]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched.c
sched: Rate-limit nohz
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_CGROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 struct cgroup_subsys_state css;
247
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
254 #endif
255
256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
260 struct rt_bandwidth rt_bandwidth;
261 #endif
262
263 struct rcu_head rcu;
264 struct list_head list;
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
269 };
270
271 #define root_task_group init_task_group
272
273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares.
275 */
276 static DEFINE_SPINLOCK(task_group_lock);
277
278 #ifdef CONFIG_FAIR_GROUP_SCHED
279
280 #ifdef CONFIG_SMP
281 static int root_task_group_empty(void)
282 {
283 return list_empty(&root_task_group.children);
284 }
285 #endif
286
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
288
289 /*
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
297 #define MIN_SHARES 2
298 #define MAX_SHARES (1UL << 18)
299
300 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301 #endif
302
303 /* Default task group.
304 * Every task in system belong to this group at bootup.
305 */
306 struct task_group init_task_group;
307
308 /* return group to which a task belongs */
309 static inline struct task_group *task_group(struct task_struct *p)
310 {
311 struct task_group *tg;
312
313 #ifdef CONFIG_CGROUP_SCHED
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
316 #else
317 tg = &init_task_group;
318 #endif
319 return tg;
320 }
321
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
324 {
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
328 #endif
329
330 #ifdef CONFIG_RT_GROUP_SCHED
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
333 #endif
334 }
335
336 #else
337
338 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 static inline struct task_group *task_group(struct task_struct *p)
340 {
341 return NULL;
342 }
343
344 #endif /* CONFIG_CGROUP_SCHED */
345
346 /* CFS-related fields in a runqueue */
347 struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
351 u64 exec_clock;
352 u64 min_vruntime;
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
364 struct sched_entity *curr, *next, *last;
365
366 unsigned int nr_spread_over;
367
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
381
382 #ifdef CONFIG_SMP
383 /*
384 * the part of load.weight contributed by tasks
385 */
386 unsigned long task_weight;
387
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
395
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
405 #endif
406 #endif
407 };
408
409 /* Real-Time classes' related field in a runqueue: */
410 struct rt_rq {
411 struct rt_prio_array active;
412 unsigned long rt_nr_running;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 struct {
415 int curr; /* highest queued rt task prio */
416 #ifdef CONFIG_SMP
417 int next; /* next highest */
418 #endif
419 } highest_prio;
420 #endif
421 #ifdef CONFIG_SMP
422 unsigned long rt_nr_migratory;
423 unsigned long rt_nr_total;
424 int overloaded;
425 struct plist_head pushable_tasks;
426 #endif
427 int rt_throttled;
428 u64 rt_time;
429 u64 rt_runtime;
430 /* Nests inside the rq lock: */
431 raw_spinlock_t rt_runtime_lock;
432
433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted;
435
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
439 #endif
440 };
441
442 #ifdef CONFIG_SMP
443
444 /*
445 * We add the notion of a root-domain which will be used to define per-domain
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
450 *
451 */
452 struct root_domain {
453 atomic_t refcount;
454 cpumask_var_t span;
455 cpumask_var_t online;
456
457 /*
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
460 */
461 cpumask_var_t rto_mask;
462 atomic_t rto_count;
463 #ifdef CONFIG_SMP
464 struct cpupri cpupri;
465 #endif
466 };
467
468 /*
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
471 */
472 static struct root_domain def_root_domain;
473
474 #endif
475
476 /*
477 * This is the main, per-CPU runqueue data structure.
478 *
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
482 */
483 struct rq {
484 /* runqueue lock: */
485 raw_spinlock_t lock;
486
487 /*
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
490 */
491 unsigned long nr_running;
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494 #ifdef CONFIG_NO_HZ
495 u64 nohz_stamp;
496 unsigned char in_nohz_recently;
497 #endif
498 /* capture load from *all* tasks on this cpu: */
499 struct load_weight load;
500 unsigned long nr_load_updates;
501 u64 nr_switches;
502
503 struct cfs_rq cfs;
504 struct rt_rq rt;
505
506 #ifdef CONFIG_FAIR_GROUP_SCHED
507 /* list of leaf cfs_rq on this cpu: */
508 struct list_head leaf_cfs_rq_list;
509 #endif
510 #ifdef CONFIG_RT_GROUP_SCHED
511 struct list_head leaf_rt_rq_list;
512 #endif
513
514 /*
515 * This is part of a global counter where only the total sum
516 * over all CPUs matters. A task can increase this counter on
517 * one CPU and if it got migrated afterwards it may decrease
518 * it on another CPU. Always updated under the runqueue lock:
519 */
520 unsigned long nr_uninterruptible;
521
522 struct task_struct *curr, *idle;
523 unsigned long next_balance;
524 struct mm_struct *prev_mm;
525
526 u64 clock;
527
528 atomic_t nr_iowait;
529
530 #ifdef CONFIG_SMP
531 struct root_domain *rd;
532 struct sched_domain *sd;
533
534 unsigned char idle_at_tick;
535 /* For active balancing */
536 int post_schedule;
537 int active_balance;
538 int push_cpu;
539 /* cpu of this runqueue: */
540 int cpu;
541 int online;
542
543 unsigned long avg_load_per_task;
544
545 struct task_struct *migration_thread;
546 struct list_head migration_queue;
547
548 u64 rt_avg;
549 u64 age_stamp;
550 u64 idle_stamp;
551 u64 avg_idle;
552 #endif
553
554 /* calc_load related fields */
555 unsigned long calc_load_update;
556 long calc_load_active;
557
558 #ifdef CONFIG_SCHED_HRTICK
559 #ifdef CONFIG_SMP
560 int hrtick_csd_pending;
561 struct call_single_data hrtick_csd;
562 #endif
563 struct hrtimer hrtick_timer;
564 #endif
565
566 #ifdef CONFIG_SCHEDSTATS
567 /* latency stats */
568 struct sched_info rq_sched_info;
569 unsigned long long rq_cpu_time;
570 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
571
572 /* sys_sched_yield() stats */
573 unsigned int yld_count;
574
575 /* schedule() stats */
576 unsigned int sched_switch;
577 unsigned int sched_count;
578 unsigned int sched_goidle;
579
580 /* try_to_wake_up() stats */
581 unsigned int ttwu_count;
582 unsigned int ttwu_local;
583
584 /* BKL stats */
585 unsigned int bkl_count;
586 #endif
587 };
588
589 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
590
591 static inline
592 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
593 {
594 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
595 }
596
597 static inline int cpu_of(struct rq *rq)
598 {
599 #ifdef CONFIG_SMP
600 return rq->cpu;
601 #else
602 return 0;
603 #endif
604 }
605
606 #define rcu_dereference_check_sched_domain(p) \
607 rcu_dereference_check((p), \
608 rcu_read_lock_sched_held() || \
609 lockdep_is_held(&sched_domains_mutex))
610
611 /*
612 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
613 * See detach_destroy_domains: synchronize_sched for details.
614 *
615 * The domain tree of any CPU may only be accessed from within
616 * preempt-disabled sections.
617 */
618 #define for_each_domain(cpu, __sd) \
619 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
620
621 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
622 #define this_rq() (&__get_cpu_var(runqueues))
623 #define task_rq(p) cpu_rq(task_cpu(p))
624 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
625 #define raw_rq() (&__raw_get_cpu_var(runqueues))
626
627 inline void update_rq_clock(struct rq *rq)
628 {
629 rq->clock = sched_clock_cpu(cpu_of(rq));
630 }
631
632 /*
633 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
634 */
635 #ifdef CONFIG_SCHED_DEBUG
636 # define const_debug __read_mostly
637 #else
638 # define const_debug static const
639 #endif
640
641 /**
642 * runqueue_is_locked
643 * @cpu: the processor in question.
644 *
645 * Returns true if the current cpu runqueue is locked.
646 * This interface allows printk to be called with the runqueue lock
647 * held and know whether or not it is OK to wake up the klogd.
648 */
649 int runqueue_is_locked(int cpu)
650 {
651 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
652 }
653
654 /*
655 * Debugging: various feature bits
656 */
657
658 #define SCHED_FEAT(name, enabled) \
659 __SCHED_FEAT_##name ,
660
661 enum {
662 #include "sched_features.h"
663 };
664
665 #undef SCHED_FEAT
666
667 #define SCHED_FEAT(name, enabled) \
668 (1UL << __SCHED_FEAT_##name) * enabled |
669
670 const_debug unsigned int sysctl_sched_features =
671 #include "sched_features.h"
672 0;
673
674 #undef SCHED_FEAT
675
676 #ifdef CONFIG_SCHED_DEBUG
677 #define SCHED_FEAT(name, enabled) \
678 #name ,
679
680 static __read_mostly char *sched_feat_names[] = {
681 #include "sched_features.h"
682 NULL
683 };
684
685 #undef SCHED_FEAT
686
687 static int sched_feat_show(struct seq_file *m, void *v)
688 {
689 int i;
690
691 for (i = 0; sched_feat_names[i]; i++) {
692 if (!(sysctl_sched_features & (1UL << i)))
693 seq_puts(m, "NO_");
694 seq_printf(m, "%s ", sched_feat_names[i]);
695 }
696 seq_puts(m, "\n");
697
698 return 0;
699 }
700
701 static ssize_t
702 sched_feat_write(struct file *filp, const char __user *ubuf,
703 size_t cnt, loff_t *ppos)
704 {
705 char buf[64];
706 char *cmp = buf;
707 int neg = 0;
708 int i;
709
710 if (cnt > 63)
711 cnt = 63;
712
713 if (copy_from_user(&buf, ubuf, cnt))
714 return -EFAULT;
715
716 buf[cnt] = 0;
717
718 if (strncmp(buf, "NO_", 3) == 0) {
719 neg = 1;
720 cmp += 3;
721 }
722
723 for (i = 0; sched_feat_names[i]; i++) {
724 int len = strlen(sched_feat_names[i]);
725
726 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
727 if (neg)
728 sysctl_sched_features &= ~(1UL << i);
729 else
730 sysctl_sched_features |= (1UL << i);
731 break;
732 }
733 }
734
735 if (!sched_feat_names[i])
736 return -EINVAL;
737
738 *ppos += cnt;
739
740 return cnt;
741 }
742
743 static int sched_feat_open(struct inode *inode, struct file *filp)
744 {
745 return single_open(filp, sched_feat_show, NULL);
746 }
747
748 static const struct file_operations sched_feat_fops = {
749 .open = sched_feat_open,
750 .write = sched_feat_write,
751 .read = seq_read,
752 .llseek = seq_lseek,
753 .release = single_release,
754 };
755
756 static __init int sched_init_debug(void)
757 {
758 debugfs_create_file("sched_features", 0644, NULL, NULL,
759 &sched_feat_fops);
760
761 return 0;
762 }
763 late_initcall(sched_init_debug);
764
765 #endif
766
767 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
768
769 /*
770 * Number of tasks to iterate in a single balance run.
771 * Limited because this is done with IRQs disabled.
772 */
773 const_debug unsigned int sysctl_sched_nr_migrate = 32;
774
775 /*
776 * ratelimit for updating the group shares.
777 * default: 0.25ms
778 */
779 unsigned int sysctl_sched_shares_ratelimit = 250000;
780 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
781
782 /*
783 * Inject some fuzzyness into changing the per-cpu group shares
784 * this avoids remote rq-locks at the expense of fairness.
785 * default: 4
786 */
787 unsigned int sysctl_sched_shares_thresh = 4;
788
789 /*
790 * period over which we average the RT time consumption, measured
791 * in ms.
792 *
793 * default: 1s
794 */
795 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
796
797 /*
798 * period over which we measure -rt task cpu usage in us.
799 * default: 1s
800 */
801 unsigned int sysctl_sched_rt_period = 1000000;
802
803 static __read_mostly int scheduler_running;
804
805 /*
806 * part of the period that we allow rt tasks to run in us.
807 * default: 0.95s
808 */
809 int sysctl_sched_rt_runtime = 950000;
810
811 static inline u64 global_rt_period(void)
812 {
813 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
814 }
815
816 static inline u64 global_rt_runtime(void)
817 {
818 if (sysctl_sched_rt_runtime < 0)
819 return RUNTIME_INF;
820
821 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
822 }
823
824 #ifndef prepare_arch_switch
825 # define prepare_arch_switch(next) do { } while (0)
826 #endif
827 #ifndef finish_arch_switch
828 # define finish_arch_switch(prev) do { } while (0)
829 #endif
830
831 static inline int task_current(struct rq *rq, struct task_struct *p)
832 {
833 return rq->curr == p;
834 }
835
836 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
837 static inline int task_running(struct rq *rq, struct task_struct *p)
838 {
839 return task_current(rq, p);
840 }
841
842 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
843 {
844 }
845
846 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
847 {
848 #ifdef CONFIG_DEBUG_SPINLOCK
849 /* this is a valid case when another task releases the spinlock */
850 rq->lock.owner = current;
851 #endif
852 /*
853 * If we are tracking spinlock dependencies then we have to
854 * fix up the runqueue lock - which gets 'carried over' from
855 * prev into current:
856 */
857 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
858
859 raw_spin_unlock_irq(&rq->lock);
860 }
861
862 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
863 static inline int task_running(struct rq *rq, struct task_struct *p)
864 {
865 #ifdef CONFIG_SMP
866 return p->oncpu;
867 #else
868 return task_current(rq, p);
869 #endif
870 }
871
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 {
874 #ifdef CONFIG_SMP
875 /*
876 * We can optimise this out completely for !SMP, because the
877 * SMP rebalancing from interrupt is the only thing that cares
878 * here.
879 */
880 next->oncpu = 1;
881 #endif
882 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
883 raw_spin_unlock_irq(&rq->lock);
884 #else
885 raw_spin_unlock(&rq->lock);
886 #endif
887 }
888
889 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
890 {
891 #ifdef CONFIG_SMP
892 /*
893 * After ->oncpu is cleared, the task can be moved to a different CPU.
894 * We must ensure this doesn't happen until the switch is completely
895 * finished.
896 */
897 smp_wmb();
898 prev->oncpu = 0;
899 #endif
900 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 local_irq_enable();
902 #endif
903 }
904 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
905
906 /*
907 * Check whether the task is waking, we use this to synchronize against
908 * ttwu() so that task_cpu() reports a stable number.
909 *
910 * We need to make an exception for PF_STARTING tasks because the fork
911 * path might require task_rq_lock() to work, eg. it can call
912 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
913 */
914 static inline int task_is_waking(struct task_struct *p)
915 {
916 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
917 }
918
919 /*
920 * __task_rq_lock - lock the runqueue a given task resides on.
921 * Must be called interrupts disabled.
922 */
923 static inline struct rq *__task_rq_lock(struct task_struct *p)
924 __acquires(rq->lock)
925 {
926 struct rq *rq;
927
928 for (;;) {
929 while (task_is_waking(p))
930 cpu_relax();
931 rq = task_rq(p);
932 raw_spin_lock(&rq->lock);
933 if (likely(rq == task_rq(p) && !task_is_waking(p)))
934 return rq;
935 raw_spin_unlock(&rq->lock);
936 }
937 }
938
939 /*
940 * task_rq_lock - lock the runqueue a given task resides on and disable
941 * interrupts. Note the ordering: we can safely lookup the task_rq without
942 * explicitly disabling preemption.
943 */
944 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
945 __acquires(rq->lock)
946 {
947 struct rq *rq;
948
949 for (;;) {
950 while (task_is_waking(p))
951 cpu_relax();
952 local_irq_save(*flags);
953 rq = task_rq(p);
954 raw_spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p) && !task_is_waking(p)))
956 return rq;
957 raw_spin_unlock_irqrestore(&rq->lock, *flags);
958 }
959 }
960
961 void task_rq_unlock_wait(struct task_struct *p)
962 {
963 struct rq *rq = task_rq(p);
964
965 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
966 raw_spin_unlock_wait(&rq->lock);
967 }
968
969 static void __task_rq_unlock(struct rq *rq)
970 __releases(rq->lock)
971 {
972 raw_spin_unlock(&rq->lock);
973 }
974
975 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
976 __releases(rq->lock)
977 {
978 raw_spin_unlock_irqrestore(&rq->lock, *flags);
979 }
980
981 /*
982 * this_rq_lock - lock this runqueue and disable interrupts.
983 */
984 static struct rq *this_rq_lock(void)
985 __acquires(rq->lock)
986 {
987 struct rq *rq;
988
989 local_irq_disable();
990 rq = this_rq();
991 raw_spin_lock(&rq->lock);
992
993 return rq;
994 }
995
996 #ifdef CONFIG_SCHED_HRTICK
997 /*
998 * Use HR-timers to deliver accurate preemption points.
999 *
1000 * Its all a bit involved since we cannot program an hrt while holding the
1001 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1002 * reschedule event.
1003 *
1004 * When we get rescheduled we reprogram the hrtick_timer outside of the
1005 * rq->lock.
1006 */
1007
1008 /*
1009 * Use hrtick when:
1010 * - enabled by features
1011 * - hrtimer is actually high res
1012 */
1013 static inline int hrtick_enabled(struct rq *rq)
1014 {
1015 if (!sched_feat(HRTICK))
1016 return 0;
1017 if (!cpu_active(cpu_of(rq)))
1018 return 0;
1019 return hrtimer_is_hres_active(&rq->hrtick_timer);
1020 }
1021
1022 static void hrtick_clear(struct rq *rq)
1023 {
1024 if (hrtimer_active(&rq->hrtick_timer))
1025 hrtimer_cancel(&rq->hrtick_timer);
1026 }
1027
1028 /*
1029 * High-resolution timer tick.
1030 * Runs from hardirq context with interrupts disabled.
1031 */
1032 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1033 {
1034 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1035
1036 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1037
1038 raw_spin_lock(&rq->lock);
1039 update_rq_clock(rq);
1040 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1041 raw_spin_unlock(&rq->lock);
1042
1043 return HRTIMER_NORESTART;
1044 }
1045
1046 #ifdef CONFIG_SMP
1047 /*
1048 * called from hardirq (IPI) context
1049 */
1050 static void __hrtick_start(void *arg)
1051 {
1052 struct rq *rq = arg;
1053
1054 raw_spin_lock(&rq->lock);
1055 hrtimer_restart(&rq->hrtick_timer);
1056 rq->hrtick_csd_pending = 0;
1057 raw_spin_unlock(&rq->lock);
1058 }
1059
1060 /*
1061 * Called to set the hrtick timer state.
1062 *
1063 * called with rq->lock held and irqs disabled
1064 */
1065 static void hrtick_start(struct rq *rq, u64 delay)
1066 {
1067 struct hrtimer *timer = &rq->hrtick_timer;
1068 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1069
1070 hrtimer_set_expires(timer, time);
1071
1072 if (rq == this_rq()) {
1073 hrtimer_restart(timer);
1074 } else if (!rq->hrtick_csd_pending) {
1075 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1076 rq->hrtick_csd_pending = 1;
1077 }
1078 }
1079
1080 static int
1081 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1082 {
1083 int cpu = (int)(long)hcpu;
1084
1085 switch (action) {
1086 case CPU_UP_CANCELED:
1087 case CPU_UP_CANCELED_FROZEN:
1088 case CPU_DOWN_PREPARE:
1089 case CPU_DOWN_PREPARE_FROZEN:
1090 case CPU_DEAD:
1091 case CPU_DEAD_FROZEN:
1092 hrtick_clear(cpu_rq(cpu));
1093 return NOTIFY_OK;
1094 }
1095
1096 return NOTIFY_DONE;
1097 }
1098
1099 static __init void init_hrtick(void)
1100 {
1101 hotcpu_notifier(hotplug_hrtick, 0);
1102 }
1103 #else
1104 /*
1105 * Called to set the hrtick timer state.
1106 *
1107 * called with rq->lock held and irqs disabled
1108 */
1109 static void hrtick_start(struct rq *rq, u64 delay)
1110 {
1111 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1112 HRTIMER_MODE_REL_PINNED, 0);
1113 }
1114
1115 static inline void init_hrtick(void)
1116 {
1117 }
1118 #endif /* CONFIG_SMP */
1119
1120 static void init_rq_hrtick(struct rq *rq)
1121 {
1122 #ifdef CONFIG_SMP
1123 rq->hrtick_csd_pending = 0;
1124
1125 rq->hrtick_csd.flags = 0;
1126 rq->hrtick_csd.func = __hrtick_start;
1127 rq->hrtick_csd.info = rq;
1128 #endif
1129
1130 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1131 rq->hrtick_timer.function = hrtick;
1132 }
1133 #else /* CONFIG_SCHED_HRTICK */
1134 static inline void hrtick_clear(struct rq *rq)
1135 {
1136 }
1137
1138 static inline void init_rq_hrtick(struct rq *rq)
1139 {
1140 }
1141
1142 static inline void init_hrtick(void)
1143 {
1144 }
1145 #endif /* CONFIG_SCHED_HRTICK */
1146
1147 /*
1148 * resched_task - mark a task 'to be rescheduled now'.
1149 *
1150 * On UP this means the setting of the need_resched flag, on SMP it
1151 * might also involve a cross-CPU call to trigger the scheduler on
1152 * the target CPU.
1153 */
1154 #ifdef CONFIG_SMP
1155
1156 #ifndef tsk_is_polling
1157 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1158 #endif
1159
1160 static void resched_task(struct task_struct *p)
1161 {
1162 int cpu;
1163
1164 assert_raw_spin_locked(&task_rq(p)->lock);
1165
1166 if (test_tsk_need_resched(p))
1167 return;
1168
1169 set_tsk_need_resched(p);
1170
1171 cpu = task_cpu(p);
1172 if (cpu == smp_processor_id())
1173 return;
1174
1175 /* NEED_RESCHED must be visible before we test polling */
1176 smp_mb();
1177 if (!tsk_is_polling(p))
1178 smp_send_reschedule(cpu);
1179 }
1180
1181 static void resched_cpu(int cpu)
1182 {
1183 struct rq *rq = cpu_rq(cpu);
1184 unsigned long flags;
1185
1186 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1187 return;
1188 resched_task(cpu_curr(cpu));
1189 raw_spin_unlock_irqrestore(&rq->lock, flags);
1190 }
1191
1192 #ifdef CONFIG_NO_HZ
1193 /*
1194 * When add_timer_on() enqueues a timer into the timer wheel of an
1195 * idle CPU then this timer might expire before the next timer event
1196 * which is scheduled to wake up that CPU. In case of a completely
1197 * idle system the next event might even be infinite time into the
1198 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1199 * leaves the inner idle loop so the newly added timer is taken into
1200 * account when the CPU goes back to idle and evaluates the timer
1201 * wheel for the next timer event.
1202 */
1203 void wake_up_idle_cpu(int cpu)
1204 {
1205 struct rq *rq = cpu_rq(cpu);
1206
1207 if (cpu == smp_processor_id())
1208 return;
1209
1210 /*
1211 * This is safe, as this function is called with the timer
1212 * wheel base lock of (cpu) held. When the CPU is on the way
1213 * to idle and has not yet set rq->curr to idle then it will
1214 * be serialized on the timer wheel base lock and take the new
1215 * timer into account automatically.
1216 */
1217 if (rq->curr != rq->idle)
1218 return;
1219
1220 /*
1221 * We can set TIF_RESCHED on the idle task of the other CPU
1222 * lockless. The worst case is that the other CPU runs the
1223 * idle task through an additional NOOP schedule()
1224 */
1225 set_tsk_need_resched(rq->idle);
1226
1227 /* NEED_RESCHED must be visible before we test polling */
1228 smp_mb();
1229 if (!tsk_is_polling(rq->idle))
1230 smp_send_reschedule(cpu);
1231 }
1232
1233 int nohz_ratelimit(int cpu)
1234 {
1235 struct rq *rq = cpu_rq(cpu);
1236 u64 diff = rq->clock - rq->nohz_stamp;
1237
1238 rq->nohz_stamp = rq->clock;
1239
1240 return diff < (NSEC_PER_SEC / HZ) >> 1;
1241 }
1242
1243 #endif /* CONFIG_NO_HZ */
1244
1245 static u64 sched_avg_period(void)
1246 {
1247 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1248 }
1249
1250 static void sched_avg_update(struct rq *rq)
1251 {
1252 s64 period = sched_avg_period();
1253
1254 while ((s64)(rq->clock - rq->age_stamp) > period) {
1255 rq->age_stamp += period;
1256 rq->rt_avg /= 2;
1257 }
1258 }
1259
1260 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1261 {
1262 rq->rt_avg += rt_delta;
1263 sched_avg_update(rq);
1264 }
1265
1266 #else /* !CONFIG_SMP */
1267 static void resched_task(struct task_struct *p)
1268 {
1269 assert_raw_spin_locked(&task_rq(p)->lock);
1270 set_tsk_need_resched(p);
1271 }
1272
1273 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1274 {
1275 }
1276 #endif /* CONFIG_SMP */
1277
1278 #if BITS_PER_LONG == 32
1279 # define WMULT_CONST (~0UL)
1280 #else
1281 # define WMULT_CONST (1UL << 32)
1282 #endif
1283
1284 #define WMULT_SHIFT 32
1285
1286 /*
1287 * Shift right and round:
1288 */
1289 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1290
1291 /*
1292 * delta *= weight / lw
1293 */
1294 static unsigned long
1295 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1296 struct load_weight *lw)
1297 {
1298 u64 tmp;
1299
1300 if (!lw->inv_weight) {
1301 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1302 lw->inv_weight = 1;
1303 else
1304 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1305 / (lw->weight+1);
1306 }
1307
1308 tmp = (u64)delta_exec * weight;
1309 /*
1310 * Check whether we'd overflow the 64-bit multiplication:
1311 */
1312 if (unlikely(tmp > WMULT_CONST))
1313 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1314 WMULT_SHIFT/2);
1315 else
1316 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1317
1318 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1319 }
1320
1321 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1322 {
1323 lw->weight += inc;
1324 lw->inv_weight = 0;
1325 }
1326
1327 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1328 {
1329 lw->weight -= dec;
1330 lw->inv_weight = 0;
1331 }
1332
1333 /*
1334 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1335 * of tasks with abnormal "nice" values across CPUs the contribution that
1336 * each task makes to its run queue's load is weighted according to its
1337 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1338 * scaled version of the new time slice allocation that they receive on time
1339 * slice expiry etc.
1340 */
1341
1342 #define WEIGHT_IDLEPRIO 3
1343 #define WMULT_IDLEPRIO 1431655765
1344
1345 /*
1346 * Nice levels are multiplicative, with a gentle 10% change for every
1347 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1348 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1349 * that remained on nice 0.
1350 *
1351 * The "10% effect" is relative and cumulative: from _any_ nice level,
1352 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1353 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1354 * If a task goes up by ~10% and another task goes down by ~10% then
1355 * the relative distance between them is ~25%.)
1356 */
1357 static const int prio_to_weight[40] = {
1358 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1359 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1360 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1361 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1362 /* 0 */ 1024, 820, 655, 526, 423,
1363 /* 5 */ 335, 272, 215, 172, 137,
1364 /* 10 */ 110, 87, 70, 56, 45,
1365 /* 15 */ 36, 29, 23, 18, 15,
1366 };
1367
1368 /*
1369 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1370 *
1371 * In cases where the weight does not change often, we can use the
1372 * precalculated inverse to speed up arithmetics by turning divisions
1373 * into multiplications:
1374 */
1375 static const u32 prio_to_wmult[40] = {
1376 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1377 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1378 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1379 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1380 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1381 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1382 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1383 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1384 };
1385
1386 /* Time spent by the tasks of the cpu accounting group executing in ... */
1387 enum cpuacct_stat_index {
1388 CPUACCT_STAT_USER, /* ... user mode */
1389 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1390
1391 CPUACCT_STAT_NSTATS,
1392 };
1393
1394 #ifdef CONFIG_CGROUP_CPUACCT
1395 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1396 static void cpuacct_update_stats(struct task_struct *tsk,
1397 enum cpuacct_stat_index idx, cputime_t val);
1398 #else
1399 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1400 static inline void cpuacct_update_stats(struct task_struct *tsk,
1401 enum cpuacct_stat_index idx, cputime_t val) {}
1402 #endif
1403
1404 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1405 {
1406 update_load_add(&rq->load, load);
1407 }
1408
1409 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1410 {
1411 update_load_sub(&rq->load, load);
1412 }
1413
1414 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1415 typedef int (*tg_visitor)(struct task_group *, void *);
1416
1417 /*
1418 * Iterate the full tree, calling @down when first entering a node and @up when
1419 * leaving it for the final time.
1420 */
1421 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1422 {
1423 struct task_group *parent, *child;
1424 int ret;
1425
1426 rcu_read_lock();
1427 parent = &root_task_group;
1428 down:
1429 ret = (*down)(parent, data);
1430 if (ret)
1431 goto out_unlock;
1432 list_for_each_entry_rcu(child, &parent->children, siblings) {
1433 parent = child;
1434 goto down;
1435
1436 up:
1437 continue;
1438 }
1439 ret = (*up)(parent, data);
1440 if (ret)
1441 goto out_unlock;
1442
1443 child = parent;
1444 parent = parent->parent;
1445 if (parent)
1446 goto up;
1447 out_unlock:
1448 rcu_read_unlock();
1449
1450 return ret;
1451 }
1452
1453 static int tg_nop(struct task_group *tg, void *data)
1454 {
1455 return 0;
1456 }
1457 #endif
1458
1459 #ifdef CONFIG_SMP
1460 /* Used instead of source_load when we know the type == 0 */
1461 static unsigned long weighted_cpuload(const int cpu)
1462 {
1463 return cpu_rq(cpu)->load.weight;
1464 }
1465
1466 /*
1467 * Return a low guess at the load of a migration-source cpu weighted
1468 * according to the scheduling class and "nice" value.
1469 *
1470 * We want to under-estimate the load of migration sources, to
1471 * balance conservatively.
1472 */
1473 static unsigned long source_load(int cpu, int type)
1474 {
1475 struct rq *rq = cpu_rq(cpu);
1476 unsigned long total = weighted_cpuload(cpu);
1477
1478 if (type == 0 || !sched_feat(LB_BIAS))
1479 return total;
1480
1481 return min(rq->cpu_load[type-1], total);
1482 }
1483
1484 /*
1485 * Return a high guess at the load of a migration-target cpu weighted
1486 * according to the scheduling class and "nice" value.
1487 */
1488 static unsigned long target_load(int cpu, int type)
1489 {
1490 struct rq *rq = cpu_rq(cpu);
1491 unsigned long total = weighted_cpuload(cpu);
1492
1493 if (type == 0 || !sched_feat(LB_BIAS))
1494 return total;
1495
1496 return max(rq->cpu_load[type-1], total);
1497 }
1498
1499 static struct sched_group *group_of(int cpu)
1500 {
1501 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1502
1503 if (!sd)
1504 return NULL;
1505
1506 return sd->groups;
1507 }
1508
1509 static unsigned long power_of(int cpu)
1510 {
1511 struct sched_group *group = group_of(cpu);
1512
1513 if (!group)
1514 return SCHED_LOAD_SCALE;
1515
1516 return group->cpu_power;
1517 }
1518
1519 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1520
1521 static unsigned long cpu_avg_load_per_task(int cpu)
1522 {
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1525
1526 if (nr_running)
1527 rq->avg_load_per_task = rq->load.weight / nr_running;
1528 else
1529 rq->avg_load_per_task = 0;
1530
1531 return rq->avg_load_per_task;
1532 }
1533
1534 #ifdef CONFIG_FAIR_GROUP_SCHED
1535
1536 static __read_mostly unsigned long *update_shares_data;
1537
1538 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1539
1540 /*
1541 * Calculate and set the cpu's group shares.
