]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched.c
Merge commit 'v2.6.29-rc7' into perfcounters/core
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
131 /*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136 {
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138 }
139
140 /*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145 {
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148 }
149 #endif
150
151 static inline int rt_policy(int policy)
152 {
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
156 }
157
158 static inline int task_has_rt_policy(struct task_struct *p)
159 {
160 return rt_policy(p->policy);
161 }
162
163 /*
164 * This is the priority-queue data structure of the RT scheduling class:
165 */
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169 };
170
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
177 };
178
179 static struct rt_bandwidth def_rt_bandwidth;
180
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184 {
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202 }
203
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206 {
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
215 }
216
217 static inline int rt_bandwidth_enabled(void)
218 {
219 return sysctl_sched_rt_runtime >= 0;
220 }
221
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223 {
224 ktime_t now;
225
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243 }
244
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247 {
248 hrtimer_cancel(&rt_b->rt_period_timer);
249 }
250 #endif
251
252 /*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256 static DEFINE_MUTEX(sched_domains_mutex);
257
258 #ifdef CONFIG_GROUP_SCHED
259
260 #include <linux/cgroup.h>
261
262 struct cfs_rq;
263
264 static LIST_HEAD(task_groups);
265
266 /* task group related information */
267 struct task_group {
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css;
270 #endif
271
272 #ifdef CONFIG_USER_SCHED
273 uid_t uid;
274 #endif
275
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
282 #endif
283
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
288 struct rt_bandwidth rt_bandwidth;
289 #endif
290
291 struct rcu_head rcu;
292 struct list_head list;
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
297 };
298
299 #ifdef CONFIG_USER_SCHED
300
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct *user)
303 {
304 user->tg->uid = user->uid;
305 }
306
307 /*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312 struct task_group root_task_group;
313
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
320
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
328
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
331 */
332 static DEFINE_SPINLOCK(task_group_lock);
333
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 #ifdef CONFIG_USER_SCHED
336 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
337 #else /* !CONFIG_USER_SCHED */
338 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
339 #endif /* CONFIG_USER_SCHED */
340
341 /*
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
348 */
349 #define MIN_SHARES 2
350 #define MAX_SHARES (1UL << 18)
351
352 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353 #endif
354
355 /* Default task group.
356 * Every task in system belong to this group at bootup.
357 */
358 struct task_group init_task_group;
359
360 /* return group to which a task belongs */
361 static inline struct task_group *task_group(struct task_struct *p)
362 {
363 struct task_group *tg;
364
365 #ifdef CONFIG_USER_SCHED
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
369 #elif defined(CONFIG_CGROUP_SCHED)
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
372 #else
373 tg = &init_task_group;
374 #endif
375 return tg;
376 }
377
378 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
380 {
381 #ifdef CONFIG_FAIR_GROUP_SCHED
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
384 #endif
385
386 #ifdef CONFIG_RT_GROUP_SCHED
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
389 #endif
390 }
391
392 #else
393
394 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
395 static inline struct task_group *task_group(struct task_struct *p)
396 {
397 return NULL;
398 }
399
400 #endif /* CONFIG_GROUP_SCHED */
401
402 /* CFS-related fields in a runqueue */
403 struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
406
407 u64 exec_clock;
408 u64 min_vruntime;
409
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
412
413 struct list_head tasks;
414 struct list_head *balance_iterator;
415
416 /*
417 * 'curr' points to currently running entity on this cfs_rq.
418 * It is set to NULL otherwise (i.e when none are currently running).
419 */
420 struct sched_entity *curr, *next, *last;
421
422 unsigned int nr_spread_over;
423
424 #ifdef CONFIG_FAIR_GROUP_SCHED
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
426
427 /*
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
431 *
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
434 */
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
437
438 #ifdef CONFIG_SMP
439 /*
440 * the part of load.weight contributed by tasks
441 */
442 unsigned long task_weight;
443
444 /*
445 * h_load = weight * f(tg)
446 *
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
449 */
450 unsigned long h_load;
451
452 /*
453 * this cpu's part of tg->shares
454 */
455 unsigned long shares;
456
457 /*
458 * load.weight at the time we set shares
459 */
460 unsigned long rq_weight;
461 #endif
462 #endif
463 };
464
465 /* Real-Time classes' related field in a runqueue: */
466 struct rt_rq {
467 struct rt_prio_array active;
468 unsigned long rt_nr_running;
469 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 int highest_prio; /* highest queued rt task prio */
471 #endif
472 #ifdef CONFIG_SMP
473 unsigned long rt_nr_migratory;
474 int overloaded;
475 #endif
476 int rt_throttled;
477 u64 rt_time;
478 u64 rt_runtime;
479 /* Nests inside the rq lock: */
480 spinlock_t rt_runtime_lock;
481
482 #ifdef CONFIG_RT_GROUP_SCHED
483 unsigned long rt_nr_boosted;
484
485 struct rq *rq;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
489 #endif
490 };
491
492 #ifdef CONFIG_SMP
493
494 /*
495 * We add the notion of a root-domain which will be used to define per-domain
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
498 * exclusive cpuset is created, we also create and attach a new root-domain
499 * object.
500 *
501 */
502 struct root_domain {
503 atomic_t refcount;
504 cpumask_var_t span;
505 cpumask_var_t online;
506
507 /*
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
510 */
511 cpumask_var_t rto_mask;
512 atomic_t rto_count;
513 #ifdef CONFIG_SMP
514 struct cpupri cpupri;
515 #endif
516 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
517 /*
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
521 */
522 unsigned int sched_mc_preferred_wakeup_cpu;
523 #endif
524 };
525
526 /*
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
529 */
530 static struct root_domain def_root_domain;
531
532 #endif
533
534 /*
535 * This is the main, per-CPU runqueue data structure.
536 *
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
540 */
541 struct rq {
542 /* runqueue lock: */
543 spinlock_t lock;
544
545 /*
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
548 */
549 unsigned long nr_running;
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
552 unsigned char idle_at_tick;
553 #ifdef CONFIG_NO_HZ
554 unsigned long last_tick_seen;
555 unsigned char in_nohz_recently;
556 #endif
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
559 unsigned long nr_load_updates;
560 u64 nr_switches;
561 u64 nr_migrations_in;
562
563 struct cfs_rq cfs;
564 struct rt_rq rt;
565
566 #ifdef CONFIG_FAIR_GROUP_SCHED
567 /* list of leaf cfs_rq on this cpu: */
568 struct list_head leaf_cfs_rq_list;
569 #endif
570 #ifdef CONFIG_RT_GROUP_SCHED
571 struct list_head leaf_rt_rq_list;
572 #endif
573
574 /*
575 * This is part of a global counter where only the total sum
576 * over all CPUs matters. A task can increase this counter on
577 * one CPU and if it got migrated afterwards it may decrease
578 * it on another CPU. Always updated under the runqueue lock:
579 */
580 unsigned long nr_uninterruptible;
581
582 struct task_struct *curr, *idle;
583 unsigned long next_balance;
584 struct mm_struct *prev_mm;
585
586 u64 clock;
587
588 atomic_t nr_iowait;
589
590 #ifdef CONFIG_SMP
591 struct root_domain *rd;
592 struct sched_domain *sd;
593
594 /* For active balancing */
595 int active_balance;
596 int push_cpu;
597 /* cpu of this runqueue: */
598 int cpu;
599 int online;
600
601 unsigned long avg_load_per_task;
602
603 struct task_struct *migration_thread;
604 struct list_head migration_queue;
605 #endif
606
607 #ifdef CONFIG_SCHED_HRTICK
608 #ifdef CONFIG_SMP
609 int hrtick_csd_pending;
610 struct call_single_data hrtick_csd;
611 #endif
612 struct hrtimer hrtick_timer;
613 #endif
614
615 #ifdef CONFIG_SCHEDSTATS
616 /* latency stats */
617 struct sched_info rq_sched_info;
618 unsigned long long rq_cpu_time;
619 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
620
621 /* sys_sched_yield() stats */
622 unsigned int yld_exp_empty;
623 unsigned int yld_act_empty;
624 unsigned int yld_both_empty;
625 unsigned int yld_count;
626
627 /* schedule() stats */
628 unsigned int sched_switch;
629 unsigned int sched_count;
630 unsigned int sched_goidle;
631
632 /* try_to_wake_up() stats */
633 unsigned int ttwu_count;
634 unsigned int ttwu_local;
635
636 /* BKL stats */
637 unsigned int bkl_count;
638 #endif
639 };
640
641 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
642
643 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
644 {
645 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
646 }
647
648 static inline int cpu_of(struct rq *rq)
649 {
650 #ifdef CONFIG_SMP
651 return rq->cpu;
652 #else
653 return 0;
654 #endif
655 }
656
657 /*
658 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
659 * See detach_destroy_domains: synchronize_sched for details.
660 *
661 * The domain tree of any CPU may only be accessed from within
662 * preempt-disabled sections.
663 */
664 #define for_each_domain(cpu, __sd) \
665 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
666
667 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
668 #define this_rq() (&__get_cpu_var(runqueues))
669 #define task_rq(p) cpu_rq(task_cpu(p))
670 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
671
672 inline void update_rq_clock(struct rq *rq)
673 {
674 rq->clock = sched_clock_cpu(cpu_of(rq));
675 }
676
677 /*
678 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
679 */
680 #ifdef CONFIG_SCHED_DEBUG
681 # define const_debug __read_mostly
682 #else
683 # define const_debug static const
684 #endif
685
686 /**
687 * runqueue_is_locked
688 *
689 * Returns true if the current cpu runqueue is locked.
690 * This interface allows printk to be called with the runqueue lock
691 * held and know whether or not it is OK to wake up the klogd.
692 */
693 int runqueue_is_locked(void)
694 {
695 int cpu = get_cpu();
696 struct rq *rq = cpu_rq(cpu);
697 int ret;
698
699 ret = spin_is_locked(&rq->lock);
700 put_cpu();
701 return ret;
702 }
703
704 /*
705 * Debugging: various feature bits
706 */
707
708 #define SCHED_FEAT(name, enabled) \
709 __SCHED_FEAT_##name ,
710
711 enum {
712 #include "sched_features.h"
713 };
714
715 #undef SCHED_FEAT
716
717 #define SCHED_FEAT(name, enabled) \
718 (1UL << __SCHED_FEAT_##name) * enabled |
719
720 const_debug unsigned int sysctl_sched_features =
721 #include "sched_features.h"
722 0;
723
724 #undef SCHED_FEAT
725
726 #ifdef CONFIG_SCHED_DEBUG
727 #define SCHED_FEAT(name, enabled) \
728 #name ,
729
730 static __read_mostly char *sched_feat_names[] = {
731 #include "sched_features.h"
732 NULL
733 };
734
735 #undef SCHED_FEAT
736
737 static int sched_feat_show(struct seq_file *m, void *v)
738 {
739 int i;
740
741 for (i = 0; sched_feat_names[i]; i++) {
742 if (!(sysctl_sched_features & (1UL << i)))
743 seq_puts(m, "NO_");
744 seq_printf(m, "%s ", sched_feat_names[i]);
745 }
746 seq_puts(m, "\n");
747
748 return 0;
749 }
750
751 static ssize_t
752 sched_feat_write(struct file *filp, const char __user *ubuf,
753 size_t cnt, loff_t *ppos)
754 {
755 char buf[64];
756 char *cmp = buf;
757 int neg = 0;
758 int i;
759
760 if (cnt > 63)
761 cnt = 63;
762
763 if (copy_from_user(&buf, ubuf, cnt))
764 return -EFAULT;
765
766 buf[cnt] = 0;
767
768 if (strncmp(buf, "NO_", 3) == 0) {
769 neg = 1;
770 cmp += 3;
771 }
772
773 for (i = 0; sched_feat_names[i]; i++) {
774 int len = strlen(sched_feat_names[i]);
775
776 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
777 if (neg)
778 sysctl_sched_features &= ~(1UL << i);
779 else
780 sysctl_sched_features |= (1UL << i);
781 break;
782 }
783 }
784
785 if (!sched_feat_names[i])
786 return -EINVAL;
787
788 filp->f_pos += cnt;
789
790 return cnt;
791 }
792
793 static int sched_feat_open(struct inode *inode, struct file *filp)
794 {
795 return single_open(filp, sched_feat_show, NULL);
796 }
797
798 static struct file_operations sched_feat_fops = {
799 .open = sched_feat_open,
800 .write = sched_feat_write,
801 .read = seq_read,
802 .llseek = seq_lseek,
803 .release = single_release,
804 };
805
806 static __init int sched_init_debug(void)
807 {
808 debugfs_create_file("sched_features", 0644, NULL, NULL,
809 &sched_feat_fops);
810
811 return 0;
812 }
813 late_initcall(sched_init_debug);
814
815 #endif
816
817 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
818
819 /*
820 * Number of tasks to iterate in a single balance run.
821 * Limited because this is done with IRQs disabled.
822 */
823 const_debug unsigned int sysctl_sched_nr_migrate = 32;
824
825 /*
826 * ratelimit for updating the group shares.
827 * default: 0.25ms
828 */
829 unsigned int sysctl_sched_shares_ratelimit = 250000;
830
831 /*
832 * Inject some fuzzyness into changing the per-cpu group shares
833 * this avoids remote rq-locks at the expense of fairness.
834 * default: 4
835 */
836 unsigned int sysctl_sched_shares_thresh = 4;
837
838 /*
839 * period over which we measure -rt task cpu usage in us.
840 * default: 1s
841 */
842 unsigned int sysctl_sched_rt_period = 1000000;
843
844 static __read_mostly int scheduler_running;
845
846 /*
847 * part of the period that we allow rt tasks to run in us.
848 * default: 0.95s
849 */
850 int sysctl_sched_rt_runtime = 950000;
851
852 static inline u64 global_rt_period(void)
853 {
854 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
855 }
856
857 static inline u64 global_rt_runtime(void)
858 {
859 if (sysctl_sched_rt_runtime < 0)
860 return RUNTIME_INF;
861
862 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
863 }
864
865 #ifndef prepare_arch_switch
866 # define prepare_arch_switch(next) do { } while (0)
867 #endif
868 #ifndef finish_arch_switch
869 # define finish_arch_switch(prev) do { } while (0)
870 #endif
871
872 static inline int task_current(struct rq *rq, struct task_struct *p)
873 {
874 return rq->curr == p;
875 }
876
877 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
878 static inline int task_running(struct rq *rq, struct task_struct *p)
879 {
880 return task_current(rq, p);
881 }
882
883 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
884 {
885 }
886
887 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
888 {
889 #ifdef CONFIG_DEBUG_SPINLOCK
890 /* this is a valid case when another task releases the spinlock */
891 rq->lock.owner = current;
892 #endif
893 /*
894 * If we are tracking spinlock dependencies then we have to
895 * fix up the runqueue lock - which gets 'carried over' from
896 * prev into current:
897 */
898 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
899
900 spin_unlock_irq(&rq->lock);
901 }
902
903 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
904 static inline int task_running(struct rq *rq, struct task_struct *p)
905 {
906 #ifdef CONFIG_SMP
907 return p->oncpu;
908 #else
909 return task_current(rq, p);
910 #endif
911 }
912
913 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
914 {
915 #ifdef CONFIG_SMP
916 /*
917 * We can optimise this out completely for !SMP, because the
918 * SMP rebalancing from interrupt is the only thing that cares
919 * here.
920 */
921 next->oncpu = 1;
922 #endif
923 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
924 spin_unlock_irq(&rq->lock);
925 #else
926 spin_unlock(&rq->lock);
927 #endif
928 }
929
930 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
931 {
932 #ifdef CONFIG_SMP
933 /*
934 * After ->oncpu is cleared, the task can be moved to a different CPU.
935 * We must ensure this doesn't happen until the switch is completely
936 * finished.
937 */
938 smp_wmb();
939 prev->oncpu = 0;
940 #endif
941 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
942 local_irq_enable();
943 #endif
944 }
945 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
946
947 /*
948 * __task_rq_lock - lock the runqueue a given task resides on.
949 * Must be called interrupts disabled.
950 */
951 static inline struct rq *__task_rq_lock(struct task_struct *p)
952 __acquires(rq->lock)
953 {
954 for (;;) {
955 struct rq *rq = task_rq(p);
956 spin_lock(&rq->lock);
957 if (likely(rq == task_rq(p)))
958 return rq;
959 spin_unlock(&rq->lock);
960 }
961 }
962
963 /*
964 * task_rq_lock - lock the runqueue a given task resides on and disable
965 * interrupts. Note the ordering: we can safely lookup the task_rq without
966 * explicitly disabling preemption.
967 */
968 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
969 __acquires(rq->lock)
970 {
971 struct rq *rq;
972
973 for (;;) {
974 local_irq_save(*flags);
975 rq = task_rq(p);
976 spin_lock(&rq->lock);
977 if (likely(rq == task_rq(p)))
978 return rq;
979 spin_unlock_irqrestore(&rq->lock, *flags);
980 }
981 }
982
983 void curr_rq_lock_irq_save(unsigned long *flags)
984 __acquires(rq->lock)
985 {
986 struct rq *rq;
987
988 local_irq_save(*flags);
989 rq = cpu_rq(smp_processor_id());
990 spin_lock(&rq->lock);
991 }
992
993 void curr_rq_unlock_irq_restore(unsigned long *flags)
994 __releases(rq->lock)
995 {
996 struct rq *rq;
997
998 rq = cpu_rq(smp_processor_id());
999 spin_unlock(&rq->lock);
1000 local_irq_restore(*flags);
1001 }
1002
1003 void task_rq_unlock_wait(struct task_struct *p)
1004 {
1005 struct rq *rq = task_rq(p);
1006
1007 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1008 spin_unlock_wait(&rq->lock);
1009 }
1010
1011 static void __task_rq_unlock(struct rq *rq)
1012 __releases(rq->lock)
1013 {
1014 spin_unlock(&rq->lock);
1015 }
1016
1017 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1018 __releases(rq->lock)
1019 {
1020 spin_unlock_irqrestore(&rq->lock, *flags);
1021 }
1022
1023 /*
1024 * this_rq_lock - lock this runqueue and disable interrupts.
1025 */
1026 static struct rq *this_rq_lock(void)
1027 __acquires(rq->lock)
1028 {
1029 struct rq *rq;
1030
1031 local_irq_disable();
1032 rq = this_rq();
1033 spin_lock(&rq->lock);
1034
1035 return rq;
1036 }
1037
1038 #ifdef CONFIG_SCHED_HRTICK
1039 /*
1040 * Use HR-timers to deliver accurate preemption points.
1041 *
1042 * Its all a bit involved since we cannot program an hrt while holding the
1043 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1044 * reschedule event.
1045 *
1046 * When we get rescheduled we reprogram the hrtick_timer outside of the
1047 * rq->lock.
1048 */
1049
1050 /*
1051 * Use hrtick when:
1052 * - enabled by features
1053 * - hrtimer is actually high res
1054 */
1055 static inline int hrtick_enabled(struct rq *rq)
1056 {
1057 if (!sched_feat(HRTICK))
1058 return 0;
1059 if (!cpu_active(cpu_of(rq)))
1060 return 0;
1061 return hrtimer_is_hres_active(&rq->hrtick_timer);
1062 }
1063
1064 static void hrtick_clear(struct rq *rq)
1065 {
1066 if (hrtimer_active(&rq->hrtick_timer))
1067 hrtimer_cancel(&rq->hrtick_timer);
1068 }
1069
1070 /*
1071 * High-resolution timer tick.
1072 * Runs from hardirq context with interrupts disabled.
1073 */
1074 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1075 {
1076 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1077
1078 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1079
1080 spin_lock(&rq->lock);
1081 update_rq_clock(rq);
1082 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1083 spin_unlock(&rq->lock);
1084
1085 return HRTIMER_NORESTART;
1086 }
1087
1088 #ifdef CONFIG_SMP
1089 /*
1090 * called from hardirq (IPI) context
1091 */
1092 static void __hrtick_start(void *arg)
1093 {
1094 struct rq *rq = arg;
1095
1096 spin_lock(&rq->lock);
1097 hrtimer_restart(&rq->hrtick_timer);
1098 rq->hrtick_csd_pending = 0;
1099 spin_unlock(&rq->lock);
1100 }
1101
1102 /*
1103 * Called to set the hrtick timer state.
1104 *
1105 * called with rq->lock held and irqs disabled
1106 */
1107 static void hrtick_start(struct rq *rq, u64 delay)
1108 {
1109 struct hrtimer *timer = &rq->hrtick_timer;
1110 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1111
1112 hrtimer_set_expires(timer, time);
1113
1114 if (rq == this_rq()) {
1115 hrtimer_restart(timer);
1116 } else if (!rq->hrtick_csd_pending) {
1117 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1118 rq->hrtick_csd_pending = 1;
1119 }
1120 }
1121
1122 static int
1123 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1124 {
1125 int cpu = (int)(long)hcpu;
1126
1127 switch (action) {
1128 case CPU_UP_CANCELED:
1129 case CPU_UP_CANCELED_FROZEN:
1130 case CPU_DOWN_PREPARE:
1131 case CPU_DOWN_PREPARE_FROZEN:
1132 case CPU_DEAD:
1133 case CPU_DEAD_FROZEN:
1134 hrtick_clear(cpu_rq(cpu));
1135 return NOTIFY_OK;
1136 }
1137
1138 return NOTIFY_DONE;
1139 }
1140
1141 static __init void init_hrtick(void)
1142 {
1143 hotcpu_notifier(hotplug_hrtick, 0);
1144 }
1145 #else
1146 /*
1147 * Called to set the hrtick timer state.
1148 *
1149 * called with rq->lock held and irqs disabled
1150 */
1151 static void hrtick_start(struct rq *rq, u64 delay)
1152 {
1153 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1154 }
1155
1156 static inline void init_hrtick(void)
1157 {
1158 }
1159 #endif /* CONFIG_SMP */
1160
1161 static void init_rq_hrtick(struct rq *rq)
1162 {
1163 #ifdef CONFIG_SMP
1164 rq->hrtick_csd_pending = 0;
1165
1166 rq->hrtick_csd.flags = 0;
1167 rq->hrtick_csd.func = __hrtick_start;
1168 rq->hrtick_csd.info = rq;
1169 #endif
1170
1171 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1172 rq->hrtick_timer.function = hrtick;
1173 }
1174 #else /* CONFIG_SCHED_HRTICK */
1175 static inline void hrtick_clear(struct rq *rq)
1176 {
1177 }
1178
1179 static inline void init_rq_hrtick(struct rq *rq)
1180 {
1181 }
1182
1183 static inline void init_hrtick(void)
1184 {
1185 }
1186 #endif /* CONFIG_SCHED_HRTICK */
1187
1188 /*
1189 * resched_task - mark a task 'to be rescheduled now'.
1190 *
1191 * On UP this means the setting of the need_resched flag, on SMP it
1192 * might also involve a cross-CPU call to trigger the scheduler on
1193 * the target CPU.
1194 */
1195 #ifdef CONFIG_SMP
1196
1197 #ifndef tsk_is_polling
1198 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1199 #endif
1200
1201 static void resched_task(struct task_struct *p)
1202 {
1203 int cpu;
1204
1205 assert_spin_locked(&task_rq(p)->lock);
1206
1207 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1208 return;
1209
1210 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1211
1212 cpu = task_cpu(p);
1213 if (cpu == smp_processor_id())
1214 return;
1215
1216 /* NEED_RESCHED must be visible before we test polling */
1217 smp_mb();
1218 if (!tsk_is_polling(p))
1219 smp_send_reschedule(cpu);
1220 }
1221
1222 static void resched_cpu(int cpu)
1223 {
1224 struct rq *rq = cpu_rq(cpu);
1225 unsigned long flags;
1226
1227 if (!spin_trylock_irqsave(&rq->lock, flags))
1228 return;
1229 resched_task(cpu_curr(cpu));
1230 spin_unlock_irqrestore(&rq->lock, flags);
1231 }
1232
1233 #ifdef CONFIG_NO_HZ
1234 /*
1235 * When add_timer_on() enqueues a timer into the timer wheel of an
1236 * idle CPU then this timer might expire before the next timer event
1237 * which is scheduled to wake up that CPU. In case of a completely
1238 * idle system the next event might even be infinite time into the
1239 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1240 * leaves the inner idle loop so the newly added timer is taken into
1241 * account when the CPU goes back to idle and evaluates the timer
1242 * wheel for the next timer event.
1243 */
1244 void wake_up_idle_cpu(int cpu)
1245 {
1246 struct rq *rq = cpu_rq(cpu);
1247
1248 if (cpu == smp_processor_id())
1249 return;
1250
1251 /*
1252 * This is safe, as this function is called with the timer
1253 * wheel base lock of (cpu) held. When the CPU is on the way
1254 * to idle and has not yet set rq->curr to idle then it will
1255 * be serialized on the timer wheel base lock and take the new
1256 * timer into account automatically.
1257 */
1258 if (rq->curr != rq->idle)
1259 return;
1260
1261 /*
1262 * We can set TIF_RESCHED on the idle task of the other CPU
1263 * lockless. The worst case is that the other CPU runs the
1264 * idle task through an additional NOOP schedule()
1265 */
1266 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1267
1268 /* NEED_RESCHED must be visible before we test polling */
1269 smp_mb();
1270 if (!tsk_is_polling(rq->idle))
1271 smp_send_reschedule(cpu);
1272 }
1273 #endif /* CONFIG_NO_HZ */
1274
1275 #else /* !CONFIG_SMP */
1276 static void resched_task(struct task_struct *p)
1277 {
1278 assert_spin_locked(&task_rq(p)->lock);
1279 set_tsk_need_resched(p);
1280 }
1281 #endif /* CONFIG_SMP */
1282
1283 #if BITS_PER_LONG == 32
1284 # define WMULT_CONST (~0UL)
1285 #else
1286 # define WMULT_CONST (1UL << 32)
1287 #endif
1288
1289 #define WMULT_SHIFT 32
1290
1291 /*
1292 * Shift right and round:
1293 */
1294 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1295
1296 /*
1297 * delta *= weight / lw
1298 */
1299 static unsigned long
1300 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1302 {
1303 u64 tmp;
1304
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1311 }
1312
1313 tmp = (u64)delta_exec * weight;
1314 /*
1315 * Check whether we'd overflow the 64-bit multiplication:
1316 */
1317 if (unlikely(tmp > WMULT_CONST))
1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1319 WMULT_SHIFT/2);
1320 else
1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1322
1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1324 }
1325
1326 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1327 {
1328 lw->weight += inc;
1329 lw->inv_weight = 0;
1330 }
1331
1332 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1333 {
1334 lw->weight -= dec;
1335 lw->inv_weight = 0;
1336 }
1337
1338 /*
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1345 */
1346
1347 #define WEIGHT_IDLEPRIO 3
1348 #define WMULT_IDLEPRIO 1431655765
1349
1350 /*
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1355 *
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
1361 */
1362 static const int prio_to_weight[40] = {
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
1371 };
1372
1373 /*
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 *
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1379 */
1380 static const u32 prio_to_wmult[40] = {
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1389 };
1390
1391 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1392
1393 /*
1394 * runqueue iterator, to support SMP load-balancing between different
1395 * scheduling classes, without having to expose their internal data
1396 * structures to the load-balancing proper:
1397 */
1398 struct rq_iterator {
1399 void *arg;
1400 struct task_struct *(*start)(void *);
1401 struct task_struct *(*next)(void *);
1402 };
1403
1404 #ifdef CONFIG_SMP
1405 static unsigned long
1406 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 unsigned long max_load_move, struct sched_domain *sd,
1408 enum cpu_idle_type idle, int *all_pinned,
1409 int *this_best_prio, struct rq_iterator *iterator);
1410
1411 static int
1412 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 struct sched_domain *sd, enum cpu_idle_type idle,
1414 struct rq_iterator *iterator);
1415 #endif
1416
1417 #ifdef CONFIG_CGROUP_CPUACCT
1418 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1419 #else
1420 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1421 #endif
1422
1423 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1424 {
1425 update_load_add(&rq->load, load);
1426 }
1427
1428 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1429 {
1430 update_load_sub(&rq->load, load);
1431 }
1432
1433 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1434 typedef int (*tg_visitor)(struct task_group *, void *);
1435
1436 /*
1437 * Iterate the full tree, calling @down when first entering a node and @up when
1438 * leaving it for the final time.
1439 */
1440 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1441 {
1442 struct task_group *parent, *child;
1443 int ret;
1444
1445 rcu_read_lock();
1446 parent = &root_task_group;
1447 down:
1448 ret = (*down)(parent, data);
1449 if (ret)
1450 goto out_unlock;
1451 list_for_each_entry_rcu(child, &parent->children, siblings) {
1452 parent = child;
1453 goto down;
1454
1455 up:
1456 continue;
1457 }
1458 ret = (*up)(parent, data);
1459 if (ret)
1460 goto out_unlock;
1461
1462 child = parent;
1463 parent = parent->parent;
1464 if (parent)
1465 goto up;
1466 out_unlock:
1467 rcu_read_unlock();
1468
1469 return ret;
1470 }
1471
1472 static int tg_nop(struct task_group *tg, void *data)
1473 {
1474 return 0;
1475 }
1476 #endif
1477
1478 #ifdef CONFIG_SMP
1479 static unsigned long source_load(int cpu, int type);
1480 static unsigned long target_load(int cpu, int type);
1481 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1482
1483 static unsigned long cpu_avg_load_per_task(int cpu)
1484 {
1485 struct rq *rq = cpu_rq(cpu);
1486 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1487
1488 if (nr_running)
1489 rq->avg_load_per_task = rq->load.weight / nr_running;
1490 else
1491 rq->avg_load_per_task = 0;
1492
1493 return rq->avg_load_per_task;
1494 }
1495
1496 #ifdef CONFIG_FAIR_GROUP_SCHED
1497
1498 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1499
1500 /*
1501 * Calculate and set the cpu's group shares.
1502 */
1503 static void
1504 update_group_shares_cpu(struct task_group *tg, int cpu,
1505 unsigned long sd_shares, unsigned long sd_rq_weight)
1506 {
1507 unsigned long shares;
1508 unsigned long rq_weight;
1509
1510 if (!tg->se[cpu])
1511 return;
1512
1513 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1514
1515 /*
1516 * \Sum shares * rq_weight
1517 * shares = -----------------------
1518 * \Sum rq_weight
1519 *
1520 */
1521 shares = (sd_shares * rq_weight) / sd_rq_weight;
1522 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1523
1524 if (abs(shares - tg->se[cpu]->load.weight) >
1525 sysctl_sched_shares_thresh) {
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long flags;
1528
1529 spin_lock_irqsave(&rq->lock, flags);
1530 tg->cfs_rq[cpu]->shares = shares;
1531
1532 __set_se_shares(tg->se[cpu], shares);
1533 spin_unlock_irqrestore(&rq->lock, flags);
1534 }
1535 }
1536
1537 /*
1538 * Re-compute the task group their per cpu shares over the given domain.
1539 * This needs to be done in a bottom-up fashion because the rq weight of a
1540 * parent group depends on the shares of its child groups.
1541 */
1542 static int tg_shares_up(struct task_group *tg, void *data)
1543 {
1544 unsigned long weight, rq_weight = 0;
1545 unsigned long shares = 0;
1546 struct sched_domain *sd = data;
1547 int i;
1548
1549 for_each_cpu(i, sched_domain_span(sd)) {
1550 /*
1551 * If there are currently no tasks on the cpu pretend there
1552 * is one of average load so that when a new task gets to
1553 * run here it will not get delayed by group starvation.
1554 */
1555 weight = tg->cfs_rq[i]->load.weight;
1556 if (!weight)
1557 weight = NICE_0_LOAD;
1558
1559 tg->cfs_rq[i]->rq_weight = weight;
1560 rq_weight += weight;
1561 shares += tg->cfs_rq[i]->shares;
1562 }
1563
1564 if ((!shares && rq_weight) || shares > tg->shares)
1565 shares = tg->shares;
1566
1567 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1568 shares = tg->shares;
1569
1570 for_each_cpu(i, sched_domain_span(sd))
1571 update_group_shares_cpu(tg, i, shares, rq_weight);
1572
1573 return 0;
1574 }
1575
1576 /*
1577 * Compute the cpu's hierarchical load factor for each task group.
1578 * This needs to be done in a top-down fashion because the load of a child
1579 * group is a fraction of its parents load.
