]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
[PATCH] lockdep: irqtrace subsystem, core
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/suspend.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/acct.h>
53 #include <linux/kprobes.h>
54 #include <asm/tlb.h>
55
56 #include <asm/unistd.h>
57
58 /*
59 * Convert user-nice values [ -20 ... 0 ... 19 ]
60 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
61 * and back.
62 */
63 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
64 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
65 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
66
67 /*
68 * 'User priority' is the nice value converted to something we
69 * can work with better when scaling various scheduler parameters,
70 * it's a [ 0 ... 39 ] range.
71 */
72 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
73 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
74 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
75
76 /*
77 * Some helpers for converting nanosecond timing to jiffy resolution
78 */
79 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
80 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
81
82 /*
83 * These are the 'tuning knobs' of the scheduler:
84 *
85 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
86 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
87 * Timeslices get refilled after they expire.
88 */
89 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
90 #define DEF_TIMESLICE (100 * HZ / 1000)
91 #define ON_RUNQUEUE_WEIGHT 30
92 #define CHILD_PENALTY 95
93 #define PARENT_PENALTY 100
94 #define EXIT_WEIGHT 3
95 #define PRIO_BONUS_RATIO 25
96 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
97 #define INTERACTIVE_DELTA 2
98 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
99 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
100 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
101
102 /*
103 * If a task is 'interactive' then we reinsert it in the active
104 * array after it has expired its current timeslice. (it will not
105 * continue to run immediately, it will still roundrobin with
106 * other interactive tasks.)
107 *
108 * This part scales the interactivity limit depending on niceness.
109 *
110 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
111 * Here are a few examples of different nice levels:
112 *
113 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
114 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
115 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
118 *
119 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
120 * priority range a task can explore, a value of '1' means the
121 * task is rated interactive.)
122 *
123 * Ie. nice +19 tasks can never get 'interactive' enough to be
124 * reinserted into the active array. And only heavily CPU-hog nice -20
125 * tasks will be expired. Default nice 0 tasks are somewhere between,
126 * it takes some effort for them to get interactive, but it's not
127 * too hard.
128 */
129
130 #define CURRENT_BONUS(p) \
131 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
132 MAX_SLEEP_AVG)
133
134 #define GRANULARITY (10 * HZ / 1000 ? : 1)
135
136 #ifdef CONFIG_SMP
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
139 num_online_cpus())
140 #else
141 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
142 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
143 #endif
144
145 #define SCALE(v1,v1_max,v2_max) \
146 (v1) * (v2_max) / (v1_max)
147
148 #define DELTA(p) \
149 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
150 INTERACTIVE_DELTA)
151
152 #define TASK_INTERACTIVE(p) \
153 ((p)->prio <= (p)->static_prio - DELTA(p))
154
155 #define INTERACTIVE_SLEEP(p) \
156 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
157 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
158
159 #define TASK_PREEMPTS_CURR(p, rq) \
160 ((p)->prio < (rq)->curr->prio)
161
162 /*
163 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
164 * to time slice values: [800ms ... 100ms ... 5ms]
165 *
166 * The higher a thread's priority, the bigger timeslices
167 * it gets during one round of execution. But even the lowest
168 * priority thread gets MIN_TIMESLICE worth of execution time.
169 */
170
171 #define SCALE_PRIO(x, prio) \
172 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
173
174 static unsigned int static_prio_timeslice(int static_prio)
175 {
176 if (static_prio < NICE_TO_PRIO(0))
177 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
178 else
179 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
180 }
181
182 static inline unsigned int task_timeslice(task_t *p)
183 {
184 return static_prio_timeslice(p->static_prio);
185 }
186
187 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
188 < (long long) (sd)->cache_hot_time)
189
190 /*
191 * These are the runqueue data structures:
192 */
193
194 typedef struct runqueue runqueue_t;
195
196 struct prio_array {
197 unsigned int nr_active;
198 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
199 struct list_head queue[MAX_PRIO];
200 };
201
202 /*
203 * This is the main, per-CPU runqueue data structure.
204 *
205 * Locking rule: those places that want to lock multiple runqueues
206 * (such as the load balancing or the thread migration code), lock
207 * acquire operations must be ordered by ascending &runqueue.
208 */
209 struct runqueue {
210 spinlock_t lock;
211
212 /*
213 * nr_running and cpu_load should be in the same cacheline because
214 * remote CPUs use both these fields when doing load calculation.
215 */
216 unsigned long nr_running;
217 unsigned long raw_weighted_load;
218 #ifdef CONFIG_SMP
219 unsigned long cpu_load[3];
220 #endif
221 unsigned long long nr_switches;
222
223 /*
224 * This is part of a global counter where only the total sum
225 * over all CPUs matters. A task can increase this counter on
226 * one CPU and if it got migrated afterwards it may decrease
227 * it on another CPU. Always updated under the runqueue lock:
228 */
229 unsigned long nr_uninterruptible;
230
231 unsigned long expired_timestamp;
232 unsigned long long timestamp_last_tick;
233 task_t *curr, *idle;
234 struct mm_struct *prev_mm;
235 prio_array_t *active, *expired, arrays[2];
236 int best_expired_prio;
237 atomic_t nr_iowait;
238
239 #ifdef CONFIG_SMP
240 struct sched_domain *sd;
241
242 /* For active balancing */
243 int active_balance;
244 int push_cpu;
245
246 task_t *migration_thread;
247 struct list_head migration_queue;
248 #endif
249
250 #ifdef CONFIG_SCHEDSTATS
251 /* latency stats */
252 struct sched_info rq_sched_info;
253
254 /* sys_sched_yield() stats */
255 unsigned long yld_exp_empty;
256 unsigned long yld_act_empty;
257 unsigned long yld_both_empty;
258 unsigned long yld_cnt;
259
260 /* schedule() stats */
261 unsigned long sched_switch;
262 unsigned long sched_cnt;
263 unsigned long sched_goidle;
264
265 /* try_to_wake_up() stats */
266 unsigned long ttwu_cnt;
267 unsigned long ttwu_local;
268 #endif
269 };
270
271 static DEFINE_PER_CPU(struct runqueue, runqueues);
272
273 /*
274 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
275 * See detach_destroy_domains: synchronize_sched for details.
276 *
277 * The domain tree of any CPU may only be accessed from within
278 * preempt-disabled sections.
279 */
280 #define for_each_domain(cpu, domain) \
281 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
282
283 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
284 #define this_rq() (&__get_cpu_var(runqueues))
285 #define task_rq(p) cpu_rq(task_cpu(p))
286 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
287
288 #ifndef prepare_arch_switch
289 # define prepare_arch_switch(next) do { } while (0)
290 #endif
291 #ifndef finish_arch_switch
292 # define finish_arch_switch(prev) do { } while (0)
293 #endif
294
295 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
296 static inline int task_running(runqueue_t *rq, task_t *p)
297 {
298 return rq->curr == p;
299 }
300
301 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
302 {
303 }
304
305 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
306 {
307 #ifdef CONFIG_DEBUG_SPINLOCK
308 /* this is a valid case when another task releases the spinlock */
309 rq->lock.owner = current;
310 #endif
311 spin_unlock_irq(&rq->lock);
312 }
313
314 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
315 static inline int task_running(runqueue_t *rq, task_t *p)
316 {
317 #ifdef CONFIG_SMP
318 return p->oncpu;
319 #else
320 return rq->curr == p;
321 #endif
322 }
323
324 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
325 {
326 #ifdef CONFIG_SMP
327 /*
328 * We can optimise this out completely for !SMP, because the
329 * SMP rebalancing from interrupt is the only thing that cares
330 * here.
331 */
332 next->oncpu = 1;
333 #endif
334 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
335 spin_unlock_irq(&rq->lock);
336 #else
337 spin_unlock(&rq->lock);
338 #endif
339 }
340
341 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
342 {
343 #ifdef CONFIG_SMP
344 /*
345 * After ->oncpu is cleared, the task can be moved to a different CPU.
346 * We must ensure this doesn't happen until the switch is completely
347 * finished.
348 */
349 smp_wmb();
350 prev->oncpu = 0;
351 #endif
352 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
353 local_irq_enable();
354 #endif
355 }
356 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
357
358 /*
359 * __task_rq_lock - lock the runqueue a given task resides on.
360 * Must be called interrupts disabled.
361 */
362 static inline runqueue_t *__task_rq_lock(task_t *p)
363 __acquires(rq->lock)
364 {
365 struct runqueue *rq;
366
367 repeat_lock_task:
368 rq = task_rq(p);
369 spin_lock(&rq->lock);
370 if (unlikely(rq != task_rq(p))) {
371 spin_unlock(&rq->lock);
372 goto repeat_lock_task;
373 }
374 return rq;
375 }
376
377 /*
378 * task_rq_lock - lock the runqueue a given task resides on and disable
379 * interrupts. Note the ordering: we can safely lookup the task_rq without
380 * explicitly disabling preemption.
381 */
382 static runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
383 __acquires(rq->lock)
384 {
385 struct runqueue *rq;
386
387 repeat_lock_task:
388 local_irq_save(*flags);
389 rq = task_rq(p);
390 spin_lock(&rq->lock);
391 if (unlikely(rq != task_rq(p))) {
392 spin_unlock_irqrestore(&rq->lock, *flags);
393 goto repeat_lock_task;
394 }
395 return rq;
396 }
397
398 static inline void __task_rq_unlock(runqueue_t *rq)
399 __releases(rq->lock)
400 {
401 spin_unlock(&rq->lock);
402 }
403
404 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
405 __releases(rq->lock)
406 {
407 spin_unlock_irqrestore(&rq->lock, *flags);
408 }
409
410 #ifdef CONFIG_SCHEDSTATS
411 /*
412 * bump this up when changing the output format or the meaning of an existing
413 * format, so that tools can adapt (or abort)
414 */
415 #define SCHEDSTAT_VERSION 12
416
417 static int show_schedstat(struct seq_file *seq, void *v)
418 {
419 int cpu;
420
421 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
422 seq_printf(seq, "timestamp %lu\n", jiffies);
423 for_each_online_cpu(cpu) {
424 runqueue_t *rq = cpu_rq(cpu);
425 #ifdef CONFIG_SMP
426 struct sched_domain *sd;
427 int dcnt = 0;
428 #endif
429
430 /* runqueue-specific stats */
431 seq_printf(seq,
432 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
433 cpu, rq->yld_both_empty,
434 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
435 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
436 rq->ttwu_cnt, rq->ttwu_local,
437 rq->rq_sched_info.cpu_time,
438 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
439
440 seq_printf(seq, "\n");
441
442 #ifdef CONFIG_SMP
443 /* domain-specific stats */
444 preempt_disable();
445 for_each_domain(cpu, sd) {
446 enum idle_type itype;
447 char mask_str[NR_CPUS];
448
449 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
450 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
451 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
452 itype++) {
453 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
454 sd->lb_cnt[itype],
455 sd->lb_balanced[itype],
456 sd->lb_failed[itype],
457 sd->lb_imbalance[itype],
458 sd->lb_gained[itype],
459 sd->lb_hot_gained[itype],
460 sd->lb_nobusyq[itype],
461 sd->lb_nobusyg[itype]);
462 }
463 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
464 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
465 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
466 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
467 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
468 }
469 preempt_enable();
470 #endif
471 }
472 return 0;
473 }
474
475 static int schedstat_open(struct inode *inode, struct file *file)
476 {
477 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
478 char *buf = kmalloc(size, GFP_KERNEL);
479 struct seq_file *m;
480 int res;
481
482 if (!buf)
483 return -ENOMEM;
484 res = single_open(file, show_schedstat, NULL);
485 if (!res) {
486 m = file->private_data;
487 m->buf = buf;
488 m->size = size;
489 } else
490 kfree(buf);
491 return res;
492 }
493
494 struct file_operations proc_schedstat_operations = {
495 .open = schedstat_open,
496 .read = seq_read,
497 .llseek = seq_lseek,
498 .release = single_release,
499 };
500
501 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
502 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
503 #else /* !CONFIG_SCHEDSTATS */
504 # define schedstat_inc(rq, field) do { } while (0)
505 # define schedstat_add(rq, field, amt) do { } while (0)
506 #endif
507
508 /*
509 * rq_lock - lock a given runqueue and disable interrupts.
510 */
511 static inline runqueue_t *this_rq_lock(void)
512 __acquires(rq->lock)
513 {
514 runqueue_t *rq;
515
516 local_irq_disable();
517 rq = this_rq();
518 spin_lock(&rq->lock);
519
520 return rq;
521 }
522
523 #ifdef CONFIG_SCHEDSTATS
524 /*
525 * Called when a process is dequeued from the active array and given
526 * the cpu. We should note that with the exception of interactive
527 * tasks, the expired queue will become the active queue after the active
528 * queue is empty, without explicitly dequeuing and requeuing tasks in the
529 * expired queue. (Interactive tasks may be requeued directly to the
530 * active queue, thus delaying tasks in the expired queue from running;
531 * see scheduler_tick()).
532 *
533 * This function is only called from sched_info_arrive(), rather than
534 * dequeue_task(). Even though a task may be queued and dequeued multiple
535 * times as it is shuffled about, we're really interested in knowing how
536 * long it was from the *first* time it was queued to the time that it
537 * finally hit a cpu.
538 */
539 static inline void sched_info_dequeued(task_t *t)
540 {
541 t->sched_info.last_queued = 0;
542 }
543
544 /*
545 * Called when a task finally hits the cpu. We can now calculate how
546 * long it was waiting to run. We also note when it began so that we
547 * can keep stats on how long its timeslice is.
548 */
549 static void sched_info_arrive(task_t *t)
550 {
551 unsigned long now = jiffies, diff = 0;
552 struct runqueue *rq = task_rq(t);
553
554 if (t->sched_info.last_queued)
555 diff = now - t->sched_info.last_queued;
556 sched_info_dequeued(t);
557 t->sched_info.run_delay += diff;
558 t->sched_info.last_arrival = now;
559 t->sched_info.pcnt++;
560
561 if (!rq)
562 return;
563
564 rq->rq_sched_info.run_delay += diff;
565 rq->rq_sched_info.pcnt++;
566 }
567
568 /*
569 * Called when a process is queued into either the active or expired
570 * array. The time is noted and later used to determine how long we
571 * had to wait for us to reach the cpu. Since the expired queue will
572 * become the active queue after active queue is empty, without dequeuing
573 * and requeuing any tasks, we are interested in queuing to either. It
574 * is unusual but not impossible for tasks to be dequeued and immediately
575 * requeued in the same or another array: this can happen in sched_yield(),
576 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
577 * to runqueue.
578 *
579 * This function is only called from enqueue_task(), but also only updates
580 * the timestamp if it is already not set. It's assumed that
581 * sched_info_dequeued() will clear that stamp when appropriate.
582 */
583 static inline void sched_info_queued(task_t *t)
584 {
585 if (!t->sched_info.last_queued)
586 t->sched_info.last_queued = jiffies;
587 }
588
589 /*
590 * Called when a process ceases being the active-running process, either
591 * voluntarily or involuntarily. Now we can calculate how long we ran.
592 */
593 static inline void sched_info_depart(task_t *t)
594 {
595 struct runqueue *rq = task_rq(t);
596 unsigned long diff = jiffies - t->sched_info.last_arrival;
597
598 t->sched_info.cpu_time += diff;
599
600 if (rq)
601 rq->rq_sched_info.cpu_time += diff;
602 }
603
604 /*
605 * Called when tasks are switched involuntarily due, typically, to expiring
606 * their time slice. (This may also be called when switching to or from
607 * the idle task.) We are only called when prev != next.
608 */
609 static inline void sched_info_switch(task_t *prev, task_t *next)
610 {
611 struct runqueue *rq = task_rq(prev);
612
613 /*
614 * prev now departs the cpu. It's not interesting to record
615 * stats about how efficient we were at scheduling the idle
616 * process, however.
617 */
618 if (prev != rq->idle)
619 sched_info_depart(prev);
620
621 if (next != rq->idle)
622 sched_info_arrive(next);
623 }
624 #else
625 #define sched_info_queued(t) do { } while (0)
626 #define sched_info_switch(t, next) do { } while (0)
627 #endif /* CONFIG_SCHEDSTATS */
628
629 /*
630 * Adding/removing a task to/from a priority array:
631 */
632 static void dequeue_task(struct task_struct *p, prio_array_t *array)
633 {
634 array->nr_active--;
635 list_del(&p->run_list);
636 if (list_empty(array->queue + p->prio))
637 __clear_bit(p->prio, array->bitmap);
638 }
639
640 static void enqueue_task(struct task_struct *p, prio_array_t *array)
641 {
642 sched_info_queued(p);
643 list_add_tail(&p->run_list, array->queue + p->prio);
644 __set_bit(p->prio, array->bitmap);
645 array->nr_active++;
646 p->array = array;
647 }
648
649 /*
650 * Put task to the end of the run list without the overhead of dequeue
651 * followed by enqueue.
652 */
653 static void requeue_task(struct task_struct *p, prio_array_t *array)
654 {
655 list_move_tail(&p->run_list, array->queue + p->prio);
656 }
657
658 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
659 {
660 list_add(&p->run_list, array->queue + p->prio);
661 __set_bit(p->prio, array->bitmap);
662 array->nr_active++;
663 p->array = array;
664 }
665
666 /*
667 * __normal_prio - return the priority that is based on the static
668 * priority but is modified by bonuses/penalties.
669 *
670 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
671 * into the -5 ... 0 ... +5 bonus/penalty range.
672 *
673 * We use 25% of the full 0...39 priority range so that:
674 *
675 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
676 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
677 *
678 * Both properties are important to certain workloads.
679 */
680
681 static inline int __normal_prio(task_t *p)
682 {
683 int bonus, prio;
684
685 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
686
687 prio = p->static_prio - bonus;
688 if (prio < MAX_RT_PRIO)
689 prio = MAX_RT_PRIO;
690 if (prio > MAX_PRIO-1)
691 prio = MAX_PRIO-1;
692 return prio;
693 }
694
695 /*
696 * To aid in avoiding the subversion of "niceness" due to uneven distribution
697 * of tasks with abnormal "nice" values across CPUs the contribution that
698 * each task makes to its run queue's load is weighted according to its
699 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
700 * scaled version of the new time slice allocation that they receive on time
701 * slice expiry etc.
702 */
703
704 /*
705 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
706 * If static_prio_timeslice() is ever changed to break this assumption then
707 * this code will need modification
708 */
709 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
710 #define LOAD_WEIGHT(lp) \
711 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
712 #define PRIO_TO_LOAD_WEIGHT(prio) \
713 LOAD_WEIGHT(static_prio_timeslice(prio))
714 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
715 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
716
717 static void set_load_weight(task_t *p)
718 {
719 if (has_rt_policy(p)) {
720 #ifdef CONFIG_SMP
721 if (p == task_rq(p)->migration_thread)
722 /*
723 * The migration thread does the actual balancing.
724 * Giving its load any weight will skew balancing
725 * adversely.
726 */
727 p->load_weight = 0;
728 else
729 #endif
730 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
731 } else
732 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
733 }
734
735 static inline void inc_raw_weighted_load(runqueue_t *rq, const task_t *p)
736 {
737 rq->raw_weighted_load += p->load_weight;
738 }
739
740 static inline void dec_raw_weighted_load(runqueue_t *rq, const task_t *p)
741 {
742 rq->raw_weighted_load -= p->load_weight;
743 }
744
745 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
746 {
747 rq->nr_running++;
748 inc_raw_weighted_load(rq, p);
749 }
750
751 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
752 {
753 rq->nr_running--;
754 dec_raw_weighted_load(rq, p);
755 }
756
757 /*
758 * Calculate the expected normal priority: i.e. priority
759 * without taking RT-inheritance into account. Might be
760 * boosted by interactivity modifiers. Changes upon fork,
761 * setprio syscalls, and whenever the interactivity
762 * estimator recalculates.
763 */
764 static inline int normal_prio(task_t *p)
765 {
766 int prio;
767
768 if (has_rt_policy(p))
769 prio = MAX_RT_PRIO-1 - p->rt_priority;
770 else
771 prio = __normal_prio(p);
772 return prio;
773 }
774
775 /*
776 * Calculate the current priority, i.e. the priority
777 * taken into account by the scheduler. This value might
778 * be boosted by RT tasks, or might be boosted by
779 * interactivity modifiers. Will be RT if the task got
780 * RT-boosted. If not then it returns p->normal_prio.
781 */
782 static int effective_prio(task_t *p)
783 {
784 p->normal_prio = normal_prio(p);
785 /*
786 * If we are RT tasks or we were boosted to RT priority,
787 * keep the priority unchanged. Otherwise, update priority
788 * to the normal priority:
789 */
790 if (!rt_prio(p->prio))
791 return p->normal_prio;
792 return p->prio;
793 }
794
795 /*
796 * __activate_task - move a task to the runqueue.
797 */
798 static void __activate_task(task_t *p, runqueue_t *rq)
799 {
800 prio_array_t *target = rq->active;
801
802 if (batch_task(p))
803 target = rq->expired;
804 enqueue_task(p, target);
805 inc_nr_running(p, rq);
806 }
807
808 /*
809 * __activate_idle_task - move idle task to the _front_ of runqueue.
810 */
811 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
812 {
813 enqueue_task_head(p, rq->active);
814 inc_nr_running(p, rq);
815 }
816
817 /*
818 * Recalculate p->normal_prio and p->prio after having slept,
819 * updating the sleep-average too:
820 */
821 static int recalc_task_prio(task_t *p, unsigned long long now)
822 {
823 /* Caller must always ensure 'now >= p->timestamp' */
824 unsigned long sleep_time = now - p->timestamp;
825
826 if (batch_task(p))
827 sleep_time = 0;
828
829 if (likely(sleep_time > 0)) {
830 /*
831 * This ceiling is set to the lowest priority that would allow
832 * a task to be reinserted into the active array on timeslice
833 * completion.
834 */
835 unsigned long ceiling = INTERACTIVE_SLEEP(p);
836
837 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
838 /*
839 * Prevents user tasks from achieving best priority
840 * with one single large enough sleep.
841 */
842 p->sleep_avg = ceiling;
843 /*
844 * Using INTERACTIVE_SLEEP() as a ceiling places a
845 * nice(0) task 1ms sleep away from promotion, and
846 * gives it 700ms to round-robin with no chance of
847 * being demoted. This is more than generous, so
848 * mark this sleep as non-interactive to prevent the
849 * on-runqueue bonus logic from intervening should
850 * this task not receive cpu immediately.
851 */
852 p->sleep_type = SLEEP_NONINTERACTIVE;
853 } else {
854 /*
855 * Tasks waking from uninterruptible sleep are
856 * limited in their sleep_avg rise as they
857 * are likely to be waiting on I/O
858 */
859 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
860 if (p->sleep_avg >= ceiling)
861 sleep_time = 0;
862 else if (p->sleep_avg + sleep_time >=
863 ceiling) {
864 p->sleep_avg = ceiling;
865 sleep_time = 0;
866 }
867 }
868
869 /*
870 * This code gives a bonus to interactive tasks.
871 *
872 * The boost works by updating the 'average sleep time'
873 * value here, based on ->timestamp. The more time a
874 * task spends sleeping, the higher the average gets -
875 * and the higher the priority boost gets as well.
876 */
877 p->sleep_avg += sleep_time;
878
879 }
880 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
881 p->sleep_avg = NS_MAX_SLEEP_AVG;
882 }
883
884 return effective_prio(p);
885 }
886
887 /*
888 * activate_task - move a task to the runqueue and do priority recalculation
889 *
890 * Update all the scheduling statistics stuff. (sleep average
891 * calculation, priority modifiers, etc.)
892 */
893 static void activate_task(task_t *p, runqueue_t *rq, int local)
894 {
895 unsigned long long now;
896
897 now = sched_clock();
898 #ifdef CONFIG_SMP
899 if (!local) {
900 /* Compensate for drifting sched_clock */
901 runqueue_t *this_rq = this_rq();
902 now = (now - this_rq->timestamp_last_tick)
903 + rq->timestamp_last_tick;
904 }
905 #endif
906
907 if (!rt_task(p))
908 p->prio = recalc_task_prio(p, now);
909
910 /*
911 * This checks to make sure it's not an uninterruptible task
912 * that is now waking up.
913 */
914 if (p->sleep_type == SLEEP_NORMAL) {
915 /*
916 * Tasks which were woken up by interrupts (ie. hw events)
917 * are most likely of interactive nature. So we give them
918 * the credit of extending their sleep time to the period
919 * of time they spend on the runqueue, waiting for execution
920 * on a CPU, first time around:
921 */
922 if (in_interrupt())
923 p->sleep_type = SLEEP_INTERRUPTED;
924 else {
925 /*
926 * Normal first-time wakeups get a credit too for
927 * on-runqueue time, but it will be weighted down:
928 */
929 p->sleep_type = SLEEP_INTERACTIVE;
930 }
931 }
932 p->timestamp = now;
933
934 __activate_task(p, rq);
935 }
936
937 /*
938 * deactivate_task - remove a task from the runqueue.
939 */
940 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
941 {
942 dec_nr_running(p, rq);
943 dequeue_task(p, p->array);
944 p->array = NULL;
945 }
946
947 /*
948 * resched_task - mark a task 'to be rescheduled now'.
949 *
950 * On UP this means the setting of the need_resched flag, on SMP it
951 * might also involve a cross-CPU call to trigger the scheduler on
952 * the target CPU.
