]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched.c
sched: Protect sched_rr_get_param() access to task->sched_class
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_FAIR_GROUP_SCHED
313
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
316 {
317 return list_empty(&root_task_group.children);
318 }
319 #endif
320
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
326
327 /*
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
337
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
340
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
343 */
344 struct task_group init_task_group;
345
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
348 {
349 struct task_group *tg;
350
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
362 }
363
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 {
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
371
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
376 }
377
378 #else
379
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
382 {
383 return NULL;
384 }
385
386 #endif /* CONFIG_GROUP_SCHED */
387
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
393 u64 exec_clock;
394 u64 min_vruntime;
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
406 struct sched_entity *curr, *next, *last;
407
408 unsigned int nr_spread_over;
409
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
423
424 #ifdef CONFIG_SMP
425 /*
426 * the part of load.weight contributed by tasks
427 */
428 unsigned long task_weight;
429
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
437
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
447 #endif
448 #endif
449 };
450
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 spinlock_t rt_runtime_lock;
474
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
477
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
483 };
484
485 #ifdef CONFIG_SMP
486
487 /*
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
494 */
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
499
500 /*
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
509 };
510
511 /*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
515 static struct root_domain def_root_domain;
516
517 #endif
518
519 /*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
526 struct rq {
527 /* runqueue lock: */
528 spinlock_t lock;
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
546 struct rt_rq rt;
547
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
551 #endif
552 #ifdef CONFIG_RT_GROUP_SCHED
553 struct list_head leaf_rt_rq_list;
554 #endif
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
564 struct task_struct *curr, *idle;
565 unsigned long next_balance;
566 struct mm_struct *prev_mm;
567
568 u64 clock;
569
570 atomic_t nr_iowait;
571
572 #ifdef CONFIG_SMP
573 struct root_domain *rd;
574 struct sched_domain *sd;
575
576 unsigned char idle_at_tick;
577 /* For active balancing */
578 int post_schedule;
579 int active_balance;
580 int push_cpu;
581 /* cpu of this runqueue: */
582 int cpu;
583 int online;
584
585 unsigned long avg_load_per_task;
586
587 struct task_struct *migration_thread;
588 struct list_head migration_queue;
589
590 u64 rt_avg;
591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
594 #endif
595
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
600 #ifdef CONFIG_SCHED_HRTICK
601 #ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604 #endif
605 struct hrtimer hrtick_timer;
606 #endif
607
608 #ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613
614 /* sys_sched_yield() stats */
615 unsigned int yld_count;
616
617 /* schedule() stats */
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
621
622 /* try_to_wake_up() stats */
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
625
626 /* BKL stats */
627 unsigned int bkl_count;
628 #endif
629 };
630
631 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
632
633 static inline
634 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
635 {
636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
637 }
638
639 static inline int cpu_of(struct rq *rq)
640 {
641 #ifdef CONFIG_SMP
642 return rq->cpu;
643 #else
644 return 0;
645 #endif
646 }
647
648 /*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details.
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
655 #define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657
658 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659 #define this_rq() (&__get_cpu_var(runqueues))
660 #define task_rq(p) cpu_rq(task_cpu(p))
661 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
662 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663
664 inline void update_rq_clock(struct rq *rq)
665 {
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667 }
668
669 /*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672 #ifdef CONFIG_SCHED_DEBUG
673 # define const_debug __read_mostly
674 #else
675 # define const_debug static const
676 #endif
677
678 /**
679 * runqueue_is_locked
680 * @cpu: the processor in question.
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
686 int runqueue_is_locked(int cpu)
687 {
688 return spin_is_locked(&cpu_rq(cpu)->lock);
689 }
690
691 /*
692 * Debugging: various feature bits
693 */
694
695 #define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
698 enum {
699 #include "sched_features.h"
700 };
701
702 #undef SCHED_FEAT
703
704 #define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
707 const_debug unsigned int sysctl_sched_features =
708 #include "sched_features.h"
709 0;
710
711 #undef SCHED_FEAT
712
713 #ifdef CONFIG_SCHED_DEBUG
714 #define SCHED_FEAT(name, enabled) \
715 #name ,
716
717 static __read_mostly char *sched_feat_names[] = {
718 #include "sched_features.h"
719 NULL
720 };
721
722 #undef SCHED_FEAT
723
724 static int sched_feat_show(struct seq_file *m, void *v)
725 {
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
732 }
733 seq_puts(m, "\n");
734
735 return 0;
736 }
737
738 static ssize_t
739 sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741 {
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
755 if (strncmp(buf, "NO_", 3) == 0) {
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
775 *ppos += cnt;
776
777 return cnt;
778 }
779
780 static int sched_feat_open(struct inode *inode, struct file *filp)
781 {
782 return single_open(filp, sched_feat_show, NULL);
783 }
784
785 static const struct file_operations sched_feat_fops = {
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
791 };
792
793 static __init int sched_init_debug(void)
794 {
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799 }
800 late_initcall(sched_init_debug);
801
802 #endif
803
804 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
805
806 /*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810 const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
812 /*
813 * ratelimit for updating the group shares.
814 * default: 0.25ms
815 */
816 unsigned int sysctl_sched_shares_ratelimit = 250000;
817
818 /*
819 * Inject some fuzzyness into changing the per-cpu group shares
820 * this avoids remote rq-locks at the expense of fairness.
821 * default: 4
822 */
823 unsigned int sysctl_sched_shares_thresh = 4;
824
825 /*
826 * period over which we average the RT time consumption, measured
827 * in ms.
828 *
829 * default: 1s
830 */
831 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
832
833 /*
834 * period over which we measure -rt task cpu usage in us.
835 * default: 1s
836 */
837 unsigned int sysctl_sched_rt_period = 1000000;
838
839 static __read_mostly int scheduler_running;
840
841 /*
842 * part of the period that we allow rt tasks to run in us.
843 * default: 0.95s
844 */
845 int sysctl_sched_rt_runtime = 950000;
846
847 static inline u64 global_rt_period(void)
848 {
849 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850 }
851
852 static inline u64 global_rt_runtime(void)
853 {
854 if (sysctl_sched_rt_runtime < 0)
855 return RUNTIME_INF;
856
857 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858 }
859
860 #ifndef prepare_arch_switch
861 # define prepare_arch_switch(next) do { } while (0)
862 #endif
863 #ifndef finish_arch_switch
864 # define finish_arch_switch(prev) do { } while (0)
865 #endif
866
867 static inline int task_current(struct rq *rq, struct task_struct *p)
868 {
869 return rq->curr == p;
870 }
871
872 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
873 static inline int task_running(struct rq *rq, struct task_struct *p)
874 {
875 return task_current(rq, p);
876 }
877
878 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
879 {
880 }
881
882 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
883 {
884 #ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887 #endif
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
895 spin_unlock_irq(&rq->lock);
896 }
897
898 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
899 static inline int task_running(struct rq *rq, struct task_struct *p)
900 {
901 #ifdef CONFIG_SMP
902 return p->oncpu;
903 #else
904 return task_current(rq, p);
905 #endif
906 }
907
908 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
909 {
910 #ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->oncpu = 1;
917 #endif
918 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock);
920 #else
921 spin_unlock(&rq->lock);
922 #endif
923 }
924
925 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
926 {
927 #ifdef CONFIG_SMP
928 /*
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->oncpu = 0;
935 #endif
936 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
938 #endif
939 }
940 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
941
942 /*
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
945 */
946 static inline struct rq *__task_rq_lock(struct task_struct *p)
947 __acquires(rq->lock)
948 {
949 for (;;) {
950 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
954 spin_unlock(&rq->lock);
955 }
956 }
957
958 /*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
960 * interrupts. Note the ordering: we can safely lookup the task_rq without
961 * explicitly disabling preemption.
962 */
963 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
964 __acquires(rq->lock)
965 {
966 struct rq *rq;
967
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
974 spin_unlock_irqrestore(&rq->lock, *flags);
975 }
976 }
977
978 void task_rq_unlock_wait(struct task_struct *p)
979 {
980 struct rq *rq = task_rq(p);
981
982 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
983 spin_unlock_wait(&rq->lock);
984 }
985
986 static void __task_rq_unlock(struct rq *rq)
987 __releases(rq->lock)
988 {
989 spin_unlock(&rq->lock);
990 }
991
992 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
993 __releases(rq->lock)
994 {
995 spin_unlock_irqrestore(&rq->lock, *flags);
996 }
997
998 /*
999 * this_rq_lock - lock this runqueue and disable interrupts.
1000 */
1001 static struct rq *this_rq_lock(void)
1002 __acquires(rq->lock)
1003 {
1004 struct rq *rq;
1005
1006 local_irq_disable();
1007 rq = this_rq();
1008 spin_lock(&rq->lock);
1009
1010 return rq;
1011 }
1012
1013 #ifdef CONFIG_SCHED_HRTICK
1014 /*
1015 * Use HR-timers to deliver accurate preemption points.
1016 *
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * reschedule event.
1020 *
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1022 * rq->lock.
1023 */
1024
1025 /*
1026 * Use hrtick when:
1027 * - enabled by features
1028 * - hrtimer is actually high res
1029 */
1030 static inline int hrtick_enabled(struct rq *rq)
1031 {
1032 if (!sched_feat(HRTICK))
1033 return 0;
1034 if (!cpu_active(cpu_of(rq)))
1035 return 0;
1036 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037 }
1038
1039 static void hrtick_clear(struct rq *rq)
1040 {
1041 if (hrtimer_active(&rq->hrtick_timer))
1042 hrtimer_cancel(&rq->hrtick_timer);
1043 }
1044
1045 /*
1046 * High-resolution timer tick.
1047 * Runs from hardirq context with interrupts disabled.
1048 */
1049 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050 {
1051 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052
1053 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054
1055 spin_lock(&rq->lock);
1056 update_rq_clock(rq);
1057 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1058 spin_unlock(&rq->lock);
1059
1060 return HRTIMER_NORESTART;
1061 }
1062
1063 #ifdef CONFIG_SMP
1064 /*
1065 * called from hardirq (IPI) context
1066 */
1067 static void __hrtick_start(void *arg)
1068 {
1069 struct rq *rq = arg;
1070
1071 spin_lock(&rq->lock);
1072 hrtimer_restart(&rq->hrtick_timer);
1073 rq->hrtick_csd_pending = 0;
1074 spin_unlock(&rq->lock);
1075 }
1076
1077 /*
1078 * Called to set the hrtick timer state.
1079 *
1080 * called with rq->lock held and irqs disabled
1081 */
1082 static void hrtick_start(struct rq *rq, u64 delay)
1083 {
1084 struct hrtimer *timer = &rq->hrtick_timer;
1085 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1086
1087 hrtimer_set_expires(timer, time);
1088
1089 if (rq == this_rq()) {
1090 hrtimer_restart(timer);
1091 } else if (!rq->hrtick_csd_pending) {
1092 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1093 rq->hrtick_csd_pending = 1;
1094 }
1095 }
1096
1097 static int
1098 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099 {
1100 int cpu = (int)(long)hcpu;
1101
1102 switch (action) {
1103 case CPU_UP_CANCELED:
1104 case CPU_UP_CANCELED_FROZEN:
1105 case CPU_DOWN_PREPARE:
1106 case CPU_DOWN_PREPARE_FROZEN:
1107 case CPU_DEAD:
1108 case CPU_DEAD_FROZEN:
1109 hrtick_clear(cpu_rq(cpu));
1110 return NOTIFY_OK;
1111 }
1112
1113 return NOTIFY_DONE;
1114 }
1115
1116 static __init void init_hrtick(void)
1117 {
1118 hotcpu_notifier(hotplug_hrtick, 0);
1119 }
1120 #else
1121 /*
1122 * Called to set the hrtick timer state.
1123 *
1124 * called with rq->lock held and irqs disabled
1125 */
1126 static void hrtick_start(struct rq *rq, u64 delay)
1127 {
1128 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1129 HRTIMER_MODE_REL_PINNED, 0);
1130 }
1131
1132 static inline void init_hrtick(void)
1133 {
1134 }
1135 #endif /* CONFIG_SMP */
1136
1137 static void init_rq_hrtick(struct rq *rq)
1138 {
1139 #ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
1141
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145 #endif
1146
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
1149 }
1150 #else /* CONFIG_SCHED_HRTICK */
1151 static inline void hrtick_clear(struct rq *rq)
1152 {
1153 }
1154
1155 static inline void init_rq_hrtick(struct rq *rq)
1156 {
1157 }
1158
1159 static inline void init_hrtick(void)
1160 {
1161 }
1162 #endif /* CONFIG_SCHED_HRTICK */
1163
1164 /*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171 #ifdef CONFIG_SMP
1172
1173 #ifndef tsk_is_polling
1174 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175 #endif
1176
1177 static void resched_task(struct task_struct *p)
1178 {
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
1183 if (test_tsk_need_resched(p))
1184 return;
1185
1186 set_tsk_need_resched(p);
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196 }
1197
1198 static void resched_cpu(int cpu)
1199 {
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207 }
1208
1209 #ifdef CONFIG_NO_HZ
1210 /*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220 void wake_up_idle_cpu(int cpu)
1221 {
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
1242 set_tsk_need_resched(rq->idle);
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248 }
1249 #endif /* CONFIG_NO_HZ */
1250
1251 static u64 sched_avg_period(void)
1252 {
1253 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1254 }
1255
1256 static void sched_avg_update(struct rq *rq)
1257 {
1258 s64 period = sched_avg_period();
1259
1260 while ((s64)(rq->clock - rq->age_stamp) > period) {
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1263 }
1264 }
1265
1266 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267 {
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1270 }
1271
1272 #else /* !CONFIG_SMP */
1273 static void resched_task(struct task_struct *p)
1274 {
1275 assert_spin_locked(&task_rq(p)->lock);
1276 set_tsk_need_resched(p);
1277 }
1278
1279 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280 {
1281 }
1282 #endif /* CONFIG_SMP */
1283
1284 #if BITS_PER_LONG == 32
1285 # define WMULT_CONST (~0UL)
1286 #else
1287 # define WMULT_CONST (1UL << 32)
1288 #endif
1289
1290 #define WMULT_SHIFT 32
1291
1292 /*
1293 * Shift right and round:
1294 */
1295 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1296
1297 /*
1298 * delta *= weight / lw
1299 */
1300 static unsigned long
1301 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1302 struct load_weight *lw)
1303 {
1304 u64 tmp;
1305
1306 if (!lw->inv_weight) {
1307 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1308 lw->inv_weight = 1;
1309 else
1310 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1311 / (lw->weight+1);
1312 }
1313
1314 tmp = (u64)delta_exec * weight;
1315 /*
1316 * Check whether we'd overflow the 64-bit multiplication:
1317 */
1318 if (unlikely(tmp > WMULT_CONST))
1319 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1320 WMULT_SHIFT/2);
1321 else
1322 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1323
1324 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1325 }
1326
1327 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1328 {
1329 lw->weight += inc;
1330 lw->inv_weight = 0;
1331 }
1332
1333 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1334 {
1335 lw->weight -= dec;
1336 lw->inv_weight = 0;
1337 }
1338
1339 /*
1340 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1341 * of tasks with abnormal "nice" values across CPUs the contribution that
1342 * each task makes to its run queue's load is weighted according to its
1343 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1344 * scaled version of the new time slice allocation that they receive on time
1345 * slice expiry etc.
1346 */
1347
1348 #define WEIGHT_IDLEPRIO 3
1349 #define WMULT_IDLEPRIO 1431655765
1350
1351 /*
1352 * Nice levels are multiplicative, with a gentle 10% change for every
1353 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1354 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1355 * that remained on nice 0.
1356 *
1357 * The "10% effect" is relative and cumulative: from _any_ nice level,
1358 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1359 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1360 * If a task goes up by ~10% and another task goes down by ~10% then
1361 * the relative distance between them is ~25%.)
1362 */
1363 static const int prio_to_weight[40] = {
1364 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1365 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1366 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1367 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1368 /* 0 */ 1024, 820, 655, 526, 423,
1369 /* 5 */ 335, 272, 215, 172, 137,
1370 /* 10 */ 110, 87, 70, 56, 45,
1371 /* 15 */ 36, 29, 23, 18, 15,
1372 };
1373
1374 /*
1375 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 *
1377 * In cases where the weight does not change often, we can use the
1378 * precalculated inverse to speed up arithmetics by turning divisions
1379 * into multiplications:
1380 */
1381 static const u32 prio_to_wmult[40] = {
1382 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1383 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1384 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1385 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1386 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1387 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1388 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1389 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1390 };
1391
1392 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1393
1394 /*
1395 * runqueue iterator, to support SMP load-balancing between different
1396 * scheduling classes, without having to expose their internal data
1397 * structures to the load-balancing proper:
1398 */
1399 struct rq_iterator {
1400 void *arg;
1401 struct task_struct *(*start)(void *);
1402 struct task_struct *(*next)(void *);
1403 };
1404
1405 #ifdef CONFIG_SMP
1406 static unsigned long
1407 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1408 unsigned long max_load_move, struct sched_domain *sd,
1409 enum cpu_idle_type idle, int *all_pinned,
1410 int *this_best_prio, struct rq_iterator *iterator);
1411
1412 static int
1413 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414 struct sched_domain *sd, enum cpu_idle_type idle,
1415 struct rq_iterator *iterator);
1416 #endif
1417
1418 /* Time spent by the tasks of the cpu accounting group executing in ... */
1419 enum cpuacct_stat_index {
1420 CPUACCT_STAT_USER, /* ... user mode */
1421 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1422
1423 CPUACCT_STAT_NSTATS,
1424 };
1425
1426 #ifdef CONFIG_CGROUP_CPUACCT
1427 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1428 static void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val);
1430 #else
1431 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1432 static inline void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val) {}
1434 #endif
1435
1436 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1437 {
1438 update_load_add(&rq->load, load);
1439 }
1440
1441 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1442 {
1443 update_load_sub(&rq->load, load);
1444 }
1445
1446 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1447 typedef int (*tg_visitor)(struct task_group *, void *);
1448
1449 /*
1450 * Iterate the full tree, calling @down when first entering a node and @up when
1451 * leaving it for the final time.
1452 */
1453 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1454 {
1455 struct task_group *parent, *child;
1456 int ret;
1457
1458 rcu_read_lock();
1459 parent = &root_task_group;
1460 down:
1461 ret = (*down)(parent, data);
1462 if (ret)
1463 goto out_unlock;
1464 list_for_each_entry_rcu(child, &parent->children, siblings) {
1465 parent = child;
1466 goto down;
1467
1468 up:
1469 continue;
1470 }
1471 ret = (*up)(parent, data);
1472 if (ret)
1473 goto out_unlock;
1474
1475 child = parent;
1476 parent = parent->parent;
1477 if (parent)
1478 goto up;
1479 out_unlock:
1480 rcu_read_unlock();
1481
1482 return ret;
1483 }
1484
1485 static int tg_nop(struct task_group *tg, void *data)
1486 {
1487 return 0;
1488 }
1489 #endif
1490
1491 #ifdef CONFIG_SMP
1492 /* Used instead of source_load when we know the type == 0 */
1493 static unsigned long weighted_cpuload(const int cpu)
1494 {
1495 return cpu_rq(cpu)->load.weight;
1496 }
1497
1498 /*
1499 * Return a low guess at the load of a migration-source cpu weighted
1500 * according to the scheduling class and "nice" value.
1501 *
1502 * We want to under-estimate the load of migration sources, to
1503 * balance conservatively.
1504 */
1505 static unsigned long source_load(int cpu, int type)
1506 {
1507 struct rq *rq = cpu_rq(cpu);
1508 unsigned long total = weighted_cpuload(cpu);
1509
1510 if (type == 0 || !sched_feat(LB_BIAS))
1511 return total;
1512
1513 return min(rq->cpu_load[type-1], total);
1514 }
1515
1516 /*
1517 * Return a high guess at the load of a migration-target cpu weighted
1518 * according to the scheduling class and "nice" value.
1519 */
1520 static unsigned long target_load(int cpu, int type)
1521 {
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long total = weighted_cpuload(cpu);
1524
1525 if (type == 0 || !sched_feat(LB_BIAS))
1526 return total;
1527
1528 return max(rq->cpu_load[type-1], total);
1529 }
1530
1531 static struct sched_group *group_of(int cpu)
1532 {
1533 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1534
1535 if (!sd)
1536 return NULL;
1537
1538 return sd->groups;
1539 }
1540
1541 static unsigned long power_of(int cpu)
1542 {
1543 struct sched_group *group = group_of(cpu);
1544
1545 if (!group)
1546 return SCHED_LOAD_SCALE;
1547
1548 return group->cpu_power;
1549 }
1550
1551 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1552
1553 static unsigned long cpu_avg_load_per_task(int cpu)
1554 {
1555 struct rq *rq = cpu_rq(cpu);
1556 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1557
1558 if (nr_running)
1559 rq->avg_load_per_task = rq->load.weight / nr_running;
1560 else
1561 rq->avg_load_per_task = 0;
1562
1563 return rq->avg_load_per_task;
1564 }
1565
1566 #ifdef CONFIG_FAIR_GROUP_SCHED
1567
1568 static __read_mostly unsigned long *update_shares_data;
1569
1570 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1571
1572 /*
1573 * Calculate and set the cpu's group shares.
1574 */
1575 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1576 unsigned long sd_shares,
1577 unsigned long sd_rq_weight,
1578 unsigned long *usd_rq_weight)
1579 {
1580 unsigned long shares, rq_weight;
1581 int boost = 0;
1582
1583 rq_weight = usd_rq_weight[cpu];
1584 if (!rq_weight) {
1585 boost = 1;
1586 rq_weight = NICE_0_LOAD;
1587 }
1588
1589 /*
1590 * \Sum_j shares_j * rq_weight_i
1591 * shares_i = -----------------------------
1592 * \Sum_j rq_weight_j
1593 */
1594 shares = (sd_shares * rq_weight) / sd_rq_weight;
1595 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1596
1597 if (abs(shares - tg->se[cpu]->load.weight) >
1598 sysctl_sched_shares_thresh) {
1599 struct rq *rq = cpu_rq(cpu);
1600 unsigned long flags;
1601
1602 spin_lock_irqsave(&rq->lock, flags);
1603 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1604 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1605 __set_se_shares(tg->se[cpu], shares);
1606 spin_unlock_irqrestore(&rq->lock, flags);
1607 }
1608 }
1609
1610 /*
1611 * Re-compute the task group their per cpu shares over the given domain.
1612 * This needs to be done in a bottom-up fashion because the rq weight of a
1613 * parent group depends on the shares of its child groups.
1614 */
1615 static int tg_shares_up(struct task_group *tg, void *data)
1616 {
1617 unsigned long weight, rq_weight = 0, shares = 0;
1618 unsigned long *usd_rq_weight;
1619 struct sched_domain *sd = data;
1620 unsigned long flags;
1621 int i;
1622
1623 if (!tg->se[0])
1624 return 0;
1625
1626 local_irq_save(flags);
1627 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1628
1629 for_each_cpu(i, sched_domain_span(sd)) {
1630 weight = tg->cfs_rq[i]->load.weight;
1631 usd_rq_weight[i] = weight;
1632
1633 /*
1634 * If there are currently no tasks on the cpu pretend there
1635 * is one of average load so that when a new task gets to
1636 * run here it will not get delayed by group starvation.
1637 */
1638 if (!weight)
1639 weight = NICE_0_LOAD;
1640
1641 rq_weight += weight;
1642 shares += tg->cfs_rq[i]->shares;
1643 }
1644
1645 if ((!shares && rq_weight) || shares > tg->shares)
1646 shares = tg->shares;
1647
1648 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1649 shares = tg->shares;
1650
1651 for_each_cpu(i, sched_domain_span(sd))
1652 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1653
1654 local_irq_restore(flags);
1655
1656 return 0;
1657 }
1658
1659 /*
1660 * Compute the cpu's hierarchical load factor for each task group.
1661 * This needs to be done in a top-down fashion because the load of a child
1662 * group is a fraction of its parents load.
1663 */
1664 static int tg_load_down(struct task_group *tg, void *data)
1665 {
1666 unsigned long load;
1667 long cpu = (long)data;
1668
1669 if (!tg->parent) {
1670 load = cpu_rq(cpu)->load.weight;
1671 } else {
1672 load = tg->parent->cfs_rq[cpu]->h_load;
1673 load *= tg->cfs_rq[cpu]->shares;
1674 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1675 }
1676
1677 tg->cfs_rq[cpu]->h_load = load;
1678
1679 return 0;
1680 }
1681
1682 static void update_shares(struct sched_domain *sd)
1683 {
1684 s64 elapsed;
1685 u64 now;
1686
1687 if (root_task_group_empty())
1688 return;
1689
1690 now = cpu_clock(raw_smp_processor_id());
1691 elapsed = now - sd->last_update;
1692
1693 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1694 sd->last_update = now;
1695 walk_tg_tree(tg_nop, tg_shares_up, sd);
1696 }
1697 }
1698
1699 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1700 {
1701 if (root_task_group_empty())
1702 return;
1703
1704 spin_unlock(&rq->lock);
1705 update_shares(sd);
1706 spin_lock(&rq->lock);
1707 }
1708
1709 static void update_h_load(long cpu)
1710 {
1711 if (root_task_group_empty())
1712 return;
1713
1714 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1715 }
1716
1717 #else
1718
1719 static inline void update_shares(struct sched_domain *sd)
1720 {
1721 }
1722
1723 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1724 {
1725 }
1726
1727 #endif
1728
1729 #ifdef CONFIG_PREEMPT
1730
1731 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1732
1733 /*
1734 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1735 * way at the expense of forcing extra atomic operations in all
1736 * invocations. This assures that the double_lock is acquired using the
1737 * same underlying policy as the spinlock_t on this architecture, which
1738 * reduces latency compared to the unfair variant below. However, it
1739 * also adds more overhead and therefore may reduce throughput.
1740 */
1741 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1742 __releases(this_rq->lock)
1743 __acquires(busiest->lock)
1744 __acquires(this_rq->lock)
1745 {
1746 spin_unlock(&this_rq->lock);
1747 double_rq_lock(this_rq, busiest);
1748
1749 return 1;
1750 }
1751
1752 #else
1753 /*
1754 * Unfair double_lock_balance: Optimizes throughput at the expense of
1755 * latency by eliminating extra atomic operations when the locks are
1756 * already in proper order on entry. This favors lower cpu-ids and will
1757 * grant the double lock to lower cpus over higher ids under contention,
1758 * regardless of entry order into the function.
1759 */
1760 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1761 __releases(this_rq->lock)
1762 __acquires(busiest->lock)
1763 __acquires(this_rq->lock)
1764 {
1765 int ret = 0;
1766
1767 if (unlikely(!spin_trylock(&busiest->lock))) {
1768 if (busiest < this_rq) {
1769 spin_unlock(&this_rq->lock);
1770 spin_lock(&busiest->lock);
1771 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1772 ret = 1;
1773 } else
1774 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1775 }
1776 return ret;
1777 }
1778
1779 #endif /* CONFIG_PREEMPT */
1780
1781 /*
1782 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1783 */
1784 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1785 {
1786 if (unlikely(!irqs_disabled())) {
1787 /* printk() doesn't work good under rq->lock */
1788 spin_unlock(&this_rq->lock);
1789 BUG_ON(1);
1790 }
1791
1792 return _double_lock_balance(this_rq, busiest);
1793 }
1794
1795 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1796 __releases(busiest->lock)
1797 {
1798 spin_unlock(&busiest->lock);
1799 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1800 }
1801 #endif
1802
1803 #ifdef CONFIG_FAIR_GROUP_SCHED
1804 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1805 {
1806 #ifdef CONFIG_SMP
1807 cfs_rq->shares = shares;
1808 #endif
1809 }
1810 #endif
1811
1812 static void calc_load_account_active(struct rq *this_rq);
1813
1814 #include "sched_stats.h"
1815 #include "sched_idletask.c"
1816 #include "sched_fair.c"
1817 #include "sched_rt.c"
1818 #ifdef CONFIG_SCHED_DEBUG
1819 # include "sched_debug.c"
1820 #endif
1821
1822 #define sched_class_highest (&rt_sched_class)
1823 #define for_each_class(class) \
1824 for (class = sched_class_highest; class; class = class->next)
1825
1826 static void inc_nr_running(struct rq *rq)
1827 {
1828 rq->nr_running++;
1829 }
1830
1831 static void dec_nr_running(struct rq *rq)
1832 {
1833 rq->nr_running--;
1834 }
1835
1836 static void set_load_weight(struct task_struct *p)
1837 {
1838 if (task_has_rt_policy(p)) {
1839 p->se.load.weight = prio_to_weight[0] * 2;
1840 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1841 return;
1842 }
1843
1844 /*
1845 * SCHED_IDLE tasks get minimal weight:
1846 */
1847 if (p->policy == SCHED_IDLE) {
1848 p->se.load.weight = WEIGHT_IDLEPRIO;
1849 p->se.load.inv_weight = WMULT_IDLEPRIO;
1850 return;
1851 }
1852
1853 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1854 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1855 }
1856
1857 static void update_avg(u64 *avg, u64 sample)
1858 {
1859 s64 diff = sample - *avg;
1860 *avg += diff >> 3;
1861 }
1862
1863 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1864 {
1865 if (wakeup)
1866 p->se.start_runtime = p->se.sum_exec_runtime;
1867
1868 sched_info_queued(p);
1869 p->sched_class->enqueue_task(rq, p, wakeup);
1870 p->se.on_rq = 1;
1871 }
1872
1873 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1874 {
1875 if (sleep) {
1876 if (p->se.last_wakeup) {
1877 update_avg(&p->se.avg_overlap,
1878 p->se.sum_exec_runtime - p->se.last_wakeup);
1879 p->se.last_wakeup = 0;
1880 } else {
1881 update_avg(&p->se.avg_wakeup,
1882 sysctl_sched_wakeup_granularity);
1883 }
1884 }
1885
1886 sched_info_dequeued(p);
1887 p->sched_class->dequeue_task(rq, p, sleep);
1888 p->se.on_rq = 0;
1889 }
1890
1891 /*
1892 * __normal_prio - return the priority that is based on the static prio
1893 */
1894 static inline int __normal_prio(struct task_struct *p)
1895 {
1896 return p->static_prio;
1897 }
1898
1899 /*
1900 * Calculate the expected normal priority: i.e. priority
1901 * without taking RT-inheritance into account. Might be
1902 * boosted by interactivity modifiers. Changes upon fork,
1903 * setprio syscalls, and whenever the interactivity
1904 * estimator recalculates.
1905 */
1906 static inline int normal_prio(struct task_struct *p)
1907 {
1908 int prio;
1909
1910 if (task_has_rt_policy(p))
1911 prio = MAX_RT_PRIO-1 - p->rt_priority;
1912 else
1913 prio = __normal_prio(p);
1914 return prio;
1915 }
1916
1917 /*
1918 * Calculate the current priority, i.e. the priority
1919 * taken into account by the scheduler. This value might
1920 * be boosted by RT tasks, or might be boosted by
1921 * interactivity modifiers. Will be RT if the task got
1922 * RT-boosted. If not then it returns p->normal_prio.
1923 */
1924 static int effective_prio(struct task_struct *p)
1925 {
1926 p->normal_prio = normal_prio(p);
1927 /*
1928 * If we are RT tasks or we were boosted to RT priority,
1929 * keep the priority unchanged. Otherwise, update priority
1930 * to the normal priority:
1931 */
1932 if (!rt_prio(p->prio))
1933 return p->normal_prio;
1934 return p->prio;
1935 }
1936
1937 /*
1938 * activate_task - move a task to the runqueue.
1939 */
1940 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1941 {
1942 if (task_contributes_to_load(p))
1943 rq->nr_uninterruptible--;
1944
1945 enqueue_task(rq, p, wakeup);
1946 inc_nr_running(rq);
1947 }
1948
1949 /*
1950 * deactivate_task - remove a task from the runqueue.
1951 */
1952 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1953 {
1954 if (task_contributes_to_load(p))
1955 rq->nr_uninterruptible++;
1956
1957 dequeue_task(rq, p, sleep);
1958 dec_nr_running(rq);
1959 }
1960
1961 /**
1962 * task_curr - is this task currently executing on a CPU?
1963 * @p: the task in question.
1964 */
1965 inline int task_curr(const struct task_struct *p)
1966 {
1967 return cpu_curr(task_cpu(p)) == p;
1968 }
1969
1970 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1971 {
1972 set_task_rq(p, cpu);
1973 #ifdef CONFIG_SMP
1974 /*
1975 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1976 * successfuly executed on another CPU. We must ensure that updates of
1977 * per-task data have been completed by this moment.
1978 */
1979 smp_wmb();
1980 task_thread_info(p)->cpu = cpu;
1981 #endif
1982 }
1983
1984 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1985 const struct sched_class *prev_class,
1986 int oldprio, int running)
1987 {
1988 if (prev_class != p->sched_class) {
1989 if (prev_class->switched_from)
1990 prev_class->switched_from(rq, p, running);
1991 p->sched_class->switched_to(rq, p, running);
1992 } else
1993 p->sched_class->prio_changed(rq, p, oldprio, running);
1994 }
1995
1996 /**
1997 * kthread_bind - bind a just-created kthread to a cpu.
1998 * @p: thread created by kthread_create().
1999 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2000 *
2001 * Description: This function is equivalent to set_cpus_allowed(),
2002 * except that @cpu doesn't need to be online, and the thread must be
2003 * stopped (i.e., just returned from kthread_create()).
2004 *
2005 * Function lives here instead of kthread.c because it messes with
2006 * scheduler internals which require locking.
2007 */
2008 void kthread_bind(struct task_struct *p, unsigned int cpu)
2009 {
2010 struct rq *rq = cpu_rq(cpu);
2011 unsigned long flags;
2012
2013 /* Must have done schedule() in kthread() before we set_task_cpu */
2014 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2015 WARN_ON(1);
2016 return;
2017 }
2018
2019 spin_lock_irqsave(&rq->lock, flags);
2020 update_rq_clock(rq);
2021 set_task_cpu(p, cpu);
2022 p->cpus_allowed = cpumask_of_cpu(cpu);
2023 p->rt.nr_cpus_allowed = 1;
2024 p->flags |= PF_THREAD_BOUND;
2025 spin_unlock_irqrestore(&rq->lock, flags);
2026 }
2027 EXPORT_SYMBOL(kthread_bind);
2028
2029 #ifdef CONFIG_SMP
2030 /*
2031 * Is this task likely cache-hot:
2032 */
2033 static int
2034 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2035 {
2036 s64 delta;
2037
2038 /*
2039 * Buddy candidates are cache hot:
2040 */
2041 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2042 (&p->se == cfs_rq_of(&p->se)->next ||
2043 &p->se == cfs_rq_of(&p->se)->last))
2044 return 1;
2045
2046 if (p->sched_class != &fair_sched_class)
2047 return 0;
2048
2049 if (sysctl_sched_migration_cost == -1)
2050 return 1;
2051 if (sysctl_sched_migration_cost == 0)
2052 return 0;
2053
2054 delta = now - p->se.exec_start;
2055
2056 return delta < (s64)sysctl_sched_migration_cost;
2057 }
2058
2059
2060 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2061 {
2062 int old_cpu = task_cpu(p);
2063 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2064 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2065 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2066 u64 clock_offset;
2067
2068 clock_offset = old_rq->clock - new_rq->clock;
2069
2070 trace_sched_migrate_task(p, new_cpu);
2071
2072 #ifdef CONFIG_SCHEDSTATS
2073 if (p->se.wait_start)
2074 p->se.wait_start -= clock_offset;
2075 if (p->se.sleep_start)
2076 p->se.sleep_start -= clock_offset;
2077 if (p->se.block_start)
2078 p->se.block_start -= clock_offset;
2079 #endif
2080 if (old_cpu != new_cpu) {
2081 p->se.nr_migrations++;
2082 #ifdef CONFIG_SCHEDSTATS
2083 if (task_hot(p, old_rq->clock, NULL))
2084 schedstat_inc(p, se.nr_forced2_migrations);
2085 #endif
2086 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2087 1, 1, NULL, 0);
2088 }
2089 p->se.vruntime -= old_cfsrq->min_vruntime -
2090 new_cfsrq->min_vruntime;
2091
2092 __set_task_cpu(p, new_cpu);
2093 }
2094
2095 struct migration_req {
2096 struct list_head list;
2097
2098 struct task_struct *task;
2099 int dest_cpu;
2100
2101 struct completion done;
2102 };
2103
2104 /*
2105 * The task's runqueue lock must be held.
2106 * Returns true if you have to wait for migration thread.
2107 */
2108 static int
2109 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2110 {
2111 struct rq *rq = task_rq(p);
2112
2113 /*
2114 * If the task is not on a runqueue (and not running), then
2115 * it is sufficient to simply update the task's cpu field.
2116 */
2117 if (!p->se.on_rq && !task_running(rq, p)) {
2118 update_rq_clock(rq);
2119 set_task_cpu(p, dest_cpu);
2120 return 0;
2121 }
2122
2123 init_completion(&req->done);
2124 req->task = p;
2125 req->dest_cpu = dest_cpu;
2126 list_add(&req->list, &rq->migration_queue);
2127
2128 return 1;
2129 }
2130
2131 /*
2132 * wait_task_context_switch - wait for a thread to complete at least one
2133 * context switch.
2134 *
2135 * @p must not be current.