1542 */
1543 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1544 unsigned long sd_shares,
1545 unsigned long sd_rq_weight,
1546 unsigned long *usd_rq_weight)
1547 {
1548 unsigned long shares, rq_weight;
1549 int boost = 0;
1550
1551 rq_weight = usd_rq_weight[cpu];
1552 if (!rq_weight) {
1553 boost = 1;
1554 rq_weight = NICE_0_LOAD;
1555 }
1556
1557 /*
1558 * \Sum_j shares_j * rq_weight_i
1559 * shares_i = -----------------------------
1560 * \Sum_j rq_weight_j
1561 */
1562 shares = (sd_shares * rq_weight) / sd_rq_weight;
1563 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1564
1565 if (abs(shares - tg->se[cpu]->load.weight) >
1566 sysctl_sched_shares_thresh) {
1567 struct rq *rq = cpu_rq(cpu);
1568 unsigned long flags;
1569
1570 raw_spin_lock_irqsave(&rq->lock, flags);
1571 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1572 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1573 __set_se_shares(tg->se[cpu], shares);
1574 raw_spin_unlock_irqrestore(&rq->lock, flags);
1575 }
1576 }
1577
1578 /*
1579 * Re-compute the task group their per cpu shares over the given domain.
1580 * This needs to be done in a bottom-up fashion because the rq weight of a
1581 * parent group depends on the shares of its child groups.
1582 */
1583 static int tg_shares_up(struct task_group *tg, void *data)
1584 {
1585 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1586 unsigned long *usd_rq_weight;
1587 struct sched_domain *sd = data;
1588 unsigned long flags;
1589 int i;
1590
1591 if (!tg->se[0])
1592 return 0;
1593
1594 local_irq_save(flags);
1595 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1596
1597 for_each_cpu(i, sched_domain_span(sd)) {
1598 weight = tg->cfs_rq[i]->load.weight;
1599 usd_rq_weight[i] = weight;
1600
1601 rq_weight += weight;
1602 /*
1603 * If there are currently no tasks on the cpu pretend there
1604 * is one of average load so that when a new task gets to
1605 * run here it will not get delayed by group starvation.
1606 */
1607 if (!weight)
1608 weight = NICE_0_LOAD;
1609
1610 sum_weight += weight;
1611 shares += tg->cfs_rq[i]->shares;
1612 }
1613
1614 if (!rq_weight)
1615 rq_weight = sum_weight;
1616
1617 if ((!shares && rq_weight) || shares > tg->shares)
1618 shares = tg->shares;
1619
1620 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1621 shares = tg->shares;
1622
1623 for_each_cpu(i, sched_domain_span(sd))
1624 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1625
1626 local_irq_restore(flags);
1627
1628 return 0;
1629 }
1630
1631 /*
1632 * Compute the cpu's hierarchical load factor for each task group.
1633 * This needs to be done in a top-down fashion because the load of a child
1634 * group is a fraction of its parents load.
1635 */
1636 static int tg_load_down(struct task_group *tg, void *data)
1637 {
1638 unsigned long load;
1639 long cpu = (long)data;
1640
1641 if (!tg->parent) {
1642 load = cpu_rq(cpu)->load.weight;
1643 } else {
1644 load = tg->parent->cfs_rq[cpu]->h_load;
1645 load *= tg->cfs_rq[cpu]->shares;
1646 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1647 }
1648
1649 tg->cfs_rq[cpu]->h_load = load;
1650
1651 return 0;
1652 }
1653
1654 static void update_shares(struct sched_domain *sd)
1655 {
1656 s64 elapsed;
1657 u64 now;
1658
1659 if (root_task_group_empty())
1660 return;
1661
1662 now = cpu_clock(raw_smp_processor_id());
1663 elapsed = now - sd->last_update;
1664
1665 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1666 sd->last_update = now;
1667 walk_tg_tree(tg_nop, tg_shares_up, sd);
1668 }
1669 }
1670
1671 static void update_h_load(long cpu)
1672 {
1673 if (root_task_group_empty())
1674 return;
1675
1676 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1677 }
1678
1679 #else
1680
1681 static inline void update_shares(struct sched_domain *sd)
1682 {
1683 }
1684
1685 #endif
1686
1687 #ifdef CONFIG_PREEMPT
1688
1689 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1690
1691 /*
1692 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1693 * way at the expense of forcing extra atomic operations in all
1694 * invocations. This assures that the double_lock is acquired using the
1695 * same underlying policy as the spinlock_t on this architecture, which
1696 * reduces latency compared to the unfair variant below. However, it
1697 * also adds more overhead and therefore may reduce throughput.
1698 */
1699 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1700 __releases(this_rq->lock)
1701 __acquires(busiest->lock)
1702 __acquires(this_rq->lock)
1703 {
1704 raw_spin_unlock(&this_rq->lock);
1705 double_rq_lock(this_rq, busiest);
1706
1707 return 1;
1708 }
1709
1710 #else
1711 /*
1712 * Unfair double_lock_balance: Optimizes throughput at the expense of
1713 * latency by eliminating extra atomic operations when the locks are
1714 * already in proper order on entry. This favors lower cpu-ids and will
1715 * grant the double lock to lower cpus over higher ids under contention,
1716 * regardless of entry order into the function.
1717 */
1718 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1719 __releases(this_rq->lock)
1720 __acquires(busiest->lock)
1721 __acquires(this_rq->lock)
1722 {
1723 int ret = 0;
1724
1725 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1726 if (busiest < this_rq) {
1727 raw_spin_unlock(&this_rq->lock);
1728 raw_spin_lock(&busiest->lock);
1729 raw_spin_lock_nested(&this_rq->lock,
1730 SINGLE_DEPTH_NESTING);
1731 ret = 1;
1732 } else
1733 raw_spin_lock_nested(&busiest->lock,
1734 SINGLE_DEPTH_NESTING);
1735 }
1736 return ret;
1737 }
1738
1739 #endif /* CONFIG_PREEMPT */
1740
1741 /*
1742 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1743 */
1744 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1745 {
1746 if (unlikely(!irqs_disabled())) {
1747 /* printk() doesn't work good under rq->lock */
1748 raw_spin_unlock(&this_rq->lock);
1749 BUG_ON(1);
1750 }
1751
1752 return _double_lock_balance(this_rq, busiest);
1753 }
1754
1755 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1756 __releases(busiest->lock)
1757 {
1758 raw_spin_unlock(&busiest->lock);
1759 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1760 }
1761
1762 /*
1763 * double_rq_lock - safely lock two runqueues
1764 *
1765 * Note this does not disable interrupts like task_rq_lock,
1766 * you need to do so manually before calling.
1767 */
1768 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1769 __acquires(rq1->lock)
1770 __acquires(rq2->lock)
1771 {
1772 BUG_ON(!irqs_disabled());
1773 if (rq1 == rq2) {
1774 raw_spin_lock(&rq1->lock);
1775 __acquire(rq2->lock); /* Fake it out ;) */
1776 } else {
1777 if (rq1 < rq2) {
1778 raw_spin_lock(&rq1->lock);
1779 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1780 } else {
1781 raw_spin_lock(&rq2->lock);
1782 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1783 }
1784 }
1785 update_rq_clock(rq1);
1786 update_rq_clock(rq2);
1787 }
1788
1789 /*
1790 * double_rq_unlock - safely unlock two runqueues
1791 *
1792 * Note this does not restore interrupts like task_rq_unlock,
1793 * you need to do so manually after calling.
1794 */
1795 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1796 __releases(rq1->lock)
1797 __releases(rq2->lock)
1798 {
1799 raw_spin_unlock(&rq1->lock);
1800 if (rq1 != rq2)
1801 raw_spin_unlock(&rq2->lock);
1802 else
1803 __release(rq2->lock);
1804 }
1805
1806 #endif
1807
1808 #ifdef CONFIG_FAIR_GROUP_SCHED
1809 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1810 {
1811 #ifdef CONFIG_SMP
1812 cfs_rq->shares = shares;
1813 #endif
1814 }
1815 #endif
1816
1817 static void calc_load_account_active(struct rq *this_rq);
1818 static void update_sysctl(void);
1819 static int get_update_sysctl_factor(void);
1820
1821 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1822 {
1823 set_task_rq(p, cpu);
1824 #ifdef CONFIG_SMP
1825 /*
1826 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1827 * successfuly executed on another CPU. We must ensure that updates of
1828 * per-task data have been completed by this moment.
1829 */
1830 smp_wmb();
1831 task_thread_info(p)->cpu = cpu;
1832 #endif
1833 }
1834
1835 static const struct sched_class rt_sched_class;
1836
1837 #define sched_class_highest (&rt_sched_class)
1838 #define for_each_class(class) \
1839 for (class = sched_class_highest; class; class = class->next)
1840
1841 #include "sched_stats.h"
1842
1843 static void inc_nr_running(struct rq *rq)
1844 {
1845 rq->nr_running++;
1846 }
1847
1848 static void dec_nr_running(struct rq *rq)
1849 {
1850 rq->nr_running--;
1851 }
1852
1853 static void set_load_weight(struct task_struct *p)
1854 {
1855 if (task_has_rt_policy(p)) {
1856 p->se.load.weight = prio_to_weight[0] * 2;
1857 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1858 return;
1859 }
1860
1861 /*
1862 * SCHED_IDLE tasks get minimal weight:
1863 */
1864 if (p->policy == SCHED_IDLE) {
1865 p->se.load.weight = WEIGHT_IDLEPRIO;
1866 p->se.load.inv_weight = WMULT_IDLEPRIO;
1867 return;
1868 }
1869
1870 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1871 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1872 }
1873
1874 static void update_avg(u64 *avg, u64 sample)
1875 {
1876 s64 diff = sample - *avg;
1877 *avg += diff >> 3;
1878 }
1879
1880 static void
1881 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1882 {
1883 if (wakeup)
1884 p->se.start_runtime = p->se.sum_exec_runtime;
1885
1886 sched_info_queued(p);
1887 p->sched_class->enqueue_task(rq, p, wakeup, head);
1888 p->se.on_rq = 1;
1889 }
1890
1891 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1892 {
1893 if (sleep) {
1894 if (p->se.last_wakeup) {
1895 update_avg(&p->se.avg_overlap,
1896 p->se.sum_exec_runtime - p->se.last_wakeup);
1897 p->se.last_wakeup = 0;
1898 } else {
1899 update_avg(&p->se.avg_wakeup,
1900 sysctl_sched_wakeup_granularity);
1901 }
1902 }
1903
1904 sched_info_dequeued(p);
1905 p->sched_class->dequeue_task(rq, p, sleep);
1906 p->se.on_rq = 0;
1907 }
1908
1909 /*
1910 * activate_task - move a task to the runqueue.
1911 */
1912 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1913 {
1914 if (task_contributes_to_load(p))
1915 rq->nr_uninterruptible--;
1916
1917 enqueue_task(rq, p, wakeup, false);
1918 inc_nr_running(rq);
1919 }
1920
1921 /*
1922 * deactivate_task - remove a task from the runqueue.
1923 */
1924 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1925 {
1926 if (task_contributes_to_load(p))
1927 rq->nr_uninterruptible++;
1928
1929 dequeue_task(rq, p, sleep);
1930 dec_nr_running(rq);
1931 }
1932
1933 #include "sched_idletask.c"
1934 #include "sched_fair.c"
1935 #include "sched_rt.c"
1936 #ifdef CONFIG_SCHED_DEBUG
1937 # include "sched_debug.c"
1938 #endif
1939
1940 /*
1941 * __normal_prio - return the priority that is based on the static prio
1942 */
1943 static inline int __normal_prio(struct task_struct *p)
1944 {
1945 return p->static_prio;
1946 }
1947
1948 /*
1949 * Calculate the expected normal priority: i.e. priority
1950 * without taking RT-inheritance into account. Might be
1951 * boosted by interactivity modifiers. Changes upon fork,
1952 * setprio syscalls, and whenever the interactivity
1953 * estimator recalculates.
1954 */
1955 static inline int normal_prio(struct task_struct *p)
1956 {
1957 int prio;
1958
1959 if (task_has_rt_policy(p))
1960 prio = MAX_RT_PRIO-1 - p->rt_priority;
1961 else
1962 prio = __normal_prio(p);
1963 return prio;
1964 }
1965
1966 /*
1967 * Calculate the current priority, i.e. the priority
1968 * taken into account by the scheduler. This value might
1969 * be boosted by RT tasks, or might be boosted by
1970 * interactivity modifiers. Will be RT if the task got
1971 * RT-boosted. If not then it returns p->normal_prio.
1972 */
1973 static int effective_prio(struct task_struct *p)
1974 {
1975 p->normal_prio = normal_prio(p);
1976 /*
1977 * If we are RT tasks or we were boosted to RT priority,
1978 * keep the priority unchanged. Otherwise, update priority
1979 * to the normal priority:
1980 */
1981 if (!rt_prio(p->prio))
1982 return p->normal_prio;
1983 return p->prio;
1984 }
1985
1986 /**
1987 * task_curr - is this task currently executing on a CPU?
1988 * @p: the task in question.
1989 */
1990 inline int task_curr(const struct task_struct *p)
1991 {
1992 return cpu_curr(task_cpu(p)) == p;
1993 }
1994
1995 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1996 const struct sched_class *prev_class,
1997 int oldprio, int running)
1998 {
1999 if (prev_class != p->sched_class) {
2000 if (prev_class->switched_from)
2001 prev_class->switched_from(rq, p, running);
2002 p->sched_class->switched_to(rq, p, running);
2003 } else
2004 p->sched_class->prio_changed(rq, p, oldprio, running);
2005 }
2006
2007 #ifdef CONFIG_SMP
2008 /*
2009 * Is this task likely cache-hot:
2010 */
2011 static int
2012 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2013 {
2014 s64 delta;
2015
2016 if (p->sched_class != &fair_sched_class)
2017 return 0;
2018
2019 /*
2020 * Buddy candidates are cache hot:
2021 */
2022 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2023 (&p->se == cfs_rq_of(&p->se)->next ||
2024 &p->se == cfs_rq_of(&p->se)->last))
2025 return 1;
2026
2027 if (sysctl_sched_migration_cost == -1)
2028 return 1;
2029 if (sysctl_sched_migration_cost == 0)
2030 return 0;
2031
2032 delta = now - p->se.exec_start;
2033
2034 return delta < (s64)sysctl_sched_migration_cost;
2035 }
2036
2037 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2038 {
2039 #ifdef CONFIG_SCHED_DEBUG
2040 /*
2041 * We should never call set_task_cpu() on a blocked task,
2042 * ttwu() will sort out the placement.
2043 */
2044 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2045 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2046 #endif
2047
2048 trace_sched_migrate_task(p, new_cpu);
2049
2050 if (task_cpu(p) != new_cpu) {
2051 p->se.nr_migrations++;
2052 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2053 }
2054
2055 __set_task_cpu(p, new_cpu);
2056 }
2057
2058 struct migration_req {
2059 struct list_head list;
2060
2061 struct task_struct *task;
2062 int dest_cpu;
2063
2064 struct completion done;
2065 };
2066
2067 /*
2068 * The task's runqueue lock must be held.
2069 * Returns true if you have to wait for migration thread.
2070 */
2071 static int
2072 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2073 {
2074 struct rq *rq = task_rq(p);
2075
2076 /*
2077 * If the task is not on a runqueue (and not running), then
2078 * the next wake-up will properly place the task.
2079 */
2080 if (!p->se.on_rq && !task_running(rq, p))
2081 return 0;
2082
2083 init_completion(&req->done);
2084 req->task = p;
2085 req->dest_cpu = dest_cpu;
2086 list_add(&req->list, &rq->migration_queue);
2087
2088 return 1;
2089 }
2090
2091 /*
2092 * wait_task_context_switch - wait for a thread to complete at least one
2093 * context switch.
2094 *
2095 * @p must not be current.
2096 */
2097 void wait_task_context_switch(struct task_struct *p)
2098 {
2099 unsigned long nvcsw, nivcsw, flags;
2100 int running;
2101 struct rq *rq;
2102
2103 nvcsw = p->nvcsw;
2104 nivcsw = p->nivcsw;
2105 for (;;) {
2106 /*
2107 * The runqueue is assigned before the actual context
2108 * switch. We need to take the runqueue lock.
2109 *
2110 * We could check initially without the lock but it is
2111 * very likely that we need to take the lock in every
2112 * iteration.
2113 */
2114 rq = task_rq_lock(p, &flags);
2115 running = task_running(rq, p);
2116 task_rq_unlock(rq, &flags);
2117
2118 if (likely(!running))
2119 break;
2120 /*
2121 * The switch count is incremented before the actual
2122 * context switch. We thus wait for two switches to be
2123 * sure at least one completed.
2124 */
2125 if ((p->nvcsw - nvcsw) > 1)
2126 break;
2127 if ((p->nivcsw - nivcsw) > 1)
2128 break;
2129
2130 cpu_relax();
2131 }
2132 }
2133
2134 /*
2135 * wait_task_inactive - wait for a thread to unschedule.
2136 *
2137 * If @match_state is nonzero, it's the @p->state value just checked and
2138 * not expected to change. If it changes, i.e. @p might have woken up,
2139 * then return zero. When we succeed in waiting for @p to be off its CPU,
2140 * we return a positive number (its total switch count). If a second call
2141 * a short while later returns the same number, the caller can be sure that
2142 * @p has remained unscheduled the whole time.
2143 *
2144 * The caller must ensure that the task *will* unschedule sometime soon,
2145 * else this function might spin for a *long* time. This function can't
2146 * be called with interrupts off, or it may introduce deadlock with
2147 * smp_call_function() if an IPI is sent by the same process we are
2148 * waiting to become inactive.
2149 */
2150 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2151 {
2152 unsigned long flags;
2153 int running, on_rq;
2154 unsigned long ncsw;
2155 struct rq *rq;
2156
2157 for (;;) {
2158 /*
2159 * We do the initial early heuristics without holding
2160 * any task-queue locks at all. We'll only try to get
2161 * the runqueue lock when things look like they will
2162 * work out!
2163 */
2164 rq = task_rq(p);
2165
2166 /*
2167 * If the task is actively running on another CPU
2168 * still, just relax and busy-wait without holding
2169 * any locks.
2170 *
2171 * NOTE! Since we don't hold any locks, it's not
2172 * even sure that "rq" stays as the right runqueue!
2173 * But we don't care, since "task_running()" will
2174 * return false if the runqueue has changed and p
2175 * is actually now running somewhere else!
2176 */
2177 while (task_running(rq, p)) {
2178 if (match_state && unlikely(p->state != match_state))
2179 return 0;
2180 cpu_relax();
2181 }
2182
2183 /*
2184 * Ok, time to look more closely! We need the rq
2185 * lock now, to be *sure*. If we're wrong, we'll
2186 * just go back and repeat.
2187 */
2188 rq = task_rq_lock(p, &flags);
2189 trace_sched_wait_task(rq, p);
2190 running = task_running(rq, p);
2191 on_rq = p->se.on_rq;
2192 ncsw = 0;
2193 if (!match_state || p->state == match_state)
2194 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2195 task_rq_unlock(rq, &flags);
2196
2197 /*
2198 * If it changed from the expected state, bail out now.
2199 */
2200 if (unlikely(!ncsw))
2201 break;
2202
2203 /*
2204 * Was it really running after all now that we
2205 * checked with the proper locks actually held?
2206 *
2207 * Oops. Go back and try again..
2208 */
2209 if (unlikely(running)) {
2210 cpu_relax();
2211 continue;
2212 }
2213
2214 /*
2215 * It's not enough that it's not actively running,
2216 * it must be off the runqueue _entirely_, and not
2217 * preempted!
2218 *
2219 * So if it was still runnable (but just not actively
2220 * running right now), it's preempted, and we should
2221 * yield - it could be a while.
2222 */
2223 if (unlikely(on_rq)) {
2224 schedule_timeout_uninterruptible(1);
2225 continue;
2226 }
2227
2228 /*
2229 * Ahh, all good. It wasn't running, and it wasn't
2230 * runnable, which means that it will never become
2231 * running in the future either. We're all done!
2232 */
2233 break;
2234 }
2235
2236 return ncsw;
2237 }
2238
2239 /***
2240 * kick_process - kick a running thread to enter/exit the kernel
2241 * @p: the to-be-kicked thread
2242 *
2243 * Cause a process which is running on another CPU to enter
2244 * kernel-mode, without any delay. (to get signals handled.)
2245 *
2246 * NOTE: this function doesnt have to take the runqueue lock,
2247 * because all it wants to ensure is that the remote task enters
2248 * the kernel. If the IPI races and the task has been migrated
2249 * to another CPU then no harm is done and the purpose has been
2250 * achieved as well.
2251 */
2252 void kick_process(struct task_struct *p)
2253 {
2254 int cpu;
2255
2256 preempt_disable();
2257 cpu = task_cpu(p);
2258 if ((cpu != smp_processor_id()) && task_curr(p))
2259 smp_send_reschedule(cpu);
2260 preempt_enable();
2261 }
2262 EXPORT_SYMBOL_GPL(kick_process);
2263 #endif /* CONFIG_SMP */
2264
2265 /**
2266 * task_oncpu_function_call - call a function on the cpu on which a task runs
2267 * @p: the task to evaluate
2268 * @func: the function to be called
2269 * @info: the function call argument
2270 *
2271 * Calls the function @func when the task is currently running. This might
2272 * be on the current CPU, which just calls the function directly
2273 */
2274 void task_oncpu_function_call(struct task_struct *p,
2275 void (*func) (void *info), void *info)
2276 {
2277 int cpu;
2278
2279 preempt_disable();
2280 cpu = task_cpu(p);
2281 if (task_curr(p))
2282 smp_call_function_single(cpu, func, info, 1);
2283 preempt_enable();
2284 }
2285
2286 #ifdef CONFIG_SMP
2287 static int select_fallback_rq(int cpu, struct task_struct *p)
2288 {
2289 int dest_cpu;
2290 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2291
2292 /* Look for allowed, online CPU in same node. */
2293 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2294 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2295 return dest_cpu;
2296
2297 /* Any allowed, online CPU? */
2298 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2299 if (dest_cpu < nr_cpu_ids)
2300 return dest_cpu;
2301
2302 /* No more Mr. Nice Guy. */
2303 if (dest_cpu >= nr_cpu_ids) {
2304 rcu_read_lock();
2305 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2306 rcu_read_unlock();
2307 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2308
2309 /*
2310 * Don't tell them about moving exiting tasks or
2311 * kernel threads (both mm NULL), since they never
2312 * leave kernel.
2313 */
2314 if (p->mm && printk_ratelimit()) {
2315 printk(KERN_INFO "process %d (%s) no "
2316 "longer affine to cpu%d\n",
2317 task_pid_nr(p), p->comm, cpu);
2318 }
2319 }
2320
2321 return dest_cpu;
2322 }
2323
2324 /*
2325 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2326 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2327 * by:
2328 *
2329 * exec: is unstable, retry loop
2330 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2331 */
2332 static inline
2333 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2334 {
2335 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2336
2337 /*
2338 * In order not to call set_task_cpu() on a blocking task we need
2339 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2340 * cpu.
2341 *
2342 * Since this is common to all placement strategies, this lives here.
2343 *
2344 * [ this allows ->select_task() to simply return task_cpu(p) and
2345 * not worry about this generic constraint ]
2346 */
2347 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2348 !cpu_online(cpu)))
2349 cpu = select_fallback_rq(task_cpu(p), p);
2350
2351 return cpu;
2352 }
2353 #endif
2354
2355 /***
2356 * try_to_wake_up - wake up a thread
2357 * @p: the to-be-woken-up thread
2358 * @state: the mask of task states that can be woken
2359 * @sync: do a synchronous wakeup?
2360 *
2361 * Put it on the run-queue if it's not already there. The "current"
2362 * thread is always on the run-queue (except when the actual
2363 * re-schedule is in progress), and as such you're allowed to do
2364 * the simpler "current->state = TASK_RUNNING" to mark yourself
2365 * runnable without the overhead of this.
2366 *
2367 * returns failure only if the task is already active.
2368 */
2369 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2370 int wake_flags)
2371 {
2372 int cpu, orig_cpu, this_cpu, success = 0;
2373 unsigned long flags;
2374 struct rq *rq;
2375
2376 if (!sched_feat(SYNC_WAKEUPS))
2377 wake_flags &= ~WF_SYNC;
2378
2379 this_cpu = get_cpu();
2380
2381 smp_wmb();
2382 rq = task_rq_lock(p, &flags);
2383 update_rq_clock(rq);
2384 if (!(p->state & state))
2385 goto out;
2386
2387 if (p->se.on_rq)
2388 goto out_running;
2389
2390 cpu = task_cpu(p);
2391 orig_cpu = cpu;
2392
2393 #ifdef CONFIG_SMP
2394 if (unlikely(task_running(rq, p)))
2395 goto out_activate;
2396
2397 /*
2398 * In order to handle concurrent wakeups and release the rq->lock
2399 * we put the task in TASK_WAKING state.
2400 *
2401 * First fix up the nr_uninterruptible count:
2402 */
2403 if (task_contributes_to_load(p))
2404 rq->nr_uninterruptible--;
2405 p->state = TASK_WAKING;
2406
2407 if (p->sched_class->task_waking)
2408 p->sched_class->task_waking(rq, p);
2409
2410 __task_rq_unlock(rq);
2411
2412 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2413 if (cpu != orig_cpu) {
2414 /*
2415 * Since we migrate the task without holding any rq->lock,
2416 * we need to be careful with task_rq_lock(), since that
2417 * might end up locking an invalid rq.
2418 */
2419 set_task_cpu(p, cpu);
2420 }
2421
2422 rq = cpu_rq(cpu);
2423 raw_spin_lock(&rq->lock);
2424 update_rq_clock(rq);
2425
2426 /*
2427 * We migrated the task without holding either rq->lock, however
2428 * since the task is not on the task list itself, nobody else
2429 * will try and migrate the task, hence the rq should match the
2430 * cpu we just moved it to.
2431 */
2432 WARN_ON(task_cpu(p) != cpu);
2433 WARN_ON(p->state != TASK_WAKING);
2434
2435 #ifdef CONFIG_SCHEDSTATS
2436 schedstat_inc(rq, ttwu_count);
2437 if (cpu == this_cpu)
2438 schedstat_inc(rq, ttwu_local);
2439 else {
2440 struct sched_domain *sd;
2441 for_each_domain(this_cpu, sd) {
2442 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2443 schedstat_inc(sd, ttwu_wake_remote);
2444 break;
2445 }
2446 }
2447 }
2448 #endif /* CONFIG_SCHEDSTATS */
2449
2450 out_activate:
2451 #endif /* CONFIG_SMP */
2452 schedstat_inc(p, se.statistics.nr_wakeups);
2453 if (wake_flags & WF_SYNC)
2454 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2455 if (orig_cpu != cpu)
2456 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2457 if (cpu == this_cpu)
2458 schedstat_inc(p, se.statistics.nr_wakeups_local);
2459 else
2460 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2461 activate_task(rq, p, 1);
2462 success = 1;
2463
2464 /*
2465 * Only attribute actual wakeups done by this task.
2466 */
2467 if (!in_interrupt()) {
2468 struct sched_entity *se = &current->se;
2469 u64 sample = se->sum_exec_runtime;
2470
2471 if (se->last_wakeup)
2472 sample -= se->last_wakeup;
2473 else
2474 sample -= se->start_runtime;
2475 update_avg(&se->avg_wakeup, sample);
2476
2477 se->last_wakeup = se->sum_exec_runtime;
2478 }
2479
2480 out_running:
2481 trace_sched_wakeup(rq, p, success);
2482 check_preempt_curr(rq, p, wake_flags);
2483
2484 p->state = TASK_RUNNING;
2485 #ifdef CONFIG_SMP
2486 if (p->sched_class->task_woken)
2487 p->sched_class->task_woken(rq, p);
2488
2489 if (unlikely(rq->idle_stamp)) {
2490 u64 delta = rq->clock - rq->idle_stamp;
2491 u64 max = 2*sysctl_sched_migration_cost;
2492
2493 if (delta > max)
2494 rq->avg_idle = max;
2495 else
2496 update_avg(&rq->avg_idle, delta);
2497 rq->idle_stamp = 0;
2498 }
2499 #endif
2500 out:
2501 task_rq_unlock(rq, &flags);
2502 put_cpu();
2503
2504 return success;
2505 }
2506
2507 /**
2508 * wake_up_process - Wake up a specific process
2509 * @p: The process to be woken up.
2510 *
2511 * Attempt to wake up the nominated process and move it to the set of runnable
2512 * processes. Returns 1 if the process was woken up, 0 if it was already
2513 * running.
2514 *
2515 * It may be assumed that this function implies a write memory barrier before
2516 * changing the task state if and only if any tasks are woken up.
2517 */
2518 int wake_up_process(struct task_struct *p)
2519 {
2520 return try_to_wake_up(p, TASK_ALL, 0);
2521 }
2522 EXPORT_SYMBOL(wake_up_process);
2523
2524 int wake_up_state(struct task_struct *p, unsigned int state)
2525 {
2526 return try_to_wake_up(p, state, 0);
2527 }
2528
2529 /*
2530 * Perform scheduler related setup for a newly forked process p.
2531 * p is forked by current.
2532 *
2533 * __sched_fork() is basic setup used by init_idle() too:
2534 */
2535 static void __sched_fork(struct task_struct *p)
2536 {
2537 p->se.exec_start = 0;
2538 p->se.sum_exec_runtime = 0;
2539 p->se.prev_sum_exec_runtime = 0;
2540 p->se.nr_migrations = 0;
2541 p->se.last_wakeup = 0;
2542 p->se.avg_overlap = 0;
2543 p->se.start_runtime = 0;
2544 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2545
2546 #ifdef CONFIG_SCHEDSTATS
2547 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2548 #endif
2549
2550 INIT_LIST_HEAD(&p->rt.run_list);
2551 p->se.on_rq = 0;
2552 INIT_LIST_HEAD(&p->se.group_node);
2553
2554 #ifdef CONFIG_PREEMPT_NOTIFIERS
2555 INIT_HLIST_HEAD(&p->preempt_notifiers);
2556 #endif
2557 }
2558
2559 /*
2560 * fork()/clone()-time setup:
2561 */
2562 void sched_fork(struct task_struct *p, int clone_flags)
2563 {
2564 int cpu = get_cpu();
2565
2566 __sched_fork(p);
2567 /*
2568 * We mark the process as waking here. This guarantees that
2569 * nobody will actually run it, and a signal or other external
2570 * event cannot wake it up and insert it on the runqueue either.
2571 */
2572 p->state = TASK_WAKING;
2573
2574 /*
2575 * Revert to default priority/policy on fork if requested.
2576 */
2577 if (unlikely(p->sched_reset_on_fork)) {
2578 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2579 p->policy = SCHED_NORMAL;
2580 p->normal_prio = p->static_prio;
2581 }
2582
2583 if (PRIO_TO_NICE(p->static_prio) < 0) {
2584 p->static_prio = NICE_TO_PRIO(0);
2585 p->normal_prio = p->static_prio;
2586 set_load_weight(p);
2587 }
2588
2589 /*
2590 * We don't need the reset flag anymore after the fork. It has
2591 * fulfilled its duty:
2592 */
2593 p->sched_reset_on_fork = 0;
2594 }
2595
2596 /*
2597 * Make sure we do not leak PI boosting priority to the child.