953 */
954 #ifdef CONFIG_SMP
955
956 #ifndef tsk_is_polling
957 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
958 #endif
959
960 static void resched_task(task_t *p)
961 {
962 int cpu;
963
964 assert_spin_locked(&task_rq(p)->lock);
965
966 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
967 return;
968
969 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
970
971 cpu = task_cpu(p);
972 if (cpu == smp_processor_id())
973 return;
974
975 /* NEED_RESCHED must be visible before we test polling */
976 smp_mb();
977 if (!tsk_is_polling(p))
978 smp_send_reschedule(cpu);
979 }
980 #else
981 static inline void resched_task(task_t *p)
982 {
983 assert_spin_locked(&task_rq(p)->lock);
984 set_tsk_need_resched(p);
985 }
986 #endif
987
988 /**
989 * task_curr - is this task currently executing on a CPU?
990 * @p: the task in question.
991 */
992 inline int task_curr(const task_t *p)
993 {
994 return cpu_curr(task_cpu(p)) == p;
995 }
996
997 /* Used instead of source_load when we know the type == 0 */
998 unsigned long weighted_cpuload(const int cpu)
999 {
1000 return cpu_rq(cpu)->raw_weighted_load;
1001 }
1002
1003 #ifdef CONFIG_SMP
1004 typedef struct {
1005 struct list_head list;
1006
1007 task_t *task;
1008 int dest_cpu;
1009
1010 struct completion done;
1011 } migration_req_t;
1012
1013 /*
1014 * The task's runqueue lock must be held.
1015 * Returns true if you have to wait for migration thread.
1016 */
1017 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
1018 {
1019 runqueue_t *rq = task_rq(p);
1020
1021 /*
1022 * If the task is not on a runqueue (and not running), then
1023 * it is sufficient to simply update the task's cpu field.
1024 */
1025 if (!p->array && !task_running(rq, p)) {
1026 set_task_cpu(p, dest_cpu);
1027 return 0;
1028 }
1029
1030 init_completion(&req->done);
1031 req->task = p;
1032 req->dest_cpu = dest_cpu;
1033 list_add(&req->list, &rq->migration_queue);
1034 return 1;
1035 }
1036
1037 /*
1038 * wait_task_inactive - wait for a thread to unschedule.
1039 *
1040 * The caller must ensure that the task *will* unschedule sometime soon,
1041 * else this function might spin for a *long* time. This function can't
1042 * be called with interrupts off, or it may introduce deadlock with
1043 * smp_call_function() if an IPI is sent by the same process we are
1044 * waiting to become inactive.
1045 */
1046 void wait_task_inactive(task_t *p)
1047 {
1048 unsigned long flags;
1049 runqueue_t *rq;
1050 int preempted;
1051
1052 repeat:
1053 rq = task_rq_lock(p, &flags);
1054 /* Must be off runqueue entirely, not preempted. */
1055 if (unlikely(p->array || task_running(rq, p))) {
1056 /* If it's preempted, we yield. It could be a while. */
1057 preempted = !task_running(rq, p);
1058 task_rq_unlock(rq, &flags);
1059 cpu_relax();
1060 if (preempted)
1061 yield();
1062 goto repeat;
1063 }
1064 task_rq_unlock(rq, &flags);
1065 }
1066
1067 /***
1068 * kick_process - kick a running thread to enter/exit the kernel
1069 * @p: the to-be-kicked thread
1070 *
1071 * Cause a process which is running on another CPU to enter
1072 * kernel-mode, without any delay. (to get signals handled.)
1073 *
1074 * NOTE: this function doesnt have to take the runqueue lock,
1075 * because all it wants to ensure is that the remote task enters
1076 * the kernel. If the IPI races and the task has been migrated
1077 * to another CPU then no harm is done and the purpose has been
1078 * achieved as well.
1079 */
1080 void kick_process(task_t *p)
1081 {
1082 int cpu;
1083
1084 preempt_disable();
1085 cpu = task_cpu(p);
1086 if ((cpu != smp_processor_id()) && task_curr(p))
1087 smp_send_reschedule(cpu);
1088 preempt_enable();
1089 }
1090
1091 /*
1092 * Return a low guess at the load of a migration-source cpu weighted
1093 * according to the scheduling class and "nice" value.
1094 *
1095 * We want to under-estimate the load of migration sources, to
1096 * balance conservatively.
1097 */
1098 static inline unsigned long source_load(int cpu, int type)
1099 {
1100 runqueue_t *rq = cpu_rq(cpu);
1101
1102 if (type == 0)
1103 return rq->raw_weighted_load;
1104
1105 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1106 }
1107
1108 /*
1109 * Return a high guess at the load of a migration-target cpu weighted
1110 * according to the scheduling class and "nice" value.
1111 */
1112 static inline unsigned long target_load(int cpu, int type)
1113 {
1114 runqueue_t *rq = cpu_rq(cpu);
1115
1116 if (type == 0)
1117 return rq->raw_weighted_load;
1118
1119 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1120 }
1121
1122 /*
1123 * Return the average load per task on the cpu's run queue
1124 */
1125 static inline unsigned long cpu_avg_load_per_task(int cpu)
1126 {
1127 runqueue_t *rq = cpu_rq(cpu);
1128 unsigned long n = rq->nr_running;
1129
1130 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1131 }
1132
1133 /*
1134 * find_idlest_group finds and returns the least busy CPU group within the
1135 * domain.
1136 */
1137 static struct sched_group *
1138 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1139 {
1140 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1141 unsigned long min_load = ULONG_MAX, this_load = 0;
1142 int load_idx = sd->forkexec_idx;
1143 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1144
1145 do {
1146 unsigned long load, avg_load;
1147 int local_group;
1148 int i;
1149
1150 /* Skip over this group if it has no CPUs allowed */
1151 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1152 goto nextgroup;
1153
1154 local_group = cpu_isset(this_cpu, group->cpumask);
1155
1156 /* Tally up the load of all CPUs in the group */
1157 avg_load = 0;
1158
1159 for_each_cpu_mask(i, group->cpumask) {
1160 /* Bias balancing toward cpus of our domain */
1161 if (local_group)
1162 load = source_load(i, load_idx);
1163 else
1164 load = target_load(i, load_idx);
1165
1166 avg_load += load;
1167 }
1168
1169 /* Adjust by relative CPU power of the group */
1170 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1171
1172 if (local_group) {
1173 this_load = avg_load;
1174 this = group;
1175 } else if (avg_load < min_load) {
1176 min_load = avg_load;
1177 idlest = group;
1178 }
1179 nextgroup:
1180 group = group->next;
1181 } while (group != sd->groups);
1182
1183 if (!idlest || 100*this_load < imbalance*min_load)
1184 return NULL;
1185 return idlest;
1186 }
1187
1188 /*
1189 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1190 */
1191 static int
1192 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1193 {
1194 cpumask_t tmp;
1195 unsigned long load, min_load = ULONG_MAX;
1196 int idlest = -1;
1197 int i;
1198
1199 /* Traverse only the allowed CPUs */
1200 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1201
1202 for_each_cpu_mask(i, tmp) {
1203 load = weighted_cpuload(i);
1204
1205 if (load < min_load || (load == min_load && i == this_cpu)) {
1206 min_load = load;
1207 idlest = i;
1208 }
1209 }
1210
1211 return idlest;
1212 }
1213
1214 /*
1215 * sched_balance_self: balance the current task (running on cpu) in domains
1216 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1217 * SD_BALANCE_EXEC.
1218 *
1219 * Balance, ie. select the least loaded group.
1220 *
1221 * Returns the target CPU number, or the same CPU if no balancing is needed.
1222 *
1223 * preempt must be disabled.
1224 */
1225 static int sched_balance_self(int cpu, int flag)
1226 {
1227 struct task_struct *t = current;
1228 struct sched_domain *tmp, *sd = NULL;
1229
1230 for_each_domain(cpu, tmp) {
1231 /*
1232 * If power savings logic is enabled for a domain, stop there.
1233 */
1234 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1235 break;
1236 if (tmp->flags & flag)
1237 sd = tmp;
1238 }
1239
1240 while (sd) {
1241 cpumask_t span;
1242 struct sched_group *group;
1243 int new_cpu;
1244 int weight;
1245
1246 span = sd->span;
1247 group = find_idlest_group(sd, t, cpu);
1248 if (!group)
1249 goto nextlevel;
1250
1251 new_cpu = find_idlest_cpu(group, t, cpu);
1252 if (new_cpu == -1 || new_cpu == cpu)
1253 goto nextlevel;
1254
1255 /* Now try balancing at a lower domain level */
1256 cpu = new_cpu;
1257 nextlevel:
1258 sd = NULL;
1259 weight = cpus_weight(span);
1260 for_each_domain(cpu, tmp) {
1261 if (weight <= cpus_weight(tmp->span))
1262 break;
1263 if (tmp->flags & flag)
1264 sd = tmp;
1265 }
1266 /* while loop will break here if sd == NULL */
1267 }
1268
1269 return cpu;
1270 }
1271
1272 #endif /* CONFIG_SMP */
1273
1274 /*
1275 * wake_idle() will wake a task on an idle cpu if task->cpu is
1276 * not idle and an idle cpu is available. The span of cpus to
1277 * search starts with cpus closest then further out as needed,
1278 * so we always favor a closer, idle cpu.
1279 *
1280 * Returns the CPU we should wake onto.
1281 */
1282 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1283 static int wake_idle(int cpu, task_t *p)
1284 {
1285 cpumask_t tmp;
1286 struct sched_domain *sd;
1287 int i;
1288
1289 if (idle_cpu(cpu))
1290 return cpu;
1291
1292 for_each_domain(cpu, sd) {
1293 if (sd->flags & SD_WAKE_IDLE) {
1294 cpus_and(tmp, sd->span, p->cpus_allowed);
1295 for_each_cpu_mask(i, tmp) {
1296 if (idle_cpu(i))
1297 return i;
1298 }
1299 }
1300 else
1301 break;
1302 }
1303 return cpu;
1304 }
1305 #else
1306 static inline int wake_idle(int cpu, task_t *p)
1307 {
1308 return cpu;
1309 }
1310 #endif
1311
1312 /***
1313 * try_to_wake_up - wake up a thread
1314 * @p: the to-be-woken-up thread
1315 * @state: the mask of task states that can be woken
1316 * @sync: do a synchronous wakeup?
1317 *
1318 * Put it on the run-queue if it's not already there. The "current"
1319 * thread is always on the run-queue (except when the actual
1320 * re-schedule is in progress), and as such you're allowed to do
1321 * the simpler "current->state = TASK_RUNNING" to mark yourself
1322 * runnable without the overhead of this.
1323 *
1324 * returns failure only if the task is already active.
1325 */
1326 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1327 {
1328 int cpu, this_cpu, success = 0;
1329 unsigned long flags;
1330 long old_state;
1331 runqueue_t *rq;
1332 #ifdef CONFIG_SMP
1333 unsigned long load, this_load;
1334 struct sched_domain *sd, *this_sd = NULL;
1335 int new_cpu;
1336 #endif
1337
1338 rq = task_rq_lock(p, &flags);
1339 old_state = p->state;
1340 if (!(old_state & state))
1341 goto out;
1342
1343 if (p->array)
1344 goto out_running;
1345
1346 cpu = task_cpu(p);
1347 this_cpu = smp_processor_id();
1348
1349 #ifdef CONFIG_SMP
1350 if (unlikely(task_running(rq, p)))
1351 goto out_activate;
1352
1353 new_cpu = cpu;
1354
1355 schedstat_inc(rq, ttwu_cnt);
1356 if (cpu == this_cpu) {
1357 schedstat_inc(rq, ttwu_local);
1358 goto out_set_cpu;
1359 }
1360
1361 for_each_domain(this_cpu, sd) {
1362 if (cpu_isset(cpu, sd->span)) {
1363 schedstat_inc(sd, ttwu_wake_remote);
1364 this_sd = sd;
1365 break;
1366 }
1367 }
1368
1369 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1370 goto out_set_cpu;
1371
1372 /*
1373 * Check for affine wakeup and passive balancing possibilities.
1374 */
1375 if (this_sd) {
1376 int idx = this_sd->wake_idx;
1377 unsigned int imbalance;
1378
1379 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1380
1381 load = source_load(cpu, idx);
1382 this_load = target_load(this_cpu, idx);
1383
1384 new_cpu = this_cpu; /* Wake to this CPU if we can */
1385
1386 if (this_sd->flags & SD_WAKE_AFFINE) {
1387 unsigned long tl = this_load;
1388 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1389
1390 /*
1391 * If sync wakeup then subtract the (maximum possible)
1392 * effect of the currently running task from the load
1393 * of the current CPU:
1394 */
1395 if (sync)
1396 tl -= current->load_weight;
1397
1398 if ((tl <= load &&
1399 tl + target_load(cpu, idx) <= tl_per_task) ||
1400 100*(tl + p->load_weight) <= imbalance*load) {
1401 /*
1402 * This domain has SD_WAKE_AFFINE and
1403 * p is cache cold in this domain, and
1404 * there is no bad imbalance.
1405 */
1406 schedstat_inc(this_sd, ttwu_move_affine);
1407 goto out_set_cpu;
1408 }
1409 }
1410
1411 /*
1412 * Start passive balancing when half the imbalance_pct
1413 * limit is reached.
1414 */
1415 if (this_sd->flags & SD_WAKE_BALANCE) {
1416 if (imbalance*this_load <= 100*load) {
1417 schedstat_inc(this_sd, ttwu_move_balance);
1418 goto out_set_cpu;
1419 }
1420 }
1421 }
1422
1423 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1424 out_set_cpu:
1425 new_cpu = wake_idle(new_cpu, p);
1426 if (new_cpu != cpu) {
1427 set_task_cpu(p, new_cpu);
1428 task_rq_unlock(rq, &flags);
1429 /* might preempt at this point */
1430 rq = task_rq_lock(p, &flags);
1431 old_state = p->state;
1432 if (!(old_state & state))
1433 goto out;
1434 if (p->array)
1435 goto out_running;
1436
1437 this_cpu = smp_processor_id();
1438 cpu = task_cpu(p);
1439 }
1440
1441 out_activate:
1442 #endif /* CONFIG_SMP */
1443 if (old_state == TASK_UNINTERRUPTIBLE) {
1444 rq->nr_uninterruptible--;
1445 /*
1446 * Tasks on involuntary sleep don't earn
1447 * sleep_avg beyond just interactive state.
1448 */
1449 p->sleep_type = SLEEP_NONINTERACTIVE;
1450 } else
1451
1452 /*
1453 * Tasks that have marked their sleep as noninteractive get
1454 * woken up with their sleep average not weighted in an
1455 * interactive way.
1456 */
1457 if (old_state & TASK_NONINTERACTIVE)
1458 p->sleep_type = SLEEP_NONINTERACTIVE;
1459
1460
1461 activate_task(p, rq, cpu == this_cpu);
1462 /*
1463 * Sync wakeups (i.e. those types of wakeups where the waker
1464 * has indicated that it will leave the CPU in short order)
1465 * don't trigger a preemption, if the woken up task will run on
1466 * this cpu. (in this case the 'I will reschedule' promise of
1467 * the waker guarantees that the freshly woken up task is going
1468 * to be considered on this CPU.)
1469 */
1470 if (!sync || cpu != this_cpu) {
1471 if (TASK_PREEMPTS_CURR(p, rq))
1472 resched_task(rq->curr);
1473 }
1474 success = 1;
1475
1476 out_running:
1477 p->state = TASK_RUNNING;
1478 out:
1479 task_rq_unlock(rq, &flags);
1480
1481 return success;
1482 }
1483
1484 int fastcall wake_up_process(task_t *p)
1485 {
1486 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1487 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1488 }
1489
1490 EXPORT_SYMBOL(wake_up_process);
1491
1492 int fastcall wake_up_state(task_t *p, unsigned int state)
1493 {
1494 return try_to_wake_up(p, state, 0);
1495 }
1496
1497 /*
1498 * Perform scheduler related setup for a newly forked process p.
1499 * p is forked by current.
1500 */
1501 void fastcall sched_fork(task_t *p, int clone_flags)
1502 {
1503 int cpu = get_cpu();
1504
1505 #ifdef CONFIG_SMP
1506 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1507 #endif
1508 set_task_cpu(p, cpu);
1509
1510 /*
1511 * We mark the process as running here, but have not actually
1512 * inserted it onto the runqueue yet. This guarantees that
1513 * nobody will actually run it, and a signal or other external
1514 * event cannot wake it up and insert it on the runqueue either.
1515 */
1516 p->state = TASK_RUNNING;
1517
1518 /*
1519 * Make sure we do not leak PI boosting priority to the child:
1520 */
1521 p->prio = current->normal_prio;
1522
1523 INIT_LIST_HEAD(&p->run_list);
1524 p->array = NULL;
1525 #ifdef CONFIG_SCHEDSTATS
1526 memset(&p->sched_info, 0, sizeof(p->sched_info));
1527 #endif
1528 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1529 p->oncpu = 0;
1530 #endif
1531 #ifdef CONFIG_PREEMPT
1532 /* Want to start with kernel preemption disabled. */
1533 task_thread_info(p)->preempt_count = 1;
1534 #endif
1535 /*
1536 * Share the timeslice between parent and child, thus the
1537 * total amount of pending timeslices in the system doesn't change,
1538 * resulting in more scheduling fairness.
1539 */
1540 local_irq_disable();
1541 p->time_slice = (current->time_slice + 1) >> 1;
1542 /*
1543 * The remainder of the first timeslice might be recovered by
1544 * the parent if the child exits early enough.
1545 */
1546 p->first_time_slice = 1;
1547 current->time_slice >>= 1;
1548 p->timestamp = sched_clock();
1549 if (unlikely(!current->time_slice)) {
1550 /*
1551 * This case is rare, it happens when the parent has only
1552 * a single jiffy left from its timeslice. Taking the
1553 * runqueue lock is not a problem.
1554 */
1555 current->time_slice = 1;
1556 scheduler_tick();
1557 }
1558 local_irq_enable();
1559 put_cpu();
1560 }
1561
1562 /*
1563 * wake_up_new_task - wake up a newly created task for the first time.
1564 *
1565 * This function will do some initial scheduler statistics housekeeping
1566 * that must be done for every newly created context, then puts the task
1567 * on the runqueue and wakes it.
1568 */
1569 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1570 {
1571 unsigned long flags;
1572 int this_cpu, cpu;
1573 runqueue_t *rq, *this_rq;
1574
1575 rq = task_rq_lock(p, &flags);
1576 BUG_ON(p->state != TASK_RUNNING);
1577 this_cpu = smp_processor_id();
1578 cpu = task_cpu(p);
1579
1580 /*
1581 * We decrease the sleep average of forking parents
1582 * and children as well, to keep max-interactive tasks
1583 * from forking tasks that are max-interactive. The parent
1584 * (current) is done further down, under its lock.
1585 */
1586 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1587 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1588
1589 p->prio = effective_prio(p);
1590
1591 if (likely(cpu == this_cpu)) {
1592 if (!(clone_flags & CLONE_VM)) {
1593 /*
1594 * The VM isn't cloned, so we're in a good position to
1595 * do child-runs-first in anticipation of an exec. This
1596 * usually avoids a lot of COW overhead.
1597 */
1598 if (unlikely(!current->array))
1599 __activate_task(p, rq);
1600 else {
1601 p->prio = current->prio;
1602 p->normal_prio = current->normal_prio;
1603 list_add_tail(&p->run_list, &current->run_list);
1604 p->array = current->array;
1605 p->array->nr_active++;
1606 inc_nr_running(p, rq);
1607 }
1608 set_need_resched();
1609 } else
1610 /* Run child last */
1611 __activate_task(p, rq);
1612 /*
1613 * We skip the following code due to cpu == this_cpu
1614 *
1615 * task_rq_unlock(rq, &flags);
1616 * this_rq = task_rq_lock(current, &flags);
1617 */
1618 this_rq = rq;
1619 } else {
1620 this_rq = cpu_rq(this_cpu);
1621
1622 /*
1623 * Not the local CPU - must adjust timestamp. This should
1624 * get optimised away in the !CONFIG_SMP case.
1625 */
1626 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1627 + rq->timestamp_last_tick;
1628 __activate_task(p, rq);
1629 if (TASK_PREEMPTS_CURR(p, rq))
1630 resched_task(rq->curr);
1631
1632 /*
1633 * Parent and child are on different CPUs, now get the
1634 * parent runqueue to update the parent's ->sleep_avg:
1635 */
1636 task_rq_unlock(rq, &flags);
1637 this_rq = task_rq_lock(current, &flags);
1638 }
1639 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1640 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1641 task_rq_unlock(this_rq, &flags);
1642 }
1643
1644 /*
1645 * Potentially available exiting-child timeslices are
1646 * retrieved here - this way the parent does not get
1647 * penalized for creating too many threads.
1648 *
1649 * (this cannot be used to 'generate' timeslices
1650 * artificially, because any timeslice recovered here
1651 * was given away by the parent in the first place.)
1652 */
1653 void fastcall sched_exit(task_t *p)
1654 {
1655 unsigned long flags;
1656 runqueue_t *rq;
1657
1658 /*
1659 * If the child was a (relative-) CPU hog then decrease
1660 * the sleep_avg of the parent as well.
1661 */
1662 rq = task_rq_lock(p->parent, &flags);
1663 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1664 p->parent->time_slice += p->time_slice;
1665 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1666 p->parent->time_slice = task_timeslice(p);
1667 }
1668 if (p->sleep_avg < p->parent->sleep_avg)
1669 p->parent->sleep_avg = p->parent->sleep_avg /
1670 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1671 (EXIT_WEIGHT + 1);
1672 task_rq_unlock(rq, &flags);
1673 }
1674
1675 /**
1676 * prepare_task_switch - prepare to switch tasks
1677 * @rq: the runqueue preparing to switch
1678 * @next: the task we are going to switch to.
1679 *
1680 * This is called with the rq lock held and interrupts off. It must
1681 * be paired with a subsequent finish_task_switch after the context
1682 * switch.
1683 *
1684 * prepare_task_switch sets up locking and calls architecture specific
1685 * hooks.
1686 */
1687 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1688 {
1689 prepare_lock_switch(rq, next);
1690 prepare_arch_switch(next);
1691 }
1692
1693 /**
1694 * finish_task_switch - clean up after a task-switch
1695 * @rq: runqueue associated with task-switch
1696 * @prev: the thread we just switched away from.
1697 *
1698 * finish_task_switch must be called after the context switch, paired
1699 * with a prepare_task_switch call before the context switch.
1700 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1701 * and do any other architecture-specific cleanup actions.
1702 *
1703 * Note that we may have delayed dropping an mm in context_switch(). If
1704 * so, we finish that here outside of the runqueue lock. (Doing it
1705 * with the lock held can cause deadlocks; see schedule() for
1706 * details.)
1707 */
1708 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1709 __releases(rq->lock)
1710 {
1711 struct mm_struct *mm = rq->prev_mm;
1712 unsigned long prev_task_flags;
1713
1714 rq->prev_mm = NULL;
1715
1716 /*
1717 * A task struct has one reference for the use as "current".
1718 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1719 * calls schedule one last time. The schedule call will never return,
1720 * and the scheduled task must drop that reference.
1721 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1722 * still held, otherwise prev could be scheduled on another cpu, die
1723 * there before we look at prev->state, and then the reference would
1724 * be dropped twice.
1725 * Manfred Spraul <manfred@colorfullife.com>
1726 */
1727 prev_task_flags = prev->flags;
1728 finish_arch_switch(prev);
1729 finish_lock_switch(rq, prev);
1730 if (mm)
1731 mmdrop(mm);
1732 if (unlikely(prev_task_flags & PF_DEAD)) {
1733 /*
1734 * Remove function-return probe instances associated with this
1735 * task and put them back on the free list.
1736 */
1737 kprobe_flush_task(prev);
1738 put_task_struct(prev);
1739 }
1740 }
1741
1742 /**
1743 * schedule_tail - first thing a freshly forked thread must call.
1744 * @prev: the thread we just switched away from.
1745 */
1746 asmlinkage void schedule_tail(task_t *prev)
1747 __releases(rq->lock)
1748 {
1749 runqueue_t *rq = this_rq();
1750 finish_task_switch(rq, prev);
1751 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1752 /* In this case, finish_task_switch does not reenable preemption */
1753 preempt_enable();
1754 #endif
1755 if (current->set_child_tid)
1756 put_user(current->pid, current->set_child_tid);
1757 }
1758
1759 /*
1760 * context_switch - switch to the new MM and the new
1761 * thread's register state.
1762 */
1763 static inline
1764 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1765 {
1766 struct mm_struct *mm = next->mm;
1767 struct mm_struct *oldmm = prev->active_mm;
1768
1769 if (unlikely(!mm)) {
1770 next->active_mm = oldmm;
1771 atomic_inc(&oldmm->mm_count);
1772 enter_lazy_tlb(oldmm, next);
1773 } else
1774 switch_mm(oldmm, mm, next);
1775
1776 if (unlikely(!prev->mm)) {
1777 prev->active_mm = NULL;
1778 WARN_ON(rq->prev_mm);
1779 rq->prev_mm = oldmm;
1780 }
1781
1782 /* Here we just switch the register state and the stack. */
1783 switch_to(prev, next, prev);
1784
1785 return prev;
1786 }
1787
1788 /*
1789 * nr_running, nr_uninterruptible and nr_context_switches:
1790 *
1791 * externally visible scheduler statistics: current number of runnable
1792 * threads, current number of uninterruptible-sleeping threads, total
1793 * number of context switches performed since bootup.