2136 */
2137 void wait_task_context_switch(struct task_struct *p)
2138 {
2139 unsigned long nvcsw, nivcsw, flags;
2140 int running;
2141 struct rq *rq;
2142
2143 nvcsw = p->nvcsw;
2144 nivcsw = p->nivcsw;
2145 for (;;) {
2146 /*
2147 * The runqueue is assigned before the actual context
2148 * switch. We need to take the runqueue lock.
2149 *
2150 * We could check initially without the lock but it is
2151 * very likely that we need to take the lock in every
2152 * iteration.
2153 */
2154 rq = task_rq_lock(p, &flags);
2155 running = task_running(rq, p);
2156 task_rq_unlock(rq, &flags);
2157
2158 if (likely(!running))
2159 break;
2160 /*
2161 * The switch count is incremented before the actual
2162 * context switch. We thus wait for two switches to be
2163 * sure at least one completed.
2164 */
2165 if ((p->nvcsw - nvcsw) > 1)
2166 break;
2167 if ((p->nivcsw - nivcsw) > 1)
2168 break;
2169
2170 cpu_relax();
2171 }
2172 }
2173
2174 /*
2175 * wait_task_inactive - wait for a thread to unschedule.
2176 *
2177 * If @match_state is nonzero, it's the @p->state value just checked and
2178 * not expected to change. If it changes, i.e. @p might have woken up,
2179 * then return zero. When we succeed in waiting for @p to be off its CPU,
2180 * we return a positive number (its total switch count). If a second call
2181 * a short while later returns the same number, the caller can be sure that
2182 * @p has remained unscheduled the whole time.
2183 *
2184 * The caller must ensure that the task *will* unschedule sometime soon,
2185 * else this function might spin for a *long* time. This function can't
2186 * be called with interrupts off, or it may introduce deadlock with
2187 * smp_call_function() if an IPI is sent by the same process we are
2188 * waiting to become inactive.
2189 */
2190 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2191 {
2192 unsigned long flags;
2193 int running, on_rq;
2194 unsigned long ncsw;
2195 struct rq *rq;
2196
2197 for (;;) {
2198 /*
2199 * We do the initial early heuristics without holding
2200 * any task-queue locks at all. We'll only try to get
2201 * the runqueue lock when things look like they will
2202 * work out!
2203 */
2204 rq = task_rq(p);
2205
2206 /*
2207 * If the task is actively running on another CPU
2208 * still, just relax and busy-wait without holding
2209 * any locks.
2210 *
2211 * NOTE! Since we don't hold any locks, it's not
2212 * even sure that "rq" stays as the right runqueue!
2213 * But we don't care, since "task_running()" will
2214 * return false if the runqueue has changed and p
2215 * is actually now running somewhere else!
2216 */
2217 while (task_running(rq, p)) {
2218 if (match_state && unlikely(p->state != match_state))
2219 return 0;
2220 cpu_relax();
2221 }
2222
2223 /*
2224 * Ok, time to look more closely! We need the rq
2225 * lock now, to be *sure*. If we're wrong, we'll
2226 * just go back and repeat.
2227 */
2228 rq = task_rq_lock(p, &flags);
2229 trace_sched_wait_task(rq, p);
2230 running = task_running(rq, p);
2231 on_rq = p->se.on_rq;
2232 ncsw = 0;
2233 if (!match_state || p->state == match_state)
2234 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2235 task_rq_unlock(rq, &flags);
2236
2237 /*
2238 * If it changed from the expected state, bail out now.
2239 */
2240 if (unlikely(!ncsw))
2241 break;
2242
2243 /*
2244 * Was it really running after all now that we
2245 * checked with the proper locks actually held?
2246 *
2247 * Oops. Go back and try again..
2248 */
2249 if (unlikely(running)) {
2250 cpu_relax();
2251 continue;
2252 }
2253
2254 /*
2255 * It's not enough that it's not actively running,
2256 * it must be off the runqueue _entirely_, and not
2257 * preempted!
2258 *
2259 * So if it was still runnable (but just not actively
2260 * running right now), it's preempted, and we should
2261 * yield - it could be a while.
2262 */
2263 if (unlikely(on_rq)) {
2264 schedule_timeout_uninterruptible(1);
2265 continue;
2266 }
2267
2268 /*
2269 * Ahh, all good. It wasn't running, and it wasn't
2270 * runnable, which means that it will never become
2271 * running in the future either. We're all done!
2272 */
2273 break;
2274 }
2275
2276 return ncsw;
2277 }
2278
2279 /***
2280 * kick_process - kick a running thread to enter/exit the kernel
2281 * @p: the to-be-kicked thread
2282 *
2283 * Cause a process which is running on another CPU to enter
2284 * kernel-mode, without any delay. (to get signals handled.)
2285 *
2286 * NOTE: this function doesnt have to take the runqueue lock,
2287 * because all it wants to ensure is that the remote task enters
2288 * the kernel. If the IPI races and the task has been migrated
2289 * to another CPU then no harm is done and the purpose has been
2290 * achieved as well.
2291 */
2292 void kick_process(struct task_struct *p)
2293 {
2294 int cpu;
2295
2296 preempt_disable();
2297 cpu = task_cpu(p);
2298 if ((cpu != smp_processor_id()) && task_curr(p))
2299 smp_send_reschedule(cpu);
2300 preempt_enable();
2301 }
2302 EXPORT_SYMBOL_GPL(kick_process);
2303 #endif /* CONFIG_SMP */
2304
2305 /**
2306 * task_oncpu_function_call - call a function on the cpu on which a task runs
2307 * @p: the task to evaluate
2308 * @func: the function to be called
2309 * @info: the function call argument
2310 *
2311 * Calls the function @func when the task is currently running. This might
2312 * be on the current CPU, which just calls the function directly
2313 */
2314 void task_oncpu_function_call(struct task_struct *p,
2315 void (*func) (void *info), void *info)
2316 {
2317 int cpu;
2318
2319 preempt_disable();
2320 cpu = task_cpu(p);
2321 if (task_curr(p))
2322 smp_call_function_single(cpu, func, info, 1);
2323 preempt_enable();
2324 }
2325
2326 /***
2327 * try_to_wake_up - wake up a thread
2328 * @p: the to-be-woken-up thread
2329 * @state: the mask of task states that can be woken
2330 * @sync: do a synchronous wakeup?
2331 *
2332 * Put it on the run-queue if it's not already there. The "current"
2333 * thread is always on the run-queue (except when the actual
2334 * re-schedule is in progress), and as such you're allowed to do
2335 * the simpler "current->state = TASK_RUNNING" to mark yourself
2336 * runnable without the overhead of this.
2337 *
2338 * returns failure only if the task is already active.
2339 */
2340 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2341 int wake_flags)
2342 {
2343 int cpu, orig_cpu, this_cpu, success = 0;
2344 unsigned long flags;
2345 struct rq *rq, *orig_rq;
2346
2347 if (!sched_feat(SYNC_WAKEUPS))
2348 wake_flags &= ~WF_SYNC;
2349
2350 this_cpu = get_cpu();
2351
2352 smp_wmb();
2353 rq = orig_rq = task_rq_lock(p, &flags);
2354 update_rq_clock(rq);
2355 if (!(p->state & state))
2356 goto out;
2357
2358 if (p->se.on_rq)
2359 goto out_running;
2360
2361 cpu = task_cpu(p);
2362 orig_cpu = cpu;
2363
2364 #ifdef CONFIG_SMP
2365 if (unlikely(task_running(rq, p)))
2366 goto out_activate;
2367
2368 /*
2369 * In order to handle concurrent wakeups and release the rq->lock
2370 * we put the task in TASK_WAKING state.
2371 *
2372 * First fix up the nr_uninterruptible count:
2373 */
2374 if (task_contributes_to_load(p))
2375 rq->nr_uninterruptible--;
2376 p->state = TASK_WAKING;
2377 task_rq_unlock(rq, &flags);
2378
2379 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2380 if (cpu != orig_cpu) {
2381 local_irq_save(flags);
2382 rq = cpu_rq(cpu);
2383 update_rq_clock(rq);
2384 set_task_cpu(p, cpu);
2385 local_irq_restore(flags);
2386 }
2387 rq = task_rq_lock(p, &flags);
2388
2389 WARN_ON(p->state != TASK_WAKING);
2390 cpu = task_cpu(p);
2391
2392 #ifdef CONFIG_SCHEDSTATS
2393 schedstat_inc(rq, ttwu_count);
2394 if (cpu == this_cpu)
2395 schedstat_inc(rq, ttwu_local);
2396 else {
2397 struct sched_domain *sd;
2398 for_each_domain(this_cpu, sd) {
2399 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2400 schedstat_inc(sd, ttwu_wake_remote);
2401 break;
2402 }
2403 }
2404 }
2405 #endif /* CONFIG_SCHEDSTATS */
2406
2407 out_activate:
2408 #endif /* CONFIG_SMP */
2409 schedstat_inc(p, se.nr_wakeups);
2410 if (wake_flags & WF_SYNC)
2411 schedstat_inc(p, se.nr_wakeups_sync);
2412 if (orig_cpu != cpu)
2413 schedstat_inc(p, se.nr_wakeups_migrate);
2414 if (cpu == this_cpu)
2415 schedstat_inc(p, se.nr_wakeups_local);
2416 else
2417 schedstat_inc(p, se.nr_wakeups_remote);
2418 activate_task(rq, p, 1);
2419 success = 1;
2420
2421 /*
2422 * Only attribute actual wakeups done by this task.
2423 */
2424 if (!in_interrupt()) {
2425 struct sched_entity *se = &current->se;
2426 u64 sample = se->sum_exec_runtime;
2427
2428 if (se->last_wakeup)
2429 sample -= se->last_wakeup;
2430 else
2431 sample -= se->start_runtime;
2432 update_avg(&se->avg_wakeup, sample);
2433
2434 se->last_wakeup = se->sum_exec_runtime;
2435 }
2436
2437 out_running:
2438 trace_sched_wakeup(rq, p, success);
2439 check_preempt_curr(rq, p, wake_flags);
2440
2441 p->state = TASK_RUNNING;
2442 #ifdef CONFIG_SMP
2443 if (p->sched_class->task_wake_up)
2444 p->sched_class->task_wake_up(rq, p);
2445
2446 if (unlikely(rq->idle_stamp)) {
2447 u64 delta = rq->clock - rq->idle_stamp;
2448 u64 max = 2*sysctl_sched_migration_cost;
2449
2450 if (delta > max)
2451 rq->avg_idle = max;
2452 else
2453 update_avg(&rq->avg_idle, delta);
2454 rq->idle_stamp = 0;
2455 }
2456 #endif
2457 out:
2458 task_rq_unlock(rq, &flags);
2459 put_cpu();
2460
2461 return success;
2462 }
2463
2464 /**
2465 * wake_up_process - Wake up a specific process
2466 * @p: The process to be woken up.
2467 *
2468 * Attempt to wake up the nominated process and move it to the set of runnable
2469 * processes. Returns 1 if the process was woken up, 0 if it was already
2470 * running.
2471 *
2472 * It may be assumed that this function implies a write memory barrier before
2473 * changing the task state if and only if any tasks are woken up.
2474 */
2475 int wake_up_process(struct task_struct *p)
2476 {
2477 return try_to_wake_up(p, TASK_ALL, 0);
2478 }
2479 EXPORT_SYMBOL(wake_up_process);
2480
2481 int wake_up_state(struct task_struct *p, unsigned int state)
2482 {
2483 return try_to_wake_up(p, state, 0);
2484 }
2485
2486 /*
2487 * Perform scheduler related setup for a newly forked process p.
2488 * p is forked by current.
2489 *
2490 * __sched_fork() is basic setup used by init_idle() too:
2491 */
2492 static void __sched_fork(struct task_struct *p)
2493 {
2494 p->se.exec_start = 0;
2495 p->se.sum_exec_runtime = 0;
2496 p->se.prev_sum_exec_runtime = 0;
2497 p->se.nr_migrations = 0;
2498 p->se.last_wakeup = 0;
2499 p->se.avg_overlap = 0;
2500 p->se.start_runtime = 0;
2501 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2502 p->se.avg_running = 0;
2503
2504 #ifdef CONFIG_SCHEDSTATS
2505 p->se.wait_start = 0;
2506 p->se.wait_max = 0;
2507 p->se.wait_count = 0;
2508 p->se.wait_sum = 0;
2509
2510 p->se.sleep_start = 0;
2511 p->se.sleep_max = 0;
2512 p->se.sum_sleep_runtime = 0;
2513
2514 p->se.block_start = 0;
2515 p->se.block_max = 0;
2516 p->se.exec_max = 0;
2517 p->se.slice_max = 0;
2518
2519 p->se.nr_migrations_cold = 0;
2520 p->se.nr_failed_migrations_affine = 0;
2521 p->se.nr_failed_migrations_running = 0;
2522 p->se.nr_failed_migrations_hot = 0;
2523 p->se.nr_forced_migrations = 0;
2524 p->se.nr_forced2_migrations = 0;
2525
2526 p->se.nr_wakeups = 0;
2527 p->se.nr_wakeups_sync = 0;
2528 p->se.nr_wakeups_migrate = 0;
2529 p->se.nr_wakeups_local = 0;
2530 p->se.nr_wakeups_remote = 0;
2531 p->se.nr_wakeups_affine = 0;
2532 p->se.nr_wakeups_affine_attempts = 0;
2533 p->se.nr_wakeups_passive = 0;
2534 p->se.nr_wakeups_idle = 0;
2535
2536 #endif
2537
2538 INIT_LIST_HEAD(&p->rt.run_list);
2539 p->se.on_rq = 0;
2540 INIT_LIST_HEAD(&p->se.group_node);
2541
2542 #ifdef CONFIG_PREEMPT_NOTIFIERS
2543 INIT_HLIST_HEAD(&p->preempt_notifiers);
2544 #endif
2545
2546 /*
2547 * We mark the process as running here, but have not actually
2548 * inserted it onto the runqueue yet. This guarantees that
2549 * nobody will actually run it, and a signal or other external
2550 * event cannot wake it up and insert it on the runqueue either.
2551 */
2552 p->state = TASK_RUNNING;
2553 }
2554
2555 /*
2556 * fork()/clone()-time setup:
2557 */
2558 void sched_fork(struct task_struct *p, int clone_flags)
2559 {
2560 int cpu = get_cpu();
2561 unsigned long flags;
2562
2563 __sched_fork(p);
2564
2565 /*
2566 * Revert to default priority/policy on fork if requested.
2567 */
2568 if (unlikely(p->sched_reset_on_fork)) {
2569 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2570 p->policy = SCHED_NORMAL;
2571 p->normal_prio = p->static_prio;
2572 }
2573
2574 if (PRIO_TO_NICE(p->static_prio) < 0) {
2575 p->static_prio = NICE_TO_PRIO(0);
2576 p->normal_prio = p->static_prio;
2577 set_load_weight(p);
2578 }
2579
2580 /*
2581 * We don't need the reset flag anymore after the fork. It has
2582 * fulfilled its duty:
2583 */
2584 p->sched_reset_on_fork = 0;
2585 }
2586
2587 /*
2588 * Make sure we do not leak PI boosting priority to the child.
2589 */
2590 p->prio = current->normal_prio;
2591
2592 if (!rt_prio(p->prio))
2593 p->sched_class = &fair_sched_class;
2594
2595 #ifdef CONFIG_SMP
2596 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2597 #endif
2598 local_irq_save(flags);
2599 update_rq_clock(cpu_rq(cpu));
2600 set_task_cpu(p, cpu);
2601 local_irq_restore(flags);
2602
2603 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2604 if (likely(sched_info_on()))
2605 memset(&p->sched_info, 0, sizeof(p->sched_info));
2606 #endif
2607 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2608 p->oncpu = 0;
2609 #endif
2610 #ifdef CONFIG_PREEMPT
2611 /* Want to start with kernel preemption disabled. */
2612 task_thread_info(p)->preempt_count = 1;
2613 #endif
2614 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2615
2616 put_cpu();
2617 }
2618
2619 /*
2620 * wake_up_new_task - wake up a newly created task for the first time.
2621 *
2622 * This function will do some initial scheduler statistics housekeeping
2623 * that must be done for every newly created context, then puts the task
2624 * on the runqueue and wakes it.
2625 */
2626 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2627 {
2628 unsigned long flags;
2629 struct rq *rq;
2630
2631 rq = task_rq_lock(p, &flags);
2632 BUG_ON(p->state != TASK_RUNNING);
2633 update_rq_clock(rq);
2634
2635 if (!p->sched_class->task_new || !current->se.on_rq) {
2636 activate_task(rq, p, 0);
2637 } else {
2638 /*
2639 * Let the scheduling class do new task startup
2640 * management (if any):
2641 */
2642 p->sched_class->task_new(rq, p);
2643 inc_nr_running(rq);
2644 }
2645 trace_sched_wakeup_new(rq, p, 1);
2646 check_preempt_curr(rq, p, WF_FORK);
2647 #ifdef CONFIG_SMP
2648 if (p->sched_class->task_wake_up)
2649 p->sched_class->task_wake_up(rq, p);
2650 #endif
2651 task_rq_unlock(rq, &flags);
2652 }
2653
2654 #ifdef CONFIG_PREEMPT_NOTIFIERS
2655
2656 /**
2657 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2658 * @notifier: notifier struct to register
2659 */
2660 void preempt_notifier_register(struct preempt_notifier *notifier)
2661 {
2662 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2663 }
2664 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2665
2666 /**
2667 * preempt_notifier_unregister - no longer interested in preemption notifications
2668 * @notifier: notifier struct to unregister
2669 *
2670 * This is safe to call from within a preemption notifier.
2671 */
2672 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2673 {
2674 hlist_del(&notifier->link);
2675 }
2676 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2677
2678 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2679 {
2680 struct preempt_notifier *notifier;
2681 struct hlist_node *node;
2682
2683 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2684 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2685 }
2686
2687 static void
2688 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2689 struct task_struct *next)
2690 {
2691 struct preempt_notifier *notifier;
2692 struct hlist_node *node;
2693
2694 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2695 notifier->ops->sched_out(notifier, next);
2696 }
2697
2698 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2699
2700 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2701 {
2702 }
2703
2704 static void
2705 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2706 struct task_struct *next)
2707 {
2708 }
2709
2710 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2711
2712 /**
2713 * prepare_task_switch - prepare to switch tasks
2714 * @rq: the runqueue preparing to switch
2715 * @prev: the current task that is being switched out
2716 * @next: the task we are going to switch to.
2717 *
2718 * This is called with the rq lock held and interrupts off. It must
2719 * be paired with a subsequent finish_task_switch after the context
2720 * switch.
2721 *
2722 * prepare_task_switch sets up locking and calls architecture specific
2723 * hooks.
2724 */
2725 static inline void
2726 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2727 struct task_struct *next)
2728 {
2729 fire_sched_out_preempt_notifiers(prev, next);
2730 prepare_lock_switch(rq, next);
2731 prepare_arch_switch(next);
2732 }
2733
2734 /**
2735 * finish_task_switch - clean up after a task-switch
2736 * @rq: runqueue associated with task-switch
2737 * @prev: the thread we just switched away from.
2738 *
2739 * finish_task_switch must be called after the context switch, paired
2740 * with a prepare_task_switch call before the context switch.
2741 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2742 * and do any other architecture-specific cleanup actions.
2743 *
2744 * Note that we may have delayed dropping an mm in context_switch(). If
2745 * so, we finish that here outside of the runqueue lock. (Doing it
2746 * with the lock held can cause deadlocks; see schedule() for
2747 * details.)
2748 */
2749 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2750 __releases(rq->lock)
2751 {
2752 struct mm_struct *mm = rq->prev_mm;
2753 long prev_state;
2754
2755 rq->prev_mm = NULL;
2756
2757 /*
2758 * A task struct has one reference for the use as "current".
2759 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2760 * schedule one last time. The schedule call will never return, and
2761 * the scheduled task must drop that reference.
2762 * The test for TASK_DEAD must occur while the runqueue locks are
2763 * still held, otherwise prev could be scheduled on another cpu, die
2764 * there before we look at prev->state, and then the reference would
2765 * be dropped twice.
2766 * Manfred Spraul <manfred@colorfullife.com>
2767 */
2768 prev_state = prev->state;
2769 finish_arch_switch(prev);
2770 perf_event_task_sched_in(current, cpu_of(rq));
2771 finish_lock_switch(rq, prev);
2772
2773 fire_sched_in_preempt_notifiers(current);
2774 if (mm)
2775 mmdrop(mm);
2776 if (unlikely(prev_state == TASK_DEAD)) {
2777 /*
2778 * Remove function-return probe instances associated with this
2779 * task and put them back on the free list.
2780 */
2781 kprobe_flush_task(prev);
2782 put_task_struct(prev);
2783 }
2784 }
2785
2786 #ifdef CONFIG_SMP
2787
2788 /* assumes rq->lock is held */
2789 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2790 {
2791 if (prev->sched_class->pre_schedule)
2792 prev->sched_class->pre_schedule(rq, prev);
2793 }
2794
2795 /* rq->lock is NOT held, but preemption is disabled */
2796 static inline void post_schedule(struct rq *rq)
2797 {
2798 if (rq->post_schedule) {
2799 unsigned long flags;
2800
2801 spin_lock_irqsave(&rq->lock, flags);
2802 if (rq->curr->sched_class->post_schedule)
2803 rq->curr->sched_class->post_schedule(rq);
2804 spin_unlock_irqrestore(&rq->lock, flags);
2805
2806 rq->post_schedule = 0;
2807 }
2808 }
2809
2810 #else
2811
2812 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2813 {
2814 }
2815
2816 static inline void post_schedule(struct rq *rq)
2817 {
2818 }
2819
2820 #endif
2821
2822 /**
2823 * schedule_tail - first thing a freshly forked thread must call.
2824 * @prev: the thread we just switched away from.
2825 */
2826 asmlinkage void schedule_tail(struct task_struct *prev)
2827 __releases(rq->lock)
2828 {
2829 struct rq *rq = this_rq();
2830
2831 finish_task_switch(rq, prev);
2832
2833 /*
2834 * FIXME: do we need to worry about rq being invalidated by the
2835 * task_switch?
2836 */
2837 post_schedule(rq);
2838
2839 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2840 /* In this case, finish_task_switch does not reenable preemption */
2841 preempt_enable();
2842 #endif
2843 if (current->set_child_tid)
2844 put_user(task_pid_vnr(current), current->set_child_tid);
2845 }
2846
2847 /*
2848 * context_switch - switch to the new MM and the new
2849 * thread's register state.
2850 */
2851 static inline void
2852 context_switch(struct rq *rq, struct task_struct *prev,
2853 struct task_struct *next)
2854 {
2855 struct mm_struct *mm, *oldmm;
2856
2857 prepare_task_switch(rq, prev, next);
2858 trace_sched_switch(rq, prev, next);
2859 mm = next->mm;
2860 oldmm = prev->active_mm;
2861 /*
2862 * For paravirt, this is coupled with an exit in switch_to to
2863 * combine the page table reload and the switch backend into
2864 * one hypercall.
2865 */
2866 arch_start_context_switch(prev);
2867
2868 if (likely(!mm)) {
2869 next->active_mm = oldmm;
2870 atomic_inc(&oldmm->mm_count);
2871 enter_lazy_tlb(oldmm, next);
2872 } else
2873 switch_mm(oldmm, mm, next);
2874
2875 if (likely(!prev->mm)) {
2876 prev->active_mm = NULL;
2877 rq->prev_mm = oldmm;
2878 }
2879 /*
2880 * Since the runqueue lock will be released by the next
2881 * task (which is an invalid locking op but in the case
2882 * of the scheduler it's an obvious special-case), so we
2883 * do an early lockdep release here:
2884 */
2885 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2886 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2887 #endif
2888
2889 /* Here we just switch the register state and the stack. */
2890 switch_to(prev, next, prev);
2891
2892 barrier();
2893 /*
2894 * this_rq must be evaluated again because prev may have moved
2895 * CPUs since it called schedule(), thus the 'rq' on its stack
2896 * frame will be invalid.
2897 */
2898 finish_task_switch(this_rq(), prev);
2899 }
2900
2901 /*
2902 * nr_running, nr_uninterruptible and nr_context_switches:
2903 *
2904 * externally visible scheduler statistics: current number of runnable
2905 * threads, current number of uninterruptible-sleeping threads, total
2906 * number of context switches performed since bootup.
2907 */
2908 unsigned long nr_running(void)
2909 {
2910 unsigned long i, sum = 0;
2911
2912 for_each_online_cpu(i)
2913 sum += cpu_rq(i)->nr_running;
2914
2915 return sum;
2916 }
2917
2918 unsigned long nr_uninterruptible(void)
2919 {
2920 unsigned long i, sum = 0;
2921
2922 for_each_possible_cpu(i)
2923 sum += cpu_rq(i)->nr_uninterruptible;
2924
2925 /*
2926 * Since we read the counters lockless, it might be slightly
2927 * inaccurate. Do not allow it to go below zero though:
2928 */
2929 if (unlikely((long)sum < 0))
2930 sum = 0;
2931
2932 return sum;
2933 }
2934
2935 unsigned long long nr_context_switches(void)
2936 {
2937 int i;
2938 unsigned long long sum = 0;
2939
2940 for_each_possible_cpu(i)
2941 sum += cpu_rq(i)->nr_switches;
2942
2943 return sum;
2944 }
2945
2946 unsigned long nr_iowait(void)
2947 {
2948 unsigned long i, sum = 0;
2949
2950 for_each_possible_cpu(i)
2951 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2952
2953 return sum;
2954 }
2955
2956 unsigned long nr_iowait_cpu(void)
2957 {
2958 struct rq *this = this_rq();
2959 return atomic_read(&this->nr_iowait);
2960 }
2961
2962 unsigned long this_cpu_load(void)
2963 {
2964 struct rq *this = this_rq();
2965 return this->cpu_load[0];
2966 }
2967
2968
2969 /* Variables and functions for calc_load */
2970 static atomic_long_t calc_load_tasks;
2971 static unsigned long calc_load_update;
2972 unsigned long avenrun[3];
2973 EXPORT_SYMBOL(avenrun);
2974
2975 /**
2976 * get_avenrun - get the load average array
2977 * @loads: pointer to dest load array
2978 * @offset: offset to add
2979 * @shift: shift count to shift the result left
2980 *
2981 * These values are estimates at best, so no need for locking.
2982 */
2983 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2984 {
2985 loads[0] = (avenrun[0] + offset) << shift;
2986 loads[1] = (avenrun[1] + offset) << shift;
2987 loads[2] = (avenrun[2] + offset) << shift;
2988 }
2989
2990 static unsigned long
2991 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2992 {
2993 load *= exp;
2994 load += active * (FIXED_1 - exp);
2995 return load >> FSHIFT;
2996 }
2997
2998 /*
2999 * calc_load - update the avenrun load estimates 10 ticks after the
3000 * CPUs have updated calc_load_tasks.
3001 */
3002 void calc_global_load(void)
3003 {
3004 unsigned long upd = calc_load_update + 10;
3005 long active;
3006
3007 if (time_before(jiffies, upd))
3008 return;
3009
3010 active = atomic_long_read(&calc_load_tasks);
3011 active = active > 0 ? active * FIXED_1 : 0;
3012
3013 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3014 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3015 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3016
3017 calc_load_update += LOAD_FREQ;
3018 }
3019
3020 /*
3021 * Either called from update_cpu_load() or from a cpu going idle
3022 */
3023 static void calc_load_account_active(struct rq *this_rq)
3024 {
3025 long nr_active, delta;
3026
3027 nr_active = this_rq->nr_running;
3028 nr_active += (long) this_rq->nr_uninterruptible;
3029
3030 if (nr_active != this_rq->calc_load_active) {
3031 delta = nr_active - this_rq->calc_load_active;
3032 this_rq->calc_load_active = nr_active;
3033 atomic_long_add(delta, &calc_load_tasks);
3034 }
3035 }
3036
3037 /*
3038 * Update rq->cpu_load[] statistics. This function is usually called every
3039 * scheduler tick (TICK_NSEC).
3040 */
3041 static void update_cpu_load(struct rq *this_rq)
3042 {
3043 unsigned long this_load = this_rq->load.weight;
3044 int i, scale;
3045
3046 this_rq->nr_load_updates++;
3047
3048 /* Update our load: */
3049 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3050 unsigned long old_load, new_load;
3051
3052 /* scale is effectively 1 << i now, and >> i divides by scale */
3053
3054 old_load = this_rq->cpu_load[i];
3055 new_load = this_load;
3056 /*
3057 * Round up the averaging division if load is increasing. This
3058 * prevents us from getting stuck on 9 if the load is 10, for
3059 * example.
3060 */
3061 if (new_load > old_load)
3062 new_load += scale-1;
3063 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3064 }
3065
3066 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3067 this_rq->calc_load_update += LOAD_FREQ;
3068 calc_load_account_active(this_rq);
3069 }
3070 }
3071
3072 #ifdef CONFIG_SMP
3073
3074 /*
3075 * double_rq_lock - safely lock two runqueues
3076 *
3077 * Note this does not disable interrupts like task_rq_lock,
3078 * you need to do so manually before calling.
3079 */
3080 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3081 __acquires(rq1->lock)
3082 __acquires(rq2->lock)
3083 {
3084 BUG_ON(!irqs_disabled());
3085 if (rq1 == rq2) {
3086 spin_lock(&rq1->lock);
3087 __acquire(rq2->lock); /* Fake it out ;) */
3088 } else {
3089 if (rq1 < rq2) {
3090 spin_lock(&rq1->lock);
3091 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3092 } else {
3093 spin_lock(&rq2->lock);
3094 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3095 }
3096 }
3097 update_rq_clock(rq1);
3098 update_rq_clock(rq2);
3099 }
3100
3101 /*
3102 * double_rq_unlock - safely unlock two runqueues
3103 *
3104 * Note this does not restore interrupts like task_rq_unlock,
3105 * you need to do so manually after calling.
3106 */
3107 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3108 __releases(rq1->lock)
3109 __releases(rq2->lock)
3110 {
3111 spin_unlock(&rq1->lock);
3112 if (rq1 != rq2)
3113 spin_unlock(&rq2->lock);
3114 else
3115 __release(rq2->lock);
3116 }
3117
3118 /*
3119 * If dest_cpu is allowed for this process, migrate the task to it.
3120 * This is accomplished by forcing the cpu_allowed mask to only
3121 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3122 * the cpu_allowed mask is restored.
3123 */
3124 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3125 {
3126 struct migration_req req;
3127 unsigned long flags;
3128 struct rq *rq;
3129
3130 rq = task_rq_lock(p, &flags);
3131 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3132 || unlikely(!cpu_active(dest_cpu)))
3133 goto out;
3134
3135 /* force the process onto the specified CPU */
3136 if (migrate_task(p, dest_cpu, &req)) {
3137 /* Need to wait for migration thread (might exit: take ref). */
3138 struct task_struct *mt = rq->migration_thread;
3139
3140 get_task_struct(mt);
3141 task_rq_unlock(rq, &flags);
3142 wake_up_process(mt);
3143 put_task_struct(mt);
3144 wait_for_completion(&req.done);
3145
3146 return;
3147 }
3148 out:
3149 task_rq_unlock(rq, &flags);
3150 }
3151
3152 /*
3153 * sched_exec - execve() is a valuable balancing opportunity, because at
3154 * this point the task has the smallest effective memory and cache footprint.
3155 */
3156 void sched_exec(void)
3157 {
3158 int new_cpu, this_cpu = get_cpu();
3159 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3160 put_cpu();
3161 if (new_cpu != this_cpu)
3162 sched_migrate_task(current, new_cpu);
3163 }
3164
3165 /*
3166 * pull_task - move a task from a remote runqueue to the local runqueue.
3167 * Both runqueues must be locked.
3168 */
3169 static void pull_task(struct rq *src_rq, struct task_struct *p,
3170 struct rq *this_rq, int this_cpu)
3171 {
3172 deactivate_task(src_rq, p, 0);
3173 set_task_cpu(p, this_cpu);
3174 activate_task(this_rq, p, 0);
3175 /*
3176 * Note that idle threads have a prio of MAX_PRIO, for this test
3177 * to be always true for them.
3178 */
3179 check_preempt_curr(this_rq, p, 0);
3180 }
3181
3182 /*
3183 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3184 */
3185 static
3186 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3187 struct sched_domain *sd, enum cpu_idle_type idle,
3188 int *all_pinned)
3189 {
3190 int tsk_cache_hot = 0;
3191 /*
3192 * We do not migrate tasks that are:
3193 * 1) running (obviously), or
3194 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3195 * 3) are cache-hot on their current CPU.
3196 */
3197 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3198 schedstat_inc(p, se.nr_failed_migrations_affine);
3199 return 0;
3200 }
3201 *all_pinned = 0;
3202
3203 if (task_running(rq, p)) {
3204 schedstat_inc(p, se.nr_failed_migrations_running);
3205 return 0;
3206 }
3207
3208 /*
3209 * Aggressive migration if:
3210 * 1) task is cache cold, or
3211 * 2) too many balance attempts have failed.
3212 */
3213
3214 tsk_cache_hot = task_hot(p, rq->clock, sd);
3215 if (!tsk_cache_hot ||
3216 sd->nr_balance_failed > sd->cache_nice_tries) {
3217 #ifdef CONFIG_SCHEDSTATS
3218 if (tsk_cache_hot) {
3219 schedstat_inc(sd, lb_hot_gained[idle]);
3220 schedstat_inc(p, se.nr_forced_migrations);
3221 }
3222 #endif
3223 return 1;
3224 }
3225
3226 if (tsk_cache_hot) {
3227 schedstat_inc(p, se.nr_failed_migrations_hot);
3228 return 0;
3229 }
3230 return 1;
3231 }
3232
3233 static unsigned long
3234 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3235 unsigned long max_load_move, struct sched_domain *sd,
3236 enum cpu_idle_type idle, int *all_pinned,
3237 int *this_best_prio, struct rq_iterator *iterator)
3238 {
3239 int loops = 0, pulled = 0, pinned = 0;
3240 struct task_struct *p;
3241 long rem_load_move = max_load_move;
3242
3243 if (max_load_move == 0)
3244 goto out;
3245
3246 pinned = 1;
3247
3248 /*
3249 * Start the load-balancing iterator:
3250 */
3251 p = iterator->start(iterator->arg);
3252 next:
3253 if (!p || loops++ > sysctl_sched_nr_migrate)
3254 goto out;
3255
3256 if ((p->se.load.weight >> 1) > rem_load_move ||
3257 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3258 p = iterator->next(iterator->arg);
3259 goto next;
3260 }
3261
3262 pull_task(busiest, p, this_rq, this_cpu);
3263 pulled++;
3264 rem_load_move -= p->se.load.weight;
3265
3266 #ifdef CONFIG_PREEMPT
3267 /*
3268 * NEWIDLE balancing is a source of latency, so preemptible kernels
3269 * will stop after the first task is pulled to minimize the critical
3270 * section.
3271 */
3272 if (idle == CPU_NEWLY_IDLE)
3273 goto out;
3274 #endif
3275
3276 /*
3277 * We only want to steal up to the prescribed amount of weighted load.
3278 */
3279 if (rem_load_move > 0) {
3280 if (p->prio < *this_best_prio)
3281 *this_best_prio = p->prio;
3282 p = iterator->next(iterator->arg);
3283 goto next;
3284 }
3285 out:
3286 /*
3287 * Right now, this is one of only two places pull_task() is called,
3288 * so we can safely collect pull_task() stats here rather than
3289 * inside pull_task().
3290 */
3291 schedstat_add(sd, lb_gained[idle], pulled);
3292
3293 if (all_pinned)
3294 *all_pinned = pinned;
3295
3296 return max_load_move - rem_load_move;
3297 }
3298
3299 /*
3300 * move_tasks tries to move up to max_load_move weighted load from busiest to
3301 * this_rq, as part of a balancing operation within domain "sd".
3302 * Returns 1 if successful and 0 otherwise.
3303 *
3304 * Called with both runqueues locked.
3305 */
3306 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3307 unsigned long max_load_move,
3308 struct sched_domain *sd, enum cpu_idle_type idle,
3309 int *all_pinned)
3310 {
3311 const struct sched_class *class = sched_class_highest;
3312 unsigned long total_load_moved = 0;
3313 int this_best_prio = this_rq->curr->prio;
3314
3315 do {
3316 total_load_moved +=
3317 class->load_balance(this_rq, this_cpu, busiest,
3318 max_load_move - total_load_moved,
3319 sd, idle, all_pinned, &this_best_prio);
3320 class = class->next;
3321
3322 #ifdef CONFIG_PREEMPT
3323 /*
3324 * NEWIDLE balancing is a source of latency, so preemptible
3325 * kernels will stop after the first task is pulled to minimize
3326 * the critical section.
3327 */
3328 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3329 break;
3330 #endif
3331 } while (class && max_load_move > total_load_moved);
3332
3333 return total_load_moved > 0;
3334 }
3335
3336 static int
3337 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3338 struct sched_domain *sd, enum cpu_idle_type idle,
3339 struct rq_iterator *iterator)
3340 {
3341 struct task_struct *p = iterator->start(iterator->arg);
3342 int pinned = 0;
3343
3344 while (p) {
3345 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3346 pull_task(busiest, p, this_rq, this_cpu);
3347 /*
3348 * Right now, this is only the second place pull_task()
3349 * is called, so we can safely collect pull_task()
3350 * stats here rather than inside pull_task().
3351 */
3352 schedstat_inc(sd, lb_gained[idle]);
3353
3354 return 1;
3355 }
3356 p = iterator->next(iterator->arg);
3357 }
3358
3359 return 0;
3360 }
3361
3362 /*
3363 * move_one_task tries to move exactly one task from busiest to this_rq, as
3364 * part of active balancing operations within "domain".
