = NULL;
7690 rq->post_schedule = 0;
7691 rq->active_balance = 0;
7692 rq->next_balance = jiffies;
7693 rq->push_cpu = 0;
7694 rq->cpu = i;
7695 rq->online = 0;
7696 rq->migration_thread = NULL;
7697 rq->idle_stamp = 0;
7698 rq->avg_idle = 2*sysctl_sched_migration_cost;
7699 INIT_LIST_HEAD(&rq->migration_queue);
7700 rq_attach_root(rq, &def_root_domain);
7701 #endif
7702 init_rq_hrtick(rq);
7703 atomic_set(&rq->nr_iowait, 0);
7704 }
7705
7706 set_load_weight(&init_task);
7707
7708 #ifdef CONFIG_PREEMPT_NOTIFIERS
7709 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7710 #endif
7711
7712 #ifdef CONFIG_SMP
7713 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7714 #endif
7715
7716 #ifdef CONFIG_RT_MUTEXES
7717 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7718 #endif
7719
7720 /*
7721 * The boot idle thread does lazy MMU switching as well:
7722 */
7723 atomic_inc(&init_mm.mm_count);
7724 enter_lazy_tlb(&init_mm, current);
7725
7726 /*
7727 * Make us the idle thread. Technically, schedule() should not be
7728 * called from this thread, however somewhere below it might be,
7729 * but because we are the idle thread, we just pick up running again
7730 * when this runqueue becomes "idle".
7731 */
7732 init_idle(current, smp_processor_id());
7733
7734 calc_load_update = jiffies + LOAD_FREQ;
7735
7736 /*
7737 * During early bootup we pretend to be a normal task:
7738 */
7739 current->sched_class = &fair_sched_class;
7740
7741 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7742 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7743 #ifdef CONFIG_SMP
7744 #ifdef CONFIG_NO_HZ
7745 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7746 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7747 #endif
7748 /* May be allocated at isolcpus cmdline parse time */
7749 if (cpu_isolated_map == NULL)
7750 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7751 #endif /* SMP */
7752
7753 perf_event_init();
7754
7755 scheduler_running = 1;
7756 }
7757
7758 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7759 static inline int preempt_count_equals(int preempt_offset)
7760 {
7761 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7762
7763 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7764 }
7765
7766 void __might_sleep(const char *file, int line, int preempt_offset)
7767 {
7768 #ifdef in_atomic
7769 static unsigned long prev_jiffy; /* ratelimiting */
7770
7771 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7772 system_state != SYSTEM_RUNNING || oops_in_progress)
7773 return;
7774 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7775 return;
7776 prev_jiffy = jiffies;
7777
7778 printk(KERN_ERR
7779 "BUG: sleeping function called from invalid context at %s:%d\n",
7780 file, line);
7781 printk(KERN_ERR
7782 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7783 in_atomic(), irqs_disabled(),
7784 current->pid, current->comm);
7785
7786 debug_show_held_locks(current);
7787 if (irqs_disabled())
7788 print_irqtrace_events(current);
7789 dump_stack();
7790 #endif
7791 }
7792 EXPORT_SYMBOL(__might_sleep);
7793 #endif
7794
7795 #ifdef CONFIG_MAGIC_SYSRQ
7796 static void normalize_task(struct rq *rq, struct task_struct *p)
7797 {
7798 int on_rq;
7799
7800 on_rq = p->se.on_rq;
7801 if (on_rq)
7802 deactivate_task(rq, p, 0);
7803 __setscheduler(rq, p, SCHED_NORMAL, 0);
7804 if (on_rq) {
7805 activate_task(rq, p, 0);
7806 resched_task(rq->curr);
7807 }
7808 }
7809
7810 void normalize_rt_tasks(void)
7811 {
7812 struct task_struct *g, *p;
7813 unsigned long flags;
7814 struct rq *rq;
7815
7816 read_lock_irqsave(&tasklist_lock, flags);
7817 do_each_thread(g, p) {
7818 /*
7819 * Only normalize user tasks:
7820 */
7821 if (!p->mm)
7822 continue;
7823
7824 p->se.exec_start = 0;
7825 #ifdef CONFIG_SCHEDSTATS
7826 p->se.statistics.wait_start = 0;
7827 p->se.statistics.sleep_start = 0;
7828 p->se.statistics.block_start = 0;
7829 #endif
7830
7831 if (!rt_task(p)) {
7832 /*
7833 * Renice negative nice level userspace
7834 * tasks back to 0:
7835 */
7836 if (TASK_NICE(p) < 0 && p->mm)
7837 set_user_nice(p, 0);
7838 continue;
7839 }
7840
7841 raw_spin_lock(&p->pi_lock);
7842 rq = __task_rq_lock(p);
7843
7844 normalize_task(rq, p);
7845
7846 __task_rq_unlock(rq);
7847 raw_spin_unlock(&p->pi_lock);
7848 } while_each_thread(g, p);
7849
7850 read_unlock_irqrestore(&tasklist_lock, flags);
7851 }
7852
7853 #endif /* CONFIG_MAGIC_SYSRQ */
7854
7855 #ifdef CONFIG_IA64
7856 /*
7857 * These functions are only useful for the IA64 MCA handling.
