]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
b24e57a10f6fb173b1e5d570ba4f922ed13f4989
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 #ifdef CONFIG_SMP
122 /*
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
125 */
126 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
127 {
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129 }
130
131 /*
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
134 */
135 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
136 {
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
139 }
140 #endif
141
142 static inline int rt_policy(int policy)
143 {
144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 return 1;
146 return 0;
147 }
148
149 static inline int task_has_rt_policy(struct task_struct *p)
150 {
151 return rt_policy(p->policy);
152 }
153
154 /*
155 * This is the priority-queue data structure of the RT scheduling class:
156 */
157 struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
160 };
161
162 struct rt_bandwidth {
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
168 };
169
170 static struct rt_bandwidth def_rt_bandwidth;
171
172 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
173
174 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
175 {
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
181
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
185
186 if (!overrun)
187 break;
188
189 idle = do_sched_rt_period_timer(rt_b, overrun);
190 }
191
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193 }
194
195 static
196 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
197 {
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
200
201 spin_lock_init(&rt_b->rt_runtime_lock);
202
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207 }
208
209 static inline int rt_bandwidth_enabled(void)
210 {
211 return sysctl_sched_rt_runtime >= 0;
212 }
213
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215 {
216 ktime_t now;
217
218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
233 }
234 spin_unlock(&rt_b->rt_runtime_lock);
235 }
236
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
239 {
240 hrtimer_cancel(&rt_b->rt_period_timer);
241 }
242 #endif
243
244 /*
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
247 */
248 static DEFINE_MUTEX(sched_domains_mutex);
249
250 #ifdef CONFIG_GROUP_SCHED
251
252 #include <linux/cgroup.h>
253
254 struct cfs_rq;
255
256 static LIST_HEAD(task_groups);
257
258 /* task group related information */
259 struct task_group {
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
262 #endif
263
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
270 #endif
271
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
275
276 struct rt_bandwidth rt_bandwidth;
277 #endif
278
279 struct rcu_head rcu;
280 struct list_head list;
281
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
285 };
286
287 #ifdef CONFIG_USER_SCHED
288
289 /*
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
293 */
294 struct task_group root_task_group;
295
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
302
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
310
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
313 */
314 static DEFINE_SPINLOCK(task_group_lock);
315
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
322
323 /*
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
330 */
331 #define MIN_SHARES 2
332 #define MAX_SHARES (1UL << 18)
333
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335 #endif
336
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
339 */
340 struct task_group init_task_group;
341
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
344 {
345 struct task_group *tg;
346
347 #ifdef CONFIG_USER_SCHED
348 tg = p->user->tg;
349 #elif defined(CONFIG_CGROUP_SCHED)
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
352 #else
353 tg = &init_task_group;
354 #endif
355 return tg;
356 }
357
358 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
359 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
360 {
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
364 #endif
365
366 #ifdef CONFIG_RT_GROUP_SCHED
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
369 #endif
370 }
371
372 #else
373
374 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 static inline struct task_group *task_group(struct task_struct *p)
376 {
377 return NULL;
378 }
379
380 #endif /* CONFIG_GROUP_SCHED */
381
382 /* CFS-related fields in a runqueue */
383 struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
386
387 u64 exec_clock;
388 u64 min_vruntime;
389
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
392
393 struct list_head tasks;
394 struct list_head *balance_iterator;
395
396 /*
397 * 'curr' points to currently running entity on this cfs_rq.
398 * It is set to NULL otherwise (i.e when none are currently running).
399 */
400 struct sched_entity *curr, *next, *last;
401
402 unsigned long nr_spread_over;
403
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
406
407 /*
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
411 *
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
414 */
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
417
418 #ifdef CONFIG_SMP
419 /*
420 * the part of load.weight contributed by tasks
421 */
422 unsigned long task_weight;
423
424 /*
425 * h_load = weight * f(tg)
426 *
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
429 */
430 unsigned long h_load;
431
432 /*
433 * this cpu's part of tg->shares
434 */
435 unsigned long shares;
436
437 /*
438 * load.weight at the time we set shares
439 */
440 unsigned long rq_weight;
441 #endif
442 #endif
443 };
444
445 /* Real-Time classes' related field in a runqueue: */
446 struct rt_rq {
447 struct rt_prio_array active;
448 unsigned long rt_nr_running;
449 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
450 int highest_prio; /* highest queued rt task prio */
451 #endif
452 #ifdef CONFIG_SMP
453 unsigned long rt_nr_migratory;
454 int overloaded;
455 #endif
456 int rt_throttled;
457 u64 rt_time;
458 u64 rt_runtime;
459 /* Nests inside the rq lock: */
460 spinlock_t rt_runtime_lock;
461
462 #ifdef CONFIG_RT_GROUP_SCHED
463 unsigned long rt_nr_boosted;
464
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469 #endif
470 };
471
472 #ifdef CONFIG_SMP
473
474 /*
475 * We add the notion of a root-domain which will be used to define per-domain
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
480 *
481 */
482 struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
486
487 /*
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
490 */
491 cpumask_t rto_mask;
492 atomic_t rto_count;
493 #ifdef CONFIG_SMP
494 struct cpupri cpupri;
495 #endif
496 };
497
498 /*
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
501 */
502 static struct root_domain def_root_domain;
503
504 #endif
505
506 /*
507 * This is the main, per-CPU runqueue data structure.
508 *
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
512 */
513 struct rq {
514 /* runqueue lock: */
515 spinlock_t lock;
516
517 /*
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
520 */
521 unsigned long nr_running;
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524 unsigned char idle_at_tick;
525 #ifdef CONFIG_NO_HZ
526 unsigned long last_tick_seen;
527 unsigned char in_nohz_recently;
528 #endif
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
531 unsigned long nr_load_updates;
532 u64 nr_switches;
533
534 struct cfs_rq cfs;
535 struct rt_rq rt;
536
537 #ifdef CONFIG_FAIR_GROUP_SCHED
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
540 #endif
541 #ifdef CONFIG_RT_GROUP_SCHED
542 struct list_head leaf_rt_rq_list;
543 #endif
544
545 /*
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
550 */
551 unsigned long nr_uninterruptible;
552
553 struct task_struct *curr, *idle;
554 unsigned long next_balance;
555 struct mm_struct *prev_mm;
556
557 u64 clock;
558
559 atomic_t nr_iowait;
560
561 #ifdef CONFIG_SMP
562 struct root_domain *rd;
563 struct sched_domain *sd;
564
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
568 /* cpu of this runqueue: */
569 int cpu;
570 int online;
571
572 unsigned long avg_load_per_task;
573
574 struct task_struct *migration_thread;
575 struct list_head migration_queue;
576 #endif
577
578 #ifdef CONFIG_SCHED_HRTICK
579 #ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582 #endif
583 struct hrtimer hrtick_timer;
584 #endif
585
586 #ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
589
590 /* sys_sched_yield() stats */
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
595
596 /* schedule() stats */
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
600
601 /* try_to_wake_up() stats */
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
604
605 /* BKL stats */
606 unsigned int bkl_count;
607 #endif
608 };
609
610 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
611
612 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
613 {
614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
615 }
616
617 static inline int cpu_of(struct rq *rq)
618 {
619 #ifdef CONFIG_SMP
620 return rq->cpu;
621 #else
622 return 0;
623 #endif
624 }
625
626 /*
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628 * See detach_destroy_domains: synchronize_sched for details.
629 *
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
632 */
633 #define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
635
636 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637 #define this_rq() (&__get_cpu_var(runqueues))
638 #define task_rq(p) cpu_rq(task_cpu(p))
639 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
640
641 static inline void update_rq_clock(struct rq *rq)
642 {
643 rq->clock = sched_clock_cpu(cpu_of(rq));
644 }
645
646 /*
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
648 */
649 #ifdef CONFIG_SCHED_DEBUG
650 # define const_debug __read_mostly
651 #else
652 # define const_debug static const
653 #endif
654
655 /**
656 * runqueue_is_locked
657 *
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
661 */
662 int runqueue_is_locked(void)
663 {
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
667
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
671 }
672
673 /*
674 * Debugging: various feature bits
675 */
676
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
680 enum {
681 #include "sched_features.h"
682 };
683
684 #undef SCHED_FEAT
685
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
691 0;
692
693 #undef SCHED_FEAT
694
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
698
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
702 };
703
704 #undef SCHED_FEAT
705
706 static int sched_feat_show(struct seq_file *m, void *v)
707 {
708 int i;
709
710 for (i = 0; sched_feat_names[i]; i++) {
711 if (!(sysctl_sched_features & (1UL << i)))
712 seq_puts(m, "NO_");
713 seq_printf(m, "%s ", sched_feat_names[i]);
714 }
715 seq_puts(m, "\n");
716
717 return 0;
718 }
719
720 static ssize_t
721 sched_feat_write(struct file *filp, const char __user *ubuf,
722 size_t cnt, loff_t *ppos)
723 {
724 char buf[64];
725 char *cmp = buf;
726 int neg = 0;
727 int i;
728
729 if (cnt > 63)
730 cnt = 63;
731
732 if (copy_from_user(&buf, ubuf, cnt))
733 return -EFAULT;
734
735 buf[cnt] = 0;
736
737 if (strncmp(buf, "NO_", 3) == 0) {
738 neg = 1;
739 cmp += 3;
740 }
741
742 for (i = 0; sched_feat_names[i]; i++) {
743 int len = strlen(sched_feat_names[i]);
744
745 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
757 filp->f_pos += cnt;
758
759 return cnt;
760 }
761
762 static int sched_feat_open(struct inode *inode, struct file *filp)
763 {
764 return single_open(filp, sched_feat_show, NULL);
765 }
766
767 static struct file_operations sched_feat_fops = {
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
773 };
774
775 static __init int sched_init_debug(void)
776 {
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781 }
782 late_initcall(sched_init_debug);
783
784 #endif
785
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
787
788 /*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
794 /*
795 * ratelimit for updating the group shares.
796 * default: 0.25ms
797 */
798 unsigned int sysctl_sched_shares_ratelimit = 250000;
799
800 /*
801 * Inject some fuzzyness into changing the per-cpu group shares
802 * this avoids remote rq-locks at the expense of fairness.
803 * default: 4
804 */
805 unsigned int sysctl_sched_shares_thresh = 4;
806
807 /*
808 * period over which we measure -rt task cpu usage in us.
809 * default: 1s
810 */
811 unsigned int sysctl_sched_rt_period = 1000000;
812
813 static __read_mostly int scheduler_running;
814
815 /*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819 int sysctl_sched_rt_runtime = 950000;
820
821 static inline u64 global_rt_period(void)
822 {
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824 }
825
826 static inline u64 global_rt_runtime(void)
827 {
828 if (sysctl_sched_rt_runtime < 0)
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832 }
833
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
836 #endif
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
839 #endif
840
841 static inline int task_current(struct rq *rq, struct task_struct *p)
842 {
843 return rq->curr == p;
844 }
845
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq *rq, struct task_struct *p)
848 {
849 return task_current(rq, p);
850 }
851
852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 {
854 }
855
856 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857 {
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861 #endif
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
869 spin_unlock_irq(&rq->lock);
870 }
871
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq *rq, struct task_struct *p)
874 {
875 #ifdef CONFIG_SMP
876 return p->oncpu;
877 #else
878 return task_current(rq, p);
879 #endif
880 }
881
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 {
884 #ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891 #endif
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 spin_unlock_irq(&rq->lock);
894 #else
895 spin_unlock(&rq->lock);
896 #endif
897 }
898
899 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 {
901 #ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909 #endif
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
912 #endif
913 }
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
915
916 /*
917 * __task_rq_lock - lock the runqueue a given task resides on.
918 * Must be called interrupts disabled.
919 */
920 static inline struct rq *__task_rq_lock(struct task_struct *p)
921 __acquires(rq->lock)
922 {
923 for (;;) {
924 struct rq *rq = task_rq(p);
925 spin_lock(&rq->lock);
926 if (likely(rq == task_rq(p)))
927 return rq;
928 spin_unlock(&rq->lock);
929 }
930 }
931
932 /*
933 * task_rq_lock - lock the runqueue a given task resides on and disable
934 * interrupts. Note the ordering: we can safely lookup the task_rq without
935 * explicitly disabling preemption.
936 */
937 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
938 __acquires(rq->lock)
939 {
940 struct rq *rq;
941
942 for (;;) {
943 local_irq_save(*flags);
944 rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 spin_unlock_irqrestore(&rq->lock, *flags);
949 }
950 }
951
952 static void __task_rq_unlock(struct rq *rq)
953 __releases(rq->lock)
954 {
955 spin_unlock(&rq->lock);
956 }
957
958 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
959 __releases(rq->lock)
960 {
961 spin_unlock_irqrestore(&rq->lock, *flags);
962 }
963
964 /*
965 * this_rq_lock - lock this runqueue and disable interrupts.
966 */
967 static struct rq *this_rq_lock(void)
968 __acquires(rq->lock)
969 {
970 struct rq *rq;
971
972 local_irq_disable();
973 rq = this_rq();
974 spin_lock(&rq->lock);
975
976 return rq;
977 }
978
979 #ifdef CONFIG_SCHED_HRTICK
980 /*
981 * Use HR-timers to deliver accurate preemption points.
982 *
983 * Its all a bit involved since we cannot program an hrt while holding the
984 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
985 * reschedule event.
986 *
987 * When we get rescheduled we reprogram the hrtick_timer outside of the
988 * rq->lock.
989 */
990
991 /*
992 * Use hrtick when:
993 * - enabled by features
994 * - hrtimer is actually high res
995 */
996 static inline int hrtick_enabled(struct rq *rq)
997 {
998 if (!sched_feat(HRTICK))
999 return 0;
1000 if (!cpu_active(cpu_of(rq)))
1001 return 0;
1002 return hrtimer_is_hres_active(&rq->hrtick_timer);
1003 }
1004
1005 static void hrtick_clear(struct rq *rq)
1006 {
1007 if (hrtimer_active(&rq->hrtick_timer))
1008 hrtimer_cancel(&rq->hrtick_timer);
1009 }
1010
1011 /*
1012 * High-resolution timer tick.
1013 * Runs from hardirq context with interrupts disabled.
1014 */
1015 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1016 {
1017 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1018
1019 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1020
1021 spin_lock(&rq->lock);
1022 update_rq_clock(rq);
1023 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1024 spin_unlock(&rq->lock);
1025
1026 return HRTIMER_NORESTART;
1027 }
1028
1029 #ifdef CONFIG_SMP
1030 /*
1031 * called from hardirq (IPI) context
1032 */
1033 static void __hrtick_start(void *arg)
1034 {
1035 struct rq *rq = arg;
1036
1037 spin_lock(&rq->lock);
1038 hrtimer_restart(&rq->hrtick_timer);
1039 rq->hrtick_csd_pending = 0;
1040 spin_unlock(&rq->lock);
1041 }
1042
1043 /*
1044 * Called to set the hrtick timer state.
1045 *
1046 * called with rq->lock held and irqs disabled
1047 */
1048 static void hrtick_start(struct rq *rq, u64 delay)
1049 {
1050 struct hrtimer *timer = &rq->hrtick_timer;
1051 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1052
1053 hrtimer_set_expires(timer, time);
1054
1055 if (rq == this_rq()) {
1056 hrtimer_restart(timer);
1057 } else if (!rq->hrtick_csd_pending) {
1058 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1059 rq->hrtick_csd_pending = 1;
1060 }
1061 }
1062
1063 static int
1064 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1065 {
1066 int cpu = (int)(long)hcpu;
1067
1068 switch (action) {
1069 case CPU_UP_CANCELED:
1070 case CPU_UP_CANCELED_FROZEN:
1071 case CPU_DOWN_PREPARE:
1072 case CPU_DOWN_PREPARE_FROZEN:
1073 case CPU_DEAD:
1074 case CPU_DEAD_FROZEN:
1075 hrtick_clear(cpu_rq(cpu));
1076 return NOTIFY_OK;
1077 }
1078
1079 return NOTIFY_DONE;
1080 }
1081
1082 static __init void init_hrtick(void)
1083 {
1084 hotcpu_notifier(hotplug_hrtick, 0);
1085 }
1086 #else
1087 /*
1088 * Called to set the hrtick timer state.
1089 *
1090 * called with rq->lock held and irqs disabled
1091 */
1092 static void hrtick_start(struct rq *rq, u64 delay)
1093 {
1094 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1095 }
1096
1097 static inline void init_hrtick(void)
1098 {
1099 }
1100 #endif /* CONFIG_SMP */
1101
1102 static void init_rq_hrtick(struct rq *rq)
1103 {
1104 #ifdef CONFIG_SMP
1105 rq->hrtick_csd_pending = 0;
1106
1107 rq->hrtick_csd.flags = 0;
1108 rq->hrtick_csd.func = __hrtick_start;
1109 rq->hrtick_csd.info = rq;
1110 #endif
1111
1112 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1113 rq->hrtick_timer.function = hrtick;
1114 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1115 }
1116 #else /* CONFIG_SCHED_HRTICK */
1117 static inline void hrtick_clear(struct rq *rq)
1118 {
1119 }
1120
1121 static inline void init_rq_hrtick(struct rq *rq)
1122 {
1123 }
1124
1125 static inline void init_hrtick(void)
1126 {
1127 }
1128 #endif /* CONFIG_SCHED_HRTICK */
1129
1130 /*
1131 * resched_task - mark a task 'to be rescheduled now'.
1132 *
1133 * On UP this means the setting of the need_resched flag, on SMP it
1134 * might also involve a cross-CPU call to trigger the scheduler on
1135 * the target CPU.
1136 */
1137 #ifdef CONFIG_SMP
1138
1139 #ifndef tsk_is_polling
1140 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1141 #endif
1142
1143 static void resched_task(struct task_struct *p)
1144 {
1145 int cpu;
1146
1147 assert_spin_locked(&task_rq(p)->lock);
1148
1149 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1150 return;
1151
1152 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1153
1154 cpu = task_cpu(p);
1155 if (cpu == smp_processor_id())
1156 return;
1157
1158 /* NEED_RESCHED must be visible before we test polling */
1159 smp_mb();
1160 if (!tsk_is_polling(p))
1161 smp_send_reschedule(cpu);
1162 }
1163
1164 static void resched_cpu(int cpu)
1165 {
1166 struct rq *rq = cpu_rq(cpu);
1167 unsigned long flags;
1168
1169 if (!spin_trylock_irqsave(&rq->lock, flags))
1170 return;
1171 resched_task(cpu_curr(cpu));
1172 spin_unlock_irqrestore(&rq->lock, flags);
1173 }
1174
1175 #ifdef CONFIG_NO_HZ
1176 /*
1177 * When add_timer_on() enqueues a timer into the timer wheel of an
1178 * idle CPU then this timer might expire before the next timer event
1179 * which is scheduled to wake up that CPU. In case of a completely
1180 * idle system the next event might even be infinite time into the
1181 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1182 * leaves the inner idle loop so the newly added timer is taken into
1183 * account when the CPU goes back to idle and evaluates the timer
1184 * wheel for the next timer event.
1185 */
1186 void wake_up_idle_cpu(int cpu)
1187 {
1188 struct rq *rq = cpu_rq(cpu);
1189
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /*
1194 * This is safe, as this function is called with the timer
1195 * wheel base lock of (cpu) held. When the CPU is on the way
1196 * to idle and has not yet set rq->curr to idle then it will
1197 * be serialized on the timer wheel base lock and take the new
1198 * timer into account automatically.
1199 */
1200 if (rq->curr != rq->idle)
1201 return;
1202
1203 /*
1204 * We can set TIF_RESCHED on the idle task of the other CPU
1205 * lockless. The worst case is that the other CPU runs the
1206 * idle task through an additional NOOP schedule()
1207 */
1208 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1209
1210 /* NEED_RESCHED must be visible before we test polling */
1211 smp_mb();
1212 if (!tsk_is_polling(rq->idle))
1213 smp_send_reschedule(cpu);
1214 }
1215 #endif /* CONFIG_NO_HZ */
1216
1217 #else /* !CONFIG_SMP */
1218 static void resched_task(struct task_struct *p)
1219 {
1220 assert_spin_locked(&task_rq(p)->lock);
1221 set_tsk_need_resched(p);
1222 }
1223 #endif /* CONFIG_SMP */
1224
1225 #if BITS_PER_LONG == 32
1226 # define WMULT_CONST (~0UL)
1227 #else
1228 # define WMULT_CONST (1UL << 32)
1229 #endif
1230
1231 #define WMULT_SHIFT 32
1232
1233 /*
1234 * Shift right and round:
1235 */
1236 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1237
1238 /*
1239 * delta *= weight / lw
1240 */
1241 static unsigned long
1242 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1243 struct load_weight *lw)
1244 {
1245 u64 tmp;
1246
1247 if (!lw->inv_weight) {
1248 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1249 lw->inv_weight = 1;
1250 else
1251 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1252 / (lw->weight+1);
1253 }
1254
1255 tmp = (u64)delta_exec * weight;
1256 /*
1257 * Check whether we'd overflow the 64-bit multiplication:
1258 */
1259 if (unlikely(tmp > WMULT_CONST))
1260 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1261 WMULT_SHIFT/2);
1262 else
1263 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1264
1265 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1266 }
1267
1268 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1269 {
1270 lw->weight += inc;
1271 lw->inv_weight = 0;
1272 }
1273
1274 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1275 {
1276 lw->weight -= dec;
1277 lw->inv_weight = 0;
1278 }
1279
1280 /*
1281 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1282 * of tasks with abnormal "nice" values across CPUs the contribution that
1283 * each task makes to its run queue's load is weighted according to its
1284 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1285 * scaled version of the new time slice allocation that they receive on time
1286 * slice expiry etc.
1287 */
1288
1289 #define WEIGHT_IDLEPRIO 2
1290 #define WMULT_IDLEPRIO (1 << 31)
1291
1292 /*
1293 * Nice levels are multiplicative, with a gentle 10% change for every
1294 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1295 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1296 * that remained on nice 0.
1297 *
1298 * The "10% effect" is relative and cumulative: from _any_ nice level,
1299 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1300 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1301 * If a task goes up by ~10% and another task goes down by ~10% then
1302 * the relative distance between them is ~25%.)
1303 */
1304 static const int prio_to_weight[40] = {
1305 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1306 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1307 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1308 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1309 /* 0 */ 1024, 820, 655, 526, 423,
1310 /* 5 */ 335, 272, 215, 172, 137,
1311 /* 10 */ 110, 87, 70, 56, 45,
1312 /* 15 */ 36, 29, 23, 18, 15,
1313 };
1314
1315 /*
1316 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1317 *
1318 * In cases where the weight does not change often, we can use the
1319 * precalculated inverse to speed up arithmetics by turning divisions
1320 * into multiplications:
1321 */
1322 static const u32 prio_to_wmult[40] = {
1323 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1324 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1325 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1326 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1327 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1328 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1329 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1330 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1331 };
1332
1333 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1334
1335 /*
1336 * runqueue iterator, to support SMP load-balancing between different
1337 * scheduling classes, without having to expose their internal data
1338 * structures to the load-balancing proper:
1339 */
1340 struct rq_iterator {
1341 void *arg;
1342 struct task_struct *(*start)(void *);
1343 struct task_struct *(*next)(void *);
1344 };
1345
1346 #ifdef CONFIG_SMP
1347 static unsigned long
1348 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1349 unsigned long max_load_move, struct sched_domain *sd,
1350 enum cpu_idle_type idle, int *all_pinned,
1351 int *this_best_prio, struct rq_iterator *iterator);
1352
1353 static int
1354 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1355 struct sched_domain *sd, enum cpu_idle_type idle,
1356 struct rq_iterator *iterator);
1357 #endif
1358
1359 #ifdef CONFIG_CGROUP_CPUACCT
1360 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1361 #else
1362 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1363 #endif
1364
1365 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1366 {
1367 update_load_add(&rq->load, load);
1368 }
1369
1370 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1371 {
1372 update_load_sub(&rq->load, load);
1373 }
1374
1375 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1376 typedef int (*tg_visitor)(struct task_group *, void *);
1377
1378 /*
1379 * Iterate the full tree, calling @down when first entering a node and @up when
1380 * leaving it for the final time.
1381 */
1382 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1383 {
1384 struct task_group *parent, *child;
1385 int ret;
1386
1387 rcu_read_lock();
1388 parent = &root_task_group;
1389 down:
1390 ret = (*down)(parent, data);
1391 if (ret)
1392 goto out_unlock;
1393 list_for_each_entry_rcu(child, &parent->children, siblings) {
1394 parent = child;
1395 goto down;
1396
1397 up:
1398 continue;
1399 }
1400 ret = (*up)(parent, data);
1401 if (ret)
1402 goto out_unlock;
1403
1404 child = parent;
1405 parent = parent->parent;
1406 if (parent)
1407 goto up;
1408 out_unlock:
1409 rcu_read_unlock();
1410
1411 return ret;
1412 }
1413
1414 static int tg_nop(struct task_group *tg, void *data)
1415 {
1416 return 0;
1417 }
1418 #endif
1419
1420 #ifdef CONFIG_SMP
1421 static unsigned long source_load(int cpu, int type);
1422 static unsigned long target_load(int cpu, int type);
1423 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1424
1425 static unsigned long cpu_avg_load_per_task(int cpu)
1426 {
1427 struct rq *rq = cpu_rq(cpu);
1428
1429 if (rq->nr_running)
1430 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1431
1432 return rq->avg_load_per_task;
1433 }
1434
1435 #ifdef CONFIG_FAIR_GROUP_SCHED
1436
1437 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1438
1439 /*
1440 * Calculate and set the cpu's group shares.
1441 */
1442 static void
1443 update_group_shares_cpu(struct task_group *tg, int cpu,
1444 unsigned long sd_shares, unsigned long sd_rq_weight)
1445 {
1446 int boost = 0;
1447 unsigned long shares;
1448 unsigned long rq_weight;
1449
1450 if (!tg->se[cpu])
1451 return;
1452
1453 rq_weight = tg->cfs_rq[cpu]->load.weight;
1454
1455 /*
1456 * If there are currently no tasks on the cpu pretend there is one of
1457 * average load so that when a new task gets to run here it will not
1458 * get delayed by group starvation.
1459 */
1460 if (!rq_weight) {
1461 boost = 1;
1462 rq_weight = NICE_0_LOAD;
1463 }
1464
1465 if (unlikely(rq_weight > sd_rq_weight))
1466 rq_weight = sd_rq_weight;
1467
1468 /*
1469 * \Sum shares * rq_weight
1470 * shares = -----------------------
1471 * \Sum rq_weight
1472 *
1473 */
1474 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1475 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1476
1477 if (abs(shares - tg->se[cpu]->load.weight) >
1478 sysctl_sched_shares_thresh) {
1479 struct rq *rq = cpu_rq(cpu);
1480 unsigned long flags;
1481
1482 spin_lock_irqsave(&rq->lock, flags);
1483 /*
1484 * record the actual number of shares, not the boosted amount.
1485 */
1486 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1487 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1488
1489 __set_se_shares(tg->se[cpu], shares);
1490 spin_unlock_irqrestore(&rq->lock, flags);
1491 }
1492 }
1493
1494 /*
1495 * Re-compute the task group their per cpu shares over the given domain.
1496 * This needs to be done in a bottom-up fashion because the rq weight of a
1497 * parent group depends on the shares of its child groups.
1498 */
1499 static int tg_shares_up(struct task_group *tg, void *data)
1500 {
1501 unsigned long rq_weight = 0;
1502 unsigned long shares = 0;
1503 struct sched_domain *sd = data;
1504 int i;
1505
1506 for_each_cpu_mask(i, sd->span) {
1507 rq_weight += tg->cfs_rq[i]->load.weight;
1508 shares += tg->cfs_rq[i]->shares;
1509 }
1510
1511 if ((!shares && rq_weight) || shares > tg->shares)
1512 shares = tg->shares;
1513
1514 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1515 shares = tg->shares;
1516
1517 if (!rq_weight)
1518 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1519
1520 for_each_cpu_mask(i, sd->span)
1521 update_group_shares_cpu(tg, i, shares, rq_weight);
1522
1523 return 0;
1524 }
1525
1526 /*
1527 * Compute the cpu's hierarchical load factor for each task group.
1528 * This needs to be done in a top-down fashion because the load of a child
1529 * group is a fraction of its parents load.
1530 */
1531 static int tg_load_down(struct task_group *tg, void *data)
1532 {
1533 unsigned long load;
1534 long cpu = (long)data;
1535
1536 if (!tg->parent) {
1537 load = cpu_rq(cpu)->load.weight;
1538 } else {
1539 load = tg->parent->cfs_rq[cpu]->h_load;
1540 load *= tg->cfs_rq[cpu]->shares;
1541 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1542 }
1543
1544 tg->cfs_rq[cpu]->h_load = load;
1545
1546 return 0;
1547 }
1548
1549 static void update_shares(struct sched_domain *sd)
1550 {
1551 u64 now = cpu_clock(raw_smp_processor_id());
1552 s64 elapsed = now - sd->last_update;
1553
1554 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1555 sd->last_update = now;
1556 walk_tg_tree(tg_nop, tg_shares_up, sd);
1557 }
1558 }
1559
1560 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1561 {
1562 spin_unlock(&rq->lock);
1563 update_shares(sd);
1564 spin_lock(&rq->lock);
1565 }
1566
1567 static void update_h_load(long cpu)
1568 {
1569 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1570 }
1571
1572 #else
1573
1574 static inline void update_shares(struct sched_domain *sd)
1575 {
1576 }
1577
1578 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1579 {
1580 }
1581
1582 #endif
1583
1584 #endif
1585
1586 #ifdef CONFIG_FAIR_GROUP_SCHED
1587 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1588 {
1589 #ifdef CONFIG_SMP
1590 cfs_rq->shares = shares;
1591 #endif
1592 }
1593 #endif
1594
1595 #include "sched_stats.h"
1596 #include "sched_idletask.c"
1597 #include "sched_fair.c"
1598 #include "sched_rt.c"
1599 #ifdef CONFIG_SCHED_DEBUG
1600 # include "sched_debug.c"
1601 #endif
1602
1603 #define sched_class_highest (&rt_sched_class)
1604 #define for_each_class(class) \
1605 for (class = sched_class_highest; class; class = class->next)
1606
1607 static void inc_nr_running(struct rq *rq)
1608 {
1609 rq->nr_running++;
1610 }
1611
1612 static void dec_nr_running(struct rq *rq)
1613 {
1614 rq->nr_running--;
1615 }
1616
1617 static void set_load_weight(struct task_struct *p)
1618 {
1619 if (task_has_rt_policy(p)) {
1620 p->se.load.weight = prio_to_weight[0] * 2;
1621 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1622 return;
1623 }
1624
1625 /*
1626 * SCHED_IDLE tasks get minimal weight:
1627 */
1628 if (p->policy == SCHED_IDLE) {
1629 p->se.load.weight = WEIGHT_IDLEPRIO;
1630 p->se.load.inv_weight = WMULT_IDLEPRIO;
1631 return;
1632 }
1633
1634 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1635 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1636 }
1637
1638 static void update_avg(u64 *avg, u64 sample)
1639 {
1640 s64 diff = sample - *avg;
1641 *avg += diff >> 3;
1642 }
1643
1644 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1645 {
1646 sched_info_queued(p);
1647 p->sched_class->enqueue_task(rq, p, wakeup);
1648 p->se.on_rq = 1;
1649 }
1650
1651 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1652 {
1653 if (sleep && p->se.last_wakeup) {
1654 update_avg(&p->se.avg_overlap,
1655 p->se.sum_exec_runtime - p->se.last_wakeup);
1656 p->se.last_wakeup = 0;
1657 }
1658
1659 sched_info_dequeued(p);
1660 p->sched_class->dequeue_task(rq, p, sleep);
1661 p->se.on_rq = 0;
1662 }
1663
1664 /*
1665 * __normal_prio - return the priority that is based on the static prio
1666 */
1667 static inline int __normal_prio(struct task_struct *p)
1668 {
1669 return p->static_prio;
1670 }
1671
1672 /*
1673 * Calculate the expected normal priority: i.e. priority
1674 * without taking RT-inheritance into account. Might be
1675 * boosted by interactivity modifiers. Changes upon fork,
1676 * setprio syscalls, and whenever the interactivity
1677 * estimator recalculates.
1678 */
1679 static inline int normal_prio(struct task_struct *p)
1680 {
1681 int prio;
1682
1683 if (task_has_rt_policy(p))
1684 prio = MAX_RT_PRIO-1 - p->rt_priority;
1685 else
1686 prio = __normal_prio(p);
1687 return prio;
1688 }
1689
1690 /*
1691 * Calculate the current priority, i.e. the priority
1692 * taken into account by the scheduler. This value might
1693 * be boosted by RT tasks, or might be boosted by
1694 * interactivity modifiers. Will be RT if the task got
1695 * RT-boosted. If not then it returns p->normal_prio.