1580 */
1581 static int tg_load_down(struct task_group *tg, void *data)
1582 {
1583 unsigned long load;
1584 long cpu = (long)data;
1585
1586 if (!tg->parent) {
1587 load = cpu_rq(cpu)->load.weight;
1588 } else {
1589 load = tg->parent->cfs_rq[cpu]->h_load;
1590 load *= tg->cfs_rq[cpu]->shares;
1591 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1592 }
1593
1594 tg->cfs_rq[cpu]->h_load = load;
1595
1596 return 0;
1597 }
1598
1599 static void update_shares(struct sched_domain *sd)
1600 {
1601 u64 now = cpu_clock(raw_smp_processor_id());
1602 s64 elapsed = now - sd->last_update;
1603
1604 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1605 sd->last_update = now;
1606 walk_tg_tree(tg_nop, tg_shares_up, sd);
1607 }
1608 }
1609
1610 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1611 {
1612 spin_unlock(&rq->lock);
1613 update_shares(sd);
1614 spin_lock(&rq->lock);
1615 }
1616
1617 static void update_h_load(long cpu)
1618 {
1619 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1620 }
1621
1622 #else
1623
1624 static inline void update_shares(struct sched_domain *sd)
1625 {
1626 }
1627
1628 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1629 {
1630 }
1631
1632 #endif
1633
1634 /*
1635 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1636 */
1637 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1638 __releases(this_rq->lock)
1639 __acquires(busiest->lock)
1640 __acquires(this_rq->lock)
1641 {
1642 int ret = 0;
1643
1644 if (unlikely(!irqs_disabled())) {
1645 /* printk() doesn't work good under rq->lock */
1646 spin_unlock(&this_rq->lock);
1647 BUG_ON(1);
1648 }
1649 if (unlikely(!spin_trylock(&busiest->lock))) {
1650 if (busiest < this_rq) {
1651 spin_unlock(&this_rq->lock);
1652 spin_lock(&busiest->lock);
1653 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1654 ret = 1;
1655 } else
1656 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1657 }
1658 return ret;
1659 }
1660
1661 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(busiest->lock)
1663 {
1664 spin_unlock(&busiest->lock);
1665 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1666 }
1667 #endif
1668
1669 #ifdef CONFIG_FAIR_GROUP_SCHED
1670 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1671 {
1672 #ifdef CONFIG_SMP
1673 cfs_rq->shares = shares;
1674 #endif
1675 }
1676 #endif
1677
1678 #include "sched_stats.h"
1679 #include "sched_idletask.c"
1680 #include "sched_fair.c"
1681 #include "sched_rt.c"
1682 #ifdef CONFIG_SCHED_DEBUG
1683 # include "sched_debug.c"
1684 #endif
1685
1686 #define sched_class_highest (&rt_sched_class)
1687 #define for_each_class(class) \
1688 for (class = sched_class_highest; class; class = class->next)
1689
1690 static void inc_nr_running(struct rq *rq)
1691 {
1692 rq->nr_running++;
1693 }
1694
1695 static void dec_nr_running(struct rq *rq)
1696 {
1697 rq->nr_running--;
1698 }
1699
1700 static void set_load_weight(struct task_struct *p)
1701 {
1702 if (task_has_rt_policy(p)) {
1703 p->se.load.weight = prio_to_weight[0] * 2;
1704 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1705 return;
1706 }
1707
1708 /*
1709 * SCHED_IDLE tasks get minimal weight:
1710 */
1711 if (p->policy == SCHED_IDLE) {
1712 p->se.load.weight = WEIGHT_IDLEPRIO;
1713 p->se.load.inv_weight = WMULT_IDLEPRIO;
1714 return;
1715 }
1716
1717 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1718 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1719 }
1720
1721 static void update_avg(u64 *avg, u64 sample)
1722 {
1723 s64 diff = sample - *avg;
1724 *avg += diff >> 3;
1725 }
1726
1727 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1728 {
1729 sched_info_queued(p);
1730 p->sched_class->enqueue_task(rq, p, wakeup);
1731 p->se.on_rq = 1;
1732 }
1733
1734 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1735 {
1736 if (sleep && p->se.last_wakeup) {
1737 update_avg(&p->se.avg_overlap,
1738 p->se.sum_exec_runtime - p->se.last_wakeup);
1739 p->se.last_wakeup = 0;
1740 }
1741
1742 sched_info_dequeued(p);
1743 p->sched_class->dequeue_task(rq, p, sleep);
1744 p->se.on_rq = 0;
1745 }
1746
1747 /*
1748 * __normal_prio - return the priority that is based on the static prio
1749 */
1750 static inline int __normal_prio(struct task_struct *p)
1751 {
1752 return p->static_prio;
1753 }
1754
1755 /*
1756 * Calculate the expected normal priority: i.e. priority
1757 * without taking RT-inheritance into account. Might be
1758 * boosted by interactivity modifiers. Changes upon fork,
1759 * setprio syscalls, and whenever the interactivity
1760 * estimator recalculates.
1761 */
1762 static inline int normal_prio(struct task_struct *p)
1763 {
1764 int prio;
1765
1766 if (task_has_rt_policy(p))
1767 prio = MAX_RT_PRIO-1 - p->rt_priority;
1768 else
1769 prio = __normal_prio(p);
1770 return prio;
1771 }
1772
1773 /*
1774 * Calculate the current priority, i.e. the priority
1775 * taken into account by the scheduler. This value might
1776 * be boosted by RT tasks, or might be boosted by
1777 * interactivity modifiers. Will be RT if the task got
1778 * RT-boosted. If not then it returns p->normal_prio.
1779 */
1780 static int effective_prio(struct task_struct *p)
1781 {
1782 p->normal_prio = normal_prio(p);
1783 /*
1784 * If we are RT tasks or we were boosted to RT priority,
1785 * keep the priority unchanged. Otherwise, update priority
1786 * to the normal priority:
1787 */
1788 if (!rt_prio(p->prio))
1789 return p->normal_prio;
1790 return p->prio;
1791 }
1792
1793 /*
1794 * activate_task - move a task to the runqueue.
1795 */
1796 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1797 {
1798 if (task_contributes_to_load(p))
1799 rq->nr_uninterruptible--;
1800
1801 enqueue_task(rq, p, wakeup);
1802 inc_nr_running(rq);
1803 }
1804
1805 /*
1806 * deactivate_task - remove a task from the runqueue.
1807 */
1808 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1809 {
1810 if (task_contributes_to_load(p))
1811 rq->nr_uninterruptible++;
1812
1813 dequeue_task(rq, p, sleep);
1814 dec_nr_running(rq);
1815 }
1816
1817 /**
1818 * task_curr - is this task currently executing on a CPU?
1819 * @p: the task in question.
1820 */
1821 inline int task_curr(const struct task_struct *p)
1822 {
1823 return cpu_curr(task_cpu(p)) == p;
1824 }
1825
1826 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1827 {
1828 set_task_rq(p, cpu);
1829 #ifdef CONFIG_SMP
1830 /*
1831 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1832 * successfuly executed on another CPU. We must ensure that updates of
1833 * per-task data have been completed by this moment.
1834 */
1835 smp_wmb();
1836 task_thread_info(p)->cpu = cpu;
1837 #endif
1838 }
1839
1840 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1841 const struct sched_class *prev_class,
1842 int oldprio, int running)
1843 {
1844 if (prev_class != p->sched_class) {
1845 if (prev_class->switched_from)
1846 prev_class->switched_from(rq, p, running);
1847 p->sched_class->switched_to(rq, p, running);
1848 } else
1849 p->sched_class->prio_changed(rq, p, oldprio, running);
1850 }
1851
1852 #ifdef CONFIG_SMP
1853
1854 /* Used instead of source_load when we know the type == 0 */
1855 static unsigned long weighted_cpuload(const int cpu)
1856 {
1857 return cpu_rq(cpu)->load.weight;
1858 }
1859
1860 /*
1861 * Is this task likely cache-hot:
1862 */
1863 static int
1864 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1865 {
1866 s64 delta;
1867
1868 /*
1869 * Buddy candidates are cache hot:
1870 */
1871 if (sched_feat(CACHE_HOT_BUDDY) &&
1872 (&p->se == cfs_rq_of(&p->se)->next ||
1873 &p->se == cfs_rq_of(&p->se)->last))
1874 return 1;
1875
1876 if (p->sched_class != &fair_sched_class)
1877 return 0;
1878
1879 if (sysctl_sched_migration_cost == -1)
1880 return 1;
1881 if (sysctl_sched_migration_cost == 0)
1882 return 0;
1883
1884 delta = now - p->se.exec_start;
1885
1886 return delta < (s64)sysctl_sched_migration_cost;
1887 }
1888
1889
1890 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1891 {
1892 int old_cpu = task_cpu(p);
1893 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1894 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1895 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1896 u64 clock_offset;
1897
1898 clock_offset = old_rq->clock - new_rq->clock;
1899
1900 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1901
1902 #ifdef CONFIG_SCHEDSTATS
1903 if (p->se.wait_start)
1904 p->se.wait_start -= clock_offset;
1905 if (p->se.sleep_start)
1906 p->se.sleep_start -= clock_offset;
1907 if (p->se.block_start)
1908 p->se.block_start -= clock_offset;
1909 #endif
1910 if (old_cpu != new_cpu) {
1911 p->se.nr_migrations++;
1912 new_rq->nr_migrations_in++;
1913 #ifdef CONFIG_SCHEDSTATS
1914 if (task_hot(p, old_rq->clock, NULL))
1915 schedstat_inc(p, se.nr_forced2_migrations);
1916 #endif
1917 }
1918 p->se.vruntime -= old_cfsrq->min_vruntime -
1919 new_cfsrq->min_vruntime;
1920
1921 __set_task_cpu(p, new_cpu);
1922 }
1923
1924 struct migration_req {
1925 struct list_head list;
1926
1927 struct task_struct *task;
1928 int dest_cpu;
1929
1930 struct completion done;
1931 };
1932
1933 /*
1934 * The task's runqueue lock must be held.
1935 * Returns true if you have to wait for migration thread.
1936 */
1937 static int
1938 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1939 {
1940 struct rq *rq = task_rq(p);
1941
1942 /*
1943 * If the task is not on a runqueue (and not running), then
1944 * it is sufficient to simply update the task's cpu field.
1945 */
1946 if (!p->se.on_rq && !task_running(rq, p)) {
1947 set_task_cpu(p, dest_cpu);
1948 return 0;
1949 }
1950
1951 init_completion(&req->done);
1952 req->task = p;
1953 req->dest_cpu = dest_cpu;
1954 list_add(&req->list, &rq->migration_queue);
1955
1956 return 1;
1957 }
1958
1959 /*
1960 * wait_task_inactive - wait for a thread to unschedule.
1961 *
1962 * If @match_state is nonzero, it's the @p->state value just checked and
1963 * not expected to change. If it changes, i.e. @p might have woken up,
1964 * then return zero. When we succeed in waiting for @p to be off its CPU,
1965 * we return a positive number (its total switch count). If a second call
1966 * a short while later returns the same number, the caller can be sure that
1967 * @p has remained unscheduled the whole time.
1968 *
1969 * The caller must ensure that the task *will* unschedule sometime soon,
1970 * else this function might spin for a *long* time. This function can't
1971 * be called with interrupts off, or it may introduce deadlock with
1972 * smp_call_function() if an IPI is sent by the same process we are
1973 * waiting to become inactive.
1974 */
1975 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1976 {
1977 unsigned long flags;
1978 int running, on_rq;
1979 unsigned long ncsw;
1980 struct rq *rq;
1981
1982 for (;;) {
1983 /*
1984 * We do the initial early heuristics without holding
1985 * any task-queue locks at all. We'll only try to get
1986 * the runqueue lock when things look like they will
1987 * work out!
1988 */
1989 rq = task_rq(p);
1990
1991 /*
1992 * If the task is actively running on another CPU
1993 * still, just relax and busy-wait without holding
1994 * any locks.
1995 *
1996 * NOTE! Since we don't hold any locks, it's not
1997 * even sure that "rq" stays as the right runqueue!
1998 * But we don't care, since "task_running()" will
1999 * return false if the runqueue has changed and p
2000 * is actually now running somewhere else!
2001 */
2002 while (task_running(rq, p)) {
2003 if (match_state && unlikely(p->state != match_state))
2004 return 0;
2005 cpu_relax();
2006 }
2007
2008 /*
2009 * Ok, time to look more closely! We need the rq
2010 * lock now, to be *sure*. If we're wrong, we'll
2011 * just go back and repeat.
2012 */
2013 rq = task_rq_lock(p, &flags);
2014 trace_sched_wait_task(rq, p);
2015 running = task_running(rq, p);
2016 on_rq = p->se.on_rq;
2017 ncsw = 0;
2018 if (!match_state || p->state == match_state)
2019 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2020 task_rq_unlock(rq, &flags);
2021
2022 /*
2023 * If it changed from the expected state, bail out now.
2024 */
2025 if (unlikely(!ncsw))
2026 break;
2027
2028 /*
2029 * Was it really running after all now that we
2030 * checked with the proper locks actually held?
2031 *
2032 * Oops. Go back and try again..
2033 */
2034 if (unlikely(running)) {
2035 cpu_relax();
2036 continue;
2037 }
2038
2039 /*
2040 * It's not enough that it's not actively running,
2041 * it must be off the runqueue _entirely_, and not
2042 * preempted!
2043 *
2044 * So if it wa still runnable (but just not actively
2045 * running right now), it's preempted, and we should
2046 * yield - it could be a while.
2047 */
2048 if (unlikely(on_rq)) {
2049 schedule_timeout_uninterruptible(1);
2050 continue;
2051 }
2052
2053 /*
2054 * Ahh, all good. It wasn't running, and it wasn't
2055 * runnable, which means that it will never become
2056 * running in the future either. We're all done!
2057 */
2058 break;
2059 }
2060
2061 return ncsw;
2062 }
2063
2064 /***
2065 * kick_process - kick a running thread to enter/exit the kernel
2066 * @p: the to-be-kicked thread
2067 *
2068 * Cause a process which is running on another CPU to enter
2069 * kernel-mode, without any delay. (to get signals handled.)
2070 *
2071 * NOTE: this function doesnt have to take the runqueue lock,
2072 * because all it wants to ensure is that the remote task enters
2073 * the kernel. If the IPI races and the task has been migrated
2074 * to another CPU then no harm is done and the purpose has been
2075 * achieved as well.
2076 */
2077 void kick_process(struct task_struct *p)
2078 {
2079 int cpu;
2080
2081 preempt_disable();
2082 cpu = task_cpu(p);
2083 if ((cpu != smp_processor_id()) && task_curr(p))
2084 smp_send_reschedule(cpu);
2085 preempt_enable();
2086 }
2087
2088 /*
2089 * Return a low guess at the load of a migration-source cpu weighted
2090 * according to the scheduling class and "nice" value.
2091 *
2092 * We want to under-estimate the load of migration sources, to
2093 * balance conservatively.
2094 */
2095 static unsigned long source_load(int cpu, int type)
2096 {
2097 struct rq *rq = cpu_rq(cpu);
2098 unsigned long total = weighted_cpuload(cpu);
2099
2100 if (type == 0 || !sched_feat(LB_BIAS))
2101 return total;
2102
2103 return min(rq->cpu_load[type-1], total);
2104 }
2105
2106 /*
2107 * Return a high guess at the load of a migration-target cpu weighted
2108 * according to the scheduling class and "nice" value.
2109 */
2110 static unsigned long target_load(int cpu, int type)
2111 {
2112 struct rq *rq = cpu_rq(cpu);
2113 unsigned long total = weighted_cpuload(cpu);
2114
2115 if (type == 0 || !sched_feat(LB_BIAS))
2116 return total;
2117
2118 return max(rq->cpu_load[type-1], total);
2119 }
2120
2121 /*
2122 * find_idlest_group finds and returns the least busy CPU group within the
2123 * domain.
2124 */
2125 static struct sched_group *
2126 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2127 {
2128 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2129 unsigned long min_load = ULONG_MAX, this_load = 0;
2130 int load_idx = sd->forkexec_idx;
2131 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2132
2133 do {
2134 unsigned long load, avg_load;
2135 int local_group;
2136 int i;
2137
2138 /* Skip over this group if it has no CPUs allowed */
2139 if (!cpumask_intersects(sched_group_cpus(group),
2140 &p->cpus_allowed))
2141 continue;
2142
2143 local_group = cpumask_test_cpu(this_cpu,
2144 sched_group_cpus(group));
2145
2146 /* Tally up the load of all CPUs in the group */
2147 avg_load = 0;
2148
2149 for_each_cpu(i, sched_group_cpus(group)) {
2150 /* Bias balancing toward cpus of our domain */
2151 if (local_group)
2152 load = source_load(i, load_idx);
2153 else
2154 load = target_load(i, load_idx);
2155
2156 avg_load += load;
2157 }
2158
2159 /* Adjust by relative CPU power of the group */
2160 avg_load = sg_div_cpu_power(group,
2161 avg_load * SCHED_LOAD_SCALE);
2162
2163 if (local_group) {
2164 this_load = avg_load;
2165 this = group;
2166 } else if (avg_load < min_load) {
2167 min_load = avg_load;
2168 idlest = group;
2169 }
2170 } while (group = group->next, group != sd->groups);
2171
2172 if (!idlest || 100*this_load < imbalance*min_load)
2173 return NULL;
2174 return idlest;
2175 }
2176
2177 /*
2178 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2179 */
2180 static int
2181 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2182 {
2183 unsigned long load, min_load = ULONG_MAX;
2184 int idlest = -1;
2185 int i;
2186
2187 /* Traverse only the allowed CPUs */
2188 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2189 load = weighted_cpuload(i);
2190
2191 if (load < min_load || (load == min_load && i == this_cpu)) {
2192 min_load = load;
2193 idlest = i;
2194 }
2195 }
2196
2197 return idlest;
2198 }
2199
2200 /*
2201 * sched_balance_self: balance the current task (running on cpu) in domains
2202 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2203 * SD_BALANCE_EXEC.
2204 *
2205 * Balance, ie. select the least loaded group.
2206 *
2207 * Returns the target CPU number, or the same CPU if no balancing is needed.
2208 *
2209 * preempt must be disabled.
2210 */
2211 static int sched_balance_self(int cpu, int flag)
2212 {
2213 struct task_struct *t = current;
2214 struct sched_domain *tmp, *sd = NULL;
2215
2216 for_each_domain(cpu, tmp) {
2217 /*
2218 * If power savings logic is enabled for a domain, stop there.
2219 */
2220 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2221 break;
2222 if (tmp->flags & flag)
2223 sd = tmp;
2224 }
2225
2226 if (sd)
2227 update_shares(sd);
2228
2229 while (sd) {
2230 struct sched_group *group;
2231 int new_cpu, weight;
2232
2233 if (!(sd->flags & flag)) {
2234 sd = sd->child;
2235 continue;
2236 }
2237
2238 group = find_idlest_group(sd, t, cpu);
2239 if (!group) {
2240 sd = sd->child;
2241 continue;
2242 }
2243
2244 new_cpu = find_idlest_cpu(group, t, cpu);
2245 if (new_cpu == -1 || new_cpu == cpu) {
2246 /* Now try balancing at a lower domain level of cpu */
2247 sd = sd->child;
2248 continue;
2249 }
2250
2251 /* Now try balancing at a lower domain level of new_cpu */
2252 cpu = new_cpu;
2253 weight = cpumask_weight(sched_domain_span(sd));
2254 sd = NULL;
2255 for_each_domain(cpu, tmp) {
2256 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2257 break;
2258 if (tmp->flags & flag)
2259 sd = tmp;
2260 }
2261 /* while loop will break here if sd == NULL */
2262 }
2263
2264 return cpu;
2265 }
2266
2267 #endif /* CONFIG_SMP */
2268
2269 /**
2270 * task_oncpu_function_call - call a function on the cpu on which a task runs
2271 * @p: the task to evaluate
2272 * @func: the function to be called
2273 * @info: the function call argument
2274 *
2275 * Calls the function @func when the task is currently running. This might
2276 * be on the current CPU, which just calls the function directly
2277 */
2278 void task_oncpu_function_call(struct task_struct *p,
2279 void (*func) (void *info), void *info)
2280 {
2281 int cpu;
2282
2283 preempt_disable();
2284 cpu = task_cpu(p);
2285 if (task_curr(p))
2286 smp_call_function_single(cpu, func, info, 1);
2287 preempt_enable();
2288 }
2289
2290 /***
2291 * try_to_wake_up - wake up a thread
2292 * @p: the to-be-woken-up thread
2293 * @state: the mask of task states that can be woken
2294 * @sync: do a synchronous wakeup?
2295 *
2296 * Put it on the run-queue if it's not already there. The "current"
2297 * thread is always on the run-queue (except when the actual
2298 * re-schedule is in progress), and as such you're allowed to do
2299 * the simpler "current->state = TASK_RUNNING" to mark yourself
2300 * runnable without the overhead of this.
2301 *
2302 * returns failure only if the task is already active.
2303 */
2304 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2305 {
2306 int cpu, orig_cpu, this_cpu, success = 0;
2307 unsigned long flags;
2308 long old_state;
2309 struct rq *rq;
2310
2311 if (!sched_feat(SYNC_WAKEUPS))
2312 sync = 0;
2313
2314 #ifdef CONFIG_SMP
2315 if (sched_feat(LB_WAKEUP_UPDATE)) {
2316 struct sched_domain *sd;
2317
2318 this_cpu = raw_smp_processor_id();
2319 cpu = task_cpu(p);
2320
2321 for_each_domain(this_cpu, sd) {
2322 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2323 update_shares(sd);
2324 break;
2325 }
2326 }
2327 }
2328 #endif
2329
2330 smp_wmb();
2331 rq = task_rq_lock(p, &flags);
2332 update_rq_clock(rq);
2333 old_state = p->state;
2334 if (!(old_state & state))
2335 goto out;
2336
2337 if (p->se.on_rq)
2338 goto out_running;
2339
2340 cpu = task_cpu(p);
2341 orig_cpu = cpu;
2342 this_cpu = smp_processor_id();
2343
2344 #ifdef CONFIG_SMP
2345 if (unlikely(task_running(rq, p)))
2346 goto out_activate;
2347
2348 cpu = p->sched_class->select_task_rq(p, sync);
2349 if (cpu != orig_cpu) {
2350 set_task_cpu(p, cpu);
2351 task_rq_unlock(rq, &flags);
2352 /* might preempt at this point */
2353 rq = task_rq_lock(p, &flags);
2354 old_state = p->state;
2355 if (!(old_state & state))
2356 goto out;
2357 if (p->se.on_rq)
2358 goto out_running;
2359
2360 this_cpu = smp_processor_id();
2361 cpu = task_cpu(p);
2362 }
2363
2364 #ifdef CONFIG_SCHEDSTATS
2365 schedstat_inc(rq, ttwu_count);
2366 if (cpu == this_cpu)
2367 schedstat_inc(rq, ttwu_local);
2368 else {
2369 struct sched_domain *sd;
2370 for_each_domain(this_cpu, sd) {
2371 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2372 schedstat_inc(sd, ttwu_wake_remote);
2373 break;
2374 }
2375 }
2376 }
2377 #endif /* CONFIG_SCHEDSTATS */
2378
2379 out_activate:
2380 #endif /* CONFIG_SMP */
2381 schedstat_inc(p, se.nr_wakeups);
2382 if (sync)
2383 schedstat_inc(p, se.nr_wakeups_sync);
2384 if (orig_cpu != cpu)
2385 schedstat_inc(p, se.nr_wakeups_migrate);
2386 if (cpu == this_cpu)
2387 schedstat_inc(p, se.nr_wakeups_local);
2388 else
2389 schedstat_inc(p, se.nr_wakeups_remote);
2390 activate_task(rq, p, 1);
2391 success = 1;
2392
2393 out_running:
2394 trace_sched_wakeup(rq, p, success);
2395 check_preempt_curr(rq, p, sync);
2396
2397 p->state = TASK_RUNNING;
2398 #ifdef CONFIG_SMP
2399 if (p->sched_class->task_wake_up)
2400 p->sched_class->task_wake_up(rq, p);
2401 #endif
2402 out:
2403 current->se.last_wakeup = current->se.sum_exec_runtime;
2404
2405 task_rq_unlock(rq, &flags);
2406
2407 return success;
2408 }
2409
2410 int wake_up_process(struct task_struct *p)
2411 {
2412 return try_to_wake_up(p, TASK_ALL, 0);
2413 }
2414 EXPORT_SYMBOL(wake_up_process);
2415
2416 int wake_up_state(struct task_struct *p, unsigned int state)
2417 {
2418 return try_to_wake_up(p, state, 0);
2419 }
2420
2421 /*
2422 * Perform scheduler related setup for a newly forked process p.
2423 * p is forked by current.
2424 *
2425 * __sched_fork() is basic setup used by init_idle() too:
2426 */
2427 static void __sched_fork(struct task_struct *p)
2428 {
2429 p->se.exec_start = 0;
2430 p->se.sum_exec_runtime = 0;
2431 p->se.prev_sum_exec_runtime = 0;
2432 p->se.nr_migrations = 0;
2433 p->se.last_wakeup = 0;
2434 p->se.avg_overlap = 0;
2435
2436 #ifdef CONFIG_SCHEDSTATS
2437 p->se.wait_start = 0;
2438 p->se.sum_sleep_runtime = 0;
2439 p->se.sleep_start = 0;
2440 p->se.block_start = 0;
2441 p->se.sleep_max = 0;
2442 p->se.block_max = 0;
2443 p->se.exec_max = 0;
2444 p->se.slice_max = 0;
2445 p->se.wait_max = 0;
2446 #endif
2447
2448 INIT_LIST_HEAD(&p->rt.run_list);
2449 p->se.on_rq = 0;
2450 INIT_LIST_HEAD(&p->se.group_node);
2451
2452 #ifdef CONFIG_PREEMPT_NOTIFIERS
2453 INIT_HLIST_HEAD(&p->preempt_notifiers);
2454 #endif
2455
2456 /*
2457 * We mark the process as running here, but have not actually
2458 * inserted it onto the runqueue yet. This guarantees that
2459 * nobody will actually run it, and a signal or other external
2460 * event cannot wake it up and insert it on the runqueue either.
2461 */
2462 p->state = TASK_RUNNING;
2463 }
2464
2465 /*
2466 * fork()/clone()-time setup:
2467 */
2468 void sched_fork(struct task_struct *p, int clone_flags)
2469 {
2470 int cpu = get_cpu();
2471
2472 __sched_fork(p);
2473
2474 #ifdef CONFIG_SMP
2475 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2476 #endif
2477 set_task_cpu(p, cpu);
2478
2479 /*
2480 * Make sure we do not leak PI boosting priority to the child:
2481 */
2482 p->prio = current->normal_prio;
2483 if (!rt_prio(p->prio))
2484 p->sched_class = &fair_sched_class;
2485
2486 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2487 if (likely(sched_info_on()))
2488 memset(&p->sched_info, 0, sizeof(p->sched_info));
2489 #endif
2490 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2491 p->oncpu = 0;
2492 #endif
2493 #ifdef CONFIG_PREEMPT
2494 /* Want to start with kernel preemption disabled. */
2495 task_thread_info(p)->preempt_count = 1;
2496 #endif
2497 put_cpu();
2498 }
2499
2500 /*
2501 * wake_up_new_task - wake up a newly created task for the first time.
2502 *
2503 * This function will do some initial scheduler statistics housekeeping
2504 * that must be done for every newly created context, then puts the task
2505 * on the runqueue and wakes it.
2506 */
2507 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2508 {
2509 unsigned long flags;
2510 struct rq *rq;
2511
2512 rq = task_rq_lock(p, &flags);
2513 BUG_ON(p->state != TASK_RUNNING);
2514 update_rq_clock(rq);
2515
2516 p->prio = effective_prio(p);
2517
2518 if (!p->sched_class->task_new || !current->se.on_rq) {
2519 activate_task(rq, p, 0);
2520 } else {
2521 /*
2522 * Let the scheduling class do new task startup
2523 * management (if any):
2524 */
2525 p->sched_class->task_new(rq, p);
2526 inc_nr_running(rq);
2527 }
2528 trace_sched_wakeup_new(rq, p, 1);
2529 check_preempt_curr(rq, p, 0);
2530 #ifdef CONFIG_SMP
2531 if (p->sched_class->task_wake_up)
2532 p->sched_class->task_wake_up(rq, p);
2533 #endif
2534 task_rq_unlock(rq, &flags);
2535 }
2536
2537 #ifdef CONFIG_PREEMPT_NOTIFIERS
2538
2539 /**
2540 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2541 * @notifier: notifier struct to register
2542 */
2543 void preempt_notifier_register(struct preempt_notifier *notifier)
2544 {
2545 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2546 }
2547 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2548
2549 /**
2550 * preempt_notifier_unregister - no longer interested in preemption notifications
2551 * @notifier: notifier struct to unregister
2552 *
2553 * This is safe to call from within a preemption notifier.
2554 */
2555 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2556 {
2557 hlist_del(&notifier->link);
2558 }
2559 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2560
2561 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2562 {
2563 struct preempt_notifier *notifier;
2564 struct hlist_node *node;
2565
2566 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2567 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2568 }
2569
2570 static void
2571 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2572 struct task_struct *next)
2573 {
2574 struct preempt_notifier *notifier;
2575 struct hlist_node *node;
2576
2577 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2578 notifier->ops->sched_out(notifier, next);
2579 }
2580
2581 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2582
2583 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2584 {
2585 }
2586
2587 static void
2588 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2589 struct task_struct *next)
2590 {
2591 }
2592
2593 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2594
2595 /**
2596 * prepare_task_switch - prepare to switch tasks
2597 * @rq: the runqueue preparing to switch
2598 * @prev: the current task that is being switched out
2599 * @next: the task we are going to switch to.
2600 *
2601 * This is called with the rq lock held and interrupts off. It must
2602 * be paired with a subsequent finish_task_switch after the context
2603 * switch.
2604 *
2605 * prepare_task_switch sets up locking and calls architecture specific
2606 * hooks.
2607 */
2608 static inline void
2609 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2610 struct task_struct *next)
2611 {
2612 fire_sched_out_preempt_notifiers(prev, next);
2613 prepare_lock_switch(rq, next);
2614 prepare_arch_switch(next);
2615 }
2616
2617 /**
2618 * finish_task_switch - clean up after a task-switch
2619 * @rq: runqueue associated with task-switch
2620 * @prev: the thread we just switched away from.
2621 *
2622 * finish_task_switch must be called after the context switch, paired
2623 * with a prepare_task_switch call before the context switch.
2624 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2625 * and do any other architecture-specific cleanup actions.
2626 *
2627 * Note that we may have delayed dropping an mm in context_switch(). If
2628 * so, we finish that here outside of the runqueue lock. (Doing it
2629 * with the lock held can cause deadlocks; see schedule() for
2630 * details.)
2631 */
2632 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2633 __releases(rq->lock)
2634 {
2635 struct mm_struct *mm = rq->prev_mm;
2636 long prev_state;
2637
2638 rq->prev_mm = NULL;
2639
2640 /*
2641 * A task struct has one reference for the use as "current".
2642 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2643 * schedule one last time. The schedule call will never return, and
2644 * the scheduled task must drop that reference.
2645 * The test for TASK_DEAD must occur while the runqueue locks are
2646 * still held, otherwise prev could be scheduled on another cpu, die
2647 * there before we look at prev->state, and then the reference would
2648 * be dropped twice.
2649 * Manfred Spraul <manfred@colorfullife.com>
2650 */
2651 prev_state = prev->state;
2652 finish_arch_switch(prev);
2653 perf_counter_task_sched_in(current, cpu_of(rq));
2654 finish_lock_switch(rq, prev);
2655 #ifdef CONFIG_SMP
2656 if (current->sched_class->post_schedule)
2657 current->sched_class->post_schedule(rq);
2658 #endif
2659
2660 fire_sched_in_preempt_notifiers(current);
2661 if (mm)
2662 mmdrop(mm);
2663 if (unlikely(prev_state == TASK_DEAD)) {
2664 /*
2665 * Remove function-return probe instances associated with this
2666 * task and put them back on the free list.
2667 */
2668 kprobe_flush_task(prev);
2669 put_task_struct(prev);
2670 }
2671 }
2672
2673 /**
2674 * schedule_tail - first thing a freshly forked thread must call.
2675 * @prev: the thread we just switched away from.
2676 */
2677 asmlinkage void schedule_tail(struct task_struct *prev)
2678 __releases(rq->lock)
2679 {
2680 struct rq *rq = this_rq();
2681
2682 finish_task_switch(rq, prev);
2683 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2684 /* In this case, finish_task_switch does not reenable preemption */
2685 preempt_enable();
2686 #endif
2687 if (current->set_child_tid)
2688 put_user(task_pid_vnr(current), current->set_child_tid);
2689 }
2690
2691 /*
2692 * context_switch - switch to the new MM and the new
2693 * thread's register state.
2694 */
2695 static inline void
2696 context_switch(struct rq *rq, struct task_struct *prev,
2697 struct task_struct *next)
2698 {
2699 struct mm_struct *mm, *oldmm;
2700
2701 prepare_task_switch(rq, prev, next);
2702 trace_sched_switch(rq, prev, next);
2703 mm = next->mm;
2704 oldmm = prev->active_mm;
2705 /*
2706 * For paravirt, this is coupled with an exit in switch_to to
2707 * combine the page table reload and the switch backend into
2708 * one hypercall.
2709 */
2710 arch_enter_lazy_cpu_mode();
2711
2712 if (unlikely(!mm)) {
2713 next->active_mm = oldmm;
2714 atomic_inc(&oldmm->mm_count);
2715 enter_lazy_tlb(oldmm, next);
2716 } else
2717 switch_mm(oldmm, mm, next);
2718
2719 if (unlikely(!prev->mm)) {
2720 prev->active_mm = NULL;
2721 rq->prev_mm = oldmm;
2722 }
2723 /*
2724 * Since the runqueue lock will be released by the next
2725 * task (which is an invalid locking op but in the case
2726 * of the scheduler it's an obvious special-case), so we
2727 * do an early lockdep release here:
2728 */
2729 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2730 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2731 #endif
2732
2733 /* Here we just switch the register state and the stack. */
2734 switch_to(prev, next, prev);
2735
2736 barrier();
2737 /*
2738 * this_rq must be evaluated again because prev may have moved
2739 * CPUs since it called schedule(), thus the 'rq' on its stack
2740 * frame will be invalid.
2741 */
2742 finish_task_switch(this_rq(), prev);
2743 }
2744
2745 /*
2746 * nr_running, nr_uninterruptible and nr_context_switches:
2747 *
2748 * externally visible scheduler statistics: current number of runnable
2749 * threads, current number of uninterruptible-sleeping threads, total
2750 * number of context switches performed since bootup.