3365 * Returns 1 if successful and 0 otherwise.
3366 *
3367 * Called with both runqueues locked.
3368 */
3369 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3370 struct sched_domain *sd, enum cpu_idle_type idle)
3371 {
3372 const struct sched_class *class;
3373
3374 for_each_class(class) {
3375 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3376 return 1;
3377 }
3378
3379 return 0;
3380 }
3381 /********** Helpers for find_busiest_group ************************/
3382 /*
3383 * sd_lb_stats - Structure to store the statistics of a sched_domain
3384 * during load balancing.
3385 */
3386 struct sd_lb_stats {
3387 struct sched_group *busiest; /* Busiest group in this sd */
3388 struct sched_group *this; /* Local group in this sd */
3389 unsigned long total_load; /* Total load of all groups in sd */
3390 unsigned long total_pwr; /* Total power of all groups in sd */
3391 unsigned long avg_load; /* Average load across all groups in sd */
3392
3393 /** Statistics of this group */
3394 unsigned long this_load;
3395 unsigned long this_load_per_task;
3396 unsigned long this_nr_running;
3397
3398 /* Statistics of the busiest group */
3399 unsigned long max_load;
3400 unsigned long busiest_load_per_task;
3401 unsigned long busiest_nr_running;
3402
3403 int group_imb; /* Is there imbalance in this sd */
3404 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3405 int power_savings_balance; /* Is powersave balance needed for this sd */
3406 struct sched_group *group_min; /* Least loaded group in sd */
3407 struct sched_group *group_leader; /* Group which relieves group_min */
3408 unsigned long min_load_per_task; /* load_per_task in group_min */
3409 unsigned long leader_nr_running; /* Nr running of group_leader */
3410 unsigned long min_nr_running; /* Nr running of group_min */
3411 #endif
3412 };
3413
3414 /*
3415 * sg_lb_stats - stats of a sched_group required for load_balancing
3416 */
3417 struct sg_lb_stats {
3418 unsigned long avg_load; /*Avg load across the CPUs of the group */
3419 unsigned long group_load; /* Total load over the CPUs of the group */
3420 unsigned long sum_nr_running; /* Nr tasks running in the group */
3421 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3422 unsigned long group_capacity;
3423 int group_imb; /* Is there an imbalance in the group ? */
3424 };
3425
3426 /**
3427 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3428 * @group: The group whose first cpu is to be returned.
3429 */
3430 static inline unsigned int group_first_cpu(struct sched_group *group)
3431 {
3432 return cpumask_first(sched_group_cpus(group));
3433 }
3434
3435 /**
3436 * get_sd_load_idx - Obtain the load index for a given sched domain.
3437 * @sd: The sched_domain whose load_idx is to be obtained.
3438 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3439 */
3440 static inline int get_sd_load_idx(struct sched_domain *sd,
3441 enum cpu_idle_type idle)
3442 {
3443 int load_idx;
3444
3445 switch (idle) {
3446 case CPU_NOT_IDLE:
3447 load_idx = sd->busy_idx;
3448 break;
3449
3450 case CPU_NEWLY_IDLE:
3451 load_idx = sd->newidle_idx;
3452 break;
3453 default:
3454 load_idx = sd->idle_idx;
3455 break;
3456 }
3457
3458 return load_idx;
3459 }
3460
3461
3462 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3463 /**
3464 * init_sd_power_savings_stats - Initialize power savings statistics for
3465 * the given sched_domain, during load balancing.
3466 *
3467 * @sd: Sched domain whose power-savings statistics are to be initialized.
3468 * @sds: Variable containing the statistics for sd.
3469 * @idle: Idle status of the CPU at which we're performing load-balancing.
3470 */
3471 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3472 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3473 {
3474 /*
3475 * Busy processors will not participate in power savings
3476 * balance.
3477 */
3478 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3479 sds->power_savings_balance = 0;
3480 else {
3481 sds->power_savings_balance = 1;
3482 sds->min_nr_running = ULONG_MAX;
3483 sds->leader_nr_running = 0;
3484 }
3485 }
3486
3487 /**
3488 * update_sd_power_savings_stats - Update the power saving stats for a
3489 * sched_domain while performing load balancing.
3490 *
3491 * @group: sched_group belonging to the sched_domain under consideration.
3492 * @sds: Variable containing the statistics of the sched_domain
3493 * @local_group: Does group contain the CPU for which we're performing
3494 * load balancing ?
3495 * @sgs: Variable containing the statistics of the group.
3496 */
3497 static inline void update_sd_power_savings_stats(struct sched_group *group,
3498 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3499 {
3500
3501 if (!sds->power_savings_balance)
3502 return;
3503
3504 /*
3505 * If the local group is idle or completely loaded
3506 * no need to do power savings balance at this domain
3507 */
3508 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3509 !sds->this_nr_running))
3510 sds->power_savings_balance = 0;
3511
3512 /*
3513 * If a group is already running at full capacity or idle,
3514 * don't include that group in power savings calculations
3515 */
3516 if (!sds->power_savings_balance ||
3517 sgs->sum_nr_running >= sgs->group_capacity ||
3518 !sgs->sum_nr_running)
3519 return;
3520
3521 /*
3522 * Calculate the group which has the least non-idle load.
3523 * This is the group from where we need to pick up the load
3524 * for saving power
3525 */
3526 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3527 (sgs->sum_nr_running == sds->min_nr_running &&
3528 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3529 sds->group_min = group;
3530 sds->min_nr_running = sgs->sum_nr_running;
3531 sds->min_load_per_task = sgs->sum_weighted_load /
3532 sgs->sum_nr_running;
3533 }
3534
3535 /*
3536 * Calculate the group which is almost near its
3537 * capacity but still has some space to pick up some load
3538 * from other group and save more power
3539 */
3540 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3541 return;
3542
3543 if (sgs->sum_nr_running > sds->leader_nr_running ||
3544 (sgs->sum_nr_running == sds->leader_nr_running &&
3545 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3546 sds->group_leader = group;
3547 sds->leader_nr_running = sgs->sum_nr_running;
3548 }
3549 }
3550
3551 /**
3552 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3553 * @sds: Variable containing the statistics of the sched_domain
3554 * under consideration.
3555 * @this_cpu: Cpu at which we're currently performing load-balancing.
3556 * @imbalance: Variable to store the imbalance.
3557 *
3558 * Description:
3559 * Check if we have potential to perform some power-savings balance.
3560 * If yes, set the busiest group to be the least loaded group in the
3561 * sched_domain, so that it's CPUs can be put to idle.
3562 *
3563 * Returns 1 if there is potential to perform power-savings balance.
3564 * Else returns 0.
3565 */
3566 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3567 int this_cpu, unsigned long *imbalance)
3568 {
3569 if (!sds->power_savings_balance)
3570 return 0;
3571
3572 if (sds->this != sds->group_leader ||
3573 sds->group_leader == sds->group_min)
3574 return 0;
3575
3576 *imbalance = sds->min_load_per_task;
3577 sds->busiest = sds->group_min;
3578
3579 return 1;
3580
3581 }
3582 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3583 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3584 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3585 {
3586 return;
3587 }
3588
3589 static inline void update_sd_power_savings_stats(struct sched_group *group,
3590 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3591 {
3592 return;
3593 }
3594
3595 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3596 int this_cpu, unsigned long *imbalance)
3597 {
3598 return 0;
3599 }
3600 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3601
3602
3603 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3604 {
3605 return SCHED_LOAD_SCALE;
3606 }
3607
3608 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3609 {
3610 return default_scale_freq_power(sd, cpu);
3611 }
3612
3613 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3614 {
3615 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3616 unsigned long smt_gain = sd->smt_gain;
3617
3618 smt_gain /= weight;
3619
3620 return smt_gain;
3621 }
3622
3623 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3624 {
3625 return default_scale_smt_power(sd, cpu);
3626 }
3627
3628 unsigned long scale_rt_power(int cpu)
3629 {
3630 struct rq *rq = cpu_rq(cpu);
3631 u64 total, available;
3632
3633 sched_avg_update(rq);
3634
3635 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3636 available = total - rq->rt_avg;
3637
3638 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3639 total = SCHED_LOAD_SCALE;
3640
3641 total >>= SCHED_LOAD_SHIFT;
3642
3643 return div_u64(available, total);
3644 }
3645
3646 static void update_cpu_power(struct sched_domain *sd, int cpu)
3647 {
3648 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3649 unsigned long power = SCHED_LOAD_SCALE;
3650 struct sched_group *sdg = sd->groups;
3651
3652 if (sched_feat(ARCH_POWER))
3653 power *= arch_scale_freq_power(sd, cpu);
3654 else
3655 power *= default_scale_freq_power(sd, cpu);
3656
3657 power >>= SCHED_LOAD_SHIFT;
3658
3659 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3660 if (sched_feat(ARCH_POWER))
3661 power *= arch_scale_smt_power(sd, cpu);
3662 else
3663 power *= default_scale_smt_power(sd, cpu);
3664
3665 power >>= SCHED_LOAD_SHIFT;
3666 }
3667
3668 power *= scale_rt_power(cpu);
3669 power >>= SCHED_LOAD_SHIFT;
3670
3671 if (!power)
3672 power = 1;
3673
3674 sdg->cpu_power = power;
3675 }
3676
3677 static void update_group_power(struct sched_domain *sd, int cpu)
3678 {
3679 struct sched_domain *child = sd->child;
3680 struct sched_group *group, *sdg = sd->groups;
3681 unsigned long power;
3682
3683 if (!child) {
3684 update_cpu_power(sd, cpu);
3685 return;
3686 }
3687
3688 power = 0;
3689
3690 group = child->groups;
3691 do {
3692 power += group->cpu_power;
3693 group = group->next;
3694 } while (group != child->groups);
3695
3696 sdg->cpu_power = power;
3697 }
3698
3699 /**
3700 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3701 * @sd: The sched_domain whose statistics are to be updated.
3702 * @group: sched_group whose statistics are to be updated.
3703 * @this_cpu: Cpu for which load balance is currently performed.
3704 * @idle: Idle status of this_cpu
3705 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3706 * @sd_idle: Idle status of the sched_domain containing group.
3707 * @local_group: Does group contain this_cpu.
3708 * @cpus: Set of cpus considered for load balancing.
3709 * @balance: Should we balance.
3710 * @sgs: variable to hold the statistics for this group.
3711 */
3712 static inline void update_sg_lb_stats(struct sched_domain *sd,
3713 struct sched_group *group, int this_cpu,
3714 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3715 int local_group, const struct cpumask *cpus,
3716 int *balance, struct sg_lb_stats *sgs)
3717 {
3718 unsigned long load, max_cpu_load, min_cpu_load;
3719 int i;
3720 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3721 unsigned long sum_avg_load_per_task;
3722 unsigned long avg_load_per_task;
3723
3724 if (local_group) {
3725 balance_cpu = group_first_cpu(group);
3726 if (balance_cpu == this_cpu)
3727 update_group_power(sd, this_cpu);
3728 }
3729
3730 /* Tally up the load of all CPUs in the group */
3731 sum_avg_load_per_task = avg_load_per_task = 0;
3732 max_cpu_load = 0;
3733 min_cpu_load = ~0UL;
3734
3735 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3736 struct rq *rq = cpu_rq(i);
3737
3738 if (*sd_idle && rq->nr_running)
3739 *sd_idle = 0;
3740
3741 /* Bias balancing toward cpus of our domain */
3742 if (local_group) {
3743 if (idle_cpu(i) && !first_idle_cpu) {
3744 first_idle_cpu = 1;
3745 balance_cpu = i;
3746 }
3747
3748 load = target_load(i, load_idx);
3749 } else {
3750 load = source_load(i, load_idx);
3751 if (load > max_cpu_load)
3752 max_cpu_load = load;
3753 if (min_cpu_load > load)
3754 min_cpu_load = load;
3755 }
3756
3757 sgs->group_load += load;
3758 sgs->sum_nr_running += rq->nr_running;
3759 sgs->sum_weighted_load += weighted_cpuload(i);
3760
3761 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3762 }
3763
3764 /*
3765 * First idle cpu or the first cpu(busiest) in this sched group
3766 * is eligible for doing load balancing at this and above
3767 * domains. In the newly idle case, we will allow all the cpu's
3768 * to do the newly idle load balance.
3769 */
3770 if (idle != CPU_NEWLY_IDLE && local_group &&
3771 balance_cpu != this_cpu && balance) {
3772 *balance = 0;
3773 return;
3774 }
3775
3776 /* Adjust by relative CPU power of the group */
3777 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3778
3779
3780 /*
3781 * Consider the group unbalanced when the imbalance is larger
3782 * than the average weight of two tasks.
3783 *
3784 * APZ: with cgroup the avg task weight can vary wildly and
3785 * might not be a suitable number - should we keep a
3786 * normalized nr_running number somewhere that negates
3787 * the hierarchy?
3788 */
3789 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3790 group->cpu_power;
3791
3792 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3793 sgs->group_imb = 1;
3794
3795 sgs->group_capacity =
3796 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3797 }
3798
3799 /**
3800 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3801 * @sd: sched_domain whose statistics are to be updated.
3802 * @this_cpu: Cpu for which load balance is currently performed.
3803 * @idle: Idle status of this_cpu
3804 * @sd_idle: Idle status of the sched_domain containing group.
3805 * @cpus: Set of cpus considered for load balancing.
3806 * @balance: Should we balance.
3807 * @sds: variable to hold the statistics for this sched_domain.
3808 */
3809 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3810 enum cpu_idle_type idle, int *sd_idle,
3811 const struct cpumask *cpus, int *balance,
3812 struct sd_lb_stats *sds)
3813 {
3814 struct sched_domain *child = sd->child;
3815 struct sched_group *group = sd->groups;
3816 struct sg_lb_stats sgs;
3817 int load_idx, prefer_sibling = 0;
3818
3819 if (child && child->flags & SD_PREFER_SIBLING)
3820 prefer_sibling = 1;
3821
3822 init_sd_power_savings_stats(sd, sds, idle);
3823 load_idx = get_sd_load_idx(sd, idle);
3824
3825 do {
3826 int local_group;
3827
3828 local_group = cpumask_test_cpu(this_cpu,
3829 sched_group_cpus(group));
3830 memset(&sgs, 0, sizeof(sgs));
3831 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3832 local_group, cpus, balance, &sgs);
3833
3834 if (local_group && balance && !(*balance))
3835 return;
3836
3837 sds->total_load += sgs.group_load;
3838 sds->total_pwr += group->cpu_power;
3839
3840 /*
3841 * In case the child domain prefers tasks go to siblings
3842 * first, lower the group capacity to one so that we'll try
3843 * and move all the excess tasks away.
3844 */
3845 if (prefer_sibling)
3846 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3847
3848 if (local_group) {
3849 sds->this_load = sgs.avg_load;
3850 sds->this = group;
3851 sds->this_nr_running = sgs.sum_nr_running;
3852 sds->this_load_per_task = sgs.sum_weighted_load;
3853 } else if (sgs.avg_load > sds->max_load &&
3854 (sgs.sum_nr_running > sgs.group_capacity ||
3855 sgs.group_imb)) {
3856 sds->max_load = sgs.avg_load;
3857 sds->busiest = group;
3858 sds->busiest_nr_running = sgs.sum_nr_running;
3859 sds->busiest_load_per_task = sgs.sum_weighted_load;
3860 sds->group_imb = sgs.group_imb;
3861 }
3862
3863 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3864 group = group->next;
3865 } while (group != sd->groups);
3866 }
3867
3868 /**
3869 * fix_small_imbalance - Calculate the minor imbalance that exists
3870 * amongst the groups of a sched_domain, during
3871 * load balancing.
3872 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3873 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3874 * @imbalance: Variable to store the imbalance.
3875 */
3876 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3877 int this_cpu, unsigned long *imbalance)
3878 {
3879 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3880 unsigned int imbn = 2;
3881
3882 if (sds->this_nr_running) {
3883 sds->this_load_per_task /= sds->this_nr_running;
3884 if (sds->busiest_load_per_task >
3885 sds->this_load_per_task)
3886 imbn = 1;
3887 } else
3888 sds->this_load_per_task =
3889 cpu_avg_load_per_task(this_cpu);
3890
3891 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3892 sds->busiest_load_per_task * imbn) {
3893 *imbalance = sds->busiest_load_per_task;
3894 return;
3895 }
3896
3897 /*
3898 * OK, we don't have enough imbalance to justify moving tasks,
3899 * however we may be able to increase total CPU power used by
3900 * moving them.
3901 */
3902
3903 pwr_now += sds->busiest->cpu_power *
3904 min(sds->busiest_load_per_task, sds->max_load);
3905 pwr_now += sds->this->cpu_power *
3906 min(sds->this_load_per_task, sds->this_load);
3907 pwr_now /= SCHED_LOAD_SCALE;
3908
3909 /* Amount of load we'd subtract */
3910 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3911 sds->busiest->cpu_power;
3912 if (sds->max_load > tmp)
3913 pwr_move += sds->busiest->cpu_power *
3914 min(sds->busiest_load_per_task, sds->max_load - tmp);
3915
3916 /* Amount of load we'd add */
3917 if (sds->max_load * sds->busiest->cpu_power <
3918 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3919 tmp = (sds->max_load * sds->busiest->cpu_power) /
3920 sds->this->cpu_power;
3921 else
3922 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3923 sds->this->cpu_power;
3924 pwr_move += sds->this->cpu_power *
3925 min(sds->this_load_per_task, sds->this_load + tmp);
3926 pwr_move /= SCHED_LOAD_SCALE;
3927
3928 /* Move if we gain throughput */
3929 if (pwr_move > pwr_now)
3930 *imbalance = sds->busiest_load_per_task;
3931 }
3932
3933 /**
3934 * calculate_imbalance - Calculate the amount of imbalance present within the
3935 * groups of a given sched_domain during load balance.
3936 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3937 * @this_cpu: Cpu for which currently load balance is being performed.
3938 * @imbalance: The variable to store the imbalance.
3939 */
3940 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3941 unsigned long *imbalance)
3942 {
3943 unsigned long max_pull;
3944 /*
3945 * In the presence of smp nice balancing, certain scenarios can have
3946 * max load less than avg load(as we skip the groups at or below
3947 * its cpu_power, while calculating max_load..)
3948 */
3949 if (sds->max_load < sds->avg_load) {
3950 *imbalance = 0;
3951 return fix_small_imbalance(sds, this_cpu, imbalance);
3952 }
3953
3954 /* Don't want to pull so many tasks that a group would go idle */
3955 max_pull = min(sds->max_load - sds->avg_load,
3956 sds->max_load - sds->busiest_load_per_task);
3957
3958 /* How much load to actually move to equalise the imbalance */
3959 *imbalance = min(max_pull * sds->busiest->cpu_power,
3960 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3961 / SCHED_LOAD_SCALE;
3962
3963 /*
3964 * if *imbalance is less than the average load per runnable task
3965 * there is no gaurantee that any tasks will be moved so we'll have
3966 * a think about bumping its value to force at least one task to be
3967 * moved
3968 */
3969 if (*imbalance < sds->busiest_load_per_task)
3970 return fix_small_imbalance(sds, this_cpu, imbalance);
3971
3972 }
3973 /******* find_busiest_group() helpers end here *********************/
3974
3975 /**
3976 * find_busiest_group - Returns the busiest group within the sched_domain
3977 * if there is an imbalance. If there isn't an imbalance, and
3978 * the user has opted for power-savings, it returns a group whose
3979 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3980 * such a group exists.
3981 *
3982 * Also calculates the amount of weighted load which should be moved
3983 * to restore balance.
3984 *
3985 * @sd: The sched_domain whose busiest group is to be returned.
3986 * @this_cpu: The cpu for which load balancing is currently being performed.
3987 * @imbalance: Variable which stores amount of weighted load which should
3988 * be moved to restore balance/put a group to idle.
3989 * @idle: The idle status of this_cpu.
3990 * @sd_idle: The idleness of sd
3991 * @cpus: The set of CPUs under consideration for load-balancing.
3992 * @balance: Pointer to a variable indicating if this_cpu
3993 * is the appropriate cpu to perform load balancing at this_level.
3994 *
3995 * Returns: - the busiest group if imbalance exists.
3996 * - If no imbalance and user has opted for power-savings balance,
3997 * return the least loaded group whose CPUs can be
3998 * put to idle by rebalancing its tasks onto our group.
3999 */
4000 static struct sched_group *
4001 find_busiest_group(struct sched_domain *sd, int this_cpu,
4002 unsigned long *imbalance, enum cpu_idle_type idle,
4003 int *sd_idle, const struct cpumask *cpus, int *balance)
4004 {
4005 struct sd_lb_stats sds;
4006
4007 memset(&sds, 0, sizeof(sds));
4008
4009 /*
4010 * Compute the various statistics relavent for load balancing at
4011 * this level.
4012 */
4013 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4014 balance, &sds);
4015
4016 /* Cases where imbalance does not exist from POV of this_cpu */
4017 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4018 * at this level.
4019 * 2) There is no busy sibling group to pull from.
4020 * 3) This group is the busiest group.
4021 * 4) This group is more busy than the avg busieness at this
4022 * sched_domain.
4023 * 5) The imbalance is within the specified limit.
4024 * 6) Any rebalance would lead to ping-pong
4025 */
4026 if (balance && !(*balance))
4027 goto ret;
4028
4029 if (!sds.busiest || sds.busiest_nr_running == 0)
4030 goto out_balanced;
4031
4032 if (sds.this_load >= sds.max_load)
4033 goto out_balanced;
4034
4035 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4036
4037 if (sds.this_load >= sds.avg_load)
4038 goto out_balanced;
4039
4040 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4041 goto out_balanced;
4042
4043 sds.busiest_load_per_task /= sds.busiest_nr_running;
4044 if (sds.group_imb)
4045 sds.busiest_load_per_task =
4046 min(sds.busiest_load_per_task, sds.avg_load);
4047
4048 /*
4049 * We're trying to get all the cpus to the average_load, so we don't
4050 * want to push ourselves above the average load, nor do we wish to
4051 * reduce the max loaded cpu below the average load, as either of these
4052 * actions would just result in more rebalancing later, and ping-pong
4053 * tasks around. Thus we look for the minimum possible imbalance.
4054 * Negative imbalances (*we* are more loaded than anyone else) will
4055 * be counted as no imbalance for these purposes -- we can't fix that
4056 * by pulling tasks to us. Be careful of negative numbers as they'll
4057 * appear as very large values with unsigned longs.
4058 */
4059 if (sds.max_load <= sds.busiest_load_per_task)
4060 goto out_balanced;
4061
4062 /* Looks like there is an imbalance. Compute it */
4063 calculate_imbalance(&sds, this_cpu, imbalance);
4064 return sds.busiest;
4065
4066 out_balanced:
4067 /*
4068 * There is no obvious imbalance. But check if we can do some balancing
4069 * to save power.
4070 */
4071 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4072 return sds.busiest;
4073 ret:
4074 *imbalance = 0;
4075 return NULL;
4076 }
4077
4078 /*
4079 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4080 */
4081 static struct rq *
4082 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4083 unsigned long imbalance, const struct cpumask *cpus)
4084 {
4085 struct rq *busiest = NULL, *rq;
4086 unsigned long max_load = 0;
4087 int i;
4088
4089 for_each_cpu(i, sched_group_cpus(group)) {
4090 unsigned long power = power_of(i);
4091 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4092 unsigned long wl;
4093
4094 if (!cpumask_test_cpu(i, cpus))
4095 continue;
4096
4097 rq = cpu_rq(i);
4098 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4099 wl /= power;
4100
4101 if (capacity && rq->nr_running == 1 && wl > imbalance)
4102 continue;
4103
4104 if (wl > max_load) {
4105 max_load = wl;
4106 busiest = rq;
4107 }
4108 }
4109
4110 return busiest;
4111 }
4112
4113 /*
4114 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4115 * so long as it is large enough.
4116 */
4117 #define MAX_PINNED_INTERVAL 512
4118
4119 /* Working cpumask for load_balance and load_balance_newidle. */
4120 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4121
4122 /*
4123 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4124 * tasks if there is an imbalance.
4125 */
4126 static int load_balance(int this_cpu, struct rq *this_rq,
4127 struct sched_domain *sd, enum cpu_idle_type idle,
4128 int *balance)
4129 {
4130 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4131 struct sched_group *group;
4132 unsigned long imbalance;
4133 struct rq *busiest;
4134 unsigned long flags;
4135 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4136
4137 cpumask_copy(cpus, cpu_active_mask);
4138
4139 /*
4140 * When power savings policy is enabled for the parent domain, idle
4141 * sibling can pick up load irrespective of busy siblings. In this case,
4142 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4143 * portraying it as CPU_NOT_IDLE.
4144 */
4145 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4146 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4147 sd_idle = 1;
4148
4149 schedstat_inc(sd, lb_count[idle]);
4150
4151 redo:
4152 update_shares(sd);
4153 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4154 cpus, balance);
4155
4156 if (*balance == 0)
4157 goto out_balanced;
4158
4159 if (!group) {
4160 schedstat_inc(sd, lb_nobusyg[idle]);
4161 goto out_balanced;
4162 }
4163
4164 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4165 if (!busiest) {
4166 schedstat_inc(sd, lb_nobusyq[idle]);
4167 goto out_balanced;
4168 }
4169
4170 BUG_ON(busiest == this_rq);
4171
4172 schedstat_add(sd, lb_imbalance[idle], imbalance);
4173
4174 ld_moved = 0;
4175 if (busiest->nr_running > 1) {
4176 /*
4177 * Attempt to move tasks. If find_busiest_group has found
4178 * an imbalance but busiest->nr_running <= 1, the group is
4179 * still unbalanced. ld_moved simply stays zero, so it is
4180 * correctly treated as an imbalance.
4181 */
4182 local_irq_save(flags);
4183 double_rq_lock(this_rq, busiest);
4184 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4185 imbalance, sd, idle, &all_pinned);
4186 double_rq_unlock(this_rq, busiest);
4187 local_irq_restore(flags);
4188
4189 /*
4190 * some other cpu did the load balance for us.
4191 */
4192 if (ld_moved && this_cpu != smp_processor_id())
4193 resched_cpu(this_cpu);
4194
4195 /* All tasks on this runqueue were pinned by CPU affinity */
4196 if (unlikely(all_pinned)) {
4197 cpumask_clear_cpu(cpu_of(busiest), cpus);
4198 if (!cpumask_empty(cpus))
4199 goto redo;
4200 goto out_balanced;
4201 }
4202 }
4203
4204 if (!ld_moved) {
4205 schedstat_inc(sd, lb_failed[idle]);
4206 sd->nr_balance_failed++;
4207
4208 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4209
4210 spin_lock_irqsave(&busiest->lock, flags);
4211
4212 /* don't kick the migration_thread, if the curr
4213 * task on busiest cpu can't be moved to this_cpu
4214 */
4215 if (!cpumask_test_cpu(this_cpu,
4216 &busiest->curr->cpus_allowed)) {
4217 spin_unlock_irqrestore(&busiest->lock, flags);
4218 all_pinned = 1;
4219 goto out_one_pinned;
4220 }
4221
4222 if (!busiest->active_balance) {
4223 busiest->active_balance = 1;
4224 busiest->push_cpu = this_cpu;
4225 active_balance = 1;
4226 }
4227 spin_unlock_irqrestore(&busiest->lock, flags);
4228 if (active_balance)
4229 wake_up_process(busiest->migration_thread);
4230
4231 /*
4232 * We've kicked active balancing, reset the failure
4233 * counter.
4234 */
4235 sd->nr_balance_failed = sd->cache_nice_tries+1;
4236 }
4237 } else
4238 sd->nr_balance_failed = 0;
4239
4240 if (likely(!active_balance)) {
4241 /* We were unbalanced, so reset the balancing interval */
4242 sd->balance_interval = sd->min_interval;
4243 } else {
4244 /*
4245 * If we've begun active balancing, start to back off. This
4246 * case may not be covered by the all_pinned logic if there
4247 * is only 1 task on the busy runqueue (because we don't call
4248 * move_tasks).
4249 */
4250 if (sd->balance_interval < sd->max_interval)
4251 sd->balance_interval *= 2;
4252 }
4253
4254 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4255 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4256 ld_moved = -1;
4257
4258 goto out;
4259
4260 out_balanced:
4261 schedstat_inc(sd, lb_balanced[idle]);
4262
4263 sd->nr_balance_failed = 0;
4264
4265 out_one_pinned:
4266 /* tune up the balancing interval */
4267 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4268 (sd->balance_interval < sd->max_interval))
4269 sd->balance_interval *= 2;
4270
4271 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4272 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4273 ld_moved = -1;
4274 else
4275 ld_moved = 0;
4276 out:
4277 if (ld_moved)
4278 update_shares(sd);
4279 return ld_moved;
4280 }
4281
4282 /*
4283 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4284 * tasks if there is an imbalance.
4285 *
4286 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4287 * this_rq is locked.
4288 */
4289 static int
4290 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4291 {
4292 struct sched_group *group;
4293 struct rq *busiest = NULL;
4294 unsigned long imbalance;
4295 int ld_moved = 0;
4296 int sd_idle = 0;
4297 int all_pinned = 0;
4298 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4299
4300 cpumask_copy(cpus, cpu_active_mask);
4301
4302 /*
4303 * When power savings policy is enabled for the parent domain, idle
4304 * sibling can pick up load irrespective of busy siblings. In this case,
4305 * let the state of idle sibling percolate up as IDLE, instead of
4306 * portraying it as CPU_NOT_IDLE.
4307 */
4308 if (sd->flags & SD_SHARE_CPUPOWER &&
4309 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4310 sd_idle = 1;
4311
4312 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4313 redo:
4314 update_shares_locked(this_rq, sd);
4315 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4316 &sd_idle, cpus, NULL);
4317 if (!group) {
4318 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4319 goto out_balanced;
4320 }
4321
4322 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4323 if (!busiest) {
4324 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4325 goto out_balanced;
4326 }
4327
4328 BUG_ON(busiest == this_rq);
4329
4330 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4331
4332 ld_moved = 0;
4333 if (busiest->nr_running > 1) {
4334 /* Attempt to move tasks */
4335 double_lock_balance(this_rq, busiest);
4336 /* this_rq->clock is already updated */
4337 update_rq_clock(busiest);
4338 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4339 imbalance, sd, CPU_NEWLY_IDLE,
4340 &all_pinned);
4341 double_unlock_balance(this_rq, busiest);
4342
4343 if (unlikely(all_pinned)) {
4344 cpumask_clear_cpu(cpu_of(busiest), cpus);
4345 if (!cpumask_empty(cpus))
4346 goto redo;
4347 }
4348 }
4349
4350 if (!ld_moved) {
4351 int active_balance = 0;
4352
4353 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4354 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4355 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4356 return -1;
4357
4358 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4359 return -1;
4360
4361 if (sd->nr_balance_failed++ < 2)
4362 return -1;
4363
4364 /*
4365 * The only task running in a non-idle cpu can be moved to this
4366 * cpu in an attempt to completely freeup the other CPU
4367 * package. The same method used to move task in load_balance()
4368 * have been extended for load_balance_newidle() to speedup
4369 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4370 *
4371 * The package power saving logic comes from
4372 * find_busiest_group(). If there are no imbalance, then
4373 * f_b_g() will return NULL. However when sched_mc={1,2} then
4374 * f_b_g() will select a group from which a running task may be
4375 * pulled to this cpu in order to make the other package idle.
4376 * If there is no opportunity to make a package idle and if
4377 * there are no imbalance, then f_b_g() will return NULL and no
4378 * action will be taken in load_balance_newidle().
4379 *
4380 * Under normal task pull operation due to imbalance, there
4381 * will be more than one task in the source run queue and
4382 * move_tasks() will succeed. ld_moved will be true and this
4383 * active balance code will not be triggered.
4384 */
4385
4386 /* Lock busiest in correct order while this_rq is held */
4387 double_lock_balance(this_rq, busiest);
4388
4389 /*
4390 * don't kick the migration_thread, if the curr
4391 * task on busiest cpu can't be moved to this_cpu
4392 */
4393 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4394 double_unlock_balance(this_rq, busiest);
4395 all_pinned = 1;
4396 return ld_moved;
4397 }
4398
4399 if (!busiest->active_balance) {
4400 busiest->active_balance = 1;
4401 busiest->push_cpu = this_cpu;
4402 active_balance = 1;
4403 }
4404
4405 double_unlock_balance(this_rq, busiest);
4406 /*
4407 * Should not call ttwu while holding a rq->lock
4408 */
4409 spin_unlock(&this_rq->lock);
4410 if (active_balance)
4411 wake_up_process(busiest->migration_thread);
4412 spin_lock(&this_rq->lock);
4413
4414 } else
4415 sd->nr_balance_failed = 0;
4416
4417 update_shares_locked(this_rq, sd);
4418 return ld_moved;
4419
4420 out_balanced:
4421 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4422 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4423 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4424 return -1;
4425 sd->nr_balance_failed = 0;
4426
4427 return 0;
4428 }
4429
4430 /*
4431 * idle_balance is called by schedule() if this_cpu is about to become
4432 * idle. Attempts to pull tasks from other CPUs.
4433 */
4434 static void idle_balance(int this_cpu, struct rq *this_rq)
4435 {
4436 struct sched_domain *sd;
4437 int pulled_task = 0;
4438 unsigned long next_balance = jiffies + HZ;
4439
4440 this_rq->idle_stamp = this_rq->clock;
4441
4442 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4443 return;
4444
4445 for_each_domain(this_cpu, sd) {
4446 unsigned long interval;
4447
4448 if (!(sd->flags & SD_LOAD_BALANCE))
4449 continue;
4450
4451 if (sd->flags & SD_BALANCE_NEWIDLE)
4452 /* If we've pulled tasks over stop searching: */
4453 pulled_task = load_balance_newidle(this_cpu, this_rq,
4454 sd);
4455
4456 interval = msecs_to_jiffies(sd->balance_interval);
4457 if (time_after(next_balance, sd->last_balance + interval))
4458 next_balance = sd->last_balance + interval;
4459 if (pulled_task) {
4460 this_rq->idle_stamp = 0;
4461 break;
4462 }
4463 }
4464 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4465 /*
4466 * We are going idle. next_balance may be set based on
4467 * a busy processor. So reset next_balance.
4468 */
4469 this_rq->next_balance = next_balance;
4470 }
4471 }
4472
4473 /*
4474 * active_load_balance is run by migration threads. It pushes running tasks
4475 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4476 * running on each physical CPU where possible, and avoids physical /
4477 * logical imbalances.
4478 *
4479 * Called with busiest_rq locked.
4480 */
4481 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4482 {
4483 int target_cpu = busiest_rq->push_cpu;
4484 struct sched_domain *sd;
4485 struct rq *target_rq;
4486
4487 /* Is there any task to move? */
4488 if (busiest_rq->nr_running <= 1)
4489 return;
4490
4491 target_rq = cpu_rq(target_cpu);
4492
4493 /*
4494 * This condition is "impossible", if it occurs
4495 * we need to fix it. Originally reported by
4496 * Bjorn Helgaas on a 128-cpu setup.
4497 */
4498 BUG_ON(busiest_rq == target_rq);
4499
4500 /* move a task from busiest_rq to target_rq */
4501 double_lock_balance(busiest_rq, target_rq);
4502 update_rq_clock(busiest_rq);
4503 update_rq_clock(target_rq);
4504
4505 /* Search for an sd spanning us and the target CPU. */
4506 for_each_domain(target_cpu, sd) {
4507 if ((sd->flags & SD_LOAD_BALANCE) &&
4508 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4509 break;
4510 }
4511
4512 if (likely(sd)) {
4513 schedstat_inc(sd, alb_count);
4514
4515 if (move_one_task(target_rq, target_cpu, busiest_rq,
4516 sd, CPU_IDLE))
4517 schedstat_inc(sd, alb_pushed);
4518 else
4519 schedstat_inc(sd, alb_failed);
4520 }
4521 double_unlock_balance(busiest_rq, target_rq);
4522 }
4523
4524 #ifdef CONFIG_NO_HZ
4525 static struct {
4526 atomic_t load_balancer;
4527 cpumask_var_t cpu_mask;
4528 cpumask_var_t ilb_grp_nohz_mask;
4529 } nohz ____cacheline_aligned = {
4530 .load_balancer = ATOMIC_INIT(-1),
4531 };
4532
4533 int get_nohz_load_balancer(void)
4534 {
4535 return atomic_read(&nohz.load_balancer);
4536 }
4537
4538 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4539 /**
4540 * lowest_flag_domain - Return lowest sched_domain containing flag.
4541 * @cpu: The cpu whose lowest level of sched domain is to
4542 * be returned.
4543 * @flag: The flag to check for the lowest sched_domain
4544 * for the given cpu.
4545 *
4546 * Returns the lowest sched_domain of a cpu which contains the given flag.
4547 */
4548 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4549 {
4550 struct sched_domain *sd;
4551
4552 for_each_domain(cpu, sd)
4553 if (sd && (sd->flags & flag))
4554 break;
4555
4556 return sd;
4557 }
4558
4559 /**
4560 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4561 * @cpu: The cpu whose domains we're iterating over.
4562 * @sd: variable holding the value of the power_savings_sd
4563 * for cpu.
4564 * @flag: The flag to filter the sched_domains to be iterated.
4565 *
4566 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4567 * set, starting from the lowest sched_domain to the highest.