1696 */
1697 static int effective_prio(struct task_struct *p)
1698 {
1699 p->normal_prio = normal_prio(p);
1700 /*
1701 * If we are RT tasks or we were boosted to RT priority,
1702 * keep the priority unchanged. Otherwise, update priority
1703 * to the normal priority:
1704 */
1705 if (!rt_prio(p->prio))
1706 return p->normal_prio;
1707 return p->prio;
1708 }
1709
1710 /*
1711 * activate_task - move a task to the runqueue.
1712 */
1713 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1714 {
1715 if (task_contributes_to_load(p))
1716 rq->nr_uninterruptible--;
1717
1718 enqueue_task(rq, p, wakeup);
1719 inc_nr_running(rq);
1720 }
1721
1722 /*
1723 * deactivate_task - remove a task from the runqueue.
1724 */
1725 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1726 {
1727 if (task_contributes_to_load(p))
1728 rq->nr_uninterruptible++;
1729
1730 dequeue_task(rq, p, sleep);
1731 dec_nr_running(rq);
1732 }
1733
1734 /**
1735 * task_curr - is this task currently executing on a CPU?
1736 * @p: the task in question.
1737 */
1738 inline int task_curr(const struct task_struct *p)
1739 {
1740 return cpu_curr(task_cpu(p)) == p;
1741 }
1742
1743 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1744 {
1745 set_task_rq(p, cpu);
1746 #ifdef CONFIG_SMP
1747 /*
1748 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1749 * successfuly executed on another CPU. We must ensure that updates of
1750 * per-task data have been completed by this moment.
1751 */
1752 smp_wmb();
1753 task_thread_info(p)->cpu = cpu;
1754 #endif
1755 }
1756
1757 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1758 const struct sched_class *prev_class,
1759 int oldprio, int running)
1760 {
1761 if (prev_class != p->sched_class) {
1762 if (prev_class->switched_from)
1763 prev_class->switched_from(rq, p, running);
1764 p->sched_class->switched_to(rq, p, running);
1765 } else
1766 p->sched_class->prio_changed(rq, p, oldprio, running);
1767 }
1768
1769 #ifdef CONFIG_SMP
1770
1771 /* Used instead of source_load when we know the type == 0 */
1772 static unsigned long weighted_cpuload(const int cpu)
1773 {
1774 return cpu_rq(cpu)->load.weight;
1775 }
1776
1777 /*
1778 * Is this task likely cache-hot:
1779 */
1780 static int
1781 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1782 {
1783 s64 delta;
1784
1785 /*
1786 * Buddy candidates are cache hot:
1787 */
1788 if (sched_feat(CACHE_HOT_BUDDY) &&
1789 (&p->se == cfs_rq_of(&p->se)->next ||
1790 &p->se == cfs_rq_of(&p->se)->last))
1791 return 1;
1792
1793 if (p->sched_class != &fair_sched_class)
1794 return 0;
1795
1796 if (sysctl_sched_migration_cost == -1)
1797 return 1;
1798 if (sysctl_sched_migration_cost == 0)
1799 return 0;
1800
1801 delta = now - p->se.exec_start;
1802
1803 return delta < (s64)sysctl_sched_migration_cost;
1804 }
1805
1806
1807 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1808 {
1809 int old_cpu = task_cpu(p);
1810 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1811 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1812 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1813 u64 clock_offset;
1814
1815 clock_offset = old_rq->clock - new_rq->clock;
1816
1817 #ifdef CONFIG_SCHEDSTATS
1818 if (p->se.wait_start)
1819 p->se.wait_start -= clock_offset;
1820 if (p->se.sleep_start)
1821 p->se.sleep_start -= clock_offset;
1822 if (p->se.block_start)
1823 p->se.block_start -= clock_offset;
1824 if (old_cpu != new_cpu) {
1825 schedstat_inc(p, se.nr_migrations);
1826 if (task_hot(p, old_rq->clock, NULL))
1827 schedstat_inc(p, se.nr_forced2_migrations);
1828 }
1829 #endif
1830 p->se.vruntime -= old_cfsrq->min_vruntime -
1831 new_cfsrq->min_vruntime;
1832
1833 __set_task_cpu(p, new_cpu);
1834 }
1835
1836 struct migration_req {
1837 struct list_head list;
1838
1839 struct task_struct *task;
1840 int dest_cpu;
1841
1842 struct completion done;
1843 };
1844
1845 /*
1846 * The task's runqueue lock must be held.
1847 * Returns true if you have to wait for migration thread.
1848 */
1849 static int
1850 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1851 {
1852 struct rq *rq = task_rq(p);
1853
1854 /*
1855 * If the task is not on a runqueue (and not running), then
1856 * it is sufficient to simply update the task's cpu field.
1857 */
1858 if (!p->se.on_rq && !task_running(rq, p)) {
1859 set_task_cpu(p, dest_cpu);
1860 return 0;
1861 }
1862
1863 init_completion(&req->done);
1864 req->task = p;
1865 req->dest_cpu = dest_cpu;
1866 list_add(&req->list, &rq->migration_queue);
1867
1868 return 1;
1869 }
1870
1871 /*
1872 * wait_task_inactive - wait for a thread to unschedule.
1873 *
1874 * If @match_state is nonzero, it's the @p->state value just checked and
1875 * not expected to change. If it changes, i.e. @p might have woken up,
1876 * then return zero. When we succeed in waiting for @p to be off its CPU,
1877 * we return a positive number (its total switch count). If a second call
1878 * a short while later returns the same number, the caller can be sure that
1879 * @p has remained unscheduled the whole time.
1880 *
1881 * The caller must ensure that the task *will* unschedule sometime soon,
1882 * else this function might spin for a *long* time. This function can't
1883 * be called with interrupts off, or it may introduce deadlock with
1884 * smp_call_function() if an IPI is sent by the same process we are
1885 * waiting to become inactive.
1886 */
1887 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1888 {
1889 unsigned long flags;
1890 int running, on_rq;
1891 unsigned long ncsw;
1892 struct rq *rq;
1893
1894 for (;;) {
1895 /*
1896 * We do the initial early heuristics without holding
1897 * any task-queue locks at all. We'll only try to get
1898 * the runqueue lock when things look like they will
1899 * work out!
1900 */
1901 rq = task_rq(p);
1902
1903 /*
1904 * If the task is actively running on another CPU
1905 * still, just relax and busy-wait without holding
1906 * any locks.
1907 *
1908 * NOTE! Since we don't hold any locks, it's not
1909 * even sure that "rq" stays as the right runqueue!
1910 * But we don't care, since "task_running()" will
1911 * return false if the runqueue has changed and p
1912 * is actually now running somewhere else!
1913 */
1914 while (task_running(rq, p)) {
1915 if (match_state && unlikely(p->state != match_state))
1916 return 0;
1917 cpu_relax();
1918 }
1919
1920 /*
1921 * Ok, time to look more closely! We need the rq
1922 * lock now, to be *sure*. If we're wrong, we'll
1923 * just go back and repeat.
1924 */
1925 rq = task_rq_lock(p, &flags);
1926 trace_sched_wait_task(rq, p);
1927 running = task_running(rq, p);
1928 on_rq = p->se.on_rq;
1929 ncsw = 0;
1930 if (!match_state || p->state == match_state)
1931 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1932 task_rq_unlock(rq, &flags);
1933
1934 /*
1935 * If it changed from the expected state, bail out now.
1936 */
1937 if (unlikely(!ncsw))
1938 break;
1939
1940 /*
1941 * Was it really running after all now that we
1942 * checked with the proper locks actually held?
1943 *
1944 * Oops. Go back and try again..
1945 */
1946 if (unlikely(running)) {
1947 cpu_relax();
1948 continue;
1949 }
1950
1951 /*
1952 * It's not enough that it's not actively running,
1953 * it must be off the runqueue _entirely_, and not
1954 * preempted!
1955 *
1956 * So if it wa still runnable (but just not actively
1957 * running right now), it's preempted, and we should
1958 * yield - it could be a while.
1959 */
1960 if (unlikely(on_rq)) {
1961 schedule_timeout_uninterruptible(1);
1962 continue;
1963 }
1964
1965 /*
1966 * Ahh, all good. It wasn't running, and it wasn't
1967 * runnable, which means that it will never become
1968 * running in the future either. We're all done!
1969 */
1970 break;
1971 }
1972
1973 return ncsw;
1974 }
1975
1976 /***
1977 * kick_process - kick a running thread to enter/exit the kernel
1978 * @p: the to-be-kicked thread
1979 *
1980 * Cause a process which is running on another CPU to enter
1981 * kernel-mode, without any delay. (to get signals handled.)
1982 *
1983 * NOTE: this function doesnt have to take the runqueue lock,
1984 * because all it wants to ensure is that the remote task enters
1985 * the kernel. If the IPI races and the task has been migrated
1986 * to another CPU then no harm is done and the purpose has been
1987 * achieved as well.
1988 */
1989 void kick_process(struct task_struct *p)
1990 {
1991 int cpu;
1992
1993 preempt_disable();
1994 cpu = task_cpu(p);
1995 if ((cpu != smp_processor_id()) && task_curr(p))
1996 smp_send_reschedule(cpu);
1997 preempt_enable();
1998 }
1999
2000 /*
2001 * Return a low guess at the load of a migration-source cpu weighted
2002 * according to the scheduling class and "nice" value.
2003 *
2004 * We want to under-estimate the load of migration sources, to
2005 * balance conservatively.
2006 */
2007 static unsigned long source_load(int cpu, int type)
2008 {
2009 struct rq *rq = cpu_rq(cpu);
2010 unsigned long total = weighted_cpuload(cpu);
2011
2012 if (type == 0 || !sched_feat(LB_BIAS))
2013 return total;
2014
2015 return min(rq->cpu_load[type-1], total);
2016 }
2017
2018 /*
2019 * Return a high guess at the load of a migration-target cpu weighted
2020 * according to the scheduling class and "nice" value.
2021 */
2022 static unsigned long target_load(int cpu, int type)
2023 {
2024 struct rq *rq = cpu_rq(cpu);
2025 unsigned long total = weighted_cpuload(cpu);
2026
2027 if (type == 0 || !sched_feat(LB_BIAS))
2028 return total;
2029
2030 return max(rq->cpu_load[type-1], total);
2031 }
2032
2033 /*
2034 * find_idlest_group finds and returns the least busy CPU group within the
2035 * domain.
2036 */
2037 static struct sched_group *
2038 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2039 {
2040 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2041 unsigned long min_load = ULONG_MAX, this_load = 0;
2042 int load_idx = sd->forkexec_idx;
2043 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2044
2045 do {
2046 unsigned long load, avg_load;
2047 int local_group;
2048 int i;
2049
2050 /* Skip over this group if it has no CPUs allowed */
2051 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2052 continue;
2053
2054 local_group = cpu_isset(this_cpu, group->cpumask);
2055
2056 /* Tally up the load of all CPUs in the group */
2057 avg_load = 0;
2058
2059 for_each_cpu_mask_nr(i, group->cpumask) {
2060 /* Bias balancing toward cpus of our domain */
2061 if (local_group)
2062 load = source_load(i, load_idx);
2063 else
2064 load = target_load(i, load_idx);
2065
2066 avg_load += load;
2067 }
2068
2069 /* Adjust by relative CPU power of the group */
2070 avg_load = sg_div_cpu_power(group,
2071 avg_load * SCHED_LOAD_SCALE);
2072
2073 if (local_group) {
2074 this_load = avg_load;
2075 this = group;
2076 } else if (avg_load < min_load) {
2077 min_load = avg_load;
2078 idlest = group;
2079 }
2080 } while (group = group->next, group != sd->groups);
2081
2082 if (!idlest || 100*this_load < imbalance*min_load)
2083 return NULL;
2084 return idlest;
2085 }
2086
2087 /*
2088 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2089 */
2090 static int
2091 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2092 cpumask_t *tmp)
2093 {
2094 unsigned long load, min_load = ULONG_MAX;
2095 int idlest = -1;
2096 int i;
2097
2098 /* Traverse only the allowed CPUs */
2099 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2100
2101 for_each_cpu_mask_nr(i, *tmp) {
2102 load = weighted_cpuload(i);
2103
2104 if (load < min_load || (load == min_load && i == this_cpu)) {
2105 min_load = load;
2106 idlest = i;
2107 }
2108 }
2109
2110 return idlest;
2111 }
2112
2113 /*
2114 * sched_balance_self: balance the current task (running on cpu) in domains
2115 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2116 * SD_BALANCE_EXEC.
2117 *
2118 * Balance, ie. select the least loaded group.
2119 *
2120 * Returns the target CPU number, or the same CPU if no balancing is needed.
2121 *
2122 * preempt must be disabled.
2123 */
2124 static int sched_balance_self(int cpu, int flag)
2125 {
2126 struct task_struct *t = current;
2127 struct sched_domain *tmp, *sd = NULL;
2128
2129 for_each_domain(cpu, tmp) {
2130 /*
2131 * If power savings logic is enabled for a domain, stop there.
2132 */
2133 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2134 break;
2135 if (tmp->flags & flag)
2136 sd = tmp;
2137 }
2138
2139 if (sd)
2140 update_shares(sd);
2141
2142 while (sd) {
2143 cpumask_t span, tmpmask;
2144 struct sched_group *group;
2145 int new_cpu, weight;
2146
2147 if (!(sd->flags & flag)) {
2148 sd = sd->child;
2149 continue;
2150 }
2151
2152 span = sd->span;
2153 group = find_idlest_group(sd, t, cpu);
2154 if (!group) {
2155 sd = sd->child;
2156 continue;
2157 }
2158
2159 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2160 if (new_cpu == -1 || new_cpu == cpu) {
2161 /* Now try balancing at a lower domain level of cpu */
2162 sd = sd->child;
2163 continue;
2164 }
2165
2166 /* Now try balancing at a lower domain level of new_cpu */
2167 cpu = new_cpu;
2168 sd = NULL;
2169 weight = cpus_weight(span);
2170 for_each_domain(cpu, tmp) {
2171 if (weight <= cpus_weight(tmp->span))
2172 break;
2173 if (tmp->flags & flag)
2174 sd = tmp;
2175 }
2176 /* while loop will break here if sd == NULL */
2177 }
2178
2179 return cpu;
2180 }
2181
2182 #endif /* CONFIG_SMP */
2183
2184 /***
2185 * try_to_wake_up - wake up a thread
2186 * @p: the to-be-woken-up thread
2187 * @state: the mask of task states that can be woken
2188 * @sync: do a synchronous wakeup?
2189 *
2190 * Put it on the run-queue if it's not already there. The "current"
2191 * thread is always on the run-queue (except when the actual
2192 * re-schedule is in progress), and as such you're allowed to do
2193 * the simpler "current->state = TASK_RUNNING" to mark yourself
2194 * runnable without the overhead of this.
2195 *
2196 * returns failure only if the task is already active.
2197 */
2198 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2199 {
2200 int cpu, orig_cpu, this_cpu, success = 0;
2201 unsigned long flags;
2202 long old_state;
2203 struct rq *rq;
2204
2205 if (!sched_feat(SYNC_WAKEUPS))
2206 sync = 0;
2207
2208 #ifdef CONFIG_SMP
2209 if (sched_feat(LB_WAKEUP_UPDATE)) {
2210 struct sched_domain *sd;
2211
2212 this_cpu = raw_smp_processor_id();
2213 cpu = task_cpu(p);
2214
2215 for_each_domain(this_cpu, sd) {
2216 if (cpu_isset(cpu, sd->span)) {
2217 update_shares(sd);
2218 break;
2219 }
2220 }
2221 }
2222 #endif
2223
2224 smp_wmb();
2225 rq = task_rq_lock(p, &flags);
2226 old_state = p->state;
2227 if (!(old_state & state))
2228 goto out;
2229
2230 if (p->se.on_rq)
2231 goto out_running;
2232
2233 cpu = task_cpu(p);
2234 orig_cpu = cpu;
2235 this_cpu = smp_processor_id();
2236
2237 #ifdef CONFIG_SMP
2238 if (unlikely(task_running(rq, p)))
2239 goto out_activate;
2240
2241 cpu = p->sched_class->select_task_rq(p, sync);
2242 if (cpu != orig_cpu) {
2243 set_task_cpu(p, cpu);
2244 task_rq_unlock(rq, &flags);
2245 /* might preempt at this point */
2246 rq = task_rq_lock(p, &flags);
2247 old_state = p->state;
2248 if (!(old_state & state))
2249 goto out;
2250 if (p->se.on_rq)
2251 goto out_running;
2252
2253 this_cpu = smp_processor_id();
2254 cpu = task_cpu(p);
2255 }
2256
2257 #ifdef CONFIG_SCHEDSTATS
2258 schedstat_inc(rq, ttwu_count);
2259 if (cpu == this_cpu)
2260 schedstat_inc(rq, ttwu_local);
2261 else {
2262 struct sched_domain *sd;
2263 for_each_domain(this_cpu, sd) {
2264 if (cpu_isset(cpu, sd->span)) {
2265 schedstat_inc(sd, ttwu_wake_remote);
2266 break;
2267 }
2268 }
2269 }
2270 #endif /* CONFIG_SCHEDSTATS */
2271
2272 out_activate:
2273 #endif /* CONFIG_SMP */
2274 schedstat_inc(p, se.nr_wakeups);
2275 if (sync)
2276 schedstat_inc(p, se.nr_wakeups_sync);
2277 if (orig_cpu != cpu)
2278 schedstat_inc(p, se.nr_wakeups_migrate);
2279 if (cpu == this_cpu)
2280 schedstat_inc(p, se.nr_wakeups_local);
2281 else
2282 schedstat_inc(p, se.nr_wakeups_remote);
2283 update_rq_clock(rq);
2284 activate_task(rq, p, 1);
2285 success = 1;
2286
2287 out_running:
2288 trace_sched_wakeup(rq, p);
2289 check_preempt_curr(rq, p, sync);
2290
2291 p->state = TASK_RUNNING;
2292 #ifdef CONFIG_SMP
2293 if (p->sched_class->task_wake_up)
2294 p->sched_class->task_wake_up(rq, p);
2295 #endif
2296 out:
2297 current->se.last_wakeup = current->se.sum_exec_runtime;
2298
2299 task_rq_unlock(rq, &flags);
2300
2301 return success;
2302 }
2303
2304 int wake_up_process(struct task_struct *p)
2305 {
2306 return try_to_wake_up(p, TASK_ALL, 0);
2307 }
2308 EXPORT_SYMBOL(wake_up_process);
2309
2310 int wake_up_state(struct task_struct *p, unsigned int state)
2311 {
2312 return try_to_wake_up(p, state, 0);
2313 }
2314
2315 /*
2316 * Perform scheduler related setup for a newly forked process p.
2317 * p is forked by current.
2318 *
2319 * __sched_fork() is basic setup used by init_idle() too:
2320 */
2321 static void __sched_fork(struct task_struct *p)
2322 {
2323 p->se.exec_start = 0;
2324 p->se.sum_exec_runtime = 0;
2325 p->se.prev_sum_exec_runtime = 0;
2326 p->se.last_wakeup = 0;
2327 p->se.avg_overlap = 0;
2328
2329 #ifdef CONFIG_SCHEDSTATS
2330 p->se.wait_start = 0;
2331 p->se.sum_sleep_runtime = 0;
2332 p->se.sleep_start = 0;
2333 p->se.block_start = 0;
2334 p->se.sleep_max = 0;
2335 p->se.block_max = 0;
2336 p->se.exec_max = 0;
2337 p->se.slice_max = 0;
2338 p->se.wait_max = 0;
2339 #endif
2340
2341 INIT_LIST_HEAD(&p->rt.run_list);
2342 p->se.on_rq = 0;
2343 INIT_LIST_HEAD(&p->se.group_node);
2344
2345 #ifdef CONFIG_PREEMPT_NOTIFIERS
2346 INIT_HLIST_HEAD(&p->preempt_notifiers);
2347 #endif
2348
2349 /*
2350 * We mark the process as running here, but have not actually
2351 * inserted it onto the runqueue yet. This guarantees that
2352 * nobody will actually run it, and a signal or other external
2353 * event cannot wake it up and insert it on the runqueue either.
2354 */
2355 p->state = TASK_RUNNING;
2356 }
2357
2358 /*
2359 * fork()/clone()-time setup:
2360 */
2361 void sched_fork(struct task_struct *p, int clone_flags)
2362 {
2363 int cpu = get_cpu();
2364
2365 __sched_fork(p);
2366
2367 #ifdef CONFIG_SMP
2368 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2369 #endif
2370 set_task_cpu(p, cpu);
2371
2372 /*
2373 * Make sure we do not leak PI boosting priority to the child:
2374 */
2375 p->prio = current->normal_prio;
2376 if (!rt_prio(p->prio))
2377 p->sched_class = &fair_sched_class;
2378
2379 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2380 if (likely(sched_info_on()))
2381 memset(&p->sched_info, 0, sizeof(p->sched_info));
2382 #endif
2383 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2384 p->oncpu = 0;
2385 #endif
2386 #ifdef CONFIG_PREEMPT
2387 /* Want to start with kernel preemption disabled. */
2388 task_thread_info(p)->preempt_count = 1;
2389 #endif
2390 put_cpu();
2391 }
2392
2393 /*
2394 * wake_up_new_task - wake up a newly created task for the first time.
2395 *
2396 * This function will do some initial scheduler statistics housekeeping
2397 * that must be done for every newly created context, then puts the task
2398 * on the runqueue and wakes it.
2399 */
2400 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2401 {
2402 unsigned long flags;
2403 struct rq *rq;
2404
2405 rq = task_rq_lock(p, &flags);
2406 BUG_ON(p->state != TASK_RUNNING);
2407 update_rq_clock(rq);
2408
2409 p->prio = effective_prio(p);
2410
2411 if (!p->sched_class->task_new || !current->se.on_rq) {
2412 activate_task(rq, p, 0);
2413 } else {
2414 /*
2415 * Let the scheduling class do new task startup
2416 * management (if any):
2417 */
2418 p->sched_class->task_new(rq, p);
2419 inc_nr_running(rq);
2420 }
2421 trace_sched_wakeup_new(rq, p);
2422 check_preempt_curr(rq, p, 0);
2423 #ifdef CONFIG_SMP
2424 if (p->sched_class->task_wake_up)
2425 p->sched_class->task_wake_up(rq, p);
2426 #endif
2427 task_rq_unlock(rq, &flags);
2428 }
2429
2430 #ifdef CONFIG_PREEMPT_NOTIFIERS
2431
2432 /**
2433 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2434 * @notifier: notifier struct to register
2435 */
2436 void preempt_notifier_register(struct preempt_notifier *notifier)
2437 {
2438 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2439 }
2440 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2441
2442 /**
2443 * preempt_notifier_unregister - no longer interested in preemption notifications
2444 * @notifier: notifier struct to unregister
2445 *
2446 * This is safe to call from within a preemption notifier.
2447 */
2448 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2449 {
2450 hlist_del(&notifier->link);
2451 }
2452 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2453
2454 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2455 {
2456 struct preempt_notifier *notifier;
2457 struct hlist_node *node;
2458
2459 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2460 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2461 }
2462
2463 static void
2464 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2465 struct task_struct *next)
2466 {
2467 struct preempt_notifier *notifier;
2468 struct hlist_node *node;
2469
2470 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2471 notifier->ops->sched_out(notifier, next);
2472 }
2473
2474 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2475
2476 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2477 {
2478 }
2479
2480 static void
2481 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2482 struct task_struct *next)
2483 {
2484 }
2485
2486 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2487
2488 /**
2489 * prepare_task_switch - prepare to switch tasks
2490 * @rq: the runqueue preparing to switch
2491 * @prev: the current task that is being switched out
2492 * @next: the task we are going to switch to.
2493 *
2494 * This is called with the rq lock held and interrupts off. It must
2495 * be paired with a subsequent finish_task_switch after the context
2496 * switch.
2497 *
2498 * prepare_task_switch sets up locking and calls architecture specific
2499 * hooks.
2500 */
2501 static inline void
2502 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2503 struct task_struct *next)
2504 {
2505 fire_sched_out_preempt_notifiers(prev, next);
2506 prepare_lock_switch(rq, next);
2507 prepare_arch_switch(next);
2508 }
2509
2510 /**
2511 * finish_task_switch - clean up after a task-switch
2512 * @rq: runqueue associated with task-switch
2513 * @prev: the thread we just switched away from.
2514 *
2515 * finish_task_switch must be called after the context switch, paired
2516 * with a prepare_task_switch call before the context switch.
2517 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2518 * and do any other architecture-specific cleanup actions.
2519 *
2520 * Note that we may have delayed dropping an mm in context_switch(). If
2521 * so, we finish that here outside of the runqueue lock. (Doing it
2522 * with the lock held can cause deadlocks; see schedule() for
2523 * details.)
2524 */
2525 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2526 __releases(rq->lock)
2527 {
2528 struct mm_struct *mm = rq->prev_mm;
2529 long prev_state;
2530
2531 rq->prev_mm = NULL;
2532
2533 /*
2534 * A task struct has one reference for the use as "current".
2535 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2536 * schedule one last time. The schedule call will never return, and
2537 * the scheduled task must drop that reference.
2538 * The test for TASK_DEAD must occur while the runqueue locks are
2539 * still held, otherwise prev could be scheduled on another cpu, die
2540 * there before we look at prev->state, and then the reference would
2541 * be dropped twice.
2542 * Manfred Spraul <manfred@colorfullife.com>
2543 */
2544 prev_state = prev->state;
2545 finish_arch_switch(prev);
2546 finish_lock_switch(rq, prev);
2547 #ifdef CONFIG_SMP
2548 if (current->sched_class->post_schedule)
2549 current->sched_class->post_schedule(rq);
2550 #endif
2551
2552 fire_sched_in_preempt_notifiers(current);
2553 if (mm)
2554 mmdrop(mm);
2555 if (unlikely(prev_state == TASK_DEAD)) {
2556 /*
2557 * Remove function-return probe instances associated with this
2558 * task and put them back on the free list.
2559 */
2560 kprobe_flush_task(prev);
2561 put_task_struct(prev);
2562 }
2563 }
2564
2565 /**
2566 * schedule_tail - first thing a freshly forked thread must call.
2567 * @prev: the thread we just switched away from.
2568 */
2569 asmlinkage void schedule_tail(struct task_struct *prev)
2570 __releases(rq->lock)
2571 {
2572 struct rq *rq = this_rq();
2573
2574 finish_task_switch(rq, prev);
2575 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2576 /* In this case, finish_task_switch does not reenable preemption */
2577 preempt_enable();
2578 #endif
2579 if (current->set_child_tid)
2580 put_user(task_pid_vnr(current), current->set_child_tid);
2581 }
2582
2583 /*
2584 * context_switch - switch to the new MM and the new
2585 * thread's register state.
2586 */
2587 static inline void
2588 context_switch(struct rq *rq, struct task_struct *prev,
2589 struct task_struct *next)
2590 {
2591 struct mm_struct *mm, *oldmm;
2592
2593 prepare_task_switch(rq, prev, next);
2594 trace_sched_switch(rq, prev, next);
2595 mm = next->mm;
2596 oldmm = prev->active_mm;
2597 /*
2598 * For paravirt, this is coupled with an exit in switch_to to
2599 * combine the page table reload and the switch backend into
2600 * one hypercall.
2601 */
2602 arch_enter_lazy_cpu_mode();
2603
2604 if (unlikely(!mm)) {
2605 next->active_mm = oldmm;
2606 atomic_inc(&oldmm->mm_count);
2607 enter_lazy_tlb(oldmm, next);
2608 } else
2609 switch_mm(oldmm, mm, next);
2610
2611 if (unlikely(!prev->mm)) {
2612 prev->active_mm = NULL;
2613 rq->prev_mm = oldmm;
2614 }
2615 /*
2616 * Since the runqueue lock will be released by the next
2617 * task (which is an invalid locking op but in the case
2618 * of the scheduler it's an obvious special-case), so we
2619 * do an early lockdep release here:
2620 */
2621 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2622 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2623 #endif
2624
2625 /* Here we just switch the register state and the stack. */
2626 switch_to(prev, next, prev);
2627
2628 barrier();
2629 /*
2630 * this_rq must be evaluated again because prev may have moved
2631 * CPUs since it called schedule(), thus the 'rq' on its stack
2632 * frame will be invalid.
2633 */
2634 finish_task_switch(this_rq(), prev);
2635 }
2636
2637 /*
2638 * nr_running, nr_uninterruptible and nr_context_switches:
2639 *
2640 * externally visible scheduler statistics: current number of runnable
2641 * threads, current number of uninterruptible-sleeping threads, total
2642 * number of context switches performed since bootup.
2643 */
2644 unsigned long nr_running(void)
2645 {
2646 unsigned long i, sum = 0;
2647
2648 for_each_online_cpu(i)
2649 sum += cpu_rq(i)->nr_running;
2650
2651 return sum;
2652 }
2653
2654 unsigned long nr_uninterruptible(void)
2655 {
2656 unsigned long i, sum = 0;
2657
2658 for_each_possible_cpu(i)
2659 sum += cpu_rq(i)->nr_uninterruptible;
2660
2661 /*
2662 * Since we read the counters lockless, it might be slightly
2663 * inaccurate. Do not allow it to go below zero though:
2664 */
2665 if (unlikely((long)sum < 0))
2666 sum = 0;
2667
2668 return sum;
2669 }
2670
2671 unsigned long long nr_context_switches(void)
2672 {
2673 int i;
2674 unsigned long long sum = 0;
2675
2676 for_each_possible_cpu(i)
2677 sum += cpu_rq(i)->nr_switches;
2678
2679 return sum;
2680 }
2681
2682 unsigned long nr_iowait(void)
2683 {
2684 unsigned long i, sum = 0;
2685
2686 for_each_possible_cpu(i)
2687 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2688
2689 return sum;
2690 }
2691
2692 unsigned long nr_active(void)
2693 {
2694 unsigned long i, running = 0, uninterruptible = 0;
2695
2696 for_each_online_cpu(i) {
2697 running += cpu_rq(i)->nr_running;
2698 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2699 }
2700
2701 if (unlikely((long)uninterruptible < 0))
2702 uninterruptible = 0;
2703
2704 return running + uninterruptible;
2705 }
2706
2707 /*
2708 * Update rq->cpu_load[] statistics. This function is usually called every
2709 * scheduler tick (TICK_NSEC).
2710 */
2711 static void update_cpu_load(struct rq *this_rq)
2712 {
2713 unsigned long this_load = this_rq->load.weight;
2714 int i, scale;
2715
2716 this_rq->nr_load_updates++;
2717
2718 /* Update our load: */
2719 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2720 unsigned long old_load, new_load;
2721
2722 /* scale is effectively 1 << i now, and >> i divides by scale */
2723
2724 old_load = this_rq->cpu_load[i];
2725 new_load = this_load;
2726 /*
2727 * Round up the averaging division if load is increasing. This
2728 * prevents us from getting stuck on 9 if the load is 10, for
2729 * example.
2730 */
2731 if (new_load > old_load)
2732 new_load += scale-1;
2733 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2734 }
2735 }
2736
2737 #ifdef CONFIG_SMP
2738
2739 /*
2740 * double_rq_lock - safely lock two runqueues
2741 *
2742 * Note this does not disable interrupts like task_rq_lock,
2743 * you need to do so manually before calling.
2744 */
2745 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2746 __acquires(rq1->lock)
2747 __acquires(rq2->lock)
2748 {
2749 BUG_ON(!irqs_disabled());
2750 if (rq1 == rq2) {
2751 spin_lock(&rq1->lock);
2752 __acquire(rq2->lock); /* Fake it out ;) */
2753 } else {
2754 if (rq1 < rq2) {
2755 spin_lock(&rq1->lock);
2756 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2757 } else {
2758 spin_lock(&rq2->lock);
2759 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2760 }
2761 }
2762 update_rq_clock(rq1);
2763 update_rq_clock(rq2);
2764 }
2765
2766 /*
2767 * double_rq_unlock - safely unlock two runqueues
2768 *
2769 * Note this does not restore interrupts like task_rq_unlock,
2770 * you need to do so manually after calling.
2771 */
2772 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2773 __releases(rq1->lock)
2774 __releases(rq2->lock)
2775 {
2776 spin_unlock(&rq1->lock);
2777 if (rq1 != rq2)
2778 spin_unlock(&rq2->lock);
2779 else
2780 __release(rq2->lock);
2781 }
2782
2783 /*
2784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2785 */
2786 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2787 __releases(this_rq->lock)
2788 __acquires(busiest->lock)
2789 __acquires(this_rq->lock)
2790 {
2791 int ret = 0;
2792
2793 if (unlikely(!irqs_disabled())) {
2794 /* printk() doesn't work good under rq->lock */
2795 spin_unlock(&this_rq->lock);
2796 BUG_ON(1);
2797 }
2798 if (unlikely(!spin_trylock(&busiest->lock))) {
2799 if (busiest < this_rq) {
2800 spin_unlock(&this_rq->lock);
2801 spin_lock(&busiest->lock);
2802 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2803 ret = 1;
2804 } else
2805 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2806 }
2807 return ret;
2808 }
2809
2810 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2811 __releases(busiest->lock)
2812 {
2813 spin_unlock(&busiest->lock);
2814 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2815 }
2816
2817 /*
2818 * If dest_cpu is allowed for this process, migrate the task to it.