2751 */
2752 unsigned long nr_running(void)
2753 {
2754 unsigned long i, sum = 0;
2755
2756 for_each_online_cpu(i)
2757 sum += cpu_rq(i)->nr_running;
2758
2759 return sum;
2760 }
2761
2762 unsigned long nr_uninterruptible(void)
2763 {
2764 unsigned long i, sum = 0;
2765
2766 for_each_possible_cpu(i)
2767 sum += cpu_rq(i)->nr_uninterruptible;
2768
2769 /*
2770 * Since we read the counters lockless, it might be slightly
2771 * inaccurate. Do not allow it to go below zero though:
2772 */
2773 if (unlikely((long)sum < 0))
2774 sum = 0;
2775
2776 return sum;
2777 }
2778
2779 unsigned long long nr_context_switches(void)
2780 {
2781 int i;
2782 unsigned long long sum = 0;
2783
2784 for_each_possible_cpu(i)
2785 sum += cpu_rq(i)->nr_switches;
2786
2787 return sum;
2788 }
2789
2790 unsigned long nr_iowait(void)
2791 {
2792 unsigned long i, sum = 0;
2793
2794 for_each_possible_cpu(i)
2795 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2796
2797 return sum;
2798 }
2799
2800 unsigned long nr_active(void)
2801 {
2802 unsigned long i, running = 0, uninterruptible = 0;
2803
2804 for_each_online_cpu(i) {
2805 running += cpu_rq(i)->nr_running;
2806 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2807 }
2808
2809 if (unlikely((long)uninterruptible < 0))
2810 uninterruptible = 0;
2811
2812 return running + uninterruptible;
2813 }
2814
2815 /*
2816 * Externally visible per-cpu scheduler statistics:
2817 * cpu_nr_switches(cpu) - number of context switches on that cpu
2818 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2819 */
2820 u64 cpu_nr_switches(int cpu)
2821 {
2822 return cpu_rq(cpu)->nr_switches;
2823 }
2824
2825 u64 cpu_nr_migrations(int cpu)
2826 {
2827 return cpu_rq(cpu)->nr_migrations_in;
2828 }
2829
2830 /*
2831 * Update rq->cpu_load[] statistics. This function is usually called every
2832 * scheduler tick (TICK_NSEC).
2833 */
2834 static void update_cpu_load(struct rq *this_rq)
2835 {
2836 unsigned long this_load = this_rq->load.weight;
2837 int i, scale;
2838
2839 this_rq->nr_load_updates++;
2840
2841 /* Update our load: */
2842 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2843 unsigned long old_load, new_load;
2844
2845 /* scale is effectively 1 << i now, and >> i divides by scale */
2846
2847 old_load = this_rq->cpu_load[i];
2848 new_load = this_load;
2849 /*
2850 * Round up the averaging division if load is increasing. This
2851 * prevents us from getting stuck on 9 if the load is 10, for
2852 * example.
2853 */
2854 if (new_load > old_load)
2855 new_load += scale-1;
2856 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2857 }
2858 }
2859
2860 #ifdef CONFIG_SMP
2861
2862 /*
2863 * double_rq_lock - safely lock two runqueues
2864 *
2865 * Note this does not disable interrupts like task_rq_lock,
2866 * you need to do so manually before calling.
2867 */
2868 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2869 __acquires(rq1->lock)
2870 __acquires(rq2->lock)
2871 {
2872 BUG_ON(!irqs_disabled());
2873 if (rq1 == rq2) {
2874 spin_lock(&rq1->lock);
2875 __acquire(rq2->lock); /* Fake it out ;) */
2876 } else {
2877 if (rq1 < rq2) {
2878 spin_lock(&rq1->lock);
2879 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2880 } else {
2881 spin_lock(&rq2->lock);
2882 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2883 }
2884 }
2885 update_rq_clock(rq1);
2886 update_rq_clock(rq2);
2887 }
2888
2889 /*
2890 * double_rq_unlock - safely unlock two runqueues
2891 *
2892 * Note this does not restore interrupts like task_rq_unlock,
2893 * you need to do so manually after calling.
2894 */
2895 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2896 __releases(rq1->lock)
2897 __releases(rq2->lock)
2898 {
2899 spin_unlock(&rq1->lock);
2900 if (rq1 != rq2)
2901 spin_unlock(&rq2->lock);
2902 else
2903 __release(rq2->lock);
2904 }
2905
2906 /*
2907 * If dest_cpu is allowed for this process, migrate the task to it.
2908 * This is accomplished by forcing the cpu_allowed mask to only
2909 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2910 * the cpu_allowed mask is restored.
2911 */
2912 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2913 {
2914 struct migration_req req;
2915 unsigned long flags;
2916 struct rq *rq;
2917
2918 rq = task_rq_lock(p, &flags);
2919 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2920 || unlikely(!cpu_active(dest_cpu)))
2921 goto out;
2922
2923 /* force the process onto the specified CPU */
2924 if (migrate_task(p, dest_cpu, &req)) {
2925 /* Need to wait for migration thread (might exit: take ref). */
2926 struct task_struct *mt = rq->migration_thread;
2927
2928 get_task_struct(mt);
2929 task_rq_unlock(rq, &flags);
2930 wake_up_process(mt);
2931 put_task_struct(mt);
2932 wait_for_completion(&req.done);
2933
2934 return;
2935 }
2936 out:
2937 task_rq_unlock(rq, &flags);
2938 }
2939
2940 /*
2941 * sched_exec - execve() is a valuable balancing opportunity, because at
2942 * this point the task has the smallest effective memory and cache footprint.
2943 */
2944 void sched_exec(void)
2945 {
2946 int new_cpu, this_cpu = get_cpu();
2947 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2948 put_cpu();
2949 if (new_cpu != this_cpu)
2950 sched_migrate_task(current, new_cpu);
2951 }
2952
2953 /*
2954 * pull_task - move a task from a remote runqueue to the local runqueue.
2955 * Both runqueues must be locked.
2956 */
2957 static void pull_task(struct rq *src_rq, struct task_struct *p,
2958 struct rq *this_rq, int this_cpu)
2959 {
2960 deactivate_task(src_rq, p, 0);
2961 set_task_cpu(p, this_cpu);
2962 activate_task(this_rq, p, 0);
2963 /*
2964 * Note that idle threads have a prio of MAX_PRIO, for this test
2965 * to be always true for them.
2966 */
2967 check_preempt_curr(this_rq, p, 0);
2968 }
2969
2970 /*
2971 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2972 */
2973 static
2974 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2975 struct sched_domain *sd, enum cpu_idle_type idle,
2976 int *all_pinned)
2977 {
2978 /*
2979 * We do not migrate tasks that are:
2980 * 1) running (obviously), or
2981 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2982 * 3) are cache-hot on their current CPU.
2983 */
2984 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2985 schedstat_inc(p, se.nr_failed_migrations_affine);
2986 return 0;
2987 }
2988 *all_pinned = 0;
2989
2990 if (task_running(rq, p)) {
2991 schedstat_inc(p, se.nr_failed_migrations_running);
2992 return 0;
2993 }
2994
2995 /*
2996 * Aggressive migration if:
2997 * 1) task is cache cold, or
2998 * 2) too many balance attempts have failed.
2999 */
3000
3001 if (!task_hot(p, rq->clock, sd) ||
3002 sd->nr_balance_failed > sd->cache_nice_tries) {
3003 #ifdef CONFIG_SCHEDSTATS
3004 if (task_hot(p, rq->clock, sd)) {
3005 schedstat_inc(sd, lb_hot_gained[idle]);
3006 schedstat_inc(p, se.nr_forced_migrations);
3007 }
3008 #endif
3009 return 1;
3010 }
3011
3012 if (task_hot(p, rq->clock, sd)) {
3013 schedstat_inc(p, se.nr_failed_migrations_hot);
3014 return 0;
3015 }
3016 return 1;
3017 }
3018
3019 static unsigned long
3020 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3021 unsigned long max_load_move, struct sched_domain *sd,
3022 enum cpu_idle_type idle, int *all_pinned,
3023 int *this_best_prio, struct rq_iterator *iterator)
3024 {
3025 int loops = 0, pulled = 0, pinned = 0;
3026 struct task_struct *p;
3027 long rem_load_move = max_load_move;
3028
3029 if (max_load_move == 0)
3030 goto out;
3031
3032 pinned = 1;
3033
3034 /*
3035 * Start the load-balancing iterator:
3036 */
3037 p = iterator->start(iterator->arg);
3038 next:
3039 if (!p || loops++ > sysctl_sched_nr_migrate)
3040 goto out;
3041
3042 if ((p->se.load.weight >> 1) > rem_load_move ||
3043 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3044 p = iterator->next(iterator->arg);
3045 goto next;
3046 }
3047
3048 pull_task(busiest, p, this_rq, this_cpu);
3049 pulled++;
3050 rem_load_move -= p->se.load.weight;
3051
3052 /*
3053 * We only want to steal up to the prescribed amount of weighted load.
3054 */
3055 if (rem_load_move > 0) {
3056 if (p->prio < *this_best_prio)
3057 *this_best_prio = p->prio;
3058 p = iterator->next(iterator->arg);
3059 goto next;
3060 }
3061 out:
3062 /*
3063 * Right now, this is one of only two places pull_task() is called,
3064 * so we can safely collect pull_task() stats here rather than
3065 * inside pull_task().
3066 */
3067 schedstat_add(sd, lb_gained[idle], pulled);
3068
3069 if (all_pinned)
3070 *all_pinned = pinned;
3071
3072 return max_load_move - rem_load_move;
3073 }
3074
3075 /*
3076 * move_tasks tries to move up to max_load_move weighted load from busiest to
3077 * this_rq, as part of a balancing operation within domain "sd".
3078 * Returns 1 if successful and 0 otherwise.
3079 *
3080 * Called with both runqueues locked.
3081 */
3082 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3083 unsigned long max_load_move,
3084 struct sched_domain *sd, enum cpu_idle_type idle,
3085 int *all_pinned)
3086 {
3087 const struct sched_class *class = sched_class_highest;
3088 unsigned long total_load_moved = 0;
3089 int this_best_prio = this_rq->curr->prio;
3090
3091 do {
3092 total_load_moved +=
3093 class->load_balance(this_rq, this_cpu, busiest,
3094 max_load_move - total_load_moved,
3095 sd, idle, all_pinned, &this_best_prio);
3096 class = class->next;
3097
3098 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3099 break;
3100
3101 } while (class && max_load_move > total_load_moved);
3102
3103 return total_load_moved > 0;
3104 }
3105
3106 static int
3107 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3108 struct sched_domain *sd, enum cpu_idle_type idle,
3109 struct rq_iterator *iterator)
3110 {
3111 struct task_struct *p = iterator->start(iterator->arg);
3112 int pinned = 0;
3113
3114 while (p) {
3115 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3116 pull_task(busiest, p, this_rq, this_cpu);
3117 /*
3118 * Right now, this is only the second place pull_task()
3119 * is called, so we can safely collect pull_task()
3120 * stats here rather than inside pull_task().
3121 */
3122 schedstat_inc(sd, lb_gained[idle]);
3123
3124 return 1;
3125 }
3126 p = iterator->next(iterator->arg);
3127 }
3128
3129 return 0;
3130 }
3131
3132 /*
3133 * move_one_task tries to move exactly one task from busiest to this_rq, as
3134 * part of active balancing operations within "domain".
3135 * Returns 1 if successful and 0 otherwise.
3136 *
3137 * Called with both runqueues locked.
3138 */
3139 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3140 struct sched_domain *sd, enum cpu_idle_type idle)
3141 {
3142 const struct sched_class *class;
3143
3144 for (class = sched_class_highest; class; class = class->next)
3145 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3146 return 1;
3147
3148 return 0;
3149 }
3150
3151 /*
3152 * find_busiest_group finds and returns the busiest CPU group within the
3153 * domain. It calculates and returns the amount of weighted load which
3154 * should be moved to restore balance via the imbalance parameter.
3155 */
3156 static struct sched_group *
3157 find_busiest_group(struct sched_domain *sd, int this_cpu,
3158 unsigned long *imbalance, enum cpu_idle_type idle,
3159 int *sd_idle, const struct cpumask *cpus, int *balance)
3160 {
3161 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3162 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3163 unsigned long max_pull;
3164 unsigned long busiest_load_per_task, busiest_nr_running;
3165 unsigned long this_load_per_task, this_nr_running;
3166 int load_idx, group_imb = 0;
3167 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3168 int power_savings_balance = 1;
3169 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3170 unsigned long min_nr_running = ULONG_MAX;
3171 struct sched_group *group_min = NULL, *group_leader = NULL;
3172 #endif
3173
3174 max_load = this_load = total_load = total_pwr = 0;
3175 busiest_load_per_task = busiest_nr_running = 0;
3176 this_load_per_task = this_nr_running = 0;
3177
3178 if (idle == CPU_NOT_IDLE)
3179 load_idx = sd->busy_idx;
3180 else if (idle == CPU_NEWLY_IDLE)
3181 load_idx = sd->newidle_idx;
3182 else
3183 load_idx = sd->idle_idx;
3184
3185 do {
3186 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3187 int local_group;
3188 int i;
3189 int __group_imb = 0;
3190 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3191 unsigned long sum_nr_running, sum_weighted_load;
3192 unsigned long sum_avg_load_per_task;
3193 unsigned long avg_load_per_task;
3194
3195 local_group = cpumask_test_cpu(this_cpu,
3196 sched_group_cpus(group));
3197
3198 if (local_group)
3199 balance_cpu = cpumask_first(sched_group_cpus(group));
3200
3201 /* Tally up the load of all CPUs in the group */
3202 sum_weighted_load = sum_nr_running = avg_load = 0;
3203 sum_avg_load_per_task = avg_load_per_task = 0;
3204
3205 max_cpu_load = 0;
3206 min_cpu_load = ~0UL;
3207
3208 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3209 struct rq *rq = cpu_rq(i);
3210
3211 if (*sd_idle && rq->nr_running)
3212 *sd_idle = 0;
3213
3214 /* Bias balancing toward cpus of our domain */
3215 if (local_group) {
3216 if (idle_cpu(i) && !first_idle_cpu) {
3217 first_idle_cpu = 1;
3218 balance_cpu = i;
3219 }
3220
3221 load = target_load(i, load_idx);
3222 } else {
3223 load = source_load(i, load_idx);
3224 if (load > max_cpu_load)
3225 max_cpu_load = load;
3226 if (min_cpu_load > load)
3227 min_cpu_load = load;
3228 }
3229
3230 avg_load += load;
3231 sum_nr_running += rq->nr_running;
3232 sum_weighted_load += weighted_cpuload(i);
3233
3234 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3235 }
3236
3237 /*
3238 * First idle cpu or the first cpu(busiest) in this sched group
3239 * is eligible for doing load balancing at this and above
3240 * domains. In the newly idle case, we will allow all the cpu's
3241 * to do the newly idle load balance.
3242 */
3243 if (idle != CPU_NEWLY_IDLE && local_group &&
3244 balance_cpu != this_cpu && balance) {
3245 *balance = 0;
3246 goto ret;
3247 }
3248
3249 total_load += avg_load;
3250 total_pwr += group->__cpu_power;
3251
3252 /* Adjust by relative CPU power of the group */
3253 avg_load = sg_div_cpu_power(group,
3254 avg_load * SCHED_LOAD_SCALE);
3255
3256
3257 /*
3258 * Consider the group unbalanced when the imbalance is larger
3259 * than the average weight of two tasks.
3260 *
3261 * APZ: with cgroup the avg task weight can vary wildly and
3262 * might not be a suitable number - should we keep a
3263 * normalized nr_running number somewhere that negates
3264 * the hierarchy?
3265 */
3266 avg_load_per_task = sg_div_cpu_power(group,
3267 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3268
3269 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3270 __group_imb = 1;
3271
3272 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3273
3274 if (local_group) {
3275 this_load = avg_load;
3276 this = group;
3277 this_nr_running = sum_nr_running;
3278 this_load_per_task = sum_weighted_load;
3279 } else if (avg_load > max_load &&
3280 (sum_nr_running > group_capacity || __group_imb)) {
3281 max_load = avg_load;
3282 busiest = group;
3283 busiest_nr_running = sum_nr_running;
3284 busiest_load_per_task = sum_weighted_load;
3285 group_imb = __group_imb;
3286 }
3287
3288 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3289 /*
3290 * Busy processors will not participate in power savings
3291 * balance.
3292 */
3293 if (idle == CPU_NOT_IDLE ||
3294 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3295 goto group_next;
3296
3297 /*
3298 * If the local group is idle or completely loaded
3299 * no need to do power savings balance at this domain
3300 */
3301 if (local_group && (this_nr_running >= group_capacity ||
3302 !this_nr_running))
3303 power_savings_balance = 0;
3304
3305 /*
3306 * If a group is already running at full capacity or idle,
3307 * don't include that group in power savings calculations
3308 */
3309 if (!power_savings_balance || sum_nr_running >= group_capacity
3310 || !sum_nr_running)
3311 goto group_next;
3312
3313 /*
3314 * Calculate the group which has the least non-idle load.
3315 * This is the group from where we need to pick up the load
3316 * for saving power
3317 */
3318 if ((sum_nr_running < min_nr_running) ||
3319 (sum_nr_running == min_nr_running &&
3320 cpumask_first(sched_group_cpus(group)) >
3321 cpumask_first(sched_group_cpus(group_min)))) {
3322 group_min = group;
3323 min_nr_running = sum_nr_running;
3324 min_load_per_task = sum_weighted_load /
3325 sum_nr_running;
3326 }
3327
3328 /*
3329 * Calculate the group which is almost near its
3330 * capacity but still has some space to pick up some load
3331 * from other group and save more power
3332 */
3333 if (sum_nr_running <= group_capacity - 1) {
3334 if (sum_nr_running > leader_nr_running ||
3335 (sum_nr_running == leader_nr_running &&
3336 cpumask_first(sched_group_cpus(group)) <
3337 cpumask_first(sched_group_cpus(group_leader)))) {
3338 group_leader = group;
3339 leader_nr_running = sum_nr_running;
3340 }
3341 }
3342 group_next:
3343 #endif
3344 group = group->next;
3345 } while (group != sd->groups);
3346
3347 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3348 goto out_balanced;
3349
3350 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3351
3352 if (this_load >= avg_load ||
3353 100*max_load <= sd->imbalance_pct*this_load)
3354 goto out_balanced;
3355
3356 busiest_load_per_task /= busiest_nr_running;
3357 if (group_imb)
3358 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3359
3360 /*
3361 * We're trying to get all the cpus to the average_load, so we don't
3362 * want to push ourselves above the average load, nor do we wish to
3363 * reduce the max loaded cpu below the average load, as either of these
3364 * actions would just result in more rebalancing later, and ping-pong
3365 * tasks around. Thus we look for the minimum possible imbalance.
3366 * Negative imbalances (*we* are more loaded than anyone else) will
3367 * be counted as no imbalance for these purposes -- we can't fix that
3368 * by pulling tasks to us. Be careful of negative numbers as they'll
3369 * appear as very large values with unsigned longs.
3370 */
3371 if (max_load <= busiest_load_per_task)
3372 goto out_balanced;
3373
3374 /*
3375 * In the presence of smp nice balancing, certain scenarios can have
3376 * max load less than avg load(as we skip the groups at or below
3377 * its cpu_power, while calculating max_load..)
3378 */
3379 if (max_load < avg_load) {
3380 *imbalance = 0;
3381 goto small_imbalance;
3382 }
3383
3384 /* Don't want to pull so many tasks that a group would go idle */
3385 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3386
3387 /* How much load to actually move to equalise the imbalance */
3388 *imbalance = min(max_pull * busiest->__cpu_power,
3389 (avg_load - this_load) * this->__cpu_power)
3390 / SCHED_LOAD_SCALE;
3391
3392 /*
3393 * if *imbalance is less than the average load per runnable task
3394 * there is no gaurantee that any tasks will be moved so we'll have
3395 * a think about bumping its value to force at least one task to be
3396 * moved
3397 */
3398 if (*imbalance < busiest_load_per_task) {
3399 unsigned long tmp, pwr_now, pwr_move;
3400 unsigned int imbn;
3401
3402 small_imbalance:
3403 pwr_move = pwr_now = 0;
3404 imbn = 2;
3405 if (this_nr_running) {
3406 this_load_per_task /= this_nr_running;
3407 if (busiest_load_per_task > this_load_per_task)
3408 imbn = 1;
3409 } else
3410 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3411
3412 if (max_load - this_load + busiest_load_per_task >=
3413 busiest_load_per_task * imbn) {
3414 *imbalance = busiest_load_per_task;
3415 return busiest;
3416 }
3417
3418 /*
3419 * OK, we don't have enough imbalance to justify moving tasks,
3420 * however we may be able to increase total CPU power used by
3421 * moving them.
3422 */
3423
3424 pwr_now += busiest->__cpu_power *
3425 min(busiest_load_per_task, max_load);
3426 pwr_now += this->__cpu_power *
3427 min(this_load_per_task, this_load);
3428 pwr_now /= SCHED_LOAD_SCALE;
3429
3430 /* Amount of load we'd subtract */
3431 tmp = sg_div_cpu_power(busiest,
3432 busiest_load_per_task * SCHED_LOAD_SCALE);
3433 if (max_load > tmp)
3434 pwr_move += busiest->__cpu_power *
3435 min(busiest_load_per_task, max_load - tmp);
3436
3437 /* Amount of load we'd add */
3438 if (max_load * busiest->__cpu_power <
3439 busiest_load_per_task * SCHED_LOAD_SCALE)
3440 tmp = sg_div_cpu_power(this,
3441 max_load * busiest->__cpu_power);
3442 else
3443 tmp = sg_div_cpu_power(this,
3444 busiest_load_per_task * SCHED_LOAD_SCALE);
3445 pwr_move += this->__cpu_power *
3446 min(this_load_per_task, this_load + tmp);
3447 pwr_move /= SCHED_LOAD_SCALE;
3448
3449 /* Move if we gain throughput */
3450 if (pwr_move > pwr_now)
3451 *imbalance = busiest_load_per_task;
3452 }
3453
3454 return busiest;
3455
3456 out_balanced:
3457 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3458 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3459 goto ret;
3460
3461 if (this == group_leader && group_leader != group_min) {
3462 *imbalance = min_load_per_task;
3463 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3464 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3465 cpumask_first(sched_group_cpus(group_leader));
3466 }
3467 return group_min;
3468 }
3469 #endif
3470 ret:
3471 *imbalance = 0;
3472 return NULL;
3473 }
3474
3475 /*
3476 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3477 */
3478 static struct rq *
3479 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3480 unsigned long imbalance, const struct cpumask *cpus)
3481 {
3482 struct rq *busiest = NULL, *rq;
3483 unsigned long max_load = 0;
3484 int i;
3485
3486 for_each_cpu(i, sched_group_cpus(group)) {
3487 unsigned long wl;
3488
3489 if (!cpumask_test_cpu(i, cpus))
3490 continue;
3491
3492 rq = cpu_rq(i);
3493 wl = weighted_cpuload(i);
3494
3495 if (rq->nr_running == 1 && wl > imbalance)
3496 continue;
3497
3498 if (wl > max_load) {
3499 max_load = wl;
3500 busiest = rq;
3501 }
3502 }
3503
3504 return busiest;
3505 }
3506
3507 /*
3508 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3509 * so long as it is large enough.
3510 */
3511 #define MAX_PINNED_INTERVAL 512
3512
3513 /*
3514 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3515 * tasks if there is an imbalance.
3516 */
3517 static int load_balance(int this_cpu, struct rq *this_rq,
3518 struct sched_domain *sd, enum cpu_idle_type idle,
3519 int *balance, struct cpumask *cpus)
3520 {
3521 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3522 struct sched_group *group;
3523 unsigned long imbalance;
3524 struct rq *busiest;
3525 unsigned long flags;
3526
3527 cpumask_setall(cpus);
3528
3529 /*
3530 * When power savings policy is enabled for the parent domain, idle
3531 * sibling can pick up load irrespective of busy siblings. In this case,
3532 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3533 * portraying it as CPU_NOT_IDLE.
3534 */
3535 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3536 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3537 sd_idle = 1;
3538
3539 schedstat_inc(sd, lb_count[idle]);
3540
3541 redo:
3542 update_shares(sd);
3543 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3544 cpus, balance);
3545
3546 if (*balance == 0)
3547 goto out_balanced;
3548
3549 if (!group) {
3550 schedstat_inc(sd, lb_nobusyg[idle]);
3551 goto out_balanced;
3552 }
3553
3554 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3555 if (!busiest) {
3556 schedstat_inc(sd, lb_nobusyq[idle]);
3557 goto out_balanced;
3558 }
3559
3560 BUG_ON(busiest == this_rq);
3561
3562 schedstat_add(sd, lb_imbalance[idle], imbalance);
3563
3564 ld_moved = 0;
3565 if (busiest->nr_running > 1) {
3566 /*
3567 * Attempt to move tasks. If find_busiest_group has found
3568 * an imbalance but busiest->nr_running <= 1, the group is
3569 * still unbalanced. ld_moved simply stays zero, so it is
3570 * correctly treated as an imbalance.
3571 */
3572 local_irq_save(flags);
3573 double_rq_lock(this_rq, busiest);
3574 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3575 imbalance, sd, idle, &all_pinned);
3576 double_rq_unlock(this_rq, busiest);
3577 local_irq_restore(flags);
3578
3579 /*
3580 * some other cpu did the load balance for us.
3581 */
3582 if (ld_moved && this_cpu != smp_processor_id())
3583 resched_cpu(this_cpu);
3584
3585 /* All tasks on this runqueue were pinned by CPU affinity */
3586 if (unlikely(all_pinned)) {
3587 cpumask_clear_cpu(cpu_of(busiest), cpus);
3588 if (!cpumask_empty(cpus))
3589 goto redo;
3590 goto out_balanced;
3591 }
3592 }
3593
3594 if (!ld_moved) {
3595 schedstat_inc(sd, lb_failed[idle]);
3596 sd->nr_balance_failed++;
3597
3598 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3599
3600 spin_lock_irqsave(&busiest->lock, flags);
3601
3602 /* don't kick the migration_thread, if the curr
3603 * task on busiest cpu can't be moved to this_cpu
3604 */
3605 if (!cpumask_test_cpu(this_cpu,
3606 &busiest->curr->cpus_allowed)) {
3607 spin_unlock_irqrestore(&busiest->lock, flags);
3608 all_pinned = 1;
3609 goto out_one_pinned;
3610 }
3611
3612 if (!busiest->active_balance) {
3613 busiest->active_balance = 1;
3614 busiest->push_cpu = this_cpu;
3615 active_balance = 1;
3616 }
3617 spin_unlock_irqrestore(&busiest->lock, flags);
3618 if (active_balance)
3619 wake_up_process(busiest->migration_thread);
3620
3621 /*
3622 * We've kicked active balancing, reset the failure
3623 * counter.
3624 */
3625 sd->nr_balance_failed = sd->cache_nice_tries+1;
3626 }
3627 } else
3628 sd->nr_balance_failed = 0;
3629
3630 if (likely(!active_balance)) {
3631 /* We were unbalanced, so reset the balancing interval */
3632 sd->balance_interval = sd->min_interval;
3633 } else {
3634 /*
3635 * If we've begun active balancing, start to back off. This
3636 * case may not be covered by the all_pinned logic if there
3637 * is only 1 task on the busy runqueue (because we don't call
3638 * move_tasks).
3639 */
3640 if (sd->balance_interval < sd->max_interval)
3641 sd->balance_interval *= 2;
3642 }
3643
3644 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3645 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3646 ld_moved = -1;
3647
3648 goto out;
3649
3650 out_balanced:
3651 schedstat_inc(sd, lb_balanced[idle]);
3652
3653 sd->nr_balance_failed = 0;
3654
3655 out_one_pinned:
3656 /* tune up the balancing interval */
3657 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3658 (sd->balance_interval < sd->max_interval))
3659 sd->balance_interval *= 2;
3660
3661 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3662 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3663 ld_moved = -1;
3664 else
3665 ld_moved = 0;
3666 out:
3667 if (ld_moved)
3668 update_shares(sd);
3669 return ld_moved;
3670 }
3671
3672 /*
3673 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3674 * tasks if there is an imbalance.
3675 *
3676 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3677 * this_rq is locked.
3678 */
3679 static int
3680 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3681 struct cpumask *cpus)
3682 {
3683 struct sched_group *group;
3684 struct rq *busiest = NULL;
3685 unsigned long imbalance;
3686 int ld_moved = 0;
3687 int sd_idle = 0;
3688 int all_pinned = 0;
3689
3690 cpumask_setall(cpus);
3691
3692 /*
3693 * When power savings policy is enabled for the parent domain, idle
3694 * sibling can pick up load irrespective of busy siblings. In this case,
3695 * let the state of idle sibling percolate up as IDLE, instead of
3696 * portraying it as CPU_NOT_IDLE.
3697 */
3698 if (sd->flags & SD_SHARE_CPUPOWER &&
3699 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3700 sd_idle = 1;
3701
3702 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3703 redo:
3704 update_shares_locked(this_rq, sd);
3705 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3706 &sd_idle, cpus, NULL);
3707 if (!group) {
3708 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3709 goto out_balanced;
3710 }
3711
3712 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3713 if (!busiest) {
3714 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3715 goto out_balanced;
3716 }
3717
3718 BUG_ON(busiest == this_rq);
3719
3720 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3721
3722 ld_moved = 0;
3723 if (busiest->nr_running > 1) {
3724 /* Attempt to move tasks */
3725 double_lock_balance(this_rq, busiest);
3726 /* this_rq->clock is already updated */
3727 update_rq_clock(busiest);
3728 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3729 imbalance, sd, CPU_NEWLY_IDLE,
3730 &all_pinned);
3731 double_unlock_balance(this_rq, busiest);
3732
3733 if (unlikely(all_pinned)) {
3734 cpumask_clear_cpu(cpu_of(busiest), cpus);
3735 if (!cpumask_empty(cpus))
3736 goto redo;
3737 }
3738 }
3739
3740 if (!ld_moved) {
3741 int active_balance = 0;
3742
3743 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3744 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3745 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3746 return -1;
3747
3748 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3749 return -1;
3750
3751 if (sd->nr_balance_failed++ < 2)
3752 return -1;
3753
3754 /*
3755 * The only task running in a non-idle cpu can be moved to this
3756 * cpu in an attempt to completely freeup the other CPU
3757 * package. The same method used to move task in load_balance()
3758 * have been extended for load_balance_newidle() to speedup
3759 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3760 *
3761 * The package power saving logic comes from
3762 * find_busiest_group(). If there are no imbalance, then
3763 * f_b_g() will return NULL. However when sched_mc={1,2} then
3764 * f_b_g() will select a group from which a running task may be
3765 * pulled to this cpu in order to make the other package idle.
3766 * If there is no opportunity to make a package idle and if
3767 * there are no imbalance, then f_b_g() will return NULL and no
3768 * action will be taken in load_balance_newidle().
3769 *
3770 * Under normal task pull operation due to imbalance, there
3771 * will be more than one task in the source run queue and
3772 * move_tasks() will succeed. ld_moved will be true and this
3773 * active balance code will not be triggered.
3774 */
3775
3776 /* Lock busiest in correct order while this_rq is held */
3777 double_lock_balance(this_rq, busiest);
3778
3779 /*
3780 * don't kick the migration_thread, if the curr
3781 * task on busiest cpu can't be moved to this_cpu
3782 */
3783 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3784 double_unlock_balance(this_rq, busiest);
3785 all_pinned = 1;
3786 return ld_moved;
3787 }
3788
3789 if (!busiest->active_balance) {
3790 busiest->active_balance = 1;
3791 busiest->push_cpu = this_cpu;
3792 active_balance = 1;
3793 }
3794
3795 double_unlock_balance(this_rq, busiest);
3796 /*
3797 * Should not call ttwu while holding a rq->lock
3798 */
3799 spin_unlock(&this_rq->lock);
3800 if (active_balance)
3801 wake_up_process(busiest->migration_thread);
3802 spin_lock(&this_rq->lock);
3803
3804 } else
3805 sd->nr_balance_failed = 0;
3806
3807 update_shares_locked(this_rq, sd);
3808 return ld_moved;
3809
3810 out_balanced:
3811 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3812 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3813 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3814 return -1;
3815 sd->nr_balance_failed = 0;
3816
3817 return 0;
3818 }
3819
3820 /*
3821 * idle_balance is called by schedule() if this_cpu is about to become
3822 * idle. Attempts to pull tasks from other CPUs.
3823 */
3824 static void idle_balance(int this_cpu, struct rq *this_rq)
3825 {
3826 struct sched_domain *sd;
3827 int pulled_task = 0;
3828 unsigned long next_balance = jiffies + HZ;
3829 cpumask_var_t tmpmask;
3830
3831 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3832 return;
3833
3834 for_each_domain(this_cpu, sd) {
3835 unsigned long interval;
3836
3837 if (!(sd->flags & SD_LOAD_BALANCE))
3838 continue;
3839
3840 if (sd->flags & SD_BALANCE_NEWIDLE)
3841 /* If we've pulled tasks over stop searching: */
3842 pulled_task = load_balance_newidle(this_cpu, this_rq,
3843 sd, tmpmask);
3844
3845 interval = msecs_to_jiffies(sd->balance_interval);
3846 if (time_after(next_balance, sd->last_balance + interval))
3847 next_balance = sd->last_balance + interval;
3848 if (pulled_task)
3849 break;
3850 }
3851 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3852 /*
3853 * We are going idle. next_balance may be set based on
3854 * a busy processor. So reset next_balance.
3855 */
3856 this_rq->next_balance = next_balance;
3857 }
3858 free_cpumask_var(tmpmask);
3859 }
3860
3861 /*
3862 * active_load_balance is run by migration threads. It pushes running tasks
3863 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3864 * running on each physical CPU where possible, and avoids physical /
3865 * logical imbalances.
3866 *
3867 * Called with busiest_rq locked.
3868 */
3869 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3870 {
3871 int target_cpu = busiest_rq->push_cpu;
3872 struct sched_domain *sd;
3873 struct rq *target_rq;
3874
3875 /* Is there any task to move? */
3876 if (busiest_rq->nr_running <= 1)
3877 return;
3878
3879 target_rq = cpu_rq(target_cpu);
3880
3881 /*
3882 * This condition is "impossible", if it occurs
3883 * we need to fix it. Originally reported by
3884 * Bjorn Helgaas on a 128-cpu setup.