4568 */
4569 #define for_each_flag_domain(cpu, sd, flag) \
4570 for (sd = lowest_flag_domain(cpu, flag); \
4571 (sd && (sd->flags & flag)); sd = sd->parent)
4572
4573 /**
4574 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4575 * @ilb_group: group to be checked for semi-idleness
4576 *
4577 * Returns: 1 if the group is semi-idle. 0 otherwise.
4578 *
4579 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4580 * and atleast one non-idle CPU. This helper function checks if the given
4581 * sched_group is semi-idle or not.
4582 */
4583 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4584 {
4585 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4586 sched_group_cpus(ilb_group));
4587
4588 /*
4589 * A sched_group is semi-idle when it has atleast one busy cpu
4590 * and atleast one idle cpu.
4591 */
4592 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4593 return 0;
4594
4595 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4596 return 0;
4597
4598 return 1;
4599 }
4600 /**
4601 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4602 * @cpu: The cpu which is nominating a new idle_load_balancer.
4603 *
4604 * Returns: Returns the id of the idle load balancer if it exists,
4605 * Else, returns >= nr_cpu_ids.
4606 *
4607 * This algorithm picks the idle load balancer such that it belongs to a
4608 * semi-idle powersavings sched_domain. The idea is to try and avoid
4609 * completely idle packages/cores just for the purpose of idle load balancing
4610 * when there are other idle cpu's which are better suited for that job.
4611 */
4612 static int find_new_ilb(int cpu)
4613 {
4614 struct sched_domain *sd;
4615 struct sched_group *ilb_group;
4616
4617 /*
4618 * Have idle load balancer selection from semi-idle packages only
4619 * when power-aware load balancing is enabled
4620 */
4621 if (!(sched_smt_power_savings || sched_mc_power_savings))
4622 goto out_done;
4623
4624 /*
4625 * Optimize for the case when we have no idle CPUs or only one
4626 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4627 */
4628 if (cpumask_weight(nohz.cpu_mask) < 2)
4629 goto out_done;
4630
4631 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4632 ilb_group = sd->groups;
4633
4634 do {
4635 if (is_semi_idle_group(ilb_group))
4636 return cpumask_first(nohz.ilb_grp_nohz_mask);
4637
4638 ilb_group = ilb_group->next;
4639
4640 } while (ilb_group != sd->groups);
4641 }
4642
4643 out_done:
4644 return cpumask_first(nohz.cpu_mask);
4645 }
4646 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4647 static inline int find_new_ilb(int call_cpu)
4648 {
4649 return cpumask_first(nohz.cpu_mask);
4650 }
4651 #endif
4652
4653 /*
4654 * This routine will try to nominate the ilb (idle load balancing)
4655 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4656 * load balancing on behalf of all those cpus. If all the cpus in the system
4657 * go into this tickless mode, then there will be no ilb owner (as there is
4658 * no need for one) and all the cpus will sleep till the next wakeup event
4659 * arrives...
4660 *
4661 * For the ilb owner, tick is not stopped. And this tick will be used
4662 * for idle load balancing. ilb owner will still be part of
4663 * nohz.cpu_mask..
4664 *
4665 * While stopping the tick, this cpu will become the ilb owner if there
4666 * is no other owner. And will be the owner till that cpu becomes busy
4667 * or if all cpus in the system stop their ticks at which point
4668 * there is no need for ilb owner.
4669 *
4670 * When the ilb owner becomes busy, it nominates another owner, during the
4671 * next busy scheduler_tick()
4672 */
4673 int select_nohz_load_balancer(int stop_tick)
4674 {
4675 int cpu = smp_processor_id();
4676
4677 if (stop_tick) {
4678 cpu_rq(cpu)->in_nohz_recently = 1;
4679
4680 if (!cpu_active(cpu)) {
4681 if (atomic_read(&nohz.load_balancer) != cpu)
4682 return 0;
4683
4684 /*
4685 * If we are going offline and still the leader,
4686 * give up!
4687 */
4688 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4689 BUG();
4690
4691 return 0;
4692 }
4693
4694 cpumask_set_cpu(cpu, nohz.cpu_mask);
4695
4696 /* time for ilb owner also to sleep */
4697 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4698 if (atomic_read(&nohz.load_balancer) == cpu)
4699 atomic_set(&nohz.load_balancer, -1);
4700 return 0;
4701 }
4702
4703 if (atomic_read(&nohz.load_balancer) == -1) {
4704 /* make me the ilb owner */
4705 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4706 return 1;
4707 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4708 int new_ilb;
4709
4710 if (!(sched_smt_power_savings ||
4711 sched_mc_power_savings))
4712 return 1;
4713 /*
4714 * Check to see if there is a more power-efficient
4715 * ilb.
4716 */
4717 new_ilb = find_new_ilb(cpu);
4718 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4719 atomic_set(&nohz.load_balancer, -1);
4720 resched_cpu(new_ilb);
4721 return 0;
4722 }
4723 return 1;
4724 }
4725 } else {
4726 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4727 return 0;
4728
4729 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4730
4731 if (atomic_read(&nohz.load_balancer) == cpu)
4732 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4733 BUG();
4734 }
4735 return 0;
4736 }
4737 #endif
4738
4739 static DEFINE_SPINLOCK(balancing);
4740
4741 /*
4742 * It checks each scheduling domain to see if it is due to be balanced,
4743 * and initiates a balancing operation if so.
4744 *
4745 * Balancing parameters are set up in arch_init_sched_domains.
4746 */
4747 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4748 {
4749 int balance = 1;
4750 struct rq *rq = cpu_rq(cpu);
4751 unsigned long interval;
4752 struct sched_domain *sd;
4753 /* Earliest time when we have to do rebalance again */
4754 unsigned long next_balance = jiffies + 60*HZ;
4755 int update_next_balance = 0;
4756 int need_serialize;
4757
4758 for_each_domain(cpu, sd) {
4759 if (!(sd->flags & SD_LOAD_BALANCE))
4760 continue;
4761
4762 interval = sd->balance_interval;
4763 if (idle != CPU_IDLE)
4764 interval *= sd->busy_factor;
4765
4766 /* scale ms to jiffies */
4767 interval = msecs_to_jiffies(interval);
4768 if (unlikely(!interval))
4769 interval = 1;
4770 if (interval > HZ*NR_CPUS/10)
4771 interval = HZ*NR_CPUS/10;
4772
4773 need_serialize = sd->flags & SD_SERIALIZE;
4774
4775 if (need_serialize) {
4776 if (!spin_trylock(&balancing))
4777 goto out;
4778 }
4779
4780 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4781 if (load_balance(cpu, rq, sd, idle, &balance)) {
4782 /*
4783 * We've pulled tasks over so either we're no
4784 * longer idle, or one of our SMT siblings is
4785 * not idle.
4786 */
4787 idle = CPU_NOT_IDLE;
4788 }
4789 sd->last_balance = jiffies;
4790 }
4791 if (need_serialize)
4792 spin_unlock(&balancing);
4793 out:
4794 if (time_after(next_balance, sd->last_balance + interval)) {
4795 next_balance = sd->last_balance + interval;
4796 update_next_balance = 1;
4797 }
4798
4799 /*
4800 * Stop the load balance at this level. There is another
4801 * CPU in our sched group which is doing load balancing more
4802 * actively.
4803 */
4804 if (!balance)
4805 break;
4806 }
4807
4808 /*
4809 * next_balance will be updated only when there is a need.
4810 * When the cpu is attached to null domain for ex, it will not be
4811 * updated.
4812 */
4813 if (likely(update_next_balance))
4814 rq->next_balance = next_balance;
4815 }
4816
4817 /*
4818 * run_rebalance_domains is triggered when needed from the scheduler tick.
4819 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4820 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4821 */
4822 static void run_rebalance_domains(struct softirq_action *h)
4823 {
4824 int this_cpu = smp_processor_id();
4825 struct rq *this_rq = cpu_rq(this_cpu);
4826 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4827 CPU_IDLE : CPU_NOT_IDLE;
4828
4829 rebalance_domains(this_cpu, idle);
4830
4831 #ifdef CONFIG_NO_HZ
4832 /*
4833 * If this cpu is the owner for idle load balancing, then do the
4834 * balancing on behalf of the other idle cpus whose ticks are
4835 * stopped.
4836 */
4837 if (this_rq->idle_at_tick &&
4838 atomic_read(&nohz.load_balancer) == this_cpu) {
4839 struct rq *rq;
4840 int balance_cpu;
4841
4842 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4843 if (balance_cpu == this_cpu)
4844 continue;
4845
4846 /*
4847 * If this cpu gets work to do, stop the load balancing
4848 * work being done for other cpus. Next load
4849 * balancing owner will pick it up.
4850 */
4851 if (need_resched())
4852 break;
4853
4854 rebalance_domains(balance_cpu, CPU_IDLE);
4855
4856 rq = cpu_rq(balance_cpu);
4857 if (time_after(this_rq->next_balance, rq->next_balance))
4858 this_rq->next_balance = rq->next_balance;
4859 }
4860 }
4861 #endif
4862 }
4863
4864 static inline int on_null_domain(int cpu)
4865 {
4866 return !rcu_dereference(cpu_rq(cpu)->sd);
4867 }
4868
4869 /*
4870 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4871 *
4872 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4873 * idle load balancing owner or decide to stop the periodic load balancing,
4874 * if the whole system is idle.
4875 */
4876 static inline void trigger_load_balance(struct rq *rq, int cpu)
4877 {
4878 #ifdef CONFIG_NO_HZ
4879 /*
4880 * If we were in the nohz mode recently and busy at the current
4881 * scheduler tick, then check if we need to nominate new idle
4882 * load balancer.
4883 */
4884 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4885 rq->in_nohz_recently = 0;
4886
4887 if (atomic_read(&nohz.load_balancer) == cpu) {
4888 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4889 atomic_set(&nohz.load_balancer, -1);
4890 }
4891
4892 if (atomic_read(&nohz.load_balancer) == -1) {
4893 int ilb = find_new_ilb(cpu);
4894
4895 if (ilb < nr_cpu_ids)
4896 resched_cpu(ilb);
4897 }
4898 }
4899
4900 /*
4901 * If this cpu is idle and doing idle load balancing for all the
4902 * cpus with ticks stopped, is it time for that to stop?
4903 */
4904 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4905 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4906 resched_cpu(cpu);
4907 return;
4908 }
4909
4910 /*
4911 * If this cpu is idle and the idle load balancing is done by
4912 * someone else, then no need raise the SCHED_SOFTIRQ
4913 */
4914 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4915 cpumask_test_cpu(cpu, nohz.cpu_mask))
4916 return;
4917 #endif
4918 /* Don't need to rebalance while attached to NULL domain */
4919 if (time_after_eq(jiffies, rq->next_balance) &&
4920 likely(!on_null_domain(cpu)))
4921 raise_softirq(SCHED_SOFTIRQ);
4922 }
4923
4924 #else /* CONFIG_SMP */
4925
4926 /*
4927 * on UP we do not need to balance between CPUs:
4928 */
4929 static inline void idle_balance(int cpu, struct rq *rq)
4930 {
4931 }
4932
4933 #endif
4934
4935 DEFINE_PER_CPU(struct kernel_stat, kstat);
4936
4937 EXPORT_PER_CPU_SYMBOL(kstat);
4938
4939 /*
4940 * Return any ns on the sched_clock that have not yet been accounted in
4941 * @p in case that task is currently running.
4942 *
4943 * Called with task_rq_lock() held on @rq.
4944 */
4945 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4946 {
4947 u64 ns = 0;
4948
4949 if (task_current(rq, p)) {
4950 update_rq_clock(rq);
4951 ns = rq->clock - p->se.exec_start;
4952 if ((s64)ns < 0)
4953 ns = 0;
4954 }
4955
4956 return ns;
4957 }
4958
4959 unsigned long long task_delta_exec(struct task_struct *p)
4960 {
4961 unsigned long flags;
4962 struct rq *rq;
4963 u64 ns = 0;
4964
4965 rq = task_rq_lock(p, &flags);
4966 ns = do_task_delta_exec(p, rq);
4967 task_rq_unlock(rq, &flags);
4968
4969 return ns;
4970 }
4971
4972 /*
4973 * Return accounted runtime for the task.
4974 * In case the task is currently running, return the runtime plus current's
4975 * pending runtime that have not been accounted yet.
4976 */
4977 unsigned long long task_sched_runtime(struct task_struct *p)
4978 {
4979 unsigned long flags;
4980 struct rq *rq;
4981 u64 ns = 0;
4982
4983 rq = task_rq_lock(p, &flags);
4984 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4985 task_rq_unlock(rq, &flags);
4986
4987 return ns;
4988 }
4989
4990 /*
4991 * Return sum_exec_runtime for the thread group.
4992 * In case the task is currently running, return the sum plus current's
4993 * pending runtime that have not been accounted yet.
4994 *
4995 * Note that the thread group might have other running tasks as well,
4996 * so the return value not includes other pending runtime that other
4997 * running tasks might have.
4998 */
4999 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5000 {
5001 struct task_cputime totals;
5002 unsigned long flags;
5003 struct rq *rq;
5004 u64 ns;
5005
5006 rq = task_rq_lock(p, &flags);
5007 thread_group_cputime(p, &totals);
5008 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5009 task_rq_unlock(rq, &flags);
5010
5011 return ns;
5012 }
5013
5014 /*
5015 * Account user cpu time to a process.
5016 * @p: the process that the cpu time gets accounted to
5017 * @cputime: the cpu time spent in user space since the last update
5018 * @cputime_scaled: cputime scaled by cpu frequency
5019 */
5020 void account_user_time(struct task_struct *p, cputime_t cputime,
5021 cputime_t cputime_scaled)
5022 {
5023 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5024 cputime64_t tmp;
5025
5026 /* Add user time to process. */
5027 p->utime = cputime_add(p->utime, cputime);
5028 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5029 account_group_user_time(p, cputime);
5030
5031 /* Add user time to cpustat. */
5032 tmp = cputime_to_cputime64(cputime);
5033 if (TASK_NICE(p) > 0)
5034 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5035 else
5036 cpustat->user = cputime64_add(cpustat->user, tmp);
5037
5038 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5039 /* Account for user time used */
5040 acct_update_integrals(p);
5041 }
5042
5043 /*
5044 * Account guest cpu time to a process.
5045 * @p: the process that the cpu time gets accounted to
5046 * @cputime: the cpu time spent in virtual machine since the last update
5047 * @cputime_scaled: cputime scaled by cpu frequency
5048 */
5049 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5050 cputime_t cputime_scaled)
5051 {
5052 cputime64_t tmp;
5053 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5054
5055 tmp = cputime_to_cputime64(cputime);
5056
5057 /* Add guest time to process. */
5058 p->utime = cputime_add(p->utime, cputime);
5059 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5060 account_group_user_time(p, cputime);
5061 p->gtime = cputime_add(p->gtime, cputime);
5062
5063 /* Add guest time to cpustat. */
5064 if (TASK_NICE(p) > 0) {
5065 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5066 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5067 } else {
5068 cpustat->user = cputime64_add(cpustat->user, tmp);
5069 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5070 }
5071 }
5072
5073 /*
5074 * Account system cpu time to a process.
5075 * @p: the process that the cpu time gets accounted to
5076 * @hardirq_offset: the offset to subtract from hardirq_count()
5077 * @cputime: the cpu time spent in kernel space since the last update
5078 * @cputime_scaled: cputime scaled by cpu frequency
5079 */
5080 void account_system_time(struct task_struct *p, int hardirq_offset,
5081 cputime_t cputime, cputime_t cputime_scaled)
5082 {
5083 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5084 cputime64_t tmp;
5085
5086 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5087 account_guest_time(p, cputime, cputime_scaled);
5088 return;
5089 }
5090
5091 /* Add system time to process. */
5092 p->stime = cputime_add(p->stime, cputime);
5093 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5094 account_group_system_time(p, cputime);
5095
5096 /* Add system time to cpustat. */
5097 tmp = cputime_to_cputime64(cputime);
5098 if (hardirq_count() - hardirq_offset)
5099 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5100 else if (softirq_count())
5101 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5102 else
5103 cpustat->system = cputime64_add(cpustat->system, tmp);
5104
5105 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5106
5107 /* Account for system time used */
5108 acct_update_integrals(p);
5109 }
5110
5111 /*
5112 * Account for involuntary wait time.
5113 * @steal: the cpu time spent in involuntary wait
5114 */
5115 void account_steal_time(cputime_t cputime)
5116 {
5117 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5118 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5119
5120 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5121 }
5122
5123 /*
5124 * Account for idle time.
5125 * @cputime: the cpu time spent in idle wait
5126 */
5127 void account_idle_time(cputime_t cputime)
5128 {
5129 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5130 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5131 struct rq *rq = this_rq();
5132
5133 if (atomic_read(&rq->nr_iowait) > 0)
5134 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5135 else
5136 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5137 }
5138
5139 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5140
5141 /*
5142 * Account a single tick of cpu time.
5143 * @p: the process that the cpu time gets accounted to
5144 * @user_tick: indicates if the tick is a user or a system tick
5145 */
5146 void account_process_tick(struct task_struct *p, int user_tick)
5147 {
5148 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5149 struct rq *rq = this_rq();
5150
5151 if (user_tick)
5152 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5153 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5154 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5155 one_jiffy_scaled);
5156 else
5157 account_idle_time(cputime_one_jiffy);
5158 }
5159
5160 /*
5161 * Account multiple ticks of steal time.
5162 * @p: the process from which the cpu time has been stolen
5163 * @ticks: number of stolen ticks
5164 */
5165 void account_steal_ticks(unsigned long ticks)
5166 {
5167 account_steal_time(jiffies_to_cputime(ticks));
5168 }
5169
5170 /*
5171 * Account multiple ticks of idle time.
5172 * @ticks: number of stolen ticks
5173 */
5174 void account_idle_ticks(unsigned long ticks)
5175 {
5176 account_idle_time(jiffies_to_cputime(ticks));
5177 }
5178
5179 #endif
5180
5181 /*
5182 * Use precise platform statistics if available:
5183 */
5184 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5185 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5186 {
5187 *ut = p->utime;
5188 *st = p->stime;
5189 }
5190
5191 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5192 {
5193 struct task_cputime cputime;
5194
5195 thread_group_cputime(p, &cputime);
5196
5197 *ut = cputime.utime;
5198 *st = cputime.stime;
5199 }
5200 #else
5201
5202 #ifndef nsecs_to_cputime
5203 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5204 #endif
5205
5206 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5207 {
5208 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5209
5210 /*
5211 * Use CFS's precise accounting:
5212 */
5213 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5214
5215 if (total) {
5216 u64 temp;
5217
5218 temp = (u64)(rtime * utime);
5219 do_div(temp, total);
5220 utime = (cputime_t)temp;
5221 } else
5222 utime = rtime;
5223
5224 /*
5225 * Compare with previous values, to keep monotonicity:
5226 */
5227 p->prev_utime = max(p->prev_utime, utime);
5228 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5229
5230 *ut = p->prev_utime;
5231 *st = p->prev_stime;
5232 }
5233
5234 /*
5235 * Must be called with siglock held.
5236 */
5237 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5238 {
5239 struct signal_struct *sig = p->signal;
5240 struct task_cputime cputime;
5241 cputime_t rtime, utime, total;
5242
5243 thread_group_cputime(p, &cputime);
5244
5245 total = cputime_add(cputime.utime, cputime.stime);
5246 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5247
5248 if (total) {
5249 u64 temp;
5250
5251 temp = (u64)(rtime * cputime.utime);
5252 do_div(temp, total);
5253 utime = (cputime_t)temp;
5254 } else
5255 utime = rtime;
5256
5257 sig->prev_utime = max(sig->prev_utime, utime);
5258 sig->prev_stime = max(sig->prev_stime,
5259 cputime_sub(rtime, sig->prev_utime));
5260
5261 *ut = sig->prev_utime;
5262 *st = sig->prev_stime;
5263 }
5264 #endif
5265
5266 /*
5267 * This function gets called by the timer code, with HZ frequency.
5268 * We call it with interrupts disabled.
5269 *
5270 * It also gets called by the fork code, when changing the parent's
5271 * timeslices.
5272 */
5273 void scheduler_tick(void)
5274 {
5275 int cpu = smp_processor_id();
5276 struct rq *rq = cpu_rq(cpu);
5277 struct task_struct *curr = rq->curr;
5278
5279 sched_clock_tick();
5280
5281 spin_lock(&rq->lock);
5282 update_rq_clock(rq);
5283 update_cpu_load(rq);
5284 curr->sched_class->task_tick(rq, curr, 0);
5285 spin_unlock(&rq->lock);
5286
5287 perf_event_task_tick(curr, cpu);
5288
5289 #ifdef CONFIG_SMP
5290 rq->idle_at_tick = idle_cpu(cpu);
5291 trigger_load_balance(rq, cpu);
5292 #endif
5293 }
5294
5295 notrace unsigned long get_parent_ip(unsigned long addr)
5296 {
5297 if (in_lock_functions(addr)) {
5298 addr = CALLER_ADDR2;
5299 if (in_lock_functions(addr))
5300 addr = CALLER_ADDR3;
5301 }
5302 return addr;
5303 }
5304
5305 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5306 defined(CONFIG_PREEMPT_TRACER))
5307
5308 void __kprobes add_preempt_count(int val)
5309 {
5310 #ifdef CONFIG_DEBUG_PREEMPT
5311 /*
5312 * Underflow?
5313 */
5314 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5315 return;
5316 #endif
5317 preempt_count() += val;
5318 #ifdef CONFIG_DEBUG_PREEMPT
5319 /*
5320 * Spinlock count overflowing soon?
5321 */
5322 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5323 PREEMPT_MASK - 10);
5324 #endif
5325 if (preempt_count() == val)
5326 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5327 }
5328 EXPORT_SYMBOL(add_preempt_count);
5329
5330 void __kprobes sub_preempt_count(int val)
5331 {
5332 #ifdef CONFIG_DEBUG_PREEMPT
5333 /*
5334 * Underflow?
5335 */
5336 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5337 return;
5338 /*
5339 * Is the spinlock portion underflowing?
5340 */
5341 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5342 !(preempt_count() & PREEMPT_MASK)))
5343 return;
5344 #endif
5345
5346 if (preempt_count() == val)
5347 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5348 preempt_count() -= val;
5349 }
5350 EXPORT_SYMBOL(sub_preempt_count);
5351
5352 #endif
5353
5354 /*
5355 * Print scheduling while atomic bug:
5356 */
5357 static noinline void __schedule_bug(struct task_struct *prev)
5358 {
5359 struct pt_regs *regs = get_irq_regs();
5360
5361 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5362 prev->comm, prev->pid, preempt_count());
5363
5364 debug_show_held_locks(prev);
5365 print_modules();
5366 if (irqs_disabled())
5367 print_irqtrace_events(prev);
5368
5369 if (regs)
5370 show_regs(regs);
5371 else
5372 dump_stack();
5373 }
5374
5375 /*
5376 * Various schedule()-time debugging checks and statistics:
5377 */
5378 static inline void schedule_debug(struct task_struct *prev)
5379 {
5380 /*
5381 * Test if we are atomic. Since do_exit() needs to call into
5382 * schedule() atomically, we ignore that path for now.
5383 * Otherwise, whine if we are scheduling when we should not be.
5384 */
5385 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5386 __schedule_bug(prev);
5387
5388 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5389
5390 schedstat_inc(this_rq(), sched_count);
5391 #ifdef CONFIG_SCHEDSTATS
5392 if (unlikely(prev->lock_depth >= 0)) {
5393 schedstat_inc(this_rq(), bkl_count);
5394 schedstat_inc(prev, sched_info.bkl_count);
5395 }
5396 #endif
5397 }
5398
5399 static void put_prev_task(struct rq *rq, struct task_struct *p)
5400 {
5401 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5402
5403 update_avg(&p->se.avg_running, runtime);
5404
5405 if (p->state == TASK_RUNNING) {
5406 /*
5407 * In order to avoid avg_overlap growing stale when we are
5408 * indeed overlapping and hence not getting put to sleep, grow
5409 * the avg_overlap on preemption.
5410 *
5411 * We use the average preemption runtime because that
5412 * correlates to the amount of cache footprint a task can
5413 * build up.
5414 */
5415 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5416 update_avg(&p->se.avg_overlap, runtime);
5417 } else {
5418 update_avg(&p->se.avg_running, 0);
5419 }
5420 p->sched_class->put_prev_task(rq, p);
5421 }
5422
5423 /*
5424 * Pick up the highest-prio task:
5425 */
5426 static inline struct task_struct *
5427 pick_next_task(struct rq *rq)
5428 {
5429 const struct sched_class *class;
5430 struct task_struct *p;
5431
5432 /*
5433 * Optimization: we know that if all tasks are in
5434 * the fair class we can call that function directly:
5435 */
5436 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5437 p = fair_sched_class.pick_next_task(rq);
5438 if (likely(p))
5439 return p;
5440 }
5441
5442 class = sched_class_highest;
5443 for ( ; ; ) {
5444 p = class->pick_next_task(rq);
5445 if (p)
5446 return p;
5447 /*
5448 * Will never be NULL as the idle class always
5449 * returns a non-NULL p:
5450 */
5451 class = class->next;
5452 }
5453 }
5454
5455 /*
5456 * schedule() is the main scheduler function.
5457 */
5458 asmlinkage void __sched schedule(void)
5459 {
5460 struct task_struct *prev, *next;
5461 unsigned long *switch_count;
5462 struct rq *rq;
5463 int cpu;
5464
5465 need_resched:
5466 preempt_disable();
5467 cpu = smp_processor_id();
5468 rq = cpu_rq(cpu);
5469 rcu_sched_qs(cpu);
5470 prev = rq->curr;
5471 switch_count = &prev->nivcsw;
5472
5473 release_kernel_lock(prev);
5474 need_resched_nonpreemptible:
5475
5476 schedule_debug(prev);
5477
5478 if (sched_feat(HRTICK))
5479 hrtick_clear(rq);
5480
5481 spin_lock_irq(&rq->lock);
5482 update_rq_clock(rq);
5483 clear_tsk_need_resched(prev);
5484
5485 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5486 if (unlikely(signal_pending_state(prev->state, prev)))
5487 prev->state = TASK_RUNNING;
5488 else
5489 deactivate_task(rq, prev, 1);
5490 switch_count = &prev->nvcsw;
5491 }
5492
5493 pre_schedule(rq, prev);
5494
5495 if (unlikely(!rq->nr_running))
5496 idle_balance(cpu, rq);
5497
5498 put_prev_task(rq, prev);
5499 next = pick_next_task(rq);
5500
5501 if (likely(prev != next)) {
5502 sched_info_switch(prev, next);
5503 perf_event_task_sched_out(prev, next, cpu);
5504
5505 rq->nr_switches++;
5506 rq->curr = next;
5507 ++*switch_count;
5508
5509 context_switch(rq, prev, next); /* unlocks the rq */
5510 /*
5511 * the context switch might have flipped the stack from under
5512 * us, hence refresh the local variables.
5513 */
5514 cpu = smp_processor_id();
5515 rq = cpu_rq(cpu);
5516 } else
5517 spin_unlock_irq(&rq->lock);
5518
5519 post_schedule(rq);
5520
5521 if (unlikely(reacquire_kernel_lock(current) < 0))
5522 goto need_resched_nonpreemptible;
5523
5524 preempt_enable_no_resched();
5525 if (need_resched())
5526 goto need_resched;
5527 }
5528 EXPORT_SYMBOL(schedule);
5529
5530 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5531 /*
5532 * Look out! "owner" is an entirely speculative pointer
5533 * access and not reliable.
5534 */
5535 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5536 {
5537 unsigned int cpu;
5538 struct rq *rq;
5539
5540 if (!sched_feat(OWNER_SPIN))
5541 return 0;
5542
5543 #ifdef CONFIG_DEBUG_PAGEALLOC
5544 /*
5545 * Need to access the cpu field knowing that
5546 * DEBUG_PAGEALLOC could have unmapped it if
5547 * the mutex owner just released it and exited.
5548 */
5549 if (probe_kernel_address(&owner->cpu, cpu))
5550 goto out;
5551 #else
5552 cpu = owner->cpu;
5553 #endif
5554
5555 /*
5556 * Even if the access succeeded (likely case),
5557 * the cpu field may no longer be valid.
5558 */
5559 if (cpu >= nr_cpumask_bits)
5560 goto out;
5561
5562 /*
5563 * We need to validate that we can do a
5564 * get_cpu() and that we have the percpu area.
5565 */
5566 if (!cpu_online(cpu))
5567 goto out;
5568
5569 rq = cpu_rq(cpu);
5570
5571 for (;;) {
5572 /*
5573 * Owner changed, break to re-assess state.
5574 */
5575 if (lock->owner != owner)
5576 break;
5577
5578 /*
5579 * Is that owner really running on that cpu?
5580 */
5581 if (task_thread_info(rq->curr) != owner || need_resched())
5582 return 0;
5583
5584 cpu_relax();
5585 }
5586 out:
5587 return 1;
5588 }
5589 #endif
5590
5591 #ifdef CONFIG_PREEMPT
5592 /*
5593 * this is the entry point to schedule() from in-kernel preemption
5594 * off of preempt_enable. Kernel preemptions off return from interrupt
5595 * occur there and call schedule directly.
5596 */
5597 asmlinkage void __sched preempt_schedule(void)
5598 {
5599 struct thread_info *ti = current_thread_info();
5600
5601 /*
5602 * If there is a non-zero preempt_count or interrupts are disabled,
5603 * we do not want to preempt the current task. Just return..
5604 */
5605 if (likely(ti->preempt_count || irqs_disabled()))
5606 return;
5607
5608 do {
5609 add_preempt_count(PREEMPT_ACTIVE);
5610 schedule();
5611 sub_preempt_count(PREEMPT_ACTIVE);
5612
5613 /*
5614 * Check again in case we missed a preemption opportunity
5615 * between schedule and now.
5616 */
5617 barrier();
5618 } while (need_resched());
5619 }
5620 EXPORT_SYMBOL(preempt_schedule);
5621
5622 /*
5623 * this is the entry point to schedule() from kernel preemption
5624 * off of irq context.
5625 * Note, that this is called and return with irqs disabled. This will
5626 * protect us against recursive calling from irq.
5627 */
5628 asmlinkage void __sched preempt_schedule_irq(void)
5629 {
5630 struct thread_info *ti = current_thread_info();
5631
5632 /* Catch callers which need to be fixed */
5633 BUG_ON(ti->preempt_count || !irqs_disabled());
5634
5635 do {
5636 add_preempt_count(PREEMPT_ACTIVE);
5637 local_irq_enable();
5638 schedule();
5639 local_irq_disable();
5640 sub_preempt_count(PREEMPT_ACTIVE);
5641
5642 /*
5643 * Check again in case we missed a preemption opportunity
5644 * between schedule and now.
5645 */
5646 barrier();
5647 } while (need_resched());
5648 }
5649
5650 #endif /* CONFIG_PREEMPT */
5651
5652 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5653 void *key)
5654 {
5655 return try_to_wake_up(curr->private, mode, wake_flags);
5656 }
5657 EXPORT_SYMBOL(default_wake_function);
5658
5659 /*
5660 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5661 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5662 * number) then we wake all the non-exclusive tasks and one exclusive task.
5663 *
5664 * There are circumstances in which we can try to wake a task which has already
5665 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5666 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5667 */
5668 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5669 int nr_exclusive, int wake_flags, void *key)
5670 {
5671 wait_queue_t *curr, *next;
5672
5673 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5674 unsigned flags = curr->flags;
5675
5676 if (curr->func(curr, mode, wake_flags, key) &&
5677 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5678 break;
5679 }
5680 }
5681
5682 /**
5683 * __wake_up - wake up threads blocked on a waitqueue.
5684 * @q: the waitqueue
5685 * @mode: which threads
5686 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5687 * @key: is directly passed to the wakeup function
5688 *
5689 * It may be assumed that this function implies a write memory barrier before
5690 * changing the task state if and only if any tasks are woken up.
5691 */
5692 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5693 int nr_exclusive, void *key)
5694 {
5695 unsigned long flags;
5696
5697 spin_lock_irqsave(&q->lock, flags);
5698 __wake_up_common(q, mode, nr_exclusive, 0, key);
5699 spin_unlock_irqrestore(&q->lock, flags);
5700 }
5701 EXPORT_SYMBOL(__wake_up);
5702
5703 /*
5704 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5705 */
5706 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5707 {
5708 __wake_up_common(q, mode, 1, 0, NULL);
5709 }
5710
5711 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5712 {
5713 __wake_up_common(q, mode, 1, 0, key);
5714 }
5715
5716 /**
5717 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5718 * @q: the waitqueue
5719 * @mode: which threads
5720 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5721 * @key: opaque value to be passed to wakeup targets
5722 *
5723 * The sync wakeup differs that the waker knows that it will schedule
5724 * away soon, so while the target thread will be woken up, it will not
5725 * be migrated to another CPU - ie. the two threads are 'synchronized'
5726 * with each other. This can prevent needless bouncing between CPUs.
5727 *
5728 * On UP it can prevent extra preemption.
5729 *
5730 * It may be assumed that this function implies a write memory barrier before
5731 * changing the task state if and only if any tasks are woken up.
5732 */
5733 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5734 int nr_exclusive, void *key)
5735 {
5736 unsigned long flags;
5737 int wake_flags = WF_SYNC;
5738
5739 if (unlikely(!q))
5740 return;
5741
5742 if (unlikely(!nr_exclusive))
5743 wake_flags = 0;
5744
5745 spin_lock_irqsave(&q->lock, flags);
5746 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5747 spin_unlock_irqrestore(&q->lock, flags);
5748 }
5749 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5750
5751 /*
5752 * __wake_up_sync - see __wake_up_sync_key()
5753 */
5754 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5755 {
5756 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5757 }
5758 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5759
5760 /**
5761 * complete: - signals a single thread waiting on this completion
5762 * @x: holds the state of this particular completion
5763 *
5764 * This will wake up a single thread waiting on this completion. Threads will be
5765 * awakened in the same order in which they were queued.
5766 *
5767 * See also complete_all(), wait_for_completion() and related routines.
5768 *
5769 * It may be assumed that this function implies a write memory barrier before
5770 * changing the task state if and only if any tasks are woken up.
5771 */
5772 void complete(struct completion *x)
5773 {
5774 unsigned long flags;
5775
5776 spin_lock_irqsave(&x->wait.lock, flags);
5777 x->done++;
5778 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5779 spin_unlock_irqrestore(&x->wait.lock, flags);
5780 }
5781 EXPORT_SYMBOL(complete);
5782
5783 /**
5784 * complete_all: - signals all threads waiting on this completion
5785 * @x: holds the state of this particular completion
5786 *
5787 * This will wake up all threads waiting on this particular completion event.
5788 *
5789 * It may be assumed that this function implies a write memory barrier before
5790 * changing the task state if and only if any tasks are woken up.
5791 */
5792 void complete_all(struct completion *x)
5793 {
5794 unsigned long flags;
5795
5796 spin_lock_irqsave(&x->wait.lock, flags);
5797 x->done += UINT_MAX/2;
5798 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5799 spin_unlock_irqrestore(&x->wait.lock, flags);
5800 }
5801 EXPORT_SYMBOL(complete_all);
5802
5803 static inline long __sched
5804 do_wait_for_common(struct completion *x, long timeout, int state)
5805 {
5806 if (!x->done) {
5807 DECLARE_WAITQUEUE(wait, current);
5808
5809 wait.flags |= WQ_FLAG_EXCLUSIVE;
5810 __add_wait_queue_tail(&x->wait, &wait);
5811 do {
5812 if (signal_pending_state(state, current)) {
5813 timeout = -ERESTARTSYS;
5814 break;
5815 }
5816 __set_current_state(state);
5817 spin_unlock_irq(&x->wait.lock);
5818 timeout = schedule_timeout(timeout);
5819 spin_lock_irq(&x->wait.lock);
5820 } while (!x->done && timeout);
5821 __remove_wait_queue(&x->wait, &wait);
5822 if (!x->done)
5823 return timeout;
5824 }
5825 x->done--;
5826 return timeout ?: 1;
5827 }
5828
5829 static long __sched
5830 wait_for_common(struct completion *x, long timeout, int state)
5831 {
5832 might_sleep();
5833
5834 spin_lock_irq(&x->wait.lock);
5835 timeout = do_wait_for_common(x, timeout, state);
5836 spin_unlock_irq(&x->wait.lock);
5837 return timeout;
5838 }
5839
5840 /**
5841 * wait_for_completion: - waits for completion of a task
5842 * @x: holds the state of this particular completion
5843 *
5844 * This waits to be signaled for completion of a specific task. It is NOT
5845 * interruptible and there is no timeout.
5846 *
5847 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5848 * and interrupt capability. Also see complete().
5849 */
5850 void __sched wait_for_completion(struct completion *x)
5851 {
5852 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5853 }
5854 EXPORT_SYMBOL(wait_for_completion);
5855
5856 /**
5857 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5858 * @x: holds the state of this particular completion
5859 * @timeout: timeout value in jiffies
5860 *
5861 * This waits for either a completion of a specific task to be signaled or for a
5862 * specified timeout to expire. The timeout is in jiffies. It is not
5863 * interruptible.
5864 */
5865 unsigned long __sched
5866 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5867 {
5868 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5869 }
5870 EXPORT_SYMBOL(wait_for_completion_timeout);
5871
5872 /**
5873 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5874 * @x: holds the state of this particular completion
5875 *
5876 * This waits for completion of a specific task to be signaled. It is
5877 * interruptible.
