]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
sched: No need for bootmem special cases
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
84
85 /*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94 /*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
111 /*
112 * These are the 'tuning knobs' of the scheduler:
113 *
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
116 */
117 #define DEF_TIMESLICE (100 * HZ / 1000)
118
119 /*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122 #define RUNTIME_INF ((u64)~0ULL)
123
124 static inline int rt_policy(int policy)
125 {
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
129 }
130
131 static inline int task_has_rt_policy(struct task_struct *p)
132 {
133 return rt_policy(p->policy);
134 }
135
136 /*
137 * This is the priority-queue data structure of the RT scheduling class:
138 */
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142 };
143
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
150 };
151
152 static struct rt_bandwidth def_rt_bandwidth;
153
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 {
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 }
176
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 {
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 }
189
190 static inline int rt_bandwidth_enabled(void)
191 {
192 return sysctl_sched_rt_runtime >= 0;
193 }
194
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 {
197 ktime_t now;
198
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
209
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
221 }
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 }
224
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 {
228 hrtimer_cancel(&rt_b->rt_period_timer);
229 }
230 #endif
231
232 /*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236 static DEFINE_MUTEX(sched_domains_mutex);
237
238 #ifdef CONFIG_CGROUP_SCHED
239
240 #include <linux/cgroup.h>
241
242 struct cfs_rq;
243
244 static LIST_HEAD(task_groups);
245
246 /* task group related information */
247 struct task_group {
248 struct cgroup_subsys_state css;
249
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
256 #endif
257
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
262 struct rt_bandwidth rt_bandwidth;
263 #endif
264
265 struct rcu_head rcu;
266 struct list_head list;
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
271 };
272
273 #define root_task_group init_task_group
274
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
277 */
278 static DEFINE_SPINLOCK(task_group_lock);
279
280 #ifdef CONFIG_FAIR_GROUP_SCHED
281
282 #ifdef CONFIG_SMP
283 static int root_task_group_empty(void)
284 {
285 return list_empty(&root_task_group.children);
286 }
287 #endif
288
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
290
291 /*
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
299 #define MIN_SHARES 2
300 #define MAX_SHARES (1UL << 18)
301
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303 #endif
304
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
307 */
308 struct task_group init_task_group;
309
310 #endif /* CONFIG_CGROUP_SCHED */
311
312 /* CFS-related fields in a runqueue */
313 struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
317 u64 exec_clock;
318 u64 min_vruntime;
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
330 struct sched_entity *curr, *next, *last;
331
332 unsigned int nr_spread_over;
333
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
347
348 #ifdef CONFIG_SMP
349 /*
350 * the part of load.weight contributed by tasks
351 */
352 unsigned long task_weight;
353
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
361
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
371 #endif
372 #endif
373 };
374
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
398
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
401
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
406 };
407
408 #ifdef CONFIG_SMP
409
410 /*
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
417 */
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
422
423 /*
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 #ifdef CONFIG_SMP
430 struct cpupri cpupri;
431 #endif
432 };
433
434 /*
435 * By default the system creates a single root-domain with all cpus as
436 * members (mimicking the global state we have today).
437 */
438 static struct root_domain def_root_domain;
439
440 #endif
441
442 /*
443 * This is the main, per-CPU runqueue data structure.
444 *
445 * Locking rule: those places that want to lock multiple runqueues
446 * (such as the load balancing or the thread migration code), lock
447 * acquire operations must be ordered by ascending &runqueue.
448 */
449 struct rq {
450 /* runqueue lock: */
451 raw_spinlock_t lock;
452
453 /*
454 * nr_running and cpu_load should be in the same cacheline because
455 * remote CPUs use both these fields when doing load calculation.
456 */
457 unsigned long nr_running;
458 #define CPU_LOAD_IDX_MAX 5
459 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
460 unsigned long last_load_update_tick;
461 #ifdef CONFIG_NO_HZ
462 u64 nohz_stamp;
463 unsigned char nohz_balance_kick;
464 #endif
465 unsigned int skip_clock_update;
466
467 /* capture load from *all* tasks on this cpu: */
468 struct load_weight load;
469 unsigned long nr_load_updates;
470 u64 nr_switches;
471
472 struct cfs_rq cfs;
473 struct rt_rq rt;
474
475 #ifdef CONFIG_FAIR_GROUP_SCHED
476 /* list of leaf cfs_rq on this cpu: */
477 struct list_head leaf_cfs_rq_list;
478 #endif
479 #ifdef CONFIG_RT_GROUP_SCHED
480 struct list_head leaf_rt_rq_list;
481 #endif
482
483 /*
484 * This is part of a global counter where only the total sum
485 * over all CPUs matters. A task can increase this counter on
486 * one CPU and if it got migrated afterwards it may decrease
487 * it on another CPU. Always updated under the runqueue lock:
488 */
489 unsigned long nr_uninterruptible;
490
491 struct task_struct *curr, *idle;
492 unsigned long next_balance;
493 struct mm_struct *prev_mm;
494
495 u64 clock;
496
497 atomic_t nr_iowait;
498
499 #ifdef CONFIG_SMP
500 struct root_domain *rd;
501 struct sched_domain *sd;
502
503 unsigned long cpu_power;
504
505 unsigned char idle_at_tick;
506 /* For active balancing */
507 int post_schedule;
508 int active_balance;
509 int push_cpu;
510 struct cpu_stop_work active_balance_work;
511 /* cpu of this runqueue: */
512 int cpu;
513 int online;
514
515 unsigned long avg_load_per_task;
516
517 u64 rt_avg;
518 u64 age_stamp;
519 u64 idle_stamp;
520 u64 avg_idle;
521 #endif
522
523 /* calc_load related fields */
524 unsigned long calc_load_update;
525 long calc_load_active;
526
527 #ifdef CONFIG_SCHED_HRTICK
528 #ifdef CONFIG_SMP
529 int hrtick_csd_pending;
530 struct call_single_data hrtick_csd;
531 #endif
532 struct hrtimer hrtick_timer;
533 #endif
534
535 #ifdef CONFIG_SCHEDSTATS
536 /* latency stats */
537 struct sched_info rq_sched_info;
538 unsigned long long rq_cpu_time;
539 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
540
541 /* sys_sched_yield() stats */
542 unsigned int yld_count;
543
544 /* schedule() stats */
545 unsigned int sched_switch;
546 unsigned int sched_count;
547 unsigned int sched_goidle;
548
549 /* try_to_wake_up() stats */
550 unsigned int ttwu_count;
551 unsigned int ttwu_local;
552
553 /* BKL stats */
554 unsigned int bkl_count;
555 #endif
556 };
557
558 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
559
560 static inline
561 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
562 {
563 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
564
565 /*
566 * A queue event has occurred, and we're going to schedule. In
567 * this case, we can save a useless back to back clock update.
568 */
569 if (test_tsk_need_resched(p))
570 rq->skip_clock_update = 1;
571 }
572
573 static inline int cpu_of(struct rq *rq)
574 {
575 #ifdef CONFIG_SMP
576 return rq->cpu;
577 #else
578 return 0;
579 #endif
580 }
581
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_sched_held() || \
585 lockdep_is_held(&sched_domains_mutex))
586
587 /*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
596
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
602
603 #ifdef CONFIG_CGROUP_SCHED
604
605 /*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
612 */
613 static inline struct task_group *task_group(struct task_struct *p)
614 {
615 struct cgroup_subsys_state *css;
616
617 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
618 lockdep_is_held(&task_rq(p)->lock));
619 return container_of(css, struct task_group, css);
620 }
621
622 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
623 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
624 {
625 #ifdef CONFIG_FAIR_GROUP_SCHED
626 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
627 p->se.parent = task_group(p)->se[cpu];
628 #endif
629
630 #ifdef CONFIG_RT_GROUP_SCHED
631 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
632 p->rt.parent = task_group(p)->rt_se[cpu];
633 #endif
634 }
635
636 #else /* CONFIG_CGROUP_SCHED */
637
638 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
639 static inline struct task_group *task_group(struct task_struct *p)
640 {
641 return NULL;
642 }
643
644 #endif /* CONFIG_CGROUP_SCHED */
645
646 inline void update_rq_clock(struct rq *rq)
647 {
648 if (!rq->skip_clock_update)
649 rq->clock = sched_clock_cpu(cpu_of(rq));
650 }
651
652 /*
653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 */
655 #ifdef CONFIG_SCHED_DEBUG
656 # define const_debug __read_mostly
657 #else
658 # define const_debug static const
659 #endif
660
661 /**
662 * runqueue_is_locked
663 * @cpu: the processor in question.
664 *
665 * Returns true if the current cpu runqueue is locked.
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
669 int runqueue_is_locked(int cpu)
670 {
671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
672 }
673
674 /*
675 * Debugging: various feature bits
676 */
677
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
681 enum {
682 #include "sched_features.h"
683 };
684
685 #undef SCHED_FEAT
686
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
690 const_debug unsigned int sysctl_sched_features =
691 #include "sched_features.h"
692 0;
693
694 #undef SCHED_FEAT
695
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
698 #name ,
699
700 static __read_mostly char *sched_feat_names[] = {
701 #include "sched_features.h"
702 NULL
703 };
704
705 #undef SCHED_FEAT
706
707 static int sched_feat_show(struct seq_file *m, void *v)
708 {
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
715 }
716 seq_puts(m, "\n");
717
718 return 0;
719 }
720
721 static ssize_t
722 sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724 {
725 char buf[64];
726 char *cmp = buf;
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
737
738 if (strncmp(buf, "NO_", 3) == 0) {
739 neg = 1;
740 cmp += 3;
741 }
742
743 for (i = 0; sched_feat_names[i]; i++) {
744 int len = strlen(sched_feat_names[i]);
745
746 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
747 if (neg)
748 sysctl_sched_features &= ~(1UL << i);
749 else
750 sysctl_sched_features |= (1UL << i);
751 break;
752 }
753 }
754
755 if (!sched_feat_names[i])
756 return -EINVAL;
757
758 *ppos += cnt;
759
760 return cnt;
761 }
762
763 static int sched_feat_open(struct inode *inode, struct file *filp)
764 {
765 return single_open(filp, sched_feat_show, NULL);
766 }
767
768 static const struct file_operations sched_feat_fops = {
769 .open = sched_feat_open,
770 .write = sched_feat_write,
771 .read = seq_read,
772 .llseek = seq_lseek,
773 .release = single_release,
774 };
775
776 static __init int sched_init_debug(void)
777 {
778 debugfs_create_file("sched_features", 0644, NULL, NULL,
779 &sched_feat_fops);
780
781 return 0;
782 }
783 late_initcall(sched_init_debug);
784
785 #endif
786
787 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
788
789 /*
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
792 */
793 const_debug unsigned int sysctl_sched_nr_migrate = 32;
794
795 /*
796 * ratelimit for updating the group shares.
797 * default: 0.25ms
798 */
799 unsigned int sysctl_sched_shares_ratelimit = 250000;
800 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
801
802 /*
803 * Inject some fuzzyness into changing the per-cpu group shares
804 * this avoids remote rq-locks at the expense of fairness.
805 * default: 4
806 */
807 unsigned int sysctl_sched_shares_thresh = 4;
808
809 /*
810 * period over which we average the RT time consumption, measured
811 * in ms.
812 *
813 * default: 1s
814 */
815 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
816
817 /*
818 * period over which we measure -rt task cpu usage in us.
819 * default: 1s
820 */
821 unsigned int sysctl_sched_rt_period = 1000000;
822
823 static __read_mostly int scheduler_running;
824
825 /*
826 * part of the period that we allow rt tasks to run in us.
827 * default: 0.95s
828 */
829 int sysctl_sched_rt_runtime = 950000;
830
831 static inline u64 global_rt_period(void)
832 {
833 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
834 }
835
836 static inline u64 global_rt_runtime(void)
837 {
838 if (sysctl_sched_rt_runtime < 0)
839 return RUNTIME_INF;
840
841 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
842 }
843
844 #ifndef prepare_arch_switch
845 # define prepare_arch_switch(next) do { } while (0)
846 #endif
847 #ifndef finish_arch_switch
848 # define finish_arch_switch(prev) do { } while (0)
849 #endif
850
851 static inline int task_current(struct rq *rq, struct task_struct *p)
852 {
853 return rq->curr == p;
854 }
855
856 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
857 static inline int task_running(struct rq *rq, struct task_struct *p)
858 {
859 return task_current(rq, p);
860 }
861
862 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
863 {
864 }
865
866 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
867 {
868 #ifdef CONFIG_DEBUG_SPINLOCK
869 /* this is a valid case when another task releases the spinlock */
870 rq->lock.owner = current;
871 #endif
872 /*
873 * If we are tracking spinlock dependencies then we have to
874 * fix up the runqueue lock - which gets 'carried over' from
875 * prev into current:
876 */
877 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
878
879 raw_spin_unlock_irq(&rq->lock);
880 }
881
882 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
883 static inline int task_running(struct rq *rq, struct task_struct *p)
884 {
885 #ifdef CONFIG_SMP
886 return p->oncpu;
887 #else
888 return task_current(rq, p);
889 #endif
890 }
891
892 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
893 {
894 #ifdef CONFIG_SMP
895 /*
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
899 */
900 next->oncpu = 1;
901 #endif
902 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903 raw_spin_unlock_irq(&rq->lock);
904 #else
905 raw_spin_unlock(&rq->lock);
906 #endif
907 }
908
909 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
910 {
911 #ifdef CONFIG_SMP
912 /*
913 * After ->oncpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
918 prev->oncpu = 0;
919 #endif
920 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
922 #endif
923 }
924 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
925
926 /*
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
928 * against ttwu().
929 */
930 static inline int task_is_waking(struct task_struct *p)
931 {
932 return unlikely(p->state == TASK_WAKING);
933 }
934
935 /*
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
938 */
939 static inline struct rq *__task_rq_lock(struct task_struct *p)
940 __acquires(rq->lock)
941 {
942 struct rq *rq;
943
944 for (;;) {
945 rq = task_rq(p);
946 raw_spin_lock(&rq->lock);
947 if (likely(rq == task_rq(p)))
948 return rq;
949 raw_spin_unlock(&rq->lock);
950 }
951 }
952
953 /*
954 * task_rq_lock - lock the runqueue a given task resides on and disable
955 * interrupts. Note the ordering: we can safely lookup the task_rq without
956 * explicitly disabling preemption.
957 */
958 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
959 __acquires(rq->lock)
960 {
961 struct rq *rq;
962
963 for (;;) {
964 local_irq_save(*flags);
965 rq = task_rq(p);
966 raw_spin_lock(&rq->lock);
967 if (likely(rq == task_rq(p)))
968 return rq;
969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
970 }
971 }
972
973 static void __task_rq_unlock(struct rq *rq)
974 __releases(rq->lock)
975 {
976 raw_spin_unlock(&rq->lock);
977 }
978
979 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
980 __releases(rq->lock)
981 {
982 raw_spin_unlock_irqrestore(&rq->lock, *flags);
983 }
984
985 /*
986 * this_rq_lock - lock this runqueue and disable interrupts.
987 */
988 static struct rq *this_rq_lock(void)
989 __acquires(rq->lock)
990 {
991 struct rq *rq;
992
993 local_irq_disable();
994 rq = this_rq();
995 raw_spin_lock(&rq->lock);
996
997 return rq;
998 }
999
1000 #ifdef CONFIG_SCHED_HRTICK
1001 /*
1002 * Use HR-timers to deliver accurate preemption points.
1003 *
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1006 * reschedule event.
1007 *
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * rq->lock.
1010 */
1011
1012 /*
1013 * Use hrtick when:
1014 * - enabled by features
1015 * - hrtimer is actually high res
1016 */
1017 static inline int hrtick_enabled(struct rq *rq)
1018 {
1019 if (!sched_feat(HRTICK))
1020 return 0;
1021 if (!cpu_active(cpu_of(rq)))
1022 return 0;
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1024 }
1025
1026 static void hrtick_clear(struct rq *rq)
1027 {
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1030 }
1031
1032 /*
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1035 */
1036 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037 {
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041
1042 raw_spin_lock(&rq->lock);
1043 update_rq_clock(rq);
1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1045 raw_spin_unlock(&rq->lock);
1046
1047 return HRTIMER_NORESTART;
1048 }
1049
1050 #ifdef CONFIG_SMP
1051 /*
1052 * called from hardirq (IPI) context
1053 */
1054 static void __hrtick_start(void *arg)
1055 {
1056 struct rq *rq = arg;
1057
1058 raw_spin_lock(&rq->lock);
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
1061 raw_spin_unlock(&rq->lock);
1062 }
1063
1064 /*
1065 * Called to set the hrtick timer state.
1066 *
1067 * called with rq->lock held and irqs disabled
1068 */
1069 static void hrtick_start(struct rq *rq, u64 delay)
1070 {
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1073
1074 hrtimer_set_expires(timer, time);
1075
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1080 rq->hrtick_csd_pending = 1;
1081 }
1082 }
1083
1084 static int
1085 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086 {
1087 int cpu = (int)(long)hcpu;
1088
1089 switch (action) {
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 case CPU_DEAD:
1095 case CPU_DEAD_FROZEN:
1096 hrtick_clear(cpu_rq(cpu));
1097 return NOTIFY_OK;
1098 }
1099
1100 return NOTIFY_DONE;
1101 }
1102
1103 static __init void init_hrtick(void)
1104 {
1105 hotcpu_notifier(hotplug_hrtick, 0);
1106 }
1107 #else
1108 /*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113 static void hrtick_start(struct rq *rq, u64 delay)
1114 {
1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1116 HRTIMER_MODE_REL_PINNED, 0);
1117 }
1118
1119 static inline void init_hrtick(void)
1120 {
1121 }
1122 #endif /* CONFIG_SMP */
1123
1124 static void init_rq_hrtick(struct rq *rq)
1125 {
1126 #ifdef CONFIG_SMP
1127 rq->hrtick_csd_pending = 0;
1128
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1132 #endif
1133
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
1136 }
1137 #else /* CONFIG_SCHED_HRTICK */
1138 static inline void hrtick_clear(struct rq *rq)
1139 {
1140 }
1141
1142 static inline void init_rq_hrtick(struct rq *rq)
1143 {
1144 }
1145
1146 static inline void init_hrtick(void)
1147 {
1148 }
1149 #endif /* CONFIG_SCHED_HRTICK */
1150
1151 /*
1152 * resched_task - mark a task 'to be rescheduled now'.
1153 *
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1156 * the target CPU.
1157 */
1158 #ifdef CONFIG_SMP
1159
1160 #ifndef tsk_is_polling
1161 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1162 #endif
1163
1164 static void resched_task(struct task_struct *p)
1165 {
1166 int cpu;
1167
1168 assert_raw_spin_locked(&task_rq(p)->lock);
1169
1170 if (test_tsk_need_resched(p))
1171 return;
1172
1173 set_tsk_need_resched(p);
1174
1175 cpu = task_cpu(p);
1176 if (cpu == smp_processor_id())
1177 return;
1178
1179 /* NEED_RESCHED must be visible before we test polling */
1180 smp_mb();
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1183 }
1184
1185 static void resched_cpu(int cpu)
1186 {
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1189
1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1191 return;
1192 resched_task(cpu_curr(cpu));
1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
1194 }
1195
1196 #ifdef CONFIG_NO_HZ
1197 /*
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1200 *
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1204 */
1205 int get_nohz_timer_target(void)
1206 {
1207 int cpu = smp_processor_id();
1208 int i;
1209 struct sched_domain *sd;
1210
1211 for_each_domain(cpu, sd) {
1212 for_each_cpu(i, sched_domain_span(sd))
1213 if (!idle_cpu(i))
1214 return i;
1215 }
1216 return cpu;
1217 }
1218 /*
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1227 */
1228 void wake_up_idle_cpu(int cpu)
1229 {
1230 struct rq *rq = cpu_rq(cpu);
1231
1232 if (cpu == smp_processor_id())
1233 return;
1234
1235 /*
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1241 */
1242 if (rq->curr != rq->idle)
1243 return;
1244
1245 /*
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1249 */
1250 set_tsk_need_resched(rq->idle);
1251
1252 /* NEED_RESCHED must be visible before we test polling */
1253 smp_mb();
1254 if (!tsk_is_polling(rq->idle))
1255 smp_send_reschedule(cpu);
1256 }
1257
1258 int nohz_ratelimit(int cpu)
1259 {
1260 struct rq *rq = cpu_rq(cpu);
1261 u64 diff = rq->clock - rq->nohz_stamp;
1262
1263 rq->nohz_stamp = rq->clock;
1264
1265 return diff < (NSEC_PER_SEC / HZ) >> 1;
1266 }
1267
1268 #endif /* CONFIG_NO_HZ */
1269
1270 static u64 sched_avg_period(void)
1271 {
1272 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1273 }
1274
1275 static void sched_avg_update(struct rq *rq)
1276 {
1277 s64 period = sched_avg_period();
1278
1279 while ((s64)(rq->clock - rq->age_stamp) > period) {
1280 rq->age_stamp += period;
1281 rq->rt_avg /= 2;
1282 }
1283 }
1284
1285 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1286 {
1287 rq->rt_avg += rt_delta;
1288 sched_avg_update(rq);
1289 }
1290
1291 #else /* !CONFIG_SMP */
1292 static void resched_task(struct task_struct *p)
1293 {
1294 assert_raw_spin_locked(&task_rq(p)->lock);
1295 set_tsk_need_resched(p);
1296 }
1297
1298 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1299 {
1300 }
1301 #endif /* CONFIG_SMP */
1302
1303 #if BITS_PER_LONG == 32
1304 # define WMULT_CONST (~0UL)
1305 #else
1306 # define WMULT_CONST (1UL << 32)
1307 #endif
1308
1309 #define WMULT_SHIFT 32
1310
1311 /*
1312 * Shift right and round:
1313 */
1314 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1315
1316 /*
1317 * delta *= weight / lw
1318 */
1319 static unsigned long
1320 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1321 struct load_weight *lw)
1322 {
1323 u64 tmp;
1324
1325 if (!lw->inv_weight) {
1326 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1327 lw->inv_weight = 1;
1328 else
1329 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1330 / (lw->weight+1);
1331 }
1332
1333 tmp = (u64)delta_exec * weight;
1334 /*
1335 * Check whether we'd overflow the 64-bit multiplication:
1336 */
1337 if (unlikely(tmp > WMULT_CONST))
1338 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1339 WMULT_SHIFT/2);
1340 else
1341 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1342
1343 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1344 }
1345
1346 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1347 {
1348 lw->weight += inc;
1349 lw->inv_weight = 0;
1350 }
1351
1352 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1353 {
1354 lw->weight -= dec;
1355 lw->inv_weight = 0;
1356 }
1357
1358 /*
1359 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1360 * of tasks with abnormal "nice" values across CPUs the contribution that
1361 * each task makes to its run queue's load is weighted according to its
1362 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1363 * scaled version of the new time slice allocation that they receive on time
1364 * slice expiry etc.
1365 */
1366
1367 #define WEIGHT_IDLEPRIO 3
1368 #define WMULT_IDLEPRIO 1431655765
1369
1370 /*
1371 * Nice levels are multiplicative, with a gentle 10% change for every
1372 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1373 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1374 * that remained on nice 0.
1375 *
1376 * The "10% effect" is relative and cumulative: from _any_ nice level,
1377 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1378 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1379 * If a task goes up by ~10% and another task goes down by ~10% then
1380 * the relative distance between them is ~25%.)
1381 */
1382 static const int prio_to_weight[40] = {
1383 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1384 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1385 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1386 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1387 /* 0 */ 1024, 820, 655, 526, 423,
1388 /* 5 */ 335, 272, 215, 172, 137,
1389 /* 10 */ 110, 87, 70, 56, 45,
1390 /* 15 */ 36, 29, 23, 18, 15,
1391 };
1392
1393 /*
1394 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1395 *
1396 * In cases where the weight does not change often, we can use the
1397 * precalculated inverse to speed up arithmetics by turning divisions
1398 * into multiplications:
1399 */
1400 static const u32 prio_to_wmult[40] = {
1401 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1402 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1403 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1404 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1405 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1406 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1407 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1408 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1409 };
1410
1411 /* Time spent by the tasks of the cpu accounting group executing in ... */
1412 enum cpuacct_stat_index {
1413 CPUACCT_STAT_USER, /* ... user mode */
1414 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1415
1416 CPUACCT_STAT_NSTATS,
1417 };
1418
1419 #ifdef CONFIG_CGROUP_CPUACCT
1420 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1421 static void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val);
1423 #else
1424 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1425 static inline void cpuacct_update_stats(struct task_struct *tsk,
1426 enum cpuacct_stat_index idx, cputime_t val) {}
1427 #endif
1428
1429 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1430 {
1431 update_load_add(&rq->load, load);
1432 }
1433
1434 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1435 {
1436 update_load_sub(&rq->load, load);
1437 }
1438
1439 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1440 typedef int (*tg_visitor)(struct task_group *, void *);
1441
1442 /*
1443 * Iterate the full tree, calling @down when first entering a node and @up when
1444 * leaving it for the final time.
1445 */
1446 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1447 {
1448 struct task_group *parent, *child;
1449 int ret;
1450
1451 rcu_read_lock();
1452 parent = &root_task_group;
1453 down:
1454 ret = (*down)(parent, data);
1455 if (ret)
1456 goto out_unlock;
1457 list_for_each_entry_rcu(child, &parent->children, siblings) {
1458 parent = child;
1459 goto down;
1460
1461 up:
1462 continue;
1463 }
1464 ret = (*up)(parent, data);
1465 if (ret)
1466 goto out_unlock;
1467
1468 child = parent;
1469 parent = parent->parent;
1470 if (parent)
1471 goto up;
1472 out_unlock:
1473 rcu_read_unlock();
1474
1475 return ret;
1476 }
1477
1478 static int tg_nop(struct task_group *tg, void *data)
1479 {
1480 return 0;
1481 }
1482 #endif
1483
1484 #ifdef CONFIG_SMP
1485 /* Used instead of source_load when we know the type == 0 */
1486 static unsigned long weighted_cpuload(const int cpu)
1487 {
1488 return cpu_rq(cpu)->load.weight;
1489 }
1490
1491 /*
1492 * Return a low guess at the load of a migration-source cpu weighted
1493 * according to the scheduling class and "nice" value.
1494 *
1495 * We want to under-estimate the load of migration sources, to
1496 * balance conservatively.
1497 */
1498 static unsigned long source_load(int cpu, int type)
1499 {
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long total = weighted_cpuload(cpu);
1502
1503 if (type == 0 || !sched_feat(LB_BIAS))
1504 return total;
1505
1506 return min(rq->cpu_load[type-1], total);
1507 }
1508
1509 /*
1510 * Return a high guess at the load of a migration-target cpu weighted
1511 * according to the scheduling class and "nice" value.
1512 */
1513 static unsigned long target_load(int cpu, int type)
1514 {
1515 struct rq *rq = cpu_rq(cpu);
1516 unsigned long total = weighted_cpuload(cpu);
1517
1518 if (type == 0 || !sched_feat(LB_BIAS))
1519 return total;
1520
1521 return max(rq->cpu_load[type-1], total);
1522 }
1523
1524 static unsigned long power_of(int cpu)
1525 {
1526 return cpu_rq(cpu)->cpu_power;
1527 }
1528
1529 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1530
1531 static unsigned long cpu_avg_load_per_task(int cpu)
1532 {
1533 struct rq *rq = cpu_rq(cpu);
1534 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1535
1536 if (nr_running)
1537 rq->avg_load_per_task = rq->load.weight / nr_running;
1538 else
1539 rq->avg_load_per_task = 0;
1540
1541 return rq->avg_load_per_task;
1542 }
1543
1544 #ifdef CONFIG_FAIR_GROUP_SCHED
1545
1546 static __read_mostly unsigned long __percpu *update_shares_data;
1547
1548 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1549
1550 /*
1551 * Calculate and set the cpu's group shares.
1552 */
1553 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1554 unsigned long sd_shares,
1555 unsigned long sd_rq_weight,
1556 unsigned long *usd_rq_weight)
1557 {
1558 unsigned long shares, rq_weight;
1559 int boost = 0;
1560
1561 rq_weight = usd_rq_weight[cpu];
1562 if (!rq_weight) {
1563 boost = 1;
1564 rq_weight = NICE_0_LOAD;
1565 }
1566
1567 /*
1568 * \Sum_j shares_j * rq_weight_i
1569 * shares_i = -----------------------------
1570 * \Sum_j rq_weight_j
1571 */
1572 shares = (sd_shares * rq_weight) / sd_rq_weight;
1573 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1574
1575 if (abs(shares - tg->se[cpu]->load.weight) >
1576 sysctl_sched_shares_thresh) {
1577 struct rq *rq = cpu_rq(cpu);
1578 unsigned long flags;
1579
1580 raw_spin_lock_irqsave(&rq->lock, flags);
1581 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1582 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1583 __set_se_shares(tg->se[cpu], shares);
1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
1585 }
1586 }
1587
1588 /*
1589 * Re-compute the task group their per cpu shares over the given domain.
1590 * This needs to be done in a bottom-up fashion because the rq weight of a
1591 * parent group depends on the shares of its child groups.
1592 */
1593 static int tg_shares_up(struct task_group *tg, void *data)
1594 {
1595 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1596 unsigned long *usd_rq_weight;
1597 struct sched_domain *sd = data;
1598 unsigned long flags;
1599 int i;
1600
1601 if (!tg->se[0])
1602 return 0;
1603
1604 local_irq_save(flags);
1605 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1606
1607 for_each_cpu(i, sched_domain_span(sd)) {
1608 weight = tg->cfs_rq[i]->load.weight;
1609 usd_rq_weight[i] = weight;
1610
1611 rq_weight += weight;
1612 /*
1613 * If there are currently no tasks on the cpu pretend there
1614 * is one of average load so that when a new task gets to
1615 * run here it will not get delayed by group starvation.
1616 */
1617 if (!weight)
1618 weight = NICE_0_LOAD;
1619
1620 sum_weight += weight;
1621 shares += tg->cfs_rq[i]->shares;
1622 }
1623
1624 if (!rq_weight)
1625 rq_weight = sum_weight;
1626
1627 if ((!shares && rq_weight) || shares > tg->shares)
1628 shares = tg->shares;
1629
1630 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1631 shares = tg->shares;
1632
1633 for_each_cpu(i, sched_domain_span(sd))
1634 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1635
1636 local_irq_restore(flags);
1637
1638 return 0;
1639 }
1640
1641 /*
1642 * Compute the cpu's hierarchical load factor for each task group.
1643 * This needs to be done in a top-down fashion because the load of a child
1644 * group is a fraction of its parents load.