7858 *
7859 * They can only be called when the whole system has been
7860 * stopped - every CPU needs to be quiescent, and no scheduling
7861 * activity can take place. Using them for anything else would
7862 * be a serious bug, and as a result, they aren't even visible
7863 * under any other configuration.
7864 */
7865
7866 /**
7867 * curr_task - return the current task for a given cpu.
7868 * @cpu: the processor in question.
7869 *
7870 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7871 */
7872 struct task_struct *curr_task(int cpu)
7873 {
7874 return cpu_curr(cpu);
7875 }
7876
7877 /**
7878 * set_curr_task - set the current task for a given cpu.
7879 * @cpu: the processor in question.
7880 * @p: the task pointer to set.
7881 *
7882 * Description: This function must only be used when non-maskable interrupts
7883 * are serviced on a separate stack. It allows the architecture to switch the
7884 * notion of the current task on a cpu in a non-blocking manner. This function
7885 * must be called with all CPU's synchronized, and interrupts disabled, the
7886 * and caller must save the original value of the current task (see
7887 * curr_task() above) and restore that value before reenabling interrupts and
7888 * re-starting the system.
7889 *
7890 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7891 */
7892 void set_curr_task(int cpu, struct task_struct *p)
7893 {
7894 cpu_curr(cpu) = p;
7895 }
7896
7897 #endif
7898
7899 #ifdef CONFIG_FAIR_GROUP_SCHED
7900 static void free_fair_sched_group(struct task_group *tg)
7901 {
7902 int i;
7903
7904 for_each_possible_cpu(i) {
7905 if (tg->cfs_rq)
7906 kfree(tg->cfs_rq[i]);
7907 if (tg->se)
7908 kfree(tg->se[i]);
7909 }
7910
7911 kfree(tg->cfs_rq);
7912 kfree(tg->se);
7913 }
7914
7915 static
7916 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7917 {
7918 struct cfs_rq *cfs_rq;
7919 struct sched_entity *se;
7920 struct rq *rq;
7921 int i;
7922
7923 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7924 if (!tg->cfs_rq)
7925 goto err;
7926 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7927 if (!tg->se)
7928 goto err;
7929
7930 tg->shares = NICE_0_LOAD;
7931
7932 for_each_possible_cpu(i) {
7933 rq = cpu_rq(i);
7934
7935 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7936 GFP_KERNEL, cpu_to_node(i));
7937 if (!cfs_rq)
7938 goto err;
7939
7940 se = kzalloc_node(sizeof(struct sched_entity),
7941 GFP_KERNEL, cpu_to_node(i));
7942 if (!se)
7943 goto err_free_rq;
7944
7945 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7946 }
7947
7948 return 1;
7949
7950 err_free_rq:
7951 kfree(cfs_rq);
7952 err:
7953 return 0;
7954 }
7955
7956 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7957 {
7958 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7959 &cpu_rq(cpu)->leaf_cfs_rq_list);
7960 }
7961
7962 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7963 {
7964 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7965 }
7966 #else /* !CONFG_FAIR_GROUP_SCHED */
7967 static inline void free_fair_sched_group(struct task_group *tg)
7968 {
7969 }
7970
7971 static inline
7972 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7973 {
7974 return 1;
7975 }
7976
7977 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7978 {
7979 }
7980
7981 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7982 {
7983 }
7984 #endif /* CONFIG_FAIR_GROUP_SCHED */
7985
7986 #ifdef CONFIG_RT_GROUP_SCHED
7987 static void free_rt_sched_group(struct task_group *tg)
7988 {
7989 int i;
7990
7991 destroy_rt_bandwidth(&tg->rt_bandwidth);
7992
7993 for_each_possible_cpu(i) {
7994 if (tg->rt_rq)
7995 kfree(tg->rt_rq[i]);
7996 if (tg->rt_se)
7997 kfree(tg->rt_se[i]);
7998 }
7999
8000 kfree(tg->rt_rq);
8001 kfree(tg->rt_se);
8002 }
8003
8004 static
8005 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8006 {
8007 struct rt_rq *rt_rq;
8008 struct sched_rt_entity *rt_se;
8009 struct rq *rq;
8010 int i;
8011
8012 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8013 if (!tg->rt_rq)
8014 goto err;
8015 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8016 if (!tg->rt_se)
8017 goto err;
8018
8019 init_rt_bandwidth(&tg->rt_bandwidth,
8020 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8021
8022 for_each_possible_cpu(i) {
8023 rq = cpu_rq(i);
8024
8025 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8026 GFP_KERNEL, cpu_to_node(i));
8027 if (!rt_rq)
8028 goto err;
8029
8030 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8031 GFP_KERNEL, cpu_to_node(i));
8032 if (!rt_se)
8033 goto err_free_rq;
8034
8035 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8036 }
8037
8038 return 1;
8039
8040 err_free_rq:
8041 kfree(rt_rq);
8042 err:
8043 return 0;