5878 */
5879 int __sched wait_for_completion_interruptible(struct completion *x)
5880 {
5881 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5882 if (t == -ERESTARTSYS)
5883 return t;
5884 return 0;
5885 }
5886 EXPORT_SYMBOL(wait_for_completion_interruptible);
5887
5888 /**
5889 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5890 * @x: holds the state of this particular completion
5891 * @timeout: timeout value in jiffies
5892 *
5893 * This waits for either a completion of a specific task to be signaled or for a
5894 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5895 */
5896 unsigned long __sched
5897 wait_for_completion_interruptible_timeout(struct completion *x,
5898 unsigned long timeout)
5899 {
5900 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5901 }
5902 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5903
5904 /**
5905 * wait_for_completion_killable: - waits for completion of a task (killable)
5906 * @x: holds the state of this particular completion
5907 *
5908 * This waits to be signaled for completion of a specific task. It can be
5909 * interrupted by a kill signal.
5910 */
5911 int __sched wait_for_completion_killable(struct completion *x)
5912 {
5913 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5914 if (t == -ERESTARTSYS)
5915 return t;
5916 return 0;
5917 }
5918 EXPORT_SYMBOL(wait_for_completion_killable);
5919
5920 /**
5921 * try_wait_for_completion - try to decrement a completion without blocking
5922 * @x: completion structure
5923 *
5924 * Returns: 0 if a decrement cannot be done without blocking
5925 * 1 if a decrement succeeded.
5926 *
5927 * If a completion is being used as a counting completion,
5928 * attempt to decrement the counter without blocking. This
5929 * enables us to avoid waiting if the resource the completion
5930 * is protecting is not available.
5931 */
5932 bool try_wait_for_completion(struct completion *x)
5933 {
5934 int ret = 1;
5935
5936 spin_lock_irq(&x->wait.lock);
5937 if (!x->done)
5938 ret = 0;
5939 else
5940 x->done--;
5941 spin_unlock_irq(&x->wait.lock);
5942 return ret;
5943 }
5944 EXPORT_SYMBOL(try_wait_for_completion);
5945
5946 /**
5947 * completion_done - Test to see if a completion has any waiters
5948 * @x: completion structure
5949 *
5950 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5951 * 1 if there are no waiters.
5952 *
5953 */
5954 bool completion_done(struct completion *x)
5955 {
5956 int ret = 1;
5957
5958 spin_lock_irq(&x->wait.lock);
5959 if (!x->done)
5960 ret = 0;
5961 spin_unlock_irq(&x->wait.lock);
5962 return ret;
5963 }
5964 EXPORT_SYMBOL(completion_done);
5965
5966 static long __sched
5967 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5968 {
5969 unsigned long flags;
5970 wait_queue_t wait;
5971
5972 init_waitqueue_entry(&wait, current);
5973
5974 __set_current_state(state);
5975
5976 spin_lock_irqsave(&q->lock, flags);
5977 __add_wait_queue(q, &wait);
5978 spin_unlock(&q->lock);
5979 timeout = schedule_timeout(timeout);
5980 spin_lock_irq(&q->lock);
5981 __remove_wait_queue(q, &wait);
5982 spin_unlock_irqrestore(&q->lock, flags);
5983
5984 return timeout;
5985 }
5986
5987 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5988 {
5989 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5990 }
5991 EXPORT_SYMBOL(interruptible_sleep_on);
5992
5993 long __sched
5994 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5995 {
5996 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5997 }
5998 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5999
6000 void __sched sleep_on(wait_queue_head_t *q)
6001 {
6002 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6003 }
6004 EXPORT_SYMBOL(sleep_on);
6005
6006 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6007 {
6008 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6009 }
6010 EXPORT_SYMBOL(sleep_on_timeout);
6011
6012 #ifdef CONFIG_RT_MUTEXES
6013
6014 /*
6015 * rt_mutex_setprio - set the current priority of a task
6016 * @p: task
6017 * @prio: prio value (kernel-internal form)
6018 *
6019 * This function changes the 'effective' priority of a task. It does
6020 * not touch ->normal_prio like __setscheduler().
6021 *
6022 * Used by the rt_mutex code to implement priority inheritance logic.
6023 */
6024 void rt_mutex_setprio(struct task_struct *p, int prio)
6025 {
6026 unsigned long flags;
6027 int oldprio, on_rq, running;
6028 struct rq *rq;
6029 const struct sched_class *prev_class = p->sched_class;
6030
6031 BUG_ON(prio < 0 || prio > MAX_PRIO);
6032
6033 rq = task_rq_lock(p, &flags);
6034 update_rq_clock(rq);
6035
6036 oldprio = p->prio;
6037 on_rq = p->se.on_rq;
6038 running = task_current(rq, p);
6039 if (on_rq)
6040 dequeue_task(rq, p, 0);
6041 if (running)
6042 p->sched_class->put_prev_task(rq, p);
6043
6044 if (rt_prio(prio))
6045 p->sched_class = &rt_sched_class;
6046 else
6047 p->sched_class = &fair_sched_class;
6048
6049 p->prio = prio;
6050
6051 if (running)
6052 p->sched_class->set_curr_task(rq);
6053 if (on_rq) {
6054 enqueue_task(rq, p, 0);
6055
6056 check_class_changed(rq, p, prev_class, oldprio, running);
6057 }
6058 task_rq_unlock(rq, &flags);
6059 }
6060
6061 #endif
6062
6063 void set_user_nice(struct task_struct *p, long nice)
6064 {
6065 int old_prio, delta, on_rq;
6066 unsigned long flags;
6067 struct rq *rq;
6068
6069 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6070 return;
6071 /*
6072 * We have to be careful, if called from sys_setpriority(),
6073 * the task might be in the middle of scheduling on another CPU.
6074 */
6075 rq = task_rq_lock(p, &flags);
6076 update_rq_clock(rq);
6077 /*
6078 * The RT priorities are set via sched_setscheduler(), but we still
6079 * allow the 'normal' nice value to be set - but as expected
6080 * it wont have any effect on scheduling until the task is
6081 * SCHED_FIFO/SCHED_RR:
6082 */
6083 if (task_has_rt_policy(p)) {
6084 p->static_prio = NICE_TO_PRIO(nice);
6085 goto out_unlock;
6086 }
6087 on_rq = p->se.on_rq;
6088 if (on_rq)
6089 dequeue_task(rq, p, 0);
6090
6091 p->static_prio = NICE_TO_PRIO(nice);
6092 set_load_weight(p);
6093 old_prio = p->prio;
6094 p->prio = effective_prio(p);
6095 delta = p->prio - old_prio;
6096
6097 if (on_rq) {
6098 enqueue_task(rq, p, 0);
6099 /*
6100 * If the task increased its priority or is running and
6101 * lowered its priority, then reschedule its CPU:
6102 */
6103 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6104 resched_task(rq->curr);
6105 }
6106 out_unlock:
6107 task_rq_unlock(rq, &flags);
6108 }
6109 EXPORT_SYMBOL(set_user_nice);
6110
6111 /*
6112 * can_nice - check if a task can reduce its nice value
6113 * @p: task
6114 * @nice: nice value
6115 */
6116 int can_nice(const struct task_struct *p, const int nice)
6117 {
6118 /* convert nice value [19,-20] to rlimit style value [1,40] */
6119 int nice_rlim = 20 - nice;
6120
6121 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6122 capable(CAP_SYS_NICE));
6123 }
6124
6125 #ifdef __ARCH_WANT_SYS_NICE
6126
6127 /*
6128 * sys_nice - change the priority of the current process.
6129 * @increment: priority increment
6130 *
6131 * sys_setpriority is a more generic, but much slower function that
6132 * does similar things.
6133 */
6134 SYSCALL_DEFINE1(nice, int, increment)
6135 {
6136 long nice, retval;
6137
6138 /*
6139 * Setpriority might change our priority at the same moment.
6140 * We don't have to worry. Conceptually one call occurs first
6141 * and we have a single winner.
6142 */
6143 if (increment < -40)
6144 increment = -40;
6145 if (increment > 40)
6146 increment = 40;
6147
6148 nice = TASK_NICE(current) + increment;
6149 if (nice < -20)
6150 nice = -20;
6151 if (nice > 19)
6152 nice = 19;
6153
6154 if (increment < 0 && !can_nice(current, nice))
6155 return -EPERM;
6156
6157 retval = security_task_setnice(current, nice);
6158 if (retval)
6159 return retval;
6160
6161 set_user_nice(current, nice);
6162 return 0;
6163 }
6164
6165 #endif
6166
6167 /**
6168 * task_prio - return the priority value of a given task.
6169 * @p: the task in question.
6170 *
6171 * This is the priority value as seen by users in /proc.
6172 * RT tasks are offset by -200. Normal tasks are centered
6173 * around 0, value goes from -16 to +15.
6174 */
6175 int task_prio(const struct task_struct *p)
6176 {
6177 return p->prio - MAX_RT_PRIO;
6178 }
6179
6180 /**
6181 * task_nice - return the nice value of a given task.
6182 * @p: the task in question.
6183 */
6184 int task_nice(const struct task_struct *p)
6185 {
6186 return TASK_NICE(p);
6187 }
6188 EXPORT_SYMBOL(task_nice);
6189
6190 /**
6191 * idle_cpu - is a given cpu idle currently?
6192 * @cpu: the processor in question.
6193 */
6194 int idle_cpu(int cpu)
6195 {
6196 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6197 }
6198
6199 /**
6200 * idle_task - return the idle task for a given cpu.
6201 * @cpu: the processor in question.
6202 */
6203 struct task_struct *idle_task(int cpu)
6204 {
6205 return cpu_rq(cpu)->idle;
6206 }
6207
6208 /**
6209 * find_process_by_pid - find a process with a matching PID value.
6210 * @pid: the pid in question.
6211 */
6212 static struct task_struct *find_process_by_pid(pid_t pid)
6213 {
6214 return pid ? find_task_by_vpid(pid) : current;
6215 }
6216
6217 /* Actually do priority change: must hold rq lock. */
6218 static void
6219 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6220 {
6221 BUG_ON(p->se.on_rq);
6222
6223 p->policy = policy;
6224 p->rt_priority = prio;
6225 p->normal_prio = normal_prio(p);
6226 /* we are holding p->pi_lock already */
6227 p->prio = rt_mutex_getprio(p);
6228 if (rt_prio(p->prio))
6229 p->sched_class = &rt_sched_class;
6230 else
6231 p->sched_class = &fair_sched_class;
6232 set_load_weight(p);
6233 }
6234
6235 /*
6236 * check the target process has a UID that matches the current process's
6237 */
6238 static bool check_same_owner(struct task_struct *p)
6239 {
6240 const struct cred *cred = current_cred(), *pcred;
6241 bool match;
6242
6243 rcu_read_lock();
6244 pcred = __task_cred(p);
6245 match = (cred->euid == pcred->euid ||
6246 cred->euid == pcred->uid);
6247 rcu_read_unlock();
6248 return match;
6249 }
6250
6251 static int __sched_setscheduler(struct task_struct *p, int policy,
6252 struct sched_param *param, bool user)
6253 {
6254 int retval, oldprio, oldpolicy = -1, on_rq, running;
6255 unsigned long flags;
6256 const struct sched_class *prev_class = p->sched_class;
6257 struct rq *rq;
6258 int reset_on_fork;
6259
6260 /* may grab non-irq protected spin_locks */
6261 BUG_ON(in_interrupt());
6262 recheck:
6263 /* double check policy once rq lock held */
6264 if (policy < 0) {
6265 reset_on_fork = p->sched_reset_on_fork;
6266 policy = oldpolicy = p->policy;
6267 } else {
6268 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6269 policy &= ~SCHED_RESET_ON_FORK;
6270
6271 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6272 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6273 policy != SCHED_IDLE)
6274 return -EINVAL;
6275 }
6276
6277 /*
6278 * Valid priorities for SCHED_FIFO and SCHED_RR are
6279 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6280 * SCHED_BATCH and SCHED_IDLE is 0.
6281 */
6282 if (param->sched_priority < 0 ||
6283 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6284 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6285 return -EINVAL;
6286 if (rt_policy(policy) != (param->sched_priority != 0))
6287 return -EINVAL;
6288
6289 /*
6290 * Allow unprivileged RT tasks to decrease priority:
6291 */
6292 if (user && !capable(CAP_SYS_NICE)) {
6293 if (rt_policy(policy)) {
6294 unsigned long rlim_rtprio;
6295
6296 if (!lock_task_sighand(p, &flags))
6297 return -ESRCH;
6298 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6299 unlock_task_sighand(p, &flags);
6300
6301 /* can't set/change the rt policy */
6302 if (policy != p->policy && !rlim_rtprio)
6303 return -EPERM;
6304
6305 /* can't increase priority */
6306 if (param->sched_priority > p->rt_priority &&
6307 param->sched_priority > rlim_rtprio)
6308 return -EPERM;
6309 }
6310 /*
6311 * Like positive nice levels, dont allow tasks to
6312 * move out of SCHED_IDLE either:
6313 */
6314 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6315 return -EPERM;
6316
6317 /* can't change other user's priorities */
6318 if (!check_same_owner(p))
6319 return -EPERM;
6320
6321 /* Normal users shall not reset the sched_reset_on_fork flag */
6322 if (p->sched_reset_on_fork && !reset_on_fork)
6323 return -EPERM;
6324 }
6325
6326 if (user) {
6327 #ifdef CONFIG_RT_GROUP_SCHED
6328 /*
6329 * Do not allow realtime tasks into groups that have no runtime
6330 * assigned.
6331 */
6332 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6333 task_group(p)->rt_bandwidth.rt_runtime == 0)
6334 return -EPERM;
6335 #endif
6336
6337 retval = security_task_setscheduler(p, policy, param);
6338 if (retval)
6339 return retval;
6340 }
6341
6342 /*
6343 * make sure no PI-waiters arrive (or leave) while we are
6344 * changing the priority of the task:
6345 */
6346 spin_lock_irqsave(&p->pi_lock, flags);
6347 /*
6348 * To be able to change p->policy safely, the apropriate
6349 * runqueue lock must be held.
6350 */
6351 rq = __task_rq_lock(p);
6352 /* recheck policy now with rq lock held */
6353 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6354 policy = oldpolicy = -1;
6355 __task_rq_unlock(rq);
6356 spin_unlock_irqrestore(&p->pi_lock, flags);
6357 goto recheck;
6358 }
6359 update_rq_clock(rq);
6360 on_rq = p->se.on_rq;
6361 running = task_current(rq, p);
6362 if (on_rq)
6363 deactivate_task(rq, p, 0);
6364 if (running)
6365 p->sched_class->put_prev_task(rq, p);
6366
6367 p->sched_reset_on_fork = reset_on_fork;
6368
6369 oldprio = p->prio;
6370 __setscheduler(rq, p, policy, param->sched_priority);
6371
6372 if (running)
6373 p->sched_class->set_curr_task(rq);
6374 if (on_rq) {
6375 activate_task(rq, p, 0);
6376
6377 check_class_changed(rq, p, prev_class, oldprio, running);
6378 }
6379 __task_rq_unlock(rq);
6380 spin_unlock_irqrestore(&p->pi_lock, flags);
6381
6382 rt_mutex_adjust_pi(p);
6383
6384 return 0;
6385 }
6386
6387 /**
6388 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6389 * @p: the task in question.
6390 * @policy: new policy.
6391 * @param: structure containing the new RT priority.
6392 *
6393 * NOTE that the task may be already dead.
6394 */
6395 int sched_setscheduler(struct task_struct *p, int policy,
6396 struct sched_param *param)
6397 {
6398 return __sched_setscheduler(p, policy, param, true);
6399 }
6400 EXPORT_SYMBOL_GPL(sched_setscheduler);
6401
6402 /**
6403 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6404 * @p: the task in question.
6405 * @policy: new policy.
6406 * @param: structure containing the new RT priority.
6407 *
6408 * Just like sched_setscheduler, only don't bother checking if the
6409 * current context has permission. For example, this is needed in
6410 * stop_machine(): we create temporary high priority worker threads,
6411 * but our caller might not have that capability.
6412 */
6413 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6414 struct sched_param *param)
6415 {
6416 return __sched_setscheduler(p, policy, param, false);
6417 }
6418
6419 static int
6420 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6421 {
6422 struct sched_param lparam;
6423 struct task_struct *p;
6424 int retval;
6425
6426 if (!param || pid < 0)
6427 return -EINVAL;
6428 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6429 return -EFAULT;
6430
6431 rcu_read_lock();
6432 retval = -ESRCH;
6433 p = find_process_by_pid(pid);
6434 if (p != NULL)
6435 retval = sched_setscheduler(p, policy, &lparam);
6436 rcu_read_unlock();
6437
6438 return retval;
6439 }
6440
6441 /**
6442 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6443 * @pid: the pid in question.
6444 * @policy: new policy.
6445 * @param: structure containing the new RT priority.
6446 */
6447 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6448 struct sched_param __user *, param)
6449 {
6450 /* negative values for policy are not valid */
6451 if (policy < 0)
6452 return -EINVAL;
6453
6454 return do_sched_setscheduler(pid, policy, param);
6455 }
6456
6457 /**
6458 * sys_sched_setparam - set/change the RT priority of a thread
6459 * @pid: the pid in question.
6460 * @param: structure containing the new RT priority.
6461 */
6462 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6463 {
6464 return do_sched_setscheduler(pid, -1, param);
6465 }
6466
6467 /**
6468 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6469 * @pid: the pid in question.
6470 */
6471 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6472 {
6473 struct task_struct *p;
6474 int retval;
6475
6476 if (pid < 0)
6477 return -EINVAL;
6478
6479 retval = -ESRCH;
6480 read_lock(&tasklist_lock);
6481 p = find_process_by_pid(pid);
6482 if (p) {
6483 retval = security_task_getscheduler(p);
6484 if (!retval)
6485 retval = p->policy
6486 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6487 }
6488 read_unlock(&tasklist_lock);
6489 return retval;
6490 }
6491
6492 /**
6493 * sys_sched_getparam - get the RT priority of a thread
6494 * @pid: the pid in question.
6495 * @param: structure containing the RT priority.
6496 */
6497 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6498 {
6499 struct sched_param lp;
6500 struct task_struct *p;
6501 int retval;
6502
6503 if (!param || pid < 0)
6504 return -EINVAL;
6505
6506 read_lock(&tasklist_lock);
6507 p = find_process_by_pid(pid);
6508 retval = -ESRCH;
6509 if (!p)
6510 goto out_unlock;
6511
6512 retval = security_task_getscheduler(p);
6513 if (retval)
6514 goto out_unlock;
6515
6516 lp.sched_priority = p->rt_priority;
6517 read_unlock(&tasklist_lock);
6518
6519 /*
6520 * This one might sleep, we cannot do it with a spinlock held ...
6521 */
6522 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6523
6524 return retval;
6525
6526 out_unlock:
6527 read_unlock(&tasklist_lock);
6528 return retval;
6529 }
6530
6531 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6532 {
6533 cpumask_var_t cpus_allowed, new_mask;
6534 struct task_struct *p;
6535 int retval;
6536
6537 get_online_cpus();
6538 read_lock(&tasklist_lock);
6539
6540 p = find_process_by_pid(pid);
6541 if (!p) {
6542 read_unlock(&tasklist_lock);
6543 put_online_cpus();
6544 return -ESRCH;
6545 }
6546
6547 /*
6548 * It is not safe to call set_cpus_allowed with the
6549 * tasklist_lock held. We will bump the task_struct's
6550 * usage count and then drop tasklist_lock.
6551 */
6552 get_task_struct(p);
6553 read_unlock(&tasklist_lock);
6554
6555 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6556 retval = -ENOMEM;
6557 goto out_put_task;
6558 }
6559 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6560 retval = -ENOMEM;
6561 goto out_free_cpus_allowed;
6562 }
6563 retval = -EPERM;
6564 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6565 goto out_unlock;
6566
6567 retval = security_task_setscheduler(p, 0, NULL);
6568 if (retval)
6569 goto out_unlock;
6570
6571 cpuset_cpus_allowed(p, cpus_allowed);
6572 cpumask_and(new_mask, in_mask, cpus_allowed);
6573 again:
6574 retval = set_cpus_allowed_ptr(p, new_mask);
6575
6576 if (!retval) {
6577 cpuset_cpus_allowed(p, cpus_allowed);
6578 if (!cpumask_subset(new_mask, cpus_allowed)) {
6579 /*
6580 * We must have raced with a concurrent cpuset
6581 * update. Just reset the cpus_allowed to the
6582 * cpuset's cpus_allowed
6583 */
6584 cpumask_copy(new_mask, cpus_allowed);
6585 goto again;
6586 }
6587 }
6588 out_unlock:
6589 free_cpumask_var(new_mask);
6590 out_free_cpus_allowed:
6591 free_cpumask_var(cpus_allowed);
6592 out_put_task:
6593 put_task_struct(p);
6594 put_online_cpus();
6595 return retval;
6596 }
6597
6598 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6599 struct cpumask *new_mask)
6600 {
6601 if (len < cpumask_size())
6602 cpumask_clear(new_mask);
6603 else if (len > cpumask_size())
6604 len = cpumask_size();
6605
6606 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6607 }
6608
6609 /**
6610 * sys_sched_setaffinity - set the cpu affinity of a process
6611 * @pid: pid of the process
6612 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6613 * @user_mask_ptr: user-space pointer to the new cpu mask
6614 */
6615 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6616 unsigned long __user *, user_mask_ptr)
6617 {
6618 cpumask_var_t new_mask;
6619 int retval;
6620
6621 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6622 return -ENOMEM;
6623
6624 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6625 if (retval == 0)
6626 retval = sched_setaffinity(pid, new_mask);
6627 free_cpumask_var(new_mask);
6628 return retval;
6629 }
6630
6631 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6632 {
6633 struct task_struct *p;
6634 unsigned long flags;
6635 struct rq *rq;
6636 int retval;
6637
6638 get_online_cpus();
6639 read_lock(&tasklist_lock);
6640
6641 retval = -ESRCH;
6642 p = find_process_by_pid(pid);
6643 if (!p)
6644 goto out_unlock;
6645
6646 retval = security_task_getscheduler(p);
6647 if (retval)
6648 goto out_unlock;
6649
6650 rq = task_rq_lock(p, &flags);
6651 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6652 task_rq_unlock(rq, &flags);
6653
6654 out_unlock:
6655 read_unlock(&tasklist_lock);
6656 put_online_cpus();
6657
6658 return retval;
6659 }
6660
6661 /**
6662 * sys_sched_getaffinity - get the cpu affinity of a process
6663 * @pid: pid of the process
6664 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6665 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6666 */
6667 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6668 unsigned long __user *, user_mask_ptr)
6669 {
6670 int ret;
6671 cpumask_var_t mask;
6672
6673 if (len < cpumask_size())
6674 return -EINVAL;
6675
6676 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6677 return -ENOMEM;
6678
6679 ret = sched_getaffinity(pid, mask);
6680 if (ret == 0) {
6681 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6682 ret = -EFAULT;
6683 else
6684 ret = cpumask_size();
6685 }
6686 free_cpumask_var(mask);
6687
6688 return ret;
6689 }
6690
6691 /**
6692 * sys_sched_yield - yield the current processor to other threads.
6693 *
6694 * This function yields the current CPU to other tasks. If there are no
6695 * other threads running on this CPU then this function will return.
6696 */
6697 SYSCALL_DEFINE0(sched_yield)
6698 {
6699 struct rq *rq = this_rq_lock();
6700
6701 schedstat_inc(rq, yld_count);
6702 current->sched_class->yield_task(rq);
6703
6704 /*
6705 * Since we are going to call schedule() anyway, there's
6706 * no need to preempt or enable interrupts:
6707 */
6708 __release(rq->lock);
6709 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6710 _raw_spin_unlock(&rq->lock);
6711 preempt_enable_no_resched();
6712
6713 schedule();
6714
6715 return 0;
6716 }
6717
6718 static inline int should_resched(void)
6719 {
6720 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6721 }
6722
6723 static void __cond_resched(void)
6724 {
6725 add_preempt_count(PREEMPT_ACTIVE);
6726 schedule();
6727 sub_preempt_count(PREEMPT_ACTIVE);
6728 }
6729
6730 int __sched _cond_resched(void)
6731 {
6732 if (should_resched()) {
6733 __cond_resched();
6734 return 1;
6735 }
6736 return 0;
6737 }
6738 EXPORT_SYMBOL(_cond_resched);
6739
6740 /*
6741 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6742 * call schedule, and on return reacquire the lock.
6743 *
6744 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6745 * operations here to prevent schedule() from being called twice (once via
6746 * spin_unlock(), once by hand).
6747 */
6748 int __cond_resched_lock(spinlock_t *lock)
6749 {
6750 int resched = should_resched();
6751 int ret = 0;
6752
6753 lockdep_assert_held(lock);
6754
6755 if (spin_needbreak(lock) || resched) {
6756 spin_unlock(lock);
6757 if (resched)
6758 __cond_resched();
6759 else
6760 cpu_relax();
6761 ret = 1;
6762 spin_lock(lock);
6763 }
6764 return ret;
6765 }
6766 EXPORT_SYMBOL(__cond_resched_lock);
6767
6768 int __sched __cond_resched_softirq(void)
6769 {
6770 BUG_ON(!in_softirq());
6771
6772 if (should_resched()) {
6773 local_bh_enable();
6774 __cond_resched();
6775 local_bh_disable();
6776 return 1;
6777 }
6778 return 0;
6779 }
6780 EXPORT_SYMBOL(__cond_resched_softirq);
6781
6782 /**
6783 * yield - yield the current processor to other threads.
6784 *
6785 * This is a shortcut for kernel-space yielding - it marks the
6786 * thread runnable and calls sys_sched_yield().
6787 */
6788 void __sched yield(void)
6789 {
6790 set_current_state(TASK_RUNNING);
6791 sys_sched_yield();
6792 }
6793 EXPORT_SYMBOL(yield);
6794
6795 /*
6796 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6797 * that process accounting knows that this is a task in IO wait state.
6798 */
6799 void __sched io_schedule(void)
6800 {
6801 struct rq *rq = raw_rq();
6802
6803 delayacct_blkio_start();
6804 atomic_inc(&rq->nr_iowait);
6805 current->in_iowait = 1;
6806 schedule();
6807 current->in_iowait = 0;
6808 atomic_dec(&rq->nr_iowait);
6809 delayacct_blkio_end();
6810 }
6811 EXPORT_SYMBOL(io_schedule);
6812
6813 long __sched io_schedule_timeout(long timeout)
6814 {
6815 struct rq *rq = raw_rq();
6816 long ret;
6817
6818 delayacct_blkio_start();
6819 atomic_inc(&rq->nr_iowait);
6820 current->in_iowait = 1;
6821 ret = schedule_timeout(timeout);
6822 current->in_iowait = 0;
6823 atomic_dec(&rq->nr_iowait);
6824 delayacct_blkio_end();
6825 return ret;
6826 }
6827
6828 /**
6829 * sys_sched_get_priority_max - return maximum RT priority.
6830 * @policy: scheduling class.
6831 *
6832 * this syscall returns the maximum rt_priority that can be used
6833 * by a given scheduling class.
6834 */
6835 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6836 {
6837 int ret = -EINVAL;
6838
6839 switch (policy) {
6840 case SCHED_FIFO:
6841 case SCHED_RR:
6842 ret = MAX_USER_RT_PRIO-1;
6843 break;
6844 case SCHED_NORMAL:
6845 case SCHED_BATCH:
6846 case SCHED_IDLE:
6847 ret = 0;
6848 break;
6849 }
6850 return ret;
6851 }
6852
6853 /**
6854 * sys_sched_get_priority_min - return minimum RT priority.
6855 * @policy: scheduling class.
6856 *
6857 * this syscall returns the minimum rt_priority that can be used
6858 * by a given scheduling class.
6859 */
6860 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6861 {
6862 int ret = -EINVAL;
6863
6864 switch (policy) {
6865 case SCHED_FIFO:
6866 case SCHED_RR:
6867 ret = 1;
6868 break;
6869 case SCHED_NORMAL:
6870 case SCHED_BATCH:
6871 case SCHED_IDLE:
6872 ret = 0;
6873 }
6874 return ret;
6875 }
6876
6877 /**
6878 * sys_sched_rr_get_interval - return the default timeslice of a process.
6879 * @pid: pid of the process.
6880 * @interval: userspace pointer to the timeslice value.
6881 *
6882 * this syscall writes the default timeslice value of a given process
6883 * into the user-space timespec buffer. A value of '0' means infinity.
6884 */
6885 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6886 struct timespec __user *, interval)
6887 {
6888 struct task_struct *p;
6889 unsigned int time_slice;
6890 unsigned long flags;
6891 struct rq *rq;
6892 int retval;
6893 struct timespec t;
6894
6895 if (pid < 0)
6896 return -EINVAL;
6897
6898 retval = -ESRCH;
6899 read_lock(&tasklist_lock);
6900 p = find_process_by_pid(pid);
6901 if (!p)
6902 goto out_unlock;
6903
6904 retval = security_task_getscheduler(p);
6905 if (retval)
6906 goto out_unlock;
6907
6908 rq = task_rq_lock(p, &flags);
6909 time_slice = p->sched_class->get_rr_interval(rq, p);
6910 task_rq_unlock(rq, &flags);
6911
6912 read_unlock(&tasklist_lock);
6913 jiffies_to_timespec(time_slice, &t);
6914 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6915 return retval;
6916
6917 out_unlock:
6918 read_unlock(&tasklist_lock);
6919 return retval;
6920 }
6921
6922 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6923
6924 void sched_show_task(struct task_struct *p)
6925 {
6926 unsigned long free = 0;
6927 unsigned state;
6928
6929 state = p->state ? __ffs(p->state) + 1 : 0;
6930 printk(KERN_INFO "%-13.13s %c", p->comm,
6931 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6932 #if BITS_PER_LONG == 32
6933 if (state == TASK_RUNNING)
6934 printk(KERN_CONT " running ");
6935 else
6936 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6937 #else
6938 if (state == TASK_RUNNING)
6939 printk(KERN_CONT " running task ");
6940 else
6941 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6942 #endif
6943 #ifdef CONFIG_DEBUG_STACK_USAGE
6944 free = stack_not_used(p);
6945 #endif
6946 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6947 task_pid_nr(p), task_pid_nr(p->real_parent),
6948 (unsigned long)task_thread_info(p)->flags);
6949
6950 show_stack(p, NULL);
6951 }
6952
6953 void show_state_filter(unsigned long state_filter)
6954 {
6955 struct task_struct *g, *p;
6956
6957 #if BITS_PER_LONG == 32
6958 printk(KERN_INFO
6959 " task PC stack pid father\n");
6960 #else
6961 printk(KERN_INFO
6962 " task PC stack pid father\n");
6963 #endif
6964 read_lock(&tasklist_lock);
6965 do_each_thread(g, p) {
6966 /*
6967 * reset the NMI-timeout, listing all files on a slow
6968 * console might take alot of time:
6969 */
6970 touch_nmi_watchdog();
6971 if (!state_filter || (p->state & state_filter))
6972 sched_show_task(p);
6973 } while_each_thread(g, p);
6974
6975 touch_all_softlockup_watchdogs();
6976
6977 #ifdef CONFIG_SCHED_DEBUG
6978 sysrq_sched_debug_show();
6979 #endif
6980 read_unlock(&tasklist_lock);
6981 /*
6982 * Only show locks if all tasks are dumped:
6983 */
6984 if (!state_filter)
6985 debug_show_all_locks();
6986 }
6987
6988 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6989 {
6990 idle->sched_class = &idle_sched_class;
6991 }
6992
6993 /**
6994 * init_idle - set up an idle thread for a given CPU
6995 * @idle: task in question
6996 * @cpu: cpu the idle task belongs to
6997 *
6998 * NOTE: this function does not set the idle thread's NEED_RESCHED
6999 * flag, to make booting more robust.
7000 */
7001 void __cpuinit init_idle(struct task_struct *idle, int cpu)
7002 {
7003 struct rq *rq = cpu_rq(cpu);
7004 unsigned long flags;
7005
7006 spin_lock_irqsave(&rq->lock, flags);
7007
7008 __sched_fork(idle);
7009 idle->se.exec_start = sched_clock();
7010
7011 idle->prio = idle->normal_prio = MAX_PRIO;
7012 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7013 __set_task_cpu(idle, cpu);
7014
7015 rq->curr = rq->idle = idle;
7016 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7017 idle->oncpu = 1;
7018 #endif
7019 spin_unlock_irqrestore(&rq->lock, flags);
7020
7021 /* Set the preempt count _outside_ the spinlocks! */
7022 #if defined(CONFIG_PREEMPT)
7023 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7024 #else
7025 task_thread_info(idle)->preempt_count = 0;
7026 #endif
7027 /*
7028 * The idle tasks have their own, simple scheduling class:
7029 */
7030 idle->sched_class = &idle_sched_class;
7031 ftrace_graph_init_task(idle);
7032 }
7033
7034 /*
7035 * In a system that switches off the HZ timer nohz_cpu_mask
7036 * indicates which cpus entered this state. This is used
7037 * in the rcu update to wait only for active cpus. For system
7038 * which do not switch off the HZ timer nohz_cpu_mask should
7039 * always be CPU_BITS_NONE.
7040 */
7041 cpumask_var_t nohz_cpu_mask;
7042
7043 /*
7044 * Increase the granularity value when there are more CPUs,
7045 * because with more CPUs the 'effective latency' as visible
7046 * to users decreases. But the relationship is not linear,
7047 * so pick a second-best guess by going with the log2 of the
7048 * number of CPUs.
7049 *
7050 * This idea comes from the SD scheduler of Con Kolivas:
7051 */
7052 static inline void sched_init_granularity(void)
7053 {
7054 unsigned int factor = 1 + ilog2(num_online_cpus());
7055 const unsigned long limit = 200000000;
7056
7057 sysctl_sched_min_granularity *= factor;
7058 if (sysctl_sched_min_granularity > limit)
7059 sysctl_sched_min_granularity = limit;
7060
7061 sysctl_sched_latency *= factor;
7062 if (sysctl_sched_latency > limit)
7063 sysctl_sched_latency = limit;
7064
7065 sysctl_sched_wakeup_granularity *= factor;
7066
7067 sysctl_sched_shares_ratelimit *= factor;
7068 }
7069
7070 #ifdef CONFIG_SMP
7071 /*
7072 * This is how migration works:
7073 *
7074 * 1) we queue a struct migration_req structure in the source CPU's
7075 * runqueue and wake up that CPU's migration thread.
7076 * 2) we down() the locked semaphore => thread blocks.
7077 * 3) migration thread wakes up (implicitly it forces the migrated
7078 * thread off the CPU)
7079 * 4) it gets the migration request and checks whether the migrated
7080 * task is still in the wrong runqueue.
7081 * 5) if it's in the wrong runqueue then the migration thread removes
7082 * it and puts it into the right queue.
7083 * 6) migration thread up()s the semaphore.
7084 * 7) we wake up and the migration is done.
7085 */
7086
7087 /*
7088 * Change a given task's CPU affinity. Migrate the thread to a
7089 * proper CPU and schedule it away if the CPU it's executing on
7090 * is removed from the allowed bitmask.
7091 *
7092 * NOTE: the caller must have a valid reference to the task, the
7093 * task must not exit() & deallocate itself prematurely. The
7094 * call is not atomic; no spinlocks may be held.
7095 */
7096 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7097 {
7098 struct migration_req req;
7099 unsigned long flags;
7100 struct rq *rq;
7101 int ret = 0;
7102
7103 rq = task_rq_lock(p, &flags);
7104 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7105 ret = -EINVAL;
7106 goto out;
7107 }
7108
7109 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7110 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7111 ret = -EINVAL;
7112 goto out;
7113 }
7114
7115 if (p->sched_class->set_cpus_allowed)
7116 p->sched_class->set_cpus_allowed(p, new_mask);
7117 else {
7118 cpumask_copy(&p->cpus_allowed, new_mask);
7119 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7120 }
7121
7122 /* Can the task run on the task's current CPU? If so, we're done */
7123 if (cpumask_test_cpu(task_cpu(p), new_mask))
7124 goto out;
7125
7126 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7127 /* Need help from migration thread: drop lock and wait. */
7128 struct task_struct *mt = rq->migration_thread;
7129
7130 get_task_struct(mt);
7131 task_rq_unlock(rq, &flags);
7132 wake_up_process(rq->migration_thread);
7133 put_task_struct(mt);
7134 wait_for_completion(&req.done);
7135 tlb_migrate_finish(p->mm);
7136 return 0;
7137 }
7138 out:
7139 task_rq_unlock(rq, &flags);
7140
7141 return ret;
7142 }
7143 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7144
7145 /*
7146 * Move (not current) task off this cpu, onto dest cpu. We're doing
7147 * this because either it can't run here any more (set_cpus_allowed()
7148 * away from this CPU, or CPU going down), or because we're
7149 * attempting to rebalance this task on exec (sched_exec).
7150 *
7151 * So we race with normal scheduler movements, but that's OK, as long
7152 * as the task is no longer on this CPU.
7153 *
7154 * Returns non-zero if task was successfully migrated.