1645 */
1646 static int tg_load_down(struct task_group *tg, void *data)
1647 {
1648 unsigned long load;
1649 long cpu = (long)data;
1650
1651 if (!tg->parent) {
1652 load = cpu_rq(cpu)->load.weight;
1653 } else {
1654 load = tg->parent->cfs_rq[cpu]->h_load;
1655 load *= tg->cfs_rq[cpu]->shares;
1656 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1657 }
1658
1659 tg->cfs_rq[cpu]->h_load = load;
1660
1661 return 0;
1662 }
1663
1664 static void update_shares(struct sched_domain *sd)
1665 {
1666 s64 elapsed;
1667 u64 now;
1668
1669 if (root_task_group_empty())
1670 return;
1671
1672 now = local_clock();
1673 elapsed = now - sd->last_update;
1674
1675 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1676 sd->last_update = now;
1677 walk_tg_tree(tg_nop, tg_shares_up, sd);
1678 }
1679 }
1680
1681 static void update_h_load(long cpu)
1682 {
1683 if (root_task_group_empty())
1684 return;
1685
1686 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1687 }
1688
1689 #else
1690
1691 static inline void update_shares(struct sched_domain *sd)
1692 {
1693 }
1694
1695 #endif
1696
1697 #ifdef CONFIG_PREEMPT
1698
1699 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1700
1701 /*
1702 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1703 * way at the expense of forcing extra atomic operations in all
1704 * invocations. This assures that the double_lock is acquired using the
1705 * same underlying policy as the spinlock_t on this architecture, which
1706 * reduces latency compared to the unfair variant below. However, it
1707 * also adds more overhead and therefore may reduce throughput.
1708 */
1709 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1710 __releases(this_rq->lock)
1711 __acquires(busiest->lock)
1712 __acquires(this_rq->lock)
1713 {
1714 raw_spin_unlock(&this_rq->lock);
1715 double_rq_lock(this_rq, busiest);
1716
1717 return 1;
1718 }
1719
1720 #else
1721 /*
1722 * Unfair double_lock_balance: Optimizes throughput at the expense of
1723 * latency by eliminating extra atomic operations when the locks are
1724 * already in proper order on entry. This favors lower cpu-ids and will
1725 * grant the double lock to lower cpus over higher ids under contention,
1726 * regardless of entry order into the function.
1727 */
1728 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1729 __releases(this_rq->lock)
1730 __acquires(busiest->lock)
1731 __acquires(this_rq->lock)
1732 {
1733 int ret = 0;
1734
1735 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1736 if (busiest < this_rq) {
1737 raw_spin_unlock(&this_rq->lock);
1738 raw_spin_lock(&busiest->lock);
1739 raw_spin_lock_nested(&this_rq->lock,
1740 SINGLE_DEPTH_NESTING);
1741 ret = 1;
1742 } else
1743 raw_spin_lock_nested(&busiest->lock,
1744 SINGLE_DEPTH_NESTING);
1745 }
1746 return ret;
1747 }
1748
1749 #endif /* CONFIG_PREEMPT */
1750
1751 /*
1752 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1753 */
1754 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1755 {
1756 if (unlikely(!irqs_disabled())) {
1757 /* printk() doesn't work good under rq->lock */
1758 raw_spin_unlock(&this_rq->lock);
1759 BUG_ON(1);
1760 }
1761
1762 return _double_lock_balance(this_rq, busiest);
1763 }
1764
1765 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(busiest->lock)
1767 {
1768 raw_spin_unlock(&busiest->lock);
1769 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1770 }
1771
1772 /*
1773 * double_rq_lock - safely lock two runqueues
1774 *
1775 * Note this does not disable interrupts like task_rq_lock,
1776 * you need to do so manually before calling.
1777 */
1778 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1779 __acquires(rq1->lock)
1780 __acquires(rq2->lock)
1781 {
1782 BUG_ON(!irqs_disabled());
1783 if (rq1 == rq2) {
1784 raw_spin_lock(&rq1->lock);
1785 __acquire(rq2->lock); /* Fake it out ;) */
1786 } else {
1787 if (rq1 < rq2) {
1788 raw_spin_lock(&rq1->lock);
1789 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1790 } else {
1791 raw_spin_lock(&rq2->lock);
1792 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1793 }
1794 }
1795 }
1796
1797 /*
1798 * double_rq_unlock - safely unlock two runqueues
1799 *
1800 * Note this does not restore interrupts like task_rq_unlock,
1801 * you need to do so manually after calling.
1802 */
1803 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1804 __releases(rq1->lock)
1805 __releases(rq2->lock)
1806 {
1807 raw_spin_unlock(&rq1->lock);
1808 if (rq1 != rq2)
1809 raw_spin_unlock(&rq2->lock);
1810 else
1811 __release(rq2->lock);
1812 }
1813
1814 #endif
1815
1816 #ifdef CONFIG_FAIR_GROUP_SCHED
1817 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1818 {
1819 #ifdef CONFIG_SMP
1820 cfs_rq->shares = shares;
1821 #endif
1822 }
1823 #endif
1824
1825 static void calc_load_account_idle(struct rq *this_rq);
1826 static void update_sysctl(void);
1827 static int get_update_sysctl_factor(void);
1828 static void update_cpu_load(struct rq *this_rq);
1829
1830 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1831 {
1832 set_task_rq(p, cpu);
1833 #ifdef CONFIG_SMP
1834 /*
1835 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1836 * successfuly executed on another CPU. We must ensure that updates of
1837 * per-task data have been completed by this moment.
1838 */
1839 smp_wmb();
1840 task_thread_info(p)->cpu = cpu;
1841 #endif
1842 }
1843
1844 static const struct sched_class rt_sched_class;
1845
1846 #define sched_class_highest (&rt_sched_class)
1847 #define for_each_class(class) \
1848 for (class = sched_class_highest; class; class = class->next)
1849
1850 #include "sched_stats.h"
1851
1852 static void inc_nr_running(struct rq *rq)
1853 {
1854 rq->nr_running++;
1855 }
1856
1857 static void dec_nr_running(struct rq *rq)
1858 {
1859 rq->nr_running--;
1860 }
1861
1862 static void set_load_weight(struct task_struct *p)
1863 {
1864 if (task_has_rt_policy(p)) {
1865 p->se.load.weight = 0;
1866 p->se.load.inv_weight = WMULT_CONST;
1867 return;
1868 }
1869
1870 /*
1871 * SCHED_IDLE tasks get minimal weight:
1872 */
1873 if (p->policy == SCHED_IDLE) {
1874 p->se.load.weight = WEIGHT_IDLEPRIO;
1875 p->se.load.inv_weight = WMULT_IDLEPRIO;
1876 return;
1877 }
1878
1879 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1880 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1881 }
1882
1883 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1884 {
1885 update_rq_clock(rq);
1886 sched_info_queued(p);
1887 p->sched_class->enqueue_task(rq, p, flags);
1888 p->se.on_rq = 1;
1889 }
1890
1891 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1892 {
1893 update_rq_clock(rq);
1894 sched_info_dequeued(p);
1895 p->sched_class->dequeue_task(rq, p, flags);
1896 p->se.on_rq = 0;
1897 }
1898
1899 /*
1900 * activate_task - move a task to the runqueue.
1901 */
1902 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1903 {
1904 if (task_contributes_to_load(p))
1905 rq->nr_uninterruptible--;
1906
1907 enqueue_task(rq, p, flags);
1908 inc_nr_running(rq);
1909 }
1910
1911 /*
1912 * deactivate_task - remove a task from the runqueue.
1913 */
1914 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1915 {
1916 if (task_contributes_to_load(p))
1917 rq->nr_uninterruptible++;
1918
1919 dequeue_task(rq, p, flags);
1920 dec_nr_running(rq);
1921 }
1922
1923 #include "sched_idletask.c"
1924 #include "sched_fair.c"
1925 #include "sched_rt.c"
1926 #ifdef CONFIG_SCHED_DEBUG
1927 # include "sched_debug.c"
1928 #endif
1929
1930 /*
1931 * __normal_prio - return the priority that is based on the static prio
1932 */
1933 static inline int __normal_prio(struct task_struct *p)
1934 {
1935 return p->static_prio;
1936 }
1937
1938 /*
1939 * Calculate the expected normal priority: i.e. priority
1940 * without taking RT-inheritance into account. Might be
1941 * boosted by interactivity modifiers. Changes upon fork,
1942 * setprio syscalls, and whenever the interactivity
1943 * estimator recalculates.
1944 */
1945 static inline int normal_prio(struct task_struct *p)
1946 {
1947 int prio;
1948
1949 if (task_has_rt_policy(p))
1950 prio = MAX_RT_PRIO-1 - p->rt_priority;
1951 else
1952 prio = __normal_prio(p);
1953 return prio;
1954 }
1955
1956 /*
1957 * Calculate the current priority, i.e. the priority
1958 * taken into account by the scheduler. This value might
1959 * be boosted by RT tasks, or might be boosted by
1960 * interactivity modifiers. Will be RT if the task got
1961 * RT-boosted. If not then it returns p->normal_prio.
1962 */
1963 static int effective_prio(struct task_struct *p)
1964 {
1965 p->normal_prio = normal_prio(p);
1966 /*
1967 * If we are RT tasks or we were boosted to RT priority,
1968 * keep the priority unchanged. Otherwise, update priority
1969 * to the normal priority:
1970 */
1971 if (!rt_prio(p->prio))
1972 return p->normal_prio;
1973 return p->prio;
1974 }
1975
1976 /**
1977 * task_curr - is this task currently executing on a CPU?
1978 * @p: the task in question.
1979 */
1980 inline int task_curr(const struct task_struct *p)
1981 {
1982 return cpu_curr(task_cpu(p)) == p;
1983 }
1984
1985 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1986 const struct sched_class *prev_class,
1987 int oldprio, int running)
1988 {
1989 if (prev_class != p->sched_class) {
1990 if (prev_class->switched_from)
1991 prev_class->switched_from(rq, p, running);
1992 p->sched_class->switched_to(rq, p, running);
1993 } else
1994 p->sched_class->prio_changed(rq, p, oldprio, running);
1995 }
1996
1997 #ifdef CONFIG_SMP
1998 /*
1999 * Is this task likely cache-hot:
2000 */
2001 static int
2002 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2003 {
2004 s64 delta;
2005
2006 if (p->sched_class != &fair_sched_class)
2007 return 0;
2008
2009 /*
2010 * Buddy candidates are cache hot:
2011 */
2012 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2013 (&p->se == cfs_rq_of(&p->se)->next ||
2014 &p->se == cfs_rq_of(&p->se)->last))
2015 return 1;
2016
2017 if (sysctl_sched_migration_cost == -1)
2018 return 1;
2019 if (sysctl_sched_migration_cost == 0)
2020 return 0;
2021
2022 delta = now - p->se.exec_start;
2023
2024 return delta < (s64)sysctl_sched_migration_cost;
2025 }
2026
2027 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2028 {
2029 #ifdef CONFIG_SCHED_DEBUG
2030 /*
2031 * We should never call set_task_cpu() on a blocked task,
2032 * ttwu() will sort out the placement.
2033 */
2034 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2035 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2036 #endif
2037
2038 trace_sched_migrate_task(p, new_cpu);
2039
2040 if (task_cpu(p) != new_cpu) {
2041 p->se.nr_migrations++;
2042 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2043 }
2044
2045 __set_task_cpu(p, new_cpu);
2046 }
2047
2048 struct migration_arg {
2049 struct task_struct *task;
2050 int dest_cpu;
2051 };
2052
2053 static int migration_cpu_stop(void *data);
2054
2055 /*
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2058 */
2059 static bool migrate_task(struct task_struct *p, int dest_cpu)
2060 {
2061 struct rq *rq = task_rq(p);
2062
2063 /*
2064 * If the task is not on a runqueue (and not running), then
2065 * the next wake-up will properly place the task.
2066 */
2067 return p->se.on_rq || task_running(rq, p);
2068 }
2069
2070 /*
2071 * wait_task_inactive - wait for a thread to unschedule.
2072 *
2073 * If @match_state is nonzero, it's the @p->state value just checked and
2074 * not expected to change. If it changes, i.e. @p might have woken up,
2075 * then return zero. When we succeed in waiting for @p to be off its CPU,
2076 * we return a positive number (its total switch count). If a second call
2077 * a short while later returns the same number, the caller can be sure that
2078 * @p has remained unscheduled the whole time.
2079 *
2080 * The caller must ensure that the task *will* unschedule sometime soon,
2081 * else this function might spin for a *long* time. This function can't
2082 * be called with interrupts off, or it may introduce deadlock with
2083 * smp_call_function() if an IPI is sent by the same process we are
2084 * waiting to become inactive.
2085 */
2086 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2087 {
2088 unsigned long flags;
2089 int running, on_rq;
2090 unsigned long ncsw;
2091 struct rq *rq;
2092
2093 for (;;) {
2094 /*
2095 * We do the initial early heuristics without holding
2096 * any task-queue locks at all. We'll only try to get
2097 * the runqueue lock when things look like they will
2098 * work out!
2099 */
2100 rq = task_rq(p);
2101
2102 /*
2103 * If the task is actively running on another CPU
2104 * still, just relax and busy-wait without holding
2105 * any locks.
2106 *
2107 * NOTE! Since we don't hold any locks, it's not
2108 * even sure that "rq" stays as the right runqueue!
2109 * But we don't care, since "task_running()" will
2110 * return false if the runqueue has changed and p
2111 * is actually now running somewhere else!
2112 */
2113 while (task_running(rq, p)) {
2114 if (match_state && unlikely(p->state != match_state))
2115 return 0;
2116 cpu_relax();
2117 }
2118
2119 /*
2120 * Ok, time to look more closely! We need the rq
2121 * lock now, to be *sure*. If we're wrong, we'll
2122 * just go back and repeat.
2123 */
2124 rq = task_rq_lock(p, &flags);
2125 trace_sched_wait_task(p);
2126 running = task_running(rq, p);
2127 on_rq = p->se.on_rq;
2128 ncsw = 0;
2129 if (!match_state || p->state == match_state)
2130 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2131 task_rq_unlock(rq, &flags);
2132
2133 /*
2134 * If it changed from the expected state, bail out now.
2135 */
2136 if (unlikely(!ncsw))
2137 break;
2138
2139 /*
2140 * Was it really running after all now that we
2141 * checked with the proper locks actually held?
2142 *
2143 * Oops. Go back and try again..
2144 */
2145 if (unlikely(running)) {
2146 cpu_relax();
2147 continue;
2148 }
2149
2150 /*
2151 * It's not enough that it's not actively running,
2152 * it must be off the runqueue _entirely_, and not
2153 * preempted!
2154 *
2155 * So if it was still runnable (but just not actively
2156 * running right now), it's preempted, and we should
2157 * yield - it could be a while.
2158 */
2159 if (unlikely(on_rq)) {
2160 schedule_timeout_uninterruptible(1);
2161 continue;
2162 }
2163
2164 /*
2165 * Ahh, all good. It wasn't running, and it wasn't
2166 * runnable, which means that it will never become
2167 * running in the future either. We're all done!
2168 */
2169 break;
2170 }
2171
2172 return ncsw;
2173 }
2174
2175 /***
2176 * kick_process - kick a running thread to enter/exit the kernel
2177 * @p: the to-be-kicked thread
2178 *
2179 * Cause a process which is running on another CPU to enter
2180 * kernel-mode, without any delay. (to get signals handled.)
2181 *
2182 * NOTE: this function doesnt have to take the runqueue lock,
2183 * because all it wants to ensure is that the remote task enters
2184 * the kernel. If the IPI races and the task has been migrated
2185 * to another CPU then no harm is done and the purpose has been
2186 * achieved as well.
2187 */
2188 void kick_process(struct task_struct *p)
2189 {
2190 int cpu;
2191
2192 preempt_disable();
2193 cpu = task_cpu(p);
2194 if ((cpu != smp_processor_id()) && task_curr(p))
2195 smp_send_reschedule(cpu);
2196 preempt_enable();
2197 }
2198 EXPORT_SYMBOL_GPL(kick_process);
2199 #endif /* CONFIG_SMP */
2200
2201 /**
2202 * task_oncpu_function_call - call a function on the cpu on which a task runs
2203 * @p: the task to evaluate
2204 * @func: the function to be called
2205 * @info: the function call argument
2206 *
2207 * Calls the function @func when the task is currently running. This might
2208 * be on the current CPU, which just calls the function directly
2209 */
2210 void task_oncpu_function_call(struct task_struct *p,
2211 void (*func) (void *info), void *info)
2212 {
2213 int cpu;
2214
2215 preempt_disable();
2216 cpu = task_cpu(p);
2217 if (task_curr(p))
2218 smp_call_function_single(cpu, func, info, 1);
2219 preempt_enable();
2220 }
2221
2222 #ifdef CONFIG_SMP
2223 /*
2224 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2225 */
2226 static int select_fallback_rq(int cpu, struct task_struct *p)
2227 {
2228 int dest_cpu;
2229 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2230
2231 /* Look for allowed, online CPU in same node. */
2232 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2233 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2234 return dest_cpu;
2235
2236 /* Any allowed, online CPU? */
2237 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2238 if (dest_cpu < nr_cpu_ids)
2239 return dest_cpu;
2240
2241 /* No more Mr. Nice Guy. */
2242 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2243 dest_cpu = cpuset_cpus_allowed_fallback(p);
2244 /*
2245 * Don't tell them about moving exiting tasks or
2246 * kernel threads (both mm NULL), since they never
2247 * leave kernel.
2248 */
2249 if (p->mm && printk_ratelimit()) {
2250 printk(KERN_INFO "process %d (%s) no "
2251 "longer affine to cpu%d\n",
2252 task_pid_nr(p), p->comm, cpu);
2253 }
2254 }
2255
2256 return dest_cpu;
2257 }
2258
2259 /*
2260 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2261 */
2262 static inline
2263 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2264 {
2265 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2266
2267 /*
2268 * In order not to call set_task_cpu() on a blocking task we need
2269 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2270 * cpu.
2271 *
2272 * Since this is common to all placement strategies, this lives here.
2273 *
2274 * [ this allows ->select_task() to simply return task_cpu(p) and
2275 * not worry about this generic constraint ]
2276 */
2277 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2278 !cpu_online(cpu)))
2279 cpu = select_fallback_rq(task_cpu(p), p);
2280
2281 return cpu;
2282 }
2283
2284 static void update_avg(u64 *avg, u64 sample)
2285 {
2286 s64 diff = sample - *avg;
2287 *avg += diff >> 3;
2288 }
2289 #endif
2290
2291 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2292 bool is_sync, bool is_migrate, bool is_local,
2293 unsigned long en_flags)
2294 {
2295 schedstat_inc(p, se.statistics.nr_wakeups);
2296 if (is_sync)
2297 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2298 if (is_migrate)
2299 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2300 if (is_local)
2301 schedstat_inc(p, se.statistics.nr_wakeups_local);
2302 else
2303 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2304
2305 activate_task(rq, p, en_flags);
2306 }
2307
2308 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2309 int wake_flags, bool success)
2310 {
2311 trace_sched_wakeup(p, success);
2312 check_preempt_curr(rq, p, wake_flags);
2313
2314 p->state = TASK_RUNNING;
2315 #ifdef CONFIG_SMP
2316 if (p->sched_class->task_woken)
2317 p->sched_class->task_woken(rq, p);
2318
2319 if (unlikely(rq->idle_stamp)) {
2320 u64 delta = rq->clock - rq->idle_stamp;
2321 u64 max = 2*sysctl_sched_migration_cost;
2322
2323 if (delta > max)
2324 rq->avg_idle = max;
2325 else
2326 update_avg(&rq->avg_idle, delta);
2327 rq->idle_stamp = 0;
2328 }
2329 #endif
2330 /* if a worker is waking up, notify workqueue */
2331 if ((p->flags & PF_WQ_WORKER) && success)
2332 wq_worker_waking_up(p, cpu_of(rq));
2333 }
2334
2335 /**
2336 * try_to_wake_up - wake up a thread
2337 * @p: the thread to be awakened
2338 * @state: the mask of task states that can be woken
2339 * @wake_flags: wake modifier flags (WF_*)
2340 *
2341 * Put it on the run-queue if it's not already there. The "current"
2342 * thread is always on the run-queue (except when the actual
2343 * re-schedule is in progress), and as such you're allowed to do
2344 * the simpler "current->state = TASK_RUNNING" to mark yourself
2345 * runnable without the overhead of this.
2346 *
2347 * Returns %true if @p was woken up, %false if it was already running
2348 * or @state didn't match @p's state.
2349 */
2350 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2351 int wake_flags)
2352 {
2353 int cpu, orig_cpu, this_cpu, success = 0;
2354 unsigned long flags;
2355 unsigned long en_flags = ENQUEUE_WAKEUP;
2356 struct rq *rq;
2357
2358 this_cpu = get_cpu();
2359
2360 smp_wmb();
2361 rq = task_rq_lock(p, &flags);
2362 if (!(p->state & state))
2363 goto out;
2364
2365 if (p->se.on_rq)
2366 goto out_running;
2367
2368 cpu = task_cpu(p);
2369 orig_cpu = cpu;
2370
2371 #ifdef CONFIG_SMP
2372 if (unlikely(task_running(rq, p)))
2373 goto out_activate;
2374
2375 /*
2376 * In order to handle concurrent wakeups and release the rq->lock
2377 * we put the task in TASK_WAKING state.
2378 *
2379 * First fix up the nr_uninterruptible count:
2380 */
2381 if (task_contributes_to_load(p)) {
2382 if (likely(cpu_online(orig_cpu)))
2383 rq->nr_uninterruptible--;
2384 else
2385 this_rq()->nr_uninterruptible--;
2386 }
2387 p->state = TASK_WAKING;
2388
2389 if (p->sched_class->task_waking) {
2390 p->sched_class->task_waking(rq, p);
2391 en_flags |= ENQUEUE_WAKING;
2392 }
2393
2394 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2395 if (cpu != orig_cpu)
2396 set_task_cpu(p, cpu);
2397 __task_rq_unlock(rq);
2398
2399 rq = cpu_rq(cpu);
2400 raw_spin_lock(&rq->lock);
2401
2402 /*
2403 * We migrated the task without holding either rq->lock, however
2404 * since the task is not on the task list itself, nobody else
2405 * will try and migrate the task, hence the rq should match the
2406 * cpu we just moved it to.
2407 */
2408 WARN_ON(task_cpu(p) != cpu);
2409 WARN_ON(p->state != TASK_WAKING);
2410
2411 #ifdef CONFIG_SCHEDSTATS
2412 schedstat_inc(rq, ttwu_count);
2413 if (cpu == this_cpu)
2414 schedstat_inc(rq, ttwu_local);
2415 else {
2416 struct sched_domain *sd;
2417 for_each_domain(this_cpu, sd) {
2418 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2419 schedstat_inc(sd, ttwu_wake_remote);
2420 break;
2421 }
2422 }
2423 }
2424 #endif /* CONFIG_SCHEDSTATS */
2425
2426 out_activate:
2427 #endif /* CONFIG_SMP */
2428 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2429 cpu == this_cpu, en_flags);
2430 success = 1;
2431 out_running:
2432 ttwu_post_activation(p, rq, wake_flags, success);
2433 out:
2434 task_rq_unlock(rq, &flags);
2435 put_cpu();
2436
2437 return success;
2438 }
2439
2440 /**
2441 * try_to_wake_up_local - try to wake up a local task with rq lock held
2442 * @p: the thread to be awakened
2443 *
2444 * Put @p on the run-queue if it's not alredy there. The caller must
2445 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2446 * the current task. this_rq() stays locked over invocation.
2447 */
2448 static void try_to_wake_up_local(struct task_struct *p)
2449 {
2450 struct rq *rq = task_rq(p);
2451 bool success = false;
2452
2453 BUG_ON(rq != this_rq());
2454 BUG_ON(p == current);
2455 lockdep_assert_held(&rq->lock);
2456
2457 if (!(p->state & TASK_NORMAL))
2458 return;
2459
2460 if (!p->se.on_rq) {
2461 if (likely(!task_running(rq, p))) {
2462 schedstat_inc(rq, ttwu_count);
2463 schedstat_inc(rq, ttwu_local);
2464 }
2465 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2466 success = true;
2467 }
2468 ttwu_post_activation(p, rq, 0, success);
2469 }
2470
2471 /**
2472 * wake_up_process - Wake up a specific process
2473 * @p: The process to be woken up.
2474 *
2475 * Attempt to wake up the nominated process and move it to the set of runnable
2476 * processes. Returns 1 if the process was woken up, 0 if it was already
2477 * running.
2478 *
2479 * It may be assumed that this function implies a write memory barrier before
2480 * changing the task state if and only if any tasks are woken up.
2481 */
2482 int wake_up_process(struct task_struct *p)
2483 {
2484 return try_to_wake_up(p, TASK_ALL, 0);
2485 }
2486 EXPORT_SYMBOL(wake_up_process);
2487
2488 int wake_up_state(struct task_struct *p, unsigned int state)
2489 {
2490 return try_to_wake_up(p, state, 0);
2491 }
2492
2493 /*
2494 * Perform scheduler related setup for a newly forked process p.
2495 * p is forked by current.
2496 *
2497 * __sched_fork() is basic setup used by init_idle() too:
2498 */
2499 static void __sched_fork(struct task_struct *p)
2500 {
2501 p->se.exec_start = 0;
2502 p->se.sum_exec_runtime = 0;
2503 p->se.prev_sum_exec_runtime = 0;
2504 p->se.nr_migrations = 0;
2505
2506 #ifdef CONFIG_SCHEDSTATS
2507 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2508 #endif
2509
2510 INIT_LIST_HEAD(&p->rt.run_list);
2511 p->se.on_rq = 0;
2512 INIT_LIST_HEAD(&p->se.group_node);
2513
2514 #ifdef CONFIG_PREEMPT_NOTIFIERS
2515 INIT_HLIST_HEAD(&p->preempt_notifiers);
2516 #endif
2517 }
2518
2519 /*
2520 * fork()/clone()-time setup:
2521 */
2522 void sched_fork(struct task_struct *p, int clone_flags)
2523 {
2524 int cpu = get_cpu();
2525
2526 __sched_fork(p);
2527 /*
2528 * We mark the process as running here. This guarantees that
2529 * nobody will actually run it, and a signal or other external
2530 * event cannot wake it up and insert it on the runqueue either.
2531 */
2532 p->state = TASK_RUNNING;
2533
2534 /*
2535 * Revert to default priority/policy on fork if requested.
2536 */
2537 if (unlikely(p->sched_reset_on_fork)) {
2538 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2539 p->policy = SCHED_NORMAL;
2540 p->normal_prio = p->static_prio;
2541 }
2542
2543 if (PRIO_TO_NICE(p->static_prio) < 0) {
2544 p->static_prio = NICE_TO_PRIO(0);
2545 p->normal_prio = p->static_prio;
2546 set_load_weight(p);
2547 }
2548
2549 /*
2550 * We don't need the reset flag anymore after the fork. It has
2551 * fulfilled its duty:
2552 */
2553 p->sched_reset_on_fork = 0;
2554 }
2555
2556 /*
2557 * Make sure we do not leak PI boosting priority to the child.
2558 */
2559 p->prio = current->normal_prio;
2560
2561 if (!rt_prio(p->prio))
2562 p->sched_class = &fair_sched_class;
2563
2564 if (p->sched_class->task_fork)
2565 p->sched_class->task_fork(p);
2566
2567 set_task_cpu(p, cpu);
2568
2569 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2570 if (likely(sched_info_on()))
2571 memset(&p->sched_info, 0, sizeof(p->sched_info));
2572 #endif
2573 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2574 p->oncpu = 0;
2575 #endif
2576 #ifdef CONFIG_PREEMPT
2577 /* Want to start with kernel preemption disabled. */
2578 task_thread_info(p)->preempt_count = 1;
2579 #endif
2580 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2581
2582 put_cpu();
2583 }
2584
2585 /*
2586 * wake_up_new_task - wake up a newly created task for the first time.
2587 *
2588 * This function will do some initial scheduler statistics housekeeping
2589 * that must be done for every newly created context, then puts the task
2590 * on the runqueue and wakes it.
2591 */
2592 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2593 {
2594 unsigned long flags;
2595 struct rq *rq;
2596 int cpu __maybe_unused = get_cpu();
2597
2598 #ifdef CONFIG_SMP
2599 rq = task_rq_lock(p, &flags);
2600 p->state = TASK_WAKING;
2601
2602 /*
2603 * Fork balancing, do it here and not earlier because:
2604 * - cpus_allowed can change in the fork path
2605 * - any previously selected cpu might disappear through hotplug
2606 *
2607 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2608 * without people poking at ->cpus_allowed.
2609 */
2610 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2611 set_task_cpu(p, cpu);
2612
2613 p->state = TASK_RUNNING;
2614 task_rq_unlock(rq, &flags);
2615 #endif
2616
2617 rq = task_rq_lock(p, &flags);
2618 activate_task(rq, p, 0);
2619 trace_sched_wakeup_new(p, 1);
2620 check_preempt_curr(rq, p, WF_FORK);
2621 #ifdef CONFIG_SMP
2622 if (p->sched_class->task_woken)
2623 p->sched_class->task_woken(rq, p);
2624 #endif
2625 task_rq_unlock(rq, &flags);
2626 put_cpu();
2627 }
2628
2629 #ifdef CONFIG_PREEMPT_NOTIFIERS
2630
2631 /**
2632 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2633 * @notifier: notifier struct to register
2634 */
2635 void preempt_notifier_register(struct preempt_notifier *notifier)
2636 {
2637 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2638 }
2639 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2640
2641 /**
2642 * preempt_notifier_unregister - no longer interested in preemption notifications
2643 * @notifier: notifier struct to unregister
2644 *
2645 * This is safe to call from within a preemption notifier.
2646 */
2647 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2648 {
2649 hlist_del(&notifier->link);
2650 }
2651 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2652
2653 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2654 {
2655 struct preempt_notifier *notifier;
2656 struct hlist_node *node;
2657
2658 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2659 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2660 }
2661
2662 static void
2663 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2664 struct task_struct *next)
2665 {
2666 struct preempt_notifier *notifier;
2667 struct hlist_node *node;
2668
2669 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2670 notifier->ops->sched_out(notifier, next);
2671 }
2672
2673 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2674
2675 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2676 {
2677 }
2678
2679 static void
2680 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2681 struct task_struct *next)
2682 {
2683 }
2684
2685 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2686
2687 /**
2688 * prepare_task_switch - prepare to switch tasks
2689 * @rq: the runqueue preparing to switch
2690 * @prev: the current task that is being switched out
2691 * @next: the task we are going to switch to.
2692 *
2693 * This is called with the rq lock held and interrupts off. It must
2694 * be paired with a subsequent finish_task_switch after the context
2695 * switch.
2696 *
2697 * prepare_task_switch sets up locking and calls architecture specific
2698 * hooks.
2699 */
2700 static inline void
2701 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2702 struct task_struct *next)
2703 {
2704 fire_sched_out_preempt_notifiers(prev, next);
2705 prepare_lock_switch(rq, next);
2706 prepare_arch_switch(next);
2707 }
2708
2709 /**
2710 * finish_task_switch - clean up after a task-switch
2711 * @rq: runqueue associated with task-switch
2712 * @prev: the thread we just switched away from.