2598 */
2599 p->prio = current->normal_prio;
2600
2601 if (!rt_prio(p->prio))
2602 p->sched_class = &fair_sched_class;
2603
2604 if (p->sched_class->task_fork)
2605 p->sched_class->task_fork(p);
2606
2607 set_task_cpu(p, cpu);
2608
2609 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2610 if (likely(sched_info_on()))
2611 memset(&p->sched_info, 0, sizeof(p->sched_info));
2612 #endif
2613 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2614 p->oncpu = 0;
2615 #endif
2616 #ifdef CONFIG_PREEMPT
2617 /* Want to start with kernel preemption disabled. */
2618 task_thread_info(p)->preempt_count = 1;
2619 #endif
2620 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2621
2622 put_cpu();
2623 }
2624
2625 /*
2626 * wake_up_new_task - wake up a newly created task for the first time.
2627 *
2628 * This function will do some initial scheduler statistics housekeeping
2629 * that must be done for every newly created context, then puts the task
2630 * on the runqueue and wakes it.
2631 */
2632 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2633 {
2634 unsigned long flags;
2635 struct rq *rq;
2636 int cpu = get_cpu();
2637
2638 #ifdef CONFIG_SMP
2639 /*
2640 * Fork balancing, do it here and not earlier because:
2641 * - cpus_allowed can change in the fork path
2642 * - any previously selected cpu might disappear through hotplug
2643 *
2644 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2645 * ->cpus_allowed is stable, we have preemption disabled, meaning
2646 * cpu_online_mask is stable.
2647 */
2648 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2649 set_task_cpu(p, cpu);
2650 #endif
2651
2652 /*
2653 * Since the task is not on the rq and we still have TASK_WAKING set
2654 * nobody else will migrate this task.
2655 */
2656 rq = cpu_rq(cpu);
2657 raw_spin_lock_irqsave(&rq->lock, flags);
2658
2659 BUG_ON(p->state != TASK_WAKING);
2660 p->state = TASK_RUNNING;
2661 update_rq_clock(rq);
2662 activate_task(rq, p, 0);
2663 trace_sched_wakeup_new(rq, p, 1);
2664 check_preempt_curr(rq, p, WF_FORK);
2665 #ifdef CONFIG_SMP
2666 if (p->sched_class->task_woken)
2667 p->sched_class->task_woken(rq, p);
2668 #endif
2669 task_rq_unlock(rq, &flags);
2670 put_cpu();
2671 }
2672
2673 #ifdef CONFIG_PREEMPT_NOTIFIERS
2674
2675 /**
2676 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2677 * @notifier: notifier struct to register
2678 */
2679 void preempt_notifier_register(struct preempt_notifier *notifier)
2680 {
2681 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2682 }
2683 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2684
2685 /**
2686 * preempt_notifier_unregister - no longer interested in preemption notifications
2687 * @notifier: notifier struct to unregister
2688 *
2689 * This is safe to call from within a preemption notifier.
2690 */
2691 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2692 {
2693 hlist_del(&notifier->link);
2694 }
2695 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2696
2697 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2698 {
2699 struct preempt_notifier *notifier;
2700 struct hlist_node *node;
2701
2702 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2703 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2704 }
2705
2706 static void
2707 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2708 struct task_struct *next)
2709 {
2710 struct preempt_notifier *notifier;
2711 struct hlist_node *node;
2712
2713 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2714 notifier->ops->sched_out(notifier, next);
2715 }
2716
2717 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2718
2719 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2720 {
2721 }
2722
2723 static void
2724 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2725 struct task_struct *next)
2726 {
2727 }
2728
2729 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2730
2731 /**
2732 * prepare_task_switch - prepare to switch tasks
2733 * @rq: the runqueue preparing to switch
2734 * @prev: the current task that is being switched out
2735 * @next: the task we are going to switch to.
2736 *
2737 * This is called with the rq lock held and interrupts off. It must
2738 * be paired with a subsequent finish_task_switch after the context
2739 * switch.
2740 *
2741 * prepare_task_switch sets up locking and calls architecture specific
2742 * hooks.
2743 */
2744 static inline void
2745 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2746 struct task_struct *next)
2747 {
2748 fire_sched_out_preempt_notifiers(prev, next);
2749 prepare_lock_switch(rq, next);
2750 prepare_arch_switch(next);
2751 }
2752
2753 /**
2754 * finish_task_switch - clean up after a task-switch
2755 * @rq: runqueue associated with task-switch
2756 * @prev: the thread we just switched away from.
2757 *
2758 * finish_task_switch must be called after the context switch, paired
2759 * with a prepare_task_switch call before the context switch.
2760 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2761 * and do any other architecture-specific cleanup actions.
2762 *
2763 * Note that we may have delayed dropping an mm in context_switch(). If
2764 * so, we finish that here outside of the runqueue lock. (Doing it
2765 * with the lock held can cause deadlocks; see schedule() for
2766 * details.)
2767 */
2768 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2769 __releases(rq->lock)
2770 {
2771 struct mm_struct *mm = rq->prev_mm;
2772 long prev_state;
2773
2774 rq->prev_mm = NULL;
2775
2776 /*
2777 * A task struct has one reference for the use as "current".
2778 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2779 * schedule one last time. The schedule call will never return, and
2780 * the scheduled task must drop that reference.
2781 * The test for TASK_DEAD must occur while the runqueue locks are
2782 * still held, otherwise prev could be scheduled on another cpu, die
2783 * there before we look at prev->state, and then the reference would
2784 * be dropped twice.
2785 * Manfred Spraul <manfred@colorfullife.com>
2786 */
2787 prev_state = prev->state;
2788 finish_arch_switch(prev);
2789 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2790 local_irq_disable();
2791 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2792 perf_event_task_sched_in(current);
2793 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2794 local_irq_enable();
2795 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2796 finish_lock_switch(rq, prev);
2797
2798 fire_sched_in_preempt_notifiers(current);
2799 if (mm)
2800 mmdrop(mm);
2801 if (unlikely(prev_state == TASK_DEAD)) {
2802 /*
2803 * Remove function-return probe instances associated with this
2804 * task and put them back on the free list.
2805 */
2806 kprobe_flush_task(prev);
2807 put_task_struct(prev);
2808 }
2809 }
2810
2811 #ifdef CONFIG_SMP
2812
2813 /* assumes rq->lock is held */
2814 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2815 {
2816 if (prev->sched_class->pre_schedule)
2817 prev->sched_class->pre_schedule(rq, prev);
2818 }
2819
2820 /* rq->lock is NOT held, but preemption is disabled */
2821 static inline void post_schedule(struct rq *rq)
2822 {
2823 if (rq->post_schedule) {
2824 unsigned long flags;
2825
2826 raw_spin_lock_irqsave(&rq->lock, flags);
2827 if (rq->curr->sched_class->post_schedule)
2828 rq->curr->sched_class->post_schedule(rq);
2829 raw_spin_unlock_irqrestore(&rq->lock, flags);
2830
2831 rq->post_schedule = 0;
2832 }
2833 }
2834
2835 #else
2836
2837 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2838 {
2839 }
2840
2841 static inline void post_schedule(struct rq *rq)
2842 {
2843 }
2844
2845 #endif
2846
2847 /**
2848 * schedule_tail - first thing a freshly forked thread must call.
2849 * @prev: the thread we just switched away from.
2850 */
2851 asmlinkage void schedule_tail(struct task_struct *prev)
2852 __releases(rq->lock)
2853 {
2854 struct rq *rq = this_rq();
2855
2856 finish_task_switch(rq, prev);
2857
2858 /*
2859 * FIXME: do we need to worry about rq being invalidated by the
2860 * task_switch?
2861 */
2862 post_schedule(rq);
2863
2864 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2865 /* In this case, finish_task_switch does not reenable preemption */
2866 preempt_enable();
2867 #endif
2868 if (current->set_child_tid)
2869 put_user(task_pid_vnr(current), current->set_child_tid);
2870 }
2871
2872 /*
2873 * context_switch - switch to the new MM and the new
2874 * thread's register state.
2875 */
2876 static inline void
2877 context_switch(struct rq *rq, struct task_struct *prev,
2878 struct task_struct *next)
2879 {
2880 struct mm_struct *mm, *oldmm;
2881
2882 prepare_task_switch(rq, prev, next);
2883 trace_sched_switch(rq, prev, next);
2884 mm = next->mm;
2885 oldmm = prev->active_mm;
2886 /*
2887 * For paravirt, this is coupled with an exit in switch_to to
2888 * combine the page table reload and the switch backend into
2889 * one hypercall.
2890 */
2891 arch_start_context_switch(prev);
2892
2893 if (likely(!mm)) {
2894 next->active_mm = oldmm;
2895 atomic_inc(&oldmm->mm_count);
2896 enter_lazy_tlb(oldmm, next);
2897 } else
2898 switch_mm(oldmm, mm, next);
2899
2900 if (likely(!prev->mm)) {
2901 prev->active_mm = NULL;
2902 rq->prev_mm = oldmm;
2903 }
2904 /*
2905 * Since the runqueue lock will be released by the next
2906 * task (which is an invalid locking op but in the case
2907 * of the scheduler it's an obvious special-case), so we
2908 * do an early lockdep release here:
2909 */
2910 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2911 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2912 #endif
2913
2914 /* Here we just switch the register state and the stack. */
2915 switch_to(prev, next, prev);
2916
2917 barrier();
2918 /*
2919 * this_rq must be evaluated again because prev may have moved
2920 * CPUs since it called schedule(), thus the 'rq' on its stack
2921 * frame will be invalid.
2922 */
2923 finish_task_switch(this_rq(), prev);
2924 }
2925
2926 /*
2927 * nr_running, nr_uninterruptible and nr_context_switches:
2928 *
2929 * externally visible scheduler statistics: current number of runnable
2930 * threads, current number of uninterruptible-sleeping threads, total
2931 * number of context switches performed since bootup.
2932 */
2933 unsigned long nr_running(void)
2934 {
2935 unsigned long i, sum = 0;
2936
2937 for_each_online_cpu(i)
2938 sum += cpu_rq(i)->nr_running;
2939
2940 return sum;
2941 }
2942
2943 unsigned long nr_uninterruptible(void)
2944 {
2945 unsigned long i, sum = 0;
2946
2947 for_each_possible_cpu(i)
2948 sum += cpu_rq(i)->nr_uninterruptible;
2949
2950 /*
2951 * Since we read the counters lockless, it might be slightly
2952 * inaccurate. Do not allow it to go below zero though:
2953 */
2954 if (unlikely((long)sum < 0))
2955 sum = 0;
2956
2957 return sum;
2958 }
2959
2960 unsigned long long nr_context_switches(void)
2961 {
2962 int i;
2963 unsigned long long sum = 0;
2964
2965 for_each_possible_cpu(i)
2966 sum += cpu_rq(i)->nr_switches;
2967
2968 return sum;
2969 }
2970
2971 unsigned long nr_iowait(void)
2972 {
2973 unsigned long i, sum = 0;
2974
2975 for_each_possible_cpu(i)
2976 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2977
2978 return sum;
2979 }
2980
2981 unsigned long nr_iowait_cpu(void)
2982 {
2983 struct rq *this = this_rq();
2984 return atomic_read(&this->nr_iowait);
2985 }
2986
2987 unsigned long this_cpu_load(void)
2988 {
2989 struct rq *this = this_rq();
2990 return this->cpu_load[0];
2991 }
2992
2993
2994 /* Variables and functions for calc_load */
2995 static atomic_long_t calc_load_tasks;
2996 static unsigned long calc_load_update;
2997 unsigned long avenrun[3];
2998 EXPORT_SYMBOL(avenrun);
2999
3000 /**
3001 * get_avenrun - get the load average array
3002 * @loads: pointer to dest load array
3003 * @offset: offset to add
3004 * @shift: shift count to shift the result left
3005 *
3006 * These values are estimates at best, so no need for locking.
3007 */
3008 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3009 {
3010 loads[0] = (avenrun[0] + offset) << shift;
3011 loads[1] = (avenrun[1] + offset) << shift;
3012 loads[2] = (avenrun[2] + offset) << shift;
3013 }
3014
3015 static unsigned long
3016 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3017 {
3018 load *= exp;
3019 load += active * (FIXED_1 - exp);
3020 return load >> FSHIFT;
3021 }
3022
3023 /*
3024 * calc_load - update the avenrun load estimates 10 ticks after the
3025 * CPUs have updated calc_load_tasks.
3026 */
3027 void calc_global_load(void)
3028 {
3029 unsigned long upd = calc_load_update + 10;
3030 long active;
3031
3032 if (time_before(jiffies, upd))
3033 return;
3034
3035 active = atomic_long_read(&calc_load_tasks);
3036 active = active > 0 ? active * FIXED_1 : 0;
3037
3038 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3039 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3040 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3041
3042 calc_load_update += LOAD_FREQ;
3043 }
3044
3045 /*
3046 * Either called from update_cpu_load() or from a cpu going idle
3047 */
3048 static void calc_load_account_active(struct rq *this_rq)
3049 {
3050 long nr_active, delta;
3051
3052 nr_active = this_rq->nr_running;
3053 nr_active += (long) this_rq->nr_uninterruptible;
3054
3055 if (nr_active != this_rq->calc_load_active) {
3056 delta = nr_active - this_rq->calc_load_active;
3057 this_rq->calc_load_active = nr_active;
3058 atomic_long_add(delta, &calc_load_tasks);
3059 }
3060 }
3061
3062 /*
3063 * Update rq->cpu_load[] statistics. This function is usually called every
3064 * scheduler tick (TICK_NSEC).
3065 */
3066 static void update_cpu_load(struct rq *this_rq)
3067 {
3068 unsigned long this_load = this_rq->load.weight;
3069 int i, scale;
3070
3071 this_rq->nr_load_updates++;
3072
3073 /* Update our load: */
3074 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3075 unsigned long old_load, new_load;
3076
3077 /* scale is effectively 1 << i now, and >> i divides by scale */
3078
3079 old_load = this_rq->cpu_load[i];
3080 new_load = this_load;
3081 /*
3082 * Round up the averaging division if load is increasing. This
3083 * prevents us from getting stuck on 9 if the load is 10, for
3084 * example.
3085 */
3086 if (new_load > old_load)
3087 new_load += scale-1;
3088 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3089 }
3090
3091 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3092 this_rq->calc_load_update += LOAD_FREQ;
3093 calc_load_account_active(this_rq);
3094 }
3095 }
3096
3097 #ifdef CONFIG_SMP
3098
3099 /*
3100 * sched_exec - execve() is a valuable balancing opportunity, because at
3101 * this point the task has the smallest effective memory and cache footprint.
3102 */
3103 void sched_exec(void)
3104 {
3105 struct task_struct *p = current;
3106 struct migration_req req;
3107 int dest_cpu, this_cpu;
3108 unsigned long flags;
3109 struct rq *rq;
3110
3111 again:
3112 this_cpu = get_cpu();
3113 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3114 if (dest_cpu == this_cpu) {
3115 put_cpu();
3116 return;
3117 }
3118
3119 rq = task_rq_lock(p, &flags);
3120 put_cpu();
3121
3122 /*
3123 * select_task_rq() can race against ->cpus_allowed
3124 */
3125 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3126 || unlikely(!cpu_active(dest_cpu))) {
3127 task_rq_unlock(rq, &flags);
3128 goto again;
3129 }
3130
3131 /* force the process onto the specified CPU */
3132 if (migrate_task(p, dest_cpu, &req)) {
3133 /* Need to wait for migration thread (might exit: take ref). */
3134 struct task_struct *mt = rq->migration_thread;
3135
3136 get_task_struct(mt);
3137 task_rq_unlock(rq, &flags);
3138 wake_up_process(mt);
3139 put_task_struct(mt);
3140 wait_for_completion(&req.done);
3141
3142 return;
3143 }
3144 task_rq_unlock(rq, &flags);
3145 }
3146
3147 #endif
3148
3149 DEFINE_PER_CPU(struct kernel_stat, kstat);
3150
3151 EXPORT_PER_CPU_SYMBOL(kstat);
3152
3153 /*
3154 * Return any ns on the sched_clock that have not yet been accounted in
3155 * @p in case that task is currently running.
3156 *
3157 * Called with task_rq_lock() held on @rq.
3158 */
3159 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3160 {
3161 u64 ns = 0;
3162
3163 if (task_current(rq, p)) {
3164 update_rq_clock(rq);
3165 ns = rq->clock - p->se.exec_start;
3166 if ((s64)ns < 0)
3167 ns = 0;
3168 }
3169
3170 return ns;
3171 }
3172
3173 unsigned long long task_delta_exec(struct task_struct *p)
3174 {
3175 unsigned long flags;
3176 struct rq *rq;
3177 u64 ns = 0;
3178
3179 rq = task_rq_lock(p, &flags);
3180 ns = do_task_delta_exec(p, rq);
3181 task_rq_unlock(rq, &flags);
3182
3183 return ns;
3184 }
3185
3186 /*
3187 * Return accounted runtime for the task.
3188 * In case the task is currently running, return the runtime plus current's
3189 * pending runtime that have not been accounted yet.
3190 */
3191 unsigned long long task_sched_runtime(struct task_struct *p)
3192 {
3193 unsigned long flags;
3194 struct rq *rq;
3195 u64 ns = 0;
3196
3197 rq = task_rq_lock(p, &flags);
3198 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3199 task_rq_unlock(rq, &flags);
3200
3201 return ns;
3202 }
3203
3204 /*
3205 * Return sum_exec_runtime for the thread group.
3206 * In case the task is currently running, return the sum plus current's
3207 * pending runtime that have not been accounted yet.
3208 *
3209 * Note that the thread group might have other running tasks as well,
3210 * so the return value not includes other pending runtime that other
3211 * running tasks might have.
3212 */
3213 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3214 {
3215 struct task_cputime totals;
3216 unsigned long flags;
3217 struct rq *rq;
3218 u64 ns;
3219
3220 rq = task_rq_lock(p, &flags);
3221 thread_group_cputime(p, &totals);
3222 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3223 task_rq_unlock(rq, &flags);
3224
3225 return ns;
3226 }
3227
3228 /*
3229 * Account user cpu time to a process.
3230 * @p: the process that the cpu time gets accounted to
3231 * @cputime: the cpu time spent in user space since the last update
3232 * @cputime_scaled: cputime scaled by cpu frequency
3233 */
3234 void account_user_time(struct task_struct *p, cputime_t cputime,
3235 cputime_t cputime_scaled)
3236 {
3237 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3238 cputime64_t tmp;
3239
3240 /* Add user time to process. */
3241 p->utime = cputime_add(p->utime, cputime);
3242 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3243 account_group_user_time(p, cputime);
3244
3245 /* Add user time to cpustat. */
3246 tmp = cputime_to_cputime64(cputime);
3247 if (TASK_NICE(p) > 0)
3248 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3249 else
3250 cpustat->user = cputime64_add(cpustat->user, tmp);
3251
3252 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3253 /* Account for user time used */
3254 acct_update_integrals(p);
3255 }
3256
3257 /*
3258 * Account guest cpu time to a process.
3259 * @p: the process that the cpu time gets accounted to
3260 * @cputime: the cpu time spent in virtual machine since the last update
3261 * @cputime_scaled: cputime scaled by cpu frequency
3262 */
3263 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3264 cputime_t cputime_scaled)
3265 {
3266 cputime64_t tmp;
3267 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3268
3269 tmp = cputime_to_cputime64(cputime);
3270
3271 /* Add guest time to process. */
3272 p->utime = cputime_add(p->utime, cputime);
3273 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3274 account_group_user_time(p, cputime);
3275 p->gtime = cputime_add(p->gtime, cputime);
3276
3277 /* Add guest time to cpustat. */
3278 if (TASK_NICE(p) > 0) {
3279 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3280 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3281 } else {
3282 cpustat->user = cputime64_add(cpustat->user, tmp);
3283 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3284 }
3285 }
3286
3287 /*
3288 * Account system cpu time to a process.
3289 * @p: the process that the cpu time gets accounted to
3290 * @hardirq_offset: the offset to subtract from hardirq_count()
3291 * @cputime: the cpu time spent in kernel space since the last update
3292 * @cputime_scaled: cputime scaled by cpu frequency
3293 */
3294 void account_system_time(struct task_struct *p, int hardirq_offset,
3295 cputime_t cputime, cputime_t cputime_scaled)
3296 {
3297 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3298 cputime64_t tmp;
3299
3300 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3301 account_guest_time(p, cputime, cputime_scaled);
3302 return;
3303 }
3304
3305 /* Add system time to process. */
3306 p->stime = cputime_add(p->stime, cputime);
3307 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3308 account_group_system_time(p, cputime);
3309
3310 /* Add system time to cpustat. */
3311 tmp = cputime_to_cputime64(cputime);
3312 if (hardirq_count() - hardirq_offset)
3313 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3314 else if (softirq_count())
3315 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3316 else
3317 cpustat->system = cputime64_add(cpustat->system, tmp);
3318
3319 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3320
3321 /* Account for system time used */
3322 acct_update_integrals(p);
3323 }
3324
3325 /*
3326 * Account for involuntary wait time.
3327 * @steal: the cpu time spent in involuntary wait
3328 */
3329 void account_steal_time(cputime_t cputime)
3330 {
3331 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3332 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3333
3334 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3335 }
3336
3337 /*
3338 * Account for idle time.
3339 * @cputime: the cpu time spent in idle wait
3340 */
3341 void account_idle_time(cputime_t cputime)
3342 {
3343 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3344 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3345 struct rq *rq = this_rq();
3346
3347 if (atomic_read(&rq->nr_iowait) > 0)
3348 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3349 else
3350 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3351 }
3352
3353 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3354
3355 /*
3356 * Account a single tick of cpu time.
3357 * @p: the process that the cpu time gets accounted to
3358 * @user_tick: indicates if the tick is a user or a system tick
3359 */
3360 void account_process_tick(struct task_struct *p, int user_tick)
3361 {
3362 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3363 struct rq *rq = this_rq();
3364
3365 if (user_tick)
3366 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3367 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3368 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3369 one_jiffy_scaled);
3370 else
3371 account_idle_time(cputime_one_jiffy);
3372 }
3373
3374 /*
3375 * Account multiple ticks of steal time.
3376 * @p: the process from which the cpu time has been stolen
3377 * @ticks: number of stolen ticks
3378 */
3379 void account_steal_ticks(unsigned long ticks)
3380 {
3381 account_steal_time(jiffies_to_cputime(ticks));
3382 }
3383
3384 /*
3385 * Account multiple ticks of idle time.
3386 * @ticks: number of stolen ticks
3387 */
3388 void account_idle_ticks(unsigned long ticks)
3389 {
3390 account_idle_time(jiffies_to_cputime(ticks));
3391 }
3392
3393 #endif
3394
3395 /*
3396 * Use precise platform statistics if available:
3397 */
3398 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3399 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3400 {
3401 *ut = p->utime;
3402 *st = p->stime;
3403 }
3404
3405 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3406 {
3407 struct task_cputime cputime;
3408
3409 thread_group_cputime(p, &cputime);
3410
3411 *ut = cputime.utime;
3412 *st = cputime.stime;
3413 }
3414 #else
3415
3416 #ifndef nsecs_to_cputime
3417 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3418 #endif
3419
3420 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3421 {
3422 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3423
3424 /*
3425 * Use CFS's precise accounting:
3426 */
3427 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3428
3429 if (total) {
3430 u64 temp;
3431
3432 temp = (u64)(rtime * utime);
3433 do_div(temp, total);
3434 utime = (cputime_t)temp;
3435 } else
3436 utime = rtime;
3437
3438 /*
3439 * Compare with previous values, to keep monotonicity:
3440 */
3441 p->prev_utime = max(p->prev_utime, utime);
3442 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3443
3444 *ut = p->prev_utime;
3445 *st = p->prev_stime;
3446 }
3447
3448 /*
3449 * Must be called with siglock held.
3450 */
3451 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3452 {
3453 struct signal_struct *sig = p->signal;
3454 struct task_cputime cputime;
3455 cputime_t rtime, utime, total;
3456
3457 thread_group_cputime(p, &cputime);
3458
3459 total = cputime_add(cputime.utime, cputime.stime);
3460 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3461
3462 if (total) {
3463 u64 temp;
3464
3465 temp = (u64)(rtime * cputime.utime);
3466 do_div(temp, total);
3467 utime = (cputime_t)temp;
3468 } else
3469 utime = rtime;
3470
3471 sig->prev_utime = max(sig->prev_utime, utime);
3472 sig->prev_stime = max(sig->prev_stime,
3473 cputime_sub(rtime, sig->prev_utime));
3474
3475 *ut = sig->prev_utime;
3476 *st = sig->prev_stime;
3477 }
3478 #endif
3479
3480 /*
3481 * This function gets called by the timer code, with HZ frequency.
3482 * We call it with interrupts disabled.
3483 *
3484 * It also gets called by the fork code, when changing the parent's
3485 * timeslices.
3486 */
3487 void scheduler_tick(void)
3488 {
3489 int cpu = smp_processor_id();
3490 struct rq *rq = cpu_rq(cpu);
3491 struct task_struct *curr = rq->curr;
3492
3493 sched_clock_tick();
3494
3495 raw_spin_lock(&rq->lock);
3496 update_rq_clock(rq);
3497 update_cpu_load(rq);
3498 curr->sched_class->task_tick(rq, curr, 0);
3499 raw_spin_unlock(&rq->lock);
3500
3501 perf_event_task_tick(curr);
3502
3503 #ifdef CONFIG_SMP
3504 rq->idle_at_tick = idle_cpu(cpu);
3505 trigger_load_balance(rq, cpu);
3506 #endif
3507 }
3508
3509 notrace unsigned long get_parent_ip(unsigned long addr)
3510 {
3511 if (in_lock_functions(addr)) {
3512 addr = CALLER_ADDR2;
3513 if (in_lock_functions(addr))
3514 addr = CALLER_ADDR3;
3515 }
3516 return addr;
3517 }
3518
3519 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3520 defined(CONFIG_PREEMPT_TRACER))
3521
3522 void __kprobes add_preempt_count(int val)
3523 {
3524 #ifdef CONFIG_DEBUG_PREEMPT
3525 /*
3526 * Underflow?
3527 */
3528 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3529 return;
3530 #endif
3531 preempt_count() += val;
3532 #ifdef CONFIG_DEBUG_PREEMPT
3533 /*
3534 * Spinlock count overflowing soon?
3535 */
3536 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3537 PREEMPT_MASK - 10);
3538 #endif
3539 if (preempt_count() == val)
3540 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3541 }
3542 EXPORT_SYMBOL(add_preempt_count);
3543
3544 void __kprobes sub_preempt_count(int val)
3545 {
3546 #ifdef CONFIG_DEBUG_PREEMPT
3547 /*
3548 * Underflow?
3549 */
3550 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3551 return;
3552 /*
3553 * Is the spinlock portion underflowing?
3554 */
3555 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3556 !(preempt_count() & PREEMPT_MASK)))
3557 return;
3558 #endif
3559
3560 if (preempt_count() == val)
3561 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3562 preempt_count() -= val;
3563 }
3564 EXPORT_SYMBOL(sub_preempt_count);
3565
3566 #endif
3567
3568 /*
3569 * Print scheduling while atomic bug:
3570 */
3571 static noinline void __schedule_bug(struct task_struct *prev)
3572 {
3573 struct pt_regs *regs = get_irq_regs();
3574
3575 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3576 prev->comm, prev->pid, preempt_count());
3577
3578 debug_show_held_locks(prev);
3579 print_modules();
3580 if (irqs_disabled())
3581 print_irqtrace_events(prev);
3582
3583 if (regs)
3584 show_regs(regs);
3585 else
3586 dump_stack();
3587 }
3588
3589 /*
3590 * Various schedule()-time debugging checks and statistics:
3591 */
3592 static inline void schedule_debug(struct task_struct *prev)
3593 {
3594 /*
3595 * Test if we are atomic. Since do_exit() needs to call into
3596 * schedule() atomically, we ignore that path for now.
3597 * Otherwise, whine if we are scheduling when we should not be.
3598 */
3599 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3600 __schedule_bug(prev);
3601
3602 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3603
3604 schedstat_inc(this_rq(), sched_count);
3605 #ifdef CONFIG_SCHEDSTATS
3606 if (unlikely(prev->lock_depth >= 0)) {
3607 schedstat_inc(this_rq(), bkl_count);
3608 schedstat_inc(prev, sched_info.bkl_count);
3609 }
3610 #endif
3611 }
3612
3613 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3614 {
3615 if (prev->state == TASK_RUNNING) {
3616 u64 runtime = prev->se.sum_exec_runtime;
3617
3618 runtime -= prev->se.prev_sum_exec_runtime;
3619 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
3620
3621 /*
3622 * In order to avoid avg_overlap growing stale when we are
3623 * indeed overlapping and hence not getting put to sleep, grow
3624 * the avg_overlap on preemption.
3625 *
3626 * We use the average preemption runtime because that
3627 * correlates to the amount of cache footprint a task can
3628 * build up.
3629 */
3630 update_avg(&prev->se.avg_overlap, runtime);
3631 }
3632 prev->sched_class->put_prev_task(rq, prev);
3633 }
3634
3635 /*
3636 * Pick up the highest-prio task:
3637 */
3638 static inline struct task_struct *
3639 pick_next_task(struct rq *rq)
3640 {
3641 const struct sched_class *class;
3642 struct task_struct *p;
3643
3644 /*
3645 * Optimization: we know that if all tasks are in
3646 * the fair class we can call that function directly:
3647 */
3648 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3649 p = fair_sched_class.pick_next_task(rq);
3650 if (likely(p))
3651 return p;
3652 }
3653
3654 class = sched_class_highest;
3655 for ( ; ; ) {
3656 p = class->pick_next_task(rq);
3657 if (p)
3658 return p;
3659 /*
3660 * Will never be NULL as the idle class always
3661 * returns a non-NULL p:
3662 */
3663 class = class->next;
3664 }
3665 }
3666
3667 /*
3668 * schedule() is the main scheduler function.
3669 */
3670 asmlinkage void __sched schedule(void)
3671 {
3672 struct task_struct *prev, *next;
3673 unsigned long *switch_count;
3674 struct rq *rq;
3675 int cpu;
3676
3677 need_resched:
3678 preempt_disable();
3679 cpu = smp_processor_id();
3680 rq = cpu_rq(cpu);
3681 rcu_sched_qs(cpu);
3682 prev = rq->curr;
3683 switch_count = &prev->nivcsw;
3684
3685 release_kernel_lock(prev);
3686 need_resched_nonpreemptible:
3687
3688 schedule_debug(prev);
3689
3690 if (sched_feat(HRTICK))
3691 hrtick_clear(rq);
3692
3693 raw_spin_lock_irq(&rq->lock);
3694 update_rq_clock(rq);
3695 clear_tsk_need_resched(prev);
3696
3697 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3698 if (unlikely(signal_pending_state(prev->state, prev)))
3699 prev->state = TASK_RUNNING;
3700 else
3701 deactivate_task(rq, prev, 1);
3702 switch_count = &prev->nvcsw;
3703 }
3704
3705 pre_schedule(rq, prev);
3706
3707 if (unlikely(!rq->nr_running))
3708 idle_balance(cpu, rq);
3709
3710 put_prev_task(rq, prev);
3711 next = pick_next_task(rq);
3712
3713 if (likely(prev != next)) {
3714 sched_info_switch(prev, next);
3715 perf_event_task_sched_out(prev, next);
3716
3717 rq->nr_switches++;
3718 rq->curr = next;
3719 ++*switch_count;
3720
3721 context_switch(rq, prev, next); /* unlocks the rq */
3722 /*
3723 * the context switch might have flipped the stack from under
3724 * us, hence refresh the local variables.