8044 }
8045
8046 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8047 {
8048 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8049 &cpu_rq(cpu)->leaf_rt_rq_list);
8050 }
8051
8052 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8053 {
8054 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8055 }
8056 #else /* !CONFIG_RT_GROUP_SCHED */
8057 static inline void free_rt_sched_group(struct task_group *tg)
8058 {
8059 }
8060
8061 static inline
8062 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8063 {
8064 return 1;
8065 }
8066
8067 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8068 {
8069 }
8070
8071 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8072 {
8073 }
8074 #endif /* CONFIG_RT_GROUP_SCHED */
8075
8076 #ifdef CONFIG_CGROUP_SCHED
8077 static void free_sched_group(struct task_group *tg)
8078 {
8079 free_fair_sched_group(tg);
8080 free_rt_sched_group(tg);
8081 kfree(tg);
8082 }
8083
8084 /* allocate runqueue etc for a new task group */
8085 struct task_group *sched_create_group(struct task_group *parent)
8086 {
8087 struct task_group *tg;
8088 unsigned long flags;
8089 int i;
8090
8091 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8092 if (!tg)
8093 return ERR_PTR(-ENOMEM);
8094
8095 if (!alloc_fair_sched_group(tg, parent))
8096 goto err;
8097
8098 if (!alloc_rt_sched_group(tg, parent))
8099 goto err;
8100
8101 spin_lock_irqsave(&task_group_lock, flags);
8102 for_each_possible_cpu(i) {
8103 register_fair_sched_group(tg, i);
8104 register_rt_sched_group(tg, i);
8105 }
8106 list_add_rcu(&tg->list, &task_groups);
8107
8108 WARN_ON(!parent); /* root should already exist */
8109
8110 tg->parent = parent;
8111 INIT_LIST_HEAD(&tg->children);
8112 list_add_rcu(&tg->siblings, &parent->children);
8113 spin_unlock_irqrestore(&task_group_lock, flags);
8114
8115 return tg;
8116
8117 err:
8118 free_sched_group(tg);
8119 return ERR_PTR(-ENOMEM);
8120 }
8121
8122 /* rcu callback to free various structures associated with a task group */
8123 static void free_sched_group_rcu(struct rcu_head *rhp)
8124 {
8125 /* now it should be safe to free those cfs_rqs */
8126 free_sched_group(container_of(rhp, struct task_group, rcu));
8127 }
8128
8129 /* Destroy runqueue etc associated with a task group */
8130 void sched_destroy_group(struct task_group *tg)
8131 {
8132 unsigned long flags;
8133 int i;
8134
8135 spin_lock_irqsave(&task_group_lock, flags);
8136 for_each_possible_cpu(i) {
8137 unregister_fair_sched_group(tg, i);
8138 unregister_rt_sched_group(tg, i);
8139 }
8140 list_del_rcu(&tg->list);
8141 list_del_rcu(&tg->siblings);
8142 spin_unlock_irqrestore(&task_group_lock, flags);
8143
8144 /* wait for possible concurrent references to cfs_rqs complete */
8145 call_rcu(&tg->rcu, free_sched_group_rcu);
8146 }
8147
8148 /* change task's runqueue when it moves between groups.
8149 * The caller of this function should have put the task in its new group
8150 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8151 * reflect its new group.
8152 */
8153 void sched_move_task(struct task_struct *tsk)
8154 {
8155 int on_rq, running;
8156 unsigned long flags;
8157 struct rq *rq;
8158
8159 rq = task_rq_lock(tsk, &flags);
8160
8161 running = task_current(rq, tsk);
8162 on_rq = tsk->se.on_rq;
8163
8164 if (on_rq)
8165 dequeue_task(rq, tsk, 0);
8166 if (unlikely(running))
8167 tsk->sched_class->put_prev_task(rq, tsk);
8168
8169 set_task_rq(tsk, task_cpu(tsk));
8170
8171 #ifdef CONFIG_FAIR_GROUP_SCHED
8172 if (tsk->sched_class->moved_group)
8173 tsk->sched_class->moved_group(tsk, on_rq);
8174 #endif
8175
8176 if (unlikely(running))
8177 tsk->sched_class->set_curr_task(rq);
8178 if (on_rq)
8179 enqueue_task(rq, tsk, 0, false);
8180
8181 task_rq_unlock(rq, &flags);
8182 }
8183 #endif /* CONFIG_CGROUP_SCHED */
8184
8185 #ifdef CONFIG_FAIR_GROUP_SCHED
8186 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8187 {
8188 struct cfs_rq *cfs_rq = se->cfs_rq;
8189 int on_rq;
8190
8191 on_rq = se->on_rq;
8192 if (on_rq)
8193 dequeue_entity(cfs_rq, se, 0);
8194
8195 se->load.weight = shares;
8196 se->load.inv_weight = 0;
8197
8198 if (on_rq)
8199 enqueue_entity(cfs_rq, se, 0);
8200 }
8201
8202 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8203 {
8204 struct cfs_rq *cfs_rq = se->cfs_rq;
8205 struct rq *rq = cfs_rq->rq;
8206 unsigned long flags;
8207
8208 raw_spin_lock_irqsave(&rq->lock, flags);
8209 __set_se_shares(se, shares);
8210 raw_spin_unlock_irqrestore(&rq->lock, flags);
8211 }
8212
8213 static DEFINE_MUTEX(shares_mutex);
8214
8215 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8216 {
8217 int i;
8218 unsigned long flags;
8219
8220 /*
8221 * We can't change the weight of the root cgroup.