7155 */
7156 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7157 {
7158 struct rq *rq_dest, *rq_src;
7159 int ret = 0, on_rq;
7160
7161 if (unlikely(!cpu_active(dest_cpu)))
7162 return ret;
7163
7164 rq_src = cpu_rq(src_cpu);
7165 rq_dest = cpu_rq(dest_cpu);
7166
7167 double_rq_lock(rq_src, rq_dest);
7168 /* Already moved. */
7169 if (task_cpu(p) != src_cpu)
7170 goto done;
7171 /* Affinity changed (again). */
7172 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7173 goto fail;
7174
7175 on_rq = p->se.on_rq;
7176 if (on_rq)
7177 deactivate_task(rq_src, p, 0);
7178
7179 set_task_cpu(p, dest_cpu);
7180 if (on_rq) {
7181 activate_task(rq_dest, p, 0);
7182 check_preempt_curr(rq_dest, p, 0);
7183 }
7184 done:
7185 ret = 1;
7186 fail:
7187 double_rq_unlock(rq_src, rq_dest);
7188 return ret;
7189 }
7190
7191 #define RCU_MIGRATION_IDLE 0
7192 #define RCU_MIGRATION_NEED_QS 1
7193 #define RCU_MIGRATION_GOT_QS 2
7194 #define RCU_MIGRATION_MUST_SYNC 3
7195
7196 /*
7197 * migration_thread - this is a highprio system thread that performs
7198 * thread migration by bumping thread off CPU then 'pushing' onto
7199 * another runqueue.
7200 */
7201 static int migration_thread(void *data)
7202 {
7203 int badcpu;
7204 int cpu = (long)data;
7205 struct rq *rq;
7206
7207 rq = cpu_rq(cpu);
7208 BUG_ON(rq->migration_thread != current);
7209
7210 set_current_state(TASK_INTERRUPTIBLE);
7211 while (!kthread_should_stop()) {
7212 struct migration_req *req;
7213 struct list_head *head;
7214
7215 spin_lock_irq(&rq->lock);
7216
7217 if (cpu_is_offline(cpu)) {
7218 spin_unlock_irq(&rq->lock);
7219 break;
7220 }
7221
7222 if (rq->active_balance) {
7223 active_load_balance(rq, cpu);
7224 rq->active_balance = 0;
7225 }
7226
7227 head = &rq->migration_queue;
7228
7229 if (list_empty(head)) {
7230 spin_unlock_irq(&rq->lock);
7231 schedule();
7232 set_current_state(TASK_INTERRUPTIBLE);
7233 continue;
7234 }
7235 req = list_entry(head->next, struct migration_req, list);
7236 list_del_init(head->next);
7237
7238 if (req->task != NULL) {
7239 spin_unlock(&rq->lock);
7240 __migrate_task(req->task, cpu, req->dest_cpu);
7241 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7242 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7243 spin_unlock(&rq->lock);
7244 } else {
7245 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7246 spin_unlock(&rq->lock);
7247 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7248 }
7249 local_irq_enable();
7250
7251 complete(&req->done);
7252 }
7253 __set_current_state(TASK_RUNNING);
7254
7255 return 0;
7256 }
7257
7258 #ifdef CONFIG_HOTPLUG_CPU
7259
7260 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7261 {
7262 int ret;
7263
7264 local_irq_disable();
7265 ret = __migrate_task(p, src_cpu, dest_cpu);
7266 local_irq_enable();
7267 return ret;
7268 }
7269
7270 /*
7271 * Figure out where task on dead CPU should go, use force if necessary.
7272 */
7273 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7274 {
7275 int dest_cpu;
7276 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7277
7278 again:
7279 /* Look for allowed, online CPU in same node. */
7280 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7281 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7282 goto move;
7283
7284 /* Any allowed, online CPU? */
7285 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7286 if (dest_cpu < nr_cpu_ids)
7287 goto move;
7288
7289 /* No more Mr. Nice Guy. */
7290 if (dest_cpu >= nr_cpu_ids) {
7291 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7292 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7293
7294 /*
7295 * Don't tell them about moving exiting tasks or
7296 * kernel threads (both mm NULL), since they never
7297 * leave kernel.
7298 */
7299 if (p->mm && printk_ratelimit()) {
7300 printk(KERN_INFO "process %d (%s) no "
7301 "longer affine to cpu%d\n",
7302 task_pid_nr(p), p->comm, dead_cpu);
7303 }
7304 }
7305
7306 move:
7307 /* It can have affinity changed while we were choosing. */
7308 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7309 goto again;
7310 }
7311
7312 /*
7313 * While a dead CPU has no uninterruptible tasks queued at this point,
7314 * it might still have a nonzero ->nr_uninterruptible counter, because
7315 * for performance reasons the counter is not stricly tracking tasks to
7316 * their home CPUs. So we just add the counter to another CPU's counter,
7317 * to keep the global sum constant after CPU-down:
7318 */
7319 static void migrate_nr_uninterruptible(struct rq *rq_src)
7320 {
7321 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7322 unsigned long flags;
7323
7324 local_irq_save(flags);
7325 double_rq_lock(rq_src, rq_dest);
7326 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7327 rq_src->nr_uninterruptible = 0;
7328 double_rq_unlock(rq_src, rq_dest);
7329 local_irq_restore(flags);
7330 }
7331
7332 /* Run through task list and migrate tasks from the dead cpu. */
7333 static void migrate_live_tasks(int src_cpu)
7334 {
7335 struct task_struct *p, *t;
7336
7337 read_lock(&tasklist_lock);
7338
7339 do_each_thread(t, p) {
7340 if (p == current)
7341 continue;
7342
7343 if (task_cpu(p) == src_cpu)
7344 move_task_off_dead_cpu(src_cpu, p);
7345 } while_each_thread(t, p);
7346
7347 read_unlock(&tasklist_lock);
7348 }
7349
7350 /*
7351 * Schedules idle task to be the next runnable task on current CPU.
7352 * It does so by boosting its priority to highest possible.
7353 * Used by CPU offline code.
7354 */
7355 void sched_idle_next(void)
7356 {
7357 int this_cpu = smp_processor_id();
7358 struct rq *rq = cpu_rq(this_cpu);
7359 struct task_struct *p = rq->idle;
7360 unsigned long flags;
7361
7362 /* cpu has to be offline */
7363 BUG_ON(cpu_online(this_cpu));
7364
7365 /*
7366 * Strictly not necessary since rest of the CPUs are stopped by now
7367 * and interrupts disabled on the current cpu.
7368 */
7369 spin_lock_irqsave(&rq->lock, flags);
7370
7371 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7372
7373 update_rq_clock(rq);
7374 activate_task(rq, p, 0);
7375
7376 spin_unlock_irqrestore(&rq->lock, flags);
7377 }
7378
7379 /*
7380 * Ensures that the idle task is using init_mm right before its cpu goes
7381 * offline.
7382 */
7383 void idle_task_exit(void)
7384 {
7385 struct mm_struct *mm = current->active_mm;
7386
7387 BUG_ON(cpu_online(smp_processor_id()));
7388
7389 if (mm != &init_mm)
7390 switch_mm(mm, &init_mm, current);
7391 mmdrop(mm);
7392 }
7393
7394 /* called under rq->lock with disabled interrupts */
7395 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7396 {
7397 struct rq *rq = cpu_rq(dead_cpu);
7398
7399 /* Must be exiting, otherwise would be on tasklist. */
7400 BUG_ON(!p->exit_state);
7401
7402 /* Cannot have done final schedule yet: would have vanished. */
7403 BUG_ON(p->state == TASK_DEAD);
7404
7405 get_task_struct(p);
7406
7407 /*
7408 * Drop lock around migration; if someone else moves it,
7409 * that's OK. No task can be added to this CPU, so iteration is
7410 * fine.
7411 */
7412 spin_unlock_irq(&rq->lock);
7413 move_task_off_dead_cpu(dead_cpu, p);
7414 spin_lock_irq(&rq->lock);
7415
7416 put_task_struct(p);
7417 }
7418
7419 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7420 static void migrate_dead_tasks(unsigned int dead_cpu)
7421 {
7422 struct rq *rq = cpu_rq(dead_cpu);
7423 struct task_struct *next;
7424
7425 for ( ; ; ) {
7426 if (!rq->nr_running)
7427 break;
7428 update_rq_clock(rq);
7429 next = pick_next_task(rq);
7430 if (!next)
7431 break;
7432 next->sched_class->put_prev_task(rq, next);
7433 migrate_dead(dead_cpu, next);
7434
7435 }
7436 }
7437
7438 /*
7439 * remove the tasks which were accounted by rq from calc_load_tasks.
7440 */
7441 static void calc_global_load_remove(struct rq *rq)
7442 {
7443 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7444 rq->calc_load_active = 0;
7445 }
7446 #endif /* CONFIG_HOTPLUG_CPU */
7447
7448 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7449
7450 static struct ctl_table sd_ctl_dir[] = {
7451 {
7452 .procname = "sched_domain",
7453 .mode = 0555,
7454 },
7455 {0, },
7456 };
7457
7458 static struct ctl_table sd_ctl_root[] = {
7459 {
7460 .ctl_name = CTL_KERN,
7461 .procname = "kernel",
7462 .mode = 0555,
7463 .child = sd_ctl_dir,
7464 },
7465 {0, },
7466 };
7467
7468 static struct ctl_table *sd_alloc_ctl_entry(int n)
7469 {
7470 struct ctl_table *entry =
7471 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7472
7473 return entry;
7474 }
7475
7476 static void sd_free_ctl_entry(struct ctl_table **tablep)
7477 {
7478 struct ctl_table *entry;
7479
7480 /*
7481 * In the intermediate directories, both the child directory and
7482 * procname are dynamically allocated and could fail but the mode
7483 * will always be set. In the lowest directory the names are
7484 * static strings and all have proc handlers.
7485 */
7486 for (entry = *tablep; entry->mode; entry++) {
7487 if (entry->child)
7488 sd_free_ctl_entry(&entry->child);
7489 if (entry->proc_handler == NULL)
7490 kfree(entry->procname);
7491 }
7492
7493 kfree(*tablep);
7494 *tablep = NULL;
7495 }
7496
7497 static void
7498 set_table_entry(struct ctl_table *entry,
7499 const char *procname, void *data, int maxlen,
7500 mode_t mode, proc_handler *proc_handler)
7501 {
7502 entry->procname = procname;
7503 entry->data = data;
7504 entry->maxlen = maxlen;
7505 entry->mode = mode;
7506 entry->proc_handler = proc_handler;
7507 }
7508
7509 static struct ctl_table *
7510 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7511 {
7512 struct ctl_table *table = sd_alloc_ctl_entry(13);
7513
7514 if (table == NULL)
7515 return NULL;
7516
7517 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7518 sizeof(long), 0644, proc_doulongvec_minmax);
7519 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7520 sizeof(long), 0644, proc_doulongvec_minmax);
7521 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7522 sizeof(int), 0644, proc_dointvec_minmax);
7523 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7524 sizeof(int), 0644, proc_dointvec_minmax);
7525 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7526 sizeof(int), 0644, proc_dointvec_minmax);
7527 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7528 sizeof(int), 0644, proc_dointvec_minmax);
7529 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7530 sizeof(int), 0644, proc_dointvec_minmax);
7531 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7532 sizeof(int), 0644, proc_dointvec_minmax);
7533 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7534 sizeof(int), 0644, proc_dointvec_minmax);
7535 set_table_entry(&table[9], "cache_nice_tries",
7536 &sd->cache_nice_tries,
7537 sizeof(int), 0644, proc_dointvec_minmax);
7538 set_table_entry(&table[10], "flags", &sd->flags,
7539 sizeof(int), 0644, proc_dointvec_minmax);
7540 set_table_entry(&table[11], "name", sd->name,
7541 CORENAME_MAX_SIZE, 0444, proc_dostring);
7542 /* &table[12] is terminator */
7543
7544 return table;
7545 }
7546
7547 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7548 {
7549 struct ctl_table *entry, *table;
7550 struct sched_domain *sd;
7551 int domain_num = 0, i;
7552 char buf[32];
7553
7554 for_each_domain(cpu, sd)
7555 domain_num++;
7556 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7557 if (table == NULL)
7558 return NULL;
7559
7560 i = 0;
7561 for_each_domain(cpu, sd) {
7562 snprintf(buf, 32, "domain%d", i);
7563 entry->procname = kstrdup(buf, GFP_KERNEL);
7564 entry->mode = 0555;
7565 entry->child = sd_alloc_ctl_domain_table(sd);
7566 entry++;
7567 i++;
7568 }
7569 return table;
7570 }
7571
7572 static struct ctl_table_header *sd_sysctl_header;
7573 static void register_sched_domain_sysctl(void)
7574 {
7575 int i, cpu_num = num_possible_cpus();
7576 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7577 char buf[32];
7578
7579 WARN_ON(sd_ctl_dir[0].child);
7580 sd_ctl_dir[0].child = entry;
7581
7582 if (entry == NULL)
7583 return;
7584
7585 for_each_possible_cpu(i) {
7586 snprintf(buf, 32, "cpu%d", i);
7587 entry->procname = kstrdup(buf, GFP_KERNEL);
7588 entry->mode = 0555;
7589 entry->child = sd_alloc_ctl_cpu_table(i);
7590 entry++;
7591 }
7592
7593 WARN_ON(sd_sysctl_header);
7594 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7595 }
7596
7597 /* may be called multiple times per register */
7598 static void unregister_sched_domain_sysctl(void)
7599 {
7600 if (sd_sysctl_header)
7601 unregister_sysctl_table(sd_sysctl_header);
7602 sd_sysctl_header = NULL;
7603 if (sd_ctl_dir[0].child)
7604 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7605 }
7606 #else
7607 static void register_sched_domain_sysctl(void)
7608 {
7609 }
7610 static void unregister_sched_domain_sysctl(void)
7611 {
7612 }
7613 #endif
7614
7615 static void set_rq_online(struct rq *rq)
7616 {
7617 if (!rq->online) {
7618 const struct sched_class *class;
7619
7620 cpumask_set_cpu(rq->cpu, rq->rd->online);
7621 rq->online = 1;
7622
7623 for_each_class(class) {
7624 if (class->rq_online)
7625 class->rq_online(rq);
7626 }
7627 }
7628 }
7629
7630 static void set_rq_offline(struct rq *rq)
7631 {
7632 if (rq->online) {
7633 const struct sched_class *class;
7634
7635 for_each_class(class) {
7636 if (class->rq_offline)
7637 class->rq_offline(rq);
7638 }
7639
7640 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7641 rq->online = 0;
7642 }
7643 }
7644
7645 /*
7646 * migration_call - callback that gets triggered when a CPU is added.
7647 * Here we can start up the necessary migration thread for the new CPU.
7648 */
7649 static int __cpuinit
7650 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7651 {
7652 struct task_struct *p;
7653 int cpu = (long)hcpu;
7654 unsigned long flags;
7655 struct rq *rq;
7656
7657 switch (action) {
7658
7659 case CPU_UP_PREPARE:
7660 case CPU_UP_PREPARE_FROZEN:
7661 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7662 if (IS_ERR(p))
7663 return NOTIFY_BAD;
7664 kthread_bind(p, cpu);
7665 /* Must be high prio: stop_machine expects to yield to it. */
7666 rq = task_rq_lock(p, &flags);
7667 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7668 task_rq_unlock(rq, &flags);
7669 get_task_struct(p);
7670 cpu_rq(cpu)->migration_thread = p;
7671 rq->calc_load_update = calc_load_update;
7672 break;
7673
7674 case CPU_ONLINE:
7675 case CPU_ONLINE_FROZEN:
7676 /* Strictly unnecessary, as first user will wake it. */
7677 wake_up_process(cpu_rq(cpu)->migration_thread);
7678
7679 /* Update our root-domain */
7680 rq = cpu_rq(cpu);
7681 spin_lock_irqsave(&rq->lock, flags);
7682 if (rq->rd) {
7683 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7684
7685 set_rq_online(rq);
7686 }
7687 spin_unlock_irqrestore(&rq->lock, flags);
7688 break;
7689
7690 #ifdef CONFIG_HOTPLUG_CPU
7691 case CPU_UP_CANCELED:
7692 case CPU_UP_CANCELED_FROZEN:
7693 if (!cpu_rq(cpu)->migration_thread)
7694 break;
7695 /* Unbind it from offline cpu so it can run. Fall thru. */
7696 kthread_bind(cpu_rq(cpu)->migration_thread,
7697 cpumask_any(cpu_online_mask));
7698 kthread_stop(cpu_rq(cpu)->migration_thread);
7699 put_task_struct(cpu_rq(cpu)->migration_thread);
7700 cpu_rq(cpu)->migration_thread = NULL;
7701 break;
7702
7703 case CPU_DEAD:
7704 case CPU_DEAD_FROZEN:
7705 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7706 migrate_live_tasks(cpu);
7707 rq = cpu_rq(cpu);
7708 kthread_stop(rq->migration_thread);
7709 put_task_struct(rq->migration_thread);
7710 rq->migration_thread = NULL;
7711 /* Idle task back to normal (off runqueue, low prio) */
7712 spin_lock_irq(&rq->lock);
7713 update_rq_clock(rq);
7714 deactivate_task(rq, rq->idle, 0);
7715 rq->idle->static_prio = MAX_PRIO;
7716 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7717 rq->idle->sched_class = &idle_sched_class;
7718 migrate_dead_tasks(cpu);
7719 spin_unlock_irq(&rq->lock);
7720 cpuset_unlock();
7721 migrate_nr_uninterruptible(rq);
7722 BUG_ON(rq->nr_running != 0);
7723 calc_global_load_remove(rq);
7724 /*
7725 * No need to migrate the tasks: it was best-effort if
7726 * they didn't take sched_hotcpu_mutex. Just wake up
7727 * the requestors.
7728 */
7729 spin_lock_irq(&rq->lock);
7730 while (!list_empty(&rq->migration_queue)) {
7731 struct migration_req *req;
7732
7733 req = list_entry(rq->migration_queue.next,
7734 struct migration_req, list);
7735 list_del_init(&req->list);
7736 spin_unlock_irq(&rq->lock);
7737 complete(&req->done);
7738 spin_lock_irq(&rq->lock);
7739 }
7740 spin_unlock_irq(&rq->lock);
7741 break;
7742
7743 case CPU_DYING:
7744 case CPU_DYING_FROZEN:
7745 /* Update our root-domain */
7746 rq = cpu_rq(cpu);
7747 spin_lock_irqsave(&rq->lock, flags);
7748 if (rq->rd) {
7749 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7750 set_rq_offline(rq);
7751 }
7752 spin_unlock_irqrestore(&rq->lock, flags);
7753 break;
7754 #endif
7755 }
7756 return NOTIFY_OK;
7757 }
7758
7759 /*
7760 * Register at high priority so that task migration (migrate_all_tasks)
7761 * happens before everything else. This has to be lower priority than
7762 * the notifier in the perf_event subsystem, though.
7763 */
7764 static struct notifier_block __cpuinitdata migration_notifier = {
7765 .notifier_call = migration_call,
7766 .priority = 10
7767 };
7768
7769 static int __init migration_init(void)
7770 {
7771 void *cpu = (void *)(long)smp_processor_id();
7772 int err;
7773
7774 /* Start one for the boot CPU: */
7775 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7776 BUG_ON(err == NOTIFY_BAD);
7777 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7778 register_cpu_notifier(&migration_notifier);
7779
7780 return 0;
7781 }
7782 early_initcall(migration_init);
7783 #endif
7784
7785 #ifdef CONFIG_SMP
7786
7787 #ifdef CONFIG_SCHED_DEBUG
7788
7789 static __read_mostly int sched_domain_debug_enabled;
7790
7791 static int __init sched_domain_debug_setup(char *str)
7792 {
7793 sched_domain_debug_enabled = 1;
7794
7795 return 0;
7796 }
7797 early_param("sched_debug", sched_domain_debug_setup);
7798
7799 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7800 struct cpumask *groupmask)
7801 {
7802 struct sched_group *group = sd->groups;
7803 char str[256];
7804
7805 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7806 cpumask_clear(groupmask);
7807
7808 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7809
7810 if (!(sd->flags & SD_LOAD_BALANCE)) {
7811 printk("does not load-balance\n");
7812 if (sd->parent)
7813 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7814 " has parent");
7815 return -1;
7816 }
7817
7818 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7819
7820 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7821 printk(KERN_ERR "ERROR: domain->span does not contain "
7822 "CPU%d\n", cpu);
7823 }
7824 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7825 printk(KERN_ERR "ERROR: domain->groups does not contain"
7826 " CPU%d\n", cpu);
7827 }
7828
7829 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7830 do {
7831 if (!group) {
7832 printk("\n");
7833 printk(KERN_ERR "ERROR: group is NULL\n");
7834 break;
7835 }
7836
7837 if (!group->cpu_power) {
7838 printk(KERN_CONT "\n");
7839 printk(KERN_ERR "ERROR: domain->cpu_power not "
7840 "set\n");
7841 break;
7842 }
7843
7844 if (!cpumask_weight(sched_group_cpus(group))) {
7845 printk(KERN_CONT "\n");
7846 printk(KERN_ERR "ERROR: empty group\n");
7847 break;
7848 }
7849
7850 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7851 printk(KERN_CONT "\n");
7852 printk(KERN_ERR "ERROR: repeated CPUs\n");
7853 break;
7854 }
7855
7856 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7857
7858 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7859
7860 printk(KERN_CONT " %s", str);
7861 if (group->cpu_power != SCHED_LOAD_SCALE) {
7862 printk(KERN_CONT " (cpu_power = %d)",
7863 group->cpu_power);
7864 }
7865
7866 group = group->next;
7867 } while (group != sd->groups);
7868 printk(KERN_CONT "\n");
7869
7870 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7871 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7872
7873 if (sd->parent &&
7874 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7875 printk(KERN_ERR "ERROR: parent span is not a superset "
7876 "of domain->span\n");
7877 return 0;
7878 }
7879
7880 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7881 {
7882 cpumask_var_t groupmask;
7883 int level = 0;
7884
7885 if (!sched_domain_debug_enabled)
7886 return;
7887
7888 if (!sd) {
7889 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7890 return;
7891 }
7892
7893 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7894
7895 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7896 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7897 return;
7898 }
7899
7900 for (;;) {
7901 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7902 break;
7903 level++;
7904 sd = sd->parent;
7905 if (!sd)
7906 break;
7907 }
7908 free_cpumask_var(groupmask);
7909 }
7910 #else /* !CONFIG_SCHED_DEBUG */
7911 # define sched_domain_debug(sd, cpu) do { } while (0)
7912 #endif /* CONFIG_SCHED_DEBUG */
7913
7914 static int sd_degenerate(struct sched_domain *sd)
7915 {
7916 if (cpumask_weight(sched_domain_span(sd)) == 1)
7917 return 1;
7918
7919 /* Following flags need at least 2 groups */
7920 if (sd->flags & (SD_LOAD_BALANCE |
7921 SD_BALANCE_NEWIDLE |
7922 SD_BALANCE_FORK |
7923 SD_BALANCE_EXEC |
7924 SD_SHARE_CPUPOWER |
7925 SD_SHARE_PKG_RESOURCES)) {
7926 if (sd->groups != sd->groups->next)
7927 return 0;
7928 }
7929
7930 /* Following flags don't use groups */
7931 if (sd->flags & (SD_WAKE_AFFINE))
7932 return 0;
7933
7934 return 1;
7935 }
7936
7937 static int
7938 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7939 {
7940 unsigned long cflags = sd->flags, pflags = parent->flags;
7941
7942 if (sd_degenerate(parent))
7943 return 1;
7944
7945 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7946 return 0;
7947
7948 /* Flags needing groups don't count if only 1 group in parent */
7949 if (parent->groups == parent->groups->next) {
7950 pflags &= ~(SD_LOAD_BALANCE |
7951 SD_BALANCE_NEWIDLE |
7952 SD_BALANCE_FORK |
7953 SD_BALANCE_EXEC |
7954 SD_SHARE_CPUPOWER |
7955 SD_SHARE_PKG_RESOURCES);
7956 if (nr_node_ids == 1)
7957 pflags &= ~SD_SERIALIZE;
7958 }
7959 if (~cflags & pflags)
7960 return 0;
7961
7962 return 1;
7963 }
7964
7965 static void free_rootdomain(struct root_domain *rd)
7966 {
7967 synchronize_sched();
7968
7969 cpupri_cleanup(&rd->cpupri);
7970
7971 free_cpumask_var(rd->rto_mask);
7972 free_cpumask_var(rd->online);
7973 free_cpumask_var(rd->span);
7974 kfree(rd);
7975 }
7976
7977 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7978 {
7979 struct root_domain *old_rd = NULL;
7980 unsigned long flags;
7981
7982 spin_lock_irqsave(&rq->lock, flags);
7983
7984 if (rq->rd) {
7985 old_rd = rq->rd;
7986
7987 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7988 set_rq_offline(rq);
7989
7990 cpumask_clear_cpu(rq->cpu, old_rd->span);
7991
7992 /*
7993 * If we dont want to free the old_rt yet then
7994 * set old_rd to NULL to skip the freeing later
7995 * in this function:
7996 */
7997 if (!atomic_dec_and_test(&old_rd->refcount))
7998 old_rd = NULL;
7999 }
8000
8001 atomic_inc(&rd->refcount);
8002 rq->rd = rd;
8003
8004 cpumask_set_cpu(rq->cpu, rd->span);
8005 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8006 set_rq_online(rq);
8007
8008 spin_unlock_irqrestore(&rq->lock, flags);
8009
8010 if (old_rd)
8011 free_rootdomain(old_rd);
8012 }
8013
8014 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8015 {
8016 gfp_t gfp = GFP_KERNEL;
8017
8018 memset(rd, 0, sizeof(*rd));
8019
8020 if (bootmem)
8021 gfp = GFP_NOWAIT;
8022
8023 if (!alloc_cpumask_var(&rd->span, gfp))
8024 goto out;
8025 if (!alloc_cpumask_var(&rd->online, gfp))
8026 goto free_span;
8027 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8028 goto free_online;
8029
8030 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8031 goto free_rto_mask;
8032 return 0;
8033
8034 free_rto_mask:
8035 free_cpumask_var(rd->rto_mask);
8036 free_online:
8037 free_cpumask_var(rd->online);
8038 free_span:
8039 free_cpumask_var(rd->span);
8040 out:
8041 return -ENOMEM;
8042 }
8043
8044 static void init_defrootdomain(void)
8045 {
8046 init_rootdomain(&def_root_domain, true);
8047
8048 atomic_set(&def_root_domain.refcount, 1);
8049 }
8050
8051 static struct root_domain *alloc_rootdomain(void)
8052 {
8053 struct root_domain *rd;
8054
8055 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8056 if (!rd)
8057 return NULL;
8058
8059 if (init_rootdomain(rd, false) != 0) {
8060 kfree(rd);
8061 return NULL;
8062 }
8063
8064 return rd;
8065 }
8066
8067 /*
8068 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8069 * hold the hotplug lock.
8070 */
8071 static void
8072 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8073 {
8074 struct rq *rq = cpu_rq(cpu);
8075 struct sched_domain *tmp;
8076
8077 /* Remove the sched domains which do not contribute to scheduling. */
8078 for (tmp = sd; tmp; ) {
8079 struct sched_domain *parent = tmp->parent;
8080 if (!parent)
8081 break;
8082
8083 if (sd_parent_degenerate(tmp, parent)) {
8084 tmp->parent = parent->parent;
8085 if (parent->parent)
8086 parent->parent->child = tmp;
8087 } else
8088 tmp = tmp->parent;
8089 }
8090
8091 if (sd && sd_degenerate(sd)) {
8092 sd = sd->parent;
8093 if (sd)
8094 sd->child = NULL;
8095 }
8096
8097 sched_domain_debug(sd, cpu);
8098
8099 rq_attach_root(rq, rd);
8100 rcu_assign_pointer(rq->sd, sd);
8101 }
8102
8103 /* cpus with isolated domains */
8104 static cpumask_var_t cpu_isolated_map;
8105
8106 /* Setup the mask of cpus configured for isolated domains */
8107 static int __init isolated_cpu_setup(char *str)
8108 {
8109 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8110 cpulist_parse(str, cpu_isolated_map);
8111 return 1;
8112 }
8113
8114 __setup("isolcpus=", isolated_cpu_setup);
8115
8116 /*
8117 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8118 * to a function which identifies what group(along with sched group) a CPU
8119 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8120 * (due to the fact that we keep track of groups covered with a struct cpumask).
8121 *
8122 * init_sched_build_groups will build a circular linked list of the groups
8123 * covered by the given span, and will set each group's ->cpumask correctly,
8124 * and ->cpu_power to 0.
8125 */
8126 static void
8127 init_sched_build_groups(const struct cpumask *span,
8128 const struct cpumask *cpu_map,
8129 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8130 struct sched_group **sg,
8131 struct cpumask *tmpmask),
8132 struct cpumask *covered, struct cpumask *tmpmask)
8133 {
8134 struct sched_group *first = NULL, *last = NULL;
8135 int i;
8136
8137 cpumask_clear(covered);
8138
8139 for_each_cpu(i, span) {
8140 struct sched_group *sg;
8141 int group = group_fn(i, cpu_map, &sg, tmpmask);
8142 int j;
8143
8144 if (cpumask_test_cpu(i, covered))
8145 continue;
8146
8147 cpumask_clear(sched_group_cpus(sg));
8148 sg->cpu_power = 0;
8149
8150 for_each_cpu(j, span) {
8151 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8152 continue;
8153
8154 cpumask_set_cpu(j, covered);
8155 cpumask_set_cpu(j, sched_group_cpus(sg));
8156 }
8157 if (!first)
8158 first = sg;
8159 if (last)
8160 last->next = sg;
8161 last = sg;
8162 }
8163 last->next = first;
8164 }
8165
8166 #define SD_NODES_PER_DOMAIN 16
8167
8168 #ifdef CONFIG_NUMA
8169
8170 /**
8171 * find_next_best_node - find the next node to include in a sched_domain
8172 * @node: node whose sched_domain we're building
8173 * @used_nodes: nodes already in the sched_domain
8174 *
8175 * Find the next node to include in a given scheduling domain. Simply
8176 * finds the closest node not already in the @used_nodes map.
8177 *
8178 * Should use nodemask_t.
8179 */
8180 static int find_next_best_node(int node, nodemask_t *used_nodes)
8181 {
8182 int i, n, val, min_val, best_node = 0;
8183
8184 min_val = INT_MAX;
8185
8186 for (i = 0; i < nr_node_ids; i++) {
8187 /* Start at @node */
8188 n = (node + i) % nr_node_ids;
8189
8190 if (!nr_cpus_node(n))
8191 continue;
8192
8193 /* Skip already used nodes */
8194 if (node_isset(n, *used_nodes))
8195 continue;
8196
8197 /* Simple min distance search */
8198 val = node_distance(node, n);
8199
8200 if (val < min_val) {
8201 min_val = val;
8202 best_node = n;
8203 }
8204 }
8205
8206 node_set(best_node, *used_nodes);
8207 return best_node;
8208 }
8209
8210 /**
8211 * sched_domain_node_span - get a cpumask for a node's sched_domain
8212 * @node: node whose cpumask we're constructing
8213 * @span: resulting cpumask
8214 *
8215 * Given a node, construct a good cpumask for its sched_domain to span. It
8216 * should be one that prevents unnecessary balancing, but also spreads tasks
8217 * out optimally.
8218 */
8219 static void sched_domain_node_span(int node, struct cpumask *span)
8220 {
8221 nodemask_t used_nodes;
8222 int i;
8223
8224 cpumask_clear(span);
8225 nodes_clear(used_nodes);
8226
8227 cpumask_or(span, span, cpumask_of_node(node));
8228 node_set(node, used_nodes);
8229
8230 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8231 int next_node = find_next_best_node(node, &used_nodes);
8232
8233 cpumask_or(span, span, cpumask_of_node(next_node));
8234 }
8235 }
8236 #endif /* CONFIG_NUMA */
8237
8238 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8239
8240 /*
8241 * The cpus mask in sched_group and sched_domain hangs off the end.
8242 *
8243 * ( See the the comments in include/linux/sched.h:struct sched_group
8244 * and struct sched_domain. )
8245 */
8246 struct static_sched_group {
8247 struct sched_group sg;
8248 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8249 };
8250
8251 struct static_sched_domain {
8252 struct sched_domain sd;
8253 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8254 };
8255
8256 struct s_data {
8257 #ifdef CONFIG_NUMA
8258 int sd_allnodes;
8259 cpumask_var_t domainspan;
8260 cpumask_var_t covered;
8261 cpumask_var_t notcovered;
8262 #endif
8263 cpumask_var_t nodemask;
8264 cpumask_var_t this_sibling_map;
8265 cpumask_var_t this_core_map;
8266 cpumask_var_t send_covered;
8267 cpumask_var_t tmpmask;
8268 struct sched_group **sched_group_nodes;
8269 struct root_domain *rd;
8270 };
8271
8272 enum s_alloc {
8273 sa_sched_groups = 0,
8274 sa_rootdomain,
8275 sa_tmpmask,
8276 sa_send_covered,
8277 sa_this_core_map,
8278 sa_this_sibling_map,
8279 sa_nodemask,
8280 sa_sched_group_nodes,
8281 #ifdef CONFIG_NUMA
8282 sa_notcovered,
8283 sa_covered,
8284 sa_domainspan,
8285 #endif
8286 sa_none,
8287 };
8288
8289 /*
8290 * SMT sched-domains:
8291 */
8292 #ifdef CONFIG_SCHED_SMT
8293 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8294 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8295
8296 static int
8297 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8298 struct sched_group **sg, struct cpumask *unused)
8299 {
8300 if (sg)
8301 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8302 return cpu;
8303 }
8304 #endif /* CONFIG_SCHED_SMT */
8305
8306 /*
8307 * multi-core sched-domains:
8308 */
8309 #ifdef CONFIG_SCHED_MC
8310 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8311 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8312 #endif /* CONFIG_SCHED_MC */
8313
8314 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8315 static int
8316 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8317 struct sched_group **sg, struct cpumask *mask)
8318 {
8319 int group;
8320
8321 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8322 group = cpumask_first(mask);
8323 if (sg)
8324 *sg = &per_cpu(sched_group_core, group).sg;
8325 return group;
8326 }
8327 #elif defined(CONFIG_SCHED_MC)
8328 static int
8329 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8330 struct sched_group **sg, struct cpumask *unused)
8331 {
8332 if (sg)
8333 *sg = &per_cpu(sched_group_core, cpu).sg;
8334 return cpu;
8335 }
8336 #endif
8337
8338 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8339 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8340
8341 static int
8342 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8343 struct sched_group **sg, struct cpumask *mask)
8344 {
8345 int group;
8346 #ifdef CONFIG_SCHED_MC
8347 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8348 group = cpumask_first(mask);
8349 #elif defined(CONFIG_SCHED_SMT)
8350 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8351 group = cpumask_first(mask);
8352 #else
8353 group = cpu;
8354 #endif
8355 if (sg)
8356 *sg = &per_cpu(sched_group_phys, group).sg;
8357 return group;
8358 }
8359
8360 #ifdef CONFIG_NUMA
8361 /*
8362 * The init_sched_build_groups can't handle what we want to do with node
8363 * groups, so roll our own. Now each node has its own list of groups which
8364 * gets dynamically allocated.
8365 */
8366 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8367 static struct sched_group ***sched_group_nodes_bycpu;
8368
8369 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8370 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8371
8372 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8373 struct sched_group **sg,
8374 struct cpumask *nodemask)
8375 {
8376 int group;
8377
8378 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8379 group = cpumask_first(nodemask);
8380
8381 if (sg)
8382 *sg = &per_cpu(sched_group_allnodes, group).sg;
8383 return group;
8384 }
8385
8386 static void init_numa_sched_groups_power(struct sched_group *group_head)
8387 {
8388 struct sched_group *sg = group_head;
8389 int j;
8390
8391 if (!sg)
8392 return;
8393 do {
8394 for_each_cpu(j, sched_group_cpus(sg)) {
8395 struct sched_domain *sd;
8396
8397 sd = &per_cpu(phys_domains, j).sd;
8398 if (j != group_first_cpu(sd->groups)) {
8399 /*
8400 * Only add "power" once for each
8401 * physical package.