2713 *
2714 * finish_task_switch must be called after the context switch, paired
2715 * with a prepare_task_switch call before the context switch.
2716 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2717 * and do any other architecture-specific cleanup actions.
2718 *
2719 * Note that we may have delayed dropping an mm in context_switch(). If
2720 * so, we finish that here outside of the runqueue lock. (Doing it
2721 * with the lock held can cause deadlocks; see schedule() for
2722 * details.)
2723 */
2724 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2725 __releases(rq->lock)
2726 {
2727 struct mm_struct *mm = rq->prev_mm;
2728 long prev_state;
2729
2730 rq->prev_mm = NULL;
2731
2732 /*
2733 * A task struct has one reference for the use as "current".
2734 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2735 * schedule one last time. The schedule call will never return, and
2736 * the scheduled task must drop that reference.
2737 * The test for TASK_DEAD must occur while the runqueue locks are
2738 * still held, otherwise prev could be scheduled on another cpu, die
2739 * there before we look at prev->state, and then the reference would
2740 * be dropped twice.
2741 * Manfred Spraul <manfred@colorfullife.com>
2742 */
2743 prev_state = prev->state;
2744 finish_arch_switch(prev);
2745 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2746 local_irq_disable();
2747 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2748 perf_event_task_sched_in(current);
2749 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2750 local_irq_enable();
2751 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2752 finish_lock_switch(rq, prev);
2753
2754 fire_sched_in_preempt_notifiers(current);
2755 if (mm)
2756 mmdrop(mm);
2757 if (unlikely(prev_state == TASK_DEAD)) {
2758 /*
2759 * Remove function-return probe instances associated with this
2760 * task and put them back on the free list.
2761 */
2762 kprobe_flush_task(prev);
2763 put_task_struct(prev);
2764 }
2765 }
2766
2767 #ifdef CONFIG_SMP
2768
2769 /* assumes rq->lock is held */
2770 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2771 {
2772 if (prev->sched_class->pre_schedule)
2773 prev->sched_class->pre_schedule(rq, prev);
2774 }
2775
2776 /* rq->lock is NOT held, but preemption is disabled */
2777 static inline void post_schedule(struct rq *rq)
2778 {
2779 if (rq->post_schedule) {
2780 unsigned long flags;
2781
2782 raw_spin_lock_irqsave(&rq->lock, flags);
2783 if (rq->curr->sched_class->post_schedule)
2784 rq->curr->sched_class->post_schedule(rq);
2785 raw_spin_unlock_irqrestore(&rq->lock, flags);
2786
2787 rq->post_schedule = 0;
2788 }
2789 }
2790
2791 #else
2792
2793 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2794 {
2795 }
2796
2797 static inline void post_schedule(struct rq *rq)
2798 {
2799 }
2800
2801 #endif
2802
2803 /**
2804 * schedule_tail - first thing a freshly forked thread must call.
2805 * @prev: the thread we just switched away from.
2806 */
2807 asmlinkage void schedule_tail(struct task_struct *prev)
2808 __releases(rq->lock)
2809 {
2810 struct rq *rq = this_rq();
2811
2812 finish_task_switch(rq, prev);
2813
2814 /*
2815 * FIXME: do we need to worry about rq being invalidated by the
2816 * task_switch?
2817 */
2818 post_schedule(rq);
2819
2820 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2821 /* In this case, finish_task_switch does not reenable preemption */
2822 preempt_enable();
2823 #endif
2824 if (current->set_child_tid)
2825 put_user(task_pid_vnr(current), current->set_child_tid);
2826 }
2827
2828 /*
2829 * context_switch - switch to the new MM and the new
2830 * thread's register state.
2831 */
2832 static inline void
2833 context_switch(struct rq *rq, struct task_struct *prev,
2834 struct task_struct *next)
2835 {
2836 struct mm_struct *mm, *oldmm;
2837
2838 prepare_task_switch(rq, prev, next);
2839 trace_sched_switch(prev, next);
2840 mm = next->mm;
2841 oldmm = prev->active_mm;
2842 /*
2843 * For paravirt, this is coupled with an exit in switch_to to
2844 * combine the page table reload and the switch backend into
2845 * one hypercall.
2846 */
2847 arch_start_context_switch(prev);
2848
2849 if (likely(!mm)) {
2850 next->active_mm = oldmm;
2851 atomic_inc(&oldmm->mm_count);
2852 enter_lazy_tlb(oldmm, next);
2853 } else
2854 switch_mm(oldmm, mm, next);
2855
2856 if (likely(!prev->mm)) {
2857 prev->active_mm = NULL;
2858 rq->prev_mm = oldmm;
2859 }
2860 /*
2861 * Since the runqueue lock will be released by the next
2862 * task (which is an invalid locking op but in the case
2863 * of the scheduler it's an obvious special-case), so we
2864 * do an early lockdep release here:
2865 */
2866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2867 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2868 #endif
2869
2870 /* Here we just switch the register state and the stack. */
2871 switch_to(prev, next, prev);
2872
2873 barrier();
2874 /*
2875 * this_rq must be evaluated again because prev may have moved
2876 * CPUs since it called schedule(), thus the 'rq' on its stack
2877 * frame will be invalid.
2878 */
2879 finish_task_switch(this_rq(), prev);
2880 }
2881
2882 /*
2883 * nr_running, nr_uninterruptible and nr_context_switches:
2884 *
2885 * externally visible scheduler statistics: current number of runnable
2886 * threads, current number of uninterruptible-sleeping threads, total
2887 * number of context switches performed since bootup.
2888 */
2889 unsigned long nr_running(void)
2890 {
2891 unsigned long i, sum = 0;
2892
2893 for_each_online_cpu(i)
2894 sum += cpu_rq(i)->nr_running;
2895
2896 return sum;
2897 }
2898
2899 unsigned long nr_uninterruptible(void)
2900 {
2901 unsigned long i, sum = 0;
2902
2903 for_each_possible_cpu(i)
2904 sum += cpu_rq(i)->nr_uninterruptible;
2905
2906 /*
2907 * Since we read the counters lockless, it might be slightly
2908 * inaccurate. Do not allow it to go below zero though:
2909 */
2910 if (unlikely((long)sum < 0))
2911 sum = 0;
2912
2913 return sum;
2914 }
2915
2916 unsigned long long nr_context_switches(void)
2917 {
2918 int i;
2919 unsigned long long sum = 0;
2920
2921 for_each_possible_cpu(i)
2922 sum += cpu_rq(i)->nr_switches;
2923
2924 return sum;
2925 }
2926
2927 unsigned long nr_iowait(void)
2928 {
2929 unsigned long i, sum = 0;
2930
2931 for_each_possible_cpu(i)
2932 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2933
2934 return sum;
2935 }
2936
2937 unsigned long nr_iowait_cpu(void)
2938 {
2939 struct rq *this = this_rq();
2940 return atomic_read(&this->nr_iowait);
2941 }
2942
2943 unsigned long this_cpu_load(void)
2944 {
2945 struct rq *this = this_rq();
2946 return this->cpu_load[0];
2947 }
2948
2949
2950 /* Variables and functions for calc_load */
2951 static atomic_long_t calc_load_tasks;
2952 static unsigned long calc_load_update;
2953 unsigned long avenrun[3];
2954 EXPORT_SYMBOL(avenrun);
2955
2956 static long calc_load_fold_active(struct rq *this_rq)
2957 {
2958 long nr_active, delta = 0;
2959
2960 nr_active = this_rq->nr_running;
2961 nr_active += (long) this_rq->nr_uninterruptible;
2962
2963 if (nr_active != this_rq->calc_load_active) {
2964 delta = nr_active - this_rq->calc_load_active;
2965 this_rq->calc_load_active = nr_active;
2966 }
2967
2968 return delta;
2969 }
2970
2971 #ifdef CONFIG_NO_HZ
2972 /*
2973 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2974 *
2975 * When making the ILB scale, we should try to pull this in as well.
2976 */
2977 static atomic_long_t calc_load_tasks_idle;
2978
2979 static void calc_load_account_idle(struct rq *this_rq)
2980 {
2981 long delta;
2982
2983 delta = calc_load_fold_active(this_rq);
2984 if (delta)
2985 atomic_long_add(delta, &calc_load_tasks_idle);
2986 }
2987
2988 static long calc_load_fold_idle(void)
2989 {
2990 long delta = 0;
2991
2992 /*
2993 * Its got a race, we don't care...
2994 */
2995 if (atomic_long_read(&calc_load_tasks_idle))
2996 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2997
2998 return delta;
2999 }
3000 #else
3001 static void calc_load_account_idle(struct rq *this_rq)
3002 {
3003 }
3004
3005 static inline long calc_load_fold_idle(void)
3006 {
3007 return 0;
3008 }
3009 #endif
3010
3011 /**
3012 * get_avenrun - get the load average array
3013 * @loads: pointer to dest load array
3014 * @offset: offset to add
3015 * @shift: shift count to shift the result left
3016 *
3017 * These values are estimates at best, so no need for locking.
3018 */
3019 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3020 {
3021 loads[0] = (avenrun[0] + offset) << shift;
3022 loads[1] = (avenrun[1] + offset) << shift;
3023 loads[2] = (avenrun[2] + offset) << shift;
3024 }
3025
3026 static unsigned long
3027 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3028 {
3029 load *= exp;
3030 load += active * (FIXED_1 - exp);
3031 return load >> FSHIFT;
3032 }
3033
3034 /*
3035 * calc_load - update the avenrun load estimates 10 ticks after the
3036 * CPUs have updated calc_load_tasks.
3037 */
3038 void calc_global_load(void)
3039 {
3040 unsigned long upd = calc_load_update + 10;
3041 long active;
3042
3043 if (time_before(jiffies, upd))
3044 return;
3045
3046 active = atomic_long_read(&calc_load_tasks);
3047 active = active > 0 ? active * FIXED_1 : 0;
3048
3049 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3050 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3051 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3052
3053 calc_load_update += LOAD_FREQ;
3054 }
3055
3056 /*
3057 * Called from update_cpu_load() to periodically update this CPU's
3058 * active count.
3059 */
3060 static void calc_load_account_active(struct rq *this_rq)
3061 {
3062 long delta;
3063
3064 if (time_before(jiffies, this_rq->calc_load_update))
3065 return;
3066
3067 delta = calc_load_fold_active(this_rq);
3068 delta += calc_load_fold_idle();
3069 if (delta)
3070 atomic_long_add(delta, &calc_load_tasks);
3071
3072 this_rq->calc_load_update += LOAD_FREQ;
3073 }
3074
3075 /*
3076 * The exact cpuload at various idx values, calculated at every tick would be
3077 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3078 *
3079 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3080 * on nth tick when cpu may be busy, then we have:
3081 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3082 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3083 *
3084 * decay_load_missed() below does efficient calculation of
3085 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3086 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3087 *
3088 * The calculation is approximated on a 128 point scale.
3089 * degrade_zero_ticks is the number of ticks after which load at any
3090 * particular idx is approximated to be zero.
3091 * degrade_factor is a precomputed table, a row for each load idx.
3092 * Each column corresponds to degradation factor for a power of two ticks,
3093 * based on 128 point scale.
3094 * Example:
3095 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3096 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3097 *
3098 * With this power of 2 load factors, we can degrade the load n times
3099 * by looking at 1 bits in n and doing as many mult/shift instead of
3100 * n mult/shifts needed by the exact degradation.
3101 */
3102 #define DEGRADE_SHIFT 7
3103 static const unsigned char
3104 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3105 static const unsigned char
3106 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3107 {0, 0, 0, 0, 0, 0, 0, 0},
3108 {64, 32, 8, 0, 0, 0, 0, 0},
3109 {96, 72, 40, 12, 1, 0, 0},
3110 {112, 98, 75, 43, 15, 1, 0},
3111 {120, 112, 98, 76, 45, 16, 2} };
3112
3113 /*
3114 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3115 * would be when CPU is idle and so we just decay the old load without
3116 * adding any new load.
3117 */
3118 static unsigned long
3119 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3120 {
3121 int j = 0;
3122
3123 if (!missed_updates)
3124 return load;
3125
3126 if (missed_updates >= degrade_zero_ticks[idx])
3127 return 0;
3128
3129 if (idx == 1)
3130 return load >> missed_updates;
3131
3132 while (missed_updates) {
3133 if (missed_updates % 2)
3134 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3135
3136 missed_updates >>= 1;
3137 j++;
3138 }
3139 return load;
3140 }
3141
3142 /*
3143 * Update rq->cpu_load[] statistics. This function is usually called every
3144 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3145 * every tick. We fix it up based on jiffies.
3146 */
3147 static void update_cpu_load(struct rq *this_rq)
3148 {
3149 unsigned long this_load = this_rq->load.weight;
3150 unsigned long curr_jiffies = jiffies;
3151 unsigned long pending_updates;
3152 int i, scale;
3153
3154 this_rq->nr_load_updates++;
3155
3156 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3157 if (curr_jiffies == this_rq->last_load_update_tick)
3158 return;
3159
3160 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3161 this_rq->last_load_update_tick = curr_jiffies;
3162
3163 /* Update our load: */
3164 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3165 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3166 unsigned long old_load, new_load;
3167
3168 /* scale is effectively 1 << i now, and >> i divides by scale */
3169
3170 old_load = this_rq->cpu_load[i];
3171 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3172 new_load = this_load;
3173 /*
3174 * Round up the averaging division if load is increasing. This
3175 * prevents us from getting stuck on 9 if the load is 10, for
3176 * example.
3177 */
3178 if (new_load > old_load)
3179 new_load += scale - 1;
3180
3181 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3182 }
3183 }
3184
3185 static void update_cpu_load_active(struct rq *this_rq)
3186 {
3187 update_cpu_load(this_rq);
3188
3189 calc_load_account_active(this_rq);
3190 }
3191
3192 #ifdef CONFIG_SMP
3193
3194 /*
3195 * sched_exec - execve() is a valuable balancing opportunity, because at
3196 * this point the task has the smallest effective memory and cache footprint.
3197 */
3198 void sched_exec(void)
3199 {
3200 struct task_struct *p = current;
3201 unsigned long flags;
3202 struct rq *rq;
3203 int dest_cpu;
3204
3205 rq = task_rq_lock(p, &flags);
3206 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3207 if (dest_cpu == smp_processor_id())
3208 goto unlock;
3209
3210 /*
3211 * select_task_rq() can race against ->cpus_allowed
3212 */
3213 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3214 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3215 struct migration_arg arg = { p, dest_cpu };
3216
3217 task_rq_unlock(rq, &flags);
3218 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3219 return;
3220 }
3221 unlock:
3222 task_rq_unlock(rq, &flags);
3223 }
3224
3225 #endif
3226
3227 DEFINE_PER_CPU(struct kernel_stat, kstat);
3228
3229 EXPORT_PER_CPU_SYMBOL(kstat);
3230
3231 /*
3232 * Return any ns on the sched_clock that have not yet been accounted in
3233 * @p in case that task is currently running.
3234 *
3235 * Called with task_rq_lock() held on @rq.
3236 */
3237 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3238 {
3239 u64 ns = 0;
3240
3241 if (task_current(rq, p)) {
3242 update_rq_clock(rq);
3243 ns = rq->clock - p->se.exec_start;
3244 if ((s64)ns < 0)
3245 ns = 0;
3246 }
3247
3248 return ns;
3249 }
3250
3251 unsigned long long task_delta_exec(struct task_struct *p)
3252 {
3253 unsigned long flags;
3254 struct rq *rq;
3255 u64 ns = 0;
3256
3257 rq = task_rq_lock(p, &flags);
3258 ns = do_task_delta_exec(p, rq);
3259 task_rq_unlock(rq, &flags);
3260
3261 return ns;
3262 }
3263
3264 /*
3265 * Return accounted runtime for the task.
3266 * In case the task is currently running, return the runtime plus current's
3267 * pending runtime that have not been accounted yet.
3268 */
3269 unsigned long long task_sched_runtime(struct task_struct *p)
3270 {
3271 unsigned long flags;
3272 struct rq *rq;
3273 u64 ns = 0;
3274
3275 rq = task_rq_lock(p, &flags);
3276 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3277 task_rq_unlock(rq, &flags);
3278
3279 return ns;
3280 }
3281
3282 /*
3283 * Return sum_exec_runtime for the thread group.
3284 * In case the task is currently running, return the sum plus current's
3285 * pending runtime that have not been accounted yet.
3286 *
3287 * Note that the thread group might have other running tasks as well,
3288 * so the return value not includes other pending runtime that other
3289 * running tasks might have.
3290 */
3291 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3292 {
3293 struct task_cputime totals;
3294 unsigned long flags;
3295 struct rq *rq;
3296 u64 ns;
3297
3298 rq = task_rq_lock(p, &flags);
3299 thread_group_cputime(p, &totals);
3300 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3301 task_rq_unlock(rq, &flags);
3302
3303 return ns;
3304 }
3305
3306 /*
3307 * Account user cpu time to a process.
3308 * @p: the process that the cpu time gets accounted to
3309 * @cputime: the cpu time spent in user space since the last update
3310 * @cputime_scaled: cputime scaled by cpu frequency
3311 */
3312 void account_user_time(struct task_struct *p, cputime_t cputime,
3313 cputime_t cputime_scaled)
3314 {
3315 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3316 cputime64_t tmp;
3317
3318 /* Add user time to process. */
3319 p->utime = cputime_add(p->utime, cputime);
3320 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3321 account_group_user_time(p, cputime);
3322
3323 /* Add user time to cpustat. */
3324 tmp = cputime_to_cputime64(cputime);
3325 if (TASK_NICE(p) > 0)
3326 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3327 else
3328 cpustat->user = cputime64_add(cpustat->user, tmp);
3329
3330 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3331 /* Account for user time used */
3332 acct_update_integrals(p);
3333 }
3334
3335 /*
3336 * Account guest cpu time to a process.
3337 * @p: the process that the cpu time gets accounted to
3338 * @cputime: the cpu time spent in virtual machine since the last update
3339 * @cputime_scaled: cputime scaled by cpu frequency
3340 */
3341 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3342 cputime_t cputime_scaled)
3343 {
3344 cputime64_t tmp;
3345 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3346
3347 tmp = cputime_to_cputime64(cputime);
3348
3349 /* Add guest time to process. */
3350 p->utime = cputime_add(p->utime, cputime);
3351 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3352 account_group_user_time(p, cputime);
3353 p->gtime = cputime_add(p->gtime, cputime);
3354
3355 /* Add guest time to cpustat. */
3356 if (TASK_NICE(p) > 0) {
3357 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3358 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3359 } else {
3360 cpustat->user = cputime64_add(cpustat->user, tmp);
3361 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3362 }
3363 }
3364
3365 /*
3366 * Account system cpu time to a process.
3367 * @p: the process that the cpu time gets accounted to
3368 * @hardirq_offset: the offset to subtract from hardirq_count()
3369 * @cputime: the cpu time spent in kernel space since the last update
3370 * @cputime_scaled: cputime scaled by cpu frequency
3371 */
3372 void account_system_time(struct task_struct *p, int hardirq_offset,
3373 cputime_t cputime, cputime_t cputime_scaled)
3374 {
3375 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3376 cputime64_t tmp;
3377
3378 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3379 account_guest_time(p, cputime, cputime_scaled);
3380 return;
3381 }
3382
3383 /* Add system time to process. */
3384 p->stime = cputime_add(p->stime, cputime);
3385 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3386 account_group_system_time(p, cputime);
3387
3388 /* Add system time to cpustat. */
3389 tmp = cputime_to_cputime64(cputime);
3390 if (hardirq_count() - hardirq_offset)
3391 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3392 else if (softirq_count())
3393 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3394 else
3395 cpustat->system = cputime64_add(cpustat->system, tmp);
3396
3397 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3398
3399 /* Account for system time used */
3400 acct_update_integrals(p);
3401 }
3402
3403 /*
3404 * Account for involuntary wait time.
3405 * @steal: the cpu time spent in involuntary wait
3406 */
3407 void account_steal_time(cputime_t cputime)
3408 {
3409 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3410 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3411
3412 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3413 }
3414
3415 /*
3416 * Account for idle time.
3417 * @cputime: the cpu time spent in idle wait
3418 */
3419 void account_idle_time(cputime_t cputime)
3420 {
3421 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3422 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3423 struct rq *rq = this_rq();
3424
3425 if (atomic_read(&rq->nr_iowait) > 0)
3426 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3427 else
3428 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3429 }
3430
3431 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3432
3433 /*
3434 * Account a single tick of cpu time.
3435 * @p: the process that the cpu time gets accounted to
3436 * @user_tick: indicates if the tick is a user or a system tick
3437 */
3438 void account_process_tick(struct task_struct *p, int user_tick)
3439 {
3440 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3441 struct rq *rq = this_rq();
3442
3443 if (user_tick)
3444 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3445 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3446 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3447 one_jiffy_scaled);
3448 else
3449 account_idle_time(cputime_one_jiffy);
3450 }
3451
3452 /*
3453 * Account multiple ticks of steal time.
3454 * @p: the process from which the cpu time has been stolen
3455 * @ticks: number of stolen ticks
3456 */
3457 void account_steal_ticks(unsigned long ticks)
3458 {
3459 account_steal_time(jiffies_to_cputime(ticks));
3460 }
3461
3462 /*
3463 * Account multiple ticks of idle time.
3464 * @ticks: number of stolen ticks
3465 */
3466 void account_idle_ticks(unsigned long ticks)
3467 {
3468 account_idle_time(jiffies_to_cputime(ticks));
3469 }
3470
3471 #endif
3472
3473 /*
3474 * Use precise platform statistics if available:
3475 */
3476 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3477 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3478 {
3479 *ut = p->utime;
3480 *st = p->stime;
3481 }
3482
3483 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3484 {
3485 struct task_cputime cputime;
3486
3487 thread_group_cputime(p, &cputime);
3488
3489 *ut = cputime.utime;
3490 *st = cputime.stime;
3491 }
3492 #else
3493
3494 #ifndef nsecs_to_cputime
3495 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3496 #endif
3497
3498 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3499 {
3500 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3501
3502 /*
3503 * Use CFS's precise accounting:
3504 */
3505 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3506
3507 if (total) {
3508 u64 temp;
3509
3510 temp = (u64)(rtime * utime);
3511 do_div(temp, total);
3512 utime = (cputime_t)temp;
3513 } else
3514 utime = rtime;
3515
3516 /*
3517 * Compare with previous values, to keep monotonicity:
3518 */
3519 p->prev_utime = max(p->prev_utime, utime);
3520 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3521
3522 *ut = p->prev_utime;
3523 *st = p->prev_stime;
3524 }
3525
3526 /*
3527 * Must be called with siglock held.
3528 */
3529 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3530 {
3531 struct signal_struct *sig = p->signal;
3532 struct task_cputime cputime;
3533 cputime_t rtime, utime, total;
3534
3535 thread_group_cputime(p, &cputime);
3536
3537 total = cputime_add(cputime.utime, cputime.stime);
3538 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3539
3540 if (total) {
3541 u64 temp;
3542
3543 temp = (u64)(rtime * cputime.utime);
3544 do_div(temp, total);
3545 utime = (cputime_t)temp;
3546 } else
3547 utime = rtime;
3548
3549 sig->prev_utime = max(sig->prev_utime, utime);
3550 sig->prev_stime = max(sig->prev_stime,
3551 cputime_sub(rtime, sig->prev_utime));
3552
3553 *ut = sig->prev_utime;
3554 *st = sig->prev_stime;
3555 }
3556 #endif
3557
3558 /*
3559 * This function gets called by the timer code, with HZ frequency.
3560 * We call it with interrupts disabled.
3561 *
3562 * It also gets called by the fork code, when changing the parent's
3563 * timeslices.
3564 */
3565 void scheduler_tick(void)
3566 {
3567 int cpu = smp_processor_id();
3568 struct rq *rq = cpu_rq(cpu);
3569 struct task_struct *curr = rq->curr;
3570
3571 sched_clock_tick();
3572
3573 raw_spin_lock(&rq->lock);
3574 update_rq_clock(rq);
3575 update_cpu_load_active(rq);
3576 curr->sched_class->task_tick(rq, curr, 0);
3577 raw_spin_unlock(&rq->lock);
3578
3579 perf_event_task_tick(curr);
3580
3581 #ifdef CONFIG_SMP
3582 rq->idle_at_tick = idle_cpu(cpu);
3583 trigger_load_balance(rq, cpu);
3584 #endif
3585 }
3586
3587 notrace unsigned long get_parent_ip(unsigned long addr)
3588 {
3589 if (in_lock_functions(addr)) {
3590 addr = CALLER_ADDR2;
3591 if (in_lock_functions(addr))
3592 addr = CALLER_ADDR3;
3593 }
3594 return addr;
3595 }
3596
3597 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3598 defined(CONFIG_PREEMPT_TRACER))
3599
3600 void __kprobes add_preempt_count(int val)
3601 {
3602 #ifdef CONFIG_DEBUG_PREEMPT
3603 /*
3604 * Underflow?
3605 */
3606 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3607 return;
3608 #endif
3609 preempt_count() += val;
3610 #ifdef CONFIG_DEBUG_PREEMPT
3611 /*
3612 * Spinlock count overflowing soon?
3613 */
3614 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3615 PREEMPT_MASK - 10);
3616 #endif
3617 if (preempt_count() == val)
3618 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3619 }
3620 EXPORT_SYMBOL(add_preempt_count);
3621
3622 void __kprobes sub_preempt_count(int val)
3623 {
3624 #ifdef CONFIG_DEBUG_PREEMPT
3625 /*
3626 * Underflow?
3627 */
3628 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3629 return;
3630 /*
3631 * Is the spinlock portion underflowing?
3632 */
3633 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3634 !(preempt_count() & PREEMPT_MASK)))
3635 return;
3636 #endif
3637
3638 if (preempt_count() == val)
3639 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3640 preempt_count() -= val;
3641 }
3642 EXPORT_SYMBOL(sub_preempt_count);
3643
3644 #endif
3645
3646 /*
3647 * Print scheduling while atomic bug:
3648 */
3649 static noinline void __schedule_bug(struct task_struct *prev)
3650 {
3651 struct pt_regs *regs = get_irq_regs();
3652
3653 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3654 prev->comm, prev->pid, preempt_count());
3655
3656 debug_show_held_locks(prev);
3657 print_modules();
3658 if (irqs_disabled())
3659 print_irqtrace_events(prev);
3660
3661 if (regs)
3662 show_regs(regs);
3663 else
3664 dump_stack();
3665 }
3666
3667 /*
3668 * Various schedule()-time debugging checks and statistics:
3669 */
3670 static inline void schedule_debug(struct task_struct *prev)
3671 {
3672 /*
3673 * Test if we are atomic. Since do_exit() needs to call into
3674 * schedule() atomically, we ignore that path for now.
3675 * Otherwise, whine if we are scheduling when we should not be.
3676 */
3677 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3678 __schedule_bug(prev);
3679
3680 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3681
3682 schedstat_inc(this_rq(), sched_count);
3683 #ifdef CONFIG_SCHEDSTATS
3684 if (unlikely(prev->lock_depth >= 0)) {
3685 schedstat_inc(this_rq(), bkl_count);
3686 schedstat_inc(prev, sched_info.bkl_count);
3687 }
3688 #endif
3689 }
3690
3691 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3692 {
3693 if (prev->se.on_rq)
3694 update_rq_clock(rq);
3695 rq->skip_clock_update = 0;
3696 prev->sched_class->put_prev_task(rq, prev);
3697 }
3698
3699 /*
3700 * Pick up the highest-prio task:
3701 */
3702 static inline struct task_struct *
3703 pick_next_task(struct rq *rq)
3704 {
3705 const struct sched_class *class;
3706 struct task_struct *p;
3707
3708 /*
3709 * Optimization: we know that if all tasks are in
3710 * the fair class we can call that function directly:
3711 */
3712 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3713 p = fair_sched_class.pick_next_task(rq);
3714 if (likely(p))
3715 return p;
3716 }
3717
3718 class = sched_class_highest;
3719 for ( ; ; ) {
3720 p = class->pick_next_task(rq);
3721 if (p)
3722 return p;
3723 /*
3724 * Will never be NULL as the idle class always
3725 * returns a non-NULL p:
3726 */
3727 class = class->next;
3728 }
3729 }
3730
3731 /*
3732 * schedule() is the main scheduler function.
3733 */
3734 asmlinkage void __sched schedule(void)
3735 {
3736 struct task_struct *prev, *next;
3737 unsigned long *switch_count;
3738 struct rq *rq;
3739 int cpu;
3740
3741 need_resched:
3742 preempt_disable();
3743 cpu = smp_processor_id();
3744 rq = cpu_rq(cpu);
3745 rcu_note_context_switch(cpu);
3746 prev = rq->curr;
3747
3748 release_kernel_lock(prev);
3749 need_resched_nonpreemptible:
3750
3751 schedule_debug(prev);
3752
3753 if (sched_feat(HRTICK))
3754 hrtick_clear(rq);
3755
3756 raw_spin_lock_irq(&rq->lock);
3757 clear_tsk_need_resched(prev);
3758
3759 switch_count = &prev->nivcsw;
3760 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3761 if (unlikely(signal_pending_state(prev->state, prev))) {
3762 prev->state = TASK_RUNNING;
3763 } else {
3764 /*
3765 * If a worker is going to sleep, notify and
3766 * ask workqueue whether it wants to wake up a
3767 * task to maintain concurrency. If so, wake
3768 * up the task.
3769 */
3770 if (prev->flags & PF_WQ_WORKER) {
3771 struct task_struct *to_wakeup;
3772
3773 to_wakeup = wq_worker_sleeping(prev, cpu);
3774 if (to_wakeup)
3775 try_to_wake_up_local(to_wakeup);
3776 }
3777 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3778 }
3779 switch_count = &prev->nvcsw;
3780 }
3781
3782 pre_schedule(rq, prev);
3783
3784 if (unlikely(!rq->nr_running))
3785 idle_balance(cpu, rq);
3786
3787 put_prev_task(rq, prev);
3788 next = pick_next_task(rq);
3789
3790 if (likely(prev != next)) {
3791 sched_info_switch(prev, next);
3792 perf_event_task_sched_out(prev, next);
3793
3794 rq->nr_switches++;
3795 rq->curr = next;
3796 ++*switch_count;
3797
3798 context_switch(rq, prev, next); /* unlocks the rq */
3799 /*
3800 * The context switch have flipped the stack from under us
3801 * and restored the local variables which were saved when
3802 * this task called schedule() in the past. prev == current
3803 * is still correct, but it can be moved to another cpu/rq.
3804 */
3805 cpu = smp_processor_id();
3806 rq = cpu_rq(cpu);
3807 } else
3808 raw_spin_unlock_irq(&rq->lock);
3809
3810 post_schedule(rq);
3811
3812 if (unlikely(reacquire_kernel_lock(prev)))
3813 goto need_resched_nonpreemptible;
3814
3815 preempt_enable_no_resched();
3816 if (need_resched())
3817 goto need_resched;
3818 }
3819 EXPORT_SYMBOL(schedule);
3820
3821 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3822 /*
3823 * Look out! "owner" is an entirely speculative pointer
3824 * access and not reliable.