3885 */
3886 BUG_ON(busiest_rq == target_rq);
3887
3888 /* move a task from busiest_rq to target_rq */
3889 double_lock_balance(busiest_rq, target_rq);
3890 update_rq_clock(busiest_rq);
3891 update_rq_clock(target_rq);
3892
3893 /* Search for an sd spanning us and the target CPU. */
3894 for_each_domain(target_cpu, sd) {
3895 if ((sd->flags & SD_LOAD_BALANCE) &&
3896 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3897 break;
3898 }
3899
3900 if (likely(sd)) {
3901 schedstat_inc(sd, alb_count);
3902
3903 if (move_one_task(target_rq, target_cpu, busiest_rq,
3904 sd, CPU_IDLE))
3905 schedstat_inc(sd, alb_pushed);
3906 else
3907 schedstat_inc(sd, alb_failed);
3908 }
3909 double_unlock_balance(busiest_rq, target_rq);
3910 }
3911
3912 #ifdef CONFIG_NO_HZ
3913 static struct {
3914 atomic_t load_balancer;
3915 cpumask_var_t cpu_mask;
3916 } nohz ____cacheline_aligned = {
3917 .load_balancer = ATOMIC_INIT(-1),
3918 };
3919
3920 /*
3921 * This routine will try to nominate the ilb (idle load balancing)
3922 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3923 * load balancing on behalf of all those cpus. If all the cpus in the system
3924 * go into this tickless mode, then there will be no ilb owner (as there is
3925 * no need for one) and all the cpus will sleep till the next wakeup event
3926 * arrives...
3927 *
3928 * For the ilb owner, tick is not stopped. And this tick will be used
3929 * for idle load balancing. ilb owner will still be part of
3930 * nohz.cpu_mask..
3931 *
3932 * While stopping the tick, this cpu will become the ilb owner if there
3933 * is no other owner. And will be the owner till that cpu becomes busy
3934 * or if all cpus in the system stop their ticks at which point
3935 * there is no need for ilb owner.
3936 *
3937 * When the ilb owner becomes busy, it nominates another owner, during the
3938 * next busy scheduler_tick()
3939 */
3940 int select_nohz_load_balancer(int stop_tick)
3941 {
3942 int cpu = smp_processor_id();
3943
3944 if (stop_tick) {
3945 cpu_rq(cpu)->in_nohz_recently = 1;
3946
3947 if (!cpu_active(cpu)) {
3948 if (atomic_read(&nohz.load_balancer) != cpu)
3949 return 0;
3950
3951 /*
3952 * If we are going offline and still the leader,
3953 * give up!
3954 */
3955 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3956 BUG();
3957
3958 return 0;
3959 }
3960
3961 cpumask_set_cpu(cpu, nohz.cpu_mask);
3962
3963 /* time for ilb owner also to sleep */
3964 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3965 if (atomic_read(&nohz.load_balancer) == cpu)
3966 atomic_set(&nohz.load_balancer, -1);
3967 return 0;
3968 }
3969
3970 if (atomic_read(&nohz.load_balancer) == -1) {
3971 /* make me the ilb owner */
3972 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3973 return 1;
3974 } else if (atomic_read(&nohz.load_balancer) == cpu)
3975 return 1;
3976 } else {
3977 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3978 return 0;
3979
3980 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3981
3982 if (atomic_read(&nohz.load_balancer) == cpu)
3983 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3984 BUG();
3985 }
3986 return 0;
3987 }
3988 #endif
3989
3990 static DEFINE_SPINLOCK(balancing);
3991
3992 /*
3993 * It checks each scheduling domain to see if it is due to be balanced,
3994 * and initiates a balancing operation if so.
3995 *
3996 * Balancing parameters are set up in arch_init_sched_domains.
3997 */
3998 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3999 {
4000 int balance = 1;
4001 struct rq *rq = cpu_rq(cpu);
4002 unsigned long interval;
4003 struct sched_domain *sd;
4004 /* Earliest time when we have to do rebalance again */
4005 unsigned long next_balance = jiffies + 60*HZ;
4006 int update_next_balance = 0;
4007 int need_serialize;
4008 cpumask_var_t tmp;
4009
4010 /* Fails alloc? Rebalancing probably not a priority right now. */
4011 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4012 return;
4013
4014 for_each_domain(cpu, sd) {
4015 if (!(sd->flags & SD_LOAD_BALANCE))
4016 continue;
4017
4018 interval = sd->balance_interval;
4019 if (idle != CPU_IDLE)
4020 interval *= sd->busy_factor;
4021
4022 /* scale ms to jiffies */
4023 interval = msecs_to_jiffies(interval);
4024 if (unlikely(!interval))
4025 interval = 1;
4026 if (interval > HZ*NR_CPUS/10)
4027 interval = HZ*NR_CPUS/10;
4028
4029 need_serialize = sd->flags & SD_SERIALIZE;
4030
4031 if (need_serialize) {
4032 if (!spin_trylock(&balancing))
4033 goto out;
4034 }
4035
4036 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4037 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
4038 /*
4039 * We've pulled tasks over so either we're no
4040 * longer idle, or one of our SMT siblings is
4041 * not idle.
4042 */
4043 idle = CPU_NOT_IDLE;
4044 }
4045 sd->last_balance = jiffies;
4046 }
4047 if (need_serialize)
4048 spin_unlock(&balancing);
4049 out:
4050 if (time_after(next_balance, sd->last_balance + interval)) {
4051 next_balance = sd->last_balance + interval;
4052 update_next_balance = 1;
4053 }
4054
4055 /*
4056 * Stop the load balance at this level. There is another
4057 * CPU in our sched group which is doing load balancing more
4058 * actively.
4059 */
4060 if (!balance)
4061 break;
4062 }
4063
4064 /*
4065 * next_balance will be updated only when there is a need.
4066 * When the cpu is attached to null domain for ex, it will not be
4067 * updated.
4068 */
4069 if (likely(update_next_balance))
4070 rq->next_balance = next_balance;
4071
4072 free_cpumask_var(tmp);
4073 }
4074
4075 /*
4076 * run_rebalance_domains is triggered when needed from the scheduler tick.
4077 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4078 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4079 */
4080 static void run_rebalance_domains(struct softirq_action *h)
4081 {
4082 int this_cpu = smp_processor_id();
4083 struct rq *this_rq = cpu_rq(this_cpu);
4084 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4085 CPU_IDLE : CPU_NOT_IDLE;
4086
4087 rebalance_domains(this_cpu, idle);
4088
4089 #ifdef CONFIG_NO_HZ
4090 /*
4091 * If this cpu is the owner for idle load balancing, then do the
4092 * balancing on behalf of the other idle cpus whose ticks are
4093 * stopped.
4094 */
4095 if (this_rq->idle_at_tick &&
4096 atomic_read(&nohz.load_balancer) == this_cpu) {
4097 struct rq *rq;
4098 int balance_cpu;
4099
4100 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4101 if (balance_cpu == this_cpu)
4102 continue;
4103
4104 /*
4105 * If this cpu gets work to do, stop the load balancing
4106 * work being done for other cpus. Next load
4107 * balancing owner will pick it up.
4108 */
4109 if (need_resched())
4110 break;
4111
4112 rebalance_domains(balance_cpu, CPU_IDLE);
4113
4114 rq = cpu_rq(balance_cpu);
4115 if (time_after(this_rq->next_balance, rq->next_balance))
4116 this_rq->next_balance = rq->next_balance;
4117 }
4118 }
4119 #endif
4120 }
4121
4122 /*
4123 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4124 *
4125 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4126 * idle load balancing owner or decide to stop the periodic load balancing,
4127 * if the whole system is idle.
4128 */
4129 static inline void trigger_load_balance(struct rq *rq, int cpu)
4130 {
4131 #ifdef CONFIG_NO_HZ
4132 /*
4133 * If we were in the nohz mode recently and busy at the current
4134 * scheduler tick, then check if we need to nominate new idle
4135 * load balancer.
4136 */
4137 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4138 rq->in_nohz_recently = 0;
4139
4140 if (atomic_read(&nohz.load_balancer) == cpu) {
4141 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4142 atomic_set(&nohz.load_balancer, -1);
4143 }
4144
4145 if (atomic_read(&nohz.load_balancer) == -1) {
4146 /*
4147 * simple selection for now: Nominate the
4148 * first cpu in the nohz list to be the next
4149 * ilb owner.
4150 *
4151 * TBD: Traverse the sched domains and nominate
4152 * the nearest cpu in the nohz.cpu_mask.
4153 */
4154 int ilb = cpumask_first(nohz.cpu_mask);
4155
4156 if (ilb < nr_cpu_ids)
4157 resched_cpu(ilb);
4158 }
4159 }
4160
4161 /*
4162 * If this cpu is idle and doing idle load balancing for all the
4163 * cpus with ticks stopped, is it time for that to stop?
4164 */
4165 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4166 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4167 resched_cpu(cpu);
4168 return;
4169 }
4170
4171 /*
4172 * If this cpu is idle and the idle load balancing is done by
4173 * someone else, then no need raise the SCHED_SOFTIRQ
4174 */
4175 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4176 cpumask_test_cpu(cpu, nohz.cpu_mask))
4177 return;
4178 #endif
4179 if (time_after_eq(jiffies, rq->next_balance))
4180 raise_softirq(SCHED_SOFTIRQ);
4181 }
4182
4183 #else /* CONFIG_SMP */
4184
4185 /*
4186 * on UP we do not need to balance between CPUs:
4187 */
4188 static inline void idle_balance(int cpu, struct rq *rq)
4189 {
4190 }
4191
4192 #endif
4193
4194 DEFINE_PER_CPU(struct kernel_stat, kstat);
4195
4196 EXPORT_PER_CPU_SYMBOL(kstat);
4197
4198 /*
4199 * Return any ns on the sched_clock that have not yet been banked in
4200 * @p in case that task is currently running.
4201 */
4202 unsigned long long __task_delta_exec(struct task_struct *p, int update)
4203 {
4204 s64 delta_exec;
4205 struct rq *rq;
4206
4207 rq = task_rq(p);
4208 WARN_ON_ONCE(!runqueue_is_locked());
4209 WARN_ON_ONCE(!task_current(rq, p));
4210
4211 if (update)
4212 update_rq_clock(rq);
4213
4214 delta_exec = rq->clock - p->se.exec_start;
4215
4216 WARN_ON_ONCE(delta_exec < 0);
4217
4218 return delta_exec;
4219 }
4220
4221 /*
4222 * Return any ns on the sched_clock that have not yet been banked in
4223 * @p in case that task is currently running.
4224 */
4225 unsigned long long task_delta_exec(struct task_struct *p)
4226 {
4227 unsigned long flags;
4228 struct rq *rq;
4229 u64 ns = 0;
4230
4231 rq = task_rq_lock(p, &flags);
4232
4233 if (task_current(rq, p)) {
4234 u64 delta_exec;
4235
4236 update_rq_clock(rq);
4237 delta_exec = rq->clock - p->se.exec_start;
4238 if ((s64)delta_exec > 0)
4239 ns = delta_exec;
4240 }
4241
4242 task_rq_unlock(rq, &flags);
4243
4244 return ns;
4245 }
4246
4247 /*
4248 * Account user cpu time to a process.
4249 * @p: the process that the cpu time gets accounted to
4250 * @cputime: the cpu time spent in user space since the last update
4251 * @cputime_scaled: cputime scaled by cpu frequency
4252 */
4253 void account_user_time(struct task_struct *p, cputime_t cputime,
4254 cputime_t cputime_scaled)
4255 {
4256 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4257 cputime64_t tmp;
4258
4259 /* Add user time to process. */
4260 p->utime = cputime_add(p->utime, cputime);
4261 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4262 account_group_user_time(p, cputime);
4263
4264 /* Add user time to cpustat. */
4265 tmp = cputime_to_cputime64(cputime);
4266 if (TASK_NICE(p) > 0)
4267 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4268 else
4269 cpustat->user = cputime64_add(cpustat->user, tmp);
4270 /* Account for user time used */
4271 acct_update_integrals(p);
4272 }
4273
4274 /*
4275 * Account guest cpu time to a process.
4276 * @p: the process that the cpu time gets accounted to
4277 * @cputime: the cpu time spent in virtual machine since the last update
4278 * @cputime_scaled: cputime scaled by cpu frequency
4279 */
4280 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4281 cputime_t cputime_scaled)
4282 {
4283 cputime64_t tmp;
4284 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4285
4286 tmp = cputime_to_cputime64(cputime);
4287
4288 /* Add guest time to process. */
4289 p->utime = cputime_add(p->utime, cputime);
4290 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4291 account_group_user_time(p, cputime);
4292 p->gtime = cputime_add(p->gtime, cputime);
4293
4294 /* Add guest time to cpustat. */
4295 cpustat->user = cputime64_add(cpustat->user, tmp);
4296 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4297 }
4298
4299 /*
4300 * Account system cpu time to a process.
4301 * @p: the process that the cpu time gets accounted to
4302 * @hardirq_offset: the offset to subtract from hardirq_count()
4303 * @cputime: the cpu time spent in kernel space since the last update
4304 * @cputime_scaled: cputime scaled by cpu frequency
4305 */
4306 void account_system_time(struct task_struct *p, int hardirq_offset,
4307 cputime_t cputime, cputime_t cputime_scaled)
4308 {
4309 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4310 cputime64_t tmp;
4311
4312 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4313 account_guest_time(p, cputime, cputime_scaled);
4314 return;
4315 }
4316
4317 /* Add system time to process. */
4318 p->stime = cputime_add(p->stime, cputime);
4319 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4320 account_group_system_time(p, cputime);
4321
4322 /* Add system time to cpustat. */
4323 tmp = cputime_to_cputime64(cputime);
4324 if (hardirq_count() - hardirq_offset)
4325 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4326 else if (softirq_count())
4327 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4328 else
4329 cpustat->system = cputime64_add(cpustat->system, tmp);
4330
4331 /* Account for system time used */
4332 acct_update_integrals(p);
4333 }
4334
4335 /*
4336 * Account for involuntary wait time.
4337 * @steal: the cpu time spent in involuntary wait
4338 */
4339 void account_steal_time(cputime_t cputime)
4340 {
4341 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4342 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4343
4344 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4345 }
4346
4347 /*
4348 * Account for idle time.
4349 * @cputime: the cpu time spent in idle wait
4350 */
4351 void account_idle_time(cputime_t cputime)
4352 {
4353 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4354 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4355 struct rq *rq = this_rq();
4356
4357 if (atomic_read(&rq->nr_iowait) > 0)
4358 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4359 else
4360 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4361 }
4362
4363 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4364
4365 /*
4366 * Account a single tick of cpu time.
4367 * @p: the process that the cpu time gets accounted to
4368 * @user_tick: indicates if the tick is a user or a system tick
4369 */
4370 void account_process_tick(struct task_struct *p, int user_tick)
4371 {
4372 cputime_t one_jiffy = jiffies_to_cputime(1);
4373 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4374 struct rq *rq = this_rq();
4375
4376 if (user_tick)
4377 account_user_time(p, one_jiffy, one_jiffy_scaled);
4378 else if (p != rq->idle)
4379 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4380 one_jiffy_scaled);
4381 else
4382 account_idle_time(one_jiffy);
4383 }
4384
4385 /*
4386 * Account multiple ticks of steal time.
4387 * @p: the process from which the cpu time has been stolen
4388 * @ticks: number of stolen ticks
4389 */
4390 void account_steal_ticks(unsigned long ticks)
4391 {
4392 account_steal_time(jiffies_to_cputime(ticks));
4393 }
4394
4395 /*
4396 * Account multiple ticks of idle time.
4397 * @ticks: number of stolen ticks
4398 */
4399 void account_idle_ticks(unsigned long ticks)
4400 {
4401 account_idle_time(jiffies_to_cputime(ticks));
4402 }
4403
4404 #endif
4405
4406 /*
4407 * Use precise platform statistics if available:
4408 */
4409 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4410 cputime_t task_utime(struct task_struct *p)
4411 {
4412 return p->utime;
4413 }
4414
4415 cputime_t task_stime(struct task_struct *p)
4416 {
4417 return p->stime;
4418 }
4419 #else
4420 cputime_t task_utime(struct task_struct *p)
4421 {
4422 clock_t utime = cputime_to_clock_t(p->utime),
4423 total = utime + cputime_to_clock_t(p->stime);
4424 u64 temp;
4425
4426 /*
4427 * Use CFS's precise accounting:
4428 */
4429 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4430
4431 if (total) {
4432 temp *= utime;
4433 do_div(temp, total);
4434 }
4435 utime = (clock_t)temp;
4436
4437 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4438 return p->prev_utime;
4439 }
4440
4441 cputime_t task_stime(struct task_struct *p)
4442 {
4443 clock_t stime;
4444
4445 /*
4446 * Use CFS's precise accounting. (we subtract utime from
4447 * the total, to make sure the total observed by userspace
4448 * grows monotonically - apps rely on that):
4449 */
4450 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4451 cputime_to_clock_t(task_utime(p));
4452
4453 if (stime >= 0)
4454 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4455
4456 return p->prev_stime;
4457 }
4458 #endif
4459
4460 inline cputime_t task_gtime(struct task_struct *p)
4461 {
4462 return p->gtime;
4463 }
4464
4465 /*
4466 * This function gets called by the timer code, with HZ frequency.
4467 * We call it with interrupts disabled.
4468 *
4469 * It also gets called by the fork code, when changing the parent's
4470 * timeslices.
4471 */
4472 void scheduler_tick(void)
4473 {
4474 int cpu = smp_processor_id();
4475 struct rq *rq = cpu_rq(cpu);
4476 struct task_struct *curr = rq->curr;
4477
4478 sched_clock_tick();
4479
4480 spin_lock(&rq->lock);
4481 update_rq_clock(rq);
4482 update_cpu_load(rq);
4483 curr->sched_class->task_tick(rq, curr, 0);
4484 perf_counter_task_tick(curr, cpu);
4485 spin_unlock(&rq->lock);
4486
4487 #ifdef CONFIG_SMP
4488 rq->idle_at_tick = idle_cpu(cpu);
4489 trigger_load_balance(rq, cpu);
4490 #endif
4491 }
4492
4493 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4494 defined(CONFIG_PREEMPT_TRACER))
4495
4496 static inline unsigned long get_parent_ip(unsigned long addr)
4497 {
4498 if (in_lock_functions(addr)) {
4499 addr = CALLER_ADDR2;
4500 if (in_lock_functions(addr))
4501 addr = CALLER_ADDR3;
4502 }
4503 return addr;
4504 }
4505
4506 void __kprobes add_preempt_count(int val)
4507 {
4508 #ifdef CONFIG_DEBUG_PREEMPT
4509 /*
4510 * Underflow?
4511 */
4512 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4513 return;
4514 #endif
4515 preempt_count() += val;
4516 #ifdef CONFIG_DEBUG_PREEMPT
4517 /*
4518 * Spinlock count overflowing soon?
4519 */
4520 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4521 PREEMPT_MASK - 10);
4522 #endif
4523 if (preempt_count() == val)
4524 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4525 }
4526 EXPORT_SYMBOL(add_preempt_count);
4527
4528 void __kprobes sub_preempt_count(int val)
4529 {
4530 #ifdef CONFIG_DEBUG_PREEMPT
4531 /*
4532 * Underflow?
4533 */
4534 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4535 return;
4536 /*
4537 * Is the spinlock portion underflowing?
4538 */
4539 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4540 !(preempt_count() & PREEMPT_MASK)))
4541 return;
4542 #endif
4543
4544 if (preempt_count() == val)
4545 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4546 preempt_count() -= val;
4547 }
4548 EXPORT_SYMBOL(sub_preempt_count);
4549
4550 #endif
4551
4552 /*
4553 * Print scheduling while atomic bug:
4554 */
4555 static noinline void __schedule_bug(struct task_struct *prev)
4556 {
4557 struct pt_regs *regs = get_irq_regs();
4558
4559 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4560 prev->comm, prev->pid, preempt_count());
4561
4562 debug_show_held_locks(prev);
4563 print_modules();
4564 if (irqs_disabled())
4565 print_irqtrace_events(prev);
4566
4567 if (regs)
4568 show_regs(regs);
4569 else
4570 dump_stack();
4571 }
4572
4573 /*
4574 * Various schedule()-time debugging checks and statistics:
4575 */
4576 static inline void schedule_debug(struct task_struct *prev)
4577 {
4578 /*
4579 * Test if we are atomic. Since do_exit() needs to call into
4580 * schedule() atomically, we ignore that path for now.
4581 * Otherwise, whine if we are scheduling when we should not be.
4582 */
4583 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4584 __schedule_bug(prev);
4585
4586 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4587
4588 schedstat_inc(this_rq(), sched_count);
4589 #ifdef CONFIG_SCHEDSTATS
4590 if (unlikely(prev->lock_depth >= 0)) {
4591 schedstat_inc(this_rq(), bkl_count);
4592 schedstat_inc(prev, sched_info.bkl_count);
4593 }
4594 #endif
4595 }
4596
4597 /*
4598 * Pick up the highest-prio task:
4599 */
4600 static inline struct task_struct *
4601 pick_next_task(struct rq *rq, struct task_struct *prev)
4602 {
4603 const struct sched_class *class;
4604 struct task_struct *p;
4605
4606 /*
4607 * Optimization: we know that if all tasks are in
4608 * the fair class we can call that function directly:
4609 */
4610 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4611 p = fair_sched_class.pick_next_task(rq);
4612 if (likely(p))
4613 return p;
4614 }
4615
4616 class = sched_class_highest;
4617 for ( ; ; ) {
4618 p = class->pick_next_task(rq);
4619 if (p)
4620 return p;
4621 /*
4622 * Will never be NULL as the idle class always
4623 * returns a non-NULL p:
4624 */
4625 class = class->next;
4626 }
4627 }
4628
4629 /*
4630 * schedule() is the main scheduler function.
4631 */
4632 asmlinkage void __sched schedule(void)
4633 {
4634 struct task_struct *prev, *next;
4635 unsigned long *switch_count;
4636 struct rq *rq;
4637 int cpu;
4638
4639 need_resched:
4640 preempt_disable();
4641 cpu = smp_processor_id();
4642 rq = cpu_rq(cpu);
4643 rcu_qsctr_inc(cpu);
4644 prev = rq->curr;
4645 switch_count = &prev->nivcsw;
4646
4647 release_kernel_lock(prev);
4648 need_resched_nonpreemptible:
4649
4650 schedule_debug(prev);
4651
4652 if (sched_feat(HRTICK))
4653 hrtick_clear(rq);
4654
4655 spin_lock_irq(&rq->lock);
4656 update_rq_clock(rq);
4657 clear_tsk_need_resched(prev);
4658
4659 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4660 if (unlikely(signal_pending_state(prev->state, prev)))
4661 prev->state = TASK_RUNNING;
4662 else
4663 deactivate_task(rq, prev, 1);
4664 switch_count = &prev->nvcsw;
4665 }
4666
4667 #ifdef CONFIG_SMP
4668 if (prev->sched_class->pre_schedule)
4669 prev->sched_class->pre_schedule(rq, prev);
4670 #endif
4671
4672 if (unlikely(!rq->nr_running))
4673 idle_balance(cpu, rq);
4674
4675 prev->sched_class->put_prev_task(rq, prev);
4676 next = pick_next_task(rq, prev);
4677
4678 if (likely(prev != next)) {
4679 sched_info_switch(prev, next);
4680 perf_counter_task_sched_out(prev, cpu);
4681
4682 rq->nr_switches++;
4683 rq->curr = next;
4684 ++*switch_count;
4685
4686 context_switch(rq, prev, next); /* unlocks the rq */
4687 /*
4688 * the context switch might have flipped the stack from under
4689 * us, hence refresh the local variables.
4690 */
4691 cpu = smp_processor_id();
4692 rq = cpu_rq(cpu);
4693 } else
4694 spin_unlock_irq(&rq->lock);
4695
4696 if (unlikely(reacquire_kernel_lock(current) < 0))
4697 goto need_resched_nonpreemptible;
4698
4699 preempt_enable_no_resched();
4700 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4701 goto need_resched;
4702 }
4703 EXPORT_SYMBOL(schedule);
4704
4705 #ifdef CONFIG_PREEMPT
4706 /*
4707 * this is the entry point to schedule() from in-kernel preemption
4708 * off of preempt_enable. Kernel preemptions off return from interrupt
4709 * occur there and call schedule directly.
4710 */
4711 asmlinkage void __sched preempt_schedule(void)
4712 {
4713 struct thread_info *ti = current_thread_info();
4714
4715 /*
4716 * If there is a non-zero preempt_count or interrupts are disabled,
4717 * we do not want to preempt the current task. Just return..
4718 */
4719 if (likely(ti->preempt_count || irqs_disabled()))
4720 return;
4721
4722 do {
4723 add_preempt_count(PREEMPT_ACTIVE);
4724 schedule();
4725 sub_preempt_count(PREEMPT_ACTIVE);
4726
4727 /*
4728 * Check again in case we missed a preemption opportunity
4729 * between schedule and now.
4730 */
4731 barrier();
4732 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4733 }
4734 EXPORT_SYMBOL(preempt_schedule);
4735
4736 /*
4737 * this is the entry point to schedule() from kernel preemption
4738 * off of irq context.
4739 * Note, that this is called and return with irqs disabled. This will
4740 * protect us against recursive calling from irq.
4741 */
4742 asmlinkage void __sched preempt_schedule_irq(void)
4743 {
4744 struct thread_info *ti = current_thread_info();
4745
4746 /* Catch callers which need to be fixed */
4747 BUG_ON(ti->preempt_count || !irqs_disabled());
4748
4749 do {
4750 add_preempt_count(PREEMPT_ACTIVE);
4751 local_irq_enable();
4752 schedule();
4753 local_irq_disable();
4754 sub_preempt_count(PREEMPT_ACTIVE);
4755
4756 /*
4757 * Check again in case we missed a preemption opportunity
4758 * between schedule and now.
4759 */
4760 barrier();
4761 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4762 }
4763
4764 #endif /* CONFIG_PREEMPT */
4765
4766 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4767 void *key)
4768 {
4769 return try_to_wake_up(curr->private, mode, sync);
4770 }
4771 EXPORT_SYMBOL(default_wake_function);
4772
4773 /*
4774 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4775 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4776 * number) then we wake all the non-exclusive tasks and one exclusive task.
4777 *
4778 * There are circumstances in which we can try to wake a task which has already
4779 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4780 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4781 */
4782 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4783 int nr_exclusive, int sync, void *key)
4784 {
4785 wait_queue_t *curr, *next;
4786
4787 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4788 unsigned flags = curr->flags;
4789
4790 if (curr->func(curr, mode, sync, key) &&
4791 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4792 break;
4793 }
4794 }
4795
4796 /**
4797 * __wake_up - wake up threads blocked on a waitqueue.
4798 * @q: the waitqueue
4799 * @mode: which threads
4800 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4801 * @key: is directly passed to the wakeup function
4802 */
4803 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4804 int nr_exclusive, void *key)
4805 {
4806 unsigned long flags;
4807
4808 spin_lock_irqsave(&q->lock, flags);
4809 __wake_up_common(q, mode, nr_exclusive, 0, key);
4810 spin_unlock_irqrestore(&q->lock, flags);
4811 }
4812 EXPORT_SYMBOL(__wake_up);
4813
4814 /*
4815 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4816 */
4817 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4818 {
4819 __wake_up_common(q, mode, 1, 0, NULL);
4820 }
4821
4822 /**
4823 * __wake_up_sync - wake up threads blocked on a waitqueue.
4824 * @q: the waitqueue
4825 * @mode: which threads
4826 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4827 *
4828 * The sync wakeup differs that the waker knows that it will schedule
4829 * away soon, so while the target thread will be woken up, it will not
4830 * be migrated to another CPU - ie. the two threads are 'synchronized'
4831 * with each other. This can prevent needless bouncing between CPUs.
4832 *
4833 * On UP it can prevent extra preemption.
4834 */
4835 void
4836 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4837 {
4838 unsigned long flags;
4839 int sync = 1;
4840
4841 if (unlikely(!q))
4842 return;
4843
4844 if (unlikely(!nr_exclusive))
4845 sync = 0;
4846
4847 spin_lock_irqsave(&q->lock, flags);
4848 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4849 spin_unlock_irqrestore(&q->lock, flags);
4850 }
4851 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4852
4853 /**
4854 * complete: - signals a single thread waiting on this completion
4855 * @x: holds the state of this particular completion
4856 *
4857 * This will wake up a single thread waiting on this completion. Threads will be
4858 * awakened in the same order in which they were queued.
4859 *
4860 * See also complete_all(), wait_for_completion() and related routines.
4861 */
4862 void complete(struct completion *x)
4863 {
4864 unsigned long flags;
4865
4866 spin_lock_irqsave(&x->wait.lock, flags);
4867 x->done++;
4868 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4869 spin_unlock_irqrestore(&x->wait.lock, flags);
4870 }
4871 EXPORT_SYMBOL(complete);
4872
4873 /**
4874 * complete_all: - signals all threads waiting on this completion
4875 * @x: holds the state of this particular completion
4876 *
4877 * This will wake up all threads waiting on this particular completion event.
4878 */
4879 void complete_all(struct completion *x)
4880 {
4881 unsigned long flags;
4882
4883 spin_lock_irqsave(&x->wait.lock, flags);
4884 x->done += UINT_MAX/2;
4885 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4886 spin_unlock_irqrestore(&x->wait.lock, flags);
4887 }
4888 EXPORT_SYMBOL(complete_all);
4889
4890 static inline long __sched
4891 do_wait_for_common(struct completion *x, long timeout, int state)
4892 {
4893 if (!x->done) {
4894 DECLARE_WAITQUEUE(wait, current);
4895
4896 wait.flags |= WQ_FLAG_EXCLUSIVE;
4897 __add_wait_queue_tail(&x->wait, &wait);
4898 do {
4899 if (signal_pending_state(state, current)) {
4900 timeout = -ERESTARTSYS;
4901 break;
4902 }
4903 __set_current_state(state);
4904 spin_unlock_irq(&x->wait.lock);
4905 timeout = schedule_timeout(timeout);
4906 spin_lock_irq(&x->wait.lock);
4907 } while (!x->done && timeout);
4908 __remove_wait_queue(&x->wait, &wait);
4909 if (!x->done)
4910 return timeout;
4911 }
4912 x->done--;
4913 return timeout ?: 1;
4914 }
4915
4916 static long __sched
4917 wait_for_common(struct completion *x, long timeout, int state)
4918 {
4919 might_sleep();
4920
4921 spin_lock_irq(&x->wait.lock);
4922 timeout = do_wait_for_common(x, timeout, state);
4923 spin_unlock_irq(&x->wait.lock);
4924 return timeout;
4925 }
4926
4927 /**
4928 * wait_for_completion: - waits for completion of a task
4929 * @x: holds the state of this particular completion
4930 *
4931 * This waits to be signaled for completion of a specific task. It is NOT
4932 * interruptible and there is no timeout.
4933 *
4934 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4935 * and interrupt capability. Also see complete().
4936 */
4937 void __sched wait_for_completion(struct completion *x)
4938 {
4939 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4940 }
4941 EXPORT_SYMBOL(wait_for_completion);
4942
4943 /**
4944 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4945 * @x: holds the state of this particular completion
4946 * @timeout: timeout value in jiffies
4947 *
4948 * This waits for either a completion of a specific task to be signaled or for a
4949 * specified timeout to expire. The timeout is in jiffies. It is not
4950 * interruptible.
4951 */
4952 unsigned long __sched
4953 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4954 {
4955 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4956 }
4957 EXPORT_SYMBOL(wait_for_completion_timeout);
4958
4959 /**
4960 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4961 * @x: holds the state of this particular completion
4962 *
4963 * This waits for completion of a specific task to be signaled. It is
4964 * interruptible.
4965 */
4966 int __sched wait_for_completion_interruptible(struct completion *x)
4967 {
4968 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4969 if (t == -ERESTARTSYS)
4970 return t;
4971 return 0;
4972 }
4973 EXPORT_SYMBOL(wait_for_completion_interruptible);
4974
4975 /**
4976 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4977 * @x: holds the state of this particular completion
4978 * @timeout: timeout value in jiffies
4979 *
4980 * This waits for either a completion of a specific task to be signaled or for a
4981 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4982 */
4983 unsigned long __sched
4984 wait_for_completion_interruptible_timeout(struct completion *x,
4985 unsigned long timeout)
4986 {
4987 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4988 }
4989 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4990
4991 /**
4992 * wait_for_completion_killable: - waits for completion of a task (killable)
4993 * @x: holds the state of this particular completion
4994 *
4995 * This waits to be signaled for completion of a specific task. It can be
4996 * interrupted by a kill signal.
4997 */
4998 int __sched wait_for_completion_killable(struct completion *x)
4999 {
5000 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5001 if (t == -ERESTARTSYS)
5002 return t;
5003 return 0;
5004 }
5005 EXPORT_SYMBOL(wait_for_completion_killable);
5006
5007 /**
5008 * try_wait_for_completion - try to decrement a completion without blocking
5009 * @x: completion structure
5010 *
5011 * Returns: 0 if a decrement cannot be done without blocking
5012 * 1 if a decrement succeeded.
5013 *
5014 * If a completion is being used as a counting completion,
5015 * attempt to decrement the counter without blocking. This
5016 * enables us to avoid waiting if the resource the completion
5017 * is protecting is not available.
5018 */
5019 bool try_wait_for_completion(struct completion *x)
5020 {
5021 int ret = 1;
5022
5023 spin_lock_irq(&x->wait.lock);
5024 if (!x->done)
5025 ret = 0;
5026 else
5027 x->done--;
5028 spin_unlock_irq(&x->wait.lock);
5029 return ret;
5030 }
5031 EXPORT_SYMBOL(try_wait_for_completion);
5032
5033 /**
5034 * completion_done - Test to see if a completion has any waiters
5035 * @x: completion structure
5036 *
5037 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5038 * 1 if there are no waiters.