3725 */
3726 cpu = smp_processor_id();
3727 rq = cpu_rq(cpu);
3728 } else
3729 raw_spin_unlock_irq(&rq->lock);
3730
3731 post_schedule(rq);
3732
3733 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3734 prev = rq->curr;
3735 switch_count = &prev->nivcsw;
3736 goto need_resched_nonpreemptible;
3737 }
3738
3739 preempt_enable_no_resched();
3740 if (need_resched())
3741 goto need_resched;
3742 }
3743 EXPORT_SYMBOL(schedule);
3744
3745 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3746 /*
3747 * Look out! "owner" is an entirely speculative pointer
3748 * access and not reliable.
3749 */
3750 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3751 {
3752 unsigned int cpu;
3753 struct rq *rq;
3754
3755 if (!sched_feat(OWNER_SPIN))
3756 return 0;
3757
3758 #ifdef CONFIG_DEBUG_PAGEALLOC
3759 /*
3760 * Need to access the cpu field knowing that
3761 * DEBUG_PAGEALLOC could have unmapped it if
3762 * the mutex owner just released it and exited.
3763 */
3764 if (probe_kernel_address(&owner->cpu, cpu))
3765 goto out;
3766 #else
3767 cpu = owner->cpu;
3768 #endif
3769
3770 /*
3771 * Even if the access succeeded (likely case),
3772 * the cpu field may no longer be valid.
3773 */
3774 if (cpu >= nr_cpumask_bits)
3775 goto out;
3776
3777 /*
3778 * We need to validate that we can do a
3779 * get_cpu() and that we have the percpu area.
3780 */
3781 if (!cpu_online(cpu))
3782 goto out;
3783
3784 rq = cpu_rq(cpu);
3785
3786 for (;;) {
3787 /*
3788 * Owner changed, break to re-assess state.
3789 */
3790 if (lock->owner != owner)
3791 break;
3792
3793 /*
3794 * Is that owner really running on that cpu?
3795 */
3796 if (task_thread_info(rq->curr) != owner || need_resched())
3797 return 0;
3798
3799 cpu_relax();
3800 }
3801 out:
3802 return 1;
3803 }
3804 #endif
3805
3806 #ifdef CONFIG_PREEMPT
3807 /*
3808 * this is the entry point to schedule() from in-kernel preemption
3809 * off of preempt_enable. Kernel preemptions off return from interrupt
3810 * occur there and call schedule directly.
3811 */
3812 asmlinkage void __sched preempt_schedule(void)
3813 {
3814 struct thread_info *ti = current_thread_info();
3815
3816 /*
3817 * If there is a non-zero preempt_count or interrupts are disabled,
3818 * we do not want to preempt the current task. Just return..
3819 */
3820 if (likely(ti->preempt_count || irqs_disabled()))
3821 return;
3822
3823 do {
3824 add_preempt_count(PREEMPT_ACTIVE);
3825 schedule();
3826 sub_preempt_count(PREEMPT_ACTIVE);
3827
3828 /*
3829 * Check again in case we missed a preemption opportunity
3830 * between schedule and now.
3831 */
3832 barrier();
3833 } while (need_resched());
3834 }
3835 EXPORT_SYMBOL(preempt_schedule);
3836
3837 /*
3838 * this is the entry point to schedule() from kernel preemption
3839 * off of irq context.
3840 * Note, that this is called and return with irqs disabled. This will
3841 * protect us against recursive calling from irq.
3842 */
3843 asmlinkage void __sched preempt_schedule_irq(void)
3844 {
3845 struct thread_info *ti = current_thread_info();
3846
3847 /* Catch callers which need to be fixed */
3848 BUG_ON(ti->preempt_count || !irqs_disabled());
3849
3850 do {
3851 add_preempt_count(PREEMPT_ACTIVE);
3852 local_irq_enable();
3853 schedule();
3854 local_irq_disable();
3855 sub_preempt_count(PREEMPT_ACTIVE);
3856
3857 /*
3858 * Check again in case we missed a preemption opportunity
3859 * between schedule and now.
3860 */
3861 barrier();
3862 } while (need_resched());
3863 }
3864
3865 #endif /* CONFIG_PREEMPT */
3866
3867 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3868 void *key)
3869 {
3870 return try_to_wake_up(curr->private, mode, wake_flags);
3871 }
3872 EXPORT_SYMBOL(default_wake_function);
3873
3874 /*
3875 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3876 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3877 * number) then we wake all the non-exclusive tasks and one exclusive task.
3878 *
3879 * There are circumstances in which we can try to wake a task which has already
3880 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3881 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3882 */
3883 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3884 int nr_exclusive, int wake_flags, void *key)
3885 {
3886 wait_queue_t *curr, *next;
3887
3888 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3889 unsigned flags = curr->flags;
3890
3891 if (curr->func(curr, mode, wake_flags, key) &&
3892 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3893 break;
3894 }
3895 }
3896
3897 /**
3898 * __wake_up - wake up threads blocked on a waitqueue.
3899 * @q: the waitqueue
3900 * @mode: which threads
3901 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3902 * @key: is directly passed to the wakeup function
3903 *
3904 * It may be assumed that this function implies a write memory barrier before
3905 * changing the task state if and only if any tasks are woken up.
3906 */
3907 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3908 int nr_exclusive, void *key)
3909 {
3910 unsigned long flags;
3911
3912 spin_lock_irqsave(&q->lock, flags);
3913 __wake_up_common(q, mode, nr_exclusive, 0, key);
3914 spin_unlock_irqrestore(&q->lock, flags);
3915 }
3916 EXPORT_SYMBOL(__wake_up);
3917
3918 /*
3919 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3920 */
3921 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3922 {
3923 __wake_up_common(q, mode, 1, 0, NULL);
3924 }
3925
3926 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3927 {
3928 __wake_up_common(q, mode, 1, 0, key);
3929 }
3930
3931 /**
3932 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3933 * @q: the waitqueue
3934 * @mode: which threads
3935 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3936 * @key: opaque value to be passed to wakeup targets
3937 *
3938 * The sync wakeup differs that the waker knows that it will schedule
3939 * away soon, so while the target thread will be woken up, it will not
3940 * be migrated to another CPU - ie. the two threads are 'synchronized'
3941 * with each other. This can prevent needless bouncing between CPUs.
3942 *
3943 * On UP it can prevent extra preemption.
3944 *
3945 * It may be assumed that this function implies a write memory barrier before
3946 * changing the task state if and only if any tasks are woken up.
3947 */
3948 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3949 int nr_exclusive, void *key)
3950 {
3951 unsigned long flags;
3952 int wake_flags = WF_SYNC;
3953
3954 if (unlikely(!q))
3955 return;
3956
3957 if (unlikely(!nr_exclusive))
3958 wake_flags = 0;
3959
3960 spin_lock_irqsave(&q->lock, flags);
3961 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3962 spin_unlock_irqrestore(&q->lock, flags);
3963 }
3964 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3965
3966 /*
3967 * __wake_up_sync - see __wake_up_sync_key()
3968 */
3969 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3970 {
3971 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3972 }
3973 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3974
3975 /**
3976 * complete: - signals a single thread waiting on this completion
3977 * @x: holds the state of this particular completion
3978 *
3979 * This will wake up a single thread waiting on this completion. Threads will be
3980 * awakened in the same order in which they were queued.
3981 *
3982 * See also complete_all(), wait_for_completion() and related routines.
3983 *
3984 * It may be assumed that this function implies a write memory barrier before
3985 * changing the task state if and only if any tasks are woken up.
3986 */
3987 void complete(struct completion *x)
3988 {
3989 unsigned long flags;
3990
3991 spin_lock_irqsave(&x->wait.lock, flags);
3992 x->done++;
3993 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3994 spin_unlock_irqrestore(&x->wait.lock, flags);
3995 }
3996 EXPORT_SYMBOL(complete);
3997
3998 /**
3999 * complete_all: - signals all threads waiting on this completion
4000 * @x: holds the state of this particular completion
4001 *
4002 * This will wake up all threads waiting on this particular completion event.
4003 *
4004 * It may be assumed that this function implies a write memory barrier before
4005 * changing the task state if and only if any tasks are woken up.
4006 */
4007 void complete_all(struct completion *x)
4008 {
4009 unsigned long flags;
4010
4011 spin_lock_irqsave(&x->wait.lock, flags);
4012 x->done += UINT_MAX/2;
4013 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4014 spin_unlock_irqrestore(&x->wait.lock, flags);
4015 }
4016 EXPORT_SYMBOL(complete_all);
4017
4018 static inline long __sched
4019 do_wait_for_common(struct completion *x, long timeout, int state)
4020 {
4021 if (!x->done) {
4022 DECLARE_WAITQUEUE(wait, current);
4023
4024 wait.flags |= WQ_FLAG_EXCLUSIVE;
4025 __add_wait_queue_tail(&x->wait, &wait);
4026 do {
4027 if (signal_pending_state(state, current)) {
4028 timeout = -ERESTARTSYS;
4029 break;
4030 }
4031 __set_current_state(state);
4032 spin_unlock_irq(&x->wait.lock);
4033 timeout = schedule_timeout(timeout);
4034 spin_lock_irq(&x->wait.lock);
4035 } while (!x->done && timeout);
4036 __remove_wait_queue(&x->wait, &wait);
4037 if (!x->done)
4038 return timeout;
4039 }
4040 x->done--;
4041 return timeout ?: 1;
4042 }
4043
4044 static long __sched
4045 wait_for_common(struct completion *x, long timeout, int state)
4046 {
4047 might_sleep();
4048
4049 spin_lock_irq(&x->wait.lock);
4050 timeout = do_wait_for_common(x, timeout, state);
4051 spin_unlock_irq(&x->wait.lock);
4052 return timeout;
4053 }
4054
4055 /**
4056 * wait_for_completion: - waits for completion of a task
4057 * @x: holds the state of this particular completion
4058 *
4059 * This waits to be signaled for completion of a specific task. It is NOT
4060 * interruptible and there is no timeout.
4061 *
4062 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4063 * and interrupt capability. Also see complete().
4064 */
4065 void __sched wait_for_completion(struct completion *x)
4066 {
4067 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4068 }
4069 EXPORT_SYMBOL(wait_for_completion);
4070
4071 /**
4072 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4073 * @x: holds the state of this particular completion
4074 * @timeout: timeout value in jiffies
4075 *
4076 * This waits for either a completion of a specific task to be signaled or for a
4077 * specified timeout to expire. The timeout is in jiffies. It is not
4078 * interruptible.
4079 */
4080 unsigned long __sched
4081 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4082 {
4083 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4084 }
4085 EXPORT_SYMBOL(wait_for_completion_timeout);
4086
4087 /**
4088 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4089 * @x: holds the state of this particular completion
4090 *
4091 * This waits for completion of a specific task to be signaled. It is
4092 * interruptible.
4093 */
4094 int __sched wait_for_completion_interruptible(struct completion *x)
4095 {
4096 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4097 if (t == -ERESTARTSYS)
4098 return t;
4099 return 0;
4100 }
4101 EXPORT_SYMBOL(wait_for_completion_interruptible);
4102
4103 /**
4104 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4105 * @x: holds the state of this particular completion
4106 * @timeout: timeout value in jiffies
4107 *
4108 * This waits for either a completion of a specific task to be signaled or for a
4109 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4110 */
4111 unsigned long __sched
4112 wait_for_completion_interruptible_timeout(struct completion *x,
4113 unsigned long timeout)
4114 {
4115 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4116 }
4117 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4118
4119 /**
4120 * wait_for_completion_killable: - waits for completion of a task (killable)
4121 * @x: holds the state of this particular completion
4122 *
4123 * This waits to be signaled for completion of a specific task. It can be
4124 * interrupted by a kill signal.
4125 */
4126 int __sched wait_for_completion_killable(struct completion *x)
4127 {
4128 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4129 if (t == -ERESTARTSYS)
4130 return t;
4131 return 0;
4132 }
4133 EXPORT_SYMBOL(wait_for_completion_killable);
4134
4135 /**
4136 * try_wait_for_completion - try to decrement a completion without blocking
4137 * @x: completion structure
4138 *
4139 * Returns: 0 if a decrement cannot be done without blocking
4140 * 1 if a decrement succeeded.
4141 *
4142 * If a completion is being used as a counting completion,
4143 * attempt to decrement the counter without blocking. This
4144 * enables us to avoid waiting if the resource the completion
4145 * is protecting is not available.
4146 */
4147 bool try_wait_for_completion(struct completion *x)
4148 {
4149 unsigned long flags;
4150 int ret = 1;
4151
4152 spin_lock_irqsave(&x->wait.lock, flags);
4153 if (!x->done)
4154 ret = 0;
4155 else
4156 x->done--;
4157 spin_unlock_irqrestore(&x->wait.lock, flags);
4158 return ret;
4159 }
4160 EXPORT_SYMBOL(try_wait_for_completion);
4161
4162 /**
4163 * completion_done - Test to see if a completion has any waiters
4164 * @x: completion structure
4165 *
4166 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4167 * 1 if there are no waiters.
4168 *
4169 */
4170 bool completion_done(struct completion *x)
4171 {
4172 unsigned long flags;
4173 int ret = 1;
4174
4175 spin_lock_irqsave(&x->wait.lock, flags);
4176 if (!x->done)
4177 ret = 0;
4178 spin_unlock_irqrestore(&x->wait.lock, flags);
4179 return ret;
4180 }
4181 EXPORT_SYMBOL(completion_done);
4182
4183 static long __sched
4184 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4185 {
4186 unsigned long flags;
4187 wait_queue_t wait;
4188
4189 init_waitqueue_entry(&wait, current);
4190
4191 __set_current_state(state);
4192
4193 spin_lock_irqsave(&q->lock, flags);
4194 __add_wait_queue(q, &wait);
4195 spin_unlock(&q->lock);
4196 timeout = schedule_timeout(timeout);
4197 spin_lock_irq(&q->lock);
4198 __remove_wait_queue(q, &wait);
4199 spin_unlock_irqrestore(&q->lock, flags);
4200
4201 return timeout;
4202 }
4203
4204 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4205 {
4206 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4207 }
4208 EXPORT_SYMBOL(interruptible_sleep_on);
4209
4210 long __sched
4211 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4212 {
4213 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4214 }
4215 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4216
4217 void __sched sleep_on(wait_queue_head_t *q)
4218 {
4219 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4220 }
4221 EXPORT_SYMBOL(sleep_on);
4222
4223 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4224 {
4225 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4226 }
4227 EXPORT_SYMBOL(sleep_on_timeout);
4228
4229 #ifdef CONFIG_RT_MUTEXES
4230
4231 /*
4232 * rt_mutex_setprio - set the current priority of a task
4233 * @p: task
4234 * @prio: prio value (kernel-internal form)
4235 *
4236 * This function changes the 'effective' priority of a task. It does
4237 * not touch ->normal_prio like __setscheduler().
4238 *
4239 * Used by the rt_mutex code to implement priority inheritance logic.
4240 */
4241 void rt_mutex_setprio(struct task_struct *p, int prio)
4242 {
4243 unsigned long flags;
4244 int oldprio, on_rq, running;
4245 struct rq *rq;
4246 const struct sched_class *prev_class;
4247
4248 BUG_ON(prio < 0 || prio > MAX_PRIO);
4249
4250 rq = task_rq_lock(p, &flags);
4251 update_rq_clock(rq);
4252
4253 oldprio = p->prio;
4254 prev_class = p->sched_class;
4255 on_rq = p->se.on_rq;
4256 running = task_current(rq, p);
4257 if (on_rq)
4258 dequeue_task(rq, p, 0);
4259 if (running)
4260 p->sched_class->put_prev_task(rq, p);
4261
4262 if (rt_prio(prio))
4263 p->sched_class = &rt_sched_class;
4264 else
4265 p->sched_class = &fair_sched_class;
4266
4267 p->prio = prio;
4268
4269 if (running)
4270 p->sched_class->set_curr_task(rq);
4271 if (on_rq) {
4272 enqueue_task(rq, p, 0, oldprio < prio);
4273
4274 check_class_changed(rq, p, prev_class, oldprio, running);
4275 }
4276 task_rq_unlock(rq, &flags);
4277 }
4278
4279 #endif
4280
4281 void set_user_nice(struct task_struct *p, long nice)
4282 {
4283 int old_prio, delta, on_rq;
4284 unsigned long flags;
4285 struct rq *rq;
4286
4287 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4288 return;
4289 /*
4290 * We have to be careful, if called from sys_setpriority(),
4291 * the task might be in the middle of scheduling on another CPU.
4292 */
4293 rq = task_rq_lock(p, &flags);
4294 update_rq_clock(rq);
4295 /*
4296 * The RT priorities are set via sched_setscheduler(), but we still
4297 * allow the 'normal' nice value to be set - but as expected
4298 * it wont have any effect on scheduling until the task is
4299 * SCHED_FIFO/SCHED_RR:
4300 */
4301 if (task_has_rt_policy(p)) {
4302 p->static_prio = NICE_TO_PRIO(nice);
4303 goto out_unlock;
4304 }
4305 on_rq = p->se.on_rq;
4306 if (on_rq)
4307 dequeue_task(rq, p, 0);
4308
4309 p->static_prio = NICE_TO_PRIO(nice);
4310 set_load_weight(p);
4311 old_prio = p->prio;
4312 p->prio = effective_prio(p);
4313 delta = p->prio - old_prio;
4314
4315 if (on_rq) {
4316 enqueue_task(rq, p, 0, false);
4317 /*
4318 * If the task increased its priority or is running and
4319 * lowered its priority, then reschedule its CPU:
4320 */
4321 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4322 resched_task(rq->curr);
4323 }
4324 out_unlock:
4325 task_rq_unlock(rq, &flags);
4326 }
4327 EXPORT_SYMBOL(set_user_nice);
4328
4329 /*
4330 * can_nice - check if a task can reduce its nice value
4331 * @p: task
4332 * @nice: nice value
4333 */
4334 int can_nice(const struct task_struct *p, const int nice)
4335 {
4336 /* convert nice value [19,-20] to rlimit style value [1,40] */
4337 int nice_rlim = 20 - nice;
4338
4339 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4340 capable(CAP_SYS_NICE));
4341 }
4342
4343 #ifdef __ARCH_WANT_SYS_NICE
4344
4345 /*
4346 * sys_nice - change the priority of the current process.
4347 * @increment: priority increment
4348 *
4349 * sys_setpriority is a more generic, but much slower function that
4350 * does similar things.
4351 */
4352 SYSCALL_DEFINE1(nice, int, increment)
4353 {
4354 long nice, retval;
4355
4356 /*
4357 * Setpriority might change our priority at the same moment.
4358 * We don't have to worry. Conceptually one call occurs first
4359 * and we have a single winner.
4360 */
4361 if (increment < -40)
4362 increment = -40;
4363 if (increment > 40)
4364 increment = 40;
4365
4366 nice = TASK_NICE(current) + increment;
4367 if (nice < -20)
4368 nice = -20;
4369 if (nice > 19)
4370 nice = 19;
4371
4372 if (increment < 0 && !can_nice(current, nice))
4373 return -EPERM;
4374
4375 retval = security_task_setnice(current, nice);
4376 if (retval)
4377 return retval;
4378
4379 set_user_nice(current, nice);
4380 return 0;
4381 }
4382
4383 #endif
4384
4385 /**
4386 * task_prio - return the priority value of a given task.
4387 * @p: the task in question.
4388 *
4389 * This is the priority value as seen by users in /proc.
4390 * RT tasks are offset by -200. Normal tasks are centered
4391 * around 0, value goes from -16 to +15.
4392 */
4393 int task_prio(const struct task_struct *p)
4394 {
4395 return p->prio - MAX_RT_PRIO;
4396 }
4397
4398 /**
4399 * task_nice - return the nice value of a given task.
4400 * @p: the task in question.
4401 */
4402 int task_nice(const struct task_struct *p)
4403 {
4404 return TASK_NICE(p);
4405 }
4406 EXPORT_SYMBOL(task_nice);
4407
4408 /**
4409 * idle_cpu - is a given cpu idle currently?
4410 * @cpu: the processor in question.
4411 */
4412 int idle_cpu(int cpu)
4413 {
4414 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4415 }
4416
4417 /**
4418 * idle_task - return the idle task for a given cpu.
4419 * @cpu: the processor in question.
4420 */
4421 struct task_struct *idle_task(int cpu)
4422 {
4423 return cpu_rq(cpu)->idle;
4424 }
4425
4426 /**
4427 * find_process_by_pid - find a process with a matching PID value.
4428 * @pid: the pid in question.
4429 */
4430 static struct task_struct *find_process_by_pid(pid_t pid)
4431 {
4432 return pid ? find_task_by_vpid(pid) : current;
4433 }
4434
4435 /* Actually do priority change: must hold rq lock. */
4436 static void
4437 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4438 {
4439 BUG_ON(p->se.on_rq);
4440
4441 p->policy = policy;
4442 p->rt_priority = prio;
4443 p->normal_prio = normal_prio(p);
4444 /* we are holding p->pi_lock already */
4445 p->prio = rt_mutex_getprio(p);
4446 if (rt_prio(p->prio))
4447 p->sched_class = &rt_sched_class;
4448 else
4449 p->sched_class = &fair_sched_class;
4450 set_load_weight(p);
4451 }
4452
4453 /*
4454 * check the target process has a UID that matches the current process's
4455 */
4456 static bool check_same_owner(struct task_struct *p)
4457 {
4458 const struct cred *cred = current_cred(), *pcred;
4459 bool match;
4460
4461 rcu_read_lock();
4462 pcred = __task_cred(p);
4463 match = (cred->euid == pcred->euid ||
4464 cred->euid == pcred->uid);
4465 rcu_read_unlock();
4466 return match;
4467 }
4468
4469 static int __sched_setscheduler(struct task_struct *p, int policy,
4470 struct sched_param *param, bool user)
4471 {
4472 int retval, oldprio, oldpolicy = -1, on_rq, running;
4473 unsigned long flags;
4474 const struct sched_class *prev_class;
4475 struct rq *rq;
4476 int reset_on_fork;
4477
4478 /* may grab non-irq protected spin_locks */
4479 BUG_ON(in_interrupt());
4480 recheck:
4481 /* double check policy once rq lock held */
4482 if (policy < 0) {
4483 reset_on_fork = p->sched_reset_on_fork;
4484 policy = oldpolicy = p->policy;
4485 } else {
4486 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4487 policy &= ~SCHED_RESET_ON_FORK;
4488
4489 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4490 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4491 policy != SCHED_IDLE)
4492 return -EINVAL;
4493 }
4494
4495 /*
4496 * Valid priorities for SCHED_FIFO and SCHED_RR are
4497 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4498 * SCHED_BATCH and SCHED_IDLE is 0.
4499 */
4500 if (param->sched_priority < 0 ||
4501 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4502 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4503 return -EINVAL;
4504 if (rt_policy(policy) != (param->sched_priority != 0))
4505 return -EINVAL;
4506
4507 /*
4508 * Allow unprivileged RT tasks to decrease priority:
4509 */
4510 if (user && !capable(CAP_SYS_NICE)) {
4511 if (rt_policy(policy)) {
4512 unsigned long rlim_rtprio;
4513
4514 if (!lock_task_sighand(p, &flags))
4515 return -ESRCH;
4516 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4517 unlock_task_sighand(p, &flags);
4518
4519 /* can't set/change the rt policy */
4520 if (policy != p->policy && !rlim_rtprio)
4521 return -EPERM;
4522
4523 /* can't increase priority */
4524 if (param->sched_priority > p->rt_priority &&
4525 param->sched_priority > rlim_rtprio)
4526 return -EPERM;
4527 }
4528 /*
4529 * Like positive nice levels, dont allow tasks to
4530 * move out of SCHED_IDLE either:
4531 */
4532 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4533 return -EPERM;
4534
4535 /* can't change other user's priorities */
4536 if (!check_same_owner(p))
4537 return -EPERM;
4538
4539 /* Normal users shall not reset the sched_reset_on_fork flag */
4540 if (p->sched_reset_on_fork && !reset_on_fork)
4541 return -EPERM;
4542 }
4543
4544 if (user) {
4545 #ifdef CONFIG_RT_GROUP_SCHED
4546 /*
4547 * Do not allow realtime tasks into groups that have no runtime
4548 * assigned.
4549 */
4550 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4551 task_group(p)->rt_bandwidth.rt_runtime == 0)
4552 return -EPERM;
4553 #endif
4554
4555 retval = security_task_setscheduler(p, policy, param);
4556 if (retval)
4557 return retval;
4558 }
4559
4560 /*
4561 * make sure no PI-waiters arrive (or leave) while we are
4562 * changing the priority of the task:
4563 */
4564 raw_spin_lock_irqsave(&p->pi_lock, flags);
4565 /*
4566 * To be able to change p->policy safely, the apropriate
4567 * runqueue lock must be held.
4568 */
4569 rq = __task_rq_lock(p);
4570 /* recheck policy now with rq lock held */
4571 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4572 policy = oldpolicy = -1;
4573 __task_rq_unlock(rq);
4574 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4575 goto recheck;
4576 }
4577 update_rq_clock(rq);
4578 on_rq = p->se.on_rq;
4579 running = task_current(rq, p);
4580 if (on_rq)
4581 deactivate_task(rq, p, 0);
4582 if (running)
4583 p->sched_class->put_prev_task(rq, p);
4584
4585 p->sched_reset_on_fork = reset_on_fork;
4586
4587 oldprio = p->prio;
4588 prev_class = p->sched_class;
4589 __setscheduler(rq, p, policy, param->sched_priority);
4590
4591 if (running)
4592 p->sched_class->set_curr_task(rq);
4593 if (on_rq) {
4594 activate_task(rq, p, 0);
4595
4596 check_class_changed(rq, p, prev_class, oldprio, running);
4597 }
4598 __task_rq_unlock(rq);
4599 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4600
4601 rt_mutex_adjust_pi(p);
4602
4603 return 0;
4604 }
4605
4606 /**
4607 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4608 * @p: the task in question.
4609 * @policy: new policy.
4610 * @param: structure containing the new RT priority.
4611 *
4612 * NOTE that the task may be already dead.
4613 */
4614 int sched_setscheduler(struct task_struct *p, int policy,
4615 struct sched_param *param)
4616 {
4617 return __sched_setscheduler(p, policy, param, true);
4618 }
4619 EXPORT_SYMBOL_GPL(sched_setscheduler);
4620
4621 /**
4622 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4623 * @p: the task in question.
4624 * @policy: new policy.
4625 * @param: structure containing the new RT priority.
4626 *
4627 * Just like sched_setscheduler, only don't bother checking if the
4628 * current context has permission. For example, this is needed in
4629 * stop_machine(): we create temporary high priority worker threads,
4630 * but our caller might not have that capability.
4631 */
4632 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4633 struct sched_param *param)
4634 {
4635 return __sched_setscheduler(p, policy, param, false);
4636 }
4637
4638 static int
4639 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4640 {
4641 struct sched_param lparam;
4642 struct task_struct *p;
4643 int retval;
4644
4645 if (!param || pid < 0)
4646 return -EINVAL;
4647 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4648 return -EFAULT;
4649
4650 rcu_read_lock();
4651 retval = -ESRCH;
4652 p = find_process_by_pid(pid);
4653 if (p != NULL)
4654 retval = sched_setscheduler(p, policy, &lparam);
4655 rcu_read_unlock();
4656
4657 return retval;
4658 }
4659
4660 /**
4661 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4662 * @pid: the pid in question.
4663 * @policy: new policy.
4664 * @param: structure containing the new RT priority.
4665 */
4666 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4667 struct sched_param __user *, param)
4668 {
4669 /* negative values for policy are not valid */
4670 if (policy < 0)
4671 return -EINVAL;
4672
4673 return do_sched_setscheduler(pid, policy, param);
4674 }
4675
4676 /**
4677 * sys_sched_setparam - set/change the RT priority of a thread
4678 * @pid: the pid in question.
4679 * @param: structure containing the new RT priority.
4680 */
4681 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4682 {
4683 return do_sched_setscheduler(pid, -1, param);
4684 }
4685
4686 /**
4687 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4688 * @pid: the pid in question.
4689 */
4690 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4691 {
4692 struct task_struct *p;
4693 int retval;
4694
4695 if (pid < 0)
4696 return -EINVAL;
4697
4698 retval = -ESRCH;
4699 rcu_read_lock();
4700 p = find_process_by_pid(pid);
4701 if (p) {
4702 retval = security_task_getscheduler(p);
4703 if (!retval)
4704 retval = p->policy
4705 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4706 }
4707 rcu_read_unlock();
4708 return retval;
4709 }
4710
4711 /**
4712 * sys_sched_getparam - get the RT priority of a thread
4713 * @pid: the pid in question.
4714 * @param: structure containing the RT priority.
4715 */
4716 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4717 {
4718 struct sched_param lp;
4719 struct task_struct *p;
4720 int retval;
4721
4722 if (!param || pid < 0)
4723 return -EINVAL;
4724
4725 rcu_read_lock();
4726 p = find_process_by_pid(pid);
4727 retval = -ESRCH;
4728 if (!p)
4729 goto out_unlock;
4730
4731 retval = security_task_getscheduler(p);
4732 if (retval)
4733 goto out_unlock;
4734
4735 lp.sched_priority = p->rt_priority;
4736 rcu_read_unlock();
4737
4738 /*
4739 * This one might sleep, we cannot do it with a spinlock held ...
4740 */
4741 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4742
4743 return retval;
4744
4745 out_unlock:
4746 rcu_read_unlock();
4747 return retval;
4748 }
4749
4750 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4751 {
4752 cpumask_var_t cpus_allowed, new_mask;
4753 struct task_struct *p;
4754 int retval;
4755
4756 get_online_cpus();
4757 rcu_read_lock();
4758
4759 p = find_process_by_pid(pid);
4760 if (!p) {
4761 rcu_read_unlock();
4762 put_online_cpus();
4763 return -ESRCH;
4764 }
4765
4766 /* Prevent p going away */
4767 get_task_struct(p);
4768 rcu_read_unlock();
4769
4770 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4771 retval = -ENOMEM;
4772 goto out_put_task;
4773 }
4774 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4775 retval = -ENOMEM;
4776 goto out_free_cpus_allowed;
4777 }
4778 retval = -EPERM;
4779 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4780 goto out_unlock;
4781
4782 retval = security_task_setscheduler(p, 0, NULL);
4783 if (retval)
4784 goto out_unlock;
4785
4786 cpuset_cpus_allowed(p, cpus_allowed);
4787 cpumask_and(new_mask, in_mask, cpus_allowed);
4788 again:
4789 retval = set_cpus_allowed_ptr(p, new_mask);
4790
4791 if (!retval) {
4792 cpuset_cpus_allowed(p, cpus_allowed);
4793 if (!cpumask_subset(new_mask, cpus_allowed)) {
4794 /*
4795 * We must have raced with a concurrent cpuset
4796 * update. Just reset the cpus_allowed to the
4797 * cpuset's cpus_allowed
4798 */
4799 cpumask_copy(new_mask, cpus_allowed);
4800 goto again;
4801 }
4802 }
4803 out_unlock:
4804 free_cpumask_var(new_mask);
4805 out_free_cpus_allowed:
4806 free_cpumask_var(cpus_allowed);
4807 out_put_task:
4808 put_task_struct(p);
4809 put_online_cpus();
4810 return retval;
4811 }
4812
4813 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4814 struct cpumask *new_mask)
4815 {
4816 if (len < cpumask_size())
4817 cpumask_clear(new_mask);
4818 else if (len > cpumask_size())
4819 len = cpumask_size();
4820
4821 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4822 }
4823
4824 /**
4825 * sys_sched_setaffinity - set the cpu affinity of a process
4826 * @pid: pid of the process
4827 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4828 * @user_mask_ptr: user-space pointer to the new cpu mask
4829 */
4830 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4831 unsigned long __user *, user_mask_ptr)
4832 {
4833 cpumask_var_t new_mask;
4834 int retval;
4835
4836 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4837 return -ENOMEM;
4838
4839 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4840 if (retval == 0)
4841 retval = sched_setaffinity(pid, new_mask);
4842 free_cpumask_var(new_mask);
4843 return retval;
4844 }
4845
4846 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4847 {
4848 struct task_struct *p;
4849 unsigned long flags;
4850 struct rq *rq;
4851 int retval;
4852
4853 get_online_cpus();
4854 rcu_read_lock();
4855
4856 retval = -ESRCH;
4857 p = find_process_by_pid(pid);
4858 if (!p)
4859 goto out_unlock;
4860
4861 retval = security_task_getscheduler(p);
4862 if (retval)
4863 goto out_unlock;
4864
4865 rq = task_rq_lock(p, &flags);
4866 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4867 task_rq_unlock(rq, &flags);
4868
4869 out_unlock:
4870 rcu_read_unlock();
4871 put_online_cpus();
4872
4873 return retval;
4874 }
4875
4876 /**
4877 * sys_sched_getaffinity - get the cpu affinity of a process
4878 * @pid: pid of the process
4879 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4880 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4881 */
4882 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4883 unsigned long __user *, user_mask_ptr)
4884 {
4885 int ret;
4886 cpumask_var_t mask;
4887
4888 if (len < cpumask_size())
4889 return -EINVAL;
4890
4891 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4892 return -ENOMEM;
4893
4894 ret = sched_getaffinity(pid, mask);
4895 if (ret == 0) {
4896 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
4897 ret = -EFAULT;
4898 else
4899 ret = cpumask_size();
4900 }
4901 free_cpumask_var(mask);
4902
4903 return ret;
4904 }
4905
4906 /**
4907 * sys_sched_yield - yield the current processor to other threads.