8222 */
8223 if (!tg->se[0])
8224 return -EINVAL;
8225
8226 if (shares < MIN_SHARES)
8227 shares = MIN_SHARES;
8228 else if (shares > MAX_SHARES)
8229 shares = MAX_SHARES;
8230
8231 mutex_lock(&shares_mutex);
8232 if (tg->shares == shares)
8233 goto done;
8234
8235 spin_lock_irqsave(&task_group_lock, flags);
8236 for_each_possible_cpu(i)
8237 unregister_fair_sched_group(tg, i);
8238 list_del_rcu(&tg->siblings);
8239 spin_unlock_irqrestore(&task_group_lock, flags);
8240
8241 /* wait for any ongoing reference to this group to finish */
8242 synchronize_sched();
8243
8244 /*
8245 * Now we are free to modify the group's share on each cpu
8246 * w/o tripping rebalance_share or load_balance_fair.
8247 */
8248 tg->shares = shares;
8249 for_each_possible_cpu(i) {
8250 /*
8251 * force a rebalance
8252 */
8253 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8254 set_se_shares(tg->se[i], shares);
8255 }
8256
8257 /*
8258 * Enable load balance activity on this group, by inserting it back on
8259 * each cpu's rq->leaf_cfs_rq_list.
8260 */
8261 spin_lock_irqsave(&task_group_lock, flags);
8262 for_each_possible_cpu(i)
8263 register_fair_sched_group(tg, i);
8264 list_add_rcu(&tg->siblings, &tg->parent->children);
8265 spin_unlock_irqrestore(&task_group_lock, flags);
8266 done:
8267 mutex_unlock(&shares_mutex);
8268 return 0;
8269 }
8270
8271 unsigned long sched_group_shares(struct task_group *tg)
8272 {
8273 return tg->shares;
8274 }
8275 #endif
8276
8277 #ifdef CONFIG_RT_GROUP_SCHED
8278 /*
8279 * Ensure that the real time constraints are schedulable.
8280 */
8281 static DEFINE_MUTEX(rt_constraints_mutex);
8282
8283 static unsigned long to_ratio(u64 period, u64 runtime)
8284 {
8285 if (runtime == RUNTIME_INF)
8286 return 1ULL << 20;
8287
8288 return div64_u64(runtime << 20, period);
8289 }
8290
8291 /* Must be called with tasklist_lock held */
8292 static inline int tg_has_rt_tasks(struct task_group *tg)
8293 {
8294 struct task_struct *g, *p;
8295
8296 do_each_thread(g, p) {
8297 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8298 return 1;
8299 } while_each_thread(g, p);
8300
8301 return 0;
8302 }
8303
8304 struct rt_schedulable_data {
8305 struct task_group *tg;
8306 u64 rt_period;
8307 u64 rt_runtime;
8308 };
8309
8310 static int tg_schedulable(struct task_group *tg, void *data)
8311 {
8312 struct rt_schedulable_data *d = data;
8313 struct task_group *child;
8314 unsigned long total, sum = 0;
8315 u64 period, runtime;
8316
8317 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8318 runtime = tg->rt_bandwidth.rt_runtime;
8319
8320 if (tg == d->tg) {
8321 period = d->rt_period;
8322 runtime = d->rt_runtime;
8323 }
8324
8325 /*
8326 * Cannot have more runtime than the period.
8327 */
8328 if (runtime > period && runtime != RUNTIME_INF)
8329 return -EINVAL;
8330
8331 /*
8332 * Ensure we don't starve existing RT tasks.
8333 */
8334 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8335 return -EBUSY;
8336
8337 total = to_ratio(period, runtime);
8338
8339 /*
8340 * Nobody can have more than the global setting allows.
8341 */
8342 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8343 return -EINVAL;
8344
8345 /*
8346 * The sum of our children's runtime should not exceed our own.