3825 */
3826 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3827 {
3828 unsigned int cpu;
3829 struct rq *rq;
3830
3831 if (!sched_feat(OWNER_SPIN))
3832 return 0;
3833
3834 #ifdef CONFIG_DEBUG_PAGEALLOC
3835 /*
3836 * Need to access the cpu field knowing that
3837 * DEBUG_PAGEALLOC could have unmapped it if
3838 * the mutex owner just released it and exited.
3839 */
3840 if (probe_kernel_address(&owner->cpu, cpu))
3841 return 0;
3842 #else
3843 cpu = owner->cpu;
3844 #endif
3845
3846 /*
3847 * Even if the access succeeded (likely case),
3848 * the cpu field may no longer be valid.
3849 */
3850 if (cpu >= nr_cpumask_bits)
3851 return 0;
3852
3853 /*
3854 * We need to validate that we can do a
3855 * get_cpu() and that we have the percpu area.
3856 */
3857 if (!cpu_online(cpu))
3858 return 0;
3859
3860 rq = cpu_rq(cpu);
3861
3862 for (;;) {
3863 /*
3864 * Owner changed, break to re-assess state.
3865 */
3866 if (lock->owner != owner)
3867 break;
3868
3869 /*
3870 * Is that owner really running on that cpu?
3871 */
3872 if (task_thread_info(rq->curr) != owner || need_resched())
3873 return 0;
3874
3875 cpu_relax();
3876 }
3877
3878 return 1;
3879 }
3880 #endif
3881
3882 #ifdef CONFIG_PREEMPT
3883 /*
3884 * this is the entry point to schedule() from in-kernel preemption
3885 * off of preempt_enable. Kernel preemptions off return from interrupt
3886 * occur there and call schedule directly.
3887 */
3888 asmlinkage void __sched preempt_schedule(void)
3889 {
3890 struct thread_info *ti = current_thread_info();
3891
3892 /*
3893 * If there is a non-zero preempt_count or interrupts are disabled,
3894 * we do not want to preempt the current task. Just return..
3895 */
3896 if (likely(ti->preempt_count || irqs_disabled()))
3897 return;
3898
3899 do {
3900 add_preempt_count(PREEMPT_ACTIVE);
3901 schedule();
3902 sub_preempt_count(PREEMPT_ACTIVE);
3903
3904 /*
3905 * Check again in case we missed a preemption opportunity
3906 * between schedule and now.
3907 */
3908 barrier();
3909 } while (need_resched());
3910 }
3911 EXPORT_SYMBOL(preempt_schedule);
3912
3913 /*
3914 * this is the entry point to schedule() from kernel preemption
3915 * off of irq context.
3916 * Note, that this is called and return with irqs disabled. This will
3917 * protect us against recursive calling from irq.
3918 */
3919 asmlinkage void __sched preempt_schedule_irq(void)
3920 {
3921 struct thread_info *ti = current_thread_info();
3922
3923 /* Catch callers which need to be fixed */
3924 BUG_ON(ti->preempt_count || !irqs_disabled());
3925
3926 do {
3927 add_preempt_count(PREEMPT_ACTIVE);
3928 local_irq_enable();
3929 schedule();
3930 local_irq_disable();
3931 sub_preempt_count(PREEMPT_ACTIVE);
3932
3933 /*
3934 * Check again in case we missed a preemption opportunity
3935 * between schedule and now.
3936 */
3937 barrier();
3938 } while (need_resched());
3939 }
3940
3941 #endif /* CONFIG_PREEMPT */
3942
3943 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3944 void *key)
3945 {
3946 return try_to_wake_up(curr->private, mode, wake_flags);
3947 }
3948 EXPORT_SYMBOL(default_wake_function);
3949
3950 /*
3951 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3952 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3953 * number) then we wake all the non-exclusive tasks and one exclusive task.
3954 *
3955 * There are circumstances in which we can try to wake a task which has already
3956 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3957 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3958 */
3959 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3960 int nr_exclusive, int wake_flags, void *key)
3961 {
3962 wait_queue_t *curr, *next;
3963
3964 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3965 unsigned flags = curr->flags;
3966
3967 if (curr->func(curr, mode, wake_flags, key) &&
3968 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3969 break;
3970 }
3971 }
3972
3973 /**
3974 * __wake_up - wake up threads blocked on a waitqueue.
3975 * @q: the waitqueue
3976 * @mode: which threads
3977 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3978 * @key: is directly passed to the wakeup function
3979 *
3980 * It may be assumed that this function implies a write memory barrier before
3981 * changing the task state if and only if any tasks are woken up.
3982 */
3983 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3984 int nr_exclusive, void *key)
3985 {
3986 unsigned long flags;
3987
3988 spin_lock_irqsave(&q->lock, flags);
3989 __wake_up_common(q, mode, nr_exclusive, 0, key);
3990 spin_unlock_irqrestore(&q->lock, flags);
3991 }
3992 EXPORT_SYMBOL(__wake_up);
3993
3994 /*
3995 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3996 */
3997 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3998 {
3999 __wake_up_common(q, mode, 1, 0, NULL);
4000 }
4001 EXPORT_SYMBOL_GPL(__wake_up_locked);
4002
4003 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4004 {
4005 __wake_up_common(q, mode, 1, 0, key);
4006 }
4007
4008 /**
4009 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4010 * @q: the waitqueue
4011 * @mode: which threads
4012 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4013 * @key: opaque value to be passed to wakeup targets
4014 *
4015 * The sync wakeup differs that the waker knows that it will schedule
4016 * away soon, so while the target thread will be woken up, it will not
4017 * be migrated to another CPU - ie. the two threads are 'synchronized'
4018 * with each other. This can prevent needless bouncing between CPUs.
4019 *
4020 * On UP it can prevent extra preemption.
4021 *
4022 * It may be assumed that this function implies a write memory barrier before
4023 * changing the task state if and only if any tasks are woken up.
4024 */
4025 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4026 int nr_exclusive, void *key)
4027 {
4028 unsigned long flags;
4029 int wake_flags = WF_SYNC;
4030
4031 if (unlikely(!q))
4032 return;
4033
4034 if (unlikely(!nr_exclusive))
4035 wake_flags = 0;
4036
4037 spin_lock_irqsave(&q->lock, flags);
4038 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4039 spin_unlock_irqrestore(&q->lock, flags);
4040 }
4041 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4042
4043 /*
4044 * __wake_up_sync - see __wake_up_sync_key()
4045 */
4046 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4047 {
4048 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4049 }
4050 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4051
4052 /**
4053 * complete: - signals a single thread waiting on this completion
4054 * @x: holds the state of this particular completion
4055 *
4056 * This will wake up a single thread waiting on this completion. Threads will be
4057 * awakened in the same order in which they were queued.
4058 *
4059 * See also complete_all(), wait_for_completion() and related routines.
4060 *
4061 * It may be assumed that this function implies a write memory barrier before
4062 * changing the task state if and only if any tasks are woken up.
4063 */
4064 void complete(struct completion *x)
4065 {
4066 unsigned long flags;
4067
4068 spin_lock_irqsave(&x->wait.lock, flags);
4069 x->done++;
4070 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4071 spin_unlock_irqrestore(&x->wait.lock, flags);
4072 }
4073 EXPORT_SYMBOL(complete);
4074
4075 /**
4076 * complete_all: - signals all threads waiting on this completion
4077 * @x: holds the state of this particular completion
4078 *
4079 * This will wake up all threads waiting on this particular completion event.
4080 *
4081 * It may be assumed that this function implies a write memory barrier before
4082 * changing the task state if and only if any tasks are woken up.
4083 */
4084 void complete_all(struct completion *x)
4085 {
4086 unsigned long flags;
4087
4088 spin_lock_irqsave(&x->wait.lock, flags);
4089 x->done += UINT_MAX/2;
4090 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4091 spin_unlock_irqrestore(&x->wait.lock, flags);
4092 }
4093 EXPORT_SYMBOL(complete_all);
4094
4095 static inline long __sched
4096 do_wait_for_common(struct completion *x, long timeout, int state)
4097 {
4098 if (!x->done) {
4099 DECLARE_WAITQUEUE(wait, current);
4100
4101 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4102 do {
4103 if (signal_pending_state(state, current)) {
4104 timeout = -ERESTARTSYS;
4105 break;
4106 }
4107 __set_current_state(state);
4108 spin_unlock_irq(&x->wait.lock);
4109 timeout = schedule_timeout(timeout);
4110 spin_lock_irq(&x->wait.lock);
4111 } while (!x->done && timeout);
4112 __remove_wait_queue(&x->wait, &wait);
4113 if (!x->done)
4114 return timeout;
4115 }
4116 x->done--;
4117 return timeout ?: 1;
4118 }
4119
4120 static long __sched
4121 wait_for_common(struct completion *x, long timeout, int state)
4122 {
4123 might_sleep();
4124
4125 spin_lock_irq(&x->wait.lock);
4126 timeout = do_wait_for_common(x, timeout, state);
4127 spin_unlock_irq(&x->wait.lock);
4128 return timeout;
4129 }
4130
4131 /**
4132 * wait_for_completion: - waits for completion of a task
4133 * @x: holds the state of this particular completion
4134 *
4135 * This waits to be signaled for completion of a specific task. It is NOT
4136 * interruptible and there is no timeout.
4137 *
4138 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4139 * and interrupt capability. Also see complete().
4140 */
4141 void __sched wait_for_completion(struct completion *x)
4142 {
4143 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4144 }
4145 EXPORT_SYMBOL(wait_for_completion);
4146
4147 /**
4148 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4149 * @x: holds the state of this particular completion
4150 * @timeout: timeout value in jiffies
4151 *
4152 * This waits for either a completion of a specific task to be signaled or for a
4153 * specified timeout to expire. The timeout is in jiffies. It is not
4154 * interruptible.
4155 */
4156 unsigned long __sched
4157 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4158 {
4159 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4160 }
4161 EXPORT_SYMBOL(wait_for_completion_timeout);
4162
4163 /**
4164 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4165 * @x: holds the state of this particular completion
4166 *
4167 * This waits for completion of a specific task to be signaled. It is
4168 * interruptible.
4169 */
4170 int __sched wait_for_completion_interruptible(struct completion *x)
4171 {
4172 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4173 if (t == -ERESTARTSYS)
4174 return t;
4175 return 0;
4176 }
4177 EXPORT_SYMBOL(wait_for_completion_interruptible);
4178
4179 /**
4180 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4181 * @x: holds the state of this particular completion
4182 * @timeout: timeout value in jiffies
4183 *
4184 * This waits for either a completion of a specific task to be signaled or for a
4185 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4186 */
4187 unsigned long __sched
4188 wait_for_completion_interruptible_timeout(struct completion *x,
4189 unsigned long timeout)
4190 {
4191 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4192 }
4193 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4194
4195 /**
4196 * wait_for_completion_killable: - waits for completion of a task (killable)
4197 * @x: holds the state of this particular completion
4198 *
4199 * This waits to be signaled for completion of a specific task. It can be
4200 * interrupted by a kill signal.
4201 */
4202 int __sched wait_for_completion_killable(struct completion *x)
4203 {
4204 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4205 if (t == -ERESTARTSYS)
4206 return t;
4207 return 0;
4208 }
4209 EXPORT_SYMBOL(wait_for_completion_killable);
4210
4211 /**
4212 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4213 * @x: holds the state of this particular completion
4214 * @timeout: timeout value in jiffies
4215 *
4216 * This waits for either a completion of a specific task to be
4217 * signaled or for a specified timeout to expire. It can be
4218 * interrupted by a kill signal. The timeout is in jiffies.
4219 */
4220 unsigned long __sched
4221 wait_for_completion_killable_timeout(struct completion *x,
4222 unsigned long timeout)
4223 {
4224 return wait_for_common(x, timeout, TASK_KILLABLE);
4225 }
4226 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4227
4228 /**
4229 * try_wait_for_completion - try to decrement a completion without blocking
4230 * @x: completion structure
4231 *
4232 * Returns: 0 if a decrement cannot be done without blocking
4233 * 1 if a decrement succeeded.
4234 *
4235 * If a completion is being used as a counting completion,
4236 * attempt to decrement the counter without blocking. This
4237 * enables us to avoid waiting if the resource the completion
4238 * is protecting is not available.
4239 */
4240 bool try_wait_for_completion(struct completion *x)
4241 {
4242 unsigned long flags;
4243 int ret = 1;
4244
4245 spin_lock_irqsave(&x->wait.lock, flags);
4246 if (!x->done)
4247 ret = 0;
4248 else
4249 x->done--;
4250 spin_unlock_irqrestore(&x->wait.lock, flags);
4251 return ret;
4252 }
4253 EXPORT_SYMBOL(try_wait_for_completion);
4254
4255 /**
4256 * completion_done - Test to see if a completion has any waiters
4257 * @x: completion structure
4258 *
4259 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4260 * 1 if there are no waiters.
4261 *
4262 */
4263 bool completion_done(struct completion *x)
4264 {
4265 unsigned long flags;
4266 int ret = 1;
4267
4268 spin_lock_irqsave(&x->wait.lock, flags);
4269 if (!x->done)
4270 ret = 0;
4271 spin_unlock_irqrestore(&x->wait.lock, flags);
4272 return ret;
4273 }
4274 EXPORT_SYMBOL(completion_done);
4275
4276 static long __sched
4277 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4278 {
4279 unsigned long flags;
4280 wait_queue_t wait;
4281
4282 init_waitqueue_entry(&wait, current);
4283
4284 __set_current_state(state);
4285
4286 spin_lock_irqsave(&q->lock, flags);
4287 __add_wait_queue(q, &wait);
4288 spin_unlock(&q->lock);
4289 timeout = schedule_timeout(timeout);
4290 spin_lock_irq(&q->lock);
4291 __remove_wait_queue(q, &wait);
4292 spin_unlock_irqrestore(&q->lock, flags);
4293
4294 return timeout;
4295 }
4296
4297 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4298 {
4299 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4300 }
4301 EXPORT_SYMBOL(interruptible_sleep_on);
4302
4303 long __sched
4304 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4305 {
4306 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4307 }
4308 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4309
4310 void __sched sleep_on(wait_queue_head_t *q)
4311 {
4312 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4313 }
4314 EXPORT_SYMBOL(sleep_on);
4315
4316 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4317 {
4318 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4319 }
4320 EXPORT_SYMBOL(sleep_on_timeout);
4321
4322 #ifdef CONFIG_RT_MUTEXES
4323
4324 /*
4325 * rt_mutex_setprio - set the current priority of a task
4326 * @p: task
4327 * @prio: prio value (kernel-internal form)
4328 *
4329 * This function changes the 'effective' priority of a task. It does
4330 * not touch ->normal_prio like __setscheduler().
4331 *
4332 * Used by the rt_mutex code to implement priority inheritance logic.
4333 */
4334 void rt_mutex_setprio(struct task_struct *p, int prio)
4335 {
4336 unsigned long flags;
4337 int oldprio, on_rq, running;
4338 struct rq *rq;
4339 const struct sched_class *prev_class;
4340
4341 BUG_ON(prio < 0 || prio > MAX_PRIO);
4342
4343 rq = task_rq_lock(p, &flags);
4344
4345 oldprio = p->prio;
4346 prev_class = p->sched_class;
4347 on_rq = p->se.on_rq;
4348 running = task_current(rq, p);
4349 if (on_rq)
4350 dequeue_task(rq, p, 0);
4351 if (running)
4352 p->sched_class->put_prev_task(rq, p);
4353
4354 if (rt_prio(prio))
4355 p->sched_class = &rt_sched_class;
4356 else
4357 p->sched_class = &fair_sched_class;
4358
4359 p->prio = prio;
4360
4361 if (running)
4362 p->sched_class->set_curr_task(rq);
4363 if (on_rq) {
4364 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4365
4366 check_class_changed(rq, p, prev_class, oldprio, running);
4367 }
4368 task_rq_unlock(rq, &flags);
4369 }
4370
4371 #endif
4372
4373 void set_user_nice(struct task_struct *p, long nice)
4374 {
4375 int old_prio, delta, on_rq;
4376 unsigned long flags;
4377 struct rq *rq;
4378
4379 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4380 return;
4381 /*
4382 * We have to be careful, if called from sys_setpriority(),
4383 * the task might be in the middle of scheduling on another CPU.
4384 */
4385 rq = task_rq_lock(p, &flags);
4386 /*
4387 * The RT priorities are set via sched_setscheduler(), but we still
4388 * allow the 'normal' nice value to be set - but as expected
4389 * it wont have any effect on scheduling until the task is
4390 * SCHED_FIFO/SCHED_RR:
4391 */
4392 if (task_has_rt_policy(p)) {
4393 p->static_prio = NICE_TO_PRIO(nice);
4394 goto out_unlock;
4395 }
4396 on_rq = p->se.on_rq;
4397 if (on_rq)
4398 dequeue_task(rq, p, 0);
4399
4400 p->static_prio = NICE_TO_PRIO(nice);
4401 set_load_weight(p);
4402 old_prio = p->prio;
4403 p->prio = effective_prio(p);
4404 delta = p->prio - old_prio;
4405
4406 if (on_rq) {
4407 enqueue_task(rq, p, 0);
4408 /*
4409 * If the task increased its priority or is running and
4410 * lowered its priority, then reschedule its CPU:
4411 */
4412 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4413 resched_task(rq->curr);
4414 }
4415 out_unlock:
4416 task_rq_unlock(rq, &flags);
4417 }
4418 EXPORT_SYMBOL(set_user_nice);
4419
4420 /*
4421 * can_nice - check if a task can reduce its nice value
4422 * @p: task
4423 * @nice: nice value
4424 */
4425 int can_nice(const struct task_struct *p, const int nice)
4426 {
4427 /* convert nice value [19,-20] to rlimit style value [1,40] */
4428 int nice_rlim = 20 - nice;
4429
4430 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4431 capable(CAP_SYS_NICE));
4432 }
4433
4434 #ifdef __ARCH_WANT_SYS_NICE
4435
4436 /*
4437 * sys_nice - change the priority of the current process.
4438 * @increment: priority increment
4439 *
4440 * sys_setpriority is a more generic, but much slower function that
4441 * does similar things.
4442 */
4443 SYSCALL_DEFINE1(nice, int, increment)
4444 {
4445 long nice, retval;
4446
4447 /*
4448 * Setpriority might change our priority at the same moment.
4449 * We don't have to worry. Conceptually one call occurs first
4450 * and we have a single winner.
4451 */
4452 if (increment < -40)
4453 increment = -40;
4454 if (increment > 40)
4455 increment = 40;
4456
4457 nice = TASK_NICE(current) + increment;
4458 if (nice < -20)
4459 nice = -20;
4460 if (nice > 19)
4461 nice = 19;
4462
4463 if (increment < 0 && !can_nice(current, nice))
4464 return -EPERM;
4465
4466 retval = security_task_setnice(current, nice);
4467 if (retval)
4468 return retval;
4469
4470 set_user_nice(current, nice);
4471 return 0;
4472 }
4473
4474 #endif
4475
4476 /**
4477 * task_prio - return the priority value of a given task.
4478 * @p: the task in question.
4479 *
4480 * This is the priority value as seen by users in /proc.
4481 * RT tasks are offset by -200. Normal tasks are centered
4482 * around 0, value goes from -16 to +15.
4483 */
4484 int task_prio(const struct task_struct *p)
4485 {
4486 return p->prio - MAX_RT_PRIO;
4487 }
4488
4489 /**
4490 * task_nice - return the nice value of a given task.
4491 * @p: the task in question.
4492 */
4493 int task_nice(const struct task_struct *p)
4494 {
4495 return TASK_NICE(p);
4496 }
4497 EXPORT_SYMBOL(task_nice);
4498
4499 /**
4500 * idle_cpu - is a given cpu idle currently?
4501 * @cpu: the processor in question.
4502 */
4503 int idle_cpu(int cpu)
4504 {
4505 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4506 }
4507
4508 /**
4509 * idle_task - return the idle task for a given cpu.
4510 * @cpu: the processor in question.
4511 */
4512 struct task_struct *idle_task(int cpu)
4513 {
4514 return cpu_rq(cpu)->idle;
4515 }
4516
4517 /**
4518 * find_process_by_pid - find a process with a matching PID value.
4519 * @pid: the pid in question.
4520 */
4521 static struct task_struct *find_process_by_pid(pid_t pid)
4522 {
4523 return pid ? find_task_by_vpid(pid) : current;
4524 }
4525
4526 /* Actually do priority change: must hold rq lock. */
4527 static void
4528 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4529 {
4530 BUG_ON(p->se.on_rq);
4531
4532 p->policy = policy;
4533 p->rt_priority = prio;
4534 p->normal_prio = normal_prio(p);
4535 /* we are holding p->pi_lock already */
4536 p->prio = rt_mutex_getprio(p);
4537 if (rt_prio(p->prio))
4538 p->sched_class = &rt_sched_class;
4539 else
4540 p->sched_class = &fair_sched_class;
4541 set_load_weight(p);
4542 }
4543
4544 /*
4545 * check the target process has a UID that matches the current process's
4546 */
4547 static bool check_same_owner(struct task_struct *p)
4548 {
4549 const struct cred *cred = current_cred(), *pcred;
4550 bool match;
4551
4552 rcu_read_lock();
4553 pcred = __task_cred(p);
4554 match = (cred->euid == pcred->euid ||
4555 cred->euid == pcred->uid);
4556 rcu_read_unlock();
4557 return match;
4558 }
4559
4560 static int __sched_setscheduler(struct task_struct *p, int policy,
4561 struct sched_param *param, bool user)
4562 {
4563 int retval, oldprio, oldpolicy = -1, on_rq, running;
4564 unsigned long flags;
4565 const struct sched_class *prev_class;
4566 struct rq *rq;
4567 int reset_on_fork;
4568
4569 /* may grab non-irq protected spin_locks */
4570 BUG_ON(in_interrupt());
4571 recheck:
4572 /* double check policy once rq lock held */
4573 if (policy < 0) {
4574 reset_on_fork = p->sched_reset_on_fork;
4575 policy = oldpolicy = p->policy;
4576 } else {
4577 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4578 policy &= ~SCHED_RESET_ON_FORK;
4579
4580 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4581 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4582 policy != SCHED_IDLE)
4583 return -EINVAL;
4584 }
4585
4586 /*
4587 * Valid priorities for SCHED_FIFO and SCHED_RR are
4588 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4589 * SCHED_BATCH and SCHED_IDLE is 0.
4590 */
4591 if (param->sched_priority < 0 ||
4592 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4593 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4594 return -EINVAL;
4595 if (rt_policy(policy) != (param->sched_priority != 0))
4596 return -EINVAL;
4597
4598 /*
4599 * Allow unprivileged RT tasks to decrease priority:
4600 */
4601 if (user && !capable(CAP_SYS_NICE)) {
4602 if (rt_policy(policy)) {
4603 unsigned long rlim_rtprio =
4604 task_rlimit(p, RLIMIT_RTPRIO);
4605
4606 /* can't set/change the rt policy */
4607 if (policy != p->policy && !rlim_rtprio)
4608 return -EPERM;
4609
4610 /* can't increase priority */
4611 if (param->sched_priority > p->rt_priority &&
4612 param->sched_priority > rlim_rtprio)
4613 return -EPERM;
4614 }
4615 /*
4616 * Like positive nice levels, dont allow tasks to
4617 * move out of SCHED_IDLE either:
4618 */
4619 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4620 return -EPERM;
4621
4622 /* can't change other user's priorities */
4623 if (!check_same_owner(p))
4624 return -EPERM;
4625
4626 /* Normal users shall not reset the sched_reset_on_fork flag */
4627 if (p->sched_reset_on_fork && !reset_on_fork)
4628 return -EPERM;
4629 }
4630
4631 if (user) {
4632 retval = security_task_setscheduler(p, policy, param);
4633 if (retval)
4634 return retval;
4635 }
4636
4637 /*
4638 * make sure no PI-waiters arrive (or leave) while we are
4639 * changing the priority of the task:
4640 */
4641 raw_spin_lock_irqsave(&p->pi_lock, flags);
4642 /*
4643 * To be able to change p->policy safely, the apropriate
4644 * runqueue lock must be held.
4645 */
4646 rq = __task_rq_lock(p);
4647
4648 #ifdef CONFIG_RT_GROUP_SCHED
4649 if (user) {
4650 /*
4651 * Do not allow realtime tasks into groups that have no runtime
4652 * assigned.
4653 */
4654 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4655 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4656 __task_rq_unlock(rq);
4657 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4658 return -EPERM;
4659 }
4660 }
4661 #endif
4662
4663 /* recheck policy now with rq lock held */
4664 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4665 policy = oldpolicy = -1;
4666 __task_rq_unlock(rq);
4667 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4668 goto recheck;
4669 }
4670 on_rq = p->se.on_rq;
4671 running = task_current(rq, p);
4672 if (on_rq)
4673 deactivate_task(rq, p, 0);
4674 if (running)
4675 p->sched_class->put_prev_task(rq, p);
4676
4677 p->sched_reset_on_fork = reset_on_fork;
4678
4679 oldprio = p->prio;
4680 prev_class = p->sched_class;
4681 __setscheduler(rq, p, policy, param->sched_priority);
4682
4683 if (running)
4684 p->sched_class->set_curr_task(rq);
4685 if (on_rq) {
4686 activate_task(rq, p, 0);
4687
4688 check_class_changed(rq, p, prev_class, oldprio, running);
4689 }
4690 __task_rq_unlock(rq);
4691 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4692
4693 rt_mutex_adjust_pi(p);
4694
4695 return 0;
4696 }
4697
4698 /**
4699 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4700 * @p: the task in question.
4701 * @policy: new policy.
4702 * @param: structure containing the new RT priority.
4703 *
4704 * NOTE that the task may be already dead.
4705 */
4706 int sched_setscheduler(struct task_struct *p, int policy,
4707 struct sched_param *param)
4708 {
4709 return __sched_setscheduler(p, policy, param, true);
4710 }
4711 EXPORT_SYMBOL_GPL(sched_setscheduler);
4712
4713 /**
4714 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4715 * @p: the task in question.
4716 * @policy: new policy.
4717 * @param: structure containing the new RT priority.
4718 *
4719 * Just like sched_setscheduler, only don't bother checking if the
4720 * current context has permission. For example, this is needed in
4721 * stop_machine(): we create temporary high priority worker threads,
4722 * but our caller might not have that capability.
4723 */
4724 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4725 struct sched_param *param)
4726 {
4727 return __sched_setscheduler(p, policy, param, false);
4728 }
4729
4730 static int
4731 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4732 {
4733 struct sched_param lparam;
4734 struct task_struct *p;
4735 int retval;
4736
4737 if (!param || pid < 0)
4738 return -EINVAL;
4739 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4740 return -EFAULT;
4741
4742 rcu_read_lock();
4743 retval = -ESRCH;
4744 p = find_process_by_pid(pid);
4745 if (p != NULL)
4746 retval = sched_setscheduler(p, policy, &lparam);
4747 rcu_read_unlock();
4748
4749 return retval;
4750 }
4751
4752 /**
4753 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4754 * @pid: the pid in question.
4755 * @policy: new policy.
4756 * @param: structure containing the new RT priority.
4757 */
4758 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4759 struct sched_param __user *, param)
4760 {
4761 /* negative values for policy are not valid */
4762 if (policy < 0)
4763 return -EINVAL;
4764
4765 return do_sched_setscheduler(pid, policy, param);
4766 }
4767
4768 /**
4769 * sys_sched_setparam - set/change the RT priority of a thread
4770 * @pid: the pid in question.
4771 * @param: structure containing the new RT priority.
4772 */
4773 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4774 {
4775 return do_sched_setscheduler(pid, -1, param);
4776 }
4777
4778 /**
4779 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4780 * @pid: the pid in question.
4781 */
4782 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4783 {
4784 struct task_struct *p;
4785 int retval;
4786
4787 if (pid < 0)
4788 return -EINVAL;
4789
4790 retval = -ESRCH;
4791 rcu_read_lock();
4792 p = find_process_by_pid(pid);
4793 if (p) {
4794 retval = security_task_getscheduler(p);
4795 if (!retval)
4796 retval = p->policy
4797 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4798 }
4799 rcu_read_unlock();
4800 return retval;
4801 }
4802
4803 /**
4804 * sys_sched_getparam - get the RT priority of a thread
4805 * @pid: the pid in question.
4806 * @param: structure containing the RT priority.
4807 */
4808 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4809 {
4810 struct sched_param lp;
4811 struct task_struct *p;
4812 int retval;
4813
4814 if (!param || pid < 0)
4815 return -EINVAL;
4816
4817 rcu_read_lock();
4818 p = find_process_by_pid(pid);
4819 retval = -ESRCH;
4820 if (!p)
4821 goto out_unlock;
4822
4823 retval = security_task_getscheduler(p);
4824 if (retval)
4825 goto out_unlock;
4826
4827 lp.sched_priority = p->rt_priority;
4828 rcu_read_unlock();
4829
4830 /*
4831 * This one might sleep, we cannot do it with a spinlock held ...