2819 * This is accomplished by forcing the cpu_allowed mask to only
2820 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2821 * the cpu_allowed mask is restored.
2822 */
2823 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2824 {
2825 struct migration_req req;
2826 unsigned long flags;
2827 struct rq *rq;
2828
2829 rq = task_rq_lock(p, &flags);
2830 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2831 || unlikely(!cpu_active(dest_cpu)))
2832 goto out;
2833
2834 trace_sched_migrate_task(rq, p, dest_cpu);
2835 /* force the process onto the specified CPU */
2836 if (migrate_task(p, dest_cpu, &req)) {
2837 /* Need to wait for migration thread (might exit: take ref). */
2838 struct task_struct *mt = rq->migration_thread;
2839
2840 get_task_struct(mt);
2841 task_rq_unlock(rq, &flags);
2842 wake_up_process(mt);
2843 put_task_struct(mt);
2844 wait_for_completion(&req.done);
2845
2846 return;
2847 }
2848 out:
2849 task_rq_unlock(rq, &flags);
2850 }
2851
2852 /*
2853 * sched_exec - execve() is a valuable balancing opportunity, because at
2854 * this point the task has the smallest effective memory and cache footprint.
2855 */
2856 void sched_exec(void)
2857 {
2858 int new_cpu, this_cpu = get_cpu();
2859 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2860 put_cpu();
2861 if (new_cpu != this_cpu)
2862 sched_migrate_task(current, new_cpu);
2863 }
2864
2865 /*
2866 * pull_task - move a task from a remote runqueue to the local runqueue.
2867 * Both runqueues must be locked.
2868 */
2869 static void pull_task(struct rq *src_rq, struct task_struct *p,
2870 struct rq *this_rq, int this_cpu)
2871 {
2872 deactivate_task(src_rq, p, 0);
2873 set_task_cpu(p, this_cpu);
2874 activate_task(this_rq, p, 0);
2875 /*
2876 * Note that idle threads have a prio of MAX_PRIO, for this test
2877 * to be always true for them.
2878 */
2879 check_preempt_curr(this_rq, p, 0);
2880 }
2881
2882 /*
2883 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2884 */
2885 static
2886 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2887 struct sched_domain *sd, enum cpu_idle_type idle,
2888 int *all_pinned)
2889 {
2890 /*
2891 * We do not migrate tasks that are:
2892 * 1) running (obviously), or
2893 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2894 * 3) are cache-hot on their current CPU.
2895 */
2896 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2897 schedstat_inc(p, se.nr_failed_migrations_affine);
2898 return 0;
2899 }
2900 *all_pinned = 0;
2901
2902 if (task_running(rq, p)) {
2903 schedstat_inc(p, se.nr_failed_migrations_running);
2904 return 0;
2905 }
2906
2907 /*
2908 * Aggressive migration if:
2909 * 1) task is cache cold, or
2910 * 2) too many balance attempts have failed.
2911 */
2912
2913 if (!task_hot(p, rq->clock, sd) ||
2914 sd->nr_balance_failed > sd->cache_nice_tries) {
2915 #ifdef CONFIG_SCHEDSTATS
2916 if (task_hot(p, rq->clock, sd)) {
2917 schedstat_inc(sd, lb_hot_gained[idle]);
2918 schedstat_inc(p, se.nr_forced_migrations);
2919 }
2920 #endif
2921 return 1;
2922 }
2923
2924 if (task_hot(p, rq->clock, sd)) {
2925 schedstat_inc(p, se.nr_failed_migrations_hot);
2926 return 0;
2927 }
2928 return 1;
2929 }
2930
2931 static unsigned long
2932 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2933 unsigned long max_load_move, struct sched_domain *sd,
2934 enum cpu_idle_type idle, int *all_pinned,
2935 int *this_best_prio, struct rq_iterator *iterator)
2936 {
2937 int loops = 0, pulled = 0, pinned = 0;
2938 struct task_struct *p;
2939 long rem_load_move = max_load_move;
2940
2941 if (max_load_move == 0)
2942 goto out;
2943
2944 pinned = 1;
2945
2946 /*
2947 * Start the load-balancing iterator:
2948 */
2949 p = iterator->start(iterator->arg);
2950 next:
2951 if (!p || loops++ > sysctl_sched_nr_migrate)
2952 goto out;
2953
2954 if ((p->se.load.weight >> 1) > rem_load_move ||
2955 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2956 p = iterator->next(iterator->arg);
2957 goto next;
2958 }
2959
2960 pull_task(busiest, p, this_rq, this_cpu);
2961 pulled++;
2962 rem_load_move -= p->se.load.weight;
2963
2964 /*
2965 * We only want to steal up to the prescribed amount of weighted load.
2966 */
2967 if (rem_load_move > 0) {
2968 if (p->prio < *this_best_prio)
2969 *this_best_prio = p->prio;
2970 p = iterator->next(iterator->arg);
2971 goto next;
2972 }
2973 out:
2974 /*
2975 * Right now, this is one of only two places pull_task() is called,
2976 * so we can safely collect pull_task() stats here rather than
2977 * inside pull_task().
2978 */
2979 schedstat_add(sd, lb_gained[idle], pulled);
2980
2981 if (all_pinned)
2982 *all_pinned = pinned;
2983
2984 return max_load_move - rem_load_move;
2985 }
2986
2987 /*
2988 * move_tasks tries to move up to max_load_move weighted load from busiest to
2989 * this_rq, as part of a balancing operation within domain "sd".
2990 * Returns 1 if successful and 0 otherwise.
2991 *
2992 * Called with both runqueues locked.
2993 */
2994 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2995 unsigned long max_load_move,
2996 struct sched_domain *sd, enum cpu_idle_type idle,
2997 int *all_pinned)
2998 {
2999 const struct sched_class *class = sched_class_highest;
3000 unsigned long total_load_moved = 0;
3001 int this_best_prio = this_rq->curr->prio;
3002
3003 do {
3004 total_load_moved +=
3005 class->load_balance(this_rq, this_cpu, busiest,
3006 max_load_move - total_load_moved,
3007 sd, idle, all_pinned, &this_best_prio);
3008 class = class->next;
3009
3010 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3011 break;
3012
3013 } while (class && max_load_move > total_load_moved);
3014
3015 return total_load_moved > 0;
3016 }
3017
3018 static int
3019 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3020 struct sched_domain *sd, enum cpu_idle_type idle,
3021 struct rq_iterator *iterator)
3022 {
3023 struct task_struct *p = iterator->start(iterator->arg);
3024 int pinned = 0;
3025
3026 while (p) {
3027 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3028 pull_task(busiest, p, this_rq, this_cpu);
3029 /*
3030 * Right now, this is only the second place pull_task()
3031 * is called, so we can safely collect pull_task()
3032 * stats here rather than inside pull_task().
3033 */
3034 schedstat_inc(sd, lb_gained[idle]);
3035
3036 return 1;
3037 }
3038 p = iterator->next(iterator->arg);
3039 }
3040
3041 return 0;
3042 }
3043
3044 /*
3045 * move_one_task tries to move exactly one task from busiest to this_rq, as
3046 * part of active balancing operations within "domain".
3047 * Returns 1 if successful and 0 otherwise.
3048 *
3049 * Called with both runqueues locked.
3050 */
3051 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3052 struct sched_domain *sd, enum cpu_idle_type idle)
3053 {
3054 const struct sched_class *class;
3055
3056 for (class = sched_class_highest; class; class = class->next)
3057 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3058 return 1;
3059
3060 return 0;
3061 }
3062
3063 /*
3064 * find_busiest_group finds and returns the busiest CPU group within the
3065 * domain. It calculates and returns the amount of weighted load which
3066 * should be moved to restore balance via the imbalance parameter.
3067 */
3068 static struct sched_group *
3069 find_busiest_group(struct sched_domain *sd, int this_cpu,
3070 unsigned long *imbalance, enum cpu_idle_type idle,
3071 int *sd_idle, const cpumask_t *cpus, int *balance)
3072 {
3073 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3074 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3075 unsigned long max_pull;
3076 unsigned long busiest_load_per_task, busiest_nr_running;
3077 unsigned long this_load_per_task, this_nr_running;
3078 int load_idx, group_imb = 0;
3079 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3080 int power_savings_balance = 1;
3081 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3082 unsigned long min_nr_running = ULONG_MAX;
3083 struct sched_group *group_min = NULL, *group_leader = NULL;
3084 #endif
3085
3086 max_load = this_load = total_load = total_pwr = 0;
3087 busiest_load_per_task = busiest_nr_running = 0;
3088 this_load_per_task = this_nr_running = 0;
3089
3090 if (idle == CPU_NOT_IDLE)
3091 load_idx = sd->busy_idx;
3092 else if (idle == CPU_NEWLY_IDLE)
3093 load_idx = sd->newidle_idx;
3094 else
3095 load_idx = sd->idle_idx;
3096
3097 do {
3098 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3099 int local_group;
3100 int i;
3101 int __group_imb = 0;
3102 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3103 unsigned long sum_nr_running, sum_weighted_load;
3104 unsigned long sum_avg_load_per_task;
3105 unsigned long avg_load_per_task;
3106
3107 local_group = cpu_isset(this_cpu, group->cpumask);
3108
3109 if (local_group)
3110 balance_cpu = first_cpu(group->cpumask);
3111
3112 /* Tally up the load of all CPUs in the group */
3113 sum_weighted_load = sum_nr_running = avg_load = 0;
3114 sum_avg_load_per_task = avg_load_per_task = 0;
3115
3116 max_cpu_load = 0;
3117 min_cpu_load = ~0UL;
3118
3119 for_each_cpu_mask_nr(i, group->cpumask) {
3120 struct rq *rq;
3121
3122 if (!cpu_isset(i, *cpus))
3123 continue;
3124
3125 rq = cpu_rq(i);
3126
3127 if (*sd_idle && rq->nr_running)
3128 *sd_idle = 0;
3129
3130 /* Bias balancing toward cpus of our domain */
3131 if (local_group) {
3132 if (idle_cpu(i) && !first_idle_cpu) {
3133 first_idle_cpu = 1;
3134 balance_cpu = i;
3135 }
3136
3137 load = target_load(i, load_idx);
3138 } else {
3139 load = source_load(i, load_idx);
3140 if (load > max_cpu_load)
3141 max_cpu_load = load;
3142 if (min_cpu_load > load)
3143 min_cpu_load = load;
3144 }
3145
3146 avg_load += load;
3147 sum_nr_running += rq->nr_running;
3148 sum_weighted_load += weighted_cpuload(i);
3149
3150 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3151 }
3152
3153 /*
3154 * First idle cpu or the first cpu(busiest) in this sched group
3155 * is eligible for doing load balancing at this and above
3156 * domains. In the newly idle case, we will allow all the cpu's
3157 * to do the newly idle load balance.
3158 */
3159 if (idle != CPU_NEWLY_IDLE && local_group &&
3160 balance_cpu != this_cpu && balance) {
3161 *balance = 0;
3162 goto ret;
3163 }
3164
3165 total_load += avg_load;
3166 total_pwr += group->__cpu_power;
3167
3168 /* Adjust by relative CPU power of the group */
3169 avg_load = sg_div_cpu_power(group,
3170 avg_load * SCHED_LOAD_SCALE);
3171
3172
3173 /*
3174 * Consider the group unbalanced when the imbalance is larger
3175 * than the average weight of two tasks.
3176 *
3177 * APZ: with cgroup the avg task weight can vary wildly and
3178 * might not be a suitable number - should we keep a
3179 * normalized nr_running number somewhere that negates
3180 * the hierarchy?
3181 */
3182 avg_load_per_task = sg_div_cpu_power(group,
3183 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3184
3185 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3186 __group_imb = 1;
3187
3188 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3189
3190 if (local_group) {
3191 this_load = avg_load;
3192 this = group;
3193 this_nr_running = sum_nr_running;
3194 this_load_per_task = sum_weighted_load;
3195 } else if (avg_load > max_load &&
3196 (sum_nr_running > group_capacity || __group_imb)) {
3197 max_load = avg_load;
3198 busiest = group;
3199 busiest_nr_running = sum_nr_running;
3200 busiest_load_per_task = sum_weighted_load;
3201 group_imb = __group_imb;
3202 }
3203
3204 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3205 /*
3206 * Busy processors will not participate in power savings
3207 * balance.
3208 */
3209 if (idle == CPU_NOT_IDLE ||
3210 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3211 goto group_next;
3212
3213 /*
3214 * If the local group is idle or completely loaded
3215 * no need to do power savings balance at this domain
3216 */
3217 if (local_group && (this_nr_running >= group_capacity ||
3218 !this_nr_running))
3219 power_savings_balance = 0;
3220
3221 /*
3222 * If a group is already running at full capacity or idle,
3223 * don't include that group in power savings calculations
3224 */
3225 if (!power_savings_balance || sum_nr_running >= group_capacity
3226 || !sum_nr_running)
3227 goto group_next;
3228
3229 /*
3230 * Calculate the group which has the least non-idle load.
3231 * This is the group from where we need to pick up the load
3232 * for saving power
3233 */
3234 if ((sum_nr_running < min_nr_running) ||
3235 (sum_nr_running == min_nr_running &&
3236 first_cpu(group->cpumask) <
3237 first_cpu(group_min->cpumask))) {
3238 group_min = group;
3239 min_nr_running = sum_nr_running;
3240 min_load_per_task = sum_weighted_load /
3241 sum_nr_running;
3242 }
3243
3244 /*
3245 * Calculate the group which is almost near its
3246 * capacity but still has some space to pick up some load
3247 * from other group and save more power
3248 */
3249 if (sum_nr_running <= group_capacity - 1) {
3250 if (sum_nr_running > leader_nr_running ||
3251 (sum_nr_running == leader_nr_running &&
3252 first_cpu(group->cpumask) >
3253 first_cpu(group_leader->cpumask))) {
3254 group_leader = group;
3255 leader_nr_running = sum_nr_running;
3256 }
3257 }
3258 group_next:
3259 #endif
3260 group = group->next;
3261 } while (group != sd->groups);
3262
3263 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3264 goto out_balanced;
3265
3266 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3267
3268 if (this_load >= avg_load ||
3269 100*max_load <= sd->imbalance_pct*this_load)
3270 goto out_balanced;
3271
3272 busiest_load_per_task /= busiest_nr_running;
3273 if (group_imb)
3274 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3275
3276 /*
3277 * We're trying to get all the cpus to the average_load, so we don't
3278 * want to push ourselves above the average load, nor do we wish to
3279 * reduce the max loaded cpu below the average load, as either of these
3280 * actions would just result in more rebalancing later, and ping-pong
3281 * tasks around. Thus we look for the minimum possible imbalance.
3282 * Negative imbalances (*we* are more loaded than anyone else) will
3283 * be counted as no imbalance for these purposes -- we can't fix that
3284 * by pulling tasks to us. Be careful of negative numbers as they'll
3285 * appear as very large values with unsigned longs.
3286 */
3287 if (max_load <= busiest_load_per_task)
3288 goto out_balanced;
3289
3290 /*
3291 * In the presence of smp nice balancing, certain scenarios can have
3292 * max load less than avg load(as we skip the groups at or below
3293 * its cpu_power, while calculating max_load..)
3294 */
3295 if (max_load < avg_load) {
3296 *imbalance = 0;
3297 goto small_imbalance;
3298 }
3299
3300 /* Don't want to pull so many tasks that a group would go idle */
3301 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3302
3303 /* How much load to actually move to equalise the imbalance */
3304 *imbalance = min(max_pull * busiest->__cpu_power,
3305 (avg_load - this_load) * this->__cpu_power)
3306 / SCHED_LOAD_SCALE;
3307
3308 /*
3309 * if *imbalance is less than the average load per runnable task
3310 * there is no gaurantee that any tasks will be moved so we'll have
3311 * a think about bumping its value to force at least one task to be
3312 * moved
3313 */
3314 if (*imbalance < busiest_load_per_task) {
3315 unsigned long tmp, pwr_now, pwr_move;
3316 unsigned int imbn;
3317
3318 small_imbalance:
3319 pwr_move = pwr_now = 0;
3320 imbn = 2;
3321 if (this_nr_running) {
3322 this_load_per_task /= this_nr_running;
3323 if (busiest_load_per_task > this_load_per_task)
3324 imbn = 1;
3325 } else
3326 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3327
3328 if (max_load - this_load + busiest_load_per_task >=
3329 busiest_load_per_task * imbn) {
3330 *imbalance = busiest_load_per_task;
3331 return busiest;
3332 }
3333
3334 /*
3335 * OK, we don't have enough imbalance to justify moving tasks,
3336 * however we may be able to increase total CPU power used by
3337 * moving them.
3338 */
3339
3340 pwr_now += busiest->__cpu_power *
3341 min(busiest_load_per_task, max_load);
3342 pwr_now += this->__cpu_power *
3343 min(this_load_per_task, this_load);
3344 pwr_now /= SCHED_LOAD_SCALE;
3345
3346 /* Amount of load we'd subtract */
3347 tmp = sg_div_cpu_power(busiest,
3348 busiest_load_per_task * SCHED_LOAD_SCALE);
3349 if (max_load > tmp)
3350 pwr_move += busiest->__cpu_power *
3351 min(busiest_load_per_task, max_load - tmp);
3352
3353 /* Amount of load we'd add */
3354 if (max_load * busiest->__cpu_power <
3355 busiest_load_per_task * SCHED_LOAD_SCALE)
3356 tmp = sg_div_cpu_power(this,
3357 max_load * busiest->__cpu_power);
3358 else
3359 tmp = sg_div_cpu_power(this,
3360 busiest_load_per_task * SCHED_LOAD_SCALE);
3361 pwr_move += this->__cpu_power *
3362 min(this_load_per_task, this_load + tmp);
3363 pwr_move /= SCHED_LOAD_SCALE;
3364
3365 /* Move if we gain throughput */
3366 if (pwr_move > pwr_now)
3367 *imbalance = busiest_load_per_task;
3368 }
3369
3370 return busiest;
3371
3372 out_balanced:
3373 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3374 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3375 goto ret;
3376
3377 if (this == group_leader && group_leader != group_min) {
3378 *imbalance = min_load_per_task;
3379 return group_min;
3380 }
3381 #endif
3382 ret:
3383 *imbalance = 0;
3384 return NULL;
3385 }
3386
3387 /*
3388 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3389 */
3390 static struct rq *
3391 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3392 unsigned long imbalance, const cpumask_t *cpus)
3393 {
3394 struct rq *busiest = NULL, *rq;
3395 unsigned long max_load = 0;
3396 int i;
3397
3398 for_each_cpu_mask_nr(i, group->cpumask) {
3399 unsigned long wl;
3400
3401 if (!cpu_isset(i, *cpus))
3402 continue;
3403
3404 rq = cpu_rq(i);
3405 wl = weighted_cpuload(i);
3406
3407 if (rq->nr_running == 1 && wl > imbalance)
3408 continue;
3409
3410 if (wl > max_load) {
3411 max_load = wl;
3412 busiest = rq;
3413 }
3414 }
3415
3416 return busiest;
3417 }
3418
3419 /*
3420 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3421 * so long as it is large enough.
3422 */
3423 #define MAX_PINNED_INTERVAL 512
3424
3425 /*
3426 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3427 * tasks if there is an imbalance.
3428 */
3429 static int load_balance(int this_cpu, struct rq *this_rq,
3430 struct sched_domain *sd, enum cpu_idle_type idle,
3431 int *balance, cpumask_t *cpus)
3432 {
3433 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3434 struct sched_group *group;
3435 unsigned long imbalance;
3436 struct rq *busiest;
3437 unsigned long flags;
3438
3439 cpus_setall(*cpus);
3440
3441 /*
3442 * When power savings policy is enabled for the parent domain, idle
3443 * sibling can pick up load irrespective of busy siblings. In this case,
3444 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3445 * portraying it as CPU_NOT_IDLE.
3446 */
3447 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3448 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3449 sd_idle = 1;
3450
3451 schedstat_inc(sd, lb_count[idle]);
3452
3453 redo:
3454 update_shares(sd);
3455 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3456 cpus, balance);
3457
3458 if (*balance == 0)
3459 goto out_balanced;
3460
3461 if (!group) {
3462 schedstat_inc(sd, lb_nobusyg[idle]);
3463 goto out_balanced;
3464 }
3465
3466 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3467 if (!busiest) {
3468 schedstat_inc(sd, lb_nobusyq[idle]);
3469 goto out_balanced;
3470 }
3471
3472 BUG_ON(busiest == this_rq);
3473
3474 schedstat_add(sd, lb_imbalance[idle], imbalance);
3475
3476 ld_moved = 0;
3477 if (busiest->nr_running > 1) {
3478 /*
3479 * Attempt to move tasks. If find_busiest_group has found
3480 * an imbalance but busiest->nr_running <= 1, the group is
3481 * still unbalanced. ld_moved simply stays zero, so it is
3482 * correctly treated as an imbalance.
3483 */
3484 local_irq_save(flags);
3485 double_rq_lock(this_rq, busiest);
3486 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3487 imbalance, sd, idle, &all_pinned);
3488 double_rq_unlock(this_rq, busiest);
3489 local_irq_restore(flags);
3490
3491 /*
3492 * some other cpu did the load balance for us.
3493 */
3494 if (ld_moved && this_cpu != smp_processor_id())
3495 resched_cpu(this_cpu);
3496
3497 /* All tasks on this runqueue were pinned by CPU affinity */
3498 if (unlikely(all_pinned)) {
3499 cpu_clear(cpu_of(busiest), *cpus);
3500 if (!cpus_empty(*cpus))
3501 goto redo;
3502 goto out_balanced;
3503 }
3504 }
3505
3506 if (!ld_moved) {
3507 schedstat_inc(sd, lb_failed[idle]);
3508 sd->nr_balance_failed++;
3509
3510 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3511
3512 spin_lock_irqsave(&busiest->lock, flags);
3513
3514 /* don't kick the migration_thread, if the curr
3515 * task on busiest cpu can't be moved to this_cpu
3516 */
3517 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3518 spin_unlock_irqrestore(&busiest->lock, flags);
3519 all_pinned = 1;
3520 goto out_one_pinned;
3521 }
3522
3523 if (!busiest->active_balance) {
3524 busiest->active_balance = 1;
3525 busiest->push_cpu = this_cpu;
3526 active_balance = 1;
3527 }
3528 spin_unlock_irqrestore(&busiest->lock, flags);
3529 if (active_balance)
3530 wake_up_process(busiest->migration_thread);
3531
3532 /*
3533 * We've kicked active balancing, reset the failure
3534 * counter.
3535 */
3536 sd->nr_balance_failed = sd->cache_nice_tries+1;
3537 }
3538 } else
3539 sd->nr_balance_failed = 0;
3540
3541 if (likely(!active_balance)) {
3542 /* We were unbalanced, so reset the balancing interval */
3543 sd->balance_interval = sd->min_interval;
3544 } else {
3545 /*
3546 * If we've begun active balancing, start to back off. This
3547 * case may not be covered by the all_pinned logic if there
3548 * is only 1 task on the busy runqueue (because we don't call
3549 * move_tasks).
3550 */
3551 if (sd->balance_interval < sd->max_interval)
3552 sd->balance_interval *= 2;
3553 }
3554
3555 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3556 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3557 ld_moved = -1;
3558
3559 goto out;
3560
3561 out_balanced:
3562 schedstat_inc(sd, lb_balanced[idle]);
3563
3564 sd->nr_balance_failed = 0;
3565
3566 out_one_pinned:
3567 /* tune up the balancing interval */
3568 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3569 (sd->balance_interval < sd->max_interval))
3570 sd->balance_interval *= 2;
3571
3572 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3573 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3574 ld_moved = -1;
3575 else
3576 ld_moved = 0;
3577 out:
3578 if (ld_moved)
3579 update_shares(sd);
3580 return ld_moved;
3581 }
3582
3583 /*
3584 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3585 * tasks if there is an imbalance.
3586 *
3587 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3588 * this_rq is locked.
3589 */
3590 static int
3591 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3592 cpumask_t *cpus)
3593 {
3594 struct sched_group *group;
3595 struct rq *busiest = NULL;
3596 unsigned long imbalance;
3597 int ld_moved = 0;
3598 int sd_idle = 0;
3599 int all_pinned = 0;
3600
3601 cpus_setall(*cpus);
3602
3603 /*
3604 * When power savings policy is enabled for the parent domain, idle
3605 * sibling can pick up load irrespective of busy siblings. In this case,
3606 * let the state of idle sibling percolate up as IDLE, instead of
3607 * portraying it as CPU_NOT_IDLE.
3608 */
3609 if (sd->flags & SD_SHARE_CPUPOWER &&
3610 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3611 sd_idle = 1;
3612
3613 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3614 redo:
3615 update_shares_locked(this_rq, sd);
3616 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3617 &sd_idle, cpus, NULL);
3618 if (!group) {
3619 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3620 goto out_balanced;
3621 }
3622
3623 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3624 if (!busiest) {
3625 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3626 goto out_balanced;
3627 }
3628
3629 BUG_ON(busiest == this_rq);
3630
3631 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3632
3633 ld_moved = 0;
3634 if (busiest->nr_running > 1) {
3635 /* Attempt to move tasks */
3636 double_lock_balance(this_rq, busiest);
3637 /* this_rq->clock is already updated */
3638 update_rq_clock(busiest);
3639 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3640 imbalance, sd, CPU_NEWLY_IDLE,
3641 &all_pinned);
3642 double_unlock_balance(this_rq, busiest);
3643
3644 if (unlikely(all_pinned)) {
3645 cpu_clear(cpu_of(busiest), *cpus);
3646 if (!cpus_empty(*cpus))
3647 goto redo;
3648 }
3649 }
3650
3651 if (!ld_moved) {
3652 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3653 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3654 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3655 return -1;
3656 } else
3657 sd->nr_balance_failed = 0;
3658
3659 update_shares_locked(this_rq, sd);
3660 return ld_moved;
3661
3662 out_balanced:
3663 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3664 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3665 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3666 return -1;
3667 sd->nr_balance_failed = 0;
3668
3669 return 0;
3670 }
3671
3672 /*
3673 * idle_balance is called by schedule() if this_cpu is about to become
3674 * idle. Attempts to pull tasks from other CPUs.
3675 */
3676 static void idle_balance(int this_cpu, struct rq *this_rq)
3677 {
3678 struct sched_domain *sd;
3679 int pulled_task = -1;
3680 unsigned long next_balance = jiffies + HZ;
3681 cpumask_t tmpmask;
3682
3683 for_each_domain(this_cpu, sd) {
3684 unsigned long interval;
3685
3686 if (!(sd->flags & SD_LOAD_BALANCE))
3687 continue;
3688
3689 if (sd->flags & SD_BALANCE_NEWIDLE)
3690 /* If we've pulled tasks over stop searching: */
3691 pulled_task = load_balance_newidle(this_cpu, this_rq,
3692 sd, &tmpmask);
3693
3694 interval = msecs_to_jiffies(sd->balance_interval);
3695 if (time_after(next_balance, sd->last_balance + interval))
3696 next_balance = sd->last_balance + interval;
3697 if (pulled_task)
3698 break;
3699 }
3700 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3701 /*
3702 * We are going idle. next_balance may be set based on
3703 * a busy processor. So reset next_balance.
3704 */
3705 this_rq->next_balance = next_balance;
3706 }
3707 }
3708
3709 /*
3710 * active_load_balance is run by migration threads. It pushes running tasks
3711 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3712 * running on each physical CPU where possible, and avoids physical /
3713 * logical imbalances.
3714 *
3715 * Called with busiest_rq locked.
3716 */
3717 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3718 {
3719 int target_cpu = busiest_rq->push_cpu;
3720 struct sched_domain *sd;
3721 struct rq *target_rq;
3722
3723 /* Is there any task to move? */
3724 if (busiest_rq->nr_running <= 1)
3725 return;
3726
3727 target_rq = cpu_rq(target_cpu);
3728
3729 /*
3730 * This condition is "impossible", if it occurs
3731 * we need to fix it. Originally reported by
3732 * Bjorn Helgaas on a 128-cpu setup.
3733 */
3734 BUG_ON(busiest_rq == target_rq);
3735
3736 /* move a task from busiest_rq to target_rq */
3737 double_lock_balance(busiest_rq, target_rq);
3738 update_rq_clock(busiest_rq);
3739 update_rq_clock(target_rq);
3740
3741 /* Search for an sd spanning us and the target CPU. */
3742 for_each_domain(target_cpu, sd) {
3743 if ((sd->flags & SD_LOAD_BALANCE) &&
3744 cpu_isset(busiest_cpu, sd->span))
3745 break;
3746 }
3747
3748 if (likely(sd)) {
3749 schedstat_inc(sd, alb_count);
3750
3751 if (move_one_task(target_rq, target_cpu, busiest_rq,
3752 sd, CPU_IDLE))
3753 schedstat_inc(sd, alb_pushed);
3754 else
3755 schedstat_inc(sd, alb_failed);
3756 }
3757 double_unlock_balance(busiest_rq, target_rq);
3758 }
3759
3760 #ifdef CONFIG_NO_HZ
3761 static struct {
3762 atomic_t load_balancer;
3763 cpumask_t cpu_mask;
3764 } nohz ____cacheline_aligned = {
3765 .load_balancer = ATOMIC_INIT(-1),
3766 .cpu_mask = CPU_MASK_NONE,
3767 };
3768
3769 /*
3770 * This routine will try to nominate the ilb (idle load balancing)
3771 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3772 * load balancing on behalf of all those cpus. If all the cpus in the system
3773 * go into this tickless mode, then there will be no ilb owner (as there is
3774 * no need for one) and all the cpus will sleep till the next wakeup event
3775 * arrives...
3776 *
3777 * For the ilb owner, tick is not stopped. And this tick will be used
3778 * for idle load balancing. ilb owner will still be part of
3779 * nohz.cpu_mask..
3780 *
3781 * While stopping the tick, this cpu will become the ilb owner if there
3782 * is no other owner. And will be the owner till that cpu becomes busy
3783 * or if all cpus in the system stop their ticks at which point
3784 * there is no need for ilb owner.
3785 *
3786 * When the ilb owner becomes busy, it nominates another owner, during the
3787 * next busy scheduler_tick()
3788 */
3789 int select_nohz_load_balancer(int stop_tick)
3790 {
3791 int cpu = smp_processor_id();
3792
3793 if (stop_tick) {
3794 cpu_set(cpu, nohz.cpu_mask);
3795 cpu_rq(cpu)->in_nohz_recently = 1;
3796
3797 /*
3798 * If we are going offline and still the leader, give up!
3799 */
3800 if (!cpu_active(cpu) &&
3801 atomic_read(&nohz.load_balancer) == cpu) {
3802 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3803 BUG();
3804 return 0;
3805 }
3806
3807 /* time for ilb owner also to sleep */
3808 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3809 if (atomic_read(&nohz.load_balancer) == cpu)
3810 atomic_set(&nohz.load_balancer, -1);
3811 return 0;
3812 }
3813
3814 if (atomic_read(&nohz.load_balancer) == -1) {
3815 /* make me the ilb owner */
3816 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3817 return 1;
3818 } else if (atomic_read(&nohz.load_balancer) == cpu)
3819 return 1;
3820 } else {
3821 if (!cpu_isset(cpu, nohz.cpu_mask))
3822 return 0;
3823
3824 cpu_clear(cpu, nohz.cpu_mask);
3825
3826 if (atomic_read(&nohz.load_balancer) == cpu)
3827 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3828 BUG();
3829 }
3830 return 0;
3831 }
3832 #endif
3833
3834 static DEFINE_SPINLOCK(balancing);
3835
3836 /*
3837 * It checks each scheduling domain to see if it is due to be balanced,
3838 * and initiates a balancing operation if so.
3839 *
3840 * Balancing parameters are set up in arch_init_sched_domains.