1794 */
1795 unsigned long nr_running(void)
1796 {
1797 unsigned long i, sum = 0;
1798
1799 for_each_online_cpu(i)
1800 sum += cpu_rq(i)->nr_running;
1801
1802 return sum;
1803 }
1804
1805 unsigned long nr_uninterruptible(void)
1806 {
1807 unsigned long i, sum = 0;
1808
1809 for_each_possible_cpu(i)
1810 sum += cpu_rq(i)->nr_uninterruptible;
1811
1812 /*
1813 * Since we read the counters lockless, it might be slightly
1814 * inaccurate. Do not allow it to go below zero though:
1815 */
1816 if (unlikely((long)sum < 0))
1817 sum = 0;
1818
1819 return sum;
1820 }
1821
1822 unsigned long long nr_context_switches(void)
1823 {
1824 int i;
1825 unsigned long long sum = 0;
1826
1827 for_each_possible_cpu(i)
1828 sum += cpu_rq(i)->nr_switches;
1829
1830 return sum;
1831 }
1832
1833 unsigned long nr_iowait(void)
1834 {
1835 unsigned long i, sum = 0;
1836
1837 for_each_possible_cpu(i)
1838 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1839
1840 return sum;
1841 }
1842
1843 unsigned long nr_active(void)
1844 {
1845 unsigned long i, running = 0, uninterruptible = 0;
1846
1847 for_each_online_cpu(i) {
1848 running += cpu_rq(i)->nr_running;
1849 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1850 }
1851
1852 if (unlikely((long)uninterruptible < 0))
1853 uninterruptible = 0;
1854
1855 return running + uninterruptible;
1856 }
1857
1858 #ifdef CONFIG_SMP
1859
1860 /*
1861 * double_rq_lock - safely lock two runqueues
1862 *
1863 * Note this does not disable interrupts like task_rq_lock,
1864 * you need to do so manually before calling.
1865 */
1866 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1867 __acquires(rq1->lock)
1868 __acquires(rq2->lock)
1869 {
1870 if (rq1 == rq2) {
1871 spin_lock(&rq1->lock);
1872 __acquire(rq2->lock); /* Fake it out ;) */
1873 } else {
1874 if (rq1 < rq2) {
1875 spin_lock(&rq1->lock);
1876 spin_lock(&rq2->lock);
1877 } else {
1878 spin_lock(&rq2->lock);
1879 spin_lock(&rq1->lock);
1880 }
1881 }
1882 }
1883
1884 /*
1885 * double_rq_unlock - safely unlock two runqueues
1886 *
1887 * Note this does not restore interrupts like task_rq_unlock,
1888 * you need to do so manually after calling.
1889 */
1890 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1891 __releases(rq1->lock)
1892 __releases(rq2->lock)
1893 {
1894 spin_unlock(&rq1->lock);
1895 if (rq1 != rq2)
1896 spin_unlock(&rq2->lock);
1897 else
1898 __release(rq2->lock);
1899 }
1900
1901 /*
1902 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1903 */
1904 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1905 __releases(this_rq->lock)
1906 __acquires(busiest->lock)
1907 __acquires(this_rq->lock)
1908 {
1909 if (unlikely(!spin_trylock(&busiest->lock))) {
1910 if (busiest < this_rq) {
1911 spin_unlock(&this_rq->lock);
1912 spin_lock(&busiest->lock);
1913 spin_lock(&this_rq->lock);
1914 } else
1915 spin_lock(&busiest->lock);
1916 }
1917 }
1918
1919 /*
1920 * If dest_cpu is allowed for this process, migrate the task to it.
1921 * This is accomplished by forcing the cpu_allowed mask to only
1922 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1923 * the cpu_allowed mask is restored.
1924 */
1925 static void sched_migrate_task(task_t *p, int dest_cpu)
1926 {
1927 migration_req_t req;
1928 runqueue_t *rq;
1929 unsigned long flags;
1930
1931 rq = task_rq_lock(p, &flags);
1932 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1933 || unlikely(cpu_is_offline(dest_cpu)))
1934 goto out;
1935
1936 /* force the process onto the specified CPU */
1937 if (migrate_task(p, dest_cpu, &req)) {
1938 /* Need to wait for migration thread (might exit: take ref). */
1939 struct task_struct *mt = rq->migration_thread;
1940 get_task_struct(mt);
1941 task_rq_unlock(rq, &flags);
1942 wake_up_process(mt);
1943 put_task_struct(mt);
1944 wait_for_completion(&req.done);
1945 return;
1946 }
1947 out:
1948 task_rq_unlock(rq, &flags);
1949 }
1950
1951 /*
1952 * sched_exec - execve() is a valuable balancing opportunity, because at
1953 * this point the task has the smallest effective memory and cache footprint.
1954 */
1955 void sched_exec(void)
1956 {
1957 int new_cpu, this_cpu = get_cpu();
1958 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1959 put_cpu();
1960 if (new_cpu != this_cpu)
1961 sched_migrate_task(current, new_cpu);
1962 }
1963
1964 /*
1965 * pull_task - move a task from a remote runqueue to the local runqueue.
1966 * Both runqueues must be locked.
1967 */
1968 static
1969 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1970 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1971 {
1972 dequeue_task(p, src_array);
1973 dec_nr_running(p, src_rq);
1974 set_task_cpu(p, this_cpu);
1975 inc_nr_running(p, this_rq);
1976 enqueue_task(p, this_array);
1977 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1978 + this_rq->timestamp_last_tick;
1979 /*
1980 * Note that idle threads have a prio of MAX_PRIO, for this test
1981 * to be always true for them.
1982 */
1983 if (TASK_PREEMPTS_CURR(p, this_rq))
1984 resched_task(this_rq->curr);
1985 }
1986
1987 /*
1988 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1989 */
1990 static
1991 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1992 struct sched_domain *sd, enum idle_type idle,
1993 int *all_pinned)
1994 {
1995 /*
1996 * We do not migrate tasks that are:
1997 * 1) running (obviously), or
1998 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1999 * 3) are cache-hot on their current CPU.
2000 */
2001 if (!cpu_isset(this_cpu, p->cpus_allowed))
2002 return 0;
2003 *all_pinned = 0;
2004
2005 if (task_running(rq, p))
2006 return 0;
2007
2008 /*
2009 * Aggressive migration if:
2010 * 1) task is cache cold, or
2011 * 2) too many balance attempts have failed.
2012 */
2013
2014 if (sd->nr_balance_failed > sd->cache_nice_tries)
2015 return 1;
2016
2017 if (task_hot(p, rq->timestamp_last_tick, sd))
2018 return 0;
2019 return 1;
2020 }
2021
2022 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2023 /*
2024 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2025 * load from busiest to this_rq, as part of a balancing operation within
2026 * "domain". Returns the number of tasks moved.
2027 *
2028 * Called with both runqueues locked.
2029 */
2030 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
2031 unsigned long max_nr_move, unsigned long max_load_move,
2032 struct sched_domain *sd, enum idle_type idle,
2033 int *all_pinned)
2034 {
2035 prio_array_t *array, *dst_array;
2036 struct list_head *head, *curr;
2037 int idx, pulled = 0, pinned = 0, this_best_prio, busiest_best_prio;
2038 int busiest_best_prio_seen;
2039 int skip_for_load; /* skip the task based on weighted load issues */
2040 long rem_load_move;
2041 task_t *tmp;
2042
2043 if (max_nr_move == 0 || max_load_move == 0)
2044 goto out;
2045
2046 rem_load_move = max_load_move;
2047 pinned = 1;
2048 this_best_prio = rq_best_prio(this_rq);
2049 busiest_best_prio = rq_best_prio(busiest);
2050 /*
2051 * Enable handling of the case where there is more than one task
2052 * with the best priority. If the current running task is one
2053 * of those with prio==busiest_best_prio we know it won't be moved
2054 * and therefore it's safe to override the skip (based on load) of
2055 * any task we find with that prio.
2056 */
2057 busiest_best_prio_seen = busiest_best_prio == busiest->curr->prio;
2058
2059 /*
2060 * We first consider expired tasks. Those will likely not be
2061 * executed in the near future, and they are most likely to
2062 * be cache-cold, thus switching CPUs has the least effect
2063 * on them.
2064 */
2065 if (busiest->expired->nr_active) {
2066 array = busiest->expired;
2067 dst_array = this_rq->expired;
2068 } else {
2069 array = busiest->active;
2070 dst_array = this_rq->active;
2071 }
2072
2073 new_array:
2074 /* Start searching at priority 0: */
2075 idx = 0;
2076 skip_bitmap:
2077 if (!idx)
2078 idx = sched_find_first_bit(array->bitmap);
2079 else
2080 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2081 if (idx >= MAX_PRIO) {
2082 if (array == busiest->expired && busiest->active->nr_active) {
2083 array = busiest->active;
2084 dst_array = this_rq->active;
2085 goto new_array;
2086 }
2087 goto out;
2088 }
2089
2090 head = array->queue + idx;
2091 curr = head->prev;
2092 skip_queue:
2093 tmp = list_entry(curr, task_t, run_list);
2094
2095 curr = curr->prev;
2096
2097 /*
2098 * To help distribute high priority tasks accross CPUs we don't
2099 * skip a task if it will be the highest priority task (i.e. smallest
2100 * prio value) on its new queue regardless of its load weight
2101 */
2102 skip_for_load = tmp->load_weight > rem_load_move;
2103 if (skip_for_load && idx < this_best_prio)
2104 skip_for_load = !busiest_best_prio_seen && idx == busiest_best_prio;
2105 if (skip_for_load ||
2106 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2107 busiest_best_prio_seen |= idx == busiest_best_prio;
2108 if (curr != head)
2109 goto skip_queue;
2110 idx++;
2111 goto skip_bitmap;
2112 }
2113
2114 #ifdef CONFIG_SCHEDSTATS
2115 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2116 schedstat_inc(sd, lb_hot_gained[idle]);
2117 #endif
2118
2119 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2120 pulled++;
2121 rem_load_move -= tmp->load_weight;
2122
2123 /*
2124 * We only want to steal up to the prescribed number of tasks
2125 * and the prescribed amount of weighted load.
2126 */
2127 if (pulled < max_nr_move && rem_load_move > 0) {
2128 if (idx < this_best_prio)
2129 this_best_prio = idx;
2130 if (curr != head)
2131 goto skip_queue;
2132 idx++;
2133 goto skip_bitmap;
2134 }
2135 out:
2136 /*
2137 * Right now, this is the only place pull_task() is called,
2138 * so we can safely collect pull_task() stats here rather than
2139 * inside pull_task().
2140 */
2141 schedstat_add(sd, lb_gained[idle], pulled);
2142
2143 if (all_pinned)
2144 *all_pinned = pinned;
2145 return pulled;
2146 }
2147
2148 /*
2149 * find_busiest_group finds and returns the busiest CPU group within the
2150 * domain. It calculates and returns the amount of weighted load which should be
2151 * moved to restore balance via the imbalance parameter.
2152 */
2153 static struct sched_group *
2154 find_busiest_group(struct sched_domain *sd, int this_cpu,
2155 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2156 {
2157 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2158 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2159 unsigned long max_pull;
2160 unsigned long busiest_load_per_task, busiest_nr_running;
2161 unsigned long this_load_per_task, this_nr_running;
2162 int load_idx;
2163 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2164 int power_savings_balance = 1;
2165 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2166 unsigned long min_nr_running = ULONG_MAX;
2167 struct sched_group *group_min = NULL, *group_leader = NULL;
2168 #endif
2169
2170 max_load = this_load = total_load = total_pwr = 0;
2171 busiest_load_per_task = busiest_nr_running = 0;
2172 this_load_per_task = this_nr_running = 0;
2173 if (idle == NOT_IDLE)
2174 load_idx = sd->busy_idx;
2175 else if (idle == NEWLY_IDLE)
2176 load_idx = sd->newidle_idx;
2177 else
2178 load_idx = sd->idle_idx;
2179
2180 do {
2181 unsigned long load, group_capacity;
2182 int local_group;
2183 int i;
2184 unsigned long sum_nr_running, sum_weighted_load;
2185
2186 local_group = cpu_isset(this_cpu, group->cpumask);
2187
2188 /* Tally up the load of all CPUs in the group */
2189 sum_weighted_load = sum_nr_running = avg_load = 0;
2190
2191 for_each_cpu_mask(i, group->cpumask) {
2192 runqueue_t *rq = cpu_rq(i);
2193
2194 if (*sd_idle && !idle_cpu(i))
2195 *sd_idle = 0;
2196
2197 /* Bias balancing toward cpus of our domain */
2198 if (local_group)
2199 load = target_load(i, load_idx);
2200 else
2201 load = source_load(i, load_idx);
2202
2203 avg_load += load;
2204 sum_nr_running += rq->nr_running;
2205 sum_weighted_load += rq->raw_weighted_load;
2206 }
2207
2208 total_load += avg_load;
2209 total_pwr += group->cpu_power;
2210
2211 /* Adjust by relative CPU power of the group */
2212 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2213
2214 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2215
2216 if (local_group) {
2217 this_load = avg_load;
2218 this = group;
2219 this_nr_running = sum_nr_running;
2220 this_load_per_task = sum_weighted_load;
2221 } else if (avg_load > max_load &&
2222 sum_nr_running > group_capacity) {
2223 max_load = avg_load;
2224 busiest = group;
2225 busiest_nr_running = sum_nr_running;
2226 busiest_load_per_task = sum_weighted_load;
2227 }
2228
2229 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2230 /*
2231 * Busy processors will not participate in power savings
2232 * balance.
2233 */
2234 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2235 goto group_next;
2236
2237 /*
2238 * If the local group is idle or completely loaded
2239 * no need to do power savings balance at this domain
2240 */
2241 if (local_group && (this_nr_running >= group_capacity ||
2242 !this_nr_running))
2243 power_savings_balance = 0;
2244
2245 /*
2246 * If a group is already running at full capacity or idle,
2247 * don't include that group in power savings calculations
2248 */
2249 if (!power_savings_balance || sum_nr_running >= group_capacity
2250 || !sum_nr_running)
2251 goto group_next;
2252
2253 /*
2254 * Calculate the group which has the least non-idle load.
2255 * This is the group from where we need to pick up the load
2256 * for saving power
2257 */
2258 if ((sum_nr_running < min_nr_running) ||
2259 (sum_nr_running == min_nr_running &&
2260 first_cpu(group->cpumask) <
2261 first_cpu(group_min->cpumask))) {
2262 group_min = group;
2263 min_nr_running = sum_nr_running;
2264 min_load_per_task = sum_weighted_load /
2265 sum_nr_running;
2266 }
2267
2268 /*
2269 * Calculate the group which is almost near its
2270 * capacity but still has some space to pick up some load
2271 * from other group and save more power
2272 */
2273 if (sum_nr_running <= group_capacity - 1)
2274 if (sum_nr_running > leader_nr_running ||
2275 (sum_nr_running == leader_nr_running &&
2276 first_cpu(group->cpumask) >
2277 first_cpu(group_leader->cpumask))) {
2278 group_leader = group;
2279 leader_nr_running = sum_nr_running;
2280 }
2281
2282 group_next:
2283 #endif
2284 group = group->next;
2285 } while (group != sd->groups);
2286
2287 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2288 goto out_balanced;
2289
2290 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2291
2292 if (this_load >= avg_load ||
2293 100*max_load <= sd->imbalance_pct*this_load)
2294 goto out_balanced;
2295
2296 busiest_load_per_task /= busiest_nr_running;
2297 /*
2298 * We're trying to get all the cpus to the average_load, so we don't
2299 * want to push ourselves above the average load, nor do we wish to
2300 * reduce the max loaded cpu below the average load, as either of these
2301 * actions would just result in more rebalancing later, and ping-pong
2302 * tasks around. Thus we look for the minimum possible imbalance.
2303 * Negative imbalances (*we* are more loaded than anyone else) will
2304 * be counted as no imbalance for these purposes -- we can't fix that
2305 * by pulling tasks to us. Be careful of negative numbers as they'll
2306 * appear as very large values with unsigned longs.
2307 */
2308 if (max_load <= busiest_load_per_task)
2309 goto out_balanced;
2310
2311 /*
2312 * In the presence of smp nice balancing, certain scenarios can have
2313 * max load less than avg load(as we skip the groups at or below
2314 * its cpu_power, while calculating max_load..)
2315 */
2316 if (max_load < avg_load) {
2317 *imbalance = 0;
2318 goto small_imbalance;
2319 }
2320
2321 /* Don't want to pull so many tasks that a group would go idle */
2322 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2323
2324 /* How much load to actually move to equalise the imbalance */
2325 *imbalance = min(max_pull * busiest->cpu_power,
2326 (avg_load - this_load) * this->cpu_power)
2327 / SCHED_LOAD_SCALE;
2328
2329 /*
2330 * if *imbalance is less than the average load per runnable task
2331 * there is no gaurantee that any tasks will be moved so we'll have
2332 * a think about bumping its value to force at least one task to be
2333 * moved
2334 */
2335 if (*imbalance < busiest_load_per_task) {
2336 unsigned long pwr_now, pwr_move;
2337 unsigned long tmp;
2338 unsigned int imbn;
2339
2340 small_imbalance:
2341 pwr_move = pwr_now = 0;
2342 imbn = 2;
2343 if (this_nr_running) {
2344 this_load_per_task /= this_nr_running;
2345 if (busiest_load_per_task > this_load_per_task)
2346 imbn = 1;
2347 } else
2348 this_load_per_task = SCHED_LOAD_SCALE;
2349
2350 if (max_load - this_load >= busiest_load_per_task * imbn) {
2351 *imbalance = busiest_load_per_task;
2352 return busiest;
2353 }
2354
2355 /*
2356 * OK, we don't have enough imbalance to justify moving tasks,
2357 * however we may be able to increase total CPU power used by
2358 * moving them.
2359 */
2360
2361 pwr_now += busiest->cpu_power *
2362 min(busiest_load_per_task, max_load);
2363 pwr_now += this->cpu_power *
2364 min(this_load_per_task, this_load);
2365 pwr_now /= SCHED_LOAD_SCALE;
2366
2367 /* Amount of load we'd subtract */
2368 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
2369 if (max_load > tmp)
2370 pwr_move += busiest->cpu_power *
2371 min(busiest_load_per_task, max_load - tmp);
2372
2373 /* Amount of load we'd add */
2374 if (max_load*busiest->cpu_power <
2375 busiest_load_per_task*SCHED_LOAD_SCALE)
2376 tmp = max_load*busiest->cpu_power/this->cpu_power;
2377 else
2378 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2379 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
2380 pwr_move /= SCHED_LOAD_SCALE;
2381
2382 /* Move if we gain throughput */
2383 if (pwr_move <= pwr_now)
2384 goto out_balanced;
2385
2386 *imbalance = busiest_load_per_task;
2387 }
2388
2389 return busiest;
2390
2391 out_balanced:
2392 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2393 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2394 goto ret;
2395
2396 if (this == group_leader && group_leader != group_min) {
2397 *imbalance = min_load_per_task;
2398 return group_min;
2399 }
2400 ret:
2401 #endif
2402 *imbalance = 0;
2403 return NULL;
2404 }
2405
2406 /*
2407 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2408 */
2409 static runqueue_t *find_busiest_queue(struct sched_group *group,
2410 enum idle_type idle, unsigned long imbalance)
2411 {
2412 unsigned long max_load = 0;
2413 runqueue_t *busiest = NULL, *rqi;
2414 int i;
2415
2416 for_each_cpu_mask(i, group->cpumask) {
2417 rqi = cpu_rq(i);
2418
2419 if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance)
2420 continue;
2421
2422 if (rqi->raw_weighted_load > max_load) {
2423 max_load = rqi->raw_weighted_load;
2424 busiest = rqi;
2425 }
2426 }
2427
2428 return busiest;
2429 }
2430
2431 /*
2432 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2433 * so long as it is large enough.
2434 */
2435 #define MAX_PINNED_INTERVAL 512
2436
2437 #define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0)
2438 /*
2439 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2440 * tasks if there is an imbalance.
2441 *
2442 * Called with this_rq unlocked.
2443 */
2444 static int load_balance(int this_cpu, runqueue_t *this_rq,
2445 struct sched_domain *sd, enum idle_type idle)
2446 {
2447 struct sched_group *group;
2448 runqueue_t *busiest;
2449 unsigned long imbalance;
2450 int nr_moved, all_pinned = 0;
2451 int active_balance = 0;
2452 int sd_idle = 0;
2453
2454 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2455 !sched_smt_power_savings)
2456 sd_idle = 1;
2457
2458 schedstat_inc(sd, lb_cnt[idle]);
2459
2460 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2461 if (!group) {
2462 schedstat_inc(sd, lb_nobusyg[idle]);
2463 goto out_balanced;
2464 }
2465
2466 busiest = find_busiest_queue(group, idle, imbalance);
2467 if (!busiest) {
2468 schedstat_inc(sd, lb_nobusyq[idle]);
2469 goto out_balanced;
2470 }
2471
2472 BUG_ON(busiest == this_rq);
2473
2474 schedstat_add(sd, lb_imbalance[idle], imbalance);
2475
2476 nr_moved = 0;
2477 if (busiest->nr_running > 1) {
2478 /*
2479 * Attempt to move tasks. If find_busiest_group has found
2480 * an imbalance but busiest->nr_running <= 1, the group is
2481 * still unbalanced. nr_moved simply stays zero, so it is
2482 * correctly treated as an imbalance.
2483 */
2484 double_rq_lock(this_rq, busiest);
2485 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2486 minus_1_or_zero(busiest->nr_running),
2487 imbalance, sd, idle, &all_pinned);
2488 double_rq_unlock(this_rq, busiest);
2489
2490 /* All tasks on this runqueue were pinned by CPU affinity */
2491 if (unlikely(all_pinned))
2492 goto out_balanced;
2493 }
2494
2495 if (!nr_moved) {
2496 schedstat_inc(sd, lb_failed[idle]);
2497 sd->nr_balance_failed++;
2498
2499 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2500
2501 spin_lock(&busiest->lock);
2502
2503 /* don't kick the migration_thread, if the curr
2504 * task on busiest cpu can't be moved to this_cpu
2505 */
2506 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2507 spin_unlock(&busiest->lock);
2508 all_pinned = 1;
2509 goto out_one_pinned;
2510 }
2511
2512 if (!busiest->active_balance) {
2513 busiest->active_balance = 1;
2514 busiest->push_cpu = this_cpu;
2515 active_balance = 1;
2516 }
2517 spin_unlock(&busiest->lock);
2518 if (active_balance)
2519 wake_up_process(busiest->migration_thread);
2520
2521 /*
2522 * We've kicked active balancing, reset the failure
2523 * counter.
2524 */
2525 sd->nr_balance_failed = sd->cache_nice_tries+1;
2526 }
2527 } else
2528 sd->nr_balance_failed = 0;
2529
2530 if (likely(!active_balance)) {
2531 /* We were unbalanced, so reset the balancing interval */
2532 sd->balance_interval = sd->min_interval;
2533 } else {
2534 /*
2535 * If we've begun active balancing, start to back off. This
2536 * case may not be covered by the all_pinned logic if there
2537 * is only 1 task on the busy runqueue (because we don't call
2538 * move_tasks).
2539 */
2540 if (sd->balance_interval < sd->max_interval)
2541 sd->balance_interval *= 2;
2542 }
2543
2544 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2545 !sched_smt_power_savings)
2546 return -1;
2547 return nr_moved;
2548
2549 out_balanced:
2550 schedstat_inc(sd, lb_balanced[idle]);
2551
2552 sd->nr_balance_failed = 0;
2553
2554 out_one_pinned:
2555 /* tune up the balancing interval */
2556 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2557 (sd->balance_interval < sd->max_interval))
2558 sd->balance_interval *= 2;
2559
2560 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2561 return -1;
2562 return 0;
2563 }
2564
2565 /*
2566 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2567 * tasks if there is an imbalance.
2568 *
2569 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2570 * this_rq is locked.
2571 */
2572 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2573 struct sched_domain *sd)
2574 {
2575 struct sched_group *group;
2576 runqueue_t *busiest = NULL;
2577 unsigned long imbalance;
2578 int nr_moved = 0;
2579 int sd_idle = 0;
2580
2581 if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2582 sd_idle = 1;
2583
2584 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2585 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2586 if (!group) {
2587 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2588 goto out_balanced;
2589 }
2590
2591 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
2592 if (!busiest) {
2593 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2594 goto out_balanced;
2595 }
2596
2597 BUG_ON(busiest == this_rq);
2598
2599 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2600
2601 nr_moved = 0;
2602 if (busiest->nr_running > 1) {
2603 /* Attempt to move tasks */
2604 double_lock_balance(this_rq, busiest);
2605 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2606 minus_1_or_zero(busiest->nr_running),
2607 imbalance, sd, NEWLY_IDLE, NULL);
2608 spin_unlock(&busiest->lock);
2609 }
2610
2611 if (!nr_moved) {
2612 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2613 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2614 return -1;
2615 } else
2616 sd->nr_balance_failed = 0;
2617
2618 return nr_moved;
2619
2620 out_balanced:
2621 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2622 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2623 return -1;
2624 sd->nr_balance_failed = 0;
2625 return 0;
2626 }
2627
2628 /*
2629 * idle_balance is called by schedule() if this_cpu is about to become
2630 * idle. Attempts to pull tasks from other CPUs.
2631 */
2632 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2633 {
2634 struct sched_domain *sd;
2635
2636 for_each_domain(this_cpu, sd) {
2637 if (sd->flags & SD_BALANCE_NEWIDLE) {
2638 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2639 /* We've pulled tasks over so stop searching */
2640 break;
2641 }
2642 }
2643 }
2644 }
2645
2646 /*
2647 * active_load_balance is run by migration threads. It pushes running tasks
2648 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2649 * running on each physical CPU where possible, and avoids physical /
2650 * logical imbalances.
2651 *
2652 * Called with busiest_rq locked.