4832 */
4833 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4834
4835 return retval;
4836
4837 out_unlock:
4838 rcu_read_unlock();
4839 return retval;
4840 }
4841
4842 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4843 {
4844 cpumask_var_t cpus_allowed, new_mask;
4845 struct task_struct *p;
4846 int retval;
4847
4848 get_online_cpus();
4849 rcu_read_lock();
4850
4851 p = find_process_by_pid(pid);
4852 if (!p) {
4853 rcu_read_unlock();
4854 put_online_cpus();
4855 return -ESRCH;
4856 }
4857
4858 /* Prevent p going away */
4859 get_task_struct(p);
4860 rcu_read_unlock();
4861
4862 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4863 retval = -ENOMEM;
4864 goto out_put_task;
4865 }
4866 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4867 retval = -ENOMEM;
4868 goto out_free_cpus_allowed;
4869 }
4870 retval = -EPERM;
4871 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4872 goto out_unlock;
4873
4874 retval = security_task_setscheduler(p, 0, NULL);
4875 if (retval)
4876 goto out_unlock;
4877
4878 cpuset_cpus_allowed(p, cpus_allowed);
4879 cpumask_and(new_mask, in_mask, cpus_allowed);
4880 again:
4881 retval = set_cpus_allowed_ptr(p, new_mask);
4882
4883 if (!retval) {
4884 cpuset_cpus_allowed(p, cpus_allowed);
4885 if (!cpumask_subset(new_mask, cpus_allowed)) {
4886 /*
4887 * We must have raced with a concurrent cpuset
4888 * update. Just reset the cpus_allowed to the
4889 * cpuset's cpus_allowed
4890 */
4891 cpumask_copy(new_mask, cpus_allowed);
4892 goto again;
4893 }
4894 }
4895 out_unlock:
4896 free_cpumask_var(new_mask);
4897 out_free_cpus_allowed:
4898 free_cpumask_var(cpus_allowed);
4899 out_put_task:
4900 put_task_struct(p);
4901 put_online_cpus();
4902 return retval;
4903 }
4904
4905 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4906 struct cpumask *new_mask)
4907 {
4908 if (len < cpumask_size())
4909 cpumask_clear(new_mask);
4910 else if (len > cpumask_size())
4911 len = cpumask_size();
4912
4913 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4914 }
4915
4916 /**
4917 * sys_sched_setaffinity - set the cpu affinity of a process
4918 * @pid: pid of the process
4919 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4920 * @user_mask_ptr: user-space pointer to the new cpu mask
4921 */
4922 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4923 unsigned long __user *, user_mask_ptr)
4924 {
4925 cpumask_var_t new_mask;
4926 int retval;
4927
4928 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4929 return -ENOMEM;
4930
4931 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4932 if (retval == 0)
4933 retval = sched_setaffinity(pid, new_mask);
4934 free_cpumask_var(new_mask);
4935 return retval;
4936 }
4937
4938 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4939 {
4940 struct task_struct *p;
4941 unsigned long flags;
4942 struct rq *rq;
4943 int retval;
4944
4945 get_online_cpus();
4946 rcu_read_lock();
4947
4948 retval = -ESRCH;
4949 p = find_process_by_pid(pid);
4950 if (!p)
4951 goto out_unlock;
4952
4953 retval = security_task_getscheduler(p);
4954 if (retval)
4955 goto out_unlock;
4956
4957 rq = task_rq_lock(p, &flags);
4958 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4959 task_rq_unlock(rq, &flags);
4960
4961 out_unlock:
4962 rcu_read_unlock();
4963 put_online_cpus();
4964
4965 return retval;
4966 }
4967
4968 /**
4969 * sys_sched_getaffinity - get the cpu affinity of a process
4970 * @pid: pid of the process
4971 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4972 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4973 */
4974 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4975 unsigned long __user *, user_mask_ptr)
4976 {
4977 int ret;
4978 cpumask_var_t mask;
4979
4980 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4981 return -EINVAL;
4982 if (len & (sizeof(unsigned long)-1))
4983 return -EINVAL;
4984
4985 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4986 return -ENOMEM;
4987
4988 ret = sched_getaffinity(pid, mask);
4989 if (ret == 0) {
4990 size_t retlen = min_t(size_t, len, cpumask_size());
4991
4992 if (copy_to_user(user_mask_ptr, mask, retlen))
4993 ret = -EFAULT;
4994 else
4995 ret = retlen;
4996 }
4997 free_cpumask_var(mask);
4998
4999 return ret;
5000 }
5001
5002 /**
5003 * sys_sched_yield - yield the current processor to other threads.
5004 *
5005 * This function yields the current CPU to other tasks. If there are no
5006 * other threads running on this CPU then this function will return.
5007 */
5008 SYSCALL_DEFINE0(sched_yield)
5009 {
5010 struct rq *rq = this_rq_lock();
5011
5012 schedstat_inc(rq, yld_count);
5013 current->sched_class->yield_task(rq);
5014
5015 /*
5016 * Since we are going to call schedule() anyway, there's
5017 * no need to preempt or enable interrupts:
5018 */
5019 __release(rq->lock);
5020 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5021 do_raw_spin_unlock(&rq->lock);
5022 preempt_enable_no_resched();
5023
5024 schedule();
5025
5026 return 0;
5027 }
5028
5029 static inline int should_resched(void)
5030 {
5031 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5032 }
5033
5034 static void __cond_resched(void)
5035 {
5036 add_preempt_count(PREEMPT_ACTIVE);
5037 schedule();
5038 sub_preempt_count(PREEMPT_ACTIVE);
5039 }
5040
5041 int __sched _cond_resched(void)
5042 {
5043 if (should_resched()) {
5044 __cond_resched();
5045 return 1;
5046 }
5047 return 0;
5048 }
5049 EXPORT_SYMBOL(_cond_resched);
5050
5051 /*
5052 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5053 * call schedule, and on return reacquire the lock.
5054 *
5055 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5056 * operations here to prevent schedule() from being called twice (once via
5057 * spin_unlock(), once by hand).
5058 */
5059 int __cond_resched_lock(spinlock_t *lock)
5060 {
5061 int resched = should_resched();
5062 int ret = 0;
5063
5064 lockdep_assert_held(lock);
5065
5066 if (spin_needbreak(lock) || resched) {
5067 spin_unlock(lock);
5068 if (resched)
5069 __cond_resched();
5070 else
5071 cpu_relax();
5072 ret = 1;
5073 spin_lock(lock);
5074 }
5075 return ret;
5076 }
5077 EXPORT_SYMBOL(__cond_resched_lock);
5078
5079 int __sched __cond_resched_softirq(void)
5080 {
5081 BUG_ON(!in_softirq());
5082
5083 if (should_resched()) {
5084 local_bh_enable();
5085 __cond_resched();
5086 local_bh_disable();
5087 return 1;
5088 }
5089 return 0;
5090 }
5091 EXPORT_SYMBOL(__cond_resched_softirq);
5092
5093 /**
5094 * yield - yield the current processor to other threads.
5095 *
5096 * This is a shortcut for kernel-space yielding - it marks the
5097 * thread runnable and calls sys_sched_yield().
5098 */
5099 void __sched yield(void)
5100 {
5101 set_current_state(TASK_RUNNING);
5102 sys_sched_yield();
5103 }
5104 EXPORT_SYMBOL(yield);
5105
5106 /*
5107 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5108 * that process accounting knows that this is a task in IO wait state.
5109 */
5110 void __sched io_schedule(void)
5111 {
5112 struct rq *rq = raw_rq();
5113
5114 delayacct_blkio_start();
5115 atomic_inc(&rq->nr_iowait);
5116 current->in_iowait = 1;
5117 schedule();
5118 current->in_iowait = 0;
5119 atomic_dec(&rq->nr_iowait);
5120 delayacct_blkio_end();
5121 }
5122 EXPORT_SYMBOL(io_schedule);
5123
5124 long __sched io_schedule_timeout(long timeout)
5125 {
5126 struct rq *rq = raw_rq();
5127 long ret;
5128
5129 delayacct_blkio_start();
5130 atomic_inc(&rq->nr_iowait);
5131 current->in_iowait = 1;
5132 ret = schedule_timeout(timeout);
5133 current->in_iowait = 0;
5134 atomic_dec(&rq->nr_iowait);
5135 delayacct_blkio_end();
5136 return ret;
5137 }
5138
5139 /**
5140 * sys_sched_get_priority_max - return maximum RT priority.
5141 * @policy: scheduling class.
5142 *
5143 * this syscall returns the maximum rt_priority that can be used
5144 * by a given scheduling class.
5145 */
5146 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5147 {
5148 int ret = -EINVAL;
5149
5150 switch (policy) {
5151 case SCHED_FIFO:
5152 case SCHED_RR:
5153 ret = MAX_USER_RT_PRIO-1;
5154 break;
5155 case SCHED_NORMAL:
5156 case SCHED_BATCH:
5157 case SCHED_IDLE:
5158 ret = 0;
5159 break;
5160 }
5161 return ret;
5162 }
5163
5164 /**
5165 * sys_sched_get_priority_min - return minimum RT priority.
5166 * @policy: scheduling class.
5167 *
5168 * this syscall returns the minimum rt_priority that can be used
5169 * by a given scheduling class.
5170 */
5171 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5172 {
5173 int ret = -EINVAL;
5174
5175 switch (policy) {
5176 case SCHED_FIFO:
5177 case SCHED_RR:
5178 ret = 1;
5179 break;
5180 case SCHED_NORMAL:
5181 case SCHED_BATCH:
5182 case SCHED_IDLE:
5183 ret = 0;
5184 }
5185 return ret;
5186 }
5187
5188 /**
5189 * sys_sched_rr_get_interval - return the default timeslice of a process.
5190 * @pid: pid of the process.
5191 * @interval: userspace pointer to the timeslice value.
5192 *
5193 * this syscall writes the default timeslice value of a given process
5194 * into the user-space timespec buffer. A value of '0' means infinity.
5195 */
5196 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5197 struct timespec __user *, interval)
5198 {
5199 struct task_struct *p;
5200 unsigned int time_slice;
5201 unsigned long flags;
5202 struct rq *rq;
5203 int retval;
5204 struct timespec t;
5205
5206 if (pid < 0)
5207 return -EINVAL;
5208
5209 retval = -ESRCH;
5210 rcu_read_lock();
5211 p = find_process_by_pid(pid);
5212 if (!p)
5213 goto out_unlock;
5214
5215 retval = security_task_getscheduler(p);
5216 if (retval)
5217 goto out_unlock;
5218
5219 rq = task_rq_lock(p, &flags);
5220 time_slice = p->sched_class->get_rr_interval(rq, p);
5221 task_rq_unlock(rq, &flags);
5222
5223 rcu_read_unlock();
5224 jiffies_to_timespec(time_slice, &t);
5225 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5226 return retval;
5227
5228 out_unlock:
5229 rcu_read_unlock();
5230 return retval;
5231 }
5232
5233 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5234
5235 void sched_show_task(struct task_struct *p)
5236 {
5237 unsigned long free = 0;
5238 unsigned state;
5239
5240 state = p->state ? __ffs(p->state) + 1 : 0;
5241 printk(KERN_INFO "%-13.13s %c", p->comm,
5242 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5243 #if BITS_PER_LONG == 32
5244 if (state == TASK_RUNNING)
5245 printk(KERN_CONT " running ");
5246 else
5247 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5248 #else
5249 if (state == TASK_RUNNING)
5250 printk(KERN_CONT " running task ");
5251 else
5252 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5253 #endif
5254 #ifdef CONFIG_DEBUG_STACK_USAGE
5255 free = stack_not_used(p);
5256 #endif
5257 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5258 task_pid_nr(p), task_pid_nr(p->real_parent),
5259 (unsigned long)task_thread_info(p)->flags);
5260
5261 show_stack(p, NULL);
5262 }
5263
5264 void show_state_filter(unsigned long state_filter)
5265 {
5266 struct task_struct *g, *p;
5267
5268 #if BITS_PER_LONG == 32
5269 printk(KERN_INFO
5270 " task PC stack pid father\n");
5271 #else
5272 printk(KERN_INFO
5273 " task PC stack pid father\n");
5274 #endif
5275 read_lock(&tasklist_lock);
5276 do_each_thread(g, p) {
5277 /*
5278 * reset the NMI-timeout, listing all files on a slow
5279 * console might take alot of time:
5280 */
5281 touch_nmi_watchdog();
5282 if (!state_filter || (p->state & state_filter))
5283 sched_show_task(p);
5284 } while_each_thread(g, p);
5285
5286 touch_all_softlockup_watchdogs();
5287
5288 #ifdef CONFIG_SCHED_DEBUG
5289 sysrq_sched_debug_show();
5290 #endif
5291 read_unlock(&tasklist_lock);
5292 /*
5293 * Only show locks if all tasks are dumped:
5294 */
5295 if (!state_filter)
5296 debug_show_all_locks();
5297 }
5298
5299 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5300 {
5301 idle->sched_class = &idle_sched_class;
5302 }
5303
5304 /**
5305 * init_idle - set up an idle thread for a given CPU
5306 * @idle: task in question
5307 * @cpu: cpu the idle task belongs to
5308 *
5309 * NOTE: this function does not set the idle thread's NEED_RESCHED
5310 * flag, to make booting more robust.
5311 */
5312 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5313 {
5314 struct rq *rq = cpu_rq(cpu);
5315 unsigned long flags;
5316
5317 raw_spin_lock_irqsave(&rq->lock, flags);
5318
5319 __sched_fork(idle);
5320 idle->state = TASK_RUNNING;
5321 idle->se.exec_start = sched_clock();
5322
5323 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5324 __set_task_cpu(idle, cpu);
5325
5326 rq->curr = rq->idle = idle;
5327 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5328 idle->oncpu = 1;
5329 #endif
5330 raw_spin_unlock_irqrestore(&rq->lock, flags);
5331
5332 /* Set the preempt count _outside_ the spinlocks! */
5333 #if defined(CONFIG_PREEMPT)
5334 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5335 #else
5336 task_thread_info(idle)->preempt_count = 0;
5337 #endif
5338 /*
5339 * The idle tasks have their own, simple scheduling class:
5340 */
5341 idle->sched_class = &idle_sched_class;
5342 ftrace_graph_init_task(idle);
5343 }
5344
5345 /*
5346 * In a system that switches off the HZ timer nohz_cpu_mask
5347 * indicates which cpus entered this state. This is used
5348 * in the rcu update to wait only for active cpus. For system
5349 * which do not switch off the HZ timer nohz_cpu_mask should
5350 * always be CPU_BITS_NONE.
5351 */
5352 cpumask_var_t nohz_cpu_mask;
5353
5354 /*
5355 * Increase the granularity value when there are more CPUs,
5356 * because with more CPUs the 'effective latency' as visible
5357 * to users decreases. But the relationship is not linear,
5358 * so pick a second-best guess by going with the log2 of the
5359 * number of CPUs.
5360 *
5361 * This idea comes from the SD scheduler of Con Kolivas:
5362 */
5363 static int get_update_sysctl_factor(void)
5364 {
5365 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5366 unsigned int factor;
5367
5368 switch (sysctl_sched_tunable_scaling) {
5369 case SCHED_TUNABLESCALING_NONE:
5370 factor = 1;
5371 break;
5372 case SCHED_TUNABLESCALING_LINEAR:
5373 factor = cpus;
5374 break;
5375 case SCHED_TUNABLESCALING_LOG:
5376 default:
5377 factor = 1 + ilog2(cpus);
5378 break;
5379 }
5380
5381 return factor;
5382 }
5383
5384 static void update_sysctl(void)
5385 {
5386 unsigned int factor = get_update_sysctl_factor();
5387
5388 #define SET_SYSCTL(name) \
5389 (sysctl_##name = (factor) * normalized_sysctl_##name)
5390 SET_SYSCTL(sched_min_granularity);
5391 SET_SYSCTL(sched_latency);
5392 SET_SYSCTL(sched_wakeup_granularity);
5393 SET_SYSCTL(sched_shares_ratelimit);
5394 #undef SET_SYSCTL
5395 }
5396
5397 static inline void sched_init_granularity(void)
5398 {
5399 update_sysctl();
5400 }
5401
5402 #ifdef CONFIG_SMP
5403 /*
5404 * This is how migration works:
5405 *
5406 * 1) we invoke migration_cpu_stop() on the target CPU using
5407 * stop_one_cpu().
5408 * 2) stopper starts to run (implicitly forcing the migrated thread
5409 * off the CPU)
5410 * 3) it checks whether the migrated task is still in the wrong runqueue.
5411 * 4) if it's in the wrong runqueue then the migration thread removes
5412 * it and puts it into the right queue.
5413 * 5) stopper completes and stop_one_cpu() returns and the migration
5414 * is done.
5415 */
5416
5417 /*
5418 * Change a given task's CPU affinity. Migrate the thread to a
5419 * proper CPU and schedule it away if the CPU it's executing on
5420 * is removed from the allowed bitmask.
5421 *
5422 * NOTE: the caller must have a valid reference to the task, the
5423 * task must not exit() & deallocate itself prematurely. The
5424 * call is not atomic; no spinlocks may be held.
5425 */
5426 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5427 {
5428 unsigned long flags;
5429 struct rq *rq;
5430 unsigned int dest_cpu;
5431 int ret = 0;
5432
5433 /*
5434 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5435 * drop the rq->lock and still rely on ->cpus_allowed.
5436 */
5437 again:
5438 while (task_is_waking(p))
5439 cpu_relax();
5440 rq = task_rq_lock(p, &flags);
5441 if (task_is_waking(p)) {
5442 task_rq_unlock(rq, &flags);
5443 goto again;
5444 }
5445
5446 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5447 ret = -EINVAL;
5448 goto out;
5449 }
5450
5451 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5452 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5453 ret = -EINVAL;
5454 goto out;
5455 }
5456
5457 if (p->sched_class->set_cpus_allowed)
5458 p->sched_class->set_cpus_allowed(p, new_mask);
5459 else {
5460 cpumask_copy(&p->cpus_allowed, new_mask);
5461 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5462 }
5463
5464 /* Can the task run on the task's current CPU? If so, we're done */
5465 if (cpumask_test_cpu(task_cpu(p), new_mask))
5466 goto out;
5467
5468 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5469 if (migrate_task(p, dest_cpu)) {
5470 struct migration_arg arg = { p, dest_cpu };
5471 /* Need help from migration thread: drop lock and wait. */
5472 task_rq_unlock(rq, &flags);
5473 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5474 tlb_migrate_finish(p->mm);
5475 return 0;
5476 }
5477 out:
5478 task_rq_unlock(rq, &flags);
5479
5480 return ret;
5481 }
5482 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5483
5484 /*
5485 * Move (not current) task off this cpu, onto dest cpu. We're doing
5486 * this because either it can't run here any more (set_cpus_allowed()
5487 * away from this CPU, or CPU going down), or because we're
5488 * attempting to rebalance this task on exec (sched_exec).
5489 *
5490 * So we race with normal scheduler movements, but that's OK, as long
5491 * as the task is no longer on this CPU.
5492 *
5493 * Returns non-zero if task was successfully migrated.
5494 */
5495 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5496 {
5497 struct rq *rq_dest, *rq_src;
5498 int ret = 0;
5499
5500 if (unlikely(!cpu_active(dest_cpu)))
5501 return ret;
5502
5503 rq_src = cpu_rq(src_cpu);
5504 rq_dest = cpu_rq(dest_cpu);
5505
5506 double_rq_lock(rq_src, rq_dest);
5507 /* Already moved. */
5508 if (task_cpu(p) != src_cpu)
5509 goto done;
5510 /* Affinity changed (again). */
5511 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5512 goto fail;
5513
5514 /*
5515 * If we're not on a rq, the next wake-up will ensure we're
5516 * placed properly.
5517 */
5518 if (p->se.on_rq) {
5519 deactivate_task(rq_src, p, 0);
5520 set_task_cpu(p, dest_cpu);
5521 activate_task(rq_dest, p, 0);
5522 check_preempt_curr(rq_dest, p, 0);
5523 }
5524 done:
5525 ret = 1;
5526 fail:
5527 double_rq_unlock(rq_src, rq_dest);
5528 return ret;
5529 }
5530
5531 /*
5532 * migration_cpu_stop - this will be executed by a highprio stopper thread
5533 * and performs thread migration by bumping thread off CPU then
5534 * 'pushing' onto another runqueue.
5535 */
5536 static int migration_cpu_stop(void *data)
5537 {
5538 struct migration_arg *arg = data;
5539
5540 /*
5541 * The original target cpu might have gone down and we might
5542 * be on another cpu but it doesn't matter.
5543 */
5544 local_irq_disable();
5545 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5546 local_irq_enable();
5547 return 0;
5548 }
5549
5550 #ifdef CONFIG_HOTPLUG_CPU
5551 /*
5552 * Figure out where task on dead CPU should go, use force if necessary.
5553 */
5554 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5555 {
5556 struct rq *rq = cpu_rq(dead_cpu);
5557 int needs_cpu, uninitialized_var(dest_cpu);
5558 unsigned long flags;
5559
5560 local_irq_save(flags);
5561
5562 raw_spin_lock(&rq->lock);
5563 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5564 if (needs_cpu)
5565 dest_cpu = select_fallback_rq(dead_cpu, p);
5566 raw_spin_unlock(&rq->lock);
5567 /*
5568 * It can only fail if we race with set_cpus_allowed(),
5569 * in the racer should migrate the task anyway.
5570 */
5571 if (needs_cpu)
5572 __migrate_task(p, dead_cpu, dest_cpu);
5573 local_irq_restore(flags);
5574 }
5575
5576 /*
5577 * While a dead CPU has no uninterruptible tasks queued at this point,
5578 * it might still have a nonzero ->nr_uninterruptible counter, because
5579 * for performance reasons the counter is not stricly tracking tasks to
5580 * their home CPUs. So we just add the counter to another CPU's counter,
5581 * to keep the global sum constant after CPU-down:
5582 */
5583 static void migrate_nr_uninterruptible(struct rq *rq_src)
5584 {
5585 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5586 unsigned long flags;
5587
5588 local_irq_save(flags);
5589 double_rq_lock(rq_src, rq_dest);
5590 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5591 rq_src->nr_uninterruptible = 0;
5592 double_rq_unlock(rq_src, rq_dest);
5593 local_irq_restore(flags);
5594 }
5595
5596 /* Run through task list and migrate tasks from the dead cpu. */
5597 static void migrate_live_tasks(int src_cpu)
5598 {
5599 struct task_struct *p, *t;
5600
5601 read_lock(&tasklist_lock);
5602
5603 do_each_thread(t, p) {
5604 if (p == current)
5605 continue;
5606
5607 if (task_cpu(p) == src_cpu)
5608 move_task_off_dead_cpu(src_cpu, p);
5609 } while_each_thread(t, p);
5610
5611 read_unlock(&tasklist_lock);
5612 }
5613
5614 /*
5615 * Schedules idle task to be the next runnable task on current CPU.
5616 * It does so by boosting its priority to highest possible.
5617 * Used by CPU offline code.
5618 */
5619 void sched_idle_next(void)
5620 {
5621 int this_cpu = smp_processor_id();
5622 struct rq *rq = cpu_rq(this_cpu);
5623 struct task_struct *p = rq->idle;
5624 unsigned long flags;
5625
5626 /* cpu has to be offline */
5627 BUG_ON(cpu_online(this_cpu));
5628
5629 /*
5630 * Strictly not necessary since rest of the CPUs are stopped by now
5631 * and interrupts disabled on the current cpu.
5632 */
5633 raw_spin_lock_irqsave(&rq->lock, flags);
5634
5635 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5636
5637 activate_task(rq, p, 0);
5638
5639 raw_spin_unlock_irqrestore(&rq->lock, flags);
5640 }
5641
5642 /*
5643 * Ensures that the idle task is using init_mm right before its cpu goes
5644 * offline.
5645 */
5646 void idle_task_exit(void)
5647 {
5648 struct mm_struct *mm = current->active_mm;
5649
5650 BUG_ON(cpu_online(smp_processor_id()));
5651
5652 if (mm != &init_mm)
5653 switch_mm(mm, &init_mm, current);
5654 mmdrop(mm);
5655 }
5656
5657 /* called under rq->lock with disabled interrupts */
5658 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5659 {
5660 struct rq *rq = cpu_rq(dead_cpu);
5661
5662 /* Must be exiting, otherwise would be on tasklist. */
5663 BUG_ON(!p->exit_state);
5664
5665 /* Cannot have done final schedule yet: would have vanished. */
5666 BUG_ON(p->state == TASK_DEAD);
5667
5668 get_task_struct(p);
5669
5670 /*
5671 * Drop lock around migration; if someone else moves it,
5672 * that's OK. No task can be added to this CPU, so iteration is
5673 * fine.
5674 */
5675 raw_spin_unlock_irq(&rq->lock);
5676 move_task_off_dead_cpu(dead_cpu, p);
5677 raw_spin_lock_irq(&rq->lock);
5678
5679 put_task_struct(p);
5680 }
5681
5682 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5683 static void migrate_dead_tasks(unsigned int dead_cpu)
5684 {
5685 struct rq *rq = cpu_rq(dead_cpu);
5686 struct task_struct *next;
5687
5688 for ( ; ; ) {
5689 if (!rq->nr_running)
5690 break;
5691 next = pick_next_task(rq);
5692 if (!next)
5693 break;
5694 next->sched_class->put_prev_task(rq, next);
5695 migrate_dead(dead_cpu, next);
5696
5697 }
5698 }
5699
5700 /*
5701 * remove the tasks which were accounted by rq from calc_load_tasks.
5702 */
5703 static void calc_global_load_remove(struct rq *rq)
5704 {
5705 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5706 rq->calc_load_active = 0;
5707 }
5708 #endif /* CONFIG_HOTPLUG_CPU */
5709
5710 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5711
5712 static struct ctl_table sd_ctl_dir[] = {
5713 {
5714 .procname = "sched_domain",
5715 .mode = 0555,
5716 },
5717 {}
5718 };
5719
5720 static struct ctl_table sd_ctl_root[] = {
5721 {
5722 .procname = "kernel",
5723 .mode = 0555,
5724 .child = sd_ctl_dir,
5725 },
5726 {}
5727 };
5728
5729 static struct ctl_table *sd_alloc_ctl_entry(int n)
5730 {
5731 struct ctl_table *entry =
5732 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5733
5734 return entry;
5735 }
5736
5737 static void sd_free_ctl_entry(struct ctl_table **tablep)
5738 {
5739 struct ctl_table *entry;
5740
5741 /*
5742 * In the intermediate directories, both the child directory and
5743 * procname are dynamically allocated and could fail but the mode
5744 * will always be set. In the lowest directory the names are
5745 * static strings and all have proc handlers.
5746 */
5747 for (entry = *tablep; entry->mode; entry++) {
5748 if (entry->child)
5749 sd_free_ctl_entry(&entry->child);
5750 if (entry->proc_handler == NULL)
5751 kfree(entry->procname);
5752 }
5753
5754 kfree(*tablep);
5755 *tablep = NULL;
5756 }
5757
5758 static void
5759 set_table_entry(struct ctl_table *entry,
5760 const char *procname, void *data, int maxlen,
5761 mode_t mode, proc_handler *proc_handler)
5762 {
5763 entry->procname = procname;
5764 entry->data = data;
5765 entry->maxlen = maxlen;
5766 entry->mode = mode;
5767 entry->proc_handler = proc_handler;
5768 }
5769
5770 static struct ctl_table *
5771 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5772 {
5773 struct ctl_table *table = sd_alloc_ctl_entry(13);
5774
5775 if (table == NULL)
5776 return NULL;
5777
5778 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5779 sizeof(long), 0644, proc_doulongvec_minmax);
5780 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5781 sizeof(long), 0644, proc_doulongvec_minmax);
5782 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5783 sizeof(int), 0644, proc_dointvec_minmax);
5784 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5785 sizeof(int), 0644, proc_dointvec_minmax);
5786 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5787 sizeof(int), 0644, proc_dointvec_minmax);
5788 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5789 sizeof(int), 0644, proc_dointvec_minmax);
5790 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5791 sizeof(int), 0644, proc_dointvec_minmax);
5792 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5793 sizeof(int), 0644, proc_dointvec_minmax);
5794 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5795 sizeof(int), 0644, proc_dointvec_minmax);
5796 set_table_entry(&table[9], "cache_nice_tries",
5797 &sd->cache_nice_tries,
5798 sizeof(int), 0644, proc_dointvec_minmax);
5799 set_table_entry(&table[10], "flags", &sd->flags,
5800 sizeof(int), 0644, proc_dointvec_minmax);
5801 set_table_entry(&table[11], "name", sd->name,
5802 CORENAME_MAX_SIZE, 0444, proc_dostring);
5803 /* &table[12] is terminator */
5804
5805 return table;
5806 }
5807
5808 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5809 {
5810 struct ctl_table *entry, *table;
5811 struct sched_domain *sd;
5812 int domain_num = 0, i;
5813 char buf[32];
5814
5815 for_each_domain(cpu, sd)
5816 domain_num++;
5817 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5818 if (table == NULL)
5819 return NULL;
5820
5821 i = 0;
5822 for_each_domain(cpu, sd) {
5823 snprintf(buf, 32, "domain%d", i);
5824 entry->procname = kstrdup(buf, GFP_KERNEL);
5825 entry->mode = 0555;
5826 entry->child = sd_alloc_ctl_domain_table(sd);
5827 entry++;
5828 i++;
5829 }
5830 return table;
5831 }
5832
5833 static struct ctl_table_header *sd_sysctl_header;
5834 static void register_sched_domain_sysctl(void)
5835 {
5836 int i, cpu_num = num_possible_cpus();
5837 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5838 char buf[32];
5839
5840 WARN_ON(sd_ctl_dir[0].child);
5841 sd_ctl_dir[0].child = entry;
5842
5843 if (entry == NULL)
5844 return;
5845
5846 for_each_possible_cpu(i) {
5847 snprintf(buf, 32, "cpu%d", i);
5848 entry->procname = kstrdup(buf, GFP_KERNEL);
5849 entry->mode = 0555;
5850 entry->child = sd_alloc_ctl_cpu_table(i);
5851 entry++;
5852 }
5853
5854 WARN_ON(sd_sysctl_header);
5855 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5856 }
5857
5858 /* may be called multiple times per register */
5859 static void unregister_sched_domain_sysctl(void)
5860 {
5861 if (sd_sysctl_header)
5862 unregister_sysctl_table(sd_sysctl_header);
5863 sd_sysctl_header = NULL;
5864 if (sd_ctl_dir[0].child)
5865 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5866 }
5867 #else
5868 static void register_sched_domain_sysctl(void)
5869 {
5870 }
5871 static void unregister_sched_domain_sysctl(void)
5872 {
5873 }
5874 #endif
5875
5876 static void set_rq_online(struct rq *rq)
5877 {
5878 if (!rq->online) {
5879 const struct sched_class *class;
5880
5881 cpumask_set_cpu(rq->cpu, rq->rd->online);
5882 rq->online = 1;
5883
5884 for_each_class(class) {
5885 if (class->rq_online)
5886 class->rq_online(rq);
5887 }
5888 }
5889 }
5890
5891 static void set_rq_offline(struct rq *rq)
5892 {
5893 if (rq->online) {
5894 const struct sched_class *class;
5895
5896 for_each_class(class) {
5897 if (class->rq_offline)
5898 class->rq_offline(rq);
5899 }
5900
5901 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5902 rq->online = 0;
5903 }
5904 }
5905
5906 /*
5907 * migration_call - callback that gets triggered when a CPU is added.
5908 * Here we can start up the necessary migration thread for the new CPU.