8347 */
8348 list_for_each_entry_rcu(child, &tg->children, siblings) {
8349 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8350 runtime = child->rt_bandwidth.rt_runtime;
8351
8352 if (child == d->tg) {
8353 period = d->rt_period;
8354 runtime = d->rt_runtime;
8355 }
8356
8357 sum += to_ratio(period, runtime);
8358 }
8359
8360 if (sum > total)
8361 return -EINVAL;
8362
8363 return 0;
8364 }
8365
8366 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8367 {
8368 struct rt_schedulable_data data = {
8369 .tg = tg,
8370 .rt_period = period,
8371 .rt_runtime = runtime,
8372 };
8373
8374 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8375 }
8376
8377 static int tg_set_bandwidth(struct task_group *tg,
8378 u64 rt_period, u64 rt_runtime)
8379 {
8380 int i, err = 0;
8381
8382 mutex_lock(&rt_constraints_mutex);
8383 read_lock(&tasklist_lock);
8384 err = __rt_schedulable(tg, rt_period, rt_runtime);
8385 if (err)
8386 goto unlock;
8387
8388 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8389 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8390 tg->rt_bandwidth.rt_runtime = rt_runtime;
8391
8392 for_each_possible_cpu(i) {
8393 struct rt_rq *rt_rq = tg->rt_rq[i];
8394
8395 raw_spin_lock(&rt_rq->rt_runtime_lock);
8396 rt_rq->rt_runtime = rt_runtime;
8397 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8398 }
8399 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8400 unlock:
8401 read_unlock(&tasklist_lock);
8402 mutex_unlock(&rt_constraints_mutex);
8403
8404 return err;
8405 }
8406
8407 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8408 {
8409 u64 rt_runtime, rt_period;
8410
8411 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8412 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8413 if (rt_runtime_us < 0)
8414 rt_runtime = RUNTIME_INF;
8415
8416 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8417 }
8418
8419 long sched_group_rt_runtime(struct task_group *tg)
8420 {
8421 u64 rt_runtime_us;
8422
8423 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8424 return -1;
8425
8426 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8427 do_div(rt_runtime_us, NSEC_PER_USEC);
8428 return rt_runtime_us;
8429 }
8430
8431 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8432 {
8433 u64 rt_runtime, rt_period;
8434
8435 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8436 rt_runtime = tg->rt_bandwidth.rt_runtime;
8437
8438 if (rt_period == 0)
8439 return -EINVAL;
8440
8441 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8442 }
8443
8444 long sched_group_rt_period(struct task_group *tg)
8445 {
8446 u64 rt_period_us;
8447
8448 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8449 do_div(rt_period_us, NSEC_PER_USEC);
8450 return rt_period_us;
8451 }
8452
8453 static int sched_rt_global_constraints(void)
8454 {
8455 u64 runtime, period;
8456 int ret = 0;
8457
8458 if (sysctl_sched_rt_period <= 0)
8459 return -EINVAL;
8460
8461 runtime = global_rt_runtime();
8462 period = global_rt_period();
8463
8464 /*
8465 * Sanity check on the sysctl variables.
8466 */
8467 if (runtime > period && runtime != RUNTIME_INF)
8468 return -EINVAL;
8469
8470 mutex_lock(&rt_constraints_mutex);
8471 read_lock(&tasklist_lock);
8472 ret = __rt_schedulable(NULL, 0, 0);
8473 read_unlock(&tasklist_lock);
8474 mutex_unlock(&rt_constraints_mutex);
8475
8476 return ret;
8477 }
8478
8479 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8480 {
8481 /* Don't accept realtime tasks when there is no way for them to run */
8482 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8483 return 0;
8484
8485 return 1;
8486 }
8487
8488 #else /* !CONFIG_RT_GROUP_SCHED */
8489 static int sched_rt_global_constraints(void)
8490 {
8491 unsigned long flags;
8492 int i;
8493
8494 if (sysctl_sched_rt_period <= 0)
8495 return -EINVAL;
8496
8497 /*
8498 * There's always some RT tasks in the root group
8499 * -- migration, kstopmachine etc..
8500 */
8501 if (sysctl_sched_rt_runtime == 0)
8502 return -EBUSY;
8503
8504 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8505 for_each_possible_cpu(i) {
8506 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8507
8508 raw_spin_lock(&rt_rq->rt_runtime_lock);
8509 rt_rq->rt_runtime = global_rt_runtime();
8510 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8511 }
8512 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8513
8514 return 0;
8515 }
8516 #endif /* CONFIG_RT_GROUP_SCHED */
8517
8518 int sched_rt_handler(struct ctl_table *table, int write,
8519 void __user *buffer, size_t *lenp,
8520 loff_t *ppos)
8521 {
8522 int ret;
8523 int old_period, old_runtime;
8524 static DEFINE_MUTEX(mutex);
8525
8526 mutex_lock(&mutex);
8527 old_period = sysctl_sched_rt_period;
8528 old_runtime = sysctl_sched_rt_runtime;
8529
8530 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8531