2653 */
2654 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2655 {
2656 struct sched_domain *sd;
2657 runqueue_t *target_rq;
2658 int target_cpu = busiest_rq->push_cpu;
2659
2660 if (busiest_rq->nr_running <= 1)
2661 /* no task to move */
2662 return;
2663
2664 target_rq = cpu_rq(target_cpu);
2665
2666 /*
2667 * This condition is "impossible", if it occurs
2668 * we need to fix it. Originally reported by
2669 * Bjorn Helgaas on a 128-cpu setup.
2670 */
2671 BUG_ON(busiest_rq == target_rq);
2672
2673 /* move a task from busiest_rq to target_rq */
2674 double_lock_balance(busiest_rq, target_rq);
2675
2676 /* Search for an sd spanning us and the target CPU. */
2677 for_each_domain(target_cpu, sd) {
2678 if ((sd->flags & SD_LOAD_BALANCE) &&
2679 cpu_isset(busiest_cpu, sd->span))
2680 break;
2681 }
2682
2683 if (unlikely(sd == NULL))
2684 goto out;
2685
2686 schedstat_inc(sd, alb_cnt);
2687
2688 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2689 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL))
2690 schedstat_inc(sd, alb_pushed);
2691 else
2692 schedstat_inc(sd, alb_failed);
2693 out:
2694 spin_unlock(&target_rq->lock);
2695 }
2696
2697 /*
2698 * rebalance_tick will get called every timer tick, on every CPU.
2699 *
2700 * It checks each scheduling domain to see if it is due to be balanced,
2701 * and initiates a balancing operation if so.
2702 *
2703 * Balancing parameters are set up in arch_init_sched_domains.
2704 */
2705
2706 /* Don't have all balancing operations going off at once */
2707 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2708
2709 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2710 enum idle_type idle)
2711 {
2712 unsigned long old_load, this_load;
2713 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2714 struct sched_domain *sd;
2715 int i;
2716
2717 this_load = this_rq->raw_weighted_load;
2718 /* Update our load */
2719 for (i = 0; i < 3; i++) {
2720 unsigned long new_load = this_load;
2721 int scale = 1 << i;
2722 old_load = this_rq->cpu_load[i];
2723 /*
2724 * Round up the averaging division if load is increasing. This
2725 * prevents us from getting stuck on 9 if the load is 10, for
2726 * example.
2727 */
2728 if (new_load > old_load)
2729 new_load += scale-1;
2730 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2731 }
2732
2733 for_each_domain(this_cpu, sd) {
2734 unsigned long interval;
2735
2736 if (!(sd->flags & SD_LOAD_BALANCE))
2737 continue;
2738
2739 interval = sd->balance_interval;
2740 if (idle != SCHED_IDLE)
2741 interval *= sd->busy_factor;
2742
2743 /* scale ms to jiffies */
2744 interval = msecs_to_jiffies(interval);
2745 if (unlikely(!interval))
2746 interval = 1;
2747
2748 if (j - sd->last_balance >= interval) {
2749 if (load_balance(this_cpu, this_rq, sd, idle)) {
2750 /*
2751 * We've pulled tasks over so either we're no
2752 * longer idle, or one of our SMT siblings is
2753 * not idle.
2754 */
2755 idle = NOT_IDLE;
2756 }
2757 sd->last_balance += interval;
2758 }
2759 }
2760 }
2761 #else
2762 /*
2763 * on UP we do not need to balance between CPUs:
2764 */
2765 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2766 {
2767 }
2768 static inline void idle_balance(int cpu, runqueue_t *rq)
2769 {
2770 }
2771 #endif
2772
2773 static inline int wake_priority_sleeper(runqueue_t *rq)
2774 {
2775 int ret = 0;
2776 #ifdef CONFIG_SCHED_SMT
2777 spin_lock(&rq->lock);
2778 /*
2779 * If an SMT sibling task has been put to sleep for priority
2780 * reasons reschedule the idle task to see if it can now run.
2781 */
2782 if (rq->nr_running) {
2783 resched_task(rq->idle);
2784 ret = 1;
2785 }
2786 spin_unlock(&rq->lock);
2787 #endif
2788 return ret;
2789 }
2790
2791 DEFINE_PER_CPU(struct kernel_stat, kstat);
2792
2793 EXPORT_PER_CPU_SYMBOL(kstat);
2794
2795 /*
2796 * This is called on clock ticks and on context switches.
2797 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2798 */
2799 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2800 unsigned long long now)
2801 {
2802 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2803 p->sched_time += now - last;
2804 }
2805
2806 /*
2807 * Return current->sched_time plus any more ns on the sched_clock
2808 * that have not yet been banked.
2809 */
2810 unsigned long long current_sched_time(const task_t *tsk)
2811 {
2812 unsigned long long ns;
2813 unsigned long flags;
2814 local_irq_save(flags);
2815 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2816 ns = tsk->sched_time + (sched_clock() - ns);
2817 local_irq_restore(flags);
2818 return ns;
2819 }
2820
2821 /*
2822 * We place interactive tasks back into the active array, if possible.
2823 *
2824 * To guarantee that this does not starve expired tasks we ignore the
2825 * interactivity of a task if the first expired task had to wait more
2826 * than a 'reasonable' amount of time. This deadline timeout is
2827 * load-dependent, as the frequency of array switched decreases with
2828 * increasing number of running tasks. We also ignore the interactivity
2829 * if a better static_prio task has expired:
2830 */
2831 #define EXPIRED_STARVING(rq) \
2832 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2833 (jiffies - (rq)->expired_timestamp >= \
2834 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2835 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2836
2837 /*
2838 * Account user cpu time to a process.
2839 * @p: the process that the cpu time gets accounted to
2840 * @hardirq_offset: the offset to subtract from hardirq_count()
2841 * @cputime: the cpu time spent in user space since the last update
2842 */
2843 void account_user_time(struct task_struct *p, cputime_t cputime)
2844 {
2845 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2846 cputime64_t tmp;
2847
2848 p->utime = cputime_add(p->utime, cputime);
2849
2850 /* Add user time to cpustat. */
2851 tmp = cputime_to_cputime64(cputime);
2852 if (TASK_NICE(p) > 0)
2853 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2854 else
2855 cpustat->user = cputime64_add(cpustat->user, tmp);
2856 }
2857
2858 /*
2859 * Account system cpu time to a process.
2860 * @p: the process that the cpu time gets accounted to
2861 * @hardirq_offset: the offset to subtract from hardirq_count()
2862 * @cputime: the cpu time spent in kernel space since the last update
2863 */
2864 void account_system_time(struct task_struct *p, int hardirq_offset,
2865 cputime_t cputime)
2866 {
2867 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2868 runqueue_t *rq = this_rq();
2869 cputime64_t tmp;
2870
2871 p->stime = cputime_add(p->stime, cputime);
2872
2873 /* Add system time to cpustat. */
2874 tmp = cputime_to_cputime64(cputime);
2875 if (hardirq_count() - hardirq_offset)
2876 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2877 else if (softirq_count())
2878 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2879 else if (p != rq->idle)
2880 cpustat->system = cputime64_add(cpustat->system, tmp);
2881 else if (atomic_read(&rq->nr_iowait) > 0)
2882 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2883 else
2884 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2885 /* Account for system time used */
2886 acct_update_integrals(p);
2887 }
2888
2889 /*
2890 * Account for involuntary wait time.
2891 * @p: the process from which the cpu time has been stolen
2892 * @steal: the cpu time spent in involuntary wait
2893 */
2894 void account_steal_time(struct task_struct *p, cputime_t steal)
2895 {
2896 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2897 cputime64_t tmp = cputime_to_cputime64(steal);
2898 runqueue_t *rq = this_rq();
2899
2900 if (p == rq->idle) {
2901 p->stime = cputime_add(p->stime, steal);
2902 if (atomic_read(&rq->nr_iowait) > 0)
2903 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2904 else
2905 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2906 } else
2907 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2908 }
2909
2910 /*
2911 * This function gets called by the timer code, with HZ frequency.
2912 * We call it with interrupts disabled.
2913 *
2914 * It also gets called by the fork code, when changing the parent's
2915 * timeslices.
2916 */
2917 void scheduler_tick(void)
2918 {
2919 int cpu = smp_processor_id();
2920 runqueue_t *rq = this_rq();
2921 task_t *p = current;
2922 unsigned long long now = sched_clock();
2923
2924 update_cpu_clock(p, rq, now);
2925
2926 rq->timestamp_last_tick = now;
2927
2928 if (p == rq->idle) {
2929 if (wake_priority_sleeper(rq))
2930 goto out;
2931 rebalance_tick(cpu, rq, SCHED_IDLE);
2932 return;
2933 }
2934
2935 /* Task might have expired already, but not scheduled off yet */
2936 if (p->array != rq->active) {
2937 set_tsk_need_resched(p);
2938 goto out;
2939 }
2940 spin_lock(&rq->lock);
2941 /*
2942 * The task was running during this tick - update the
2943 * time slice counter. Note: we do not update a thread's
2944 * priority until it either goes to sleep or uses up its
2945 * timeslice. This makes it possible for interactive tasks
2946 * to use up their timeslices at their highest priority levels.
2947 */
2948 if (rt_task(p)) {
2949 /*
2950 * RR tasks need a special form of timeslice management.
2951 * FIFO tasks have no timeslices.
2952 */
2953 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2954 p->time_slice = task_timeslice(p);
2955 p->first_time_slice = 0;
2956 set_tsk_need_resched(p);
2957
2958 /* put it at the end of the queue: */
2959 requeue_task(p, rq->active);
2960 }
2961 goto out_unlock;
2962 }
2963 if (!--p->time_slice) {
2964 dequeue_task(p, rq->active);
2965 set_tsk_need_resched(p);
2966 p->prio = effective_prio(p);
2967 p->time_slice = task_timeslice(p);
2968 p->first_time_slice = 0;
2969
2970 if (!rq->expired_timestamp)
2971 rq->expired_timestamp = jiffies;
2972 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2973 enqueue_task(p, rq->expired);
2974 if (p->static_prio < rq->best_expired_prio)
2975 rq->best_expired_prio = p->static_prio;
2976 } else
2977 enqueue_task(p, rq->active);
2978 } else {
2979 /*
2980 * Prevent a too long timeslice allowing a task to monopolize
2981 * the CPU. We do this by splitting up the timeslice into
2982 * smaller pieces.
2983 *
2984 * Note: this does not mean the task's timeslices expire or
2985 * get lost in any way, they just might be preempted by
2986 * another task of equal priority. (one with higher
2987 * priority would have preempted this task already.) We
2988 * requeue this task to the end of the list on this priority
2989 * level, which is in essence a round-robin of tasks with
2990 * equal priority.
2991 *
2992 * This only applies to tasks in the interactive
2993 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2994 */
2995 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2996 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2997 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2998 (p->array == rq->active)) {
2999
3000 requeue_task(p, rq->active);
3001 set_tsk_need_resched(p);
3002 }
3003 }
3004 out_unlock:
3005 spin_unlock(&rq->lock);
3006 out:
3007 rebalance_tick(cpu, rq, NOT_IDLE);
3008 }
3009
3010 #ifdef CONFIG_SCHED_SMT
3011 static inline void wakeup_busy_runqueue(runqueue_t *rq)
3012 {
3013 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3014 if (rq->curr == rq->idle && rq->nr_running)
3015 resched_task(rq->idle);
3016 }
3017
3018 /*
3019 * Called with interrupt disabled and this_rq's runqueue locked.
3020 */
3021 static void wake_sleeping_dependent(int this_cpu)
3022 {
3023 struct sched_domain *tmp, *sd = NULL;
3024 int i;
3025
3026 for_each_domain(this_cpu, tmp) {
3027 if (tmp->flags & SD_SHARE_CPUPOWER) {
3028 sd = tmp;
3029 break;
3030 }
3031 }
3032
3033 if (!sd)
3034 return;
3035
3036 for_each_cpu_mask(i, sd->span) {
3037 runqueue_t *smt_rq = cpu_rq(i);
3038
3039 if (i == this_cpu)
3040 continue;
3041 if (unlikely(!spin_trylock(&smt_rq->lock)))
3042 continue;
3043
3044 wakeup_busy_runqueue(smt_rq);
3045 spin_unlock(&smt_rq->lock);
3046 }
3047 }
3048
3049 /*
3050 * number of 'lost' timeslices this task wont be able to fully
3051 * utilize, if another task runs on a sibling. This models the
3052 * slowdown effect of other tasks running on siblings:
3053 */
3054 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
3055 {
3056 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3057 }
3058
3059 /*
3060 * To minimise lock contention and not have to drop this_rq's runlock we only
3061 * trylock the sibling runqueues and bypass those runqueues if we fail to
3062 * acquire their lock. As we only trylock the normal locking order does not
3063 * need to be obeyed.
3064 */
3065 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
3066 {
3067 struct sched_domain *tmp, *sd = NULL;
3068 int ret = 0, i;
3069
3070 /* kernel/rt threads do not participate in dependent sleeping */
3071 if (!p->mm || rt_task(p))
3072 return 0;
3073
3074 for_each_domain(this_cpu, tmp) {
3075 if (tmp->flags & SD_SHARE_CPUPOWER) {
3076 sd = tmp;
3077 break;
3078 }
3079 }
3080
3081 if (!sd)
3082 return 0;
3083
3084 for_each_cpu_mask(i, sd->span) {
3085 runqueue_t *smt_rq;
3086 task_t *smt_curr;
3087
3088 if (i == this_cpu)
3089 continue;
3090
3091 smt_rq = cpu_rq(i);
3092 if (unlikely(!spin_trylock(&smt_rq->lock)))
3093 continue;
3094
3095 smt_curr = smt_rq->curr;
3096
3097 if (!smt_curr->mm)
3098 goto unlock;
3099
3100 /*
3101 * If a user task with lower static priority than the
3102 * running task on the SMT sibling is trying to schedule,
3103 * delay it till there is proportionately less timeslice
3104 * left of the sibling task to prevent a lower priority
3105 * task from using an unfair proportion of the
3106 * physical cpu's resources. -ck
3107 */
3108 if (rt_task(smt_curr)) {
3109 /*
3110 * With real time tasks we run non-rt tasks only
3111 * per_cpu_gain% of the time.
3112 */
3113 if ((jiffies % DEF_TIMESLICE) >
3114 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3115 ret = 1;
3116 } else {
3117 if (smt_curr->static_prio < p->static_prio &&
3118 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3119 smt_slice(smt_curr, sd) > task_timeslice(p))
3120 ret = 1;
3121 }
3122 unlock:
3123 spin_unlock(&smt_rq->lock);
3124 }
3125 return ret;
3126 }
3127 #else
3128 static inline void wake_sleeping_dependent(int this_cpu)
3129 {
3130 }
3131
3132 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
3133 task_t *p)
3134 {
3135 return 0;
3136 }
3137 #endif
3138
3139 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3140
3141 void fastcall add_preempt_count(int val)
3142 {
3143 /*
3144 * Underflow?
3145 */
3146 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3147 return;
3148 preempt_count() += val;
3149 /*
3150 * Spinlock count overflowing soon?
3151 */
3152 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
3153 }
3154 EXPORT_SYMBOL(add_preempt_count);
3155
3156 void fastcall sub_preempt_count(int val)
3157 {
3158 /*
3159 * Underflow?
3160 */
3161 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3162 return;
3163 /*
3164 * Is the spinlock portion underflowing?
3165 */
3166 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3167 !(preempt_count() & PREEMPT_MASK)))
3168 return;
3169
3170 preempt_count() -= val;
3171 }
3172 EXPORT_SYMBOL(sub_preempt_count);
3173
3174 #endif
3175
3176 static inline int interactive_sleep(enum sleep_type sleep_type)
3177 {
3178 return (sleep_type == SLEEP_INTERACTIVE ||
3179 sleep_type == SLEEP_INTERRUPTED);
3180 }
3181
3182 /*
3183 * schedule() is the main scheduler function.
3184 */
3185 asmlinkage void __sched schedule(void)
3186 {
3187 long *switch_count;
3188 task_t *prev, *next;
3189 runqueue_t *rq;
3190 prio_array_t *array;
3191 struct list_head *queue;
3192 unsigned long long now;
3193 unsigned long run_time;
3194 int cpu, idx, new_prio;
3195
3196 /*
3197 * Test if we are atomic. Since do_exit() needs to call into
3198 * schedule() atomically, we ignore that path for now.
3199 * Otherwise, whine if we are scheduling when we should not be.
3200 */
3201 if (unlikely(in_atomic() && !current->exit_state)) {
3202 printk(KERN_ERR "BUG: scheduling while atomic: "
3203 "%s/0x%08x/%d\n",
3204 current->comm, preempt_count(), current->pid);
3205 dump_stack();
3206 }
3207 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3208
3209 need_resched:
3210 preempt_disable();
3211 prev = current;
3212 release_kernel_lock(prev);
3213 need_resched_nonpreemptible:
3214 rq = this_rq();
3215
3216 /*
3217 * The idle thread is not allowed to schedule!
3218 * Remove this check after it has been exercised a bit.
3219 */
3220 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3221 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3222 dump_stack();
3223 }
3224
3225 schedstat_inc(rq, sched_cnt);
3226 now = sched_clock();
3227 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3228 run_time = now - prev->timestamp;
3229 if (unlikely((long long)(now - prev->timestamp) < 0))
3230 run_time = 0;
3231 } else
3232 run_time = NS_MAX_SLEEP_AVG;
3233
3234 /*
3235 * Tasks charged proportionately less run_time at high sleep_avg to
3236 * delay them losing their interactive status
3237 */
3238 run_time /= (CURRENT_BONUS(prev) ? : 1);
3239
3240 spin_lock_irq(&rq->lock);
3241
3242 if (unlikely(prev->flags & PF_DEAD))
3243 prev->state = EXIT_DEAD;
3244
3245 switch_count = &prev->nivcsw;
3246 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3247 switch_count = &prev->nvcsw;
3248 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3249 unlikely(signal_pending(prev))))
3250 prev->state = TASK_RUNNING;
3251 else {
3252 if (prev->state == TASK_UNINTERRUPTIBLE)
3253 rq->nr_uninterruptible++;
3254 deactivate_task(prev, rq);
3255 }
3256 }
3257
3258 cpu = smp_processor_id();
3259 if (unlikely(!rq->nr_running)) {
3260 idle_balance(cpu, rq);
3261 if (!rq->nr_running) {
3262 next = rq->idle;
3263 rq->expired_timestamp = 0;
3264 wake_sleeping_dependent(cpu);
3265 goto switch_tasks;
3266 }
3267 }
3268
3269 array = rq->active;
3270 if (unlikely(!array->nr_active)) {
3271 /*
3272 * Switch the active and expired arrays.
3273 */
3274 schedstat_inc(rq, sched_switch);
3275 rq->active = rq->expired;
3276 rq->expired = array;
3277 array = rq->active;
3278 rq->expired_timestamp = 0;
3279 rq->best_expired_prio = MAX_PRIO;
3280 }
3281
3282 idx = sched_find_first_bit(array->bitmap);
3283 queue = array->queue + idx;
3284 next = list_entry(queue->next, task_t, run_list);
3285
3286 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3287 unsigned long long delta = now - next->timestamp;
3288 if (unlikely((long long)(now - next->timestamp) < 0))
3289 delta = 0;
3290
3291 if (next->sleep_type == SLEEP_INTERACTIVE)
3292 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3293
3294 array = next->array;
3295 new_prio = recalc_task_prio(next, next->timestamp + delta);
3296
3297 if (unlikely(next->prio != new_prio)) {
3298 dequeue_task(next, array);
3299 next->prio = new_prio;
3300 enqueue_task(next, array);
3301 }
3302 }
3303 next->sleep_type = SLEEP_NORMAL;
3304 if (dependent_sleeper(cpu, rq, next))
3305 next = rq->idle;
3306 switch_tasks:
3307 if (next == rq->idle)
3308 schedstat_inc(rq, sched_goidle);
3309 prefetch(next);
3310 prefetch_stack(next);
3311 clear_tsk_need_resched(prev);
3312 rcu_qsctr_inc(task_cpu(prev));
3313
3314 update_cpu_clock(prev, rq, now);
3315
3316 prev->sleep_avg -= run_time;
3317 if ((long)prev->sleep_avg <= 0)
3318 prev->sleep_avg = 0;
3319 prev->timestamp = prev->last_ran = now;
3320
3321 sched_info_switch(prev, next);
3322 if (likely(prev != next)) {
3323 next->timestamp = now;
3324 rq->nr_switches++;
3325 rq->curr = next;
3326 ++*switch_count;
3327
3328 prepare_task_switch(rq, next);
3329 prev = context_switch(rq, prev, next);
3330 barrier();
3331 /*
3332 * this_rq must be evaluated again because prev may have moved
3333 * CPUs since it called schedule(), thus the 'rq' on its stack
3334 * frame will be invalid.
3335 */
3336 finish_task_switch(this_rq(), prev);
3337 } else
3338 spin_unlock_irq(&rq->lock);
3339
3340 prev = current;
3341 if (unlikely(reacquire_kernel_lock(prev) < 0))
3342 goto need_resched_nonpreemptible;
3343 preempt_enable_no_resched();
3344 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3345 goto need_resched;
3346 }
3347
3348 EXPORT_SYMBOL(schedule);
3349
3350 #ifdef CONFIG_PREEMPT
3351 /*
3352 * this is is the entry point to schedule() from in-kernel preemption
3353 * off of preempt_enable. Kernel preemptions off return from interrupt
3354 * occur there and call schedule directly.
3355 */
3356 asmlinkage void __sched preempt_schedule(void)
3357 {
3358 struct thread_info *ti = current_thread_info();
3359 #ifdef CONFIG_PREEMPT_BKL
3360 struct task_struct *task = current;
3361 int saved_lock_depth;
3362 #endif
3363 /*
3364 * If there is a non-zero preempt_count or interrupts are disabled,
3365 * we do not want to preempt the current task. Just return..
3366 */
3367 if (unlikely(ti->preempt_count || irqs_disabled()))
3368 return;
3369
3370 need_resched:
3371 add_preempt_count(PREEMPT_ACTIVE);
3372 /*
3373 * We keep the big kernel semaphore locked, but we
3374 * clear ->lock_depth so that schedule() doesnt
3375 * auto-release the semaphore:
3376 */
3377 #ifdef CONFIG_PREEMPT_BKL
3378 saved_lock_depth = task->lock_depth;
3379 task->lock_depth = -1;
3380 #endif
3381 schedule();
3382 #ifdef CONFIG_PREEMPT_BKL
3383 task->lock_depth = saved_lock_depth;
3384 #endif
3385 sub_preempt_count(PREEMPT_ACTIVE);
3386
3387 /* we could miss a preemption opportunity between schedule and now */
3388 barrier();
3389 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3390 goto need_resched;
3391 }
3392
3393 EXPORT_SYMBOL(preempt_schedule);
3394
3395 /*
3396 * this is is the entry point to schedule() from kernel preemption
3397 * off of irq context.
3398 * Note, that this is called and return with irqs disabled. This will
3399 * protect us against recursive calling from irq.
3400 */
3401 asmlinkage void __sched preempt_schedule_irq(void)
3402 {
3403 struct thread_info *ti = current_thread_info();
3404 #ifdef CONFIG_PREEMPT_BKL
3405 struct task_struct *task = current;
3406 int saved_lock_depth;
3407 #endif
3408 /* Catch callers which need to be fixed*/
3409 BUG_ON(ti->preempt_count || !irqs_disabled());
3410
3411 need_resched:
3412 add_preempt_count(PREEMPT_ACTIVE);
3413 /*
3414 * We keep the big kernel semaphore locked, but we
3415 * clear ->lock_depth so that schedule() doesnt
3416 * auto-release the semaphore:
3417 */
3418 #ifdef CONFIG_PREEMPT_BKL
3419 saved_lock_depth = task->lock_depth;
3420 task->lock_depth = -1;
3421 #endif
3422 local_irq_enable();
3423 schedule();
3424 local_irq_disable();
3425 #ifdef CONFIG_PREEMPT_BKL
3426 task->lock_depth = saved_lock_depth;
3427 #endif
3428 sub_preempt_count(PREEMPT_ACTIVE);
3429
3430 /* we could miss a preemption opportunity between schedule and now */
3431 barrier();
3432 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3433 goto need_resched;
3434 }
3435
3436 #endif /* CONFIG_PREEMPT */
3437
3438 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3439 void *key)
3440 {
3441 task_t *p = curr->private;
3442 return try_to_wake_up(p, mode, sync);
3443 }
3444
3445 EXPORT_SYMBOL(default_wake_function);
3446
3447 /*
3448 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3449 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3450 * number) then we wake all the non-exclusive tasks and one exclusive task.
3451 *
3452 * There are circumstances in which we can try to wake a task which has already
3453 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3454 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3455 */
3456 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3457 int nr_exclusive, int sync, void *key)
3458 {
3459 struct list_head *tmp, *next;
3460
3461 list_for_each_safe(tmp, next, &q->task_list) {
3462 wait_queue_t *curr;
3463 unsigned flags;
3464 curr = list_entry(tmp, wait_queue_t, task_list);
3465 flags = curr->flags;
3466 if (curr->func(curr, mode, sync, key) &&
3467 (flags & WQ_FLAG_EXCLUSIVE) &&
3468 !--nr_exclusive)
3469 break;
3470 }
3471 }
3472
3473 /**
3474 * __wake_up - wake up threads blocked on a waitqueue.