8402 */
8403 continue;
8404 }
8405
8406 sg->cpu_power += sd->groups->cpu_power;
8407 }
8408 sg = sg->next;
8409 } while (sg != group_head);
8410 }
8411
8412 static int build_numa_sched_groups(struct s_data *d,
8413 const struct cpumask *cpu_map, int num)
8414 {
8415 struct sched_domain *sd;
8416 struct sched_group *sg, *prev;
8417 int n, j;
8418
8419 cpumask_clear(d->covered);
8420 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8421 if (cpumask_empty(d->nodemask)) {
8422 d->sched_group_nodes[num] = NULL;
8423 goto out;
8424 }
8425
8426 sched_domain_node_span(num, d->domainspan);
8427 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8428
8429 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8430 GFP_KERNEL, num);
8431 if (!sg) {
8432 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8433 num);
8434 return -ENOMEM;
8435 }
8436 d->sched_group_nodes[num] = sg;
8437
8438 for_each_cpu(j, d->nodemask) {
8439 sd = &per_cpu(node_domains, j).sd;
8440 sd->groups = sg;
8441 }
8442
8443 sg->cpu_power = 0;
8444 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8445 sg->next = sg;
8446 cpumask_or(d->covered, d->covered, d->nodemask);
8447
8448 prev = sg;
8449 for (j = 0; j < nr_node_ids; j++) {
8450 n = (num + j) % nr_node_ids;
8451 cpumask_complement(d->notcovered, d->covered);
8452 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8453 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8454 if (cpumask_empty(d->tmpmask))
8455 break;
8456 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8457 if (cpumask_empty(d->tmpmask))
8458 continue;
8459 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8460 GFP_KERNEL, num);
8461 if (!sg) {
8462 printk(KERN_WARNING
8463 "Can not alloc domain group for node %d\n", j);
8464 return -ENOMEM;
8465 }
8466 sg->cpu_power = 0;
8467 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8468 sg->next = prev->next;
8469 cpumask_or(d->covered, d->covered, d->tmpmask);
8470 prev->next = sg;
8471 prev = sg;
8472 }
8473 out:
8474 return 0;
8475 }
8476 #endif /* CONFIG_NUMA */
8477
8478 #ifdef CONFIG_NUMA
8479 /* Free memory allocated for various sched_group structures */
8480 static void free_sched_groups(const struct cpumask *cpu_map,
8481 struct cpumask *nodemask)
8482 {
8483 int cpu, i;
8484
8485 for_each_cpu(cpu, cpu_map) {
8486 struct sched_group **sched_group_nodes
8487 = sched_group_nodes_bycpu[cpu];
8488
8489 if (!sched_group_nodes)
8490 continue;
8491
8492 for (i = 0; i < nr_node_ids; i++) {
8493 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8494
8495 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8496 if (cpumask_empty(nodemask))
8497 continue;
8498
8499 if (sg == NULL)
8500 continue;
8501 sg = sg->next;
8502 next_sg:
8503 oldsg = sg;
8504 sg = sg->next;
8505 kfree(oldsg);
8506 if (oldsg != sched_group_nodes[i])
8507 goto next_sg;
8508 }
8509 kfree(sched_group_nodes);
8510 sched_group_nodes_bycpu[cpu] = NULL;
8511 }
8512 }
8513 #else /* !CONFIG_NUMA */
8514 static void free_sched_groups(const struct cpumask *cpu_map,
8515 struct cpumask *nodemask)
8516 {
8517 }
8518 #endif /* CONFIG_NUMA */
8519
8520 /*
8521 * Initialize sched groups cpu_power.
8522 *
8523 * cpu_power indicates the capacity of sched group, which is used while
8524 * distributing the load between different sched groups in a sched domain.
8525 * Typically cpu_power for all the groups in a sched domain will be same unless
8526 * there are asymmetries in the topology. If there are asymmetries, group
8527 * having more cpu_power will pickup more load compared to the group having
8528 * less cpu_power.
8529 */
8530 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8531 {
8532 struct sched_domain *child;
8533 struct sched_group *group;
8534 long power;
8535 int weight;
8536
8537 WARN_ON(!sd || !sd->groups);
8538
8539 if (cpu != group_first_cpu(sd->groups))
8540 return;
8541
8542 child = sd->child;
8543
8544 sd->groups->cpu_power = 0;
8545
8546 if (!child) {
8547 power = SCHED_LOAD_SCALE;
8548 weight = cpumask_weight(sched_domain_span(sd));
8549 /*
8550 * SMT siblings share the power of a single core.
8551 * Usually multiple threads get a better yield out of
8552 * that one core than a single thread would have,
8553 * reflect that in sd->smt_gain.
8554 */
8555 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8556 power *= sd->smt_gain;
8557 power /= weight;
8558 power >>= SCHED_LOAD_SHIFT;
8559 }
8560 sd->groups->cpu_power += power;
8561 return;
8562 }
8563
8564 /*
8565 * Add cpu_power of each child group to this groups cpu_power.
8566 */
8567 group = child->groups;
8568 do {
8569 sd->groups->cpu_power += group->cpu_power;
8570 group = group->next;
8571 } while (group != child->groups);
8572 }
8573
8574 /*
8575 * Initializers for schedule domains
8576 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8577 */
8578
8579 #ifdef CONFIG_SCHED_DEBUG
8580 # define SD_INIT_NAME(sd, type) sd->name = #type
8581 #else
8582 # define SD_INIT_NAME(sd, type) do { } while (0)
8583 #endif
8584
8585 #define SD_INIT(sd, type) sd_init_##type(sd)
8586
8587 #define SD_INIT_FUNC(type) \
8588 static noinline void sd_init_##type(struct sched_domain *sd) \
8589 { \
8590 memset(sd, 0, sizeof(*sd)); \
8591 *sd = SD_##type##_INIT; \
8592 sd->level = SD_LV_##type; \
8593 SD_INIT_NAME(sd, type); \
8594 }
8595
8596 SD_INIT_FUNC(CPU)
8597 #ifdef CONFIG_NUMA
8598 SD_INIT_FUNC(ALLNODES)
8599 SD_INIT_FUNC(NODE)
8600 #endif
8601 #ifdef CONFIG_SCHED_SMT
8602 SD_INIT_FUNC(SIBLING)
8603 #endif
8604 #ifdef CONFIG_SCHED_MC
8605 SD_INIT_FUNC(MC)
8606 #endif
8607
8608 static int default_relax_domain_level = -1;
8609
8610 static int __init setup_relax_domain_level(char *str)
8611 {
8612 unsigned long val;
8613
8614 val = simple_strtoul(str, NULL, 0);
8615 if (val < SD_LV_MAX)
8616 default_relax_domain_level = val;
8617
8618 return 1;
8619 }
8620 __setup("relax_domain_level=", setup_relax_domain_level);
8621
8622 static void set_domain_attribute(struct sched_domain *sd,
8623 struct sched_domain_attr *attr)
8624 {
8625 int request;
8626
8627 if (!attr || attr->relax_domain_level < 0) {
8628 if (default_relax_domain_level < 0)
8629 return;
8630 else
8631 request = default_relax_domain_level;
8632 } else
8633 request = attr->relax_domain_level;
8634 if (request < sd->level) {
8635 /* turn off idle balance on this domain */
8636 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8637 } else {
8638 /* turn on idle balance on this domain */
8639 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8640 }
8641 }
8642
8643 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8644 const struct cpumask *cpu_map)
8645 {
8646 switch (what) {
8647 case sa_sched_groups:
8648 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8649 d->sched_group_nodes = NULL;
8650 case sa_rootdomain:
8651 free_rootdomain(d->rd); /* fall through */
8652 case sa_tmpmask:
8653 free_cpumask_var(d->tmpmask); /* fall through */
8654 case sa_send_covered:
8655 free_cpumask_var(d->send_covered); /* fall through */
8656 case sa_this_core_map:
8657 free_cpumask_var(d->this_core_map); /* fall through */
8658 case sa_this_sibling_map:
8659 free_cpumask_var(d->this_sibling_map); /* fall through */
8660 case sa_nodemask:
8661 free_cpumask_var(d->nodemask); /* fall through */
8662 case sa_sched_group_nodes:
8663 #ifdef CONFIG_NUMA
8664 kfree(d->sched_group_nodes); /* fall through */
8665 case sa_notcovered:
8666 free_cpumask_var(d->notcovered); /* fall through */
8667 case sa_covered:
8668 free_cpumask_var(d->covered); /* fall through */
8669 case sa_domainspan:
8670 free_cpumask_var(d->domainspan); /* fall through */
8671 #endif
8672 case sa_none:
8673 break;
8674 }
8675 }
8676
8677 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8678 const struct cpumask *cpu_map)
8679 {
8680 #ifdef CONFIG_NUMA
8681 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8682 return sa_none;
8683 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8684 return sa_domainspan;
8685 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8686 return sa_covered;
8687 /* Allocate the per-node list of sched groups */
8688 d->sched_group_nodes = kcalloc(nr_node_ids,
8689 sizeof(struct sched_group *), GFP_KERNEL);
8690 if (!d->sched_group_nodes) {
8691 printk(KERN_WARNING "Can not alloc sched group node list\n");
8692 return sa_notcovered;
8693 }
8694 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8695 #endif
8696 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8697 return sa_sched_group_nodes;
8698 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8699 return sa_nodemask;
8700 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8701 return sa_this_sibling_map;
8702 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8703 return sa_this_core_map;
8704 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8705 return sa_send_covered;
8706 d->rd = alloc_rootdomain();
8707 if (!d->rd) {
8708 printk(KERN_WARNING "Cannot alloc root domain\n");
8709 return sa_tmpmask;
8710 }
8711 return sa_rootdomain;
8712 }
8713
8714 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8715 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8716 {
8717 struct sched_domain *sd = NULL;
8718 #ifdef CONFIG_NUMA
8719 struct sched_domain *parent;
8720
8721 d->sd_allnodes = 0;
8722 if (cpumask_weight(cpu_map) >
8723 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8724 sd = &per_cpu(allnodes_domains, i).sd;
8725 SD_INIT(sd, ALLNODES);
8726 set_domain_attribute(sd, attr);
8727 cpumask_copy(sched_domain_span(sd), cpu_map);
8728 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8729 d->sd_allnodes = 1;
8730 }
8731 parent = sd;
8732
8733 sd = &per_cpu(node_domains, i).sd;
8734 SD_INIT(sd, NODE);
8735 set_domain_attribute(sd, attr);
8736 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8737 sd->parent = parent;
8738 if (parent)
8739 parent->child = sd;
8740 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8741 #endif
8742 return sd;
8743 }
8744
8745 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8746 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8747 struct sched_domain *parent, int i)
8748 {
8749 struct sched_domain *sd;
8750 sd = &per_cpu(phys_domains, i).sd;
8751 SD_INIT(sd, CPU);
8752 set_domain_attribute(sd, attr);
8753 cpumask_copy(sched_domain_span(sd), d->nodemask);
8754 sd->parent = parent;
8755 if (parent)
8756 parent->child = sd;
8757 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8758 return sd;
8759 }
8760
8761 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8762 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8763 struct sched_domain *parent, int i)
8764 {
8765 struct sched_domain *sd = parent;
8766 #ifdef CONFIG_SCHED_MC
8767 sd = &per_cpu(core_domains, i).sd;
8768 SD_INIT(sd, MC);
8769 set_domain_attribute(sd, attr);
8770 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8771 sd->parent = parent;
8772 parent->child = sd;
8773 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8774 #endif
8775 return sd;
8776 }
8777
8778 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8779 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8780 struct sched_domain *parent, int i)
8781 {
8782 struct sched_domain *sd = parent;
8783 #ifdef CONFIG_SCHED_SMT
8784 sd = &per_cpu(cpu_domains, i).sd;
8785 SD_INIT(sd, SIBLING);
8786 set_domain_attribute(sd, attr);
8787 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8788 sd->parent = parent;
8789 parent->child = sd;
8790 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8791 #endif
8792 return sd;
8793 }
8794
8795 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8796 const struct cpumask *cpu_map, int cpu)
8797 {
8798 switch (l) {
8799 #ifdef CONFIG_SCHED_SMT
8800 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8801 cpumask_and(d->this_sibling_map, cpu_map,
8802 topology_thread_cpumask(cpu));
8803 if (cpu == cpumask_first(d->this_sibling_map))
8804 init_sched_build_groups(d->this_sibling_map, cpu_map,
8805 &cpu_to_cpu_group,
8806 d->send_covered, d->tmpmask);
8807 break;
8808 #endif
8809 #ifdef CONFIG_SCHED_MC
8810 case SD_LV_MC: /* set up multi-core groups */
8811 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8812 if (cpu == cpumask_first(d->this_core_map))
8813 init_sched_build_groups(d->this_core_map, cpu_map,
8814 &cpu_to_core_group,
8815 d->send_covered, d->tmpmask);
8816 break;
8817 #endif
8818 case SD_LV_CPU: /* set up physical groups */
8819 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8820 if (!cpumask_empty(d->nodemask))
8821 init_sched_build_groups(d->nodemask, cpu_map,
8822 &cpu_to_phys_group,
8823 d->send_covered, d->tmpmask);
8824 break;
8825 #ifdef CONFIG_NUMA
8826 case SD_LV_ALLNODES:
8827 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8828 d->send_covered, d->tmpmask);
8829 break;
8830 #endif
8831 default:
8832 break;
8833 }
8834 }
8835
8836 /*
8837 * Build sched domains for a given set of cpus and attach the sched domains
8838 * to the individual cpus
8839 */
8840 static int __build_sched_domains(const struct cpumask *cpu_map,
8841 struct sched_domain_attr *attr)
8842 {
8843 enum s_alloc alloc_state = sa_none;
8844 struct s_data d;
8845 struct sched_domain *sd;
8846 int i;
8847 #ifdef CONFIG_NUMA
8848 d.sd_allnodes = 0;
8849 #endif
8850
8851 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8852 if (alloc_state != sa_rootdomain)
8853 goto error;
8854 alloc_state = sa_sched_groups;
8855
8856 /*
8857 * Set up domains for cpus specified by the cpu_map.
8858 */
8859 for_each_cpu(i, cpu_map) {
8860 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8861 cpu_map);
8862
8863 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8864 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8865 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8866 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8867 }
8868
8869 for_each_cpu(i, cpu_map) {
8870 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8871 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8872 }
8873
8874 /* Set up physical groups */
8875 for (i = 0; i < nr_node_ids; i++)
8876 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8877
8878 #ifdef CONFIG_NUMA
8879 /* Set up node groups */
8880 if (d.sd_allnodes)
8881 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8882
8883 for (i = 0; i < nr_node_ids; i++)
8884 if (build_numa_sched_groups(&d, cpu_map, i))
8885 goto error;
8886 #endif
8887
8888 /* Calculate CPU power for physical packages and nodes */
8889 #ifdef CONFIG_SCHED_SMT
8890 for_each_cpu(i, cpu_map) {
8891 sd = &per_cpu(cpu_domains, i).sd;
8892 init_sched_groups_power(i, sd);
8893 }
8894 #endif
8895 #ifdef CONFIG_SCHED_MC
8896 for_each_cpu(i, cpu_map) {
8897 sd = &per_cpu(core_domains, i).sd;
8898 init_sched_groups_power(i, sd);
8899 }
8900 #endif
8901
8902 for_each_cpu(i, cpu_map) {
8903 sd = &per_cpu(phys_domains, i).sd;
8904 init_sched_groups_power(i, sd);
8905 }
8906
8907 #ifdef CONFIG_NUMA
8908 for (i = 0; i < nr_node_ids; i++)
8909 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8910
8911 if (d.sd_allnodes) {
8912 struct sched_group *sg;
8913
8914 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8915 d.tmpmask);
8916 init_numa_sched_groups_power(sg);
8917 }
8918 #endif
8919
8920 /* Attach the domains */
8921 for_each_cpu(i, cpu_map) {
8922 #ifdef CONFIG_SCHED_SMT
8923 sd = &per_cpu(cpu_domains, i).sd;
8924 #elif defined(CONFIG_SCHED_MC)
8925 sd = &per_cpu(core_domains, i).sd;
8926 #else
8927 sd = &per_cpu(phys_domains, i).sd;
8928 #endif
8929 cpu_attach_domain(sd, d.rd, i);
8930 }
8931
8932 d.sched_group_nodes = NULL; /* don't free this we still need it */
8933 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8934 return 0;
8935
8936 error:
8937 __free_domain_allocs(&d, alloc_state, cpu_map);
8938 return -ENOMEM;
8939 }
8940
8941 static int build_sched_domains(const struct cpumask *cpu_map)
8942 {
8943 return __build_sched_domains(cpu_map, NULL);
8944 }
8945
8946 static cpumask_var_t *doms_cur; /* current sched domains */
8947 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8948 static struct sched_domain_attr *dattr_cur;
8949 /* attribues of custom domains in 'doms_cur' */
8950
8951 /*
8952 * Special case: If a kmalloc of a doms_cur partition (array of
8953 * cpumask) fails, then fallback to a single sched domain,
8954 * as determined by the single cpumask fallback_doms.
8955 */
8956 static cpumask_var_t fallback_doms;
8957
8958 /*
8959 * arch_update_cpu_topology lets virtualized architectures update the
8960 * cpu core maps. It is supposed to return 1 if the topology changed
8961 * or 0 if it stayed the same.
8962 */
8963 int __attribute__((weak)) arch_update_cpu_topology(void)
8964 {
8965 return 0;
8966 }
8967
8968 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8969 {
8970 int i;
8971 cpumask_var_t *doms;
8972
8973 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8974 if (!doms)
8975 return NULL;
8976 for (i = 0; i < ndoms; i++) {
8977 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8978 free_sched_domains(doms, i);
8979 return NULL;
8980 }
8981 }
8982 return doms;
8983 }
8984
8985 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8986 {
8987 unsigned int i;
8988 for (i = 0; i < ndoms; i++)
8989 free_cpumask_var(doms[i]);
8990 kfree(doms);
8991 }
8992
8993 /*
8994 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8995 * For now this just excludes isolated cpus, but could be used to
8996 * exclude other special cases in the future.
8997 */
8998 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8999 {
9000 int err;
9001
9002 arch_update_cpu_topology();
9003 ndoms_cur = 1;
9004 doms_cur = alloc_sched_domains(ndoms_cur);
9005 if (!doms_cur)
9006 doms_cur = &fallback_doms;
9007 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9008 dattr_cur = NULL;
9009 err = build_sched_domains(doms_cur[0]);
9010 register_sched_domain_sysctl();
9011
9012 return err;
9013 }
9014
9015 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9016 struct cpumask *tmpmask)
9017 {
9018 free_sched_groups(cpu_map, tmpmask);
9019 }
9020
9021 /*
9022 * Detach sched domains from a group of cpus specified in cpu_map
9023 * These cpus will now be attached to the NULL domain
9024 */
9025 static void detach_destroy_domains(const struct cpumask *cpu_map)
9026 {
9027 /* Save because hotplug lock held. */
9028 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9029 int i;
9030
9031 for_each_cpu(i, cpu_map)
9032 cpu_attach_domain(NULL, &def_root_domain, i);
9033 synchronize_sched();
9034 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9035 }
9036
9037 /* handle null as "default" */
9038 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9039 struct sched_domain_attr *new, int idx_new)
9040 {
9041 struct sched_domain_attr tmp;
9042
9043 /* fast path */
9044 if (!new && !cur)
9045 return 1;
9046
9047 tmp = SD_ATTR_INIT;
9048 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9049 new ? (new + idx_new) : &tmp,
9050 sizeof(struct sched_domain_attr));
9051 }
9052
9053 /*
9054 * Partition sched domains as specified by the 'ndoms_new'
9055 * cpumasks in the array doms_new[] of cpumasks. This compares
9056 * doms_new[] to the current sched domain partitioning, doms_cur[].
9057 * It destroys each deleted domain and builds each new domain.
9058 *
9059 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9060 * The masks don't intersect (don't overlap.) We should setup one
9061 * sched domain for each mask. CPUs not in any of the cpumasks will
9062 * not be load balanced. If the same cpumask appears both in the
9063 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9064 * it as it is.
9065 *
9066 * The passed in 'doms_new' should be allocated using
9067 * alloc_sched_domains. This routine takes ownership of it and will
9068 * free_sched_domains it when done with it. If the caller failed the
9069 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9070 * and partition_sched_domains() will fallback to the single partition
9071 * 'fallback_doms', it also forces the domains to be rebuilt.
9072 *
9073 * If doms_new == NULL it will be replaced with cpu_online_mask.
9074 * ndoms_new == 0 is a special case for destroying existing domains,
9075 * and it will not create the default domain.
9076 *
9077 * Call with hotplug lock held
9078 */
9079 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9080 struct sched_domain_attr *dattr_new)
9081 {
9082 int i, j, n;
9083 int new_topology;
9084
9085 mutex_lock(&sched_domains_mutex);
9086
9087 /* always unregister in case we don't destroy any domains */
9088 unregister_sched_domain_sysctl();
9089
9090 /* Let architecture update cpu core mappings. */
9091 new_topology = arch_update_cpu_topology();
9092
9093 n = doms_new ? ndoms_new : 0;
9094
9095 /* Destroy deleted domains */
9096 for (i = 0; i < ndoms_cur; i++) {
9097 for (j = 0; j < n && !new_topology; j++) {
9098 if (cpumask_equal(doms_cur[i], doms_new[j])
9099 && dattrs_equal(dattr_cur, i, dattr_new, j))
9100 goto match1;
9101 }
9102 /* no match - a current sched domain not in new doms_new[] */
9103 detach_destroy_domains(doms_cur[i]);
9104 match1:
9105 ;
9106 }
9107
9108 if (doms_new == NULL) {
9109 ndoms_cur = 0;
9110 doms_new = &fallback_doms;
9111 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9112 WARN_ON_ONCE(dattr_new);
9113 }
9114
9115 /* Build new domains */
9116 for (i = 0; i < ndoms_new; i++) {
9117 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9118 if (cpumask_equal(doms_new[i], doms_cur[j])
9119 && dattrs_equal(dattr_new, i, dattr_cur, j))
9120 goto match2;
9121 }
9122 /* no match - add a new doms_new */
9123 __build_sched_domains(doms_new[i],
9124 dattr_new ? dattr_new + i : NULL);
9125 match2:
9126 ;
9127 }
9128
9129 /* Remember the new sched domains */
9130 if (doms_cur != &fallback_doms)
9131 free_sched_domains(doms_cur, ndoms_cur);
9132 kfree(dattr_cur); /* kfree(NULL) is safe */
9133 doms_cur = doms_new;
9134 dattr_cur = dattr_new;
9135 ndoms_cur = ndoms_new;
9136
9137 register_sched_domain_sysctl();
9138
9139 mutex_unlock(&sched_domains_mutex);
9140 }
9141
9142 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9143 static void arch_reinit_sched_domains(void)
9144 {
9145 get_online_cpus();
9146
9147 /* Destroy domains first to force the rebuild */
9148 partition_sched_domains(0, NULL, NULL);
9149
9150 rebuild_sched_domains();
9151 put_online_cpus();
9152 }
9153
9154 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9155 {
9156 unsigned int level = 0;
9157
9158 if (sscanf(buf, "%u", &level) != 1)
9159 return -EINVAL;
9160
9161 /*
9162 * level is always be positive so don't check for
9163 * level < POWERSAVINGS_BALANCE_NONE which is 0
9164 * What happens on 0 or 1 byte write,
9165 * need to check for count as well?
9166 */
9167
9168 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9169 return -EINVAL;
9170
9171 if (smt)
9172 sched_smt_power_savings = level;
9173 else
9174 sched_mc_power_savings = level;
9175
9176 arch_reinit_sched_domains();
9177
9178 return count;
9179 }
9180
9181 #ifdef CONFIG_SCHED_MC
9182 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9183 char *page)
9184 {
9185 return sprintf(page, "%u\n", sched_mc_power_savings);
9186 }
9187 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9188 const char *buf, size_t count)
9189 {
9190 return sched_power_savings_store(buf, count, 0);
9191 }
9192 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9193 sched_mc_power_savings_show,
9194 sched_mc_power_savings_store);
9195 #endif
9196
9197 #ifdef CONFIG_SCHED_SMT
9198 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9199 char *page)
9200 {
9201 return sprintf(page, "%u\n", sched_smt_power_savings);
9202 }
9203 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9204 const char *buf, size_t count)
9205 {
9206 return sched_power_savings_store(buf, count, 1);
9207 }
9208 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9209 sched_smt_power_savings_show,
9210 sched_smt_power_savings_store);
9211 #endif
9212
9213 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9214 {
9215 int err = 0;
9216
9217 #ifdef CONFIG_SCHED_SMT
9218 if (smt_capable())
9219 err = sysfs_create_file(&cls->kset.kobj,
9220 &attr_sched_smt_power_savings.attr);
9221 #endif
9222 #ifdef CONFIG_SCHED_MC
9223 if (!err && mc_capable())
9224 err = sysfs_create_file(&cls->kset.kobj,
9225 &attr_sched_mc_power_savings.attr);
9226 #endif
9227 return err;
9228 }
9229 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9230
9231 #ifndef CONFIG_CPUSETS
9232 /*
9233 * Add online and remove offline CPUs from the scheduler domains.
9234 * When cpusets are enabled they take over this function.
9235 */
9236 static int update_sched_domains(struct notifier_block *nfb,
9237 unsigned long action, void *hcpu)
9238 {
9239 switch (action) {
9240 case CPU_ONLINE:
9241 case CPU_ONLINE_FROZEN:
9242 case CPU_DOWN_PREPARE:
9243 case CPU_DOWN_PREPARE_FROZEN:
9244 case CPU_DOWN_FAILED:
9245 case CPU_DOWN_FAILED_FROZEN:
9246 partition_sched_domains(1, NULL, NULL);
9247 return NOTIFY_OK;
9248
9249 default:
9250 return NOTIFY_DONE;
9251 }
9252 }
9253 #endif
9254
9255 static int update_runtime(struct notifier_block *nfb,
9256 unsigned long action, void *hcpu)
9257 {
9258 int cpu = (int)(long)hcpu;
9259
9260 switch (action) {
9261 case CPU_DOWN_PREPARE:
9262 case CPU_DOWN_PREPARE_FROZEN:
9263 disable_runtime(cpu_rq(cpu));
9264 return NOTIFY_OK;
9265
9266 case CPU_DOWN_FAILED:
9267 case CPU_DOWN_FAILED_FROZEN:
9268 case CPU_ONLINE:
9269 case CPU_ONLINE_FROZEN:
9270 enable_runtime(cpu_rq(cpu));
9271 return NOTIFY_OK;
9272
9273 default:
9274 return NOTIFY_DONE;
9275 }
9276 }
9277
9278 void __init sched_init_smp(void)
9279 {
9280 cpumask_var_t non_isolated_cpus;
9281
9282 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9283 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9284
9285 #if defined(CONFIG_NUMA)
9286 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9287 GFP_KERNEL);
9288 BUG_ON(sched_group_nodes_bycpu == NULL);
9289 #endif
9290 get_online_cpus();
9291 mutex_lock(&sched_domains_mutex);
9292 arch_init_sched_domains(cpu_active_mask);
9293 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9294 if (cpumask_empty(non_isolated_cpus))
9295 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9296 mutex_unlock(&sched_domains_mutex);
9297 put_online_cpus();
9298
9299 #ifndef CONFIG_CPUSETS
9300 /* XXX: Theoretical race here - CPU may be hotplugged now */
9301 hotcpu_notifier(update_sched_domains, 0);
9302 #endif
9303
9304 /* RT runtime code needs to handle some hotplug events */
9305 hotcpu_notifier(update_runtime, 0);
9306
9307 init_hrtick();
9308
9309 /* Move init over to a non-isolated CPU */
9310 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9311 BUG();
9312 sched_init_granularity();
9313 free_cpumask_var(non_isolated_cpus);
9314
9315 init_sched_rt_class();
9316 }
9317 #else
9318 void __init sched_init_smp(void)
9319 {
9320 sched_init_granularity();
9321 }
9322 #endif /* CONFIG_SMP */
9323
9324 const_debug unsigned int sysctl_timer_migration = 1;
9325
9326 int in_sched_functions(unsigned long addr)
9327 {
9328 return in_lock_functions(addr) ||
9329 (addr >= (unsigned long)__sched_text_start
9330 && addr < (unsigned long)__sched_text_end);
9331 }
9332
9333 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9334 {
9335 cfs_rq->tasks_timeline = RB_ROOT;
9336 INIT_LIST_HEAD(&cfs_rq->tasks);
9337 #ifdef CONFIG_FAIR_GROUP_SCHED
9338 cfs_rq->rq = rq;
9339 #endif
9340 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9341 }
9342
9343 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9344 {
9345 struct rt_prio_array *array;
9346 int i;
9347
9348 array = &rt_rq->active;
9349 for (i = 0; i < MAX_RT_PRIO; i++) {
9350 INIT_LIST_HEAD(array->queue + i);
9351 __clear_bit(i, array->bitmap);
9352 }
9353 /* delimiter for bitsearch: */
9354 __set_bit(MAX_RT_PRIO, array->bitmap);
9355
9356 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9357 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9358 #ifdef CONFIG_SMP
9359 rt_rq->highest_prio.next = MAX_RT_PRIO;
9360 #endif
9361 #endif
9362 #ifdef CONFIG_SMP
9363 rt_rq->rt_nr_migratory = 0;
9364 rt_rq->overloaded = 0;
9365 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9366 #endif
9367
9368 rt_rq->rt_time = 0;
9369 rt_rq->rt_throttled = 0;
9370 rt_rq->rt_runtime = 0;
9371 spin_lock_init(&rt_rq->rt_runtime_lock);
9372
9373 #ifdef CONFIG_RT_GROUP_SCHED
9374 rt_rq->rt_nr_boosted = 0;
9375 rt_rq->rq = rq;
9376 #endif
9377 }
9378
9379 #ifdef CONFIG_FAIR_GROUP_SCHED
9380 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9381 struct sched_entity *se, int cpu, int add,
9382 struct sched_entity *parent)
9383 {
9384 struct rq *rq = cpu_rq(cpu);
9385 tg->cfs_rq[cpu] = cfs_rq;
9386 init_cfs_rq(cfs_rq, rq);
9387 cfs_rq->tg = tg;
9388 if (add)
9389 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9390
9391 tg->se[cpu] = se;
9392 /* se could be NULL for init_task_group */
9393 if (!se)
9394 return;
9395
9396 if (!parent)
9397 se->cfs_rq = &rq->cfs;
9398 else
9399 se->cfs_rq = parent->my_q;
9400
9401 se->my_q = cfs_rq;
9402 se->load.weight = tg->shares;
9403 se->load.inv_weight = 0;
9404 se->parent = parent;
9405 }
9406 #endif
9407
9408 #ifdef CONFIG_RT_GROUP_SCHED
9409 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9410 struct sched_rt_entity *rt_se, int cpu, int add,
9411 struct sched_rt_entity *parent)
9412 {
9413 struct rq *rq = cpu_rq(cpu);
9414
9415 tg->rt_rq[cpu] = rt_rq;
9416 init_rt_rq(rt_rq, rq);
9417 rt_rq->tg = tg;
9418 rt_rq->rt_se = rt_se;
9419 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9420 if (add)
9421 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9422
9423 tg->rt_se[cpu] = rt_se;
9424 if (!rt_se)
9425 return;
9426
9427 if (!parent)
9428 rt_se->rt_rq = &rq->rt;
9429 else
9430 rt_se->rt_rq = parent->my_q;
9431
9432 rt_se->my_q = rt_rq;
9433 rt_se->parent = parent;
9434 INIT_LIST_HEAD(&rt_se->run_list);
9435 }
9436 #endif
9437
9438 void __init sched_init(void)
9439 {
9440 int i, j;
9441 unsigned long alloc_size = 0, ptr;
9442
9443 #ifdef CONFIG_FAIR_GROUP_SCHED
9444 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9445 #endif
9446 #ifdef CONFIG_RT_GROUP_SCHED
9447 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9448 #endif
9449 #ifdef CONFIG_USER_SCHED
9450 alloc_size *= 2;
9451 #endif
9452 #ifdef CONFIG_CPUMASK_OFFSTACK
9453 alloc_size += num_possible_cpus() * cpumask_size();
9454 #endif
9455 if (alloc_size) {
9456 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9457
9458 #ifdef CONFIG_FAIR_GROUP_SCHED
9459 init_task_group.se = (struct sched_entity **)ptr;
9460 ptr += nr_cpu_ids * sizeof(void **);
9461
9462 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9463 ptr += nr_cpu_ids * sizeof(void **);
9464
9465 #ifdef CONFIG_USER_SCHED
9466 root_task_group.se = (struct sched_entity **)ptr;
9467 ptr += nr_cpu_ids * sizeof(void **);
9468
9469 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9470 ptr += nr_cpu_ids * sizeof(void **);
9471 #endif /* CONFIG_USER_SCHED */
9472 #endif /* CONFIG_FAIR_GROUP_SCHED */
9473 #ifdef CONFIG_RT_GROUP_SCHED
9474 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9475 ptr += nr_cpu_ids * sizeof(void **);
9476
9477 init_task_group.rt_rq = (struct rt_rq **)ptr;
9478 ptr += nr_cpu_ids * sizeof(void **);
9479
9480 #ifdef CONFIG_USER_SCHED
9481 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9482 ptr += nr_cpu_ids * sizeof(void **);
9483
9484 root_task_group.rt_rq = (struct rt_rq **)ptr;
9485 ptr += nr_cpu_ids * sizeof(void **);
9486 #endif /* CONFIG_USER_SCHED */
9487 #endif /* CONFIG_RT_GROUP_SCHED */
9488 #ifdef CONFIG_CPUMASK_OFFSTACK
9489 for_each_possible_cpu(i) {
9490 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9491 ptr += cpumask_size();
9492 }
9493 #endif /* CONFIG_CPUMASK_OFFSTACK */
9494 }
9495
9496 #ifdef CONFIG_SMP
9497 init_defrootdomain();
9498 #endif
9499
9500 init_rt_bandwidth(&def_rt_bandwidth,
9501 global_rt_period(), global_rt_runtime());
9502
9503 #ifdef CONFIG_RT_GROUP_SCHED
9504 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9505 global_rt_period(), global_rt_runtime());
9506 #ifdef CONFIG_USER_SCHED
9507 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9508 global_rt_period(), RUNTIME_INF);
9509 #endif /* CONFIG_USER_SCHED */
9510 #endif /* CONFIG_RT_GROUP_SCHED */
9511
9512 #ifdef CONFIG_GROUP_SCHED
9513 list_add(&init_task_group.list, &task_groups);
9514 INIT_LIST_HEAD(&init_task_group.children);
9515
9516 #ifdef CONFIG_USER_SCHED
9517 INIT_LIST_HEAD(&root_task_group.children);
9518 init_task_group.parent = &root_task_group;
9519 list_add(&init_task_group.siblings, &root_task_group.children);
9520 #endif /* CONFIG_USER_SCHED */
9521 #endif /* CONFIG_GROUP_SCHED */
9522
9523 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9524 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9525 __alignof__(unsigned long));
9526 #endif
9527 for_each_possible_cpu(i) {
9528 struct rq *rq;
9529
9530 rq = cpu_rq(i);
9531 spin_lock_init(&rq->lock);
9532 rq->nr_running = 0;
9533 rq->calc_load_active = 0;
9534 rq->calc_load_update = jiffies + LOAD_FREQ;
9535 init_cfs_rq(&rq->cfs, rq);
9536 init_rt_rq(&rq->rt, rq);
9537 #ifdef CONFIG_FAIR_GROUP_SCHED
9538 init_task_group.shares = init_task_group_load;
9539 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9540 #ifdef CONFIG_CGROUP_SCHED
9541 /*
9542 * How much cpu bandwidth does init_task_group get?
9543 *
9544 * In case of task-groups formed thr' the cgroup filesystem, it
9545 * gets 100% of the cpu resources in the system. This overall
9546 * system cpu resource is divided among the tasks of
9547 * init_task_group and its child task-groups in a fair manner,
9548 * based on each entity's (task or task-group's) weight
9549 * (se->load.weight).
9550 *
9551 * In other words, if init_task_group has 10 tasks of weight
9552 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9553 * then A0's share of the cpu resource is:
9554 *
9555 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9556 *
9557 * We achieve this by letting init_task_group's tasks sit
9558 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9559 */
9560 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9561 #elif defined CONFIG_USER_SCHED
9562 root_task_group.shares = NICE_0_LOAD;
9563 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9564 /*
9565 * In case of task-groups formed thr' the user id of tasks,
9566 * init_task_group represents tasks belonging to root user.
9567 * Hence it forms a sibling of all subsequent groups formed.
9568 * In this case, init_task_group gets only a fraction of overall
9569 * system cpu resource, based on the weight assigned to root
9570 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9571 * by letting tasks of init_task_group sit in a separate cfs_rq
9572 * (init_tg_cfs_rq) and having one entity represent this group of
9573 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9574 */
9575 init_tg_cfs_entry(&init_task_group,
9576 &per_cpu(init_tg_cfs_rq, i),
9577 &per_cpu(init_sched_entity, i), i, 1,
9578 root_task_group.se[i]);
9579
9580 #endif
9581 #endif /* CONFIG_FAIR_GROUP_SCHED */
9582
9583 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9584 #ifdef CONFIG_RT_GROUP_SCHED
9585 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9586 #ifdef CONFIG_CGROUP_SCHED
9587 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9588 #elif defined CONFIG_USER_SCHED
9589 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9590 init_tg_rt_entry(&init_task_group,
9591 &per_cpu(init_rt_rq, i),
9592 &per_cpu(init_sched_rt_entity, i), i, 1,
9593 root_task_group.rt_se[i]);
9594 #endif
9595 #endif
9596
9597 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9598 rq->cpu_load[j] = 0;
9599 #ifdef CONFIG_SMP
9600 rq->sd = NULL;
9601 rq->rd = NULL;
9602 rq->post_schedule = 0;
9603 rq->active_balance = 0;
9604 rq->next_balance = jiffies;
9605 rq->push_cpu = 0;
9606 rq->cpu = i;
9607 rq->online = 0;
9608 rq->migration_thread = NULL;
9609 rq->idle_stamp = 0;
9610 rq->avg_idle = 2*sysctl_sched_migration_cost;
9611 INIT_LIST_HEAD(&rq->migration_queue);
9612 rq_attach_root(rq, &def_root_domain);
9613 #endif
9614 init_rq_hrtick(rq);
9615 atomic_set(&rq->nr_iowait, 0);
9616 }
9617
9618 set_load_weight(&init_task);
9619
9620 #ifdef CONFIG_PREEMPT_NOTIFIERS
9621 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9622 #endif
9623
9624 #ifdef CONFIG_SMP
9625 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9626 #endif
9627
9628 #ifdef CONFIG_RT_MUTEXES
9629 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9630 #endif
9631
9632 /*
9633 * The boot idle thread does lazy MMU switching as well:
9634 */
9635 atomic_inc(&init_mm.mm_count);
9636 enter_lazy_tlb(&init_mm, current);
9637
9638 /*
9639 * Make us the idle thread. Technically, schedule() should not be
9640 * called from this thread, however somewhere below it might be,
9641 * but because we are the idle thread, we just pick up running again
9642 * when this runqueue becomes "idle".