4908 *
4909 * This function yields the current CPU to other tasks. If there are no
4910 * other threads running on this CPU then this function will return.
4911 */
4912 SYSCALL_DEFINE0(sched_yield)
4913 {
4914 struct rq *rq = this_rq_lock();
4915
4916 schedstat_inc(rq, yld_count);
4917 current->sched_class->yield_task(rq);
4918
4919 /*
4920 * Since we are going to call schedule() anyway, there's
4921 * no need to preempt or enable interrupts:
4922 */
4923 __release(rq->lock);
4924 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4925 do_raw_spin_unlock(&rq->lock);
4926 preempt_enable_no_resched();
4927
4928 schedule();
4929
4930 return 0;
4931 }
4932
4933 static inline int should_resched(void)
4934 {
4935 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4936 }
4937
4938 static void __cond_resched(void)
4939 {
4940 add_preempt_count(PREEMPT_ACTIVE);
4941 schedule();
4942 sub_preempt_count(PREEMPT_ACTIVE);
4943 }
4944
4945 int __sched _cond_resched(void)
4946 {
4947 if (should_resched()) {
4948 __cond_resched();
4949 return 1;
4950 }
4951 return 0;
4952 }
4953 EXPORT_SYMBOL(_cond_resched);
4954
4955 /*
4956 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4957 * call schedule, and on return reacquire the lock.
4958 *
4959 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4960 * operations here to prevent schedule() from being called twice (once via
4961 * spin_unlock(), once by hand).
4962 */
4963 int __cond_resched_lock(spinlock_t *lock)
4964 {
4965 int resched = should_resched();
4966 int ret = 0;
4967
4968 lockdep_assert_held(lock);
4969
4970 if (spin_needbreak(lock) || resched) {
4971 spin_unlock(lock);
4972 if (resched)
4973 __cond_resched();
4974 else
4975 cpu_relax();
4976 ret = 1;
4977 spin_lock(lock);
4978 }
4979 return ret;
4980 }
4981 EXPORT_SYMBOL(__cond_resched_lock);
4982
4983 int __sched __cond_resched_softirq(void)
4984 {
4985 BUG_ON(!in_softirq());
4986
4987 if (should_resched()) {
4988 local_bh_enable();
4989 __cond_resched();
4990 local_bh_disable();
4991 return 1;
4992 }
4993 return 0;
4994 }
4995 EXPORT_SYMBOL(__cond_resched_softirq);
4996
4997 /**
4998 * yield - yield the current processor to other threads.
4999 *
5000 * This is a shortcut for kernel-space yielding - it marks the
5001 * thread runnable and calls sys_sched_yield().
5002 */
5003 void __sched yield(void)
5004 {
5005 set_current_state(TASK_RUNNING);
5006 sys_sched_yield();
5007 }
5008 EXPORT_SYMBOL(yield);
5009
5010 /*
5011 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5012 * that process accounting knows that this is a task in IO wait state.
5013 */
5014 void __sched io_schedule(void)
5015 {
5016 struct rq *rq = raw_rq();
5017
5018 delayacct_blkio_start();
5019 atomic_inc(&rq->nr_iowait);
5020 current->in_iowait = 1;
5021 schedule();
5022 current->in_iowait = 0;
5023 atomic_dec(&rq->nr_iowait);
5024 delayacct_blkio_end();
5025 }
5026 EXPORT_SYMBOL(io_schedule);
5027
5028 long __sched io_schedule_timeout(long timeout)
5029 {
5030 struct rq *rq = raw_rq();
5031 long ret;
5032
5033 delayacct_blkio_start();
5034 atomic_inc(&rq->nr_iowait);
5035 current->in_iowait = 1;
5036 ret = schedule_timeout(timeout);
5037 current->in_iowait = 0;
5038 atomic_dec(&rq->nr_iowait);
5039 delayacct_blkio_end();
5040 return ret;
5041 }
5042
5043 /**
5044 * sys_sched_get_priority_max - return maximum RT priority.
5045 * @policy: scheduling class.
5046 *
5047 * this syscall returns the maximum rt_priority that can be used
5048 * by a given scheduling class.
5049 */
5050 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5051 {
5052 int ret = -EINVAL;
5053
5054 switch (policy) {
5055 case SCHED_FIFO:
5056 case SCHED_RR:
5057 ret = MAX_USER_RT_PRIO-1;
5058 break;
5059 case SCHED_NORMAL:
5060 case SCHED_BATCH:
5061 case SCHED_IDLE:
5062 ret = 0;
5063 break;
5064 }
5065 return ret;
5066 }
5067
5068 /**
5069 * sys_sched_get_priority_min - return minimum RT priority.
5070 * @policy: scheduling class.
5071 *
5072 * this syscall returns the minimum rt_priority that can be used
5073 * by a given scheduling class.
5074 */
5075 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5076 {
5077 int ret = -EINVAL;
5078
5079 switch (policy) {
5080 case SCHED_FIFO:
5081 case SCHED_RR:
5082 ret = 1;
5083 break;
5084 case SCHED_NORMAL:
5085 case SCHED_BATCH:
5086 case SCHED_IDLE:
5087 ret = 0;
5088 }
5089 return ret;
5090 }
5091
5092 /**
5093 * sys_sched_rr_get_interval - return the default timeslice of a process.
5094 * @pid: pid of the process.
5095 * @interval: userspace pointer to the timeslice value.
5096 *
5097 * this syscall writes the default timeslice value of a given process
5098 * into the user-space timespec buffer. A value of '0' means infinity.
5099 */
5100 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5101 struct timespec __user *, interval)
5102 {
5103 struct task_struct *p;
5104 unsigned int time_slice;
5105 unsigned long flags;
5106 struct rq *rq;
5107 int retval;
5108 struct timespec t;
5109
5110 if (pid < 0)
5111 return -EINVAL;
5112
5113 retval = -ESRCH;
5114 rcu_read_lock();
5115 p = find_process_by_pid(pid);
5116 if (!p)
5117 goto out_unlock;
5118
5119 retval = security_task_getscheduler(p);
5120 if (retval)
5121 goto out_unlock;
5122
5123 rq = task_rq_lock(p, &flags);
5124 time_slice = p->sched_class->get_rr_interval(rq, p);
5125 task_rq_unlock(rq, &flags);
5126
5127 rcu_read_unlock();
5128 jiffies_to_timespec(time_slice, &t);
5129 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5130 return retval;
5131
5132 out_unlock:
5133 rcu_read_unlock();
5134 return retval;
5135 }
5136
5137 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5138
5139 void sched_show_task(struct task_struct *p)
5140 {
5141 unsigned long free = 0;
5142 unsigned state;
5143
5144 state = p->state ? __ffs(p->state) + 1 : 0;
5145 printk(KERN_INFO "%-13.13s %c", p->comm,
5146 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5147 #if BITS_PER_LONG == 32
5148 if (state == TASK_RUNNING)
5149 printk(KERN_CONT " running ");
5150 else
5151 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5152 #else
5153 if (state == TASK_RUNNING)
5154 printk(KERN_CONT " running task ");
5155 else
5156 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5157 #endif
5158 #ifdef CONFIG_DEBUG_STACK_USAGE
5159 free = stack_not_used(p);
5160 #endif
5161 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5162 task_pid_nr(p), task_pid_nr(p->real_parent),
5163 (unsigned long)task_thread_info(p)->flags);
5164
5165 show_stack(p, NULL);
5166 }
5167
5168 void show_state_filter(unsigned long state_filter)
5169 {
5170 struct task_struct *g, *p;
5171
5172 #if BITS_PER_LONG == 32
5173 printk(KERN_INFO
5174 " task PC stack pid father\n");
5175 #else
5176 printk(KERN_INFO
5177 " task PC stack pid father\n");
5178 #endif
5179 read_lock(&tasklist_lock);
5180 do_each_thread(g, p) {
5181 /*
5182 * reset the NMI-timeout, listing all files on a slow
5183 * console might take alot of time:
5184 */
5185 touch_nmi_watchdog();
5186 if (!state_filter || (p->state & state_filter))
5187 sched_show_task(p);
5188 } while_each_thread(g, p);
5189
5190 touch_all_softlockup_watchdogs();
5191
5192 #ifdef CONFIG_SCHED_DEBUG
5193 sysrq_sched_debug_show();
5194 #endif
5195 read_unlock(&tasklist_lock);
5196 /*
5197 * Only show locks if all tasks are dumped:
5198 */
5199 if (!state_filter)
5200 debug_show_all_locks();
5201 }
5202
5203 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5204 {
5205 idle->sched_class = &idle_sched_class;
5206 }
5207
5208 /**
5209 * init_idle - set up an idle thread for a given CPU
5210 * @idle: task in question
5211 * @cpu: cpu the idle task belongs to
5212 *
5213 * NOTE: this function does not set the idle thread's NEED_RESCHED
5214 * flag, to make booting more robust.
5215 */
5216 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5217 {
5218 struct rq *rq = cpu_rq(cpu);
5219 unsigned long flags;
5220
5221 raw_spin_lock_irqsave(&rq->lock, flags);
5222
5223 __sched_fork(idle);
5224 idle->state = TASK_RUNNING;
5225 idle->se.exec_start = sched_clock();
5226
5227 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5228 __set_task_cpu(idle, cpu);
5229
5230 rq->curr = rq->idle = idle;
5231 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5232 idle->oncpu = 1;
5233 #endif
5234 raw_spin_unlock_irqrestore(&rq->lock, flags);
5235
5236 /* Set the preempt count _outside_ the spinlocks! */
5237 #if defined(CONFIG_PREEMPT)
5238 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5239 #else
5240 task_thread_info(idle)->preempt_count = 0;
5241 #endif
5242 /*
5243 * The idle tasks have their own, simple scheduling class:
5244 */
5245 idle->sched_class = &idle_sched_class;
5246 ftrace_graph_init_task(idle);
5247 }
5248
5249 /*
5250 * In a system that switches off the HZ timer nohz_cpu_mask
5251 * indicates which cpus entered this state. This is used
5252 * in the rcu update to wait only for active cpus. For system
5253 * which do not switch off the HZ timer nohz_cpu_mask should
5254 * always be CPU_BITS_NONE.
5255 */
5256 cpumask_var_t nohz_cpu_mask;
5257
5258 /*
5259 * Increase the granularity value when there are more CPUs,
5260 * because with more CPUs the 'effective latency' as visible
5261 * to users decreases. But the relationship is not linear,
5262 * so pick a second-best guess by going with the log2 of the
5263 * number of CPUs.
5264 *
5265 * This idea comes from the SD scheduler of Con Kolivas:
5266 */
5267 static int get_update_sysctl_factor(void)
5268 {
5269 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5270 unsigned int factor;
5271
5272 switch (sysctl_sched_tunable_scaling) {
5273 case SCHED_TUNABLESCALING_NONE:
5274 factor = 1;
5275 break;
5276 case SCHED_TUNABLESCALING_LINEAR:
5277 factor = cpus;
5278 break;
5279 case SCHED_TUNABLESCALING_LOG:
5280 default:
5281 factor = 1 + ilog2(cpus);
5282 break;
5283 }
5284
5285 return factor;
5286 }
5287
5288 static void update_sysctl(void)
5289 {
5290 unsigned int factor = get_update_sysctl_factor();
5291
5292 #define SET_SYSCTL(name) \
5293 (sysctl_##name = (factor) * normalized_sysctl_##name)
5294 SET_SYSCTL(sched_min_granularity);
5295 SET_SYSCTL(sched_latency);
5296 SET_SYSCTL(sched_wakeup_granularity);
5297 SET_SYSCTL(sched_shares_ratelimit);
5298 #undef SET_SYSCTL
5299 }
5300
5301 static inline void sched_init_granularity(void)
5302 {
5303 update_sysctl();
5304 }
5305
5306 #ifdef CONFIG_SMP
5307 /*
5308 * This is how migration works:
5309 *
5310 * 1) we queue a struct migration_req structure in the source CPU's
5311 * runqueue and wake up that CPU's migration thread.
5312 * 2) we down() the locked semaphore => thread blocks.
5313 * 3) migration thread wakes up (implicitly it forces the migrated
5314 * thread off the CPU)
5315 * 4) it gets the migration request and checks whether the migrated
5316 * task is still in the wrong runqueue.
5317 * 5) if it's in the wrong runqueue then the migration thread removes
5318 * it and puts it into the right queue.
5319 * 6) migration thread up()s the semaphore.
5320 * 7) we wake up and the migration is done.
5321 */
5322
5323 /*
5324 * Change a given task's CPU affinity. Migrate the thread to a
5325 * proper CPU and schedule it away if the CPU it's executing on
5326 * is removed from the allowed bitmask.
5327 *
5328 * NOTE: the caller must have a valid reference to the task, the
5329 * task must not exit() & deallocate itself prematurely. The
5330 * call is not atomic; no spinlocks may be held.
5331 */
5332 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5333 {
5334 struct migration_req req;
5335 unsigned long flags;
5336 struct rq *rq;
5337 int ret = 0;
5338
5339 rq = task_rq_lock(p, &flags);
5340
5341 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5342 ret = -EINVAL;
5343 goto out;
5344 }
5345
5346 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5347 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5348 ret = -EINVAL;
5349 goto out;
5350 }
5351
5352 if (p->sched_class->set_cpus_allowed)
5353 p->sched_class->set_cpus_allowed(p, new_mask);
5354 else {
5355 cpumask_copy(&p->cpus_allowed, new_mask);
5356 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5357 }
5358
5359 /* Can the task run on the task's current CPU? If so, we're done */
5360 if (cpumask_test_cpu(task_cpu(p), new_mask))
5361 goto out;
5362
5363 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5364 /* Need help from migration thread: drop lock and wait. */
5365 struct task_struct *mt = rq->migration_thread;
5366
5367 get_task_struct(mt);
5368 task_rq_unlock(rq, &flags);
5369 wake_up_process(rq->migration_thread);
5370 put_task_struct(mt);
5371 wait_for_completion(&req.done);
5372 tlb_migrate_finish(p->mm);
5373 return 0;
5374 }
5375 out:
5376 task_rq_unlock(rq, &flags);
5377
5378 return ret;
5379 }
5380 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5381
5382 /*
5383 * Move (not current) task off this cpu, onto dest cpu. We're doing
5384 * this because either it can't run here any more (set_cpus_allowed()
5385 * away from this CPU, or CPU going down), or because we're
5386 * attempting to rebalance this task on exec (sched_exec).
5387 *
5388 * So we race with normal scheduler movements, but that's OK, as long
5389 * as the task is no longer on this CPU.
5390 *
5391 * Returns non-zero if task was successfully migrated.
5392 */
5393 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5394 {
5395 struct rq *rq_dest, *rq_src;
5396 int ret = 0;
5397
5398 if (unlikely(!cpu_active(dest_cpu)))
5399 return ret;
5400
5401 rq_src = cpu_rq(src_cpu);
5402 rq_dest = cpu_rq(dest_cpu);
5403
5404 double_rq_lock(rq_src, rq_dest);
5405 /* Already moved. */
5406 if (task_cpu(p) != src_cpu)
5407 goto done;
5408 /* Affinity changed (again). */
5409 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5410 goto fail;
5411
5412 /*
5413 * If we're not on a rq, the next wake-up will ensure we're
5414 * placed properly.
5415 */
5416 if (p->se.on_rq) {
5417 deactivate_task(rq_src, p, 0);
5418 set_task_cpu(p, dest_cpu);
5419 activate_task(rq_dest, p, 0);
5420 check_preempt_curr(rq_dest, p, 0);
5421 }
5422 done:
5423 ret = 1;
5424 fail:
5425 double_rq_unlock(rq_src, rq_dest);
5426 return ret;
5427 }
5428
5429 #define RCU_MIGRATION_IDLE 0
5430 #define RCU_MIGRATION_NEED_QS 1
5431 #define RCU_MIGRATION_GOT_QS 2
5432 #define RCU_MIGRATION_MUST_SYNC 3
5433
5434 /*
5435 * migration_thread - this is a highprio system thread that performs
5436 * thread migration by bumping thread off CPU then 'pushing' onto
5437 * another runqueue.
5438 */
5439 static int migration_thread(void *data)
5440 {
5441 int badcpu;
5442 int cpu = (long)data;
5443 struct rq *rq;
5444
5445 rq = cpu_rq(cpu);
5446 BUG_ON(rq->migration_thread != current);
5447
5448 set_current_state(TASK_INTERRUPTIBLE);
5449 while (!kthread_should_stop()) {
5450 struct migration_req *req;
5451 struct list_head *head;
5452
5453 raw_spin_lock_irq(&rq->lock);
5454
5455 if (cpu_is_offline(cpu)) {
5456 raw_spin_unlock_irq(&rq->lock);
5457 break;
5458 }
5459
5460 if (rq->active_balance) {
5461 active_load_balance(rq, cpu);
5462 rq->active_balance = 0;
5463 }
5464
5465 head = &rq->migration_queue;
5466
5467 if (list_empty(head)) {
5468 raw_spin_unlock_irq(&rq->lock);
5469 schedule();
5470 set_current_state(TASK_INTERRUPTIBLE);
5471 continue;
5472 }
5473 req = list_entry(head->next, struct migration_req, list);
5474 list_del_init(head->next);
5475
5476 if (req->task != NULL) {
5477 raw_spin_unlock(&rq->lock);
5478 __migrate_task(req->task, cpu, req->dest_cpu);
5479 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5480 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5481 raw_spin_unlock(&rq->lock);
5482 } else {
5483 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5484 raw_spin_unlock(&rq->lock);
5485 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5486 }
5487 local_irq_enable();
5488
5489 complete(&req->done);
5490 }
5491 __set_current_state(TASK_RUNNING);
5492
5493 return 0;
5494 }
5495
5496 #ifdef CONFIG_HOTPLUG_CPU
5497
5498 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5499 {
5500 int ret;
5501
5502 local_irq_disable();
5503 ret = __migrate_task(p, src_cpu, dest_cpu);
5504 local_irq_enable();
5505 return ret;
5506 }
5507
5508 /*
5509 * Figure out where task on dead CPU should go, use force if necessary.
5510 */
5511 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5512 {
5513 int dest_cpu;
5514
5515 again:
5516 dest_cpu = select_fallback_rq(dead_cpu, p);
5517
5518 /* It can have affinity changed while we were choosing. */
5519 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5520 goto again;
5521 }
5522
5523 /*
5524 * While a dead CPU has no uninterruptible tasks queued at this point,
5525 * it might still have a nonzero ->nr_uninterruptible counter, because
5526 * for performance reasons the counter is not stricly tracking tasks to
5527 * their home CPUs. So we just add the counter to another CPU's counter,
5528 * to keep the global sum constant after CPU-down:
5529 */
5530 static void migrate_nr_uninterruptible(struct rq *rq_src)
5531 {
5532 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5533 unsigned long flags;
5534
5535 local_irq_save(flags);
5536 double_rq_lock(rq_src, rq_dest);
5537 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5538 rq_src->nr_uninterruptible = 0;
5539 double_rq_unlock(rq_src, rq_dest);
5540 local_irq_restore(flags);
5541 }
5542
5543 /* Run through task list and migrate tasks from the dead cpu. */
5544 static void migrate_live_tasks(int src_cpu)
5545 {
5546 struct task_struct *p, *t;
5547
5548 read_lock(&tasklist_lock);
5549
5550 do_each_thread(t, p) {
5551 if (p == current)
5552 continue;
5553
5554 if (task_cpu(p) == src_cpu)
5555 move_task_off_dead_cpu(src_cpu, p);
5556 } while_each_thread(t, p);
5557
5558 read_unlock(&tasklist_lock);
5559 }
5560
5561 /*
5562 * Schedules idle task to be the next runnable task on current CPU.
5563 * It does so by boosting its priority to highest possible.
5564 * Used by CPU offline code.
5565 */
5566 void sched_idle_next(void)
5567 {
5568 int this_cpu = smp_processor_id();
5569 struct rq *rq = cpu_rq(this_cpu);
5570 struct task_struct *p = rq->idle;
5571 unsigned long flags;
5572
5573 /* cpu has to be offline */
5574 BUG_ON(cpu_online(this_cpu));
5575
5576 /*
5577 * Strictly not necessary since rest of the CPUs are stopped by now
5578 * and interrupts disabled on the current cpu.
5579 */
5580 raw_spin_lock_irqsave(&rq->lock, flags);
5581
5582 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5583
5584 update_rq_clock(rq);
5585 activate_task(rq, p, 0);
5586
5587 raw_spin_unlock_irqrestore(&rq->lock, flags);
5588 }
5589
5590 /*
5591 * Ensures that the idle task is using init_mm right before its cpu goes
5592 * offline.
5593 */
5594 void idle_task_exit(void)
5595 {
5596 struct mm_struct *mm = current->active_mm;
5597
5598 BUG_ON(cpu_online(smp_processor_id()));
5599
5600 if (mm != &init_mm)
5601 switch_mm(mm, &init_mm, current);
5602 mmdrop(mm);
5603 }
5604
5605 /* called under rq->lock with disabled interrupts */
5606 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5607 {
5608 struct rq *rq = cpu_rq(dead_cpu);
5609
5610 /* Must be exiting, otherwise would be on tasklist. */
5611 BUG_ON(!p->exit_state);
5612
5613 /* Cannot have done final schedule yet: would have vanished. */
5614 BUG_ON(p->state == TASK_DEAD);
5615
5616 get_task_struct(p);
5617
5618 /*
5619 * Drop lock around migration; if someone else moves it,
5620 * that's OK. No task can be added to this CPU, so iteration is
5621 * fine.
5622 */
5623 raw_spin_unlock_irq(&rq->lock);
5624 move_task_off_dead_cpu(dead_cpu, p);
5625 raw_spin_lock_irq(&rq->lock);
5626
5627 put_task_struct(p);
5628 }
5629
5630 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5631 static void migrate_dead_tasks(unsigned int dead_cpu)
5632 {
5633 struct rq *rq = cpu_rq(dead_cpu);
5634 struct task_struct *next;
5635
5636 for ( ; ; ) {
5637 if (!rq->nr_running)
5638 break;
5639 update_rq_clock(rq);
5640 next = pick_next_task(rq);
5641 if (!next)
5642 break;
5643 next->sched_class->put_prev_task(rq, next);
5644 migrate_dead(dead_cpu, next);
5645
5646 }
5647 }
5648
5649 /*
5650 * remove the tasks which were accounted by rq from calc_load_tasks.
5651 */
5652 static void calc_global_load_remove(struct rq *rq)
5653 {
5654 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5655 rq->calc_load_active = 0;
5656 }
5657 #endif /* CONFIG_HOTPLUG_CPU */
5658
5659 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5660
5661 static struct ctl_table sd_ctl_dir[] = {
5662 {
5663 .procname = "sched_domain",
5664 .mode = 0555,
5665 },
5666 {}
5667 };
5668
5669 static struct ctl_table sd_ctl_root[] = {
5670 {
5671 .procname = "kernel",
5672 .mode = 0555,
5673 .child = sd_ctl_dir,
5674 },
5675 {}
5676 };
5677
5678 static struct ctl_table *sd_alloc_ctl_entry(int n)
5679 {
5680 struct ctl_table *entry =
5681 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5682
5683 return entry;
5684 }
5685
5686 static void sd_free_ctl_entry(struct ctl_table **tablep)
5687 {
5688 struct ctl_table *entry;
5689
5690 /*
5691 * In the intermediate directories, both the child directory and
5692 * procname are dynamically allocated and could fail but the mode
5693 * will always be set. In the lowest directory the names are
5694 * static strings and all have proc handlers.
5695 */
5696 for (entry = *tablep; entry->mode; entry++) {
5697 if (entry->child)
5698 sd_free_ctl_entry(&entry->child);
5699 if (entry->proc_handler == NULL)
5700 kfree(entry->procname);
5701 }
5702
5703 kfree(*tablep);
5704 *tablep = NULL;
5705 }
5706
5707 static void
5708 set_table_entry(struct ctl_table *entry,
5709 const char *procname, void *data, int maxlen,
5710 mode_t mode, proc_handler *proc_handler)
5711 {
5712 entry->procname = procname;
5713 entry->data = data;
5714 entry->maxlen = maxlen;
5715 entry->mode = mode;
5716 entry->proc_handler = proc_handler;
5717 }
5718
5719 static struct ctl_table *
5720 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5721 {
5722 struct ctl_table *table = sd_alloc_ctl_entry(13);
5723
5724 if (table == NULL)
5725 return NULL;
5726
5727 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5728 sizeof(long), 0644, proc_doulongvec_minmax);
5729 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5730 sizeof(long), 0644, proc_doulongvec_minmax);
5731 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5732 sizeof(int), 0644, proc_dointvec_minmax);
5733 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5734 sizeof(int), 0644, proc_dointvec_minmax);
5735 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5736 sizeof(int), 0644, proc_dointvec_minmax);
5737 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5738 sizeof(int), 0644, proc_dointvec_minmax);
5739 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5740 sizeof(int), 0644, proc_dointvec_minmax);
5741 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5742 sizeof(int), 0644, proc_dointvec_minmax);
5743 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5744 sizeof(int), 0644, proc_dointvec_minmax);
5745 set_table_entry(&table[9], "cache_nice_tries",
5746 &sd->cache_nice_tries,
5747 sizeof(int), 0644, proc_dointvec_minmax);
5748 set_table_entry(&table[10], "flags", &sd->flags,
5749 sizeof(int), 0644, proc_dointvec_minmax);
5750 set_table_entry(&table[11], "name", sd->name,
5751 CORENAME_MAX_SIZE, 0444, proc_dostring);
5752 /* &table[12] is terminator */
5753
5754 return table;
5755 }
5756
5757 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5758 {
5759 struct ctl_table *entry, *table;
5760 struct sched_domain *sd;
5761 int domain_num = 0, i;
5762 char buf[32];
5763
5764 for_each_domain(cpu, sd)
5765 domain_num++;
5766 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5767 if (table == NULL)
5768 return NULL;
5769
5770 i = 0;
5771 for_each_domain(cpu, sd) {
5772 snprintf(buf, 32, "domain%d", i);
5773 entry->procname = kstrdup(buf, GFP_KERNEL);
5774 entry->mode = 0555;
5775 entry->child = sd_alloc_ctl_domain_table(sd);
5776 entry++;
5777 i++;
5778 }
5779 return table;
5780 }
5781
5782 static struct ctl_table_header *sd_sysctl_header;
5783 static void register_sched_domain_sysctl(void)
5784 {
5785 int i, cpu_num = num_possible_cpus();
5786 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5787 char buf[32];
5788
5789 WARN_ON(sd_ctl_dir[0].child);
5790 sd_ctl_dir[0].child = entry;
5791
5792 if (entry == NULL)
5793 return;
5794
5795 for_each_possible_cpu(i) {
5796 snprintf(buf, 32, "cpu%d", i);
5797 entry->procname = kstrdup(buf, GFP_KERNEL);
5798 entry->mode = 0555;
5799 entry->child = sd_alloc_ctl_cpu_table(i);
5800 entry++;
5801 }
5802
5803 WARN_ON(sd_sysctl_header);
5804 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5805 }
5806
5807 /* may be called multiple times per register */
5808 static void unregister_sched_domain_sysctl(void)
5809 {
5810 if (sd_sysctl_header)
5811 unregister_sysctl_table(sd_sysctl_header);
5812 sd_sysctl_header = NULL;
5813 if (sd_ctl_dir[0].child)
5814 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5815 }
5816 #else
5817 static void register_sched_domain_sysctl(void)
5818 {
5819 }
5820 static void unregister_sched_domain_sysctl(void)
5821 {
5822 }
5823 #endif
5824
5825 static void set_rq_online(struct rq *rq)
5826 {
5827 if (!rq->online) {
5828 const struct sched_class *class;
5829
5830 cpumask_set_cpu(rq->cpu, rq->rd->online);
5831 rq->online = 1;
5832
5833 for_each_class(class) {
5834 if (class->rq_online)
5835 class->rq_online(rq);
5836 }
5837 }
5838 }
5839
5840 static void set_rq_offline(struct rq *rq)
5841 {
5842 if (rq->online) {
5843 const struct sched_class *class;
5844
5845 for_each_class(class) {
5846 if (class->rq_offline)
5847 class->rq_offline(rq);
5848 }
5849
5850 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5851 rq->online = 0;
5852 }
5853 }
5854
5855 /*
5856 * migration_call - callback that gets triggered when a CPU is added.
5857 * Here we can start up the necessary migration thread for the new CPU.