3475 * @q: the waitqueue
3476 * @mode: which threads
3477 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3478 * @key: is directly passed to the wakeup function
3479 */
3480 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3481 int nr_exclusive, void *key)
3482 {
3483 unsigned long flags;
3484
3485 spin_lock_irqsave(&q->lock, flags);
3486 __wake_up_common(q, mode, nr_exclusive, 0, key);
3487 spin_unlock_irqrestore(&q->lock, flags);
3488 }
3489
3490 EXPORT_SYMBOL(__wake_up);
3491
3492 /*
3493 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3494 */
3495 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3496 {
3497 __wake_up_common(q, mode, 1, 0, NULL);
3498 }
3499
3500 /**
3501 * __wake_up_sync - wake up threads blocked on a waitqueue.
3502 * @q: the waitqueue
3503 * @mode: which threads
3504 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3505 *
3506 * The sync wakeup differs that the waker knows that it will schedule
3507 * away soon, so while the target thread will be woken up, it will not
3508 * be migrated to another CPU - ie. the two threads are 'synchronized'
3509 * with each other. This can prevent needless bouncing between CPUs.
3510 *
3511 * On UP it can prevent extra preemption.
3512 */
3513 void fastcall
3514 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3515 {
3516 unsigned long flags;
3517 int sync = 1;
3518
3519 if (unlikely(!q))
3520 return;
3521
3522 if (unlikely(!nr_exclusive))
3523 sync = 0;
3524
3525 spin_lock_irqsave(&q->lock, flags);
3526 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3527 spin_unlock_irqrestore(&q->lock, flags);
3528 }
3529 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3530
3531 void fastcall complete(struct completion *x)
3532 {
3533 unsigned long flags;
3534
3535 spin_lock_irqsave(&x->wait.lock, flags);
3536 x->done++;
3537 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3538 1, 0, NULL);
3539 spin_unlock_irqrestore(&x->wait.lock, flags);
3540 }
3541 EXPORT_SYMBOL(complete);
3542
3543 void fastcall complete_all(struct completion *x)
3544 {
3545 unsigned long flags;
3546
3547 spin_lock_irqsave(&x->wait.lock, flags);
3548 x->done += UINT_MAX/2;
3549 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3550 0, 0, NULL);
3551 spin_unlock_irqrestore(&x->wait.lock, flags);
3552 }
3553 EXPORT_SYMBOL(complete_all);
3554
3555 void fastcall __sched wait_for_completion(struct completion *x)
3556 {
3557 might_sleep();
3558 spin_lock_irq(&x->wait.lock);
3559 if (!x->done) {
3560 DECLARE_WAITQUEUE(wait, current);
3561
3562 wait.flags |= WQ_FLAG_EXCLUSIVE;
3563 __add_wait_queue_tail(&x->wait, &wait);
3564 do {
3565 __set_current_state(TASK_UNINTERRUPTIBLE);
3566 spin_unlock_irq(&x->wait.lock);
3567 schedule();
3568 spin_lock_irq(&x->wait.lock);
3569 } while (!x->done);
3570 __remove_wait_queue(&x->wait, &wait);
3571 }
3572 x->done--;
3573 spin_unlock_irq(&x->wait.lock);
3574 }
3575 EXPORT_SYMBOL(wait_for_completion);
3576
3577 unsigned long fastcall __sched
3578 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3579 {
3580 might_sleep();
3581
3582 spin_lock_irq(&x->wait.lock);
3583 if (!x->done) {
3584 DECLARE_WAITQUEUE(wait, current);
3585
3586 wait.flags |= WQ_FLAG_EXCLUSIVE;
3587 __add_wait_queue_tail(&x->wait, &wait);
3588 do {
3589 __set_current_state(TASK_UNINTERRUPTIBLE);
3590 spin_unlock_irq(&x->wait.lock);
3591 timeout = schedule_timeout(timeout);
3592 spin_lock_irq(&x->wait.lock);
3593 if (!timeout) {
3594 __remove_wait_queue(&x->wait, &wait);
3595 goto out;
3596 }
3597 } while (!x->done);
3598 __remove_wait_queue(&x->wait, &wait);
3599 }
3600 x->done--;
3601 out:
3602 spin_unlock_irq(&x->wait.lock);
3603 return timeout;
3604 }
3605 EXPORT_SYMBOL(wait_for_completion_timeout);
3606
3607 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3608 {
3609 int ret = 0;
3610
3611 might_sleep();
3612
3613 spin_lock_irq(&x->wait.lock);
3614 if (!x->done) {
3615 DECLARE_WAITQUEUE(wait, current);
3616
3617 wait.flags |= WQ_FLAG_EXCLUSIVE;
3618 __add_wait_queue_tail(&x->wait, &wait);
3619 do {
3620 if (signal_pending(current)) {
3621 ret = -ERESTARTSYS;
3622 __remove_wait_queue(&x->wait, &wait);
3623 goto out;
3624 }
3625 __set_current_state(TASK_INTERRUPTIBLE);
3626 spin_unlock_irq(&x->wait.lock);
3627 schedule();
3628 spin_lock_irq(&x->wait.lock);
3629 } while (!x->done);
3630 __remove_wait_queue(&x->wait, &wait);
3631 }
3632 x->done--;
3633 out:
3634 spin_unlock_irq(&x->wait.lock);
3635
3636 return ret;
3637 }
3638 EXPORT_SYMBOL(wait_for_completion_interruptible);
3639
3640 unsigned long fastcall __sched
3641 wait_for_completion_interruptible_timeout(struct completion *x,
3642 unsigned long timeout)
3643 {
3644 might_sleep();
3645
3646 spin_lock_irq(&x->wait.lock);
3647 if (!x->done) {
3648 DECLARE_WAITQUEUE(wait, current);
3649
3650 wait.flags |= WQ_FLAG_EXCLUSIVE;
3651 __add_wait_queue_tail(&x->wait, &wait);
3652 do {
3653 if (signal_pending(current)) {
3654 timeout = -ERESTARTSYS;
3655 __remove_wait_queue(&x->wait, &wait);
3656 goto out;
3657 }
3658 __set_current_state(TASK_INTERRUPTIBLE);
3659 spin_unlock_irq(&x->wait.lock);
3660 timeout = schedule_timeout(timeout);
3661 spin_lock_irq(&x->wait.lock);
3662 if (!timeout) {
3663 __remove_wait_queue(&x->wait, &wait);
3664 goto out;
3665 }
3666 } while (!x->done);
3667 __remove_wait_queue(&x->wait, &wait);
3668 }
3669 x->done--;
3670 out:
3671 spin_unlock_irq(&x->wait.lock);
3672 return timeout;
3673 }
3674 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3675
3676
3677 #define SLEEP_ON_VAR \
3678 unsigned long flags; \
3679 wait_queue_t wait; \
3680 init_waitqueue_entry(&wait, current);
3681
3682 #define SLEEP_ON_HEAD \
3683 spin_lock_irqsave(&q->lock,flags); \
3684 __add_wait_queue(q, &wait); \
3685 spin_unlock(&q->lock);
3686
3687 #define SLEEP_ON_TAIL \
3688 spin_lock_irq(&q->lock); \
3689 __remove_wait_queue(q, &wait); \
3690 spin_unlock_irqrestore(&q->lock, flags);
3691
3692 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3693 {
3694 SLEEP_ON_VAR
3695
3696 current->state = TASK_INTERRUPTIBLE;
3697
3698 SLEEP_ON_HEAD
3699 schedule();
3700 SLEEP_ON_TAIL
3701 }
3702
3703 EXPORT_SYMBOL(interruptible_sleep_on);
3704
3705 long fastcall __sched
3706 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3707 {
3708 SLEEP_ON_VAR
3709
3710 current->state = TASK_INTERRUPTIBLE;
3711
3712 SLEEP_ON_HEAD
3713 timeout = schedule_timeout(timeout);
3714 SLEEP_ON_TAIL
3715
3716 return timeout;
3717 }
3718
3719 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3720
3721 void fastcall __sched sleep_on(wait_queue_head_t *q)
3722 {
3723 SLEEP_ON_VAR
3724
3725 current->state = TASK_UNINTERRUPTIBLE;
3726
3727 SLEEP_ON_HEAD
3728 schedule();
3729 SLEEP_ON_TAIL
3730 }
3731
3732 EXPORT_SYMBOL(sleep_on);
3733
3734 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3735 {
3736 SLEEP_ON_VAR
3737
3738 current->state = TASK_UNINTERRUPTIBLE;
3739
3740 SLEEP_ON_HEAD
3741 timeout = schedule_timeout(timeout);
3742 SLEEP_ON_TAIL
3743
3744 return timeout;
3745 }
3746
3747 EXPORT_SYMBOL(sleep_on_timeout);
3748
3749 #ifdef CONFIG_RT_MUTEXES
3750
3751 /*
3752 * rt_mutex_setprio - set the current priority of a task
3753 * @p: task
3754 * @prio: prio value (kernel-internal form)
3755 *
3756 * This function changes the 'effective' priority of a task. It does
3757 * not touch ->normal_prio like __setscheduler().
3758 *
3759 * Used by the rt_mutex code to implement priority inheritance logic.
3760 */
3761 void rt_mutex_setprio(task_t *p, int prio)
3762 {
3763 unsigned long flags;
3764 prio_array_t *array;
3765 runqueue_t *rq;
3766 int oldprio;
3767
3768 BUG_ON(prio < 0 || prio > MAX_PRIO);
3769
3770 rq = task_rq_lock(p, &flags);
3771
3772 oldprio = p->prio;
3773 array = p->array;
3774 if (array)
3775 dequeue_task(p, array);
3776 p->prio = prio;
3777
3778 if (array) {
3779 /*
3780 * If changing to an RT priority then queue it
3781 * in the active array!
3782 */
3783 if (rt_task(p))
3784 array = rq->active;
3785 enqueue_task(p, array);
3786 /*
3787 * Reschedule if we are currently running on this runqueue and
3788 * our priority decreased, or if we are not currently running on
3789 * this runqueue and our priority is higher than the current's
3790 */
3791 if (task_running(rq, p)) {
3792 if (p->prio > oldprio)
3793 resched_task(rq->curr);
3794 } else if (TASK_PREEMPTS_CURR(p, rq))
3795 resched_task(rq->curr);
3796 }
3797 task_rq_unlock(rq, &flags);
3798 }
3799
3800 #endif
3801
3802 void set_user_nice(task_t *p, long nice)
3803 {
3804 unsigned long flags;
3805 prio_array_t *array;
3806 runqueue_t *rq;
3807 int old_prio, delta;
3808
3809 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3810 return;
3811 /*
3812 * We have to be careful, if called from sys_setpriority(),
3813 * the task might be in the middle of scheduling on another CPU.
3814 */
3815 rq = task_rq_lock(p, &flags);
3816 /*
3817 * The RT priorities are set via sched_setscheduler(), but we still
3818 * allow the 'normal' nice value to be set - but as expected
3819 * it wont have any effect on scheduling until the task is
3820 * not SCHED_NORMAL/SCHED_BATCH:
3821 */
3822 if (has_rt_policy(p)) {
3823 p->static_prio = NICE_TO_PRIO(nice);
3824 goto out_unlock;
3825 }
3826 array = p->array;
3827 if (array) {
3828 dequeue_task(p, array);
3829 dec_raw_weighted_load(rq, p);
3830 }
3831
3832 p->static_prio = NICE_TO_PRIO(nice);
3833 set_load_weight(p);
3834 old_prio = p->prio;
3835 p->prio = effective_prio(p);
3836 delta = p->prio - old_prio;
3837
3838 if (array) {
3839 enqueue_task(p, array);
3840 inc_raw_weighted_load(rq, p);
3841 /*
3842 * If the task increased its priority or is running and
3843 * lowered its priority, then reschedule its CPU:
3844 */
3845 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3846 resched_task(rq->curr);
3847 }
3848 out_unlock:
3849 task_rq_unlock(rq, &flags);
3850 }
3851 EXPORT_SYMBOL(set_user_nice);
3852
3853 /*
3854 * can_nice - check if a task can reduce its nice value
3855 * @p: task
3856 * @nice: nice value
3857 */
3858 int can_nice(const task_t *p, const int nice)
3859 {
3860 /* convert nice value [19,-20] to rlimit style value [1,40] */
3861 int nice_rlim = 20 - nice;
3862 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3863 capable(CAP_SYS_NICE));
3864 }
3865
3866 #ifdef __ARCH_WANT_SYS_NICE
3867
3868 /*
3869 * sys_nice - change the priority of the current process.
3870 * @increment: priority increment
3871 *
3872 * sys_setpriority is a more generic, but much slower function that
3873 * does similar things.
3874 */
3875 asmlinkage long sys_nice(int increment)
3876 {
3877 int retval;
3878 long nice;
3879
3880 /*
3881 * Setpriority might change our priority at the same moment.
3882 * We don't have to worry. Conceptually one call occurs first
3883 * and we have a single winner.
3884 */
3885 if (increment < -40)
3886 increment = -40;
3887 if (increment > 40)
3888 increment = 40;
3889
3890 nice = PRIO_TO_NICE(current->static_prio) + increment;
3891 if (nice < -20)
3892 nice = -20;
3893 if (nice > 19)
3894 nice = 19;
3895
3896 if (increment < 0 && !can_nice(current, nice))
3897 return -EPERM;
3898
3899 retval = security_task_setnice(current, nice);
3900 if (retval)
3901 return retval;
3902
3903 set_user_nice(current, nice);
3904 return 0;
3905 }
3906
3907 #endif
3908
3909 /**
3910 * task_prio - return the priority value of a given task.
3911 * @p: the task in question.
3912 *
3913 * This is the priority value as seen by users in /proc.
3914 * RT tasks are offset by -200. Normal tasks are centered
3915 * around 0, value goes from -16 to +15.
3916 */
3917 int task_prio(const task_t *p)
3918 {
3919 return p->prio - MAX_RT_PRIO;
3920 }
3921
3922 /**
3923 * task_nice - return the nice value of a given task.
3924 * @p: the task in question.
3925 */
3926 int task_nice(const task_t *p)
3927 {
3928 return TASK_NICE(p);
3929 }
3930 EXPORT_SYMBOL_GPL(task_nice);
3931
3932 /**
3933 * idle_cpu - is a given cpu idle currently?
3934 * @cpu: the processor in question.
3935 */
3936 int idle_cpu(int cpu)
3937 {
3938 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3939 }
3940
3941 /**
3942 * idle_task - return the idle task for a given cpu.
3943 * @cpu: the processor in question.
3944 */
3945 task_t *idle_task(int cpu)
3946 {
3947 return cpu_rq(cpu)->idle;
3948 }
3949
3950 /**
3951 * find_process_by_pid - find a process with a matching PID value.
3952 * @pid: the pid in question.
3953 */
3954 static inline task_t *find_process_by_pid(pid_t pid)
3955 {
3956 return pid ? find_task_by_pid(pid) : current;
3957 }
3958
3959 /* Actually do priority change: must hold rq lock. */
3960 static void __setscheduler(struct task_struct *p, int policy, int prio)
3961 {
3962 BUG_ON(p->array);
3963 p->policy = policy;
3964 p->rt_priority = prio;
3965 p->normal_prio = normal_prio(p);
3966 /* we are holding p->pi_lock already */
3967 p->prio = rt_mutex_getprio(p);
3968 /*
3969 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3970 */
3971 if (policy == SCHED_BATCH)
3972 p->sleep_avg = 0;
3973 set_load_weight(p);
3974 }
3975
3976 /**
3977 * sched_setscheduler - change the scheduling policy and/or RT priority of
3978 * a thread.
3979 * @p: the task in question.
3980 * @policy: new policy.
3981 * @param: structure containing the new RT priority.
3982 */
3983 int sched_setscheduler(struct task_struct *p, int policy,
3984 struct sched_param *param)
3985 {
3986 int retval;
3987 int oldprio, oldpolicy = -1;
3988 prio_array_t *array;
3989 unsigned long flags;
3990 runqueue_t *rq;
3991
3992 /* may grab non-irq protected spin_locks */
3993 BUG_ON(in_interrupt());
3994 recheck:
3995 /* double check policy once rq lock held */
3996 if (policy < 0)
3997 policy = oldpolicy = p->policy;
3998 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3999 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4000 return -EINVAL;
4001 /*
4002 * Valid priorities for SCHED_FIFO and SCHED_RR are
4003 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4004 * SCHED_BATCH is 0.
4005 */
4006 if (param->sched_priority < 0 ||
4007 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4008 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4009 return -EINVAL;
4010 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
4011 != (param->sched_priority == 0))
4012 return -EINVAL;
4013
4014 /*
4015 * Allow unprivileged RT tasks to decrease priority:
4016 */
4017 if (!capable(CAP_SYS_NICE)) {
4018 /*
4019 * can't change policy, except between SCHED_NORMAL
4020 * and SCHED_BATCH:
4021 */
4022 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
4023 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
4024 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4025 return -EPERM;
4026 /* can't increase priority */
4027 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
4028 param->sched_priority > p->rt_priority &&
4029 param->sched_priority >
4030 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4031 return -EPERM;
4032 /* can't change other user's priorities */
4033 if ((current->euid != p->euid) &&
4034 (current->euid != p->uid))
4035 return -EPERM;
4036 }
4037
4038 retval = security_task_setscheduler(p, policy, param);
4039 if (retval)
4040 return retval;
4041 /*
4042 * make sure no PI-waiters arrive (or leave) while we are
4043 * changing the priority of the task:
4044 */
4045 spin_lock_irqsave(&p->pi_lock, flags);
4046 /*
4047 * To be able to change p->policy safely, the apropriate
4048 * runqueue lock must be held.
4049 */
4050 rq = __task_rq_lock(p);
4051 /* recheck policy now with rq lock held */
4052 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4053 policy = oldpolicy = -1;
4054 __task_rq_unlock(rq);
4055 spin_unlock_irqrestore(&p->pi_lock, flags);
4056 goto recheck;
4057 }
4058 array = p->array;
4059 if (array)
4060 deactivate_task(p, rq);
4061 oldprio = p->prio;
4062 __setscheduler(p, policy, param->sched_priority);
4063 if (array) {
4064 __activate_task(p, rq);
4065 /*
4066 * Reschedule if we are currently running on this runqueue and
4067 * our priority decreased, or if we are not currently running on
4068 * this runqueue and our priority is higher than the current's
4069 */
4070 if (task_running(rq, p)) {
4071 if (p->prio > oldprio)
4072 resched_task(rq->curr);
4073 } else if (TASK_PREEMPTS_CURR(p, rq))
4074 resched_task(rq->curr);
4075 }
4076 __task_rq_unlock(rq);
4077 spin_unlock_irqrestore(&p->pi_lock, flags);
4078
4079 rt_mutex_adjust_pi(p);
4080
4081 return 0;
4082 }
4083 EXPORT_SYMBOL_GPL(sched_setscheduler);
4084
4085 static int
4086 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4087 {
4088 int retval;
4089 struct sched_param lparam;
4090 struct task_struct *p;
4091
4092 if (!param || pid < 0)
4093 return -EINVAL;
4094 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4095 return -EFAULT;
4096 read_lock_irq(&tasklist_lock);
4097 p = find_process_by_pid(pid);
4098 if (!p) {
4099 read_unlock_irq(&tasklist_lock);
4100 return -ESRCH;
4101 }
4102 get_task_struct(p);
4103 read_unlock_irq(&tasklist_lock);
4104 retval = sched_setscheduler(p, policy, &lparam);
4105 put_task_struct(p);
4106 return retval;
4107 }
4108
4109 /**
4110 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4111 * @pid: the pid in question.
4112 * @policy: new policy.
4113 * @param: structure containing the new RT priority.
4114 */
4115 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4116 struct sched_param __user *param)
4117 {
4118 /* negative values for policy are not valid */
4119 if (policy < 0)
4120 return -EINVAL;
4121
4122 return do_sched_setscheduler(pid, policy, param);
4123 }
4124
4125 /**
4126 * sys_sched_setparam - set/change the RT priority of a thread
4127 * @pid: the pid in question.
4128 * @param: structure containing the new RT priority.
4129 */
4130 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4131 {
4132 return do_sched_setscheduler(pid, -1, param);
4133 }
4134
4135 /**
4136 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4137 * @pid: the pid in question.
4138 */
4139 asmlinkage long sys_sched_getscheduler(pid_t pid)
4140 {
4141 int retval = -EINVAL;
4142 task_t *p;
4143
4144 if (pid < 0)
4145 goto out_nounlock;
4146
4147 retval = -ESRCH;
4148 read_lock(&tasklist_lock);
4149 p = find_process_by_pid(pid);
4150 if (p) {
4151 retval = security_task_getscheduler(p);
4152 if (!retval)
4153 retval = p->policy;
4154 }
4155 read_unlock(&tasklist_lock);
4156
4157 out_nounlock:
4158 return retval;
4159 }
4160
4161 /**
4162 * sys_sched_getscheduler - get the RT priority of a thread
4163 * @pid: the pid in question.
4164 * @param: structure containing the RT priority.
4165 */
4166 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4167 {
4168 struct sched_param lp;
4169 int retval = -EINVAL;
4170 task_t *p;
4171
4172 if (!param || pid < 0)
4173 goto out_nounlock;
4174
4175 read_lock(&tasklist_lock);
4176 p = find_process_by_pid(pid);
4177 retval = -ESRCH;
4178 if (!p)
4179 goto out_unlock;
4180
4181 retval = security_task_getscheduler(p);
4182 if (retval)
4183 goto out_unlock;
4184
4185 lp.sched_priority = p->rt_priority;
4186 read_unlock(&tasklist_lock);
4187
4188 /*
4189 * This one might sleep, we cannot do it with a spinlock held ...
4190 */
4191 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4192
4193 out_nounlock:
4194 return retval;
4195
4196 out_unlock:
4197 read_unlock(&tasklist_lock);
4198 return retval;
4199 }
4200
4201 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4202 {
4203 task_t *p;
4204 int retval;
4205 cpumask_t cpus_allowed;
4206
4207 lock_cpu_hotplug();
4208 read_lock(&tasklist_lock);
4209
4210 p = find_process_by_pid(pid);
4211 if (!p) {
4212 read_unlock(&tasklist_lock);
4213 unlock_cpu_hotplug();
4214 return -ESRCH;
4215 }
4216
4217 /*
4218 * It is not safe to call set_cpus_allowed with the
4219 * tasklist_lock held. We will bump the task_struct's
4220 * usage count and then drop tasklist_lock.
4221 */
4222 get_task_struct(p);
4223 read_unlock(&tasklist_lock);
4224
4225 retval = -EPERM;
4226 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4227 !capable(CAP_SYS_NICE))
4228 goto out_unlock;
4229
4230 retval = security_task_setscheduler(p, 0, NULL);
4231 if (retval)
4232 goto out_unlock;
4233
4234 cpus_allowed = cpuset_cpus_allowed(p);
4235 cpus_and(new_mask, new_mask, cpus_allowed);
4236 retval = set_cpus_allowed(p, new_mask);
4237
4238 out_unlock:
4239 put_task_struct(p);
4240 unlock_cpu_hotplug();
4241 return retval;
4242 }
4243
4244 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4245 cpumask_t *new_mask)
4246 {
4247 if (len < sizeof(cpumask_t)) {
4248 memset(new_mask, 0, sizeof(cpumask_t));
4249 } else if (len > sizeof(cpumask_t)) {
4250 len = sizeof(cpumask_t);
4251 }
4252 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4253 }
4254
4255 /**
4256 * sys_sched_setaffinity - set the cpu affinity of a process
4257 * @pid: pid of the process
4258 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4259 * @user_mask_ptr: user-space pointer to the new cpu mask
4260 */
4261 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4262 unsigned long __user *user_mask_ptr)
4263 {
4264 cpumask_t new_mask;
4265 int retval;
4266
4267 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4268 if (retval)
4269 return retval;
4270
4271 return sched_setaffinity(pid, new_mask);
4272 }
4273
4274 /*
4275 * Represents all cpu's present in the system
4276 * In systems capable of hotplug, this map could dynamically grow
4277 * as new cpu's are detected in the system via any platform specific
4278 * method, such as ACPI for e.g.
4279 */
4280
4281 cpumask_t cpu_present_map __read_mostly;
4282 EXPORT_SYMBOL(cpu_present_map);
4283
4284 #ifndef CONFIG_SMP
4285 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4286 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4287 #endif
4288
4289 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4290 {
4291 int retval;
4292 task_t *p;
4293
4294 lock_cpu_hotplug();
4295 read_lock(&tasklist_lock);
4296
4297 retval = -ESRCH;
4298 p = find_process_by_pid(pid);
4299 if (!p)
4300 goto out_unlock;
4301
4302 retval = security_task_getscheduler(p);
4303 if (retval)
4304 goto out_unlock;
4305
4306 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4307
4308 out_unlock:
4309 read_unlock(&tasklist_lock);
4310 unlock_cpu_hotplug();
4311 if (retval)
4312 return retval;
4313
4314 return 0;
4315 }
4316
4317 /**
4318 * sys_sched_getaffinity - get the cpu affinity of a process
4319 * @pid: pid of the process
4320 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4321 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4322 */
4323 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4324 unsigned long __user *user_mask_ptr)
4325 {
4326 int ret;
4327 cpumask_t mask;
4328
4329 if (len < sizeof(cpumask_t))
4330 return -EINVAL;
4331
4332 ret = sched_getaffinity(pid, &mask);
4333 if (ret < 0)
4334 return ret;
4335
4336 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4337 return -EFAULT;
4338
4339 return sizeof(cpumask_t);
4340 }
4341
4342 /**
4343 * sys_sched_yield - yield the current processor to other threads.
4344 *
4345 * this function yields the current CPU by moving the calling thread
4346 * to the expired array. If there are no other threads running on this
4347 * CPU then this function will return.