8532 if (!ret && write) {
8533 ret = sched_rt_global_constraints();
8534 if (ret) {
8535 sysctl_sched_rt_period = old_period;
8536 sysctl_sched_rt_runtime = old_runtime;
8537 } else {
8538 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8539 def_rt_bandwidth.rt_period =
8540 ns_to_ktime(global_rt_period());
8541 }
8542 }
8543 mutex_unlock(&mutex);
8544
8545 return ret;
8546 }
8547
8548 #ifdef CONFIG_CGROUP_SCHED
8549
8550 /* return corresponding task_group object of a cgroup */
8551 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8552 {
8553 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8554 struct task_group, css);
8555 }
8556
8557 static struct cgroup_subsys_state *
8558 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8559 {
8560 struct task_group *tg, *parent;
8561
8562 if (!cgrp->parent) {
8563 /* This is early initialization for the top cgroup */
8564 return &init_task_group.css;
8565 }
8566
8567 parent = cgroup_tg(cgrp->parent);
8568 tg = sched_create_group(parent);
8569 if (IS_ERR(tg))
8570 return ERR_PTR(-ENOMEM);
8571
8572 return &tg->css;
8573 }
8574
8575 static void
8576 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8577 {
8578 struct task_group *tg = cgroup_tg(cgrp);
8579
8580 sched_destroy_group(tg);
8581 }
8582
8583 static int
8584 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8585 {
8586 #ifdef CONFIG_RT_GROUP_SCHED
8587 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8588 return -EINVAL;
8589 #else
8590 /* We don't support RT-tasks being in separate groups */
8591 if (tsk->sched_class != &fair_sched_class)
8592 return -EINVAL;
8593 #endif
8594 return 0;
8595 }
8596
8597 static int
8598 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8599 struct task_struct *tsk, bool threadgroup)
8600 {
8601 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8602 if (retval)
8603 return retval;
8604 if (threadgroup) {
8605 struct task_struct *c;
8606 rcu_read_lock();
8607 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8608 retval = cpu_cgroup_can_attach_task(cgrp, c);
8609 if (retval) {
8610 rcu_read_unlock();
8611 return retval;
8612 }
8613 }
8614 rcu_read_unlock();
8615 }
8616 return 0;
8617 }
8618
8619 static void
8620 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8621 struct cgroup *old_cont, struct task_struct *tsk,
8622 bool threadgroup)
8623 {
8624 sched_move_task(tsk);
8625 if (threadgroup) {
8626 struct task_struct *c;
8627 rcu_read_lock();
8628 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8629 sched_move_task(c);
8630 }
8631 rcu_read_unlock();
8632 }
8633 }
8634
8635 #ifdef CONFIG_FAIR_GROUP_SCHED
8636 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8637 u64 shareval)
8638 {
8639 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8640 }
8641
8642 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8643 {
8644 struct task_group *tg = cgroup_tg(cgrp);
8645
8646 return (u64) tg->shares;
8647 }
8648 #endif /* CONFIG_FAIR_GROUP_SCHED */
8649
8650 #ifdef CONFIG_RT_GROUP_SCHED
8651 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8652 s64 val)
8653 {
8654 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8655 }
8656
8657 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8658 {
8659 return sched_group_rt_runtime(cgroup_tg(cgrp));
8660 }
8661
8662 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8663 u64 rt_period_us)
8664 {
8665 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8666 }
8667
8668 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8669 {
8670 return sched_group_rt_period(cgroup_tg(cgrp));
8671 }
8672 #endif /* CONFIG_RT_GROUP_SCHED */
8673
8674 static struct cftype cpu_files[] = {
8675 #ifdef CONFIG_FAIR_GROUP_SCHED
8676 {
8677 .name = "shares",
8678 .read_u64 = cpu_shares_read_u64,
8679 .write_u64 = cpu_shares_write_u64,
8680 },
8681 #endif
8682 #ifdef CONFIG_RT_GROUP_SCHED
8683 {
8684 .name = "rt_runtime_us",
8685 .read_s64 = cpu_rt_runtime_read,
8686 .write_s64 = cpu_rt_runtime_write,
8687 },
8688 {
8689 .name = "rt_period_us",
8690 .read_u64 = cpu_rt_period_read_uint,
8691 .write_u64 = cpu_rt_period_write_uint,
8692 },
8693 #endif
8694 };
8695
8696 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8697 {
8698 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8699 }
8700
8701 struct cgroup_subsys cpu_cgroup_subsys = {
8702 .name = "cpu",
8703 .create = cpu_cgroup_create,
8704 .destroy = cpu_cgroup_destroy,
8705 .can_attach = cpu_cgroup_can_attach,
8706 .attach = cpu_cgroup_attach,
8707 .populate = cpu_cgroup_populate,
8708 .subsys_id = cpu_cgroup_subsys_id,
8709 .early_init = 1,
8710 };
8711
8712 #endif /* CONFIG_CGROUP_SCHED */
8713
8714 #ifdef CONFIG_CGROUP_CPUACCT
8715
8716 /*
8717 * CPU accounting code for task groups.
8718 *
8719 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8720 * (balbir@in.ibm.com).