5909 */
5910 static int __cpuinit
5911 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5912 {
5913 int cpu = (long)hcpu;
5914 unsigned long flags;
5915 struct rq *rq = cpu_rq(cpu);
5916
5917 switch (action) {
5918
5919 case CPU_UP_PREPARE:
5920 case CPU_UP_PREPARE_FROZEN:
5921 rq->calc_load_update = calc_load_update;
5922 break;
5923
5924 case CPU_ONLINE:
5925 case CPU_ONLINE_FROZEN:
5926 /* Update our root-domain */
5927 raw_spin_lock_irqsave(&rq->lock, flags);
5928 if (rq->rd) {
5929 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5930
5931 set_rq_online(rq);
5932 }
5933 raw_spin_unlock_irqrestore(&rq->lock, flags);
5934 break;
5935
5936 #ifdef CONFIG_HOTPLUG_CPU
5937 case CPU_DEAD:
5938 case CPU_DEAD_FROZEN:
5939 migrate_live_tasks(cpu);
5940 /* Idle task back to normal (off runqueue, low prio) */
5941 raw_spin_lock_irq(&rq->lock);
5942 deactivate_task(rq, rq->idle, 0);
5943 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5944 rq->idle->sched_class = &idle_sched_class;
5945 migrate_dead_tasks(cpu);
5946 raw_spin_unlock_irq(&rq->lock);
5947 migrate_nr_uninterruptible(rq);
5948 BUG_ON(rq->nr_running != 0);
5949 calc_global_load_remove(rq);
5950 break;
5951
5952 case CPU_DYING:
5953 case CPU_DYING_FROZEN:
5954 /* Update our root-domain */
5955 raw_spin_lock_irqsave(&rq->lock, flags);
5956 if (rq->rd) {
5957 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5958 set_rq_offline(rq);
5959 }
5960 raw_spin_unlock_irqrestore(&rq->lock, flags);
5961 break;
5962 #endif
5963 }
5964 return NOTIFY_OK;
5965 }
5966
5967 /*
5968 * Register at high priority so that task migration (migrate_all_tasks)
5969 * happens before everything else. This has to be lower priority than
5970 * the notifier in the perf_event subsystem, though.
5971 */
5972 static struct notifier_block __cpuinitdata migration_notifier = {
5973 .notifier_call = migration_call,
5974 .priority = CPU_PRI_MIGRATION,
5975 };
5976
5977 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5978 unsigned long action, void *hcpu)
5979 {
5980 switch (action & ~CPU_TASKS_FROZEN) {
5981 case CPU_ONLINE:
5982 case CPU_DOWN_FAILED:
5983 set_cpu_active((long)hcpu, true);
5984 return NOTIFY_OK;
5985 default:
5986 return NOTIFY_DONE;
5987 }
5988 }
5989
5990 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5991 unsigned long action, void *hcpu)
5992 {
5993 switch (action & ~CPU_TASKS_FROZEN) {
5994 case CPU_DOWN_PREPARE:
5995 set_cpu_active((long)hcpu, false);
5996 return NOTIFY_OK;
5997 default:
5998 return NOTIFY_DONE;
5999 }
6000 }
6001
6002 static int __init migration_init(void)
6003 {
6004 void *cpu = (void *)(long)smp_processor_id();
6005 int err;
6006
6007 /* Initialize migration for the boot CPU */
6008 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6009 BUG_ON(err == NOTIFY_BAD);
6010 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6011 register_cpu_notifier(&migration_notifier);
6012
6013 /* Register cpu active notifiers */
6014 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6015 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6016
6017 return 0;
6018 }
6019 early_initcall(migration_init);
6020 #endif
6021
6022 #ifdef CONFIG_SMP
6023
6024 #ifdef CONFIG_SCHED_DEBUG
6025
6026 static __read_mostly int sched_domain_debug_enabled;
6027
6028 static int __init sched_domain_debug_setup(char *str)
6029 {
6030 sched_domain_debug_enabled = 1;
6031
6032 return 0;
6033 }
6034 early_param("sched_debug", sched_domain_debug_setup);
6035
6036 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6037 struct cpumask *groupmask)
6038 {
6039 struct sched_group *group = sd->groups;
6040 char str[256];
6041
6042 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6043 cpumask_clear(groupmask);
6044
6045 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6046
6047 if (!(sd->flags & SD_LOAD_BALANCE)) {
6048 printk("does not load-balance\n");
6049 if (sd->parent)
6050 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6051 " has parent");
6052 return -1;
6053 }
6054
6055 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6056
6057 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6058 printk(KERN_ERR "ERROR: domain->span does not contain "
6059 "CPU%d\n", cpu);
6060 }
6061 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6062 printk(KERN_ERR "ERROR: domain->groups does not contain"
6063 " CPU%d\n", cpu);
6064 }
6065
6066 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6067 do {
6068 if (!group) {
6069 printk("\n");
6070 printk(KERN_ERR "ERROR: group is NULL\n");
6071 break;
6072 }
6073
6074 if (!group->cpu_power) {
6075 printk(KERN_CONT "\n");
6076 printk(KERN_ERR "ERROR: domain->cpu_power not "
6077 "set\n");
6078 break;
6079 }
6080
6081 if (!cpumask_weight(sched_group_cpus(group))) {
6082 printk(KERN_CONT "\n");
6083 printk(KERN_ERR "ERROR: empty group\n");
6084 break;
6085 }
6086
6087 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6088 printk(KERN_CONT "\n");
6089 printk(KERN_ERR "ERROR: repeated CPUs\n");
6090 break;
6091 }
6092
6093 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6094
6095 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6096
6097 printk(KERN_CONT " %s", str);
6098 if (group->cpu_power != SCHED_LOAD_SCALE) {
6099 printk(KERN_CONT " (cpu_power = %d)",
6100 group->cpu_power);
6101 }
6102
6103 group = group->next;
6104 } while (group != sd->groups);
6105 printk(KERN_CONT "\n");
6106
6107 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6108 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6109
6110 if (sd->parent &&
6111 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6112 printk(KERN_ERR "ERROR: parent span is not a superset "
6113 "of domain->span\n");
6114 return 0;
6115 }
6116
6117 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6118 {
6119 cpumask_var_t groupmask;
6120 int level = 0;
6121
6122 if (!sched_domain_debug_enabled)
6123 return;
6124
6125 if (!sd) {
6126 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6127 return;
6128 }
6129
6130 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6131
6132 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6133 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6134 return;
6135 }
6136
6137 for (;;) {
6138 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6139 break;
6140 level++;
6141 sd = sd->parent;
6142 if (!sd)
6143 break;
6144 }
6145 free_cpumask_var(groupmask);
6146 }
6147 #else /* !CONFIG_SCHED_DEBUG */
6148 # define sched_domain_debug(sd, cpu) do { } while (0)
6149 #endif /* CONFIG_SCHED_DEBUG */
6150
6151 static int sd_degenerate(struct sched_domain *sd)
6152 {
6153 if (cpumask_weight(sched_domain_span(sd)) == 1)
6154 return 1;
6155
6156 /* Following flags need at least 2 groups */
6157 if (sd->flags & (SD_LOAD_BALANCE |
6158 SD_BALANCE_NEWIDLE |
6159 SD_BALANCE_FORK |
6160 SD_BALANCE_EXEC |
6161 SD_SHARE_CPUPOWER |
6162 SD_SHARE_PKG_RESOURCES)) {
6163 if (sd->groups != sd->groups->next)
6164 return 0;
6165 }
6166
6167 /* Following flags don't use groups */
6168 if (sd->flags & (SD_WAKE_AFFINE))
6169 return 0;
6170
6171 return 1;
6172 }
6173
6174 static int
6175 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6176 {
6177 unsigned long cflags = sd->flags, pflags = parent->flags;
6178
6179 if (sd_degenerate(parent))
6180 return 1;
6181
6182 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6183 return 0;
6184
6185 /* Flags needing groups don't count if only 1 group in parent */
6186 if (parent->groups == parent->groups->next) {
6187 pflags &= ~(SD_LOAD_BALANCE |
6188 SD_BALANCE_NEWIDLE |
6189 SD_BALANCE_FORK |
6190 SD_BALANCE_EXEC |
6191 SD_SHARE_CPUPOWER |
6192 SD_SHARE_PKG_RESOURCES);
6193 if (nr_node_ids == 1)
6194 pflags &= ~SD_SERIALIZE;
6195 }
6196 if (~cflags & pflags)
6197 return 0;
6198
6199 return 1;
6200 }
6201
6202 static void free_rootdomain(struct root_domain *rd)
6203 {
6204 synchronize_sched();
6205
6206 cpupri_cleanup(&rd->cpupri);
6207
6208 free_cpumask_var(rd->rto_mask);
6209 free_cpumask_var(rd->online);
6210 free_cpumask_var(rd->span);
6211 kfree(rd);
6212 }
6213
6214 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6215 {
6216 struct root_domain *old_rd = NULL;
6217 unsigned long flags;
6218
6219 raw_spin_lock_irqsave(&rq->lock, flags);
6220
6221 if (rq->rd) {
6222 old_rd = rq->rd;
6223
6224 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6225 set_rq_offline(rq);
6226
6227 cpumask_clear_cpu(rq->cpu, old_rd->span);
6228
6229 /*
6230 * If we dont want to free the old_rt yet then
6231 * set old_rd to NULL to skip the freeing later
6232 * in this function:
6233 */
6234 if (!atomic_dec_and_test(&old_rd->refcount))
6235 old_rd = NULL;
6236 }
6237
6238 atomic_inc(&rd->refcount);
6239 rq->rd = rd;
6240
6241 cpumask_set_cpu(rq->cpu, rd->span);
6242 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6243 set_rq_online(rq);
6244
6245 raw_spin_unlock_irqrestore(&rq->lock, flags);
6246
6247 if (old_rd)
6248 free_rootdomain(old_rd);
6249 }
6250
6251 static int init_rootdomain(struct root_domain *rd)
6252 {
6253 memset(rd, 0, sizeof(*rd));
6254
6255 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6256 goto out;
6257 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6258 goto free_span;
6259 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6260 goto free_online;
6261
6262 if (cpupri_init(&rd->cpupri) != 0)
6263 goto free_rto_mask;
6264 return 0;
6265
6266 free_rto_mask:
6267 free_cpumask_var(rd->rto_mask);
6268 free_online:
6269 free_cpumask_var(rd->online);
6270 free_span:
6271 free_cpumask_var(rd->span);
6272 out:
6273 return -ENOMEM;
6274 }
6275
6276 static void init_defrootdomain(void)
6277 {
6278 init_rootdomain(&def_root_domain);
6279
6280 atomic_set(&def_root_domain.refcount, 1);
6281 }
6282
6283 static struct root_domain *alloc_rootdomain(void)
6284 {
6285 struct root_domain *rd;
6286
6287 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6288 if (!rd)
6289 return NULL;
6290
6291 if (init_rootdomain(rd) != 0) {
6292 kfree(rd);
6293 return NULL;
6294 }
6295
6296 return rd;
6297 }
6298
6299 /*
6300 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6301 * hold the hotplug lock.
6302 */
6303 static void
6304 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6305 {
6306 struct rq *rq = cpu_rq(cpu);
6307 struct sched_domain *tmp;
6308
6309 for (tmp = sd; tmp; tmp = tmp->parent)
6310 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6311
6312 /* Remove the sched domains which do not contribute to scheduling. */
6313 for (tmp = sd; tmp; ) {
6314 struct sched_domain *parent = tmp->parent;
6315 if (!parent)
6316 break;
6317
6318 if (sd_parent_degenerate(tmp, parent)) {
6319 tmp->parent = parent->parent;
6320 if (parent->parent)
6321 parent->parent->child = tmp;
6322 } else
6323 tmp = tmp->parent;
6324 }
6325
6326 if (sd && sd_degenerate(sd)) {
6327 sd = sd->parent;
6328 if (sd)
6329 sd->child = NULL;
6330 }
6331
6332 sched_domain_debug(sd, cpu);
6333
6334 rq_attach_root(rq, rd);
6335 rcu_assign_pointer(rq->sd, sd);
6336 }
6337
6338 /* cpus with isolated domains */
6339 static cpumask_var_t cpu_isolated_map;
6340
6341 /* Setup the mask of cpus configured for isolated domains */
6342 static int __init isolated_cpu_setup(char *str)
6343 {
6344 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6345 cpulist_parse(str, cpu_isolated_map);
6346 return 1;
6347 }
6348
6349 __setup("isolcpus=", isolated_cpu_setup);
6350
6351 /*
6352 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6353 * to a function which identifies what group(along with sched group) a CPU
6354 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6355 * (due to the fact that we keep track of groups covered with a struct cpumask).
6356 *
6357 * init_sched_build_groups will build a circular linked list of the groups
6358 * covered by the given span, and will set each group's ->cpumask correctly,
6359 * and ->cpu_power to 0.
6360 */
6361 static void
6362 init_sched_build_groups(const struct cpumask *span,
6363 const struct cpumask *cpu_map,
6364 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6365 struct sched_group **sg,
6366 struct cpumask *tmpmask),
6367 struct cpumask *covered, struct cpumask *tmpmask)
6368 {
6369 struct sched_group *first = NULL, *last = NULL;
6370 int i;
6371
6372 cpumask_clear(covered);
6373
6374 for_each_cpu(i, span) {
6375 struct sched_group *sg;
6376 int group = group_fn(i, cpu_map, &sg, tmpmask);
6377 int j;
6378
6379 if (cpumask_test_cpu(i, covered))
6380 continue;
6381
6382 cpumask_clear(sched_group_cpus(sg));
6383 sg->cpu_power = 0;
6384
6385 for_each_cpu(j, span) {
6386 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6387 continue;
6388
6389 cpumask_set_cpu(j, covered);
6390 cpumask_set_cpu(j, sched_group_cpus(sg));
6391 }
6392 if (!first)
6393 first = sg;
6394 if (last)
6395 last->next = sg;
6396 last = sg;
6397 }
6398 last->next = first;
6399 }
6400
6401 #define SD_NODES_PER_DOMAIN 16
6402
6403 #ifdef CONFIG_NUMA
6404
6405 /**
6406 * find_next_best_node - find the next node to include in a sched_domain
6407 * @node: node whose sched_domain we're building
6408 * @used_nodes: nodes already in the sched_domain
6409 *
6410 * Find the next node to include in a given scheduling domain. Simply
6411 * finds the closest node not already in the @used_nodes map.
6412 *
6413 * Should use nodemask_t.
6414 */
6415 static int find_next_best_node(int node, nodemask_t *used_nodes)
6416 {
6417 int i, n, val, min_val, best_node = 0;
6418
6419 min_val = INT_MAX;
6420
6421 for (i = 0; i < nr_node_ids; i++) {
6422 /* Start at @node */
6423 n = (node + i) % nr_node_ids;
6424
6425 if (!nr_cpus_node(n))
6426 continue;
6427
6428 /* Skip already used nodes */
6429 if (node_isset(n, *used_nodes))
6430 continue;
6431
6432 /* Simple min distance search */
6433 val = node_distance(node, n);
6434
6435 if (val < min_val) {
6436 min_val = val;
6437 best_node = n;
6438 }
6439 }
6440
6441 node_set(best_node, *used_nodes);
6442 return best_node;
6443 }
6444
6445 /**
6446 * sched_domain_node_span - get a cpumask for a node's sched_domain
6447 * @node: node whose cpumask we're constructing
6448 * @span: resulting cpumask
6449 *
6450 * Given a node, construct a good cpumask for its sched_domain to span. It
6451 * should be one that prevents unnecessary balancing, but also spreads tasks
6452 * out optimally.
6453 */
6454 static void sched_domain_node_span(int node, struct cpumask *span)
6455 {
6456 nodemask_t used_nodes;
6457 int i;
6458
6459 cpumask_clear(span);
6460 nodes_clear(used_nodes);
6461
6462 cpumask_or(span, span, cpumask_of_node(node));
6463 node_set(node, used_nodes);
6464
6465 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6466 int next_node = find_next_best_node(node, &used_nodes);
6467
6468 cpumask_or(span, span, cpumask_of_node(next_node));
6469 }
6470 }
6471 #endif /* CONFIG_NUMA */
6472
6473 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6474
6475 /*
6476 * The cpus mask in sched_group and sched_domain hangs off the end.
6477 *
6478 * ( See the the comments in include/linux/sched.h:struct sched_group
6479 * and struct sched_domain. )
6480 */
6481 struct static_sched_group {
6482 struct sched_group sg;
6483 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6484 };
6485
6486 struct static_sched_domain {
6487 struct sched_domain sd;
6488 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6489 };
6490
6491 struct s_data {
6492 #ifdef CONFIG_NUMA
6493 int sd_allnodes;
6494 cpumask_var_t domainspan;
6495 cpumask_var_t covered;
6496 cpumask_var_t notcovered;
6497 #endif
6498 cpumask_var_t nodemask;
6499 cpumask_var_t this_sibling_map;
6500 cpumask_var_t this_core_map;
6501 cpumask_var_t send_covered;
6502 cpumask_var_t tmpmask;
6503 struct sched_group **sched_group_nodes;
6504 struct root_domain *rd;
6505 };
6506
6507 enum s_alloc {
6508 sa_sched_groups = 0,
6509 sa_rootdomain,
6510 sa_tmpmask,
6511 sa_send_covered,
6512 sa_this_core_map,
6513 sa_this_sibling_map,
6514 sa_nodemask,
6515 sa_sched_group_nodes,
6516 #ifdef CONFIG_NUMA
6517 sa_notcovered,
6518 sa_covered,
6519 sa_domainspan,
6520 #endif
6521 sa_none,
6522 };
6523
6524 /*
6525 * SMT sched-domains:
6526 */
6527 #ifdef CONFIG_SCHED_SMT
6528 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6529 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6530
6531 static int
6532 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6533 struct sched_group **sg, struct cpumask *unused)
6534 {
6535 if (sg)
6536 *sg = &per_cpu(sched_groups, cpu).sg;
6537 return cpu;
6538 }
6539 #endif /* CONFIG_SCHED_SMT */
6540
6541 /*
6542 * multi-core sched-domains:
6543 */
6544 #ifdef CONFIG_SCHED_MC
6545 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6546 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6547 #endif /* CONFIG_SCHED_MC */
6548
6549 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6550 static int
6551 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6552 struct sched_group **sg, struct cpumask *mask)
6553 {
6554 int group;
6555
6556 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6557 group = cpumask_first(mask);
6558 if (sg)
6559 *sg = &per_cpu(sched_group_core, group).sg;
6560 return group;
6561 }
6562 #elif defined(CONFIG_SCHED_MC)
6563 static int
6564 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6565 struct sched_group **sg, struct cpumask *unused)
6566 {
6567 if (sg)
6568 *sg = &per_cpu(sched_group_core, cpu).sg;
6569 return cpu;
6570 }
6571 #endif
6572
6573 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6574 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6575
6576 static int
6577 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6578 struct sched_group **sg, struct cpumask *mask)
6579 {
6580 int group;
6581 #ifdef CONFIG_SCHED_MC
6582 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6583 group = cpumask_first(mask);
6584 #elif defined(CONFIG_SCHED_SMT)
6585 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6586 group = cpumask_first(mask);
6587 #else
6588 group = cpu;
6589 #endif
6590 if (sg)
6591 *sg = &per_cpu(sched_group_phys, group).sg;
6592 return group;
6593 }
6594
6595 #ifdef CONFIG_NUMA
6596 /*
6597 * The init_sched_build_groups can't handle what we want to do with node
6598 * groups, so roll our own. Now each node has its own list of groups which
6599 * gets dynamically allocated.
6600 */
6601 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6602 static struct sched_group ***sched_group_nodes_bycpu;
6603
6604 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6605 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6606
6607 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6608 struct sched_group **sg,
6609 struct cpumask *nodemask)
6610 {
6611 int group;
6612
6613 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6614 group = cpumask_first(nodemask);
6615
6616 if (sg)
6617 *sg = &per_cpu(sched_group_allnodes, group).sg;
6618 return group;
6619 }
6620
6621 static void init_numa_sched_groups_power(struct sched_group *group_head)
6622 {
6623 struct sched_group *sg = group_head;
6624 int j;
6625
6626 if (!sg)
6627 return;
6628 do {
6629 for_each_cpu(j, sched_group_cpus(sg)) {
6630 struct sched_domain *sd;
6631
6632 sd = &per_cpu(phys_domains, j).sd;
6633 if (j != group_first_cpu(sd->groups)) {
6634 /*
6635 * Only add "power" once for each
6636 * physical package.
6637 */
6638 continue;
6639 }
6640
6641 sg->cpu_power += sd->groups->cpu_power;
6642 }
6643 sg = sg->next;
6644 } while (sg != group_head);
6645 }
6646
6647 static int build_numa_sched_groups(struct s_data *d,
6648 const struct cpumask *cpu_map, int num)
6649 {
6650 struct sched_domain *sd;
6651 struct sched_group *sg, *prev;
6652 int n, j;
6653
6654 cpumask_clear(d->covered);
6655 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6656 if (cpumask_empty(d->nodemask)) {
6657 d->sched_group_nodes[num] = NULL;
6658 goto out;
6659 }
6660
6661 sched_domain_node_span(num, d->domainspan);
6662 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6663
6664 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6665 GFP_KERNEL, num);
6666 if (!sg) {
6667 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6668 num);
6669 return -ENOMEM;
6670 }
6671 d->sched_group_nodes[num] = sg;
6672
6673 for_each_cpu(j, d->nodemask) {
6674 sd = &per_cpu(node_domains, j).sd;
6675 sd->groups = sg;
6676 }
6677
6678 sg->cpu_power = 0;
6679 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6680 sg->next = sg;
6681 cpumask_or(d->covered, d->covered, d->nodemask);
6682
6683 prev = sg;
6684 for (j = 0; j < nr_node_ids; j++) {
6685 n = (num + j) % nr_node_ids;
6686 cpumask_complement(d->notcovered, d->covered);
6687 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6688 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6689 if (cpumask_empty(d->tmpmask))
6690 break;
6691 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6692 if (cpumask_empty(d->tmpmask))
6693 continue;
6694 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6695 GFP_KERNEL, num);
6696 if (!sg) {
6697 printk(KERN_WARNING
6698 "Can not alloc domain group for node %d\n", j);
6699 return -ENOMEM;
6700 }
6701 sg->cpu_power = 0;
6702 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6703 sg->next = prev->next;
6704 cpumask_or(d->covered, d->covered, d->tmpmask);
6705 prev->next = sg;
6706 prev = sg;
6707 }
6708 out:
6709 return 0;
6710 }
6711 #endif /* CONFIG_NUMA */
6712
6713 #ifdef CONFIG_NUMA
6714 /* Free memory allocated for various sched_group structures */
6715 static void free_sched_groups(const struct cpumask *cpu_map,
6716 struct cpumask *nodemask)
6717 {
6718 int cpu, i;
6719
6720 for_each_cpu(cpu, cpu_map) {
6721 struct sched_group **sched_group_nodes
6722 = sched_group_nodes_bycpu[cpu];
6723
6724 if (!sched_group_nodes)
6725 continue;
6726
6727 for (i = 0; i < nr_node_ids; i++) {
6728 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6729
6730 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6731 if (cpumask_empty(nodemask))
6732 continue;
6733
6734 if (sg == NULL)
6735 continue;
6736 sg = sg->next;
6737 next_sg:
6738 oldsg = sg;
6739 sg = sg->next;
6740 kfree(oldsg);
6741 if (oldsg != sched_group_nodes[i])
6742 goto next_sg;
6743 }
6744 kfree(sched_group_nodes);
6745 sched_group_nodes_bycpu[cpu] = NULL;
6746 }
6747 }
6748 #else /* !CONFIG_NUMA */
6749 static void free_sched_groups(const struct cpumask *cpu_map,
6750 struct cpumask *nodemask)
6751 {
6752 }
6753 #endif /* CONFIG_NUMA */
6754
6755 /*
6756 * Initialize sched groups cpu_power.
6757 *
6758 * cpu_power indicates the capacity of sched group, which is used while
6759 * distributing the load between different sched groups in a sched domain.
6760 * Typically cpu_power for all the groups in a sched domain will be same unless
6761 * there are asymmetries in the topology. If there are asymmetries, group
6762 * having more cpu_power will pickup more load compared to the group having
6763 * less cpu_power.
6764 */
6765 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6766 {
6767 struct sched_domain *child;
6768 struct sched_group *group;
6769 long power;
6770 int weight;
6771
6772 WARN_ON(!sd || !sd->groups);
6773
6774 if (cpu != group_first_cpu(sd->groups))
6775 return;
6776
6777 child = sd->child;
6778
6779 sd->groups->cpu_power = 0;
6780
6781 if (!child) {
6782 power = SCHED_LOAD_SCALE;
6783 weight = cpumask_weight(sched_domain_span(sd));
6784 /*
6785 * SMT siblings share the power of a single core.
6786 * Usually multiple threads get a better yield out of
6787 * that one core than a single thread would have,
6788 * reflect that in sd->smt_gain.
6789 */
6790 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6791 power *= sd->smt_gain;
6792 power /= weight;
6793 power >>= SCHED_LOAD_SHIFT;
6794 }
6795 sd->groups->cpu_power += power;
6796 return;
6797 }
6798
6799 /*
6800 * Add cpu_power of each child group to this groups cpu_power.
6801 */
6802 group = child->groups;
6803 do {
6804 sd->groups->cpu_power += group->cpu_power;
6805 group = group->next;
6806 } while (group != child->groups);
6807 }
6808
6809 /*
6810 * Initializers for schedule domains
6811 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6812 */
6813
6814 #ifdef CONFIG_SCHED_DEBUG
6815 # define SD_INIT_NAME(sd, type) sd->name = #type
6816 #else
6817 # define SD_INIT_NAME(sd, type) do { } while (0)
6818 #endif
6819
6820 #define SD_INIT(sd, type) sd_init_##type(sd)
6821
6822 #define SD_INIT_FUNC(type) \
6823 static noinline void sd_init_##type(struct sched_domain *sd) \
6824 { \
6825 memset(sd, 0, sizeof(*sd)); \
6826 *sd = SD_##type##_INIT; \
6827 sd->level = SD_LV_##type; \
6828 SD_INIT_NAME(sd, type); \
6829 }
6830
6831 SD_INIT_FUNC(CPU)
6832 #ifdef CONFIG_NUMA
6833 SD_INIT_FUNC(ALLNODES)
6834 SD_INIT_FUNC(NODE)
6835 #endif
6836 #ifdef CONFIG_SCHED_SMT
6837 SD_INIT_FUNC(SIBLING)
6838 #endif
6839 #ifdef CONFIG_SCHED_MC
6840 SD_INIT_FUNC(MC)
6841 #endif
6842
6843 static int default_relax_domain_level = -1;
6844
6845 static int __init setup_relax_domain_level(char *str)
6846 {
6847 unsigned long val;
6848
6849 val = simple_strtoul(str, NULL, 0);
6850 if (val < SD_LV_MAX)
6851 default_relax_domain_level = val;
6852
6853 return 1;
6854 }
6855 __setup("relax_domain_level=", setup_relax_domain_level);
6856
6857 static void set_domain_attribute(struct sched_domain *sd,
6858 struct sched_domain_attr *attr)
6859 {
6860 int request;
6861
6862 if (!attr || attr->relax_domain_level < 0) {
6863 if (default_relax_domain_level < 0)
6864 return;
6865 else
6866 request = default_relax_domain_level;
6867 } else
6868 request = attr->relax_domain_level;
6869 if (request < sd->level) {
6870 /* turn off idle balance on this domain */
6871 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6872 } else {
6873 /* turn on idle balance on this domain */
6874 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6875 }
6876 }
6877
6878 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6879 const struct cpumask *cpu_map)
6880 {
6881 switch (what) {
6882 case sa_sched_groups:
6883 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6884 d->sched_group_nodes = NULL;
6885 case sa_rootdomain:
6886 free_rootdomain(d->rd); /* fall through */
6887 case sa_tmpmask:
6888 free_cpumask_var(d->tmpmask); /* fall through */
6889 case sa_send_covered:
6890 free_cpumask_var(d->send_covered); /* fall through */
6891 case sa_this_core_map:
6892 free_cpumask_var(d->this_core_map); /* fall through */
6893 case sa_this_sibling_map:
6894 free_cpumask_var(d->this_sibling_map); /* fall through */
6895 case sa_nodemask:
6896 free_cpumask_var(d->nodemask); /* fall through */
6897 case sa_sched_group_nodes:
6898 #ifdef CONFIG_NUMA
6899 kfree(d->sched_group_nodes); /* fall through */
6900 case sa_notcovered:
6901 free_cpumask_var(d->notcovered); /* fall through */
6902 case sa_covered:
6903 free_cpumask_var(d->covered); /* fall through */
6904 case sa_domainspan:
6905 free_cpumask_var(d->domainspan); /* fall through */
6906 #endif
6907 case sa_none:
6908 break;
6909 }
6910 }
6911
6912 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6913 const struct cpumask *cpu_map)
6914 {
6915 #ifdef CONFIG_NUMA
6916 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6917 return sa_none;
6918 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6919 return sa_domainspan;
6920 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6921 return sa_covered;
6922 /* Allocate the per-node list of sched groups */
6923 d->sched_group_nodes = kcalloc(nr_node_ids,
6924 sizeof(struct sched_group *), GFP_KERNEL);
6925 if (!d->sched_group_nodes) {
6926 printk(KERN_WARNING "Can not alloc sched group node list\n");
6927 return sa_notcovered;
6928 }
6929 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6930 #endif
6931 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6932 return sa_sched_group_nodes;
6933 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6934 return sa_nodemask;
6935 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6936 return sa_this_sibling_map;
6937 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6938 return sa_this_core_map;
6939 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6940 return sa_send_covered;
6941 d->rd = alloc_rootdomain();
6942 if (!d->rd) {
6943 printk(KERN_WARNING "Cannot alloc root domain\n");
6944 return sa_tmpmask;
6945 }
6946 return sa_rootdomain;
6947 }
6948
6949 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6950 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6951 {
6952 struct sched_domain *sd = NULL;
6953 #ifdef CONFIG_NUMA
6954 struct sched_domain *parent;
6955
6956 d->sd_allnodes = 0;
6957 if (cpumask_weight(cpu_map) >
6958 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6959 sd = &per_cpu(allnodes_domains, i).sd;
6960 SD_INIT(sd, ALLNODES);
6961 set_domain_attribute(sd, attr);
6962 cpumask_copy(sched_domain_span(sd), cpu_map);
6963 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6964 d->sd_allnodes = 1;
6965 }
6966 parent = sd;
6967
6968 sd = &per_cpu(node_domains, i).sd;
6969 SD_INIT(sd, NODE);
6970 set_domain_attribute(sd, attr);
6971 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6972 sd->parent = parent;
6973 if (parent)
6974 parent->child = sd;
6975 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6976 #endif
6977 return sd;
6978 }
6979
6980 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6981 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6982 struct sched_domain *parent, int i)
6983 {
6984 struct sched_domain *sd;
6985 sd = &per_cpu(phys_domains, i).sd;
6986 SD_INIT(sd, CPU);
6987 set_domain_attribute(sd, attr);
6988 cpumask_copy(sched_domain_span(sd), d->nodemask);
6989 sd->parent = parent;
6990 if (parent)
6991 parent->child = sd;
6992 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6993 return sd;
6994 }
6995
6996 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6997 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6998 struct sched_domain *parent, int i)
6999 {
7000 struct sched_domain *sd = parent;
7001 #ifdef CONFIG_SCHED_MC
7002 sd = &per_cpu(core_domains, i).sd;
7003 SD_INIT(sd, MC);
7004 set_domain_attribute(sd, attr);
7005 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7006 sd->parent = parent;
7007 parent->child = sd;
7008 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7009 #endif
7010 return sd;
7011 }
7012
7013 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7014 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7015 struct sched_domain *parent, int i)
7016 {
7017 struct sched_domain *sd = parent;
7018 #ifdef CONFIG_SCHED_SMT
7019 sd = &per_cpu(cpu_domains, i).sd;
7020 SD_INIT(sd, SIBLING);
7021 set_domain_attribute(sd, attr);
7022 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7023 sd->parent = parent;
7024 parent->child = sd;
7025 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7026 #endif
7027 return sd;
7028 }
7029
7030 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7031 const struct cpumask *cpu_map, int cpu)
7032 {
7033 switch (l) {
7034 #ifdef CONFIG_SCHED_SMT
7035 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7036 cpumask_and(d->this_sibling_map, cpu_map,
7037 topology_thread_cpumask(cpu));
7038 if (cpu == cpumask_first(d->this_sibling_map))
7039 init_sched_build_groups(d->this_sibling_map, cpu_map,
7040 &cpu_to_cpu_group,
7041 d->send_covered, d->tmpmask);
7042 break;
7043 #endif
7044 #ifdef CONFIG_SCHED_MC
7045 case SD_LV_MC: /* set up multi-core groups */
7046 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7047 if (cpu == cpumask_first(d->this_core_map))
7048 init_sched_build_groups(d->this_core_map, cpu_map,
7049 &cpu_to_core_group,
7050 d->send_covered, d->tmpmask);
7051 break;
7052 #endif
7053 case SD_LV_CPU: /* set up physical groups */
7054 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7055 if (!cpumask_empty(d->nodemask))
7056 init_sched_build_groups(d->nodemask, cpu_map,
7057 &cpu_to_phys_group,
7058 d->send_covered, d->tmpmask);
7059 break;
7060 #ifdef CONFIG_NUMA
7061 case SD_LV_ALLNODES:
7062 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7063 d->send_covered, d->tmpmask);
7064 break;
7065 #endif
7066 default:
7067 break;
7068 }
7069 }
7070
7071 /*
7072 * Build sched domains for a given set of cpus and attach the sched domains
7073 * to the individual cpus
7074 */
7075 static int __build_sched_domains(const struct cpumask *cpu_map,
7076 struct sched_domain_attr *attr)
7077 {
7078 enum s_alloc alloc_state = sa_none;
7079 struct s_data d;
7080 struct sched_domain *sd;
7081 int i;
7082 #ifdef CONFIG_NUMA
7083 d.sd_allnodes = 0;
7084 #endif
7085
7086 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7087 if (alloc_state != sa_rootdomain)
7088 goto error;
7089 alloc_state = sa_sched_groups;
7090
7091 /*
7092 * Set up domains for cpus specified by the cpu_map.