4348 */
4349 asmlinkage long sys_sched_yield(void)
4350 {
4351 runqueue_t *rq = this_rq_lock();
4352 prio_array_t *array = current->array;
4353 prio_array_t *target = rq->expired;
4354
4355 schedstat_inc(rq, yld_cnt);
4356 /*
4357 * We implement yielding by moving the task into the expired
4358 * queue.
4359 *
4360 * (special rule: RT tasks will just roundrobin in the active
4361 * array.)
4362 */
4363 if (rt_task(current))
4364 target = rq->active;
4365
4366 if (array->nr_active == 1) {
4367 schedstat_inc(rq, yld_act_empty);
4368 if (!rq->expired->nr_active)
4369 schedstat_inc(rq, yld_both_empty);
4370 } else if (!rq->expired->nr_active)
4371 schedstat_inc(rq, yld_exp_empty);
4372
4373 if (array != target) {
4374 dequeue_task(current, array);
4375 enqueue_task(current, target);
4376 } else
4377 /*
4378 * requeue_task is cheaper so perform that if possible.
4379 */
4380 requeue_task(current, array);
4381
4382 /*
4383 * Since we are going to call schedule() anyway, there's
4384 * no need to preempt or enable interrupts:
4385 */
4386 __release(rq->lock);
4387 _raw_spin_unlock(&rq->lock);
4388 preempt_enable_no_resched();
4389
4390 schedule();
4391
4392 return 0;
4393 }
4394
4395 static inline int __resched_legal(void)
4396 {
4397 if (unlikely(preempt_count()))
4398 return 0;
4399 if (unlikely(system_state != SYSTEM_RUNNING))
4400 return 0;
4401 return 1;
4402 }
4403
4404 static void __cond_resched(void)
4405 {
4406 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4407 __might_sleep(__FILE__, __LINE__);
4408 #endif
4409 /*
4410 * The BKS might be reacquired before we have dropped
4411 * PREEMPT_ACTIVE, which could trigger a second
4412 * cond_resched() call.
4413 */
4414 do {
4415 add_preempt_count(PREEMPT_ACTIVE);
4416 schedule();
4417 sub_preempt_count(PREEMPT_ACTIVE);
4418 } while (need_resched());
4419 }
4420
4421 int __sched cond_resched(void)
4422 {
4423 if (need_resched() && __resched_legal()) {
4424 __cond_resched();
4425 return 1;
4426 }
4427 return 0;
4428 }
4429 EXPORT_SYMBOL(cond_resched);
4430
4431 /*
4432 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4433 * call schedule, and on return reacquire the lock.
4434 *
4435 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4436 * operations here to prevent schedule() from being called twice (once via
4437 * spin_unlock(), once by hand).
4438 */
4439 int cond_resched_lock(spinlock_t *lock)
4440 {
4441 int ret = 0;
4442
4443 if (need_lockbreak(lock)) {
4444 spin_unlock(lock);
4445 cpu_relax();
4446 ret = 1;
4447 spin_lock(lock);
4448 }
4449 if (need_resched() && __resched_legal()) {
4450 _raw_spin_unlock(lock);
4451 preempt_enable_no_resched();
4452 __cond_resched();
4453 ret = 1;
4454 spin_lock(lock);
4455 }
4456 return ret;
4457 }
4458 EXPORT_SYMBOL(cond_resched_lock);
4459
4460 int __sched cond_resched_softirq(void)
4461 {
4462 BUG_ON(!in_softirq());
4463
4464 if (need_resched() && __resched_legal()) {
4465 raw_local_irq_disable();
4466 _local_bh_enable();
4467 raw_local_irq_enable();
4468 __cond_resched();
4469 local_bh_disable();
4470 return 1;
4471 }
4472 return 0;
4473 }
4474 EXPORT_SYMBOL(cond_resched_softirq);
4475
4476 /**
4477 * yield - yield the current processor to other threads.
4478 *
4479 * this is a shortcut for kernel-space yielding - it marks the
4480 * thread runnable and calls sys_sched_yield().
4481 */
4482 void __sched yield(void)
4483 {
4484 set_current_state(TASK_RUNNING);
4485 sys_sched_yield();
4486 }
4487
4488 EXPORT_SYMBOL(yield);
4489
4490 /*
4491 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4492 * that process accounting knows that this is a task in IO wait state.
4493 *
4494 * But don't do that if it is a deliberate, throttling IO wait (this task
4495 * has set its backing_dev_info: the queue against which it should throttle)
4496 */
4497 void __sched io_schedule(void)
4498 {
4499 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4500
4501 atomic_inc(&rq->nr_iowait);
4502 schedule();
4503 atomic_dec(&rq->nr_iowait);
4504 }
4505
4506 EXPORT_SYMBOL(io_schedule);
4507
4508 long __sched io_schedule_timeout(long timeout)
4509 {
4510 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4511 long ret;
4512
4513 atomic_inc(&rq->nr_iowait);
4514 ret = schedule_timeout(timeout);
4515 atomic_dec(&rq->nr_iowait);
4516 return ret;
4517 }
4518
4519 /**
4520 * sys_sched_get_priority_max - return maximum RT priority.
4521 * @policy: scheduling class.
4522 *
4523 * this syscall returns the maximum rt_priority that can be used
4524 * by a given scheduling class.
4525 */
4526 asmlinkage long sys_sched_get_priority_max(int policy)
4527 {
4528 int ret = -EINVAL;
4529
4530 switch (policy) {
4531 case SCHED_FIFO:
4532 case SCHED_RR:
4533 ret = MAX_USER_RT_PRIO-1;
4534 break;
4535 case SCHED_NORMAL:
4536 case SCHED_BATCH:
4537 ret = 0;
4538 break;
4539 }
4540 return ret;
4541 }
4542
4543 /**
4544 * sys_sched_get_priority_min - return minimum RT priority.
4545 * @policy: scheduling class.
4546 *
4547 * this syscall returns the minimum rt_priority that can be used
4548 * by a given scheduling class.
4549 */
4550 asmlinkage long sys_sched_get_priority_min(int policy)
4551 {
4552 int ret = -EINVAL;
4553
4554 switch (policy) {
4555 case SCHED_FIFO:
4556 case SCHED_RR:
4557 ret = 1;
4558 break;
4559 case SCHED_NORMAL:
4560 case SCHED_BATCH:
4561 ret = 0;
4562 }
4563 return ret;
4564 }
4565
4566 /**
4567 * sys_sched_rr_get_interval - return the default timeslice of a process.
4568 * @pid: pid of the process.
4569 * @interval: userspace pointer to the timeslice value.
4570 *
4571 * this syscall writes the default timeslice value of a given process
4572 * into the user-space timespec buffer. A value of '0' means infinity.
4573 */
4574 asmlinkage
4575 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4576 {
4577 int retval = -EINVAL;
4578 struct timespec t;
4579 task_t *p;
4580
4581 if (pid < 0)
4582 goto out_nounlock;
4583
4584 retval = -ESRCH;
4585 read_lock(&tasklist_lock);
4586 p = find_process_by_pid(pid);
4587 if (!p)
4588 goto out_unlock;
4589
4590 retval = security_task_getscheduler(p);
4591 if (retval)
4592 goto out_unlock;
4593
4594 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4595 0 : task_timeslice(p), &t);
4596 read_unlock(&tasklist_lock);
4597 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4598 out_nounlock:
4599 return retval;
4600 out_unlock:
4601 read_unlock(&tasklist_lock);
4602 return retval;
4603 }
4604
4605 static inline struct task_struct *eldest_child(struct task_struct *p)
4606 {
4607 if (list_empty(&p->children)) return NULL;
4608 return list_entry(p->children.next,struct task_struct,sibling);
4609 }
4610
4611 static inline struct task_struct *older_sibling(struct task_struct *p)
4612 {
4613 if (p->sibling.prev==&p->parent->children) return NULL;
4614 return list_entry(p->sibling.prev,struct task_struct,sibling);
4615 }
4616
4617 static inline struct task_struct *younger_sibling(struct task_struct *p)
4618 {
4619 if (p->sibling.next==&p->parent->children) return NULL;
4620 return list_entry(p->sibling.next,struct task_struct,sibling);
4621 }
4622
4623 static void show_task(task_t *p)
4624 {
4625 task_t *relative;
4626 unsigned state;
4627 unsigned long free = 0;
4628 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4629
4630 printk("%-13.13s ", p->comm);
4631 state = p->state ? __ffs(p->state) + 1 : 0;
4632 if (state < ARRAY_SIZE(stat_nam))
4633 printk(stat_nam[state]);
4634 else
4635 printk("?");
4636 #if (BITS_PER_LONG == 32)
4637 if (state == TASK_RUNNING)
4638 printk(" running ");
4639 else
4640 printk(" %08lX ", thread_saved_pc(p));
4641 #else
4642 if (state == TASK_RUNNING)
4643 printk(" running task ");
4644 else
4645 printk(" %016lx ", thread_saved_pc(p));
4646 #endif
4647 #ifdef CONFIG_DEBUG_STACK_USAGE
4648 {
4649 unsigned long *n = end_of_stack(p);
4650 while (!*n)
4651 n++;
4652 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4653 }
4654 #endif
4655 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4656 if ((relative = eldest_child(p)))
4657 printk("%5d ", relative->pid);
4658 else
4659 printk(" ");
4660 if ((relative = younger_sibling(p)))
4661 printk("%7d", relative->pid);
4662 else
4663 printk(" ");
4664 if ((relative = older_sibling(p)))
4665 printk(" %5d", relative->pid);
4666 else
4667 printk(" ");
4668 if (!p->mm)
4669 printk(" (L-TLB)\n");
4670 else
4671 printk(" (NOTLB)\n");
4672
4673 if (state != TASK_RUNNING)
4674 show_stack(p, NULL);
4675 }
4676
4677 void show_state(void)
4678 {
4679 task_t *g, *p;
4680
4681 #if (BITS_PER_LONG == 32)
4682 printk("\n"
4683 " sibling\n");
4684 printk(" task PC pid father child younger older\n");
4685 #else
4686 printk("\n"
4687 " sibling\n");
4688 printk(" task PC pid father child younger older\n");
4689 #endif
4690 read_lock(&tasklist_lock);
4691 do_each_thread(g, p) {
4692 /*
4693 * reset the NMI-timeout, listing all files on a slow
4694 * console might take alot of time:
4695 */
4696 touch_nmi_watchdog();
4697 show_task(p);
4698 } while_each_thread(g, p);
4699
4700 read_unlock(&tasklist_lock);
4701 debug_show_all_locks();
4702 }
4703
4704 /**
4705 * init_idle - set up an idle thread for a given CPU
4706 * @idle: task in question
4707 * @cpu: cpu the idle task belongs to
4708 *
4709 * NOTE: this function does not set the idle thread's NEED_RESCHED
4710 * flag, to make booting more robust.
4711 */
4712 void __devinit init_idle(task_t *idle, int cpu)
4713 {
4714 runqueue_t *rq = cpu_rq(cpu);
4715 unsigned long flags;
4716
4717 idle->timestamp = sched_clock();
4718 idle->sleep_avg = 0;
4719 idle->array = NULL;
4720 idle->prio = idle->normal_prio = MAX_PRIO;
4721 idle->state = TASK_RUNNING;
4722 idle->cpus_allowed = cpumask_of_cpu(cpu);
4723 set_task_cpu(idle, cpu);
4724
4725 spin_lock_irqsave(&rq->lock, flags);
4726 rq->curr = rq->idle = idle;
4727 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4728 idle->oncpu = 1;
4729 #endif
4730 spin_unlock_irqrestore(&rq->lock, flags);
4731
4732 /* Set the preempt count _outside_ the spinlocks! */
4733 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4734 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4735 #else
4736 task_thread_info(idle)->preempt_count = 0;
4737 #endif
4738 }
4739
4740 /*
4741 * In a system that switches off the HZ timer nohz_cpu_mask
4742 * indicates which cpus entered this state. This is used
4743 * in the rcu update to wait only for active cpus. For system
4744 * which do not switch off the HZ timer nohz_cpu_mask should
4745 * always be CPU_MASK_NONE.
4746 */
4747 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4748
4749 #ifdef CONFIG_SMP
4750 /*
4751 * This is how migration works:
4752 *
4753 * 1) we queue a migration_req_t structure in the source CPU's
4754 * runqueue and wake up that CPU's migration thread.
4755 * 2) we down() the locked semaphore => thread blocks.
4756 * 3) migration thread wakes up (implicitly it forces the migrated
4757 * thread off the CPU)
4758 * 4) it gets the migration request and checks whether the migrated
4759 * task is still in the wrong runqueue.
4760 * 5) if it's in the wrong runqueue then the migration thread removes
4761 * it and puts it into the right queue.
4762 * 6) migration thread up()s the semaphore.
4763 * 7) we wake up and the migration is done.
4764 */
4765
4766 /*
4767 * Change a given task's CPU affinity. Migrate the thread to a
4768 * proper CPU and schedule it away if the CPU it's executing on
4769 * is removed from the allowed bitmask.
4770 *
4771 * NOTE: the caller must have a valid reference to the task, the
4772 * task must not exit() & deallocate itself prematurely. The
4773 * call is not atomic; no spinlocks may be held.
4774 */
4775 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4776 {
4777 unsigned long flags;
4778 int ret = 0;
4779 migration_req_t req;
4780 runqueue_t *rq;
4781
4782 rq = task_rq_lock(p, &flags);
4783 if (!cpus_intersects(new_mask, cpu_online_map)) {
4784 ret = -EINVAL;
4785 goto out;
4786 }
4787
4788 p->cpus_allowed = new_mask;
4789 /* Can the task run on the task's current CPU? If so, we're done */
4790 if (cpu_isset(task_cpu(p), new_mask))
4791 goto out;
4792
4793 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4794 /* Need help from migration thread: drop lock and wait. */
4795 task_rq_unlock(rq, &flags);
4796 wake_up_process(rq->migration_thread);
4797 wait_for_completion(&req.done);
4798 tlb_migrate_finish(p->mm);
4799 return 0;
4800 }
4801 out:
4802 task_rq_unlock(rq, &flags);
4803 return ret;
4804 }
4805
4806 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4807
4808 /*
4809 * Move (not current) task off this cpu, onto dest cpu. We're doing
4810 * this because either it can't run here any more (set_cpus_allowed()
4811 * away from this CPU, or CPU going down), or because we're
4812 * attempting to rebalance this task on exec (sched_exec).
4813 *
4814 * So we race with normal scheduler movements, but that's OK, as long
4815 * as the task is no longer on this CPU.
4816 *
4817 * Returns non-zero if task was successfully migrated.
4818 */
4819 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4820 {
4821 runqueue_t *rq_dest, *rq_src;
4822 int ret = 0;
4823
4824 if (unlikely(cpu_is_offline(dest_cpu)))
4825 return ret;
4826
4827 rq_src = cpu_rq(src_cpu);
4828 rq_dest = cpu_rq(dest_cpu);
4829
4830 double_rq_lock(rq_src, rq_dest);
4831 /* Already moved. */
4832 if (task_cpu(p) != src_cpu)
4833 goto out;
4834 /* Affinity changed (again). */
4835 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4836 goto out;
4837
4838 set_task_cpu(p, dest_cpu);
4839 if (p->array) {
4840 /*
4841 * Sync timestamp with rq_dest's before activating.
4842 * The same thing could be achieved by doing this step
4843 * afterwards, and pretending it was a local activate.
4844 * This way is cleaner and logically correct.
4845 */
4846 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4847 + rq_dest->timestamp_last_tick;
4848 deactivate_task(p, rq_src);
4849 activate_task(p, rq_dest, 0);
4850 if (TASK_PREEMPTS_CURR(p, rq_dest))
4851 resched_task(rq_dest->curr);
4852 }
4853 ret = 1;
4854 out:
4855 double_rq_unlock(rq_src, rq_dest);
4856 return ret;
4857 }
4858
4859 /*
4860 * migration_thread - this is a highprio system thread that performs
4861 * thread migration by bumping thread off CPU then 'pushing' onto
4862 * another runqueue.
4863 */
4864 static int migration_thread(void *data)
4865 {
4866 runqueue_t *rq;
4867 int cpu = (long)data;
4868
4869 rq = cpu_rq(cpu);
4870 BUG_ON(rq->migration_thread != current);
4871
4872 set_current_state(TASK_INTERRUPTIBLE);
4873 while (!kthread_should_stop()) {
4874 struct list_head *head;
4875 migration_req_t *req;
4876
4877 try_to_freeze();
4878
4879 spin_lock_irq(&rq->lock);
4880
4881 if (cpu_is_offline(cpu)) {
4882 spin_unlock_irq(&rq->lock);
4883 goto wait_to_die;
4884 }
4885
4886 if (rq->active_balance) {
4887 active_load_balance(rq, cpu);
4888 rq->active_balance = 0;
4889 }
4890
4891 head = &rq->migration_queue;
4892
4893 if (list_empty(head)) {
4894 spin_unlock_irq(&rq->lock);
4895 schedule();
4896 set_current_state(TASK_INTERRUPTIBLE);
4897 continue;
4898 }
4899 req = list_entry(head->next, migration_req_t, list);
4900 list_del_init(head->next);
4901
4902 spin_unlock(&rq->lock);
4903 __migrate_task(req->task, cpu, req->dest_cpu);
4904 local_irq_enable();
4905
4906 complete(&req->done);
4907 }
4908 __set_current_state(TASK_RUNNING);
4909 return 0;
4910
4911 wait_to_die:
4912 /* Wait for kthread_stop */
4913 set_current_state(TASK_INTERRUPTIBLE);
4914 while (!kthread_should_stop()) {
4915 schedule();
4916 set_current_state(TASK_INTERRUPTIBLE);
4917 }
4918 __set_current_state(TASK_RUNNING);
4919 return 0;
4920 }
4921
4922 #ifdef CONFIG_HOTPLUG_CPU
4923 /* Figure out where task on dead CPU should go, use force if neccessary. */
4924 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4925 {
4926 runqueue_t *rq;
4927 unsigned long flags;
4928 int dest_cpu;
4929 cpumask_t mask;
4930
4931 restart:
4932 /* On same node? */
4933 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4934 cpus_and(mask, mask, tsk->cpus_allowed);
4935 dest_cpu = any_online_cpu(mask);
4936
4937 /* On any allowed CPU? */
4938 if (dest_cpu == NR_CPUS)
4939 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4940
4941 /* No more Mr. Nice Guy. */
4942 if (dest_cpu == NR_CPUS) {
4943 rq = task_rq_lock(tsk, &flags);
4944 cpus_setall(tsk->cpus_allowed);
4945 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4946 task_rq_unlock(rq, &flags);
4947
4948 /*
4949 * Don't tell them about moving exiting tasks or
4950 * kernel threads (both mm NULL), since they never
4951 * leave kernel.
4952 */
4953 if (tsk->mm && printk_ratelimit())
4954 printk(KERN_INFO "process %d (%s) no "
4955 "longer affine to cpu%d\n",
4956 tsk->pid, tsk->comm, dead_cpu);
4957 }
4958 if (!__migrate_task(tsk, dead_cpu, dest_cpu))
4959 goto restart;
4960 }
4961
4962 /*
4963 * While a dead CPU has no uninterruptible tasks queued at this point,
4964 * it might still have a nonzero ->nr_uninterruptible counter, because
4965 * for performance reasons the counter is not stricly tracking tasks to
4966 * their home CPUs. So we just add the counter to another CPU's counter,
4967 * to keep the global sum constant after CPU-down:
4968 */
4969 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4970 {
4971 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4972 unsigned long flags;
4973
4974 local_irq_save(flags);
4975 double_rq_lock(rq_src, rq_dest);
4976 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4977 rq_src->nr_uninterruptible = 0;
4978 double_rq_unlock(rq_src, rq_dest);
4979 local_irq_restore(flags);
4980 }
4981
4982 /* Run through task list and migrate tasks from the dead cpu. */
4983 static void migrate_live_tasks(int src_cpu)
4984 {
4985 struct task_struct *tsk, *t;
4986
4987 write_lock_irq(&tasklist_lock);
4988
4989 do_each_thread(t, tsk) {
4990 if (tsk == current)
4991 continue;
4992
4993 if (task_cpu(tsk) == src_cpu)
4994 move_task_off_dead_cpu(src_cpu, tsk);
4995 } while_each_thread(t, tsk);
4996
4997 write_unlock_irq(&tasklist_lock);
4998 }
4999
5000 /* Schedules idle task to be the next runnable task on current CPU.
5001 * It does so by boosting its priority to highest possible and adding it to
5002 * the _front_ of runqueue. Used by CPU offline code.
5003 */
5004 void sched_idle_next(void)
5005 {
5006 int cpu = smp_processor_id();
5007 runqueue_t *rq = this_rq();
5008 struct task_struct *p = rq->idle;
5009 unsigned long flags;
5010
5011 /* cpu has to be offline */
5012 BUG_ON(cpu_online(cpu));
5013
5014 /* Strictly not necessary since rest of the CPUs are stopped by now
5015 * and interrupts disabled on current cpu.
5016 */
5017 spin_lock_irqsave(&rq->lock, flags);
5018
5019 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5020 /* Add idle task to _front_ of it's priority queue */
5021 __activate_idle_task(p, rq);
5022
5023 spin_unlock_irqrestore(&rq->lock, flags);
5024 }
5025
5026 /* Ensures that the idle task is using init_mm right before its cpu goes
5027 * offline.
5028 */
5029 void idle_task_exit(void)
5030 {
5031 struct mm_struct *mm = current->active_mm;
5032
5033 BUG_ON(cpu_online(smp_processor_id()));
5034
5035 if (mm != &init_mm)
5036 switch_mm(mm, &init_mm, current);
5037 mmdrop(mm);
5038 }
5039
5040 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
5041 {
5042 struct runqueue *rq = cpu_rq(dead_cpu);
5043
5044 /* Must be exiting, otherwise would be on tasklist. */
5045 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
5046
5047 /* Cannot have done final schedule yet: would have vanished. */
5048 BUG_ON(tsk->flags & PF_DEAD);
5049
5050 get_task_struct(tsk);
5051
5052 /*
5053 * Drop lock around migration; if someone else moves it,
5054 * that's OK. No task can be added to this CPU, so iteration is
5055 * fine.
5056 */
5057 spin_unlock_irq(&rq->lock);
5058 move_task_off_dead_cpu(dead_cpu, tsk);
5059 spin_lock_irq(&rq->lock);
5060
5061 put_task_struct(tsk);
5062 }
5063
5064 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5065 static void migrate_dead_tasks(unsigned int dead_cpu)
5066 {
5067 unsigned arr, i;
5068 struct runqueue *rq = cpu_rq(dead_cpu);
5069
5070 for (arr = 0; arr < 2; arr++) {
5071 for (i = 0; i < MAX_PRIO; i++) {
5072 struct list_head *list = &rq->arrays[arr].queue[i];
5073 while (!list_empty(list))
5074 migrate_dead(dead_cpu,
5075 list_entry(list->next, task_t,
5076 run_list));
5077 }
5078 }
5079 }
5080 #endif /* CONFIG_HOTPLUG_CPU */
5081
5082 /*
5083 * migration_call - callback that gets triggered when a CPU is added.
5084 * Here we can start up the necessary migration thread for the new CPU.
5085 */
5086 static int __cpuinit migration_call(struct notifier_block *nfb,
5087 unsigned long action,
5088 void *hcpu)
5089 {
5090 int cpu = (long)hcpu;
5091 struct task_struct *p;
5092 struct runqueue *rq;
5093 unsigned long flags;
5094
5095 switch (action) {
5096 case CPU_UP_PREPARE:
5097 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5098 if (IS_ERR(p))
5099 return NOTIFY_BAD;
5100 p->flags |= PF_NOFREEZE;
5101 kthread_bind(p, cpu);
5102 /* Must be high prio: stop_machine expects to yield to it. */
5103 rq = task_rq_lock(p, &flags);
5104 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5105 task_rq_unlock(rq, &flags);
5106 cpu_rq(cpu)->migration_thread = p;
5107 break;
5108 case CPU_ONLINE:
5109 /* Strictly unneccessary, as first user will wake it. */
5110 wake_up_process(cpu_rq(cpu)->migration_thread);
5111 break;
5112 #ifdef CONFIG_HOTPLUG_CPU
5113 case CPU_UP_CANCELED:
5114 if (!cpu_rq(cpu)->migration_thread)
5115 break;
5116 /* Unbind it from offline cpu so it can run. Fall thru. */
5117 kthread_bind(cpu_rq(cpu)->migration_thread,
5118 any_online_cpu(cpu_online_map));
5119 kthread_stop(cpu_rq(cpu)->migration_thread);
5120 cpu_rq(cpu)->migration_thread = NULL;
5121 break;
5122 case CPU_DEAD:
5123 migrate_live_tasks(cpu);
5124 rq = cpu_rq(cpu);
5125 kthread_stop(rq->migration_thread);
5126 rq->migration_thread = NULL;
5127 /* Idle task back to normal (off runqueue, low prio) */
5128 rq = task_rq_lock(rq->idle, &flags);
5129 deactivate_task(rq->idle, rq);
5130 rq->idle->static_prio = MAX_PRIO;
5131 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5132 migrate_dead_tasks(cpu);
5133 task_rq_unlock(rq, &flags);
5134 migrate_nr_uninterruptible(rq);
5135 BUG_ON(rq->nr_running != 0);
5136
5137 /* No need to migrate the tasks: it was best-effort if
5138 * they didn't do lock_cpu_hotplug(). Just wake up
5139 * the requestors. */
5140 spin_lock_irq(&rq->lock);
5141 while (!list_empty(&rq->migration_queue)) {
5142 migration_req_t *req;
5143 req = list_entry(rq->migration_queue.next,
5144 migration_req_t, list);
5145 list_del_init(&req->list);
5146 complete(&req->done);
5147 }
5148 spin_unlock_irq(&rq->lock);
5149 break;
5150 #endif
5151 }
5152 return NOTIFY_OK;
5153 }
5154
5155 /* Register at highest priority so that task migration (migrate_all_tasks)
5156 * happens before everything else.