5039 *
5040 */
5041 bool completion_done(struct completion *x)
5042 {
5043 int ret = 1;
5044
5045 spin_lock_irq(&x->wait.lock);
5046 if (!x->done)
5047 ret = 0;
5048 spin_unlock_irq(&x->wait.lock);
5049 return ret;
5050 }
5051 EXPORT_SYMBOL(completion_done);
5052
5053 static long __sched
5054 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5055 {
5056 unsigned long flags;
5057 wait_queue_t wait;
5058
5059 init_waitqueue_entry(&wait, current);
5060
5061 __set_current_state(state);
5062
5063 spin_lock_irqsave(&q->lock, flags);
5064 __add_wait_queue(q, &wait);
5065 spin_unlock(&q->lock);
5066 timeout = schedule_timeout(timeout);
5067 spin_lock_irq(&q->lock);
5068 __remove_wait_queue(q, &wait);
5069 spin_unlock_irqrestore(&q->lock, flags);
5070
5071 return timeout;
5072 }
5073
5074 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5075 {
5076 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5077 }
5078 EXPORT_SYMBOL(interruptible_sleep_on);
5079
5080 long __sched
5081 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5082 {
5083 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5084 }
5085 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5086
5087 void __sched sleep_on(wait_queue_head_t *q)
5088 {
5089 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5090 }
5091 EXPORT_SYMBOL(sleep_on);
5092
5093 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5094 {
5095 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5096 }
5097 EXPORT_SYMBOL(sleep_on_timeout);
5098
5099 #ifdef CONFIG_RT_MUTEXES
5100
5101 /*
5102 * rt_mutex_setprio - set the current priority of a task
5103 * @p: task
5104 * @prio: prio value (kernel-internal form)
5105 *
5106 * This function changes the 'effective' priority of a task. It does
5107 * not touch ->normal_prio like __setscheduler().
5108 *
5109 * Used by the rt_mutex code to implement priority inheritance logic.
5110 */
5111 void rt_mutex_setprio(struct task_struct *p, int prio)
5112 {
5113 unsigned long flags;
5114 int oldprio, on_rq, running;
5115 struct rq *rq;
5116 const struct sched_class *prev_class = p->sched_class;
5117
5118 BUG_ON(prio < 0 || prio > MAX_PRIO);
5119
5120 rq = task_rq_lock(p, &flags);
5121 update_rq_clock(rq);
5122
5123 oldprio = p->prio;
5124 on_rq = p->se.on_rq;
5125 running = task_current(rq, p);
5126 if (on_rq)
5127 dequeue_task(rq, p, 0);
5128 if (running)
5129 p->sched_class->put_prev_task(rq, p);
5130
5131 if (rt_prio(prio))
5132 p->sched_class = &rt_sched_class;
5133 else
5134 p->sched_class = &fair_sched_class;
5135
5136 p->prio = prio;
5137
5138 if (running)
5139 p->sched_class->set_curr_task(rq);
5140 if (on_rq) {
5141 enqueue_task(rq, p, 0);
5142
5143 check_class_changed(rq, p, prev_class, oldprio, running);
5144 }
5145 task_rq_unlock(rq, &flags);
5146 }
5147
5148 #endif
5149
5150 void set_user_nice(struct task_struct *p, long nice)
5151 {
5152 int old_prio, delta, on_rq;
5153 unsigned long flags;
5154 struct rq *rq;
5155
5156 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5157 return;
5158 /*
5159 * We have to be careful, if called from sys_setpriority(),
5160 * the task might be in the middle of scheduling on another CPU.
5161 */
5162 rq = task_rq_lock(p, &flags);
5163 update_rq_clock(rq);
5164 /*
5165 * The RT priorities are set via sched_setscheduler(), but we still
5166 * allow the 'normal' nice value to be set - but as expected
5167 * it wont have any effect on scheduling until the task is
5168 * SCHED_FIFO/SCHED_RR:
5169 */
5170 if (task_has_rt_policy(p)) {
5171 p->static_prio = NICE_TO_PRIO(nice);
5172 goto out_unlock;
5173 }
5174 on_rq = p->se.on_rq;
5175 if (on_rq)
5176 dequeue_task(rq, p, 0);
5177
5178 p->static_prio = NICE_TO_PRIO(nice);
5179 set_load_weight(p);
5180 old_prio = p->prio;
5181 p->prio = effective_prio(p);
5182 delta = p->prio - old_prio;
5183
5184 if (on_rq) {
5185 enqueue_task(rq, p, 0);
5186 /*
5187 * If the task increased its priority or is running and
5188 * lowered its priority, then reschedule its CPU:
5189 */
5190 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5191 resched_task(rq->curr);
5192 }
5193 out_unlock:
5194 task_rq_unlock(rq, &flags);
5195 }
5196 EXPORT_SYMBOL(set_user_nice);
5197
5198 /*
5199 * can_nice - check if a task can reduce its nice value
5200 * @p: task
5201 * @nice: nice value
5202 */
5203 int can_nice(const struct task_struct *p, const int nice)
5204 {
5205 /* convert nice value [19,-20] to rlimit style value [1,40] */
5206 int nice_rlim = 20 - nice;
5207
5208 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5209 capable(CAP_SYS_NICE));
5210 }
5211
5212 #ifdef __ARCH_WANT_SYS_NICE
5213
5214 /*
5215 * sys_nice - change the priority of the current process.
5216 * @increment: priority increment
5217 *
5218 * sys_setpriority is a more generic, but much slower function that
5219 * does similar things.
5220 */
5221 SYSCALL_DEFINE1(nice, int, increment)
5222 {
5223 long nice, retval;
5224
5225 /*
5226 * Setpriority might change our priority at the same moment.
5227 * We don't have to worry. Conceptually one call occurs first
5228 * and we have a single winner.
5229 */
5230 if (increment < -40)
5231 increment = -40;
5232 if (increment > 40)
5233 increment = 40;
5234
5235 nice = PRIO_TO_NICE(current->static_prio) + increment;
5236 if (nice < -20)
5237 nice = -20;
5238 if (nice > 19)
5239 nice = 19;
5240
5241 if (increment < 0 && !can_nice(current, nice))
5242 return -EPERM;
5243
5244 retval = security_task_setnice(current, nice);
5245 if (retval)
5246 return retval;
5247
5248 set_user_nice(current, nice);
5249 return 0;
5250 }
5251
5252 #endif
5253
5254 /**
5255 * task_prio - return the priority value of a given task.
5256 * @p: the task in question.
5257 *
5258 * This is the priority value as seen by users in /proc.
5259 * RT tasks are offset by -200. Normal tasks are centered
5260 * around 0, value goes from -16 to +15.
5261 */
5262 int task_prio(const struct task_struct *p)
5263 {
5264 return p->prio - MAX_RT_PRIO;
5265 }
5266
5267 /**
5268 * task_nice - return the nice value of a given task.
5269 * @p: the task in question.
5270 */
5271 int task_nice(const struct task_struct *p)
5272 {
5273 return TASK_NICE(p);
5274 }
5275 EXPORT_SYMBOL(task_nice);
5276
5277 /**
5278 * idle_cpu - is a given cpu idle currently?
5279 * @cpu: the processor in question.
5280 */
5281 int idle_cpu(int cpu)
5282 {
5283 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5284 }
5285
5286 /**
5287 * idle_task - return the idle task for a given cpu.
5288 * @cpu: the processor in question.
5289 */
5290 struct task_struct *idle_task(int cpu)
5291 {
5292 return cpu_rq(cpu)->idle;
5293 }
5294
5295 /**
5296 * find_process_by_pid - find a process with a matching PID value.
5297 * @pid: the pid in question.
5298 */
5299 static struct task_struct *find_process_by_pid(pid_t pid)
5300 {
5301 return pid ? find_task_by_vpid(pid) : current;
5302 }
5303
5304 /* Actually do priority change: must hold rq lock. */
5305 static void
5306 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5307 {
5308 BUG_ON(p->se.on_rq);
5309
5310 p->policy = policy;
5311 switch (p->policy) {
5312 case SCHED_NORMAL:
5313 case SCHED_BATCH:
5314 case SCHED_IDLE:
5315 p->sched_class = &fair_sched_class;
5316 break;
5317 case SCHED_FIFO:
5318 case SCHED_RR:
5319 p->sched_class = &rt_sched_class;
5320 break;
5321 }
5322
5323 p->rt_priority = prio;
5324 p->normal_prio = normal_prio(p);
5325 /* we are holding p->pi_lock already */
5326 p->prio = rt_mutex_getprio(p);
5327 set_load_weight(p);
5328 }
5329
5330 /*
5331 * check the target process has a UID that matches the current process's
5332 */
5333 static bool check_same_owner(struct task_struct *p)
5334 {
5335 const struct cred *cred = current_cred(), *pcred;
5336 bool match;
5337
5338 rcu_read_lock();
5339 pcred = __task_cred(p);
5340 match = (cred->euid == pcred->euid ||
5341 cred->euid == pcred->uid);
5342 rcu_read_unlock();
5343 return match;
5344 }
5345
5346 static int __sched_setscheduler(struct task_struct *p, int policy,
5347 struct sched_param *param, bool user)
5348 {
5349 int retval, oldprio, oldpolicy = -1, on_rq, running;
5350 unsigned long flags;
5351 const struct sched_class *prev_class = p->sched_class;
5352 struct rq *rq;
5353
5354 /* may grab non-irq protected spin_locks */
5355 BUG_ON(in_interrupt());
5356 recheck:
5357 /* double check policy once rq lock held */
5358 if (policy < 0)
5359 policy = oldpolicy = p->policy;
5360 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5361 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5362 policy != SCHED_IDLE)
5363 return -EINVAL;
5364 /*
5365 * Valid priorities for SCHED_FIFO and SCHED_RR are
5366 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5367 * SCHED_BATCH and SCHED_IDLE is 0.
5368 */
5369 if (param->sched_priority < 0 ||
5370 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5371 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5372 return -EINVAL;
5373 if (rt_policy(policy) != (param->sched_priority != 0))
5374 return -EINVAL;
5375
5376 /*
5377 * Allow unprivileged RT tasks to decrease priority:
5378 */
5379 if (user && !capable(CAP_SYS_NICE)) {
5380 if (rt_policy(policy)) {
5381 unsigned long rlim_rtprio;
5382
5383 if (!lock_task_sighand(p, &flags))
5384 return -ESRCH;
5385 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5386 unlock_task_sighand(p, &flags);
5387
5388 /* can't set/change the rt policy */
5389 if (policy != p->policy && !rlim_rtprio)
5390 return -EPERM;
5391
5392 /* can't increase priority */
5393 if (param->sched_priority > p->rt_priority &&
5394 param->sched_priority > rlim_rtprio)
5395 return -EPERM;
5396 }
5397 /*
5398 * Like positive nice levels, dont allow tasks to
5399 * move out of SCHED_IDLE either:
5400 */
5401 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5402 return -EPERM;
5403
5404 /* can't change other user's priorities */
5405 if (!check_same_owner(p))
5406 return -EPERM;
5407 }
5408
5409 if (user) {
5410 #ifdef CONFIG_RT_GROUP_SCHED
5411 /*
5412 * Do not allow realtime tasks into groups that have no runtime
5413 * assigned.
5414 */
5415 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5416 task_group(p)->rt_bandwidth.rt_runtime == 0)
5417 return -EPERM;
5418 #endif
5419
5420 retval = security_task_setscheduler(p, policy, param);
5421 if (retval)
5422 return retval;
5423 }
5424
5425 /*
5426 * make sure no PI-waiters arrive (or leave) while we are
5427 * changing the priority of the task:
5428 */
5429 spin_lock_irqsave(&p->pi_lock, flags);
5430 /*
5431 * To be able to change p->policy safely, the apropriate
5432 * runqueue lock must be held.
5433 */
5434 rq = __task_rq_lock(p);
5435 /* recheck policy now with rq lock held */
5436 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5437 policy = oldpolicy = -1;
5438 __task_rq_unlock(rq);
5439 spin_unlock_irqrestore(&p->pi_lock, flags);
5440 goto recheck;
5441 }
5442 update_rq_clock(rq);
5443 on_rq = p->se.on_rq;
5444 running = task_current(rq, p);
5445 if (on_rq)
5446 deactivate_task(rq, p, 0);
5447 if (running)
5448 p->sched_class->put_prev_task(rq, p);
5449
5450 oldprio = p->prio;
5451 __setscheduler(rq, p, policy, param->sched_priority);
5452
5453 if (running)
5454 p->sched_class->set_curr_task(rq);
5455 if (on_rq) {
5456 activate_task(rq, p, 0);
5457
5458 check_class_changed(rq, p, prev_class, oldprio, running);
5459 }
5460 __task_rq_unlock(rq);
5461 spin_unlock_irqrestore(&p->pi_lock, flags);
5462
5463 rt_mutex_adjust_pi(p);
5464
5465 return 0;
5466 }
5467
5468 /**
5469 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5470 * @p: the task in question.
5471 * @policy: new policy.
5472 * @param: structure containing the new RT priority.
5473 *
5474 * NOTE that the task may be already dead.
5475 */
5476 int sched_setscheduler(struct task_struct *p, int policy,
5477 struct sched_param *param)
5478 {
5479 return __sched_setscheduler(p, policy, param, true);
5480 }
5481 EXPORT_SYMBOL_GPL(sched_setscheduler);
5482
5483 /**
5484 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5485 * @p: the task in question.
5486 * @policy: new policy.
5487 * @param: structure containing the new RT priority.
5488 *
5489 * Just like sched_setscheduler, only don't bother checking if the
5490 * current context has permission. For example, this is needed in
5491 * stop_machine(): we create temporary high priority worker threads,
5492 * but our caller might not have that capability.
5493 */
5494 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5495 struct sched_param *param)
5496 {
5497 return __sched_setscheduler(p, policy, param, false);
5498 }
5499
5500 static int
5501 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5502 {
5503 struct sched_param lparam;
5504 struct task_struct *p;
5505 int retval;
5506
5507 if (!param || pid < 0)
5508 return -EINVAL;
5509 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5510 return -EFAULT;
5511
5512 rcu_read_lock();
5513 retval = -ESRCH;
5514 p = find_process_by_pid(pid);
5515 if (p != NULL)
5516 retval = sched_setscheduler(p, policy, &lparam);
5517 rcu_read_unlock();
5518
5519 return retval;
5520 }
5521
5522 /**
5523 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5524 * @pid: the pid in question.
5525 * @policy: new policy.
5526 * @param: structure containing the new RT priority.
5527 */
5528 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5529 struct sched_param __user *, param)
5530 {
5531 /* negative values for policy are not valid */
5532 if (policy < 0)
5533 return -EINVAL;
5534
5535 return do_sched_setscheduler(pid, policy, param);
5536 }
5537
5538 /**
5539 * sys_sched_setparam - set/change the RT priority of a thread
5540 * @pid: the pid in question.
5541 * @param: structure containing the new RT priority.
5542 */
5543 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5544 {
5545 return do_sched_setscheduler(pid, -1, param);
5546 }
5547
5548 /**
5549 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5550 * @pid: the pid in question.
5551 */
5552 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5553 {
5554 struct task_struct *p;
5555 int retval;
5556
5557 if (pid < 0)
5558 return -EINVAL;
5559
5560 retval = -ESRCH;
5561 read_lock(&tasklist_lock);
5562 p = find_process_by_pid(pid);
5563 if (p) {
5564 retval = security_task_getscheduler(p);
5565 if (!retval)
5566 retval = p->policy;
5567 }
5568 read_unlock(&tasklist_lock);
5569 return retval;
5570 }
5571
5572 /**
5573 * sys_sched_getscheduler - get the RT priority of a thread
5574 * @pid: the pid in question.
5575 * @param: structure containing the RT priority.
5576 */
5577 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5578 {
5579 struct sched_param lp;
5580 struct task_struct *p;
5581 int retval;
5582
5583 if (!param || pid < 0)
5584 return -EINVAL;
5585
5586 read_lock(&tasklist_lock);
5587 p = find_process_by_pid(pid);
5588 retval = -ESRCH;
5589 if (!p)
5590 goto out_unlock;
5591
5592 retval = security_task_getscheduler(p);
5593 if (retval)
5594 goto out_unlock;
5595
5596 lp.sched_priority = p->rt_priority;
5597 read_unlock(&tasklist_lock);
5598
5599 /*
5600 * This one might sleep, we cannot do it with a spinlock held ...
5601 */
5602 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5603
5604 return retval;
5605
5606 out_unlock:
5607 read_unlock(&tasklist_lock);
5608 return retval;
5609 }
5610
5611 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5612 {
5613 cpumask_var_t cpus_allowed, new_mask;
5614 struct task_struct *p;
5615 int retval;
5616
5617 get_online_cpus();
5618 read_lock(&tasklist_lock);
5619
5620 p = find_process_by_pid(pid);
5621 if (!p) {
5622 read_unlock(&tasklist_lock);
5623 put_online_cpus();
5624 return -ESRCH;
5625 }
5626
5627 /*
5628 * It is not safe to call set_cpus_allowed with the
5629 * tasklist_lock held. We will bump the task_struct's
5630 * usage count and then drop tasklist_lock.
5631 */
5632 get_task_struct(p);
5633 read_unlock(&tasklist_lock);
5634
5635 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5636 retval = -ENOMEM;
5637 goto out_put_task;
5638 }
5639 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5640 retval = -ENOMEM;
5641 goto out_free_cpus_allowed;
5642 }
5643 retval = -EPERM;
5644 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5645 goto out_unlock;
5646
5647 retval = security_task_setscheduler(p, 0, NULL);
5648 if (retval)
5649 goto out_unlock;
5650
5651 cpuset_cpus_allowed(p, cpus_allowed);
5652 cpumask_and(new_mask, in_mask, cpus_allowed);
5653 again:
5654 retval = set_cpus_allowed_ptr(p, new_mask);
5655
5656 if (!retval) {
5657 cpuset_cpus_allowed(p, cpus_allowed);
5658 if (!cpumask_subset(new_mask, cpus_allowed)) {
5659 /*
5660 * We must have raced with a concurrent cpuset
5661 * update. Just reset the cpus_allowed to the
5662 * cpuset's cpus_allowed
5663 */
5664 cpumask_copy(new_mask, cpus_allowed);
5665 goto again;
5666 }
5667 }
5668 out_unlock:
5669 free_cpumask_var(new_mask);
5670 out_free_cpus_allowed:
5671 free_cpumask_var(cpus_allowed);
5672 out_put_task:
5673 put_task_struct(p);
5674 put_online_cpus();
5675 return retval;
5676 }
5677
5678 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5679 struct cpumask *new_mask)
5680 {
5681 if (len < cpumask_size())
5682 cpumask_clear(new_mask);
5683 else if (len > cpumask_size())
5684 len = cpumask_size();
5685
5686 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5687 }
5688
5689 /**
5690 * sys_sched_setaffinity - set the cpu affinity of a process
5691 * @pid: pid of the process
5692 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5693 * @user_mask_ptr: user-space pointer to the new cpu mask
5694 */
5695 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5696 unsigned long __user *, user_mask_ptr)
5697 {
5698 cpumask_var_t new_mask;
5699 int retval;
5700
5701 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5702 return -ENOMEM;
5703
5704 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5705 if (retval == 0)
5706 retval = sched_setaffinity(pid, new_mask);
5707 free_cpumask_var(new_mask);
5708 return retval;
5709 }
5710
5711 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5712 {
5713 struct task_struct *p;
5714 int retval;
5715
5716 get_online_cpus();
5717 read_lock(&tasklist_lock);
5718
5719 retval = -ESRCH;
5720 p = find_process_by_pid(pid);
5721 if (!p)
5722 goto out_unlock;
5723
5724 retval = security_task_getscheduler(p);
5725 if (retval)
5726 goto out_unlock;
5727
5728 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5729
5730 out_unlock:
5731 read_unlock(&tasklist_lock);
5732 put_online_cpus();
5733
5734 return retval;
5735 }
5736
5737 /**
5738 * sys_sched_getaffinity - get the cpu affinity of a process
5739 * @pid: pid of the process
5740 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5741 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5742 */
5743 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5744 unsigned long __user *, user_mask_ptr)
5745 {
5746 int ret;
5747 cpumask_var_t mask;
5748
5749 if (len < cpumask_size())
5750 return -EINVAL;
5751
5752 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5753 return -ENOMEM;
5754
5755 ret = sched_getaffinity(pid, mask);
5756 if (ret == 0) {
5757 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5758 ret = -EFAULT;
5759 else
5760 ret = cpumask_size();
5761 }
5762 free_cpumask_var(mask);
5763
5764 return ret;
5765 }
5766
5767 /**
5768 * sys_sched_yield - yield the current processor to other threads.
5769 *
5770 * This function yields the current CPU to other tasks. If there are no
5771 * other threads running on this CPU then this function will return.
5772 */
5773 SYSCALL_DEFINE0(sched_yield)
5774 {
5775 struct rq *rq = this_rq_lock();
5776
5777 schedstat_inc(rq, yld_count);
5778 current->sched_class->yield_task(rq);
5779
5780 /*
5781 * Since we are going to call schedule() anyway, there's
5782 * no need to preempt or enable interrupts:
5783 */
5784 __release(rq->lock);
5785 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5786 _raw_spin_unlock(&rq->lock);
5787 preempt_enable_no_resched();
5788
5789 schedule();
5790
5791 return 0;
5792 }
5793
5794 static void __cond_resched(void)
5795 {
5796 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5797 __might_sleep(__FILE__, __LINE__);
5798 #endif
5799 /*
5800 * The BKS might be reacquired before we have dropped
5801 * PREEMPT_ACTIVE, which could trigger a second
5802 * cond_resched() call.
5803 */
5804 do {
5805 add_preempt_count(PREEMPT_ACTIVE);
5806 schedule();
5807 sub_preempt_count(PREEMPT_ACTIVE);
5808 } while (need_resched());
5809 }
5810
5811 int __sched _cond_resched(void)
5812 {
5813 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5814 system_state == SYSTEM_RUNNING) {
5815 __cond_resched();
5816 return 1;
5817 }
5818 return 0;
5819 }
5820 EXPORT_SYMBOL(_cond_resched);
5821
5822 /*
5823 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5824 * call schedule, and on return reacquire the lock.
5825 *
5826 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5827 * operations here to prevent schedule() from being called twice (once via
5828 * spin_unlock(), once by hand).
5829 */
5830 int cond_resched_lock(spinlock_t *lock)
5831 {
5832 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5833 int ret = 0;
5834
5835 if (spin_needbreak(lock) || resched) {
5836 spin_unlock(lock);
5837 if (resched && need_resched())
5838 __cond_resched();
5839 else
5840 cpu_relax();
5841 ret = 1;
5842 spin_lock(lock);
5843 }
5844 return ret;
5845 }
5846 EXPORT_SYMBOL(cond_resched_lock);
5847
5848 int __sched cond_resched_softirq(void)
5849 {
5850 BUG_ON(!in_softirq());
5851
5852 if (need_resched() && system_state == SYSTEM_RUNNING) {
5853 local_bh_enable();
5854 __cond_resched();
5855 local_bh_disable();
5856 return 1;
5857 }
5858 return 0;
5859 }
5860 EXPORT_SYMBOL(cond_resched_softirq);
5861
5862 /**
5863 * yield - yield the current processor to other threads.
5864 *
5865 * This is a shortcut for kernel-space yielding - it marks the
5866 * thread runnable and calls sys_sched_yield().
5867 */
5868 void __sched yield(void)
5869 {
5870 set_current_state(TASK_RUNNING);
5871 sys_sched_yield();
5872 }
5873 EXPORT_SYMBOL(yield);
5874
5875 /*
5876 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5877 * that process accounting knows that this is a task in IO wait state.
5878 *
5879 * But don't do that if it is a deliberate, throttling IO wait (this task
5880 * has set its backing_dev_info: the queue against which it should throttle)
5881 */
5882 void __sched io_schedule(void)
5883 {
5884 struct rq *rq = &__raw_get_cpu_var(runqueues);
5885
5886 delayacct_blkio_start();
5887 atomic_inc(&rq->nr_iowait);
5888 schedule();
5889 atomic_dec(&rq->nr_iowait);
5890 delayacct_blkio_end();
5891 }
5892 EXPORT_SYMBOL(io_schedule);
5893
5894 long __sched io_schedule_timeout(long timeout)
5895 {
5896 struct rq *rq = &__raw_get_cpu_var(runqueues);
5897 long ret;
5898
5899 delayacct_blkio_start();
5900 atomic_inc(&rq->nr_iowait);
5901 ret = schedule_timeout(timeout);
5902 atomic_dec(&rq->nr_iowait);
5903 delayacct_blkio_end();
5904 return ret;
5905 }
5906
5907 /**
5908 * sys_sched_get_priority_max - return maximum RT priority.
5909 * @policy: scheduling class.
5910 *
5911 * this syscall returns the maximum rt_priority that can be used
5912 * by a given scheduling class.
5913 */
5914 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5915 {
5916 int ret = -EINVAL;
5917
5918 switch (policy) {
5919 case SCHED_FIFO:
5920 case SCHED_RR:
5921 ret = MAX_USER_RT_PRIO-1;
5922 break;
5923 case SCHED_NORMAL:
5924 case SCHED_BATCH:
5925 case SCHED_IDLE:
5926 ret = 0;
5927 break;
5928 }
5929 return ret;
5930 }
5931
5932 /**
5933 * sys_sched_get_priority_min - return minimum RT priority.
5934 * @policy: scheduling class.
5935 *
5936 * this syscall returns the minimum rt_priority that can be used
5937 * by a given scheduling class.
5938 */
5939 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5940 {
5941 int ret = -EINVAL;
5942
5943 switch (policy) {
5944 case SCHED_FIFO:
5945 case SCHED_RR:
5946 ret = 1;
5947 break;
5948 case SCHED_NORMAL:
5949 case SCHED_BATCH:
5950 case SCHED_IDLE:
5951 ret = 0;
5952 }
5953 return ret;
5954 }
5955
5956 /**
5957 * sys_sched_rr_get_interval - return the default timeslice of a process.
5958 * @pid: pid of the process.
5959 * @interval: userspace pointer to the timeslice value.
5960 *
5961 * this syscall writes the default timeslice value of a given process
5962 * into the user-space timespec buffer. A value of '0' means infinity.
5963 */
5964 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5965 struct timespec __user *, interval)
5966 {
5967 struct task_struct *p;
5968 unsigned int time_slice;
5969 int retval;
5970 struct timespec t;
5971
5972 if (pid < 0)
5973 return -EINVAL;
5974
5975 retval = -ESRCH;
5976 read_lock(&tasklist_lock);
5977 p = find_process_by_pid(pid);
5978 if (!p)
5979 goto out_unlock;
5980
5981 retval = security_task_getscheduler(p);
5982 if (retval)
5983 goto out_unlock;
5984
5985 /*
5986 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5987 * tasks that are on an otherwise idle runqueue:
5988 */
5989 time_slice = 0;
5990 if (p->policy == SCHED_RR) {
5991 time_slice = DEF_TIMESLICE;
5992 } else if (p->policy != SCHED_FIFO) {
5993 struct sched_entity *se = &p->se;
5994 unsigned long flags;
5995 struct rq *rq;
5996
5997 rq = task_rq_lock(p, &flags);
5998 if (rq->cfs.load.weight)
5999 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6000 task_rq_unlock(rq, &flags);
6001 }
6002 read_unlock(&tasklist_lock);
6003 jiffies_to_timespec(time_slice, &t);
6004 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6005 return retval;
6006
6007 out_unlock:
6008 read_unlock(&tasklist_lock);
6009 return retval;
6010 }
6011
6012 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6013
6014 void sched_show_task(struct task_struct *p)
6015 {
6016 unsigned long free = 0;
6017 unsigned state;
6018
6019 state = p->state ? __ffs(p->state) + 1 : 0;
6020 printk(KERN_INFO "%-13.13s %c", p->comm,
6021 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6022 #if BITS_PER_LONG == 32
6023 if (state == TASK_RUNNING)
6024 printk(KERN_CONT " running ");
6025 else
6026 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6027 #else
6028 if (state == TASK_RUNNING)
6029 printk(KERN_CONT " running task ");
6030 else
6031 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6032 #endif
6033 #ifdef CONFIG_DEBUG_STACK_USAGE
6034 free = stack_not_used(p);
6035 #endif
6036 printk(KERN_CONT "%5lu %5d %6d\n", free,
6037 task_pid_nr(p), task_pid_nr(p->real_parent));
6038
6039 show_stack(p, NULL);
6040 }
6041
6042 void show_state_filter(unsigned long state_filter)
6043 {
6044 struct task_struct *g, *p;
6045
6046 #if BITS_PER_LONG == 32
6047 printk(KERN_INFO
6048 " task PC stack pid father\n");
6049 #else
6050 printk(KERN_INFO
6051 " task PC stack pid father\n");
6052 #endif
6053 read_lock(&tasklist_lock);
6054 do_each_thread(g, p) {
6055 /*
6056 * reset the NMI-timeout, listing all files on a slow
6057 * console might take alot of time:
6058 */
6059 touch_nmi_watchdog();
6060 if (!state_filter || (p->state & state_filter))
6061 sched_show_task(p);
6062 } while_each_thread(g, p);
6063
6064 touch_all_softlockup_watchdogs();
6065
6066 #ifdef CONFIG_SCHED_DEBUG
6067 sysrq_sched_debug_show();
6068 #endif
6069 read_unlock(&tasklist_lock);
6070 /*
6071 * Only show locks if all tasks are dumped:
6072 */
6073 if (state_filter == -1)
6074 debug_show_all_locks();
6075 }
6076
6077 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6078 {
6079 idle->sched_class = &idle_sched_class;
6080 }
6081
6082 /**
6083 * init_idle - set up an idle thread for a given CPU
6084 * @idle: task in question
6085 * @cpu: cpu the idle task belongs to
6086 *
6087 * NOTE: this function does not set the idle thread's NEED_RESCHED
6088 * flag, to make booting more robust.
6089 */
6090 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6091 {
6092 struct rq *rq = cpu_rq(cpu);
6093 unsigned long flags;
6094
6095 spin_lock_irqsave(&rq->lock, flags);
6096
6097 __sched_fork(idle);
6098 idle->se.exec_start = sched_clock();
6099
6100 idle->prio = idle->normal_prio = MAX_PRIO;
6101 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6102 __set_task_cpu(idle, cpu);
6103
6104 rq->curr = rq->idle = idle;
6105 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6106 idle->oncpu = 1;
6107 #endif
6108 spin_unlock_irqrestore(&rq->lock, flags);
6109
6110 /* Set the preempt count _outside_ the spinlocks! */
6111 #if defined(CONFIG_PREEMPT)
6112 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6113 #else
6114 task_thread_info(idle)->preempt_count = 0;
6115 #endif
6116 /*
6117 * The idle tasks have their own, simple scheduling class:
6118 */
6119 idle->sched_class = &idle_sched_class;
6120 ftrace_graph_init_task(idle);
6121 }
6122
6123 /*
6124 * In a system that switches off the HZ timer nohz_cpu_mask
6125 * indicates which cpus entered this state. This is used
6126 * in the rcu update to wait only for active cpus. For system
6127 * which do not switch off the HZ timer nohz_cpu_mask should
6128 * always be CPU_BITS_NONE.
6129 */
6130 cpumask_var_t nohz_cpu_mask;
6131
6132 /*
6133 * Increase the granularity value when there are more CPUs,
6134 * because with more CPUs the 'effective latency' as visible
6135 * to users decreases. But the relationship is not linear,
6136 * so pick a second-best guess by going with the log2 of the
6137 * number of CPUs.
6138 *
6139 * This idea comes from the SD scheduler of Con Kolivas:
6140 */
6141 static inline void sched_init_granularity(void)
6142 {
6143 unsigned int factor = 1 + ilog2(num_online_cpus());
6144 const unsigned long limit = 200000000;
6145
6146 sysctl_sched_min_granularity *= factor;
6147 if (sysctl_sched_min_granularity > limit)
6148 sysctl_sched_min_granularity = limit;
6149
6150 sysctl_sched_latency *= factor;
6151 if (sysctl_sched_latency > limit)
6152 sysctl_sched_latency = limit;
6153
6154 sysctl_sched_wakeup_granularity *= factor;
6155
6156 sysctl_sched_shares_ratelimit *= factor;
6157 }
6158
6159 #ifdef CONFIG_SMP
6160 /*
6161 * This is how migration works:
6162 *
6163 * 1) we queue a struct migration_req structure in the source CPU's
6164 * runqueue and wake up that CPU's migration thread.
6165 * 2) we down() the locked semaphore => thread blocks.
6166 * 3) migration thread wakes up (implicitly it forces the migrated
6167 * thread off the CPU)
6168 * 4) it gets the migration request and checks whether the migrated
6169 * task is still in the wrong runqueue.
6170 * 5) if it's in the wrong runqueue then the migration thread removes
6171 * it and puts it into the right queue.
6172 * 6) migration thread up()s the semaphore.
6173 * 7) we wake up and the migration is done.
6174 */
6175
6176 /*
6177 * Change a given task's CPU affinity. Migrate the thread to a
6178 * proper CPU and schedule it away if the CPU it's executing on
6179 * is removed from the allowed bitmask.
6180 *
6181 * NOTE: the caller must have a valid reference to the task, the
6182 * task must not exit() & deallocate itself prematurely. The
6183 * call is not atomic; no spinlocks may be held.
6184 */
6185 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6186 {
6187 struct migration_req req;
6188 unsigned long flags;
6189 struct rq *rq;
6190 int ret = 0;
6191
6192 rq = task_rq_lock(p, &flags);
6193 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6194 ret = -EINVAL;
6195 goto out;
6196 }
6197
6198 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6199 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6200 ret = -EINVAL;
6201 goto out;
6202 }
6203
6204 if (p->sched_class->set_cpus_allowed)
6205 p->sched_class->set_cpus_allowed(p, new_mask);
6206 else {
6207 cpumask_copy(&p->cpus_allowed, new_mask);
6208 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6209 }
6210
6211 /* Can the task run on the task's current CPU? If so, we're done */
6212 if (cpumask_test_cpu(task_cpu(p), new_mask))
6213 goto out;
6214
6215 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6216 /* Need help from migration thread: drop lock and wait. */
6217 task_rq_unlock(rq, &flags);
6218 wake_up_process(rq->migration_thread);
6219 wait_for_completion(&req.done);
6220 tlb_migrate_finish(p->mm);
6221 return 0;
6222 }
6223 out:
6224 task_rq_unlock(rq, &flags);
6225
6226 return ret;
6227 }
6228 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6229
6230 /*
6231 * Move (not current) task off this cpu, onto dest cpu. We're doing
6232 * this because either it can't run here any more (set_cpus_allowed()
6233 * away from this CPU, or CPU going down), or because we're
6234 * attempting to rebalance this task on exec (sched_exec).