3841 */
3842 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3843 {
3844 int balance = 1;
3845 struct rq *rq = cpu_rq(cpu);
3846 unsigned long interval;
3847 struct sched_domain *sd;
3848 /* Earliest time when we have to do rebalance again */
3849 unsigned long next_balance = jiffies + 60*HZ;
3850 int update_next_balance = 0;
3851 int need_serialize;
3852 cpumask_t tmp;
3853
3854 for_each_domain(cpu, sd) {
3855 if (!(sd->flags & SD_LOAD_BALANCE))
3856 continue;
3857
3858 interval = sd->balance_interval;
3859 if (idle != CPU_IDLE)
3860 interval *= sd->busy_factor;
3861
3862 /* scale ms to jiffies */
3863 interval = msecs_to_jiffies(interval);
3864 if (unlikely(!interval))
3865 interval = 1;
3866 if (interval > HZ*NR_CPUS/10)
3867 interval = HZ*NR_CPUS/10;
3868
3869 need_serialize = sd->flags & SD_SERIALIZE;
3870
3871 if (need_serialize) {
3872 if (!spin_trylock(&balancing))
3873 goto out;
3874 }
3875
3876 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3877 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3878 /*
3879 * We've pulled tasks over so either we're no
3880 * longer idle, or one of our SMT siblings is
3881 * not idle.
3882 */
3883 idle = CPU_NOT_IDLE;
3884 }
3885 sd->last_balance = jiffies;
3886 }
3887 if (need_serialize)
3888 spin_unlock(&balancing);
3889 out:
3890 if (time_after(next_balance, sd->last_balance + interval)) {
3891 next_balance = sd->last_balance + interval;
3892 update_next_balance = 1;
3893 }
3894
3895 /*
3896 * Stop the load balance at this level. There is another
3897 * CPU in our sched group which is doing load balancing more
3898 * actively.
3899 */
3900 if (!balance)
3901 break;
3902 }
3903
3904 /*
3905 * next_balance will be updated only when there is a need.
3906 * When the cpu is attached to null domain for ex, it will not be
3907 * updated.
3908 */
3909 if (likely(update_next_balance))
3910 rq->next_balance = next_balance;
3911 }
3912
3913 /*
3914 * run_rebalance_domains is triggered when needed from the scheduler tick.
3915 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3916 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3917 */
3918 static void run_rebalance_domains(struct softirq_action *h)
3919 {
3920 int this_cpu = smp_processor_id();
3921 struct rq *this_rq = cpu_rq(this_cpu);
3922 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3923 CPU_IDLE : CPU_NOT_IDLE;
3924
3925 rebalance_domains(this_cpu, idle);
3926
3927 #ifdef CONFIG_NO_HZ
3928 /*
3929 * If this cpu is the owner for idle load balancing, then do the
3930 * balancing on behalf of the other idle cpus whose ticks are
3931 * stopped.
3932 */
3933 if (this_rq->idle_at_tick &&
3934 atomic_read(&nohz.load_balancer) == this_cpu) {
3935 cpumask_t cpus = nohz.cpu_mask;
3936 struct rq *rq;
3937 int balance_cpu;
3938
3939 cpu_clear(this_cpu, cpus);
3940 for_each_cpu_mask_nr(balance_cpu, cpus) {
3941 /*
3942 * If this cpu gets work to do, stop the load balancing
3943 * work being done for other cpus. Next load
3944 * balancing owner will pick it up.
3945 */
3946 if (need_resched())
3947 break;
3948
3949 rebalance_domains(balance_cpu, CPU_IDLE);
3950
3951 rq = cpu_rq(balance_cpu);
3952 if (time_after(this_rq->next_balance, rq->next_balance))
3953 this_rq->next_balance = rq->next_balance;
3954 }
3955 }
3956 #endif
3957 }
3958
3959 /*
3960 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3961 *
3962 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3963 * idle load balancing owner or decide to stop the periodic load balancing,
3964 * if the whole system is idle.
3965 */
3966 static inline void trigger_load_balance(struct rq *rq, int cpu)
3967 {
3968 #ifdef CONFIG_NO_HZ
3969 /*
3970 * If we were in the nohz mode recently and busy at the current
3971 * scheduler tick, then check if we need to nominate new idle
3972 * load balancer.
3973 */
3974 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3975 rq->in_nohz_recently = 0;
3976
3977 if (atomic_read(&nohz.load_balancer) == cpu) {
3978 cpu_clear(cpu, nohz.cpu_mask);
3979 atomic_set(&nohz.load_balancer, -1);
3980 }
3981
3982 if (atomic_read(&nohz.load_balancer) == -1) {
3983 /*
3984 * simple selection for now: Nominate the
3985 * first cpu in the nohz list to be the next
3986 * ilb owner.
3987 *
3988 * TBD: Traverse the sched domains and nominate
3989 * the nearest cpu in the nohz.cpu_mask.
3990 */
3991 int ilb = first_cpu(nohz.cpu_mask);
3992
3993 if (ilb < nr_cpu_ids)
3994 resched_cpu(ilb);
3995 }
3996 }
3997
3998 /*
3999 * If this cpu is idle and doing idle load balancing for all the
4000 * cpus with ticks stopped, is it time for that to stop?
4001 */
4002 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4003 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4004 resched_cpu(cpu);
4005 return;
4006 }
4007
4008 /*
4009 * If this cpu is idle and the idle load balancing is done by
4010 * someone else, then no need raise the SCHED_SOFTIRQ
4011 */
4012 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4013 cpu_isset(cpu, nohz.cpu_mask))
4014 return;
4015 #endif
4016 if (time_after_eq(jiffies, rq->next_balance))
4017 raise_softirq(SCHED_SOFTIRQ);
4018 }
4019
4020 #else /* CONFIG_SMP */
4021
4022 /*
4023 * on UP we do not need to balance between CPUs:
4024 */
4025 static inline void idle_balance(int cpu, struct rq *rq)
4026 {
4027 }
4028
4029 #endif
4030
4031 DEFINE_PER_CPU(struct kernel_stat, kstat);
4032
4033 EXPORT_PER_CPU_SYMBOL(kstat);
4034
4035 /*
4036 * Return any ns on the sched_clock that have not yet been banked in
4037 * @p in case that task is currently running.
4038 */
4039 unsigned long long task_delta_exec(struct task_struct *p)
4040 {
4041 unsigned long flags;
4042 struct rq *rq;
4043 u64 ns = 0;
4044
4045 rq = task_rq_lock(p, &flags);
4046
4047 if (task_current(rq, p)) {
4048 u64 delta_exec;
4049
4050 update_rq_clock(rq);
4051 delta_exec = rq->clock - p->se.exec_start;
4052 if ((s64)delta_exec > 0)
4053 ns = delta_exec;
4054 }
4055
4056 task_rq_unlock(rq, &flags);
4057
4058 return ns;
4059 }
4060
4061 /*
4062 * Account user cpu time to a process.
4063 * @p: the process that the cpu time gets accounted to
4064 * @cputime: the cpu time spent in user space since the last update
4065 */
4066 void account_user_time(struct task_struct *p, cputime_t cputime)
4067 {
4068 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4069 cputime64_t tmp;
4070
4071 p->utime = cputime_add(p->utime, cputime);
4072 account_group_user_time(p, cputime);
4073
4074 /* Add user time to cpustat. */
4075 tmp = cputime_to_cputime64(cputime);
4076 if (TASK_NICE(p) > 0)
4077 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4078 else
4079 cpustat->user = cputime64_add(cpustat->user, tmp);
4080 /* Account for user time used */
4081 acct_update_integrals(p);
4082 }
4083
4084 /*
4085 * Account guest cpu time to a process.
4086 * @p: the process that the cpu time gets accounted to
4087 * @cputime: the cpu time spent in virtual machine since the last update
4088 */
4089 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4090 {
4091 cputime64_t tmp;
4092 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4093
4094 tmp = cputime_to_cputime64(cputime);
4095
4096 p->utime = cputime_add(p->utime, cputime);
4097 account_group_user_time(p, cputime);
4098 p->gtime = cputime_add(p->gtime, cputime);
4099
4100 cpustat->user = cputime64_add(cpustat->user, tmp);
4101 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4102 }
4103
4104 /*
4105 * Account scaled user cpu time to a process.
4106 * @p: the process that the cpu time gets accounted to
4107 * @cputime: the cpu time spent in user space since the last update
4108 */
4109 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4110 {
4111 p->utimescaled = cputime_add(p->utimescaled, cputime);
4112 }
4113
4114 /*
4115 * Account system cpu time to a process.
4116 * @p: the process that the cpu time gets accounted to
4117 * @hardirq_offset: the offset to subtract from hardirq_count()
4118 * @cputime: the cpu time spent in kernel space since the last update
4119 */
4120 void account_system_time(struct task_struct *p, int hardirq_offset,
4121 cputime_t cputime)
4122 {
4123 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4124 struct rq *rq = this_rq();
4125 cputime64_t tmp;
4126
4127 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4128 account_guest_time(p, cputime);
4129 return;
4130 }
4131
4132 p->stime = cputime_add(p->stime, cputime);
4133 account_group_system_time(p, cputime);
4134
4135 /* Add system time to cpustat. */
4136 tmp = cputime_to_cputime64(cputime);
4137 if (hardirq_count() - hardirq_offset)
4138 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4139 else if (softirq_count())
4140 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4141 else if (p != rq->idle)
4142 cpustat->system = cputime64_add(cpustat->system, tmp);
4143 else if (atomic_read(&rq->nr_iowait) > 0)
4144 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4145 else
4146 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4147 /* Account for system time used */
4148 acct_update_integrals(p);
4149 }
4150
4151 /*
4152 * Account scaled system cpu time to a process.
4153 * @p: the process that the cpu time gets accounted to
4154 * @hardirq_offset: the offset to subtract from hardirq_count()
4155 * @cputime: the cpu time spent in kernel space since the last update
4156 */
4157 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4158 {
4159 p->stimescaled = cputime_add(p->stimescaled, cputime);
4160 }
4161
4162 /*
4163 * Account for involuntary wait time.
4164 * @p: the process from which the cpu time has been stolen
4165 * @steal: the cpu time spent in involuntary wait
4166 */
4167 void account_steal_time(struct task_struct *p, cputime_t steal)
4168 {
4169 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4170 cputime64_t tmp = cputime_to_cputime64(steal);
4171 struct rq *rq = this_rq();
4172
4173 if (p == rq->idle) {
4174 p->stime = cputime_add(p->stime, steal);
4175 account_group_system_time(p, steal);
4176 if (atomic_read(&rq->nr_iowait) > 0)
4177 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4178 else
4179 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4180 } else
4181 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4182 }
4183
4184 /*
4185 * Use precise platform statistics if available:
4186 */
4187 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4188 cputime_t task_utime(struct task_struct *p)
4189 {
4190 return p->utime;
4191 }
4192
4193 cputime_t task_stime(struct task_struct *p)
4194 {
4195 return p->stime;
4196 }
4197 #else
4198 cputime_t task_utime(struct task_struct *p)
4199 {
4200 clock_t utime = cputime_to_clock_t(p->utime),
4201 total = utime + cputime_to_clock_t(p->stime);
4202 u64 temp;
4203
4204 /*
4205 * Use CFS's precise accounting:
4206 */
4207 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4208
4209 if (total) {
4210 temp *= utime;
4211 do_div(temp, total);
4212 }
4213 utime = (clock_t)temp;
4214
4215 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4216 return p->prev_utime;
4217 }
4218
4219 cputime_t task_stime(struct task_struct *p)
4220 {
4221 clock_t stime;
4222
4223 /*
4224 * Use CFS's precise accounting. (we subtract utime from
4225 * the total, to make sure the total observed by userspace
4226 * grows monotonically - apps rely on that):
4227 */
4228 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4229 cputime_to_clock_t(task_utime(p));
4230
4231 if (stime >= 0)
4232 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4233
4234 return p->prev_stime;
4235 }
4236 #endif
4237
4238 inline cputime_t task_gtime(struct task_struct *p)
4239 {
4240 return p->gtime;
4241 }
4242
4243 /*
4244 * This function gets called by the timer code, with HZ frequency.
4245 * We call it with interrupts disabled.
4246 *
4247 * It also gets called by the fork code, when changing the parent's
4248 * timeslices.
4249 */
4250 void scheduler_tick(void)
4251 {
4252 int cpu = smp_processor_id();
4253 struct rq *rq = cpu_rq(cpu);
4254 struct task_struct *curr = rq->curr;
4255
4256 sched_clock_tick();
4257
4258 spin_lock(&rq->lock);
4259 update_rq_clock(rq);
4260 update_cpu_load(rq);
4261 curr->sched_class->task_tick(rq, curr, 0);
4262 spin_unlock(&rq->lock);
4263
4264 #ifdef CONFIG_SMP
4265 rq->idle_at_tick = idle_cpu(cpu);
4266 trigger_load_balance(rq, cpu);
4267 #endif
4268 }
4269
4270 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4271 defined(CONFIG_PREEMPT_TRACER))
4272
4273 static inline unsigned long get_parent_ip(unsigned long addr)
4274 {
4275 if (in_lock_functions(addr)) {
4276 addr = CALLER_ADDR2;
4277 if (in_lock_functions(addr))
4278 addr = CALLER_ADDR3;
4279 }
4280 return addr;
4281 }
4282
4283 void __kprobes add_preempt_count(int val)
4284 {
4285 #ifdef CONFIG_DEBUG_PREEMPT
4286 /*
4287 * Underflow?
4288 */
4289 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4290 return;
4291 #endif
4292 preempt_count() += val;
4293 #ifdef CONFIG_DEBUG_PREEMPT
4294 /*
4295 * Spinlock count overflowing soon?
4296 */
4297 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4298 PREEMPT_MASK - 10);
4299 #endif
4300 if (preempt_count() == val)
4301 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4302 }
4303 EXPORT_SYMBOL(add_preempt_count);
4304
4305 void __kprobes sub_preempt_count(int val)
4306 {
4307 #ifdef CONFIG_DEBUG_PREEMPT
4308 /*
4309 * Underflow?
4310 */
4311 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4312 return;
4313 /*
4314 * Is the spinlock portion underflowing?
4315 */
4316 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4317 !(preempt_count() & PREEMPT_MASK)))
4318 return;
4319 #endif
4320
4321 if (preempt_count() == val)
4322 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4323 preempt_count() -= val;
4324 }
4325 EXPORT_SYMBOL(sub_preempt_count);
4326
4327 #endif
4328
4329 /*
4330 * Print scheduling while atomic bug:
4331 */
4332 static noinline void __schedule_bug(struct task_struct *prev)
4333 {
4334 struct pt_regs *regs = get_irq_regs();
4335
4336 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4337 prev->comm, prev->pid, preempt_count());
4338
4339 debug_show_held_locks(prev);
4340 print_modules();
4341 if (irqs_disabled())
4342 print_irqtrace_events(prev);
4343
4344 if (regs)
4345 show_regs(regs);
4346 else
4347 dump_stack();
4348 }
4349
4350 /*
4351 * Various schedule()-time debugging checks and statistics:
4352 */
4353 static inline void schedule_debug(struct task_struct *prev)
4354 {
4355 /*
4356 * Test if we are atomic. Since do_exit() needs to call into
4357 * schedule() atomically, we ignore that path for now.
4358 * Otherwise, whine if we are scheduling when we should not be.
4359 */
4360 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4361 __schedule_bug(prev);
4362
4363 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4364
4365 schedstat_inc(this_rq(), sched_count);
4366 #ifdef CONFIG_SCHEDSTATS
4367 if (unlikely(prev->lock_depth >= 0)) {
4368 schedstat_inc(this_rq(), bkl_count);
4369 schedstat_inc(prev, sched_info.bkl_count);
4370 }
4371 #endif
4372 }
4373
4374 /*
4375 * Pick up the highest-prio task:
4376 */
4377 static inline struct task_struct *
4378 pick_next_task(struct rq *rq, struct task_struct *prev)
4379 {
4380 const struct sched_class *class;
4381 struct task_struct *p;
4382
4383 /*
4384 * Optimization: we know that if all tasks are in
4385 * the fair class we can call that function directly:
4386 */
4387 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4388 p = fair_sched_class.pick_next_task(rq);
4389 if (likely(p))
4390 return p;
4391 }
4392
4393 class = sched_class_highest;
4394 for ( ; ; ) {
4395 p = class->pick_next_task(rq);
4396 if (p)
4397 return p;
4398 /*
4399 * Will never be NULL as the idle class always
4400 * returns a non-NULL p:
4401 */
4402 class = class->next;
4403 }
4404 }
4405
4406 /*
4407 * schedule() is the main scheduler function.
4408 */
4409 asmlinkage void __sched schedule(void)
4410 {
4411 struct task_struct *prev, *next;
4412 unsigned long *switch_count;
4413 struct rq *rq;
4414 int cpu;
4415
4416 need_resched:
4417 preempt_disable();
4418 cpu = smp_processor_id();
4419 rq = cpu_rq(cpu);
4420 rcu_qsctr_inc(cpu);
4421 prev = rq->curr;
4422 switch_count = &prev->nivcsw;
4423
4424 release_kernel_lock(prev);
4425 need_resched_nonpreemptible:
4426
4427 schedule_debug(prev);
4428
4429 if (sched_feat(HRTICK))
4430 hrtick_clear(rq);
4431
4432 spin_lock_irq(&rq->lock);
4433 update_rq_clock(rq);
4434 clear_tsk_need_resched(prev);
4435
4436 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4437 if (unlikely(signal_pending_state(prev->state, prev)))
4438 prev->state = TASK_RUNNING;
4439 else
4440 deactivate_task(rq, prev, 1);
4441 switch_count = &prev->nvcsw;
4442 }
4443
4444 #ifdef CONFIG_SMP
4445 if (prev->sched_class->pre_schedule)
4446 prev->sched_class->pre_schedule(rq, prev);
4447 #endif
4448
4449 if (unlikely(!rq->nr_running))
4450 idle_balance(cpu, rq);
4451
4452 prev->sched_class->put_prev_task(rq, prev);
4453 next = pick_next_task(rq, prev);
4454
4455 if (likely(prev != next)) {
4456 sched_info_switch(prev, next);
4457
4458 rq->nr_switches++;
4459 rq->curr = next;
4460 ++*switch_count;
4461
4462 context_switch(rq, prev, next); /* unlocks the rq */
4463 /*
4464 * the context switch might have flipped the stack from under
4465 * us, hence refresh the local variables.
4466 */
4467 cpu = smp_processor_id();
4468 rq = cpu_rq(cpu);
4469 } else
4470 spin_unlock_irq(&rq->lock);
4471
4472 if (unlikely(reacquire_kernel_lock(current) < 0))
4473 goto need_resched_nonpreemptible;
4474
4475 preempt_enable_no_resched();
4476 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4477 goto need_resched;
4478 }
4479 EXPORT_SYMBOL(schedule);
4480
4481 #ifdef CONFIG_PREEMPT
4482 /*
4483 * this is the entry point to schedule() from in-kernel preemption
4484 * off of preempt_enable. Kernel preemptions off return from interrupt
4485 * occur there and call schedule directly.
4486 */
4487 asmlinkage void __sched preempt_schedule(void)
4488 {
4489 struct thread_info *ti = current_thread_info();
4490
4491 /*
4492 * If there is a non-zero preempt_count or interrupts are disabled,
4493 * we do not want to preempt the current task. Just return..
4494 */
4495 if (likely(ti->preempt_count || irqs_disabled()))
4496 return;
4497
4498 do {
4499 add_preempt_count(PREEMPT_ACTIVE);
4500 schedule();
4501 sub_preempt_count(PREEMPT_ACTIVE);
4502
4503 /*
4504 * Check again in case we missed a preemption opportunity
4505 * between schedule and now.
4506 */
4507 barrier();
4508 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4509 }
4510 EXPORT_SYMBOL(preempt_schedule);
4511
4512 /*
4513 * this is the entry point to schedule() from kernel preemption
4514 * off of irq context.
4515 * Note, that this is called and return with irqs disabled. This will
4516 * protect us against recursive calling from irq.
4517 */
4518 asmlinkage void __sched preempt_schedule_irq(void)
4519 {
4520 struct thread_info *ti = current_thread_info();
4521
4522 /* Catch callers which need to be fixed */
4523 BUG_ON(ti->preempt_count || !irqs_disabled());
4524
4525 do {
4526 add_preempt_count(PREEMPT_ACTIVE);
4527 local_irq_enable();
4528 schedule();
4529 local_irq_disable();
4530 sub_preempt_count(PREEMPT_ACTIVE);
4531
4532 /*
4533 * Check again in case we missed a preemption opportunity
4534 * between schedule and now.
4535 */
4536 barrier();
4537 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4538 }
4539
4540 #endif /* CONFIG_PREEMPT */
4541
4542 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4543 void *key)
4544 {
4545 return try_to_wake_up(curr->private, mode, sync);
4546 }
4547 EXPORT_SYMBOL(default_wake_function);
4548
4549 /*
4550 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4551 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4552 * number) then we wake all the non-exclusive tasks and one exclusive task.
4553 *
4554 * There are circumstances in which we can try to wake a task which has already
4555 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4556 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4557 */
4558 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4559 int nr_exclusive, int sync, void *key)
4560 {
4561 wait_queue_t *curr, *next;
4562
4563 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4564 unsigned flags = curr->flags;
4565
4566 if (curr->func(curr, mode, sync, key) &&
4567 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4568 break;
4569 }
4570 }
4571
4572 /**
4573 * __wake_up - wake up threads blocked on a waitqueue.
4574 * @q: the waitqueue
4575 * @mode: which threads
4576 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4577 * @key: is directly passed to the wakeup function
4578 */
4579 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4580 int nr_exclusive, void *key)
4581 {
4582 unsigned long flags;
4583
4584 spin_lock_irqsave(&q->lock, flags);
4585 __wake_up_common(q, mode, nr_exclusive, 0, key);
4586 spin_unlock_irqrestore(&q->lock, flags);
4587 }
4588 EXPORT_SYMBOL(__wake_up);
4589
4590 /*
4591 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4592 */
4593 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4594 {
4595 __wake_up_common(q, mode, 1, 0, NULL);
4596 }
4597
4598 /**
4599 * __wake_up_sync - wake up threads blocked on a waitqueue.
4600 * @q: the waitqueue
4601 * @mode: which threads
4602 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4603 *
4604 * The sync wakeup differs that the waker knows that it will schedule
4605 * away soon, so while the target thread will be woken up, it will not
4606 * be migrated to another CPU - ie. the two threads are 'synchronized'
4607 * with each other. This can prevent needless bouncing between CPUs.
4608 *
4609 * On UP it can prevent extra preemption.
4610 */
4611 void
4612 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4613 {
4614 unsigned long flags;
4615 int sync = 1;
4616
4617 if (unlikely(!q))
4618 return;
4619
4620 if (unlikely(!nr_exclusive))
4621 sync = 0;
4622
4623 spin_lock_irqsave(&q->lock, flags);
4624 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4625 spin_unlock_irqrestore(&q->lock, flags);
4626 }
4627 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4628
4629 /**
4630 * complete: - signals a single thread waiting on this completion
4631 * @x: holds the state of this particular completion
4632 *
4633 * This will wake up a single thread waiting on this completion. Threads will be
4634 * awakened in the same order in which they were queued.
4635 *
4636 * See also complete_all(), wait_for_completion() and related routines.
4637 */
4638 void complete(struct completion *x)
4639 {
4640 unsigned long flags;
4641
4642 spin_lock_irqsave(&x->wait.lock, flags);
4643 x->done++;
4644 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4645 spin_unlock_irqrestore(&x->wait.lock, flags);
4646 }
4647 EXPORT_SYMBOL(complete);
4648
4649 /**
4650 * complete_all: - signals all threads waiting on this completion
4651 * @x: holds the state of this particular completion
4652 *
4653 * This will wake up all threads waiting on this particular completion event.
4654 */
4655 void complete_all(struct completion *x)
4656 {
4657 unsigned long flags;
4658
4659 spin_lock_irqsave(&x->wait.lock, flags);
4660 x->done += UINT_MAX/2;
4661 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4662 spin_unlock_irqrestore(&x->wait.lock, flags);
4663 }
4664 EXPORT_SYMBOL(complete_all);
4665
4666 static inline long __sched
4667 do_wait_for_common(struct completion *x, long timeout, int state)
4668 {
4669 if (!x->done) {
4670 DECLARE_WAITQUEUE(wait, current);
4671
4672 wait.flags |= WQ_FLAG_EXCLUSIVE;
4673 __add_wait_queue_tail(&x->wait, &wait);
4674 do {
4675 if (signal_pending_state(state, current)) {
4676 timeout = -ERESTARTSYS;
4677 break;
4678 }
4679 __set_current_state(state);
4680 spin_unlock_irq(&x->wait.lock);
4681 timeout = schedule_timeout(timeout);
4682 spin_lock_irq(&x->wait.lock);
4683 } while (!x->done && timeout);
4684 __remove_wait_queue(&x->wait, &wait);
4685 if (!x->done)
4686 return timeout;
4687 }
4688 x->done--;
4689 return timeout ?: 1;
4690 }
4691
4692 static long __sched
4693 wait_for_common(struct completion *x, long timeout, int state)
4694 {
4695 might_sleep();
4696
4697 spin_lock_irq(&x->wait.lock);
4698 timeout = do_wait_for_common(x, timeout, state);
4699 spin_unlock_irq(&x->wait.lock);
4700 return timeout;
4701 }
4702
4703 /**
4704 * wait_for_completion: - waits for completion of a task
4705 * @x: holds the state of this particular completion
4706 *
4707 * This waits to be signaled for completion of a specific task. It is NOT
4708 * interruptible and there is no timeout.
4709 *
4710 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4711 * and interrupt capability. Also see complete().
4712 */
4713 void __sched wait_for_completion(struct completion *x)
4714 {
4715 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4716 }
4717 EXPORT_SYMBOL(wait_for_completion);
4718
4719 /**
4720 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4721 * @x: holds the state of this particular completion
4722 * @timeout: timeout value in jiffies
4723 *
4724 * This waits for either a completion of a specific task to be signaled or for a
4725 * specified timeout to expire. The timeout is in jiffies. It is not
4726 * interruptible.
4727 */
4728 unsigned long __sched
4729 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4730 {
4731 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4732 }
4733 EXPORT_SYMBOL(wait_for_completion_timeout);
4734
4735 /**
4736 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4737 * @x: holds the state of this particular completion
4738 *
4739 * This waits for completion of a specific task to be signaled. It is
4740 * interruptible.
4741 */
4742 int __sched wait_for_completion_interruptible(struct completion *x)
4743 {
4744 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4745 if (t == -ERESTARTSYS)
4746 return t;
4747 return 0;
4748 }
4749 EXPORT_SYMBOL(wait_for_completion_interruptible);
4750
4751 /**
4752 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4753 * @x: holds the state of this particular completion
4754 * @timeout: timeout value in jiffies
4755 *
4756 * This waits for either a completion of a specific task to be signaled or for a
4757 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4758 */
4759 unsigned long __sched
4760 wait_for_completion_interruptible_timeout(struct completion *x,
4761 unsigned long timeout)
4762 {
4763 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4764 }
4765 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4766
4767 /**
4768 * wait_for_completion_killable: - waits for completion of a task (killable)
4769 * @x: holds the state of this particular completion
4770 *
4771 * This waits to be signaled for completion of a specific task. It can be
4772 * interrupted by a kill signal.
4773 */
4774 int __sched wait_for_completion_killable(struct completion *x)
4775 {
4776 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4777 if (t == -ERESTARTSYS)
4778 return t;
4779 return 0;
4780 }
4781 EXPORT_SYMBOL(wait_for_completion_killable);
4782
4783 /**
4784 * try_wait_for_completion - try to decrement a completion without blocking
4785 * @x: completion structure
4786 *
4787 * Returns: 0 if a decrement cannot be done without blocking
4788 * 1 if a decrement succeeded.
4789 *
4790 * If a completion is being used as a counting completion,
4791 * attempt to decrement the counter without blocking. This
4792 * enables us to avoid waiting if the resource the completion
4793 * is protecting is not available.
4794 */
4795 bool try_wait_for_completion(struct completion *x)
4796 {
4797 int ret = 1;
4798
4799 spin_lock_irq(&x->wait.lock);
4800 if (!x->done)
4801 ret = 0;
4802 else
4803 x->done--;
4804 spin_unlock_irq(&x->wait.lock);
4805 return ret;
4806 }
4807 EXPORT_SYMBOL(try_wait_for_completion);
4808
4809 /**
4810 * completion_done - Test to see if a completion has any waiters
4811 * @x: completion structure
4812 *
4813 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4814 * 1 if there are no waiters.
4815 *
4816 */
4817 bool completion_done(struct completion *x)
4818 {
4819 int ret = 1;
4820
4821 spin_lock_irq(&x->wait.lock);
4822 if (!x->done)
4823 ret = 0;
4824 spin_unlock_irq(&x->wait.lock);
4825 return ret;
4826 }
4827 EXPORT_SYMBOL(completion_done);
4828
4829 static long __sched
4830 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4831 {
4832 unsigned long flags;
4833 wait_queue_t wait;
4834
4835 init_waitqueue_entry(&wait, current);
4836
4837 __set_current_state(state);
4838
4839 spin_lock_irqsave(&q->lock, flags);
4840 __add_wait_queue(q, &wait);
4841 spin_unlock(&q->lock);
4842 timeout = schedule_timeout(timeout);
4843 spin_lock_irq(&q->lock);
4844 __remove_wait_queue(q, &wait);
4845 spin_unlock_irqrestore(&q->lock, flags);
4846
4847 return timeout;
4848 }
4849
4850 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4851 {
4852 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4853 }
4854 EXPORT_SYMBOL(interruptible_sleep_on);
4855
4856 long __sched
4857 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4858 {
4859 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4860 }
4861 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4862
4863 void __sched sleep_on(wait_queue_head_t *q)
4864 {
4865 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4866 }
4867 EXPORT_SYMBOL(sleep_on);
4868
4869 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4870 {
4871 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4872 }
4873 EXPORT_SYMBOL(sleep_on_timeout);
4874
4875 #ifdef CONFIG_RT_MUTEXES
4876
4877 /*
4878 * rt_mutex_setprio - set the current priority of a task
4879 * @p: task
4880 * @prio: prio value (kernel-internal form)
4881 *
4882 * This function changes the 'effective' priority of a task. It does
4883 * not touch ->normal_prio like __setscheduler().
4884 *
4885 * Used by the rt_mutex code to implement priority inheritance logic.
4886 */
4887 void rt_mutex_setprio(struct task_struct *p, int prio)
4888 {
4889 unsigned long flags;
4890 int oldprio, on_rq, running;
4891 struct rq *rq;
4892 const struct sched_class *prev_class = p->sched_class;
4893
4894 BUG_ON(prio < 0 || prio > MAX_PRIO);
4895
4896 rq = task_rq_lock(p, &flags);
4897 update_rq_clock(rq);
4898
4899 oldprio = p->prio;
4900 on_rq = p->se.on_rq;
4901 running = task_current(rq, p);
4902 if (on_rq)
4903 dequeue_task(rq, p, 0);
4904 if (running)
4905 p->sched_class->put_prev_task(rq, p);
4906
4907 if (rt_prio(prio))
4908 p->sched_class = &rt_sched_class;
4909 else
4910 p->sched_class = &fair_sched_class;
4911
4912 p->prio = prio;
4913
4914 if (running)
4915 p->sched_class->set_curr_task(rq);
4916 if (on_rq) {
4917 enqueue_task(rq, p, 0);
4918
4919 check_class_changed(rq, p, prev_class, oldprio, running);
4920 }
4921 task_rq_unlock(rq, &flags);
4922 }
4923
4924 #endif
4925
4926 void set_user_nice(struct task_struct *p, long nice)
4927 {
4928 int old_prio, delta, on_rq;
4929 unsigned long flags;
4930 struct rq *rq;
4931
4932 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4933 return;
4934 /*
4935 * We have to be careful, if called from sys_setpriority(),
4936 * the task might be in the middle of scheduling on another CPU.
4937 */
4938 rq = task_rq_lock(p, &flags);
4939 update_rq_clock(rq);
4940 /*
4941 * The RT priorities are set via sched_setscheduler(), but we still
4942 * allow the 'normal' nice value to be set - but as expected
4943 * it wont have any effect on scheduling until the task is
4944 * SCHED_FIFO/SCHED_RR:
4945 */
4946 if (task_has_rt_policy(p)) {
4947 p->static_prio = NICE_TO_PRIO(nice);
4948 goto out_unlock;
4949 }
4950 on_rq = p->se.on_rq;
4951 if (on_rq)
4952 dequeue_task(rq, p, 0);
4953
4954 p->static_prio = NICE_TO_PRIO(nice);
4955 set_load_weight(p);
4956 old_prio = p->prio;
4957 p->prio = effective_prio(p);
4958 delta = p->prio - old_prio;
4959
4960 if (on_rq) {
4961 enqueue_task(rq, p, 0);
4962 /*
4963 * If the task increased its priority or is running and
4964 * lowered its priority, then reschedule its CPU:
4965 */
4966 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4967 resched_task(rq->curr);
4968 }
4969 out_unlock:
4970 task_rq_unlock(rq, &flags);
4971 }
4972 EXPORT_SYMBOL(set_user_nice);
4973
4974 /*
4975 * can_nice - check if a task can reduce its nice value
4976 * @p: task
4977 * @nice: nice value
4978 */
4979 int can_nice(const struct task_struct *p, const int nice)
4980 {
4981 /* convert nice value [19,-20] to rlimit style value [1,40] */
4982 int nice_rlim = 20 - nice;
4983
4984 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4985 capable(CAP_SYS_NICE));
4986 }
4987
4988 #ifdef __ARCH_WANT_SYS_NICE
4989
4990 /*
4991 * sys_nice - change the priority of the current process.