5157 */
5158 static struct notifier_block __cpuinitdata migration_notifier = {
5159 .notifier_call = migration_call,
5160 .priority = 10
5161 };
5162
5163 int __init migration_init(void)
5164 {
5165 void *cpu = (void *)(long)smp_processor_id();
5166 /* Start one for boot CPU. */
5167 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5168 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5169 register_cpu_notifier(&migration_notifier);
5170 return 0;
5171 }
5172 #endif
5173
5174 #ifdef CONFIG_SMP
5175 #undef SCHED_DOMAIN_DEBUG
5176 #ifdef SCHED_DOMAIN_DEBUG
5177 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5178 {
5179 int level = 0;
5180
5181 if (!sd) {
5182 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5183 return;
5184 }
5185
5186 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5187
5188 do {
5189 int i;
5190 char str[NR_CPUS];
5191 struct sched_group *group = sd->groups;
5192 cpumask_t groupmask;
5193
5194 cpumask_scnprintf(str, NR_CPUS, sd->span);
5195 cpus_clear(groupmask);
5196
5197 printk(KERN_DEBUG);
5198 for (i = 0; i < level + 1; i++)
5199 printk(" ");
5200 printk("domain %d: ", level);
5201
5202 if (!(sd->flags & SD_LOAD_BALANCE)) {
5203 printk("does not load-balance\n");
5204 if (sd->parent)
5205 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5206 break;
5207 }
5208
5209 printk("span %s\n", str);
5210
5211 if (!cpu_isset(cpu, sd->span))
5212 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5213 if (!cpu_isset(cpu, group->cpumask))
5214 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5215
5216 printk(KERN_DEBUG);
5217 for (i = 0; i < level + 2; i++)
5218 printk(" ");
5219 printk("groups:");
5220 do {
5221 if (!group) {
5222 printk("\n");
5223 printk(KERN_ERR "ERROR: group is NULL\n");
5224 break;
5225 }
5226
5227 if (!group->cpu_power) {
5228 printk("\n");
5229 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5230 }
5231
5232 if (!cpus_weight(group->cpumask)) {
5233 printk("\n");
5234 printk(KERN_ERR "ERROR: empty group\n");
5235 }
5236
5237 if (cpus_intersects(groupmask, group->cpumask)) {
5238 printk("\n");
5239 printk(KERN_ERR "ERROR: repeated CPUs\n");
5240 }
5241
5242 cpus_or(groupmask, groupmask, group->cpumask);
5243
5244 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5245 printk(" %s", str);
5246
5247 group = group->next;
5248 } while (group != sd->groups);
5249 printk("\n");
5250
5251 if (!cpus_equal(sd->span, groupmask))
5252 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5253
5254 level++;
5255 sd = sd->parent;
5256
5257 if (sd) {
5258 if (!cpus_subset(groupmask, sd->span))
5259 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5260 }
5261
5262 } while (sd);
5263 }
5264 #else
5265 #define sched_domain_debug(sd, cpu) {}
5266 #endif
5267
5268 static int sd_degenerate(struct sched_domain *sd)
5269 {
5270 if (cpus_weight(sd->span) == 1)
5271 return 1;
5272
5273 /* Following flags need at least 2 groups */
5274 if (sd->flags & (SD_LOAD_BALANCE |
5275 SD_BALANCE_NEWIDLE |
5276 SD_BALANCE_FORK |
5277 SD_BALANCE_EXEC)) {
5278 if (sd->groups != sd->groups->next)
5279 return 0;
5280 }
5281
5282 /* Following flags don't use groups */
5283 if (sd->flags & (SD_WAKE_IDLE |
5284 SD_WAKE_AFFINE |
5285 SD_WAKE_BALANCE))
5286 return 0;
5287
5288 return 1;
5289 }
5290
5291 static int sd_parent_degenerate(struct sched_domain *sd,
5292 struct sched_domain *parent)
5293 {
5294 unsigned long cflags = sd->flags, pflags = parent->flags;
5295
5296 if (sd_degenerate(parent))
5297 return 1;
5298
5299 if (!cpus_equal(sd->span, parent->span))
5300 return 0;
5301
5302 /* Does parent contain flags not in child? */
5303 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5304 if (cflags & SD_WAKE_AFFINE)
5305 pflags &= ~SD_WAKE_BALANCE;
5306 /* Flags needing groups don't count if only 1 group in parent */
5307 if (parent->groups == parent->groups->next) {
5308 pflags &= ~(SD_LOAD_BALANCE |
5309 SD_BALANCE_NEWIDLE |
5310 SD_BALANCE_FORK |
5311 SD_BALANCE_EXEC);
5312 }
5313 if (~cflags & pflags)
5314 return 0;
5315
5316 return 1;
5317 }
5318
5319 /*
5320 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5321 * hold the hotplug lock.
5322 */
5323 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5324 {
5325 runqueue_t *rq = cpu_rq(cpu);
5326 struct sched_domain *tmp;
5327
5328 /* Remove the sched domains which do not contribute to scheduling. */
5329 for (tmp = sd; tmp; tmp = tmp->parent) {
5330 struct sched_domain *parent = tmp->parent;
5331 if (!parent)
5332 break;
5333 if (sd_parent_degenerate(tmp, parent))
5334 tmp->parent = parent->parent;
5335 }
5336
5337 if (sd && sd_degenerate(sd))
5338 sd = sd->parent;
5339
5340 sched_domain_debug(sd, cpu);
5341
5342 rcu_assign_pointer(rq->sd, sd);
5343 }
5344
5345 /* cpus with isolated domains */
5346 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5347
5348 /* Setup the mask of cpus configured for isolated domains */
5349 static int __init isolated_cpu_setup(char *str)
5350 {
5351 int ints[NR_CPUS], i;
5352
5353 str = get_options(str, ARRAY_SIZE(ints), ints);
5354 cpus_clear(cpu_isolated_map);
5355 for (i = 1; i <= ints[0]; i++)
5356 if (ints[i] < NR_CPUS)
5357 cpu_set(ints[i], cpu_isolated_map);
5358 return 1;
5359 }
5360
5361 __setup ("isolcpus=", isolated_cpu_setup);
5362
5363 /*
5364 * init_sched_build_groups takes an array of groups, the cpumask we wish
5365 * to span, and a pointer to a function which identifies what group a CPU
5366 * belongs to. The return value of group_fn must be a valid index into the
5367 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5368 * keep track of groups covered with a cpumask_t).
5369 *
5370 * init_sched_build_groups will build a circular linked list of the groups
5371 * covered by the given span, and will set each group's ->cpumask correctly,
5372 * and ->cpu_power to 0.
5373 */
5374 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5375 int (*group_fn)(int cpu))
5376 {
5377 struct sched_group *first = NULL, *last = NULL;
5378 cpumask_t covered = CPU_MASK_NONE;
5379 int i;
5380
5381 for_each_cpu_mask(i, span) {
5382 int group = group_fn(i);
5383 struct sched_group *sg = &groups[group];
5384 int j;
5385
5386 if (cpu_isset(i, covered))
5387 continue;
5388
5389 sg->cpumask = CPU_MASK_NONE;
5390 sg->cpu_power = 0;
5391
5392 for_each_cpu_mask(j, span) {
5393 if (group_fn(j) != group)
5394 continue;
5395
5396 cpu_set(j, covered);
5397 cpu_set(j, sg->cpumask);
5398 }
5399 if (!first)
5400 first = sg;
5401 if (last)
5402 last->next = sg;
5403 last = sg;
5404 }
5405 last->next = first;
5406 }
5407
5408 #define SD_NODES_PER_DOMAIN 16
5409
5410 /*
5411 * Self-tuning task migration cost measurement between source and target CPUs.
5412 *
5413 * This is done by measuring the cost of manipulating buffers of varying
5414 * sizes. For a given buffer-size here are the steps that are taken:
5415 *
5416 * 1) the source CPU reads+dirties a shared buffer
5417 * 2) the target CPU reads+dirties the same shared buffer
5418 *
5419 * We measure how long they take, in the following 4 scenarios:
5420 *
5421 * - source: CPU1, target: CPU2 | cost1
5422 * - source: CPU2, target: CPU1 | cost2
5423 * - source: CPU1, target: CPU1 | cost3
5424 * - source: CPU2, target: CPU2 | cost4
5425 *
5426 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5427 * the cost of migration.
5428 *
5429 * We then start off from a small buffer-size and iterate up to larger
5430 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5431 * doing a maximum search for the cost. (The maximum cost for a migration
5432 * normally occurs when the working set size is around the effective cache
5433 * size.)
5434 */
5435 #define SEARCH_SCOPE 2
5436 #define MIN_CACHE_SIZE (64*1024U)
5437 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5438 #define ITERATIONS 1
5439 #define SIZE_THRESH 130
5440 #define COST_THRESH 130
5441
5442 /*
5443 * The migration cost is a function of 'domain distance'. Domain
5444 * distance is the number of steps a CPU has to iterate down its
5445 * domain tree to share a domain with the other CPU. The farther
5446 * two CPUs are from each other, the larger the distance gets.
5447 *
5448 * Note that we use the distance only to cache measurement results,
5449 * the distance value is not used numerically otherwise. When two
5450 * CPUs have the same distance it is assumed that the migration
5451 * cost is the same. (this is a simplification but quite practical)
5452 */
5453 #define MAX_DOMAIN_DISTANCE 32
5454
5455 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5456 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5457 /*
5458 * Architectures may override the migration cost and thus avoid
5459 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5460 * virtualized hardware:
5461 */
5462 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5463 CONFIG_DEFAULT_MIGRATION_COST
5464 #else
5465 -1LL
5466 #endif
5467 };
5468
5469 /*
5470 * Allow override of migration cost - in units of microseconds.
5471 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5472 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5473 */
5474 static int __init migration_cost_setup(char *str)
5475 {
5476 int ints[MAX_DOMAIN_DISTANCE+1], i;
5477
5478 str = get_options(str, ARRAY_SIZE(ints), ints);
5479
5480 printk("#ints: %d\n", ints[0]);
5481 for (i = 1; i <= ints[0]; i++) {
5482 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5483 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5484 }
5485 return 1;
5486 }
5487
5488 __setup ("migration_cost=", migration_cost_setup);
5489
5490 /*
5491 * Global multiplier (divisor) for migration-cutoff values,
5492 * in percentiles. E.g. use a value of 150 to get 1.5 times
5493 * longer cache-hot cutoff times.
5494 *
5495 * (We scale it from 100 to 128 to long long handling easier.)
5496 */
5497
5498 #define MIGRATION_FACTOR_SCALE 128
5499
5500 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5501
5502 static int __init setup_migration_factor(char *str)
5503 {
5504 get_option(&str, &migration_factor);
5505 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5506 return 1;
5507 }
5508
5509 __setup("migration_factor=", setup_migration_factor);
5510
5511 /*
5512 * Estimated distance of two CPUs, measured via the number of domains
5513 * we have to pass for the two CPUs to be in the same span:
5514 */
5515 static unsigned long domain_distance(int cpu1, int cpu2)
5516 {
5517 unsigned long distance = 0;
5518 struct sched_domain *sd;
5519
5520 for_each_domain(cpu1, sd) {
5521 WARN_ON(!cpu_isset(cpu1, sd->span));
5522 if (cpu_isset(cpu2, sd->span))
5523 return distance;
5524 distance++;
5525 }
5526 if (distance >= MAX_DOMAIN_DISTANCE) {
5527 WARN_ON(1);
5528 distance = MAX_DOMAIN_DISTANCE-1;
5529 }
5530
5531 return distance;
5532 }
5533
5534 static unsigned int migration_debug;
5535
5536 static int __init setup_migration_debug(char *str)
5537 {
5538 get_option(&str, &migration_debug);
5539 return 1;
5540 }
5541
5542 __setup("migration_debug=", setup_migration_debug);
5543
5544 /*
5545 * Maximum cache-size that the scheduler should try to measure.
5546 * Architectures with larger caches should tune this up during
5547 * bootup. Gets used in the domain-setup code (i.e. during SMP
5548 * bootup).
5549 */
5550 unsigned int max_cache_size;
5551
5552 static int __init setup_max_cache_size(char *str)
5553 {
5554 get_option(&str, &max_cache_size);
5555 return 1;
5556 }
5557
5558 __setup("max_cache_size=", setup_max_cache_size);
5559
5560 /*
5561 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5562 * is the operation that is timed, so we try to generate unpredictable
5563 * cachemisses that still end up filling the L2 cache:
5564 */
5565 static void touch_cache(void *__cache, unsigned long __size)
5566 {
5567 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5568 chunk2 = 2*size/3;
5569 unsigned long *cache = __cache;
5570 int i;
5571
5572 for (i = 0; i < size/6; i += 8) {
5573 switch (i % 6) {
5574 case 0: cache[i]++;
5575 case 1: cache[size-1-i]++;
5576 case 2: cache[chunk1-i]++;
5577 case 3: cache[chunk1+i]++;
5578 case 4: cache[chunk2-i]++;
5579 case 5: cache[chunk2+i]++;
5580 }
5581 }
5582 }
5583
5584 /*
5585 * Measure the cache-cost of one task migration. Returns in units of nsec.
5586 */
5587 static unsigned long long measure_one(void *cache, unsigned long size,
5588 int source, int target)
5589 {
5590 cpumask_t mask, saved_mask;
5591 unsigned long long t0, t1, t2, t3, cost;
5592
5593 saved_mask = current->cpus_allowed;
5594
5595 /*
5596 * Flush source caches to RAM and invalidate them:
5597 */
5598 sched_cacheflush();
5599
5600 /*
5601 * Migrate to the source CPU:
5602 */
5603 mask = cpumask_of_cpu(source);
5604 set_cpus_allowed(current, mask);
5605 WARN_ON(smp_processor_id() != source);
5606
5607 /*
5608 * Dirty the working set:
5609 */
5610 t0 = sched_clock();
5611 touch_cache(cache, size);
5612 t1 = sched_clock();
5613
5614 /*
5615 * Migrate to the target CPU, dirty the L2 cache and access
5616 * the shared buffer. (which represents the working set
5617 * of a migrated task.)
5618 */
5619 mask = cpumask_of_cpu(target);
5620 set_cpus_allowed(current, mask);
5621 WARN_ON(smp_processor_id() != target);
5622
5623 t2 = sched_clock();
5624 touch_cache(cache, size);
5625 t3 = sched_clock();
5626
5627 cost = t1-t0 + t3-t2;
5628
5629 if (migration_debug >= 2)
5630 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5631 source, target, t1-t0, t1-t0, t3-t2, cost);
5632 /*
5633 * Flush target caches to RAM and invalidate them:
5634 */
5635 sched_cacheflush();
5636
5637 set_cpus_allowed(current, saved_mask);
5638
5639 return cost;
5640 }
5641
5642 /*
5643 * Measure a series of task migrations and return the average
5644 * result. Since this code runs early during bootup the system
5645 * is 'undisturbed' and the average latency makes sense.
5646 *
5647 * The algorithm in essence auto-detects the relevant cache-size,
5648 * so it will properly detect different cachesizes for different
5649 * cache-hierarchies, depending on how the CPUs are connected.
5650 *
5651 * Architectures can prime the upper limit of the search range via
5652 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5653 */
5654 static unsigned long long
5655 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5656 {
5657 unsigned long long cost1, cost2;
5658 int i;
5659
5660 /*
5661 * Measure the migration cost of 'size' bytes, over an
5662 * average of 10 runs:
5663 *
5664 * (We perturb the cache size by a small (0..4k)
5665 * value to compensate size/alignment related artifacts.
5666 * We also subtract the cost of the operation done on
5667 * the same CPU.)
5668 */
5669 cost1 = 0;
5670
5671 /*
5672 * dry run, to make sure we start off cache-cold on cpu1,
5673 * and to get any vmalloc pagefaults in advance:
5674 */
5675 measure_one(cache, size, cpu1, cpu2);
5676 for (i = 0; i < ITERATIONS; i++)
5677 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5678
5679 measure_one(cache, size, cpu2, cpu1);
5680 for (i = 0; i < ITERATIONS; i++)
5681 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5682
5683 /*
5684 * (We measure the non-migrating [cached] cost on both
5685 * cpu1 and cpu2, to handle CPUs with different speeds)
5686 */
5687 cost2 = 0;
5688
5689 measure_one(cache, size, cpu1, cpu1);
5690 for (i = 0; i < ITERATIONS; i++)
5691 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5692
5693 measure_one(cache, size, cpu2, cpu2);
5694 for (i = 0; i < ITERATIONS; i++)
5695 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5696
5697 /*
5698 * Get the per-iteration migration cost:
5699 */
5700 do_div(cost1, 2*ITERATIONS);
5701 do_div(cost2, 2*ITERATIONS);
5702
5703 return cost1 - cost2;
5704 }
5705
5706 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5707 {
5708 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5709 unsigned int max_size, size, size_found = 0;
5710 long long cost = 0, prev_cost;
5711 void *cache;
5712
5713 /*
5714 * Search from max_cache_size*5 down to 64K - the real relevant
5715 * cachesize has to lie somewhere inbetween.
5716 */
5717 if (max_cache_size) {
5718 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5719 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5720 } else {
5721 /*
5722 * Since we have no estimation about the relevant
5723 * search range
5724 */
5725 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5726 size = MIN_CACHE_SIZE;
5727 }
5728
5729 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5730 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5731 return 0;
5732 }
5733
5734 /*
5735 * Allocate the working set:
5736 */
5737 cache = vmalloc(max_size);
5738 if (!cache) {
5739 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5740 return 1000000; // return 1 msec on very small boxen
5741 }
5742
5743 while (size <= max_size) {
5744 prev_cost = cost;
5745 cost = measure_cost(cpu1, cpu2, cache, size);
5746
5747 /*
5748 * Update the max:
5749 */
5750 if (cost > 0) {
5751 if (max_cost < cost) {
5752 max_cost = cost;
5753 size_found = size;
5754 }
5755 }
5756 /*
5757 * Calculate average fluctuation, we use this to prevent
5758 * noise from triggering an early break out of the loop:
5759 */
5760 fluct = abs(cost - prev_cost);
5761 avg_fluct = (avg_fluct + fluct)/2;
5762
5763 if (migration_debug)
5764 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5765 cpu1, cpu2, size,
5766 (long)cost / 1000000,
5767 ((long)cost / 100000) % 10,
5768 (long)max_cost / 1000000,
5769 ((long)max_cost / 100000) % 10,
5770 domain_distance(cpu1, cpu2),
5771 cost, avg_fluct);
5772
5773 /*
5774 * If we iterated at least 20% past the previous maximum,
5775 * and the cost has dropped by more than 20% already,
5776 * (taking fluctuations into account) then we assume to
5777 * have found the maximum and break out of the loop early:
5778 */
5779 if (size_found && (size*100 > size_found*SIZE_THRESH))
5780 if (cost+avg_fluct <= 0 ||
5781 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5782
5783 if (migration_debug)
5784 printk("-> found max.\n");
5785 break;
5786 }
5787 /*
5788 * Increase the cachesize in 10% steps:
5789 */
5790 size = size * 10 / 9;
5791 }
5792
5793 if (migration_debug)
5794 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5795 cpu1, cpu2, size_found, max_cost);
5796
5797 vfree(cache);
5798
5799 /*
5800 * A task is considered 'cache cold' if at least 2 times
5801 * the worst-case cost of migration has passed.
5802 *
5803 * (this limit is only listened to if the load-balancing
5804 * situation is 'nice' - if there is a large imbalance we
5805 * ignore it for the sake of CPU utilization and
5806 * processing fairness.)
5807 */
5808 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5809 }
5810
5811 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5812 {
5813 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5814 unsigned long j0, j1, distance, max_distance = 0;
5815 struct sched_domain *sd;
5816
5817 j0 = jiffies;
5818
5819 /*
5820 * First pass - calculate the cacheflush times:
5821 */
5822 for_each_cpu_mask(cpu1, *cpu_map) {
5823 for_each_cpu_mask(cpu2, *cpu_map) {
5824 if (cpu1 == cpu2)
5825 continue;
5826 distance = domain_distance(cpu1, cpu2);
5827 max_distance = max(max_distance, distance);
5828 /*
5829 * No result cached yet?
5830 */
5831 if (migration_cost[distance] == -1LL)
5832 migration_cost[distance] =
5833 measure_migration_cost(cpu1, cpu2);
5834 }
5835 }
5836 /*
5837 * Second pass - update the sched domain hierarchy with
5838 * the new cache-hot-time estimations:
5839 */
5840 for_each_cpu_mask(cpu, *cpu_map) {
5841 distance = 0;
5842 for_each_domain(cpu, sd) {
5843 sd->cache_hot_time = migration_cost[distance];
5844 distance++;
5845 }
5846 }
5847 /*
5848 * Print the matrix:
5849 */
5850 if (migration_debug)
5851 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5852 max_cache_size,
5853 #ifdef CONFIG_X86
5854 cpu_khz/1000
5855 #else
5856 -1
5857 #endif
5858 );
5859 if (system_state == SYSTEM_BOOTING) {
5860 printk("migration_cost=");
5861 for (distance = 0; distance <= max_distance; distance++) {
5862 if (distance)
5863 printk(",");
5864 printk("%ld", (long)migration_cost[distance] / 1000);
5865 }
5866 printk("\n");
5867 }
5868 j1 = jiffies;
5869 if (migration_debug)
5870 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5871
5872 /*
5873 * Move back to the original CPU. NUMA-Q gets confused
5874 * if we migrate to another quad during bootup.
5875 */
5876 if (raw_smp_processor_id() != orig_cpu) {
5877 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5878 saved_mask = current->cpus_allowed;
5879
5880 set_cpus_allowed(current, mask);
5881 set_cpus_allowed(current, saved_mask);
5882 }
5883 }
5884
5885 #ifdef CONFIG_NUMA
5886
5887 /**
5888 * find_next_best_node - find the next node to include in a sched_domain
5889 * @node: node whose sched_domain we're building
5890 * @used_nodes: nodes already in the sched_domain
5891 *
5892 * Find the next node to include in a given scheduling domain. Simply
5893 * finds the closest node not already in the @used_nodes map.
5894 *
5895 * Should use nodemask_t.
5896 */
5897 static int find_next_best_node(int node, unsigned long *used_nodes)
5898 {
5899 int i, n, val, min_val, best_node = 0;
5900
5901 min_val = INT_MAX;
5902
5903 for (i = 0; i < MAX_NUMNODES; i++) {
5904 /* Start at @node */
5905 n = (node + i) % MAX_NUMNODES;
5906
5907 if (!nr_cpus_node(n))
5908 continue;
5909
5910 /* Skip already used nodes */
5911 if (test_bit(n, used_nodes))
5912 continue;
5913
5914 /* Simple min distance search */
5915 val = node_distance(node, n);
5916
5917 if (val < min_val) {
5918 min_val = val;
5919 best_node = n;
5920 }
5921 }
5922
5923 set_bit(best_node, used_nodes);
5924 return best_node;
5925 }
5926
5927 /**
5928 * sched_domain_node_span - get a cpumask for a node's sched_domain
5929 * @node: node whose cpumask we're constructing
5930 * @size: number of nodes to include in this span
5931 *
5932 * Given a node, construct a good cpumask for its sched_domain to span. It
5933 * should be one that prevents unnecessary balancing, but also spreads tasks
5934 * out optimally.
5935 */
5936 static cpumask_t sched_domain_node_span(int node)
5937 {
5938 int i;
5939 cpumask_t span, nodemask;
5940 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5941
5942 cpus_clear(span);
5943 bitmap_zero(used_nodes, MAX_NUMNODES);
5944
5945 nodemask = node_to_cpumask(node);
5946 cpus_or(span, span, nodemask);
5947 set_bit(node, used_nodes);
5948
5949 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5950 int next_node = find_next_best_node(node, used_nodes);
5951 nodemask = node_to_cpumask(next_node);
5952 cpus_or(span, span, nodemask);
5953 }
5954
5955 return span;
5956 }
5957 #endif
5958
5959 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5960 /*
5961 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5962 * can switch it on easily if needed.
5963 */
5964 #ifdef CONFIG_SCHED_SMT
5965 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5966 static struct sched_group sched_group_cpus[NR_CPUS];
5967 static int cpu_to_cpu_group(int cpu)
5968 {
5969 return cpu;
5970 }
5971 #endif
5972
5973 #ifdef CONFIG_SCHED_MC
5974 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5975 static struct sched_group *sched_group_core_bycpu[NR_CPUS];
5976 #endif
5977
5978 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5979 static int cpu_to_core_group(int cpu)
5980 {
5981 return first_cpu(cpu_sibling_map[cpu]);
5982 }
5983 #elif defined(CONFIG_SCHED_MC)
5984 static int cpu_to_core_group(int cpu)
5985 {
5986 return cpu;
5987 }
5988 #endif
5989
5990 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5991 static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
5992 static int cpu_to_phys_group(int cpu)
5993 {
5994 #if defined(CONFIG_SCHED_MC)
5995 cpumask_t mask = cpu_coregroup_map(cpu);
5996 return first_cpu(mask);
5997 #elif defined(CONFIG_SCHED_SMT)
5998 return first_cpu(cpu_sibling_map[cpu]);
5999 #else
6000 return cpu;
6001 #endif
6002 }
6003
6004 #ifdef CONFIG_NUMA
6005 /*
6006 * The init_sched_build_groups can't handle what we want to do with node
6007 * groups, so roll our own. Now each node has its own list of groups which
6008 * gets dynamically allocated.