7093 */
7094 for_each_cpu(i, cpu_map) {
7095 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7096 cpu_map);
7097
7098 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7099 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7100 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7101 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7102 }
7103
7104 for_each_cpu(i, cpu_map) {
7105 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7106 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7107 }
7108
7109 /* Set up physical groups */
7110 for (i = 0; i < nr_node_ids; i++)
7111 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7112
7113 #ifdef CONFIG_NUMA
7114 /* Set up node groups */
7115 if (d.sd_allnodes)
7116 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7117
7118 for (i = 0; i < nr_node_ids; i++)
7119 if (build_numa_sched_groups(&d, cpu_map, i))
7120 goto error;
7121 #endif
7122
7123 /* Calculate CPU power for physical packages and nodes */
7124 #ifdef CONFIG_SCHED_SMT
7125 for_each_cpu(i, cpu_map) {
7126 sd = &per_cpu(cpu_domains, i).sd;
7127 init_sched_groups_power(i, sd);
7128 }
7129 #endif
7130 #ifdef CONFIG_SCHED_MC
7131 for_each_cpu(i, cpu_map) {
7132 sd = &per_cpu(core_domains, i).sd;
7133 init_sched_groups_power(i, sd);
7134 }
7135 #endif
7136
7137 for_each_cpu(i, cpu_map) {
7138 sd = &per_cpu(phys_domains, i).sd;
7139 init_sched_groups_power(i, sd);
7140 }
7141
7142 #ifdef CONFIG_NUMA
7143 for (i = 0; i < nr_node_ids; i++)
7144 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7145
7146 if (d.sd_allnodes) {
7147 struct sched_group *sg;
7148
7149 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7150 d.tmpmask);
7151 init_numa_sched_groups_power(sg);
7152 }
7153 #endif
7154
7155 /* Attach the domains */
7156 for_each_cpu(i, cpu_map) {
7157 #ifdef CONFIG_SCHED_SMT
7158 sd = &per_cpu(cpu_domains, i).sd;
7159 #elif defined(CONFIG_SCHED_MC)
7160 sd = &per_cpu(core_domains, i).sd;
7161 #else
7162 sd = &per_cpu(phys_domains, i).sd;
7163 #endif
7164 cpu_attach_domain(sd, d.rd, i);
7165 }
7166
7167 d.sched_group_nodes = NULL; /* don't free this we still need it */
7168 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7169 return 0;
7170
7171 error:
7172 __free_domain_allocs(&d, alloc_state, cpu_map);
7173 return -ENOMEM;
7174 }
7175
7176 static int build_sched_domains(const struct cpumask *cpu_map)
7177 {
7178 return __build_sched_domains(cpu_map, NULL);
7179 }
7180
7181 static cpumask_var_t *doms_cur; /* current sched domains */
7182 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7183 static struct sched_domain_attr *dattr_cur;
7184 /* attribues of custom domains in 'doms_cur' */
7185
7186 /*
7187 * Special case: If a kmalloc of a doms_cur partition (array of
7188 * cpumask) fails, then fallback to a single sched domain,
7189 * as determined by the single cpumask fallback_doms.
7190 */
7191 static cpumask_var_t fallback_doms;
7192
7193 /*
7194 * arch_update_cpu_topology lets virtualized architectures update the
7195 * cpu core maps. It is supposed to return 1 if the topology changed
7196 * or 0 if it stayed the same.
7197 */
7198 int __attribute__((weak)) arch_update_cpu_topology(void)
7199 {
7200 return 0;
7201 }
7202
7203 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7204 {
7205 int i;
7206 cpumask_var_t *doms;
7207
7208 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7209 if (!doms)
7210 return NULL;
7211 for (i = 0; i < ndoms; i++) {
7212 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7213 free_sched_domains(doms, i);
7214 return NULL;
7215 }
7216 }
7217 return doms;
7218 }
7219
7220 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7221 {
7222 unsigned int i;
7223 for (i = 0; i < ndoms; i++)
7224 free_cpumask_var(doms[i]);
7225 kfree(doms);
7226 }
7227
7228 /*
7229 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7230 * For now this just excludes isolated cpus, but could be used to
7231 * exclude other special cases in the future.
7232 */
7233 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7234 {
7235 int err;
7236
7237 arch_update_cpu_topology();
7238 ndoms_cur = 1;
7239 doms_cur = alloc_sched_domains(ndoms_cur);
7240 if (!doms_cur)
7241 doms_cur = &fallback_doms;
7242 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7243 dattr_cur = NULL;
7244 err = build_sched_domains(doms_cur[0]);
7245 register_sched_domain_sysctl();
7246
7247 return err;
7248 }
7249
7250 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7251 struct cpumask *tmpmask)
7252 {
7253 free_sched_groups(cpu_map, tmpmask);
7254 }
7255
7256 /*
7257 * Detach sched domains from a group of cpus specified in cpu_map
7258 * These cpus will now be attached to the NULL domain
7259 */
7260 static void detach_destroy_domains(const struct cpumask *cpu_map)
7261 {
7262 /* Save because hotplug lock held. */
7263 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7264 int i;
7265
7266 for_each_cpu(i, cpu_map)
7267 cpu_attach_domain(NULL, &def_root_domain, i);
7268 synchronize_sched();
7269 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7270 }
7271
7272 /* handle null as "default" */
7273 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7274 struct sched_domain_attr *new, int idx_new)
7275 {
7276 struct sched_domain_attr tmp;
7277
7278 /* fast path */
7279 if (!new && !cur)
7280 return 1;
7281
7282 tmp = SD_ATTR_INIT;
7283 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7284 new ? (new + idx_new) : &tmp,
7285 sizeof(struct sched_domain_attr));
7286 }
7287
7288 /*
7289 * Partition sched domains as specified by the 'ndoms_new'
7290 * cpumasks in the array doms_new[] of cpumasks. This compares
7291 * doms_new[] to the current sched domain partitioning, doms_cur[].
7292 * It destroys each deleted domain and builds each new domain.
7293 *
7294 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7295 * The masks don't intersect (don't overlap.) We should setup one
7296 * sched domain for each mask. CPUs not in any of the cpumasks will
7297 * not be load balanced. If the same cpumask appears both in the
7298 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7299 * it as it is.
7300 *
7301 * The passed in 'doms_new' should be allocated using
7302 * alloc_sched_domains. This routine takes ownership of it and will
7303 * free_sched_domains it when done with it. If the caller failed the
7304 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7305 * and partition_sched_domains() will fallback to the single partition
7306 * 'fallback_doms', it also forces the domains to be rebuilt.
7307 *
7308 * If doms_new == NULL it will be replaced with cpu_online_mask.
7309 * ndoms_new == 0 is a special case for destroying existing domains,
7310 * and it will not create the default domain.
7311 *
7312 * Call with hotplug lock held
7313 */
7314 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7315 struct sched_domain_attr *dattr_new)
7316 {
7317 int i, j, n;
7318 int new_topology;
7319
7320 mutex_lock(&sched_domains_mutex);
7321
7322 /* always unregister in case we don't destroy any domains */
7323 unregister_sched_domain_sysctl();
7324
7325 /* Let architecture update cpu core mappings. */
7326 new_topology = arch_update_cpu_topology();
7327
7328 n = doms_new ? ndoms_new : 0;
7329
7330 /* Destroy deleted domains */
7331 for (i = 0; i < ndoms_cur; i++) {
7332 for (j = 0; j < n && !new_topology; j++) {
7333 if (cpumask_equal(doms_cur[i], doms_new[j])
7334 && dattrs_equal(dattr_cur, i, dattr_new, j))
7335 goto match1;
7336 }
7337 /* no match - a current sched domain not in new doms_new[] */
7338 detach_destroy_domains(doms_cur[i]);
7339 match1:
7340 ;
7341 }
7342
7343 if (doms_new == NULL) {
7344 ndoms_cur = 0;
7345 doms_new = &fallback_doms;
7346 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7347 WARN_ON_ONCE(dattr_new);
7348 }
7349
7350 /* Build new domains */
7351 for (i = 0; i < ndoms_new; i++) {
7352 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7353 if (cpumask_equal(doms_new[i], doms_cur[j])
7354 && dattrs_equal(dattr_new, i, dattr_cur, j))
7355 goto match2;
7356 }
7357 /* no match - add a new doms_new */
7358 __build_sched_domains(doms_new[i],
7359 dattr_new ? dattr_new + i : NULL);
7360 match2:
7361 ;
7362 }
7363
7364 /* Remember the new sched domains */
7365 if (doms_cur != &fallback_doms)
7366 free_sched_domains(doms_cur, ndoms_cur);
7367 kfree(dattr_cur); /* kfree(NULL) is safe */
7368 doms_cur = doms_new;
7369 dattr_cur = dattr_new;
7370 ndoms_cur = ndoms_new;
7371
7372 register_sched_domain_sysctl();
7373
7374 mutex_unlock(&sched_domains_mutex);
7375 }
7376
7377 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7378 static void arch_reinit_sched_domains(void)
7379 {
7380 get_online_cpus();
7381
7382 /* Destroy domains first to force the rebuild */
7383 partition_sched_domains(0, NULL, NULL);
7384
7385 rebuild_sched_domains();
7386 put_online_cpus();
7387 }
7388
7389 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7390 {
7391 unsigned int level = 0;
7392
7393 if (sscanf(buf, "%u", &level) != 1)
7394 return -EINVAL;
7395
7396 /*
7397 * level is always be positive so don't check for
7398 * level < POWERSAVINGS_BALANCE_NONE which is 0
7399 * What happens on 0 or 1 byte write,
7400 * need to check for count as well?
7401 */
7402
7403 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7404 return -EINVAL;
7405
7406 if (smt)
7407 sched_smt_power_savings = level;
7408 else
7409 sched_mc_power_savings = level;
7410
7411 arch_reinit_sched_domains();
7412
7413 return count;
7414 }
7415
7416 #ifdef CONFIG_SCHED_MC
7417 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7418 struct sysdev_class_attribute *attr,
7419 char *page)
7420 {
7421 return sprintf(page, "%u\n", sched_mc_power_savings);
7422 }
7423 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7424 struct sysdev_class_attribute *attr,
7425 const char *buf, size_t count)
7426 {
7427 return sched_power_savings_store(buf, count, 0);
7428 }
7429 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7430 sched_mc_power_savings_show,
7431 sched_mc_power_savings_store);
7432 #endif
7433
7434 #ifdef CONFIG_SCHED_SMT
7435 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7436 struct sysdev_class_attribute *attr,
7437 char *page)
7438 {
7439 return sprintf(page, "%u\n", sched_smt_power_savings);
7440 }
7441 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7442 struct sysdev_class_attribute *attr,
7443 const char *buf, size_t count)
7444 {
7445 return sched_power_savings_store(buf, count, 1);
7446 }
7447 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7448 sched_smt_power_savings_show,
7449 sched_smt_power_savings_store);
7450 #endif
7451
7452 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7453 {
7454 int err = 0;
7455
7456 #ifdef CONFIG_SCHED_SMT
7457 if (smt_capable())
7458 err = sysfs_create_file(&cls->kset.kobj,
7459 &attr_sched_smt_power_savings.attr);
7460 #endif
7461 #ifdef CONFIG_SCHED_MC
7462 if (!err && mc_capable())
7463 err = sysfs_create_file(&cls->kset.kobj,
7464 &attr_sched_mc_power_savings.attr);
7465 #endif
7466 return err;
7467 }
7468 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7469
7470 /*
7471 * Update cpusets according to cpu_active mask. If cpusets are
7472 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7473 * around partition_sched_domains().
7474 */
7475 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7476 void *hcpu)
7477 {
7478 switch (action & ~CPU_TASKS_FROZEN) {
7479 case CPU_ONLINE:
7480 case CPU_DOWN_FAILED:
7481 cpuset_update_active_cpus();
7482 return NOTIFY_OK;
7483 default:
7484 return NOTIFY_DONE;
7485 }
7486 }
7487
7488 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7489 void *hcpu)
7490 {
7491 switch (action & ~CPU_TASKS_FROZEN) {
7492 case CPU_DOWN_PREPARE:
7493 cpuset_update_active_cpus();
7494 return NOTIFY_OK;
7495 default:
7496 return NOTIFY_DONE;
7497 }
7498 }
7499
7500 static int update_runtime(struct notifier_block *nfb,
7501 unsigned long action, void *hcpu)
7502 {
7503 int cpu = (int)(long)hcpu;
7504
7505 switch (action) {
7506 case CPU_DOWN_PREPARE:
7507 case CPU_DOWN_PREPARE_FROZEN:
7508 disable_runtime(cpu_rq(cpu));
7509 return NOTIFY_OK;
7510
7511 case CPU_DOWN_FAILED:
7512 case CPU_DOWN_FAILED_FROZEN:
7513 case CPU_ONLINE:
7514 case CPU_ONLINE_FROZEN:
7515 enable_runtime(cpu_rq(cpu));
7516 return NOTIFY_OK;
7517
7518 default:
7519 return NOTIFY_DONE;
7520 }
7521 }
7522
7523 void __init sched_init_smp(void)
7524 {
7525 cpumask_var_t non_isolated_cpus;
7526
7527 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7528 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7529
7530 #if defined(CONFIG_NUMA)
7531 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7532 GFP_KERNEL);
7533 BUG_ON(sched_group_nodes_bycpu == NULL);
7534 #endif
7535 get_online_cpus();
7536 mutex_lock(&sched_domains_mutex);
7537 arch_init_sched_domains(cpu_active_mask);
7538 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7539 if (cpumask_empty(non_isolated_cpus))
7540 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7541 mutex_unlock(&sched_domains_mutex);
7542 put_online_cpus();
7543
7544 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7545 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7546
7547 /* RT runtime code needs to handle some hotplug events */
7548 hotcpu_notifier(update_runtime, 0);
7549
7550 init_hrtick();
7551
7552 /* Move init over to a non-isolated CPU */
7553 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7554 BUG();
7555 sched_init_granularity();
7556 free_cpumask_var(non_isolated_cpus);
7557
7558 init_sched_rt_class();
7559 }
7560 #else
7561 void __init sched_init_smp(void)
7562 {
7563 sched_init_granularity();
7564 }
7565 #endif /* CONFIG_SMP */
7566
7567 const_debug unsigned int sysctl_timer_migration = 1;
7568
7569 int in_sched_functions(unsigned long addr)
7570 {
7571 return in_lock_functions(addr) ||
7572 (addr >= (unsigned long)__sched_text_start
7573 && addr < (unsigned long)__sched_text_end);
7574 }
7575
7576 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7577 {
7578 cfs_rq->tasks_timeline = RB_ROOT;
7579 INIT_LIST_HEAD(&cfs_rq->tasks);
7580 #ifdef CONFIG_FAIR_GROUP_SCHED
7581 cfs_rq->rq = rq;
7582 #endif
7583 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7584 }
7585
7586 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7587 {
7588 struct rt_prio_array *array;
7589 int i;
7590
7591 array = &rt_rq->active;
7592 for (i = 0; i < MAX_RT_PRIO; i++) {
7593 INIT_LIST_HEAD(array->queue + i);
7594 __clear_bit(i, array->bitmap);
7595 }
7596 /* delimiter for bitsearch: */
7597 __set_bit(MAX_RT_PRIO, array->bitmap);
7598
7599 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7600 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7601 #ifdef CONFIG_SMP
7602 rt_rq->highest_prio.next = MAX_RT_PRIO;
7603 #endif
7604 #endif
7605 #ifdef CONFIG_SMP
7606 rt_rq->rt_nr_migratory = 0;
7607 rt_rq->overloaded = 0;
7608 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7609 #endif
7610
7611 rt_rq->rt_time = 0;
7612 rt_rq->rt_throttled = 0;
7613 rt_rq->rt_runtime = 0;
7614 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7615
7616 #ifdef CONFIG_RT_GROUP_SCHED
7617 rt_rq->rt_nr_boosted = 0;
7618 rt_rq->rq = rq;
7619 #endif
7620 }
7621
7622 #ifdef CONFIG_FAIR_GROUP_SCHED
7623 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7624 struct sched_entity *se, int cpu, int add,
7625 struct sched_entity *parent)
7626 {
7627 struct rq *rq = cpu_rq(cpu);
7628 tg->cfs_rq[cpu] = cfs_rq;
7629 init_cfs_rq(cfs_rq, rq);
7630 cfs_rq->tg = tg;
7631 if (add)
7632 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7633
7634 tg->se[cpu] = se;
7635 /* se could be NULL for init_task_group */
7636 if (!se)
7637 return;
7638
7639 if (!parent)
7640 se->cfs_rq = &rq->cfs;
7641 else
7642 se->cfs_rq = parent->my_q;
7643
7644 se->my_q = cfs_rq;
7645 se->load.weight = tg->shares;
7646 se->load.inv_weight = 0;
7647 se->parent = parent;
7648 }
7649 #endif
7650
7651 #ifdef CONFIG_RT_GROUP_SCHED
7652 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7653 struct sched_rt_entity *rt_se, int cpu, int add,
7654 struct sched_rt_entity *parent)
7655 {
7656 struct rq *rq = cpu_rq(cpu);
7657
7658 tg->rt_rq[cpu] = rt_rq;
7659 init_rt_rq(rt_rq, rq);
7660 rt_rq->tg = tg;
7661 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7662 if (add)
7663 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7664
7665 tg->rt_se[cpu] = rt_se;
7666 if (!rt_se)
7667 return;
7668
7669 if (!parent)
7670 rt_se->rt_rq = &rq->rt;
7671 else
7672 rt_se->rt_rq = parent->my_q;
7673
7674 rt_se->my_q = rt_rq;
7675 rt_se->parent = parent;
7676 INIT_LIST_HEAD(&rt_se->run_list);
7677 }
7678 #endif
7679
7680 void __init sched_init(void)
7681 {
7682 int i, j;
7683 unsigned long alloc_size = 0, ptr;
7684
7685 #ifdef CONFIG_FAIR_GROUP_SCHED
7686 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7687 #endif
7688 #ifdef CONFIG_RT_GROUP_SCHED
7689 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7690 #endif
7691 #ifdef CONFIG_CPUMASK_OFFSTACK
7692 alloc_size += num_possible_cpus() * cpumask_size();
7693 #endif
7694 if (alloc_size) {
7695 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7696
7697 #ifdef CONFIG_FAIR_GROUP_SCHED
7698 init_task_group.se = (struct sched_entity **)ptr;
7699 ptr += nr_cpu_ids * sizeof(void **);
7700
7701 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7702 ptr += nr_cpu_ids * sizeof(void **);
7703
7704 #endif /* CONFIG_FAIR_GROUP_SCHED */
7705 #ifdef CONFIG_RT_GROUP_SCHED
7706 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7707 ptr += nr_cpu_ids * sizeof(void **);
7708
7709 init_task_group.rt_rq = (struct rt_rq **)ptr;
7710 ptr += nr_cpu_ids * sizeof(void **);
7711
7712 #endif /* CONFIG_RT_GROUP_SCHED */
7713 #ifdef CONFIG_CPUMASK_OFFSTACK
7714 for_each_possible_cpu(i) {
7715 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7716 ptr += cpumask_size();
7717 }
7718 #endif /* CONFIG_CPUMASK_OFFSTACK */
7719 }
7720
7721 #ifdef CONFIG_SMP
7722 init_defrootdomain();
7723 #endif
7724
7725 init_rt_bandwidth(&def_rt_bandwidth,
7726 global_rt_period(), global_rt_runtime());
7727
7728 #ifdef CONFIG_RT_GROUP_SCHED
7729 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7730 global_rt_period(), global_rt_runtime());
7731 #endif /* CONFIG_RT_GROUP_SCHED */
7732
7733 #ifdef CONFIG_CGROUP_SCHED
7734 list_add(&init_task_group.list, &task_groups);
7735 INIT_LIST_HEAD(&init_task_group.children);
7736
7737 #endif /* CONFIG_CGROUP_SCHED */
7738
7739 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7740 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7741 __alignof__(unsigned long));
7742 #endif
7743 for_each_possible_cpu(i) {
7744 struct rq *rq;
7745
7746 rq = cpu_rq(i);
7747 raw_spin_lock_init(&rq->lock);
7748 rq->nr_running = 0;
7749 rq->calc_load_active = 0;
7750 rq->calc_load_update = jiffies + LOAD_FREQ;
7751 init_cfs_rq(&rq->cfs, rq);
7752 init_rt_rq(&rq->rt, rq);
7753 #ifdef CONFIG_FAIR_GROUP_SCHED
7754 init_task_group.shares = init_task_group_load;
7755 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7756 #ifdef CONFIG_CGROUP_SCHED
7757 /*
7758 * How much cpu bandwidth does init_task_group get?
7759 *
7760 * In case of task-groups formed thr' the cgroup filesystem, it
7761 * gets 100% of the cpu resources in the system. This overall
7762 * system cpu resource is divided among the tasks of
7763 * init_task_group and its child task-groups in a fair manner,
7764 * based on each entity's (task or task-group's) weight
7765 * (se->load.weight).
7766 *
7767 * In other words, if init_task_group has 10 tasks of weight
7768 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7769 * then A0's share of the cpu resource is:
7770 *
7771 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7772 *
7773 * We achieve this by letting init_task_group's tasks sit
7774 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7775 */
7776 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7777 #endif
7778 #endif /* CONFIG_FAIR_GROUP_SCHED */
7779
7780 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7781 #ifdef CONFIG_RT_GROUP_SCHED
7782 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7783 #ifdef CONFIG_CGROUP_SCHED
7784 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7785 #endif
7786 #endif
7787
7788 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7789 rq->cpu_load[j] = 0;
7790
7791 rq->last_load_update_tick = jiffies;
7792
7793 #ifdef CONFIG_SMP
7794 rq->sd = NULL;
7795 rq->rd = NULL;
7796 rq->cpu_power = SCHED_LOAD_SCALE;
7797 rq->post_schedule = 0;
7798 rq->active_balance = 0;
7799 rq->next_balance = jiffies;
7800 rq->push_cpu = 0;
7801 rq->cpu = i;
7802 rq->online = 0;
7803 rq->idle_stamp = 0;
7804 rq->avg_idle = 2*sysctl_sched_migration_cost;
7805 rq_attach_root(rq, &def_root_domain);
7806 #ifdef CONFIG_NO_HZ
7807 rq->nohz_balance_kick = 0;
7808 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7809 #endif
7810 #endif
7811 init_rq_hrtick(rq);
7812 atomic_set(&rq->nr_iowait, 0);
7813 }
7814
7815 set_load_weight(&init_task);
7816
7817 #ifdef CONFIG_PREEMPT_NOTIFIERS
7818 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7819 #endif
7820
7821 #ifdef CONFIG_SMP
7822 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7823 #endif
7824
7825 #ifdef CONFIG_RT_MUTEXES
7826 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7827 #endif
7828
7829 /*
7830 * The boot idle thread does lazy MMU switching as well:
7831 */
7832 atomic_inc(&init_mm.mm_count);
7833 enter_lazy_tlb(&init_mm, current);
7834
7835 /*
7836 * Make us the idle thread. Technically, schedule() should not be
7837 * called from this thread, however somewhere below it might be,
7838 * but because we are the idle thread, we just pick up running again
7839 * when this runqueue becomes "idle".
7840 */
7841 init_idle(current, smp_processor_id());
7842
7843 calc_load_update = jiffies + LOAD_FREQ;
7844
7845 /*
7846 * During early bootup we pretend to be a normal task:
7847 */
7848 current->sched_class = &fair_sched_class;
7849
7850 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7851 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7852 #ifdef CONFIG_SMP
7853 #ifdef CONFIG_NO_HZ
7854 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7855 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7856 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7857 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7858 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7859 #endif
7860 /* May be allocated at isolcpus cmdline parse time */
7861 if (cpu_isolated_map == NULL)
7862 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7863 #endif /* SMP */
7864
7865 perf_event_init();
7866
7867 scheduler_running = 1;
7868 }
7869
7870 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7871 static inline int preempt_count_equals(int preempt_offset)
7872 {
7873 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7874
7875 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7876 }
7877
7878 void __might_sleep(const char *file, int line, int preempt_offset)
7879 {
7880 #ifdef in_atomic
7881 static unsigned long prev_jiffy; /* ratelimiting */
7882
7883 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7884 system_state != SYSTEM_RUNNING || oops_in_progress)
7885 return;
7886 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7887 return;
7888 prev_jiffy = jiffies;
7889
7890 printk(KERN_ERR
7891 "BUG: sleeping function called from invalid context at %s:%d\n",
7892 file, line);
7893 printk(KERN_ERR
7894 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7895 in_atomic(), irqs_disabled(),
7896 current->pid, current->comm);
7897
7898 debug_show_held_locks(current);
7899 if (irqs_disabled())
7900 print_irqtrace_events(current);
7901 dump_stack();
7902 #endif
7903 }
7904 EXPORT_SYMBOL(__might_sleep);
7905 #endif
7906
7907 #ifdef CONFIG_MAGIC_SYSRQ
7908 static void normalize_task(struct rq *rq, struct task_struct *p)
7909 {
7910 int on_rq;
7911
7912 on_rq = p->se.on_rq;
7913 if (on_rq)
7914 deactivate_task(rq, p, 0);
7915 __setscheduler(rq, p, SCHED_NORMAL, 0);
7916 if (on_rq) {
7917 activate_task(rq, p, 0);
7918 resched_task(rq->curr);
7919 }
7920 }
7921
7922 void normalize_rt_tasks(void)
7923 {
7924 struct task_struct *g, *p;
7925 unsigned long flags;
7926 struct rq *rq;
7927
7928 read_lock_irqsave(&tasklist_lock, flags);
7929 do_each_thread(g, p) {
7930 /*
7931 * Only normalize user tasks:
7932 */
7933 if (!p->mm)
7934 continue;
7935
7936 p->se.exec_start = 0;
7937 #ifdef CONFIG_SCHEDSTATS
7938 p->se.statistics.wait_start = 0;
7939 p->se.statistics.sleep_start = 0;
7940 p->se.statistics.block_start = 0;
7941 #endif
7942
7943 if (!rt_task(p)) {
7944 /*
7945 * Renice negative nice level userspace
7946 * tasks back to 0:
7947 */
7948 if (TASK_NICE(p) < 0 && p->mm)
7949 set_user_nice(p, 0);
7950 continue;
7951 }
7952
7953 raw_spin_lock(&p->pi_lock);
7954 rq = __task_rq_lock(p);
7955
7956 normalize_task(rq, p);
7957
7958 __task_rq_unlock(rq);
7959 raw_spin_unlock(&p->pi_lock);
7960 } while_each_thread(g, p);
7961
7962 read_unlock_irqrestore(&tasklist_lock, flags);
7963 }
7964
7965 #endif /* CONFIG_MAGIC_SYSRQ */
7966
7967 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7968 /*
7969 * These functions are only useful for the IA64 MCA handling, or kdb.
7970 *
7971 * They can only be called when the whole system has been
7972 * stopped - every CPU needs to be quiescent, and no scheduling
7973 * activity can take place. Using them for anything else would
7974 * be a serious bug, and as a result, they aren't even visible
7975 * under any other configuration.
7976 */
7977
7978 /**
7979 * curr_task - return the current task for a given cpu.
7980 * @cpu: the processor in question.
7981 *
7982 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7983 */
7984 struct task_struct *curr_task(int cpu)
7985 {
7986 return cpu_curr(cpu);
7987 }
7988
7989 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7990
7991 #ifdef CONFIG_IA64
7992 /**
7993 * set_curr_task - set the current task for a given cpu.
7994 * @cpu: the processor in question.
7995 * @p: the task pointer to set.
7996 *
7997 * Description: This function must only be used when non-maskable interrupts
7998 * are serviced on a separate stack. It allows the architecture to switch the
7999 * notion of the current task on a cpu in a non-blocking manner. This function
8000 * must be called with all CPU's synchronized, and interrupts disabled, the
8001 * and caller must save the original value of the current task (see
8002 * curr_task() above) and restore that value before reenabling interrupts and
8003 * re-starting the system.