6235 *
6236 * So we race with normal scheduler movements, but that's OK, as long
6237 * as the task is no longer on this CPU.
6238 *
6239 * Returns non-zero if task was successfully migrated.
6240 */
6241 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6242 {
6243 struct rq *rq_dest, *rq_src;
6244 int ret = 0, on_rq;
6245
6246 if (unlikely(!cpu_active(dest_cpu)))
6247 return ret;
6248
6249 rq_src = cpu_rq(src_cpu);
6250 rq_dest = cpu_rq(dest_cpu);
6251
6252 double_rq_lock(rq_src, rq_dest);
6253 /* Already moved. */
6254 if (task_cpu(p) != src_cpu)
6255 goto done;
6256 /* Affinity changed (again). */
6257 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6258 goto fail;
6259
6260 on_rq = p->se.on_rq;
6261 if (on_rq)
6262 deactivate_task(rq_src, p, 0);
6263
6264 set_task_cpu(p, dest_cpu);
6265 if (on_rq) {
6266 activate_task(rq_dest, p, 0);
6267 check_preempt_curr(rq_dest, p, 0);
6268 }
6269 done:
6270 ret = 1;
6271 fail:
6272 double_rq_unlock(rq_src, rq_dest);
6273 return ret;
6274 }
6275
6276 /*
6277 * migration_thread - this is a highprio system thread that performs
6278 * thread migration by bumping thread off CPU then 'pushing' onto
6279 * another runqueue.
6280 */
6281 static int migration_thread(void *data)
6282 {
6283 int cpu = (long)data;
6284 struct rq *rq;
6285
6286 rq = cpu_rq(cpu);
6287 BUG_ON(rq->migration_thread != current);
6288
6289 set_current_state(TASK_INTERRUPTIBLE);
6290 while (!kthread_should_stop()) {
6291 struct migration_req *req;
6292 struct list_head *head;
6293
6294 spin_lock_irq(&rq->lock);
6295
6296 if (cpu_is_offline(cpu)) {
6297 spin_unlock_irq(&rq->lock);
6298 goto wait_to_die;
6299 }
6300
6301 if (rq->active_balance) {
6302 active_load_balance(rq, cpu);
6303 rq->active_balance = 0;
6304 }
6305
6306 head = &rq->migration_queue;
6307
6308 if (list_empty(head)) {
6309 spin_unlock_irq(&rq->lock);
6310 schedule();
6311 set_current_state(TASK_INTERRUPTIBLE);
6312 continue;
6313 }
6314 req = list_entry(head->next, struct migration_req, list);
6315 list_del_init(head->next);
6316
6317 spin_unlock(&rq->lock);
6318 __migrate_task(req->task, cpu, req->dest_cpu);
6319 local_irq_enable();
6320
6321 complete(&req->done);
6322 }
6323 __set_current_state(TASK_RUNNING);
6324 return 0;
6325
6326 wait_to_die:
6327 /* Wait for kthread_stop */
6328 set_current_state(TASK_INTERRUPTIBLE);
6329 while (!kthread_should_stop()) {
6330 schedule();
6331 set_current_state(TASK_INTERRUPTIBLE);
6332 }
6333 __set_current_state(TASK_RUNNING);
6334 return 0;
6335 }
6336
6337 #ifdef CONFIG_HOTPLUG_CPU
6338
6339 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6340 {
6341 int ret;
6342
6343 local_irq_disable();
6344 ret = __migrate_task(p, src_cpu, dest_cpu);
6345 local_irq_enable();
6346 return ret;
6347 }
6348
6349 /*
6350 * Figure out where task on dead CPU should go, use force if necessary.
6351 */
6352 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6353 {
6354 int dest_cpu;
6355 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6356
6357 again:
6358 /* Look for allowed, online CPU in same node. */
6359 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6360 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6361 goto move;
6362
6363 /* Any allowed, online CPU? */
6364 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6365 if (dest_cpu < nr_cpu_ids)
6366 goto move;
6367
6368 /* No more Mr. Nice Guy. */
6369 if (dest_cpu >= nr_cpu_ids) {
6370 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6371 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6372
6373 /*
6374 * Don't tell them about moving exiting tasks or
6375 * kernel threads (both mm NULL), since they never
6376 * leave kernel.
6377 */
6378 if (p->mm && printk_ratelimit()) {
6379 printk(KERN_INFO "process %d (%s) no "
6380 "longer affine to cpu%d\n",
6381 task_pid_nr(p), p->comm, dead_cpu);
6382 }
6383 }
6384
6385 move:
6386 /* It can have affinity changed while we were choosing. */
6387 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6388 goto again;
6389 }
6390
6391 /*
6392 * While a dead CPU has no uninterruptible tasks queued at this point,
6393 * it might still have a nonzero ->nr_uninterruptible counter, because
6394 * for performance reasons the counter is not stricly tracking tasks to
6395 * their home CPUs. So we just add the counter to another CPU's counter,
6396 * to keep the global sum constant after CPU-down:
6397 */
6398 static void migrate_nr_uninterruptible(struct rq *rq_src)
6399 {
6400 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6401 unsigned long flags;
6402
6403 local_irq_save(flags);
6404 double_rq_lock(rq_src, rq_dest);
6405 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6406 rq_src->nr_uninterruptible = 0;
6407 double_rq_unlock(rq_src, rq_dest);
6408 local_irq_restore(flags);
6409 }
6410
6411 /* Run through task list and migrate tasks from the dead cpu. */
6412 static void migrate_live_tasks(int src_cpu)
6413 {
6414 struct task_struct *p, *t;
6415
6416 read_lock(&tasklist_lock);
6417
6418 do_each_thread(t, p) {
6419 if (p == current)
6420 continue;
6421
6422 if (task_cpu(p) == src_cpu)
6423 move_task_off_dead_cpu(src_cpu, p);
6424 } while_each_thread(t, p);
6425
6426 read_unlock(&tasklist_lock);
6427 }
6428
6429 /*
6430 * Schedules idle task to be the next runnable task on current CPU.
6431 * It does so by boosting its priority to highest possible.
6432 * Used by CPU offline code.
6433 */
6434 void sched_idle_next(void)
6435 {
6436 int this_cpu = smp_processor_id();
6437 struct rq *rq = cpu_rq(this_cpu);
6438 struct task_struct *p = rq->idle;
6439 unsigned long flags;
6440
6441 /* cpu has to be offline */
6442 BUG_ON(cpu_online(this_cpu));
6443
6444 /*
6445 * Strictly not necessary since rest of the CPUs are stopped by now
6446 * and interrupts disabled on the current cpu.
6447 */
6448 spin_lock_irqsave(&rq->lock, flags);
6449
6450 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6451
6452 update_rq_clock(rq);
6453 activate_task(rq, p, 0);
6454
6455 spin_unlock_irqrestore(&rq->lock, flags);
6456 }
6457
6458 /*
6459 * Ensures that the idle task is using init_mm right before its cpu goes
6460 * offline.
6461 */
6462 void idle_task_exit(void)
6463 {
6464 struct mm_struct *mm = current->active_mm;
6465
6466 BUG_ON(cpu_online(smp_processor_id()));
6467
6468 if (mm != &init_mm)
6469 switch_mm(mm, &init_mm, current);
6470 mmdrop(mm);
6471 }
6472
6473 /* called under rq->lock with disabled interrupts */
6474 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6475 {
6476 struct rq *rq = cpu_rq(dead_cpu);
6477
6478 /* Must be exiting, otherwise would be on tasklist. */
6479 BUG_ON(!p->exit_state);
6480
6481 /* Cannot have done final schedule yet: would have vanished. */
6482 BUG_ON(p->state == TASK_DEAD);
6483
6484 get_task_struct(p);
6485
6486 /*
6487 * Drop lock around migration; if someone else moves it,
6488 * that's OK. No task can be added to this CPU, so iteration is
6489 * fine.
6490 */
6491 spin_unlock_irq(&rq->lock);
6492 move_task_off_dead_cpu(dead_cpu, p);
6493 spin_lock_irq(&rq->lock);
6494
6495 put_task_struct(p);
6496 }
6497
6498 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6499 static void migrate_dead_tasks(unsigned int dead_cpu)
6500 {
6501 struct rq *rq = cpu_rq(dead_cpu);
6502 struct task_struct *next;
6503
6504 for ( ; ; ) {
6505 if (!rq->nr_running)
6506 break;
6507 update_rq_clock(rq);
6508 next = pick_next_task(rq, rq->curr);
6509 if (!next)
6510 break;
6511 next->sched_class->put_prev_task(rq, next);
6512 migrate_dead(dead_cpu, next);
6513
6514 }
6515 }
6516 #endif /* CONFIG_HOTPLUG_CPU */
6517
6518 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6519
6520 static struct ctl_table sd_ctl_dir[] = {
6521 {
6522 .procname = "sched_domain",
6523 .mode = 0555,
6524 },
6525 {0, },
6526 };
6527
6528 static struct ctl_table sd_ctl_root[] = {
6529 {
6530 .ctl_name = CTL_KERN,
6531 .procname = "kernel",
6532 .mode = 0555,
6533 .child = sd_ctl_dir,
6534 },
6535 {0, },
6536 };
6537
6538 static struct ctl_table *sd_alloc_ctl_entry(int n)
6539 {
6540 struct ctl_table *entry =
6541 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6542
6543 return entry;
6544 }
6545
6546 static void sd_free_ctl_entry(struct ctl_table **tablep)
6547 {
6548 struct ctl_table *entry;
6549
6550 /*
6551 * In the intermediate directories, both the child directory and
6552 * procname are dynamically allocated and could fail but the mode
6553 * will always be set. In the lowest directory the names are
6554 * static strings and all have proc handlers.
6555 */
6556 for (entry = *tablep; entry->mode; entry++) {
6557 if (entry->child)
6558 sd_free_ctl_entry(&entry->child);
6559 if (entry->proc_handler == NULL)
6560 kfree(entry->procname);
6561 }
6562
6563 kfree(*tablep);
6564 *tablep = NULL;
6565 }
6566
6567 static void
6568 set_table_entry(struct ctl_table *entry,
6569 const char *procname, void *data, int maxlen,
6570 mode_t mode, proc_handler *proc_handler)
6571 {
6572 entry->procname = procname;
6573 entry->data = data;
6574 entry->maxlen = maxlen;
6575 entry->mode = mode;
6576 entry->proc_handler = proc_handler;
6577 }
6578
6579 static struct ctl_table *
6580 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6581 {
6582 struct ctl_table *table = sd_alloc_ctl_entry(13);
6583
6584 if (table == NULL)
6585 return NULL;
6586
6587 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6588 sizeof(long), 0644, proc_doulongvec_minmax);
6589 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6590 sizeof(long), 0644, proc_doulongvec_minmax);
6591 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6592 sizeof(int), 0644, proc_dointvec_minmax);
6593 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6594 sizeof(int), 0644, proc_dointvec_minmax);
6595 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6596 sizeof(int), 0644, proc_dointvec_minmax);
6597 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6598 sizeof(int), 0644, proc_dointvec_minmax);
6599 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6600 sizeof(int), 0644, proc_dointvec_minmax);
6601 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6602 sizeof(int), 0644, proc_dointvec_minmax);
6603 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6604 sizeof(int), 0644, proc_dointvec_minmax);
6605 set_table_entry(&table[9], "cache_nice_tries",
6606 &sd->cache_nice_tries,
6607 sizeof(int), 0644, proc_dointvec_minmax);
6608 set_table_entry(&table[10], "flags", &sd->flags,
6609 sizeof(int), 0644, proc_dointvec_minmax);
6610 set_table_entry(&table[11], "name", sd->name,
6611 CORENAME_MAX_SIZE, 0444, proc_dostring);
6612 /* &table[12] is terminator */
6613
6614 return table;
6615 }
6616
6617 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6618 {
6619 struct ctl_table *entry, *table;
6620 struct sched_domain *sd;
6621 int domain_num = 0, i;
6622 char buf[32];
6623
6624 for_each_domain(cpu, sd)
6625 domain_num++;
6626 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6627 if (table == NULL)
6628 return NULL;
6629
6630 i = 0;
6631 for_each_domain(cpu, sd) {
6632 snprintf(buf, 32, "domain%d", i);
6633 entry->procname = kstrdup(buf, GFP_KERNEL);
6634 entry->mode = 0555;
6635 entry->child = sd_alloc_ctl_domain_table(sd);
6636 entry++;
6637 i++;
6638 }
6639 return table;
6640 }
6641
6642 static struct ctl_table_header *sd_sysctl_header;
6643 static void register_sched_domain_sysctl(void)
6644 {
6645 int i, cpu_num = num_online_cpus();
6646 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6647 char buf[32];
6648
6649 WARN_ON(sd_ctl_dir[0].child);
6650 sd_ctl_dir[0].child = entry;
6651
6652 if (entry == NULL)
6653 return;
6654
6655 for_each_online_cpu(i) {
6656 snprintf(buf, 32, "cpu%d", i);
6657 entry->procname = kstrdup(buf, GFP_KERNEL);
6658 entry->mode = 0555;
6659 entry->child = sd_alloc_ctl_cpu_table(i);
6660 entry++;
6661 }
6662
6663 WARN_ON(sd_sysctl_header);
6664 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6665 }
6666
6667 /* may be called multiple times per register */
6668 static void unregister_sched_domain_sysctl(void)
6669 {
6670 if (sd_sysctl_header)
6671 unregister_sysctl_table(sd_sysctl_header);
6672 sd_sysctl_header = NULL;
6673 if (sd_ctl_dir[0].child)
6674 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6675 }
6676 #else
6677 static void register_sched_domain_sysctl(void)
6678 {
6679 }
6680 static void unregister_sched_domain_sysctl(void)
6681 {
6682 }
6683 #endif
6684
6685 static void set_rq_online(struct rq *rq)
6686 {
6687 if (!rq->online) {
6688 const struct sched_class *class;
6689
6690 cpumask_set_cpu(rq->cpu, rq->rd->online);
6691 rq->online = 1;
6692
6693 for_each_class(class) {
6694 if (class->rq_online)
6695 class->rq_online(rq);
6696 }
6697 }
6698 }
6699
6700 static void set_rq_offline(struct rq *rq)
6701 {
6702 if (rq->online) {
6703 const struct sched_class *class;
6704
6705 for_each_class(class) {
6706 if (class->rq_offline)
6707 class->rq_offline(rq);
6708 }
6709
6710 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6711 rq->online = 0;
6712 }
6713 }
6714
6715 /*
6716 * migration_call - callback that gets triggered when a CPU is added.
6717 * Here we can start up the necessary migration thread for the new CPU.
6718 */
6719 static int __cpuinit
6720 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6721 {
6722 struct task_struct *p;
6723 int cpu = (long)hcpu;
6724 unsigned long flags;
6725 struct rq *rq;
6726
6727 switch (action) {
6728
6729 case CPU_UP_PREPARE:
6730 case CPU_UP_PREPARE_FROZEN:
6731 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6732 if (IS_ERR(p))
6733 return NOTIFY_BAD;
6734 kthread_bind(p, cpu);
6735 /* Must be high prio: stop_machine expects to yield to it. */
6736 rq = task_rq_lock(p, &flags);
6737 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6738 task_rq_unlock(rq, &flags);
6739 cpu_rq(cpu)->migration_thread = p;
6740 break;
6741
6742 case CPU_ONLINE:
6743 case CPU_ONLINE_FROZEN:
6744 /* Strictly unnecessary, as first user will wake it. */
6745 wake_up_process(cpu_rq(cpu)->migration_thread);
6746
6747 /* Update our root-domain */
6748 rq = cpu_rq(cpu);
6749 spin_lock_irqsave(&rq->lock, flags);
6750 if (rq->rd) {
6751 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6752
6753 set_rq_online(rq);
6754 }
6755 spin_unlock_irqrestore(&rq->lock, flags);
6756 break;
6757
6758 #ifdef CONFIG_HOTPLUG_CPU
6759 case CPU_UP_CANCELED:
6760 case CPU_UP_CANCELED_FROZEN:
6761 if (!cpu_rq(cpu)->migration_thread)
6762 break;
6763 /* Unbind it from offline cpu so it can run. Fall thru. */
6764 kthread_bind(cpu_rq(cpu)->migration_thread,
6765 cpumask_any(cpu_online_mask));
6766 kthread_stop(cpu_rq(cpu)->migration_thread);
6767 cpu_rq(cpu)->migration_thread = NULL;
6768 break;
6769
6770 case CPU_DEAD:
6771 case CPU_DEAD_FROZEN:
6772 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6773 migrate_live_tasks(cpu);
6774 rq = cpu_rq(cpu);
6775 kthread_stop(rq->migration_thread);
6776 rq->migration_thread = NULL;
6777 /* Idle task back to normal (off runqueue, low prio) */
6778 spin_lock_irq(&rq->lock);
6779 update_rq_clock(rq);
6780 deactivate_task(rq, rq->idle, 0);
6781 rq->idle->static_prio = MAX_PRIO;
6782 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6783 rq->idle->sched_class = &idle_sched_class;
6784 migrate_dead_tasks(cpu);
6785 spin_unlock_irq(&rq->lock);
6786 cpuset_unlock();
6787 migrate_nr_uninterruptible(rq);
6788 BUG_ON(rq->nr_running != 0);
6789
6790 /*
6791 * No need to migrate the tasks: it was best-effort if
6792 * they didn't take sched_hotcpu_mutex. Just wake up
6793 * the requestors.
6794 */
6795 spin_lock_irq(&rq->lock);
6796 while (!list_empty(&rq->migration_queue)) {
6797 struct migration_req *req;
6798
6799 req = list_entry(rq->migration_queue.next,
6800 struct migration_req, list);
6801 list_del_init(&req->list);
6802 spin_unlock_irq(&rq->lock);
6803 complete(&req->done);
6804 spin_lock_irq(&rq->lock);
6805 }
6806 spin_unlock_irq(&rq->lock);
6807 break;
6808
6809 case CPU_DYING:
6810 case CPU_DYING_FROZEN:
6811 /* Update our root-domain */
6812 rq = cpu_rq(cpu);
6813 spin_lock_irqsave(&rq->lock, flags);
6814 if (rq->rd) {
6815 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6816 set_rq_offline(rq);
6817 }
6818 spin_unlock_irqrestore(&rq->lock, flags);
6819 break;
6820 #endif
6821 }
6822 return NOTIFY_OK;
6823 }
6824
6825 /* Register at highest priority so that task migration (migrate_all_tasks)
6826 * happens before everything else.
6827 */
6828 static struct notifier_block __cpuinitdata migration_notifier = {
6829 .notifier_call = migration_call,
6830 .priority = 10
6831 };
6832
6833 static int __init migration_init(void)
6834 {
6835 void *cpu = (void *)(long)smp_processor_id();
6836 int err;
6837
6838 /* Start one for the boot CPU: */
6839 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6840 BUG_ON(err == NOTIFY_BAD);
6841 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6842 register_cpu_notifier(&migration_notifier);
6843
6844 return err;
6845 }
6846 early_initcall(migration_init);
6847 #endif
6848
6849 #ifdef CONFIG_SMP
6850
6851 #ifdef CONFIG_SCHED_DEBUG
6852
6853 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6854 struct cpumask *groupmask)
6855 {
6856 struct sched_group *group = sd->groups;
6857 char str[256];
6858
6859 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6860 cpumask_clear(groupmask);
6861
6862 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6863
6864 if (!(sd->flags & SD_LOAD_BALANCE)) {
6865 printk("does not load-balance\n");
6866 if (sd->parent)
6867 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6868 " has parent");
6869 return -1;
6870 }
6871
6872 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6873
6874 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6875 printk(KERN_ERR "ERROR: domain->span does not contain "
6876 "CPU%d\n", cpu);
6877 }
6878 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6879 printk(KERN_ERR "ERROR: domain->groups does not contain"
6880 " CPU%d\n", cpu);
6881 }
6882
6883 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6884 do {
6885 if (!group) {
6886 printk("\n");
6887 printk(KERN_ERR "ERROR: group is NULL\n");
6888 break;
6889 }
6890
6891 if (!group->__cpu_power) {
6892 printk(KERN_CONT "\n");
6893 printk(KERN_ERR "ERROR: domain->cpu_power not "
6894 "set\n");
6895 break;
6896 }
6897
6898 if (!cpumask_weight(sched_group_cpus(group))) {
6899 printk(KERN_CONT "\n");
6900 printk(KERN_ERR "ERROR: empty group\n");
6901 break;
6902 }
6903
6904 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6905 printk(KERN_CONT "\n");
6906 printk(KERN_ERR "ERROR: repeated CPUs\n");
6907 break;
6908 }
6909
6910 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6911
6912 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6913 printk(KERN_CONT " %s", str);
6914
6915 group = group->next;
6916 } while (group != sd->groups);
6917 printk(KERN_CONT "\n");
6918
6919 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6920 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6921
6922 if (sd->parent &&
6923 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6924 printk(KERN_ERR "ERROR: parent span is not a superset "
6925 "of domain->span\n");
6926 return 0;
6927 }
6928
6929 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6930 {
6931 cpumask_var_t groupmask;
6932 int level = 0;
6933
6934 if (!sd) {
6935 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6936 return;
6937 }
6938
6939 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6940
6941 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6942 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6943 return;
6944 }
6945
6946 for (;;) {
6947 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6948 break;
6949 level++;
6950 sd = sd->parent;
6951 if (!sd)
6952 break;
6953 }
6954 free_cpumask_var(groupmask);
6955 }
6956 #else /* !CONFIG_SCHED_DEBUG */
6957 # define sched_domain_debug(sd, cpu) do { } while (0)
6958 #endif /* CONFIG_SCHED_DEBUG */
6959
6960 static int sd_degenerate(struct sched_domain *sd)
6961 {
6962 if (cpumask_weight(sched_domain_span(sd)) == 1)
6963 return 1;
6964
6965 /* Following flags need at least 2 groups */
6966 if (sd->flags & (SD_LOAD_BALANCE |
6967 SD_BALANCE_NEWIDLE |
6968 SD_BALANCE_FORK |
6969 SD_BALANCE_EXEC |
6970 SD_SHARE_CPUPOWER |
6971 SD_SHARE_PKG_RESOURCES)) {
6972 if (sd->groups != sd->groups->next)
6973 return 0;
6974 }
6975
6976 /* Following flags don't use groups */
6977 if (sd->flags & (SD_WAKE_IDLE |
6978 SD_WAKE_AFFINE |
6979 SD_WAKE_BALANCE))
6980 return 0;
6981
6982 return 1;
6983 }
6984
6985 static int
6986 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6987 {
6988 unsigned long cflags = sd->flags, pflags = parent->flags;
6989
6990 if (sd_degenerate(parent))
6991 return 1;
6992
6993 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6994 return 0;
6995
6996 /* Does parent contain flags not in child? */
6997 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6998 if (cflags & SD_WAKE_AFFINE)
6999 pflags &= ~SD_WAKE_BALANCE;
7000 /* Flags needing groups don't count if only 1 group in parent */
7001 if (parent->groups == parent->groups->next) {
7002 pflags &= ~(SD_LOAD_BALANCE |
7003 SD_BALANCE_NEWIDLE |
7004 SD_BALANCE_FORK |
7005 SD_BALANCE_EXEC |
7006 SD_SHARE_CPUPOWER |
7007 SD_SHARE_PKG_RESOURCES);
7008 if (nr_node_ids == 1)
7009 pflags &= ~SD_SERIALIZE;
7010 }
7011 if (~cflags & pflags)
7012 return 0;
7013
7014 return 1;
7015 }
7016
7017 static void free_rootdomain(struct root_domain *rd)
7018 {
7019 cpupri_cleanup(&rd->cpupri);
7020
7021 free_cpumask_var(rd->rto_mask);
7022 free_cpumask_var(rd->online);
7023 free_cpumask_var(rd->span);
7024 kfree(rd);
7025 }
7026
7027 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7028 {
7029 struct root_domain *old_rd = NULL;
7030 unsigned long flags;
7031
7032 spin_lock_irqsave(&rq->lock, flags);
7033
7034 if (rq->rd) {
7035 old_rd = rq->rd;
7036
7037 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7038 set_rq_offline(rq);
7039
7040 cpumask_clear_cpu(rq->cpu, old_rd->span);
7041
7042 /*
7043 * If we dont want to free the old_rt yet then
7044 * set old_rd to NULL to skip the freeing later
7045 * in this function:
7046 */
7047 if (!atomic_dec_and_test(&old_rd->refcount))
7048 old_rd = NULL;
7049 }
7050
7051 atomic_inc(&rd->refcount);
7052 rq->rd = rd;
7053
7054 cpumask_set_cpu(rq->cpu, rd->span);
7055 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7056 set_rq_online(rq);
7057
7058 spin_unlock_irqrestore(&rq->lock, flags);
7059
7060 if (old_rd)
7061 free_rootdomain(old_rd);
7062 }
7063
7064 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7065 {
7066 memset(rd, 0, sizeof(*rd));
7067
7068 if (bootmem) {
7069 alloc_bootmem_cpumask_var(&def_root_domain.span);
7070 alloc_bootmem_cpumask_var(&def_root_domain.online);
7071 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7072 cpupri_init(&rd->cpupri, true);
7073 return 0;
7074 }
7075
7076 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7077 goto out;
7078 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7079 goto free_span;
7080 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7081 goto free_online;
7082
7083 if (cpupri_init(&rd->cpupri, false) != 0)
7084 goto free_rto_mask;
7085 return 0;
7086
7087 free_rto_mask:
7088 free_cpumask_var(rd->rto_mask);
7089 free_online:
7090 free_cpumask_var(rd->online);
7091 free_span:
7092 free_cpumask_var(rd->span);
7093 out:
7094 return -ENOMEM;
7095 }
7096
7097 static void init_defrootdomain(void)
7098 {
7099 init_rootdomain(&def_root_domain, true);
7100
7101 atomic_set(&def_root_domain.refcount, 1);
7102 }
7103
7104 static struct root_domain *alloc_rootdomain(void)
7105 {
7106 struct root_domain *rd;
7107
7108 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7109 if (!rd)
7110 return NULL;
7111
7112 if (init_rootdomain(rd, false) != 0) {
7113 kfree(rd);
7114 return NULL;
7115 }
7116
7117 return rd;
7118 }
7119
7120 /*
7121 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7122 * hold the hotplug lock.
7123 */
7124 static void
7125 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7126 {
7127 struct rq *rq = cpu_rq(cpu);
7128 struct sched_domain *tmp;
7129
7130 /* Remove the sched domains which do not contribute to scheduling. */
7131 for (tmp = sd; tmp; ) {
7132 struct sched_domain *parent = tmp->parent;
7133 if (!parent)
7134 break;
7135
7136 if (sd_parent_degenerate(tmp, parent)) {
7137 tmp->parent = parent->parent;
7138 if (parent->parent)
7139 parent->parent->child = tmp;
7140 } else
7141 tmp = tmp->parent;
7142 }
7143
7144 if (sd && sd_degenerate(sd)) {
7145 sd = sd->parent;
7146 if (sd)
7147 sd->child = NULL;
7148 }
7149
7150 sched_domain_debug(sd, cpu);
7151
7152 rq_attach_root(rq, rd);
7153 rcu_assign_pointer(rq->sd, sd);
7154 }
7155
7156 /* cpus with isolated domains */
7157 static cpumask_var_t cpu_isolated_map;
7158
7159 /* Setup the mask of cpus configured for isolated domains */
7160 static int __init isolated_cpu_setup(char *str)
7161 {
7162 cpulist_parse(str, cpu_isolated_map);
7163 return 1;
7164 }
7165
7166 __setup("isolcpus=", isolated_cpu_setup);
7167
7168 /*
7169 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7170 * to a function which identifies what group(along with sched group) a CPU
7171 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7172 * (due to the fact that we keep track of groups covered with a struct cpumask).
7173 *
7174 * init_sched_build_groups will build a circular linked list of the groups
7175 * covered by the given span, and will set each group's ->cpumask correctly,
7176 * and ->cpu_power to 0.
7177 */
7178 static void
7179 init_sched_build_groups(const struct cpumask *span,
7180 const struct cpumask *cpu_map,
7181 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7182 struct sched_group **sg,
7183 struct cpumask *tmpmask),
7184 struct cpumask *covered, struct cpumask *tmpmask)
7185 {
7186 struct sched_group *first = NULL, *last = NULL;
7187 int i;
7188
7189 cpumask_clear(covered);
7190
7191 for_each_cpu(i, span) {
7192 struct sched_group *sg;
7193 int group = group_fn(i, cpu_map, &sg, tmpmask);
7194 int j;
7195
7196 if (cpumask_test_cpu(i, covered))
7197 continue;
7198
7199 cpumask_clear(sched_group_cpus(sg));
7200 sg->__cpu_power = 0;
7201
7202 for_each_cpu(j, span) {
7203 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7204 continue;
7205
7206 cpumask_set_cpu(j, covered);
7207 cpumask_set_cpu(j, sched_group_cpus(sg));
7208 }
7209 if (!first)
7210 first = sg;
7211 if (last)
7212 last->next = sg;
7213 last = sg;
7214 }
7215 last->next = first;
7216 }
7217
7218 #define SD_NODES_PER_DOMAIN 16
7219
7220 #ifdef CONFIG_NUMA
7221
7222 /**
7223 * find_next_best_node - find the next node to include in a sched_domain
7224 * @node: node whose sched_domain we're building
7225 * @used_nodes: nodes already in the sched_domain
7226 *
7227 * Find the next node to include in a given scheduling domain. Simply
7228 * finds the closest node not already in the @used_nodes map.
7229 *
7230 * Should use nodemask_t.
7231 */
7232 static int find_next_best_node(int node, nodemask_t *used_nodes)
7233 {
7234 int i, n, val, min_val, best_node = 0;
7235
7236 min_val = INT_MAX;
7237
7238 for (i = 0; i < nr_node_ids; i++) {
7239 /* Start at @node */
7240 n = (node + i) % nr_node_ids;
7241
7242 if (!nr_cpus_node(n))
7243 continue;
7244
7245 /* Skip already used nodes */
7246 if (node_isset(n, *used_nodes))
7247 continue;
7248
7249 /* Simple min distance search */
7250 val = node_distance(node, n);
7251
7252 if (val < min_val) {
7253 min_val = val;
7254 best_node = n;
7255 }
7256 }
7257
7258 node_set(best_node, *used_nodes);
7259 return best_node;
7260 }
7261
7262 /**
7263 * sched_domain_node_span - get a cpumask for a node's sched_domain
7264 * @node: node whose cpumask we're constructing
7265 * @span: resulting cpumask
7266 *
7267 * Given a node, construct a good cpumask for its sched_domain to span. It
7268 * should be one that prevents unnecessary balancing, but also spreads tasks
7269 * out optimally.
7270 */
7271 static void sched_domain_node_span(int node, struct cpumask *span)
7272 {
7273 nodemask_t used_nodes;
7274 int i;
7275
7276 cpumask_clear(span);
7277 nodes_clear(used_nodes);
7278
7279 cpumask_or(span, span, cpumask_of_node(node));
7280 node_set(node, used_nodes);
7281
7282 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7283 int next_node = find_next_best_node(node, &used_nodes);
7284
7285 cpumask_or(span, span, cpumask_of_node(next_node));
7286 }
7287 }
7288 #endif /* CONFIG_NUMA */
7289
7290 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7291
7292 /*
7293 * The cpus mask in sched_group and sched_domain hangs off the end.
7294 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7295 * for nr_cpu_ids < CONFIG_NR_CPUS.
7296 */
7297 struct static_sched_group {
7298 struct sched_group sg;
7299 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7300 };
7301
7302 struct static_sched_domain {
7303 struct sched_domain sd;
7304 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7305 };
7306
7307 /*
7308 * SMT sched-domains:
7309 */
7310 #ifdef CONFIG_SCHED_SMT
7311 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7312 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7313
7314 static int
7315 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7316 struct sched_group **sg, struct cpumask *unused)
7317 {
7318 if (sg)
7319 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7320 return cpu;
7321 }
7322 #endif /* CONFIG_SCHED_SMT */
7323
7324 /*
7325 * multi-core sched-domains:
7326 */
7327 #ifdef CONFIG_SCHED_MC
7328 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7329 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7330 #endif /* CONFIG_SCHED_MC */
7331
7332 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7333 static int
7334 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7335 struct sched_group **sg, struct cpumask *mask)
7336 {
7337 int group;
7338
7339 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7340 group = cpumask_first(mask);
7341 if (sg)
7342 *sg = &per_cpu(sched_group_core, group).sg;
7343 return group;
7344 }
7345 #elif defined(CONFIG_SCHED_MC)
7346 static int
7347 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7348 struct sched_group **sg, struct cpumask *unused)
7349 {
7350 if (sg)
7351 *sg = &per_cpu(sched_group_core, cpu).sg;
7352 return cpu;
7353 }
7354 #endif
7355
7356 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7357 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7358
7359 static int
7360 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7361 struct sched_group **sg, struct cpumask *mask)
7362 {
7363 int group;
7364 #ifdef CONFIG_SCHED_MC
7365 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7366 group = cpumask_first(mask);
7367 #elif defined(CONFIG_SCHED_SMT)
7368 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7369 group = cpumask_first(mask);
7370 #else
7371 group = cpu;
7372 #endif
7373 if (sg)
7374 *sg = &per_cpu(sched_group_phys, group).sg;
7375 return group;
7376 }
7377
7378 #ifdef CONFIG_NUMA
7379 /*
7380 * The init_sched_build_groups can't handle what we want to do with node
7381 * groups, so roll our own. Now each node has its own list of groups which
7382 * gets dynamically allocated.