4992 * @increment: priority increment
4993 *
4994 * sys_setpriority is a more generic, but much slower function that
4995 * does similar things.
4996 */
4997 asmlinkage long sys_nice(int increment)
4998 {
4999 long nice, retval;
5000
5001 /*
5002 * Setpriority might change our priority at the same moment.
5003 * We don't have to worry. Conceptually one call occurs first
5004 * and we have a single winner.
5005 */
5006 if (increment < -40)
5007 increment = -40;
5008 if (increment > 40)
5009 increment = 40;
5010
5011 nice = PRIO_TO_NICE(current->static_prio) + increment;
5012 if (nice < -20)
5013 nice = -20;
5014 if (nice > 19)
5015 nice = 19;
5016
5017 if (increment < 0 && !can_nice(current, nice))
5018 return -EPERM;
5019
5020 retval = security_task_setnice(current, nice);
5021 if (retval)
5022 return retval;
5023
5024 set_user_nice(current, nice);
5025 return 0;
5026 }
5027
5028 #endif
5029
5030 /**
5031 * task_prio - return the priority value of a given task.
5032 * @p: the task in question.
5033 *
5034 * This is the priority value as seen by users in /proc.
5035 * RT tasks are offset by -200. Normal tasks are centered
5036 * around 0, value goes from -16 to +15.
5037 */
5038 int task_prio(const struct task_struct *p)
5039 {
5040 return p->prio - MAX_RT_PRIO;
5041 }
5042
5043 /**
5044 * task_nice - return the nice value of a given task.
5045 * @p: the task in question.
5046 */
5047 int task_nice(const struct task_struct *p)
5048 {
5049 return TASK_NICE(p);
5050 }
5051 EXPORT_SYMBOL(task_nice);
5052
5053 /**
5054 * idle_cpu - is a given cpu idle currently?
5055 * @cpu: the processor in question.
5056 */
5057 int idle_cpu(int cpu)
5058 {
5059 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5060 }
5061
5062 /**
5063 * idle_task - return the idle task for a given cpu.
5064 * @cpu: the processor in question.
5065 */
5066 struct task_struct *idle_task(int cpu)
5067 {
5068 return cpu_rq(cpu)->idle;
5069 }
5070
5071 /**
5072 * find_process_by_pid - find a process with a matching PID value.
5073 * @pid: the pid in question.
5074 */
5075 static struct task_struct *find_process_by_pid(pid_t pid)
5076 {
5077 return pid ? find_task_by_vpid(pid) : current;
5078 }
5079
5080 /* Actually do priority change: must hold rq lock. */
5081 static void
5082 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5083 {
5084 BUG_ON(p->se.on_rq);
5085
5086 p->policy = policy;
5087 switch (p->policy) {
5088 case SCHED_NORMAL:
5089 case SCHED_BATCH:
5090 case SCHED_IDLE:
5091 p->sched_class = &fair_sched_class;
5092 break;
5093 case SCHED_FIFO:
5094 case SCHED_RR:
5095 p->sched_class = &rt_sched_class;
5096 break;
5097 }
5098
5099 p->rt_priority = prio;
5100 p->normal_prio = normal_prio(p);
5101 /* we are holding p->pi_lock already */
5102 p->prio = rt_mutex_getprio(p);
5103 set_load_weight(p);
5104 }
5105
5106 static int __sched_setscheduler(struct task_struct *p, int policy,
5107 struct sched_param *param, bool user)
5108 {
5109 int retval, oldprio, oldpolicy = -1, on_rq, running;
5110 unsigned long flags;
5111 const struct sched_class *prev_class = p->sched_class;
5112 struct rq *rq;
5113
5114 /* may grab non-irq protected spin_locks */
5115 BUG_ON(in_interrupt());
5116 recheck:
5117 /* double check policy once rq lock held */
5118 if (policy < 0)
5119 policy = oldpolicy = p->policy;
5120 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5121 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5122 policy != SCHED_IDLE)
5123 return -EINVAL;
5124 /*
5125 * Valid priorities for SCHED_FIFO and SCHED_RR are
5126 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5127 * SCHED_BATCH and SCHED_IDLE is 0.
5128 */
5129 if (param->sched_priority < 0 ||
5130 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5131 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5132 return -EINVAL;
5133 if (rt_policy(policy) != (param->sched_priority != 0))
5134 return -EINVAL;
5135
5136 /*
5137 * Allow unprivileged RT tasks to decrease priority:
5138 */
5139 if (user && !capable(CAP_SYS_NICE)) {
5140 if (rt_policy(policy)) {
5141 unsigned long rlim_rtprio;
5142
5143 if (!lock_task_sighand(p, &flags))
5144 return -ESRCH;
5145 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5146 unlock_task_sighand(p, &flags);
5147
5148 /* can't set/change the rt policy */
5149 if (policy != p->policy && !rlim_rtprio)
5150 return -EPERM;
5151
5152 /* can't increase priority */
5153 if (param->sched_priority > p->rt_priority &&
5154 param->sched_priority > rlim_rtprio)
5155 return -EPERM;
5156 }
5157 /*
5158 * Like positive nice levels, dont allow tasks to
5159 * move out of SCHED_IDLE either:
5160 */
5161 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5162 return -EPERM;
5163
5164 /* can't change other user's priorities */
5165 if ((current->euid != p->euid) &&
5166 (current->euid != p->uid))
5167 return -EPERM;
5168 }
5169
5170 if (user) {
5171 #ifdef CONFIG_RT_GROUP_SCHED
5172 /*
5173 * Do not allow realtime tasks into groups that have no runtime
5174 * assigned.
5175 */
5176 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5177 task_group(p)->rt_bandwidth.rt_runtime == 0)
5178 return -EPERM;
5179 #endif
5180
5181 retval = security_task_setscheduler(p, policy, param);
5182 if (retval)
5183 return retval;
5184 }
5185
5186 /*
5187 * make sure no PI-waiters arrive (or leave) while we are
5188 * changing the priority of the task:
5189 */
5190 spin_lock_irqsave(&p->pi_lock, flags);
5191 /*
5192 * To be able to change p->policy safely, the apropriate
5193 * runqueue lock must be held.
5194 */
5195 rq = __task_rq_lock(p);
5196 /* recheck policy now with rq lock held */
5197 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5198 policy = oldpolicy = -1;
5199 __task_rq_unlock(rq);
5200 spin_unlock_irqrestore(&p->pi_lock, flags);
5201 goto recheck;
5202 }
5203 update_rq_clock(rq);
5204 on_rq = p->se.on_rq;
5205 running = task_current(rq, p);
5206 if (on_rq)
5207 deactivate_task(rq, p, 0);
5208 if (running)
5209 p->sched_class->put_prev_task(rq, p);
5210
5211 oldprio = p->prio;
5212 __setscheduler(rq, p, policy, param->sched_priority);
5213
5214 if (running)
5215 p->sched_class->set_curr_task(rq);
5216 if (on_rq) {
5217 activate_task(rq, p, 0);
5218
5219 check_class_changed(rq, p, prev_class, oldprio, running);
5220 }
5221 __task_rq_unlock(rq);
5222 spin_unlock_irqrestore(&p->pi_lock, flags);
5223
5224 rt_mutex_adjust_pi(p);
5225
5226 return 0;
5227 }
5228
5229 /**
5230 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5231 * @p: the task in question.
5232 * @policy: new policy.
5233 * @param: structure containing the new RT priority.
5234 *
5235 * NOTE that the task may be already dead.
5236 */
5237 int sched_setscheduler(struct task_struct *p, int policy,
5238 struct sched_param *param)
5239 {
5240 return __sched_setscheduler(p, policy, param, true);
5241 }
5242 EXPORT_SYMBOL_GPL(sched_setscheduler);
5243
5244 /**
5245 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5246 * @p: the task in question.
5247 * @policy: new policy.
5248 * @param: structure containing the new RT priority.
5249 *
5250 * Just like sched_setscheduler, only don't bother checking if the
5251 * current context has permission. For example, this is needed in
5252 * stop_machine(): we create temporary high priority worker threads,
5253 * but our caller might not have that capability.
5254 */
5255 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5256 struct sched_param *param)
5257 {
5258 return __sched_setscheduler(p, policy, param, false);
5259 }
5260
5261 static int
5262 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5263 {
5264 struct sched_param lparam;
5265 struct task_struct *p;
5266 int retval;
5267
5268 if (!param || pid < 0)
5269 return -EINVAL;
5270 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5271 return -EFAULT;
5272
5273 rcu_read_lock();
5274 retval = -ESRCH;
5275 p = find_process_by_pid(pid);
5276 if (p != NULL)
5277 retval = sched_setscheduler(p, policy, &lparam);
5278 rcu_read_unlock();
5279
5280 return retval;
5281 }
5282
5283 /**
5284 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5285 * @pid: the pid in question.
5286 * @policy: new policy.
5287 * @param: structure containing the new RT priority.
5288 */
5289 asmlinkage long
5290 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5291 {
5292 /* negative values for policy are not valid */
5293 if (policy < 0)
5294 return -EINVAL;
5295
5296 return do_sched_setscheduler(pid, policy, param);
5297 }
5298
5299 /**
5300 * sys_sched_setparam - set/change the RT priority of a thread
5301 * @pid: the pid in question.
5302 * @param: structure containing the new RT priority.
5303 */
5304 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5305 {
5306 return do_sched_setscheduler(pid, -1, param);
5307 }
5308
5309 /**
5310 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5311 * @pid: the pid in question.
5312 */
5313 asmlinkage long sys_sched_getscheduler(pid_t pid)
5314 {
5315 struct task_struct *p;
5316 int retval;
5317
5318 if (pid < 0)
5319 return -EINVAL;
5320
5321 retval = -ESRCH;
5322 read_lock(&tasklist_lock);
5323 p = find_process_by_pid(pid);
5324 if (p) {
5325 retval = security_task_getscheduler(p);
5326 if (!retval)
5327 retval = p->policy;
5328 }
5329 read_unlock(&tasklist_lock);
5330 return retval;
5331 }
5332
5333 /**
5334 * sys_sched_getscheduler - get the RT priority of a thread
5335 * @pid: the pid in question.
5336 * @param: structure containing the RT priority.
5337 */
5338 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5339 {
5340 struct sched_param lp;
5341 struct task_struct *p;
5342 int retval;
5343
5344 if (!param || pid < 0)
5345 return -EINVAL;
5346
5347 read_lock(&tasklist_lock);
5348 p = find_process_by_pid(pid);
5349 retval = -ESRCH;
5350 if (!p)
5351 goto out_unlock;
5352
5353 retval = security_task_getscheduler(p);
5354 if (retval)
5355 goto out_unlock;
5356
5357 lp.sched_priority = p->rt_priority;
5358 read_unlock(&tasklist_lock);
5359
5360 /*
5361 * This one might sleep, we cannot do it with a spinlock held ...
5362 */
5363 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5364
5365 return retval;
5366
5367 out_unlock:
5368 read_unlock(&tasklist_lock);
5369 return retval;
5370 }
5371
5372 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5373 {
5374 cpumask_t cpus_allowed;
5375 cpumask_t new_mask = *in_mask;
5376 struct task_struct *p;
5377 int retval;
5378
5379 get_online_cpus();
5380 read_lock(&tasklist_lock);
5381
5382 p = find_process_by_pid(pid);
5383 if (!p) {
5384 read_unlock(&tasklist_lock);
5385 put_online_cpus();
5386 return -ESRCH;
5387 }
5388
5389 /*
5390 * It is not safe to call set_cpus_allowed with the
5391 * tasklist_lock held. We will bump the task_struct's
5392 * usage count and then drop tasklist_lock.
5393 */
5394 get_task_struct(p);
5395 read_unlock(&tasklist_lock);
5396
5397 retval = -EPERM;
5398 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5399 !capable(CAP_SYS_NICE))
5400 goto out_unlock;
5401
5402 retval = security_task_setscheduler(p, 0, NULL);
5403 if (retval)
5404 goto out_unlock;
5405
5406 cpuset_cpus_allowed(p, &cpus_allowed);
5407 cpus_and(new_mask, new_mask, cpus_allowed);
5408 again:
5409 retval = set_cpus_allowed_ptr(p, &new_mask);
5410
5411 if (!retval) {
5412 cpuset_cpus_allowed(p, &cpus_allowed);
5413 if (!cpus_subset(new_mask, cpus_allowed)) {
5414 /*
5415 * We must have raced with a concurrent cpuset
5416 * update. Just reset the cpus_allowed to the
5417 * cpuset's cpus_allowed
5418 */
5419 new_mask = cpus_allowed;
5420 goto again;
5421 }
5422 }
5423 out_unlock:
5424 put_task_struct(p);
5425 put_online_cpus();
5426 return retval;
5427 }
5428
5429 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5430 cpumask_t *new_mask)
5431 {
5432 if (len < sizeof(cpumask_t)) {
5433 memset(new_mask, 0, sizeof(cpumask_t));
5434 } else if (len > sizeof(cpumask_t)) {
5435 len = sizeof(cpumask_t);
5436 }
5437 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5438 }
5439
5440 /**
5441 * sys_sched_setaffinity - set the cpu affinity of a process
5442 * @pid: pid of the process
5443 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5444 * @user_mask_ptr: user-space pointer to the new cpu mask
5445 */
5446 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5447 unsigned long __user *user_mask_ptr)
5448 {
5449 cpumask_t new_mask;
5450 int retval;
5451
5452 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5453 if (retval)
5454 return retval;
5455
5456 return sched_setaffinity(pid, &new_mask);
5457 }
5458
5459 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5460 {
5461 struct task_struct *p;
5462 int retval;
5463
5464 get_online_cpus();
5465 read_lock(&tasklist_lock);
5466
5467 retval = -ESRCH;
5468 p = find_process_by_pid(pid);
5469 if (!p)
5470 goto out_unlock;
5471
5472 retval = security_task_getscheduler(p);
5473 if (retval)
5474 goto out_unlock;
5475
5476 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5477
5478 out_unlock:
5479 read_unlock(&tasklist_lock);
5480 put_online_cpus();
5481
5482 return retval;
5483 }
5484
5485 /**
5486 * sys_sched_getaffinity - get the cpu affinity of a process
5487 * @pid: pid of the process
5488 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5489 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5490 */
5491 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5492 unsigned long __user *user_mask_ptr)
5493 {
5494 int ret;
5495 cpumask_t mask;
5496
5497 if (len < sizeof(cpumask_t))
5498 return -EINVAL;
5499
5500 ret = sched_getaffinity(pid, &mask);
5501 if (ret < 0)
5502 return ret;
5503
5504 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5505 return -EFAULT;
5506
5507 return sizeof(cpumask_t);
5508 }
5509
5510 /**
5511 * sys_sched_yield - yield the current processor to other threads.
5512 *
5513 * This function yields the current CPU to other tasks. If there are no
5514 * other threads running on this CPU then this function will return.
5515 */
5516 asmlinkage long sys_sched_yield(void)
5517 {
5518 struct rq *rq = this_rq_lock();
5519
5520 schedstat_inc(rq, yld_count);
5521 current->sched_class->yield_task(rq);
5522
5523 /*
5524 * Since we are going to call schedule() anyway, there's
5525 * no need to preempt or enable interrupts:
5526 */
5527 __release(rq->lock);
5528 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5529 _raw_spin_unlock(&rq->lock);
5530 preempt_enable_no_resched();
5531
5532 schedule();
5533
5534 return 0;
5535 }
5536
5537 static void __cond_resched(void)
5538 {
5539 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5540 __might_sleep(__FILE__, __LINE__);
5541 #endif
5542 /*
5543 * The BKS might be reacquired before we have dropped
5544 * PREEMPT_ACTIVE, which could trigger a second
5545 * cond_resched() call.
5546 */
5547 do {
5548 add_preempt_count(PREEMPT_ACTIVE);
5549 schedule();
5550 sub_preempt_count(PREEMPT_ACTIVE);
5551 } while (need_resched());
5552 }
5553
5554 int __sched _cond_resched(void)
5555 {
5556 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5557 system_state == SYSTEM_RUNNING) {
5558 __cond_resched();
5559 return 1;
5560 }
5561 return 0;
5562 }
5563 EXPORT_SYMBOL(_cond_resched);
5564
5565 /*
5566 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5567 * call schedule, and on return reacquire the lock.
5568 *
5569 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5570 * operations here to prevent schedule() from being called twice (once via
5571 * spin_unlock(), once by hand).
5572 */
5573 int cond_resched_lock(spinlock_t *lock)
5574 {
5575 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5576 int ret = 0;
5577
5578 if (spin_needbreak(lock) || resched) {
5579 spin_unlock(lock);
5580 if (resched && need_resched())
5581 __cond_resched();
5582 else
5583 cpu_relax();
5584 ret = 1;
5585 spin_lock(lock);
5586 }
5587 return ret;
5588 }
5589 EXPORT_SYMBOL(cond_resched_lock);
5590
5591 int __sched cond_resched_softirq(void)
5592 {
5593 BUG_ON(!in_softirq());
5594
5595 if (need_resched() && system_state == SYSTEM_RUNNING) {
5596 local_bh_enable();
5597 __cond_resched();
5598 local_bh_disable();
5599 return 1;
5600 }
5601 return 0;
5602 }
5603 EXPORT_SYMBOL(cond_resched_softirq);
5604
5605 /**
5606 * yield - yield the current processor to other threads.
5607 *
5608 * This is a shortcut for kernel-space yielding - it marks the
5609 * thread runnable and calls sys_sched_yield().
5610 */
5611 void __sched yield(void)
5612 {
5613 set_current_state(TASK_RUNNING);
5614 sys_sched_yield();
5615 }
5616 EXPORT_SYMBOL(yield);
5617
5618 /*
5619 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5620 * that process accounting knows that this is a task in IO wait state.
5621 *
5622 * But don't do that if it is a deliberate, throttling IO wait (this task
5623 * has set its backing_dev_info: the queue against which it should throttle)
5624 */
5625 void __sched io_schedule(void)
5626 {
5627 struct rq *rq = &__raw_get_cpu_var(runqueues);
5628
5629 delayacct_blkio_start();
5630 atomic_inc(&rq->nr_iowait);
5631 schedule();
5632 atomic_dec(&rq->nr_iowait);
5633 delayacct_blkio_end();
5634 }
5635 EXPORT_SYMBOL(io_schedule);
5636
5637 long __sched io_schedule_timeout(long timeout)
5638 {
5639 struct rq *rq = &__raw_get_cpu_var(runqueues);
5640 long ret;
5641
5642 delayacct_blkio_start();
5643 atomic_inc(&rq->nr_iowait);
5644 ret = schedule_timeout(timeout);
5645 atomic_dec(&rq->nr_iowait);
5646 delayacct_blkio_end();
5647 return ret;
5648 }
5649
5650 /**
5651 * sys_sched_get_priority_max - return maximum RT priority.
5652 * @policy: scheduling class.
5653 *
5654 * this syscall returns the maximum rt_priority that can be used
5655 * by a given scheduling class.
5656 */
5657 asmlinkage long sys_sched_get_priority_max(int policy)
5658 {
5659 int ret = -EINVAL;
5660
5661 switch (policy) {
5662 case SCHED_FIFO:
5663 case SCHED_RR:
5664 ret = MAX_USER_RT_PRIO-1;
5665 break;
5666 case SCHED_NORMAL:
5667 case SCHED_BATCH:
5668 case SCHED_IDLE:
5669 ret = 0;
5670 break;
5671 }
5672 return ret;
5673 }
5674
5675 /**
5676 * sys_sched_get_priority_min - return minimum RT priority.
5677 * @policy: scheduling class.
5678 *
5679 * this syscall returns the minimum rt_priority that can be used
5680 * by a given scheduling class.
5681 */
5682 asmlinkage long sys_sched_get_priority_min(int policy)
5683 {
5684 int ret = -EINVAL;
5685
5686 switch (policy) {
5687 case SCHED_FIFO:
5688 case SCHED_RR:
5689 ret = 1;
5690 break;
5691 case SCHED_NORMAL:
5692 case SCHED_BATCH:
5693 case SCHED_IDLE:
5694 ret = 0;
5695 }
5696 return ret;
5697 }
5698
5699 /**
5700 * sys_sched_rr_get_interval - return the default timeslice of a process.
5701 * @pid: pid of the process.
5702 * @interval: userspace pointer to the timeslice value.
5703 *
5704 * this syscall writes the default timeslice value of a given process
5705 * into the user-space timespec buffer. A value of '0' means infinity.
5706 */
5707 asmlinkage
5708 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5709 {
5710 struct task_struct *p;
5711 unsigned int time_slice;
5712 int retval;
5713 struct timespec t;
5714
5715 if (pid < 0)
5716 return -EINVAL;
5717
5718 retval = -ESRCH;
5719 read_lock(&tasklist_lock);
5720 p = find_process_by_pid(pid);
5721 if (!p)
5722 goto out_unlock;
5723
5724 retval = security_task_getscheduler(p);
5725 if (retval)
5726 goto out_unlock;
5727
5728 /*
5729 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5730 * tasks that are on an otherwise idle runqueue:
5731 */
5732 time_slice = 0;
5733 if (p->policy == SCHED_RR) {
5734 time_slice = DEF_TIMESLICE;
5735 } else if (p->policy != SCHED_FIFO) {
5736 struct sched_entity *se = &p->se;
5737 unsigned long flags;
5738 struct rq *rq;
5739
5740 rq = task_rq_lock(p, &flags);
5741 if (rq->cfs.load.weight)
5742 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5743 task_rq_unlock(rq, &flags);
5744 }
5745 read_unlock(&tasklist_lock);
5746 jiffies_to_timespec(time_slice, &t);
5747 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5748 return retval;
5749
5750 out_unlock:
5751 read_unlock(&tasklist_lock);
5752 return retval;
5753 }
5754
5755 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5756
5757 void sched_show_task(struct task_struct *p)
5758 {
5759 unsigned long free = 0;
5760 unsigned state;
5761
5762 state = p->state ? __ffs(p->state) + 1 : 0;
5763 printk(KERN_INFO "%-13.13s %c", p->comm,
5764 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5765 #if BITS_PER_LONG == 32
5766 if (state == TASK_RUNNING)
5767 printk(KERN_CONT " running ");
5768 else
5769 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5770 #else
5771 if (state == TASK_RUNNING)
5772 printk(KERN_CONT " running task ");
5773 else
5774 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5775 #endif
5776 #ifdef CONFIG_DEBUG_STACK_USAGE
5777 {
5778 unsigned long *n = end_of_stack(p);
5779 while (!*n)
5780 n++;
5781 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5782 }
5783 #endif
5784 printk(KERN_CONT "%5lu %5d %6d\n", free,
5785 task_pid_nr(p), task_pid_nr(p->real_parent));
5786
5787 show_stack(p, NULL);
5788 }
5789
5790 void show_state_filter(unsigned long state_filter)
5791 {
5792 struct task_struct *g, *p;
5793
5794 #if BITS_PER_LONG == 32
5795 printk(KERN_INFO
5796 " task PC stack pid father\n");
5797 #else
5798 printk(KERN_INFO
5799 " task PC stack pid father\n");
5800 #endif
5801 read_lock(&tasklist_lock);
5802 do_each_thread(g, p) {
5803 /*
5804 * reset the NMI-timeout, listing all files on a slow
5805 * console might take alot of time:
5806 */
5807 touch_nmi_watchdog();
5808 if (!state_filter || (p->state & state_filter))
5809 sched_show_task(p);
5810 } while_each_thread(g, p);
5811
5812 touch_all_softlockup_watchdogs();
5813
5814 #ifdef CONFIG_SCHED_DEBUG
5815 sysrq_sched_debug_show();
5816 #endif
5817 read_unlock(&tasklist_lock);
5818 /*
5819 * Only show locks if all tasks are dumped:
5820 */
5821 if (state_filter == -1)
5822 debug_show_all_locks();
5823 }
5824
5825 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5826 {
5827 idle->sched_class = &idle_sched_class;
5828 }
5829
5830 /**
5831 * init_idle - set up an idle thread for a given CPU
5832 * @idle: task in question
5833 * @cpu: cpu the idle task belongs to
5834 *
5835 * NOTE: this function does not set the idle thread's NEED_RESCHED
5836 * flag, to make booting more robust.
5837 */
5838 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5839 {
5840 struct rq *rq = cpu_rq(cpu);
5841 unsigned long flags;
5842
5843 __sched_fork(idle);
5844 idle->se.exec_start = sched_clock();
5845
5846 idle->prio = idle->normal_prio = MAX_PRIO;
5847 idle->cpus_allowed = cpumask_of_cpu(cpu);
5848 __set_task_cpu(idle, cpu);
5849
5850 spin_lock_irqsave(&rq->lock, flags);
5851 rq->curr = rq->idle = idle;
5852 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5853 idle->oncpu = 1;
5854 #endif
5855 spin_unlock_irqrestore(&rq->lock, flags);
5856
5857 /* Set the preempt count _outside_ the spinlocks! */
5858 #if defined(CONFIG_PREEMPT)
5859 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5860 #else
5861 task_thread_info(idle)->preempt_count = 0;
5862 #endif
5863 /*
5864 * The idle tasks have their own, simple scheduling class:
5865 */
5866 idle->sched_class = &idle_sched_class;
5867 }
5868
5869 /*
5870 * In a system that switches off the HZ timer nohz_cpu_mask
5871 * indicates which cpus entered this state. This is used
5872 * in the rcu update to wait only for active cpus. For system
5873 * which do not switch off the HZ timer nohz_cpu_mask should
5874 * always be CPU_MASK_NONE.
5875 */
5876 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5877
5878 /*
5879 * Increase the granularity value when there are more CPUs,
5880 * because with more CPUs the 'effective latency' as visible
5881 * to users decreases. But the relationship is not linear,
5882 * so pick a second-best guess by going with the log2 of the
5883 * number of CPUs.
5884 *
5885 * This idea comes from the SD scheduler of Con Kolivas:
5886 */
5887 static inline void sched_init_granularity(void)
5888 {
5889 unsigned int factor = 1 + ilog2(num_online_cpus());
5890 const unsigned long limit = 200000000;
5891
5892 sysctl_sched_min_granularity *= factor;
5893 if (sysctl_sched_min_granularity > limit)
5894 sysctl_sched_min_granularity = limit;
5895
5896 sysctl_sched_latency *= factor;
5897 if (sysctl_sched_latency > limit)
5898 sysctl_sched_latency = limit;
5899
5900 sysctl_sched_wakeup_granularity *= factor;
5901
5902 sysctl_sched_shares_ratelimit *= factor;
5903 }
5904
5905 #ifdef CONFIG_SMP
5906 /*
5907 * This is how migration works:
5908 *
5909 * 1) we queue a struct migration_req structure in the source CPU's
5910 * runqueue and wake up that CPU's migration thread.
5911 * 2) we down() the locked semaphore => thread blocks.
5912 * 3) migration thread wakes up (implicitly it forces the migrated
5913 * thread off the CPU)
5914 * 4) it gets the migration request and checks whether the migrated
5915 * task is still in the wrong runqueue.
5916 * 5) if it's in the wrong runqueue then the migration thread removes
5917 * it and puts it into the right queue.
5918 * 6) migration thread up()s the semaphore.
5919 * 7) we wake up and the migration is done.
5920 */
5921
5922 /*
5923 * Change a given task's CPU affinity. Migrate the thread to a
5924 * proper CPU and schedule it away if the CPU it's executing on
5925 * is removed from the allowed bitmask.
5926 *
5927 * NOTE: the caller must have a valid reference to the task, the
5928 * task must not exit() & deallocate itself prematurely. The
5929 * call is not atomic; no spinlocks may be held.
5930 */
5931 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5932 {
5933 struct migration_req req;
5934 unsigned long flags;
5935 struct rq *rq;
5936 int ret = 0;
5937
5938 rq = task_rq_lock(p, &flags);
5939 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5940 ret = -EINVAL;
5941 goto out;
5942 }
5943
5944 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5945 !cpus_equal(p->cpus_allowed, *new_mask))) {
5946 ret = -EINVAL;
5947 goto out;
5948 }
5949
5950 if (p->sched_class->set_cpus_allowed)
5951 p->sched_class->set_cpus_allowed(p, new_mask);
5952 else {
5953 p->cpus_allowed = *new_mask;
5954 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5955 }
5956
5957 /* Can the task run on the task's current CPU? If so, we're done */
5958 if (cpu_isset(task_cpu(p), *new_mask))
5959 goto out;
5960
5961 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5962 /* Need help from migration thread: drop lock and wait. */
5963 task_rq_unlock(rq, &flags);
5964 wake_up_process(rq->migration_thread);
5965 wait_for_completion(&req.done);
5966 tlb_migrate_finish(p->mm);
5967 return 0;
5968 }
5969 out:
5970 task_rq_unlock(rq, &flags);
5971
5972 return ret;
5973 }
5974 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5975
5976 /*
5977 * Move (not current) task off this cpu, onto dest cpu. We're doing
5978 * this because either it can't run here any more (set_cpus_allowed()
5979 * away from this CPU, or CPU going down), or because we're
5980 * attempting to rebalance this task on exec (sched_exec).
5981 *
5982 * So we race with normal scheduler movements, but that's OK, as long
5983 * as the task is no longer on this CPU.
5984 *
5985 * Returns non-zero if task was successfully migrated.
5986 */
5987 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5988 {
5989 struct rq *rq_dest, *rq_src;
5990 int ret = 0, on_rq;
5991
5992 if (unlikely(!cpu_active(dest_cpu)))
5993 return ret;
5994
5995 rq_src = cpu_rq(src_cpu);
5996 rq_dest = cpu_rq(dest_cpu);
5997
5998 double_rq_lock(rq_src, rq_dest);
5999 /* Already moved. */
6000 if (task_cpu(p) != src_cpu)
6001 goto done;
6002 /* Affinity changed (again). */
6003 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6004 goto fail;
6005
6006 on_rq = p->se.on_rq;
6007 if (on_rq)
6008 deactivate_task(rq_src, p, 0);
6009
6010 set_task_cpu(p, dest_cpu);
6011 if (on_rq) {
6012 activate_task(rq_dest, p, 0);
6013 check_preempt_curr(rq_dest, p, 0);
6014 }
6015 done:
6016 ret = 1;
6017 fail:
6018 double_rq_unlock(rq_src, rq_dest);
6019 return ret;
6020 }
6021
6022 /*
6023 * migration_thread - this is a highprio system thread that performs
6024 * thread migration by bumping thread off CPU then 'pushing' onto
6025 * another runqueue.
6026 */
6027 static int migration_thread(void *data)
6028 {
6029 int cpu = (long)data;
6030 struct rq *rq;
6031
6032 rq = cpu_rq(cpu);
6033 BUG_ON(rq->migration_thread != current);
6034
6035 set_current_state(TASK_INTERRUPTIBLE);
6036 while (!kthread_should_stop()) {
6037 struct migration_req *req;
6038 struct list_head *head;
6039
6040 spin_lock_irq(&rq->lock);
6041
6042 if (cpu_is_offline(cpu)) {
6043 spin_unlock_irq(&rq->lock);
6044 goto wait_to_die;
6045 }
6046
6047 if (rq->active_balance) {
6048 active_load_balance(rq, cpu);
6049 rq->active_balance = 0;
6050 }
6051
6052 head = &rq->migration_queue;
6053
6054 if (list_empty(head)) {
6055 spin_unlock_irq(&rq->lock);
6056 schedule();
6057 set_current_state(TASK_INTERRUPTIBLE);
6058 continue;
6059 }
6060 req = list_entry(head->next, struct migration_req, list);
6061 list_del_init(head->next);
6062
6063 spin_unlock(&rq->lock);
6064 __migrate_task(req->task, cpu, req->dest_cpu);
6065 local_irq_enable();
6066
6067 complete(&req->done);
6068 }
6069 __set_current_state(TASK_RUNNING);
6070 return 0;
6071
6072 wait_to_die:
6073 /* Wait for kthread_stop */
6074 set_current_state(TASK_INTERRUPTIBLE);
6075 while (!kthread_should_stop()) {
6076 schedule();
6077 set_current_state(TASK_INTERRUPTIBLE);
6078 }
6079 __set_current_state(TASK_RUNNING);
6080 return 0;
6081 }
6082
6083 #ifdef CONFIG_HOTPLUG_CPU
6084
6085 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6086 {
6087 int ret;
6088
6089 local_irq_disable();
6090 ret = __migrate_task(p, src_cpu, dest_cpu);
6091 local_irq_enable();
6092 return ret;
6093 }
6094
6095 /*
6096 * Figure out where task on dead CPU should go, use force if necessary.