5858 */
5859 static int __cpuinit
5860 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5861 {
5862 struct task_struct *p;
5863 int cpu = (long)hcpu;
5864 unsigned long flags;
5865 struct rq *rq;
5866
5867 switch (action) {
5868
5869 case CPU_UP_PREPARE:
5870 case CPU_UP_PREPARE_FROZEN:
5871 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5872 if (IS_ERR(p))
5873 return NOTIFY_BAD;
5874 kthread_bind(p, cpu);
5875 /* Must be high prio: stop_machine expects to yield to it. */
5876 rq = task_rq_lock(p, &flags);
5877 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5878 task_rq_unlock(rq, &flags);
5879 get_task_struct(p);
5880 cpu_rq(cpu)->migration_thread = p;
5881 rq->calc_load_update = calc_load_update;
5882 break;
5883
5884 case CPU_ONLINE:
5885 case CPU_ONLINE_FROZEN:
5886 /* Strictly unnecessary, as first user will wake it. */
5887 wake_up_process(cpu_rq(cpu)->migration_thread);
5888
5889 /* Update our root-domain */
5890 rq = cpu_rq(cpu);
5891 raw_spin_lock_irqsave(&rq->lock, flags);
5892 if (rq->rd) {
5893 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5894
5895 set_rq_online(rq);
5896 }
5897 raw_spin_unlock_irqrestore(&rq->lock, flags);
5898 break;
5899
5900 #ifdef CONFIG_HOTPLUG_CPU
5901 case CPU_UP_CANCELED:
5902 case CPU_UP_CANCELED_FROZEN:
5903 if (!cpu_rq(cpu)->migration_thread)
5904 break;
5905 /* Unbind it from offline cpu so it can run. Fall thru. */
5906 kthread_bind(cpu_rq(cpu)->migration_thread,
5907 cpumask_any(cpu_online_mask));
5908 kthread_stop(cpu_rq(cpu)->migration_thread);
5909 put_task_struct(cpu_rq(cpu)->migration_thread);
5910 cpu_rq(cpu)->migration_thread = NULL;
5911 break;
5912
5913 case CPU_DEAD:
5914 case CPU_DEAD_FROZEN:
5915 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5916 migrate_live_tasks(cpu);
5917 rq = cpu_rq(cpu);
5918 kthread_stop(rq->migration_thread);
5919 put_task_struct(rq->migration_thread);
5920 rq->migration_thread = NULL;
5921 /* Idle task back to normal (off runqueue, low prio) */
5922 raw_spin_lock_irq(&rq->lock);
5923 update_rq_clock(rq);
5924 deactivate_task(rq, rq->idle, 0);
5925 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5926 rq->idle->sched_class = &idle_sched_class;
5927 migrate_dead_tasks(cpu);
5928 raw_spin_unlock_irq(&rq->lock);
5929 cpuset_unlock();
5930 migrate_nr_uninterruptible(rq);
5931 BUG_ON(rq->nr_running != 0);
5932 calc_global_load_remove(rq);
5933 /*
5934 * No need to migrate the tasks: it was best-effort if
5935 * they didn't take sched_hotcpu_mutex. Just wake up
5936 * the requestors.
5937 */
5938 raw_spin_lock_irq(&rq->lock);
5939 while (!list_empty(&rq->migration_queue)) {
5940 struct migration_req *req;
5941
5942 req = list_entry(rq->migration_queue.next,
5943 struct migration_req, list);
5944 list_del_init(&req->list);
5945 raw_spin_unlock_irq(&rq->lock);
5946 complete(&req->done);
5947 raw_spin_lock_irq(&rq->lock);
5948 }
5949 raw_spin_unlock_irq(&rq->lock);
5950 break;
5951
5952 case CPU_DYING:
5953 case CPU_DYING_FROZEN:
5954 /* Update our root-domain */
5955 rq = cpu_rq(cpu);
5956 raw_spin_lock_irqsave(&rq->lock, flags);
5957 if (rq->rd) {
5958 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5959 set_rq_offline(rq);
5960 }
5961 raw_spin_unlock_irqrestore(&rq->lock, flags);
5962 break;
5963 #endif
5964 }
5965 return NOTIFY_OK;
5966 }
5967
5968 /*
5969 * Register at high priority so that task migration (migrate_all_tasks)
5970 * happens before everything else. This has to be lower priority than
5971 * the notifier in the perf_event subsystem, though.
5972 */
5973 static struct notifier_block __cpuinitdata migration_notifier = {
5974 .notifier_call = migration_call,
5975 .priority = 10
5976 };
5977
5978 static int __init migration_init(void)
5979 {
5980 void *cpu = (void *)(long)smp_processor_id();
5981 int err;
5982
5983 /* Start one for the boot CPU: */
5984 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5985 BUG_ON(err == NOTIFY_BAD);
5986 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5987 register_cpu_notifier(&migration_notifier);
5988
5989 return 0;
5990 }
5991 early_initcall(migration_init);
5992 #endif
5993
5994 #ifdef CONFIG_SMP
5995
5996 #ifdef CONFIG_SCHED_DEBUG
5997
5998 static __read_mostly int sched_domain_debug_enabled;
5999
6000 static int __init sched_domain_debug_setup(char *str)
6001 {
6002 sched_domain_debug_enabled = 1;
6003
6004 return 0;
6005 }
6006 early_param("sched_debug", sched_domain_debug_setup);
6007
6008 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6009 struct cpumask *groupmask)
6010 {
6011 struct sched_group *group = sd->groups;
6012 char str[256];
6013
6014 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6015 cpumask_clear(groupmask);
6016
6017 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6018
6019 if (!(sd->flags & SD_LOAD_BALANCE)) {
6020 printk("does not load-balance\n");
6021 if (sd->parent)
6022 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6023 " has parent");
6024 return -1;
6025 }
6026
6027 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6028
6029 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6030 printk(KERN_ERR "ERROR: domain->span does not contain "
6031 "CPU%d\n", cpu);
6032 }
6033 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6034 printk(KERN_ERR "ERROR: domain->groups does not contain"
6035 " CPU%d\n", cpu);
6036 }
6037
6038 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6039 do {
6040 if (!group) {
6041 printk("\n");
6042 printk(KERN_ERR "ERROR: group is NULL\n");
6043 break;
6044 }
6045
6046 if (!group->cpu_power) {
6047 printk(KERN_CONT "\n");
6048 printk(KERN_ERR "ERROR: domain->cpu_power not "
6049 "set\n");
6050 break;
6051 }
6052
6053 if (!cpumask_weight(sched_group_cpus(group))) {
6054 printk(KERN_CONT "\n");
6055 printk(KERN_ERR "ERROR: empty group\n");
6056 break;
6057 }
6058
6059 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6060 printk(KERN_CONT "\n");
6061 printk(KERN_ERR "ERROR: repeated CPUs\n");
6062 break;
6063 }
6064
6065 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6066
6067 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6068
6069 printk(KERN_CONT " %s", str);
6070 if (group->cpu_power != SCHED_LOAD_SCALE) {
6071 printk(KERN_CONT " (cpu_power = %d)",
6072 group->cpu_power);
6073 }
6074
6075 group = group->next;
6076 } while (group != sd->groups);
6077 printk(KERN_CONT "\n");
6078
6079 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6080 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6081
6082 if (sd->parent &&
6083 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6084 printk(KERN_ERR "ERROR: parent span is not a superset "
6085 "of domain->span\n");
6086 return 0;
6087 }
6088
6089 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6090 {
6091 cpumask_var_t groupmask;
6092 int level = 0;
6093
6094 if (!sched_domain_debug_enabled)
6095 return;
6096
6097 if (!sd) {
6098 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6099 return;
6100 }
6101
6102 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6103
6104 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6105 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6106 return;
6107 }
6108
6109 for (;;) {
6110 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6111 break;
6112 level++;
6113 sd = sd->parent;
6114 if (!sd)
6115 break;
6116 }
6117 free_cpumask_var(groupmask);
6118 }
6119 #else /* !CONFIG_SCHED_DEBUG */
6120 # define sched_domain_debug(sd, cpu) do { } while (0)
6121 #endif /* CONFIG_SCHED_DEBUG */
6122
6123 static int sd_degenerate(struct sched_domain *sd)
6124 {
6125 if (cpumask_weight(sched_domain_span(sd)) == 1)
6126 return 1;
6127
6128 /* Following flags need at least 2 groups */
6129 if (sd->flags & (SD_LOAD_BALANCE |
6130 SD_BALANCE_NEWIDLE |
6131 SD_BALANCE_FORK |
6132 SD_BALANCE_EXEC |
6133 SD_SHARE_CPUPOWER |
6134 SD_SHARE_PKG_RESOURCES)) {
6135 if (sd->groups != sd->groups->next)
6136 return 0;
6137 }
6138
6139 /* Following flags don't use groups */
6140 if (sd->flags & (SD_WAKE_AFFINE))
6141 return 0;
6142
6143 return 1;
6144 }
6145
6146 static int
6147 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6148 {
6149 unsigned long cflags = sd->flags, pflags = parent->flags;
6150
6151 if (sd_degenerate(parent))
6152 return 1;
6153
6154 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6155 return 0;
6156
6157 /* Flags needing groups don't count if only 1 group in parent */
6158 if (parent->groups == parent->groups->next) {
6159 pflags &= ~(SD_LOAD_BALANCE |
6160 SD_BALANCE_NEWIDLE |
6161 SD_BALANCE_FORK |
6162 SD_BALANCE_EXEC |
6163 SD_SHARE_CPUPOWER |
6164 SD_SHARE_PKG_RESOURCES);
6165 if (nr_node_ids == 1)
6166 pflags &= ~SD_SERIALIZE;
6167 }
6168 if (~cflags & pflags)
6169 return 0;
6170
6171 return 1;
6172 }
6173
6174 static void free_rootdomain(struct root_domain *rd)
6175 {
6176 synchronize_sched();
6177
6178 cpupri_cleanup(&rd->cpupri);
6179
6180 free_cpumask_var(rd->rto_mask);
6181 free_cpumask_var(rd->online);
6182 free_cpumask_var(rd->span);
6183 kfree(rd);
6184 }
6185
6186 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6187 {
6188 struct root_domain *old_rd = NULL;
6189 unsigned long flags;
6190
6191 raw_spin_lock_irqsave(&rq->lock, flags);
6192
6193 if (rq->rd) {
6194 old_rd = rq->rd;
6195
6196 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6197 set_rq_offline(rq);
6198
6199 cpumask_clear_cpu(rq->cpu, old_rd->span);
6200
6201 /*
6202 * If we dont want to free the old_rt yet then
6203 * set old_rd to NULL to skip the freeing later
6204 * in this function:
6205 */
6206 if (!atomic_dec_and_test(&old_rd->refcount))
6207 old_rd = NULL;
6208 }
6209
6210 atomic_inc(&rd->refcount);
6211 rq->rd = rd;
6212
6213 cpumask_set_cpu(rq->cpu, rd->span);
6214 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6215 set_rq_online(rq);
6216
6217 raw_spin_unlock_irqrestore(&rq->lock, flags);
6218
6219 if (old_rd)
6220 free_rootdomain(old_rd);
6221 }
6222
6223 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6224 {
6225 gfp_t gfp = GFP_KERNEL;
6226
6227 memset(rd, 0, sizeof(*rd));
6228
6229 if (bootmem)
6230 gfp = GFP_NOWAIT;
6231
6232 if (!alloc_cpumask_var(&rd->span, gfp))
6233 goto out;
6234 if (!alloc_cpumask_var(&rd->online, gfp))
6235 goto free_span;
6236 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6237 goto free_online;
6238
6239 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6240 goto free_rto_mask;
6241 return 0;
6242
6243 free_rto_mask:
6244 free_cpumask_var(rd->rto_mask);
6245 free_online:
6246 free_cpumask_var(rd->online);
6247 free_span:
6248 free_cpumask_var(rd->span);
6249 out:
6250 return -ENOMEM;
6251 }
6252
6253 static void init_defrootdomain(void)
6254 {
6255 init_rootdomain(&def_root_domain, true);
6256
6257 atomic_set(&def_root_domain.refcount, 1);
6258 }
6259
6260 static struct root_domain *alloc_rootdomain(void)
6261 {
6262 struct root_domain *rd;
6263
6264 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6265 if (!rd)
6266 return NULL;
6267
6268 if (init_rootdomain(rd, false) != 0) {
6269 kfree(rd);
6270 return NULL;
6271 }
6272
6273 return rd;
6274 }
6275
6276 /*
6277 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6278 * hold the hotplug lock.
6279 */
6280 static void
6281 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6282 {
6283 struct rq *rq = cpu_rq(cpu);
6284 struct sched_domain *tmp;
6285
6286 /* Remove the sched domains which do not contribute to scheduling. */
6287 for (tmp = sd; tmp; ) {
6288 struct sched_domain *parent = tmp->parent;
6289 if (!parent)
6290 break;
6291
6292 if (sd_parent_degenerate(tmp, parent)) {
6293 tmp->parent = parent->parent;
6294 if (parent->parent)
6295 parent->parent->child = tmp;
6296 } else
6297 tmp = tmp->parent;
6298 }
6299
6300 if (sd && sd_degenerate(sd)) {
6301 sd = sd->parent;
6302 if (sd)
6303 sd->child = NULL;
6304 }
6305
6306 sched_domain_debug(sd, cpu);
6307
6308 rq_attach_root(rq, rd);
6309 rcu_assign_pointer(rq->sd, sd);
6310 }
6311
6312 /* cpus with isolated domains */
6313 static cpumask_var_t cpu_isolated_map;
6314
6315 /* Setup the mask of cpus configured for isolated domains */
6316 static int __init isolated_cpu_setup(char *str)
6317 {
6318 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6319 cpulist_parse(str, cpu_isolated_map);
6320 return 1;
6321 }
6322
6323 __setup("isolcpus=", isolated_cpu_setup);
6324
6325 /*
6326 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6327 * to a function which identifies what group(along with sched group) a CPU
6328 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6329 * (due to the fact that we keep track of groups covered with a struct cpumask).
6330 *
6331 * init_sched_build_groups will build a circular linked list of the groups
6332 * covered by the given span, and will set each group's ->cpumask correctly,
6333 * and ->cpu_power to 0.
6334 */
6335 static void
6336 init_sched_build_groups(const struct cpumask *span,
6337 const struct cpumask *cpu_map,
6338 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6339 struct sched_group **sg,
6340 struct cpumask *tmpmask),
6341 struct cpumask *covered, struct cpumask *tmpmask)
6342 {
6343 struct sched_group *first = NULL, *last = NULL;
6344 int i;
6345
6346 cpumask_clear(covered);
6347
6348 for_each_cpu(i, span) {
6349 struct sched_group *sg;
6350 int group = group_fn(i, cpu_map, &sg, tmpmask);
6351 int j;
6352
6353 if (cpumask_test_cpu(i, covered))
6354 continue;
6355
6356 cpumask_clear(sched_group_cpus(sg));
6357 sg->cpu_power = 0;
6358
6359 for_each_cpu(j, span) {
6360 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6361 continue;
6362
6363 cpumask_set_cpu(j, covered);
6364 cpumask_set_cpu(j, sched_group_cpus(sg));
6365 }
6366 if (!first)
6367 first = sg;
6368 if (last)
6369 last->next = sg;
6370 last = sg;
6371 }
6372 last->next = first;
6373 }
6374
6375 #define SD_NODES_PER_DOMAIN 16
6376
6377 #ifdef CONFIG_NUMA
6378
6379 /**
6380 * find_next_best_node - find the next node to include in a sched_domain
6381 * @node: node whose sched_domain we're building
6382 * @used_nodes: nodes already in the sched_domain
6383 *
6384 * Find the next node to include in a given scheduling domain. Simply
6385 * finds the closest node not already in the @used_nodes map.
6386 *
6387 * Should use nodemask_t.
6388 */
6389 static int find_next_best_node(int node, nodemask_t *used_nodes)
6390 {
6391 int i, n, val, min_val, best_node = 0;
6392
6393 min_val = INT_MAX;
6394
6395 for (i = 0; i < nr_node_ids; i++) {
6396 /* Start at @node */
6397 n = (node + i) % nr_node_ids;
6398
6399 if (!nr_cpus_node(n))
6400 continue;
6401
6402 /* Skip already used nodes */
6403 if (node_isset(n, *used_nodes))
6404 continue;
6405
6406 /* Simple min distance search */
6407 val = node_distance(node, n);
6408
6409 if (val < min_val) {
6410 min_val = val;
6411 best_node = n;
6412 }
6413 }
6414
6415 node_set(best_node, *used_nodes);
6416 return best_node;
6417 }
6418
6419 /**
6420 * sched_domain_node_span - get a cpumask for a node's sched_domain
6421 * @node: node whose cpumask we're constructing
6422 * @span: resulting cpumask
6423 *
6424 * Given a node, construct a good cpumask for its sched_domain to span. It
6425 * should be one that prevents unnecessary balancing, but also spreads tasks
6426 * out optimally.
6427 */
6428 static void sched_domain_node_span(int node, struct cpumask *span)
6429 {
6430 nodemask_t used_nodes;
6431 int i;
6432
6433 cpumask_clear(span);
6434 nodes_clear(used_nodes);
6435
6436 cpumask_or(span, span, cpumask_of_node(node));
6437 node_set(node, used_nodes);
6438
6439 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6440 int next_node = find_next_best_node(node, &used_nodes);
6441
6442 cpumask_or(span, span, cpumask_of_node(next_node));
6443 }
6444 }
6445 #endif /* CONFIG_NUMA */
6446
6447 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6448
6449 /*
6450 * The cpus mask in sched_group and sched_domain hangs off the end.
6451 *
6452 * ( See the the comments in include/linux/sched.h:struct sched_group
6453 * and struct sched_domain. )
6454 */
6455 struct static_sched_group {
6456 struct sched_group sg;
6457 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6458 };
6459
6460 struct static_sched_domain {
6461 struct sched_domain sd;
6462 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6463 };
6464
6465 struct s_data {
6466 #ifdef CONFIG_NUMA
6467 int sd_allnodes;
6468 cpumask_var_t domainspan;
6469 cpumask_var_t covered;
6470 cpumask_var_t notcovered;
6471 #endif
6472 cpumask_var_t nodemask;
6473 cpumask_var_t this_sibling_map;
6474 cpumask_var_t this_core_map;
6475 cpumask_var_t send_covered;
6476 cpumask_var_t tmpmask;
6477 struct sched_group **sched_group_nodes;
6478 struct root_domain *rd;
6479 };
6480
6481 enum s_alloc {
6482 sa_sched_groups = 0,
6483 sa_rootdomain,
6484 sa_tmpmask,
6485 sa_send_covered,
6486 sa_this_core_map,
6487 sa_this_sibling_map,
6488 sa_nodemask,
6489 sa_sched_group_nodes,
6490 #ifdef CONFIG_NUMA
6491 sa_notcovered,
6492 sa_covered,
6493 sa_domainspan,
6494 #endif
6495 sa_none,
6496 };
6497
6498 /*
6499 * SMT sched-domains:
6500 */
6501 #ifdef CONFIG_SCHED_SMT
6502 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6503 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6504
6505 static int
6506 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6507 struct sched_group **sg, struct cpumask *unused)
6508 {
6509 if (sg)
6510 *sg = &per_cpu(sched_groups, cpu).sg;
6511 return cpu;
6512 }
6513 #endif /* CONFIG_SCHED_SMT */
6514
6515 /*
6516 * multi-core sched-domains:
6517 */
6518 #ifdef CONFIG_SCHED_MC
6519 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6520 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6521 #endif /* CONFIG_SCHED_MC */
6522
6523 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6524 static int
6525 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6526 struct sched_group **sg, struct cpumask *mask)
6527 {
6528 int group;
6529
6530 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6531 group = cpumask_first(mask);
6532 if (sg)
6533 *sg = &per_cpu(sched_group_core, group).sg;
6534 return group;
6535 }
6536 #elif defined(CONFIG_SCHED_MC)
6537 static int
6538 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6539 struct sched_group **sg, struct cpumask *unused)
6540 {
6541 if (sg)
6542 *sg = &per_cpu(sched_group_core, cpu).sg;
6543 return cpu;
6544 }
6545 #endif
6546
6547 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6548 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6549
6550 static int
6551 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6552 struct sched_group **sg, struct cpumask *mask)
6553 {
6554 int group;
6555 #ifdef CONFIG_SCHED_MC
6556 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6557 group = cpumask_first(mask);
6558 #elif defined(CONFIG_SCHED_SMT)
6559 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6560 group = cpumask_first(mask);
6561 #else
6562 group = cpu;
6563 #endif
6564 if (sg)
6565 *sg = &per_cpu(sched_group_phys, group).sg;
6566 return group;
6567 }
6568
6569 #ifdef CONFIG_NUMA
6570 /*
6571 * The init_sched_build_groups can't handle what we want to do with node
6572 * groups, so roll our own. Now each node has its own list of groups which
6573 * gets dynamically allocated.
6574 */
6575 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6576 static struct sched_group ***sched_group_nodes_bycpu;
6577
6578 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6579 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6580
6581 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6582 struct sched_group **sg,
6583 struct cpumask *nodemask)
6584 {
6585 int group;
6586
6587 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6588 group = cpumask_first(nodemask);
6589
6590 if (sg)
6591 *sg = &per_cpu(sched_group_allnodes, group).sg;
6592 return group;
6593 }
6594
6595 static void init_numa_sched_groups_power(struct sched_group *group_head)
6596 {
6597 struct sched_group *sg = group_head;
6598 int j;
6599
6600 if (!sg)
6601 return;
6602 do {
6603 for_each_cpu(j, sched_group_cpus(sg)) {
6604 struct sched_domain *sd;
6605
6606 sd = &per_cpu(phys_domains, j).sd;
6607 if (j != group_first_cpu(sd->groups)) {
6608 /*
6609 * Only add "power" once for each
6610 * physical package.
6611 */
6612 continue;
6613 }
6614
6615 sg->cpu_power += sd->groups->cpu_power;
6616 }
6617 sg = sg->next;
6618 } while (sg != group_head);
6619 }
6620
6621 static int build_numa_sched_groups(struct s_data *d,
6622 const struct cpumask *cpu_map, int num)
6623 {
6624 struct sched_domain *sd;
6625 struct sched_group *sg, *prev;
6626 int n, j;
6627
6628 cpumask_clear(d->covered);
6629 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6630 if (cpumask_empty(d->nodemask)) {
6631 d->sched_group_nodes[num] = NULL;
6632 goto out;
6633 }
6634
6635 sched_domain_node_span(num, d->domainspan);
6636 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6637
6638 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6639 GFP_KERNEL, num);
6640 if (!sg) {
6641 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6642 num);
6643 return -ENOMEM;
6644 }
6645 d->sched_group_nodes[num] = sg;
6646
6647 for_each_cpu(j, d->nodemask) {
6648 sd = &per_cpu(node_domains, j).sd;
6649 sd->groups = sg;
6650 }
6651
6652 sg->cpu_power = 0;
6653 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6654 sg->next = sg;
6655 cpumask_or(d->covered, d->covered, d->nodemask);
6656
6657 prev = sg;
6658 for (j = 0; j < nr_node_ids; j++) {
6659 n = (num + j) % nr_node_ids;
6660 cpumask_complement(d->notcovered, d->covered);
6661 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6662 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6663 if (cpumask_empty(d->tmpmask))
6664 break;
6665 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6666 if (cpumask_empty(d->tmpmask))
6667 continue;
6668 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6669 GFP_KERNEL, num);
6670 if (!sg) {
6671 printk(KERN_WARNING
6672 "Can not alloc domain group for node %d\n", j);
6673 return -ENOMEM;
6674 }
6675 sg->cpu_power = 0;
6676 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6677 sg->next = prev->next;
6678 cpumask_or(d->covered, d->covered, d->tmpmask);
6679 prev->next = sg;
6680 prev = sg;
6681 }
6682 out:
6683 return 0;
6684 }
6685 #endif /* CONFIG_NUMA */
6686
6687 #ifdef CONFIG_NUMA
6688 /* Free memory allocated for various sched_group structures */
6689 static void free_sched_groups(const struct cpumask *cpu_map,
6690 struct cpumask *nodemask)
6691 {
6692 int cpu, i;
6693
6694 for_each_cpu(cpu, cpu_map) {
6695 struct sched_group **sched_group_nodes
6696 = sched_group_nodes_bycpu[cpu];
6697
6698 if (!sched_group_nodes)
6699 continue;
6700
6701 for (i = 0; i < nr_node_ids; i++) {
6702 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6703
6704 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6705 if (cpumask_empty(nodemask))
6706 continue;
6707
6708 if (sg == NULL)
6709 continue;
6710 sg = sg->next;
6711 next_sg:
6712 oldsg = sg;
6713 sg = sg->next;
6714 kfree(oldsg);
6715 if (oldsg != sched_group_nodes[i])
6716 goto next_sg;
6717 }
6718 kfree(sched_group_nodes);
6719 sched_group_nodes_bycpu[cpu] = NULL;
6720 }
6721 }
6722 #else /* !CONFIG_NUMA */
6723 static void free_sched_groups(const struct cpumask *cpu_map,
6724 struct cpumask *nodemask)
6725 {
6726 }
6727 #endif /* CONFIG_NUMA */
6728
6729 /*
6730 * Initialize sched groups cpu_power.
6731 *
6732 * cpu_power indicates the capacity of sched group, which is used while
6733 * distributing the load between different sched groups in a sched domain.
6734 * Typically cpu_power for all the groups in a sched domain will be same unless
6735 * there are asymmetries in the topology. If there are asymmetries, group
6736 * having more cpu_power will pickup more load compared to the group having
6737 * less cpu_power.
6738 */
6739 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6740 {
6741 struct sched_domain *child;
6742 struct sched_group *group;
6743 long power;
6744 int weight;
6745
6746 WARN_ON(!sd || !sd->groups);
6747
6748 if (cpu != group_first_cpu(sd->groups))
6749 return;
6750
6751 child = sd->child;
6752
6753 sd->groups->cpu_power = 0;
6754
6755 if (!child) {
6756 power = SCHED_LOAD_SCALE;
6757 weight = cpumask_weight(sched_domain_span(sd));
6758 /*
6759 * SMT siblings share the power of a single core.
6760 * Usually multiple threads get a better yield out of
6761 * that one core than a single thread would have,
6762 * reflect that in sd->smt_gain.
6763 */
6764 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6765 power *= sd->smt_gain;
6766 power /= weight;
6767 power >>= SCHED_LOAD_SHIFT;
6768 }
6769 sd->groups->cpu_power += power;
6770 return;
6771 }
6772
6773 /*
6774 * Add cpu_power of each child group to this groups cpu_power.
6775 */
6776 group = child->groups;
6777 do {
6778 sd->groups->cpu_power += group->cpu_power;
6779 group = group->next;
6780 } while (group != child->groups);
6781 }
6782
6783 /*
6784 * Initializers for schedule domains
6785 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6786 */
6787
6788 #ifdef CONFIG_SCHED_DEBUG
6789 # define SD_INIT_NAME(sd, type) sd->name = #type
6790 #else
6791 # define SD_INIT_NAME(sd, type) do { } while (0)
6792 #endif
6793
6794 #define SD_INIT(sd, type) sd_init_##type(sd)
6795
6796 #define SD_INIT_FUNC(type) \
6797 static noinline void sd_init_##type(struct sched_domain *sd) \
6798 { \
6799 memset(sd, 0, sizeof(*sd)); \
6800 *sd = SD_##type##_INIT; \
6801 sd->level = SD_LV_##type; \
6802 SD_INIT_NAME(sd, type); \
6803 }
6804
6805 SD_INIT_FUNC(CPU)
6806 #ifdef CONFIG_NUMA
6807 SD_INIT_FUNC(ALLNODES)
6808 SD_INIT_FUNC(NODE)
6809 #endif
6810 #ifdef CONFIG_SCHED_SMT
6811 SD_INIT_FUNC(SIBLING)
6812 #endif
6813 #ifdef CONFIG_SCHED_MC
6814 SD_INIT_FUNC(MC)
6815 #endif
6816
6817 static int default_relax_domain_level = -1;
6818
6819 static int __init setup_relax_domain_level(char *str)
6820 {
6821 unsigned long val;
6822
6823 val = simple_strtoul(str, NULL, 0);
6824 if (val < SD_LV_MAX)
6825 default_relax_domain_level = val;
6826
6827 return 1;
6828 }
6829 __setup("relax_domain_level=", setup_relax_domain_level);
6830
6831 static void set_domain_attribute(struct sched_domain *sd,
6832 struct sched_domain_attr *attr)
6833 {
6834 int request;
6835
6836 if (!attr || attr->relax_domain_level < 0) {
6837 if (default_relax_domain_level < 0)
6838 return;
6839 else
6840 request = default_relax_domain_level;
6841 } else
6842 request = attr->relax_domain_level;
6843 if (request < sd->level) {
6844 /* turn off idle balance on this domain */
6845 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6846 } else {
6847 /* turn on idle balance on this domain */
6848 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6849 }
6850 }
6851
6852 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6853 const struct cpumask *cpu_map)
6854 {
6855 switch (what) {
6856 case sa_sched_groups:
6857 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6858 d->sched_group_nodes = NULL;
6859 case sa_rootdomain:
6860 free_rootdomain(d->rd); /* fall through */
6861 case sa_tmpmask:
6862 free_cpumask_var(d->tmpmask); /* fall through */
6863 case sa_send_covered:
6864 free_cpumask_var(d->send_covered); /* fall through */
6865 case sa_this_core_map:
6866 free_cpumask_var(d->this_core_map); /* fall through */
6867 case sa_this_sibling_map:
6868 free_cpumask_var(d->this_sibling_map); /* fall through */
6869 case sa_nodemask:
6870 free_cpumask_var(d->nodemask); /* fall through */
6871 case sa_sched_group_nodes:
6872 #ifdef CONFIG_NUMA
6873 kfree(d->sched_group_nodes); /* fall through */
6874 case sa_notcovered:
6875 free_cpumask_var(d->notcovered); /* fall through */
6876 case sa_covered:
6877 free_cpumask_var(d->covered); /* fall through */
6878 case sa_domainspan:
6879 free_cpumask_var(d->domainspan); /* fall through */
6880 #endif
6881 case sa_none:
6882 break;
6883 }
6884 }
6885
6886 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6887 const struct cpumask *cpu_map)
6888 {
6889 #ifdef CONFIG_NUMA
6890 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6891 return sa_none;
6892 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6893 return sa_domainspan;
6894 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6895 return sa_covered;
6896 /* Allocate the per-node list of sched groups */
6897 d->sched_group_nodes = kcalloc(nr_node_ids,
6898 sizeof(struct sched_group *), GFP_KERNEL);
6899 if (!d->sched_group_nodes) {
6900 printk(KERN_WARNING "Can not alloc sched group node list\n");
6901 return sa_notcovered;
6902 }
6903 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6904 #endif
6905 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6906 return sa_sched_group_nodes;
6907 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6908 return sa_nodemask;
6909 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6910 return sa_this_sibling_map;
6911 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6912 return sa_this_core_map;
6913 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6914 return sa_send_covered;
6915 d->rd = alloc_rootdomain();
6916 if (!d->rd) {
6917 printk(KERN_WARNING "Cannot alloc root domain\n");
6918 return sa_tmpmask;
6919 }
6920 return sa_rootdomain;
6921 }
6922
6923 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6924 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6925 {
6926 struct sched_domain *sd = NULL;
6927 #ifdef CONFIG_NUMA
6928 struct sched_domain *parent;
6929
6930 d->sd_allnodes = 0;
6931 if (cpumask_weight(cpu_map) >
6932 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6933 sd = &per_cpu(allnodes_domains, i).sd;
6934 SD_INIT(sd, ALLNODES);
6935 set_domain_attribute(sd, attr);
6936 cpumask_copy(sched_domain_span(sd), cpu_map);
6937 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6938 d->sd_allnodes = 1;
6939 }
6940 parent = sd;
6941
6942 sd = &per_cpu(node_domains, i).sd;
6943 SD_INIT(sd, NODE);
6944 set_domain_attribute(sd, attr);
6945 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6946 sd->parent = parent;
6947 if (parent)
6948 parent->child = sd;
6949 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6950 #endif
6951 return sd;
6952 }
6953
6954 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6955 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6956 struct sched_domain *parent, int i)
6957 {
6958 struct sched_domain *sd;
6959 sd = &per_cpu(phys_domains, i).sd;
6960 SD_INIT(sd, CPU);
6961 set_domain_attribute(sd, attr);
6962 cpumask_copy(sched_domain_span(sd), d->nodemask);
6963 sd->parent = parent;
6964 if (parent)
6965 parent->child = sd;
6966 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6967 return sd;
6968 }
6969
6970 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6971 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6972 struct sched_domain *parent, int i)
6973 {
6974 struct sched_domain *sd = parent;
6975 #ifdef CONFIG_SCHED_MC
6976 sd = &per_cpu(core_domains, i).sd;
6977 SD_INIT(sd, MC);
6978 set_domain_attribute(sd, attr);
6979 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6980 sd->parent = parent;
6981 parent->child = sd;
6982 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6983 #endif
6984 return sd;
6985 }
6986
6987 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6988 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6989 struct sched_domain *parent, int i)
6990 {
6991 struct sched_domain *sd = parent;
6992 #ifdef CONFIG_SCHED_SMT
6993 sd = &per_cpu(cpu_domains, i).sd;
6994 SD_INIT(sd, SIBLING);
6995 set_domain_attribute(sd, attr);
6996 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6997 sd->parent = parent;
6998 parent->child = sd;
6999 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7000 #endif
7001 return sd;
7002 }
7003
7004 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7005 const struct cpumask *cpu_map, int cpu)
7006 {
7007 switch (l) {
7008 #ifdef CONFIG_SCHED_SMT
7009 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7010 cpumask_and(d->this_sibling_map, cpu_map,
7011 topology_thread_cpumask(cpu));
7012 if (cpu == cpumask_first(d->this_sibling_map))
7013 init_sched_build_groups(d->this_sibling_map, cpu_map,
7014 &cpu_to_cpu_group,
7015 d->send_covered, d->tmpmask);
7016 break;
7017 #endif
7018 #ifdef CONFIG_SCHED_MC
7019 case SD_LV_MC: /* set up multi-core groups */
7020 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7021 if (cpu == cpumask_first(d->this_core_map))
7022 init_sched_build_groups(d->this_core_map, cpu_map,
7023 &cpu_to_core_group,
7024 d->send_covered, d->tmpmask);
7025 break;
7026 #endif
7027 case SD_LV_CPU: /* set up physical groups */
7028 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7029 if (!cpumask_empty(d->nodemask))
7030 init_sched_build_groups(d->nodemask, cpu_map,
7031 &cpu_to_phys_group,
7032 d->send_covered, d->tmpmask);
7033 break;
7034 #ifdef CONFIG_NUMA
7035 case SD_LV_ALLNODES:
7036 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7037 d->send_covered, d->tmpmask);
7038 break;
7039 #endif
7040 default:
7041 break;
7042 }
7043 }
7044
7045 /*
7046 * Build sched domains for a given set of cpus and attach the sched domains
7047 * to the individual cpus
7048 */
7049 static int __build_sched_domains(const struct cpumask *cpu_map,
7050 struct sched_domain_attr *attr)
7051 {
7052 enum s_alloc alloc_state = sa_none;
7053 struct s_data d;
7054 struct sched_domain *sd;
7055 int i;
7056 #ifdef CONFIG_NUMA
7057 d.sd_allnodes = 0;
7058 #endif
7059
7060 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7061 if (alloc_state != sa_rootdomain)
7062 goto error;
7063 alloc_state = sa_sched_groups;
7064
7065 /*
7066 * Set up domains for cpus specified by the cpu_map.