8721 */
8722
8723 /* track cpu usage of a group of tasks and its child groups */
8724 struct cpuacct {
8725 struct cgroup_subsys_state css;
8726 /* cpuusage holds pointer to a u64-type object on every cpu */
8727 u64 __percpu *cpuusage;
8728 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8729 struct cpuacct *parent;
8730 };
8731
8732 struct cgroup_subsys cpuacct_subsys;
8733
8734 /* return cpu accounting group corresponding to this container */
8735 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8736 {
8737 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8738 struct cpuacct, css);
8739 }
8740
8741 /* return cpu accounting group to which this task belongs */
8742 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8743 {
8744 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8745 struct cpuacct, css);
8746 }
8747
8748 /* create a new cpu accounting group */
8749 static struct cgroup_subsys_state *cpuacct_create(
8750 struct cgroup_subsys *ss, struct cgroup *cgrp)
8751 {
8752 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8753 int i;
8754
8755 if (!ca)
8756 goto out;
8757
8758 ca->cpuusage = alloc_percpu(u64);
8759 if (!ca->cpuusage)
8760 goto out_free_ca;
8761
8762 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8763 if (percpu_counter_init(&ca->cpustat[i], 0))
8764 goto out_free_counters;
8765
8766 if (cgrp->parent)
8767 ca->parent = cgroup_ca(cgrp->parent);
8768
8769 return &ca->css;
8770
8771 out_free_counters:
8772 while (--i >= 0)
8773 percpu_counter_destroy(&ca->cpustat[i]);
8774 free_percpu(ca->cpuusage);
8775 out_free_ca:
8776 kfree(ca);
8777 out:
8778 return ERR_PTR(-ENOMEM);
8779 }
8780
8781 /* destroy an existing cpu accounting group */
8782 static void
8783 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8784 {
8785 struct cpuacct *ca = cgroup_ca(cgrp);
8786 int i;
8787
8788 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8789 percpu_counter_destroy(&ca->cpustat[i]);
8790 free_percpu(ca->cpuusage);
8791 kfree(ca);
8792 }
8793
8794 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8795 {
8796 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8797 u64 data;
8798
8799 #ifndef CONFIG_64BIT
8800 /*
8801 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8802 */
8803 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8804 data = *cpuusage;
8805 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8806 #else
8807 data = *cpuusage;
8808 #endif
8809
8810 return data;
8811 }
8812
8813 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8814 {
8815 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8816
8817 #ifndef CONFIG_64BIT
8818 /*
8819 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8820 */
8821 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8822 *cpuusage = val;
8823 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8824 #else
8825 *cpuusage = val;
8826 #endif
8827 }
8828
8829 /* return total cpu usage (in nanoseconds) of a group */
8830 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8831 {
8832 struct cpuacct *ca = cgroup_ca(cgrp);
8833 u64 totalcpuusage = 0;
8834 int i;
8835
8836 for_each_present_cpu(i)
8837 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8838
8839 return totalcpuusage;
8840 }
8841
8842 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8843 u64 reset)
8844 {
8845 struct cpuacct *ca = cgroup_ca(cgrp);
8846 int err = 0;
8847 int i;
8848
8849 if (reset) {
8850 err = -EINVAL;
8851 goto out;
8852 }
8853
8854 for_each_present_cpu(i)
8855 cpuacct_cpuusage_write(ca, i, 0);
8856
8857 out:
8858 return err;
8859 }
8860
8861 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8862 struct seq_file *m)
8863 {
8864 struct cpuacct *ca = cgroup_ca(cgroup);
8865 u64 percpu;
8866 int i;
8867
8868 for_each_present_cpu(i) {
8869 percpu = cpuacct_cpuusage_read(ca, i);
8870 seq_printf(m, "%llu ", (unsigned long long) percpu);
8871 }
8872 seq_printf(m, "\n");
8873 return 0;
8874 }
8875
8876 static const char *cpuacct_stat_desc[] = {
8877 [CPUACCT_STAT_USER] = "user",
8878 [CPUACCT_STAT_SYSTEM] = "system",
8879 };
8880
8881 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8882 struct cgroup_map_cb *cb)
8883 {
8884 struct cpuacct *ca = cgroup_ca(cgrp);
8885 int i;
8886
8887 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8888 s64 val = percpu_counter_read(&ca->cpustat[i]);
8889 val = cputime64_to_clock_t(val);
8890 cb->fill(cb, cpuacct_stat_desc[i], val);
8891 }
8892 return 0;
8893 }
8894
8895 static struct cftype files[] = {
8896 {
8897 .name = "usage",
8898 .read_u64 = cpuusage_read,
8899 .write_u64 = cpuusage_write,
8900 },
8901 {
8902 .name = "usage_percpu",
8903 .read_seq_string = cpuacct_percpu_seq_read,
8904 },
8905 {
8906 .name = "stat",
8907 .read_map = cpuacct_stats_show,
8908 },
8909 };
8910
8911 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8912 {
8913 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8914 }
8915
8916 /*
8917 * charge this task's execution time to its accounting group.
8918 *
8919 * called with rq->lock held.
8920 */
8921 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8922 {
8923 struct cpuacct *ca;
8924 int cpu;
8925
8926 if (unlikely(!cpuacct_subsys.active))
8927 return;
8928
8929 cpu = task_cpu(tsk);
8930
8931 rcu_read_lock();
8932
8933 ca = task_ca(tsk);
8934
8935 for (; ca; ca = ca->parent) {
8936 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8937 *cpuusage += cputime;
8938 }
8939
8940 rcu_read_unlock();
8941 }
8942
8943 /*
8944 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8945 * in cputime_t units. As a result, cpuacct_update_stats calls
8946 * percpu_counter_add with values large enough to always overflow the
8947 * per cpu batch limit causing bad SMP scalability.