7383 */
7384 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7385 static struct sched_group ***sched_group_nodes_bycpu;
7386
7387 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7388 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7389
7390 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7391 struct sched_group **sg,
7392 struct cpumask *nodemask)
7393 {
7394 int group;
7395
7396 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7397 group = cpumask_first(nodemask);
7398
7399 if (sg)
7400 *sg = &per_cpu(sched_group_allnodes, group).sg;
7401 return group;
7402 }
7403
7404 static void init_numa_sched_groups_power(struct sched_group *group_head)
7405 {
7406 struct sched_group *sg = group_head;
7407 int j;
7408
7409 if (!sg)
7410 return;
7411 do {
7412 for_each_cpu(j, sched_group_cpus(sg)) {
7413 struct sched_domain *sd;
7414
7415 sd = &per_cpu(phys_domains, j).sd;
7416 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7417 /*
7418 * Only add "power" once for each
7419 * physical package.
7420 */
7421 continue;
7422 }
7423
7424 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7425 }
7426 sg = sg->next;
7427 } while (sg != group_head);
7428 }
7429 #endif /* CONFIG_NUMA */
7430
7431 #ifdef CONFIG_NUMA
7432 /* Free memory allocated for various sched_group structures */
7433 static void free_sched_groups(const struct cpumask *cpu_map,
7434 struct cpumask *nodemask)
7435 {
7436 int cpu, i;
7437
7438 for_each_cpu(cpu, cpu_map) {
7439 struct sched_group **sched_group_nodes
7440 = sched_group_nodes_bycpu[cpu];
7441
7442 if (!sched_group_nodes)
7443 continue;
7444
7445 for (i = 0; i < nr_node_ids; i++) {
7446 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7447
7448 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7449 if (cpumask_empty(nodemask))
7450 continue;
7451
7452 if (sg == NULL)
7453 continue;
7454 sg = sg->next;
7455 next_sg:
7456 oldsg = sg;
7457 sg = sg->next;
7458 kfree(oldsg);
7459 if (oldsg != sched_group_nodes[i])
7460 goto next_sg;
7461 }
7462 kfree(sched_group_nodes);
7463 sched_group_nodes_bycpu[cpu] = NULL;
7464 }
7465 }
7466 #else /* !CONFIG_NUMA */
7467 static void free_sched_groups(const struct cpumask *cpu_map,
7468 struct cpumask *nodemask)
7469 {
7470 }
7471 #endif /* CONFIG_NUMA */
7472
7473 /*
7474 * Initialize sched groups cpu_power.
7475 *
7476 * cpu_power indicates the capacity of sched group, which is used while
7477 * distributing the load between different sched groups in a sched domain.
7478 * Typically cpu_power for all the groups in a sched domain will be same unless
7479 * there are asymmetries in the topology. If there are asymmetries, group
7480 * having more cpu_power will pickup more load compared to the group having
7481 * less cpu_power.
7482 *
7483 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7484 * the maximum number of tasks a group can handle in the presence of other idle
7485 * or lightly loaded groups in the same sched domain.
7486 */
7487 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7488 {
7489 struct sched_domain *child;
7490 struct sched_group *group;
7491
7492 WARN_ON(!sd || !sd->groups);
7493
7494 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7495 return;
7496
7497 child = sd->child;
7498
7499 sd->groups->__cpu_power = 0;
7500
7501 /*
7502 * For perf policy, if the groups in child domain share resources
7503 * (for example cores sharing some portions of the cache hierarchy
7504 * or SMT), then set this domain groups cpu_power such that each group
7505 * can handle only one task, when there are other idle groups in the
7506 * same sched domain.
7507 */
7508 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7509 (child->flags &
7510 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7511 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7512 return;
7513 }
7514
7515 /*
7516 * add cpu_power of each child group to this groups cpu_power
7517 */
7518 group = child->groups;
7519 do {
7520 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7521 group = group->next;
7522 } while (group != child->groups);
7523 }
7524
7525 /*
7526 * Initializers for schedule domains
7527 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7528 */
7529
7530 #ifdef CONFIG_SCHED_DEBUG
7531 # define SD_INIT_NAME(sd, type) sd->name = #type
7532 #else
7533 # define SD_INIT_NAME(sd, type) do { } while (0)
7534 #endif
7535
7536 #define SD_INIT(sd, type) sd_init_##type(sd)
7537
7538 #define SD_INIT_FUNC(type) \
7539 static noinline void sd_init_##type(struct sched_domain *sd) \
7540 { \
7541 memset(sd, 0, sizeof(*sd)); \
7542 *sd = SD_##type##_INIT; \
7543 sd->level = SD_LV_##type; \
7544 SD_INIT_NAME(sd, type); \
7545 }
7546
7547 SD_INIT_FUNC(CPU)
7548 #ifdef CONFIG_NUMA
7549 SD_INIT_FUNC(ALLNODES)
7550 SD_INIT_FUNC(NODE)
7551 #endif
7552 #ifdef CONFIG_SCHED_SMT
7553 SD_INIT_FUNC(SIBLING)
7554 #endif
7555 #ifdef CONFIG_SCHED_MC
7556 SD_INIT_FUNC(MC)
7557 #endif
7558
7559 static int default_relax_domain_level = -1;
7560
7561 static int __init setup_relax_domain_level(char *str)
7562 {
7563 unsigned long val;
7564
7565 val = simple_strtoul(str, NULL, 0);
7566 if (val < SD_LV_MAX)
7567 default_relax_domain_level = val;
7568
7569 return 1;
7570 }
7571 __setup("relax_domain_level=", setup_relax_domain_level);
7572
7573 static void set_domain_attribute(struct sched_domain *sd,
7574 struct sched_domain_attr *attr)
7575 {
7576 int request;
7577
7578 if (!attr || attr->relax_domain_level < 0) {
7579 if (default_relax_domain_level < 0)
7580 return;
7581 else
7582 request = default_relax_domain_level;
7583 } else
7584 request = attr->relax_domain_level;
7585 if (request < sd->level) {
7586 /* turn off idle balance on this domain */
7587 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7588 } else {
7589 /* turn on idle balance on this domain */
7590 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7591 }
7592 }
7593
7594 /*
7595 * Build sched domains for a given set of cpus and attach the sched domains
7596 * to the individual cpus
7597 */
7598 static int __build_sched_domains(const struct cpumask *cpu_map,
7599 struct sched_domain_attr *attr)
7600 {
7601 int i, err = -ENOMEM;
7602 struct root_domain *rd;
7603 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7604 tmpmask;
7605 #ifdef CONFIG_NUMA
7606 cpumask_var_t domainspan, covered, notcovered;
7607 struct sched_group **sched_group_nodes = NULL;
7608 int sd_allnodes = 0;
7609
7610 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7611 goto out;
7612 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7613 goto free_domainspan;
7614 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7615 goto free_covered;
7616 #endif
7617
7618 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7619 goto free_notcovered;
7620 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7621 goto free_nodemask;
7622 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7623 goto free_this_sibling_map;
7624 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7625 goto free_this_core_map;
7626 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7627 goto free_send_covered;
7628
7629 #ifdef CONFIG_NUMA
7630 /*
7631 * Allocate the per-node list of sched groups
7632 */
7633 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7634 GFP_KERNEL);
7635 if (!sched_group_nodes) {
7636 printk(KERN_WARNING "Can not alloc sched group node list\n");
7637 goto free_tmpmask;
7638 }
7639 #endif
7640
7641 rd = alloc_rootdomain();
7642 if (!rd) {
7643 printk(KERN_WARNING "Cannot alloc root domain\n");
7644 goto free_sched_groups;
7645 }
7646
7647 #ifdef CONFIG_NUMA
7648 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7649 #endif
7650
7651 /*
7652 * Set up domains for cpus specified by the cpu_map.
7653 */
7654 for_each_cpu(i, cpu_map) {
7655 struct sched_domain *sd = NULL, *p;
7656
7657 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7658
7659 #ifdef CONFIG_NUMA
7660 if (cpumask_weight(cpu_map) >
7661 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7662 sd = &per_cpu(allnodes_domains, i).sd;
7663 SD_INIT(sd, ALLNODES);
7664 set_domain_attribute(sd, attr);
7665 cpumask_copy(sched_domain_span(sd), cpu_map);
7666 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7667 p = sd;
7668 sd_allnodes = 1;
7669 } else
7670 p = NULL;
7671
7672 sd = &per_cpu(node_domains, i).sd;
7673 SD_INIT(sd, NODE);
7674 set_domain_attribute(sd, attr);
7675 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7676 sd->parent = p;
7677 if (p)
7678 p->child = sd;
7679 cpumask_and(sched_domain_span(sd),
7680 sched_domain_span(sd), cpu_map);
7681 #endif
7682
7683 p = sd;
7684 sd = &per_cpu(phys_domains, i).sd;
7685 SD_INIT(sd, CPU);
7686 set_domain_attribute(sd, attr);
7687 cpumask_copy(sched_domain_span(sd), nodemask);
7688 sd->parent = p;
7689 if (p)
7690 p->child = sd;
7691 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7692
7693 #ifdef CONFIG_SCHED_MC
7694 p = sd;
7695 sd = &per_cpu(core_domains, i).sd;
7696 SD_INIT(sd, MC);
7697 set_domain_attribute(sd, attr);
7698 cpumask_and(sched_domain_span(sd), cpu_map,
7699 cpu_coregroup_mask(i));
7700 sd->parent = p;
7701 p->child = sd;
7702 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7703 #endif
7704
7705 #ifdef CONFIG_SCHED_SMT
7706 p = sd;
7707 sd = &per_cpu(cpu_domains, i).sd;
7708 SD_INIT(sd, SIBLING);
7709 set_domain_attribute(sd, attr);
7710 cpumask_and(sched_domain_span(sd),
7711 &per_cpu(cpu_sibling_map, i), cpu_map);
7712 sd->parent = p;
7713 p->child = sd;
7714 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7715 #endif
7716 }
7717
7718 #ifdef CONFIG_SCHED_SMT
7719 /* Set up CPU (sibling) groups */
7720 for_each_cpu(i, cpu_map) {
7721 cpumask_and(this_sibling_map,
7722 &per_cpu(cpu_sibling_map, i), cpu_map);
7723 if (i != cpumask_first(this_sibling_map))
7724 continue;
7725
7726 init_sched_build_groups(this_sibling_map, cpu_map,
7727 &cpu_to_cpu_group,
7728 send_covered, tmpmask);
7729 }
7730 #endif
7731
7732 #ifdef CONFIG_SCHED_MC
7733 /* Set up multi-core groups */
7734 for_each_cpu(i, cpu_map) {
7735 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7736 if (i != cpumask_first(this_core_map))
7737 continue;
7738
7739 init_sched_build_groups(this_core_map, cpu_map,
7740 &cpu_to_core_group,
7741 send_covered, tmpmask);
7742 }
7743 #endif
7744
7745 /* Set up physical groups */
7746 for (i = 0; i < nr_node_ids; i++) {
7747 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7748 if (cpumask_empty(nodemask))
7749 continue;
7750
7751 init_sched_build_groups(nodemask, cpu_map,
7752 &cpu_to_phys_group,
7753 send_covered, tmpmask);
7754 }
7755
7756 #ifdef CONFIG_NUMA
7757 /* Set up node groups */
7758 if (sd_allnodes) {
7759 init_sched_build_groups(cpu_map, cpu_map,
7760 &cpu_to_allnodes_group,
7761 send_covered, tmpmask);
7762 }
7763
7764 for (i = 0; i < nr_node_ids; i++) {
7765 /* Set up node groups */
7766 struct sched_group *sg, *prev;
7767 int j;
7768
7769 cpumask_clear(covered);
7770 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7771 if (cpumask_empty(nodemask)) {
7772 sched_group_nodes[i] = NULL;
7773 continue;
7774 }
7775
7776 sched_domain_node_span(i, domainspan);
7777 cpumask_and(domainspan, domainspan, cpu_map);
7778
7779 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7780 GFP_KERNEL, i);
7781 if (!sg) {
7782 printk(KERN_WARNING "Can not alloc domain group for "
7783 "node %d\n", i);
7784 goto error;
7785 }
7786 sched_group_nodes[i] = sg;
7787 for_each_cpu(j, nodemask) {
7788 struct sched_domain *sd;
7789
7790 sd = &per_cpu(node_domains, j).sd;
7791 sd->groups = sg;
7792 }
7793 sg->__cpu_power = 0;
7794 cpumask_copy(sched_group_cpus(sg), nodemask);
7795 sg->next = sg;
7796 cpumask_or(covered, covered, nodemask);
7797 prev = sg;
7798
7799 for (j = 0; j < nr_node_ids; j++) {
7800 int n = (i + j) % nr_node_ids;
7801
7802 cpumask_complement(notcovered, covered);
7803 cpumask_and(tmpmask, notcovered, cpu_map);
7804 cpumask_and(tmpmask, tmpmask, domainspan);
7805 if (cpumask_empty(tmpmask))
7806 break;
7807
7808 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7809 if (cpumask_empty(tmpmask))
7810 continue;
7811
7812 sg = kmalloc_node(sizeof(struct sched_group) +
7813 cpumask_size(),
7814 GFP_KERNEL, i);
7815 if (!sg) {
7816 printk(KERN_WARNING
7817 "Can not alloc domain group for node %d\n", j);
7818 goto error;
7819 }
7820 sg->__cpu_power = 0;
7821 cpumask_copy(sched_group_cpus(sg), tmpmask);
7822 sg->next = prev->next;
7823 cpumask_or(covered, covered, tmpmask);
7824 prev->next = sg;
7825 prev = sg;
7826 }
7827 }
7828 #endif
7829
7830 /* Calculate CPU power for physical packages and nodes */
7831 #ifdef CONFIG_SCHED_SMT
7832 for_each_cpu(i, cpu_map) {
7833 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7834
7835 init_sched_groups_power(i, sd);
7836 }
7837 #endif
7838 #ifdef CONFIG_SCHED_MC
7839 for_each_cpu(i, cpu_map) {
7840 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7841
7842 init_sched_groups_power(i, sd);
7843 }
7844 #endif
7845
7846 for_each_cpu(i, cpu_map) {
7847 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7848
7849 init_sched_groups_power(i, sd);
7850 }
7851
7852 #ifdef CONFIG_NUMA
7853 for (i = 0; i < nr_node_ids; i++)
7854 init_numa_sched_groups_power(sched_group_nodes[i]);
7855
7856 if (sd_allnodes) {
7857 struct sched_group *sg;
7858
7859 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7860 tmpmask);
7861 init_numa_sched_groups_power(sg);
7862 }
7863 #endif
7864
7865 /* Attach the domains */
7866 for_each_cpu(i, cpu_map) {
7867 struct sched_domain *sd;
7868 #ifdef CONFIG_SCHED_SMT
7869 sd = &per_cpu(cpu_domains, i).sd;
7870 #elif defined(CONFIG_SCHED_MC)
7871 sd = &per_cpu(core_domains, i).sd;
7872 #else
7873 sd = &per_cpu(phys_domains, i).sd;
7874 #endif
7875 cpu_attach_domain(sd, rd, i);
7876 }
7877
7878 err = 0;
7879
7880 free_tmpmask:
7881 free_cpumask_var(tmpmask);
7882 free_send_covered:
7883 free_cpumask_var(send_covered);
7884 free_this_core_map:
7885 free_cpumask_var(this_core_map);
7886 free_this_sibling_map:
7887 free_cpumask_var(this_sibling_map);
7888 free_nodemask:
7889 free_cpumask_var(nodemask);
7890 free_notcovered:
7891 #ifdef CONFIG_NUMA
7892 free_cpumask_var(notcovered);
7893 free_covered:
7894 free_cpumask_var(covered);
7895 free_domainspan:
7896 free_cpumask_var(domainspan);
7897 out:
7898 #endif
7899 return err;
7900
7901 free_sched_groups:
7902 #ifdef CONFIG_NUMA
7903 kfree(sched_group_nodes);
7904 #endif
7905 goto free_tmpmask;
7906
7907 #ifdef CONFIG_NUMA
7908 error:
7909 free_sched_groups(cpu_map, tmpmask);
7910 free_rootdomain(rd);
7911 goto free_tmpmask;
7912 #endif
7913 }
7914
7915 static int build_sched_domains(const struct cpumask *cpu_map)
7916 {
7917 return __build_sched_domains(cpu_map, NULL);
7918 }
7919
7920 static struct cpumask *doms_cur; /* current sched domains */
7921 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7922 static struct sched_domain_attr *dattr_cur;
7923 /* attribues of custom domains in 'doms_cur' */
7924
7925 /*
7926 * Special case: If a kmalloc of a doms_cur partition (array of
7927 * cpumask) fails, then fallback to a single sched domain,
7928 * as determined by the single cpumask fallback_doms.
7929 */
7930 static cpumask_var_t fallback_doms;
7931
7932 /*
7933 * arch_update_cpu_topology lets virtualized architectures update the
7934 * cpu core maps. It is supposed to return 1 if the topology changed
7935 * or 0 if it stayed the same.
7936 */
7937 int __attribute__((weak)) arch_update_cpu_topology(void)
7938 {
7939 return 0;
7940 }
7941
7942 /*
7943 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7944 * For now this just excludes isolated cpus, but could be used to
7945 * exclude other special cases in the future.
7946 */
7947 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7948 {
7949 int err;
7950
7951 arch_update_cpu_topology();
7952 ndoms_cur = 1;
7953 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7954 if (!doms_cur)
7955 doms_cur = fallback_doms;
7956 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7957 dattr_cur = NULL;
7958 err = build_sched_domains(doms_cur);
7959 register_sched_domain_sysctl();
7960
7961 return err;
7962 }
7963
7964 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7965 struct cpumask *tmpmask)
7966 {
7967 free_sched_groups(cpu_map, tmpmask);
7968 }
7969
7970 /*
7971 * Detach sched domains from a group of cpus specified in cpu_map
7972 * These cpus will now be attached to the NULL domain
7973 */
7974 static void detach_destroy_domains(const struct cpumask *cpu_map)
7975 {
7976 /* Save because hotplug lock held. */
7977 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7978 int i;
7979
7980 for_each_cpu(i, cpu_map)
7981 cpu_attach_domain(NULL, &def_root_domain, i);
7982 synchronize_sched();
7983 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7984 }
7985
7986 /* handle null as "default" */
7987 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7988 struct sched_domain_attr *new, int idx_new)
7989 {
7990 struct sched_domain_attr tmp;
7991
7992 /* fast path */
7993 if (!new && !cur)
7994 return 1;
7995
7996 tmp = SD_ATTR_INIT;
7997 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7998 new ? (new + idx_new) : &tmp,
7999 sizeof(struct sched_domain_attr));
8000 }
8001
8002 /*
8003 * Partition sched domains as specified by the 'ndoms_new'
8004 * cpumasks in the array doms_new[] of cpumasks. This compares
8005 * doms_new[] to the current sched domain partitioning, doms_cur[].
8006 * It destroys each deleted domain and builds each new domain.
8007 *
8008 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8009 * The masks don't intersect (don't overlap.) We should setup one
8010 * sched domain for each mask. CPUs not in any of the cpumasks will
8011 * not be load balanced. If the same cpumask appears both in the
8012 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8013 * it as it is.
8014 *
8015 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8016 * ownership of it and will kfree it when done with it. If the caller
8017 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8018 * ndoms_new == 1, and partition_sched_domains() will fallback to
8019 * the single partition 'fallback_doms', it also forces the domains
8020 * to be rebuilt.
8021 *
8022 * If doms_new == NULL it will be replaced with cpu_online_mask.
8023 * ndoms_new == 0 is a special case for destroying existing domains,
8024 * and it will not create the default domain.
8025 *
8026 * Call with hotplug lock held
8027 */
8028 /* FIXME: Change to struct cpumask *doms_new[] */
8029 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8030 struct sched_domain_attr *dattr_new)
8031 {
8032 int i, j, n;
8033 int new_topology;
8034
8035 mutex_lock(&sched_domains_mutex);
8036
8037 /* always unregister in case we don't destroy any domains */
8038 unregister_sched_domain_sysctl();
8039
8040 /* Let architecture update cpu core mappings. */
8041 new_topology = arch_update_cpu_topology();
8042
8043 n = doms_new ? ndoms_new : 0;
8044
8045 /* Destroy deleted domains */
8046 for (i = 0; i < ndoms_cur; i++) {
8047 for (j = 0; j < n && !new_topology; j++) {
8048 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8049 && dattrs_equal(dattr_cur, i, dattr_new, j))
8050 goto match1;
8051 }
8052 /* no match - a current sched domain not in new doms_new[] */
8053 detach_destroy_domains(doms_cur + i);
8054 match1:
8055 ;
8056 }
8057
8058 if (doms_new == NULL) {
8059 ndoms_cur = 0;
8060 doms_new = fallback_doms;
8061 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8062 WARN_ON_ONCE(dattr_new);
8063 }
8064
8065 /* Build new domains */
8066 for (i = 0; i < ndoms_new; i++) {
8067 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8068 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8069 && dattrs_equal(dattr_new, i, dattr_cur, j))
8070 goto match2;
8071 }
8072 /* no match - add a new doms_new */
8073 __build_sched_domains(doms_new + i,
8074 dattr_new ? dattr_new + i : NULL);
8075 match2:
8076 ;
8077 }
8078
8079 /* Remember the new sched domains */
8080 if (doms_cur != fallback_doms)
8081 kfree(doms_cur);
8082 kfree(dattr_cur); /* kfree(NULL) is safe */
8083 doms_cur = doms_new;
8084 dattr_cur = dattr_new;
8085 ndoms_cur = ndoms_new;
8086
8087 register_sched_domain_sysctl();
8088
8089 mutex_unlock(&sched_domains_mutex);
8090 }
8091
8092 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8093 static void arch_reinit_sched_domains(void)
8094 {
8095 get_online_cpus();
8096
8097 /* Destroy domains first to force the rebuild */
8098 partition_sched_domains(0, NULL, NULL);
8099
8100 rebuild_sched_domains();
8101 put_online_cpus();
8102 }
8103
8104 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8105 {
8106 unsigned int level = 0;
8107
8108 if (sscanf(buf, "%u", &level) != 1)
8109 return -EINVAL;
8110
8111 /*
8112 * level is always be positive so don't check for
8113 * level < POWERSAVINGS_BALANCE_NONE which is 0
8114 * What happens on 0 or 1 byte write,
8115 * need to check for count as well?
8116 */
8117
8118 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8119 return -EINVAL;
8120
8121 if (smt)
8122 sched_smt_power_savings = level;
8123 else
8124 sched_mc_power_savings = level;
8125
8126 arch_reinit_sched_domains();
8127
8128 return count;
8129 }
8130
8131 #ifdef CONFIG_SCHED_MC
8132 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8133 char *page)
8134 {
8135 return sprintf(page, "%u\n", sched_mc_power_savings);
8136 }
8137 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8138 const char *buf, size_t count)
8139 {
8140 return sched_power_savings_store(buf, count, 0);
8141 }
8142 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8143 sched_mc_power_savings_show,
8144 sched_mc_power_savings_store);
8145 #endif
8146
8147 #ifdef CONFIG_SCHED_SMT
8148 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8149 char *page)
8150 {
8151 return sprintf(page, "%u\n", sched_smt_power_savings);
8152 }
8153 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8154 const char *buf, size_t count)
8155 {
8156 return sched_power_savings_store(buf, count, 1);
8157 }
8158 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8159 sched_smt_power_savings_show,
8160 sched_smt_power_savings_store);
8161 #endif
8162
8163 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8164 {
8165 int err = 0;
8166
8167 #ifdef CONFIG_SCHED_SMT
8168 if (smt_capable())
8169 err = sysfs_create_file(&cls->kset.kobj,
8170 &attr_sched_smt_power_savings.attr);
8171 #endif
8172 #ifdef CONFIG_SCHED_MC
8173 if (!err && mc_capable())
8174 err = sysfs_create_file(&cls->kset.kobj,
8175 &attr_sched_mc_power_savings.attr);
8176 #endif
8177 return err;
8178 }
8179 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8180
8181 #ifndef CONFIG_CPUSETS
8182 /*
8183 * Add online and remove offline CPUs from the scheduler domains.
8184 * When cpusets are enabled they take over this function.
8185 */
8186 static int update_sched_domains(struct notifier_block *nfb,
8187 unsigned long action, void *hcpu)
8188 {
8189 switch (action) {
8190 case CPU_ONLINE:
8191 case CPU_ONLINE_FROZEN:
8192 case CPU_DEAD:
8193 case CPU_DEAD_FROZEN:
8194 partition_sched_domains(1, NULL, NULL);
8195 return NOTIFY_OK;
8196
8197 default:
8198 return NOTIFY_DONE;
8199 }
8200 }
8201 #endif
8202
8203 static int update_runtime(struct notifier_block *nfb,
8204 unsigned long action, void *hcpu)
8205 {
8206 int cpu = (int)(long)hcpu;
8207
8208 switch (action) {
8209 case CPU_DOWN_PREPARE:
8210 case CPU_DOWN_PREPARE_FROZEN:
8211 disable_runtime(cpu_rq(cpu));
8212 return NOTIFY_OK;
8213
8214 case CPU_DOWN_FAILED:
8215 case CPU_DOWN_FAILED_FROZEN:
8216 case CPU_ONLINE:
8217 case CPU_ONLINE_FROZEN:
8218 enable_runtime(cpu_rq(cpu));
8219 return NOTIFY_OK;
8220
8221 default:
8222 return NOTIFY_DONE;
8223 }
8224 }
8225
8226 void __init sched_init_smp(void)
8227 {
8228 cpumask_var_t non_isolated_cpus;
8229
8230 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8231
8232 #if defined(CONFIG_NUMA)
8233 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8234 GFP_KERNEL);
8235 BUG_ON(sched_group_nodes_bycpu == NULL);
8236 #endif
8237 get_online_cpus();
8238 mutex_lock(&sched_domains_mutex);
8239 arch_init_sched_domains(cpu_online_mask);
8240 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8241 if (cpumask_empty(non_isolated_cpus))
8242 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8243 mutex_unlock(&sched_domains_mutex);
8244 put_online_cpus();
8245
8246 #ifndef CONFIG_CPUSETS
8247 /* XXX: Theoretical race here - CPU may be hotplugged now */
8248 hotcpu_notifier(update_sched_domains, 0);
8249 #endif
8250
8251 /* RT runtime code needs to handle some hotplug events */
8252 hotcpu_notifier(update_runtime, 0);
8253
8254 init_hrtick();
8255
8256 /* Move init over to a non-isolated CPU */
8257 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8258 BUG();
8259 sched_init_granularity();
8260 free_cpumask_var(non_isolated_cpus);
8261
8262 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8263 init_sched_rt_class();
8264 }
8265 #else
8266 void __init sched_init_smp(void)
8267 {
8268 sched_init_granularity();
8269 }
8270 #endif /* CONFIG_SMP */
8271
8272 int in_sched_functions(unsigned long addr)
8273 {
8274 return in_lock_functions(addr) ||
8275 (addr >= (unsigned long)__sched_text_start
8276 && addr < (unsigned long)__sched_text_end);
8277 }
8278
8279 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8280 {
8281 cfs_rq->tasks_timeline = RB_ROOT;
8282 INIT_LIST_HEAD(&cfs_rq->tasks);
8283 #ifdef CONFIG_FAIR_GROUP_SCHED
8284 cfs_rq->rq = rq;
8285 #endif
8286 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8287 }
8288
8289 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8290 {
8291 struct rt_prio_array *array;
8292 int i;
8293
8294 array = &rt_rq->active;
8295 for (i = 0; i < MAX_RT_PRIO; i++) {
8296 INIT_LIST_HEAD(array->queue + i);
8297 __clear_bit(i, array->bitmap);
8298 }
8299 /* delimiter for bitsearch: */
8300 __set_bit(MAX_RT_PRIO, array->bitmap);
8301
8302 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8303 rt_rq->highest_prio = MAX_RT_PRIO;
8304 #endif
8305 #ifdef CONFIG_SMP
8306 rt_rq->rt_nr_migratory = 0;
8307 rt_rq->overloaded = 0;
8308 #endif
8309
8310 rt_rq->rt_time = 0;
8311 rt_rq->rt_throttled = 0;
8312 rt_rq->rt_runtime = 0;
8313 spin_lock_init(&rt_rq->rt_runtime_lock);
8314
8315 #ifdef CONFIG_RT_GROUP_SCHED
8316 rt_rq->rt_nr_boosted = 0;
8317 rt_rq->rq = rq;
8318 #endif
8319 }
8320
8321 #ifdef CONFIG_FAIR_GROUP_SCHED
8322 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8323 struct sched_entity *se, int cpu, int add,
8324 struct sched_entity *parent)
8325 {
8326 struct rq *rq = cpu_rq(cpu);
8327 tg->cfs_rq[cpu] = cfs_rq;
8328 init_cfs_rq(cfs_rq, rq);
8329 cfs_rq->tg = tg;
8330 if (add)
8331 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8332
8333 tg->se[cpu] = se;
8334 /* se could be NULL for init_task_group */
8335 if (!se)
8336 return;
8337
8338 if (!parent)
8339 se->cfs_rq = &rq->cfs;
8340 else
8341 se->cfs_rq = parent->my_q;
8342
8343 se->my_q = cfs_rq;
8344 se->load.weight = tg->shares;
8345 se->load.inv_weight = 0;
8346 se->parent = parent;
8347 }
8348 #endif
8349
8350 #ifdef CONFIG_RT_GROUP_SCHED
8351 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8352 struct sched_rt_entity *rt_se, int cpu, int add,
8353 struct sched_rt_entity *parent)
8354 {
8355 struct rq *rq = cpu_rq(cpu);
8356
8357 tg->rt_rq[cpu] = rt_rq;
8358 init_rt_rq(rt_rq, rq);
8359 rt_rq->tg = tg;
8360 rt_rq->rt_se = rt_se;
8361 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8362 if (add)
8363 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8364
8365 tg->rt_se[cpu] = rt_se;
8366 if (!rt_se)
8367 return;
8368
8369 if (!parent)
8370 rt_se->rt_rq = &rq->rt;
8371 else
8372 rt_se->rt_rq = parent->my_q;
8373
8374 rt_se->my_q = rt_rq;
8375 rt_se->parent = parent;
8376 INIT_LIST_HEAD(&rt_se->run_list);
8377 }
8378 #endif
8379
8380 void __init sched_init(void)
8381 {
8382 int i, j;
8383 unsigned long alloc_size = 0, ptr;
8384
8385 #ifdef CONFIG_FAIR_GROUP_SCHED
8386 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8387 #endif
8388 #ifdef CONFIG_RT_GROUP_SCHED
8389 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8390 #endif
8391 #ifdef CONFIG_USER_SCHED
8392 alloc_size *= 2;
8393 #endif
8394 /*
8395 * As sched_init() is called before page_alloc is setup,
8396 * we use alloc_bootmem().
8397 */
8398 if (alloc_size) {
8399 ptr = (unsigned long)alloc_bootmem(alloc_size);
8400
8401 #ifdef CONFIG_FAIR_GROUP_SCHED
8402 init_task_group.se = (struct sched_entity **)ptr;
8403 ptr += nr_cpu_ids * sizeof(void **);
8404
8405 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8406 ptr += nr_cpu_ids * sizeof(void **);
8407
8408 #ifdef CONFIG_USER_SCHED
8409 root_task_group.se = (struct sched_entity **)ptr;
8410 ptr += nr_cpu_ids * sizeof(void **);
8411
8412 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8413 ptr += nr_cpu_ids * sizeof(void **);
8414 #endif /* CONFIG_USER_SCHED */
8415 #endif /* CONFIG_FAIR_GROUP_SCHED */
8416 #ifdef CONFIG_RT_GROUP_SCHED
8417 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8418 ptr += nr_cpu_ids * sizeof(void **);
8419
8420 init_task_group.rt_rq = (struct rt_rq **)ptr;
8421 ptr += nr_cpu_ids * sizeof(void **);
8422
8423 #ifdef CONFIG_USER_SCHED
8424 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8425 ptr += nr_cpu_ids * sizeof(void **);
8426
8427 root_task_group.rt_rq = (struct rt_rq **)ptr;
8428 ptr += nr_cpu_ids * sizeof(void **);
8429 #endif /* CONFIG_USER_SCHED */
8430 #endif /* CONFIG_RT_GROUP_SCHED */
8431 }
8432
8433 #ifdef CONFIG_SMP
8434 init_defrootdomain();
8435 #endif
8436
8437 init_rt_bandwidth(&def_rt_bandwidth,
8438 global_rt_period(), global_rt_runtime());
8439
8440 #ifdef CONFIG_RT_GROUP_SCHED
8441 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8442 global_rt_period(), global_rt_runtime());
8443 #ifdef CONFIG_USER_SCHED
8444 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8445 global_rt_period(), RUNTIME_INF);
8446 #endif /* CONFIG_USER_SCHED */
8447 #endif /* CONFIG_RT_GROUP_SCHED */
8448
8449 #ifdef CONFIG_GROUP_SCHED
8450 list_add(&init_task_group.list, &task_groups);
8451 INIT_LIST_HEAD(&init_task_group.children);
8452
8453 #ifdef CONFIG_USER_SCHED
8454 INIT_LIST_HEAD(&root_task_group.children);
8455 init_task_group.parent = &root_task_group;
8456 list_add(&init_task_group.siblings, &root_task_group.children);
8457 #endif /* CONFIG_USER_SCHED */
8458 #endif /* CONFIG_GROUP_SCHED */
8459
8460 for_each_possible_cpu(i) {
8461 struct rq *rq;
8462
8463 rq = cpu_rq(i);
8464 spin_lock_init(&rq->lock);
8465 rq->nr_running = 0;
8466 init_cfs_rq(&rq->cfs, rq);
8467 init_rt_rq(&rq->rt, rq);
8468 #ifdef CONFIG_FAIR_GROUP_SCHED
8469 init_task_group.shares = init_task_group_load;
8470 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8471 #ifdef CONFIG_CGROUP_SCHED
8472 /*
8473 * How much cpu bandwidth does init_task_group get?
8474 *
8475 * In case of task-groups formed thr' the cgroup filesystem, it
8476 * gets 100% of the cpu resources in the system. This overall
8477 * system cpu resource is divided among the tasks of
8478 * init_task_group and its child task-groups in a fair manner,
8479 * based on each entity's (task or task-group's) weight
8480 * (se->load.weight).