6097 * NOTE: interrupts should be disabled by the caller
6098 */
6099 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6100 {
6101 unsigned long flags;
6102 cpumask_t mask;
6103 struct rq *rq;
6104 int dest_cpu;
6105
6106 do {
6107 /* On same node? */
6108 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6109 cpus_and(mask, mask, p->cpus_allowed);
6110 dest_cpu = any_online_cpu(mask);
6111
6112 /* On any allowed CPU? */
6113 if (dest_cpu >= nr_cpu_ids)
6114 dest_cpu = any_online_cpu(p->cpus_allowed);
6115
6116 /* No more Mr. Nice Guy. */
6117 if (dest_cpu >= nr_cpu_ids) {
6118 cpumask_t cpus_allowed;
6119
6120 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6121 /*
6122 * Try to stay on the same cpuset, where the
6123 * current cpuset may be a subset of all cpus.
6124 * The cpuset_cpus_allowed_locked() variant of
6125 * cpuset_cpus_allowed() will not block. It must be
6126 * called within calls to cpuset_lock/cpuset_unlock.
6127 */
6128 rq = task_rq_lock(p, &flags);
6129 p->cpus_allowed = cpus_allowed;
6130 dest_cpu = any_online_cpu(p->cpus_allowed);
6131 task_rq_unlock(rq, &flags);
6132
6133 /*
6134 * Don't tell them about moving exiting tasks or
6135 * kernel threads (both mm NULL), since they never
6136 * leave kernel.
6137 */
6138 if (p->mm && printk_ratelimit()) {
6139 printk(KERN_INFO "process %d (%s) no "
6140 "longer affine to cpu%d\n",
6141 task_pid_nr(p), p->comm, dead_cpu);
6142 }
6143 }
6144 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6145 }
6146
6147 /*
6148 * While a dead CPU has no uninterruptible tasks queued at this point,
6149 * it might still have a nonzero ->nr_uninterruptible counter, because
6150 * for performance reasons the counter is not stricly tracking tasks to
6151 * their home CPUs. So we just add the counter to another CPU's counter,
6152 * to keep the global sum constant after CPU-down:
6153 */
6154 static void migrate_nr_uninterruptible(struct rq *rq_src)
6155 {
6156 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6157 unsigned long flags;
6158
6159 local_irq_save(flags);
6160 double_rq_lock(rq_src, rq_dest);
6161 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6162 rq_src->nr_uninterruptible = 0;
6163 double_rq_unlock(rq_src, rq_dest);
6164 local_irq_restore(flags);
6165 }
6166
6167 /* Run through task list and migrate tasks from the dead cpu. */
6168 static void migrate_live_tasks(int src_cpu)
6169 {
6170 struct task_struct *p, *t;
6171
6172 read_lock(&tasklist_lock);
6173
6174 do_each_thread(t, p) {
6175 if (p == current)
6176 continue;
6177
6178 if (task_cpu(p) == src_cpu)
6179 move_task_off_dead_cpu(src_cpu, p);
6180 } while_each_thread(t, p);
6181
6182 read_unlock(&tasklist_lock);
6183 }
6184
6185 /*
6186 * Schedules idle task to be the next runnable task on current CPU.
6187 * It does so by boosting its priority to highest possible.
6188 * Used by CPU offline code.
6189 */
6190 void sched_idle_next(void)
6191 {
6192 int this_cpu = smp_processor_id();
6193 struct rq *rq = cpu_rq(this_cpu);
6194 struct task_struct *p = rq->idle;
6195 unsigned long flags;
6196
6197 /* cpu has to be offline */
6198 BUG_ON(cpu_online(this_cpu));
6199
6200 /*
6201 * Strictly not necessary since rest of the CPUs are stopped by now
6202 * and interrupts disabled on the current cpu.
6203 */
6204 spin_lock_irqsave(&rq->lock, flags);
6205
6206 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6207
6208 update_rq_clock(rq);
6209 activate_task(rq, p, 0);
6210
6211 spin_unlock_irqrestore(&rq->lock, flags);
6212 }
6213
6214 /*
6215 * Ensures that the idle task is using init_mm right before its cpu goes
6216 * offline.
6217 */
6218 void idle_task_exit(void)
6219 {
6220 struct mm_struct *mm = current->active_mm;
6221
6222 BUG_ON(cpu_online(smp_processor_id()));
6223
6224 if (mm != &init_mm)
6225 switch_mm(mm, &init_mm, current);
6226 mmdrop(mm);
6227 }
6228
6229 /* called under rq->lock with disabled interrupts */
6230 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6231 {
6232 struct rq *rq = cpu_rq(dead_cpu);
6233
6234 /* Must be exiting, otherwise would be on tasklist. */
6235 BUG_ON(!p->exit_state);
6236
6237 /* Cannot have done final schedule yet: would have vanished. */
6238 BUG_ON(p->state == TASK_DEAD);
6239
6240 get_task_struct(p);
6241
6242 /*
6243 * Drop lock around migration; if someone else moves it,
6244 * that's OK. No task can be added to this CPU, so iteration is
6245 * fine.
6246 */
6247 spin_unlock_irq(&rq->lock);
6248 move_task_off_dead_cpu(dead_cpu, p);
6249 spin_lock_irq(&rq->lock);
6250
6251 put_task_struct(p);
6252 }
6253
6254 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6255 static void migrate_dead_tasks(unsigned int dead_cpu)
6256 {
6257 struct rq *rq = cpu_rq(dead_cpu);
6258 struct task_struct *next;
6259
6260 for ( ; ; ) {
6261 if (!rq->nr_running)
6262 break;
6263 update_rq_clock(rq);
6264 next = pick_next_task(rq, rq->curr);
6265 if (!next)
6266 break;
6267 next->sched_class->put_prev_task(rq, next);
6268 migrate_dead(dead_cpu, next);
6269
6270 }
6271 }
6272 #endif /* CONFIG_HOTPLUG_CPU */
6273
6274 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6275
6276 static struct ctl_table sd_ctl_dir[] = {
6277 {
6278 .procname = "sched_domain",
6279 .mode = 0555,
6280 },
6281 {0, },
6282 };
6283
6284 static struct ctl_table sd_ctl_root[] = {
6285 {
6286 .ctl_name = CTL_KERN,
6287 .procname = "kernel",
6288 .mode = 0555,
6289 .child = sd_ctl_dir,
6290 },
6291 {0, },
6292 };
6293
6294 static struct ctl_table *sd_alloc_ctl_entry(int n)
6295 {
6296 struct ctl_table *entry =
6297 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6298
6299 return entry;
6300 }
6301
6302 static void sd_free_ctl_entry(struct ctl_table **tablep)
6303 {
6304 struct ctl_table *entry;
6305
6306 /*
6307 * In the intermediate directories, both the child directory and
6308 * procname are dynamically allocated and could fail but the mode
6309 * will always be set. In the lowest directory the names are
6310 * static strings and all have proc handlers.
6311 */
6312 for (entry = *tablep; entry->mode; entry++) {
6313 if (entry->child)
6314 sd_free_ctl_entry(&entry->child);
6315 if (entry->proc_handler == NULL)
6316 kfree(entry->procname);
6317 }
6318
6319 kfree(*tablep);
6320 *tablep = NULL;
6321 }
6322
6323 static void
6324 set_table_entry(struct ctl_table *entry,
6325 const char *procname, void *data, int maxlen,
6326 mode_t mode, proc_handler *proc_handler)
6327 {
6328 entry->procname = procname;
6329 entry->data = data;
6330 entry->maxlen = maxlen;
6331 entry->mode = mode;
6332 entry->proc_handler = proc_handler;
6333 }
6334
6335 static struct ctl_table *
6336 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6337 {
6338 struct ctl_table *table = sd_alloc_ctl_entry(13);
6339
6340 if (table == NULL)
6341 return NULL;
6342
6343 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6344 sizeof(long), 0644, proc_doulongvec_minmax);
6345 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6346 sizeof(long), 0644, proc_doulongvec_minmax);
6347 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6348 sizeof(int), 0644, proc_dointvec_minmax);
6349 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6350 sizeof(int), 0644, proc_dointvec_minmax);
6351 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6352 sizeof(int), 0644, proc_dointvec_minmax);
6353 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6354 sizeof(int), 0644, proc_dointvec_minmax);
6355 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6356 sizeof(int), 0644, proc_dointvec_minmax);
6357 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6358 sizeof(int), 0644, proc_dointvec_minmax);
6359 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6360 sizeof(int), 0644, proc_dointvec_minmax);
6361 set_table_entry(&table[9], "cache_nice_tries",
6362 &sd->cache_nice_tries,
6363 sizeof(int), 0644, proc_dointvec_minmax);
6364 set_table_entry(&table[10], "flags", &sd->flags,
6365 sizeof(int), 0644, proc_dointvec_minmax);
6366 set_table_entry(&table[11], "name", sd->name,
6367 CORENAME_MAX_SIZE, 0444, proc_dostring);
6368 /* &table[12] is terminator */
6369
6370 return table;
6371 }
6372
6373 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6374 {
6375 struct ctl_table *entry, *table;
6376 struct sched_domain *sd;
6377 int domain_num = 0, i;
6378 char buf[32];
6379
6380 for_each_domain(cpu, sd)
6381 domain_num++;
6382 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6383 if (table == NULL)
6384 return NULL;
6385
6386 i = 0;
6387 for_each_domain(cpu, sd) {
6388 snprintf(buf, 32, "domain%d", i);
6389 entry->procname = kstrdup(buf, GFP_KERNEL);
6390 entry->mode = 0555;
6391 entry->child = sd_alloc_ctl_domain_table(sd);
6392 entry++;
6393 i++;
6394 }
6395 return table;
6396 }
6397
6398 static struct ctl_table_header *sd_sysctl_header;
6399 static void register_sched_domain_sysctl(void)
6400 {
6401 int i, cpu_num = num_online_cpus();
6402 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6403 char buf[32];
6404
6405 WARN_ON(sd_ctl_dir[0].child);
6406 sd_ctl_dir[0].child = entry;
6407
6408 if (entry == NULL)
6409 return;
6410
6411 for_each_online_cpu(i) {
6412 snprintf(buf, 32, "cpu%d", i);
6413 entry->procname = kstrdup(buf, GFP_KERNEL);
6414 entry->mode = 0555;
6415 entry->child = sd_alloc_ctl_cpu_table(i);
6416 entry++;
6417 }
6418
6419 WARN_ON(sd_sysctl_header);
6420 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6421 }
6422
6423 /* may be called multiple times per register */
6424 static void unregister_sched_domain_sysctl(void)
6425 {
6426 if (sd_sysctl_header)
6427 unregister_sysctl_table(sd_sysctl_header);
6428 sd_sysctl_header = NULL;
6429 if (sd_ctl_dir[0].child)
6430 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6431 }
6432 #else
6433 static void register_sched_domain_sysctl(void)
6434 {
6435 }
6436 static void unregister_sched_domain_sysctl(void)
6437 {
6438 }
6439 #endif
6440
6441 static void set_rq_online(struct rq *rq)
6442 {
6443 if (!rq->online) {
6444 const struct sched_class *class;
6445
6446 cpu_set(rq->cpu, rq->rd->online);
6447 rq->online = 1;
6448
6449 for_each_class(class) {
6450 if (class->rq_online)
6451 class->rq_online(rq);
6452 }
6453 }
6454 }
6455
6456 static void set_rq_offline(struct rq *rq)
6457 {
6458 if (rq->online) {
6459 const struct sched_class *class;
6460
6461 for_each_class(class) {
6462 if (class->rq_offline)
6463 class->rq_offline(rq);
6464 }
6465
6466 cpu_clear(rq->cpu, rq->rd->online);
6467 rq->online = 0;
6468 }
6469 }
6470
6471 /*
6472 * migration_call - callback that gets triggered when a CPU is added.
6473 * Here we can start up the necessary migration thread for the new CPU.
6474 */
6475 static int __cpuinit
6476 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6477 {
6478 struct task_struct *p;
6479 int cpu = (long)hcpu;
6480 unsigned long flags;
6481 struct rq *rq;
6482
6483 switch (action) {
6484
6485 case CPU_UP_PREPARE:
6486 case CPU_UP_PREPARE_FROZEN:
6487 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6488 if (IS_ERR(p))
6489 return NOTIFY_BAD;
6490 kthread_bind(p, cpu);
6491 /* Must be high prio: stop_machine expects to yield to it. */
6492 rq = task_rq_lock(p, &flags);
6493 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6494 task_rq_unlock(rq, &flags);
6495 cpu_rq(cpu)->migration_thread = p;
6496 break;
6497
6498 case CPU_ONLINE:
6499 case CPU_ONLINE_FROZEN:
6500 /* Strictly unnecessary, as first user will wake it. */
6501 wake_up_process(cpu_rq(cpu)->migration_thread);
6502
6503 /* Update our root-domain */
6504 rq = cpu_rq(cpu);
6505 spin_lock_irqsave(&rq->lock, flags);
6506 if (rq->rd) {
6507 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6508
6509 set_rq_online(rq);
6510 }
6511 spin_unlock_irqrestore(&rq->lock, flags);
6512 break;
6513
6514 #ifdef CONFIG_HOTPLUG_CPU
6515 case CPU_UP_CANCELED:
6516 case CPU_UP_CANCELED_FROZEN:
6517 if (!cpu_rq(cpu)->migration_thread)
6518 break;
6519 /* Unbind it from offline cpu so it can run. Fall thru. */
6520 kthread_bind(cpu_rq(cpu)->migration_thread,
6521 any_online_cpu(cpu_online_map));
6522 kthread_stop(cpu_rq(cpu)->migration_thread);
6523 cpu_rq(cpu)->migration_thread = NULL;
6524 break;
6525
6526 case CPU_DEAD:
6527 case CPU_DEAD_FROZEN:
6528 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6529 migrate_live_tasks(cpu);
6530 rq = cpu_rq(cpu);
6531 kthread_stop(rq->migration_thread);
6532 rq->migration_thread = NULL;
6533 /* Idle task back to normal (off runqueue, low prio) */
6534 spin_lock_irq(&rq->lock);
6535 update_rq_clock(rq);
6536 deactivate_task(rq, rq->idle, 0);
6537 rq->idle->static_prio = MAX_PRIO;
6538 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6539 rq->idle->sched_class = &idle_sched_class;
6540 migrate_dead_tasks(cpu);
6541 spin_unlock_irq(&rq->lock);
6542 cpuset_unlock();
6543 migrate_nr_uninterruptible(rq);
6544 BUG_ON(rq->nr_running != 0);
6545
6546 /*
6547 * No need to migrate the tasks: it was best-effort if
6548 * they didn't take sched_hotcpu_mutex. Just wake up
6549 * the requestors.
6550 */
6551 spin_lock_irq(&rq->lock);
6552 while (!list_empty(&rq->migration_queue)) {
6553 struct migration_req *req;
6554
6555 req = list_entry(rq->migration_queue.next,
6556 struct migration_req, list);
6557 list_del_init(&req->list);
6558 complete(&req->done);
6559 }
6560 spin_unlock_irq(&rq->lock);
6561 break;
6562
6563 case CPU_DYING:
6564 case CPU_DYING_FROZEN:
6565 /* Update our root-domain */
6566 rq = cpu_rq(cpu);
6567 spin_lock_irqsave(&rq->lock, flags);
6568 if (rq->rd) {
6569 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6570 set_rq_offline(rq);
6571 }
6572 spin_unlock_irqrestore(&rq->lock, flags);
6573 break;
6574 #endif
6575 }
6576 return NOTIFY_OK;
6577 }
6578
6579 /* Register at highest priority so that task migration (migrate_all_tasks)
6580 * happens before everything else.
6581 */
6582 static struct notifier_block __cpuinitdata migration_notifier = {
6583 .notifier_call = migration_call,
6584 .priority = 10
6585 };
6586
6587 static int __init migration_init(void)
6588 {
6589 void *cpu = (void *)(long)smp_processor_id();
6590 int err;
6591
6592 /* Start one for the boot CPU: */
6593 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6594 BUG_ON(err == NOTIFY_BAD);
6595 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6596 register_cpu_notifier(&migration_notifier);
6597
6598 return err;
6599 }
6600 early_initcall(migration_init);
6601 #endif
6602
6603 #ifdef CONFIG_SMP
6604
6605 #ifdef CONFIG_SCHED_DEBUG
6606
6607 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6608 cpumask_t *groupmask)
6609 {
6610 struct sched_group *group = sd->groups;
6611 char str[256];
6612
6613 cpulist_scnprintf(str, sizeof(str), sd->span);
6614 cpus_clear(*groupmask);
6615
6616 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6617
6618 if (!(sd->flags & SD_LOAD_BALANCE)) {
6619 printk("does not load-balance\n");
6620 if (sd->parent)
6621 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6622 " has parent");
6623 return -1;
6624 }
6625
6626 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6627
6628 if (!cpu_isset(cpu, sd->span)) {
6629 printk(KERN_ERR "ERROR: domain->span does not contain "
6630 "CPU%d\n", cpu);
6631 }
6632 if (!cpu_isset(cpu, group->cpumask)) {
6633 printk(KERN_ERR "ERROR: domain->groups does not contain"
6634 " CPU%d\n", cpu);
6635 }
6636
6637 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6638 do {
6639 if (!group) {
6640 printk("\n");
6641 printk(KERN_ERR "ERROR: group is NULL\n");
6642 break;
6643 }
6644
6645 if (!group->__cpu_power) {
6646 printk(KERN_CONT "\n");
6647 printk(KERN_ERR "ERROR: domain->cpu_power not "
6648 "set\n");
6649 break;
6650 }
6651
6652 if (!cpus_weight(group->cpumask)) {
6653 printk(KERN_CONT "\n");
6654 printk(KERN_ERR "ERROR: empty group\n");
6655 break;
6656 }
6657
6658 if (cpus_intersects(*groupmask, group->cpumask)) {
6659 printk(KERN_CONT "\n");
6660 printk(KERN_ERR "ERROR: repeated CPUs\n");
6661 break;
6662 }
6663
6664 cpus_or(*groupmask, *groupmask, group->cpumask);
6665
6666 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6667 printk(KERN_CONT " %s", str);
6668
6669 group = group->next;
6670 } while (group != sd->groups);
6671 printk(KERN_CONT "\n");
6672
6673 if (!cpus_equal(sd->span, *groupmask))
6674 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6675
6676 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6677 printk(KERN_ERR "ERROR: parent span is not a superset "
6678 "of domain->span\n");
6679 return 0;
6680 }
6681
6682 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6683 {
6684 cpumask_t *groupmask;
6685 int level = 0;
6686
6687 if (!sd) {
6688 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6689 return;
6690 }
6691
6692 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6693
6694 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6695 if (!groupmask) {
6696 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6697 return;
6698 }
6699
6700 for (;;) {
6701 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6702 break;
6703 level++;
6704 sd = sd->parent;
6705 if (!sd)
6706 break;
6707 }
6708 kfree(groupmask);
6709 }
6710 #else /* !CONFIG_SCHED_DEBUG */
6711 # define sched_domain_debug(sd, cpu) do { } while (0)
6712 #endif /* CONFIG_SCHED_DEBUG */
6713
6714 static int sd_degenerate(struct sched_domain *sd)
6715 {
6716 if (cpus_weight(sd->span) == 1)
6717 return 1;
6718
6719 /* Following flags need at least 2 groups */
6720 if (sd->flags & (SD_LOAD_BALANCE |
6721 SD_BALANCE_NEWIDLE |
6722 SD_BALANCE_FORK |
6723 SD_BALANCE_EXEC |
6724 SD_SHARE_CPUPOWER |
6725 SD_SHARE_PKG_RESOURCES)) {
6726 if (sd->groups != sd->groups->next)
6727 return 0;
6728 }
6729
6730 /* Following flags don't use groups */
6731 if (sd->flags & (SD_WAKE_IDLE |
6732 SD_WAKE_AFFINE |
6733 SD_WAKE_BALANCE))
6734 return 0;
6735
6736 return 1;
6737 }
6738
6739 static int
6740 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6741 {
6742 unsigned long cflags = sd->flags, pflags = parent->flags;
6743
6744 if (sd_degenerate(parent))
6745 return 1;
6746
6747 if (!cpus_equal(sd->span, parent->span))
6748 return 0;
6749
6750 /* Does parent contain flags not in child? */
6751 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6752 if (cflags & SD_WAKE_AFFINE)
6753 pflags &= ~SD_WAKE_BALANCE;
6754 /* Flags needing groups don't count if only 1 group in parent */
6755 if (parent->groups == parent->groups->next) {
6756 pflags &= ~(SD_LOAD_BALANCE |
6757 SD_BALANCE_NEWIDLE |
6758 SD_BALANCE_FORK |
6759 SD_BALANCE_EXEC |
6760 SD_SHARE_CPUPOWER |
6761 SD_SHARE_PKG_RESOURCES);
6762 }
6763 if (~cflags & pflags)
6764 return 0;
6765
6766 return 1;
6767 }
6768
6769 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6770 {
6771 unsigned long flags;
6772
6773 spin_lock_irqsave(&rq->lock, flags);
6774
6775 if (rq->rd) {
6776 struct root_domain *old_rd = rq->rd;
6777
6778 if (cpu_isset(rq->cpu, old_rd->online))
6779 set_rq_offline(rq);
6780
6781 cpu_clear(rq->cpu, old_rd->span);
6782
6783 if (atomic_dec_and_test(&old_rd->refcount))
6784 kfree(old_rd);
6785 }
6786
6787 atomic_inc(&rd->refcount);
6788 rq->rd = rd;
6789
6790 cpu_set(rq->cpu, rd->span);
6791 if (cpu_isset(rq->cpu, cpu_online_map))
6792 set_rq_online(rq);
6793
6794 spin_unlock_irqrestore(&rq->lock, flags);
6795 }
6796
6797 static void init_rootdomain(struct root_domain *rd)
6798 {
6799 memset(rd, 0, sizeof(*rd));
6800
6801 cpus_clear(rd->span);
6802 cpus_clear(rd->online);
6803
6804 cpupri_init(&rd->cpupri);
6805 }
6806
6807 static void init_defrootdomain(void)
6808 {
6809 init_rootdomain(&def_root_domain);
6810 atomic_set(&def_root_domain.refcount, 1);
6811 }
6812
6813 static struct root_domain *alloc_rootdomain(void)
6814 {
6815 struct root_domain *rd;
6816
6817 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6818 if (!rd)
6819 return NULL;
6820
6821 init_rootdomain(rd);
6822
6823 return rd;
6824 }
6825
6826 /*
6827 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6828 * hold the hotplug lock.
6829 */
6830 static void
6831 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6832 {
6833 struct rq *rq = cpu_rq(cpu);
6834 struct sched_domain *tmp;
6835
6836 /* Remove the sched domains which do not contribute to scheduling. */
6837 for (tmp = sd; tmp; ) {
6838 struct sched_domain *parent = tmp->parent;
6839 if (!parent)
6840 break;
6841
6842 if (sd_parent_degenerate(tmp, parent)) {
6843 tmp->parent = parent->parent;
6844 if (parent->parent)
6845 parent->parent->child = tmp;
6846 } else
6847 tmp = tmp->parent;
6848 }
6849
6850 if (sd && sd_degenerate(sd)) {
6851 sd = sd->parent;
6852 if (sd)
6853 sd->child = NULL;
6854 }
6855
6856 sched_domain_debug(sd, cpu);
6857
6858 rq_attach_root(rq, rd);
6859 rcu_assign_pointer(rq->sd, sd);
6860 }
6861
6862 /* cpus with isolated domains */
6863 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6864
6865 /* Setup the mask of cpus configured for isolated domains */
6866 static int __init isolated_cpu_setup(char *str)
6867 {
6868 static int __initdata ints[NR_CPUS];
6869 int i;
6870
6871 str = get_options(str, ARRAY_SIZE(ints), ints);
6872 cpus_clear(cpu_isolated_map);
6873 for (i = 1; i <= ints[0]; i++)
6874 if (ints[i] < NR_CPUS)
6875 cpu_set(ints[i], cpu_isolated_map);
6876 return 1;
6877 }
6878
6879 __setup("isolcpus=", isolated_cpu_setup);
6880
6881 /*
6882 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6883 * to a function which identifies what group(along with sched group) a CPU
6884 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6885 * (due to the fact that we keep track of groups covered with a cpumask_t).
6886 *
6887 * init_sched_build_groups will build a circular linked list of the groups
6888 * covered by the given span, and will set each group's ->cpumask correctly,
6889 * and ->cpu_power to 0.
6890 */
6891 static void
6892 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6893 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6894 struct sched_group **sg,
6895 cpumask_t *tmpmask),
6896 cpumask_t *covered, cpumask_t *tmpmask)
6897 {
6898 struct sched_group *first = NULL, *last = NULL;
6899 int i;
6900
6901 cpus_clear(*covered);
6902
6903 for_each_cpu_mask_nr(i, *span) {
6904 struct sched_group *sg;
6905 int group = group_fn(i, cpu_map, &sg, tmpmask);
6906 int j;
6907
6908 if (cpu_isset(i, *covered))
6909 continue;
6910
6911 cpus_clear(sg->cpumask);
6912 sg->__cpu_power = 0;
6913
6914 for_each_cpu_mask_nr(j, *span) {
6915 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6916 continue;
6917
6918 cpu_set(j, *covered);
6919 cpu_set(j, sg->cpumask);
6920 }
6921 if (!first)
6922 first = sg;
6923 if (last)
6924 last->next = sg;
6925 last = sg;
6926 }
6927 last->next = first;
6928 }
6929
6930 #define SD_NODES_PER_DOMAIN 16
6931
6932 #ifdef CONFIG_NUMA
6933
6934 /**
6935 * find_next_best_node - find the next node to include in a sched_domain
6936 * @node: node whose sched_domain we're building
6937 * @used_nodes: nodes already in the sched_domain
6938 *
6939 * Find the next node to include in a given scheduling domain. Simply
6940 * finds the closest node not already in the @used_nodes map.
6941 *
6942 * Should use nodemask_t.
6943 */
6944 static int find_next_best_node(int node, nodemask_t *used_nodes)
6945 {
6946 int i, n, val, min_val, best_node = 0;
6947
6948 min_val = INT_MAX;
6949
6950 for (i = 0; i < nr_node_ids; i++) {
6951 /* Start at @node */
6952 n = (node + i) % nr_node_ids;
6953
6954 if (!nr_cpus_node(n))
6955 continue;
6956
6957 /* Skip already used nodes */
6958 if (node_isset(n, *used_nodes))
6959 continue;
6960
6961 /* Simple min distance search */
6962 val = node_distance(node, n);
6963
6964 if (val < min_val) {
6965 min_val = val;
6966 best_node = n;
6967 }
6968 }
6969
6970 node_set(best_node, *used_nodes);
6971 return best_node;
6972 }
6973
6974 /**
6975 * sched_domain_node_span - get a cpumask for a node's sched_domain
6976 * @node: node whose cpumask we're constructing
6977 * @span: resulting cpumask
6978 *
6979 * Given a node, construct a good cpumask for its sched_domain to span. It
6980 * should be one that prevents unnecessary balancing, but also spreads tasks
6981 * out optimally.
6982 */
6983 static void sched_domain_node_span(int node, cpumask_t *span)
6984 {
6985 nodemask_t used_nodes;
6986 node_to_cpumask_ptr(nodemask, node);
6987 int i;
6988
6989 cpus_clear(*span);
6990 nodes_clear(used_nodes);
6991
6992 cpus_or(*span, *span, *nodemask);
6993 node_set(node, used_nodes);
6994
6995 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6996 int next_node = find_next_best_node(node, &used_nodes);
6997
6998 node_to_cpumask_ptr_next(nodemask, next_node);
6999 cpus_or(*span, *span, *nodemask);
7000 }
7001 }
7002 #endif /* CONFIG_NUMA */
7003
7004 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7005
7006 /*
7007 * SMT sched-domains:
7008 */
7009 #ifdef CONFIG_SCHED_SMT
7010 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7011 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7012
7013 static int
7014 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7015 cpumask_t *unused)
7016 {
7017 if (sg)
7018 *sg = &per_cpu(sched_group_cpus, cpu);
7019 return cpu;
7020 }
7021 #endif /* CONFIG_SCHED_SMT */
7022
7023 /*
7024 * multi-core sched-domains:
7025 */
7026 #ifdef CONFIG_SCHED_MC
7027 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7028 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7029 #endif /* CONFIG_SCHED_MC */
7030
7031 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7032 static int
7033 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7034 cpumask_t *mask)
7035 {
7036 int group;
7037
7038 *mask = per_cpu(cpu_sibling_map, cpu);
7039 cpus_and(*mask, *mask, *cpu_map);
7040 group = first_cpu(*mask);
7041 if (sg)
7042 *sg = &per_cpu(sched_group_core, group);
7043 return group;
7044 }
7045 #elif defined(CONFIG_SCHED_MC)
7046 static int
7047 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7048 cpumask_t *unused)
7049 {
7050 if (sg)
7051 *sg = &per_cpu(sched_group_core, cpu);
7052 return cpu;
7053 }
7054 #endif
7055
7056 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7057 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7058
7059 static int
7060 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7061 cpumask_t *mask)
7062 {
7063 int group;
7064 #ifdef CONFIG_SCHED_MC
7065 *mask = cpu_coregroup_map(cpu);
7066 cpus_and(*mask, *mask, *cpu_map);
7067 group = first_cpu(*mask);
7068 #elif defined(CONFIG_SCHED_SMT)
7069 *mask = per_cpu(cpu_sibling_map, cpu);
7070 cpus_and(*mask, *mask, *cpu_map);
7071 group = first_cpu(*mask);
7072 #else
7073 group = cpu;
7074 #endif
7075 if (sg)
7076 *sg = &per_cpu(sched_group_phys, group);
7077 return group;
7078 }
7079
7080 #ifdef CONFIG_NUMA
7081 /*
7082 * The init_sched_build_groups can't handle what we want to do with node
7083 * groups, so roll our own. Now each node has its own list of groups which
7084 * gets dynamically allocated.
7085 */
7086 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7087 static struct sched_group ***sched_group_nodes_bycpu;
7088
7089 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7090 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7091
7092 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7093 struct sched_group **sg, cpumask_t *nodemask)
7094 {
7095 int group;
7096
7097 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7098 cpus_and(*nodemask, *nodemask, *cpu_map);
7099 group = first_cpu(*nodemask);
7100
7101 if (sg)
7102 *sg = &per_cpu(sched_group_allnodes, group);
7103 return group;
7104 }
7105
7106 static void init_numa_sched_groups_power(struct sched_group *group_head)
7107 {
7108 struct sched_group *sg = group_head;
7109 int j;
7110
7111 if (!sg)
7112 return;
7113 do {
7114 for_each_cpu_mask_nr(j, sg->cpumask) {
7115 struct sched_domain *sd;
7116
7117 sd = &per_cpu(phys_domains, j);
7118 if (j != first_cpu(sd->groups->cpumask)) {
7119 /*
7120 * Only add "power" once for each
7121 * physical package.
7122 */
7123 continue;
7124 }
7125
7126 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7127 }
7128 sg = sg->next;
7129 } while (sg != group_head);
7130 }
7131 #endif /* CONFIG_NUMA */
7132
7133 #ifdef CONFIG_NUMA
7134 /* Free memory allocated for various sched_group structures */
7135 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7136 {
7137 int cpu, i;
7138
7139 for_each_cpu_mask_nr(cpu, *cpu_map) {
7140 struct sched_group **sched_group_nodes
7141 = sched_group_nodes_bycpu[cpu];
7142
7143 if (!sched_group_nodes)
7144 continue;
7145
7146 for (i = 0; i < nr_node_ids; i++) {
7147 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7148
7149 *nodemask = node_to_cpumask(i);
7150 cpus_and(*nodemask, *nodemask, *cpu_map);
7151 if (cpus_empty(*nodemask))
7152 continue;
7153
7154 if (sg == NULL)
7155 continue;
7156 sg = sg->next;
7157 next_sg:
7158 oldsg = sg;
7159 sg = sg->next;
7160 kfree(oldsg);
7161 if (oldsg != sched_group_nodes[i])
7162 goto next_sg;
7163 }
7164 kfree(sched_group_nodes);
7165 sched_group_nodes_bycpu[cpu] = NULL;
7166 }
7167 }
7168 #else /* !CONFIG_NUMA */
7169 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7170 {
7171 }
7172 #endif /* CONFIG_NUMA */
7173
7174 /*
7175 * Initialize sched groups cpu_power.