7067 */
7068 for_each_cpu(i, cpu_map) {
7069 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7070 cpu_map);
7071
7072 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7073 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7074 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7075 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7076 }
7077
7078 for_each_cpu(i, cpu_map) {
7079 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7080 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7081 }
7082
7083 /* Set up physical groups */
7084 for (i = 0; i < nr_node_ids; i++)
7085 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7086
7087 #ifdef CONFIG_NUMA
7088 /* Set up node groups */
7089 if (d.sd_allnodes)
7090 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7091
7092 for (i = 0; i < nr_node_ids; i++)
7093 if (build_numa_sched_groups(&d, cpu_map, i))
7094 goto error;
7095 #endif
7096
7097 /* Calculate CPU power for physical packages and nodes */
7098 #ifdef CONFIG_SCHED_SMT
7099 for_each_cpu(i, cpu_map) {
7100 sd = &per_cpu(cpu_domains, i).sd;
7101 init_sched_groups_power(i, sd);
7102 }
7103 #endif
7104 #ifdef CONFIG_SCHED_MC
7105 for_each_cpu(i, cpu_map) {
7106 sd = &per_cpu(core_domains, i).sd;
7107 init_sched_groups_power(i, sd);
7108 }
7109 #endif
7110
7111 for_each_cpu(i, cpu_map) {
7112 sd = &per_cpu(phys_domains, i).sd;
7113 init_sched_groups_power(i, sd);
7114 }
7115
7116 #ifdef CONFIG_NUMA
7117 for (i = 0; i < nr_node_ids; i++)
7118 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7119
7120 if (d.sd_allnodes) {
7121 struct sched_group *sg;
7122
7123 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7124 d.tmpmask);
7125 init_numa_sched_groups_power(sg);
7126 }
7127 #endif
7128
7129 /* Attach the domains */
7130 for_each_cpu(i, cpu_map) {
7131 #ifdef CONFIG_SCHED_SMT
7132 sd = &per_cpu(cpu_domains, i).sd;
7133 #elif defined(CONFIG_SCHED_MC)
7134 sd = &per_cpu(core_domains, i).sd;
7135 #else
7136 sd = &per_cpu(phys_domains, i).sd;
7137 #endif
7138 cpu_attach_domain(sd, d.rd, i);
7139 }
7140
7141 d.sched_group_nodes = NULL; /* don't free this we still need it */
7142 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7143 return 0;
7144
7145 error:
7146 __free_domain_allocs(&d, alloc_state, cpu_map);
7147 return -ENOMEM;
7148 }
7149
7150 static int build_sched_domains(const struct cpumask *cpu_map)
7151 {
7152 return __build_sched_domains(cpu_map, NULL);
7153 }
7154
7155 static cpumask_var_t *doms_cur; /* current sched domains */
7156 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7157 static struct sched_domain_attr *dattr_cur;
7158 /* attribues of custom domains in 'doms_cur' */
7159
7160 /*
7161 * Special case: If a kmalloc of a doms_cur partition (array of
7162 * cpumask) fails, then fallback to a single sched domain,
7163 * as determined by the single cpumask fallback_doms.
7164 */
7165 static cpumask_var_t fallback_doms;
7166
7167 /*
7168 * arch_update_cpu_topology lets virtualized architectures update the
7169 * cpu core maps. It is supposed to return 1 if the topology changed
7170 * or 0 if it stayed the same.
7171 */
7172 int __attribute__((weak)) arch_update_cpu_topology(void)
7173 {
7174 return 0;
7175 }
7176
7177 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7178 {
7179 int i;
7180 cpumask_var_t *doms;
7181
7182 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7183 if (!doms)
7184 return NULL;
7185 for (i = 0; i < ndoms; i++) {
7186 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7187 free_sched_domains(doms, i);
7188 return NULL;
7189 }
7190 }
7191 return doms;
7192 }
7193
7194 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7195 {
7196 unsigned int i;
7197 for (i = 0; i < ndoms; i++)
7198 free_cpumask_var(doms[i]);
7199 kfree(doms);
7200 }
7201
7202 /*
7203 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7204 * For now this just excludes isolated cpus, but could be used to
7205 * exclude other special cases in the future.
7206 */
7207 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7208 {
7209 int err;
7210
7211 arch_update_cpu_topology();
7212 ndoms_cur = 1;
7213 doms_cur = alloc_sched_domains(ndoms_cur);
7214 if (!doms_cur)
7215 doms_cur = &fallback_doms;
7216 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7217 dattr_cur = NULL;
7218 err = build_sched_domains(doms_cur[0]);
7219 register_sched_domain_sysctl();
7220
7221 return err;
7222 }
7223
7224 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7225 struct cpumask *tmpmask)
7226 {
7227 free_sched_groups(cpu_map, tmpmask);
7228 }
7229
7230 /*
7231 * Detach sched domains from a group of cpus specified in cpu_map
7232 * These cpus will now be attached to the NULL domain
7233 */
7234 static void detach_destroy_domains(const struct cpumask *cpu_map)
7235 {
7236 /* Save because hotplug lock held. */
7237 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7238 int i;
7239
7240 for_each_cpu(i, cpu_map)
7241 cpu_attach_domain(NULL, &def_root_domain, i);
7242 synchronize_sched();
7243 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7244 }
7245
7246 /* handle null as "default" */
7247 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7248 struct sched_domain_attr *new, int idx_new)
7249 {
7250 struct sched_domain_attr tmp;
7251
7252 /* fast path */
7253 if (!new && !cur)
7254 return 1;
7255
7256 tmp = SD_ATTR_INIT;
7257 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7258 new ? (new + idx_new) : &tmp,
7259 sizeof(struct sched_domain_attr));
7260 }
7261
7262 /*
7263 * Partition sched domains as specified by the 'ndoms_new'
7264 * cpumasks in the array doms_new[] of cpumasks. This compares
7265 * doms_new[] to the current sched domain partitioning, doms_cur[].
7266 * It destroys each deleted domain and builds each new domain.
7267 *
7268 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7269 * The masks don't intersect (don't overlap.) We should setup one
7270 * sched domain for each mask. CPUs not in any of the cpumasks will
7271 * not be load balanced. If the same cpumask appears both in the
7272 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7273 * it as it is.
7274 *
7275 * The passed in 'doms_new' should be allocated using
7276 * alloc_sched_domains. This routine takes ownership of it and will
7277 * free_sched_domains it when done with it. If the caller failed the
7278 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7279 * and partition_sched_domains() will fallback to the single partition
7280 * 'fallback_doms', it also forces the domains to be rebuilt.
7281 *
7282 * If doms_new == NULL it will be replaced with cpu_online_mask.
7283 * ndoms_new == 0 is a special case for destroying existing domains,
7284 * and it will not create the default domain.
7285 *
7286 * Call with hotplug lock held
7287 */
7288 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7289 struct sched_domain_attr *dattr_new)
7290 {
7291 int i, j, n;
7292 int new_topology;
7293
7294 mutex_lock(&sched_domains_mutex);
7295
7296 /* always unregister in case we don't destroy any domains */
7297 unregister_sched_domain_sysctl();
7298
7299 /* Let architecture update cpu core mappings. */
7300 new_topology = arch_update_cpu_topology();
7301
7302 n = doms_new ? ndoms_new : 0;
7303
7304 /* Destroy deleted domains */
7305 for (i = 0; i < ndoms_cur; i++) {
7306 for (j = 0; j < n && !new_topology; j++) {
7307 if (cpumask_equal(doms_cur[i], doms_new[j])
7308 && dattrs_equal(dattr_cur, i, dattr_new, j))
7309 goto match1;
7310 }
7311 /* no match - a current sched domain not in new doms_new[] */
7312 detach_destroy_domains(doms_cur[i]);
7313 match1:
7314 ;
7315 }
7316
7317 if (doms_new == NULL) {
7318 ndoms_cur = 0;
7319 doms_new = &fallback_doms;
7320 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7321 WARN_ON_ONCE(dattr_new);
7322 }
7323
7324 /* Build new domains */
7325 for (i = 0; i < ndoms_new; i++) {
7326 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7327 if (cpumask_equal(doms_new[i], doms_cur[j])
7328 && dattrs_equal(dattr_new, i, dattr_cur, j))
7329 goto match2;
7330 }
7331 /* no match - add a new doms_new */
7332 __build_sched_domains(doms_new[i],
7333 dattr_new ? dattr_new + i : NULL);
7334 match2:
7335 ;
7336 }
7337
7338 /* Remember the new sched domains */
7339 if (doms_cur != &fallback_doms)
7340 free_sched_domains(doms_cur, ndoms_cur);
7341 kfree(dattr_cur); /* kfree(NULL) is safe */
7342 doms_cur = doms_new;
7343 dattr_cur = dattr_new;
7344 ndoms_cur = ndoms_new;
7345
7346 register_sched_domain_sysctl();
7347
7348 mutex_unlock(&sched_domains_mutex);
7349 }
7350
7351 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7352 static void arch_reinit_sched_domains(void)
7353 {
7354 get_online_cpus();
7355
7356 /* Destroy domains first to force the rebuild */
7357 partition_sched_domains(0, NULL, NULL);
7358
7359 rebuild_sched_domains();
7360 put_online_cpus();
7361 }
7362
7363 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7364 {
7365 unsigned int level = 0;
7366
7367 if (sscanf(buf, "%u", &level) != 1)
7368 return -EINVAL;
7369
7370 /*
7371 * level is always be positive so don't check for
7372 * level < POWERSAVINGS_BALANCE_NONE which is 0
7373 * What happens on 0 or 1 byte write,
7374 * need to check for count as well?
7375 */
7376
7377 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7378 return -EINVAL;
7379
7380 if (smt)
7381 sched_smt_power_savings = level;
7382 else
7383 sched_mc_power_savings = level;
7384
7385 arch_reinit_sched_domains();
7386
7387 return count;
7388 }
7389
7390 #ifdef CONFIG_SCHED_MC
7391 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7392 char *page)
7393 {
7394 return sprintf(page, "%u\n", sched_mc_power_savings);
7395 }
7396 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7397 const char *buf, size_t count)
7398 {
7399 return sched_power_savings_store(buf, count, 0);
7400 }
7401 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7402 sched_mc_power_savings_show,
7403 sched_mc_power_savings_store);
7404 #endif
7405
7406 #ifdef CONFIG_SCHED_SMT
7407 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7408 char *page)
7409 {
7410 return sprintf(page, "%u\n", sched_smt_power_savings);
7411 }
7412 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7413 const char *buf, size_t count)
7414 {
7415 return sched_power_savings_store(buf, count, 1);
7416 }
7417 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7418 sched_smt_power_savings_show,
7419 sched_smt_power_savings_store);
7420 #endif
7421
7422 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7423 {
7424 int err = 0;
7425
7426 #ifdef CONFIG_SCHED_SMT
7427 if (smt_capable())
7428 err = sysfs_create_file(&cls->kset.kobj,
7429 &attr_sched_smt_power_savings.attr);
7430 #endif
7431 #ifdef CONFIG_SCHED_MC
7432 if (!err && mc_capable())
7433 err = sysfs_create_file(&cls->kset.kobj,
7434 &attr_sched_mc_power_savings.attr);
7435 #endif
7436 return err;
7437 }
7438 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7439
7440 #ifndef CONFIG_CPUSETS
7441 /*
7442 * Add online and remove offline CPUs from the scheduler domains.
7443 * When cpusets are enabled they take over this function.
7444 */
7445 static int update_sched_domains(struct notifier_block *nfb,
7446 unsigned long action, void *hcpu)
7447 {
7448 switch (action) {
7449 case CPU_ONLINE:
7450 case CPU_ONLINE_FROZEN:
7451 case CPU_DOWN_PREPARE:
7452 case CPU_DOWN_PREPARE_FROZEN:
7453 case CPU_DOWN_FAILED:
7454 case CPU_DOWN_FAILED_FROZEN:
7455 partition_sched_domains(1, NULL, NULL);
7456 return NOTIFY_OK;
7457
7458 default:
7459 return NOTIFY_DONE;
7460 }
7461 }
7462 #endif
7463
7464 static int update_runtime(struct notifier_block *nfb,
7465 unsigned long action, void *hcpu)
7466 {
7467 int cpu = (int)(long)hcpu;
7468
7469 switch (action) {
7470 case CPU_DOWN_PREPARE:
7471 case CPU_DOWN_PREPARE_FROZEN:
7472 disable_runtime(cpu_rq(cpu));
7473 return NOTIFY_OK;
7474
7475 case CPU_DOWN_FAILED:
7476 case CPU_DOWN_FAILED_FROZEN:
7477 case CPU_ONLINE:
7478 case CPU_ONLINE_FROZEN:
7479 enable_runtime(cpu_rq(cpu));
7480 return NOTIFY_OK;
7481
7482 default:
7483 return NOTIFY_DONE;
7484 }
7485 }
7486
7487 void __init sched_init_smp(void)
7488 {
7489 cpumask_var_t non_isolated_cpus;
7490
7491 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7492 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7493
7494 #if defined(CONFIG_NUMA)
7495 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7496 GFP_KERNEL);
7497 BUG_ON(sched_group_nodes_bycpu == NULL);
7498 #endif
7499 get_online_cpus();
7500 mutex_lock(&sched_domains_mutex);
7501 arch_init_sched_domains(cpu_active_mask);
7502 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7503 if (cpumask_empty(non_isolated_cpus))
7504 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7505 mutex_unlock(&sched_domains_mutex);
7506 put_online_cpus();
7507
7508 #ifndef CONFIG_CPUSETS
7509 /* XXX: Theoretical race here - CPU may be hotplugged now */
7510 hotcpu_notifier(update_sched_domains, 0);
7511 #endif
7512
7513 /* RT runtime code needs to handle some hotplug events */
7514 hotcpu_notifier(update_runtime, 0);
7515
7516 init_hrtick();
7517
7518 /* Move init over to a non-isolated CPU */
7519 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7520 BUG();
7521 sched_init_granularity();
7522 free_cpumask_var(non_isolated_cpus);
7523
7524 init_sched_rt_class();
7525 }
7526 #else
7527 void __init sched_init_smp(void)
7528 {
7529 sched_init_granularity();
7530 }
7531 #endif /* CONFIG_SMP */
7532
7533 const_debug unsigned int sysctl_timer_migration = 1;
7534
7535 int in_sched_functions(unsigned long addr)
7536 {
7537 return in_lock_functions(addr) ||
7538 (addr >= (unsigned long)__sched_text_start
7539 && addr < (unsigned long)__sched_text_end);
7540 }
7541
7542 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7543 {
7544 cfs_rq->tasks_timeline = RB_ROOT;
7545 INIT_LIST_HEAD(&cfs_rq->tasks);
7546 #ifdef CONFIG_FAIR_GROUP_SCHED
7547 cfs_rq->rq = rq;
7548 #endif
7549 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7550 }
7551
7552 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7553 {
7554 struct rt_prio_array *array;
7555 int i;
7556
7557 array = &rt_rq->active;
7558 for (i = 0; i < MAX_RT_PRIO; i++) {
7559 INIT_LIST_HEAD(array->queue + i);
7560 __clear_bit(i, array->bitmap);
7561 }
7562 /* delimiter for bitsearch: */
7563 __set_bit(MAX_RT_PRIO, array->bitmap);
7564
7565 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7566 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7567 #ifdef CONFIG_SMP
7568 rt_rq->highest_prio.next = MAX_RT_PRIO;
7569 #endif
7570 #endif
7571 #ifdef CONFIG_SMP
7572 rt_rq->rt_nr_migratory = 0;
7573 rt_rq->overloaded = 0;
7574 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7575 #endif
7576
7577 rt_rq->rt_time = 0;
7578 rt_rq->rt_throttled = 0;
7579 rt_rq->rt_runtime = 0;
7580 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7581
7582 #ifdef CONFIG_RT_GROUP_SCHED
7583 rt_rq->rt_nr_boosted = 0;
7584 rt_rq->rq = rq;
7585 #endif
7586 }
7587
7588 #ifdef CONFIG_FAIR_GROUP_SCHED
7589 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7590 struct sched_entity *se, int cpu, int add,
7591 struct sched_entity *parent)
7592 {
7593 struct rq *rq = cpu_rq(cpu);
7594 tg->cfs_rq[cpu] = cfs_rq;
7595 init_cfs_rq(cfs_rq, rq);
7596 cfs_rq->tg = tg;
7597 if (add)
7598 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7599
7600 tg->se[cpu] = se;
7601 /* se could be NULL for init_task_group */
7602 if (!se)
7603 return;
7604
7605 if (!parent)
7606 se->cfs_rq = &rq->cfs;
7607 else
7608 se->cfs_rq = parent->my_q;
7609
7610 se->my_q = cfs_rq;
7611 se->load.weight = tg->shares;
7612 se->load.inv_weight = 0;
7613 se->parent = parent;
7614 }
7615 #endif
7616
7617 #ifdef CONFIG_RT_GROUP_SCHED
7618 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7619 struct sched_rt_entity *rt_se, int cpu, int add,
7620 struct sched_rt_entity *parent)
7621 {
7622 struct rq *rq = cpu_rq(cpu);
7623
7624 tg->rt_rq[cpu] = rt_rq;
7625 init_rt_rq(rt_rq, rq);
7626 rt_rq->tg = tg;
7627 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7628 if (add)
7629 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7630
7631 tg->rt_se[cpu] = rt_se;
7632 if (!rt_se)
7633 return;
7634
7635 if (!parent)
7636 rt_se->rt_rq = &rq->rt;
7637 else
7638 rt_se->rt_rq = parent->my_q;
7639
7640 rt_se->my_q = rt_rq;
7641 rt_se->parent = parent;
7642 INIT_LIST_HEAD(&rt_se->run_list);
7643 }
7644 #endif
7645
7646 void __init sched_init(void)
7647 {
7648 int i, j;
7649 unsigned long alloc_size = 0, ptr;
7650
7651 #ifdef CONFIG_FAIR_GROUP_SCHED
7652 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7653 #endif
7654 #ifdef CONFIG_RT_GROUP_SCHED
7655 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7656 #endif
7657 #ifdef CONFIG_CPUMASK_OFFSTACK
7658 alloc_size += num_possible_cpus() * cpumask_size();
7659 #endif
7660 if (alloc_size) {
7661 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7662
7663 #ifdef CONFIG_FAIR_GROUP_SCHED
7664 init_task_group.se = (struct sched_entity **)ptr;
7665 ptr += nr_cpu_ids * sizeof(void **);
7666
7667 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7668 ptr += nr_cpu_ids * sizeof(void **);
7669
7670 #endif /* CONFIG_FAIR_GROUP_SCHED */
7671 #ifdef CONFIG_RT_GROUP_SCHED
7672 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7673 ptr += nr_cpu_ids * sizeof(void **);
7674
7675 init_task_group.rt_rq = (struct rt_rq **)ptr;
7676 ptr += nr_cpu_ids * sizeof(void **);
7677
7678 #endif /* CONFIG_RT_GROUP_SCHED */
7679 #ifdef CONFIG_CPUMASK_OFFSTACK
7680 for_each_possible_cpu(i) {
7681 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7682 ptr += cpumask_size();
7683 }
7684 #endif /* CONFIG_CPUMASK_OFFSTACK */
7685 }
7686
7687 #ifdef CONFIG_SMP
7688 init_defrootdomain();
7689 #endif
7690
7691 init_rt_bandwidth(&def_rt_bandwidth,
7692 global_rt_period(), global_rt_runtime());
7693
7694 #ifdef CONFIG_RT_GROUP_SCHED
7695 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7696 global_rt_period(), global_rt_runtime());
7697 #endif /* CONFIG_RT_GROUP_SCHED */
7698
7699 #ifdef CONFIG_CGROUP_SCHED
7700 list_add(&init_task_group.list, &task_groups);
7701 INIT_LIST_HEAD(&init_task_group.children);
7702
7703 #endif /* CONFIG_CGROUP_SCHED */
7704
7705 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7706 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7707 __alignof__(unsigned long));
7708 #endif
7709 for_each_possible_cpu(i) {
7710 struct rq *rq;
7711
7712 rq = cpu_rq(i);
7713 raw_spin_lock_init(&rq->lock);
7714 rq->nr_running = 0;
7715 rq->calc_load_active = 0;
7716 rq->calc_load_update = jiffies + LOAD_FREQ;
7717 init_cfs_rq(&rq->cfs, rq);
7718 init_rt_rq(&rq->rt, rq);
7719 #ifdef CONFIG_FAIR_GROUP_SCHED
7720 init_task_group.shares = init_task_group_load;
7721 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7722 #ifdef CONFIG_CGROUP_SCHED
7723 /*
7724 * How much cpu bandwidth does init_task_group get?
7725 *
7726 * In case of task-groups formed thr' the cgroup filesystem, it
7727 * gets 100% of the cpu resources in the system. This overall
7728 * system cpu resource is divided among the tasks of
7729 * init_task_group and its child task-groups in a fair manner,
7730 * based on each entity's (task or task-group's) weight
7731 * (se->load.weight).
7732 *
7733 * In other words, if init_task_group has 10 tasks of weight
7734 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7735 * then A0's share of the cpu resource is:
7736 *
7737 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7738 *
7739 * We achieve this by letting init_task_group's tasks sit
7740 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7741 */
7742 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7743 #endif
7744 #endif /* CONFIG_FAIR_GROUP_SCHED */
7745
7746 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7747 #ifdef CONFIG_RT_GROUP_SCHED
7748 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7749 #ifdef CONFIG_CGROUP_SCHED
7750 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7751 #endif
7752 #endif
7753
7754 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7755 rq->cpu_load[j] = 0;
7756 #ifdef CONFIG_SMP
7757 rq->sd = NULL;
7758 rq->rd = NULL;
7759 rq->post_schedule = 0;
7760 rq->active_balance = 0;
7761 rq->next_balance = jiffies;
7762 rq->push_cpu = 0;
7763 rq->cpu = i;
7764 rq->online = 0;
7765 rq->migration_thread = NULL;
7766 rq->idle_stamp = 0;
7767 rq->avg_idle = 2*sysctl_sched_migration_cost;
7768 INIT_LIST_HEAD(&rq->migration_queue);
7769 rq_attach_root(rq, &def_root_domain);
7770 #endif
7771 init_rq_hrtick(rq);
7772 atomic_set(&rq->nr_iowait, 0);
7773 }
7774
7775 set_load_weight(&init_task);
7776
7777 #ifdef CONFIG_PREEMPT_NOTIFIERS
7778 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7779 #endif
7780
7781 #ifdef CONFIG_SMP
7782 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7783 #endif
7784
7785 #ifdef CONFIG_RT_MUTEXES
7786 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7787 #endif
7788
7789 /*
7790 * The boot idle thread does lazy MMU switching as well:
7791 */
7792 atomic_inc(&init_mm.mm_count);
7793 enter_lazy_tlb(&init_mm, current);
7794
7795 /*
7796 * Make us the idle thread. Technically, schedule() should not be
7797 * called from this thread, however somewhere below it might be,
7798 * but because we are the idle thread, we just pick up running again
7799 * when this runqueue becomes "idle".
7800 */
7801 init_idle(current, smp_processor_id());
7802
7803 calc_load_update = jiffies + LOAD_FREQ;
7804
7805 /*
7806 * During early bootup we pretend to be a normal task:
7807 */
7808 current->sched_class = &fair_sched_class;
7809
7810 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7811 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7812 #ifdef CONFIG_SMP
7813 #ifdef CONFIG_NO_HZ
7814 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7815 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7816 #endif
7817 /* May be allocated at isolcpus cmdline parse time */
7818 if (cpu_isolated_map == NULL)
7819 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7820 #endif /* SMP */
7821
7822 perf_event_init();
7823
7824 scheduler_running = 1;
7825 }
7826
7827 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7828 static inline int preempt_count_equals(int preempt_offset)
7829 {
7830 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7831
7832 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7833 }
7834
7835 void __might_sleep(const char *file, int line, int preempt_offset)
7836 {
7837 #ifdef in_atomic
7838 static unsigned long prev_jiffy; /* ratelimiting */
7839
7840 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7841 system_state != SYSTEM_RUNNING || oops_in_progress)
7842 return;
7843 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7844 return;
7845 prev_jiffy = jiffies;
7846
7847 printk(KERN_ERR
7848 "BUG: sleeping function called from invalid context at %s:%d\n",
7849 file, line);
7850 printk(KERN_ERR
7851 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7852 in_atomic(), irqs_disabled(),
7853 current->pid, current->comm);
7854
7855 debug_show_held_locks(current);
7856 if (irqs_disabled())
7857 print_irqtrace_events(current);
7858 dump_stack();
7859 #endif
7860 }
7861 EXPORT_SYMBOL(__might_sleep);
7862 #endif
7863
7864 #ifdef CONFIG_MAGIC_SYSRQ
7865 static void normalize_task(struct rq *rq, struct task_struct *p)
7866 {
7867 int on_rq;
7868
7869 update_rq_clock(rq);
7870 on_rq = p->se.on_rq;
7871 if (on_rq)
7872 deactivate_task(rq, p, 0);
7873 __setscheduler(rq, p, SCHED_NORMAL, 0);
7874 if (on_rq) {
7875 activate_task(rq, p, 0);
7876 resched_task(rq->curr);
7877 }
7878 }
7879
7880 void normalize_rt_tasks(void)
7881 {
7882 struct task_struct *g, *p;
7883 unsigned long flags;
7884 struct rq *rq;
7885
7886 read_lock_irqsave(&tasklist_lock, flags);
7887 do_each_thread(g, p) {
7888 /*
7889 * Only normalize user tasks:
7890 */
7891 if (!p->mm)
7892 continue;
7893
7894 p->se.exec_start = 0;
7895 #ifdef CONFIG_SCHEDSTATS
7896 p->se.statistics.wait_start = 0;
7897 p->se.statistics.sleep_start = 0;
7898 p->se.statistics.block_start = 0;
7899 #endif
7900
7901 if (!rt_task(p)) {
7902 /*
7903 * Renice negative nice level userspace
7904 * tasks back to 0:
7905 */
7906 if (TASK_NICE(p) < 0 && p->mm)
7907 set_user_nice(p, 0);
7908 continue;
7909 }
7910
7911 raw_spin_lock(&p->pi_lock);
7912 rq = __task_rq_lock(p);
7913
7914 normalize_task(rq, p);
7915
7916 __task_rq_unlock(rq);
7917 raw_spin_unlock(&p->pi_lock);
7918 } while_each_thread(g, p);
7919
7920 read_unlock_irqrestore(&tasklist_lock, flags);
7921 }
7922
7923 #endif /* CONFIG_MAGIC_SYSRQ */
7924
7925 #ifdef CONFIG_IA64
7926 /*
7927 * These functions are only useful for the IA64 MCA handling.
7928 *
7929 * They can only be called when the whole system has been
7930 * stopped - every CPU needs to be quiescent, and no scheduling
7931 * activity can take place. Using them for anything else would
7932 * be a serious bug, and as a result, they aren't even visible
7933 * under any other configuration.
7934 */
7935
7936 /**
7937 * curr_task - return the current task for a given cpu.
7938 * @cpu: the processor in question.
7939 *
7940 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7941 */
7942 struct task_struct *curr_task(int cpu)
7943 {
7944 return cpu_curr(cpu);
7945 }
7946
7947 /**
7948 * set_curr_task - set the current task for a given cpu.
7949 * @cpu: the processor in question.
7950 * @p: the task pointer to set.
7951 *
7952 * Description: This function must only be used when non-maskable interrupts
7953 * are serviced on a separate stack. It allows the architecture to switch the
7954 * notion of the current task on a cpu in a non-blocking manner. This function
7955 * must be called with all CPU's synchronized, and interrupts disabled, the
7956 * and caller must save the original value of the current task (see
7957 * curr_task() above) and restore that value before reenabling interrupts and
7958 * re-starting the system.