9643 */
9644 init_idle(current, smp_processor_id());
9645
9646 calc_load_update = jiffies + LOAD_FREQ;
9647
9648 /*
9649 * During early bootup we pretend to be a normal task:
9650 */
9651 current->sched_class = &fair_sched_class;
9652
9653 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9654 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9655 #ifdef CONFIG_SMP
9656 #ifdef CONFIG_NO_HZ
9657 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9658 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9659 #endif
9660 /* May be allocated at isolcpus cmdline parse time */
9661 if (cpu_isolated_map == NULL)
9662 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9663 #endif /* SMP */
9664
9665 perf_event_init();
9666
9667 scheduler_running = 1;
9668 }
9669
9670 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9671 static inline int preempt_count_equals(int preempt_offset)
9672 {
9673 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9674
9675 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9676 }
9677
9678 void __might_sleep(char *file, int line, int preempt_offset)
9679 {
9680 #ifdef in_atomic
9681 static unsigned long prev_jiffy; /* ratelimiting */
9682
9683 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9684 system_state != SYSTEM_RUNNING || oops_in_progress)
9685 return;
9686 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9687 return;
9688 prev_jiffy = jiffies;
9689
9690 printk(KERN_ERR
9691 "BUG: sleeping function called from invalid context at %s:%d\n",
9692 file, line);
9693 printk(KERN_ERR
9694 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9695 in_atomic(), irqs_disabled(),
9696 current->pid, current->comm);
9697
9698 debug_show_held_locks(current);
9699 if (irqs_disabled())
9700 print_irqtrace_events(current);
9701 dump_stack();
9702 #endif
9703 }
9704 EXPORT_SYMBOL(__might_sleep);
9705 #endif
9706
9707 #ifdef CONFIG_MAGIC_SYSRQ
9708 static void normalize_task(struct rq *rq, struct task_struct *p)
9709 {
9710 int on_rq;
9711
9712 update_rq_clock(rq);
9713 on_rq = p->se.on_rq;
9714 if (on_rq)
9715 deactivate_task(rq, p, 0);
9716 __setscheduler(rq, p, SCHED_NORMAL, 0);
9717 if (on_rq) {
9718 activate_task(rq, p, 0);
9719 resched_task(rq->curr);
9720 }
9721 }
9722
9723 void normalize_rt_tasks(void)
9724 {
9725 struct task_struct *g, *p;
9726 unsigned long flags;
9727 struct rq *rq;
9728
9729 read_lock_irqsave(&tasklist_lock, flags);
9730 do_each_thread(g, p) {
9731 /*
9732 * Only normalize user tasks:
9733 */
9734 if (!p->mm)
9735 continue;
9736
9737 p->se.exec_start = 0;
9738 #ifdef CONFIG_SCHEDSTATS
9739 p->se.wait_start = 0;
9740 p->se.sleep_start = 0;
9741 p->se.block_start = 0;
9742 #endif
9743
9744 if (!rt_task(p)) {
9745 /*
9746 * Renice negative nice level userspace
9747 * tasks back to 0:
9748 */
9749 if (TASK_NICE(p) < 0 && p->mm)
9750 set_user_nice(p, 0);
9751 continue;
9752 }
9753
9754 spin_lock(&p->pi_lock);
9755 rq = __task_rq_lock(p);
9756
9757 normalize_task(rq, p);
9758
9759 __task_rq_unlock(rq);
9760 spin_unlock(&p->pi_lock);
9761 } while_each_thread(g, p);
9762
9763 read_unlock_irqrestore(&tasklist_lock, flags);
9764 }
9765
9766 #endif /* CONFIG_MAGIC_SYSRQ */
9767
9768 #ifdef CONFIG_IA64
9769 /*
9770 * These functions are only useful for the IA64 MCA handling.
9771 *
9772 * They can only be called when the whole system has been
9773 * stopped - every CPU needs to be quiescent, and no scheduling
9774 * activity can take place. Using them for anything else would
9775 * be a serious bug, and as a result, they aren't even visible
9776 * under any other configuration.
9777 */
9778
9779 /**
9780 * curr_task - return the current task for a given cpu.
9781 * @cpu: the processor in question.
9782 *
9783 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9784 */
9785 struct task_struct *curr_task(int cpu)
9786 {
9787 return cpu_curr(cpu);
9788 }
9789
9790 /**
9791 * set_curr_task - set the current task for a given cpu.
9792 * @cpu: the processor in question.
9793 * @p: the task pointer to set.
9794 *
9795 * Description: This function must only be used when non-maskable interrupts
9796 * are serviced on a separate stack. It allows the architecture to switch the
9797 * notion of the current task on a cpu in a non-blocking manner. This function
9798 * must be called with all CPU's synchronized, and interrupts disabled, the
9799 * and caller must save the original value of the current task (see
9800 * curr_task() above) and restore that value before reenabling interrupts and
9801 * re-starting the system.
9802 *
9803 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9804 */
9805 void set_curr_task(int cpu, struct task_struct *p)
9806 {
9807 cpu_curr(cpu) = p;
9808 }
9809
9810 #endif
9811
9812 #ifdef CONFIG_FAIR_GROUP_SCHED
9813 static void free_fair_sched_group(struct task_group *tg)
9814 {
9815 int i;
9816
9817 for_each_possible_cpu(i) {
9818 if (tg->cfs_rq)
9819 kfree(tg->cfs_rq[i]);
9820 if (tg->se)
9821 kfree(tg->se[i]);
9822 }
9823
9824 kfree(tg->cfs_rq);
9825 kfree(tg->se);
9826 }
9827
9828 static
9829 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9830 {
9831 struct cfs_rq *cfs_rq;
9832 struct sched_entity *se;
9833 struct rq *rq;
9834 int i;
9835
9836 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9837 if (!tg->cfs_rq)
9838 goto err;
9839 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9840 if (!tg->se)
9841 goto err;
9842
9843 tg->shares = NICE_0_LOAD;
9844
9845 for_each_possible_cpu(i) {
9846 rq = cpu_rq(i);
9847
9848 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9849 GFP_KERNEL, cpu_to_node(i));
9850 if (!cfs_rq)
9851 goto err;
9852
9853 se = kzalloc_node(sizeof(struct sched_entity),
9854 GFP_KERNEL, cpu_to_node(i));
9855 if (!se)
9856 goto err;
9857
9858 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9859 }
9860
9861 return 1;
9862
9863 err:
9864 return 0;
9865 }
9866
9867 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9868 {
9869 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9870 &cpu_rq(cpu)->leaf_cfs_rq_list);
9871 }
9872
9873 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9874 {
9875 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9876 }
9877 #else /* !CONFG_FAIR_GROUP_SCHED */
9878 static inline void free_fair_sched_group(struct task_group *tg)
9879 {
9880 }
9881
9882 static inline
9883 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9884 {
9885 return 1;
9886 }
9887
9888 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9889 {
9890 }
9891
9892 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9893 {
9894 }
9895 #endif /* CONFIG_FAIR_GROUP_SCHED */
9896
9897 #ifdef CONFIG_RT_GROUP_SCHED
9898 static void free_rt_sched_group(struct task_group *tg)
9899 {
9900 int i;
9901
9902 destroy_rt_bandwidth(&tg->rt_bandwidth);
9903
9904 for_each_possible_cpu(i) {
9905 if (tg->rt_rq)
9906 kfree(tg->rt_rq[i]);
9907 if (tg->rt_se)
9908 kfree(tg->rt_se[i]);
9909 }
9910
9911 kfree(tg->rt_rq);
9912 kfree(tg->rt_se);
9913 }
9914
9915 static
9916 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9917 {
9918 struct rt_rq *rt_rq;
9919 struct sched_rt_entity *rt_se;
9920 struct rq *rq;
9921 int i;
9922
9923 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9924 if (!tg->rt_rq)
9925 goto err;
9926 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9927 if (!tg->rt_se)
9928 goto err;
9929
9930 init_rt_bandwidth(&tg->rt_bandwidth,
9931 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9932
9933 for_each_possible_cpu(i) {
9934 rq = cpu_rq(i);
9935
9936 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9937 GFP_KERNEL, cpu_to_node(i));
9938 if (!rt_rq)
9939 goto err;
9940
9941 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9942 GFP_KERNEL, cpu_to_node(i));
9943 if (!rt_se)
9944 goto err;
9945
9946 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9947 }
9948
9949 return 1;
9950
9951 err:
9952 return 0;
9953 }
9954
9955 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9956 {
9957 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9958 &cpu_rq(cpu)->leaf_rt_rq_list);
9959 }
9960
9961 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9962 {
9963 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9964 }
9965 #else /* !CONFIG_RT_GROUP_SCHED */
9966 static inline void free_rt_sched_group(struct task_group *tg)
9967 {
9968 }
9969
9970 static inline
9971 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9972 {
9973 return 1;
9974 }
9975
9976 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9977 {
9978 }
9979
9980 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9981 {
9982 }
9983 #endif /* CONFIG_RT_GROUP_SCHED */
9984
9985 #ifdef CONFIG_GROUP_SCHED
9986 static void free_sched_group(struct task_group *tg)
9987 {
9988 free_fair_sched_group(tg);
9989 free_rt_sched_group(tg);
9990 kfree(tg);
9991 }
9992
9993 /* allocate runqueue etc for a new task group */
9994 struct task_group *sched_create_group(struct task_group *parent)
9995 {
9996 struct task_group *tg;
9997 unsigned long flags;
9998 int i;
9999
10000 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10001 if (!tg)
10002 return ERR_PTR(-ENOMEM);
10003
10004 if (!alloc_fair_sched_group(tg, parent))
10005 goto err;
10006
10007 if (!alloc_rt_sched_group(tg, parent))
10008 goto err;
10009
10010 spin_lock_irqsave(&task_group_lock, flags);
10011 for_each_possible_cpu(i) {
10012 register_fair_sched_group(tg, i);
10013 register_rt_sched_group(tg, i);
10014 }
10015 list_add_rcu(&tg->list, &task_groups);
10016
10017 WARN_ON(!parent); /* root should already exist */
10018
10019 tg->parent = parent;
10020 INIT_LIST_HEAD(&tg->children);
10021 list_add_rcu(&tg->siblings, &parent->children);
10022 spin_unlock_irqrestore(&task_group_lock, flags);
10023
10024 return tg;
10025
10026 err:
10027 free_sched_group(tg);
10028 return ERR_PTR(-ENOMEM);
10029 }
10030
10031 /* rcu callback to free various structures associated with a task group */
10032 static void free_sched_group_rcu(struct rcu_head *rhp)
10033 {
10034 /* now it should be safe to free those cfs_rqs */
10035 free_sched_group(container_of(rhp, struct task_group, rcu));
10036 }
10037
10038 /* Destroy runqueue etc associated with a task group */
10039 void sched_destroy_group(struct task_group *tg)
10040 {
10041 unsigned long flags;
10042 int i;
10043
10044 spin_lock_irqsave(&task_group_lock, flags);
10045 for_each_possible_cpu(i) {
10046 unregister_fair_sched_group(tg, i);
10047 unregister_rt_sched_group(tg, i);
10048 }
10049 list_del_rcu(&tg->list);
10050 list_del_rcu(&tg->siblings);
10051 spin_unlock_irqrestore(&task_group_lock, flags);
10052
10053 /* wait for possible concurrent references to cfs_rqs complete */
10054 call_rcu(&tg->rcu, free_sched_group_rcu);
10055 }
10056
10057 /* change task's runqueue when it moves between groups.
10058 * The caller of this function should have put the task in its new group
10059 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10060 * reflect its new group.
10061 */
10062 void sched_move_task(struct task_struct *tsk)
10063 {
10064 int on_rq, running;
10065 unsigned long flags;
10066 struct rq *rq;
10067
10068 rq = task_rq_lock(tsk, &flags);
10069
10070 update_rq_clock(rq);
10071
10072 running = task_current(rq, tsk);
10073 on_rq = tsk->se.on_rq;
10074
10075 if (on_rq)
10076 dequeue_task(rq, tsk, 0);
10077 if (unlikely(running))
10078 tsk->sched_class->put_prev_task(rq, tsk);
10079
10080 set_task_rq(tsk, task_cpu(tsk));
10081
10082 #ifdef CONFIG_FAIR_GROUP_SCHED
10083 if (tsk->sched_class->moved_group)
10084 tsk->sched_class->moved_group(tsk);
10085 #endif
10086
10087 if (unlikely(running))
10088 tsk->sched_class->set_curr_task(rq);
10089 if (on_rq)
10090 enqueue_task(rq, tsk, 0);
10091
10092 task_rq_unlock(rq, &flags);
10093 }
10094 #endif /* CONFIG_GROUP_SCHED */
10095
10096 #ifdef CONFIG_FAIR_GROUP_SCHED
10097 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10098 {
10099 struct cfs_rq *cfs_rq = se->cfs_rq;
10100 int on_rq;
10101
10102 on_rq = se->on_rq;
10103 if (on_rq)
10104 dequeue_entity(cfs_rq, se, 0);
10105
10106 se->load.weight = shares;
10107 se->load.inv_weight = 0;
10108
10109 if (on_rq)
10110 enqueue_entity(cfs_rq, se, 0);
10111 }
10112
10113 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10114 {
10115 struct cfs_rq *cfs_rq = se->cfs_rq;
10116 struct rq *rq = cfs_rq->rq;
10117 unsigned long flags;
10118
10119 spin_lock_irqsave(&rq->lock, flags);
10120 __set_se_shares(se, shares);
10121 spin_unlock_irqrestore(&rq->lock, flags);
10122 }
10123
10124 static DEFINE_MUTEX(shares_mutex);
10125
10126 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10127 {
10128 int i;
10129 unsigned long flags;
10130
10131 /*
10132 * We can't change the weight of the root cgroup.
10133 */
10134 if (!tg->se[0])
10135 return -EINVAL;
10136
10137 if (shares < MIN_SHARES)
10138 shares = MIN_SHARES;
10139 else if (shares > MAX_SHARES)
10140 shares = MAX_SHARES;
10141
10142 mutex_lock(&shares_mutex);
10143 if (tg->shares == shares)
10144 goto done;
10145
10146 spin_lock_irqsave(&task_group_lock, flags);
10147 for_each_possible_cpu(i)
10148 unregister_fair_sched_group(tg, i);
10149 list_del_rcu(&tg->siblings);
10150 spin_unlock_irqrestore(&task_group_lock, flags);
10151
10152 /* wait for any ongoing reference to this group to finish */
10153 synchronize_sched();
10154
10155 /*
10156 * Now we are free to modify the group's share on each cpu
10157 * w/o tripping rebalance_share or load_balance_fair.
10158 */
10159 tg->shares = shares;
10160 for_each_possible_cpu(i) {
10161 /*
10162 * force a rebalance
10163 */
10164 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10165 set_se_shares(tg->se[i], shares);
10166 }
10167
10168 /*
10169 * Enable load balance activity on this group, by inserting it back on
10170 * each cpu's rq->leaf_cfs_rq_list.
10171 */
10172 spin_lock_irqsave(&task_group_lock, flags);
10173 for_each_possible_cpu(i)
10174 register_fair_sched_group(tg, i);
10175 list_add_rcu(&tg->siblings, &tg->parent->children);
10176 spin_unlock_irqrestore(&task_group_lock, flags);
10177 done:
10178 mutex_unlock(&shares_mutex);
10179 return 0;
10180 }
10181
10182 unsigned long sched_group_shares(struct task_group *tg)
10183 {
10184 return tg->shares;
10185 }
10186 #endif
10187
10188 #ifdef CONFIG_RT_GROUP_SCHED
10189 /*
10190 * Ensure that the real time constraints are schedulable.
10191 */
10192 static DEFINE_MUTEX(rt_constraints_mutex);
10193
10194 static unsigned long to_ratio(u64 period, u64 runtime)
10195 {
10196 if (runtime == RUNTIME_INF)
10197 return 1ULL << 20;
10198
10199 return div64_u64(runtime << 20, period);
10200 }
10201
10202 /* Must be called with tasklist_lock held */
10203 static inline int tg_has_rt_tasks(struct task_group *tg)
10204 {
10205 struct task_struct *g, *p;
10206
10207 do_each_thread(g, p) {
10208 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10209 return 1;
10210 } while_each_thread(g, p);
10211
10212 return 0;
10213 }
10214
10215 struct rt_schedulable_data {
10216 struct task_group *tg;
10217 u64 rt_period;
10218 u64 rt_runtime;
10219 };
10220
10221 static int tg_schedulable(struct task_group *tg, void *data)
10222 {
10223 struct rt_schedulable_data *d = data;
10224 struct task_group *child;
10225 unsigned long total, sum = 0;
10226 u64 period, runtime;
10227
10228 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10229 runtime = tg->rt_bandwidth.rt_runtime;
10230
10231 if (tg == d->tg) {
10232 period = d->rt_period;
10233 runtime = d->rt_runtime;
10234 }
10235
10236 #ifdef CONFIG_USER_SCHED
10237 if (tg == &root_task_group) {
10238 period = global_rt_period();
10239 runtime = global_rt_runtime();
10240 }
10241 #endif
10242
10243 /*
10244 * Cannot have more runtime than the period.
10245 */
10246 if (runtime > period && runtime != RUNTIME_INF)
10247 return -EINVAL;
10248
10249 /*
10250 * Ensure we don't starve existing RT tasks.
10251 */
10252 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10253 return -EBUSY;
10254
10255 total = to_ratio(period, runtime);
10256
10257 /*
10258 * Nobody can have more than the global setting allows.
10259 */
10260 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10261 return -EINVAL;
10262
10263 /*
10264 * The sum of our children's runtime should not exceed our own.
10265 */
10266 list_for_each_entry_rcu(child, &tg->children, siblings) {
10267 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10268 runtime = child->rt_bandwidth.rt_runtime;
10269
10270 if (child == d->tg) {
10271 period = d->rt_period;
10272 runtime = d->rt_runtime;
10273 }
10274
10275 sum += to_ratio(period, runtime);
10276 }
10277
10278 if (sum > total)
10279 return -EINVAL;
10280
10281 return 0;
10282 }
10283
10284 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10285 {
10286 struct rt_schedulable_data data = {
10287 .tg = tg,
10288 .rt_period = period,
10289 .rt_runtime = runtime,
10290 };
10291
10292 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10293 }
10294
10295 static int tg_set_bandwidth(struct task_group *tg,
10296 u64 rt_period, u64 rt_runtime)
10297 {
10298 int i, err = 0;
10299
10300 mutex_lock(&rt_constraints_mutex);
10301 read_lock(&tasklist_lock);
10302 err = __rt_schedulable(tg, rt_period, rt_runtime);
10303 if (err)
10304 goto unlock;
10305
10306 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10307 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10308 tg->rt_bandwidth.rt_runtime = rt_runtime;
10309
10310 for_each_possible_cpu(i) {
10311 struct rt_rq *rt_rq = tg->rt_rq[i];
10312
10313 spin_lock(&rt_rq->rt_runtime_lock);
10314 rt_rq->rt_runtime = rt_runtime;
10315 spin_unlock(&rt_rq->rt_runtime_lock);
10316 }
10317 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10318 unlock:
10319 read_unlock(&tasklist_lock);
10320 mutex_unlock(&rt_constraints_mutex);
10321
10322 return err;
10323 }
10324
10325 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10326 {
10327 u64 rt_runtime, rt_period;
10328
10329 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10330 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10331 if (rt_runtime_us < 0)
10332 rt_runtime = RUNTIME_INF;
10333
10334 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10335 }
10336
10337 long sched_group_rt_runtime(struct task_group *tg)
10338 {
10339 u64 rt_runtime_us;
10340
10341 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10342 return -1;
10343
10344 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10345 do_div(rt_runtime_us, NSEC_PER_USEC);
10346 return rt_runtime_us;
10347 }
10348
10349 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10350 {
10351 u64 rt_runtime, rt_period;
10352
10353 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10354 rt_runtime = tg->rt_bandwidth.rt_runtime;
10355
10356 if (rt_period == 0)
10357 return -EINVAL;
10358
10359 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10360 }
10361
10362 long sched_group_rt_period(struct task_group *tg)
10363 {
10364 u64 rt_period_us;
10365
10366 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10367 do_div(rt_period_us, NSEC_PER_USEC);
10368 return rt_period_us;
10369 }
10370
10371 static int sched_rt_global_constraints(void)
10372 {
10373 u64 runtime, period;
10374 int ret = 0;
10375
10376 if (sysctl_sched_rt_period <= 0)
10377 return -EINVAL;
10378
10379 runtime = global_rt_runtime();
10380 period = global_rt_period();
10381
10382 /*
10383 * Sanity check on the sysctl variables.
10384 */
10385 if (runtime > period && runtime != RUNTIME_INF)
10386 return -EINVAL;
10387
10388 mutex_lock(&rt_constraints_mutex);
10389 read_lock(&tasklist_lock);
10390 ret = __rt_schedulable(NULL, 0, 0);
10391 read_unlock(&tasklist_lock);
10392 mutex_unlock(&rt_constraints_mutex);
10393
10394 return ret;
10395 }
10396
10397 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10398 {
10399 /* Don't accept realtime tasks when there is no way for them to run */
10400 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10401 return 0;
10402
10403 return 1;
10404 }
10405
10406 #else /* !CONFIG_RT_GROUP_SCHED */
10407 static int sched_rt_global_constraints(void)
10408 {
10409 unsigned long flags;
10410 int i;
10411
10412 if (sysctl_sched_rt_period <= 0)
10413 return -EINVAL;
10414
10415 /*
10416 * There's always some RT tasks in the root group
10417 * -- migration, kstopmachine etc..
10418 */
10419 if (sysctl_sched_rt_runtime == 0)
10420 return -EBUSY;
10421
10422 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10423 for_each_possible_cpu(i) {
10424 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10425
10426 spin_lock(&rt_rq->rt_runtime_lock);
10427 rt_rq->rt_runtime = global_rt_runtime();
10428 spin_unlock(&rt_rq->rt_runtime_lock);
10429 }
10430 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10431
10432 return 0;
10433 }
10434 #endif /* CONFIG_RT_GROUP_SCHED */
10435
10436 int sched_rt_handler(struct ctl_table *table, int write,
10437 void __user *buffer, size_t *lenp,
10438 loff_t *ppos)
10439 {
10440 int ret;
10441 int old_period, old_runtime;
10442 static DEFINE_MUTEX(mutex);
10443
10444 mutex_lock(&mutex);
10445 old_period = sysctl_sched_rt_period;
10446 old_runtime = sysctl_sched_rt_runtime;
10447
10448 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10449
10450 if (!ret && write) {
10451 ret = sched_rt_global_constraints();
10452 if (ret) {
10453 sysctl_sched_rt_period = old_period;
10454 sysctl_sched_rt_runtime = old_runtime;
10455 } else {
10456 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10457 def_rt_bandwidth.rt_period =
10458 ns_to_ktime(global_rt_period());
10459 }
10460 }
10461 mutex_unlock(&mutex);
10462
10463 return ret;
10464 }
10465
10466 #ifdef CONFIG_CGROUP_SCHED
10467
10468 /* return corresponding task_group object of a cgroup */
10469 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10470 {
10471 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10472 struct task_group, css);
10473 }
10474
10475 static struct cgroup_subsys_state *
10476 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10477 {
10478 struct task_group *tg, *parent;
10479
10480 if (!cgrp->parent) {
10481 /* This is early initialization for the top cgroup */
10482 return &init_task_group.css;
10483 }
10484
10485 parent = cgroup_tg(cgrp->parent);
10486 tg = sched_create_group(parent);
10487 if (IS_ERR(tg))
10488 return ERR_PTR(-ENOMEM);
10489
10490 return &tg->css;
10491 }
10492
10493 static void
10494 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10495 {
10496 struct task_group *tg = cgroup_tg(cgrp);
10497
10498 sched_destroy_group(tg);
10499 }
10500
10501 static int
10502 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10503 {
10504 #ifdef CONFIG_RT_GROUP_SCHED
10505 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10506 return -EINVAL;
10507 #else
10508 /* We don't support RT-tasks being in separate groups */
10509 if (tsk->sched_class != &fair_sched_class)
10510 return -EINVAL;
10511 #endif
10512 return 0;
10513 }
10514
10515 static int
10516 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10517 struct task_struct *tsk, bool threadgroup)
10518 {
10519 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10520 if (retval)
10521 return retval;
10522 if (threadgroup) {
10523 struct task_struct *c;
10524 rcu_read_lock();
10525 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10526 retval = cpu_cgroup_can_attach_task(cgrp, c);
10527 if (retval) {
10528 rcu_read_unlock();
10529 return retval;
10530 }
10531 }
10532 rcu_read_unlock();
10533 }
10534 return 0;
10535 }
10536
10537 static void
10538 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10539 struct cgroup *old_cont, struct task_struct *tsk,
10540 bool threadgroup)
10541 {
10542 sched_move_task(tsk);
10543 if (threadgroup) {
10544 struct task_struct *c;
10545 rcu_read_lock();
10546 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10547 sched_move_task(c);
10548 }
10549 rcu_read_unlock();
10550 }
10551 }
10552
10553 #ifdef CONFIG_FAIR_GROUP_SCHED
10554 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10555 u64 shareval)
10556 {
10557 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10558 }
10559
10560 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10561 {
10562 struct task_group *tg = cgroup_tg(cgrp);
10563
10564 return (u64) tg->shares;
10565 }
10566 #endif /* CONFIG_FAIR_GROUP_SCHED */
10567
10568 #ifdef CONFIG_RT_GROUP_SCHED
10569 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10570 s64 val)
10571 {
10572 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10573 }
10574
10575 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10576 {
10577 return sched_group_rt_runtime(cgroup_tg(cgrp));
10578 }
10579
10580 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10581 u64 rt_period_us)
10582 {
10583 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10584 }
10585
10586 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10587 {
10588 return sched_group_rt_period(cgroup_tg(cgrp));
10589 }
10590 #endif /* CONFIG_RT_GROUP_SCHED */
10591
10592 static struct cftype cpu_files[] = {
10593 #ifdef CONFIG_FAIR_GROUP_SCHED
10594 {
10595 .name = "shares",
10596 .read_u64 = cpu_shares_read_u64,
10597 .write_u64 = cpu_shares_write_u64,
10598 },
10599 #endif
10600 #ifdef CONFIG_RT_GROUP_SCHED
10601 {
10602 .name = "rt_runtime_us",
10603 .read_s64 = cpu_rt_runtime_read,
10604 .write_s64 = cpu_rt_runtime_write,
10605 },
10606 {
10607 .name = "rt_period_us",
10608 .read_u64 = cpu_rt_period_read_uint,
10609 .write_u64 = cpu_rt_period_write_uint,
10610 },
10611 #endif
10612 };
10613
10614 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10615 {
10616 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10617 }
10618
10619 struct cgroup_subsys cpu_cgroup_subsys = {
10620 .name = "cpu",
10621 .create = cpu_cgroup_create,
10622 .destroy = cpu_cgroup_destroy,
10623 .can_attach = cpu_cgroup_can_attach,
10624 .attach = cpu_cgroup_attach,
10625 .populate = cpu_cgroup_populate,
10626 .subsys_id = cpu_cgroup_subsys_id,
10627 .early_init = 1,
10628 };
10629
10630 #endif /* CONFIG_CGROUP_SCHED */
10631
10632 #ifdef CONFIG_CGROUP_CPUACCT
10633
10634 /*
10635 * CPU accounting code for task groups.
10636 *
10637 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10638 * (balbir@in.ibm.com).
10639 */
10640
10641 /* track cpu usage of a group of tasks and its child groups */
10642 struct cpuacct {
10643 struct cgroup_subsys_state css;
10644 /* cpuusage holds pointer to a u64-type object on every cpu */
10645 u64 *cpuusage;
10646 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10647 struct cpuacct *parent;
10648 };
10649
10650 struct cgroup_subsys cpuacct_subsys;
10651
10652 /* return cpu accounting group corresponding to this container */
10653 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10654 {
10655 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10656 struct cpuacct, css);
10657 }
10658
10659 /* return cpu accounting group to which this task belongs */
10660 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10661 {
10662 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10663 struct cpuacct, css);
10664 }
10665
10666 /* create a new cpu accounting group */
10667 static struct cgroup_subsys_state *cpuacct_create(
10668 struct cgroup_subsys *ss, struct cgroup *cgrp)
10669 {
10670 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10671 int i;
10672
10673 if (!ca)
10674 goto out;
10675
10676 ca->cpuusage = alloc_percpu(u64);
10677 if (!ca->cpuusage)
10678 goto out_free_ca;
10679
10680 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10681 if (percpu_counter_init(&ca->cpustat[i], 0))
10682 goto out_free_counters;
10683
10684 if (cgrp->parent)
10685 ca->parent = cgroup_ca(cgrp->parent);
10686
10687 return &ca->css;
10688
10689 out_free_counters:
10690 while (--i >= 0)
10691 percpu_counter_destroy(&ca->cpustat[i]);
10692 free_percpu(ca->cpuusage);
10693 out_free_ca:
10694 kfree(ca);
10695 out:
10696 return ERR_PTR(-ENOMEM);
10697 }
10698
10699 /* destroy an existing cpu accounting group */
10700 static void
10701 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10702 {
10703 struct cpuacct *ca = cgroup_ca(cgrp);
10704 int i;
10705
10706 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10707 percpu_counter_destroy(&ca->cpustat[i]);
10708 free_percpu(ca->cpuusage);
10709 kfree(ca);
10710 }
10711
10712 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10713 {
10714 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10715 u64 data;
10716
10717 #ifndef CONFIG_64BIT
10718 /*
10719 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10720 */
10721 spin_lock_irq(&cpu_rq(cpu)->lock);
10722 data = *cpuusage;
10723 spin_unlock_irq(&cpu_rq(cpu)->lock);
10724 #else
10725 data = *cpuusage;
10726 #endif
10727
10728 return data;
10729 }
10730
10731 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10732 {
10733 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10734
10735 #ifndef CONFIG_64BIT
10736 /*
10737 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10738 */
10739 spin_lock_irq(&cpu_rq(cpu)->lock);
10740 *cpuusage = val;
10741 spin_unlock_irq(&cpu_rq(cpu)->lock);
10742 #else
10743 *cpuusage = val;
10744 #endif
10745 }
10746
10747 /* return total cpu usage (in nanoseconds) of a group */
10748 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10749 {
10750 struct cpuacct *ca = cgroup_ca(cgrp);
10751 u64 totalcpuusage = 0;
10752 int i;
10753
10754 for_each_present_cpu(i)
10755 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10756
10757 return totalcpuusage;
10758 }
10759
10760 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10761 u64 reset)
10762 {
10763 struct cpuacct *ca = cgroup_ca(cgrp);
10764 int err = 0;
10765 int i;
10766
10767 if (reset) {
10768 err = -EINVAL;
10769 goto out;
10770 }
10771
10772 for_each_present_cpu(i)
10773 cpuacct_cpuusage_write(ca, i, 0);
10774
10775 out:
10776 return err;
10777 }
10778
10779 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10780 struct seq_file *m)
10781 {
10782 struct cpuacct *ca = cgroup_ca(cgroup);
10783 u64 percpu;
10784 int i;
10785
10786 for_each_present_cpu(i) {
10787 percpu = cpuacct_cpuusage_read(ca, i);
10788 seq_printf(m, "%llu ", (unsigned long long) percpu);
10789 }
10790 seq_printf(m, "\n");
10791 return 0;
10792 }
10793
10794 static const char *cpuacct_stat_desc[] = {
10795 [CPUACCT_STAT_USER] = "user",
10796 [CPUACCT_STAT_SYSTEM] = "system",
10797 };
10798
10799 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10800 struct cgroup_map_cb *cb)
10801 {
10802 struct cpuacct *ca = cgroup_ca(cgrp);
10803 int i;
10804
10805 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10806 s64 val = percpu_counter_read(&ca->cpustat[i]);
10807 val = cputime64_to_clock_t(val);
10808 cb->fill(cb, cpuacct_stat_desc[i], val);
10809 }
10810 return 0;
10811 }
10812
10813 static struct cftype files[] = {
10814 {
10815 .name = "usage",
10816 .read_u64 = cpuusage_read,
10817 .write_u64 = cpuusage_write,
10818 },
10819 {
10820 .name = "usage_percpu",
10821 .read_seq_string = cpuacct_percpu_seq_read,
10822 },
10823 {
10824 .name = "stat",
10825 .read_map = cpuacct_stats_show,
10826 },
10827 };
10828
10829 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10830 {
10831 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10832 }
10833
10834 /*
10835 * charge this task's execution time to its accounting group.
10836 *
10837 * called with rq->lock held.
10838 */
10839 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10840 {
10841 struct cpuacct *ca;
10842 int cpu;
10843
10844 if (unlikely(!cpuacct_subsys.active))
10845 return;
10846
10847 cpu = task_cpu(tsk);
10848
10849 rcu_read_lock();
10850
10851 ca = task_ca(tsk);
10852
10853 for (; ca; ca = ca->parent) {
10854 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10855 *cpuusage += cputime;
10856 }
10857
10858 rcu_read_unlock();
10859 }
10860
10861 /*
10862 * Charge the system/user time to the task's accounting group.
10863 */
10864 static void cpuacct_update_stats(struct task_struct *tsk,
10865 enum cpuacct_stat_index idx, cputime_t val)
10866 {
10867 struct cpuacct *ca;
10868
10869 if (unlikely(!cpuacct_subsys.active))
10870 return;
10871
10872 rcu_read_lock();
10873 ca = task_ca(tsk);
10874
10875 do {
10876 percpu_counter_add(&ca->cpustat[idx], val);
10877 ca = ca->parent;
10878 } while (ca);
10879 rcu_read_unlock();
10880 }
10881
10882 struct cgroup_subsys cpuacct_subsys = {
10883 .name = "cpuacct",
10884 .create = cpuacct_create,
10885 .destroy = cpuacct_destroy,
10886 .populate = cpuacct_populate,
10887 .subsys_id = cpuacct_subsys_id,
10888 };
10889 #endif /* CONFIG_CGROUP_CPUACCT */
10890
10891 #ifndef CONFIG_SMP
10892
10893 int rcu_expedited_torture_stats(char *page)
10894 {
10895 return 0;
10896 }
10897 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10898
10899 void synchronize_sched_expedited(void)
10900 {
10901 }
10902 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10903
10904 #else /* #ifndef CONFIG_SMP */
10905
10906 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10907 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10908
10909 #define RCU_EXPEDITED_STATE_POST -2
10910 #define RCU_EXPEDITED_STATE_IDLE -1
10911
10912 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10913
10914 int rcu_expedited_torture_stats(char *page)
10915 {
10916 int cnt = 0;
10917 int cpu;
10918
10919 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10920 for_each_online_cpu(cpu) {
10921 cnt += sprintf(&page[cnt], " %d:%d",
10922 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10923 }
10924 cnt += sprintf(&page[cnt], "\n");
10925 return cnt;
10926 }
10927 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10928
10929 static long synchronize_sched_expedited_count;
10930
10931 /*
10932 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10933 * approach to force grace period to end quickly. This consumes
10934 * significant time on all CPUs, and is thus not recommended for
10935 * any sort of common-case code.
10936 *
10937 * Note that it is illegal to call this function while holding any
10938 * lock that is acquired by a CPU-hotplug notifier. Failing to
10939 * observe this restriction will result in deadlock.
10940 */
10941 void synchronize_sched_expedited(void)
10942 {
10943 int cpu;
10944 unsigned long flags;
10945 bool need_full_sync = 0;
10946 struct rq *rq;
10947 struct migration_req *req;
10948 long snap;
10949 int trycount = 0;
10950
10951 smp_mb(); /* ensure prior mod happens before capturing snap. */
10952 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10953 get_online_cpus();
10954 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10955 put_online_cpus();
10956 if (trycount++ < 10)
10957 udelay(trycount * num_online_cpus());
10958 else {
10959 synchronize_sched();
10960 return;
10961 }
10962 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10963 smp_mb(); /* ensure test happens before caller kfree */
10964 return;
10965 }
10966 get_online_cpus();
10967 }
10968 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10969 for_each_online_cpu(cpu) {
10970 rq = cpu_rq(cpu);
10971 req = &per_cpu(rcu_migration_req, cpu);
10972 init_completion(&req->done);
10973 req->task = NULL;
10974 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10975 spin_lock_irqsave(&rq->lock, flags);
10976 list_add(&req->list, &rq->migration_queue);
10977 spin_unlock_irqrestore(&rq->lock, flags);
10978 wake_up_process(rq->migration_thread);
10979 }
10980 for_each_online_cpu(cpu) {
10981 rcu_expedited_state = cpu;
10982 req = &per_cpu(rcu_migration_req, cpu);
10983 rq = cpu_rq(cpu);
10984 wait_for_completion(&req->done);
10985 spin_lock_irqsave(&rq->lock, flags);
10986 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10987 need_full_sync = 1;
10988 req->dest_cpu = RCU_MIGRATION_IDLE;
10989 spin_unlock_irqrestore(&rq->lock, flags);
10990 }
10991 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10992 synchronize_sched_expedited_count++;
10993 mutex_unlock(&rcu_sched_expedited_mutex);
10994 put_online_cpus();
10995 if (need_full_sync)
10996 synchronize_sched();
10997 }
10998 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10999
11000 #endif /* #else #ifndef CONFIG_SMP */