8948 *
8949 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8950 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8951 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8952 */
8953 #ifdef CONFIG_SMP
8954 #define CPUACCT_BATCH \
8955 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8956 #else
8957 #define CPUACCT_BATCH 0
8958 #endif
8959
8960 /*
8961 * Charge the system/user time to the task's accounting group.
8962 */
8963 static void cpuacct_update_stats(struct task_struct *tsk,
8964 enum cpuacct_stat_index idx, cputime_t val)
8965 {
8966 struct cpuacct *ca;
8967 int batch = CPUACCT_BATCH;
8968
8969 if (unlikely(!cpuacct_subsys.active))
8970 return;
8971
8972 rcu_read_lock();
8973 ca = task_ca(tsk);
8974
8975 do {
8976 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8977 ca = ca->parent;
8978 } while (ca);
8979 rcu_read_unlock();
8980 }
8981
8982 struct cgroup_subsys cpuacct_subsys = {
8983 .name = "cpuacct",
8984 .create = cpuacct_create,
8985 .destroy = cpuacct_destroy,
8986 .populate = cpuacct_populate,
8987 .subsys_id = cpuacct_subsys_id,
8988 };
8989 #endif /* CONFIG_CGROUP_CPUACCT */
8990
8991 #ifndef CONFIG_SMP
8992
8993 int rcu_expedited_torture_stats(char *page)
8994 {
8995 return 0;
8996 }
8997 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
8998
8999 void synchronize_sched_expedited(void)
9000 {
9001 }
9002 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9003
9004 #else /* #ifndef CONFIG_SMP */
9005
9006 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9007 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9008
9009 #define RCU_EXPEDITED_STATE_POST -2
9010 #define RCU_EXPEDITED_STATE_IDLE -1
9011
9012 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9013
9014 int rcu_expedited_torture_stats(char *page)
9015 {
9016 int cnt = 0;
9017 int cpu;
9018
9019 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9020 for_each_online_cpu(cpu) {
9021 cnt += sprintf(&page[cnt], " %d:%d",
9022 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9023 }
9024 cnt += sprintf(&page[cnt], "\n");
9025 return cnt;
9026 }
9027 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9028
9029 static long synchronize_sched_expedited_count;
9030
9031 /*
9032 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9033 * approach to force grace period to end quickly. This consumes
9034 * significant time on all CPUs, and is thus not recommended for
9035 * any sort of common-case code.
9036 *
9037 * Note that it is illegal to call this function while holding any
9038 * lock that is acquired by a CPU-hotplug notifier. Failing to
9039 * observe this restriction will result in deadlock.
9040 */
9041 void synchronize_sched_expedited(void)
9042 {
9043 int cpu;
9044 unsigned long flags;
9045 bool need_full_sync = 0;
9046 struct rq *rq;
9047 struct migration_req *req;
9048 long snap;
9049 int trycount = 0;
9050
9051 smp_mb(); /* ensure prior mod happens before capturing snap. */
9052 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9053 get_online_cpus();
9054 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9055 put_online_cpus();
9056 if (trycount++ < 10)
9057 udelay(trycount * num_online_cpus());
9058 else {
9059 synchronize_sched();
9060 return;
9061 }
9062 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9063 smp_mb(); /* ensure test happens before caller kfree */
9064 return;
9065 }
9066 get_online_cpus();
9067 }
9068 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9069 for_each_online_cpu(cpu) {
9070 rq = cpu_rq(cpu);
9071 req = &per_cpu(rcu_migration_req, cpu);
9072 init_completion(&req->done);
9073 req->task = NULL;
9074 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9075 raw_spin_lock_irqsave(&rq->lock, flags);
9076 list_add(&req->list, &rq->migration_queue);
9077 raw_spin_unlock_irqrestore(&rq->lock, flags);
9078 wake_up_process(rq->migration_thread);
9079 }
9080 for_each_online_cpu(cpu) {
9081 rcu_expedited_state = cpu;
9082 req = &per_cpu(rcu_migration_req, cpu);
9083 rq = cpu_rq(cpu);
9084 wait_for_completion(&req->done);
9085 raw_spin_lock_irqsave(&rq->lock, flags);
9086 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9087 need_full_sync = 1;
9088 req->dest_cpu = RCU_MIGRATION_IDLE;
9089 raw_spin_unlock_irqrestore(&rq->lock, flags);
9090 }
9091 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9092 synchronize_sched_expedited_count++;
9093 mutex_unlock(&rcu_sched_expedited_mutex);
9094 put_online_cpus();
9095 if (need_full_sync)
9096 synchronize_sched();
9097 }
9098 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9099
9100 #endif /* #else #ifndef CONFIG_SMP */