7176 *
7177 * cpu_power indicates the capacity of sched group, which is used while
7178 * distributing the load between different sched groups in a sched domain.
7179 * Typically cpu_power for all the groups in a sched domain will be same unless
7180 * there are asymmetries in the topology. If there are asymmetries, group
7181 * having more cpu_power will pickup more load compared to the group having
7182 * less cpu_power.
7183 *
7184 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7185 * the maximum number of tasks a group can handle in the presence of other idle
7186 * or lightly loaded groups in the same sched domain.
7187 */
7188 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7189 {
7190 struct sched_domain *child;
7191 struct sched_group *group;
7192
7193 WARN_ON(!sd || !sd->groups);
7194
7195 if (cpu != first_cpu(sd->groups->cpumask))
7196 return;
7197
7198 child = sd->child;
7199
7200 sd->groups->__cpu_power = 0;
7201
7202 /*
7203 * For perf policy, if the groups in child domain share resources
7204 * (for example cores sharing some portions of the cache hierarchy
7205 * or SMT), then set this domain groups cpu_power such that each group
7206 * can handle only one task, when there are other idle groups in the
7207 * same sched domain.
7208 */
7209 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7210 (child->flags &
7211 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7212 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7213 return;
7214 }
7215
7216 /*
7217 * add cpu_power of each child group to this groups cpu_power
7218 */
7219 group = child->groups;
7220 do {
7221 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7222 group = group->next;
7223 } while (group != child->groups);
7224 }
7225
7226 /*
7227 * Initializers for schedule domains
7228 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7229 */
7230
7231 #ifdef CONFIG_SCHED_DEBUG
7232 # define SD_INIT_NAME(sd, type) sd->name = #type
7233 #else
7234 # define SD_INIT_NAME(sd, type) do { } while (0)
7235 #endif
7236
7237 #define SD_INIT(sd, type) sd_init_##type(sd)
7238
7239 #define SD_INIT_FUNC(type) \
7240 static noinline void sd_init_##type(struct sched_domain *sd) \
7241 { \
7242 memset(sd, 0, sizeof(*sd)); \
7243 *sd = SD_##type##_INIT; \
7244 sd->level = SD_LV_##type; \
7245 SD_INIT_NAME(sd, type); \
7246 }
7247
7248 SD_INIT_FUNC(CPU)
7249 #ifdef CONFIG_NUMA
7250 SD_INIT_FUNC(ALLNODES)
7251 SD_INIT_FUNC(NODE)
7252 #endif
7253 #ifdef CONFIG_SCHED_SMT
7254 SD_INIT_FUNC(SIBLING)
7255 #endif
7256 #ifdef CONFIG_SCHED_MC
7257 SD_INIT_FUNC(MC)
7258 #endif
7259
7260 /*
7261 * To minimize stack usage kmalloc room for cpumasks and share the
7262 * space as the usage in build_sched_domains() dictates. Used only
7263 * if the amount of space is significant.
7264 */
7265 struct allmasks {
7266 cpumask_t tmpmask; /* make this one first */
7267 union {
7268 cpumask_t nodemask;
7269 cpumask_t this_sibling_map;
7270 cpumask_t this_core_map;
7271 };
7272 cpumask_t send_covered;
7273
7274 #ifdef CONFIG_NUMA
7275 cpumask_t domainspan;
7276 cpumask_t covered;
7277 cpumask_t notcovered;
7278 #endif
7279 };
7280
7281 #if NR_CPUS > 128
7282 #define SCHED_CPUMASK_ALLOC 1
7283 #define SCHED_CPUMASK_FREE(v) kfree(v)
7284 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7285 #else
7286 #define SCHED_CPUMASK_ALLOC 0
7287 #define SCHED_CPUMASK_FREE(v)
7288 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7289 #endif
7290
7291 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7292 ((unsigned long)(a) + offsetof(struct allmasks, v))
7293
7294 static int default_relax_domain_level = -1;
7295
7296 static int __init setup_relax_domain_level(char *str)
7297 {
7298 unsigned long val;
7299
7300 val = simple_strtoul(str, NULL, 0);
7301 if (val < SD_LV_MAX)
7302 default_relax_domain_level = val;
7303
7304 return 1;
7305 }
7306 __setup("relax_domain_level=", setup_relax_domain_level);
7307
7308 static void set_domain_attribute(struct sched_domain *sd,
7309 struct sched_domain_attr *attr)
7310 {
7311 int request;
7312
7313 if (!attr || attr->relax_domain_level < 0) {
7314 if (default_relax_domain_level < 0)
7315 return;
7316 else
7317 request = default_relax_domain_level;
7318 } else
7319 request = attr->relax_domain_level;
7320 if (request < sd->level) {
7321 /* turn off idle balance on this domain */
7322 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7323 } else {
7324 /* turn on idle balance on this domain */
7325 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7326 }
7327 }
7328
7329 /*
7330 * Build sched domains for a given set of cpus and attach the sched domains
7331 * to the individual cpus
7332 */
7333 static int __build_sched_domains(const cpumask_t *cpu_map,
7334 struct sched_domain_attr *attr)
7335 {
7336 int i;
7337 struct root_domain *rd;
7338 SCHED_CPUMASK_DECLARE(allmasks);
7339 cpumask_t *tmpmask;
7340 #ifdef CONFIG_NUMA
7341 struct sched_group **sched_group_nodes = NULL;
7342 int sd_allnodes = 0;
7343
7344 /*
7345 * Allocate the per-node list of sched groups
7346 */
7347 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7348 GFP_KERNEL);
7349 if (!sched_group_nodes) {
7350 printk(KERN_WARNING "Can not alloc sched group node list\n");
7351 return -ENOMEM;
7352 }
7353 #endif
7354
7355 rd = alloc_rootdomain();
7356 if (!rd) {
7357 printk(KERN_WARNING "Cannot alloc root domain\n");
7358 #ifdef CONFIG_NUMA
7359 kfree(sched_group_nodes);
7360 #endif
7361 return -ENOMEM;
7362 }
7363
7364 #if SCHED_CPUMASK_ALLOC
7365 /* get space for all scratch cpumask variables */
7366 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7367 if (!allmasks) {
7368 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7369 kfree(rd);
7370 #ifdef CONFIG_NUMA
7371 kfree(sched_group_nodes);
7372 #endif
7373 return -ENOMEM;
7374 }
7375 #endif
7376 tmpmask = (cpumask_t *)allmasks;
7377
7378
7379 #ifdef CONFIG_NUMA
7380 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7381 #endif
7382
7383 /*
7384 * Set up domains for cpus specified by the cpu_map.
7385 */
7386 for_each_cpu_mask_nr(i, *cpu_map) {
7387 struct sched_domain *sd = NULL, *p;
7388 SCHED_CPUMASK_VAR(nodemask, allmasks);
7389
7390 *nodemask = node_to_cpumask(cpu_to_node(i));
7391 cpus_and(*nodemask, *nodemask, *cpu_map);
7392
7393 #ifdef CONFIG_NUMA
7394 if (cpus_weight(*cpu_map) >
7395 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7396 sd = &per_cpu(allnodes_domains, i);
7397 SD_INIT(sd, ALLNODES);
7398 set_domain_attribute(sd, attr);
7399 sd->span = *cpu_map;
7400 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7401 p = sd;
7402 sd_allnodes = 1;
7403 } else
7404 p = NULL;
7405
7406 sd = &per_cpu(node_domains, i);
7407 SD_INIT(sd, NODE);
7408 set_domain_attribute(sd, attr);
7409 sched_domain_node_span(cpu_to_node(i), &sd->span);
7410 sd->parent = p;
7411 if (p)
7412 p->child = sd;
7413 cpus_and(sd->span, sd->span, *cpu_map);
7414 #endif
7415
7416 p = sd;
7417 sd = &per_cpu(phys_domains, i);
7418 SD_INIT(sd, CPU);
7419 set_domain_attribute(sd, attr);
7420 sd->span = *nodemask;
7421 sd->parent = p;
7422 if (p)
7423 p->child = sd;
7424 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7425
7426 #ifdef CONFIG_SCHED_MC
7427 p = sd;
7428 sd = &per_cpu(core_domains, i);
7429 SD_INIT(sd, MC);
7430 set_domain_attribute(sd, attr);
7431 sd->span = cpu_coregroup_map(i);
7432 cpus_and(sd->span, sd->span, *cpu_map);
7433 sd->parent = p;
7434 p->child = sd;
7435 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7436 #endif
7437
7438 #ifdef CONFIG_SCHED_SMT
7439 p = sd;
7440 sd = &per_cpu(cpu_domains, i);
7441 SD_INIT(sd, SIBLING);
7442 set_domain_attribute(sd, attr);
7443 sd->span = per_cpu(cpu_sibling_map, i);
7444 cpus_and(sd->span, sd->span, *cpu_map);
7445 sd->parent = p;
7446 p->child = sd;
7447 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7448 #endif
7449 }
7450
7451 #ifdef CONFIG_SCHED_SMT
7452 /* Set up CPU (sibling) groups */
7453 for_each_cpu_mask_nr(i, *cpu_map) {
7454 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7455 SCHED_CPUMASK_VAR(send_covered, allmasks);
7456
7457 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7458 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7459 if (i != first_cpu(*this_sibling_map))
7460 continue;
7461
7462 init_sched_build_groups(this_sibling_map, cpu_map,
7463 &cpu_to_cpu_group,
7464 send_covered, tmpmask);
7465 }
7466 #endif
7467
7468 #ifdef CONFIG_SCHED_MC
7469 /* Set up multi-core groups */
7470 for_each_cpu_mask_nr(i, *cpu_map) {
7471 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7472 SCHED_CPUMASK_VAR(send_covered, allmasks);
7473
7474 *this_core_map = cpu_coregroup_map(i);
7475 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7476 if (i != first_cpu(*this_core_map))
7477 continue;
7478
7479 init_sched_build_groups(this_core_map, cpu_map,
7480 &cpu_to_core_group,
7481 send_covered, tmpmask);
7482 }
7483 #endif
7484
7485 /* Set up physical groups */
7486 for (i = 0; i < nr_node_ids; i++) {
7487 SCHED_CPUMASK_VAR(nodemask, allmasks);
7488 SCHED_CPUMASK_VAR(send_covered, allmasks);
7489
7490 *nodemask = node_to_cpumask(i);
7491 cpus_and(*nodemask, *nodemask, *cpu_map);
7492 if (cpus_empty(*nodemask))
7493 continue;
7494
7495 init_sched_build_groups(nodemask, cpu_map,
7496 &cpu_to_phys_group,
7497 send_covered, tmpmask);
7498 }
7499
7500 #ifdef CONFIG_NUMA
7501 /* Set up node groups */
7502 if (sd_allnodes) {
7503 SCHED_CPUMASK_VAR(send_covered, allmasks);
7504
7505 init_sched_build_groups(cpu_map, cpu_map,
7506 &cpu_to_allnodes_group,
7507 send_covered, tmpmask);
7508 }
7509
7510 for (i = 0; i < nr_node_ids; i++) {
7511 /* Set up node groups */
7512 struct sched_group *sg, *prev;
7513 SCHED_CPUMASK_VAR(nodemask, allmasks);
7514 SCHED_CPUMASK_VAR(domainspan, allmasks);
7515 SCHED_CPUMASK_VAR(covered, allmasks);
7516 int j;
7517
7518 *nodemask = node_to_cpumask(i);
7519 cpus_clear(*covered);
7520
7521 cpus_and(*nodemask, *nodemask, *cpu_map);
7522 if (cpus_empty(*nodemask)) {
7523 sched_group_nodes[i] = NULL;
7524 continue;
7525 }
7526
7527 sched_domain_node_span(i, domainspan);
7528 cpus_and(*domainspan, *domainspan, *cpu_map);
7529
7530 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7531 if (!sg) {
7532 printk(KERN_WARNING "Can not alloc domain group for "
7533 "node %d\n", i);
7534 goto error;
7535 }
7536 sched_group_nodes[i] = sg;
7537 for_each_cpu_mask_nr(j, *nodemask) {
7538 struct sched_domain *sd;
7539
7540 sd = &per_cpu(node_domains, j);
7541 sd->groups = sg;
7542 }
7543 sg->__cpu_power = 0;
7544 sg->cpumask = *nodemask;
7545 sg->next = sg;
7546 cpus_or(*covered, *covered, *nodemask);
7547 prev = sg;
7548
7549 for (j = 0; j < nr_node_ids; j++) {
7550 SCHED_CPUMASK_VAR(notcovered, allmasks);
7551 int n = (i + j) % nr_node_ids;
7552 node_to_cpumask_ptr(pnodemask, n);
7553
7554 cpus_complement(*notcovered, *covered);
7555 cpus_and(*tmpmask, *notcovered, *cpu_map);
7556 cpus_and(*tmpmask, *tmpmask, *domainspan);
7557 if (cpus_empty(*tmpmask))
7558 break;
7559
7560 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7561 if (cpus_empty(*tmpmask))
7562 continue;
7563
7564 sg = kmalloc_node(sizeof(struct sched_group),
7565 GFP_KERNEL, i);
7566 if (!sg) {
7567 printk(KERN_WARNING
7568 "Can not alloc domain group for node %d\n", j);
7569 goto error;
7570 }
7571 sg->__cpu_power = 0;
7572 sg->cpumask = *tmpmask;
7573 sg->next = prev->next;
7574 cpus_or(*covered, *covered, *tmpmask);
7575 prev->next = sg;
7576 prev = sg;
7577 }
7578 }
7579 #endif
7580
7581 /* Calculate CPU power for physical packages and nodes */
7582 #ifdef CONFIG_SCHED_SMT
7583 for_each_cpu_mask_nr(i, *cpu_map) {
7584 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7585
7586 init_sched_groups_power(i, sd);
7587 }
7588 #endif
7589 #ifdef CONFIG_SCHED_MC
7590 for_each_cpu_mask_nr(i, *cpu_map) {
7591 struct sched_domain *sd = &per_cpu(core_domains, i);
7592
7593 init_sched_groups_power(i, sd);
7594 }
7595 #endif
7596
7597 for_each_cpu_mask_nr(i, *cpu_map) {
7598 struct sched_domain *sd = &per_cpu(phys_domains, i);
7599
7600 init_sched_groups_power(i, sd);
7601 }
7602
7603 #ifdef CONFIG_NUMA
7604 for (i = 0; i < nr_node_ids; i++)
7605 init_numa_sched_groups_power(sched_group_nodes[i]);
7606
7607 if (sd_allnodes) {
7608 struct sched_group *sg;
7609
7610 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7611 tmpmask);
7612 init_numa_sched_groups_power(sg);
7613 }
7614 #endif
7615
7616 /* Attach the domains */
7617 for_each_cpu_mask_nr(i, *cpu_map) {
7618 struct sched_domain *sd;
7619 #ifdef CONFIG_SCHED_SMT
7620 sd = &per_cpu(cpu_domains, i);
7621 #elif defined(CONFIG_SCHED_MC)
7622 sd = &per_cpu(core_domains, i);
7623 #else
7624 sd = &per_cpu(phys_domains, i);
7625 #endif
7626 cpu_attach_domain(sd, rd, i);
7627 }
7628
7629 SCHED_CPUMASK_FREE((void *)allmasks);
7630 return 0;
7631
7632 #ifdef CONFIG_NUMA
7633 error:
7634 free_sched_groups(cpu_map, tmpmask);
7635 SCHED_CPUMASK_FREE((void *)allmasks);
7636 kfree(rd);
7637 return -ENOMEM;
7638 #endif
7639 }
7640
7641 static int build_sched_domains(const cpumask_t *cpu_map)
7642 {
7643 return __build_sched_domains(cpu_map, NULL);
7644 }
7645
7646 static cpumask_t *doms_cur; /* current sched domains */
7647 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7648 static struct sched_domain_attr *dattr_cur;
7649 /* attribues of custom domains in 'doms_cur' */
7650
7651 /*
7652 * Special case: If a kmalloc of a doms_cur partition (array of
7653 * cpumask_t) fails, then fallback to a single sched domain,
7654 * as determined by the single cpumask_t fallback_doms.
7655 */
7656 static cpumask_t fallback_doms;
7657
7658 void __attribute__((weak)) arch_update_cpu_topology(void)
7659 {
7660 }
7661
7662 /*
7663 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7664 * For now this just excludes isolated cpus, but could be used to
7665 * exclude other special cases in the future.
7666 */
7667 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7668 {
7669 int err;
7670
7671 arch_update_cpu_topology();
7672 ndoms_cur = 1;
7673 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7674 if (!doms_cur)
7675 doms_cur = &fallback_doms;
7676 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7677 dattr_cur = NULL;
7678 err = build_sched_domains(doms_cur);
7679 register_sched_domain_sysctl();
7680
7681 return err;
7682 }
7683
7684 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7685 cpumask_t *tmpmask)
7686 {
7687 free_sched_groups(cpu_map, tmpmask);
7688 }
7689
7690 /*
7691 * Detach sched domains from a group of cpus specified in cpu_map
7692 * These cpus will now be attached to the NULL domain
7693 */
7694 static void detach_destroy_domains(const cpumask_t *cpu_map)
7695 {
7696 cpumask_t tmpmask;
7697 int i;
7698
7699 for_each_cpu_mask_nr(i, *cpu_map)
7700 cpu_attach_domain(NULL, &def_root_domain, i);
7701 synchronize_sched();
7702 arch_destroy_sched_domains(cpu_map, &tmpmask);
7703 }
7704
7705 /* handle null as "default" */
7706 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7707 struct sched_domain_attr *new, int idx_new)
7708 {
7709 struct sched_domain_attr tmp;
7710
7711 /* fast path */
7712 if (!new && !cur)
7713 return 1;
7714
7715 tmp = SD_ATTR_INIT;
7716 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7717 new ? (new + idx_new) : &tmp,
7718 sizeof(struct sched_domain_attr));
7719 }
7720
7721 /*
7722 * Partition sched domains as specified by the 'ndoms_new'
7723 * cpumasks in the array doms_new[] of cpumasks. This compares
7724 * doms_new[] to the current sched domain partitioning, doms_cur[].
7725 * It destroys each deleted domain and builds each new domain.
7726 *
7727 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7728 * The masks don't intersect (don't overlap.) We should setup one
7729 * sched domain for each mask. CPUs not in any of the cpumasks will
7730 * not be load balanced. If the same cpumask appears both in the
7731 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7732 * it as it is.
7733 *
7734 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7735 * ownership of it and will kfree it when done with it. If the caller
7736 * failed the kmalloc call, then it can pass in doms_new == NULL,
7737 * and partition_sched_domains() will fallback to the single partition
7738 * 'fallback_doms', it also forces the domains to be rebuilt.
7739 *
7740 * If doms_new==NULL it will be replaced with cpu_online_map.
7741 * ndoms_new==0 is a special case for destroying existing domains.
7742 * It will not create the default domain.
7743 *
7744 * Call with hotplug lock held
7745 */
7746 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7747 struct sched_domain_attr *dattr_new)
7748 {
7749 int i, j, n;
7750
7751 mutex_lock(&sched_domains_mutex);
7752
7753 /* always unregister in case we don't destroy any domains */
7754 unregister_sched_domain_sysctl();
7755
7756 n = doms_new ? ndoms_new : 0;
7757
7758 /* Destroy deleted domains */
7759 for (i = 0; i < ndoms_cur; i++) {
7760 for (j = 0; j < n; j++) {
7761 if (cpus_equal(doms_cur[i], doms_new[j])
7762 && dattrs_equal(dattr_cur, i, dattr_new, j))
7763 goto match1;
7764 }
7765 /* no match - a current sched domain not in new doms_new[] */
7766 detach_destroy_domains(doms_cur + i);
7767 match1:
7768 ;
7769 }
7770
7771 if (doms_new == NULL) {
7772 ndoms_cur = 0;
7773 doms_new = &fallback_doms;
7774 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7775 WARN_ON_ONCE(dattr_new);
7776 }
7777
7778 /* Build new domains */
7779 for (i = 0; i < ndoms_new; i++) {
7780 for (j = 0; j < ndoms_cur; j++) {
7781 if (cpus_equal(doms_new[i], doms_cur[j])
7782 && dattrs_equal(dattr_new, i, dattr_cur, j))
7783 goto match2;
7784 }
7785 /* no match - add a new doms_new */
7786 __build_sched_domains(doms_new + i,
7787 dattr_new ? dattr_new + i : NULL);
7788 match2:
7789 ;
7790 }
7791
7792 /* Remember the new sched domains */
7793 if (doms_cur != &fallback_doms)
7794 kfree(doms_cur);
7795 kfree(dattr_cur); /* kfree(NULL) is safe */
7796 doms_cur = doms_new;
7797 dattr_cur = dattr_new;
7798 ndoms_cur = ndoms_new;
7799
7800 register_sched_domain_sysctl();
7801
7802 mutex_unlock(&sched_domains_mutex);
7803 }
7804
7805 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7806 int arch_reinit_sched_domains(void)
7807 {
7808 get_online_cpus();
7809
7810 /* Destroy domains first to force the rebuild */
7811 partition_sched_domains(0, NULL, NULL);
7812
7813 rebuild_sched_domains();
7814 put_online_cpus();
7815
7816 return 0;
7817 }
7818
7819 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7820 {
7821 int ret;
7822
7823 if (buf[0] != '0' && buf[0] != '1')
7824 return -EINVAL;
7825
7826 if (smt)
7827 sched_smt_power_savings = (buf[0] == '1');
7828 else
7829 sched_mc_power_savings = (buf[0] == '1');
7830
7831 ret = arch_reinit_sched_domains();
7832
7833 return ret ? ret : count;
7834 }
7835
7836 #ifdef CONFIG_SCHED_MC
7837 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7838 char *page)
7839 {
7840 return sprintf(page, "%u\n", sched_mc_power_savings);
7841 }
7842 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7843 const char *buf, size_t count)
7844 {
7845 return sched_power_savings_store(buf, count, 0);
7846 }
7847 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7848 sched_mc_power_savings_show,
7849 sched_mc_power_savings_store);
7850 #endif
7851
7852 #ifdef CONFIG_SCHED_SMT
7853 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7854 char *page)
7855 {
7856 return sprintf(page, "%u\n", sched_smt_power_savings);
7857 }
7858 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7859 const char *buf, size_t count)
7860 {
7861 return sched_power_savings_store(buf, count, 1);
7862 }
7863 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7864 sched_smt_power_savings_show,
7865 sched_smt_power_savings_store);
7866 #endif
7867
7868 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7869 {
7870 int err = 0;
7871
7872 #ifdef CONFIG_SCHED_SMT
7873 if (smt_capable())
7874 err = sysfs_create_file(&cls->kset.kobj,
7875 &attr_sched_smt_power_savings.attr);
7876 #endif
7877 #ifdef CONFIG_SCHED_MC
7878 if (!err && mc_capable())
7879 err = sysfs_create_file(&cls->kset.kobj,
7880 &attr_sched_mc_power_savings.attr);
7881 #endif
7882 return err;
7883 }
7884 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7885
7886 #ifndef CONFIG_CPUSETS
7887 /*
7888 * Add online and remove offline CPUs from the scheduler domains.
7889 * When cpusets are enabled they take over this function.
7890 */
7891 static int update_sched_domains(struct notifier_block *nfb,
7892 unsigned long action, void *hcpu)
7893 {
7894 switch (action) {
7895 case CPU_ONLINE:
7896 case CPU_ONLINE_FROZEN:
7897 case CPU_DEAD:
7898 case CPU_DEAD_FROZEN:
7899 partition_sched_domains(1, NULL, NULL);
7900 return NOTIFY_OK;
7901
7902 default:
7903 return NOTIFY_DONE;
7904 }
7905 }
7906 #endif
7907
7908 static int update_runtime(struct notifier_block *nfb,
7909 unsigned long action, void *hcpu)
7910 {
7911 int cpu = (int)(long)hcpu;
7912
7913 switch (action) {
7914 case CPU_DOWN_PREPARE:
7915 case CPU_DOWN_PREPARE_FROZEN:
7916 disable_runtime(cpu_rq(cpu));
7917 return NOTIFY_OK;
7918
7919 case CPU_DOWN_FAILED:
7920 case CPU_DOWN_FAILED_FROZEN:
7921 case CPU_ONLINE:
7922 case CPU_ONLINE_FROZEN:
7923 enable_runtime(cpu_rq(cpu));
7924 return NOTIFY_OK;
7925
7926 default:
7927 return NOTIFY_DONE;
7928 }
7929 }
7930
7931 void __init sched_init_smp(void)
7932 {
7933 cpumask_t non_isolated_cpus;
7934
7935 #if defined(CONFIG_NUMA)
7936 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7937 GFP_KERNEL);
7938 BUG_ON(sched_group_nodes_bycpu == NULL);
7939 #endif
7940 get_online_cpus();
7941 mutex_lock(&sched_domains_mutex);
7942 arch_init_sched_domains(&cpu_online_map);
7943 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7944 if (cpus_empty(non_isolated_cpus))
7945 cpu_set(smp_processor_id(), non_isolated_cpus);
7946 mutex_unlock(&sched_domains_mutex);
7947 put_online_cpus();
7948
7949 #ifndef CONFIG_CPUSETS
7950 /* XXX: Theoretical race here - CPU may be hotplugged now */
7951 hotcpu_notifier(update_sched_domains, 0);
7952 #endif
7953
7954 /* RT runtime code needs to handle some hotplug events */
7955 hotcpu_notifier(update_runtime, 0);
7956
7957 init_hrtick();
7958
7959 /* Move init over to a non-isolated CPU */
7960 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7961 BUG();
7962 sched_init_granularity();
7963 }
7964 #else
7965 void __init sched_init_smp(void)
7966 {
7967 sched_init_granularity();
7968 }
7969 #endif /* CONFIG_SMP */
7970
7971 int in_sched_functions(unsigned long addr)
7972 {
7973 return in_lock_functions(addr) ||
7974 (addr >= (unsigned long)__sched_text_start
7975 && addr < (unsigned long)__sched_text_end);
7976 }
7977
7978 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7979 {
7980 cfs_rq->tasks_timeline = RB_ROOT;
7981 INIT_LIST_HEAD(&cfs_rq->tasks);
7982 #ifdef CONFIG_FAIR_GROUP_SCHED
7983 cfs_rq->rq = rq;
7984 #endif
7985 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7986 }
7987
7988 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7989 {
7990 struct rt_prio_array *array;
7991 int i;
7992
7993 array = &rt_rq->active;
7994 for (i = 0; i < MAX_RT_PRIO; i++) {
7995 INIT_LIST_HEAD(array->queue + i);
7996 __clear_bit(i, array->bitmap);
7997 }
7998 /* delimiter for bitsearch: */
7999 __set_bit(MAX_RT_PRIO, array->bitmap);
8000
8001 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8002 rt_rq->highest_prio = MAX_RT_PRIO;
8003 #endif
8004 #ifdef CONFIG_SMP
8005 rt_rq->rt_nr_migratory = 0;
8006 rt_rq->overloaded = 0;
8007 #endif
8008
8009 rt_rq->rt_time = 0;
8010 rt_rq->rt_throttled = 0;
8011 rt_rq->rt_runtime = 0;
8012 spin_lock_init(&rt_rq->rt_runtime_lock);
8013
8014 #ifdef CONFIG_RT_GROUP_SCHED
8015 rt_rq->rt_nr_boosted = 0;
8016 rt_rq->rq = rq;
8017 #endif
8018 }
8019
8020 #ifdef CONFIG_FAIR_GROUP_SCHED
8021 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8022 struct sched_entity *se, int cpu, int add,
8023 struct sched_entity *parent)
8024 {
8025 struct rq *rq = cpu_rq(cpu);
8026 tg->cfs_rq[cpu] = cfs_rq;
8027 init_cfs_rq(cfs_rq, rq);
8028 cfs_rq->tg = tg;
8029 if (add)
8030 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8031
8032 tg->se[cpu] = se;
8033 /* se could be NULL for init_task_group */
8034 if (!se)
8035 return;
8036
8037 if (!parent)
8038 se->cfs_rq = &rq->cfs;
8039 else
8040 se->cfs_rq = parent->my_q;
8041
8042 se->my_q = cfs_rq;
8043 se->load.weight = tg->shares;
8044 se->load.inv_weight = 0;
8045 se->parent = parent;
8046 }
8047 #endif
8048
8049 #ifdef CONFIG_RT_GROUP_SCHED
8050 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8051 struct sched_rt_entity *rt_se, int cpu, int add,
8052 struct sched_rt_entity *parent)
8053 {
8054 struct rq *rq = cpu_rq(cpu);
8055
8056 tg->rt_rq[cpu] = rt_rq;
8057 init_rt_rq(rt_rq, rq);
8058 rt_rq->tg = tg;
8059 rt_rq->rt_se = rt_se;
8060 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8061 if (add)
8062 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8063
8064 tg->rt_se[cpu] = rt_se;
8065 if (!rt_se)
8066 return;
8067
8068 if (!parent)
8069 rt_se->rt_rq = &rq->rt;
8070 else
8071 rt_se->rt_rq = parent->my_q;
8072
8073 rt_se->my_q = rt_rq;
8074 rt_se->parent = parent;
8075 INIT_LIST_HEAD(&rt_se->run_list);
8076 }
8077 #endif
8078
8079 void __init sched_init(void)
8080 {
8081 int i, j;
8082 unsigned long alloc_size = 0, ptr;
8083
8084 #ifdef CONFIG_FAIR_GROUP_SCHED
8085 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8086 #endif
8087 #ifdef CONFIG_RT_GROUP_SCHED
8088 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8089 #endif
8090 #ifdef CONFIG_USER_SCHED
8091 alloc_size *= 2;
8092 #endif
8093 /*
8094 * As sched_init() is called before page_alloc is setup,
8095 * we use alloc_bootmem().
8096 */
8097 if (alloc_size) {
8098 ptr = (unsigned long)alloc_bootmem(alloc_size);
8099
8100 #ifdef CONFIG_FAIR_GROUP_SCHED
8101 init_task_group.se = (struct sched_entity **)ptr;
8102 ptr += nr_cpu_ids * sizeof(void **);
8103
8104 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8105 ptr += nr_cpu_ids * sizeof(void **);
8106
8107 #ifdef CONFIG_USER_SCHED
8108 root_task_group.se = (struct sched_entity **)ptr;
8109 ptr += nr_cpu_ids * sizeof(void **);
8110
8111 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8112 ptr += nr_cpu_ids * sizeof(void **);
8113 #endif /* CONFIG_USER_SCHED */
8114 #endif /* CONFIG_FAIR_GROUP_SCHED */
8115 #ifdef CONFIG_RT_GROUP_SCHED
8116 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8117 ptr += nr_cpu_ids * sizeof(void **);
8118
8119 init_task_group.rt_rq = (struct rt_rq **)ptr;
8120 ptr += nr_cpu_ids * sizeof(void **);
8121
8122 #ifdef CONFIG_USER_SCHED
8123 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8124 ptr += nr_cpu_ids * sizeof(void **);
8125
8126 root_task_group.rt_rq = (struct rt_rq **)ptr;
8127 ptr += nr_cpu_ids * sizeof(void **);
8128 #endif /* CONFIG_USER_SCHED */
8129 #endif /* CONFIG_RT_GROUP_SCHED */
8130 }
8131
8132 #ifdef CONFIG_SMP
8133 init_defrootdomain();
8134 #endif
8135
8136 init_rt_bandwidth(&def_rt_bandwidth,
8137 global_rt_period(), global_rt_runtime());
8138
8139 #ifdef CONFIG_RT_GROUP_SCHED
8140 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8141 global_rt_period(), global_rt_runtime());
8142 #ifdef CONFIG_USER_SCHED
8143 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8144 global_rt_period(), RUNTIME_INF);
8145 #endif /* CONFIG_USER_SCHED */
8146 #endif /* CONFIG_RT_GROUP_SCHED */
8147
8148 #ifdef CONFIG_GROUP_SCHED
8149 list_add(&init_task_group.list, &task_groups);
8150 INIT_LIST_HEAD(&init_task_group.children);
8151
8152 #ifdef CONFIG_USER_SCHED
8153 INIT_LIST_HEAD(&root_task_group.children);
8154 init_task_group.parent = &root_task_group;
8155 list_add(&init_task_group.siblings, &root_task_group.children);
8156 #endif /* CONFIG_USER_SCHED */
8157 #endif /* CONFIG_GROUP_SCHED */
8158
8159 for_each_possible_cpu(i) {
8160 struct rq *rq;
8161
8162 rq = cpu_rq(i);
8163 spin_lock_init(&rq->lock);
8164 rq->nr_running = 0;
8165 init_cfs_rq(&rq->cfs, rq);
8166 init_rt_rq(&rq->rt, rq);
8167 #ifdef CONFIG_FAIR_GROUP_SCHED
8168 init_task_group.shares = init_task_group_load;
8169 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8170 #ifdef CONFIG_CGROUP_SCHED
8171 /*
8172 * How much cpu bandwidth does init_task_group get?