8481 *
8482 * In other words, if init_task_group has 10 tasks of weight
8483 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8484 * then A0's share of the cpu resource is:
8485 *
8486 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8487 *
8488 * We achieve this by letting init_task_group's tasks sit
8489 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8490 */
8491 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8492 #elif defined CONFIG_USER_SCHED
8493 root_task_group.shares = NICE_0_LOAD;
8494 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8495 /*
8496 * In case of task-groups formed thr' the user id of tasks,
8497 * init_task_group represents tasks belonging to root user.
8498 * Hence it forms a sibling of all subsequent groups formed.
8499 * In this case, init_task_group gets only a fraction of overall
8500 * system cpu resource, based on the weight assigned to root
8501 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8502 * by letting tasks of init_task_group sit in a separate cfs_rq
8503 * (init_cfs_rq) and having one entity represent this group of
8504 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8505 */
8506 init_tg_cfs_entry(&init_task_group,
8507 &per_cpu(init_cfs_rq, i),
8508 &per_cpu(init_sched_entity, i), i, 1,
8509 root_task_group.se[i]);
8510
8511 #endif
8512 #endif /* CONFIG_FAIR_GROUP_SCHED */
8513
8514 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8515 #ifdef CONFIG_RT_GROUP_SCHED
8516 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8517 #ifdef CONFIG_CGROUP_SCHED
8518 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8519 #elif defined CONFIG_USER_SCHED
8520 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8521 init_tg_rt_entry(&init_task_group,
8522 &per_cpu(init_rt_rq, i),
8523 &per_cpu(init_sched_rt_entity, i), i, 1,
8524 root_task_group.rt_se[i]);
8525 #endif
8526 #endif
8527
8528 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8529 rq->cpu_load[j] = 0;
8530 #ifdef CONFIG_SMP
8531 rq->sd = NULL;
8532 rq->rd = NULL;
8533 rq->active_balance = 0;
8534 rq->next_balance = jiffies;
8535 rq->push_cpu = 0;
8536 rq->cpu = i;
8537 rq->online = 0;
8538 rq->migration_thread = NULL;
8539 INIT_LIST_HEAD(&rq->migration_queue);
8540 rq_attach_root(rq, &def_root_domain);
8541 #endif
8542 init_rq_hrtick(rq);
8543 atomic_set(&rq->nr_iowait, 0);
8544 }
8545
8546 set_load_weight(&init_task);
8547
8548 #ifdef CONFIG_PREEMPT_NOTIFIERS
8549 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8550 #endif
8551
8552 #ifdef CONFIG_SMP
8553 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8554 #endif
8555
8556 #ifdef CONFIG_RT_MUTEXES
8557 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8558 #endif
8559
8560 /*
8561 * The boot idle thread does lazy MMU switching as well:
8562 */
8563 atomic_inc(&init_mm.mm_count);
8564 enter_lazy_tlb(&init_mm, current);
8565
8566 /*
8567 * Make us the idle thread. Technically, schedule() should not be
8568 * called from this thread, however somewhere below it might be,
8569 * but because we are the idle thread, we just pick up running again
8570 * when this runqueue becomes "idle".
8571 */
8572 init_idle(current, smp_processor_id());
8573 /*
8574 * During early bootup we pretend to be a normal task:
8575 */
8576 current->sched_class = &fair_sched_class;
8577
8578 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8579 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8580 #ifdef CONFIG_SMP
8581 #ifdef CONFIG_NO_HZ
8582 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8583 #endif
8584 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8585 #endif /* SMP */
8586
8587 scheduler_running = 1;
8588 }
8589
8590 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8591 void __might_sleep(char *file, int line)
8592 {
8593 #ifdef in_atomic
8594 static unsigned long prev_jiffy; /* ratelimiting */
8595
8596 if ((!in_atomic() && !irqs_disabled()) ||
8597 system_state != SYSTEM_RUNNING || oops_in_progress)
8598 return;
8599 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8600 return;
8601 prev_jiffy = jiffies;
8602
8603 printk(KERN_ERR
8604 "BUG: sleeping function called from invalid context at %s:%d\n",
8605 file, line);
8606 printk(KERN_ERR
8607 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8608 in_atomic(), irqs_disabled(),
8609 current->pid, current->comm);
8610
8611 debug_show_held_locks(current);
8612 if (irqs_disabled())
8613 print_irqtrace_events(current);
8614 dump_stack();
8615 #endif
8616 }
8617 EXPORT_SYMBOL(__might_sleep);
8618 #endif
8619
8620 #ifdef CONFIG_MAGIC_SYSRQ
8621 static void normalize_task(struct rq *rq, struct task_struct *p)
8622 {
8623 int on_rq;
8624
8625 update_rq_clock(rq);
8626 on_rq = p->se.on_rq;
8627 if (on_rq)
8628 deactivate_task(rq, p, 0);
8629 __setscheduler(rq, p, SCHED_NORMAL, 0);
8630 if (on_rq) {
8631 activate_task(rq, p, 0);
8632 resched_task(rq->curr);
8633 }
8634 }
8635
8636 void normalize_rt_tasks(void)
8637 {
8638 struct task_struct *g, *p;
8639 unsigned long flags;
8640 struct rq *rq;
8641
8642 read_lock_irqsave(&tasklist_lock, flags);
8643 do_each_thread(g, p) {
8644 /*
8645 * Only normalize user tasks:
8646 */
8647 if (!p->mm)
8648 continue;
8649
8650 p->se.exec_start = 0;
8651 #ifdef CONFIG_SCHEDSTATS
8652 p->se.wait_start = 0;
8653 p->se.sleep_start = 0;
8654 p->se.block_start = 0;
8655 #endif
8656
8657 if (!rt_task(p)) {
8658 /*
8659 * Renice negative nice level userspace
8660 * tasks back to 0:
8661 */
8662 if (TASK_NICE(p) < 0 && p->mm)
8663 set_user_nice(p, 0);
8664 continue;
8665 }
8666
8667 spin_lock(&p->pi_lock);
8668 rq = __task_rq_lock(p);
8669
8670 normalize_task(rq, p);
8671
8672 __task_rq_unlock(rq);
8673 spin_unlock(&p->pi_lock);
8674 } while_each_thread(g, p);
8675
8676 read_unlock_irqrestore(&tasklist_lock, flags);
8677 }
8678
8679 #endif /* CONFIG_MAGIC_SYSRQ */
8680
8681 #ifdef CONFIG_IA64
8682 /*
8683 * These functions are only useful for the IA64 MCA handling.
8684 *
8685 * They can only be called when the whole system has been
8686 * stopped - every CPU needs to be quiescent, and no scheduling
8687 * activity can take place. Using them for anything else would
8688 * be a serious bug, and as a result, they aren't even visible
8689 * under any other configuration.
8690 */
8691
8692 /**
8693 * curr_task - return the current task for a given cpu.
8694 * @cpu: the processor in question.
8695 *
8696 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8697 */
8698 struct task_struct *curr_task(int cpu)
8699 {
8700 return cpu_curr(cpu);
8701 }
8702
8703 /**
8704 * set_curr_task - set the current task for a given cpu.
8705 * @cpu: the processor in question.
8706 * @p: the task pointer to set.
8707 *
8708 * Description: This function must only be used when non-maskable interrupts
8709 * are serviced on a separate stack. It allows the architecture to switch the
8710 * notion of the current task on a cpu in a non-blocking manner. This function
8711 * must be called with all CPU's synchronized, and interrupts disabled, the
8712 * and caller must save the original value of the current task (see
8713 * curr_task() above) and restore that value before reenabling interrupts and
8714 * re-starting the system.
8715 *
8716 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8717 */
8718 void set_curr_task(int cpu, struct task_struct *p)
8719 {
8720 cpu_curr(cpu) = p;
8721 }
8722
8723 #endif
8724
8725 #ifdef CONFIG_FAIR_GROUP_SCHED
8726 static void free_fair_sched_group(struct task_group *tg)
8727 {
8728 int i;
8729
8730 for_each_possible_cpu(i) {
8731 if (tg->cfs_rq)
8732 kfree(tg->cfs_rq[i]);
8733 if (tg->se)
8734 kfree(tg->se[i]);
8735 }
8736
8737 kfree(tg->cfs_rq);
8738 kfree(tg->se);
8739 }
8740
8741 static
8742 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8743 {
8744 struct cfs_rq *cfs_rq;
8745 struct sched_entity *se;
8746 struct rq *rq;
8747 int i;
8748
8749 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8750 if (!tg->cfs_rq)
8751 goto err;
8752 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8753 if (!tg->se)
8754 goto err;
8755
8756 tg->shares = NICE_0_LOAD;
8757
8758 for_each_possible_cpu(i) {
8759 rq = cpu_rq(i);
8760
8761 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8762 GFP_KERNEL, cpu_to_node(i));
8763 if (!cfs_rq)
8764 goto err;
8765
8766 se = kzalloc_node(sizeof(struct sched_entity),
8767 GFP_KERNEL, cpu_to_node(i));
8768 if (!se)
8769 goto err;
8770
8771 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8772 }
8773
8774 return 1;
8775
8776 err:
8777 return 0;
8778 }
8779
8780 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8781 {
8782 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8783 &cpu_rq(cpu)->leaf_cfs_rq_list);
8784 }
8785
8786 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8787 {
8788 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8789 }
8790 #else /* !CONFG_FAIR_GROUP_SCHED */
8791 static inline void free_fair_sched_group(struct task_group *tg)
8792 {
8793 }
8794
8795 static inline
8796 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8797 {
8798 return 1;
8799 }
8800
8801 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8802 {
8803 }
8804
8805 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8806 {
8807 }
8808 #endif /* CONFIG_FAIR_GROUP_SCHED */
8809
8810 #ifdef CONFIG_RT_GROUP_SCHED
8811 static void free_rt_sched_group(struct task_group *tg)
8812 {
8813 int i;
8814
8815 destroy_rt_bandwidth(&tg->rt_bandwidth);
8816
8817 for_each_possible_cpu(i) {
8818 if (tg->rt_rq)
8819 kfree(tg->rt_rq[i]);
8820 if (tg->rt_se)
8821 kfree(tg->rt_se[i]);
8822 }
8823
8824 kfree(tg->rt_rq);
8825 kfree(tg->rt_se);
8826 }
8827
8828 static
8829 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8830 {
8831 struct rt_rq *rt_rq;
8832 struct sched_rt_entity *rt_se;
8833 struct rq *rq;
8834 int i;
8835
8836 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8837 if (!tg->rt_rq)
8838 goto err;
8839 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8840 if (!tg->rt_se)
8841 goto err;
8842
8843 init_rt_bandwidth(&tg->rt_bandwidth,
8844 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8845
8846 for_each_possible_cpu(i) {
8847 rq = cpu_rq(i);
8848
8849 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8850 GFP_KERNEL, cpu_to_node(i));
8851 if (!rt_rq)
8852 goto err;
8853
8854 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8855 GFP_KERNEL, cpu_to_node(i));
8856 if (!rt_se)
8857 goto err;
8858
8859 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8860 }
8861
8862 return 1;
8863
8864 err:
8865 return 0;
8866 }
8867
8868 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8869 {
8870 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8871 &cpu_rq(cpu)->leaf_rt_rq_list);
8872 }
8873
8874 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8875 {
8876 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8877 }
8878 #else /* !CONFIG_RT_GROUP_SCHED */
8879 static inline void free_rt_sched_group(struct task_group *tg)
8880 {
8881 }
8882
8883 static inline
8884 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8885 {
8886 return 1;
8887 }
8888
8889 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8890 {
8891 }
8892
8893 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8894 {
8895 }
8896 #endif /* CONFIG_RT_GROUP_SCHED */
8897
8898 #ifdef CONFIG_GROUP_SCHED
8899 static void free_sched_group(struct task_group *tg)
8900 {
8901 free_fair_sched_group(tg);
8902 free_rt_sched_group(tg);
8903 kfree(tg);
8904 }
8905
8906 /* allocate runqueue etc for a new task group */
8907 struct task_group *sched_create_group(struct task_group *parent)
8908 {
8909 struct task_group *tg;
8910 unsigned long flags;
8911 int i;
8912
8913 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8914 if (!tg)
8915 return ERR_PTR(-ENOMEM);
8916
8917 if (!alloc_fair_sched_group(tg, parent))
8918 goto err;
8919
8920 if (!alloc_rt_sched_group(tg, parent))
8921 goto err;
8922
8923 spin_lock_irqsave(&task_group_lock, flags);
8924 for_each_possible_cpu(i) {
8925 register_fair_sched_group(tg, i);
8926 register_rt_sched_group(tg, i);
8927 }
8928 list_add_rcu(&tg->list, &task_groups);
8929
8930 WARN_ON(!parent); /* root should already exist */
8931
8932 tg->parent = parent;
8933 INIT_LIST_HEAD(&tg->children);
8934 list_add_rcu(&tg->siblings, &parent->children);
8935 spin_unlock_irqrestore(&task_group_lock, flags);
8936
8937 return tg;
8938
8939 err:
8940 free_sched_group(tg);
8941 return ERR_PTR(-ENOMEM);
8942 }
8943
8944 /* rcu callback to free various structures associated with a task group */
8945 static void free_sched_group_rcu(struct rcu_head *rhp)
8946 {
8947 /* now it should be safe to free those cfs_rqs */
8948 free_sched_group(container_of(rhp, struct task_group, rcu));
8949 }
8950
8951 /* Destroy runqueue etc associated with a task group */
8952 void sched_destroy_group(struct task_group *tg)
8953 {
8954 unsigned long flags;
8955 int i;
8956
8957 spin_lock_irqsave(&task_group_lock, flags);
8958 for_each_possible_cpu(i) {
8959 unregister_fair_sched_group(tg, i);
8960 unregister_rt_sched_group(tg, i);
8961 }
8962 list_del_rcu(&tg->list);
8963 list_del_rcu(&tg->siblings);
8964 spin_unlock_irqrestore(&task_group_lock, flags);
8965
8966 /* wait for possible concurrent references to cfs_rqs complete */
8967 call_rcu(&tg->rcu, free_sched_group_rcu);
8968 }
8969
8970 /* change task's runqueue when it moves between groups.
8971 * The caller of this function should have put the task in its new group
8972 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8973 * reflect its new group.
8974 */
8975 void sched_move_task(struct task_struct *tsk)
8976 {
8977 int on_rq, running;
8978 unsigned long flags;
8979 struct rq *rq;
8980
8981 rq = task_rq_lock(tsk, &flags);
8982
8983 update_rq_clock(rq);
8984
8985 running = task_current(rq, tsk);
8986 on_rq = tsk->se.on_rq;
8987
8988 if (on_rq)
8989 dequeue_task(rq, tsk, 0);
8990 if (unlikely(running))
8991 tsk->sched_class->put_prev_task(rq, tsk);
8992
8993 set_task_rq(tsk, task_cpu(tsk));
8994
8995 #ifdef CONFIG_FAIR_GROUP_SCHED
8996 if (tsk->sched_class->moved_group)
8997 tsk->sched_class->moved_group(tsk);
8998 #endif
8999
9000 if (unlikely(running))
9001 tsk->sched_class->set_curr_task(rq);
9002 if (on_rq)
9003 enqueue_task(rq, tsk, 0);
9004
9005 task_rq_unlock(rq, &flags);
9006 }
9007 #endif /* CONFIG_GROUP_SCHED */
9008
9009 #ifdef CONFIG_FAIR_GROUP_SCHED
9010 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9011 {
9012 struct cfs_rq *cfs_rq = se->cfs_rq;
9013 int on_rq;
9014
9015 on_rq = se->on_rq;
9016 if (on_rq)
9017 dequeue_entity(cfs_rq, se, 0);
9018
9019 se->load.weight = shares;
9020 se->load.inv_weight = 0;
9021
9022 if (on_rq)
9023 enqueue_entity(cfs_rq, se, 0);
9024 }
9025
9026 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9027 {
9028 struct cfs_rq *cfs_rq = se->cfs_rq;
9029 struct rq *rq = cfs_rq->rq;
9030 unsigned long flags;
9031
9032 spin_lock_irqsave(&rq->lock, flags);
9033 __set_se_shares(se, shares);
9034 spin_unlock_irqrestore(&rq->lock, flags);
9035 }
9036
9037 static DEFINE_MUTEX(shares_mutex);
9038
9039 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9040 {
9041 int i;
9042 unsigned long flags;
9043
9044 /*
9045 * We can't change the weight of the root cgroup.
9046 */
9047 if (!tg->se[0])
9048 return -EINVAL;
9049
9050 if (shares < MIN_SHARES)
9051 shares = MIN_SHARES;
9052 else if (shares > MAX_SHARES)
9053 shares = MAX_SHARES;
9054
9055 mutex_lock(&shares_mutex);
9056 if (tg->shares == shares)
9057 goto done;
9058
9059 spin_lock_irqsave(&task_group_lock, flags);
9060 for_each_possible_cpu(i)
9061 unregister_fair_sched_group(tg, i);
9062 list_del_rcu(&tg->siblings);
9063 spin_unlock_irqrestore(&task_group_lock, flags);
9064
9065 /* wait for any ongoing reference to this group to finish */
9066 synchronize_sched();
9067
9068 /*
9069 * Now we are free to modify the group's share on each cpu
9070 * w/o tripping rebalance_share or load_balance_fair.
9071 */
9072 tg->shares = shares;
9073 for_each_possible_cpu(i) {
9074 /*
9075 * force a rebalance
9076 */
9077 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9078 set_se_shares(tg->se[i], shares);
9079 }
9080
9081 /*
9082 * Enable load balance activity on this group, by inserting it back on
9083 * each cpu's rq->leaf_cfs_rq_list.
9084 */
9085 spin_lock_irqsave(&task_group_lock, flags);
9086 for_each_possible_cpu(i)
9087 register_fair_sched_group(tg, i);
9088 list_add_rcu(&tg->siblings, &tg->parent->children);
9089 spin_unlock_irqrestore(&task_group_lock, flags);
9090 done:
9091 mutex_unlock(&shares_mutex);
9092 return 0;
9093 }
9094
9095 unsigned long sched_group_shares(struct task_group *tg)
9096 {
9097 return tg->shares;
9098 }
9099 #endif
9100
9101 #ifdef CONFIG_RT_GROUP_SCHED
9102 /*
9103 * Ensure that the real time constraints are schedulable.
9104 */
9105 static DEFINE_MUTEX(rt_constraints_mutex);
9106
9107 static unsigned long to_ratio(u64 period, u64 runtime)
9108 {
9109 if (runtime == RUNTIME_INF)
9110 return 1ULL << 20;
9111
9112 return div64_u64(runtime << 20, period);
9113 }
9114
9115 /* Must be called with tasklist_lock held */
9116 static inline int tg_has_rt_tasks(struct task_group *tg)
9117 {
9118 struct task_struct *g, *p;
9119
9120 do_each_thread(g, p) {
9121 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9122 return 1;
9123 } while_each_thread(g, p);
9124
9125 return 0;
9126 }
9127
9128 struct rt_schedulable_data {
9129 struct task_group *tg;
9130 u64 rt_period;
9131 u64 rt_runtime;
9132 };
9133
9134 static int tg_schedulable(struct task_group *tg, void *data)
9135 {
9136 struct rt_schedulable_data *d = data;
9137 struct task_group *child;
9138 unsigned long total, sum = 0;
9139 u64 period, runtime;
9140
9141 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9142 runtime = tg->rt_bandwidth.rt_runtime;
9143
9144 if (tg == d->tg) {
9145 period = d->rt_period;
9146 runtime = d->rt_runtime;
9147 }
9148
9149 #ifdef CONFIG_USER_SCHED
9150 if (tg == &root_task_group) {
9151 period = global_rt_period();
9152 runtime = global_rt_runtime();
9153 }
9154 #endif
9155
9156 /*
9157 * Cannot have more runtime than the period.
9158 */
9159 if (runtime > period && runtime != RUNTIME_INF)
9160 return -EINVAL;
9161
9162 /*
9163 * Ensure we don't starve existing RT tasks.
9164 */
9165 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9166 return -EBUSY;
9167
9168 total = to_ratio(period, runtime);
9169
9170 /*
9171 * Nobody can have more than the global setting allows.
9172 */
9173 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9174 return -EINVAL;
9175
9176 /*
9177 * The sum of our children's runtime should not exceed our own.
9178 */
9179 list_for_each_entry_rcu(child, &tg->children, siblings) {
9180 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9181 runtime = child->rt_bandwidth.rt_runtime;
9182
9183 if (child == d->tg) {
9184 period = d->rt_period;
9185 runtime = d->rt_runtime;
9186 }
9187
9188 sum += to_ratio(period, runtime);
9189 }
9190
9191 if (sum > total)
9192 return -EINVAL;
9193
9194 return 0;
9195 }
9196
9197 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9198 {
9199 struct rt_schedulable_data data = {
9200 .tg = tg,
9201 .rt_period = period,
9202 .rt_runtime = runtime,
9203 };
9204
9205 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9206 }
9207
9208 static int tg_set_bandwidth(struct task_group *tg,
9209 u64 rt_period, u64 rt_runtime)
9210 {
9211 int i, err = 0;
9212
9213 mutex_lock(&rt_constraints_mutex);
9214 read_lock(&tasklist_lock);
9215 err = __rt_schedulable(tg, rt_period, rt_runtime);
9216 if (err)
9217 goto unlock;
9218
9219 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9220 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9221 tg->rt_bandwidth.rt_runtime = rt_runtime;
9222
9223 for_each_possible_cpu(i) {
9224 struct rt_rq *rt_rq = tg->rt_rq[i];
9225
9226 spin_lock(&rt_rq->rt_runtime_lock);
9227 rt_rq->rt_runtime = rt_runtime;
9228 spin_unlock(&rt_rq->rt_runtime_lock);
9229 }
9230 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9231 unlock:
9232 read_unlock(&tasklist_lock);
9233 mutex_unlock(&rt_constraints_mutex);
9234
9235 return err;
9236 }
9237
9238 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9239 {
9240 u64 rt_runtime, rt_period;
9241
9242 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9243 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9244 if (rt_runtime_us < 0)
9245 rt_runtime = RUNTIME_INF;
9246
9247 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9248 }
9249
9250 long sched_group_rt_runtime(struct task_group *tg)
9251 {
9252 u64 rt_runtime_us;
9253
9254 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9255 return -1;
9256
9257 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9258 do_div(rt_runtime_us, NSEC_PER_USEC);
9259 return rt_runtime_us;
9260 }
9261
9262 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9263 {
9264 u64 rt_runtime, rt_period;
9265
9266 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9267 rt_runtime = tg->rt_bandwidth.rt_runtime;
9268
9269 if (rt_period == 0)
9270 return -EINVAL;
9271
9272 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9273 }
9274
9275 long sched_group_rt_period(struct task_group *tg)
9276 {
9277 u64 rt_period_us;
9278
9279 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9280 do_div(rt_period_us, NSEC_PER_USEC);
9281 return rt_period_us;
9282 }
9283
9284 static int sched_rt_global_constraints(void)
9285 {
9286 u64 runtime, period;
9287 int ret = 0;
9288
9289 if (sysctl_sched_rt_period <= 0)
9290 return -EINVAL;
9291
9292 runtime = global_rt_runtime();
9293 period = global_rt_period();
9294
9295 /*
9296 * Sanity check on the sysctl variables.
9297 */
9298 if (runtime > period && runtime != RUNTIME_INF)
9299 return -EINVAL;
9300
9301 mutex_lock(&rt_constraints_mutex);
9302 read_lock(&tasklist_lock);
9303 ret = __rt_schedulable(NULL, 0, 0);
9304 read_unlock(&tasklist_lock);
9305 mutex_unlock(&rt_constraints_mutex);
9306
9307 return ret;
9308 }
9309
9310 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9311 {
9312 /* Don't accept realtime tasks when there is no way for them to run */
9313 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9314 return 0;
9315
9316 return 1;
9317 }
9318
9319 #else /* !CONFIG_RT_GROUP_SCHED */
9320 static int sched_rt_global_constraints(void)
9321 {
9322 unsigned long flags;
9323 int i;
9324
9325 if (sysctl_sched_rt_period <= 0)
9326 return -EINVAL;
9327
9328 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9329 for_each_possible_cpu(i) {
9330 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9331
9332 spin_lock(&rt_rq->rt_runtime_lock);
9333 rt_rq->rt_runtime = global_rt_runtime();
9334 spin_unlock(&rt_rq->rt_runtime_lock);
9335 }
9336 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9337
9338 return 0;
9339 }
9340 #endif /* CONFIG_RT_GROUP_SCHED */
9341
9342 int sched_rt_handler(struct ctl_table *table, int write,
9343 struct file *filp, void __user *buffer, size_t *lenp,
9344 loff_t *ppos)
9345 {
9346 int ret;
9347 int old_period, old_runtime;
9348 static DEFINE_MUTEX(mutex);
9349
9350 mutex_lock(&mutex);
9351 old_period = sysctl_sched_rt_period;
9352 old_runtime = sysctl_sched_rt_runtime;
9353
9354 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9355
9356 if (!ret && write) {
9357 ret = sched_rt_global_constraints();
9358 if (ret) {
9359 sysctl_sched_rt_period = old_period;
9360 sysctl_sched_rt_runtime = old_runtime;
9361 } else {
9362 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9363 def_rt_bandwidth.rt_period =
9364 ns_to_ktime(global_rt_period());
9365 }
9366 }
9367 mutex_unlock(&mutex);
9368
9369 return ret;
9370 }
9371
9372 #ifdef CONFIG_CGROUP_SCHED
9373
9374 /* return corresponding task_group object of a cgroup */
9375 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9376 {
9377 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9378 struct task_group, css);
9379 }
9380
9381 static struct cgroup_subsys_state *
9382 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9383 {
9384 struct task_group *tg, *parent;
9385
9386 if (!cgrp->parent) {
9387 /* This is early initialization for the top cgroup */
9388 return &init_task_group.css;
9389 }
9390
9391 parent = cgroup_tg(cgrp->parent);
9392 tg = sched_create_group(parent);
9393 if (IS_ERR(tg))
9394 return ERR_PTR(-ENOMEM);
9395
9396 return &tg->css;
9397 }
9398
9399 static void
9400 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9401 {
9402 struct task_group *tg = cgroup_tg(cgrp);
9403
9404 sched_destroy_group(tg);
9405 }
9406
9407 static int
9408 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9409 struct task_struct *tsk)
9410 {
9411 #ifdef CONFIG_RT_GROUP_SCHED
9412 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9413 return -EINVAL;
9414 #else
9415 /* We don't support RT-tasks being in separate groups */
9416 if (tsk->sched_class != &fair_sched_class)
9417 return -EINVAL;
9418 #endif
9419
9420 return 0;
9421 }
9422
9423 static void
9424 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9425 struct cgroup *old_cont, struct task_struct *tsk)
9426 {
9427 sched_move_task(tsk);
9428 }
9429
9430 #ifdef CONFIG_FAIR_GROUP_SCHED
9431 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9432 u64 shareval)
9433 {
9434 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9435 }
9436
9437 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9438 {
9439 struct task_group *tg = cgroup_tg(cgrp);
9440
9441 return (u64) tg->shares;
9442 }
9443 #endif /* CONFIG_FAIR_GROUP_SCHED */
9444
9445 #ifdef CONFIG_RT_GROUP_SCHED
9446 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9447 s64 val)
9448 {
9449 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9450 }
9451
9452 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9453 {
9454 return sched_group_rt_runtime(cgroup_tg(cgrp));
9455 }
9456
9457 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9458 u64 rt_period_us)
9459 {
9460 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9461 }
9462
9463 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9464 {
9465 return sched_group_rt_period(cgroup_tg(cgrp));
9466 }
9467 #endif /* CONFIG_RT_GROUP_SCHED */
9468
9469 static struct cftype cpu_files[] = {
9470 #ifdef CONFIG_FAIR_GROUP_SCHED
9471 {
9472 .name = "shares",
9473 .read_u64 = cpu_shares_read_u64,
9474 .write_u64 = cpu_shares_write_u64,
9475 },
9476 #endif
9477 #ifdef CONFIG_RT_GROUP_SCHED
9478 {
9479 .name = "rt_runtime_us",
9480 .read_s64 = cpu_rt_runtime_read,
9481 .write_s64 = cpu_rt_runtime_write,
9482 },
9483 {
9484 .name = "rt_period_us",
9485 .read_u64 = cpu_rt_period_read_uint,
9486 .write_u64 = cpu_rt_period_write_uint,
9487 },
9488 #endif
9489 };
9490
9491 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9492 {
9493 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9494 }
9495
9496 struct cgroup_subsys cpu_cgroup_subsys = {
9497 .name = "cpu",
9498 .create = cpu_cgroup_create,
9499 .destroy = cpu_cgroup_destroy,
9500 .can_attach = cpu_cgroup_can_attach,
9501 .attach = cpu_cgroup_attach,
9502 .populate = cpu_cgroup_populate,
9503 .subsys_id = cpu_cgroup_subsys_id,
9504 .early_init = 1,
9505 };
9506
9507 #endif /* CONFIG_CGROUP_SCHED */
9508
9509 #ifdef CONFIG_CGROUP_CPUACCT
9510
9511 /*
9512 * CPU accounting code for task groups.
9513 *
9514 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9515 * (balbir@in.ibm.com).
9516 */
9517
9518 /* track cpu usage of a group of tasks and its child groups */
9519 struct cpuacct {
9520 struct cgroup_subsys_state css;
9521 /* cpuusage holds pointer to a u64-type object on every cpu */
9522 u64 *cpuusage;
9523 struct cpuacct *parent;
9524 };
9525
9526 struct cgroup_subsys cpuacct_subsys;
9527
9528 /* return cpu accounting group corresponding to this container */
9529 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9530 {
9531 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9532 struct cpuacct, css);
9533 }
9534
9535 /* return cpu accounting group to which this task belongs */
9536 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9537 {
9538 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9539 struct cpuacct, css);
9540 }
9541
9542 /* create a new cpu accounting group */
9543 static struct cgroup_subsys_state *cpuacct_create(
9544 struct cgroup_subsys *ss, struct cgroup *cgrp)
9545 {
9546 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9547
9548 if (!ca)
9549 return ERR_PTR(-ENOMEM);
9550
9551 ca->cpuusage = alloc_percpu(u64);
9552 if (!ca->cpuusage) {
9553 kfree(ca);
9554 return ERR_PTR(-ENOMEM);
9555 }
9556
9557 if (cgrp->parent)
9558 ca->parent = cgroup_ca(cgrp->parent);
9559
9560 return &ca->css;
9561 }
9562
9563 /* destroy an existing cpu accounting group */
9564 static void
9565 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9566 {
9567 struct cpuacct *ca = cgroup_ca(cgrp);
9568
9569 free_percpu(ca->cpuusage);
9570 kfree(ca);
9571 }
9572
9573 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9574 {
9575 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9576 u64 data;
9577
9578 #ifndef CONFIG_64BIT
9579 /*
9580 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9581 */
9582 spin_lock_irq(&cpu_rq(cpu)->lock);
9583 data = *cpuusage;
9584 spin_unlock_irq(&cpu_rq(cpu)->lock);
9585 #else
9586 data = *cpuusage;
9587 #endif
9588
9589 return data;
9590 }
9591
9592 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9593 {
9594 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9595
9596 #ifndef CONFIG_64BIT
9597 /*
9598 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9599 */
9600 spin_lock_irq(&cpu_rq(cpu)->lock);
9601 *cpuusage = val;
9602 spin_unlock_irq(&cpu_rq(cpu)->lock);
9603 #else
9604 *cpuusage = val;
9605 #endif
9606 }
9607
9608 /* return total cpu usage (in nanoseconds) of a group */
9609 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9610 {
9611 struct cpuacct *ca = cgroup_ca(cgrp);
9612 u64 totalcpuusage = 0;
9613 int i;
9614
9615 for_each_present_cpu(i)
9616 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9617
9618 return totalcpuusage;
9619 }
9620
9621 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9622 u64 reset)
9623 {
9624 struct cpuacct *ca = cgroup_ca(cgrp);
9625 int err = 0;
9626 int i;
9627
9628 if (reset) {
9629 err = -EINVAL;
9630 goto out;
9631 }
9632
9633 for_each_present_cpu(i)
9634 cpuacct_cpuusage_write(ca, i, 0);
9635
9636 out:
9637 return err;
9638 }
9639
9640 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9641 struct seq_file *m)
9642 {
9643 struct cpuacct *ca = cgroup_ca(cgroup);
9644 u64 percpu;
9645 int i;
9646
9647 for_each_present_cpu(i) {
9648 percpu = cpuacct_cpuusage_read(ca, i);
9649 seq_printf(m, "%llu ", (unsigned long long) percpu);
9650 }
9651 seq_printf(m, "\n");
9652 return 0;
9653 }
9654
9655 static struct cftype files[] = {
9656 {
9657 .name = "usage",
9658 .read_u64 = cpuusage_read,
9659 .write_u64 = cpuusage_write,
9660 },
9661 {
9662 .name = "usage_percpu",
9663 .read_seq_string = cpuacct_percpu_seq_read,
9664 },
9665
9666 };
9667
9668 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9669 {
9670 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9671 }
9672
9673 /*
9674 * charge this task's execution time to its accounting group.
9675 *
9676 * called with rq->lock held.
9677 */
9678 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9679 {
9680 struct cpuacct *ca;
9681 int cpu;
9682
9683 if (!cpuacct_subsys.active)
9684 return;
9685
9686 cpu = task_cpu(tsk);
9687 ca = task_ca(tsk);
9688
9689 for (; ca; ca = ca->parent) {
9690 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9691 *cpuusage += cputime;
9692 }
9693 }
9694
9695 struct cgroup_subsys cpuacct_subsys = {
9696 .name = "cpuacct",
9697 .create = cpuacct_create,
9698 .destroy = cpuacct_destroy,
9699 .populate = cpuacct_populate,
9700 .subsys_id = cpuacct_subsys_id,
9701 };
9702 #endif /* CONFIG_CGROUP_CPUACCT */