6009 */
6010 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6011 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6012
6013 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6014 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
6015
6016 static int cpu_to_allnodes_group(int cpu)
6017 {
6018 return cpu_to_node(cpu);
6019 }
6020 static void init_numa_sched_groups_power(struct sched_group *group_head)
6021 {
6022 struct sched_group *sg = group_head;
6023 int j;
6024
6025 if (!sg)
6026 return;
6027 next_sg:
6028 for_each_cpu_mask(j, sg->cpumask) {
6029 struct sched_domain *sd;
6030
6031 sd = &per_cpu(phys_domains, j);
6032 if (j != first_cpu(sd->groups->cpumask)) {
6033 /*
6034 * Only add "power" once for each
6035 * physical package.
6036 */
6037 continue;
6038 }
6039
6040 sg->cpu_power += sd->groups->cpu_power;
6041 }
6042 sg = sg->next;
6043 if (sg != group_head)
6044 goto next_sg;
6045 }
6046 #endif
6047
6048 /* Free memory allocated for various sched_group structures */
6049 static void free_sched_groups(const cpumask_t *cpu_map)
6050 {
6051 int cpu;
6052 #ifdef CONFIG_NUMA
6053 int i;
6054
6055 for_each_cpu_mask(cpu, *cpu_map) {
6056 struct sched_group *sched_group_allnodes
6057 = sched_group_allnodes_bycpu[cpu];
6058 struct sched_group **sched_group_nodes
6059 = sched_group_nodes_bycpu[cpu];
6060
6061 if (sched_group_allnodes) {
6062 kfree(sched_group_allnodes);
6063 sched_group_allnodes_bycpu[cpu] = NULL;
6064 }
6065
6066 if (!sched_group_nodes)
6067 continue;
6068
6069 for (i = 0; i < MAX_NUMNODES; i++) {
6070 cpumask_t nodemask = node_to_cpumask(i);
6071 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6072
6073 cpus_and(nodemask, nodemask, *cpu_map);
6074 if (cpus_empty(nodemask))
6075 continue;
6076
6077 if (sg == NULL)
6078 continue;
6079 sg = sg->next;
6080 next_sg:
6081 oldsg = sg;
6082 sg = sg->next;
6083 kfree(oldsg);
6084 if (oldsg != sched_group_nodes[i])
6085 goto next_sg;
6086 }
6087 kfree(sched_group_nodes);
6088 sched_group_nodes_bycpu[cpu] = NULL;
6089 }
6090 #endif
6091 for_each_cpu_mask(cpu, *cpu_map) {
6092 if (sched_group_phys_bycpu[cpu]) {
6093 kfree(sched_group_phys_bycpu[cpu]);
6094 sched_group_phys_bycpu[cpu] = NULL;
6095 }
6096 #ifdef CONFIG_SCHED_MC
6097 if (sched_group_core_bycpu[cpu]) {
6098 kfree(sched_group_core_bycpu[cpu]);
6099 sched_group_core_bycpu[cpu] = NULL;
6100 }
6101 #endif
6102 }
6103 }
6104
6105 /*
6106 * Build sched domains for a given set of cpus and attach the sched domains
6107 * to the individual cpus
6108 */
6109 static int build_sched_domains(const cpumask_t *cpu_map)
6110 {
6111 int i;
6112 struct sched_group *sched_group_phys = NULL;
6113 #ifdef CONFIG_SCHED_MC
6114 struct sched_group *sched_group_core = NULL;
6115 #endif
6116 #ifdef CONFIG_NUMA
6117 struct sched_group **sched_group_nodes = NULL;
6118 struct sched_group *sched_group_allnodes = NULL;
6119
6120 /*
6121 * Allocate the per-node list of sched groups
6122 */
6123 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6124 GFP_KERNEL);
6125 if (!sched_group_nodes) {
6126 printk(KERN_WARNING "Can not alloc sched group node list\n");
6127 return -ENOMEM;
6128 }
6129 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6130 #endif
6131
6132 /*
6133 * Set up domains for cpus specified by the cpu_map.
6134 */
6135 for_each_cpu_mask(i, *cpu_map) {
6136 int group;
6137 struct sched_domain *sd = NULL, *p;
6138 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6139
6140 cpus_and(nodemask, nodemask, *cpu_map);
6141
6142 #ifdef CONFIG_NUMA
6143 if (cpus_weight(*cpu_map)
6144 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6145 if (!sched_group_allnodes) {
6146 sched_group_allnodes
6147 = kmalloc(sizeof(struct sched_group)
6148 * MAX_NUMNODES,
6149 GFP_KERNEL);
6150 if (!sched_group_allnodes) {
6151 printk(KERN_WARNING
6152 "Can not alloc allnodes sched group\n");
6153 goto error;
6154 }
6155 sched_group_allnodes_bycpu[i]
6156 = sched_group_allnodes;
6157 }
6158 sd = &per_cpu(allnodes_domains, i);
6159 *sd = SD_ALLNODES_INIT;
6160 sd->span = *cpu_map;
6161 group = cpu_to_allnodes_group(i);
6162 sd->groups = &sched_group_allnodes[group];
6163 p = sd;
6164 } else
6165 p = NULL;
6166
6167 sd = &per_cpu(node_domains, i);
6168 *sd = SD_NODE_INIT;
6169 sd->span = sched_domain_node_span(cpu_to_node(i));
6170 sd->parent = p;
6171 cpus_and(sd->span, sd->span, *cpu_map);
6172 #endif
6173
6174 if (!sched_group_phys) {
6175 sched_group_phys
6176 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6177 GFP_KERNEL);
6178 if (!sched_group_phys) {
6179 printk (KERN_WARNING "Can not alloc phys sched"
6180 "group\n");
6181 goto error;
6182 }
6183 sched_group_phys_bycpu[i] = sched_group_phys;
6184 }
6185
6186 p = sd;
6187 sd = &per_cpu(phys_domains, i);
6188 group = cpu_to_phys_group(i);
6189 *sd = SD_CPU_INIT;
6190 sd->span = nodemask;
6191 sd->parent = p;
6192 sd->groups = &sched_group_phys[group];
6193
6194 #ifdef CONFIG_SCHED_MC
6195 if (!sched_group_core) {
6196 sched_group_core
6197 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6198 GFP_KERNEL);
6199 if (!sched_group_core) {
6200 printk (KERN_WARNING "Can not alloc core sched"
6201 "group\n");
6202 goto error;
6203 }
6204 sched_group_core_bycpu[i] = sched_group_core;
6205 }
6206
6207 p = sd;
6208 sd = &per_cpu(core_domains, i);
6209 group = cpu_to_core_group(i);
6210 *sd = SD_MC_INIT;
6211 sd->span = cpu_coregroup_map(i);
6212 cpus_and(sd->span, sd->span, *cpu_map);
6213 sd->parent = p;
6214 sd->groups = &sched_group_core[group];
6215 #endif
6216
6217 #ifdef CONFIG_SCHED_SMT
6218 p = sd;
6219 sd = &per_cpu(cpu_domains, i);
6220 group = cpu_to_cpu_group(i);
6221 *sd = SD_SIBLING_INIT;
6222 sd->span = cpu_sibling_map[i];
6223 cpus_and(sd->span, sd->span, *cpu_map);
6224 sd->parent = p;
6225 sd->groups = &sched_group_cpus[group];
6226 #endif
6227 }
6228
6229 #ifdef CONFIG_SCHED_SMT
6230 /* Set up CPU (sibling) groups */
6231 for_each_cpu_mask(i, *cpu_map) {
6232 cpumask_t this_sibling_map = cpu_sibling_map[i];
6233 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6234 if (i != first_cpu(this_sibling_map))
6235 continue;
6236
6237 init_sched_build_groups(sched_group_cpus, this_sibling_map,
6238 &cpu_to_cpu_group);
6239 }
6240 #endif
6241
6242 #ifdef CONFIG_SCHED_MC
6243 /* Set up multi-core groups */
6244 for_each_cpu_mask(i, *cpu_map) {
6245 cpumask_t this_core_map = cpu_coregroup_map(i);
6246 cpus_and(this_core_map, this_core_map, *cpu_map);
6247 if (i != first_cpu(this_core_map))
6248 continue;
6249 init_sched_build_groups(sched_group_core, this_core_map,
6250 &cpu_to_core_group);
6251 }
6252 #endif
6253
6254
6255 /* Set up physical groups */
6256 for (i = 0; i < MAX_NUMNODES; i++) {
6257 cpumask_t nodemask = node_to_cpumask(i);
6258
6259 cpus_and(nodemask, nodemask, *cpu_map);
6260 if (cpus_empty(nodemask))
6261 continue;
6262
6263 init_sched_build_groups(sched_group_phys, nodemask,
6264 &cpu_to_phys_group);
6265 }
6266
6267 #ifdef CONFIG_NUMA
6268 /* Set up node groups */
6269 if (sched_group_allnodes)
6270 init_sched_build_groups(sched_group_allnodes, *cpu_map,
6271 &cpu_to_allnodes_group);
6272
6273 for (i = 0; i < MAX_NUMNODES; i++) {
6274 /* Set up node groups */
6275 struct sched_group *sg, *prev;
6276 cpumask_t nodemask = node_to_cpumask(i);
6277 cpumask_t domainspan;
6278 cpumask_t covered = CPU_MASK_NONE;
6279 int j;
6280
6281 cpus_and(nodemask, nodemask, *cpu_map);
6282 if (cpus_empty(nodemask)) {
6283 sched_group_nodes[i] = NULL;
6284 continue;
6285 }
6286
6287 domainspan = sched_domain_node_span(i);
6288 cpus_and(domainspan, domainspan, *cpu_map);
6289
6290 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6291 if (!sg) {
6292 printk(KERN_WARNING "Can not alloc domain group for "
6293 "node %d\n", i);
6294 goto error;
6295 }
6296 sched_group_nodes[i] = sg;
6297 for_each_cpu_mask(j, nodemask) {
6298 struct sched_domain *sd;
6299 sd = &per_cpu(node_domains, j);
6300 sd->groups = sg;
6301 }
6302 sg->cpu_power = 0;
6303 sg->cpumask = nodemask;
6304 sg->next = sg;
6305 cpus_or(covered, covered, nodemask);
6306 prev = sg;
6307
6308 for (j = 0; j < MAX_NUMNODES; j++) {
6309 cpumask_t tmp, notcovered;
6310 int n = (i + j) % MAX_NUMNODES;
6311
6312 cpus_complement(notcovered, covered);
6313 cpus_and(tmp, notcovered, *cpu_map);
6314 cpus_and(tmp, tmp, domainspan);
6315 if (cpus_empty(tmp))
6316 break;
6317
6318 nodemask = node_to_cpumask(n);
6319 cpus_and(tmp, tmp, nodemask);
6320 if (cpus_empty(tmp))
6321 continue;
6322
6323 sg = kmalloc_node(sizeof(struct sched_group),
6324 GFP_KERNEL, i);
6325 if (!sg) {
6326 printk(KERN_WARNING
6327 "Can not alloc domain group for node %d\n", j);
6328 goto error;
6329 }
6330 sg->cpu_power = 0;
6331 sg->cpumask = tmp;
6332 sg->next = prev->next;
6333 cpus_or(covered, covered, tmp);
6334 prev->next = sg;
6335 prev = sg;
6336 }
6337 }
6338 #endif
6339
6340 /* Calculate CPU power for physical packages and nodes */
6341 #ifdef CONFIG_SCHED_SMT
6342 for_each_cpu_mask(i, *cpu_map) {
6343 struct sched_domain *sd;
6344 sd = &per_cpu(cpu_domains, i);
6345 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6346 }
6347 #endif
6348 #ifdef CONFIG_SCHED_MC
6349 for_each_cpu_mask(i, *cpu_map) {
6350 int power;
6351 struct sched_domain *sd;
6352 sd = &per_cpu(core_domains, i);
6353 if (sched_smt_power_savings)
6354 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6355 else
6356 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
6357 * SCHED_LOAD_SCALE / 10;
6358 sd->groups->cpu_power = power;
6359 }
6360 #endif
6361
6362 for_each_cpu_mask(i, *cpu_map) {
6363 struct sched_domain *sd;
6364 #ifdef CONFIG_SCHED_MC
6365 sd = &per_cpu(phys_domains, i);
6366 if (i != first_cpu(sd->groups->cpumask))
6367 continue;
6368
6369 sd->groups->cpu_power = 0;
6370 if (sched_mc_power_savings || sched_smt_power_savings) {
6371 int j;
6372
6373 for_each_cpu_mask(j, sd->groups->cpumask) {
6374 struct sched_domain *sd1;
6375 sd1 = &per_cpu(core_domains, j);
6376 /*
6377 * for each core we will add once
6378 * to the group in physical domain
6379 */
6380 if (j != first_cpu(sd1->groups->cpumask))
6381 continue;
6382
6383 if (sched_smt_power_savings)
6384 sd->groups->cpu_power += sd1->groups->cpu_power;
6385 else
6386 sd->groups->cpu_power += SCHED_LOAD_SCALE;
6387 }
6388 } else
6389 /*
6390 * This has to be < 2 * SCHED_LOAD_SCALE
6391 * Lets keep it SCHED_LOAD_SCALE, so that
6392 * while calculating NUMA group's cpu_power
6393 * we can simply do
6394 * numa_group->cpu_power += phys_group->cpu_power;
6395 *
6396 * See "only add power once for each physical pkg"
6397 * comment below
6398 */
6399 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6400 #else
6401 int power;
6402 sd = &per_cpu(phys_domains, i);
6403 if (sched_smt_power_savings)
6404 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6405 else
6406 power = SCHED_LOAD_SCALE;
6407 sd->groups->cpu_power = power;
6408 #endif
6409 }
6410
6411 #ifdef CONFIG_NUMA
6412 for (i = 0; i < MAX_NUMNODES; i++)
6413 init_numa_sched_groups_power(sched_group_nodes[i]);
6414
6415 init_numa_sched_groups_power(sched_group_allnodes);
6416 #endif
6417
6418 /* Attach the domains */
6419 for_each_cpu_mask(i, *cpu_map) {
6420 struct sched_domain *sd;
6421 #ifdef CONFIG_SCHED_SMT
6422 sd = &per_cpu(cpu_domains, i);
6423 #elif defined(CONFIG_SCHED_MC)
6424 sd = &per_cpu(core_domains, i);
6425 #else
6426 sd = &per_cpu(phys_domains, i);
6427 #endif
6428 cpu_attach_domain(sd, i);
6429 }
6430 /*
6431 * Tune cache-hot values:
6432 */
6433 calibrate_migration_costs(cpu_map);
6434
6435 return 0;
6436
6437 error:
6438 free_sched_groups(cpu_map);
6439 return -ENOMEM;
6440 }
6441 /*
6442 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6443 */
6444 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6445 {
6446 cpumask_t cpu_default_map;
6447 int err;
6448
6449 /*
6450 * Setup mask for cpus without special case scheduling requirements.
6451 * For now this just excludes isolated cpus, but could be used to
6452 * exclude other special cases in the future.
6453 */
6454 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6455
6456 err = build_sched_domains(&cpu_default_map);
6457
6458 return err;
6459 }
6460
6461 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6462 {
6463 free_sched_groups(cpu_map);
6464 }
6465
6466 /*
6467 * Detach sched domains from a group of cpus specified in cpu_map
6468 * These cpus will now be attached to the NULL domain
6469 */
6470 static void detach_destroy_domains(const cpumask_t *cpu_map)
6471 {
6472 int i;
6473
6474 for_each_cpu_mask(i, *cpu_map)
6475 cpu_attach_domain(NULL, i);
6476 synchronize_sched();
6477 arch_destroy_sched_domains(cpu_map);
6478 }
6479
6480 /*
6481 * Partition sched domains as specified by the cpumasks below.
6482 * This attaches all cpus from the cpumasks to the NULL domain,
6483 * waits for a RCU quiescent period, recalculates sched
6484 * domain information and then attaches them back to the
6485 * correct sched domains
6486 * Call with hotplug lock held
6487 */
6488 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6489 {
6490 cpumask_t change_map;
6491 int err = 0;
6492
6493 cpus_and(*partition1, *partition1, cpu_online_map);
6494 cpus_and(*partition2, *partition2, cpu_online_map);
6495 cpus_or(change_map, *partition1, *partition2);
6496
6497 /* Detach sched domains from all of the affected cpus */
6498 detach_destroy_domains(&change_map);
6499 if (!cpus_empty(*partition1))
6500 err = build_sched_domains(partition1);
6501 if (!err && !cpus_empty(*partition2))
6502 err = build_sched_domains(partition2);
6503
6504 return err;
6505 }
6506
6507 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6508 int arch_reinit_sched_domains(void)
6509 {
6510 int err;
6511
6512 lock_cpu_hotplug();
6513 detach_destroy_domains(&cpu_online_map);
6514 err = arch_init_sched_domains(&cpu_online_map);
6515 unlock_cpu_hotplug();
6516
6517 return err;
6518 }
6519
6520 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6521 {
6522 int ret;
6523
6524 if (buf[0] != '0' && buf[0] != '1')
6525 return -EINVAL;
6526
6527 if (smt)
6528 sched_smt_power_savings = (buf[0] == '1');
6529 else
6530 sched_mc_power_savings = (buf[0] == '1');
6531
6532 ret = arch_reinit_sched_domains();
6533
6534 return ret ? ret : count;
6535 }
6536
6537 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6538 {
6539 int err = 0;
6540 #ifdef CONFIG_SCHED_SMT
6541 if (smt_capable())
6542 err = sysfs_create_file(&cls->kset.kobj,
6543 &attr_sched_smt_power_savings.attr);
6544 #endif
6545 #ifdef CONFIG_SCHED_MC
6546 if (!err && mc_capable())
6547 err = sysfs_create_file(&cls->kset.kobj,
6548 &attr_sched_mc_power_savings.attr);
6549 #endif
6550 return err;
6551 }
6552 #endif
6553
6554 #ifdef CONFIG_SCHED_MC
6555 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6556 {
6557 return sprintf(page, "%u\n", sched_mc_power_savings);
6558 }
6559 static ssize_t sched_mc_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6560 {
6561 return sched_power_savings_store(buf, count, 0);
6562 }
6563 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6564 sched_mc_power_savings_store);
6565 #endif
6566
6567 #ifdef CONFIG_SCHED_SMT
6568 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6569 {
6570 return sprintf(page, "%u\n", sched_smt_power_savings);
6571 }
6572 static ssize_t sched_smt_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6573 {
6574 return sched_power_savings_store(buf, count, 1);
6575 }
6576 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6577 sched_smt_power_savings_store);
6578 #endif
6579
6580
6581 #ifdef CONFIG_HOTPLUG_CPU
6582 /*
6583 * Force a reinitialization of the sched domains hierarchy. The domains
6584 * and groups cannot be updated in place without racing with the balancing
6585 * code, so we temporarily attach all running cpus to the NULL domain
6586 * which will prevent rebalancing while the sched domains are recalculated.
6587 */
6588 static int update_sched_domains(struct notifier_block *nfb,
6589 unsigned long action, void *hcpu)
6590 {
6591 switch (action) {
6592 case CPU_UP_PREPARE:
6593 case CPU_DOWN_PREPARE:
6594 detach_destroy_domains(&cpu_online_map);
6595 return NOTIFY_OK;
6596
6597 case CPU_UP_CANCELED:
6598 case CPU_DOWN_FAILED:
6599 case CPU_ONLINE:
6600 case CPU_DEAD:
6601 /*
6602 * Fall through and re-initialise the domains.
6603 */
6604 break;
6605 default:
6606 return NOTIFY_DONE;
6607 }
6608
6609 /* The hotplug lock is already held by cpu_up/cpu_down */
6610 arch_init_sched_domains(&cpu_online_map);
6611
6612 return NOTIFY_OK;
6613 }
6614 #endif
6615
6616 void __init sched_init_smp(void)
6617 {
6618 lock_cpu_hotplug();
6619 arch_init_sched_domains(&cpu_online_map);
6620 unlock_cpu_hotplug();
6621 /* XXX: Theoretical race here - CPU may be hotplugged now */
6622 hotcpu_notifier(update_sched_domains, 0);
6623 }
6624 #else
6625 void __init sched_init_smp(void)
6626 {
6627 }
6628 #endif /* CONFIG_SMP */
6629
6630 int in_sched_functions(unsigned long addr)
6631 {
6632 /* Linker adds these: start and end of __sched functions */
6633 extern char __sched_text_start[], __sched_text_end[];
6634 return in_lock_functions(addr) ||
6635 (addr >= (unsigned long)__sched_text_start
6636 && addr < (unsigned long)__sched_text_end);
6637 }
6638
6639 void __init sched_init(void)
6640 {
6641 runqueue_t *rq;
6642 int i, j, k;
6643
6644 for_each_possible_cpu(i) {
6645 prio_array_t *array;
6646
6647 rq = cpu_rq(i);
6648 spin_lock_init(&rq->lock);
6649 rq->nr_running = 0;
6650 rq->active = rq->arrays;
6651 rq->expired = rq->arrays + 1;
6652 rq->best_expired_prio = MAX_PRIO;
6653
6654 #ifdef CONFIG_SMP
6655 rq->sd = NULL;
6656 for (j = 1; j < 3; j++)
6657 rq->cpu_load[j] = 0;
6658 rq->active_balance = 0;
6659 rq->push_cpu = 0;
6660 rq->migration_thread = NULL;
6661 INIT_LIST_HEAD(&rq->migration_queue);
6662 #endif
6663 atomic_set(&rq->nr_iowait, 0);
6664
6665 for (j = 0; j < 2; j++) {
6666 array = rq->arrays + j;
6667 for (k = 0; k < MAX_PRIO; k++) {
6668 INIT_LIST_HEAD(array->queue + k);
6669 __clear_bit(k, array->bitmap);
6670 }
6671 // delimiter for bitsearch
6672 __set_bit(MAX_PRIO, array->bitmap);
6673 }
6674 }
6675
6676 set_load_weight(&init_task);
6677 /*
6678 * The boot idle thread does lazy MMU switching as well:
6679 */
6680 atomic_inc(&init_mm.mm_count);
6681 enter_lazy_tlb(&init_mm, current);
6682
6683 /*
6684 * Make us the idle thread. Technically, schedule() should not be
6685 * called from this thread, however somewhere below it might be,
6686 * but because we are the idle thread, we just pick up running again
6687 * when this runqueue becomes "idle".
6688 */
6689 init_idle(current, smp_processor_id());
6690 }
6691
6692 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6693 void __might_sleep(char *file, int line)
6694 {
6695 #if defined(in_atomic)
6696 static unsigned long prev_jiffy; /* ratelimiting */
6697
6698 if ((in_atomic() || irqs_disabled()) &&
6699 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6700 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6701 return;
6702 prev_jiffy = jiffies;
6703 printk(KERN_ERR "BUG: sleeping function called from invalid"
6704 " context at %s:%d\n", file, line);
6705 printk("in_atomic():%d, irqs_disabled():%d\n",
6706 in_atomic(), irqs_disabled());
6707 dump_stack();
6708 }
6709 #endif
6710 }
6711 EXPORT_SYMBOL(__might_sleep);
6712 #endif
6713
6714 #ifdef CONFIG_MAGIC_SYSRQ
6715 void normalize_rt_tasks(void)
6716 {
6717 struct task_struct *p;
6718 prio_array_t *array;
6719 unsigned long flags;
6720 runqueue_t *rq;
6721
6722 read_lock_irq(&tasklist_lock);
6723 for_each_process(p) {
6724 if (!rt_task(p))
6725 continue;
6726
6727 spin_lock_irqsave(&p->pi_lock, flags);
6728 rq = __task_rq_lock(p);
6729
6730 array = p->array;
6731 if (array)
6732 deactivate_task(p, task_rq(p));
6733 __setscheduler(p, SCHED_NORMAL, 0);
6734 if (array) {
6735 __activate_task(p, task_rq(p));
6736 resched_task(rq->curr);
6737 }
6738
6739 __task_rq_unlock(rq);
6740 spin_unlock_irqrestore(&p->pi_lock, flags);
6741 }
6742 read_unlock_irq(&tasklist_lock);
6743 }
6744
6745 #endif /* CONFIG_MAGIC_SYSRQ */
6746
6747 #ifdef CONFIG_IA64
6748 /*
6749 * These functions are only useful for the IA64 MCA handling.
6750 *
6751 * They can only be called when the whole system has been
6752 * stopped - every CPU needs to be quiescent, and no scheduling
6753 * activity can take place. Using them for anything else would
6754 * be a serious bug, and as a result, they aren't even visible
6755 * under any other configuration.
6756 */
6757
6758 /**
6759 * curr_task - return the current task for a given cpu.
6760 * @cpu: the processor in question.
6761 *
6762 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6763 */
6764 task_t *curr_task(int cpu)
6765 {
6766 return cpu_curr(cpu);
6767 }
6768
6769 /**
6770 * set_curr_task - set the current task for a given cpu.
6771 * @cpu: the processor in question.
6772 * @p: the task pointer to set.
6773 *
6774 * Description: This function must only be used when non-maskable interrupts
6775 * are serviced on a separate stack. It allows the architecture to switch the
6776 * notion of the current task on a cpu in a non-blocking manner. This function
6777 * must be called with all CPU's synchronized, and interrupts disabled, the
6778 * and caller must save the original value of the current task (see
6779 * curr_task() above) and restore that value before reenabling interrupts and
6780 * re-starting the system.
6781 *
6782 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6783 */
6784 void set_curr_task(int cpu, task_t *p)
6785 {
6786 cpu_curr(cpu) = p;
6787 }
6788
6789 #endif