8173 *
8174 * In case of task-groups formed thr' the cgroup filesystem, it
8175 * gets 100% of the cpu resources in the system. This overall
8176 * system cpu resource is divided among the tasks of
8177 * init_task_group and its child task-groups in a fair manner,
8178 * based on each entity's (task or task-group's) weight
8179 * (se->load.weight).
8180 *
8181 * In other words, if init_task_group has 10 tasks of weight
8182 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8183 * then A0's share of the cpu resource is:
8184 *
8185 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8186 *
8187 * We achieve this by letting init_task_group's tasks sit
8188 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8189 */
8190 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8191 #elif defined CONFIG_USER_SCHED
8192 root_task_group.shares = NICE_0_LOAD;
8193 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8194 /*
8195 * In case of task-groups formed thr' the user id of tasks,
8196 * init_task_group represents tasks belonging to root user.
8197 * Hence it forms a sibling of all subsequent groups formed.
8198 * In this case, init_task_group gets only a fraction of overall
8199 * system cpu resource, based on the weight assigned to root
8200 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8201 * by letting tasks of init_task_group sit in a separate cfs_rq
8202 * (init_cfs_rq) and having one entity represent this group of
8203 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8204 */
8205 init_tg_cfs_entry(&init_task_group,
8206 &per_cpu(init_cfs_rq, i),
8207 &per_cpu(init_sched_entity, i), i, 1,
8208 root_task_group.se[i]);
8209
8210 #endif
8211 #endif /* CONFIG_FAIR_GROUP_SCHED */
8212
8213 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8214 #ifdef CONFIG_RT_GROUP_SCHED
8215 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8216 #ifdef CONFIG_CGROUP_SCHED
8217 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8218 #elif defined CONFIG_USER_SCHED
8219 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8220 init_tg_rt_entry(&init_task_group,
8221 &per_cpu(init_rt_rq, i),
8222 &per_cpu(init_sched_rt_entity, i), i, 1,
8223 root_task_group.rt_se[i]);
8224 #endif
8225 #endif
8226
8227 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8228 rq->cpu_load[j] = 0;
8229 #ifdef CONFIG_SMP
8230 rq->sd = NULL;
8231 rq->rd = NULL;
8232 rq->active_balance = 0;
8233 rq->next_balance = jiffies;
8234 rq->push_cpu = 0;
8235 rq->cpu = i;
8236 rq->online = 0;
8237 rq->migration_thread = NULL;
8238 INIT_LIST_HEAD(&rq->migration_queue);
8239 rq_attach_root(rq, &def_root_domain);
8240 #endif
8241 init_rq_hrtick(rq);
8242 atomic_set(&rq->nr_iowait, 0);
8243 }
8244
8245 set_load_weight(&init_task);
8246
8247 #ifdef CONFIG_PREEMPT_NOTIFIERS
8248 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8249 #endif
8250
8251 #ifdef CONFIG_SMP
8252 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8253 #endif
8254
8255 #ifdef CONFIG_RT_MUTEXES
8256 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8257 #endif
8258
8259 /*
8260 * The boot idle thread does lazy MMU switching as well:
8261 */
8262 atomic_inc(&init_mm.mm_count);
8263 enter_lazy_tlb(&init_mm, current);
8264
8265 /*
8266 * Make us the idle thread. Technically, schedule() should not be
8267 * called from this thread, however somewhere below it might be,
8268 * but because we are the idle thread, we just pick up running again
8269 * when this runqueue becomes "idle".
8270 */
8271 init_idle(current, smp_processor_id());
8272 /*
8273 * During early bootup we pretend to be a normal task:
8274 */
8275 current->sched_class = &fair_sched_class;
8276
8277 scheduler_running = 1;
8278 }
8279
8280 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8281 void __might_sleep(char *file, int line)
8282 {
8283 #ifdef in_atomic
8284 static unsigned long prev_jiffy; /* ratelimiting */
8285
8286 if ((!in_atomic() && !irqs_disabled()) ||
8287 system_state != SYSTEM_RUNNING || oops_in_progress)
8288 return;
8289 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8290 return;
8291 prev_jiffy = jiffies;
8292
8293 printk(KERN_ERR
8294 "BUG: sleeping function called from invalid context at %s:%d\n",
8295 file, line);
8296 printk(KERN_ERR
8297 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8298 in_atomic(), irqs_disabled(),
8299 current->pid, current->comm);
8300
8301 debug_show_held_locks(current);
8302 if (irqs_disabled())
8303 print_irqtrace_events(current);
8304 dump_stack();
8305 #endif
8306 }
8307 EXPORT_SYMBOL(__might_sleep);
8308 #endif
8309
8310 #ifdef CONFIG_MAGIC_SYSRQ
8311 static void normalize_task(struct rq *rq, struct task_struct *p)
8312 {
8313 int on_rq;
8314
8315 update_rq_clock(rq);
8316 on_rq = p->se.on_rq;
8317 if (on_rq)
8318 deactivate_task(rq, p, 0);
8319 __setscheduler(rq, p, SCHED_NORMAL, 0);
8320 if (on_rq) {
8321 activate_task(rq, p, 0);
8322 resched_task(rq->curr);
8323 }
8324 }
8325
8326 void normalize_rt_tasks(void)
8327 {
8328 struct task_struct *g, *p;
8329 unsigned long flags;
8330 struct rq *rq;
8331
8332 read_lock_irqsave(&tasklist_lock, flags);
8333 do_each_thread(g, p) {
8334 /*
8335 * Only normalize user tasks:
8336 */
8337 if (!p->mm)
8338 continue;
8339
8340 p->se.exec_start = 0;
8341 #ifdef CONFIG_SCHEDSTATS
8342 p->se.wait_start = 0;
8343 p->se.sleep_start = 0;
8344 p->se.block_start = 0;
8345 #endif
8346
8347 if (!rt_task(p)) {
8348 /*
8349 * Renice negative nice level userspace
8350 * tasks back to 0:
8351 */
8352 if (TASK_NICE(p) < 0 && p->mm)
8353 set_user_nice(p, 0);
8354 continue;
8355 }
8356
8357 spin_lock(&p->pi_lock);
8358 rq = __task_rq_lock(p);
8359
8360 normalize_task(rq, p);
8361
8362 __task_rq_unlock(rq);
8363 spin_unlock(&p->pi_lock);
8364 } while_each_thread(g, p);
8365
8366 read_unlock_irqrestore(&tasklist_lock, flags);
8367 }
8368
8369 #endif /* CONFIG_MAGIC_SYSRQ */
8370
8371 #ifdef CONFIG_IA64
8372 /*
8373 * These functions are only useful for the IA64 MCA handling.
8374 *
8375 * They can only be called when the whole system has been
8376 * stopped - every CPU needs to be quiescent, and no scheduling
8377 * activity can take place. Using them for anything else would
8378 * be a serious bug, and as a result, they aren't even visible
8379 * under any other configuration.
8380 */
8381
8382 /**
8383 * curr_task - return the current task for a given cpu.
8384 * @cpu: the processor in question.
8385 *
8386 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8387 */
8388 struct task_struct *curr_task(int cpu)
8389 {
8390 return cpu_curr(cpu);
8391 }
8392
8393 /**
8394 * set_curr_task - set the current task for a given cpu.
8395 * @cpu: the processor in question.
8396 * @p: the task pointer to set.
8397 *
8398 * Description: This function must only be used when non-maskable interrupts
8399 * are serviced on a separate stack. It allows the architecture to switch the
8400 * notion of the current task on a cpu in a non-blocking manner. This function
8401 * must be called with all CPU's synchronized, and interrupts disabled, the
8402 * and caller must save the original value of the current task (see
8403 * curr_task() above) and restore that value before reenabling interrupts and
8404 * re-starting the system.
8405 *
8406 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8407 */
8408 void set_curr_task(int cpu, struct task_struct *p)
8409 {
8410 cpu_curr(cpu) = p;
8411 }
8412
8413 #endif
8414
8415 #ifdef CONFIG_FAIR_GROUP_SCHED
8416 static void free_fair_sched_group(struct task_group *tg)
8417 {
8418 int i;
8419
8420 for_each_possible_cpu(i) {
8421 if (tg->cfs_rq)
8422 kfree(tg->cfs_rq[i]);
8423 if (tg->se)
8424 kfree(tg->se[i]);
8425 }
8426
8427 kfree(tg->cfs_rq);
8428 kfree(tg->se);
8429 }
8430
8431 static
8432 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8433 {
8434 struct cfs_rq *cfs_rq;
8435 struct sched_entity *se;
8436 struct rq *rq;
8437 int i;
8438
8439 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8440 if (!tg->cfs_rq)
8441 goto err;
8442 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8443 if (!tg->se)
8444 goto err;
8445
8446 tg->shares = NICE_0_LOAD;
8447
8448 for_each_possible_cpu(i) {
8449 rq = cpu_rq(i);
8450
8451 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8452 GFP_KERNEL, cpu_to_node(i));
8453 if (!cfs_rq)
8454 goto err;
8455
8456 se = kzalloc_node(sizeof(struct sched_entity),
8457 GFP_KERNEL, cpu_to_node(i));
8458 if (!se)
8459 goto err;
8460
8461 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8462 }
8463
8464 return 1;
8465
8466 err:
8467 return 0;
8468 }
8469
8470 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8471 {
8472 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8473 &cpu_rq(cpu)->leaf_cfs_rq_list);
8474 }
8475
8476 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8477 {
8478 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8479 }
8480 #else /* !CONFG_FAIR_GROUP_SCHED */
8481 static inline void free_fair_sched_group(struct task_group *tg)
8482 {
8483 }
8484
8485 static inline
8486 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8487 {
8488 return 1;
8489 }
8490
8491 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8492 {
8493 }
8494
8495 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8496 {
8497 }
8498 #endif /* CONFIG_FAIR_GROUP_SCHED */
8499
8500 #ifdef CONFIG_RT_GROUP_SCHED
8501 static void free_rt_sched_group(struct task_group *tg)
8502 {
8503 int i;
8504
8505 destroy_rt_bandwidth(&tg->rt_bandwidth);
8506
8507 for_each_possible_cpu(i) {
8508 if (tg->rt_rq)
8509 kfree(tg->rt_rq[i]);
8510 if (tg->rt_se)
8511 kfree(tg->rt_se[i]);
8512 }
8513
8514 kfree(tg->rt_rq);
8515 kfree(tg->rt_se);
8516 }
8517
8518 static
8519 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8520 {
8521 struct rt_rq *rt_rq;
8522 struct sched_rt_entity *rt_se;
8523 struct rq *rq;
8524 int i;
8525
8526 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8527 if (!tg->rt_rq)
8528 goto err;
8529 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8530 if (!tg->rt_se)
8531 goto err;
8532
8533 init_rt_bandwidth(&tg->rt_bandwidth,
8534 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8535
8536 for_each_possible_cpu(i) {
8537 rq = cpu_rq(i);
8538
8539 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8540 GFP_KERNEL, cpu_to_node(i));
8541 if (!rt_rq)
8542 goto err;
8543
8544 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8545 GFP_KERNEL, cpu_to_node(i));
8546 if (!rt_se)
8547 goto err;
8548
8549 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8550 }
8551
8552 return 1;
8553
8554 err:
8555 return 0;
8556 }
8557
8558 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8559 {
8560 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8561 &cpu_rq(cpu)->leaf_rt_rq_list);
8562 }
8563
8564 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8565 {
8566 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8567 }
8568 #else /* !CONFIG_RT_GROUP_SCHED */
8569 static inline void free_rt_sched_group(struct task_group *tg)
8570 {
8571 }
8572
8573 static inline
8574 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8575 {
8576 return 1;
8577 }
8578
8579 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8580 {
8581 }
8582
8583 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8584 {
8585 }
8586 #endif /* CONFIG_RT_GROUP_SCHED */
8587
8588 #ifdef CONFIG_GROUP_SCHED
8589 static void free_sched_group(struct task_group *tg)
8590 {
8591 free_fair_sched_group(tg);
8592 free_rt_sched_group(tg);
8593 kfree(tg);
8594 }
8595
8596 /* allocate runqueue etc for a new task group */
8597 struct task_group *sched_create_group(struct task_group *parent)
8598 {
8599 struct task_group *tg;
8600 unsigned long flags;
8601 int i;
8602
8603 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8604 if (!tg)
8605 return ERR_PTR(-ENOMEM);
8606
8607 if (!alloc_fair_sched_group(tg, parent))
8608 goto err;
8609
8610 if (!alloc_rt_sched_group(tg, parent))
8611 goto err;
8612
8613 spin_lock_irqsave(&task_group_lock, flags);
8614 for_each_possible_cpu(i) {
8615 register_fair_sched_group(tg, i);
8616 register_rt_sched_group(tg, i);
8617 }
8618 list_add_rcu(&tg->list, &task_groups);
8619
8620 WARN_ON(!parent); /* root should already exist */
8621
8622 tg->parent = parent;
8623 INIT_LIST_HEAD(&tg->children);
8624 list_add_rcu(&tg->siblings, &parent->children);
8625 spin_unlock_irqrestore(&task_group_lock, flags);
8626
8627 return tg;
8628
8629 err:
8630 free_sched_group(tg);
8631 return ERR_PTR(-ENOMEM);
8632 }
8633
8634 /* rcu callback to free various structures associated with a task group */
8635 static void free_sched_group_rcu(struct rcu_head *rhp)
8636 {
8637 /* now it should be safe to free those cfs_rqs */
8638 free_sched_group(container_of(rhp, struct task_group, rcu));
8639 }
8640
8641 /* Destroy runqueue etc associated with a task group */
8642 void sched_destroy_group(struct task_group *tg)
8643 {
8644 unsigned long flags;
8645 int i;
8646
8647 spin_lock_irqsave(&task_group_lock, flags);
8648 for_each_possible_cpu(i) {
8649 unregister_fair_sched_group(tg, i);
8650 unregister_rt_sched_group(tg, i);
8651 }
8652 list_del_rcu(&tg->list);
8653 list_del_rcu(&tg->siblings);
8654 spin_unlock_irqrestore(&task_group_lock, flags);
8655
8656 /* wait for possible concurrent references to cfs_rqs complete */
8657 call_rcu(&tg->rcu, free_sched_group_rcu);
8658 }
8659
8660 /* change task's runqueue when it moves between groups.
8661 * The caller of this function should have put the task in its new group
8662 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8663 * reflect its new group.
8664 */
8665 void sched_move_task(struct task_struct *tsk)
8666 {
8667 int on_rq, running;
8668 unsigned long flags;
8669 struct rq *rq;
8670
8671 rq = task_rq_lock(tsk, &flags);
8672
8673 update_rq_clock(rq);
8674
8675 running = task_current(rq, tsk);
8676 on_rq = tsk->se.on_rq;
8677
8678 if (on_rq)
8679 dequeue_task(rq, tsk, 0);
8680 if (unlikely(running))
8681 tsk->sched_class->put_prev_task(rq, tsk);
8682
8683 set_task_rq(tsk, task_cpu(tsk));
8684
8685 #ifdef CONFIG_FAIR_GROUP_SCHED
8686 if (tsk->sched_class->moved_group)
8687 tsk->sched_class->moved_group(tsk);
8688 #endif
8689
8690 if (unlikely(running))
8691 tsk->sched_class->set_curr_task(rq);
8692 if (on_rq)
8693 enqueue_task(rq, tsk, 0);
8694
8695 task_rq_unlock(rq, &flags);
8696 }
8697 #endif /* CONFIG_GROUP_SCHED */
8698
8699 #ifdef CONFIG_FAIR_GROUP_SCHED
8700 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8701 {
8702 struct cfs_rq *cfs_rq = se->cfs_rq;
8703 int on_rq;
8704
8705 on_rq = se->on_rq;
8706 if (on_rq)
8707 dequeue_entity(cfs_rq, se, 0);
8708
8709 se->load.weight = shares;
8710 se->load.inv_weight = 0;
8711
8712 if (on_rq)
8713 enqueue_entity(cfs_rq, se, 0);
8714 }
8715
8716 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8717 {
8718 struct cfs_rq *cfs_rq = se->cfs_rq;
8719 struct rq *rq = cfs_rq->rq;
8720 unsigned long flags;
8721
8722 spin_lock_irqsave(&rq->lock, flags);
8723 __set_se_shares(se, shares);
8724 spin_unlock_irqrestore(&rq->lock, flags);
8725 }
8726
8727 static DEFINE_MUTEX(shares_mutex);
8728
8729 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8730 {
8731 int i;
8732 unsigned long flags;
8733
8734 /*
8735 * We can't change the weight of the root cgroup.
8736 */
8737 if (!tg->se[0])
8738 return -EINVAL;
8739
8740 if (shares < MIN_SHARES)
8741 shares = MIN_SHARES;
8742 else if (shares > MAX_SHARES)
8743 shares = MAX_SHARES;
8744
8745 mutex_lock(&shares_mutex);
8746 if (tg->shares == shares)
8747 goto done;
8748
8749 spin_lock_irqsave(&task_group_lock, flags);
8750 for_each_possible_cpu(i)
8751 unregister_fair_sched_group(tg, i);
8752 list_del_rcu(&tg->siblings);
8753 spin_unlock_irqrestore(&task_group_lock, flags);
8754
8755 /* wait for any ongoing reference to this group to finish */
8756 synchronize_sched();
8757
8758 /*
8759 * Now we are free to modify the group's share on each cpu
8760 * w/o tripping rebalance_share or load_balance_fair.
8761 */
8762 tg->shares = shares;
8763 for_each_possible_cpu(i) {
8764 /*
8765 * force a rebalance
8766 */
8767 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8768 set_se_shares(tg->se[i], shares);
8769 }
8770
8771 /*
8772 * Enable load balance activity on this group, by inserting it back on
8773 * each cpu's rq->leaf_cfs_rq_list.
8774 */
8775 spin_lock_irqsave(&task_group_lock, flags);
8776 for_each_possible_cpu(i)
8777 register_fair_sched_group(tg, i);
8778 list_add_rcu(&tg->siblings, &tg->parent->children);
8779 spin_unlock_irqrestore(&task_group_lock, flags);
8780 done:
8781 mutex_unlock(&shares_mutex);
8782 return 0;
8783 }
8784
8785 unsigned long sched_group_shares(struct task_group *tg)
8786 {
8787 return tg->shares;
8788 }
8789 #endif
8790
8791 #ifdef CONFIG_RT_GROUP_SCHED
8792 /*
8793 * Ensure that the real time constraints are schedulable.
8794 */
8795 static DEFINE_MUTEX(rt_constraints_mutex);
8796
8797 static unsigned long to_ratio(u64 period, u64 runtime)
8798 {
8799 if (runtime == RUNTIME_INF)
8800 return 1ULL << 20;
8801
8802 return div64_u64(runtime << 20, period);
8803 }
8804
8805 /* Must be called with tasklist_lock held */
8806 static inline int tg_has_rt_tasks(struct task_group *tg)
8807 {
8808 struct task_struct *g, *p;
8809
8810 do_each_thread(g, p) {
8811 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8812 return 1;
8813 } while_each_thread(g, p);
8814
8815 return 0;
8816 }
8817
8818 struct rt_schedulable_data {
8819 struct task_group *tg;
8820 u64 rt_period;
8821 u64 rt_runtime;
8822 };
8823
8824 static int tg_schedulable(struct task_group *tg, void *data)
8825 {
8826 struct rt_schedulable_data *d = data;
8827 struct task_group *child;
8828 unsigned long total, sum = 0;
8829 u64 period, runtime;
8830
8831 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8832 runtime = tg->rt_bandwidth.rt_runtime;
8833
8834 if (tg == d->tg) {
8835 period = d->rt_period;
8836 runtime = d->rt_runtime;
8837 }
8838
8839 /*
8840 * Cannot have more runtime than the period.
8841 */
8842 if (runtime > period && runtime != RUNTIME_INF)
8843 return -EINVAL;
8844
8845 /*
8846 * Ensure we don't starve existing RT tasks.
8847 */
8848 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8849 return -EBUSY;
8850
8851 total = to_ratio(period, runtime);
8852
8853 /*
8854 * Nobody can have more than the global setting allows.
8855 */
8856 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8857 return -EINVAL;
8858
8859 /*
8860 * The sum of our children's runtime should not exceed our own.
8861 */
8862 list_for_each_entry_rcu(child, &tg->children, siblings) {
8863 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8864 runtime = child->rt_bandwidth.rt_runtime;
8865
8866 if (child == d->tg) {
8867 period = d->rt_period;
8868 runtime = d->rt_runtime;
8869 }
8870
8871 sum += to_ratio(period, runtime);
8872 }
8873
8874 if (sum > total)
8875 return -EINVAL;
8876
8877 return 0;
8878 }
8879
8880 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8881 {
8882 struct rt_schedulable_data data = {
8883 .tg = tg,
8884 .rt_period = period,
8885 .rt_runtime = runtime,
8886 };
8887
8888 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8889 }
8890
8891 static int tg_set_bandwidth(struct task_group *tg,
8892 u64 rt_period, u64 rt_runtime)
8893 {
8894 int i, err = 0;
8895
8896 mutex_lock(&rt_constraints_mutex);
8897 read_lock(&tasklist_lock);
8898 err = __rt_schedulable(tg, rt_period, rt_runtime);
8899 if (err)
8900 goto unlock;
8901
8902 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8903 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8904 tg->rt_bandwidth.rt_runtime = rt_runtime;
8905
8906 for_each_possible_cpu(i) {
8907 struct rt_rq *rt_rq = tg->rt_rq[i];
8908
8909 spin_lock(&rt_rq->rt_runtime_lock);
8910 rt_rq->rt_runtime = rt_runtime;
8911 spin_unlock(&rt_rq->rt_runtime_lock);
8912 }
8913 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8914 unlock:
8915 read_unlock(&tasklist_lock);
8916 mutex_unlock(&rt_constraints_mutex);
8917
8918 return err;
8919 }
8920
8921 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8922 {
8923 u64 rt_runtime, rt_period;
8924
8925 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8926 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8927 if (rt_runtime_us < 0)
8928 rt_runtime = RUNTIME_INF;
8929
8930 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8931 }
8932
8933 long sched_group_rt_runtime(struct task_group *tg)
8934 {
8935 u64 rt_runtime_us;
8936
8937 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8938 return -1;
8939
8940 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8941 do_div(rt_runtime_us, NSEC_PER_USEC);
8942 return rt_runtime_us;
8943 }
8944
8945 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8946 {
8947 u64 rt_runtime, rt_period;
8948
8949 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8950 rt_runtime = tg->rt_bandwidth.rt_runtime;
8951
8952 if (rt_period == 0)
8953 return -EINVAL;
8954
8955 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8956 }
8957
8958 long sched_group_rt_period(struct task_group *tg)
8959 {
8960 u64 rt_period_us;
8961
8962 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8963 do_div(rt_period_us, NSEC_PER_USEC);
8964 return rt_period_us;
8965 }
8966
8967 static int sched_rt_global_constraints(void)
8968 {
8969 u64 runtime, period;
8970 int ret = 0;
8971
8972 if (sysctl_sched_rt_period <= 0)
8973 return -EINVAL;
8974
8975 runtime = global_rt_runtime();
8976 period = global_rt_period();
8977
8978 /*
8979 * Sanity check on the sysctl variables.
8980 */
8981 if (runtime > period && runtime != RUNTIME_INF)
8982 return -EINVAL;
8983
8984 mutex_lock(&rt_constraints_mutex);
8985 read_lock(&tasklist_lock);
8986 ret = __rt_schedulable(NULL, 0, 0);
8987 read_unlock(&tasklist_lock);
8988 mutex_unlock(&rt_constraints_mutex);
8989
8990 return ret;
8991 }
8992 #else /* !CONFIG_RT_GROUP_SCHED */
8993 static int sched_rt_global_constraints(void)
8994 {
8995 unsigned long flags;
8996 int i;
8997
8998 if (sysctl_sched_rt_period <= 0)
8999 return -EINVAL;
9000
9001 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9002 for_each_possible_cpu(i) {
9003 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9004
9005 spin_lock(&rt_rq->rt_runtime_lock);
9006 rt_rq->rt_runtime = global_rt_runtime();
9007 spin_unlock(&rt_rq->rt_runtime_lock);
9008 }
9009 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9010
9011 return 0;
9012 }
9013 #endif /* CONFIG_RT_GROUP_SCHED */
9014
9015 int sched_rt_handler(struct ctl_table *table, int write,
9016 struct file *filp, void __user *buffer, size_t *lenp,
9017 loff_t *ppos)
9018 {
9019 int ret;
9020 int old_period, old_runtime;
9021 static DEFINE_MUTEX(mutex);
9022
9023 mutex_lock(&mutex);
9024 old_period = sysctl_sched_rt_period;
9025 old_runtime = sysctl_sched_rt_runtime;
9026
9027 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9028
9029 if (!ret && write) {
9030 ret = sched_rt_global_constraints();
9031 if (ret) {
9032 sysctl_sched_rt_period = old_period;
9033 sysctl_sched_rt_runtime = old_runtime;
9034 } else {
9035 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9036 def_rt_bandwidth.rt_period =
9037 ns_to_ktime(global_rt_period());
9038 }
9039 }
9040 mutex_unlock(&mutex);
9041
9042 return ret;
9043 }
9044
9045 #ifdef CONFIG_CGROUP_SCHED
9046
9047 /* return corresponding task_group object of a cgroup */
9048 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9049 {
9050 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9051 struct task_group, css);
9052 }
9053
9054 static struct cgroup_subsys_state *
9055 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9056 {
9057 struct task_group *tg, *parent;
9058
9059 if (!cgrp->parent) {
9060 /* This is early initialization for the top cgroup */
9061 return &init_task_group.css;
9062 }
9063
9064 parent = cgroup_tg(cgrp->parent);
9065 tg = sched_create_group(parent);
9066 if (IS_ERR(tg))
9067 return ERR_PTR(-ENOMEM);
9068
9069 return &tg->css;
9070 }
9071
9072 static void
9073 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9074 {
9075 struct task_group *tg = cgroup_tg(cgrp);
9076
9077 sched_destroy_group(tg);
9078 }
9079
9080 static int
9081 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9082 struct task_struct *tsk)
9083 {
9084 #ifdef CONFIG_RT_GROUP_SCHED
9085 /* Don't accept realtime tasks when there is no way for them to run */
9086 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9087 return -EINVAL;
9088 #else
9089 /* We don't support RT-tasks being in separate groups */
9090 if (tsk->sched_class != &fair_sched_class)
9091 return -EINVAL;
9092 #endif
9093
9094 return 0;
9095 }
9096
9097 static void
9098 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9099 struct cgroup *old_cont, struct task_struct *tsk)
9100 {
9101 sched_move_task(tsk);
9102 }
9103
9104 #ifdef CONFIG_FAIR_GROUP_SCHED
9105 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9106 u64 shareval)
9107 {
9108 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9109 }
9110
9111 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9112 {
9113 struct task_group *tg = cgroup_tg(cgrp);
9114
9115 return (u64) tg->shares;
9116 }
9117 #endif /* CONFIG_FAIR_GROUP_SCHED */
9118
9119 #ifdef CONFIG_RT_GROUP_SCHED
9120 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9121 s64 val)
9122 {
9123 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9124 }
9125
9126 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9127 {
9128 return sched_group_rt_runtime(cgroup_tg(cgrp));
9129 }
9130
9131 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9132 u64 rt_period_us)
9133 {
9134 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9135 }
9136
9137 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9138 {
9139 return sched_group_rt_period(cgroup_tg(cgrp));
9140 }
9141 #endif /* CONFIG_RT_GROUP_SCHED */
9142
9143 static struct cftype cpu_files[] = {
9144 #ifdef CONFIG_FAIR_GROUP_SCHED
9145 {
9146 .name = "shares",
9147 .read_u64 = cpu_shares_read_u64,
9148 .write_u64 = cpu_shares_write_u64,
9149 },
9150 #endif
9151 #ifdef CONFIG_RT_GROUP_SCHED
9152 {
9153 .name = "rt_runtime_us",
9154 .read_s64 = cpu_rt_runtime_read,
9155 .write_s64 = cpu_rt_runtime_write,
9156 },
9157 {
9158 .name = "rt_period_us",
9159 .read_u64 = cpu_rt_period_read_uint,
9160 .write_u64 = cpu_rt_period_write_uint,
9161 },
9162 #endif
9163 };
9164
9165 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9166 {
9167 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9168 }
9169
9170 struct cgroup_subsys cpu_cgroup_subsys = {
9171 .name = "cpu",
9172 .create = cpu_cgroup_create,
9173 .destroy = cpu_cgroup_destroy,
9174 .can_attach = cpu_cgroup_can_attach,
9175 .attach = cpu_cgroup_attach,
9176 .populate = cpu_cgroup_populate,
9177 .subsys_id = cpu_cgroup_subsys_id,
9178 .early_init = 1,
9179 };
9180
9181 #endif /* CONFIG_CGROUP_SCHED */
9182
9183 #ifdef CONFIG_CGROUP_CPUACCT
9184
9185 /*
9186 * CPU accounting code for task groups.
9187 *
9188 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9189 * (balbir@in.ibm.com).
9190 */
9191
9192 /* track cpu usage of a group of tasks */
9193 struct cpuacct {
9194 struct cgroup_subsys_state css;
9195 /* cpuusage holds pointer to a u64-type object on every cpu */
9196 u64 *cpuusage;
9197 };
9198
9199 struct cgroup_subsys cpuacct_subsys;
9200
9201 /* return cpu accounting group corresponding to this container */
9202 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9203 {
9204 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9205 struct cpuacct, css);
9206 }
9207
9208 /* return cpu accounting group to which this task belongs */
9209 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9210 {
9211 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9212 struct cpuacct, css);
9213 }
9214
9215 /* create a new cpu accounting group */
9216 static struct cgroup_subsys_state *cpuacct_create(
9217 struct cgroup_subsys *ss, struct cgroup *cgrp)
9218 {
9219 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9220
9221 if (!ca)
9222 return ERR_PTR(-ENOMEM);
9223
9224 ca->cpuusage = alloc_percpu(u64);
9225 if (!ca->cpuusage) {
9226 kfree(ca);
9227 return ERR_PTR(-ENOMEM);
9228 }
9229
9230 return &ca->css;
9231 }
9232
9233 /* destroy an existing cpu accounting group */
9234 static void
9235 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9236 {
9237 struct cpuacct *ca = cgroup_ca(cgrp);
9238
9239 free_percpu(ca->cpuusage);
9240 kfree(ca);
9241 }
9242
9243 /* return total cpu usage (in nanoseconds) of a group */
9244 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9245 {
9246 struct cpuacct *ca = cgroup_ca(cgrp);
9247 u64 totalcpuusage = 0;
9248 int i;
9249
9250 for_each_possible_cpu(i) {
9251 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9252
9253 /*
9254 * Take rq->lock to make 64-bit addition safe on 32-bit
9255 * platforms.
9256 */
9257 spin_lock_irq(&cpu_rq(i)->lock);
9258 totalcpuusage += *cpuusage;
9259 spin_unlock_irq(&cpu_rq(i)->lock);
9260 }
9261
9262 return totalcpuusage;
9263 }
9264
9265 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9266 u64 reset)
9267 {
9268 struct cpuacct *ca = cgroup_ca(cgrp);
9269 int err = 0;
9270 int i;
9271
9272 if (reset) {
9273 err = -EINVAL;
9274 goto out;
9275 }
9276
9277 for_each_possible_cpu(i) {
9278 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9279
9280 spin_lock_irq(&cpu_rq(i)->lock);
9281 *cpuusage = 0;
9282 spin_unlock_irq(&cpu_rq(i)->lock);
9283 }
9284 out:
9285 return err;
9286 }
9287
9288 static struct cftype files[] = {
9289 {
9290 .name = "usage",
9291 .read_u64 = cpuusage_read,
9292 .write_u64 = cpuusage_write,
9293 },
9294 };
9295
9296 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9297 {
9298 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9299 }
9300
9301 /*
9302 * charge this task's execution time to its accounting group.
9303 *
9304 * called with rq->lock held.
9305 */
9306 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9307 {
9308 struct cpuacct *ca;
9309
9310 if (!cpuacct_subsys.active)
9311 return;
9312
9313 ca = task_ca(tsk);
9314 if (ca) {
9315 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9316
9317 *cpuusage += cputime;
9318 }
9319 }
9320
9321 struct cgroup_subsys cpuacct_subsys = {
9322 .name = "cpuacct",
9323 .create = cpuacct_create,
9324 .destroy = cpuacct_destroy,
9325 .populate = cpuacct_populate,
9326 .subsys_id = cpuacct_subsys_id,
9327 };
9328 #endif /* CONFIG_CGROUP_CPUACCT */