8004 *
8005 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8006 */
8007 void set_curr_task(int cpu, struct task_struct *p)
8008 {
8009 cpu_curr(cpu) = p;
8010 }
8011
8012 #endif
8013
8014 #ifdef CONFIG_FAIR_GROUP_SCHED
8015 static void free_fair_sched_group(struct task_group *tg)
8016 {
8017 int i;
8018
8019 for_each_possible_cpu(i) {
8020 if (tg->cfs_rq)
8021 kfree(tg->cfs_rq[i]);
8022 if (tg->se)
8023 kfree(tg->se[i]);
8024 }
8025
8026 kfree(tg->cfs_rq);
8027 kfree(tg->se);
8028 }
8029
8030 static
8031 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8032 {
8033 struct cfs_rq *cfs_rq;
8034 struct sched_entity *se;
8035 struct rq *rq;
8036 int i;
8037
8038 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8039 if (!tg->cfs_rq)
8040 goto err;
8041 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8042 if (!tg->se)
8043 goto err;
8044
8045 tg->shares = NICE_0_LOAD;
8046
8047 for_each_possible_cpu(i) {
8048 rq = cpu_rq(i);
8049
8050 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8051 GFP_KERNEL, cpu_to_node(i));
8052 if (!cfs_rq)
8053 goto err;
8054
8055 se = kzalloc_node(sizeof(struct sched_entity),
8056 GFP_KERNEL, cpu_to_node(i));
8057 if (!se)
8058 goto err_free_rq;
8059
8060 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8061 }
8062
8063 return 1;
8064
8065 err_free_rq:
8066 kfree(cfs_rq);
8067 err:
8068 return 0;
8069 }
8070
8071 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8072 {
8073 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8074 &cpu_rq(cpu)->leaf_cfs_rq_list);
8075 }
8076
8077 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8078 {
8079 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8080 }
8081 #else /* !CONFG_FAIR_GROUP_SCHED */
8082 static inline void free_fair_sched_group(struct task_group *tg)
8083 {
8084 }
8085
8086 static inline
8087 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8088 {
8089 return 1;
8090 }
8091
8092 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8093 {
8094 }
8095
8096 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8097 {
8098 }
8099 #endif /* CONFIG_FAIR_GROUP_SCHED */
8100
8101 #ifdef CONFIG_RT_GROUP_SCHED
8102 static void free_rt_sched_group(struct task_group *tg)
8103 {
8104 int i;
8105
8106 destroy_rt_bandwidth(&tg->rt_bandwidth);
8107
8108 for_each_possible_cpu(i) {
8109 if (tg->rt_rq)
8110 kfree(tg->rt_rq[i]);
8111 if (tg->rt_se)
8112 kfree(tg->rt_se[i]);
8113 }
8114
8115 kfree(tg->rt_rq);
8116 kfree(tg->rt_se);
8117 }
8118
8119 static
8120 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8121 {
8122 struct rt_rq *rt_rq;
8123 struct sched_rt_entity *rt_se;
8124 struct rq *rq;
8125 int i;
8126
8127 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8128 if (!tg->rt_rq)
8129 goto err;
8130 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8131 if (!tg->rt_se)
8132 goto err;
8133
8134 init_rt_bandwidth(&tg->rt_bandwidth,
8135 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8136
8137 for_each_possible_cpu(i) {
8138 rq = cpu_rq(i);
8139
8140 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8141 GFP_KERNEL, cpu_to_node(i));
8142 if (!rt_rq)
8143 goto err;
8144
8145 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8146 GFP_KERNEL, cpu_to_node(i));
8147 if (!rt_se)
8148 goto err_free_rq;
8149
8150 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8151 }
8152
8153 return 1;
8154
8155 err_free_rq:
8156 kfree(rt_rq);
8157 err:
8158 return 0;
8159 }
8160
8161 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8162 {
8163 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8164 &cpu_rq(cpu)->leaf_rt_rq_list);
8165 }
8166
8167 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8168 {
8169 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8170 }
8171 #else /* !CONFIG_RT_GROUP_SCHED */
8172 static inline void free_rt_sched_group(struct task_group *tg)
8173 {
8174 }
8175
8176 static inline
8177 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8178 {
8179 return 1;
8180 }
8181
8182 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8183 {
8184 }
8185
8186 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8187 {
8188 }
8189 #endif /* CONFIG_RT_GROUP_SCHED */
8190
8191 #ifdef CONFIG_CGROUP_SCHED
8192 static void free_sched_group(struct task_group *tg)
8193 {
8194 free_fair_sched_group(tg);
8195 free_rt_sched_group(tg);
8196 kfree(tg);
8197 }
8198
8199 /* allocate runqueue etc for a new task group */
8200 struct task_group *sched_create_group(struct task_group *parent)
8201 {
8202 struct task_group *tg;
8203 unsigned long flags;
8204 int i;
8205
8206 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8207 if (!tg)
8208 return ERR_PTR(-ENOMEM);
8209
8210 if (!alloc_fair_sched_group(tg, parent))
8211 goto err;
8212
8213 if (!alloc_rt_sched_group(tg, parent))
8214 goto err;
8215
8216 spin_lock_irqsave(&task_group_lock, flags);
8217 for_each_possible_cpu(i) {
8218 register_fair_sched_group(tg, i);
8219 register_rt_sched_group(tg, i);
8220 }
8221 list_add_rcu(&tg->list, &task_groups);
8222
8223 WARN_ON(!parent); /* root should already exist */
8224
8225 tg->parent = parent;
8226 INIT_LIST_HEAD(&tg->children);
8227 list_add_rcu(&tg->siblings, &parent->children);
8228 spin_unlock_irqrestore(&task_group_lock, flags);
8229
8230 return tg;
8231
8232 err:
8233 free_sched_group(tg);
8234 return ERR_PTR(-ENOMEM);
8235 }
8236
8237 /* rcu callback to free various structures associated with a task group */
8238 static void free_sched_group_rcu(struct rcu_head *rhp)
8239 {
8240 /* now it should be safe to free those cfs_rqs */
8241 free_sched_group(container_of(rhp, struct task_group, rcu));
8242 }
8243
8244 /* Destroy runqueue etc associated with a task group */
8245 void sched_destroy_group(struct task_group *tg)
8246 {
8247 unsigned long flags;
8248 int i;
8249
8250 spin_lock_irqsave(&task_group_lock, flags);
8251 for_each_possible_cpu(i) {
8252 unregister_fair_sched_group(tg, i);
8253 unregister_rt_sched_group(tg, i);
8254 }
8255 list_del_rcu(&tg->list);
8256 list_del_rcu(&tg->siblings);
8257 spin_unlock_irqrestore(&task_group_lock, flags);
8258
8259 /* wait for possible concurrent references to cfs_rqs complete */
8260 call_rcu(&tg->rcu, free_sched_group_rcu);
8261 }
8262
8263 /* change task's runqueue when it moves between groups.
8264 * The caller of this function should have put the task in its new group
8265 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8266 * reflect its new group.
8267 */
8268 void sched_move_task(struct task_struct *tsk)
8269 {
8270 int on_rq, running;
8271 unsigned long flags;
8272 struct rq *rq;
8273
8274 rq = task_rq_lock(tsk, &flags);
8275
8276 running = task_current(rq, tsk);
8277 on_rq = tsk->se.on_rq;
8278
8279 if (on_rq)
8280 dequeue_task(rq, tsk, 0);
8281 if (unlikely(running))
8282 tsk->sched_class->put_prev_task(rq, tsk);
8283
8284 set_task_rq(tsk, task_cpu(tsk));
8285
8286 #ifdef CONFIG_FAIR_GROUP_SCHED
8287 if (tsk->sched_class->moved_group)
8288 tsk->sched_class->moved_group(tsk, on_rq);
8289 #endif
8290
8291 if (unlikely(running))
8292 tsk->sched_class->set_curr_task(rq);
8293 if (on_rq)
8294 enqueue_task(rq, tsk, 0);
8295
8296 task_rq_unlock(rq, &flags);
8297 }
8298 #endif /* CONFIG_CGROUP_SCHED */
8299
8300 #ifdef CONFIG_FAIR_GROUP_SCHED
8301 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8302 {
8303 struct cfs_rq *cfs_rq = se->cfs_rq;
8304 int on_rq;
8305
8306 on_rq = se->on_rq;
8307 if (on_rq)
8308 dequeue_entity(cfs_rq, se, 0);
8309
8310 se->load.weight = shares;
8311 se->load.inv_weight = 0;
8312
8313 if (on_rq)
8314 enqueue_entity(cfs_rq, se, 0);
8315 }
8316
8317 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8318 {
8319 struct cfs_rq *cfs_rq = se->cfs_rq;
8320 struct rq *rq = cfs_rq->rq;
8321 unsigned long flags;
8322
8323 raw_spin_lock_irqsave(&rq->lock, flags);
8324 __set_se_shares(se, shares);
8325 raw_spin_unlock_irqrestore(&rq->lock, flags);
8326 }
8327
8328 static DEFINE_MUTEX(shares_mutex);
8329
8330 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8331 {
8332 int i;
8333 unsigned long flags;
8334
8335 /*
8336 * We can't change the weight of the root cgroup.
8337 */
8338 if (!tg->se[0])
8339 return -EINVAL;
8340
8341 if (shares < MIN_SHARES)
8342 shares = MIN_SHARES;
8343 else if (shares > MAX_SHARES)
8344 shares = MAX_SHARES;
8345
8346 mutex_lock(&shares_mutex);
8347 if (tg->shares == shares)
8348 goto done;
8349
8350 spin_lock_irqsave(&task_group_lock, flags);
8351 for_each_possible_cpu(i)
8352 unregister_fair_sched_group(tg, i);
8353 list_del_rcu(&tg->siblings);
8354 spin_unlock_irqrestore(&task_group_lock, flags);
8355
8356 /* wait for any ongoing reference to this group to finish */
8357 synchronize_sched();
8358
8359 /*
8360 * Now we are free to modify the group's share on each cpu
8361 * w/o tripping rebalance_share or load_balance_fair.
8362 */
8363 tg->shares = shares;
8364 for_each_possible_cpu(i) {
8365 /*
8366 * force a rebalance
8367 */
8368 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8369 set_se_shares(tg->se[i], shares);
8370 }
8371
8372 /*
8373 * Enable load balance activity on this group, by inserting it back on
8374 * each cpu's rq->leaf_cfs_rq_list.
8375 */
8376 spin_lock_irqsave(&task_group_lock, flags);
8377 for_each_possible_cpu(i)
8378 register_fair_sched_group(tg, i);
8379 list_add_rcu(&tg->siblings, &tg->parent->children);
8380 spin_unlock_irqrestore(&task_group_lock, flags);
8381 done:
8382 mutex_unlock(&shares_mutex);
8383 return 0;
8384 }
8385
8386 unsigned long sched_group_shares(struct task_group *tg)
8387 {
8388 return tg->shares;
8389 }
8390 #endif
8391
8392 #ifdef CONFIG_RT_GROUP_SCHED
8393 /*
8394 * Ensure that the real time constraints are schedulable.
8395 */
8396 static DEFINE_MUTEX(rt_constraints_mutex);
8397
8398 static unsigned long to_ratio(u64 period, u64 runtime)
8399 {
8400 if (runtime == RUNTIME_INF)
8401 return 1ULL << 20;
8402
8403 return div64_u64(runtime << 20, period);
8404 }
8405
8406 /* Must be called with tasklist_lock held */
8407 static inline int tg_has_rt_tasks(struct task_group *tg)
8408 {
8409 struct task_struct *g, *p;
8410
8411 do_each_thread(g, p) {
8412 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8413 return 1;
8414 } while_each_thread(g, p);
8415
8416 return 0;
8417 }
8418
8419 struct rt_schedulable_data {
8420 struct task_group *tg;
8421 u64 rt_period;
8422 u64 rt_runtime;
8423 };
8424
8425 static int tg_schedulable(struct task_group *tg, void *data)
8426 {
8427 struct rt_schedulable_data *d = data;
8428 struct task_group *child;
8429 unsigned long total, sum = 0;
8430 u64 period, runtime;
8431
8432 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8433 runtime = tg->rt_bandwidth.rt_runtime;
8434
8435 if (tg == d->tg) {
8436 period = d->rt_period;
8437 runtime = d->rt_runtime;
8438 }
8439
8440 /*
8441 * Cannot have more runtime than the period.
8442 */
8443 if (runtime > period && runtime != RUNTIME_INF)
8444 return -EINVAL;
8445
8446 /*
8447 * Ensure we don't starve existing RT tasks.
8448 */
8449 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8450 return -EBUSY;
8451
8452 total = to_ratio(period, runtime);
8453
8454 /*
8455 * Nobody can have more than the global setting allows.
8456 */
8457 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8458 return -EINVAL;
8459
8460 /*
8461 * The sum of our children's runtime should not exceed our own.
8462 */
8463 list_for_each_entry_rcu(child, &tg->children, siblings) {
8464 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8465 runtime = child->rt_bandwidth.rt_runtime;
8466
8467 if (child == d->tg) {
8468 period = d->rt_period;
8469 runtime = d->rt_runtime;
8470 }
8471
8472 sum += to_ratio(period, runtime);
8473 }
8474
8475 if (sum > total)
8476 return -EINVAL;
8477
8478 return 0;
8479 }
8480
8481 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8482 {
8483 struct rt_schedulable_data data = {
8484 .tg = tg,
8485 .rt_period = period,
8486 .rt_runtime = runtime,
8487 };
8488
8489 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8490 }
8491
8492 static int tg_set_bandwidth(struct task_group *tg,
8493 u64 rt_period, u64 rt_runtime)
8494 {
8495 int i, err = 0;
8496
8497 mutex_lock(&rt_constraints_mutex);
8498 read_lock(&tasklist_lock);
8499 err = __rt_schedulable(tg, rt_period, rt_runtime);
8500 if (err)
8501 goto unlock;
8502
8503 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8504 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8505 tg->rt_bandwidth.rt_runtime = rt_runtime;
8506
8507 for_each_possible_cpu(i) {
8508 struct rt_rq *rt_rq = tg->rt_rq[i];
8509
8510 raw_spin_lock(&rt_rq->rt_runtime_lock);
8511 rt_rq->rt_runtime = rt_runtime;
8512 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8513 }
8514 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8515 unlock:
8516 read_unlock(&tasklist_lock);
8517 mutex_unlock(&rt_constraints_mutex);
8518
8519 return err;
8520 }
8521
8522 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8523 {
8524 u64 rt_runtime, rt_period;
8525
8526 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8527 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8528 if (rt_runtime_us < 0)
8529 rt_runtime = RUNTIME_INF;
8530
8531 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8532 }
8533
8534 long sched_group_rt_runtime(struct task_group *tg)
8535 {
8536 u64 rt_runtime_us;
8537
8538 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8539 return -1;
8540
8541 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8542 do_div(rt_runtime_us, NSEC_PER_USEC);
8543 return rt_runtime_us;
8544 }
8545
8546 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8547 {
8548 u64 rt_runtime, rt_period;
8549
8550 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8551 rt_runtime = tg->rt_bandwidth.rt_runtime;
8552
8553 if (rt_period == 0)
8554 return -EINVAL;
8555
8556 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8557 }
8558
8559 long sched_group_rt_period(struct task_group *tg)
8560 {
8561 u64 rt_period_us;
8562
8563 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8564 do_div(rt_period_us, NSEC_PER_USEC);
8565 return rt_period_us;
8566 }
8567
8568 static int sched_rt_global_constraints(void)
8569 {
8570 u64 runtime, period;
8571 int ret = 0;
8572
8573 if (sysctl_sched_rt_period <= 0)
8574 return -EINVAL;
8575
8576 runtime = global_rt_runtime();
8577 period = global_rt_period();
8578
8579 /*
8580 * Sanity check on the sysctl variables.
8581 */
8582 if (runtime > period && runtime != RUNTIME_INF)
8583 return -EINVAL;
8584
8585 mutex_lock(&rt_constraints_mutex);
8586 read_lock(&tasklist_lock);
8587 ret = __rt_schedulable(NULL, 0, 0);
8588 read_unlock(&tasklist_lock);
8589 mutex_unlock(&rt_constraints_mutex);
8590
8591 return ret;
8592 }
8593
8594 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8595 {
8596 /* Don't accept realtime tasks when there is no way for them to run */
8597 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8598 return 0;
8599
8600 return 1;
8601 }
8602
8603 #else /* !CONFIG_RT_GROUP_SCHED */
8604 static int sched_rt_global_constraints(void)
8605 {
8606 unsigned long flags;
8607 int i;
8608
8609 if (sysctl_sched_rt_period <= 0)
8610 return -EINVAL;
8611
8612 /*
8613 * There's always some RT tasks in the root group
8614 * -- migration, kstopmachine etc..
8615 */
8616 if (sysctl_sched_rt_runtime == 0)
8617 return -EBUSY;
8618
8619 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8620 for_each_possible_cpu(i) {
8621 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8622
8623 raw_spin_lock(&rt_rq->rt_runtime_lock);
8624 rt_rq->rt_runtime = global_rt_runtime();
8625 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8626 }
8627 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8628
8629 return 0;
8630 }
8631 #endif /* CONFIG_RT_GROUP_SCHED */
8632
8633 int sched_rt_handler(struct ctl_table *table, int write,
8634 void __user *buffer, size_t *lenp,
8635 loff_t *ppos)
8636 {
8637 int ret;
8638 int old_period, old_runtime;
8639 static DEFINE_MUTEX(mutex);
8640
8641 mutex_lock(&mutex);
8642 old_period = sysctl_sched_rt_period;
8643 old_runtime = sysctl_sched_rt_runtime;
8644
8645 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8646
8647 if (!ret && write) {
8648 ret = sched_rt_global_constraints();
8649 if (ret) {
8650 sysctl_sched_rt_period = old_period;
8651 sysctl_sched_rt_runtime = old_runtime;
8652 } else {
8653 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8654 def_rt_bandwidth.rt_period =
8655 ns_to_ktime(global_rt_period());
8656 }
8657 }
8658 mutex_unlock(&mutex);
8659
8660 return ret;
8661 }
8662
8663 #ifdef CONFIG_CGROUP_SCHED
8664
8665 /* return corresponding task_group object of a cgroup */
8666 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8667 {
8668 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8669 struct task_group, css);
8670 }
8671
8672 static struct cgroup_subsys_state *
8673 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8674 {
8675 struct task_group *tg, *parent;
8676
8677 if (!cgrp->parent) {
8678 /* This is early initialization for the top cgroup */
8679 return &init_task_group.css;
8680 }
8681
8682 parent = cgroup_tg(cgrp->parent);
8683 tg = sched_create_group(parent);
8684 if (IS_ERR(tg))
8685 return ERR_PTR(-ENOMEM);
8686
8687 return &tg->css;
8688 }
8689
8690 static void
8691 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8692 {
8693 struct task_group *tg = cgroup_tg(cgrp);
8694
8695 sched_destroy_group(tg);
8696 }
8697
8698 static int
8699 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8700 {
8701 #ifdef CONFIG_RT_GROUP_SCHED
8702 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8703 return -EINVAL;
8704 #else
8705 /* We don't support RT-tasks being in separate groups */
8706 if (tsk->sched_class != &fair_sched_class)
8707 return -EINVAL;
8708 #endif
8709 return 0;
8710 }
8711
8712 static int
8713 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8714 struct task_struct *tsk, bool threadgroup)
8715 {
8716 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8717 if (retval)
8718 return retval;
8719 if (threadgroup) {
8720 struct task_struct *c;
8721 rcu_read_lock();
8722 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8723 retval = cpu_cgroup_can_attach_task(cgrp, c);
8724 if (retval) {
8725 rcu_read_unlock();
8726 return retval;
8727 }
8728 }
8729 rcu_read_unlock();
8730 }
8731 return 0;
8732 }
8733
8734 static void
8735 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8736 struct cgroup *old_cont, struct task_struct *tsk,
8737 bool threadgroup)
8738 {
8739 sched_move_task(tsk);
8740 if (threadgroup) {
8741 struct task_struct *c;
8742 rcu_read_lock();
8743 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8744 sched_move_task(c);
8745 }
8746 rcu_read_unlock();
8747 }
8748 }
8749
8750 #ifdef CONFIG_FAIR_GROUP_SCHED
8751 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8752 u64 shareval)
8753 {
8754 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8755 }
8756
8757 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8758 {
8759 struct task_group *tg = cgroup_tg(cgrp);
8760
8761 return (u64) tg->shares;
8762 }
8763 #endif /* CONFIG_FAIR_GROUP_SCHED */
8764
8765 #ifdef CONFIG_RT_GROUP_SCHED
8766 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8767 s64 val)
8768 {
8769 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8770 }
8771
8772 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8773 {
8774 return sched_group_rt_runtime(cgroup_tg(cgrp));
8775 }
8776
8777 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8778 u64 rt_period_us)
8779 {
8780 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8781 }
8782
8783 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8784 {
8785 return sched_group_rt_period(cgroup_tg(cgrp));
8786 }
8787 #endif /* CONFIG_RT_GROUP_SCHED */
8788
8789 static struct cftype cpu_files[] = {
8790 #ifdef CONFIG_FAIR_GROUP_SCHED
8791 {
8792 .name = "shares",
8793 .read_u64 = cpu_shares_read_u64,
8794 .write_u64 = cpu_shares_write_u64,
8795 },
8796 #endif
8797 #ifdef CONFIG_RT_GROUP_SCHED
8798 {
8799 .name = "rt_runtime_us",
8800 .read_s64 = cpu_rt_runtime_read,
8801 .write_s64 = cpu_rt_runtime_write,
8802 },
8803 {
8804 .name = "rt_period_us",
8805 .read_u64 = cpu_rt_period_read_uint,
8806 .write_u64 = cpu_rt_period_write_uint,
8807 },
8808 #endif
8809 };
8810
8811 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8812 {
8813 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8814 }
8815
8816 struct cgroup_subsys cpu_cgroup_subsys = {
8817 .name = "cpu",
8818 .create = cpu_cgroup_create,
8819 .destroy = cpu_cgroup_destroy,
8820 .can_attach = cpu_cgroup_can_attach,
8821 .attach = cpu_cgroup_attach,
8822 .populate = cpu_cgroup_populate,
8823 .subsys_id = cpu_cgroup_subsys_id,
8824 .early_init = 1,
8825 };
8826
8827 #endif /* CONFIG_CGROUP_SCHED */
8828
8829 #ifdef CONFIG_CGROUP_CPUACCT
8830
8831 /*
8832 * CPU accounting code for task groups.
8833 *
8834 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8835 * (balbir@in.ibm.com).
8836 */
8837
8838 /* track cpu usage of a group of tasks and its child groups */
8839 struct cpuacct {
8840 struct cgroup_subsys_state css;
8841 /* cpuusage holds pointer to a u64-type object on every cpu */
8842 u64 __percpu *cpuusage;
8843 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8844 struct cpuacct *parent;
8845 };
8846
8847 struct cgroup_subsys cpuacct_subsys;
8848
8849 /* return cpu accounting group corresponding to this container */
8850 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8851 {
8852 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8853 struct cpuacct, css);
8854 }
8855
8856 /* return cpu accounting group to which this task belongs */
8857 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8858 {
8859 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8860 struct cpuacct, css);
8861 }
8862
8863 /* create a new cpu accounting group */
8864 static struct cgroup_subsys_state *cpuacct_create(
8865 struct cgroup_subsys *ss, struct cgroup *cgrp)
8866 {
8867 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8868 int i;
8869
8870 if (!ca)
8871 goto out;
8872
8873 ca->cpuusage = alloc_percpu(u64);
8874 if (!ca->cpuusage)
8875 goto out_free_ca;
8876
8877 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8878 if (percpu_counter_init(&ca->cpustat[i], 0))
8879 goto out_free_counters;
8880
8881 if (cgrp->parent)
8882 ca->parent = cgroup_ca(cgrp->parent);
8883
8884 return &ca->css;
8885
8886 out_free_counters:
8887 while (--i >= 0)
8888 percpu_counter_destroy(&ca->cpustat[i]);
8889 free_percpu(ca->cpuusage);
8890 out_free_ca:
8891 kfree(ca);
8892 out:
8893 return ERR_PTR(-ENOMEM);
8894 }
8895
8896 /* destroy an existing cpu accounting group */
8897 static void
8898 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8899 {
8900 struct cpuacct *ca = cgroup_ca(cgrp);
8901 int i;
8902
8903 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8904 percpu_counter_destroy(&ca->cpustat[i]);
8905 free_percpu(ca->cpuusage);
8906 kfree(ca);
8907 }
8908
8909 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8910 {
8911 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8912 u64 data;
8913
8914 #ifndef CONFIG_64BIT
8915 /*
8916 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8917 */
8918 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8919 data = *cpuusage;
8920 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8921 #else
8922 data = *cpuusage;
8923 #endif
8924
8925 return data;
8926 }
8927
8928 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8929 {
8930 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8931
8932 #ifndef CONFIG_64BIT
8933 /*
8934 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8935 */
8936 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8937 *cpuusage = val;
8938 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8939 #else
8940 *cpuusage = val;
8941 #endif
8942 }
8943
8944 /* return total cpu usage (in nanoseconds) of a group */
8945 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8946 {
8947 struct cpuacct *ca = cgroup_ca(cgrp);
8948 u64 totalcpuusage = 0;
8949 int i;
8950
8951 for_each_present_cpu(i)
8952 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8953
8954 return totalcpuusage;
8955 }
8956
8957 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8958 u64 reset)
8959 {
8960 struct cpuacct *ca = cgroup_ca(cgrp);
8961 int err = 0;
8962 int i;
8963
8964 if (reset) {
8965 err = -EINVAL;
8966 goto out;
8967 }
8968
8969 for_each_present_cpu(i)
8970 cpuacct_cpuusage_write(ca, i, 0);
8971
8972 out:
8973 return err;
8974 }
8975
8976 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8977 struct seq_file *m)
8978 {
8979 struct cpuacct *ca = cgroup_ca(cgroup);
8980 u64 percpu;
8981 int i;
8982
8983 for_each_present_cpu(i) {
8984 percpu = cpuacct_cpuusage_read(ca, i);
8985 seq_printf(m, "%llu ", (unsigned long long) percpu);
8986 }
8987 seq_printf(m, "\n");
8988 return 0;
8989 }
8990
8991 static const char *cpuacct_stat_desc[] = {
8992 [CPUACCT_STAT_USER] = "user",
8993 [CPUACCT_STAT_SYSTEM] = "system",
8994 };
8995
8996 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8997 struct cgroup_map_cb *cb)
8998 {
8999 struct cpuacct *ca = cgroup_ca(cgrp);
9000 int i;
9001
9002 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9003 s64 val = percpu_counter_read(&ca->cpustat[i]);
9004 val = cputime64_to_clock_t(val);
9005 cb->fill(cb, cpuacct_stat_desc[i], val);
9006 }
9007 return 0;
9008 }
9009
9010 static struct cftype files[] = {
9011 {
9012 .name = "usage",
9013 .read_u64 = cpuusage_read,
9014 .write_u64 = cpuusage_write,
9015 },
9016 {
9017 .name = "usage_percpu",
9018 .read_seq_string = cpuacct_percpu_seq_read,
9019 },
9020 {
9021 .name = "stat",
9022 .read_map = cpuacct_stats_show,
9023 },
9024 };
9025
9026 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9027 {
9028 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9029 }
9030
9031 /*
9032 * charge this task's execution time to its accounting group.
9033 *
9034 * called with rq->lock held.
9035 */
9036 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9037 {
9038 struct cpuacct *ca;
9039 int cpu;
9040
9041 if (unlikely(!cpuacct_subsys.active))
9042 return;
9043
9044 cpu = task_cpu(tsk);
9045
9046 rcu_read_lock();
9047
9048 ca = task_ca(tsk);
9049
9050 for (; ca; ca = ca->parent) {
9051 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9052 *cpuusage += cputime;
9053 }
9054
9055 rcu_read_unlock();
9056 }
9057
9058 /*
9059 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9060 * in cputime_t units. As a result, cpuacct_update_stats calls
9061 * percpu_counter_add with values large enough to always overflow the
9062 * per cpu batch limit causing bad SMP scalability.
9063 *
9064 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9065 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9066 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9067 */
9068 #ifdef CONFIG_SMP
9069 #define CPUACCT_BATCH \
9070 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9071 #else
9072 #define CPUACCT_BATCH 0
9073 #endif
9074
9075 /*
9076 * Charge the system/user time to the task's accounting group.
9077 */
9078 static void cpuacct_update_stats(struct task_struct *tsk,
9079 enum cpuacct_stat_index idx, cputime_t val)
9080 {
9081 struct cpuacct *ca;
9082 int batch = CPUACCT_BATCH;
9083
9084 if (unlikely(!cpuacct_subsys.active))
9085 return;
9086
9087 rcu_read_lock();
9088 ca = task_ca(tsk);
9089
9090 do {
9091 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9092 ca = ca->parent;
9093 } while (ca);
9094 rcu_read_unlock();
9095 }
9096
9097 struct cgroup_subsys cpuacct_subsys = {
9098 .name = "cpuacct",
9099 .create = cpuacct_create,
9100 .destroy = cpuacct_destroy,
9101 .populate = cpuacct_populate,
9102 .subsys_id = cpuacct_subsys_id,
9103 };
9104 #endif /* CONFIG_CGROUP_CPUACCT */
9105
9106 #ifndef CONFIG_SMP
9107
9108 void synchronize_sched_expedited(void)
9109 {
9110 barrier();
9111 }
9112 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9113
9114 #else /* #ifndef CONFIG_SMP */
9115
9116 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9117
9118 static int synchronize_sched_expedited_cpu_stop(void *data)
9119 {
9120 /*
9121 * There must be a full memory barrier on each affected CPU
9122 * between the time that try_stop_cpus() is called and the
9123 * time that it returns.
9124 *
9125 * In the current initial implementation of cpu_stop, the
9126 * above condition is already met when the control reaches
9127 * this point and the following smp_mb() is not strictly
9128 * necessary. Do smp_mb() anyway for documentation and
9129 * robustness against future implementation changes.
9130 */
9131 smp_mb(); /* See above comment block. */
9132 return 0;
9133 }
9134
9135 /*
9136 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9137 * approach to force grace period to end quickly. This consumes
9138 * significant time on all CPUs, and is thus not recommended for
9139 * any sort of common-case code.
9140 *
9141 * Note that it is illegal to call this function while holding any
9142 * lock that is acquired by a CPU-hotplug notifier. Failing to
9143 * observe this restriction will result in deadlock.
9144 */
9145 void synchronize_sched_expedited(void)
9146 {
9147 int snap, trycount = 0;
9148
9149 smp_mb(); /* ensure prior mod happens before capturing snap. */
9150 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9151 get_online_cpus();
9152 while (try_stop_cpus(cpu_online_mask,
9153 synchronize_sched_expedited_cpu_stop,
9154 NULL) == -EAGAIN) {
9155 put_online_cpus();
9156 if (trycount++ < 10)
9157 udelay(trycount * num_online_cpus());
9158 else {
9159 synchronize_sched();
9160 return;
9161 }
9162 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9163 smp_mb(); /* ensure test happens before caller kfree */
9164 return;
9165 }
9166 get_online_cpus();
9167 }
9168 atomic_inc(&synchronize_sched_expedited_count);
9169 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9170 put_online_cpus();
9171 }
9172 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9173
9174 #endif /* #else #ifndef CONFIG_SMP */