7959 *
7960 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7961 */
7962 void set_curr_task(int cpu, struct task_struct *p)
7963 {
7964 cpu_curr(cpu) = p;
7965 }
7966
7967 #endif
7968
7969 #ifdef CONFIG_FAIR_GROUP_SCHED
7970 static void free_fair_sched_group(struct task_group *tg)
7971 {
7972 int i;
7973
7974 for_each_possible_cpu(i) {
7975 if (tg->cfs_rq)
7976 kfree(tg->cfs_rq[i]);
7977 if (tg->se)
7978 kfree(tg->se[i]);
7979 }
7980
7981 kfree(tg->cfs_rq);
7982 kfree(tg->se);
7983 }
7984
7985 static
7986 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7987 {
7988 struct cfs_rq *cfs_rq;
7989 struct sched_entity *se;
7990 struct rq *rq;
7991 int i;
7992
7993 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7994 if (!tg->cfs_rq)
7995 goto err;
7996 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7997 if (!tg->se)
7998 goto err;
7999
8000 tg->shares = NICE_0_LOAD;
8001
8002 for_each_possible_cpu(i) {
8003 rq = cpu_rq(i);
8004
8005 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8006 GFP_KERNEL, cpu_to_node(i));
8007 if (!cfs_rq)
8008 goto err;
8009
8010 se = kzalloc_node(sizeof(struct sched_entity),
8011 GFP_KERNEL, cpu_to_node(i));
8012 if (!se)
8013 goto err_free_rq;
8014
8015 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8016 }
8017
8018 return 1;
8019
8020 err_free_rq:
8021 kfree(cfs_rq);
8022 err:
8023 return 0;
8024 }
8025
8026 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8027 {
8028 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8029 &cpu_rq(cpu)->leaf_cfs_rq_list);
8030 }
8031
8032 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8033 {
8034 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8035 }
8036 #else /* !CONFG_FAIR_GROUP_SCHED */
8037 static inline void free_fair_sched_group(struct task_group *tg)
8038 {
8039 }
8040
8041 static inline
8042 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8043 {
8044 return 1;
8045 }
8046
8047 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8048 {
8049 }
8050
8051 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8052 {
8053 }
8054 #endif /* CONFIG_FAIR_GROUP_SCHED */
8055
8056 #ifdef CONFIG_RT_GROUP_SCHED
8057 static void free_rt_sched_group(struct task_group *tg)
8058 {
8059 int i;
8060
8061 destroy_rt_bandwidth(&tg->rt_bandwidth);
8062
8063 for_each_possible_cpu(i) {
8064 if (tg->rt_rq)
8065 kfree(tg->rt_rq[i]);
8066 if (tg->rt_se)
8067 kfree(tg->rt_se[i]);
8068 }
8069
8070 kfree(tg->rt_rq);
8071 kfree(tg->rt_se);
8072 }
8073
8074 static
8075 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8076 {
8077 struct rt_rq *rt_rq;
8078 struct sched_rt_entity *rt_se;
8079 struct rq *rq;
8080 int i;
8081
8082 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8083 if (!tg->rt_rq)
8084 goto err;
8085 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8086 if (!tg->rt_se)
8087 goto err;
8088
8089 init_rt_bandwidth(&tg->rt_bandwidth,
8090 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8091
8092 for_each_possible_cpu(i) {
8093 rq = cpu_rq(i);
8094
8095 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8096 GFP_KERNEL, cpu_to_node(i));
8097 if (!rt_rq)
8098 goto err;
8099
8100 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8101 GFP_KERNEL, cpu_to_node(i));
8102 if (!rt_se)
8103 goto err_free_rq;
8104
8105 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8106 }
8107
8108 return 1;
8109
8110 err_free_rq:
8111 kfree(rt_rq);
8112 err:
8113 return 0;
8114 }
8115
8116 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8117 {
8118 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8119 &cpu_rq(cpu)->leaf_rt_rq_list);
8120 }
8121
8122 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8123 {
8124 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8125 }
8126 #else /* !CONFIG_RT_GROUP_SCHED */
8127 static inline void free_rt_sched_group(struct task_group *tg)
8128 {
8129 }
8130
8131 static inline
8132 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8133 {
8134 return 1;
8135 }
8136
8137 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8138 {
8139 }
8140
8141 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8142 {
8143 }
8144 #endif /* CONFIG_RT_GROUP_SCHED */
8145
8146 #ifdef CONFIG_CGROUP_SCHED
8147 static void free_sched_group(struct task_group *tg)
8148 {
8149 free_fair_sched_group(tg);
8150 free_rt_sched_group(tg);
8151 kfree(tg);
8152 }
8153
8154 /* allocate runqueue etc for a new task group */
8155 struct task_group *sched_create_group(struct task_group *parent)
8156 {
8157 struct task_group *tg;
8158 unsigned long flags;
8159 int i;
8160
8161 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8162 if (!tg)
8163 return ERR_PTR(-ENOMEM);
8164
8165 if (!alloc_fair_sched_group(tg, parent))
8166 goto err;
8167
8168 if (!alloc_rt_sched_group(tg, parent))
8169 goto err;
8170
8171 spin_lock_irqsave(&task_group_lock, flags);
8172 for_each_possible_cpu(i) {
8173 register_fair_sched_group(tg, i);
8174 register_rt_sched_group(tg, i);
8175 }
8176 list_add_rcu(&tg->list, &task_groups);
8177
8178 WARN_ON(!parent); /* root should already exist */
8179
8180 tg->parent = parent;
8181 INIT_LIST_HEAD(&tg->children);
8182 list_add_rcu(&tg->siblings, &parent->children);
8183 spin_unlock_irqrestore(&task_group_lock, flags);
8184
8185 return tg;
8186
8187 err:
8188 free_sched_group(tg);
8189 return ERR_PTR(-ENOMEM);
8190 }
8191
8192 /* rcu callback to free various structures associated with a task group */
8193 static void free_sched_group_rcu(struct rcu_head *rhp)
8194 {
8195 /* now it should be safe to free those cfs_rqs */
8196 free_sched_group(container_of(rhp, struct task_group, rcu));
8197 }
8198
8199 /* Destroy runqueue etc associated with a task group */
8200 void sched_destroy_group(struct task_group *tg)
8201 {
8202 unsigned long flags;
8203 int i;
8204
8205 spin_lock_irqsave(&task_group_lock, flags);
8206 for_each_possible_cpu(i) {
8207 unregister_fair_sched_group(tg, i);
8208 unregister_rt_sched_group(tg, i);
8209 }
8210 list_del_rcu(&tg->list);
8211 list_del_rcu(&tg->siblings);
8212 spin_unlock_irqrestore(&task_group_lock, flags);
8213
8214 /* wait for possible concurrent references to cfs_rqs complete */
8215 call_rcu(&tg->rcu, free_sched_group_rcu);
8216 }
8217
8218 /* change task's runqueue when it moves between groups.
8219 * The caller of this function should have put the task in its new group
8220 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8221 * reflect its new group.
8222 */
8223 void sched_move_task(struct task_struct *tsk)
8224 {
8225 int on_rq, running;
8226 unsigned long flags;
8227 struct rq *rq;
8228
8229 rq = task_rq_lock(tsk, &flags);
8230
8231 update_rq_clock(rq);
8232
8233 running = task_current(rq, tsk);
8234 on_rq = tsk->se.on_rq;
8235
8236 if (on_rq)
8237 dequeue_task(rq, tsk, 0);
8238 if (unlikely(running))
8239 tsk->sched_class->put_prev_task(rq, tsk);
8240
8241 set_task_rq(tsk, task_cpu(tsk));
8242
8243 #ifdef CONFIG_FAIR_GROUP_SCHED
8244 if (tsk->sched_class->moved_group)
8245 tsk->sched_class->moved_group(tsk, on_rq);
8246 #endif
8247
8248 if (unlikely(running))
8249 tsk->sched_class->set_curr_task(rq);
8250 if (on_rq)
8251 enqueue_task(rq, tsk, 0, false);
8252
8253 task_rq_unlock(rq, &flags);
8254 }
8255 #endif /* CONFIG_CGROUP_SCHED */
8256
8257 #ifdef CONFIG_FAIR_GROUP_SCHED
8258 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8259 {
8260 struct cfs_rq *cfs_rq = se->cfs_rq;
8261 int on_rq;
8262
8263 on_rq = se->on_rq;
8264 if (on_rq)
8265 dequeue_entity(cfs_rq, se, 0);
8266
8267 se->load.weight = shares;
8268 se->load.inv_weight = 0;
8269
8270 if (on_rq)
8271 enqueue_entity(cfs_rq, se, 0);
8272 }
8273
8274 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8275 {
8276 struct cfs_rq *cfs_rq = se->cfs_rq;
8277 struct rq *rq = cfs_rq->rq;
8278 unsigned long flags;
8279
8280 raw_spin_lock_irqsave(&rq->lock, flags);
8281 __set_se_shares(se, shares);
8282 raw_spin_unlock_irqrestore(&rq->lock, flags);
8283 }
8284
8285 static DEFINE_MUTEX(shares_mutex);
8286
8287 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8288 {
8289 int i;
8290 unsigned long flags;
8291
8292 /*
8293 * We can't change the weight of the root cgroup.
8294 */
8295 if (!tg->se[0])
8296 return -EINVAL;
8297
8298 if (shares < MIN_SHARES)
8299 shares = MIN_SHARES;
8300 else if (shares > MAX_SHARES)
8301 shares = MAX_SHARES;
8302
8303 mutex_lock(&shares_mutex);
8304 if (tg->shares == shares)
8305 goto done;
8306
8307 spin_lock_irqsave(&task_group_lock, flags);
8308 for_each_possible_cpu(i)
8309 unregister_fair_sched_group(tg, i);
8310 list_del_rcu(&tg->siblings);
8311 spin_unlock_irqrestore(&task_group_lock, flags);
8312
8313 /* wait for any ongoing reference to this group to finish */
8314 synchronize_sched();
8315
8316 /*
8317 * Now we are free to modify the group's share on each cpu
8318 * w/o tripping rebalance_share or load_balance_fair.
8319 */
8320 tg->shares = shares;
8321 for_each_possible_cpu(i) {
8322 /*
8323 * force a rebalance
8324 */
8325 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8326 set_se_shares(tg->se[i], shares);
8327 }
8328
8329 /*
8330 * Enable load balance activity on this group, by inserting it back on
8331 * each cpu's rq->leaf_cfs_rq_list.
8332 */
8333 spin_lock_irqsave(&task_group_lock, flags);
8334 for_each_possible_cpu(i)
8335 register_fair_sched_group(tg, i);
8336 list_add_rcu(&tg->siblings, &tg->parent->children);
8337 spin_unlock_irqrestore(&task_group_lock, flags);
8338 done:
8339 mutex_unlock(&shares_mutex);
8340 return 0;
8341 }
8342
8343 unsigned long sched_group_shares(struct task_group *tg)
8344 {
8345 return tg->shares;
8346 }
8347 #endif
8348
8349 #ifdef CONFIG_RT_GROUP_SCHED
8350 /*
8351 * Ensure that the real time constraints are schedulable.
8352 */
8353 static DEFINE_MUTEX(rt_constraints_mutex);
8354
8355 static unsigned long to_ratio(u64 period, u64 runtime)
8356 {
8357 if (runtime == RUNTIME_INF)
8358 return 1ULL << 20;
8359
8360 return div64_u64(runtime << 20, period);
8361 }
8362
8363 /* Must be called with tasklist_lock held */
8364 static inline int tg_has_rt_tasks(struct task_group *tg)
8365 {
8366 struct task_struct *g, *p;
8367
8368 do_each_thread(g, p) {
8369 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8370 return 1;
8371 } while_each_thread(g, p);
8372
8373 return 0;
8374 }
8375
8376 struct rt_schedulable_data {
8377 struct task_group *tg;
8378 u64 rt_period;
8379 u64 rt_runtime;
8380 };
8381
8382 static int tg_schedulable(struct task_group *tg, void *data)
8383 {
8384 struct rt_schedulable_data *d = data;
8385 struct task_group *child;
8386 unsigned long total, sum = 0;
8387 u64 period, runtime;
8388
8389 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8390 runtime = tg->rt_bandwidth.rt_runtime;
8391
8392 if (tg == d->tg) {
8393 period = d->rt_period;
8394 runtime = d->rt_runtime;
8395 }
8396
8397 /*
8398 * Cannot have more runtime than the period.
8399 */
8400 if (runtime > period && runtime != RUNTIME_INF)
8401 return -EINVAL;
8402
8403 /*
8404 * Ensure we don't starve existing RT tasks.
8405 */
8406 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8407 return -EBUSY;
8408
8409 total = to_ratio(period, runtime);
8410
8411 /*
8412 * Nobody can have more than the global setting allows.
8413 */
8414 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8415 return -EINVAL;
8416
8417 /*
8418 * The sum of our children's runtime should not exceed our own.
8419 */
8420 list_for_each_entry_rcu(child, &tg->children, siblings) {
8421 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8422 runtime = child->rt_bandwidth.rt_runtime;
8423
8424 if (child == d->tg) {
8425 period = d->rt_period;
8426 runtime = d->rt_runtime;
8427 }
8428
8429 sum += to_ratio(period, runtime);
8430 }
8431
8432 if (sum > total)
8433 return -EINVAL;
8434
8435 return 0;
8436 }
8437
8438 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8439 {
8440 struct rt_schedulable_data data = {
8441 .tg = tg,
8442 .rt_period = period,
8443 .rt_runtime = runtime,
8444 };
8445
8446 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8447 }
8448
8449 static int tg_set_bandwidth(struct task_group *tg,
8450 u64 rt_period, u64 rt_runtime)
8451 {
8452 int i, err = 0;
8453
8454 mutex_lock(&rt_constraints_mutex);
8455 read_lock(&tasklist_lock);
8456 err = __rt_schedulable(tg, rt_period, rt_runtime);
8457 if (err)
8458 goto unlock;
8459
8460 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8461 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8462 tg->rt_bandwidth.rt_runtime = rt_runtime;
8463
8464 for_each_possible_cpu(i) {
8465 struct rt_rq *rt_rq = tg->rt_rq[i];
8466
8467 raw_spin_lock(&rt_rq->rt_runtime_lock);
8468 rt_rq->rt_runtime = rt_runtime;
8469 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8470 }
8471 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8472 unlock:
8473 read_unlock(&tasklist_lock);
8474 mutex_unlock(&rt_constraints_mutex);
8475
8476 return err;
8477 }
8478
8479 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8480 {
8481 u64 rt_runtime, rt_period;
8482
8483 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8484 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8485 if (rt_runtime_us < 0)
8486 rt_runtime = RUNTIME_INF;
8487
8488 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8489 }
8490
8491 long sched_group_rt_runtime(struct task_group *tg)
8492 {
8493 u64 rt_runtime_us;
8494
8495 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8496 return -1;
8497
8498 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8499 do_div(rt_runtime_us, NSEC_PER_USEC);
8500 return rt_runtime_us;
8501 }
8502
8503 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8504 {
8505 u64 rt_runtime, rt_period;
8506
8507 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8508 rt_runtime = tg->rt_bandwidth.rt_runtime;
8509
8510 if (rt_period == 0)
8511 return -EINVAL;
8512
8513 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8514 }
8515
8516 long sched_group_rt_period(struct task_group *tg)
8517 {
8518 u64 rt_period_us;
8519
8520 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8521 do_div(rt_period_us, NSEC_PER_USEC);
8522 return rt_period_us;
8523 }
8524
8525 static int sched_rt_global_constraints(void)
8526 {
8527 u64 runtime, period;
8528 int ret = 0;
8529
8530 if (sysctl_sched_rt_period <= 0)
8531 return -EINVAL;
8532
8533 runtime = global_rt_runtime();
8534 period = global_rt_period();
8535
8536 /*
8537 * Sanity check on the sysctl variables.
8538 */
8539 if (runtime > period && runtime != RUNTIME_INF)
8540 return -EINVAL;
8541
8542 mutex_lock(&rt_constraints_mutex);
8543 read_lock(&tasklist_lock);
8544 ret = __rt_schedulable(NULL, 0, 0);
8545 read_unlock(&tasklist_lock);
8546 mutex_unlock(&rt_constraints_mutex);
8547
8548 return ret;
8549 }
8550
8551 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8552 {
8553 /* Don't accept realtime tasks when there is no way for them to run */
8554 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8555 return 0;
8556
8557 return 1;
8558 }
8559
8560 #else /* !CONFIG_RT_GROUP_SCHED */
8561 static int sched_rt_global_constraints(void)
8562 {
8563 unsigned long flags;
8564 int i;
8565
8566 if (sysctl_sched_rt_period <= 0)
8567 return -EINVAL;
8568
8569 /*
8570 * There's always some RT tasks in the root group
8571 * -- migration, kstopmachine etc..
8572 */
8573 if (sysctl_sched_rt_runtime == 0)
8574 return -EBUSY;
8575
8576 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8577 for_each_possible_cpu(i) {
8578 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8579
8580 raw_spin_lock(&rt_rq->rt_runtime_lock);
8581 rt_rq->rt_runtime = global_rt_runtime();
8582 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8583 }
8584 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8585
8586 return 0;
8587 }
8588 #endif /* CONFIG_RT_GROUP_SCHED */
8589
8590 int sched_rt_handler(struct ctl_table *table, int write,
8591 void __user *buffer, size_t *lenp,
8592 loff_t *ppos)
8593 {
8594 int ret;
8595 int old_period, old_runtime;
8596 static DEFINE_MUTEX(mutex);
8597
8598 mutex_lock(&mutex);
8599 old_period = sysctl_sched_rt_period;
8600 old_runtime = sysctl_sched_rt_runtime;
8601
8602 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8603
8604 if (!ret && write) {
8605 ret = sched_rt_global_constraints();
8606 if (ret) {
8607 sysctl_sched_rt_period = old_period;
8608 sysctl_sched_rt_runtime = old_runtime;
8609 } else {
8610 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8611 def_rt_bandwidth.rt_period =
8612 ns_to_ktime(global_rt_period());
8613 }
8614 }
8615 mutex_unlock(&mutex);
8616
8617 return ret;
8618 }
8619
8620 #ifdef CONFIG_CGROUP_SCHED
8621
8622 /* return corresponding task_group object of a cgroup */
8623 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8624 {
8625 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8626 struct task_group, css);
8627 }
8628
8629 static struct cgroup_subsys_state *
8630 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8631 {
8632 struct task_group *tg, *parent;
8633
8634 if (!cgrp->parent) {
8635 /* This is early initialization for the top cgroup */
8636 return &init_task_group.css;
8637 }
8638
8639 parent = cgroup_tg(cgrp->parent);
8640 tg = sched_create_group(parent);
8641 if (IS_ERR(tg))
8642 return ERR_PTR(-ENOMEM);
8643
8644 return &tg->css;
8645 }
8646
8647 static void
8648 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8649 {
8650 struct task_group *tg = cgroup_tg(cgrp);
8651
8652 sched_destroy_group(tg);
8653 }
8654
8655 static int
8656 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8657 {
8658 #ifdef CONFIG_RT_GROUP_SCHED
8659 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8660 return -EINVAL;
8661 #else
8662 /* We don't support RT-tasks being in separate groups */
8663 if (tsk->sched_class != &fair_sched_class)
8664 return -EINVAL;
8665 #endif
8666 return 0;
8667 }
8668
8669 static int
8670 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8671 struct task_struct *tsk, bool threadgroup)
8672 {
8673 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8674 if (retval)
8675 return retval;
8676 if (threadgroup) {
8677 struct task_struct *c;
8678 rcu_read_lock();
8679 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8680 retval = cpu_cgroup_can_attach_task(cgrp, c);
8681 if (retval) {
8682 rcu_read_unlock();
8683 return retval;
8684 }
8685 }
8686 rcu_read_unlock();
8687 }
8688 return 0;
8689 }
8690
8691 static void
8692 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8693 struct cgroup *old_cont, struct task_struct *tsk,
8694 bool threadgroup)
8695 {
8696 sched_move_task(tsk);
8697 if (threadgroup) {
8698 struct task_struct *c;
8699 rcu_read_lock();
8700 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8701 sched_move_task(c);
8702 }
8703 rcu_read_unlock();
8704 }
8705 }
8706
8707 #ifdef CONFIG_FAIR_GROUP_SCHED
8708 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8709 u64 shareval)
8710 {
8711 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8712 }
8713
8714 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8715 {
8716 struct task_group *tg = cgroup_tg(cgrp);
8717
8718 return (u64) tg->shares;
8719 }
8720 #endif /* CONFIG_FAIR_GROUP_SCHED */
8721
8722 #ifdef CONFIG_RT_GROUP_SCHED
8723 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8724 s64 val)
8725 {
8726 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8727 }
8728
8729 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8730 {
8731 return sched_group_rt_runtime(cgroup_tg(cgrp));
8732 }
8733
8734 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8735 u64 rt_period_us)
8736 {
8737 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8738 }
8739
8740 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8741 {
8742 return sched_group_rt_period(cgroup_tg(cgrp));
8743 }
8744 #endif /* CONFIG_RT_GROUP_SCHED */
8745
8746 static struct cftype cpu_files[] = {
8747 #ifdef CONFIG_FAIR_GROUP_SCHED
8748 {
8749 .name = "shares",
8750 .read_u64 = cpu_shares_read_u64,
8751 .write_u64 = cpu_shares_write_u64,
8752 },
8753 #endif
8754 #ifdef CONFIG_RT_GROUP_SCHED
8755 {
8756 .name = "rt_runtime_us",
8757 .read_s64 = cpu_rt_runtime_read,
8758 .write_s64 = cpu_rt_runtime_write,
8759 },
8760 {
8761 .name = "rt_period_us",
8762 .read_u64 = cpu_rt_period_read_uint,
8763 .write_u64 = cpu_rt_period_write_uint,
8764 },
8765 #endif
8766 };
8767
8768 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8769 {
8770 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8771 }
8772
8773 struct cgroup_subsys cpu_cgroup_subsys = {
8774 .name = "cpu",
8775 .create = cpu_cgroup_create,
8776 .destroy = cpu_cgroup_destroy,
8777 .can_attach = cpu_cgroup_can_attach,
8778 .attach = cpu_cgroup_attach,
8779 .populate = cpu_cgroup_populate,
8780 .subsys_id = cpu_cgroup_subsys_id,
8781 .early_init = 1,
8782 };
8783
8784 #endif /* CONFIG_CGROUP_SCHED */
8785
8786 #ifdef CONFIG_CGROUP_CPUACCT
8787
8788 /*
8789 * CPU accounting code for task groups.
8790 *
8791 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8792 * (balbir@in.ibm.com).
8793 */
8794
8795 /* track cpu usage of a group of tasks and its child groups */
8796 struct cpuacct {
8797 struct cgroup_subsys_state css;
8798 /* cpuusage holds pointer to a u64-type object on every cpu */
8799 u64 *cpuusage;
8800 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8801 struct cpuacct *parent;
8802 };
8803
8804 struct cgroup_subsys cpuacct_subsys;
8805
8806 /* return cpu accounting group corresponding to this container */
8807 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8808 {
8809 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8810 struct cpuacct, css);
8811 }
8812
8813 /* return cpu accounting group to which this task belongs */
8814 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8815 {
8816 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8817 struct cpuacct, css);
8818 }
8819
8820 /* create a new cpu accounting group */
8821 static struct cgroup_subsys_state *cpuacct_create(
8822 struct cgroup_subsys *ss, struct cgroup *cgrp)
8823 {
8824 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8825 int i;
8826
8827 if (!ca)
8828 goto out;
8829
8830 ca->cpuusage = alloc_percpu(u64);
8831 if (!ca->cpuusage)
8832 goto out_free_ca;
8833
8834 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8835 if (percpu_counter_init(&ca->cpustat[i], 0))
8836 goto out_free_counters;
8837
8838 if (cgrp->parent)
8839 ca->parent = cgroup_ca(cgrp->parent);
8840
8841 return &ca->css;
8842
8843 out_free_counters:
8844 while (--i >= 0)
8845 percpu_counter_destroy(&ca->cpustat[i]);
8846 free_percpu(ca->cpuusage);
8847 out_free_ca:
8848 kfree(ca);
8849 out:
8850 return ERR_PTR(-ENOMEM);
8851 }
8852
8853 /* destroy an existing cpu accounting group */
8854 static void
8855 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8856 {
8857 struct cpuacct *ca = cgroup_ca(cgrp);
8858 int i;
8859
8860 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8861 percpu_counter_destroy(&ca->cpustat[i]);
8862 free_percpu(ca->cpuusage);
8863 kfree(ca);
8864 }
8865
8866 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8867 {
8868 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8869 u64 data;
8870
8871 #ifndef CONFIG_64BIT
8872 /*
8873 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8874 */
8875 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8876 data = *cpuusage;
8877 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8878 #else
8879 data = *cpuusage;
8880 #endif
8881
8882 return data;
8883 }
8884
8885 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8886 {
8887 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8888
8889 #ifndef CONFIG_64BIT
8890 /*
8891 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8892 */
8893 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8894 *cpuusage = val;
8895 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8896 #else
8897 *cpuusage = val;
8898 #endif
8899 }
8900
8901 /* return total cpu usage (in nanoseconds) of a group */
8902 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8903 {
8904 struct cpuacct *ca = cgroup_ca(cgrp);
8905 u64 totalcpuusage = 0;
8906 int i;
8907
8908 for_each_present_cpu(i)
8909 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8910
8911 return totalcpuusage;
8912 }
8913
8914 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8915 u64 reset)
8916 {
8917 struct cpuacct *ca = cgroup_ca(cgrp);
8918 int err = 0;
8919 int i;
8920
8921 if (reset) {
8922 err = -EINVAL;
8923 goto out;
8924 }
8925
8926 for_each_present_cpu(i)
8927 cpuacct_cpuusage_write(ca, i, 0);
8928
8929 out:
8930 return err;
8931 }
8932
8933 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8934 struct seq_file *m)
8935 {
8936 struct cpuacct *ca = cgroup_ca(cgroup);
8937 u64 percpu;
8938 int i;
8939
8940 for_each_present_cpu(i) {
8941 percpu = cpuacct_cpuusage_read(ca, i);
8942 seq_printf(m, "%llu ", (unsigned long long) percpu);
8943 }
8944 seq_printf(m, "\n");
8945 return 0;
8946 }
8947
8948 static const char *cpuacct_stat_desc[] = {
8949 [CPUACCT_STAT_USER] = "user",
8950 [CPUACCT_STAT_SYSTEM] = "system",
8951 };
8952
8953 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8954 struct cgroup_map_cb *cb)
8955 {
8956 struct cpuacct *ca = cgroup_ca(cgrp);
8957 int i;
8958
8959 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8960 s64 val = percpu_counter_read(&ca->cpustat[i]);
8961 val = cputime64_to_clock_t(val);
8962 cb->fill(cb, cpuacct_stat_desc[i], val);
8963 }
8964 return 0;
8965 }
8966
8967 static struct cftype files[] = {
8968 {
8969 .name = "usage",
8970 .read_u64 = cpuusage_read,
8971 .write_u64 = cpuusage_write,
8972 },
8973 {
8974 .name = "usage_percpu",
8975 .read_seq_string = cpuacct_percpu_seq_read,
8976 },
8977 {
8978 .name = "stat",
8979 .read_map = cpuacct_stats_show,
8980 },
8981 };
8982
8983 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8984 {
8985 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8986 }
8987
8988 /*
8989 * charge this task's execution time to its accounting group.
8990 *
8991 * called with rq->lock held.
8992 */
8993 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8994 {
8995 struct cpuacct *ca;
8996 int cpu;
8997
8998 if (unlikely(!cpuacct_subsys.active))
8999 return;
9000
9001 cpu = task_cpu(tsk);
9002
9003 rcu_read_lock();
9004
9005 ca = task_ca(tsk);
9006
9007 for (; ca; ca = ca->parent) {
9008 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9009 *cpuusage += cputime;
9010 }
9011
9012 rcu_read_unlock();
9013 }
9014
9015 /*
9016 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9017 * in cputime_t units. As a result, cpuacct_update_stats calls
9018 * percpu_counter_add with values large enough to always overflow the
9019 * per cpu batch limit causing bad SMP scalability.
9020 *
9021 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9022 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9023 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9024 */
9025 #ifdef CONFIG_SMP
9026 #define CPUACCT_BATCH \
9027 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9028 #else
9029 #define CPUACCT_BATCH 0
9030 #endif
9031
9032 /*
9033 * Charge the system/user time to the task's accounting group.
9034 */
9035 static void cpuacct_update_stats(struct task_struct *tsk,
9036 enum cpuacct_stat_index idx, cputime_t val)
9037 {
9038 struct cpuacct *ca;
9039 int batch = CPUACCT_BATCH;
9040
9041 if (unlikely(!cpuacct_subsys.active))
9042 return;
9043
9044 rcu_read_lock();
9045 ca = task_ca(tsk);
9046
9047 do {
9048 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9049 ca = ca->parent;
9050 } while (ca);
9051 rcu_read_unlock();
9052 }
9053
9054 struct cgroup_subsys cpuacct_subsys = {
9055 .name = "cpuacct",
9056 .create = cpuacct_create,
9057 .destroy = cpuacct_destroy,
9058 .populate = cpuacct_populate,
9059 .subsys_id = cpuacct_subsys_id,
9060 };
9061 #endif /* CONFIG_CGROUP_CPUACCT */
9062
9063 #ifndef CONFIG_SMP
9064
9065 int rcu_expedited_torture_stats(char *page)
9066 {
9067 return 0;
9068 }
9069 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9070
9071 void synchronize_sched_expedited(void)
9072 {
9073 }
9074 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9075
9076 #else /* #ifndef CONFIG_SMP */
9077
9078 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9079 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9080
9081 #define RCU_EXPEDITED_STATE_POST -2
9082 #define RCU_EXPEDITED_STATE_IDLE -1
9083
9084 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9085
9086 int rcu_expedited_torture_stats(char *page)
9087 {
9088 int cnt = 0;
9089 int cpu;
9090
9091 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9092 for_each_online_cpu(cpu) {
9093 cnt += sprintf(&page[cnt], " %d:%d",
9094 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9095 }
9096 cnt += sprintf(&page[cnt], "\n");
9097 return cnt;
9098 }
9099 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9100
9101 static long synchronize_sched_expedited_count;
9102
9103 /*
9104 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9105 * approach to force grace period to end quickly. This consumes
9106 * significant time on all CPUs, and is thus not recommended for
9107 * any sort of common-case code.
9108 *
9109 * Note that it is illegal to call this function while holding any
9110 * lock that is acquired by a CPU-hotplug notifier. Failing to
9111 * observe this restriction will result in deadlock.
9112 */
9113 void synchronize_sched_expedited(void)
9114 {
9115 int cpu;
9116 unsigned long flags;
9117 bool need_full_sync = 0;
9118 struct rq *rq;
9119 struct migration_req *req;
9120 long snap;
9121 int trycount = 0;
9122
9123 smp_mb(); /* ensure prior mod happens before capturing snap. */
9124 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9125 get_online_cpus();
9126 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9127 put_online_cpus();
9128 if (trycount++ < 10)
9129 udelay(trycount * num_online_cpus());
9130 else {
9131 synchronize_sched();
9132 return;
9133 }
9134 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9135 smp_mb(); /* ensure test happens before caller kfree */
9136 return;
9137 }
9138 get_online_cpus();
9139 }
9140 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9141 for_each_online_cpu(cpu) {
9142 rq = cpu_rq(cpu);
9143 req = &per_cpu(rcu_migration_req, cpu);
9144 init_completion(&req->done);
9145 req->task = NULL;
9146 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9147 raw_spin_lock_irqsave(&rq->lock, flags);
9148 list_add(&req->list, &rq->migration_queue);
9149 raw_spin_unlock_irqrestore(&rq->lock, flags);
9150 wake_up_process(rq->migration_thread);
9151 }
9152 for_each_online_cpu(cpu) {
9153 rcu_expedited_state = cpu;
9154 req = &per_cpu(rcu_migration_req, cpu);
9155 rq = cpu_rq(cpu);
9156 wait_for_completion(&req->done);
9157 raw_spin_lock_irqsave(&rq->lock, flags);
9158 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9159 need_full_sync = 1;
9160 req->dest_cpu = RCU_MIGRATION_IDLE;
9161 raw_spin_unlock_irqrestore(&rq->lock, flags);
9162 }
9163 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9164 synchronize_sched_expedited_count++;
9165 mutex_unlock(&rcu_sched_expedited_mutex);
9166 put_online_cpus();
9167 if (need_full_sync)
9168 synchronize_sched();
9169 }
9170 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9171
9172 #endif /* #else #ifndef CONFIG_SMP */